Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
json
Languages:
English
Size:
10M - 100M
License:
File size: 3,593 Bytes
930a269 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
---
license: mit
task_categories:
- text-classification
language:
- en
tags:
- classification,
- sentiment-analysis,
- binary-classification,
- complex-text
- jsonl
size_categories:
- 100K<n<1M
---
Excellent — congrats on getting the repo ready 🚀
Here’s a **professional Hugging Face Dataset Card (README.md)** you can paste directly into your repository.
This is written to match HF best practices and serious research usage.
---
# 📘 README.md
👉 Copy everything below into your `README.md`
---
# Sentiment-Analysis-Complex
## 🧠 Overview
**Sentiment-Analysis-Complex** is a large-scale synthetic sentiment analysis dataset designed for benchmarking modern NLP models under long-context, noisy, and semi-structured text conditions.
The dataset contains **10 million labeled samples** with:
* Long text sequences (**20–40 tokens per sample**)
* Grammar-based sentence construction
* Internet slang and hashtags
* Rich vocabulary diversity
* Balanced binary sentiment labels
It is optimized for:
* Transformer benchmarking
* Tokenizer stress testing
* Long-context modeling
* Robustness evaluation
* Large-scale NLP pipelines
---
## 📦 Dataset Structure
```
Sentiment-Analysis-Complex/
├── train.jsonl (8,000,000 samples)
├── test.jsonl (2,000,000 samples)
└── README.md
```
Split ratio:
* **Train:** 80%
* **Test:** 20%
---
## 🧾 Data Format
Each line is a JSON object:
```json
{
"id": 123456,
"text": "I really love how this system consistently delivers smooth reliable performance and scalable architecture with intuitive workflow and strong documentation lol #innovation",
"label": "positive"
}
```
### Fields
| Field | Type | Description |
| ------- | ------- | ---------------------------------------- |
| `id` | Integer | Unique sample identifier |
| `text` | String | Input sentence (20–40 tokens) |
| `label` | String | Sentiment class (`positive`, `negative`) |
Encoding: UTF-8 (emoji and special characters supported)
---
## 📊 Dataset Characteristics
* ✔️ Total samples: **10,000,000**
* ✔️ Classes: **positive / negative (balanced)**
* ✔️ Sequence length: **20–40 tokens**
* ✔️ Vocabulary size: ~300+ words
* ✔️ Includes slang and hashtags
* ✔️ Grammar-driven generation
* ✔️ Streaming-friendly JSONL format
---
## 🔬 Intended Use
This dataset is suitable for:
* Sentiment classification benchmarking
* Large-scale training pipelines
* Tokenization analysis
* Long-context modeling experiments
* Data loading stress tests
* Distributed training validation
* Synthetic NLP research
---
## ⚠️ Limitations
* Synthetic text — not reflective of natural human distribution.
* Limited semantic depth and discourse structure.
* No real-world bias modeling.
* No multilingual coverage (English only).
* No sarcasm or pragmatic reasoning.
Not recommended for production sentiment systems.
---
## 🤗 How to Load
```python
from datasets import load_dataset
dataset = load_dataset("NNEngine/Sentiment-Analysis-Complex")
print(dataset)
```
Streaming mode:
```python
dataset = load_dataset(
"NNEngine/Sentiment-Analysis-Complex",
streaming=True
)
```
---
## 🏷️ Tags
```
sentiment-analysis
nlp
synthetic-data
large-scale
text-classification
benchmark
huggingface-dataset
long-context
```
---
## 📜 License
MIT License
Free for research, education, and experimentation.
---
## ✨ Author
Created by **NNEngine** for large-scale NLP benchmarking and experimentation.
--- |