repo_name
stringlengths
5
100
path
stringlengths
4
231
language
stringclasses
1 value
license
stringclasses
15 values
size
int64
6
947k
score
float64
0
0.34
prefix
stringlengths
0
8.16k
middle
stringlengths
3
512
suffix
stringlengths
0
8.17k
corredD/upy
blender/v280/__init__.py
Python
gpl-3.0
755
0.001325
""" Copyright (C) <2010> Autin L. TSRI This file git_upy/blender/v271/__init__.py is part of upy. upy is free software: you can redistribute it and/or modify it under the t
erms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. upy is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You sh
ould have received a copy of the GNU General Public License along with upy. If not, see <http://www.gnu.org/licenses/gpl-3.0.html>. """
pizzapanther/Getting-Paid-With-Python
paypal_demo/paypal_demo/settings.py
Python
mit
2,758
0.000725
""" Django settings for paypal_demo project. Generated by 'django-admin startproject' using Django 1.8. For more information on this file, see https://docs.djangoproject.com/en/1.8/topics/settings/ For the full li
st of settings and their values, see https://docs.djangoproject.com/en/1.8/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(
__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'gt^xy(p!5wcff5@zy#^cnvuz9ry#-#g$59du41x@a!l=#)3q6+' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'paypal_demo', ] MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', ) ROOT_URLCONF = 'paypal_demo.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'paypal_demo.wsgi.application' # Database # https://docs.djangoproject.com/en/1.8/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.8/howto/static-files/ STATIC_URL = '/static/' #PayPal Settings INSTALLED_APPS.append('paypal.standard.ipn') PAYPAL_RECEIVER_EMAIL = "sandbox@neutrondrive.com"
liukaijv/XlsxWriter
xlsxwriter/test/comparison/test_chart_data_labels23.py
Python
bsd-2-clause
1,849
0.000541
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2015, John McNamara, jmcnamara@cpan.org # from ..excel_comparsion_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.maxDiff = None filename = 'chart_data_labels23.xlsx' test_dir = 'xlsxwriter/test/comparison/' self.got_filename = test_dir + '_test_' + filename self.exp_filename = test_dir + 'xlsx_files/' + filename self.ignore_files = [] self.ignore_elements = {} def test_create_file(self): """Test the creation of a simple XlsxWriter file.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() chart = workbook.add_char
t({'type': 'column'}) chart.axis_ids = [45705856, 45740416] data = [ [1, 2, 3, 4, 5], [2, 4, 6, 8, 10], [3, 6, 9, 12, 15], ] worksheet.write_column(
'A1', data[0]) worksheet.write_column('B1', data[1]) worksheet.write_column('C1', data[2]) chart.add_series({ 'values': '=Sheet1!$A$1:$A$5', 'data_labels': { 'value': 1, 'font': {'name': 'Consolas', 'baseline': 1 * -1, 'pitch_family': 49, 'charset': 0} }, }) chart.add_series({ 'values': '=Sheet1!$B$1:$B$5', 'data_labels': {'value': 1, 'position': 'inside_base'}, }) chart.add_series({'values': '=Sheet1!$C$1:$C$5'}) worksheet.insert_chart('E9', chart) workbook.close() self.assertExcelEqual()
janmtl/pypsych
pypsych/data_sources/hrvstitcher.py
Python
bsd-3-clause
10,502
0.000286
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Includes the HRV stitcher data source class """ import pandas as pd import numpy as np from scipy.io import loadmat from scipy.interpolate import UnivariateSpline from data_source import DataSource from schema import Schema, Or, Optional def _val(x, pos, label_bin): return np.mean(x) def _std(x, pos, label_bin): return x.std(axis=0) def _sem(x, pos, label_bin): return x.sem(axis=0) def _var(x, pos, label_bin): return np.var(x) class HRVStitcher(DataSource): def __init__(self, config, schedule): # Call the parent class init super(HRVStitcher, self).__init__(config, schedule) self.panels = {'bpm': {'VAL': _val, 'SEM': _sem}, 'rr': {'VAL': _val, 'STD': _std}, 'twave': {'VAL': _val, 'SEM': _sem}} def load(self, file_paths): """Override for load method to include .mat compatibility.""" self.data['samples'] = pd.read_csv(file_paths['samples'], comment="#", delimiter="\t", skipinitialspace=True, header=False, index_col=False, names=['bpm', 'rr', 'twave']) raw_mat = loadmat(file_paths['labels']) events = raw_mat['events'][:, 0] self.data['labels'] = pd.DataFrame({'flag': events}, index=np.arange(events.size)) def merge_data(self): """ Clean and merge the samples and labels data. """ # TODO(janmtl): return an error if the files have not been loaded yet. # Clean the samples data frame and the labels data frame self.data['samples'] = self._clean_samples(self.data['samples']) self.data['labels'] = self._clean_labels(self.data['labels']) self.label_config = self._label_config_to_df(self.config) # Combine the labels data with the labels configuration self.data['labels'] = self._merge_labels_and_config( labels=self.data['labels'], config=self.label_config) def bin_data(self): """Makes a dict of dicts of pd.Panels at self.output.""" label_bins = self.create_label_bins(self.data['labels']) major_axis = label_bins.index.values minor_axis = label_bins.drop(['Start_Time', 'End_Time'], axis=1).columns minor_axis = minor_axis.append(pd.Index(['stat'])) raw = self.data['samples'] output = {channel: pd.Panel(items=statistics.keys(), major_axis=major_axis, minor_axis=minor_axis) for channel, statistics in self.panels.iteritems()} for channel, statistics in self.panels.iteritems(): for stat_name, stat_fun in statistics.iteritems(): new_panel = label_bins.copy(deep=True) new_panel.drop(['Start_Time', 'End_Time'], axis=1, inplace=True) new_panel['stat'] = np.nan cond_lbls = pd.Series(data=zip(label_bins.loc[:, 'Condition'], label_bins.loc[:, 'Label']) ).unique() for cond_lbl in cond_lbls: sel = (label_bins.loc[:, 'Condition'] == cond_lbl[0]) \ & (label_bins.loc[:, 'Label'] == cond_lbl[1]) sel_bins = label_bins.loc[sel, :] samples = pd.Series(name=channel) pos = pd.Series(name='pos') for _, label_bin in sel_bins.iterrows(): selector = (raw.index.values >= label_bin['Start_Time']) \ & (raw.index.values < label_bin['End_Time']) samples = samples.append(raw.loc[selector, channel]) pos = pos.append(raw.loc[selector, 'pos']) stat = stat_fun(samples, pos) new_panel.loc[sel, 'stat'] = stat output[channel][stat_name] = new_panel.sort('Bin_Order') self.output = output @staticmethod def _label_config_to_df(config): """Convert the label configuration dictionary to a data frame.""" labels_list = [] for event_type, label_config in config.iteritems(): pattern = label_config['pattern'] if isinstance(pattern, dict): for event_group, flag in label_config['pattern'].iteritems(): labels_list.append({ 'Label': event_type, 'Condition': event_group, 'Duration': label_config['duration'], 'N_Bins': label_config['bins'], 'Left_Trim': label_config.get('left_trim', 0), 'Right_Trim': label_config.get('right_trim', 0), 'flag': flag}) elif isinstance(pattern, int): labels_list.append({ 'Label': event_type, 'Condition': np.nan, 'Duration': label_config['duration'], 'N_Bins': label_config['bins'], 'Left_Trim': label_config.get('left_trim', 0), 'Right_Trim': label_config.get('right_trim', 0), 'flag': pattern}) else: raise Exception('Bad Biopac config flag {}'.format(pattern)) return pd.DataFrame(labels_list) @staticmethod def _clean_labels(labels): """ Turn the Biopac flag channel into a data frame of label flags and start times. """ # TODO(janmtl): finish this docstring flags = labels['flag'].values low_offset = np.append(-255, flags) high_offset = np.append(flags, flags[-1]) event_flags = flags[(low_offset-high_offset) != 0] start_times = np.where((low_offset-high_offset) != 0)[0] labels = pd.DataFrame({'flag': event_flags, 'Start_Time': start_times}) labels = labels[(labels['flag'] != 255)] return labels @staticmethod def _clean_samples(samples): """ . """ scale = 0.55 samples.index = samples.index*100 for col_name, col in samples.iteritems(): x = col.index y = col.values spl = UnivariateSpline(x, y, k=5, s=scale*len(x)) samples[col_name] = spl(x) samples['pos'] = True return samples @staticmethod def _merge_labels_and_config(labels, config): """ Merge together the contents of the labels file with the label configuration dictionary. """ labels = pd.merge(labels, config, on='flag') labels.sort('Start_Time', inplace=True) return labels def create_label_bins(self, labels): """Replace the N_Bins column with Bin_Index and the Duration column with End_Time. This procedure grows the number of rows in the labels data frame.""" total_bins = labels['N_Bins'].sum() label_bins = pd.DataFrame(columns=['Order', 'ID', 'Label',
'Condition', 'Bin_Order', 'Start_Time', 'End_Time', 'Bin_Index'],
index=np.arange(0, total_bins)) idx = 0 for _, label in labels.iterrows(): n_bins = label['N_Bins'] cuts = np.linspace(start=label['Start_Time'] + label['Left_Trim'], stop=(label['Start_Time'] + label['Duration'] - label['Right_Trim']), nu
AjayMT/nodenet
setup.py
Python
mit
787
0
#!/usr/bin/env python from setuptools import setup setup( name='nodenet', version='0.1.0',
description='an asynchronous node-based UDP networking library', author='Ajay MT', author_email='ajaymt@icloud.com', url='http://github.com/AjayMT/nodenet', download_url='https://github.com/AjayMT/nodenet/tarball/v0.1.0', keywords='node network UDP asynchronous', py_modules=['nodenet'], requires=[ 'pyuv (>1.0.0, <2.0.0)', 'emitter (>=0.0.6)' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: De
velopers', 'License :: OSI Approved :: MIT License', 'Operating System :: POSIX', 'Programming Language :: Python', 'Programming Language :: Python :: 2', ] )
opensvn/test
src/study/python/cpp/ch13/roundFloat2.py
Python
gpl-2.0
280
0
#!/usr/bin/env python class RoundFloatManual(object): def __init__(self, val): assert isinstance(val, float), \ "Value must be a float!" self.value = round(val, 2
) def __str__(self): return '%.2
f' % self.value __repr__ = __str__
mpclemens/python-explore
turtle/bloom.py
Python
gpl-3.0
728
0.002747
#!/usr/bin/env python import turtle import random def bloom(radius): turtle.colormode(255) for rad in range(40, 10, -5): for looper in range(360//rad): turtle.up() turtle.circle(radius+rad, rad) turtle.begin_fill() turtle.fillcolor((200+random.randint(0, rad), 200+random.randint(0, rad), 200+random.randint(0, rad))) turtle.down() turtle.circle(-rad) turtle.end_fill() def main(): """Simple flower, using global turtle instance""" turtle.speed(0) turtle.colormode(1.0) blo
om(5) turtle.exitonclick() ### if __name__ == "__main__": main()
satyamz/Tests
pyftpdlib/log.py
Python
gpl-2.0
6,094
0.000164
#!/usr/bin/env python # ====================================================================== # Copyright (C) 2007-2014 Giampaolo Rodola' <g.rodola@gmail.com> # # All Rights Reserved # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, # copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following # conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. # """ Logging support for pyftpdlib, inspired from Tornado's (http://www.tornadoweb.org/). This is not supposed to be imported/used directly. Instead you should use logging.basicConfig before serve_forever(). """ import logging import sys import time try: import curses except ImportError: curses = None from pyftpdlib._compat import unicode # default logger logger = logging.getLogger('pyftpdlib') def _stderr_supports_color(): color = False if curses is not None and sys.stderr.isatty(): try: curses.setupterm() if curses.tigetnum("colors") > 0: color = True except Exception: pass return color # configurable options LEVEL = logging.INFO PREFIX = '[%(levelname)1.1s %(asctime)s]' COLOURED = _stderr_supports_color() TIME_FORMAT = "%y-%m-%d %H:%M:%S" # taken and adapted from Tornado class LogFormatter(logging.Formatter): """Log formatter used in pyftpdlib. Key features of this formatter are: * Color support when logging to a terminal that supports it. * Timestamps on every log line. * Robust against str/bytes encoding problems. """ def __init__(self, *args, **kwargs): logging.Formatter.__init__(self, *args, **kwargs) self._coloured = COLOURED and _stderr_supports_color() if self._coloured: curses.setupterm() # The curses module has some str/bytes confusion in # python3. Until version 3.2.3, most methods return # bytes, but only accept strings. In addition, we want to # output these strings with the logging module, which # works with un
icode strings. The explicit calls to # unicode() below are harmless in python2 b
ut will do the # right conversion in python 3. fg_color = (curses.tigetstr("setaf") or curses.tigetstr("setf") or "") if (3, 0) < sys.version_info < (3, 2, 3): fg_color = unicode(fg_color, "ascii") self._colors = { # blues logging.DEBUG: unicode(curses.tparm(fg_color, 4), "ascii"), # green logging.INFO: unicode(curses.tparm(fg_color, 2), "ascii"), # yellow logging.WARNING: unicode(curses.tparm(fg_color, 3), "ascii"), # red logging.ERROR: unicode(curses.tparm(fg_color, 1), "ascii") } self._normal = unicode(curses.tigetstr("sgr0"), "ascii") def format(self, record): try: record.message = record.getMessage() except Exception: err = sys.exc_info()[1] record.message = "Bad message (%r): %r" % (err, record.__dict__) record.asctime = time.strftime(TIME_FORMAT, self.converter(record.created)) prefix = PREFIX % record.__dict__ if self._coloured: prefix = (self._colors.get(record.levelno, self._normal) + prefix + self._normal) # Encoding notes: The logging module prefers to work with character # strings, but only enforces that log messages are instances of # basestring. In python 2, non-ascii bytestrings will make # their way through the logging framework until they blow up with # an unhelpful decoding error (with this formatter it happens # when we attach the prefix, but there are other opportunities for # exceptions further along in the framework). # # If a byte string makes it this far, convert it to unicode to # ensure it will make it out to the logs. Use repr() as a fallback # to ensure that all byte strings can be converted successfully, # but don't do it by default so we don't add extra quotes to ascii # bytestrings. This is a bit of a hacky place to do this, but # it's worth it since the encoding errors that would otherwise # result are so useless (and tornado is fond of using utf8-encoded # byte strings wherever possible). try: message = unicode(record.message) except UnicodeDecodeError: message = repr(record.message) formatted = prefix + " " + message if record.exc_info: if not record.exc_text: record.exc_text = self.formatException(record.exc_info) if record.exc_text: formatted = formatted.rstrip() + "\n" + record.exc_text return formatted.replace("\n", "\n ") def _config_logging(): channel = logging.StreamHandler() channel.setFormatter(LogFormatter()) logger = logging.getLogger('pyftpdlib') logger.setLevel(LEVEL) logger.addHandler(channel)
NINAnor/sentinel4nature
Tree canopy cover/regression/GBRT_Luroeykalven_manual_FCLS.py
Python
gpl-2.0
8,821
0.006122
# GBRT for Luroeykalven case study site # Training data: manually digitized training areas, including water pixels # Predictors: results of FCLS spectral unmixing # Authors: Stefan Blumentrath import numpy as np import matplotlib.pyplot as plt from sklearn import ensemble from sklearn import datasets from sklearn.utils import shuffle from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score from sklearn.ensemble.partial_dependence import plot_partial_dependence from sklearn.model_selection import GridSearchCV from grass.pygrass import raster as r from grass.pygrass.utils import getenv import grass.script as gs from cStringIO import StringIO from subprocess import PIPE from io import BytesIO from itertools import combinations def setParamDict(): params = {} for p in ['learning_rate', 'max_depth', 'loss', 'subsample', 'min_samples_leaf', 'max_features', 'n_estimators']: if p in ['max_depth', 'min_samples_leaf', 'n_estimators']: params[p] = map(int, options[p].split(',')) elif p in ['learning_rate', 'max_features', 'subsample']: params[p] = map(float, options[p].split(',')) else: params[p] = options[p].split(',') return params def writeMap(name, x,y,z): result = BytesIO() np.savetxt(result, np.column_stack((x, y, z))) result.seek(0) gs.write_command('r.in.xyz', stdin=result.getvalue(), input='-', output=name, method='mean', separator=' ', overwrite=True) # ############################################################################# # Define variables # List of input maps has to start with Y # Initaial settings for automatized model selection options = {'cores': '20', 'learning_rate': '0.009,0.007,0.005', 'max_depth': '11,13,15', 'min_samples_leaf': '1,2,3', 'max_features': '0.9,0.8,0.7', 'subsample': '0.5', 'loss': 'huber', 'n_estimators': '3000', 'y': 'test_area_luroeykalven_water_grid_25833_10m@p_Sentinel4Nature_S2_Luroeykalven', 'x': 'unmix_pysptools_bands_NDVI_VVVH_10000_10_NFINDR_FCLS_mask_1,unmix_pysptools_bands_NDVI_VVVH_10000_10_NFINDR_FCLS_mask_2,unmix_pysptools_bands_NDVI_VVVH_10000_10_NFINDR_FCLS_mask_3,unmix_pysptools_bands_NDVI_VVVH_10000_10_NFINDR_FCLS_mask_4,unmix_pysptools_bands_NDVI_VVVH_10000_10_NFINDR_FCLS_mask_5,unmix_pysptools_bands_NDVI_VVVH_10000_10_NFINDR_FCLS_mask_6,unmix_pysptools_bands_NDVI_VVVH_10000_10_NFINDR_FCLS_mask_7,unmix_pysptools_bands_NDVI_VVVH_10000_10_NFINDR_FCLS_mask_8,unmix_pysptools_bands_NDVI_VVVH_10000_10_NFINDR_FCLS_mask_9,unmix_pysptools_bands_NDVI_VVVH_10000_10_NFINDR_FCLS_mask_10', 'deviance': '/data/R/GeoSpatialData/Orthoimagery/Fenoscandia_Sentinel_2/temp_Avd15GIS/Case_Luroeykalven/regression/Luroeykalven_water_FCLS_GBRT_deviance.pdf', 'featureimportance': '/data/R/GeoSpatialData/Orthoimagery/Fenoscandia_Sentinel_2/temp_Avd15GIS/Case_Luroeykalven/regression/Luroeykalven_water_FCLS_GBRT_featureimportance.pdf', 'partialdependence': '/data/R/GeoSpatialData/Orthoimagery/Fenoscandia_Sentinel_2/temp_Avd15GIS/Case_Luroeykalven/regression/Luroeykalven_water_FCLS_GBRT_partial_dependence.pdf', 'crossval': '0.25', 'output': 'ForestCover_Luroeykalven_water_FCLS', 'spatial_term': None } cores = int(options['cores']) spatial_term = options['spatial_term'] output = options['output'] deviance = options['deviance'] featureimportance = options['featureimportance'] partialdependence = options['partialdependence'] crossval = float(options['crossval']) params = setParamDict() # ############################################################################# # Load data maps = [options['y']] + options['x'].rstrip('\n').split(',') data = np.genfromtxt(BytesIO(gs.read_command('r.stats', flags='1Ng', input=maps)), delimiter=" ") y = 2 if spatial_term: x = [0,1] + range(3,len(data[0])) else: x = range(3,len(data[0])) # Create a mas for NoData in either x or y mask_y = np.isnan(data[:,y]) for i in range(3,len(data[0])): if i == 3: mask_x = np.isnan(data[:,i]) else: mask_x = np.logical_or((np.isnan(data[:,i])), mask_x) all_y_idx = np.where(np.logical_or(mask_x, mask_y)==False) all_x_idx = np.where(mask_x==False) # Random shuffle data points with training data, excluding all NoData all_y = shuffle(data[all_y_idx]) # Training and test set offset = int(all_y.shape[0] * (1 - crossval)) X_train, y_train, coor_train = all_y[:offset,x], all_y[:offset,y], all_y[:offset,[0,1]] X_test, y_test, coor_test= all_y[offset:,x], all_y[offset:,y], all_y[offset:,[0,1]] # Set for predicitions predict, coor_predict = data[all_x_idx][:,x], data[all_x_idx][:,[0,1]] # Run model selection process if requested model_selection = False for k in params.keys(): if len(params[k]) > 1: model_selection = True if model_selection: gs.message('Running model selection ...') clf = ensemble.GradientBoostingRegressor() # this may take some minutes gs_cv = GridSearchCV(clf, params, n_jobs=cores).fit(X_train, y_train) # best hyperparameter setting best_params = gs_cv.best_params_ print('Best hyper-parameter set is:') print(best_params) else: best_params = {} for k in params.keys(): best_params[k] = params[k][0] # ############################################################################# # Fit regression model gs.message('Fitting regression model ...') clf = ensemble.GradientBoostingRegressor(**best_params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) r2 = r2_score(y_test, clf.predict(X_test)) print("MSE: %.4f" % mse) print("R2: %.4f" % r2) # ############################################################################# # Generate requested plots # Plot training deviance # compute test set deviance if deviance: test_score = np.zeros((best_params['n_estimators'],), dtype=np.float64) for i, y_pred in enumerate(clf.staged_predict(X_test)): test_score[i] = clf.loss_(y_test, y_pred) plt.figure(figsize=(12, 6)) plt.rcParams.update({'figure.autolayout': True}) plt.title('Deviance') plt.plot(np.arange(best_params['n_estimators']) + 1, clf.train_score_, 'b-', label='Training Set Deviance') plt.plot(np.arange(best_params['n_estimators']) + 1, test_score, 'r-', label='Test Set Deviance') plt.legend(loc='upper right') plt.xlabel('Boosting Iterations') plt.ylabel('Deviance') plt.savefig(deviance) # ############################################################################# # Plot feature importance if featureimportance: if spatial_term: cols = ['x', 'y'] + maps[1:] else: cols = maps[1:] plt.figure(figsize=(12, 12)) plt.rcParams.update({'figure.autolayout': True}) feature_importance = clf.feature_importances_ # make importances relative to max importance feature_importance = 100.0 * (feature_importance / feature_importance.max()) sorted_idx = np.argsort(feature_importance) pos = np.arange(sorted_idx.shape[0]) + .5
#plt.subplot(1, 2, 2) plt.barh(pos, feature_importance[sorted_idx], align='center') plt.yticks(pos, np.array(cols)[sorted_idx]) plt.xlabel('Relative Importance') plt.title('Variable Importance') plt.savefig(featureimportance) if partialdependence: if spatial_term: cols = ['x', 'y'] + maps[1:] else: cols = maps[1:] fig,
axs = plot_partial_dependence(clf, X_train, cols, n_jobs=cores, n_cols=2, feature_names=cols, figsize=(len(cols), len(cols)*2)) fig.savefig(partialdependence) sorted_idx = np.argsort(clf.feature_importances_) twoway = list(combinations(list(reversed(sorted_idx[-6:])), 2)) fig, axs = plot_partial_dependence(clf, X_train, twoway, n_jobs=cores, n_co
0asa/gittle
examples/diff.py
Python
apache-2.0
227
0
from gittle import Gittle repo = Gittle('.') lastest = [ info['sha']
for info in repo.commit_info()[1:3] ] pr
int(repo.diff(*lastest, diff_type='classic')) print(""" Last Diff """) print(list(repo.diff('HEAD')))
chippey/gaffer
python/GafferSceneTest/__init__.py
Python
bsd-3-clause
5,457
0.00055
########################################################################## # # Copyright (c) 2012-2014, John Haddon. All rights reserved. # Copyright (c) 2013-2014, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of John Haddon nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import GafferScene from _GafferSceneTest import * from SceneTestCase import SceneTestCase from ScenePlugTest import ScenePlugTest from GroupTest import GroupTest from SceneTimeWarpTest import SceneTimeWarpTest from SceneProceduralTest import SceneProceduralTest from CubeTest import CubeTest from PlaneTest import PlaneTest from SphereTest import SphereTest from InstancerTest import InstancerTest from ObjectToSceneTest import ObjectToSceneTest from CameraTest import CameraTest from OutputsTest import OutputsTest from CustomOptionsTest import CustomO
ptionsTest from DeleteOptionsTest import DeleteOptionsTest from CopyOptionsTest import CopyOp
tionsTest from SceneNodeTest import SceneNodeTest from PathMatcherTest import PathMatcherTest from PathFilterTest import PathFilterTest from ShaderAssignmentTest import ShaderAssignmentTest from CustomAttributesTest import CustomAttributesTest from AlembicSourceTest import AlembicSourceTest from DeletePrimitiveVariablesTest import DeletePrimitiveVariablesTest from SeedsTest import SeedsTest from SceneContextVariablesTest import SceneContextVariablesTest from SubTreeTest import SubTreeTest from OpenGLAttributesTest import OpenGLAttributesTest from StandardOptionsTest import StandardOptionsTest from ScenePathTest import ScenePathTest from PathMatcherDataTest import PathMatcherDataTest from LightTest import LightTest from TestRender import TestRender from RenderTest import RenderTest from OpenGLShaderTest import OpenGLShaderTest from OpenGLRenderTest import OpenGLRenderTest from TransformTest import TransformTest from AimConstraintTest import AimConstraintTest from PruneTest import PruneTest from ShaderTest import ShaderTest from TextTest import TextTest from MapProjectionTest import MapProjectionTest from MapOffsetTest import MapOffsetTest from PointConstraintTest import PointConstraintTest from SceneReaderTest import SceneReaderTest from SceneWriterTest import SceneWriterTest from IsolateTest import IsolateTest from DeleteAttributesTest import DeleteAttributesTest from UnionFilterTest import UnionFilterTest from SceneSwitchTest import SceneSwitchTest from ShaderSwitchTest import ShaderSwitchTest from ParentConstraintTest import ParentConstraintTest from ParentTest import ParentTest from StandardAttributesTest import StandardAttributesTest from PrimitiveVariablesTest import PrimitiveVariablesTest from DuplicateTest import DuplicateTest from ModuleTest import ModuleTest from GridTest import GridTest from SetTest import SetTest from FreezeTransformTest import FreezeTransformTest from SetFilterTest import SetFilterTest from FilterTest import FilterTest from SceneAlgoTest import SceneAlgoTest from CoordinateSystemTest import CoordinateSystemTest from DeleteOutputsTest import DeleteOutputsTest from ExternalProceduralTest import ExternalProceduralTest from ClippingPlaneTest import ClippingPlaneTest from FilterSwitchTest import FilterSwitchTest from PointsTypeTest import PointsTypeTest from ParametersTest import ParametersTest from SceneFilterPathFilterTest import SceneFilterPathFilterTest from AttributeVisualiserTest import AttributeVisualiserTest from SceneLoopTest import SceneLoopTest from SceneProcessorTest import SceneProcessorTest from MeshToPointsTest import MeshToPointsTest from InteractiveRenderTest import InteractiveRenderTest from FilteredSceneProcessorTest import FilteredSceneProcessorTest from ShaderBallTest import ShaderBallTest from LightTweaksTest import LightTweaksTest from FilterResultsTest import FilterResultsTest if __name__ == "__main__": import unittest unittest.main()
seankelly/buildbot
master/buildbot/reporters/http.py
Python
gpl-2.0
4,489
0.001337
# This file is part of Buildbot. Buildbot is free software: you can # redistribute it and/or modify it under the terms of the GNU General Public # License as published by the Free Software Foundation, version 2. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., 51 # Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # # Copyright Buildbot Team Members from __future__ import absolute_import from __future__ import print_function from future.utils import iteritems import abc import copy from twisted.internet import defer from twisted.python import log from buildbot import config from buildbot.reporters import utils from buildbot.util import httpclientservice from buildbot.util import service class HttpStatusPushBase(service.BuildbotService): neededDetails = dict() def checkConfig(self, *args, **kwargs): service.BuildbotService.checkConfig(self) httpclientservice.HTTPClientService.checkAvailable(self.__class__.__name__) if not isinstance(kwargs.get('builders'), (type(None), list)): config.error("builders must be a list or None") @defer.inlineCallbacks def reconfigService(self, builders=None, debug=None, verify=None, **kwargs):
yield service.BuildbotService.reconfigService(self) self.debug =
debug self.verify = verify self.builders = builders self.neededDetails = copy.copy(self.neededDetails) for k, v in iteritems(kwargs): if k.startswith("want"): self.neededDetails[k] = v @defer.inlineCallbacks def startService(self): yield service.BuildbotService.startService(self) startConsuming = self.master.mq.startConsuming self._buildCompleteConsumer = yield startConsuming( self.buildFinished, ('builds', None, 'finished')) self._buildStartedConsumer = yield startConsuming( self.buildStarted, ('builds', None, 'new')) def stopService(self): self._buildCompleteConsumer.stopConsuming() self._buildStartedConsumer.stopConsuming() def buildStarted(self, key, build): return self.getMoreInfoAndSend(build) def buildFinished(self, key, build): return self.getMoreInfoAndSend(build) def filterBuilds(self, build): if self.builders is not None: return build['builder']['name'] in self.builders return True @defer.inlineCallbacks def getMoreInfoAndSend(self, build): yield utils.getDetailsForBuild(self.master, build, **self.neededDetails) if self.filterBuilds(build): yield self.send(build) @abc.abstractmethod def send(self, build): pass class HttpStatusPush(HttpStatusPushBase): name = "HttpStatusPush" secrets = ['user', 'password', "auth"] def checkConfig(self, serverUrl, user=None, password=None, auth=None, format_fn=None, **kwargs): if user is not None and auth is not None: config.error("Only one of user/password or auth must be given") if user is not None: config.warnDeprecated("0.9.1", "user/password is deprecated, use 'auth=(user, password)'") if (format_fn is not None) and not callable(format_fn): config.error("format_fn must be a function") HttpStatusPushBase.checkConfig(self, **kwargs) @defer.inlineCallbacks def reconfigService(self, serverUrl, user=None, password=None, auth=None, format_fn=None, **kwargs): yield HttpStatusPushBase.reconfigService(self, **kwargs) if user is not None: auth = (user, password) if format_fn is None: self.format_fn = lambda x: x else: self.format_fn = format_fn self._http = yield httpclientservice.HTTPClientService.getService( self.master, serverUrl, auth=auth) @defer.inlineCallbacks def send(self, build): response = yield self._http.post("", json=self.format_fn(build)) if response.code != 200: log.msg("%s: unable to upload status: %s" % (response.code, response.content))
davelab6/pyfontaine
fontaine/charsets/noto_chars/notosanstamil_regular.py
Python
gpl-3.0
7,479
0.017917
# -*- coding: utf-8 -*- class Charset(object): common_name = 'NotoSansTamil-Regular' native_name = '' def glyphs(self): chars = [] chars.append(0x0000) #uni0000 ???? chars.append(0x200B) #uniFEFF ZERO WIDTH SPACE chars.append(0x200C) #uni200C ZERO WIDTH NON-JOINER chars.append(0x000D) #uni000D ???? chars.append(0x2212) #minus MINUS SIGN chars.append(0x2013) #endash EN DASH chars.append(0x2014) #emdash EM DASH chars.append(0x2018) #quoteleft LEFT SINGLE QUOTATION MARK chars.append(0x2019) #quoteright RIGHT SINGLE QUOTATION MARK chars.append(0x201C) #quotedblleft LEFT DOUBLE QUOTATION MARK chars.append(0x201D) #quotedblright RIGHT DOUBLE QUOTATION MARK chars.append(0x0020) #uni00A0 SPACE chars.append(0x0021) #exclam EXCLAMATION MARK chars.append(0x0022) #quotedbl QUOTATION MARK chars.append(0x0023) #numbersign NUMBER SIGN chars.append(0x0025) #percent PERCENT SIGN chars.append(0x2026) #ellipsis HORIZONTAL ELLIPSIS chars.append(0x0027) #quotesingle APOSTROPHE chars.append(0x0028) #parenleft LEFT PARENTHESIS chars.append(0x0029) #parenright RIGHT PARENTHESIS chars.append(0x002A) #asterisk ASTERISK chars.append(0x002B) #plus PLUS SIGN chars.append(0x002C) #comma COMMA chars.append(0x002D) #hyphen HYPHEN-MINUS chars.append(0x002E) #period FULL STOP chars.append(0x002F) #slash SOLIDUS chars.append(0x0030) #zero DIGIT ZERO chars.append(0x0031) #one DIGIT ONE chars.append(0x0032) #two DIGIT TWO chars.append(0x0033) #three DIGIT THREE chars.append(0x0034) #four DIGIT FOUR chars.append(0x0035) #five DIGIT FIVE chars.append(0x0036) #six DIGIT SIX chars.append(0x0037) #seven DIGIT SEVEN chars.append(0x0038) #eight DIGIT EIGHT chars.append(0x0039) #nine DIGIT NINE chars.append(0x003A) #colon COLON chars.append(0x003B) #semicolon SEMICOLON chars.append(0x003C) #less LESS-THAN SIGN chars.append(0x003D) #equal EQUALS SIGN chars.append(0x003E) #greater GREATER-THAN SIGN chars.append(0x003F) #question QUESTION MARK chars.append(0x200D) #uni200D ZERO WIDTH JOINER chars.append(0x005B) #bracketleft LEFT SQUARE BRACKET chars.append(0x005C) #backslash REVERSE SOLIDUS chars.append(0x005D) #bracketright RIGHT SQUARE BRACKET chars.append(0x005E) #asciicircum CIRCUMFLEX ACCENT chars.append(0x005F) #underscore LOW LINE chars.append(0x007B) #braceleft LEFT CURLY BRACKET chars.append(0x007C) #bar VERTICAL LINE chars.append(0x007D) #braceright RIGHT CURLY BRACKET chars.append(0x007E) #asciitilde TILDE chars.append(0x00A0) #uni00A0 NO-BREAK SPACE chars.append(0x00AD) #uni00AD SOFT HYPHEN chars.append(0x20B9) #uni20B9 ???? chars.append(0x25CC) #uni25CC DOTTED CIRCLE chars.append(0x00D7) #multiply MULTIPLICATION SIGN chars.append(0x00F7) #divide DIVISION SIGN chars.append(0xFEFF) #uniFEFF ZERO WIDTH NO-BREAK SPACE chars.append(0x0964) #uni0964 DEVANAGARI DANDA chars.append(0x0965) #uni0965 DEVANAGARI DOUBLE DANDA chars.append(0x0B82) #uni0B82 TAMIL SIGN ANUSVARA chars.append(0x0B83) #uni0B83 TAMIL SIGN VISARGA chars.append(0x0B85) #uni0B85 TAMIL LETTER A chars.append(0x0B86) #uni0B86 TAMIL LETTER AA chars.append(0x0B87) #uni0B87 TAMIL LETTER I chars.append(0x0B88) #uni0B88 TAMIL LETTER II chars.append(0x0B89) #uni0B89 TAMIL LETTER U chars.append(0x0B8A) #uni0B8A TAMIL LETTER UU chars.append(0x0B8E) #uni0B8E TAMIL LETTER E chars.append(0x0B8F) #uni0B8F TAMIL LETTER EE chars.append(0x0B90) #uni0B90 TAMIL LETTER AI chars.append(0x0B92) #uni0B92 TAMIL LETTER O chars.append(0x0B93) #uni0B93 TAMIL LETTER OO chars.append(0x0B94) #uni0B94 TAMIL LETTER AU chars.append(0x0B95) #uni0B95 TAMIL LETTER KA chars.append(0x0B99) #uni0B99 TAMIL LETTER NGA chars.append(0x0B9A) #uni0B9A TAMIL LETTER CA chars.append(0x0B9C) #uni0B9C TAMIL LETTER JA chars.append(0x0B9E) #uni0B9E TAMIL LETTER NYA chars.append(0x0B9F) #uni0B9F TAMIL LETTER TTA chars.append(0x0BA3) #uni0BA3 TAMIL LETTER NNA chars.append(0x0BA4) #uni0BA4 TAMIL LETTER TA chars.append(0x0BA8) #uni0BA8 TAMIL LETTER NA chars.append(0x0BA9) #uni0BA9 TAMIL LETTER NNNA chars.append(0x0BAA) #uni0BAA TAMIL LETTER PA chars.append(0x0BAE) #uni0BAE TAMIL LETTER MA chars.append(0x0BAF) #uni0BAF TAMIL LETTER YA chars.append(0x0BB0) #uni0BB0 TAMIL LETTER RA chars.append(0x0BB1) #uni0BB1 TAMIL LETTER RRA chars.append(0x0BB2) #uni0BB2 TAMIL LETTER LA chars.append(0x0BB3) #uni0BB3 TAMIL LETTER LLA chars.append(0x0BB4) #uni0BB4 TAMIL LETTER LLLA chars.append(0x0BB5) #uni0BB5 TAMIL LETTER VA chars.append(0x0BB6) #uni0BB6 TAMIL LETTER SHA chars.append(0x0BB7) #uni0BB7 TAMIL LETTER SSA chars.append(0x0BB8) #uni0BB8 TAMIL LETTER SA chars.append(0x0BB9) #uni0BB9 TAMIL LETTER HA chars.append(0x0BBE) #uni0BBE TAMIL VOWEL SIGN AA chars.append(0x0BBF) #uni0BBF TAMIL VOWEL SIGN I chars.append(0x0BC0) #uni0BC0 TAMIL VOWEL SIGN II chars.append(0x0BC1) #uni0BC1 TAMIL VOWEL SIGN U chars.append(0x0BC2) #uni0BC2 TAMIL VOWEL SIGN UU chars.append(0x0BC6) #uni0BC6 TAMIL VOWEL SIGN E chars.append(0x0BC7) #uni0BC7 TAMIL VOWEL SIGN EE chars.append(0x0BC8) #uni0BC8 TAMIL VOWEL SIGN AI chars.append(0x0BCA) #uni0BCA TAMIL VOWEL SIGN O chars.append(0x0BCB) #uni0BCB TAMIL VOWEL SIGN OO chars.append(0x0BCC) #uni0BCC TAMIL VOWEL SIGN AU chars.append(0x0BCD) #uni0BCD TAMIL SIGN VIRAMA chars.append(0x0BD0) #uni0BD0 TAMIL OM chars.append(0x0BD7) #uni0BD7 TAMIL AU LENGTH MARK chars.append(0x0BE6) #uni0BE6 TAMIL DIGIT ZERO chars.append(0x0BE7) #uni0BE7 TAMIL DIGIT ONE chars.append(0x0BE8) #uni0BE8 TAMIL DIGIT TWO chars.append(0x0BE9) #uni0BE9 TAMIL DIGIT THREE chars.append(0x0BEA) #uni0BEA TAMIL DIGIT FOUR chars.append(0x0BEB) #uni0BEB TAMIL DIGIT FIVE chars.append(0x0BEC) #uni0BEC TAMIL DIGIT SIX chars.append(0x0BED) #uni0BED TAMIL DIGIT SEVEN chars.append(0x0BEE) #uni0BEE TAMIL DIGIT EIGHT chars.append(0x0BEF) #uni0BEF TAMIL DIGIT NINE chars.append(0x0B
F0) #uni0BF0 TAMIL NUM
BER TEN chars.append(0x0BF1) #uni0BF1 TAMIL NUMBER ONE HUNDRED chars.append(0x0BF2) #uni0BF2 TAMIL NUMBER ONE THOUSAND chars.append(0x0BF3) #uni0BF3 TAMIL DAY SIGN chars.append(0x0BF4) #uni0BF4 TAMIL MONTH SIGN chars.append(0x0BF5) #uni0BF5 TAMIL YEAR SIGN chars.append(0x0BF6) #uni0BF6 TAMIL DEBIT SIGN chars.append(0x0BF7) #uni0BF7 TAMIL CREDIT SIGN chars.append(0x0BF8) #uni0BF8 TAMIL AS ABOVE SIGN chars.append(0x0BF9) #uni0BF9 TAMIL RUPEE SIGN chars.append(0x0BFA) #uni0BFA TAMIL NUMBER SIGN return chars
nickhand/nbodykit
nbodykit/source/catalog/file.py
Python
gpl-3.0
7,330
0.004093
from nbodykit.base.catalog import CatalogSource from nbodykit.io.stack import FileStack from nbodykit import CurrentMPIComm from nbodykit import io from nbodykit.extern import docrep from six import string_types import textwrap import os __all__ = ['FileCatalogFactory', 'FileCatalogBase', 'CSVCatalog', 'BinaryCatalog', 'BigFileCatalog', 'HDFCatalog', 'TPMBinaryCatalog', 'Gadget1Catalog', 'FITSCatalog'] class FileCatalogBase(CatalogSource): """ Base class to create a source of particles from a single file, or multiple files, on disk. Files of a specific type should be subclasses of this class. Parameters ---------- filetype : subclass of :class:`~nbodykit.io.base.FileType` the file-like class used to load the data from file; should be a subclass of :class:`nbodykit.io.base.FileType` args : tuple, optional the arguments to pass to the ``filetype`` class when constructing each file object kwargs : dict, optional the keyword arguments to pass to the ``filetype`` class when constructing each file object comm : MPI Communicator, optional the MPI communicator instance; default (``None``) sets to the current communicator """ @CurrentMPIComm.enable def __init__(self, filetype, args=(), kwargs={}, comm=None): self.comm = comm self.filetype = filetype # bcast the FileStack if self.comm.rank == 0: self._source = FileStack(filetype, *args, **kwargs) else: self._source = None self._source = self.c
omm.bcast(self._source) # compute the size; start with full file. lstart = self.comm.rank * self._source.size // self.comm.size lend = (self.comm.rank + 1) * self._source.size // self.comm.size self._size = lend - lstart self.start = 0
self.end = self._source.size self._lstart = lstart # offset in the file for this rank self._lend = lend # offset in the file for this rank # update the meta-data self.attrs.update(self._source.attrs) if self.comm.rank == 0: self.logger.info("Extra arguments to FileType: %s %s" % (str(args), str(kwargs))) CatalogSource.__init__(self, comm=comm) def query_range(self, start, end): """ Seek to a range in the file catalog. Parameters ---------- start : int start of the file relative to the physical file end : int end of the file relative to the physical file Returns ------- A new catalog that only accesses the given region of the file. If the original catalog (self) contains any assigned columns not directly obtained from the file, then the function will raise ValueError, since the operation in that case is not well defined. """ if len(CatalogSource.hardcolumns.fget(self)) > 0: raise ValueError("cannot seek if columns have been attached to the FileCatalog") other = self.copy() other._lstart = self.start + start + self.comm.rank * (end - start) // self.comm.size other._lend = self.start + start + (self.comm.rank + 1) * (end - start) // self.comm.size other._size = other._lend - other._lstart other.start = start other.end = end CatalogSource.__init__(other, comm=self.comm) return other def __repr__(self): path = self._source.path name = self.__class__.__name__ args = (name, self.size, repr(self._source)) return "%s(size=%d, %s)" % args @property def hardcolumns(self): """ The union of the columns in the file and any transformed columns. """ defaults = CatalogSource.hardcolumns.fget(self) return list(self._source.dtype.names) + defaults def get_hardcolumn(self, col): """ Return a column from the underlying file source. Columns are returned as dask arrays. """ if col in self._source.dtype.names: return self._source.get_dask(col)[self._lstart:self._lend] else: return CatalogSource.get_hardcolumn(self, col) def _make_docstring(filetype, examples): """ Internal function to generate the doc strings for the built-in CatalogSource objects that rely on :mod:`nbodykit.io` classes to read data from disk. """ qualname = '%s.%s' %(filetype.__module__, filetype.__name__) __doc__ = """ A CatalogSource that uses :class:`~{qualname}` to read data from disk. Multiple files can be read at once by supplying a list of file names or a glob asterisk pattern as the ``path`` argument. See :ref:`reading-multiple-files` for examples. Parameters ---------- %(test.parameters)s comm : MPI Communicator, optional the MPI communicator instance; default (``None``) sets to the current communicator attrs : dict, optional dictionary of meta-data to store in :attr:`attrs` """.format(qualname=qualname) if examples is not None: __doc__ += """ Examples -------- Please see :ref:`the documentation <%s>` for examples. """ %examples # get the Parameters from the IO libary class d = docrep.DocstringProcessor() d.get_sections(d.dedents(filetype.__doc__), 'test', ['Parameters']) return d.dedents(__doc__) def FileCatalogFactory(name, filetype, examples=None): """ Factory method to create a :class:`~nbodykit.base.catalog.CatalogSource` that uses a subclass of :mod:`nbodykit.io.base.FileType` to read data from disk. Parameters ---------- name : str the name of the catalog class to create filetype : subclass of :class:`nbodykit.io.base.FileType` the subclass of the FileType that reads a specific type of data examples : str, optional if given, a documentation cross-reference link where examples can be found Returns ------- subclass of :class:`FileCatalogBase` : the ``CatalogSource`` object that reads data using ``filetype`` """ def __init__(self, *args, **kwargs): comm = kwargs.pop('comm', None) attrs = kwargs.pop('attrs', {}) FileCatalogBase.__init__(self, filetype=filetype, args=args, kwargs=kwargs, comm=comm) self.attrs.update(attrs) # make the doc string for this class __doc__ = _make_docstring(filetype, examples) # make the new class object and return it newclass = type(name, (FileCatalogBase,),{"__init__": __init__, "__doc__":__doc__}) return newclass CSVCatalog = FileCatalogFactory("CSVCatalog", io.CSVFile, examples='csv-data') BinaryCatalog = FileCatalogFactory("BinaryCatalog", io.BinaryFile, examples='binary-data') BigFileCatalog = FileCatalogFactory("BigFileCatalog", io.BigFile, examples='bigfile-data') HDFCatalog = FileCatalogFactory("HDFCatalog", io.HDFFile, examples='hdf-data') TPMBinaryCatalog = FileCatalogFactory("TPMBinaryCatalog", io.TPMBinaryFile) FITSCatalog = FileCatalogFactory("FITSCatalog", io.FITSFile, examples='fits-data') Gadget1Catalog = FileCatalogFactory("Gadget1Catalog", io.Gadget1File, examples=None)
algolia/algoliasearch-client-python
tests/unit/test_insights_client.py
Python
mit
883
0.001133
import unittest from algoliasearch.configs import InsightsConfig from algoliasearch.exceptions import AlgoliaException from algoliasearch.insights_client import InsightsClient class TestInsightsClient(unittest.TestCase): def test_create(self): client = InsightsCli
ent.create("foo", "bar") self.assertIsInstance(client, InsightsClient) with self.assertRaises(AssertionError) as _: InsightsClient.create("", "") def test_create_with_config(self): config = InsightsConfig("foo", "bar") self.assertIsInstance(InsightsClient.create_with_config(config), InsightsClient) def test_region(self): client = InsightsClient.create("foo", "bar")
self.assertEqual(client._config._region, "us") client = InsightsClient.create("foo", "bar", "fr") self.assertEqual(client._config._region, "fr")
KhronosGroup/COLLADA-CTS
StandardDataSets/1_5/collada/library_materials/material/extra/technique_sid_target/technique_sid_target.py
Python
mit
4,063
0.007384
# Copyright (c) 2012 The Khronos Group Inc. # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and /or associated documentation files (the "Materials "), to deal in the Materials without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Materials, and to permit persons to whom the Materials are furnished to do so, subject to # the following conditions: # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Materials. # THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS. # See Core.Logic.FJudgementContext for the information # of the 'context' parameter. # This sample judging object does the following: # # JudgeBaseline: just verifies that the standard steps did not crash. # JudgeSuperior: also verifies that the validation steps are not in error. # JudgeExemplary: same as intermediate badge. # We import an assistant script that includes the common verifications # methods. The assistant buffers its checks, so that running them again # does not incurs an unnecessary performance hint. from StandardDataSets.scripts import JudgeAssistant # Please feed your node list here: tagLst = ['library_materials', 'material', 'extra', 'technique'] attrName = 'profile' attrVal = '' dataToCheck = '' class SimpleJudgingObject: def __init__(self, _tagLst, _attrName, _attrVal, _data): self.tagList = _tagLst self.attrName = _attrName self.attrVal = _attrVal self.dataToCheck = _data self.status_baseline = False self.status_superior = False self.status_exemplary = False self.__assistant = JudgeAssistant.JudgeAssistant() def JudgeBaseline(self, context): # No step should not crash self.__assistant.CheckCrashes(context) # Import/export/validate must exist and pass, while Render must only exist. self.__assistant.CheckSteps(context, ["Import", "Export", "Validate"], []) self.status_baseline = self.__assistant.GetResults() return self.status_baseline # To pass intermediate you need to pass basic, this object could also include additional # tests that were specific to the intermediate badge. def JudgeSuperior(self, context): # if baseline fails, no point in further checking if (self.status_baseline == False): self.status_superior =
self.status_baseline return self.status_superior if ( self.__assistant.CompareRenderedImages(context) ): self.__assistant.CompareImagesAgainst(context, "_reference_material_extra_element_names") # Check for preservation of element data self.__assistant.FullPreservation(context, self.tagList, self.attrName)
self.status_superior = self.__assistant.DeferJudgement(context) return self.status_superior # To pass advanced you need to pass intermediate, this object could also include additional # tests that were specific to the advanced badge def JudgeExemplary(self, context): self.status_exemplary = self.status_superior return self.status_exemplary # This is where all the work occurs: "judgingObject" is an absolutely necessary token. # The dynamic loader looks very specifically for a class instance named "judgingObject". # judgingObject = SimpleJudgingObject(tagLst, attrName, attrVal, dataToCheck);
anush7/django-article-project
article/urls.py
Python
mit
197
0.005076
from django.conf.urls import include, url from article import views urlpatterns = [ url(r'^$', views.articles, name=
'articles'), url(r'^add/?$', views.add_articles, name='add-articles'),
]
texastribune/armstrong.base
fabfile/_utils.py
Python
bsd-3-clause
342
0.008772
from fabric.api import * from fabric.decorators import task import os, sys sys.path[0:0] = [os.path.join(os.path.realpath('.'), '..'), ] try: from d51.django.virtualenv.test_runner import run_tests except ImportError, e: import sys sys.stderr.write("This project requires d5
1.django.virtualenv.test_runne
r\n") sys.exit(-1)
Tehnix/PyIRCb
src/irc/botDispatcher.py
Python
bsd-3-clause
2,303
0.005211
#!/usr/bin/env python # -*- coding: utf-8 -*- """ IRC bot... """ import threading import src.utilities as util import src.settings import src.irc.botObject class BotDispatcher(threading.Thread): """ The BotDispatcher object handles the delegation of the various bots on the various specified servers. One Bot object for each server (call name), meaning several bots can be connected to the same address. All bots are stored in the botObjects class variable. """ botObjects = {} def __init__(self): """Prepare the object and fire off the dispatch method.""" super(BotDispatcher, self).__init__() self.setti
ngsInstance = src.settings.Settings() self.dispatch() def dispatch(self): """Create one Bot object for each server and start it in threads.""" servers = self.settingsInstance.settings['servers'] f
or name, info in servers.items(): self.botObjects[name] = src.irc.botObject.BotObject( self.settingsInstance.settings, info ) thread = threading.Thread( target=self.botObjects[name].connectToServer ) thread.start() def destroyBot(self, botObjName): """Gracefully shut down the bot and remove it from self.botObjects.""" try: self.botObjects[botObjName].destroy() del self.botObjects[botObjName] util.write("Bot %s has been detroyed." % botObjName) except KeyError: util.write( "Bot %s does not exist." % botObjName, outputType="Warning" ) def reloadBot(self, botObjName): """First destroy the Bot object and then reinstantiate it.""" try: info = self.botObjects[botObjName].info except KeyError: info = None if info is not None: self.destroyBot(botObjName) self.botObjects[botObjName] = src.irc.botObject.BotObject(info) util.write("Bot %s has been reloaded." % botObjName) else: util.write( "Bot %s does not exist." % botObjName, outputType="Warning" )
rtqichen/torchdiffeq
examples/ode_demo.py
Python
mit
5,643
0.002304
import os import argparse import time import numpy as np import torch import torch.nn as nn import torch.optim as optim parser = argparse.ArgumentParser('ODE demo') parser.add_argument('--method', type=str, choices=['dopri5', 'adams'], default='dopri5') parser.add_argument('--data_size', type=int, default=1000) parser.add_argument('--batch_time', type=int, default=10) parser.add_argument('--batch_size', type=int, default=20) parser.add_argument('--niters', type=int, default=2000) parser.add_argument('--test_freq', type=int, default=20) parser.add_argument('--viz', action='store_true') parser.add_argument('--gpu', type=int, default=0) parser.add_argument('--adjoint', action='store_true') args = parser.parse_args() if args.adjoint: from torchdiffeq import odeint_adjoint as odeint else: from torchdiffeq import odeint device = torch.device('cuda:' + str(args.gpu) if torch.cuda.is_available() else 'cpu') true_y0 = torch.tensor([[2., 0.]]).to(device) t = torch.linspace(0., 25., args.data_size).to(device) true_A = torch.tensor([[-0.1, 2.0], [-2.0, -0.1]]).to(device) class Lambda(nn.Module): def forward(self, t, y): return torch.mm(y**3, true_A) with torch.no_grad(): true_y = odeint(Lambda(), true_y0, t, method='dopri5') def get_batch(): s = torch.from_numpy(np.random.choice(np.arange(args.data_size - args.batch_time, dtype=np.int64), args.batch_size, replace=False)) batch_y0 = true_y[s] # (M, D) batch_t = t[:args.batch_time] # (T) batch_y = torch.stack([true_y[s + i] for i in range(args.batch_time)], dim=0) # (T, M, D) return batch_y0.to(device), batch_t.to(device), batch_y.to(device) def makedirs(dirname): if not os.path.exists(dirname): os.makedirs(dirname) if args.viz: makedirs('png') import matplotlib.pyplot as plt fig = plt.figure(figsize=(12, 4), facecolor='white') ax_traj = fig.add_subplot(131, frameon=False) ax_phase = fig.add_subplot(132, frameon=False) ax_vecfield = fig.add_subplot(133, frameon=False) plt.show(block=False) def visualize(true_y, pred_y, odefunc, itr): if args.viz: ax_traj.cla() ax_traj.set_title('Trajectories') ax_traj.set_xlabel('t') ax_traj.set_ylabel('x,y') ax_traj.plot(t.cpu().numpy(), true_y.cpu().numpy()[:, 0, 0], t.cpu().numpy(), true_y.cpu().numpy()[:, 0, 1], 'g-') ax_traj.plot(t.cpu().numpy(), pred_y.cpu().numpy()[:, 0, 0], '--', t.cpu().numpy(), pred_y.cpu().numpy()[:, 0, 1], 'b--') ax_traj.set_xlim(t.cpu().min(), t.cpu().max()) ax_traj.set_ylim(-2, 2) ax_traj.legend() ax_phase.cla() ax_phase.set_title('Phase Portrait') ax_phase.set_xlabel('x') ax_phase.set_ylabel('y') ax_phase.plot(true_y.cpu().numpy()[:, 0, 0], true_y.cpu().numpy()[:, 0, 1], 'g-') ax_phase.plot(pred_y.cpu().numpy()[:, 0, 0], pred_y.cpu().numpy()[:, 0, 1], 'b--') ax_phase.set_xlim(-2, 2) ax_phase.set_ylim(-2, 2) ax_vecfield.cla() ax_vecfield.set_title('Learned Vector Field') ax_vecfield.set_x
label('x') ax_vecfield.set_ylabel('y') y, x = np.mgrid[-2:2:21j, -2:2:21j] dydt = odefunc(0, torch.Tensor(np.stack([x, y], -1).reshape(21 * 21, 2)).to(device)).cpu().detach().numpy() mag = np.sqrt(dydt[:, 0]**2 + dydt[:, 1]**2).reshape(-1, 1) dydt = (dydt / mag) dydt = dydt.reshape(21, 21, 2) ax_vecfield.streamplot(x, y, dydt[:, :, 0], dydt[:, :
, 1], color="black") ax_vecfield.set_xlim(-2, 2) ax_vecfield.set_ylim(-2, 2) fig.tight_layout() plt.savefig('png/{:03d}'.format(itr)) plt.draw() plt.pause(0.001) class ODEFunc(nn.Module): def __init__(self): super(ODEFunc, self).__init__() self.net = nn.Sequential( nn.Linear(2, 50), nn.Tanh(), nn.Linear(50, 2), ) for m in self.net.modules(): if isinstance(m, nn.Linear): nn.init.normal_(m.weight, mean=0, std=0.1) nn.init.constant_(m.bias, val=0) def forward(self, t, y): return self.net(y**3) class RunningAverageMeter(object): """Computes and stores the average and current value""" def __init__(self, momentum=0.99): self.momentum = momentum self.reset() def reset(self): self.val = None self.avg = 0 def update(self, val): if self.val is None: self.avg = val else: self.avg = self.avg * self.momentum + val * (1 - self.momentum) self.val = val if __name__ == '__main__': ii = 0 func = ODEFunc().to(device) optimizer = optim.RMSprop(func.parameters(), lr=1e-3) end = time.time() time_meter = RunningAverageMeter(0.97) loss_meter = RunningAverageMeter(0.97) for itr in range(1, args.niters + 1): optimizer.zero_grad() batch_y0, batch_t, batch_y = get_batch() pred_y = odeint(func, batch_y0, batch_t).to(device) loss = torch.mean(torch.abs(pred_y - batch_y)) loss.backward() optimizer.step() time_meter.update(time.time() - end) loss_meter.update(loss.item()) if itr % args.test_freq == 0: with torch.no_grad(): pred_y = odeint(func, true_y0, t) loss = torch.mean(torch.abs(pred_y - true_y)) print('Iter {:04d} | Total Loss {:.6f}'.format(itr, loss.item())) visualize(true_y, pred_y, func, ii) ii += 1 end = time.time()
Resmin/Resmin
resmin/apps/comment/views.py
Python
gpl-3.0
1,460
0
from django.views.decorators.csrf import csrf_exempt from django.shortcuts import get_object_or_404, render from .models import Comment from .forms import UpdateCommentForm from django.http.response import JsonResponse from django.views.decorators.http import require_http_methods def update_comment(request, cid): """ TODO: This function has code duplication, clean it whe
n you have time. """ comment = get_object_or_404(Comment, id=cid, owner=request.user) if request.method == 'POST': update_comment_form = UpdateCommentForm( request.POST, comment=comment) if update_comment_form.is_valid(): update_comment_form.save() return render(request, 'comments/comment.html', { 'comment': comment}) else: update_commen
t_form = UpdateCommentForm(comment=comment) return render(request, 'comments/update_form.html', { 'update_comment_form': update_comment_form}) def get_comment(request, cid): comment = get_object_or_404(Comment, id=cid, owner=request.user) return render(request, 'comments/comment.html', { 'comment': comment}) @csrf_exempt @require_http_methods(['POST', ]) def delete_comment(request, cid): comment = get_object_or_404(Comment, id=cid, owner=request.user) comment.status = Comment.DELETED_BY_OWNER comment.save() comment.story.update_comment_count(save=True) return JsonResponse({'status': 'deleted'})
lpe234/sanicDemo
controller/__init__.py
Python
gpl-3.0
137
0
# -*- coding: UTF-8 -*- # bp_v1 from .api_v1 import bp_v1 # bp_v2 from .api_v2 i
mport bp_v2
__author__ = 'lpe234' """ Controller """
zydiig/CKAN.py
libckan/fs.py
Python
gpl-3.0
1,487
0
import logging import re from pathlib import Path def find_by_name(path, name): if type(path) is str: path = Path(path) for child in path.iterdir(): if
child.name == name: return child elif child.is_d
ir(): ret = find_by_name(child, name) if ret: return ret return None def find_by_regexp(path, regexp): if type(path) is str: path = Path(path) for child in path.iterdir(): if re.fullmatch(regexp, str(child)): return child elif child.is_dir(): ret = find_by_regexp(child, regexp) if ret: return ret return None def gen_file_list(path: Path, filters=None, toplevel=True): filters = filters or [] files = [] if toplevel else [path] for child in path.iterdir(): if all([filter_.check(child) for filter_ in filters]): if child.is_dir(): files += gen_file_list(child, filters, toplevel=False) else: files.append(child) files = [file.relative_to(path) for file in files] if toplevel else files for file in files: if not all([filter_.check(file) for filter_ in filters]): files.remove(file) logging.info("Filtered:{}".format(file)) return files def is_relative_to(this, that): try: this.relative_to(that) except ValueError: return False else: return True
aerval/de.rki.proteomic_virus_detection
plugin_source/SixFrameTranslation.py
Python
gpl-2.0
2,361
0.011012
from Bio import SeqIO from Bio.Alphabet import IUPAC, ProteinAlphabet from Bio.Seq import Seq from Bio.SeqRecord import SeqRecord from optparse import OptionParser def translate_to_six_frame(dnaRecord, translationTable): ''' translate a Bio.SeqRecord of a DNA sequence via the given translation table into the six possible translations dnaRecord = Bio.SeqRecord of DNA sequence (or other) translationTable = the codon table for translating base triplets into amino acids (number between 1 and 25 based on http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/index.cgi?chapter=cgencodes) ''' translations = [] for frame in range(3): for direction in ['forward', 'reverse']: if direction == 'forward': sequence = dnaRecord.seq[frame:] else: sequence = dnaRecord.seq.reverse_complement()[frame:] aaSeq = Seq(str(sequence.translate(translationTable)), alphabet = ProteinAlphabet) aaRecord = SeqRecord(aaSeq, dnaRecord.name) aaRecord.id = '%s_%s%i' % (aaRecord.id, direction[0], frame) aaRecord.description = '%s|tran
slation %s frame %i' % (aaRecord.description, direction, frame) translations.append(aaRecord)
return translations if __name__ == '__main__': op = OptionParser() op.add_option('-g','--genomes', dest='genomeFilenames', action='append', default=None, help='the input genome in fasta format') op.add_option('-o','--outputs', dest='outputFilenames', action='append', default=None, help='the output fasta file with the six frame translation') op.add_option('-t','--translTable', dest='translationTableNumber', default=1, type='int', help='a translation table number according to http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/index.cgi?chapter=cgencodes') opts, args = op.parse_args() for genomeFilename, outputFilename in zip(opts.genomeFilenames, opts.outputFilenames): translations = [] for dnaRecord in SeqIO.parse(open(genomeFilename), 'fasta'): translations.extend(translate_to_six_frame(dnaRecord, opts.translationTableNumber)) SeqIO.write(translations, open(outputFilename, 'w+'), 'fasta')
davek44/Scimm
bin/scimm.py
Python
artistic-2.0
9,432
0.004983
#!/usr/bin/env python from optparse import OptionParser, SUPPRESS_HELP import os, glob, subprocess, sys, math, shutil import imm_cluster, util ############################################################ # scimm.py # # Sequence Clustering with Interpolated Markov Models # # Author: David Kelley ############################################################ scimm_bin = "/Users/dk/research/umd/metagenomics_clustering/Scimm/bin" bin_dir = os.path.abspath(os.path.dirname(sys.argv[0])) if 'PYTHONPATH' in os.environ: os.environ['PYTHONPATH'] = os.environ['PYTHONPATH'] + ':' + bin_dir else: os.environ['PYTHONPATH'] = bin_dir ############################################################ # main ############################################################ def main(): parser = OptionParser() # generic options parser.add_option('-s','-r', dest='readsf', help='Fasta file of sequences') parser.add_option('-k', dest='k', type='int', help='Number of clusters') parser.add_option('-p', dest='proc', type='int', default=2, help='Number of processes to run [Default=%default]') # help='Use a soft assignment of reads to clusters [Default=%default]' parser.add_option('--em',dest='soft_assign', action='store_true', default=False, help=SUPPRESS_HELP) # likelybin options parser.add_option('--ls', dest='lb_starts', type='int', default=1, help='Number of random LikelyBin starts [Default=%default]') parser.add_option('--ln', dest='lb_numreads', type='int', default=3000, help='Number of reads to sample for LikelyBin [Default=%default]') parser.add_option('--lt', dest='lb_threads', type='int', default=2, help='Number of LikelyBin threads per start, and CPUs for imm_cluster [Default=%default]') parser.add_option('--lo', dest='lb_order', type='int', default=3, help='Order of LikelyBin Markov model [Default=%default]') # compostbin options parser.add_option('--cs', dest='cb_starts', type='int', default=1, help='Number of random CompostBin starts [Default=%default]') parser.add_option('--cn', dest='cb_numreads', type='int', default=3000, help='Number of reads to sample for CompostBin [Default=%default]') parser.add_option('--ct', dest='cb_threads', type='int', default=1, help='Number of CPUs for imm_cluster [Default=%default]') parser.add_option('--co','--cm', dest='cb_mers', type='int', default=5, help='mers to count in CompostBin [Default=%default]') (options, args) = parser.parse_args() options.readsf = os.path.abspath(options.readsf) total_starts = options.lb_starts + options.cb_starts if options.soft_assign: em = '--em' else: em = '' # run initial samples i = 0 while i < total_starts: p = [] j = 0 while j < options.proc and i < total_starts: # LikelyBin if i < options.lb_starts: # double check processes if j + options.lb_threads <= options.proc: # make a temp dir to compute in and cd to it temp_dir('tmp.start%d' % i) p.append(subprocess.Popen('%s/lb_init.py -r %s -n %d -k %d -o %d -p %d %s' % (bin_dir, options.readsf, options.lb_numreads, options.k, options.lb_order, options.lb_threads, em), shell=True)) os.chdir('..') i += 1 elif j == 0: print 'Cannot use more lb threads than processes' exit() j += options.lb_threads # even if not true, just move things along # CompostBin else: # double check processes if j + options.cb_threads <= opti
ons.proc: # make a temp dir to compute in and cd to it temp_dir('tmp.start%d' % i) p.append(subprocess.Popen('%s/cb_init.py -r %s -n %d -k %d -m %d -p %d %s' % (bin_dir, options.readsf, options.cb_numreads, options.k, options.cb_mers, options.cb_threads, em), shell=True)) os.chdir('..') i += 1 elif j == 0: print 'Cannot use more cb threads than processes'
exit() j += options.lb_threads # even if not true, just move things along # wait for processes to finish for j in range(len(p)): os.waitpid(p[j].pid, 0) # choose best start #maxlike_clusters(total_starts, options.readsf, options.k, options.soft_assign) minentropy_clusters(total_starts, options.readsf, options.k, options.soft_assign) # in case k changed new_k = determine_k(options.soft_assign, options.k) # run imm clustering completely p = subprocess.Popen('%s/imm_cluster.py -k %d -r %s -p %d -i --trained %s &> immc.log' % (bin_dir, new_k, options.readsf, options.proc, em), shell=True) os.waitpid(p.pid, 0) ############################################################ # temp_dir # # Create and change to a temporary directory to do initial # runs within ############################################################ def temp_dir(tmpdir): if os.path.isdir(tmpdir): os.chdir(tmpdir) for f in glob.glob('*'): os.remove(f) else: os.mkdir(tmpdir) os.chdir(tmpdir) ############################################################ # maxlike_clusters # # Copy the clustering with maximum likelihood to the main # directory ############################################################ def maxlike_clusters(total_starts, readsf, k, soft_assign): like = [0]*total_starts for i in range(total_starts): os.chdir('tmp.start%d' % i) if len(glob.glob('cluster-*.fa')) > 0: # determine likelihood like[i] = scimm_like(readsf, k, soft_assign) else: # something failed like[i] = '' os.chdir('..') # find max likelihood initial partitioning max_like = min(like) # '' is greater than numbers for i in range(len(like)): if like[i] != '' and like[i] >= max_like: max_like = like[i] max_clust = i # get files from max for c in range(len(glob.glob('cluster-*.fa'))): shutil.copy('tmp.start%d/cluster-%d.fa' % (max_clust,c), 'cluster-%d.fa' % c) shutil.copy('tmp.start%d/icm-%dscores.tmp' % (max_clust,c), 'icm-%dscores.tmp' % c) ############################################################ # scimm_like # # Calculate the likelihood of the given clustering and IMM ############################################################ def scimm_like(readsf, k, soft_assign): new_k = determine_k(soft_assign, k) priors = imm_cluster.update_priors([1.0/new_k]*new_k, readsf, {}, {}, soft_assign) (likelihood,read_probs) = imm_cluster.get_read_probs(priors, {}, {}, soft_assign) return likelihood ############################################################ # minentropy_clusters # # Copy the clustering with minimum entropy to the main # directory. ############################################################ def minentropy_clusters(total_starts, readsf, k, soft_assign): entropy = [0]*total_starts for i in range(total_starts): os.chdir('tmp.start%d' % i) if len(glob.glob('cluster-*.fa')) > 0: # determine likelihood entropy[i] = get_entropy(readsf, k, soft_assign) else: # something failed entropy[i] = '' os.chdir('..') # find min entropy partitioning ('' is greater than numbers) (min_entropy, min_clust) = util.min_i(entropy) # get files from min for c in range(len(glob.glob('tmp.start%d/cluster-*.fa' % min_clust))): shutil.copy('tmp.start%d/cluster-%d.fa' % (min_clust,c), 'cluster-%d.fa' % c) shutil.copy('tmp.start%d/icm-%d.scores.tmp' % (min_clust,c), 'icm-%d.scores.tmp' % c) ############################################################ # get_entropy # # Return the entropy of the clusters in the current # directory. ##########################################################
yosuke/OpenHRIVoice
openhrivoice/parsecmudict.py
Python
epl-1.0
1,210
0.004959
#!/usr/bin/env python # -*- coding: utf-8 -*- '''CMU dict file parser Copyright (C) 2010 Yosuke Matsusaka Intelligent Systems Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan All rights reserved. Licensed under the Eclipse Public License -v 1.0 (EPL) http://www.opensource.org/licenses/eclipse-1.0.txt ''' class CMUDict: """ Utility class to parse CMU Pronunciation Dictionaly.""" def __init__(self, fname): self._fname = fname self._dict = {} self.parse(self._fname) def parse(self, fname): f = open(fname, 'r')
f.readline() for l in f:
t = l.strip().split(' ', 2) w = t[0].strip('()"') v = t[2].replace('(', '').replace(')', '').replace(' 0', '').replace(' 1', '') try: self._dict[w].append(v) except KeyError: self._dict[w] = [v,] def lookup(self, w): try: return self._dict[w] except KeyError: return [] if __name__ == '__main__': doc = CMUDict('/usr/share/festival/dicts/cmu/cmudict-0.4.out') print doc.lookup('hello')
rosenvladimirov/addons
l10n_bg_uic/hooks.py
Python
agpl-3.0
521
0.001931
# -
*- coding: utf-8 -*- # © 2015 Roberto Lizana (Trey) # © 2016 Pedro M. Baeza # © 2017 Rosen Vladimirov # License AGPL-3.0 or later (http://www.gnu.org/licenses/agpl.html). from openerp import api, SUPERUSER_ID def post_init_hook(cr, registry): cr.execute(""" INSER
T INTO res_partner_id_number (partner_id, name, category_id, status, active) SELECT id, company_registry, 1, 'open', TRUE FROM res_partner WHERE company_registry IS NOT NULL""") env = api.Environment(cr, SUPERUSER_ID, {})
vlegoff/tsunami
src/secondaires/navigation/commandes/debarquer/__init__.py
Python
bsd-3-clause
4,221
0.000951
# -*-coding:Utf-8 -* # Copyright (c) 2010-2017 LE GOFF Vincent # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT # OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Package contenant la commande 'débarquer'.""" from math import sqrt from primaires.interpreteur.commande.commande import Commande from secondaires.navigation.constantes import * class CmdDebarquer(Commande): """Commande 'debarquer'""" def __init__(self): """Constructeur de la commande""" Commande.__init__(self, "debarquer", "debark") self.nom_categorie = "navire" self.aide_courte = "débarque du navire" self.aide_longue = \ "Cette commande permet de débarquer du navire sur lequel " \ "on se trouve. On doit se trouver assez prêt d'une côte " \ "pour débarquer dessus." def interpreter(self, personnage, dic_masques): """Méthode d'interprétation de commande""" salle = personnage.salle if not hasattr(salle, "navire") or salle.navire is None: personnage << "|err|Vous n'êtes pas sur un navire.|ff|" return navire = salle.navire if navire.etendue is None: personnage << "|err|Vous n'êtes pas sur un navire.|ff|" return pers
onnage.agir("bouger") # On va chercher la salle la plus proche etendue = navire.etendue
# On cherche la salle de nagvire la plus proche d_salle = None # la salle de destination distance = 2 x, y, z = salle.coords.tuple() for t_salle in etendue.cotes.values(): if t_salle.coords.z == z: t_x, t_y, t_z = t_salle.coords.tuple() t_distance = sqrt((x - t_x) ** 2 + (y - t_y) ** 2) if t_distance < distance and t_salle.nom_terrain in \ TERRAINS_ACCOSTABLES: d_salle = t_salle distance = t_distance if d_salle is None: personnage << "|err|Aucun quai n'a pu être trouvé à " \ "proximité.|ff|" return personnage.salle = d_salle personnage << "Vous sautez sur {}.".format( d_salle.titre.lower()) personnage << d_salle.regarder(personnage) d_salle.envoyer("{{}} arrive en sautant depuis {}.".format( navire.nom), personnage) salle.envoyer("{{}} saute sur {}.".format( d_salle.titre.lower()), personnage) importeur.hook["personnage:deplacer"].executer( personnage, d_salle, None, 0) if not hasattr(d_salle, "navire") or d_salle.navire is None: personnage.envoyer_tip("N'oubliez pas d'amarrer votre navire " \ "avec %amarre% %amarre:attacher%.")
pragmatux/systemd
src/python-systemd/journal.py
Python
gpl-2.0
20,273
0.002318
# -*- Mode: python; coding:utf-8; indent-tabs-mode: nil -*- */ # # This file is part of systemd. # # Copyright 2012 David Strauss <david@davidstrauss.net> # Copyright 2012 Zbigniew Jędrzejewski-Szmek <zbyszek@in.waw.pl> # Copyright 2012 Marti Raudsepp <marti@juffo.org> # # systemd is free software; you can redistribute it and/or modify it # under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation; either version 2.1 of the License, or # (at your option) any later version. # # systemd is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with systemd; If not, see <http://www.gnu.org/licenses/>. from __future__ import division import sys as _sys import datetime as _datetime import uuid as _uuid import traceback as _traceback import os as _os import logging as _logging if _sys.version_info >= (3,3): from collections import ChainMap as _ChainMap from syslog import (LOG_EMERG, LOG_ALERT, LOG_CRIT, LOG_ERR, LOG_WARNING, LOG_NOTICE, LOG_INFO, LOG_DEBUG) from ._journal import __version__, sendv, stream_fd from ._reader import (_Reader, NOP, APPEND, INVALIDATE, LOCAL_ONLY, RUNTIME_ONLY, SYSTEM_ONLY, _get_catalog) from . import id128 as _id128 if _sys.version_info >= (3,): from ._reader import Monotonic else: Monotonic = tuple def _convert_monotonic(m): return Monotonic((_datetime.timedelta(microseconds=m[0]), _uuid.UUID(bytes=m[1]))) def _convert_source_monotonic(s): return _datetime.timedelta(microseconds=int(s)) def _convert_realtime(t): return _datetime.datetime.fromtimestamp(t / 1000000) def _convert_timestamp(s): return _datetime.datetime.fromtimestamp(int(s) / 1000000) if _sys.version_info >= (3,): def _convert_uuid(s): return _uuid.UUID(s.decode()) else: _c
onvert_uuid = _uuid.UUID DEFAULT_CONVERTERS = { 'MESSAGE_ID': _convert_uuid, '_MACHINE_ID': _convert_uuid, '_BOOT_ID': _convert_uuid, 'PR
IORITY': int, 'LEADER': int, 'SESSION_ID': int, 'USERSPACE_USEC': int, 'INITRD_USEC': int, 'KERNEL_USEC': int, '_UID': int, '_GID': int, '_PID': int, 'SYSLOG_FACILITY': int, 'SYSLOG_PID': int, '_AUDIT_SESSION': int, '_AUDIT_LOGINUID': int, '_SYSTEMD_SESSION': int, '_SYSTEMD_OWNER_UID': int, 'CODE_LINE': int, 'ERRNO': int, 'EXIT_STATUS': int, '_SOURCE_REALTIME_TIMESTAMP': _convert_timestamp, '__REALTIME_TIMESTAMP': _convert_realtime, '_SOURCE_MONOTONIC_TIMESTAMP': _convert_source_monotonic, '__MONOTONIC_TIMESTAMP': _convert_monotonic, 'COREDUMP': bytes, 'COREDUMP_PID': int, 'COREDUMP_UID': int, 'COREDUMP_GID': int, 'COREDUMP_SESSION': int, 'COREDUMP_SIGNAL': int, 'COREDUMP_TIMESTAMP': _convert_timestamp, } _IDENT_LETTER = set('ABCDEFGHIJKLMNOPQRTSUVWXYZ_') def _valid_field_name(s): return not (set(s) - _IDENT_LETTER) class Reader(_Reader): """Reader allows the access and filtering of systemd journal entries. Note that in order to access the system journal, a non-root user must be in the `systemd-journal` group. Example usage to print out all informational or higher level messages for systemd-udevd for this boot: >>> j = journal.Reader() >>> j.this_boot() >>> j.log_level(journal.LOG_INFO) >>> j.add_match(_SYSTEMD_UNIT="systemd-udevd.service") >>> for entry in j: ... print(entry['MESSAGE']) See systemd.journal-fields(7) for more info on typical fields found in the journal. """ def __init__(self, flags=0, path=None, converters=None): """Create an instance of Reader, which allows filtering and return of journal entries. Argument `flags` sets open flags of the journal, which can be one of, or ORed combination of constants: LOCAL_ONLY (default) opens journal on local machine only; RUNTIME_ONLY opens only volatile journal files; and SYSTEM_ONLY opens only journal files of system services and the kernel. Argument `path` is the directory of journal files. Note that `flags` and `path` are exclusive. Argument `converters` is a dictionary which updates the DEFAULT_CONVERTERS to convert journal field values. Field names are used as keys into this dictionary. The values must be single argument functions, which take a `bytes` object and return a converted value. When there's no entry for a field name, then the default UTF-8 decoding will be attempted. If the conversion fails with a ValueError, unconverted bytes object will be returned. (Note that ValueEror is a superclass of UnicodeDecodeError). Reader implements the context manager protocol: the journal will be closed when exiting the block. """ super(Reader, self).__init__(flags, path) if _sys.version_info >= (3,3): self.converters = _ChainMap() if converters is not None: self.converters.maps.append(converters) self.converters.maps.append(DEFAULT_CONVERTERS) else: self.converters = DEFAULT_CONVERTERS.copy() if converters is not None: self.converters.update(converters) def _convert_field(self, key, value): """Convert value using self.converters[key] If `key` is not present in self.converters, a standard unicode decoding will be attempted. If the conversion (either key-specific or the default one) fails with a ValueError, the original bytes object will be returned. """ convert = self.converters.get(key, bytes.decode) try: return convert(value) except ValueError: # Leave in default bytes return value def _convert_entry(self, entry): """Convert entire journal entry utilising _covert_field""" result = {} for key, value in entry.items(): if isinstance(value, list): result[key] = [self._convert_field(key, val) for val in value] else: result[key] = self._convert_field(key, value) return result def __iter__(self): """Part of iterator protocol. Returns self. """ return self if _sys.version_info >= (3,): def __next__(self): """Part of iterator protocol. Returns self.get_next(). """ return self.get_next() else: def next(self): """Part of iterator protocol. Returns self.get_next(). """ return self.get_next() def add_match(self, *args, **kwargs): """Add one or more matches to the filter journal log entries. All matches of different field are combined in a logical AND, and matches of the same field are automatically combined in a logical OR. Matches can be passed as strings of form "FIELD=value", or keyword arguments FIELD="value". """ args = list(args) args.extend(_make_line(key, val) for key, val in kwargs.items()) for arg in args: super(Reader, self).add_match(arg) def get_next(self, skip=1): """Return the next log entry as a mapping type, currently a standard dictionary of fields. Optional skip value will return the `skip`\-th log entry. Entries will be processed with converters specified during Reader creation. """ if super(Reader, self)._next(skip): entry = super(Reader, self)._get_all() if entry: entry['__REALTIME_TIMESTAMP'] = self._get_realtime() entry['__MONOTONIC_TIMESTAMP'] = self._get_monotonic()
LighthouseUK/jerboa
setup.py
Python
lgpl-3.0
659
0.004552
from distutils.core import setup setup( name='jerboa', packages=['jerboa'], # this must be the same as the name above version='0.2.1-alpha', description='', author='Matt Badger', author_email='foss@lighthouseuk.net', url='https://github.com/LighthouseUK/jerboa', # use the URL to the githu
b repo download_url='https://github.com/LighthouseUK/jerboa/tarball/0.2.1-alpha', # I'll explain this in a second keywords=['gae', 'lighthouse', 'jerboa', 'webapp2'], # arbitrary keywords classifiers=[], requires=['web
app2', 'blinker', 'wtforms', 'jinja2', 'pytz', 'babel', 'pycrypto'], # tests_require=['WebTest'] )
elysiumd/windows-wallet-13.2
qa/rpc-tests/fundrawtransaction.py
Python
mit
28,411
0.010137
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * def get_unspent(listunspent, amount): for utx in listunspent: if utx['amount'] == amount: return utx raise AssertionError('Could not find unspent with amount={}'.format(amount)) class RawTransactionsTest(BitcoinTestFramework): def __init__(self): super().__init__() self.setup_clean_chain = True self.num_nodes = 4 def setup_network(self, split=False): self.nodes = start_nodes(self.num_nodes, self.options.tmpdir) connect_nodes_bi(self.nodes,0,1) connect_nodes_bi(self.nodes,1,2) connect_nodes_bi(self.nodes,0,2) connect_nodes_bi(self.nodes,0,3) self.is_net
work_split=False self.sync_all() def run_test(self): print("Mining blocks...") min_relay_tx_fee = self.nodes[0].getnetworkinfo()['relayfee'] # This test is not meant to test fee estimation a
nd we'd like # to be sure all txs are sent at a consistent desired feerate for node in self.nodes: node.settxfee(min_relay_tx_fee) # if the fee's positive delta is higher than this value tests will fail, # neg. delta always fail the tests. # The size of the signature of every input may be at most 2 bytes larger # than a minimum sized signature. # = 2 bytes * minRelayTxFeePerByte feeTolerance = 2 * min_relay_tx_fee/1000 self.nodes[2].generate(1) self.sync_all() self.nodes[0].generate(121) self.sync_all() watchonly_address = self.nodes[0].getnewaddress() watchonly_pubkey = self.nodes[0].validateaddress(watchonly_address)["pubkey"] watchonly_amount = Decimal(200) self.nodes[3].importpubkey(watchonly_pubkey, "", True) watchonly_txid = self.nodes[0].sendtoaddress(watchonly_address, watchonly_amount) self.nodes[0].sendtoaddress(self.nodes[3].getnewaddress(), watchonly_amount / 10) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1.5) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1.0) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 5.0) self.nodes[0].generate(1) self.sync_all() ############### # simple test # ############### inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert(len(dec_tx['vin']) > 0) #test that we have enough inputs ############################## # simple test with two coins # ############################## inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 2.2 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert(len(dec_tx['vin']) > 0) #test if we have enough inputs ############################## # simple test with two coins # ############################## inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 2.6 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert(len(dec_tx['vin']) > 0) assert_equal(dec_tx['vin'][0]['scriptSig']['hex'], '') ################################ # simple test with two outputs # ################################ inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 2.6, self.nodes[1].getnewaddress() : 2.5 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert(len(dec_tx['vin']) > 0) assert_equal(dec_tx['vin'][0]['scriptSig']['hex'], '') ######################################################################### # test a fundrawtransaction with a VIN greater than the required amount # ######################################################################### utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(fee + totalOut, utx['amount']) #compare vin total and totalout+fee ##################################################################### # test a fundrawtransaction with which will not get a change output # ##################################################################### utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : Decimal(5.0) - fee - feeTolerance } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(rawtxfund['changepos'], -1) assert_equal(fee + totalOut, utx['amount']) #compare vin total and totalout+fee #################################################### # test a fundrawtransaction with an invalid option # #################################################### utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']} ] outputs = { self.nodes[0].getnewaddress() : Decimal(4.0) } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) try: self.nodes[2].fundrawtransaction(rawtx, {'foo': 'bar'}) raise AssertionError("Accepted invalid option foo") except JSONRPCException as e: assert("Unexpected key foo" in e.error['message']) ############################################################ # test a fundrawtransaction with an invalid change address # ############################################################ utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']} ] outputs = { self.nodes[0].getnewaddress() : Decimal(4.0) } rawtx
lycantropos/VKApp
manage.py
Python
gpl-3.0
882
0
import unittest import click from tests.test_app import TestApp
from tests.test_models import TestModels from tests.test_utils import TestUtils @click.group(name='tests', invoke_without_command=False) def test(): pass @test.command(name='test_
models') def test_models(): """Tests implemented models""" suite = unittest.TestLoader().loadTestsFromTestCase(TestModels) unittest.TextTestRunner(verbosity=2).run(suite) @test.command(name='test_utils') def test_utils(): """Tests utility functions""" suite = unittest.TestLoader().loadTestsFromTestCase(TestUtils) unittest.TextTestRunner(verbosity=2).run(suite) @test.command(name='test_app') def test_app(): """Tests utility functions""" suite = unittest.TestLoader().loadTestsFromTestCase(TestApp) unittest.TextTestRunner(verbosity=2).run(suite) if __name__ == '__main__': test()
Infinidat/pyvmomi
pyVim/connect.py
Python
apache-2.0
29,885
0.012682
# VMware vSphere Python SDK # Copyright (c) 2008-2016 VMware, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ## @file connect.py ## @brief Connect to a VMOMI ServiceInstance. ## ## Detailed description (for Doxygen goes here) """ Connect to a VMOMI ServiceInstance. Detailed description (for [e]pydoc goes here). """ from six import reraise import sys import re import ssl from xml.etree import ElementTree from xml.parsers.expat import ExpatError from six.moves import http_client import requests from requests.auth import HTTPBasicAuth from pyVmomi import vim, vmodl, SoapStubAdapter, SessionOrientedStub from pyVmomi.SoapAdapter import CONNECTION_POOL_IDLE_TIMEOUT_SEC from pyVmomi.VmomiSupport import nsMap, versionIdMap, versionMap, IsChildVersion from pyVmomi.VmomiSupport import GetServiceVersions """ Global regular expression for parsing host and port connection See http://www.ietf.org/rfc/rfc3986.txt sec 3.2.2 """ _rx = re.compile(r"(^\[.+\]|[^:]+)(:\d+)?$") _si = None """ Global (thread-shared) ServiceInstance @todo: Get rid of me? """ def localSslFixup(host, sslContext): """ Connections to 'localhost' do not need SSL verification as a certificate will never match. The OS provides security by only allowing root to bind to low-numbered ports. """ if not sslContext and host in ['localhost', '127.0.0.1', '::1']: import ssl if hasattr(ssl, '_create_unverified_context'): sslContext = ssl._create_unverified_context() return sslContext class closing(object): """ Helper class for using closable objects in a 'with' statement, similar to the one provided by contextlib. """ def __init__(self, obj): self.obj = obj def __enter__(self): return self.obj def __exit__(self, *exc_info): self.obj.close() class VimSessionOrientedStub(SessionOrientedStub): '''A vim-specific SessionOrientedStub. See the SessionOrientedStub class in pyVmomi/SoapAdapter.py for more information.''' # The set of exceptions that should trigger a relogin by the session stub. SESSION_EXCEPTIONS = ( vim.fault.NotAuthenticated, ) @staticmethod def makeUserLoginMethod(username, password, locale=None): '''Return a function that will call the vim.SessionManager.Login() method with the given parameters. The result of this function can be passed as the "loginMethod" to a SessionOrientedStub constructor.''' def _doLogin(soapStub): si = vim.ServiceInstance("ServiceInstance", soapStub) sm = si.content.sessionManager if not sm.currentSession: si.content.sessionManager.Login(username, password, locale) return _doLogin @staticmethod def makeExtensionLoginMethod(extensionKey): '''Return a function that will call the vim.SessionManager.Login() method with the given parameters. The result of this function can be passed as the "loginMethod" to a SessionOrientedStub constructor.''' def _doLogin(soapStub): si = vim.ServiceInstance("ServiceInstance", soapStub) sm = si.content.sessionManager if not sm.currentSession: si.content.sessionManager.LoginExtensionByCertificate(extensionKey) return _doLogin @staticmethod def makeCertHokTokenLoginMethod(stsUrl, stsCert=None): '''Return a function that will call the vim.SessionManager.LoginByToken() after obtaining a HoK SAML token from the STS. The result of this function can be passed as the "loginMethod" to a SessionOrientedStub constructor. @param stsUrl: URL of the SAML Token issuing service. (i.e. SSO server). @param stsCert: public key of the STS service. ''' assert(stsUrl) def _doLogin(soapStub): from . import sso cert = soapStub.schemeArgs['cert_file'] key = soapStub.schemeArgs['key_file'] authenticator = sso.SsoAuthenticator(sts_url=stsUrl, sts_cert=stsCert) samlAssertion = authenticator.get_hok_saml_assertion(cert,key) def _requestModifier(request): return sso.add_saml_context(request, samlAssertion, key) si = vim.ServiceInstance("ServiceInstance", soapStub) sm = si.content.sessionManager if not sm.currentSession: with soapStub.requestModifier(_requestModifier): try: soapStub.samlToken = samlAssertion si.content.sessionManager.LoginByToken() finally: soapStub.samlToken = None return _doLogin @staticmethod def makeCredBearerTokenLoginMethod(username, password, stsUrl, stsCert=None): '''Return a function that will call the vim.SessionManager.LoginByToken() after obtaining a Bearer token from the STS. The result of this function can be passed as the "loginMethod" to a SessionOrientedStub constructor. @param username: username of the user/service registered with STS. @param password: password of the user/service registered with STS. @param stsUrl: URL of the SAML Token issueing service. (i.e. SSO server). @param stsCert: public key of the STS service. ''' assert(username) assert(password) assert(stsUrl) def _doLogin(soapStub): from . import sso cert = soapStub.schemeArgs['cert_file'] key = soapStub.schemeArgs['key_file'] authenticator = sso.SsoAuthenticator(sts_url=stsUrl, sts_cert=stsCert) samlAssertion = authenticator.get_bearer_saml_assertion(username, password, cert,
key) si = vim.ServiceInstance("ServiceInstance", soapStub) sm
= si.content.sessionManager if not sm.currentSession: try: soapStub.samlToken = samlAssertion si.content.sessionManager.LoginByToken() finally: soapStub.samlToken = None return _doLogin def Connect(host='localhost', port=443, user='root', pwd='', service="hostd", adapter="SOAP", namespace=None, path="/sdk", version=None, keyFile=None, certFile=None, thumbprint=None, sslContext=None, b64token=None, mechanism='userpass'): """ Connect to the specified server, login and return the service instance object. Throws any exception back to caller. The service instance object is also saved in the library for easy access. Clients should modify the service parameter only when connecting to a VMOMI server other than hostd/vpxd. For both of the latter, the default value is fine. @param host: Which host to connect to. @type host: string @param port: Port @type port: int @param user: User @type user: string @param pwd: Password @type pwd: string @param service: Service @type service: string @param adapter: Adapter @type adapter: string @param namespace: Namespace *** Deprecated: Use version instead *** @type namespace: string @param path: Path @type path: string @param version: Version @type version: string @param keyFile: ssl key file path @type keyFile: string @param certFile: ssl cert file path @type certFile: string
jakirkham/dask
dask/dataframe/io/tests/test_parquet.py
Python
bsd-3-clause
129,660
0.001057
import glob import math import os import sys import warnings from decimal import Decimal import numpy as np import pandas as pd import pytest from packaging.version import parse as parse_version import dask import dask.dataframe as dd import dask.multiprocessing from dask.blockwise import Blockwise, optimize_blockwise from dask.dataframe._compat import PANDAS_GT_110, PANDAS_GT_121, PANDAS_GT_130 from dask.dataframe.io.parquet.utils import _parse_pandas_metadata from dask.dataframe.optimize import optimize_dataframe_getitem from dask.dataframe.utils import assert_eq from dask.layers import DataFrameIOLayer from dask.utils import natural_sort_key try: import fastparquet except ImportError: fastparquet = False fastparquet_version = parse_version("0") else: fastparquet_version = parse_version(fastparquet.__version__) try: import pyarrow as pa except ImportError: pa = False pa_version = parse_version("0") else: pa_version = parse_version(pa.__version__) try: import pyarrow.parquet as pq except ImportError: pq = False SKIP_FASTPARQUET = not fastparquet FASTPARQUET_MARK = pytest.mark.skipif(SKIP_FASTPARQUET, reason="fastparquet not found") if sys.platform == "win32" and pa and pa_version == parse_version("2.0.0"): SKIP_PYARROW = True SKIP_PYARROW_REASON = ( "skipping pyarrow 2.0.0 on windows: " "https://github.com/dask/dask/issues/6093" "|https://github.com/dask/dask/issues/6754" ) else: SKIP_PYARROW = not pq SKIP_PYARROW_REASON = "pyarrow not found" PYARROW_MARK = pytest.mark.skipif(SKIP_PYARROW, reason=SKIP_PYARROW_REASON) # "Legacy" and "Dataset"-specific MARK definitions SKIP_PYARROW_LE = SKIP_PYARROW SKIP_PYARROW_LE_REASON = "pyarrow not found" SKIP_PYARROW_DS = SKIP_PYARROW SKIP_PYARROW_DS_REASON = "pyarrow not found" if pa_version.major >= 5 and not SKIP_PYARROW: # NOTE: We should use PYARROW_LE_MARK to skip # pyarrow-legacy tests once pyarrow officially # removes ParquetDataset support in the future. PYARROW_LE_MARK = pytest.mark.filterwarnings( "ignore::DeprecationWarning", "ignore::FutureWarning", ) else: PYARROW_LE_MARK = pytest.mark.skipif(SKIP_PYARROW_LE, reason=SKIP_PYARROW_LE_REASON) PYARROW_DS_MARK = pytest.mark.skipif(SKIP_PYARROW_DS, reason=SKIP_PYARROW_DS_REASON) ANY_ENGINE_MARK = pytest.mark.skipif( SKIP_FASTPARQUET and SKIP_PYARROW, reason="No parquet engine (fastparquet or pyarrow) found", ) nrows = 40 npartitions = 15 df = pd.DataFrame( { "x": [i * 7 % 5 for i in range(nrows)], # Not sorted "y": [i * 2.5 for i in range(nrows)], # Sorted }, index=pd.Index([10 * i for i in range(nrows)], name="myindex"), ) ddf = dd.from_pandas(df, npartitions=npartitions) @pytest.fixture( params=[ pytest.param("fastparquet", marks=FASTPARQUET_MARK), pytest.param("pyarrow-legacy", marks=PYARROW_LE_MARK), pytest.param("pyarrow-dataset", marks=PYARROW_DS_MARK), ] ) def engine(request): return request.param def write_read_engines(**kwargs): """Product of both engines for write/read: To add custom marks, pass keyword of the form: `mark_writer_reader=reason`, or `mark_engine=reason` to apply to all parameters with that engine.""" backends = {"pyarrow-dataset", "pyarrow-legacy", "fastparquet"} # Skip if uninstalled skip_marks = { "fastparquet": FASTPARQUET_MARK, "pyarrow-legacy": PYARROW_LE_MARK, "pyarrow-dataset": PYARROW_DS_MARK, } marks = {(w, r): [skip_marks[w], skip_marks[r]] for w in backends for r in backends} # Custom marks for kw, val in kwargs.items(): kind, rest = kw.split("_", 1) key = tuple(rest.split("_")) if kind not in ("xfail", "skip") or len(key) > 2 or set(key) - backends: raise ValueError("unknown keyword %r" % kw) val = getattr(pytest.mark, kind)(reason=val) if len(key) == 2: marks[key].append(val) else: for k in marks: if key in k: marks[k].append(val) return pytest.mark.parametrize( ("write_engine", "read_engine"), [pytest.param(*k, marks=tuple(v)) for (k, v) in sorted(marks.items())], ) pyarrow_fastparquet_msg = "pyarrow schema and pandas metadata may disagree" write_read_engines_xfail = write_read_engines( **{ "xfail_pyarrow-dataset_fastparquet": pyarrow_fastparquet_msg, "xfail_pyarrow-legacy_fastparquet": pyarrow_fastparquet_msg, } ) if ( fastparquet and fastparquet_version < parse_version("0.5") and PANDAS_GT_110 and not PANDAS_GT_121 ): # a regression in pandas 1.1.x / 1.2.0 caused a failure in writing partitioned # categorical columns when using fastparquet 0.4.x, but this was (accidentally) # fixed in fastparquet 0.5.0 fp_pandas_msg = "pandas with fastparquet engine does not preserve index" fp_pandas_xfail = write_read_engines( **{ "xfail_pyarrow-dataset_fastparquet": pyarrow_fastparquet_msg, "xfail_pyarrow-legacy_fastparquet": pyarrow_fastparquet_msg, "xfail_fastparquet_fastparquet": fp_pandas_msg, "xfail_fastparquet_pyarrow-dataset": fp_pandas_msg, "xfail_fastparquet_pyarrow-legacy": fp_pandas_msg, } ) else: fp_pandas_msg = "pandas with fastparquet engine does not preserve index" fp_pandas_xfail = write_read_engines() @PYARROW_MARK def test_pyarrow_getengine(): from dask.dataframe.io.parquet.arrow import ArrowDatasetEngine from dask.dataframe.io.parquet.core import get_engine # Check that the default engine for "pyarrow"/"arrow" # is the `pyarrow.dataset`-based engine assert get_engine("pyarrow") == ArrowDatasetEngine assert get_engine("arrow") == ArrowDatasetEngine if SKIP_PYARROW_LE: with pytest.warns(FutureWarning): get_engine("pyarrow-legacy") @write_read_engines() def test_local(tmpdir, write_engine, read_engine): tmp = str(tmpdir) data = pd.DataFrame( { "i32": np.arange(1000, dtype=np.int32), "i64": np.arange(1000, dtype=np.int64), "f": np.arange(1000, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype( "O" ), } ) df = dd.from_pandas(data, chunksize=500) df.to_parquet(tmp, write_index=False, engine=write_engine) files = os.listdi
r(tmp) assert "_common_metadata" in files assert "_metadata" in files assert "part.0.parquet" in files df2 = dd.read_parquet(tmp, index=False, engine=read_engine) assert len(df2.divis
ions) > 1 out = df2.compute(scheduler="sync").reset_index() for column in df.columns: assert (data[column] == out[column]).all() @pytest.mark.parametrize("index", [False, True]) @write_read_engines_xfail def test_empty(tmpdir, write_engine, read_engine, index): fn = str(tmpdir) df = pd.DataFrame({"a": ["a", "b", "b"], "b": [4, 5, 6]})[:0] if index: df.set_index("a", inplace=True, drop=True) ddf = dd.from_pandas(df, npartitions=2) ddf.to_parquet(fn, write_index=index, engine=write_engine) read_df = dd.read_parquet(fn, engine=read_engine) assert_eq(ddf, read_df) @write_read_engines() def test_simple(tmpdir, write_engine, read_engine): fn = str(tmpdir) if write_engine != "fastparquet": df = pd.DataFrame({"a": [b"a", b"b", b"b"], "b": [4, 5, 6]}) else: df = pd.DataFrame({"a": ["a", "b", "b"], "b": [4, 5, 6]}) df.set_index("a", inplace=True, drop=True) ddf = dd.from_pandas(df, npartitions=2) ddf.to_parquet(fn, engine=write_engine) read_df = dd.read_parquet(fn, index=["a"], engine=read_engine) assert_eq(ddf, read_df) @write_read_engines() def test_delayed_no_metadata(tmpdir, write_engine, read_engine): fn = str(tmpdir) df = pd.DataFrame({"a": ["a", "b", "b"], "b": [4, 5, 6]}) df.set_index("a", inplace=True, drop=True) ddf = dd.from_pandas(df, npartitions=2) ddf.to_parquet(
smerritt/swift
swift/common/ring/utils.py
Python
apache-2.0
26,082
0.000038
# Copyright (c) 2010-2013 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import defaultdict import optparse import re import socket from swift.common import exceptions from swift.common.utils import expand_ipv6, is_valid_ip, is_valid_ipv4, \ is_valid_ipv6 def tiers_for_dev(dev): """ Returns a tuple of tiers for a given device in ascending order by length. :returns: tuple of tiers """ t1 = dev['region'] t2 = dev['zone'] t3 = dev['ip'] t4 = dev['id'] return ((t1,), (t1, t2), (t1, t2, t3), (t1, t2, t3, t4)) def build_tier_tree(devices): """ Construct the tier tree from the zone layout. The tier tree is a dictionary that maps tiers to their child tiers. A synthetic root node of () is generated so that there's one tree, not a forest. Example: region 1 -+---- zone 1 -+---- 192.168.101.1 -+---- device id 0 | | | | | +---- device id 1 | | | | | +---- device id 2 | | | +---- 192.168.101.2 -+---- device id 3 | | | +---- device id 4 | | | +---- device id 5 | +---- zone 2 -+---- 192.168.102.1 -+---- device id 6 | | | +---- device id 7 | | | +---- device id 8 | +---- 192.168.102.2 -+---- device id 9 | +---- device id 10 region 2 -+---- zone 1 -+---- 192.168.201.1 -+---- device id 12 | | | +---- device id 13 | | | +---- device id 14 | +---- 192.168.201.2 -+---- device id 15 |
+---- device id 16 | +---- device id 17 The
tier tree would look like: { (): [(1,), (2,)], (1,): [(1, 1), (1, 2)], (2,): [(2, 1)], (1, 1): [(1, 1, 192.168.101.1), (1, 1, 192.168.101.2)], (1, 2): [(1, 2, 192.168.102.1), (1, 2, 192.168.102.2)], (2, 1): [(2, 1, 192.168.201.1), (2, 1, 192.168.201.2)], (1, 1, 192.168.101.1): [(1, 1, 192.168.101.1, 0), (1, 1, 192.168.101.1, 1), (1, 1, 192.168.101.1, 2)], (1, 1, 192.168.101.2): [(1, 1, 192.168.101.2, 3), (1, 1, 192.168.101.2, 4), (1, 1, 192.168.101.2, 5)], (1, 2, 192.168.102.1): [(1, 2, 192.168.102.1, 6), (1, 2, 192.168.102.1, 7), (1, 2, 192.168.102.1, 8)], (1, 2, 192.168.102.2): [(1, 2, 192.168.102.2, 9), (1, 2, 192.168.102.2, 10)], (2, 1, 192.168.201.1): [(2, 1, 192.168.201.1, 12), (2, 1, 192.168.201.1, 13), (2, 1, 192.168.201.1, 14)], (2, 1, 192.168.201.2): [(2, 1, 192.168.201.2, 15), (2, 1, 192.168.201.2, 16), (2, 1, 192.168.201.2, 17)], } :devices: device dicts from which to generate the tree :returns: tier tree """ tier2children = defaultdict(set) for dev in devices: for tier in tiers_for_dev(dev): if len(tier) > 1: tier2children[tier[0:-1]].add(tier) else: tier2children[()].add(tier) return tier2children def validate_and_normalize_ip(ip): """ Return normalized ip if the ip is a valid ip. Otherwise raise ValueError Exception. The hostname is normalized to all lower case. IPv6-addresses are converted to lowercase and fully expanded. """ # first convert to lower case new_ip = ip.lower() if is_valid_ipv4(new_ip): return new_ip elif is_valid_ipv6(new_ip): return expand_ipv6(new_ip) else: raise ValueError('Invalid ip %s' % ip) def validate_and_normalize_address(address): """ Return normalized address if the address is a valid ip or hostname. Otherwise raise ValueError Exception. The hostname is normalized to all lower case. IPv6-addresses are converted to lowercase and fully expanded. RFC1123 2.1 Host Names and Nubmers DISCUSSION This last requirement is not intended to specify the complete syntactic form for entering a dotted-decimal host number; that is considered to be a user-interface issue. For example, a dotted-decimal number must be enclosed within "[ ]" brackets for SMTP mail (see Section 5.2.17). This notation could be made universal within a host system, simplifying the syntactic checking for a dotted-decimal number. If a dotted-decimal number can be entered without such identifying delimiters, then a full syntactic check must be made, because a segment of a host domain name is now allowed to begin with a digit and could legally be entirely numeric (see Section 6.1.2.4). However, a valid host name can never have the dotted-decimal form #.#.#.#, since at least the highest-level component label will be alphabetic. """ new_address = address.lstrip('[').rstrip(']') if address.startswith('[') and address.endswith(']'): return validate_and_normalize_ip(new_address) new_address = new_address.lower() if is_valid_ipv4(new_address): return new_address elif is_valid_ipv6(new_address): return expand_ipv6(new_address) elif is_valid_hostname(new_address): return new_address else: raise ValueError('Invalid address %s' % address) def is_valid_hostname(hostname): """ Return True if the provided hostname is a valid hostname """ if len(hostname) < 1 or len(hostname) > 255: return False if hostname.endswith('.'): # strip exactly one dot from the right, if present hostname = hostname[:-1] allowed = re.compile("(?!-)[A-Z\d-]{1,63}(?<!-)$", re.IGNORECASE) return all(allowed.match(x) for x in hostname.split(".")) def is_local_device(my_ips, my_port, dev_ip, dev_port): """ Return True if the provided dev_ip and dev_port are among the IP addresses specified in my_ips and my_port respectively. To support accurate locality determination in the server-per-port deployment, when my_port is None, only IP addresses are used for determining locality (dev_port is ignored). If dev_ip is a hostname then it is first translated to an IP address before checking it against my_ips. """ candidate_ips = [] if not is_valid_ip(dev_ip) and is_valid_hostname(dev_ip):
cfagiani/crowdcloud
build_cloud.py
Python
apache-2.0
7,232
0.013689
""" __author__ = 'Christopher Fagiani' """ import sys, argparse, json, string, collections from datetime import datetime SummaryData = collections.namedtuple('SummaryData', 'wordCounts articles commentCount authors anonCount') def main(args): """This program will output a word cloud as html based on the frequencies of words in a data file """ process_data(args.threshold,args.inputFile,args.stopFile, args.outputFile) def process_data(threshold,dataFile, stopwordsFile, outputFile, interval=None): with open(dataFile) as in_file: data = json.load(in_file) summary_data = build_counts(data,load_stopwords(stopwordsFile)) write_json(summary_data, outputFile,int(threshold),True,interval) def write_json(summary_data, outputFile, threshold, as_variable=True, interval=None): """Writes a json file containing the count data for each word. If asVariable is true (the default), the data is output as a javascript variable declaration rather than a raw JSON array. """ sorted_data = sorted(summary_data.wordCounts.items(),key=lambda x: x[1]['count'], reverse=True) with open(outputFile,'w') as out_file: count = 0 if as_variable: out_file.write("var lastUpdated='"+datetime.now().strftime("%D at %H:%M:%S")+"';\n") out_file.write("var threshold='"+str(threshold)+"';\n") out_file.write("var commentCount='"+str(summary_data.commentCount)+"';\n") out_file.write("var articleCount='"+str(len(summary_data.articles))+"';
\n") out_file.write("var authorCount='"+str(len(summary_data.authors))+"';\n") out_file.write("var anonCount='"+str(summary_data.anonCount)+"';\n") if interval is not None:
out_file.write("var intervalHrs='"+interval+"';\n") else: out_file.write("var intervalHrs='unknown';\n") out_file.write("var words = [") else: out_file.write("[") for item in sorted_data: if(item[1]['count']<threshold): break if count > 0: out_file.write(",") count += 1 out_file.write(json.dumps(item[1])) out_file.write("]") def load_stopwords(filename): """loads the stopwords file """ words = set() with open(filename) as stop_file: for line in stop_file: words.add(line.strip()) return words def build_counts(data, stop_words, lemmatize=True): """builds a dictionary keyed on the lowercase version of the sanitized string. The values are a dictionary that contains the raw word, the count of occurrences and a dictionary of articles (keys = links, values = titles) for each article associated with the word. """ words = {} comment_count = 0 articles = set() authors = set() anon_count = 0 spam_count = 0 lm = None if lemmatize: lm = initialize_lemmatizer() for item in data: if compute_spam_score(item['msg']) >= .7: spam_count += 1 continue comment_count += 1 articles.add(item['link']) text = item['msg'] authors.add(item['author']) if item.get('authorId') == None: anon_count += 1 for word in text.split(): raw_word = sanitize_word(word) word = raw_word.lower() if lemmatize: word = lemmatize_word(lm,word) if word not in stop_words and all(c in string.printable for c in word): record = words.get(word,None) if record is None: if raw_word == 'us': print word record = {'count':1, 'word':raw_word, 'articles':{item['link']:item['title']}} words[word]=record else: record['count']=record['count']+1 record['articles'][item['link']]=item['title'] return SummaryData(words, articles, comment_count, authors, anon_count) def initialize_lemmatizer(): """Initializes the wordnet lemmatizer. You must install nltk and download the wordnet corpus prior to using this method (after downloading nltk, import it and run nltk.download()) """ from nltk.stem.wordnet import WordNetLemmatizer return WordNetLemmatizer() def lemmatize_word(lm,word): """Lemmatizes a word using the nltk library. Since we don't know the part of speech, this method performs 2 lemmatizations (once as a noun and once as a verb) The verson of the word that differs from the input word is returned. This is not always guaranteed to generate a correct answer, but it's good enough for our purposes. """ candidateN = lm.lemmatize(word,'n') candidateV = lm.lemmatize(word,'v') if candidateN == word: return candidateV else: return candidateN def sanitize_word(word): """returns word after replacing common punctuation with the empty string """ word = word.replace(".","").replace(",","").replace("?","").replace(":","")\ .replace("(","").replace(")","").replace("*","").replace(";","").replace('"',"").replace("!","") word = word.replace("]","").replace("[","") return word def compute_spam_score(comment_text): """ Computes a "spam score" that is the likelihood that a comment is Spam (expressed as a value between 0 and 1). :param comment_text: comment to score :return: value between 0 (definitely not spam) and 1 (definitely spam) """ spam_indicator_count = 0 normalized_text = comment_text.lower() if "getting paid" in normalized_text or "earn" in normalized_text or "earning" in normalized_text: if "internet" in normalized_text: spam_indicator_count += 5 if "http://" in normalized_text or "href=" in normalized_text: spam_indicator_count += 5 if "an hour" in normalized_text or "hourly" in normalized_text or "/hr" in normalized_text or "monthly" in normalized_text: if "job" in normalized_text: spam_indicator_count += 3 if "http://" in normalized_text or "href=" in normalized_text: spam_indicator_count += 5 if "http://" in normalized_text or "href=" in normalized_text: spam_indicator_count += 2 return spam_indicator_count / 20.0 if __name__ == "__main__": argparser = argparse.ArgumentParser(description="Build a tag cloud from json data") argparser.add_argument("-i","--input", metavar='inputfile',required=True,help='file containing json data',dest='inputFile') argparser.add_argument("-o","--output", metavar='outputFile',required=True,help='output file',dest='outputFile') argparser.add_argument("-s","--stopfile", metavar="stopwordFile",default="stopwords.txt",help="stopwords file",dest="stopFile") argparser.add_argument("-t","--threshold", metavar="countThreshold",default=4,help="count threshold",dest="threshold") main(argparser.parse_args())
coberger/DIRAC
DataManagementSystem/Client/FailoverTransfer.py
Python
gpl-3.0
11,229
0.027518
""" Failover Transfer The failover transfer client exposes the following methods: - transferAndRegisterFile() - transferAndRegisterFileFailover() Initially these methods were developed inside workflow modules but have evolved to a generic 'transfer file with failover' client. The transferAndRegisterFile() method will correctly set registration requests in case of failure. The transferAndRegisterFileFailover() method will attempt to upload a file to a list of alternative SEs and set appropriate replication to the original target SE as well as the removal request for the temporary replica. """ __RCSID__ = "$Id$" from DIRAC import S_OK, S_ERROR, gLogger from DIRAC.DataManagementSystem.Client.DataManager import DataManager from DIRAC.ConfigurationSystem.Client.Helpers.Resources import getRegistrationProtocols from DIRAC.Resources.Storage.StorageElement import StorageElement from DIRAC.Resources.Catalog.FileCatalog import FileCatalog from DIRAC.RequestManagementSystem.Client.Request import Request from DIRAC.RequestManagementSystem.Client.Operation import Operation from DIRAC.RequestManagementSystem.Client.File import File from DIRAC.RequestManagementSystem.private.RequestValidator import RequestValidator from DIRAC.RequestManagementSystem.Client.ReqClient import ReqClient class FailoverTransfer( object ): """ .. class:: FailoverTransfer """ ############################################################################# def __init__( self, requestObject = None, log = None, defaultChecksumType = 'ADLER32' ): """ Constructor function, can specify request object to instantiate FailoverTransfer or a new request object is created. """ self.log = log if not self.log: self.log = gLogger.getSubLogger( "FailoverTransfer" ) self.request = requestObject if not self.request: self.request = Request() self.request.RequestName = 'noname_request' self.request.SourceComponent = 'FailoverTransfer' self.defaultChecksumType = defaultChecksumType self.registrationProtocols = getRegistrationProtocols() ############################################################################# def transferAndRegisterFile( self, fileName, localPath, lfn, destinationSEList, fileMetaDict, fileCatalog = None, masterCatalogOnly = False ): """Performs the transfer and register operation with failover. """ errorList = [] fileGUID = fileMetaDict.get( "GUID", None ) for se in destinationSEList: self.log.info( "Attempting dm.putAndRegister('%s','%s','%s',guid='%s',catalog='%s')" % ( lfn, localPath, se, fileGUID, fileCatalog ) ) result = DataManager( catalogs = fileCatalog, masterCatalogOnly = masterCatalogOnly ).putAndRegister( lfn, localPath, se, guid = fileGUID ) self.log.verbose( result ) if not result['OK']: self.log.error( 'dm.putAndRegister failed with message', result['Message'] ) errorList.append( result['Message'] ) continue if not result['Value']['Failed']: self.log.info( 'dm.putAndRegister successfully uploaded and registered %s to %s' % ( fileName, se ) ) return S_OK( {'uploadedSE':se, 'lfn':lfn} ) # Now we know something went wrong self.log.warn( "Didn't manage to do everything, now adding requests for the missing operation" ) errorDict = result['Value']['Failed'][lfn] if 'register' not in errorDict: self.log.error( 'dm.putAndRegister failed with unknown error', str( errorDict ) ) errorList.append( 'Unknown error while attempting upload to %s' % se ) continue # fileDict = errorDict['register'] # Therefore the registration failed but the upload was successful if not fileCatalog: fileCatalog = '' if masterCatalogOnly: fileCatalog = FileCatalog().getMasterCatalogNames()['Value'] result = self._setRegistrationRequest( lfn, se, fileMetaDict, fileCatalog ) if not result['OK']: self.log.error( 'Failed to set registration request', 'SE %s and metadata: \n%s' % ( se, fileMetaDict ) ) errorList.append( 'Failed to set registration request for: SE %s and metadata: \n%s' % ( se, fileMetaDict ) ) continue else: self.log.info( 'Successfully set registration request for: SE %s and metadata: \n%s' % ( se, fileMetaDict ) ) metadata = {} metadata['filedict'] = fileMetaDict metadata['uploadedSE'] = se metadata['lfn'] = lfn metadata['registration'] = 'request' return S_OK( metadata ) self.log.error( 'Failed to upload output data file', 'Encountered %s errors' % len( errorList ) ) return S_ERROR( 'Failed to upload output data file' ) ############################################################################# def transferAndRegisterFileFailover( self, fileName, localPath, lfn, targetSE, failoverSEList, fileMetaDict, fileCatalog = None, masterCatalogOnly = False ): """Performs the transfer and register operation to failover storage and sets the necessary replication and removal requests to recover. """ failover = self.transferAndRegisterFile( fileName, localPath, lfn, failoverSEList, fileMetaDict, fileCatalog, masterCatalogOnly = masterCatalogOnly ) if not failover['OK']: self.log.error( 'Could not upload file to failover SEs', failover['Message'] ) return failover # set removal requests and replication requests result = self._setFileReplicationRequest( lfn, targetSE, fileMetaDict, sourceSE = failover['Value']['uploadedSE'] ) if not result['OK']: self.log.error( 'Could not set file replication request', result['Message'] ) return result lfn = failover['Value']['lfn'] failoverSE = failover['Value']['uploadedSE'] self.log.info( 'Attempting to set replica removal request for LFN %s at failover SE %s' % ( lfn, failoverSE ) ) result = self._setRep
licaRemovalRequest( lfn, failoverSE ) if not result['OK']: self.log.error( 'Could not set removal request', result['Message'] ) return result return S_OK( {'uploadedSE':failoverSE, 'lfn':lfn} ) def getRequest( self ): """ get the accumulated request object """ return self.request def commitRequest( self ): """ Send request to the R
equest Management Service """ if self.request.isEmpty(): return S_OK() isValid = RequestValidator().validate( self.request ) if not isValid["OK"]: return S_ERROR( "Failover request is not valid: %s" % isValid["Message"] ) else: requestClient = ReqClient() result = requestClient.putRequest( self.request ) return result ############################################################################# def _setFileReplicationRequest( self, lfn, targetSE, fileMetaDict, sourceSE = '' ): """ Sets a registration request. """ self.log.info( 'Setting ReplicateAndRegister request for %s to %s' % ( lfn, targetSE ) ) transfer = Operation() transfer.Type = "ReplicateAndRegister" transfer.TargetSE = targetSE if sourceSE: transfer.Sou
NERC-CEH/jules-jasmin
majic/joj/crowd/client.py
Python
gpl-2.0
12,041
0.00108
""" #header """ import base64 import datetime import logging from joj.crowd.models import UserRequest import urllib2 import simplejson from simplejson import JSONDecodeError log = logging.getLogger(__name__) class ClientException(Exception): """ Base exception for Crowd-based errors """ def __init__(self): pass class SessionNotFoundException(ClientException): """Use this for: + User session expiry + Nonsense user session etc.""" def __init__(self): pass class AuthenticationFailedException(ClientException): """If the user has entered incorrect details, we'll use this exception type""" def __init__(self): pass class UserException(ClientException): """ Raised if a user already exists on create""" def __init__(self): pass class CrowdCommunicationExcpetion(ClientException): """ Raised if crowd can not be contacted """ def __init__(self): pass class CrowdClient(object): """Provides a simple interface to a crowd server""" # Map the messages we expect back from Crowd in error # to an exception type we want to raise _errorMap = { 'INVALID_SSO_TOKEN': SessionNotFoundException, 'INVALID_USER_AUTHENTICATION': Authent
icationFailedException, 'INVALID_USER': UserException, 'USER_NOT_FOUND': UserException
} _token_cache = {} crowd_user = None crowd_password = None def __init__(self, api_url=None, app_name=None, app_pwd=None): """Constructor function Params: api_url: The URL to the Crowd API app_name: Application login name for Crowd server app_pwd: Application password for Crowd server """ self.crowd_user = app_name self.crowd_password = app_pwd self.crowd_api = api_url self.use_crowd = None self.external_opener = urllib2.build_opener(urllib2.HTTPHandler(), urllib2.ProxyHandler({})) def config(self, config): """ Configure the crowd client :param config: :return:nothing """ self.crowd_user = config['crowd_app_name'] self.crowd_password = config['crowd_app_password'] self.crowd_api = config['crowd_api_url'] self.use_crowd = config['crowd_use_crowd'].lower() != 'false' try: self.external_opener = urllib2.build_opener( urllib2.ProxyHandler({'http': config['external_http_proxy'], 'https': config['external_https_proxy']}) ) log.info("installed proxied external opener for crowd client") except KeyError: self.external_opener = urllib2.build_opener(urllib2.HTTPHandler(), urllib2.ProxyHandler({})) log.info("installed non-proxied external opener for crowd client") def check_authenticated(self, user_name, password): """ Checks if the user in question is in the crowd system :param user_name: Login name of the user to check :param password: That user's password :return: User information as JSON if session valid, raises exception if not """ return self._make_request('authentication?username=%s' % user_name, '{ "value": "%s" }' % password) def create_user_session(self, user_name, password, remote_addr): """ Asks the crowd provider for a user session token :param user_name: Login name of the user :param password: Password of the user :param remote_addr: IP address the user is requesting from :return: User object in JSON containing a 'token' from Crowd raises exception if invalid credentials """ user = UserRequest() user.username = user_name user.password = password user.remote_address = remote_addr # Now we have enough information to make # a request to the Crowd API for a session return self._make_request('session', user.to_json()) def verify_user_session(self, token): """ Checks the supplied token against active Crowd sessions :param token: The Crowd session ID to verify :return: User information as JSON if session valid, raises exception if not """ # Look for a user, and last access entry in the # cache... try: user, last_access_time = self._token_cache[token] time_since_last_access = datetime.datetime.now() - last_access_time if time_since_last_access.seconds > 20: del[self._token_cache[token]] else: log.debug("Found user in cache - no need to call Crowd") return { 'user': user, 'token': token } except KeyError: server_credentials = self._make_request('session/' + token) self._token_cache[token] = (server_credentials['user'], datetime.datetime.now()) return server_credentials return self._make_request('session/' + token) def delete_session(self, token): """ Invalidates the specified session :param token: Session identifier to invalidate :return:Nothing """ if token in self._token_cache: del[self._token_cache[token]] self._make_request('session/' + token, method='DELETE') def get_user_info(self, username): """ Gets a user object from Crowd :param username: Name of user to get info for :return: User JSON """ return self._make_request('user?username=%s' % username) def create_user(self, username, first_name, last_name, email, password): """ Asks the client to create a user with the given information :param username: login name for the user :param first_name: The name given to the user for use in an informal setting :param last_name: The name of the user's family :param email: Email address :param password: User's desired password :return: nothing """ req = UserRequest() req.username = username req.first_name = first_name req.last_name = last_name req.email = email req.password = password return self._make_request('user', data=req.new_user_json()) def update_user(self, username, first_name, last_name, email, password): """ Asks the client to update the user record :param username: login name for the user :param first_name: The name given to the user for use in an informal setting :param last_name: The name of the user's family :param email: Email address :param password: User's desired password :return: nothing """ req = UserRequest() req.username = username req.first_name = first_name req.last_name = last_name req.email = email req.password = password return self._make_request('user?username=%s' % username, data=req.new_user_json(), method='PUT') def update_users_password(self, username, password): """ Update a users password :param username: the username :param password: the new password :return:nothing """ data = simplejson.dumps( { 'value': password }) return self._make_request('user/password?username=%s' % username, data=data, method='PUT') def delete_user(self, username): """ Performs a delete on a user :param username: The login name of the user to delete :return: nothing """ self._make_request('user?username=%s' % username, method='DELETE') def _make_request(self, resource, data=None, method=None): """ Helper function for making requests to the Crowd REST API :param resource: The REST resource to access :param data: Optional JSON payload :param method: The HTTP v
chelnak/BotStats
app/__init__.py
Python
mit
466
0.01073
import os from flask import Flask from flask.ext.sqlalchemy import SQLAlchemy import flask.ext.restless app = Flask(__name
__) app.config.from_object('config') #flask-sqlalchemy db = SQLAlchemy(app) from app import models, views from app.models import Fact, Log #API manager = flask.ext.restless.APIManager(app, flask_sqlalchemy_db=db) ma
nager.create_api(Fact, methods=['GET', 'POST', 'DELETE']) manager.create_api(Log, methods=['GET', 'POST', 'PUT', 'DELETE'])
alsrgv/tensorflow
tensorflow/python/keras/layers/recurrent_test.py
Python
apache-2.0
54,154
0.003638
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for recurrent layers functionality other than GRU, LSTM, SimpleRNN. See also: lstm_test.py, gru_test.py, simplernn_test.py. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from absl.testing import parameterized import numpy as np from tensorflow.python import keras from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import random_seed from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import test_util from tensorflow.python.keras import keras_parameterized from tensorflow.python.keras import testing_utils from tensorflow.python.keras.engine import base_layer_utils from tensorflow.python.keras.layers import recurrent as rnn_v1 from tensorflow.python.keras.layers import recurrent_v2 as rnn_v2 from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import rnn_cell from tensorflow.python.ops import special_math_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variables as variables_lib from tensorflow.python.platform import test from tensorflow.python.training.tracking import object_identity from tensorflow.python.training.tracking import util as trackable_util from tensorflow.python.util import nest # Used for nested input/output/state RNN test. NestedInput = collections.namedtuple('NestedInput', ['t1', 't2']) NestedState = collections.namedtuple('NestedState', ['s1', 's2']) @keras_parameterized.run_all_keras_modes class RNNTest(keras_parameterized.TestCase): def test_minimal_rnn_cell_non_layer(self): class MinimalRNNCell(object): def __init__(self, units, input_dim): self.units = units self.state_size = units self.kernel = keras.backend.variable( np.random.random((input_dim, units))) def call(self, inputs, states): prev_output = states[0] output = keras.backend.dot(inputs, self.kernel) + prev_output return output, [output] # Basic test case. cell = MinimalRNNCell(32, 5) x = keras.Input((None, 5)) layer = keras.layers.RNN(cell) y = layer(x) model = keras.models.Model(x, y) model.compile( optimizer='rmsprop', loss='mse', run_eagerly=testing_utils.should_run_eagerly()) model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) # Test stacking. cells = [MinimalRNNCell(8, 5), MinimalRNNCell(32, 8), MinimalRNNCell(32, 32)] layer = keras.layers.RNN(cells) y = layer(x) model = keras.models.Model(x, y) model.compile( optimizer='rmsprop', loss='mse', run_eagerly=testing_utils.should_run_eagerly()) model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) def test_minimal_rnn_cell_non_layer_multiple_states(self): class MinimalRNNCell(object): def __init__(self, units, input_dim): self.units = units self.state_size = (units, units) self.kernel = keras.backend.variable( np.random.random((input_dim, units))) def call(self, inputs, states): prev_output_1 = states[0] prev_output_2 = states[1] output = keras.backend.dot(inputs, self.kernel) output += prev_output_1 output -= prev_output_2 return output, [output * 2, output * 3] # Basic test case. cell = MinimalRNNCell(32, 5) x = keras.Input((None, 5)) layer = keras.layers.RNN(cell) y = layer(x) model = keras.models.Model(x, y) model.compile( optimizer='rmsprop', loss='mse', run_eagerly=testing_utils.should_run_eagerly()) model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) # Test stacking. cells = [MinimalRNNCell(8, 5), MinimalRNNCell(16, 8), MinimalRNNCell(32, 16)] layer = keras.layers.RNN(cells) self.assertEqual(layer.cell.state_size, ((8, 8), (16, 16), (32, 32))) self.assertEqual(layer.cell.output_size, 32) y = layer(x) model = keras.models.Model(x, y) model.compile( optimizer='rmsprop', loss='mse', run_eagerly=testing_utils.should_run_eagerly()) model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) def test_minimal_rnn_cell_layer(self): class MinimalRNNCell(keras.layers.Layer): def __init__(self, units, **kwargs): self.units = units self.state_size = units super(MinimalRNNCell, self).__init__(**kwargs) def build(self, input_shape): self.kernel = self.add_weight(shape=(input_shape[-1], self.units), initializer='uniform', name='kernel') self.recurrent_kernel = self.add_weight( shape=(self.units, self.units), initializer='uniform', name='recurrent_kernel') self.built = True def call(self, inputs, states): prev_output = states[0] h = keras.backend.dot(inputs, self.kernel) output = h + keras.backend.dot(prev_output, self.recurrent_kernel) return output, [output] def get_config(self): config = {'units': self.units} base_config = super(MinimalRNNCell, self).get_config() return dict(list(base_config.items()) + list(config.items())) # Test basic case. x = keras.Input((None, 5)) cell = MinimalRNNCell(32) layer = keras.layers.RNN(cell) y = layer(x) model = keras.models.Model(x, y) model.compile( optimizer='rmsprop', loss='mse', run_eagerly=testing_utils.should_run_eagerly()) model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) # Test basic case serialization. x_np = np.random.r
andom((6, 5, 5)) y_np = model.predict(x_np) weights = model.get_weights() config = layer.get_config() with keras.utils.CustomObjectScope({'MinimalRNNCell': MinimalRNNCell}): layer = keras.layers.RNN.from_config(config) y = layer(x) model = keras.models.Model(x, y) model.set_weights(weights) y_np_2 = model.predict(x_np) self.assertAllClose(y_np, y_np_2, atol=1e-4) # Test stac
king. cells = [MinimalRNNCell(8), MinimalRNNCell(12), MinimalRNNCell(32)] layer = keras.layers.RNN(cells) y = layer(x) model = keras.models.Model(x, y) model.compile( optimizer='rmsprop', loss='mse', run_eagerly=testing_utils.should_run_eagerly()) model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) # Test stacked RNN serialization. x_np = np.random.random((6, 5, 5)) y_np = model.predict(x_np) weights = model.get_weights() config = layer.get_config() with keras.utils.CustomObjectScope({'MinimalRNNCell': MinimalRNNCell}): layer = keras.layers.RNN.from_config(config) y = layer(x) model = keras.models.Model(x, y) model.set_weights(weights) y_np_2 = model.predict(x_np) self.assertAllClose(y_np, y_np_2, atol=1e-4) def test_minimal_rnn_cell_abstract_rnn_cell(self): class MinimalRNNCell(keras.layers.AbstractRNNCell): def __init__(self, units, **kwargs): self.units = units super(MinimalRNNCell, self)
w1z2g3/crossbar
crossbar/controller/test/test_cli.py
Python
agpl-3.0
10,540
0.001328
##################################################################################### # # Copyright (C) Tavendo GmbH # # Unless a separate license agreement exists between you and Tavendo GmbH (e.g. you # have purchased a commercial license), the license terms below apply. # # Should you enter into a separate license agreement after having received a copy of # this software, then the terms of such license agreement replace the terms below at # the time at which such license agreement becomes effective. # # In case a separate license agreement ends, and such agreement ends without being # replaced by another separate license agreement, the license terms below apply # from the time at which said agreement ends. # # LICENSE TERMS # # This program is free software: you can redistribute it and/or modify it under the # terms of the GNU Affero General Public License, version 3, as published by the # Free Software Foundation. This program is distributed in the hope that it will be # useful, but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # # See the GNU Affero General Public License Version 3 for more details. # # You should have received a copy of the GNU Affero General Public license along # with this program. If not, see <http://www.gnu.org/licenses/agpl-3.0.en.html>. # ########################################################
############################# from __future__ import absolute_import, division, print_function from six import StringIO as NativeStringIO from twisted.internet.selectreactor import SelectReactor from crossbar.test import TestCase from crossbar.controller import cli from crossbar import _logging from weakref import WeakKeyDictionary import os import sys import platform impor
t twisted class CLITestBase(TestCase): # the tests here a mostly bogus, as they test for log message content, # not actual functionality skip = True def setUp(self): self._subprocess_timeout = 15 if platform.python_implementation() == 'PyPy': self._subprocess_timeout = 30 self.stderr = NativeStringIO() self.stdout = NativeStringIO() self.patch(_logging, "_stderr", self.stderr) self.patch(_logging, "_stdout", self.stdout) self.patch(_logging, "_loggers", WeakKeyDictionary()) self.patch(_logging, "_loglevel", "info") return super(CLITestBase, self).setUp() def tearDown(self): sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__ class VersionTests(CLITestBase): """ Tests for `crossbar version`. """ def test_basic(self): """ Just running `crossbar version` gets us the versions. """ reactor = SelectReactor() cli.run("crossbar", ["version"], reactor=reactor) self.assertIn("Crossbar.io", self.stdout.getvalue()) self.assertIn( ("Twisted : \x1b[33m\x1b[1m" + twisted.version.short() + "-SelectReactor"), self.stdout.getvalue()) def test_debug(self): """ Running `crossbar version` will give us the versions, plus the locations of some of them. """ reactor = SelectReactor() cli.run("crossbar", ["version", "--loglevel=debug"], reactor=reactor) self.assertIn("Crossbar.io", self.stdout.getvalue()) self.assertIn( ("Twisted : \x1b[33m\x1b[1m" + twisted.version.short() + "-SelectReactor"), self.stdout.getvalue()) self.assertIn( ("[twisted.internet.selectreactor.SelectReactor]"), self.stdout.getvalue()) class StartTests(CLITestBase): """ Tests for `crossbar start`. """ def setUp(self): CLITestBase.setUp(self) # Set up the configuration directories self.cbdir = os.path.abspath(self.mktemp()) os.mkdir(self.cbdir) self.config = os.path.abspath(os.path.join(self.cbdir, "config.json")) def test_start(self): """ A basic start, that doesn't actually enter the reactor. """ with open(self.config, "w") as f: f.write("""{"controller": {}}""") reactor = SelectReactor() reactor.run = lambda: False cli.run("crossbar", ["start", "--cbdir={}".format(self.cbdir), "--logformat=syslogd"], reactor=reactor) self.assertIn("Entering reactor event loop", self.stdout.getvalue()) def test_configValidationFailure(self): """ Running `crossbar start` with an invalid config will print a warning. """ with open(self.config, "w") as f: f.write("") reactor = SelectReactor() with self.assertRaises(SystemExit) as e: cli.run("crossbar", ["start", "--cbdir={}".format(self.cbdir), "--logformat=syslogd"], reactor=reactor) # Exit with code 1 self.assertEqual(e.exception.args[0], 1) # The proper warning should be emitted self.assertIn("*** Configuration validation failed ***", self.stderr.getvalue()) self.assertIn(("configuration file does not seem to be proper JSON "), self.stderr.getvalue()) def test_fileLogging(self): """ Running `crossbar start --logtofile` will log to cbdir/node.log. """ with open(self.config, "w") as f: f.write("""{"controller": {}}""") reactor = SelectReactor() reactor.run = lambda: None cli.run("crossbar", ["start", "--cbdir={}".format(self.cbdir), "--logtofile"], reactor=reactor) with open(os.path.join(self.cbdir, "node.log"), "r") as f: logFile = f.read() self.assertIn("Entering reactor event loop", logFile) self.assertEqual("", self.stderr.getvalue()) self.assertEqual("", self.stdout.getvalue()) def test_stalePID(self): with open(self.config, "w") as f: f.write("""{"controller": {}}""") with open(os.path.join(self.cbdir, "node.pid"), "w") as f: f.write("""{"pid": 9999999}""") reactor = SelectReactor() reactor.run = lambda: None cli.run("crossbar", ["start", "--cbdir={}".format(self.cbdir), "--logformat=syslogd"], reactor=reactor) self.assertIn( ("Stale Crossbar.io PID file (pointing to non-existing process " "with PID {pid}) {fp} removed").format( fp=os.path.abspath(os.path.join(self.cbdir, "node.pid")), pid=9999999), self.stdout.getvalue()) class ConvertTests(CLITestBase): """ Tests for `crossbar convert`. """ def test_unknown_format(self): """ Running `crossbar convert` with an unknown config file produces an error. """ cbdir = self.mktemp() os.makedirs(cbdir) config_file = os.path.join(cbdir, "config.blah") open(config_file, 'wb').close() with self.assertRaises(SystemExit) as e: cli.run("crossbar", ["convert", "--config={}".format(config_file)]) self.assertEqual(e.exception.args[0], 1) self.assertIn( ("Error: configuration file needs to be '.json' or '.yaml'."), self.stdout.getvalue()) def test_yaml_to_json(self): """ Running `crossbar convert` with a YAML config file will convert it to JSON. """ cbdir = self.mktemp() os.makedirs(cbdir) config_file = os.path.join(cbdir, "config.yaml") with open(config_file, 'w') as f: f.write(""" foo: bar: spam baz: foo: cat """) cli.run("crossbar", ["convert", "--config={}".format(config_file)]) self.assertIn( ("JSON formatted configuration wri
KevinJMcGrath/Symphony-Ares
modules/plugins/PABot/logging.py
Python
mit
796
0.002513
import logging.handlers import os _pabotlog = logging.getLogger('PABot') _pabotlog.setLevel(logging.DEBUG) _log
Path = os.path.abspath("./logging/pabot.log") _formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(name)s - %(message)s') _consoleStreamHandler = logging.StreamHandler() _consoleStreamHandler.setLevel(logging.DEBUG) _consoleStreamHandler.setFormatter(_formatter) _symLogRotFileHandler = logging.handlers.RotatingFileHandler(_logPath, maxBytes=2000000, backupCount=5) _symLogRotFileHandler.setLevel(log
ging.DEBUG) _symLogRotFileHandler.setFormatter(_formatter) _pabotlog.addHandler(_consoleStreamHandler) _pabotlog.addHandler(_symLogRotFileHandler) def LogPABotMessage(message): _pabotlog.info(message) def LogPABotError(message): _pabotlog.error(message)
nanchenchen/emoticon-analysis
emoticonvis/apps/api/serializers.py
Python
mit
4,406
0.004766
""" This module defines serializers for the main API data objects: .. autosummary:: :nosignatures: DimensionSerializer FilterSerializer MessageSerializer QuestionSerializer """ from django.core.paginator import Paginator from rest_framework import serializers, pagination import emoticonvis.apps.corpus.models as corpus_models import emoticonvis.apps.enhance.models as enhance_models from django.contrib.auth.models import User # A simple string field that looks up dimensions on deserialization class MessageSerializer(serializers.ModelSerializer): """ JSON representation of :class:`.Message` objects for the API. Messages are provided in a simple format that is useful for displaying examples: :: { "id": 52, "dataset": 2, "text": "Some sort of thing or other", "sender": { "id": 2, "dataset": 1 "original_id": 2568434, "username": "my_name", "full_name": "My Name" }, "time": "2010-02-25T00:23:53Z" } Additional fields may be added later. """ class Meta: model = corpus_models.Message fields = ('id', 'dataset', 'text', ) class UserSerializer(serializers.ModelSerializer): def to_representation(self, instance): return instance.username class Meta: model = User fields = ('username', ) class FeatureVectorSerializer(serializers.Serializer): message = MessageSerialize
r() tokens = serializers.ListField() feature_vector = serializers.ListField(child=serializers.DictField()) class FeatureCodeDistributionSerializer(serializers.Serializer): feature_index = serializers.IntegerField() feature_text = serializers.CharField()
distribution = serializers.ListField(child=serializers.DictField()) class SVMResultSerializer(serializers.Serializer): results = serializers.DictField() messages = serializers.ListField(child=FeatureVectorSerializer(), required=True) class FeatureSerializer(serializers.ModelSerializer): token_list = serializers.ListField(child=serializers.CharField(), required=False) class Meta: model = enhance_models.Feature fields = ('id', 'dictionary', 'index', 'text', 'document_frequency', 'token_list', ) read_only_fields = ('id', 'dictionary', 'index', 'text', 'document_frequency', ) class PaginatedMessageSerializer(pagination.PaginationSerializer): class Meta: object_serializer_class = MessageSerializer class DatasetSerializer(serializers.ModelSerializer): class Meta: model = corpus_models.Dataset fields = ('id', 'name', 'description', 'message_count', ) read_only_fields = ('id', 'name', 'description', 'message_count', ) class DictionarySerializer(serializers.ModelSerializer): dataset = DatasetSerializer() class Meta: model = enhance_models.Dictionary fields = ('id', 'name', 'time', 'feature_count', 'dataset', ) read_only_fields = ('id', 'name', 'time', 'feature_count', 'dataset', ) class CodeAssignmentSerializer(serializers.ModelSerializer): class Meta: model = coding_models.CodeAssignment fields = ('id', 'source', 'message', 'code', 'is_example', 'is_ambiguous', 'is_saved', ) read_only_fields = ('id', 'source', ) class CodeDefinitionSerializer(serializers.Serializer): code = serializers.CharField(required=False) source = UserSerializer(required=False) text = serializers.CharField() examples = MessageSerializer(many=True, required=False) class CodeMessageSerializer(serializers.Serializer): code = serializers.CharField() source = UserSerializer() messages = MessageSerializer(many=True) class DisagreementIndicatorSerializer(serializers.ModelSerializer): user_assignment = CodeAssignmentSerializer(required=False) partner_assignment = CodeAssignmentSerializer(required=False) class Meta: model = coding_models.DisagreementIndicator fields = ('id', 'message', 'user_assignment', 'partner_assignment', 'type', ) read_only_fields = ('id', 'message', 'user_assignment', 'partner_assignment', ) class PairwiseSerializer(serializers.Serializer): user_code = serializers.CharField() partner_code = serializers.CharField() count = serializers.IntegerField()
FederatedAI/FATE
examples/pipeline/data_transform/pipeline-data-transform-dense.py
Python
apache-2.0
2,334
0.003428
# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse from pipeline.backend.pipeline import PipeLine from pipeline.component import DataTransform from pipeline.component import Reader from pipeline.interface import Data from pipeline.utils.tools import load_job_config def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] host = parties.host[0] guest_train_data = {"name": "breast_hetero_guest", "namespace": f"experiment{namespace}"} host_train_data = {"name": "breast_hetero_host", "namespace": f"experiment{namespace}"} pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host) reader_0 = Reader(name="reader_0") reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=gu
est_train_data) reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data) data_transform_0 = DataTransform(name="data_transform_0") data_transform_0.get_party_instance(role='guest', party_id=guest).component_para
m(with_label=True) data_transform_0.get_party_instance(role='host', party_id=host).component_param(with_label=False) pipeline.add_component(reader_0) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.compile() pipeline.fit() if __name__ == "__main__": parser = argparse.ArgumentParser("PIPELINE DEMO") parser.add_argument("-config", type=str, help="config file") args = parser.parse_args() if args.config is not None: main(args.config) else: main()
vmanoria/bluemix-hue-filebrowser
hue-3.8.1-bluemix/desktop/core/ext-py/lxml/src/lxml/tests/test_xpathevaluator.py
Python
gpl-2.0
23,244
0.00271
# -*- coding: utf-8 -*- """ Test cases related to XPath evaluation and the XPath class """ import unittest, sys, os.path this_dir = os.path.dirname(__file__) if this_dir not in sys.path: sys.path.insert(0, this_dir) # needed for Py3 from common_imports import etree, HelperTestCase, _bytes, BytesIO from common_imports import doctest, make_doctest class ETreeXPathTestCase(HelperTestCase): """XPath tests etree""" def test_xpath_boolean(self): tree = self.parse('<a><b></b><b></b></a>') self.assert_(tree.xpath('boolean(/a/b)')) self.assert_(not tree.xpath('boolean(/a/c)')) def test_xpath_number(self): tree = self.parse('<a>1</a>') self.assertEquals(1., tree.xpath('number(/a)')) tree = self.parse('<a>A</a>') actual = str(tree.xpath('number(/a)')) expected = ['nan', '1.#qnan', 'nanq'] if not actual.lower() in expected: self.fail('Expected a NAN value, got %s' % actual) def test_xpath_string(self): tree = self.parse('<a>Foo</a>') self.assertEquals('Foo', tree.xpath('string(/a/text())')) def test_xpath_document_root(self): tree = self.parse('<a><b/></a>') self.assertEquals([], tree.xpath('/')) def test_xpath_namespace(self): tree = self.parse('<a xmlns="test" xmlns:p="myURI"/>') self.assert_((None, "test") in tree.xpath('namespace::*')) self.assert_(('p', 'myURI') in tree.xpath('namespace::*')) def test_xpath_namespace_empty(self): tree = self.parse('<a/>') self.assertEquals([('xml', 'http://www.w3.org/XML/1998/namespace')], tree.xpath('namespace::*')) def test_xpath_list_elements(self): tree = self.parse('<a><b>Foo</b><b>Bar</b></a>') root = tree.getroot() self.assertEquals([root[0], root[1]], tree.xpath('/a/b')) def test_xpath_list_nothing(self): tree = self.parse('<a><b/></a>') self.assertEquals([], tree.xpath('/a/c')) # this seems to pass a different code path, also should return nothing self.assertEquals([], tree.xpath('/a/c/text()')) def test_xpath_list_text(self): tree = self.parse('<a><b>Foo</b><b>Bar</b></a>') root = tree.getroot() self.assertEquals(['Foo', 'Bar'], tree.xpath('/a/b/text()')) def test_xpath_list_text_parent(self): tree = self.parse('<a><b>FooBar</b><b>BarFoo</b></a>') root = tree.getroot() self.assertEquals(['FooBar', 'BarFoo'], tree.xpath('/a/b/text()')) self.assertEquals([root[0], root[1]], [r.getparent() for r in tree.xpath('/a/b/text()')]) def test_xpath_list_text_parent_no_smart_strings(self): tree = self.parse('<a><b>FooBar</b><b>BarFoo</b></a>') root = tree.getroot() s
elf.assertEquals(['FooBar', 'BarFoo'], tree.xpath('/a/b/text()', smart_strings=True)) self.assertEquals([root[0], root[1]], [r.getparent() for r in tree.xpath('/
a/b/text()', smart_strings=True)]) self.assertEquals(['FooBar', 'BarFoo'], tree.xpath('/a/b/text()', smart_strings=False)) self.assertEquals([False, False], [hasattr(r, 'getparent') for r in tree.xpath('/a/b/text()', smart_strings=False)]) def test_xpath_list_unicode_text_parent(self): xml = _bytes('<a><b>FooBar\\u0680\\u3120</b><b>BarFoo\\u0680\\u3120</b></a>').decode("unicode_escape") tree = self.parse(xml.encode('utf-8')) root = tree.getroot() self.assertEquals([_bytes('FooBar\\u0680\\u3120').decode("unicode_escape"), _bytes('BarFoo\\u0680\\u3120').decode("unicode_escape")], tree.xpath('/a/b/text()')) self.assertEquals([root[0], root[1]], [r.getparent() for r in tree.xpath('/a/b/text()')]) def test_xpath_list_attribute(self): tree = self.parse('<a b="B" c="C"/>') self.assertEquals(['B'], tree.xpath('/a/@b')) def test_xpath_list_attribute_parent(self): tree = self.parse('<a b="BaSdFgHjKl" c="CqWeRtZuI"/>') results = tree.xpath('/a/@c') self.assertEquals(1, len(results)) self.assertEquals('CqWeRtZuI', results[0]) self.assertEquals(tree.getroot().tag, results[0].getparent().tag) def test_xpath_list_attribute_parent_no_smart_strings(self): tree = self.parse('<a b="BaSdFgHjKl" c="CqWeRtZuI"/>') results = tree.xpath('/a/@c', smart_strings=True) self.assertEquals(1, len(results)) self.assertEquals('CqWeRtZuI', results[0]) self.assertEquals(tree.getroot().tag, results[0].getparent().tag) results = tree.xpath('/a/@c', smart_strings=False) self.assertEquals(1, len(results)) self.assertEquals('CqWeRtZuI', results[0]) self.assertEquals(False, hasattr(results[0], 'getparent')) def test_xpath_list_comment(self): tree = self.parse('<a><!-- Foo --></a>') self.assertEquals(['<!-- Foo -->'], list(map(repr, tree.xpath('/a/node()')))) def test_rel_xpath_boolean(self): root = etree.XML('<a><b><c/></b></a>') el = root[0] self.assert_(el.xpath('boolean(c)')) self.assert_(not el.xpath('boolean(d)')) def test_rel_xpath_list_elements(self): tree = self.parse('<a><c><b>Foo</b><b>Bar</b></c><c><b>Hey</b></c></a>') root = tree.getroot() c = root[0] self.assertEquals([c[0], c[1]], c.xpath('b')) self.assertEquals([c[0], c[1], root[1][0]], c.xpath('//b')) def test_xpath_ns(self): tree = self.parse('<a xmlns="uri:a"><b></b></a>') root = tree.getroot() self.assertEquals( [root[0]], tree.xpath('//foo:b', namespaces={'foo': 'uri:a'})) self.assertEquals( [], tree.xpath('//foo:b', namespaces={'foo': 'uri:c'})) self.assertEquals( [root[0]], root.xpath('//baz:b', namespaces={'baz': 'uri:a'})) def test_xpath_ns_none(self): tree = self.parse('<a xmlns="uri:a"><b></b></a>') root = tree.getroot() self.assertRaises( TypeError, root.xpath, '//b', namespaces={None: 'uri:a'}) def test_xpath_ns_empty(self): tree = self.parse('<a xmlns="uri:a"><b></b></a>') root = tree.getroot() self.assertRaises( TypeError, root.xpath, '//b', namespaces={'': 'uri:a'}) def test_xpath_error(self): tree = self.parse('<a/>') self.assertRaises(etree.XPathEvalError, tree.xpath, '\\fad') def test_xpath_class_error(self): self.assertRaises(SyntaxError, etree.XPath, '\\fad') self.assertRaises(etree.XPathSyntaxError, etree.XPath, '\\fad') def test_xpath_prefix_error(self): tree = self.parse('<a/>') self.assertRaises(etree.XPathEvalError, tree.xpath, '/fa:d') def test_xpath_class_prefix_error(self): tree = self.parse('<a/>') xpath = etree.XPath("/fa:d") self.assertRaises(etree.XPathEvalError, xpath, tree) def test_elementtree_getpath(self): a = etree.Element("a") b = etree.SubElement(a, "b") c = etree.SubElement(a, "c") d1 = etree.SubElement(c, "d") d2 = etree.SubElement(c, "d") tree = etree.ElementTree(a) self.assertEqual('/a/c/d', tree.getpath(d2)[:6]) self.assertEqual([d2], tree.xpath(tree.getpath(d2))) def test_elementtree_getpath_partial(self): a = etree.Element("a") b = etree.SubElement(a, "b") c = etree.SubElement(a, "c
keepkey/python-keepkey
tests/test_msg_verifymessage_segwit_native.py
Python
lgpl-3.0
4,324
0.002313
# This file is part of the Trezor project. # # Copyright (C) 2012-2018 SatoshiLabs and contributors # # This library is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License version 3 # as published by the Free Software Foundation. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the License along with this library. # If not, see <https://www.gnu.org/licenses/lgpl-3.0.html>. import unittest import common from binascii import unhexlify class TestMsgVerifymessageSegwitNative(common.KeepKeyTest): def test_message_long(self): self.setup_mnemonic_nopin_nopassphrase() ret = self.client.verify_message( 'Bitcoin', 'bc1qyjjkmdpu7metqt5r36jf872a34syws33s82q2j', unhexlify('285ff795c29aef7538f8b3bdb2e8add0d0722ad630a140b6aefd504a5a895cbd867cbb00981afc50edd0398211e8d7c304bb8efa461181bc0afa67ea4a720a89ed'), "VeryLongMessage!" * 64 ) assert ret is True def test_message_testnet(self): self.setup_mnemonic_nopin_nopassphrase() ret = self.client.verify_message( 'Testnet', 'tb1qyjjkmdpu7metqt5r36jf872a34syws336p3n3p', unhexlify('289e23edf0e4e47ff1dec27f32cd78c50e74ef018ee8a6adf35ae17c7a9b0dd96f48b493fd7dbab03efb6f439c6383c9523b3bbc5f1a7d158a6af90ab154e9be80'), 'This is an example of a signed message.' ) assert ret is True def test_message_verify(self): self.setup_mnemonic_nopin_nopassphrase() # trezor pubkey - OK res = self.client.verify_message( 'Bitcoin', 'bc1qyjjkmdpu7metqt5r36jf872a34syws33s82q2j', unhexlify('289e23edf0e4e47ff1dec27f32cd78c50e74ef018ee8a6adf35ae17c7a9b0dd96f48b493fd7dbab03efb6f439c6383c9523b3bbc5f1a7d158a6af90ab154e9be80'), 'This is an example of a signed message.' ) assert res is True # trezor pubkey - FAIL - wrong sig res = self.client.verify_message( 'Bitcoin', 'bc1qyjjkmdpu7metqt5r36jf872a34syws33s82q2j', unhexlify('289e23edf0e4e47ff1dec27f32cd78c50e74ef018ee8a6adf35ae17c7a9b0dd96f48b493fd7dbab03efb6f439c6383c9523b3bbc5f1a7d158a6af90ab154e9be00'), 'This is an example of a signed message.' ) assert res is False # trezor pubkey - FAIL - wrong msg res = self.client.verify_message( 'Bitcoin', 'bc1qyjjkmdpu7metqt5r36jf872a34syws33s82q2j', unhexlify('289e23edf0e4e47ff1dec27f32cd78c50e74ef018ee8a6adf35ae17c7a9b0dd96f48b493fd7dbab03efb6f439c6383c9523b3bbc5f1a7d158a6af90ab154e9be80'), 'This is an example of a signed message!' ) assert res is False
def test_verify_utf(self): self.setup_mnemonic_nopin_nopassphrase() words_nfkd = u'Pr\u030ci\u0301s\u030cerne\u030c z\u030clut\u030couc\u030cky\u0301 ku\u030an\u030c u\u0301pe\u030cl d\u030ca\u0301belske\u0301 o\u0301dy za\u0301ker\u030cny\u0301 uc\u030cen\u030c be\u030cz\u030ci\u0301 pode\
u0301l zo\u0301ny u\u0301lu\u030a' words_nfc = u'P\u0159\xed\u0161ern\u011b \u017elu\u0165ou\u010dk\xfd k\u016f\u0148 \xfap\u011bl \u010f\xe1belsk\xe9 \xf3dy z\xe1ke\u0159n\xfd u\u010de\u0148 b\u011b\u017e\xed pod\xe9l z\xf3ny \xfal\u016f' res_nfkd = self.client.verify_message( 'Bitcoin', 'bc1qyjjkmdpu7metqt5r36jf872a34syws33s82q2j', unhexlify('28d0ec02ed8da8df23e7fe9e680e7867cc290312fe1c970749d8306ddad1a1eda41c6a771b13d495dd225b13b0a9d0f915a984ee3d0703f92287bf8009fbb9f7d6'), words_nfkd ) res_nfc = self.client.verify_message( 'Bitcoin', 'bc1qyjjkmdpu7metqt5r36jf872a34syws33s82q2j', unhexlify('28d0ec02ed8da8df23e7fe9e680e7867cc290312fe1c970749d8306ddad1a1eda41c6a771b13d495dd225b13b0a9d0f915a984ee3d0703f92287bf8009fbb9f7d6'), words_nfc ) assert res_nfkd is True assert res_nfc is True if __name__ == '__main__': unittest.main()
uc-cdis/cdis-python-utils
cdispyutils/auth/errors.py
Python
apache-2.0
101
0
class JWTValid
ationError(Exception):
pass class JWTAudienceError(JWTValidationError): pass
Lukasa/cryptography
tests/utils.py
Python
apache-2.0
14,122
0
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific l
anguage governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function import collections from contextlib import contextmanager import pytest import six from cryptography.exceptions import UnsupportedAlgorithm import c
ryptography_vectors HashVector = collections.namedtuple("HashVector", ["message", "digest"]) KeyedHashVector = collections.namedtuple( "KeyedHashVector", ["message", "digest", "key"] ) def select_backends(names, backend_list): if names is None: return backend_list split_names = [x.strip() for x in names.split(',')] # this must be duplicated and then removed to preserve the metadata # pytest associates. Appending backends to a new list doesn't seem to work selected_backends = [] for backend in backend_list: if backend.name in split_names: selected_backends.append(backend) if len(selected_backends) > 0: return selected_backends else: raise ValueError( "No backend selected. Tried to select: {0}".format(split_names) ) def check_for_iface(name, iface, item): if name in item.keywords and "backend" in item.funcargs: if not isinstance(item.funcargs["backend"], iface): pytest.skip("{0} backend does not support {1}".format( item.funcargs["backend"], name )) def check_backend_support(item): supported = item.keywords.get("supported") if supported and "backend" in item.funcargs: if not supported.kwargs["only_if"](item.funcargs["backend"]): pytest.skip("{0} ({1})".format( supported.kwargs["skip_message"], item.funcargs["backend"] )) elif supported: raise ValueError("This mark is only available on methods that take a " "backend") @contextmanager def raises_unsupported_algorithm(reason): with pytest.raises(UnsupportedAlgorithm) as exc_info: yield exc_info assert exc_info.value._reason is reason def load_vectors_from_file(filename, loader): with cryptography_vectors.open_vector_file(filename) as vector_file: return loader(vector_file) def load_nist_vectors(vector_data): test_data = None data = [] for line in vector_data: line = line.strip() # Blank lines, comments, and section headers are ignored if not line or line.startswith("#") or (line.startswith("[") and line.endswith("]")): continue if line.strip() == "FAIL": test_data["fail"] = True continue # Build our data using a simple Key = Value format name, value = [c.strip() for c in line.split("=")] # Some tests (PBKDF2) contain \0, which should be interpreted as a # null character rather than literal. value = value.replace("\\0", "\0") # COUNT is a special token that indicates a new block of data if name.upper() == "COUNT": test_data = {} data.append(test_data) continue # For all other tokens we simply want the name, value stored in # the dictionary else: test_data[name.lower()] = value.encode("ascii") return data def load_cryptrec_vectors(vector_data): cryptrec_list = [] for line in vector_data: line = line.strip() # Blank lines and comments are ignored if not line or line.startswith("#"): continue if line.startswith("K"): key = line.split(" : ")[1].replace(" ", "").encode("ascii") elif line.startswith("P"): pt = line.split(" : ")[1].replace(" ", "").encode("ascii") elif line.startswith("C"): ct = line.split(" : ")[1].replace(" ", "").encode("ascii") # after a C is found the K+P+C tuple is complete # there are many P+C pairs for each K cryptrec_list.append({ "key": key, "plaintext": pt, "ciphertext": ct }) else: raise ValueError("Invalid line in file '{}'".format(line)) return cryptrec_list def load_hash_vectors(vector_data): vectors = [] key = None msg = None md = None for line in vector_data: line = line.strip() if not line or line.startswith("#") or line.startswith("["): continue if line.startswith("Len"): length = int(line.split(" = ")[1]) elif line.startswith("Key"): # HMAC vectors contain a key attribute. Hash vectors do not. key = line.split(" = ")[1].encode("ascii") elif line.startswith("Msg"): # In the NIST vectors they have chosen to represent an empty # string as hex 00, which is of course not actually an empty # string. So we parse the provided length and catch this edge case. msg = line.split(" = ")[1].encode("ascii") if length > 0 else b"" elif line.startswith("MD"): md = line.split(" = ")[1] # after MD is found the Msg+MD (+ potential key) tuple is complete if key is not None: vectors.append(KeyedHashVector(msg, md, key)) key = None msg = None md = None else: vectors.append(HashVector(msg, md)) msg = None md = None else: raise ValueError("Unknown line in hash vector") return vectors def load_pkcs1_vectors(vector_data): """ Loads data out of RSA PKCS #1 vector files. """ private_key_vector = None public_key_vector = None attr = None key = None example_vector = None examples = [] vectors = [] for line in vector_data: if ( line.startswith("# PSS Example") or line.startswith("# PKCS#1 v1.5 Signature") ): if example_vector: for key, value in six.iteritems(example_vector): hex_str = "".join(value).replace(" ", "").encode("ascii") example_vector[key] = hex_str examples.append(example_vector) attr = None example_vector = collections.defaultdict(list) if line.startswith("# Message to be signed"): attr = "message" continue elif line.startswith("# Salt"): attr = "salt" continue elif line.startswith("# Signature"): attr = "signature" continue elif ( example_vector and line.startswith("# =============================================") ): for key, value in six.iteritems(example_vector): hex_str = "".join(value).replace(" ", "").encode("ascii") example_vector[key] = hex_str examples.append(example_vector) example_vector = None attr = None elif example_vector and line.startswith("#"): continue else: if attr is not None and example_vector is not None: example_vector[attr].append(line.strip()) continue if ( line.startswith("# Example") or line.startswith("# =============================================") ): if key: assert private_key_vector assert public_key_vector for key, value in six.iteritems(public_key_vector): hex_str = "".join(v
svetlyak40wt/django-dzenlog
example/blog/models.py
Python
bsd-3-clause
621
0.004831
from django.db import mod
els from django.utils.translation import ugettext_lazy as _ from django_dzenlog.models import GeneralPost class TextPost(GeneralPost): body_detail_template = 'blog/text_post.html' feed_description_template = 'blog/text_feed_detail.html' body = models.TextField(_('Post\'s body')) class LinkPost(GeneralPost): body_detail_template = 'blog/link_post.html' feed_description_template = 'blog/link_feed_detail.html'
url = models.URLField(_('URL'), default='http://example.com', verify_exists=False) description = models.TextField(_('URL\'s description'), blank=True)
mkobos/tree_crawler
concurrent_tree_crawler/test/subtrees_comparer.py
Python
mit
650
0.026154
def subtrees_equal(expected_schema_node, actual_node): if expected_schema_node[0] != actual_node.get_name(): return False if expected_schema_node[1] != actual_node.get_state(): return False expected_children = expected_schema_node[2] actual_children = actual_node.get_children() actual_children_names = [child.get_name() for child in actual_children] actual_children_names.sort() if len(expect
ed_children) != len(actual_children_nam
es): return False for (expected_child, actual_child_name) in \ zip(expected_children, actual_children_names): subtrees_equal( expected_child, actual_node.get_child(actual_child_name)) return True
amolkahat/pandas
pandas/tests/arrays/categorical/test_algos.py
Python
bsd-3-clause
5,452
0
import pytest import numpy as np import pandas as pd import pandas.util.testing as tm @pytest.mark.parametrize('ordered', [True, False]) @pytest.mark.parametrize('categories', [ ['b', 'a', 'c'], ['a', 'b', 'c', 'd'], ]) def test_factorize(categories, ordered): cat = pd.Categorical(['b', 'b', 'a', 'c', None], categories=categories, ordered=ordered) labels, uniques = pd.factorize(cat) expected_labels = np.array([0, 0, 1, 2, -1], dtype=np.intp) expected_uniques = pd.Categorical(['b', 'a', 'c'], categories=categories, ordered=ordered) tm.assert_numpy_array_equal(labels, expected_labels) tm.assert_categorical_equal(uniques, expected_uniques) def test_factorized_sort(): cat = pd.Categorical(['b', 'b', None, 'a']) labels, uniques = pd.factorize(cat, sort=True) expected_labels = np.array([1, 1, -1, 0], dtype=np.intp) expected_uniques = pd.Categorical(['a', 'b']) tm.assert_numpy_array_equal(labels, expected_labels) tm.assert_categorical_equal(uniques, expected_uniques) def test_factorized_sort_ordered(): cat = pd.Categorical(['b', 'b', None, 'a'], categories=['c', 'b', 'a'], ordered=True) labels, uniques = pd.factorize(cat, sort=True) expected_labels = np.array([0, 0, -1, 1], dtype=np.intp) expected_uniques = pd.Categorical(['b', 'a'], categories=['c', 'b', 'a'], ordered=True) tm.assert_numpy_array_equal(labels, expected_labels) tm.assert_categorical_equal(uniques, expected_uniques) def test_isin_cats(): # GH2003 cat = pd.Categorical(["a", "b", np.nan]) result = cat.isin(["a", np.nan]) expected = np.array([True, False, True], dtype=bool) tm.assert_numpy_array_equal(expected, result) result = cat.isin(["a", "c"]) expected = np.array([True, False, False], dtype=bool) tm.assert_numpy_array_equal(expected, result) @pytest.mark.parametrize("empty", [[], pd.Series(), np.array([])]) def test_isin_empty(empty): s = pd.Categorical(["a", "b"]) expected = np.array([False, False], dtype=bool) result = s.isin(empty) tm.assert_numpy_array_equal(expected, result) class TestTake(object): # https://github.com/pandas-dev/pandas/issues/20664 def test_take_warns(self): cat = pd.Categorical(['a', 'b']) with tm.assert_produces_warning(FutureWarning): cat.take([0, -1]) def test_take_positive_no_warning(self): cat = pd.Categorical(['a', 'b']) with tm.assert_produces_warning(None): cat.take([0, 0]) def test_take_bounds(self, allow_fill): # https://github.com/pandas-dev/pandas/issues/20664 cat = pd.Categorical(['a', 'b', 'a']) with pytest.raises(IndexError): cat.take([4, 5], allow_fill=allow_fill) def test_take_empty(self, allow_fill): # https://github.com/pandas-dev/pandas/issues/20664 cat = pd.Categorical([], categories=['a', 'b']) with pytest.raises(IndexError): cat.take([0], allow_fill=allow_fill) def test_positional_take(self, ordered): cat = pd.Categorical(['a', 'a', 'b', 'b'], categories=['b', 'a'], ordered=ordered) result = cat.take([0, 1, 2], allow_fill=False) expected = pd.Categorical(['a', 'a', 'b'], categories=cat.categories, ordered=ordered) tm.assert_categorical_equal(result, expected) def test_positional_take_unobserved(self, ordered): cat = pd.Categorical(['a', 'b'], categories=['a', 'b', 'c'], ordered=ordered) result = cat.take([1, 0], allow_fill=False) expected = pd.Categorical(['b', 'a'], categories=cat.categories, ordered=ordered) tm.assert_categorical_equal(result, expected) def test_take_allow_fill(self): # https://github.com/pandas-dev/pandas/issues/23296 cat = pd.Categorical(['a', 'a', 'b']) result = cat.take([0, -1, -1], allow_fill=True) expected = pd.Categorical(['a', np.nan, np.nan], categories=['a', 'b']) tm.assert_categorical_equal(result, expected) def test_take_fill_with_negative_one(self): # -1 was a category cat = pd.Categorical([-1, 0, 1]) result = cat.take([0, -1, 1], allo
w_fill=True, fill_value=-1) expected = pd.Categorical([-1, -1, 0], categories=[-1, 0, 1]) tm.assert_categorical_equal(result, expected) def test_take_fill_value(self): # https://github.com/pandas-dev/pandas/issues/23296 cat = pd.Categorical(['a', 'b', 'c']) result = cat.take([0, 1, -1], fill_value='a', allow_fill=True) expected = pd.Categorical(['a', 'b', 'a'], categories=['a', 'b', 'c']) tm.assert_c
ategorical_equal(result, expected) def test_take_fill_value_new_raises(self): # https://github.com/pandas-dev/pandas/issues/23296 cat = pd.Categorical(['a', 'b', 'c']) xpr = r"'fill_value' \('d'\) is not in this Categorical's categories." with tm.assert_raises_regex(TypeError, xpr): cat.take([0, 1, -1], fill_value='d', allow_fill=True)
nathanielvarona/airflow
tests/providers/apache/cassandra/hooks/test_cassandra.py
Python
apache-2.0
8,538
0.00164
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import unittest from unittest import mock import pytest from cassandra.cluster import Cluster from cassandra.policies import ( DCAwareRoundRobinPolicy, RoundRobinPolicy, TokenAwarePolicy, WhiteListRoundRobinPolicy, ) from airflow.models import Connection from airflow.providers.apache.cassandra.hooks.cassandra import CassandraHook from airflow.utils import db @pytest.mark.integratio
n("cassandra") class TestCassandraHook(unittest.TestCase): def setUp(self): db.merge_conn( Connection( conn_id='cassandra_test', conn_type='cassandra', host='hos
t-1,host-2', port='9042', schema='test_keyspace', extra='{"load_balancing_policy":"TokenAwarePolicy","protocol_version":4}', ) ) db.merge_conn( Connection( conn_id='cassandra_default_with_schema', conn_type='cassandra', host='cassandra', port='9042', schema='s', ) ) hook = CassandraHook("cassandra_default") session = hook.get_conn() cqls = [ "DROP SCHEMA IF EXISTS s", """ CREATE SCHEMA s WITH REPLICATION = { 'class' : 'SimpleStrategy', 'replication_factor' : 1 } """, ] for cql in cqls: session.execute(cql) session.shutdown() hook.shutdown_cluster() def test_get_conn(self): with mock.patch.object(Cluster, "__init__") as mock_cluster_ctor: mock_cluster_ctor.return_value = None CassandraHook(cassandra_conn_id='cassandra_test') mock_cluster_ctor.assert_called_once_with( contact_points=['host-1', 'host-2'], port=9042, protocol_version=4, load_balancing_policy=mock.ANY, ) assert isinstance(mock_cluster_ctor.call_args[1]['load_balancing_policy'], TokenAwarePolicy) def test_get_lb_policy_with_no_args(self): # test LB policies with no args self._assert_get_lb_policy('RoundRobinPolicy', {}, RoundRobinPolicy) self._assert_get_lb_policy('DCAwareRoundRobinPolicy', {}, DCAwareRoundRobinPolicy) self._assert_get_lb_policy( 'TokenAwarePolicy', {}, TokenAwarePolicy, expected_child_policy_type=RoundRobinPolicy ) def test_get_lb_policy_with_args(self): # test DCAwareRoundRobinPolicy with args self._assert_get_lb_policy( 'DCAwareRoundRobinPolicy', {'local_dc': 'foo', 'used_hosts_per_remote_dc': '3'}, DCAwareRoundRobinPolicy, ) # test WhiteListRoundRobinPolicy with args fake_addr_info = [ ['family', 'sockettype', 'proto', 'canonname', ('2606:2800:220:1:248:1893:25c8:1946', 80, 0, 0)] ] with mock.patch('socket.getaddrinfo', return_value=fake_addr_info): self._assert_get_lb_policy( 'WhiteListRoundRobinPolicy', {'hosts': ['host1', 'host2']}, WhiteListRoundRobinPolicy ) # test TokenAwarePolicy with args with mock.patch('socket.getaddrinfo', return_value=fake_addr_info): self._assert_get_lb_policy( 'TokenAwarePolicy', { 'child_load_balancing_policy': 'WhiteListRoundRobinPolicy', 'child_load_balancing_policy_args': {'hosts': ['host-1', 'host-2']}, }, TokenAwarePolicy, expected_child_policy_type=WhiteListRoundRobinPolicy, ) def test_get_lb_policy_invalid_policy(self): # test invalid policy name should default to RoundRobinPolicy self._assert_get_lb_policy('DoesNotExistPolicy', {}, RoundRobinPolicy) # test invalid child policy name should default child policy to RoundRobinPolicy self._assert_get_lb_policy( 'TokenAwarePolicy', {}, TokenAwarePolicy, expected_child_policy_type=RoundRobinPolicy ) self._assert_get_lb_policy( 'TokenAwarePolicy', {'child_load_balancing_policy': 'DoesNotExistPolicy'}, TokenAwarePolicy, expected_child_policy_type=RoundRobinPolicy, ) def test_get_lb_policy_no_host_for_allow_list(self): # test host not specified for WhiteListRoundRobinPolicy should throw exception self._assert_get_lb_policy( 'WhiteListRoundRobinPolicy', {}, WhiteListRoundRobinPolicy, should_throw=True ) self._assert_get_lb_policy( 'TokenAwarePolicy', {'child_load_balancing_policy': 'WhiteListRoundRobinPolicy'}, TokenAwarePolicy, expected_child_policy_type=RoundRobinPolicy, should_throw=True, ) def _assert_get_lb_policy( self, policy_name, policy_args, expected_policy_type, expected_child_policy_type=None, should_throw=False, ): thrown = False try: policy = CassandraHook.get_lb_policy(policy_name, policy_args) assert isinstance(policy, expected_policy_type) if expected_child_policy_type: assert isinstance(policy._child_policy, expected_child_policy_type) except Exception: # pylint: disable=broad-except thrown = True assert should_throw == thrown def test_record_exists_with_keyspace_from_cql(self): hook = CassandraHook("cassandra_default") session = hook.get_conn() cqls = [ "DROP TABLE IF EXISTS s.t", "CREATE TABLE s.t (pk1 text, pk2 text, c text, PRIMARY KEY (pk1, pk2))", "INSERT INTO s.t (pk1, pk2, c) VALUES ('foo', 'bar', 'baz')", ] for cql in cqls: session.execute(cql) assert hook.record_exists("s.t", {"pk1": "foo", "pk2": "bar"}) assert not hook.record_exists("s.t", {"pk1": "foo", "pk2": "baz"}) session.shutdown() hook.shutdown_cluster() def test_record_exists_with_keyspace_from_session(self): hook = CassandraHook("cassandra_default_with_schema") session = hook.get_conn() cqls = [ "DROP TABLE IF EXISTS t", "CREATE TABLE t (pk1 text, pk2 text, c text, PRIMARY KEY (pk1, pk2))", "INSERT INTO t (pk1, pk2, c) VALUES ('foo', 'bar', 'baz')", ] for cql in cqls: session.execute(cql) assert hook.record_exists("t", {"pk1": "foo", "pk2": "bar"}) assert not hook.record_exists("t", {"pk1": "foo", "pk2": "baz"}) session.shutdown() hook.shutdown_cluster() def test_table_exists_with_keyspace_from_cql(self): hook = CassandraHook("cassandra_default") session = hook.get_conn() cqls = [ "DROP TABLE IF EXISTS s.t", "CREATE TABLE s.t (pk1 text PRIMARY KEY)", ] for cql in cqls: session.execute(cql) assert hook.table_exists("s.t") assert not hook.table_exists("s.u") session.shutdown() hook.shutdown_cluster() def test_table_exists_with_keyspace_from_session(self): hook = CassandraHook("cassandra_default_with_sc
hasadna/knesset-data-pipelines
people/plenum_session_voters.py
Python
mit
2,135
0.000468
from datapackage_pipelines.wrapper import ingest, spew def get_votes(resource, data, stats): data['session_voters'] = {} stats['num_votes'] = 0 stats['num_vote_mks'] = 0 for vote in resource: voters = data['session_voters'].setdefault(vote['session_id'], set()) for attr in ['mk_ids_pro', 'mk_ids_against', 'mk_ids_abstain']: mk_ids = vote[attr] if mk_ids: for mk_id in mk_ids: voters.add(mk_id) stats['num_vote_mks'] += 1 st
ats['num_votes'] += 1 def get_plenum(resource, data, stats): stats.update(known_sessions=0, unknown_sessions=0) for session in resource: if session['PlenumSessionID'] in data['session_voters']: stats['known_sessions'] += 1 session['voter_mk_ids'] = list(data['session_voters'][session['PlenumSessionID']]) else: session['voter_mk_ids'] = None
stats['unknown_sessions'] += 1 if not session['voter_mk_ids']: session['voter_mk_ids'] = None yield session def get_resources(resources, stats, data): for i, resource in enumerate(resources): if i == data['votes_index']: get_votes(resource, data, stats) elif i == data['plenum_index']: yield get_plenum(resource, data, stats) else: yield resource def get_datapackage(datapackage, data): for i, descriptor in enumerate(datapackage['resources']): if descriptor['name'] == 'view_vote_rslts_hdr_approved': data['votes_index'] = i elif descriptor['name'] == 'kns_plenumsession': data['plenum_index'] = i fields = [{'name': 'voter_mk_ids', 'type': 'array'}] descriptor['schema']['fields'] += fields del datapackage['resources'][data['votes_index']] return datapackage def main(): parameters, datapackage, resources, stats, data = ingest() + ({}, {}) spew(get_datapackage(datapackage, data), get_resources(resources, stats, data), stats) if __name__ == '__main__': main()
mostafa-mahmoud/sahwaka
lib/evaluator.py
Python
apache-2.0
13,538
0.002955
#!/usr/bin/env python """ A module that provides functionalities for calculating error metrics and evaluates the given recommender. """ import numpy from util.top_recommendations import TopRecommendations class Evaluator(object): """ A class for computing evaluation metrics and splitting the input data. """ def __init__(self, ratings, abstracts_preprocessor=None, random_seed=False, verbose=False): """ Initialize an evaluator array with the initial actual ratings matrix. :param int[][] ratings: A numpy array containing the initial ratings. :param AbstractsPreprocessor abstracts_preprocessor: A list of the abstracts. :param bool random_seed: if False, we will use a fixed seed. :param bool verbose: A flag deciding to print progress """ self.ratings = ratings self.n_users, self.n_items = ratings.shape if abstracts_preprocessor: self.abstracts_preprocessor = abstracts_preprocessor self.random_seed = random_seed self._verbose = verbose self.k_folds = None if self._verbose: print('%d users and %d items' % (self.n_users, self.n_items)) # stores recommended indices for each user. self.recommendation_indices = [[] for i in range(self.ratings.shape[0])] # False if recommendations have not been loaded yet and vice versa. self.recs_loaded = False def get_abstracts_preprocessor(self): """ Getter for the Abstracts preprocessor. :returns: abstracts preprocessor :rtype: AbstractsPreprocessor """ return self.abstracts_preprocessor def get_ratings(self): """ Getter for the ratings matrix. :returns: Ratings matrix :rtype: ndarray """ return self.ratings def set_kfolds(self, kfolds): """ Set the k-folds :param int kfolds: the number of the folds in K-fold """ self.k_folds = kfolds self.test_percentage = 1.0 / self.k_folds def naive_split(self, type='user'): """ Split the data into training and testing sets. :returns: a tuple of train and test data. :rtype: tuple """ if type == 'user': return self.naive_split_users() return self.naive_split_items() def naive_split_users(self): """ Split the ratings into test and train
data for every user. :returns: a tuple of train and test data. :rtype: tuple """ if self.random_see
d is False: numpy.random.seed(42) test = numpy.zeros(self.ratings.shape) train = self.ratings.copy() for user in range(self.ratings.shape[0]): non_zeros = self.ratings[user, :].nonzero()[0] test_ratings = numpy.random.choice(non_zeros, size=int(self.test_percentage * len(non_zeros))) train[user, test_ratings] = 0. test[user, test_ratings] = self.ratings[user, test_ratings] assert(numpy.all((train * test) == 0)) self.test_indices = test return train, test def naive_split_items(self): """ Split the ratings on test and train data by removing random documents. :returns: a tuple of train and test data. :rtype: tuple """ if self.random_seed is False: numpy.random.seed(42) indices = list(range(self.n_items)) test_ratings = numpy.random.choice(indices, size=int(self.test_percentage * len(indices))) train = self.ratings.copy() test = numpy.zeros(self.ratings.shape) for index in test_ratings: train[:, index] = 0 test[:, index] = self.ratings[:, index] assert(numpy.all((train * test) == 0)) return train, test def get_fold(self, fold_num, fold_test_indices): """ Returns train and test data for a given fold number :param int fold_num: the fold index to be returned :param int[] fold_test_indices: A list of the indicies of the testing fold. :returns: tuple of training and test data :rtype: 2-tuple of 2d numpy arrays """ current_test_fold_indices = [] index = fold_num for ctr in range(self.ratings.shape[0]): current_test_fold_indices.append(fold_test_indices[index]) index += self.k_folds return self.generate_kfold_matrix(current_test_fold_indices) def get_kfold_indices(self): """ Returns the indices for rating matrix for each kfold split. Where each test set contains ~1/k of the total items a user has in their digital library. :returns: a list of all indices of the training set and test set. :rtype: list of lists """ if self.random_seed is False: numpy.random.seed(42) test_indices = [] for user in range(self.ratings.shape[0]): # Indices for all items in the rating matrix. item_indices = numpy.arange(self.ratings.shape[1]) # Indices of all items in user's digital library. rated_items_indices = self.ratings[user].nonzero()[0] mask = numpy.ones(len(self.ratings[user]), dtype=bool) mask[[rated_items_indices]] = False # Indices of all items not in user's digital library. non_rated_indices = item_indices[mask] # Shuffle all rated items indices numpy.random.shuffle(rated_items_indices) # Size of 1/k of the total user's ratings size_of_test = round((1.0 / self.k_folds) * len(rated_items_indices)) # 2d List that stores all the indices of each test set for each fold. test_ratings = [[] for x in range(self.k_folds)] counter = 0 numpy.random.shuffle(non_rated_indices) # List that stores the number of indices to be added to each test set. num_to_add = [] # create k different folds for each user. for index in range(self.k_folds): if index == self.k_folds - 1: test_ratings[index] = numpy.array(rated_items_indices[counter:len(rated_items_indices)]) else: test_ratings[index] = numpy.array(rated_items_indices[counter:counter + size_of_test]) counter += size_of_test # adding unique zero ratings to each test set num_to_add.append(int((self.ratings.shape[1] / self.k_folds) - len(test_ratings[index]))) if index > 0 and num_to_add[index] != num_to_add[index - 1]: addition = non_rated_indices[index * (num_to_add[index - 1]): (num_to_add[index - 1] * index) + num_to_add[index]] else: addition = non_rated_indices[index * (num_to_add[index]):num_to_add[index] * (index + 1)] test_ratings[index] = numpy.append(test_ratings[index], addition) test_indices.append(test_ratings[index]) self.test_indices = test_indices return test_indices def generate_kfold_matrix(self, test_indices): """ Returns a training set and a training set matrix for one fold. This method is to be used in conjunction with get_kfold_indices() :param int[] test_indices: array of test set indices. :returns: Training set matrix and Test set matrix. :rtype: 2-tuple of 2d numpy arrays """ train_matrix = numpy.zeros(self.ratings.shape) test_matrix = numpy.zeros(self.ratings.shape) for user in range(train_matrix.shape[0]): train_indices = list(set(range(self.n_items)) - set(test_indices[user])) test_matrix[user, test_indices[user]] = self.ratings[user, test_indices[user]] train_matrix[user, train_indices] = self.ratings[user, train_indices] return train_matrix, test
MediaMath/t1-python
terminalone/models/concept.py
Python
apache-2.0
729
0
# -*- coding: utf-8 -*- """Provides concept object.""" from __future__ import absolute_import from .. import t1types from ..entity import Entity class Concept(Entity): """Concept entity.""" collection = 'concepts' resource = 'concept' _relations = { 'advertiser', } _pull = { 'advertiser_id': int, 'created_on': t1types.strpt, 'id': int, 'name': None, 'stat
us': t1types.int_to_bool, 'updated_on': t1types.strpt, 'version': int, } _push = _pull.copy() _push.update({ 'status': int, }) def __init__(self, session, properties=None, **kwargs): super(Con
cept, self).__init__(session, properties, **kwargs)
bd4/monster-hunter-scripts
db/_pathfix.py
Python
mit
251
0
""" Hack to get scripts to run from source checkout without having to set PYTHONPATH. """ import sys from
os.path import dirname, join, abspath db_path = dirname(__file__) project_path = abspath(join(db_path, ".."))
sys.path.insert(0, project_path)
mfalaize/homelab
compta/management/commands/check_operations.py
Python
gpl-3.0
3,142
0.003196
import calendar from datetime import date from django.conf import settings from django.core.mail import send_mail from django.core.management import BaseCommand from django.template.loader import get_template from compta.bank import get_bank_class from compta.models import Compte def generate_mail(): # Dernier jour du mois, on envoie un mail pour les comptes joints afin de fournir les sommes à y déposer if date.today().day == calendar.monthrange(date.today().year, date.today().month)[1]: comptes = Compte.objects.all() for compte in comptes: if compte.utilisateurs.count() > 1: compte.calculer_parts() if compte.total_salaire > 0: html_content = get_template('compta/details_calcule_a_verser.html').render(locals()) mails = [] for user in compte.utilisateurs_list: if user.email is not None: mails.append(user.email) if len(mails) > 0: send_mail( '[Homelab] Sommes à verser sur {}'.format(str(compte)), "", settings.DEFAULT_FROM_EMAIL, mails, html_message=html_content) def check_operations(): """Récupère les dernières op
érations bancaires en ligne, inscrit les nouvelles en base et les envoie par mail""" comptes = Compte.objects.all()
for compte in comptes: operations = compte.operation_set.all() bank_class = get_bank_class(compte.identifiant.banque) has_changed = False with bank_class(compte.identifiant.login, compte.identifiant.mot_de_passe, compte.numero_compte) as bank: new_operations = bank.fetch_last_operations() new_solde = bank.fetch_balance() for new_operation in new_operations: found = False for operation in operations: if operation.date_valeur == new_operation.date_valeur and operation.libelle == new_operation.libelle and float(operation.montant) == float(new_operation.montant): found = True break if not found: new_operation.compte = compte new_operation.save() has_changed = True if compte.solde != new_solde: compte.solde = new_solde compte.save() if has_changed: mails = [] for user in compte.utilisateurs.all(): if user.email is not None: mails.append(user.email) if len(mails) > 0: send_mail( '[Homelab] De nouvelles opérations sont à catégoriser sur {}'.format(str(compte)), "", settings.DEFAULT_FROM_EMAIL, mails) generate_mail() class Command(BaseCommand): help = "Déclenche le script qui vérifie les nouvelles opérations bancaires et qui envoie des mails lorsqu'il y en a des nouvelles" def handle(self, *args, **options): check_operations()
scikit-learn-contrib/categorical-encoding
category_encoders/leave_one_out.py
Python
bsd-3-clause
11,063
0.002983
"""Leave one out coding""" import numpy as np import pandas as pd from sklearn.base import BaseEstimator import category_encoders.utils as util from sklearn.utils.random import check_random_state __author__ = 'hbghhy' class LeaveOneOutEncoder(BaseEstimator, util.TransformerWithTargetMixin): """Leave one out coding for categorical features. This is very similar to target encoding but excludes the current row's target when calculating the mean target for a level to reduce the effect of outliers. Parameters ---------- verbose: int integer indicating verbosity of the output. 0 for none. cols: list a list of columns to encode, if None, all string columns will be encoded. drop_invariant: bool boolean for whether or not to drop columns with 0 variance. return_df: bool boolean for whether to return a pandas DataFrame from transform (otherwise it will be a numpy array). handle_missing: str options are 'error', 'return_nan' and 'value', defaults to 'value', which returns the target mean. handle_unknown: str options are 'error', 'return_nan' and 'value', defaults to 'value', which returns the target mean. sigma: float adds normal (Gaussian) distribution noise into training data in order to decrease overfitting (testing data are untouched). Sigma gives the standard deviation (spread or "width") of the normal distribution. The optimal value is commonly between 0.05 and 0.6. The default is to not add noise, but that leads to significantly suboptimal results. Example ------- >>> from category_encoders import * >>> import pandas as pd >>> from sklearn.datasets import load_boston >>> bunch = load_boston() >>> y = bunch.target >>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names) >>> enc = LeaveOneOutEncoder(cols=['CHAS', 'RAD']).fit(X, y) >>> numeric_dataset = enc.transform(X) >>> print(numeric_dataset.info()) <class 'pandas.core.frame.DataFrame'> RangeIndex: 506 entries, 0 to 505 Data columns (total 13 columns): CRIM 506 non-null float64 ZN 506 non-null float64 INDUS 506 non-null float64 CHAS 506 non-null float64 NOX 506 non-null float64 RM 506 non-null float64 AGE 506 non-null float64 DIS 506 non-null float64 RAD 506 non-null float64 TAX 506 non-null float64 PTRATIO 506 non-null float64 B 506 non-null float64 LSTAT 506 non-null float64 dtypes: float64(13) memory usage: 51.5 KB None References ---------- .. [1] Strategies to encode categorical variables with many categories, from https://www.kaggle.com/c/caterpillar-tube-pricing/discussion/15748#143154. """ def __init__(self, verbose=0, cols=None, drop_invariant=False, return_df=True, handle_unknown='value', handle_missing='value', random_state=None, sigma=None): self.return_df = return_df self.drop_invariant = drop_invariant self.drop_cols = [] self.verbose = verbose self.use_default_cols = cols is None # if True, even a repeated call of fit() will select string columns from X self.cols = cols self._dim = None self.mapping = None self.handle_unknown = handle_unknown self.handle_missing = handle_missing self._mean = None self.random_state = random_state self.sigma = sigma self.feature_names = None def fit(self, X, y, **kwargs): """Fit encoder according to X and y. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. Returns ------- self : encoder Returns self. """ # unite the input into pandas types X = util.convert_input(X) y = util.convert_input_vector(y, X.index).astype(float) if X.shape[0] != y.shape[0]: raise ValueError("The length of X is " + str(X.shape[0]) + " but length of y is " + str(y.shape[0]) + ".") self._dim = X.shape[1] # if columns aren't passed, just use every string column if self.use_default_cols: self.cols = util.get_obj_cols(X) else: self.cols = util.convert_cols_to_list(self.cols) if self.handle_missing == 'error': if X[self.cols].isnull().any().any(): raise ValueError('Columns to be encoded can not contain null') categories = self.fit_leave_one_out( X, y, cols=self.cols ) self.mapping = categories X_temp = self.transform(X, override_return_df=True) self.feature_names = X_temp.columns.tolist() if self.drop_invariant: self.drop_cols = [] generated_cols = util.get_generated_cols(X, X_temp, self.cols) self.drop_cols = [x for x in generated_cols if X_temp[x].var() <= 10e-5] try: [self.feature_names.remove(x) for x in self.drop_cols] except KeyError as e: if self.verbose > 0: print("Could not remove column from feature names." "Not found in generated cols.\n{}".format(e)) return self def transform(self, X, y=None, override_return_df=False): """Perform the transformation to new categorical data. Parameters ---------- X : array-like, shape = [n_samples, n_features] y : array-like, shape = [n_samples] when transform by leave one out None, when transform without target information (such as transform test set) Returns ------- p : array, shape = [n_samples, n_numeric + N] Transformed values with encoding applied. """ if self.handle_missing == 'error': if X[self.cols].isnull().any().any(): raise ValueError('Columns to be encoded can not contain null') if self._dim is None: raise ValueError('Must train encoder before it can be used to transform data.') # unite the input into pandas types X = util.convert_input(X) # then make sure that it is the right size if X.shape[1] != self._dim: raise ValueError('Unexpected input dimension %d, expected %d' % (X.shape[1], self._dim,)) # if we are encoding the training data, we have to check the target if y is not None: y = util.convert_input_vector(y, X.index).astype(float) if X.shape[0] != y.shape[0]: raise ValueError("The length of X is " + str(X.shape[0]) + " but length of y is " + str(y.shape[0]) + ".") if not list(self.cols): return X X = self.transform_leave_one_out( X, y, mapping=self.mapping ) if self.drop_invariant: for col in self.drop_cols: X.drop(col, 1, inplace=True) if self.return_df or override_return_df: return X else: return X.values def fit_leave_one_out(self, X_in, y, cols=None): X = X_in.copy(deep=True) if cols is None: c
ols = X.columns.values self._mean = y.mean() return {col: self.fit_column_map(X[col], y) for col in cols} def fit_column_map(self, series, y): category = pd.Categorical(series) categories = category.categories codes = category.codes.copy() codes[codes == -1] = len(categories) categories = np.append(categories, np.nan) return_map = pd.Series(dict(
[(code, category) for code, category in enumerate(categories)])) result = y.groupby(codes).agg(['sum', 'count']) return result.rename(return_map) def transform_leave_one_out(self, X_in, y
MalloyPower/parsing-python
front-end/testsuite-python-lib/Python-2.2/Lib/test/test_zlib.py
Python
mit
6,045
0.00397
import zlib from test_support import TestFailed import sys import imp try: t = imp.find_module('test_zlib') file = t[0] except ImportError: file = open(__file__) buf = file.read() * 8 file.close() # test the checksums (hex so the test doesn't break on 64-bit machines) print hex(zlib.crc32('penguin')), hex(zlib.crc32('penguin', 1)) print hex(zlib.adler32('penguin')), hex(zlib.adler32('penguin', 1)) # make sure we generate some expected errors try: zlib.compress('ERROR', zlib.MAX_WBITS + 1) except zlib.error, msg: print "expecting", msg try: zlib.compressobj(1, 8, 0) except ValueError, msg: print "expecting", msg try: zlib.decompressobj(0) except ValueError, msg: print "expecting", msg x = zlib.compress(buf) y = zlib.decompress(x) if buf != y: print "normal compression/decompression failed" else: print "normal compression/decompression succeeded" buf = buf * 16 co = zlib.compressobj(8, 8, -15) x1 = co.compress(buf) x2 = co.flush() x = x1 + x2 dc = zlib.decompressobj(-15) y1 = dc.decompress(x) y2 = dc.flush() y = y1 + y2 if buf != y: print "compress/decompression obj failed" else: print "compress/decompression obj succeeded" co = zlib.compressobj(2, 8, -12, 9, 1) bufs = [] for i in range(0, len(buf), 256): bufs.append(co.compress(buf[i:i+256])) bufs.append(co.flush()) combuf = ''.join(bufs) decomp1 = zlib.decompress(combuf, -12, -5) if decomp1 != buf: print "decompress with init options failed" else: print "decompress with init options succeeded" deco = zlib.decompressobj(-12) bufs = [] for i in range(0, len(combuf), 128): bufs.append(deco.decompress(combuf[i:i+128])) bufs.append(deco.flush()) decomp2 = ''.join(bufs) if decomp2 != buf: print "decompressobj with init options failed" else: print "decompressobj with init options succeeded" print "should be '':", `deco.unconsumed_tail` # Check a decompression object with max_length specified deco = zlib.
decompressobj(-12) cb = combuf bufs = [] while cb: max_length = 1 + len(cb)/10 chunk = deco.decompress(cb, max_length) if len(chunk) > max_length: print 'chunk too big (%d>%d)' % (len(chunk),max_length) bufs.append(chunk
) cb = deco.unconsumed_tail bufs.append(deco.flush()) decomp2 = ''.join(buf) if decomp2 != buf: print "max_length decompressobj failed" else: print "max_length decompressobj succeeded" # Misc tests of max_length deco = zlib.decompressobj(-12) try: deco.decompress("", -1) except ValueError: pass else: print "failed to raise value error on bad max_length" print "unconsumed_tail should be '':", `deco.unconsumed_tail` # Test flush() with the various options, using all the different levels # in order to provide more variations. sync_opt = ['Z_NO_FLUSH', 'Z_SYNC_FLUSH', 'Z_FULL_FLUSH'] sync_opt = [getattr(zlib, opt) for opt in sync_opt if hasattr(zlib, opt)] for sync in sync_opt: for level in range(10): obj = zlib.compressobj( level ) d = obj.compress( buf[:3000] ) d = d + obj.flush( sync ) d = d + obj.compress( buf[3000:] ) d = d + obj.flush() if zlib.decompress(d) != buf: print "Decompress failed: flush mode=%i, level=%i" % (sync,level) del obj # Test for the odd flushing bugs noted in 2.0, and hopefully fixed in 2.1 import random random.seed(1) print 'Testing on 17K of random data' if hasattr(zlib, 'Z_SYNC_FLUSH'): # Create compressor and decompressor objects c=zlib.compressobj(9) d=zlib.decompressobj() # Try 17K of data # generate random data stream a="" for i in range(17*1024): a=a+chr(random.randint(0,255)) # compress, sync-flush, and decompress t = d.decompress( c.compress(a)+c.flush(zlib.Z_SYNC_FLUSH) ) # if decompressed data is different from the input data, choke. if len(t) != len(a): print len(a),len(t),len(d.unused_data) raise TestFailed, "output of 17K doesn't match" def ignore(): """An empty function with a big string. Make the compression algorithm work a little harder. """ """ LAERTES O, fear me not. I stay too long: but here my father comes. Enter POLONIUS A double blessing is a double grace, Occasion smiles upon a second leave. LORD POLONIUS Yet here, Laertes! aboard, aboard, for shame! The wind sits in the shoulder of your sail, And you are stay'd for. There; my blessing with thee! And these few precepts in thy memory See thou character. Give thy thoughts no tongue, Nor any unproportioned thought his act. Be thou familiar, but by no means vulgar. Those friends thou hast, and their adoption tried, Grapple them to thy soul with hoops of steel; But do not dull thy palm with entertainment Of each new-hatch'd, unfledged comrade. Beware Of entrance to a quarrel, but being in, Bear't that the opposed may beware of thee. Give every man thy ear, but few thy voice; Take each man's censure, but reserve thy judgment. Costly thy habit as thy purse can buy, But not express'd in fancy; rich, not gaudy; For the apparel oft proclaims the man, And they in France of the best rank and station Are of a most select and generous chief in that. Neither a borrower nor a lender be; For loan oft loses both itself and friend, And borrowing dulls the edge of husbandry. This above all: to thine ownself be true, And it must follow, as the night the day, Thou canst not then be false to any man. Farewell: my blessing season this in thee! LAERTES Most humbly do I take my leave, my lord. LORD POLONIUS The time invites you; go; your servants tend. LAERTES Farewell, Ophelia; and remember well What I have said to you. OPHELIA 'Tis in my memory lock'd, And you yourself shall keep the key of it. LAERTES Farewell. """
Purg/SMQTK
bin/memex/hackathon_2016_07/cp1/ad_image_classification/cnn_finetuning/score_eval_data.py
Python
bsd-3-clause
5,443
0.003858
import csv import collections import json import numpy from smqtk.utils.bin_utils import logging, initialize_logging from smqtk.representation.data_set.memory_set import DataMemorySet from smqtk.algorithms.descriptor_generator.caffe_descriptor import CaffeDescriptorGenerator from smqtk.algorithms.classifier.index_label import IndexLabelClassifier from smqtk.representation import ClassificationElementFactory from smqtk.representation.classification_element.memory import MemoryClassificationElement from smqtk.representation.descriptor_index.memory import MemoryDescriptorIndex # in-memory data-set file cache EVAL_DATASET = "eval.dataset.pickle" CAFFE_DEPLOY = "CHANGE_ME" CAFFE_MODEL = "CHANGE_ME" CAFFE_IMG_MEAN = "CHANGE_ME" # new-line separated file of index labels. # Line index should correspont to caffe train/test truth labels. CAFFE_LABELS = "labels.txt" # CSV file detailing [cluster_id, ad_id, image_sha1] relationships. EVAL_CLUSTERS_ADS_IMAGES_CSV = "eval.CP1_clusters_ads_images.csv" # json-lines file of clusters missing from the above file. Should be at least # composed of: {"cluster_id": <str>, ... } EVAL_MISSING_CLUSTERS = "eval.cluster_scores.missing_clusters.jl" OUTPUT_DESCR_PROB_INDEX = "cp1_img_prob_descriptors.pickle" OUTPUT_MAX_JL = "cp1_scores_max.jl" OUTPUT_AVG_JL = "cp1_scores_avg.jl" ############################################################################### # Compute classification scores initialize_logging(logging.getLogger('smqtk'), logging.DEBUG) eval_data_set = DataMemorySet(EVAL_DATASET) img_prob_descr_index = MemoryDescriptorIndex(OUTPUT_DESCR_PROB_INDEX) img_prob_gen = CaffeDescriptorGenerator(CAFFE_DEPLOY, CAFFE_MODEL, CAFFE_IMG_MEAN, 'prob', batch_size=1000, use_gpu=True, load_truncated_images=True) img_c_mem_factory = ClassificationElementFactory( MemoryClassificationElement, {} ) img_prob_classifier = IndexLabelClassifier(CAFFE_LABELS) eval_data2descr = {} d_to_proc = set() for data in eval_data_set: if not img_prob_descr_index.has_descriptor(data.uuid()): d_to_proc.add(data) else: eval_data2descr[data] = img_prob_descr_index[data.uuid()] if d_to_proc: eval_data2descr.update( img_prob_gen.compute_descriptor_async(d_to_proc) ) d_to_proc.clear() assert len(eval_data2descr) == eval_data_set.count() index_additions = [] for data in d_to_proc: index_additions.append( eval_data2descr[data] ) print "Adding %d new descriptors to prob index" % len(index_additions) img_prob_descr_index.add_many_descriptors(index_additions) eval_descr2class = img_prob_classifier.classify_async(eval_data2descr.values(), img_c_mem_factory) ############################################################################### # The shas that were actually computed computed_shas = {e.uuid() for e in eval_data2descr} len(computed_shas) cluster2ads = collections.defaultdict(set) cluster2shas = collections.defaultdict(set) ad2shas = collections.defaultdict(set) sha2ads = collections.defaultdict(set) with open(EVAL_CLUSTERS_ADS_IMAGES_CSV) as f: reader = csv.reader(f) for i, r in enumerate(reader): if i == 0: # skip header line continue c, ad, sha = r if sha in computed_shas: cluster2ads[c].add(ad) cluster2shas[c].add(sha) ad2shas[ad].add(sha) sha2ads[sha].add(ad) assert len(sha2ads) == len(computed_shas) ############################################################################### print "Collecting scores for SHA1s" sha2score = {} for c in eval_descr2class.values(): sha2score[c.uuid] = c['positive'] print "Collecting scores for ads (MAX and AVG)" ad2score_max = {} ad2score_avg = {} for ad, child_shas in ad2shas.iteritems(): scores = [sha2score[sha] for sha in child_shas] ad2score_max[ad] = numpy.max(scores) ad2score_avg[ad] = numpy.average(scores) # select cluster score from max and average of child ad scores print "Collecting scores for ads (MAX and AVG)" cluster2score_max = {} cluster2score_avg = {} for c, child_ads in cluster2ads.iteritems(): cluster2score_max[c] = numpy.max( [ad2score_max[ad] for ad in child_ads]) cluster2score_avg[c] = numpy.average([ad2score_avg[ad] for ad in child_ads]) len(cluster2score_max) ############################################################################### missing_clusters = {json.loads(l)['cluster_id'] for l in open(EVAL_MISSING_CLUSTERS)} cluster_id_order = sorted(set(cluster2score_avg) | missing_clusters) with open(OUTPUT_MAX_JL, 'w') as f: for c in cluster_id_order: if c in cluster2score_max:
f.write( json.dumps({"cluster_id": c, "score": float(cluster2score_max[c])}) + '\n' ) else: # Due to a cluster having no child ads with imagery print "No childred with images for cluster '%s'" % c f.write( json.dumps({"cluster_id": c, "score": 0.5}) + '\n' ) with open(OUTPUT_AVG_JL, 'w') as f: for c in cluster_id_order: if c in cluster2score_avg: f.write( json.dumps({"cluster_id": c, "score
": float(cluster2score_avg[c])}) + '\n' ) else: # Due to a cluster having no child ads with imagery print "No childred with images for cluster '%s'" % c f.write( json.dumps({"cluster_id": c, "score": 0.5}) + '\n' )
Elico-Corp/openerp-7.0
balance_sheet_extended/__init__.py
Python
agpl-3.0
170
0
# -*- coding:
utf-8 -*- #
© 2014 Elico Corp (https://www.elico-corp.com) # Licence AGPL-3.0 or later(http://www.gnu.org/licenses/agpl.html) import report import wizard
googleapis/python-bigquery-storage
samples/snippets/__init__.py
Python
apache-2.0
601
0
# -*- coding: utf-8 -*- # # Copy
right 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless requir
ed by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
acockburn/appdaemon
appdaemon/sequences.py
Python
mit
4,617
0.002816
import uuid import asyncio from appdaemon.appdaemon import AppDaemon class Sequences: def __init__(self, ad: AppDaemon): self.AD = ad self.logger = ad.logging.get_child("_sequences") async def run_sequence_service(self, namespace, domain, service, kwargs): if "entity_id" not in kwargs: self.logger.warning("entity_id not given in service call, so will not be executing %s", service) return # await self.run_sequence("_services", namespace, kwargs["entity_id"]) self.AD.thread_async.call_async_no_wait(self.run_sequence, "_services", namespace, kwargs["entity_id"]) async def add_sequences(self, sequences): for sequence in sequences: entity = "sequence.{}".format(sequence) attributes = { "friendly_name": sequences[sequence].get("name", sequence), "loop": sequences[sequence].get("loop", False), "steps": sequences[sequence]["steps"], } if not await self.AD.state.entity_exists("rules", entity): # it doesn't exist so add it await self.AD.state.add_entity( "rules", entity, "idle", attributes=attributes, ) else: await self.AD.state.set_state( "_sequences", "rules", entity, state="idle", attributes=attributes, replace=True ) async def remove_sequences(self, sequences): if not isinstance(sequences, list): sequences = [sequences] for sequence in sequences: await self.AD.state.remove_entity("rules", "sequence.{}".format(sequence)) async def run_sequence(self, _name, namespace, seq
uence): coro = self.prep_sequence(_name, namespace, sequence) # # OK, lets run it # future = asyncio.ensure_future(coro) self.AD.futures.add_future(_name, future) return future async def prep_sequence(self, _name, namespace, sequence):
ephemeral_entity = False loop = False if isinstance(sequence, str): entity_id = sequence if await self.AD.state.entity_exists("rules", entity_id) is False: self.logger.warning('Unknown sequence "%s" in run_sequence()', sequence) return None entity = await self.AD.state.get_state("_services", "rules", sequence, attribute="all") seq = entity["attributes"]["steps"] loop = entity["attributes"]["loop"] else: # # Assume it's a list with the actual commands in it # entity_id = "sequence.{}".format(uuid.uuid4().hex) # Create an ephemeral entity for it ephemeral_entity = True await self.AD.state.add_entity("rules", entity_id, "idle", attributes={"steps": sequence}) seq = sequence coro = await self.do_steps(namespace, entity_id, seq, ephemeral_entity, loop) return coro @staticmethod async def cancel_sequence(_name, future): future.cancel() async def do_steps(self, namespace, entity_id, seq, ephemeral_entity, loop): await self.AD.state.set_state("_sequences", "rules", entity_id, state="active") try: while True: for step in seq: for command, parameters in step.items(): if command == "sleep": await asyncio.sleep(float(parameters)) elif command == "sequence": # Running a sub-sequence so just recurse await self.prep_sequence("_sequence", namespace, parameters) pass else: domain, service = str.split(command, "/") if "namespace" in parameters: ns = parameters["namespace"] del parameters["namespace"] else: ns = namespace parameters["__name"] = entity_id await self.AD.services.call_service(ns, domain, service, parameters) if loop is not True: break finally: await self.AD.state.set_state("_sequences", "rules", entity_id, state="idle") if ephemeral_entity is True: await self.AD.state.remove_entity("rules", entity_id)
jonocodes/gedit-code-assistance
backends/xml/gcpbackendxml/backend.py
Python
gpl-3.0
1,683
0.001783
# gcp xml backend # Copyright (C) 2012 Jesse van den Kieboom <jessevdk@gnome.org> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should
have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA from gi.repository import GObject, Gcp from document import Document class Backend(GObject.Object, Gcp.Backend):
size = GObject.property(type=int, flags = GObject.PARAM_READABLE) def __init__(self): GObject.Object.__init__(self) self.documents = [] def do_get_property(self, spec): if spec.name == 'size': return len(self.documents) GObject.Object.do_get_property(self, spec) def do_register_document(self, doc): d = Document(document=doc) self.documents.append(d) d.connect('changed', self.on_document_changed) return d def do_unregister_document(self, doc): doc.disconnect_by_func(self.on_document_changed) self.documents.remove(doc) def do_get(self, idx): return self.documents[idx] def on_document_changed(self, doc): doc.update() # ex:ts=4:et:
emoitzi/django-excel-viewer
users/__init__.py
Python
gpl-3.0
44
0.022727
defa
ult_app_config = 'users.apps.UserCon
fig'
ikvk/imap_tools
examples/fetch_by_pages.py
Python
apache-2.0
605
0.003306
from imap_tools import MailBox with MailBox('imap.mail.com').login(
'test@mail.com', 'pwd', 'INBOX') as mailbox: criteria = 'ALL' found_nums = mailbox.numbers(criteria) page_len = 3 pages = int(len(found_nums) // page_len) + 1 if len(found_nums) % page_len else int(len(found_nums) // page_len) for page in range(pages): print('page {}'.format(page)) page_limit = slice(page * page_len, page * page_len + page_len)
print(page_limit) for msg in mailbox.fetch(criteria, bulk=True, limit=page_limit): print(' ', msg.date, msg.uid, msg.subject)
konstantinKim/vd-backend
app/materials/models.py
Python
mit
2,427
0.021426
from marshmallow_jsonapi import Schema, fields from marshmallow import validate from flask.ext.sqlalchemy import SQLAlchemy from sqlalchemy.exc import SQLAlchemyError db = SQLAlchemy(session_options={"autoflush": False}) class CRUD(): def add(self, resource): db.session.add(resource) return db.session.commit() def update(self): return db.session.commit() def delete(self, resource): db.session.delete(resource) return db.session.commit() class Materials(db.Model, CRUD): __tablename__ = 'materials' MATERIAL_ID = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(250), unique=True, nullable=False) cn_id = db.Column(db.Integer) pt_id = db.Column(db.Integer) class MaterialsSchema(Schema): not_blank = validate.Length(min=1, error='Field cannot be blank') id = fields.Integer() MATERIAL_ID = fields.Integer(primary_key=True) name = fields.String(validate=not_blank)
#self links def get_top_level_links(self, data, many): self_link = '' if many: self_link = "/materials/" else: if 'attributes' in data: self_link = "/materials/{}".forma
t(data['attributes']['MATERIAL_ID']) return {'self': self_link} class Meta: type_ = 'materials' class MaterialsSalvage(db.Model, CRUD): __tablename__ = 'materials_salvage' MATERIAL_SALVAGE_ID = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(250), unique=True, nullable=False) class MaterialsSalvageSchema(Schema): not_blank = validate.Length(min=1, error='Field cannot be blank') id = fields.Integer() MATERIAL_SALVAGE_ID = fields.Integer(primary_key=True) name = fields.String(validate=not_blank) #self links def get_top_level_links(self, data, many): self_link = '' if many: self_link = "/materials/salvage/" else: if 'attributes' in data: self_link = "/materials/salvage/{}".format(data['attributes']['MATERIAL_SALVAGE_ID']) return {'self': self_link} class Meta: type_ = 'materials_salvage'
marwoodandrew/superdesk-aap
server/aap/data_consistency/compare_repositories.py
Python
agpl-3.0
9,289
0.002153
# -*- coding: utf-8; -*- # # This file is part of Superdesk. # # Copyright 2013, 2014 Sourcefabric z.u. and contributors. # # For the full copyright and license information, please see the # AUTHORS and LICENSE files distributed with this source code, or # at https://www.sourcefabric.org/superdesk/license import superdesk import requests from superdesk.utc import utcnow from eve.utils import ParsedRequest import json from superdesk.default_settings import ELASTICSEARCH_INDEX, ELASTICSEARCH_URL class CompareRepositories(superdesk.Command): default_page_size = 500 option_list = [ superdesk.Option('--resource', '-r', dest='resource_name', required=True), superdesk.Option('--analysiscount', '-a', dest='analysis_count', required=True) ] resource_name = '' analysis_count = 100 def g
et_mongo_items(self, consistency_record): # get the records from mongo in chunks projection = dict(superdesk.resources[self.resource_name].endpoint_schema['datasource']['projection']) superdesk.resources[self.resource_name].endpoint_schema['datasource']['proj
ection'] = None service = superdesk.get_resource_service(self.resource_name) cursor = service.get_from_mongo(None, {}) count = cursor.count() no_of_buckets = len(range(0, count, self.default_page_size)) mongo_items = [] updated_mongo_items = [] request = ParsedRequest() request.projection = json.dumps({'_etag': 1, '_updated': 1}) for x in range(0, no_of_buckets): skip = x * self.default_page_size print('Page : {}, skip: {}'.format(x + 1, skip)) # don't get any new records since the elastic items are retrieved cursor = service.get_from_mongo(request, {'_created': {'$lte': consistency_record['started_at']}}) cursor.skip(skip) cursor.limit(self.default_page_size) cursor = list(cursor) mongo_items.extend([(mongo_item['_id'], mongo_item['_etag']) for mongo_item in cursor]) updated_mongo_items.extend([mongo_item['_id'] for mongo_item in cursor if mongo_item['_updated'] > consistency_record['started_at']]) superdesk.resources[self.resource_name].endpoint_schema['datasource']['projection'] = projection return mongo_items, updated_mongo_items def get_mongo_item(self, id): service = superdesk.get_resource_service(self.resource_name) return list(service.get_from_mongo(None, {'_id': id}))[0] def get_elastic_item(self, id): resource = superdesk.get_resource_service(self.resource_name) query = {'query': {'filtered': {'filter': {'term': {'_id': id}}}}} request = ParsedRequest() request.args = {'source': json.dumps(query)} items = resource.get(req=request, lookup=None) return items[0] def get_elastic_items(self, elasticsearch_index, elasticsearch_url): # get the all hits from elastic post_data = {'fields': ['_etag']} response = requests.get('{}/{}/{}'.format(elasticsearch_url, elasticsearch_index, '_search?size=5000&q=*:*'), params=post_data) elastic_results = response.json()["hits"]['hits'] elastic_items = [(elastic_item['_id'], elastic_item["fields"]['_etag'][0]) for elastic_item in elastic_results] return elastic_items def process_results(self, consistency_record, elastic_items, mongo_items, updated_mongo_items, analyse_differences=True): # form the sets mongo_item_ids = list(map(list, zip(*mongo_items)))[0] mongo_item_ids_set = set(mongo_item_ids) elastic_item_ids = list(map(list, zip(*elastic_items)))[0] elastic_item_ids_set = set(elastic_item_ids) mongo_items_set = set(mongo_items) elastic_items_set = set(elastic_items) updated_mongo_items_set = set(updated_mongo_items) differences = [] # items that exist both in mongo and elastic with the same etags shared_items = mongo_items_set & elastic_items_set # items that exist only in mongo but not in elastic mongo_only = mongo_item_ids_set - elastic_item_ids_set # items that exist only in elastic but not in mongo elastic_only = elastic_item_ids_set - mongo_item_ids_set # items that exist both in mongo and elastic with different etags # filter out the ones that has been updated since elastic is queried different_items = (elastic_items_set ^ mongo_items_set) - updated_mongo_items_set if len(different_items) > 0: different_items = set(list(map(list, zip(*list(different_items))))[0]) \ - updated_mongo_items_set \ - mongo_only \ - elastic_only if analyse_differences: differences = self.analyse_differences(different_items) consistency_record['completed_at'] = utcnow() consistency_record['mongo'] = len(mongo_items) consistency_record['elastic'] = len(elastic_items) consistency_record['identical'] = len(shared_items) consistency_record['mongo_only'] = len(mongo_only) consistency_record['mongo_only_ids'] = list(mongo_only) consistency_record['elastic_only'] = len(elastic_only) consistency_record['elastic_only_ids'] = list(elastic_only) consistency_record['inconsistent'] = len(different_items) consistency_record['inconsistent_ids'] = list(different_items) consistency_record['differences'] = differences def analyse_differences(self, different_items): all_differences = [] counter = 1 for item in different_items: differences = [] mongo_item = self.get_mongo_item(item) elastic_item = self.get_elastic_item(item) print('Analysing item# {}'.format(counter)) self.compare_dicts(mongo_item, elastic_item, differences) all_differences.append({'_id': item, 'differences': differences}) counter += 1 if counter > self.analysis_count: break return all_differences def are_lists_equal(self, list_1, list_2): if len(list_1) > 0 and not isinstance(list_1[0], dict): return len(list(set(list_1) ^ set(list_2))) > 0 else: return True def compare_dicts(self, dict_1, dict_2, differences=None): if differences is None: differences = list() diff_keys = list(set(dict_1.keys()) ^ set(dict_2.keys())) if len(diff_keys) > 0: # there are differences in keys so report them differences.extend(diff_keys) self.compare_dict_values(dict_1, dict_2, differences) return list(set(differences)) def compare_dict_values(self, dict_1, dict_2, differences=None): if differences is None: differences = list() for key in dict_1.keys(): if key in differences: continue if key not in dict_2: differences.append(key) continue if isinstance(dict_1[key], list): if not self.are_lists_equal(dict_1[key], dict_2[key]): differences.append(key) elif isinstance(dict_1[key], dict): differences.extend(self.compare_dicts(dict_1[key], dict_2[key])) else: if not dict_1[key] == dict_2[key]: differences.append(key) def run(self, resource_name, elasticsearch_url=ELASTICSEARCH_URL, elasticsearch_index=ELASTICSEARCH_INDEX, analysis_count=100): """ Compares the records in mongo and elastic for a given collection Saves the results to "consistency" collection :param resource_name: Name of the collection i.e. ingest, archive, published, t
Johnetordoff/osf.io
osf/migrations/0239_auto_20211110_1921.py
Python
apache-2.0
497
0.002012
# -*- coding: utf-8 -*-
# Generated by Django 1.11.28 on 2021-11-10 19:21 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('osf', '0238_abstractprovider_allow_updates'), ] operations = [ migrations.AddIndex( model_name='schemaresponse', index=models.Index(fields=['object_id', 'content_type'], nam
e='osf_schemar_object__8cc95e_idx'), ), ]
Karaage-Cluster/karaage-applications
kgapplications/south_migrations/0001_initial.py
Python
gpl-3.0
21,468
0.007965
# -*- coding: utf-8 -*- from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): depends_on = ( ('applications', '0028_auto__chg_field_applicant_username'), ) def forwards(self, orm): if not db.dry_run: orm['contenttypes.contenttype'].objects.filter(app_label='applications').update(app_label='kgapplications') db.send_create_signal('kgapplications', ['Application']) db.send_create_signal('kgapplications', ['ProjectApplication']) db.send_create_signal('kgapplications', ['Applicant']) return # Adding model 'Application' db.create_table('kgapplications_application', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('secret_token', self.gf('django.db.models.fields.CharField')(default='42c3a931174e42f6c76f41056ecad8d9c18aabd0', unique=True, max_length=64)), ('expires', self.gf('django.db.models.fields.DateTimeField')()), ('created_by', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['karaage.Person'], null=True, blank=True)), ('created_date', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), ('submitted_date', self.gf('django.db.models.fields.DateTimeField')(null=True, blank=True)), ('state', self.gf('django.db.models.fields.CharField')(max_length=5)), ('complete_date', self.gf('django.db.models.fields.DateTimeField')(null=True, blank=True)), ('content_type', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['contenttypes.ContentType'], null=True, blank=True)), ('object_id', self.gf('django.db.models.fields.PositiveIntegerField')(null=True, blank=True)), ('header_message', self.gf('django.db.models.fields.TextField')(null=True, blank=True)), ('_class', self.gf('django.db.models.fields.CharField')(max_length=100)), )) db.send_create_signal('kgapplications', ['Application']) # Adding model 'ProjectApplication' db.create_table('kgapplications_projectapplication', ( ('application_ptr
', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['kgapplications.Application'], unique=True, primary_key=True)), ('needs_account', self.gf('django.db.models.fields.BooleanField')(default=True)), ('make_leader', self.gf('django.db.models.fields.BooleanField')(default=False)), ('name', self.gf('django.db.models.fields.CharField')(max_length=200)),
('institute', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['karaage.Institute'], null=True, blank=True)), ('description', self.gf('django.db.models.fields.TextField')(null=True, blank=True)), ('additional_req', self.gf('django.db.models.fields.TextField')(null=True, blank=True)), ('pid', self.gf('django.db.models.fields.CharField')(max_length=50, null=True, blank=True)), ('project', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['karaage.Project'], null=True, blank=True)), )) db.send_create_signal('kgapplications', ['ProjectApplication']) # Adding M2M table for field machine_categories on 'ProjectApplication' m2m_table_name = db.shorten_name('kgapplications_projectapplication_machine_categories') db.create_table(m2m_table_name, ( ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True)), ('projectapplication', models.ForeignKey(orm['kgapplications.projectapplication'], null=False)), ('machinecategory', models.ForeignKey(orm['karaage.machinecategory'], null=False)) )) db.create_unique(m2m_table_name, ['projectapplication_id', 'machinecategory_id']) # Adding model 'Applicant' db.create_table('kgapplications_applicant', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('email', self.gf('django.db.models.fields.EmailField')(unique=True, max_length=75)), ('email_verified', self.gf('django.db.models.fields.BooleanField')(default=False)), ('username', self.gf('django.db.models.fields.CharField')(max_length=255, unique=True, null=True, blank=True)), ('title', self.gf('django.db.models.fields.CharField')(max_length=10, null=True, blank=True)), ('short_name', self.gf('django.db.models.fields.CharField')(max_length=30)), ('full_name', self.gf('django.db.models.fields.CharField')(max_length=60)), ('institute', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['karaage.Institute'], null=True, blank=True)), ('department', self.gf('django.db.models.fields.CharField')(max_length=200, null=True, blank=True)), ('position', self.gf('django.db.models.fields.CharField')(max_length=200, null=True, blank=True)), ('telephone', self.gf('django.db.models.fields.CharField')(max_length=200, null=True, blank=True)), ('mobile', self.gf('django.db.models.fields.CharField')(max_length=200, null=True, blank=True)), ('supervisor', self.gf('django.db.models.fields.CharField')(max_length=100, null=True, blank=True)), ('address', self.gf('django.db.models.fields.CharField')(max_length=200, null=True, blank=True)), ('city', self.gf('django.db.models.fields.CharField')(max_length=100, null=True, blank=True)), ('postcode', self.gf('django.db.models.fields.CharField')(max_length=8, null=True, blank=True)), ('country', self.gf('django.db.models.fields.CharField')(max_length=2, null=True, blank=True)), ('fax', self.gf('django.db.models.fields.CharField')(max_length=50, null=True, blank=True)), ('saml_id', self.gf('django.db.models.fields.CharField')(max_length=200, unique=True, null=True, blank=True)), )) db.send_create_signal('kgapplications', ['Applicant']) def backwards(self, orm): if not db.dry_run: orm['contenttypes.contenttype'].objects.filter(app_label='kgapplications').update(app_label='applications') return # Deleting model 'Application' db.delete_table('kgapplications_application') # Deleting model 'ProjectApplication' db.delete_table('kgapplications_projectapplication') # Removing M2M table for field machine_categories on 'ProjectApplication' db.delete_table(db.shorten_name('kgapplications_projectapplication_machine_categories')) # Deleting model 'Applicant' db.delete_table('kgapplications_applicant') models = { 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'karaage.group': { 'Meta': {'ordering': "['name']", 'object_name': 'Group', 'db_table': "'people_group'"}, 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'extra_data': ('jsonfield.fields.JSONField', [], {'default': '{}'}), 'foreign_id': ('django.db.models.fields.CharField', [], {'max_length': '255', 'unique': 'True', 'null': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'members': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'groups'", 'symmetrical': 'False', 'to': "orm['karaage.Person']"}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '255'}) }, 'karaage.institu
r-kitaev/lucid-python-werkzeug
tests/contrib/test_wrappers.py
Python
bsd-3-clause
2,682
0
# -*- coding: utf-8 -*- from werkzeug.contrib import wrappers from werkzeug import routing from werkzeug.wrappers import Request, Response def test_reverse_slash_behavior(): """Test ReverseSlashBehaviorRequestMixin""" class MyRequest(wrappers.ReverseSlashBehaviorRequestMixin, Request): pass req = MyRequest.from_values('/foo/bar', 'http://example.com/test') assert req.url == 'http://example.com/test/foo/bar' assert req.path == 'foo/bar' assert req.script_root == '/test/' # make sure the routing system works with the slashes in # reverse order as well. map = routing.Map([routing.Rule('/foo/bar', endpoint='foo')]) adapter = map.bind_to_environ(req.environ) assert adapter.match() == ('foo', {}) adapter = map.bind(req.host, req.script_root) assert adapter.match(req.path) == ('foo', {}) def test_dynamic_charset_request_mixin(): """Test DynamicCharsetRequestMixin""" class MyRequest(wrappers.DynamicCharsetRequestMixin, Request): pass env = {'CONTENT_TYPE': 'text/html'} req = MyRequest(env) assert req.charset == 'latin1' env = {'CONTENT_TYPE': 'text/html; charset=utf-8'} req = MyRequest(env) assert req.charset == 'utf-8' env = {'CONTENT_TYPE': 'application/octet-stream'} req = MyRequest(env) assert req.charset == 'latin1' assert req.url_charset == 'latin1' MyRequest.url_charset = 'utf-8' env = {'CONTENT_TYPE': 'application/octet-stream'} req = MyRequest(env) assert req.charset == 'latin1' assert req.url_charset == 'utf-8' def return_ascii(x): return "ascii" env = {'CONTENT_TYPE': 'text/plain; charset=x-weird-charset'} req = MyRequest(env) req.unknown_charset = return_ascii assert req.charset == 'ascii' assert req.url_charset == 'utf-8' def test_dynamic_charset_response_mixin(): """Test DynamicCharsetResponseMixin""" class MyResponse(wrappers.DynamicCharsetResponseMixin, Response): default_charset = 'utf-7' resp = MyResponse(mimetype='text/
html') assert resp.charset == 'utf-7' resp.charset = 'utf-8' assert resp.charset == 'utf-8' assert resp.mimetype == 'text/html' assert resp.mimetype_params == {'charset': 'utf-8'} resp.mimetype_params['charset'] = 'iso-8859-15' assert resp.charset == 'iso-8859-15' resp.data = u'Hällo Wörld' assert ''.join(resp.iter_encoded()) == \ u'Hällo Wörld'.encode('iso-8859-15') del resp.heade
rs['content-type'] try: resp.charset = 'utf-8' except TypeError, e: pass else: assert False, 'expected type error on charset setting without ct'
jcalbert/TextBlob
docs/conf.py
Python
mit
2,936
0.003406
# -*- coding: utf-8 -*- import datetime as dt import os import sys # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('..')) import textblob sys.path.append(os.path.abspath("_themes")) # -- General configuration ----------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.viewcode', 'sphinx_issues', ] primary_domain = 'py' default_role = 'py:obj' issues_github_path = 'sloria/TextBlob' # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = u'TextBlob' copyright = u'{0:%Y} <a href="http://stevenloria.com/">Steven Loria</a>'.format( dt.datetime.utcnow() ) # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = release = textblob.__version__ exclude_patterns = ['_build'] pygments_style = 'flask_theme_support.FlaskyStyle' html_theme = 'kr' html_theme_path = ['_themes'] html_static_path = ['_static'] # Custom sidebar templates, maps document names to template names. html_sidebars = { 'index': ['side-primary.html', 'searchbox.html'], '**': ['side-secondary.html', 'localtoc.html', 'relations.html', 'searchbox.html'] } # Output file base name for HTML help builder. htmlhelp_basename = 'textblobdoc' # -- Options for LaTeX output -------------------------------------------------- # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'TextBlob.tex', u'textblob Documentation', u'Steven Loria', 'manual'), ] # One entry per manual page. List of tuples # (source start file, name, description, authors, manua
l section). man_pages = [ ('index', 'textblob', u'textblob Documenta
tion', [u'Steven Loria'], 1) ] # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'textblob', u'TextBlob Documentation', u'Steven Loria', 'textblob', 'Simplified Python text-processing.', 'Natural Language Processing'), ]
nisavid/testbed
testbed/tests/redirect.py
Python
lgpl-3.0
4,763
0
#!/usr/bin/env python """:mod:`Redirection <testbed.resources._redirect>` tests.""" __copyright__ = "Copyright (C) 2014 Ivan D Vasin" __docformat__ = "restructuredtext" import json as _json import unittest as _unittest from urllib import quote as _percent_encode import napper as _napper import spruce.logging as _logging import testbed.testing as _testbedtest class TestRedirections(_testbedtest.TestTestbed): @property def webservice_path(self): return '/redirect' @property def webservice_probe_path(self): return self._redirect_path def _create_requests_session(self): return _napper.WebRequestSession(follow_redirects=False) class TestResponseRedirection(TestRedirections): def test_get_response_redirect(self): response = self.request('get', self._redirect_path) self.assert_response_redirect_response(response, loc=self._redirect_loc) def test_get_response_redirect_as_html(self): response = self.request('get', self._redirect_path, accept_mediaranges=('text/html', '*/*; q=0.01')) self.assert_response_redirect_response(response, loc=self._redirect_loc, contenttype='text/html') def test_post_response_redirect(self): response = self.request('post', self._redirect_path) self.assert_response_redirect_response(response, loc=self._redirect_loc) def test_post_response_redirect_as_html(self): response = self.request('post', self._redirect_path, accept_mediaranges=('text/html', '*/*; q=0.01')) self.assert_response_redirect_response(response, loc=self._redirect_loc, contenttype='text/html') def test_postget_response_redirect(self): response = self.request('postget', self._redirect_path) self.assert_response_redirect_respo
nse(response, loc=self._redirect_loc) def test_postget_response_redirect_as_html(self): response = self.request('postget', self._redirect_path, accept_mediaranges=('text/html', '*/*; q=0.01')) self.assert_response_redirect_response(response
, loc=self._redirect_loc, contenttype='text/html') @property def _redirect_loc(self): return 'aoeu' @property def _redirect_path(self): return 'response;loc={}'\ .format(_percent_encode(_json.dumps(self._redirect_loc), safe='')) class _TestRedirectionsCorsWithUntrustedOriginMixin(object): def assert_response_redirect_response(self, response, **kwargs): kwargs_ = {} try: kwargs_['contenttype'] = kwargs['contenttype'] except KeyError: pass self.assert_cors_rejected_response(response, exc_name='CorsOriginForbidden', **kwargs_) class TestRedirectionsCorsActualWithTrustedOrigin\ (_testbedtest.TestCorsWithTrustedOrigin, _testbedtest.TestCorsActual, TestRedirections): pass class TestRedirectionsCorsActualWithUntrustedOrigin\ (_TestRedirectionsCorsWithUntrustedOriginMixin, _testbedtest.TestCorsWithUntrustedOrigin, _testbedtest.TestCorsActual, TestRedirections): pass class TestRedirectionsCorsPreflightWithTrustedOrigin\ (_testbedtest.TestCorsWithTrustedOrigin, _testbedtest.TestCorsPreflight, TestRedirections): def assert_response_redirect_response(self, response, **kwargs): kwargs_ = {} try: kwargs_['contenttype'] = kwargs['contenttype'] except KeyError: pass self.assert_cors_preflight_accepted_response(response, **kwargs_) class TestRedirectionsCorsPreflightWithUntrustedOrigin\ (_TestRedirectionsCorsWithUntrustedOriginMixin, _testbedtest.TestCorsWithUntrustedOrigin, _testbedtest.TestCorsPreflight, TestRedirections): pass if __name__ == '__main__': _logging.basicConfig() _unittest.main()
DasIch/relief
tests/schema/test_mappings.py
Python
bsd-3-clause
12,224
0.000736
# coding: utf-8 """ tests.schema.test_mappings ~~~~~~~~~~~~~~~~~~~~~~~~~~ :copyright: 2013 by Daniel Neuhäuser :license: BSD, see LICENSE.rst for details """ import pytest from relief import ( Dict, OrderedDict, Unicode, Integer, NotUnserializable, Form, Element, _compat ) from tests.conftest import python2_only from tests.schema.conftest import ElementTest class MappingTest(ElementTest): def test_getitem(self, element_cls): element = element_cls({u"foo": 1}) assert element[u"foo"].value == 1 def test_get(self, element_cls): element = element_cls({u"foo": 1}) assert element.get(u"foo").value == 1 assert element.get(
u"bar").value is NotUnserializable assert element.get(u"bar").raw_value is None def test_iter(self, element_cls): keys = list(element_cls({u"foo": 1})) assert len(keys) == 1 assert keys[0].value =
= u"foo" @python2_only def test_iterkeys(self, element_cls): keys = list(element_cls({u"foo": 1}).iterkeys()) assert len(keys) == 1 assert keys[0].value == u"foo" @python2_only def test_viewkeys(self, element_cls): keys = list(element_cls({u"foo": 1}).viewkeys()) assert len(keys) == 1 assert keys[0].value == u"foo" def test_keys(self, element_cls): keys = list(element_cls({u"foo": 1}).keys()) assert len(keys) == 1 assert keys[0].value == u"foo" @python2_only def test_itervalues(self, element_cls): values = list(element_cls({u"foo": 1}).itervalues()) assert len(values) == 1 assert values[0].value == 1 @python2_only def test_viewvalues(self, element_cls): values = list(element_cls({u"foo": 1}).viewvalues()) assert len(values) == 1 assert values[0].value == 1 def test_values(self, element_cls): values = list(element_cls({u"foo": 1}).values()) assert len(values) == 1 assert values[0].value == 1 @python2_only def test_iteritems(self, element_cls): items = list(element_cls({u"foo": 1}).iteritems()) assert len(items) == 1 assert items[0][0].value == u"foo" assert items[0][1].value == 1 @python2_only def test_viewitems(self, element_cls): items = list(element_cls({u"foo": 1}).viewitems()) assert len(items) == 1 assert items[0][0].value == u"foo" assert items[0][1].value == 1 def test_items(self, element_cls): items = list(element_cls({u"foo": 1}).items()) assert len(items) == 1 assert items[0][0].value == u"foo" assert items[0][1].value == 1 def test_set_list_of_tuples(self, element_cls): element = element_cls([(u"foo", 1)]) assert element.raw_value == [(u"foo", 1)] assert element.value == {u"foo": 1} def test_set_non_mapping(self, element_cls): element = element_cls(1) assert element.raw_value == 1 assert element.value is NotUnserializable def test_validate_empty(self, element_cls): element = element_cls() assert element.is_valid is None assert not element.validate() assert not element.is_valid def test_validate_is_recursive(self): validators = [] def key_validator(element, state): validators.append("key") return True def value_validator(element, state): validators.append("value") return True element = Dict.of( Integer.validated_by([key_validator]), Integer.validated_by([value_validator]) )({1: 1}) assert element.validate() assert element.is_valid assert validators == ["key", "value"] def test_validate_value_empty(self, element_cls): element = element_cls({}) assert element.is_valid is None assert element.validate() assert element.is_valid def test_validate_value(self, element_cls): element = element_cls({"foo": "1"}) assert element.raw_value == {"foo": "1"} assert element.value == {u"foo": 1} assert element.is_valid is None assert element.validate() assert element.is_valid def test_validate_invalid_value(self, element_cls): element = element_cls({"foo": "foo"}) assert element.raw_value == {"foo": "foo"} assert element.value is NotUnserializable assert element.is_valid is None assert not element.validate() assert not element.is_valid class MutableMappingTest(MappingTest): def test_setitem(self, element_cls): element = element_cls() with pytest.raises(TypeError): element[u"foo"] = 1 @pytest.mark.parametrize('method', [ 'setdefault', 'popitem', 'pop', 'update', 'clear' ]) def test_mutating_method_missing(self, element_cls, method): element = element_cls() assert not hasattr(element, method) with pytest.raises(AttributeError): getattr(element, method) class TestDict(MutableMappingTest): @pytest.fixture def element_cls(self): return Dict.of(Unicode, Integer) @pytest.fixture def possible_value(self): return {u"foo": 1} @python2_only def test_has_key(self, element_cls): assert element_cls({u"foo": 1}).has_key(u"foo") assert not element_cls({u"foo": 1}).has_key(u"bar") def test_set_strict(self, element_cls): element = element_cls.using(strict=True)({u"foo": 1}) assert element.raw_value == {u"foo": 1} assert element.value == {u"foo": 1} def test_set_strict_raw(self, element_cls): element = element_cls.using(strict=True)([(u"foo", 1)]) assert element.raw_value == [(u"foo", 1)] assert element.value is NotUnserializable def test_retains_ordering(self, element_cls): value = [ (u"foo", 1), (u"bar", 2), (u"baz", 3) ] assert element_cls(value).value == _compat.OrderedDict(value) class TestOrderedDict(MutableMappingTest): @pytest.fixture def element_cls(self): return OrderedDict.of(Unicode, Integer) @pytest.fixture def possible_value(self): return _compat.OrderedDict([(u"foo", 1)]) @python2_only def test_has_key(self, element_cls): assert element_cls({u"foo": 1}).has_key(u"foo") assert not element_cls({u"foo": 1}).has_key(u"bar") def test_set_strict(self, element_cls): value = _compat.OrderedDict({u"foo": 1}) element = element_cls.using(strict=True)(value) assert element.raw_value == value assert element.value == value def test_set_strict_raw(self, element_cls): element = element_cls.using(strict=True)({u"foo": 1}) assert element.raw_value == {u"foo": 1} assert element.value is NotUnserializable class TestForm(object): def test_member_schema_ordering(self): class Foo(Form): spam = Element eggs = Element assert list(Foo.member_schema.keys()) == ["spam", "eggs"] def test_member_schema_inheritance(self): class Foo(Form): spam = Element class Bar(Foo): eggs = Element assert list(Bar.member_schema.keys()) == ["spam", "eggs"] def test_getitem(self): class Foo(Form): spam = Unicode foo = Foo({"spam": u"one"}) assert foo["spam"].value == u"one" def test_contains(self): class Foo(Form): spam = Unicode foo = Foo() assert "spam" in foo assert "eggs" not in foo def test_len(self): class Foo(Form): spam = Unicode assert len(Foo()) == 1 def test_iter(self): class Foo(Form): spam = Unicode eggs = Unicode assert list(Foo()) == ["spam", "eggs"] @python2_only def test_iterkeys(self): class Foo(Form): spam = Unicode eggs = Unicode assert list(Foo().iterkeys()) == ["s
EmanueleCannizzaro/scons
test/CC/SHCC.py
Python
mit
2,436
0.002463
#!/usr/bin/env python # # Copyright (c) 2001 - 2016 The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute,
sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEME
NT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "test/CC/SHCC.py rel_2.5.1:3735:9dc6cee5c168 2016/11/03 14:02:02 bdbaddog" import os import TestSCons _python_ = TestSCons._python_ test = TestSCons.TestSCons() test.write("wrapper.py", """import os import sys open('%s', 'wb').write("wrapper.py\\n") os.system(" ".join(sys.argv[1:])) """ % test.workpath('wrapper.out').replace('\\', '\\\\')) test.write('SConstruct', """ foo = Environment() shcc = foo.Dictionary('SHCC') bar = Environment(SHCC = r'%(_python_)s wrapper.py ' + shcc) foo.SharedObject(target = 'foo/foo', source = 'foo.c') bar.SharedObject(target = 'bar/bar', source = 'bar.c') """ % locals()) test.write('foo.c', r""" #include <stdio.h> #include <stdlib.h> int main(int argc, char *argv[]) { argv[argc++] = "--"; printf("foo.c\n"); exit (0); } """) test.write('bar.c', r""" #include <stdio.h> #include <stdlib.h> int main(int argc, char *argv[]) { argv[argc++] = "--"; printf("foo.c\n"); exit (0); } """) test.run(arguments = 'foo') test.fail_test(os.path.exists(test.workpath('wrapper.out'))) test.run(arguments = 'bar') test.fail_test(test.read('wrapper.out') != "wrapper.py\n") test.pass_test() # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
kblin/supybot-gsoc
src/commands.py
Python
bsd-3-clause
30,909
0.0033
### # Copyright (c) 2002-2005, Jeremiah Fincher # Copyright (c) 2009, James Vega # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions, and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the author of this software nor the name of # contributors to this software may be used to endorse or promote products # derived from this software without specific prior written consent. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. ### """ Includes wrappers for commands. """ import time import types import geto
pt import inspect import threading import supybot.log as log import supybot.conf as conf import supybot.utils as utils import supybot.world as world import supybot.ircdb as ircdb import supybot.ircmsgs as ircmsgs import supybot.ircutils as ircutils import supybot.callbacks as callbac
ks ### # Non-arg wrappers -- these just change the behavior of a command without # changing the arguments given to it. ### # Thread has to be a non-arg wrapper because by the time we're parsing and # validating arguments, we're inside the function we'd want to thread. def thread(f): """Makes sure a command spawns a thread when called.""" def newf(self, irc, msg, args, *L, **kwargs): if world.isMainThread(): targetArgs = (self.callingCommand, irc, msg, args) + tuple(L) t = callbacks.CommandThread(target=self._callCommand, args=targetArgs, kwargs=kwargs) t.start() else: f(self, irc, msg, args, *L, **kwargs) return utils.python.changeFunctionName(newf, f.func_name, f.__doc__) class UrlSnarfThread(world.SupyThread): def __init__(self, *args, **kwargs): assert 'url' in kwargs kwargs['name'] = 'Thread #%s (for snarfing %s)' % \ (world.threadsSpawned, kwargs.pop('url')) super(UrlSnarfThread, self).__init__(*args, **kwargs) self.setDaemon(True) def run(self): try: super(UrlSnarfThread, self).run() except utils.web.Error, e: log.debug('Exception in urlSnarfer: %s', utils.exnToString(e)) class SnarfQueue(ircutils.FloodQueue): timeout = conf.supybot.snarfThrottle def key(self, channel): return channel _snarfed = SnarfQueue() class SnarfIrc(object): def __init__(self, irc, channel, url): self.irc = irc self.url = url self.channel = channel def __getattr__(self, attr): return getattr(self.irc, attr) def reply(self, *args, **kwargs): _snarfed.enqueue(self.channel, self.url) return self.irc.reply(*args, **kwargs) # This lock is used to serialize the calls to snarfers, so # earlier snarfers are guaranteed to beat out later snarfers. _snarfLock = threading.Lock() def urlSnarfer(f): """Protects the snarfer from loops (with other bots) and whatnot.""" def newf(self, irc, msg, match, *L, **kwargs): url = match.group(0) channel = msg.args[0] if not irc.isChannel(channel): return if ircdb.channels.getChannel(channel).lobotomized: self.log.info('Not snarfing in %s: lobotomized.', channel) return if _snarfed.has(channel, url): self.log.info('Throttling snarf of %s in %s.', url, channel) return irc = SnarfIrc(irc, channel, url) def doSnarf(): _snarfLock.acquire() try: # This has to be *after* we've acquired the lock so we can be # sure that all previous urlSnarfers have already run to # completion. if msg.repliedTo: self.log.debug('Not snarfing, msg is already repliedTo.') return f(self, irc, msg, match, *L, **kwargs) finally: _snarfLock.release() if threading.currentThread() is not world.mainThread: doSnarf() else: L = list(L) t = UrlSnarfThread(target=doSnarf, url=url) t.start() newf = utils.python.changeFunctionName(newf, f.func_name, f.__doc__) return newf ### # Converters, which take irc, msg, args, and a state object, and build up the # validated and converted args for the method in state.args. ### # This is just so we can centralize this, since it may change. def _int(s): base = 10 if s.startswith('0x'): base = 16 s = s[2:] elif s.startswith('0b'): base = 2 s = s[2:] elif s.startswith('0') and len(s) > 1: base = 8 s = s[1:] try: return int(s, base) except ValueError: if base == 10: return int(float(s)) else: raise def getInt(irc, msg, args, state, type='integer', p=None): try: i = _int(args[0]) if p is not None: if not p(i): state.errorInvalid(type, args[0]) state.args.append(i) del args[0] except ValueError: state.errorInvalid(type, args[0]) def getNonInt(irc, msg, args, state, type='non-integer value'): try: i = _int(args[0]) state.errorInvalid(type, args[0]) except ValueError: state.args.append(args.pop(0)) def getLong(irc, msg, args, state, type='long'): getInt(irc, msg, args, state, type) state.args[-1] = long(state.args[-1]) def getFloat(irc, msg, args, state, type='floating point number'): try: state.args.append(float(args[0])) del args[0] except ValueError: state.errorInvalid(type, args[0]) def getPositiveInt(irc, msg, args, state, *L): getInt(irc, msg, args, state, p=lambda i: i>0, type='positive integer', *L) def getNonNegativeInt(irc, msg, args, state, *L): getInt(irc, msg, args, state, p=lambda i: i>=0, type='non-negative integer', *L) def getIndex(irc, msg, args, state): getInt(irc, msg, args, state, type='index') if state.args[-1] > 0: state.args[-1] -= 1 def getId(irc, msg, args, state, kind=None): type = 'id' if kind is not None and not kind.endswith('id'): type = kind + ' id' original = args[0] try: args[0] = args[0].lstrip('#') getInt(irc, msg, args, state, type=type) except Exception, e: args[0] = original raise def getExpiry(irc, msg, args, state): now = int(time.time()) try: expires = _int(args[0]) if expires: expires += now state.args.append(expires) del args[0] except ValueError: state.errorInvalid('number of seconds', args[0]) def getBoolean(irc, msg, args, state): try: state.args.append(utils.str.toBool(args[0])) del args[0] except ValueError: state.errorInvalid('boolean', args[0]) def getNetworkIrc(irc, msg, args, state, errorIfNoMatch=False): if args: for otherIrc in world.ircs: if otherIrc.network.lower() ==
KaranKamath/SequiturG2P
symbols.py
Python
gpl-2.0
2,130
0.018779
__author__ = 'Maximilian Bisani' __version__ = '$LastChangedRevision: 1691 $' __date__ = '$LastChangedDate: 2011-08-03 15:38:08 +0200 (Wed, 03 Aug 2011) $' __copyright__ = 'Copyright (c) 2004-2005 RWTH Aachen University' __license__ = """ This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License Version 2 (June 1991) as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, you will find it at http://www.gnu.org/licenses/gpl.html, or write to the Free Software Foundation, Inc., 51 Franlin Street, Fifth Floor, Boston, MA 02110, USA. Should a provision of no. 9 and 10 of the GNU General Public License be invalid
or become invalid, a valid provision is deemed to have been agreed upon which comes closest to what the parties intended commercially. In any case guarantee/warranty shall be limited to gross negligent actions or intended actions or fraudulent concealment. """ class SymbolInventory: """ 0 (zero) is __void__ which is used internally as a terminator to indicate end of a multigram 1 (one) is __term__, the end-of-string symbol (similar to the end-of-sentence word in language modeling). """ term = 1 def __init__(self): self.list = ['__void__', '__term__'] self.dir = { '__term__' : self.term } def size(self): "The number of symbols, including __term__, but not counting __void__." return len(self.list) - 1 def index(self, sym): try: return self.dir[sym] except KeyError: result = self.dir[sym] = len(self.list) self.list.append(sym) return result def parse(self, seq): return tuple(map(self.index, list(seq))) def symbol(self, ind): return self.list[ind] def format(self, seq): return tuple(map(self.symbol, seq))
nttcom/eclcli
eclcli/bare/bareclient/ecl/common/apiclient/utils.py
Python
apache-2.0
2,975
0
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. try: from oslo_utils import encodeutils except ImportError: from oslo.utils import encodeutils import six from .._i18n import _ from . import exceptions from .. import uuidutils def find_resource(manager, name_or_id, **find_args): """Look for resource in a given manager. Used as a helper for the _find_* methods. Example: .. code-block:: python def _find_hypervisor(cs, hypervisor): #Get a hypervisor by name or ID. return cliutils.find_resource(cs.hypervisors, hypervisor) """ # first try to get entity as integer id try: return manager.get(int(name_or_id)) except (TypeError, ValueError, exceptions.NotFound): pass # now try to get entity as uuid try: if six.PY2: tmp_id = encodeutils.safe_encode(name_or_id) else: tmp_id = encodeutils.safe_decode(name_or_id) if uuidutils.is_uuid_like(tmp_id): return manager.get(tmp_id) except (TypeError, ValueError, exceptions.NotFound): pass # for str id which is not uuid if getattr(manager, 'is_alphanum_id_allowed', False): try: return manager.get(name_or_id) except exceptions.NotFound: pass try: try: return manager.find(human_id=name_or_id, **find_args) except exceptions.NotFound: pass # finally try to find entity by name try: resource = getattr(manager, 'resource_class', None) name_attr = resource.NAME_ATTR if resource else 'name' kwargs = {name_attr: name_or_id} kwargs.update(find_args) return manager.find(**kwargs) except exceptions.NotFound: msg = _("No %(name)s with a name or " "ID of '%(name_or_id)s' exists.") % \ {
"name": manager.resource_class.__name__.lower(), "name_or_id": name_or_id } raise exceptions.CommandError(msg) except exceptions.NoUniqueMatch: msg = _("Multiple %(name)s matches found for " "'%(name_or_id)s', use an ID to be more specific.") % \ {
"name": manager.resource_class.__name__.lower(), "name_or_id": name_or_id } raise exceptions.CommandError(msg)
jpschnel/maze-vision
maze_vision.py
Python
apache-2.0
2,411
0.072999
# 0 = open space, 1=boundary , 2= the robot, 3= finish def maze_vision(): path= '' maze=[] maze.append(list('000000002000000')) maze.append(list('000000003001100')) maze.append(list('000000000000000')) maze.append(list('000000000000000')) maze.append(list('000000000000000')) maze.append(list('000000000000000')) #print(maze) fx=0 fy=0 sx=0 sy=0 #print(maze[0][8]) #print(len(maze[0])) for x in range(0,len(maze[0])-1): for y in range(0,len(maze)-1): if maze[y][x]=='2': sx=x sy=y elif maze[y][x]=='3': fx=x fy=y #print(fx) #print(fy) #print(sx) #print(sy) ans= distance(maze,sx,sy,fx,fy,path) print ("the shortest path is "+str(ans)+ " spaces") print(path) def distance(maze, sx, sy, fx, fy,path): up= int(sy-1) down= int(sy+1) left = int(sx-1) right = int(sx+1) print(str(sx)+','+str(sy)) updist=3333333 downdist=6666666 leftdist=5555555 right
dist=4444444 if maze[sy][sx]=='3': #reached finish print(hit) return 0 #return #up # if up >-1: # if maze[sy][up]=='0': #if this direction is open # maze[sy][up]='4' #mark it as traveled to # path= path +'u'
#add that direction to final path # updist= 1+ distance(maze,up,sy,fx,fy,path) #calculate shortest dist from there #if it makes it past here, that was not the shortest distance #path= path[:-1] #remove that direction from final path #maze[sy][up]=0 #mark that direction as not traveled #down print(down) if down < (len(maze)-1): print('w') print(maze[down][sx]) if maze[down][sx]=='0': maze[sy][sx]='4' #path path +'d' downdist= 1 + distance(maze,down,sy,fx,fy,path) #path= path[:-1] #maze[sy][down]='0' #else: #downdist=999999 #left # if left>-1: # if maze[left][sx]=='0': # maze[left][sx]='4' # path= path +'l' # leftdist= 1+distance(maze,sx,left,fx,fy,path) # path= path[:-1] # maze[left][sx]='0' #right # if right<(len(maze[0])-1): # if maze[sx][right]=='0': # maze[sx][right]='4' # path=path+'r' # rightdist= 1+distance(maze,sx,right,fx,fy,path) # path=path[:-1] # maze[right][sx]='0' #print(str(sx)+','+str(sy)) return min(updist,downdist,rightdist,leftdist) # sum2= min(rightdist,leftdist) # return min(sum2,sum1) maze_vision()
eharney/nova
nova/db/sqlalchemy/migration.py
Python
apache-2.0
2,918
0
# Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os from migrate import exceptions as versioning_exceptions from migrate.versioning import api as versioning_api from migrate.versioning.repository import Repository import sqlalchemy from nova.db.sqlalchemy import api as db_session from nova import exception from nova.openstack.common.gettextutils import _ INIT_VERSION = 215 _REPOSITORY = None get_engine = db_session.get_engine def db_sync(version=None): if version is not None: try: version = int(version) except ValueError: raise exception.NovaException(_("version should be an integer")) current_version = db_version() repository = _find_migrate_repo() if version is None or version > current_version:
return versioning_api.upgrade(get_engine(), repositor
y, version) else: return versioning_api.downgrade(get_engine(), repository, version) def db_version(): repository = _find_migrate_repo() try: return versioning_api.db_version(get_engine(), repository) except versioning_exceptions.DatabaseNotControlledError: meta = sqlalchemy.MetaData() engine = get_engine() meta.reflect(bind=engine) tables = meta.tables if len(tables) == 0: db_version_control(INIT_VERSION) return versioning_api.db_version(get_engine(), repository) else: # Some pre-Essex DB's may not be version controlled. # Require them to upgrade using Essex first. raise exception.NovaException( _("Upgrade DB using Essex release first.")) def db_initial_version(): return INIT_VERSION def db_version_control(version=None): repository = _find_migrate_repo() versioning_api.version_control(get_engine(), repository, version) return version def _find_migrate_repo(): """Get the path for the migrate repository.""" global _REPOSITORY path = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'migrate_repo') assert os.path.exists(path) if _REPOSITORY is None: _REPOSITORY = Repository(path) return _REPOSITORY
dominikkowalski/django-powerdns-dnssec
powerdns/routers.py
Python
bsd-2-clause
959
0
class PowerDNSRouter(object): """Route all operations on powerdns models to the powerdns database.""" db_name = 'powerdns' app_name = 'powerdns' def db_for_read(self, model, **hints): if model._meta.app_label == self.app_name: return self.db_name return None def db_for_write(self, model, **hi
nts): if model._meta.app_label == self.app_name: return self.db_name return None def allow_relation(self, obj1, obj2, **hints): if (obj1._meta.app_label == self.app_name and obj2._meta.app_label == self.app_name): return True return None d
ef allow_syncdb(self, db, model): if model._meta.app_label == self.app_name: return db == self.db_name elif db == self.db_name: # workaround for http://south.aeracode.org/ticket/370 return model._meta.app_label == 'south' return None
smitchell556/cuttle
tests/test_cuttle_class.py
Python
mit
6,111
0.000327
# -*- coding: utf-8 """ Tests related to the Cuttle class. """ import os import unittest import warnings import time from cuttle.reef import Cuttle, Column from cuttlepool import CuttlePool from cuttlepool.cuttlepool import PoolConnection DB = '_cuttle_test_db' DB2 = '_cuttle_test_db2' HOST = 'localhost' class BaseDbTestCase(unittest.TestCase): def setUp(self): self.Pool = CuttlePool self.Connection = PoolConnection self.credentials = dict(host=HOST) self.sql_type = os.environ['TEST_CUTTLE'].lower() if self.sql_type == 'mysql': import pymysql from mysql_credentials import USER, PASSWD self.Cursor = pymysql.cursors.Cursor self.connect = pymysql.connect self.credentials.update(dict(user=USER, passwd=PASSWD)) self.db = Cuttle(self.sql_type, db=DB, **self.credentials) class Heros(self.db.Model): columns = [ Column('hero_id', 'INT', auto_increment=True, primary_key=True), Column('hero_name', 'VARCHAR', maximum=16) ] self.testtable1 = Heros self.create_heros_statement = ( 'CREATE TABLE IF NOT EXISTS {} (\n' 'hero_id INT AUTO_INCREMENT PRIMARY KEY,\n' 'hero_name VARCHAR(16)\n' ')').format(self.testtable1().name) self.heros_schema = (('hero_id', 'int(11)', 'NO', 'PRI', None, 'auto_increment'), ('hero_name', 'varchar(16)', 'YES', '', None, '')) def tearDown(self): warnings.filterwarnings('ignore') self.db.drop_db() def createPool(self, **kwargs): warnings.filterwarnings('ignore') return CuttlePool(self.connect, **kwargs) class DbNestedModelTestCase(BaseDbTestCase): def setUp(self): super(DbNestedModelTestCase, self).setUp() class UselessTable(self.db.Model): pass self.uselesstable = UselessTable class Villains(UselessTable): columns = [ Column('villain_id', 'INT'), Column('villain_name', 'VARCHAR', maximum=16) ] self.testtable2 = Villains class TwoDbTestCase(BaseDbTestCase): def setUp(self): super(TwoDbTestCase, self).setUp() self.db2 = Cuttle(self.sql_type, db=DB2, **self.credentials) class ThrowAway(self.db2.Model): columns = [ Column('throwaway', 'INT') ] self.testtable2 = ThrowAway def tearDown(self): super(TwoDbTestCase, self).tearDown() self.db2.drop_db() class CuttleInstanceTestCase(unittest.TestCase): def test_improper_sql_type(self): with self.assertRaises(ValueError): db = Cuttle('wrongsql', db='db') def test_no_db(self): with self.assertRaises(ValueError): db = Cuttle('mysql') def test_name_property(self): db_name = 'get_schwifty' db = Cuttle('mysql', db=db_name) self.assertEqual(db.name, db_name) class CuttleCreateDbTestCase(BaseDbTestCase): def test_create_db(self): self.db.create_db() pool = self.createPool(db=DB, **self.credentials) con = pool.get_connection() cur = con.cursor() # get databases cur.execute('SHOW DATABASES') dbs = cur.fetchall() self.assertIn((DB,), dbs) def test_table_schema(self): self.db.create_db() pool = self.createPool(db=DB, **self.credentials) con = pool.get_connection() cur = con.cursor() # get tables cur.execute('SHOW TABLES') tbls = cur.fetchall() self.assertEqual(((self.testtable1().name,),), tbls) # get table schema cur.execute('DESCRIBE {}'.format(self.testtable1().name)) tblschma = cur.fetchall() self.assertEqual(self.heros_schema, tblschma) class CuttleCreateMultiDbTestCase(TwoDbTestCase): def test_create_two_dbs(self): self.db.create_db() self.db2.create_db() pool1 = self.createPool(db=DB, **self.credentials) pool2 = self.createPool(db=DB2, **self.credent
ials) con1 = pool1.get_connection() cur1 = con1.cursor() con2 = pool2.get_connection() cur2 = con2.cursor() # get databases cur1.execute('SHOW DATABASES') dbs = cur1.fetchall() self.assertIn((DB,), dbs) self.
assertIn((DB2,), dbs) # get tables cur1.execute('SHOW TABLES') tbls1 = cur1.fetchall() cur2.execute('SHOW TABLES') tbls2 = cur2.fetchall() self.assertIn((self.testtable1().name,), tbls1) self.assertNotIn((self.testtable2().name,), tbls1) self.assertIn((self.testtable2().name,), tbls2) self.assertNotIn((self.testtable1().name,), tbls2) class CuttleCreateDbNestedModelsTestCase(DbNestedModelTestCase): def test_correct_tables_made(self): self.db.create_db() pool = self.createPool(db=DB, **self.credentials) con = pool.get_connection() cur = con.cursor() # get tables cur.execute('SHOW TABLES') tbls = cur.fetchall() self.assertIn((self.testtable1().name,), tbls) self.assertIn((self.testtable2().name,), tbls) self.assertNotIn((self.uselesstable().name,), tbls) class CuttleDropDbTestCase(BaseDbTestCase): def setUp(self): super(CuttleDropDbTestCase, self).setUp() self.db.create_db() def test_drop_db(self): pool = self.createPool(**self.credentials) con = pool.get_connection() cur = con.cursor() # get databases cur.execute('SHOW DATABASES') dbs = cur.fetchall() # make sure database actually exists self.assertIn((DB,), dbs) # drop the database self.db.drop_db() # get databases cur.execute('SHOW DATABASES') dbs = cur.fetchall() # make sure database no longer exists self.assertNotIn((DB,), dbs)
pavelpat/yased
src/tests/__init__.py
Python
apache-2.0
1,664
0.000601
# coding: utf-8 from unittest import TestCase from yased import EventsDispatcher, Event class AnyEvent(Event):
"""Represents any event.""" class EventsDispatcherTestCase(TestCase): def setUp(self): self.ed = EventsDispatcher() def te
st_send(self): calls = [] def handler(*args, **kwargs): calls.append(True) self.ed.connect(handler, AnyEvent) self.ed.send(AnyEvent()) self.assertEqual(len(calls), 1) self.ed.disconnect(handler, AnyEvent) self.ed.send(AnyEvent()) self.assertEqual(len(calls), 1) def test_send_with_sender(self): calls = [] def handler(*args, **kwargs): calls.append(True) self.ed.connect(handler, AnyEvent, self) self.ed.send(AnyEvent(), sender=self) self.assertEqual(len(calls), 1) self.ed.send(AnyEvent()) self.assertEqual(len(calls), 1) self.ed.disconnect(handler, AnyEvent) self.ed.send(AnyEvent(), sender=self) self.assertEqual(len(calls), 2) self.ed.disconnect(handler, AnyEvent, sender=self) self.ed.send(AnyEvent(), sender=self) self.assertEqual(len(calls), 2) def test_send_args_kwargs(self): calls = [] event_args = (1, 2, 3) event_kwargs = {'a': 4, 'b': 5, 'c': 6} def handler(*args, **kwargs): calls.append(True) self.assertEqual(args, event_args) self.assertEqual(kwargs, event_kwargs) self.ed.connect(handler, AnyEvent) self.ed.send(AnyEvent(*event_args, **event_kwargs)) self.assertEqual(len(calls), 1)
themotleyfool/django-offline-messages
tests/settings.py
Python
bsd-3-clause
361
0
# django-offline-messages Test Settings
DATABASES = {'default': {'ENGINE': 'django.
db.backends.sqlite3'}} INSTALLED_APPS = ( 'django.contrib.sessions', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.messages', 'offline_messages', 'tests' ) ROOT_URLCONF = '' COVERAGE_ADDITIONAL_MODULES = ('offline_messages',)
vitaly-krugl/nupic
examples/opf/experiments/multistep/hotgym_best_sp/description.py
Python
agpl-3.0
2,842
0.007389
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it wi
ll be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ----------------------------
------------------------------------------ ## This file defines parameters for a prediction experiment. import os from nupic.frameworks.opf.exp_description_helpers import importBaseDescription # the sub-experiment configuration config = \ { 'modelParams': { 'clParams': { 'verbosity': 0}, 'inferenceType': 'NontemporalMultiStep', 'sensorParams': { 'encoders': { 'consumption': { 'clipInput': True, 'fieldname': u'consumption', 'n': 28, 'name': u'consumption', 'type': 'AdaptiveScalarEncoder', 'w': 21}, 'timestamp_dayOfWeek': None, 'timestamp_timeOfDay': { 'fieldname': u'timestamp', 'name': u'timestamp_timeOfDay', 'timeOfDay': ( 21, 8), 'type': 'DateEncoder'}, 'timestamp_weekend': None}, 'verbosity': 0}, 'spParams': { 'spVerbosity': 0}, 'tmParams': { 'activationThreshold': 14, 'minThreshold': 12, 'verbosity': 1}}} mod = importBaseDescription('../hotgym/description.py', config) locals().update(mod.__dict__)
lnls-sirius/dev-packages
siriuspy/siriuspy/clientarch/__init__.py
Python
gpl-3.0
306
0
"""Subpackage for the Archiver server.""" fr
om ..envars import SRVURL_ARCHIVER as SERVER_URL from .client import ClientArchiver from .pvarch import PVDetails, PVData, PVDataSet from .devices import Orbit, Correctors, TrimQuads from .time import Time from . import exceptions del client,
pvarch, devices
openqt/algorithms
leetcode/python/lc754-reach-a-number.py
Python
gpl-3.0
1,163
0.009458
# coding=utf-8 import unittest """754. Reach a Number https://leetcode.com/problems/reach-a-number/description/ You are standing at position `0` on an infinite number line. There is a goal at position `target`. On each move, you can either go left or right. During the _n_ -th move (starting from 1), you take _n_ steps. Return the minimum number of steps required to reach the destination. **Example 1:** **Input:** target = 3 **Output:** 2 **Explanation:** On the first move we step from 0 to 1. On the second step we step from 1 to 3. **Example 2:** **Input:** target = 2 **Output:** 3 **Explanation:** On the fi
rst move we step from 0 to 1. On the second move we step from 1 to -1. On the third move we step from -1 to 2. **Note:** * `target` will be a non-zero integer in the range `[-10^9, 10^9]`. Similar Questions: """ class Solution(object): def reachNumber(self, target): """ :t
ype target: int :rtype: int """ def test(self): pass if __name__ == "__main__": unittest.main()
danstoner/python_experiments
playing_with_kivy/kivi-examples/widgets/lists/list_reset_data.py
Python
gpl-2.0
2,398
0.000834
# -*- coding: utf-8 -*- from kivy.uix.listview import ListView from kivy.uix.floatlayout import FloatLayout from kivy.clock import Clock from kivy.adapters.listadapter import ListAdapter from kivy.adapters.models import SelectableDataItem from kivy.uix.listview import ListItemButton from random import choice from string import ascii_uppercase, digits import random c
lass DataItem(SelectableDataItem): def __init__(self, **kwargs): super(DataItem, self).__init__(**kwargs) self.name = ''.join(choice(ascii_uppercase + digits) for x in range(6)) class MainView(FloatLayout): """ Implementation of a ListView using the kv language. """ def __init__(self, **kwargs): super(Main
View, self).__init__(**kwargs) data_items = [] data_items.append(DataItem()) data_items.append(DataItem()) data_items.append(DataItem()) list_item_args_converter = lambda row_index, obj: {'text': obj.name, 'size_hint_y': None, 'height': 25} self.list_adapter = \ ListAdapter(data=data_items, args_converter=list_item_args_converter, selection_mode='single', propagate_selection_to_data=False, allow_empty_selection=False, cls=ListItemButton) self.list_view = ListView(adapter=self.list_adapter) self.add_widget(self.list_view) self.toggle = 'adding' Clock.schedule_interval(self.update_list_data, 1) def update_list_data(self, dt): items = self.list_adapter.data if self.toggle == 'adding': item = DataItem(name='New ' * random.randint(1, 2)) items.append(item) self.toggle = 'changing' print 'added ' + item.name else: random_index = random.randint(0, len(items) - 1) item = items[random_index] items[random_index] = DataItem() self.toggle = 'adding' print 'changed {0} to {1}'.format(item.name, items[random_index].name) if __name__ == '__main__': from kivy.base import runTouchApp runTouchApp(MainView(width=800))
hpk42/pluggy
testing/benchmark.py
Python
mit
2,435
0
""" Benchmarking and performance tests. """ import pytest from pluggy import HookspecMarker, HookimplMarker, PluginManager from pluggy._hooks import HookImpl from pluggy._callers import _multicall hookspec = HookspecMarker("example") hookimpl = HookimplMarker("example") @hookimpl def hook(arg1, arg2, arg3):
return arg1, arg2, arg3 @hookimpl(hookwrapper=True) def wrapper(arg1, arg2, arg3): yield @pytest.fixture(params=[10, 100], ids="hooks={}".format) def hooks(request): return [hook for i in range(request.param)] @pytest.fixture(params=[10, 100], ids="wrappers={}".format) def wrappers(request): return
[wrapper for i in range(request.param)] def test_hook_and_wrappers_speed(benchmark, hooks, wrappers): def setup(): hook_name = "foo" hook_impls = [] for method in hooks + wrappers: f = HookImpl(None, "<temp>", method, method.example_impl) hook_impls.append(f) caller_kwargs = {"arg1": 1, "arg2": 2, "arg3": 3} firstresult = False return (hook_name, hook_impls, caller_kwargs, firstresult), {} benchmark.pedantic(_multicall, setup=setup) @pytest.mark.parametrize( ("plugins, wrappers, nesting"), [ (1, 1, 0), (1, 1, 1), (1, 1, 5), (1, 5, 1), (1, 5, 5), (5, 1, 1), (5, 1, 5), (5, 5, 1), (5, 5, 5), (20, 20, 0), (100, 100, 0), ], ) def test_call_hook(benchmark, plugins, wrappers, nesting): pm = PluginManager("example") class HookSpec: @hookspec def fun(self, hooks, nesting: int): yield class Plugin: def __init__(self, num): self.num = num def __repr__(self): return f"<Plugin {self.num}>" @hookimpl def fun(self, hooks, nesting: int): if nesting: hooks.fun(hooks=hooks, nesting=nesting - 1) class PluginWrap: def __init__(self, num): self.num = num def __repr__(self): return f"<PluginWrap {self.num}>" @hookimpl(hookwrapper=True) def fun(self): yield pm.add_hookspecs(HookSpec) for i in range(plugins): pm.register(Plugin(i), name=f"plug_{i}") for i in range(wrappers): pm.register(PluginWrap(i), name=f"wrap_plug_{i}") benchmark(pm.hook.fun, hooks=pm.hook, nesting=nesting)
DarthGeek01/PopulationSimulator
Genetics/Allele.py
Python
gpl-2.0
6,542
0.003363
__author__ = 'ariel' """ Python Population Simulator Copyright (C) 2015 Ariel Young This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. """ from Genetics import Expressions, Genotypes from Crypto.Random import random class TraitAlleles(object): traitPhenotypes = {"furColor" : {"dominant" : "long", "recessive" : "short"}, "furLength" : {"dominant" : "black", "recessive" : "brown"}, "isTa" : {"dominant" : "tall", "recessive" : "short"}} traitIsComplete = False expression = None trait = None genotype = None phenotype = None letterOne = str letterTwo = str choices = [] def __init__(self, trait, alleles=False, letter_one = None, letter_two = None): self.trait
= trait if alleles: if letter_one != None: self.letterOne = letter_one if letter_two != None: self.letterTwo = letter_two if self.letterOne and self.letterTwo: if self.letterOne.isupper() and self.letterTwo.isupper(): self.expression = Exp
ressions.HOMOZYGOUS_DOMINANT self.genotype = Genotypes.DOMINANT elif self.letterOne.isupper() and not self.letterTwo.isupper(): self.expression = Expressions.HETEROZYGOUS_DOMINANT self.genotype = Genotypes.DOMINANT elif not self.letterOne.isupper() and not self.letterTwo.isupper(): self.expression = Expressions.HOMOZYGOUS_RECESSIVE self.genotype = Genotypes.RECESSIVE elif not self.letterOne.isupper() and self.letterTwo.isupper(): self.expression = Expressions.HETEROZYGOUS_DOMINANT self.genotype = Genotypes.DOMINANT self.__determinePhenotype() if trait == "furColor": choices = list('Ff') elif trait == "furLength": choices = list('Ll') elif trait == "isTall": choices = list("Hh") def getGenotype(self): return self.genotype def getExpression(self): return self.expression def setLetterOne(self, letter): self.letterOne = letter if self.letterOne and self.letterTwo: if self.letterOne.isupper() and self.letterTwo.isupper(): self.expression = Expressions.HOMOZYGOUS_DOMINANT self.genotype = Genotypes.DOMINANT elif self.letterOne.isupper() and not self.letterTwo.isupper(): self.expression = Expressions.HETEROZYGOUS_DOMINANT self.genotype = Genotypes.DOMINANT elif not self.letterOne.isupper() and not self.letterTwo.isupper(): self.expression = Expressions.HOMOZYGOUS_RECESSIVE self.genotype = Genotypes.RECESSIVE elif not self.letterOne.isupper() and self.letterTwo.isupper(): self.expression = Expressions.HETEROZYGOUS_DOMINANT self.genotype = Genotypes.DOMINANT self.__determinePhenotype() def setLetterTwo(self, letter): self.letterTwo = letter if self.letterOne and self.letterTwo: if self.letterOne.isupper() and self.letterTwo.isupper(): self.expression = Expressions.HOMOZYGOUS_DOMINANT self.genotype = Genotypes.DOMINANT elif self.letterOne.isupper() and not self.letterTwo.isupper(): self.expression = Expressions.HETEROZYGOUS_DOMINANT self.genotype = Genotypes.DOMINANT elif not self.letterOne.isupper() and not self.letterTwo.isupper(): self.expression = Expressions.HOMOZYGOUS_RECESSIVE self.genotype = Genotypes.RECESSIVE elif not self.letterOne.isupper() and self.letterTwo.isupper(): self.expression = Expressions.HETEROZYGOUS_DOMINANT self.genotype = Genotypes.DOMINANT self.__determinePhenotype() def getRandomAllele(self): rand = random.randint(0, 1) if rand: return self.letterOne else: return self.letterTwo def __determinePhenotype(self): if self.genotype == Genotypes.DOMINANT: self.phenotype = self.traitPhenotypes[self.trait]["dominant"] else: self.genotype = self.traitPhenotypes[self.trait]["recessive"] self.choices = [self.letterOne, self.letterTwo] def populateWithRandom(self): self.letterOne = random.choice(self.choices) self.letterTwo = random.choice(self.choices) if self.letterOne.isupper() and self.letterTwo.isupper(): self.expression = Expressions.HOMOZYGOUS_DOMINANT self.genotype = Genotypes.DOMINANT elif self.letterOne.isupper() and not self.letterTwo.isupper(): self.expression = Expressions.HETEROZYGOUS_DOMINANT self.genotype = Genotypes.DOMINANT elif not self.letterOne.isupper() and not self.letterTwo.isupper(): self.expression = Expressions.HOMOZYGOUS_RECESSIVE self.genotype = Genotypes.RECESSIVE elif not self.letterOne.isupper() and self.letterTwo.isupper(): self.expression = Expressions.HETEROZYGOUS_DOMINANT self.genotype = Genotypes.DOMINANT self.__determinePhenotype() def getAlleles(self): if self.letterOne and self.letterTwo: return (self.letterOne, self.letterTwo) elif self.letterOne and not self.letterTwo: return self.letterOne elif self.letterTwo and not self.letterOne: return self.letterTwo def getAllelesAsList(self): return [self.letterOne, self.letterTwo] def getPhenotype(self): return self.phenotype
GaelVaroquaux/diffusion-segmentation
spectral_embedding.py
Python
bsd-3-clause
11,610
0.006202
import numpy as np import scipy from scipy import linalg from scipy import sparse from scipy import ndimage import scipy.sparse.linalg.eigen.arpack from scipy.sparse.linalg.eigen.arpack import eigen, eigen_symmetric #from pyamg.graph import lloyd_cluster import pyamg from pyamg import smoothed_aggregation_solver from scipy.sparse.linalg import lobpcg from diffusions import _build_laplacian def spectral_embedding(adjacency): """ A diffusion reordering, but that works for negative values. """ # Normalize the graph: the sum of each set of edges must be one abs_adjacency = np.abs(adjacency) diag_weights = abs_adjacency.sum(axis=1) diag_mask = (diag_weights == 0) diag_weights
[diag_mask] = 1 d = np.sign(diag_weights)/np.sqrt(np.abs(
diag_weights)) lap = abs_adjacency*d[:, np.newaxis]*d[np.newaxis, :] lambdas, diffusion_map = linalg.eigh(lap) return lambdas, diffusion_map.T[-2::-1]*d def spectral_embedding_sparse(adjacency, k_max=14, mode='amg', take_first=True): """ A diffusion reordering, but that works for negative values. """ # Normalize the graph: the sum of each set of edges must be one diag_weights = np.array(adjacency.sum(axis=1)) diag_mask = (diag_weights == 0) diag_weights[diag_mask] = 1 dd = np.sign(diag_weights)/np.sqrt(np.abs(diag_weights)) if mode == 'bf': lambdas, diffusion_map = eigen_symmetric(adjacency, k=k_max, which='LA') print lambdas if take_first: res = diffusion_map.T[::-1]*dd.ravel() else: res = diffusion_map.T[-2::-1]*dd.ravel() elif mode == 'amg': print 'amg' sh = adjacency.shape[0] adjacency = adjacency.copy() #diag = sparse.coo_matrix((diag_weights.ravel(), (range(sh), range(sh)))) diag = sparse.eye(sh, sh) adjacency = - adjacency + diag ml = smoothed_aggregation_solver(adjacency.tocsr()) X = scipy.rand(adjacency.shape[0], k_max) #X[:, 0] = 1. / np.sqrt(adjacency.shape[0]) X[:, 0] = 1. / dd.ravel() M = ml.aspreconditioner() lambdas, diffusion_map = lobpcg(adjacency, X, M=M, tol=1.e-12, largest=False) print lambdas if take_first: res = diffusion_map.T * dd.ravel() else: res = diffusion_map.T[1:] * dd.ravel() print res.shape, dd.shape return res def modularity_embedding(adjacency, kmax=10): """ Proceedings of the fifth SIAM international conference on data mining, Smyth, A spectral clustering approach to finding communities in graphs. Return the eigenvalues of the Q matrice """ #n = len(adjacency) abs_adjacency = np.abs(adjacency) #degrees = adjacency.copy() #degrees.flat[::n+1] = 0 #degrees = degrees.sum(axis=0) #weights = 1/degrees[:, np.newaxis] * abs_adjacency #weights.flat[::n+1] = 1 weights = abs_adjacency/abs_adjacency.sum(axis=0) lambdas, maps = linalg.eig(weights) indices = np.argsort(lambdas)[::-1] print lambdas[:10] return maps.T[indices] def modularity_embedding_sparse(adjacency, kmax=10): """ Proceedings of the fifth SIAM international conference on data mining, Smyth, A spectral clustering approach to finding communities in graphs. Return the eigenvalues of the Q matrice """ if isinstance(adjacency, sparse.csc.csc_matrix): adjacency = np.array(adjacency.todense()) abs_adjacency = np.abs(adjacency) weights = abs_adjacency/abs_adjacency.sum(axis=0) weights = sparse.csc_matrix(weights) lambdas, maps = eigen(weights, \ k=kmax, which='LR') print lambdas return maps.T#[1:] def newman_clustering(adjacency, eps=1e-8): """ Newmann's spectral embedding algorithm to maximize modularity. """ n = len(adjacency) abs_adjacency = np.abs(adjacency) abs_adjacency.flat[::n+1] = 0 degrees = abs_adjacency.sum(axis=0) weights = abs_adjacency - np.dot(degrees[:, np.newaxis], degrees[np.newaxis, :])/degrees.sum() weights.flat[::n+1] = 0 weights -= np.diag(weights.sum(axis=0)) lambdas, maps = linalg.eigh(weights) if lambdas[-1] <= eps: return np.ones(n, dtype=np.int) cluster1 = maps.T[-1] >= 0 cluster2 = maps.T[-1] < 0 labels = np.zeros(n, dtype=np.int) labels[cluster1] = 2*newman_clustering(adjacency[cluster1].T[cluster1]) labels[cluster2] = (1+ 2*newman_clustering(adjacency[cluster2].T[cluster2]) ) return labels def q_score(adjacency, labels): """ Returns the Q score of a clustering. """ q = 0 """ if isinstance(adjacency, sparse.csc.csc_matrix): adjacency = np.array(adjacency.todense()) """ weights = adjacency total_weights = 0.5 * weights.sum() for label in np.unique(labels): inds = np.nonzero(labels == label)[0] a = 0.5 * (weights[inds][:, inds]).sum() b = weights[inds].sum() - a q += a/total_weights q -= 0.5*(b/total_weights) #q += weights[label == labels].T[label == labels].sum()/total_weights #q -= (weights[label == labels].sum()/total_weights)**2 return 2 * q def n_cut(adjacency, labels): """ Returns the Q score of a clustering. """ q = 0 """ if isinstance(adjacency, sparse.csc.csc_matrix): adjacency = np.array(adjacency.todense()) """ weights = adjacency total_weights = 0.5 * weights.sum() for label in np.unique(labels): inds = np.nonzero(labels == label)[0] a = (weights[inds][:, inds]).sum() b = weights[inds].sum() q += (b - a)/b return - q def best_k_means(k, maps, adjacency, n_bst=10): from nipy.neurospin.clustering.clustering import _kmeans best_score = -np.inf for _ in range(n_bst): print "doing kmeans" _, labels, _ = _kmeans(maps, nbclusters=k) score2 = q_score(adjacency, labels) score = n_cut(adjacency, labels) if score > best_score: best_score = score best_score2 = score2 best_labels = labels return best_labels, best_score2 #best_score def communities_clustering(adjacency, k_best=None, n_bst=2): adjacency = np.abs(adjacency) n_features = adjacency.shape[0] adjacency.flat[::n_features+1] = 0 maps = modularity_embedding(adjacency) scores = dict() if k_best is None: #for k in range(2, .3*n_features): for k in range(2, 6): this_maps = maps[:k-1].T.copy() labels, score = best_k_means(k, this_maps, adjacency, n_bst=n_bst) scores[k] = score print scores[k] k_best = scores.keys()[np.argmax(scores.values())] this_maps = maps[:k_best-1].T.copy() labels, score = best_k_means(k_best, this_maps, adjacency, n_bst=5*n_bst) print 'Final : k=%i, score=%s' % (k_best, score) return labels def communities_clustering_sparse(adjacency, k_best=None, k_min=2, k_max=8, n_bst=4, mode='bf', take_first=False): maps = spectral_embedding_sparse(adjacency, k_max=k_max+2, mode=mode, \ take_first=take_first) scores = dict() res = dict() if k_best is None: for k in range(k_min, k_max + 1): this_maps = maps[:k - 1].T.copy() labels, score = best_k_means(k, this_maps, adjacency, n_bst=n_bst) scores[k] = score print scores[k] res[k] = labels #k_best = scores.keys()[np.argmax(scores.values())] else: this_maps = maps[:k_best - 1].T.copy() res, scores = best_k_means(k_best, this_maps, adjacency, n_bst=4*n_bst) print 'Final : k=%i, score=%s' % (k_best, scores) return res, scores def separate_in_regions(data, mask=None, k_best=None, k_min=2, k_max=8, \ center=None, only_connex=True, n_times=4,\ take_first=True, beta=10, mode='bf'): """ Separate an image i
googleapis/python-retail
google/cloud/retail_v2/services/search_service/__init__.py
Python
apache-2.0
765
0
# -*- coding:
utf-8 -*- # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a cop
y of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from .client import SearchServiceClient from .async_client import SearchServiceAsyncClient __all__ = ( "SearchServiceClient", "SearchServiceAsyncClient", )
StackStorm/mistral
mistral/tests/unit/engine/test_action_defaults.py
Python
apache-2.0
6,915
0
# Copyright 2015 - StackStorm, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import mock from oslo_config import cfg import requests from mistral.actions import std_actions from mistral.db.v2 import api as db_api from mistral.services import workflows as wf_service from mistral.tests.unit import base as test_base from mistral.tests.unit.engine import base from mistral.workflow import states # Use the set_default method to set value otherwise in certain t
est cases # the change in value is not perma
nent. cfg.CONF.set_default('auth_enable', False, group='pecan') ENV = { '__actions': { 'std.http': { 'auth': 'librarian:password123', 'timeout': 30, } } } EXPECTED_ENV_AUTH = ('librarian', 'password123') WORKFLOW1 = """ --- version: "2.0" wf1: type: direct tasks: task1: action: std.http url="https://api.library.org/books" publish: result: <% $ %> """ WORKFLOW2 = """ --- version: "2.0" wf2: type: direct tasks: task1: action: std.http url="https://api.library.org/books" timeout=60 publish: result: <% $ %> """ WORKFLOW1_WITH_ITEMS = """ --- version: "2.0" wf1_with_items: type: direct input: - links tasks: task1: with-items: link in <% $.links %> action: std.http url=<% $.link %> publish: result: <% $ %> """ WORKFLOW2_WITH_ITEMS = """ --- version: "2.0" wf2_with_items: type: direct input: - links tasks: task1: with-items: link in <% $.links %> action: std.http url=<% $.link %> timeout=60 publish: result: <% $ %> """ class ActionDefaultTest(base.EngineTestCase): @mock.patch.object( requests, 'request', mock.MagicMock(return_value=test_base.FakeHTTPResponse('', 200, 'OK'))) @mock.patch.object( std_actions.HTTPAction, 'is_sync', mock.MagicMock(return_value=True)) def test_action_defaults_from_env(self): wf_service.create_workflows(WORKFLOW1) wf_ex = self.engine.start_workflow('wf1', env=ENV) self.await_workflow_success(wf_ex.id) with db_api.transaction(): wf_ex = db_api.get_workflow_execution(wf_ex.id) self.assertEqual(states.SUCCESS, wf_ex.state) self._assert_single_item(wf_ex.task_executions, name='task1') requests.request.assert_called_with( 'GET', 'https://api.library.org/books', params=None, data=None, headers=None, cookies=None, allow_redirects=None, proxies=None, verify=None, auth=EXPECTED_ENV_AUTH, timeout=ENV['__actions']['std.http']['timeout']) @mock.patch.object( requests, 'request', mock.MagicMock(return_value=test_base.FakeHTTPResponse('', 200, 'OK'))) @mock.patch.object( std_actions.HTTPAction, 'is_sync', mock.MagicMock(return_value=True)) def test_action_defaults_from_env_not_applied(self): wf_service.create_workflows(WORKFLOW2) wf_ex = self.engine.start_workflow('wf2', env=ENV) self.await_workflow_success(wf_ex.id) with db_api.transaction(): wf_ex = db_api.get_workflow_execution(wf_ex.id) self.assertEqual(states.SUCCESS, wf_ex.state) self._assert_single_item(wf_ex.task_executions, name='task1') requests.request.assert_called_with( 'GET', 'https://api.library.org/books', params=None, data=None, headers=None, cookies=None, allow_redirects=None, proxies=None, verify=None, auth=EXPECTED_ENV_AUTH, timeout=60 ) @mock.patch.object( requests, 'request', mock.MagicMock(return_value=test_base.FakeHTTPResponse('', 200, 'OK'))) @mock.patch.object( std_actions.HTTPAction, 'is_sync', mock.MagicMock(return_value=True)) def test_with_items_action_defaults_from_env(self): wf_service.create_workflows(WORKFLOW1_WITH_ITEMS) wf_input = { 'links': [ 'https://api.library.org/books', 'https://api.library.org/authors' ] } wf_ex = self.engine.start_workflow( 'wf1_with_items', wf_input=wf_input, env=ENV ) self.await_workflow_success(wf_ex.id) with db_api.transaction(): wf_ex = db_api.get_workflow_execution(wf_ex.id) self.assertEqual(states.SUCCESS, wf_ex.state) self._assert_single_item(wf_ex.task_executions, name='task1') calls = [mock.call('GET', url, params=None, data=None, headers=None, cookies=None, allow_redirects=None, proxies=None, auth=EXPECTED_ENV_AUTH, verify=None, timeout=ENV['__actions']['std.http']['timeout']) for url in wf_input['links']] requests.request.assert_has_calls(calls, any_order=True) @mock.patch.object( requests, 'request', mock.MagicMock(return_value=test_base.FakeHTTPResponse('', 200, 'OK'))) @mock.patch.object( std_actions.HTTPAction, 'is_sync', mock.MagicMock(return_value=True)) def test_with_items_action_defaults_from_env_not_applied(self): wf_service.create_workflows(WORKFLOW2_WITH_ITEMS) wf_input = { 'links': [ 'https://api.library.org/books', 'https://api.library.org/authors' ] } wf_ex = self.engine.start_workflow( 'wf2_with_items', wf_input=wf_input, env=ENV ) self.await_workflow_success(wf_ex.id) with db_api.transaction(): wf_ex = db_api.get_workflow_execution(wf_ex.id) self.assertEqual(states.SUCCESS, wf_ex.state) self._assert_single_item(wf_ex.task_executions, name='task1') calls = [mock.call('GET', url, params=None, data=None, headers=None, cookies=None, allow_redirects=None, proxies=None, auth=EXPECTED_ENV_AUTH, verify=None, timeout=60) for url in wf_input['links']] requests.request.assert_has_calls(calls, any_order=True)
rodxavier/open-pse-initiative
django_project/companies/models.py
Python
mit
2,705
0.004806
from datetime import datetime, timedelta from django.db import models from django.db.models import Max, Min from tinymce.models import HTMLField class Company(models.Model): name = models.CharField(max_length=75, blank=True, null=True) symbol = models.CharField(max_length=10, blank=True, null=True) description = HTMLField(blank=True, null=True, default='') listing_date = models.DateField(blank=True, null=True) renamed_to = models.ForeignKey('self', blank=True, null=True, default=None, related_name='renamed_from') order = models.IntegerField(blank=True, default=0) is_index = models.BooleanField(blank=True, default=False) is_currently_listed = models.BooleanField(blank=True, default=True) is_suspended = models.BooleanField(blank=True, default=False) created_datetime = models.DateTimeField(auto_now_add=True) updated_datetime = models.DateTimeField(auto_now=True) class Meta: ordering = ('symbol',) verbose_name = 'Company' verbose_name_plural = 'Companies' def __unicode__(self): return self.symbol if self.symbol is not None else self.name def __str__(self): return self.symbol if self.symbol is not None else self.name @propert
y def readable_name(self): if self.is_index: return self.name[1:] else: return self.name @property def year_high(self): today = datetime.now() one_year = timedelta(days=52*7) if today.isoweekday() == 6: today = today - timedelta(days=1) elif today.isoweekday() == 7: today = today - tim
edelta(days=2) last_year = today - one_year quotes = self.quote_set.filter(quote_date__gt=last_year) if quotes.count() == 0: return 0.0 year_high = quotes.aggregate(Max('price_high')) return ('%f' % year_high['price_high__max']).rstrip('0').rstrip('.') @property def year_low(self): today = datetime.now() one_year = timedelta(days=52*7) if today.isoweekday() == 6: today = today - timedelta(days=1) elif today.isoweekday() == 7: today = today - timedelta(days=2) last_year = today - one_year quotes = self.quote_set.filter(quote_date__gt=last_year) if quotes.count() == 0: return 0.0 year_low = quotes.aggregate(Min('price_low')) return ('%f' % year_low['price_low__min']).rstrip('0').rstrip('.') @property def last_thirty_quotes(self): quotes = self.quote_set.order_by('-quote_date')[:30] return quotes
springload/draftjs_exporter
draftjs_exporter/defaults.py
Python
mit
1,811
0
from draftjs_exporter.constants import BLOCK_TYPE
S, INLINE_STYLES from draftjs_exporter.dom import DOM from draftjs_exporter.types import Element, Props def render_children(props: Props) -> Element: """ Renders the children of a component w
ithout any specific markup for the component itself. """ return props["children"] def code_block(props: Props) -> Element: return DOM.create_element( "pre", {}, DOM.create_element("code", {}, props["children"]) ) # Default block map to extend. BLOCK_MAP = { BLOCK_TYPES.UNSTYLED: "p", BLOCK_TYPES.HEADER_ONE: "h1", BLOCK_TYPES.HEADER_TWO: "h2", BLOCK_TYPES.HEADER_THREE: "h3", BLOCK_TYPES.HEADER_FOUR: "h4", BLOCK_TYPES.HEADER_FIVE: "h5", BLOCK_TYPES.HEADER_SIX: "h6", BLOCK_TYPES.UNORDERED_LIST_ITEM: {"element": "li", "wrapper": "ul"}, BLOCK_TYPES.ORDERED_LIST_ITEM: {"element": "li", "wrapper": "ol"}, BLOCK_TYPES.BLOCKQUOTE: "blockquote", BLOCK_TYPES.PRE: "pre", BLOCK_TYPES.CODE: code_block, BLOCK_TYPES.ATOMIC: render_children, } # Default style map to extend. # Tags come from https://developer.mozilla.org/en-US/docs/Web/HTML/Element. # and are loosely aligned with https://github.com/jpuri/draftjs-to-html. # Only styles that map to HTML elements are allowed as defaults. STYLE_MAP = { INLINE_STYLES.BOLD: "strong", INLINE_STYLES.CODE: "code", INLINE_STYLES.ITALIC: "em", INLINE_STYLES.UNDERLINE: "u", INLINE_STYLES.STRIKETHROUGH: "s", INLINE_STYLES.SUPERSCRIPT: "sup", INLINE_STYLES.SUBSCRIPT: "sub", INLINE_STYLES.MARK: "mark", INLINE_STYLES.QUOTATION: "q", INLINE_STYLES.SMALL: "small", INLINE_STYLES.SAMPLE: "samp", INLINE_STYLES.INSERT: "ins", INLINE_STYLES.DELETE: "del", INLINE_STYLES.KEYBOARD: "kbd", }
rdhyee/waterbutler
tests/providers/s3/test_provider.py
Python
apache-2.0
33,061
0.001936
import os import io import time import base64 import hashlib import aiohttpretty from http import client from urllib import parse from unittest import mock import pytest from waterbutler.core import (streams, metadata, exceptions) from waterbutler.providers.s3 import S3Provider from waterbutler.core.path import WaterButlerPath from tests.utils import MockCoroutine from tests.providers.s3.fixtures import ( auth, credentials, settings, file_content, folder_metadata, folder_single_item_metadata, folder_item_metadata, version_metadata, single_version_metadata, folder_metadata, folder_and_contents, folder_empty_metadata, file_header_metadata, file_metadata_headers_object, file_metadata_object, folder_key_metadata_object, revision_metadata_object ) @pytest.fixture def mock_time(monkeypatch): mock_time = mock.Mock(return_value=1454684930.0) monkeypatch.setattr(time, 'time', mock_time) @pytest.fixture def provider(auth, credentials, settings): provider = S3Provider(auth, credentials, settings) provider._check_region = MockCoroutine() return provider @pytest.fixture def file_like(file_content): return io.BytesIO(file_content) @pytest.fixture def file_stream(file_like): return streams.FileStreamReader(file_like) def location_response(location): return ( '<?xml version="1.0" encoding="UTF-8"?>\n' '<LocationConstraint xmlns="http://s3.amazonaws.com/doc/2006-03-01/">' '{}</LocationConstraint>' ).format(location) def list_objects_response(keys, truncated=False): response = '''<?xml version="1.0" encoding="UTF-8"?> <ListBucketResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <Name>bucket</Name> <Prefix/> <Marker/> <MaxKeys>1000</MaxKeys>''' response += '<IsTruncated>' + str(truncated).lower() + '</IsTruncated>' response += ''.join(map( lambda x: '<Contents><Key>{}</Key></Contents>'.format(x), keys )) response += '</ListBucketResult>' return response.encode('utf-8')
def bulk_delete_body(keys): payload = '<?xml version="1.0" encoding="UTF-8"?>' payload += '<Delete>' payload += ''.join(map( lambda x: '<Object><Key>{}</Key></Object>'.format(x), keys ))
payload += '</Delete>' payload = payload.encode('utf-8') md5 = base64.b64encode(hashlib.md5(payload).digest()) headers = { 'Content-Length': str(len(payload)), 'Content-MD5': md5.decode('ascii'), 'Content-Type': 'text/xml', } return (payload, headers) def build_folder_params(path): return {'prefix': path.path, 'delimiter': '/'} class TestRegionDetection: @pytest.mark.asyncio @pytest.mark.aiohttpretty @pytest.mark.parametrize("region_name,host", [ ('', 's3.amazonaws.com'), ('EU', 's3-eu-west-1.amazonaws.com'), ('us-east-2', 's3-us-east-2.amazonaws.com'), ('us-west-1', 's3-us-west-1.amazonaws.com'), ('us-west-2', 's3-us-west-2.amazonaws.com'), ('ca-central-1', 's3-ca-central-1.amazonaws.com'), ('eu-central-1', 's3-eu-central-1.amazonaws.com'), ('eu-west-2', 's3-eu-west-2.amazonaws.com'), ('ap-northeast-1', 's3-ap-northeast-1.amazonaws.com'), ('ap-northeast-2', 's3-ap-northeast-2.amazonaws.com'), ('ap-south-1', 's3-ap-south-1.amazonaws.com'), ('ap-southeast-1', 's3-ap-southeast-1.amazonaws.com'), ('ap-southeast-2', 's3-ap-southeast-2.amazonaws.com'), ('sa-east-1', 's3-sa-east-1.amazonaws.com'), ]) async def test_region_host(self, auth, credentials, settings, region_name, host, mock_time): provider = S3Provider(auth, credentials, settings) orig_host = provider.connection.host region_url = provider.bucket.generate_url( 100, 'GET', query_parameters={'location': ''}, ) aiohttpretty.register_uri('GET', region_url, status=200, body=location_response(region_name)) await provider._check_region() assert provider.connection.host == host class TestValidatePath: @pytest.mark.asyncio @pytest.mark.aiohttpretty async def test_validate_v1_path_file(self, provider, file_header_metadata, mock_time): file_path = 'foobah' params = {'prefix': '/' + file_path + '/', 'delimiter': '/'} good_metadata_url = provider.bucket.new_key('/' + file_path).generate_url(100, 'HEAD') bad_metadata_url = provider.bucket.generate_url(100) aiohttpretty.register_uri('HEAD', good_metadata_url, headers=file_header_metadata) aiohttpretty.register_uri('GET', bad_metadata_url, params=params, status=404) assert WaterButlerPath('/') == await provider.validate_v1_path('/') try: wb_path_v1 = await provider.validate_v1_path('/' + file_path) except Exception as exc: pytest.fail(str(exc)) with pytest.raises(exceptions.NotFoundError) as exc: await provider.validate_v1_path('/' + file_path + '/') assert exc.value.code == client.NOT_FOUND wb_path_v0 = await provider.validate_path('/' + file_path) assert wb_path_v1 == wb_path_v0 @pytest.mark.asyncio @pytest.mark.aiohttpretty async def test_validate_v1_path_folder(self, provider, folder_metadata, mock_time): folder_path = 'Photos' params = {'prefix': '/' + folder_path + '/', 'delimiter': '/'} good_metadata_url = provider.bucket.generate_url(100) bad_metadata_url = provider.bucket.new_key('/' + folder_path).generate_url(100, 'HEAD') aiohttpretty.register_uri( 'GET', good_metadata_url, params=params, body=folder_metadata, headers={'Content-Type': 'application/xml'} ) aiohttpretty.register_uri('HEAD', bad_metadata_url, status=404) try: wb_path_v1 = await provider.validate_v1_path('/' + folder_path + '/') except Exception as exc: pytest.fail(str(exc)) with pytest.raises(exceptions.NotFoundError) as exc: await provider.validate_v1_path('/' + folder_path) assert exc.value.code == client.NOT_FOUND wb_path_v0 = await provider.validate_path('/' + folder_path + '/') assert wb_path_v1 == wb_path_v0 @pytest.mark.asyncio async def test_normal_name(self, provider, mock_time): path = await provider.validate_path('/this/is/a/path.txt') assert path.name == 'path.txt' assert path.parent.name == 'a' assert path.is_file assert not path.is_dir assert not path.is_root @pytest.mark.asyncio async def test_folder(self, provider, mock_time): path = await provider.validate_path('/this/is/a/folder/') assert path.name == 'folder' assert path.parent.name == 'a' assert not path.is_file assert path.is_dir assert not path.is_root @pytest.mark.asyncio async def test_root(self, provider, mock_time): path = await provider.validate_path('/this/is/a/folder/') assert path.name == 'folder' assert path.parent.name == 'a' assert not path.is_file assert path.is_dir assert not path.is_root class TestCRUD: @pytest.mark.asyncio @pytest.mark.aiohttpretty async def test_download(self, provider, mock_time): path = WaterButlerPath('/muhtriangle') response_headers = {'response-content-disposition': 'attachment'} url = provider.bucket.new_key(path.path).generate_url(100, response_headers=response_headers) aiohttpretty.register_uri('GET', url, body=b'delicious', auto_length=True) result = await provider.download(path) content = await result.read() assert content == b
ychab/mymoney
mymoney/apps/banktransactions/migrations/0001_initial.py
Python
bsd-3-clause
2,559
0.004689
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import datetime import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('bankaccounts', '0001_initial'), ('banktransactiontags', '0001_initial'), ] operations = [ migrations.CreateModel( name='BankTransaction', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('label', models.CharField(max_length=255, verbose_name='Label')), ('date', models.DateField(verbose_name='Date', default=datetime.date.today)), ('amount', models.DecimalField(max_digits=10, verbose_name='Amount', decimal_places=2)), ('currency', models.CharField(editable=False, max_length=3, verbose_name='Currency')), ('status', models.CharField(max_length=32, default='active', verbose_name='Status', help_text='Depending on its value, determine whether it could alter the bank account balance or being used by statistics.', choices=[('active', 'Active'), ('ignored', 'Ignored'), ('inactive', 'Inactive')])), ('reconciled', models.BooleanField(verbose_name='Reconciled', help_text='Whether the bank transaction has been applied on the real bank account.', default=False)), ('payment_method', models.CharField(max_length=32, default='credit_card', verbose_name='Payment method', choices=[('credit_card', 'Credit card'), ('cash', 'Cash'), ('transfer', 'Transfer'), ('transfer_internal', 'Transfer internal'), ('check', 'Check')])), ('memo', models.TextField(blank=True, verbose_name='Memo')), ('scheduled', models.BooleanField(editable=False, default=False)), ('bankaccoun
t', models.ForeignKey(to='bankaccounts.BankAccount', related_name='banktransactions', on_delete=models.CASCADE)), ('tag', models.ForeignKey(related_name='banktransactions', on_delete=django.db.models.deletion.SET_NULL, verbose_name='Tag', to='banktransactiontags.BankTransactionTag', blank=True, null=True)), ], options={ 'get_latest_by': 'date', 'db_table': 'banktransactions', }, ),
migrations.AlterIndexTogether( name='banktransaction', index_together=set([('bankaccount', 'reconciled'), ('bankaccount', 'date'), ('bankaccount', 'amount')]), ), ]
intelxed/mbuild
mbuild/doxygen.py
Python
apache-2.0
12,057
0.015012
#!/usr/bin/env python # -*- python -*- #BEGIN_LEGAL # #Copyright (c) 2016 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # #END_LEGAL ############################################################################ ## START OF IMPORTS SETUP ############################################################################ import sys import os import re import copy import glob import types try: from . import base from . import dag from . import util from . import plan except: s = "\nXED ERROR: mfile.py could not find mbuild." + \ " Should be a sibling of the xed2 directory.\n\n" sys.stderr.write(s) sys.exit(1) ########################################################################### ## DOXYGEN SUPPORT ########################################################################### def _doxygen_version_okay(s, want_major, want_minor, want_fix): values = s.split('.') maj =int(values[0]) minor = int(values[1]) fix = 0 if len(values) > 2: # remove everything after the dash for things like: 'Doxygen # 1.5.1-p1' values[2] = re.sub(r'-.*$','',values[2]) try: fix = int(values[2]) except ValueError as v: pass if (maj > 1) or \ (maj == want_major and minor > want_minor) or \ (maj == want_major and minor == want_minor and fix >= want_fix): return True return False def _find_doxygen(env): """Find the right version of doxygen. Return a tuple of the command name and a boolean indicating whether or not the version checked out.""" if env['doxygen_cmd'] == '': doxygen_cmd_intel = "/usr/intel/bin/doxygen" doxygen_cmd_cygwin = "C:/cygwin/bin/doxygen" doxygen_cmd_mac = \ "/Applications/Doxygen.app/Contents/Resources/doxygen" doxygen_cmd = "doxygen" if env['build_os'] == 'win': if os.path.exists(doxygen_cmd_cygwin): doxygen_cmd = doxygen_cmd_cygwin else: base.msgb('DOXYGEN',"Could not find cygwin's doxygen," + "trying doxygen from PATH") elif env['build_os'] == 'lin': if base.verbose(2): base.msgb("CHECKING FOR", doxygen_cmd_intel) if os.path.exists(doxygen_cmd_intel): doxygen_cmd = doxygen_cmd_intel elif env['build_os'] == 'mac': if base.verbose(2): base.msgb("CHECKING FOR", doxygen_cmd_mac) if os.path.exists(doxygen_cmd_mac): doxygen_cmd = doxygen_cmd_mac else: doxygen_cmd = env['doxygen_cmd'] doxygen_cmd = env.escape_string(doxygen_cmd) doxygen_okay = False if base.verbose(2): base.msgb('Checking doxygen version','...') if base.check_python_version(2,4): try: (retval, output, error_output) = \ util.run_command(doxygen_cmd + " --version") if retval==0:
if len(output) > 0: first_line = output[0].strip() if base.verbose(2): base.msgb("Doxygen version", first_line) d
oxygen_okay = _doxygen_version_okay(first_line, 1,4,6) else: for o in output: base.msgb("Doxygen-version-check STDOUT", o) if error_output: for line in error_output: base.msgb("STDERR ",line.rstrip()) except: base.die("Doxygen required by the command line options " + "but no doxygen found") return (doxygen_cmd, doxygen_okay) def _replace_match(istring, mtch, newstring, group_name): """This is a lame way of avoiding regular expression backslashing issues""" x1= mtch.start(group_name) x2= mtch.end(group_name) ostring = istring[0:x1] + newstring + istring[x2:] return ostring def _customize_doxygen_file(env, subs): """Change the $(*) strings to the proper value in the config file. Returns True on success""" # doxygen wants quotes around paths with spaces for k,s in iter(subs.items()): if re.search(' ',s): if not re.search('^".*"$',s): base.die("Doxygen requires quotes around strings with spaces: [%s]->[%s]" % ( k,s)) return False # input and output files try: lines = open(env['doxygen_config']).readlines() except: base.msgb("Could not open input file: " + env['doxygen_config']) return False env['doxygen_config_customized'] = \ env.build_dir_join(os.path.basename(env['doxygen_config']) + '.customized') try: ofile = open(env['doxygen_config_customized'],'w') except: base.msgb("Could not open output file: " + env['doxygen_config_customized']) return False # compile the patterns rsubs = {} for k,v in iter(subs.items()): rsubs[k]=re.compile(r'(?P<tag>[$][(]' + k + '[)])') olines = [] for line in lines: oline = line for k,p in iter(rsubs.items()): #print ('searching for', k, 'to replace it with', subs[k]) m = p.search(oline) while m: #print ('replacing', k, 'with', subs[k]) oline = _replace_match(oline, m, subs[k], 'tag') m = p.search(oline) olines.append(oline) try: for line in olines: ofile.write(line) except: ofile.close() base.msgb("Could not write output file: " + env['doxygen_config_customized']) return False ofile.close() return True def _build_doxygen_main(args, env): """Customize the doxygen input file. Run the doxygen command, copy in any images, and put the output in the right place.""" if isinstance(args, list): if len(args) < 2: base.die("Need subs dictionary and dummy file arg for the doxygen command " + "to indicate its processing") else: base.die("Need a list for _build_doxygen_main with the subs " + "dictionary and the dummy file name") (subs,dummy_file) = args (doxygen_cmd, doxygen_okay) = _find_doxygen(env) if not doxygen_okay: msg = 'No good doxygen available on this system; ' + \ 'Your command line arguments\n\trequire it to be present. ' + \ 'Consider dropping the "doc" and "doc-build" options\n\t or ' + \ 'specify a path to doxygen with the --doxygen knob.\n\n\n' return (1, [msg]) # failure else: env['DOXYGEN'] = doxygen_cmd try: okay = _customize_doxygen_file(env, subs) except: base.die("CUSTOMIZE DOXYGEN INPUT FILE FAILED") if not okay: return (1, ['Doxygen customization failed']) cmd = env['DOXYGEN'] + ' ' + \ env.escape_string(env['doxygen_config_customized']) if base.verbose(2): base.msgb("RUN DOXYGEN", cmd) (retval, output, error_output) = util.run_command(cmd) for line in output: base.msgb("DOX",line.rstrip()) if error_output: for line in error_output: base.msgb("DOX-ERROR",line.rstrip()) if retval != 0: base.msgb("DOXYGEN FAILED") base.die("Doxygen run failed. Retval=", str(retval)) util.touch(dummy_file) base.msgb("DOXYGEN","succeeded") return (0, []) # success ########################################################################### # Dox
Ebag333/Pyfa
eos/effects/systemoverloadhardening.py
Python
gpl-3.0
406
0.004926
# systemOverloadHardening # # Used by: # Celestials named like: Red Giant Beacon Class (6 of 6) runTime = "
early" type = ("projected", "passive") def handler(fit, module, context): fit.modules.filteredItemMultiply(lambda mod: "overloadHardeningBonus" in mod.itemModifiedAttributes, "overloadHardeningBonus", module.getModifiedItemAttr("o
verloadBonusMultiplier"))
frac/celery
examples/celery_http_gateway/settings.py
Python
bsd-3-clause
2,931
0.000341
# Django settings for celery_http_gateway project. DEBUG = True TEMPLATE_DEBUG = DEBUG CARROT_BACKEND = "amqp" CELERY_RESULT_BACKEND = "database" BROKER_HOST = "localhost" BROKER_VHOST = "/" BROKER_USER = "guest" BROKER_PASSWORD = "guest" ADMINS = ( # ('Your Name', 'your_email@domain.com'), ) MANAGERS = ADMINS # 'postgresql_psycopg2', 'postgresql', 'mysql', 'sqlite3' or 'oracle'. DATABASE_ENGINE = 'sqlite3' # path to database file if using sqlite3. DATABASE_NAME = 'development.db' # Not used with sqlite3. DATABASE_USER = '' # Not used with sqlite3. DATABASE_PASSWORD = '' # Set to empty string for localhost. Not used with sqlite3. DATABASE_HOST = '' # Set to empty string for default. Not used with sqlite3. DATABASE_PORT = '' # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = 'America/Chicago' # Language code for this installation. All choices c
an be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the inter
nationalization machinery. USE_I18N = True # Absolute path to the directory that holds media. # Example: "/home/media/media.lawrence.com/" MEDIA_ROOT = '' # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash if there is a path component (optional in other cases). # Examples: "http://media.lawrence.com", "http://example.com/media/" MEDIA_URL = '' # URL prefix for admin media -- CSS, JavaScript and images. Make sure to use a # trailing slash. # Examples: "http://foo.com/media/", "/media/". ADMIN_MEDIA_PREFIX = '/media/' # Make this unique, and don't share it with anybody. SECRET_KEY = '#1i=edpk55k3781$z-p%b#dbn&n+-rtt83pgz2o9o)v8g7(owq' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.load_template_source', 'django.template.loaders.app_directories.load_template_source', # 'django.template.loaders.eggs.load_template_source', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', ) ROOT_URLCONF = 'celery_http_gateway.urls' TEMPLATE_DIRS = ( # Put strings here, like "/home/html/django_templates" or # "C:/www/django/templates". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'djcelery', )