File size: 3,593 Bytes
930a269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
---
license: mit
task_categories:
- text-classification
language:
- en
tags:
- classification,
- sentiment-analysis,
- binary-classification,
- complex-text
- jsonl
size_categories:
- 100K<n<1M
---
Excellent — congrats on getting the repo ready 🚀
Here’s a **professional Hugging Face Dataset Card (README.md)** you can paste directly into your repository.

This is written to match HF best practices and serious research usage.

---

# 📘 README.md

👉 Copy everything below into your `README.md`

---

# Sentiment-Analysis-Complex

## 🧠 Overview

**Sentiment-Analysis-Complex** is a large-scale synthetic sentiment analysis dataset designed for benchmarking modern NLP models under long-context, noisy, and semi-structured text conditions.

The dataset contains **10 million labeled samples** with:

* Long text sequences (**20–40 tokens per sample**)
* Grammar-based sentence construction
* Internet slang and hashtags
* Rich vocabulary diversity
* Balanced binary sentiment labels

It is optimized for:

* Transformer benchmarking
* Tokenizer stress testing
* Long-context modeling
* Robustness evaluation
* Large-scale NLP pipelines

---

## 📦 Dataset Structure

```
Sentiment-Analysis-Complex/
 ├── train.jsonl   (8,000,000 samples)
 ├── test.jsonl    (2,000,000 samples)
 └── README.md
```

Split ratio:

* **Train:** 80%
* **Test:** 20%

---

## 🧾 Data Format

Each line is a JSON object:

```json
{
  "id": 123456,
  "text": "I really love how this system consistently delivers smooth reliable performance and scalable architecture with intuitive workflow and strong documentation lol #innovation",
  "label": "positive"
}
```

### Fields

| Field   | Type    | Description                              |
| ------- | ------- | ---------------------------------------- |
| `id`    | Integer | Unique sample identifier                 |
| `text`  | String  | Input sentence (20–40 tokens)            |
| `label` | String  | Sentiment class (`positive`, `negative`) |

Encoding: UTF-8 (emoji and special characters supported)

---

## 📊 Dataset Characteristics

* ✔️ Total samples: **10,000,000**
* ✔️ Classes: **positive / negative (balanced)**
* ✔️ Sequence length: **20–40 tokens**
* ✔️ Vocabulary size: ~300+ words
* ✔️ Includes slang and hashtags
* ✔️ Grammar-driven generation
* ✔️ Streaming-friendly JSONL format

---

## 🔬 Intended Use

This dataset is suitable for:

* Sentiment classification benchmarking
* Large-scale training pipelines
* Tokenization analysis
* Long-context modeling experiments
* Data loading stress tests
* Distributed training validation
* Synthetic NLP research

---

## ⚠️ Limitations

* Synthetic text — not reflective of natural human distribution.
* Limited semantic depth and discourse structure.
* No real-world bias modeling.
* No multilingual coverage (English only).
* No sarcasm or pragmatic reasoning.

Not recommended for production sentiment systems.

---

## 🤗 How to Load

```python
from datasets import load_dataset

dataset = load_dataset("NNEngine/Sentiment-Analysis-Complex")
print(dataset)
```

Streaming mode:

```python
dataset = load_dataset(
    "NNEngine/Sentiment-Analysis-Complex",
    streaming=True
)
```

---

## 🏷️ Tags

```
sentiment-analysis
nlp
synthetic-data
large-scale
text-classification
benchmark
huggingface-dataset
long-context
```

---

## 📜 License

MIT License
Free for research, education, and experimentation.

---

## ✨ Author

Created by **NNEngine** for large-scale NLP benchmarking and experimentation.

---