Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
json
Languages:
English
Size:
10M - 100M
License:
Create README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,177 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
task_categories:
|
| 4 |
+
- text-classification
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
tags:
|
| 8 |
+
- classification,
|
| 9 |
+
- sentiment-analysis,
|
| 10 |
+
- binary-classification,
|
| 11 |
+
- complex-text
|
| 12 |
+
- jsonl
|
| 13 |
+
size_categories:
|
| 14 |
+
- 100K<n<1M
|
| 15 |
+
---
|
| 16 |
+
Excellent — congrats on getting the repo ready 🚀
|
| 17 |
+
Here’s a **professional Hugging Face Dataset Card (README.md)** you can paste directly into your repository.
|
| 18 |
+
|
| 19 |
+
This is written to match HF best practices and serious research usage.
|
| 20 |
+
|
| 21 |
+
---
|
| 22 |
+
|
| 23 |
+
# 📘 README.md
|
| 24 |
+
|
| 25 |
+
👉 Copy everything below into your `README.md`
|
| 26 |
+
|
| 27 |
+
---
|
| 28 |
+
|
| 29 |
+
# Sentiment-Analysis-Complex
|
| 30 |
+
|
| 31 |
+
## 🧠 Overview
|
| 32 |
+
|
| 33 |
+
**Sentiment-Analysis-Complex** is a large-scale synthetic sentiment analysis dataset designed for benchmarking modern NLP models under long-context, noisy, and semi-structured text conditions.
|
| 34 |
+
|
| 35 |
+
The dataset contains **10 million labeled samples** with:
|
| 36 |
+
|
| 37 |
+
* Long text sequences (**20–40 tokens per sample**)
|
| 38 |
+
* Grammar-based sentence construction
|
| 39 |
+
* Internet slang and hashtags
|
| 40 |
+
* Rich vocabulary diversity
|
| 41 |
+
* Balanced binary sentiment labels
|
| 42 |
+
|
| 43 |
+
It is optimized for:
|
| 44 |
+
|
| 45 |
+
* Transformer benchmarking
|
| 46 |
+
* Tokenizer stress testing
|
| 47 |
+
* Long-context modeling
|
| 48 |
+
* Robustness evaluation
|
| 49 |
+
* Large-scale NLP pipelines
|
| 50 |
+
|
| 51 |
+
---
|
| 52 |
+
|
| 53 |
+
## 📦 Dataset Structure
|
| 54 |
+
|
| 55 |
+
```
|
| 56 |
+
Sentiment-Analysis-Complex/
|
| 57 |
+
├── train.jsonl (8,000,000 samples)
|
| 58 |
+
├── test.jsonl (2,000,000 samples)
|
| 59 |
+
└── README.md
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
Split ratio:
|
| 63 |
+
|
| 64 |
+
* **Train:** 80%
|
| 65 |
+
* **Test:** 20%
|
| 66 |
+
|
| 67 |
+
---
|
| 68 |
+
|
| 69 |
+
## 🧾 Data Format
|
| 70 |
+
|
| 71 |
+
Each line is a JSON object:
|
| 72 |
+
|
| 73 |
+
```json
|
| 74 |
+
{
|
| 75 |
+
"id": 123456,
|
| 76 |
+
"text": "I really love how this system consistently delivers smooth reliable performance and scalable architecture with intuitive workflow and strong documentation lol #innovation",
|
| 77 |
+
"label": "positive"
|
| 78 |
+
}
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
### Fields
|
| 82 |
+
|
| 83 |
+
| Field | Type | Description |
|
| 84 |
+
| ------- | ------- | ---------------------------------------- |
|
| 85 |
+
| `id` | Integer | Unique sample identifier |
|
| 86 |
+
| `text` | String | Input sentence (20–40 tokens) |
|
| 87 |
+
| `label` | String | Sentiment class (`positive`, `negative`) |
|
| 88 |
+
|
| 89 |
+
Encoding: UTF-8 (emoji and special characters supported)
|
| 90 |
+
|
| 91 |
+
---
|
| 92 |
+
|
| 93 |
+
## 📊 Dataset Characteristics
|
| 94 |
+
|
| 95 |
+
* ✔️ Total samples: **10,000,000**
|
| 96 |
+
* ✔️ Classes: **positive / negative (balanced)**
|
| 97 |
+
* ✔️ Sequence length: **20–40 tokens**
|
| 98 |
+
* ✔️ Vocabulary size: ~300+ words
|
| 99 |
+
* ✔️ Includes slang and hashtags
|
| 100 |
+
* ✔️ Grammar-driven generation
|
| 101 |
+
* ✔️ Streaming-friendly JSONL format
|
| 102 |
+
|
| 103 |
+
---
|
| 104 |
+
|
| 105 |
+
## 🔬 Intended Use
|
| 106 |
+
|
| 107 |
+
This dataset is suitable for:
|
| 108 |
+
|
| 109 |
+
* Sentiment classification benchmarking
|
| 110 |
+
* Large-scale training pipelines
|
| 111 |
+
* Tokenization analysis
|
| 112 |
+
* Long-context modeling experiments
|
| 113 |
+
* Data loading stress tests
|
| 114 |
+
* Distributed training validation
|
| 115 |
+
* Synthetic NLP research
|
| 116 |
+
|
| 117 |
+
---
|
| 118 |
+
|
| 119 |
+
## ⚠️ Limitations
|
| 120 |
+
|
| 121 |
+
* Synthetic text — not reflective of natural human distribution.
|
| 122 |
+
* Limited semantic depth and discourse structure.
|
| 123 |
+
* No real-world bias modeling.
|
| 124 |
+
* No multilingual coverage (English only).
|
| 125 |
+
* No sarcasm or pragmatic reasoning.
|
| 126 |
+
|
| 127 |
+
Not recommended for production sentiment systems.
|
| 128 |
+
|
| 129 |
+
---
|
| 130 |
+
|
| 131 |
+
## 🤗 How to Load
|
| 132 |
+
|
| 133 |
+
```python
|
| 134 |
+
from datasets import load_dataset
|
| 135 |
+
|
| 136 |
+
dataset = load_dataset("NNEngine/Sentiment-Analysis-Complex")
|
| 137 |
+
print(dataset)
|
| 138 |
+
```
|
| 139 |
+
|
| 140 |
+
Streaming mode:
|
| 141 |
+
|
| 142 |
+
```python
|
| 143 |
+
dataset = load_dataset(
|
| 144 |
+
"NNEngine/Sentiment-Analysis-Complex",
|
| 145 |
+
streaming=True
|
| 146 |
+
)
|
| 147 |
+
```
|
| 148 |
+
|
| 149 |
+
---
|
| 150 |
+
|
| 151 |
+
## 🏷️ Tags
|
| 152 |
+
|
| 153 |
+
```
|
| 154 |
+
sentiment-analysis
|
| 155 |
+
nlp
|
| 156 |
+
synthetic-data
|
| 157 |
+
large-scale
|
| 158 |
+
text-classification
|
| 159 |
+
benchmark
|
| 160 |
+
huggingface-dataset
|
| 161 |
+
long-context
|
| 162 |
+
```
|
| 163 |
+
|
| 164 |
+
---
|
| 165 |
+
|
| 166 |
+
## 📜 License
|
| 167 |
+
|
| 168 |
+
MIT License
|
| 169 |
+
Free for research, education, and experimentation.
|
| 170 |
+
|
| 171 |
+
---
|
| 172 |
+
|
| 173 |
+
## ✨ Author
|
| 174 |
+
|
| 175 |
+
Created by **NNEngine** for large-scale NLP benchmarking and experimentation.
|
| 176 |
+
|
| 177 |
+
---
|