NNEngine commited on
Commit
930a269
·
verified ·
1 Parent(s): 6b7d4ba

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +177 -3
README.md CHANGED
@@ -1,3 +1,177 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - text-classification
5
+ language:
6
+ - en
7
+ tags:
8
+ - classification,
9
+ - sentiment-analysis,
10
+ - binary-classification,
11
+ - complex-text
12
+ - jsonl
13
+ size_categories:
14
+ - 100K<n<1M
15
+ ---
16
+ Excellent — congrats on getting the repo ready 🚀
17
+ Here’s a **professional Hugging Face Dataset Card (README.md)** you can paste directly into your repository.
18
+
19
+ This is written to match HF best practices and serious research usage.
20
+
21
+ ---
22
+
23
+ # 📘 README.md
24
+
25
+ 👉 Copy everything below into your `README.md`
26
+
27
+ ---
28
+
29
+ # Sentiment-Analysis-Complex
30
+
31
+ ## 🧠 Overview
32
+
33
+ **Sentiment-Analysis-Complex** is a large-scale synthetic sentiment analysis dataset designed for benchmarking modern NLP models under long-context, noisy, and semi-structured text conditions.
34
+
35
+ The dataset contains **10 million labeled samples** with:
36
+
37
+ * Long text sequences (**20–40 tokens per sample**)
38
+ * Grammar-based sentence construction
39
+ * Internet slang and hashtags
40
+ * Rich vocabulary diversity
41
+ * Balanced binary sentiment labels
42
+
43
+ It is optimized for:
44
+
45
+ * Transformer benchmarking
46
+ * Tokenizer stress testing
47
+ * Long-context modeling
48
+ * Robustness evaluation
49
+ * Large-scale NLP pipelines
50
+
51
+ ---
52
+
53
+ ## 📦 Dataset Structure
54
+
55
+ ```
56
+ Sentiment-Analysis-Complex/
57
+ ├── train.jsonl (8,000,000 samples)
58
+ ├── test.jsonl (2,000,000 samples)
59
+ └── README.md
60
+ ```
61
+
62
+ Split ratio:
63
+
64
+ * **Train:** 80%
65
+ * **Test:** 20%
66
+
67
+ ---
68
+
69
+ ## 🧾 Data Format
70
+
71
+ Each line is a JSON object:
72
+
73
+ ```json
74
+ {
75
+ "id": 123456,
76
+ "text": "I really love how this system consistently delivers smooth reliable performance and scalable architecture with intuitive workflow and strong documentation lol #innovation",
77
+ "label": "positive"
78
+ }
79
+ ```
80
+
81
+ ### Fields
82
+
83
+ | Field | Type | Description |
84
+ | ------- | ------- | ---------------------------------------- |
85
+ | `id` | Integer | Unique sample identifier |
86
+ | `text` | String | Input sentence (20–40 tokens) |
87
+ | `label` | String | Sentiment class (`positive`, `negative`) |
88
+
89
+ Encoding: UTF-8 (emoji and special characters supported)
90
+
91
+ ---
92
+
93
+ ## 📊 Dataset Characteristics
94
+
95
+ * ✔️ Total samples: **10,000,000**
96
+ * ✔️ Classes: **positive / negative (balanced)**
97
+ * ✔️ Sequence length: **20–40 tokens**
98
+ * ✔️ Vocabulary size: ~300+ words
99
+ * ✔️ Includes slang and hashtags
100
+ * ✔️ Grammar-driven generation
101
+ * ✔️ Streaming-friendly JSONL format
102
+
103
+ ---
104
+
105
+ ## 🔬 Intended Use
106
+
107
+ This dataset is suitable for:
108
+
109
+ * Sentiment classification benchmarking
110
+ * Large-scale training pipelines
111
+ * Tokenization analysis
112
+ * Long-context modeling experiments
113
+ * Data loading stress tests
114
+ * Distributed training validation
115
+ * Synthetic NLP research
116
+
117
+ ---
118
+
119
+ ## ⚠️ Limitations
120
+
121
+ * Synthetic text — not reflective of natural human distribution.
122
+ * Limited semantic depth and discourse structure.
123
+ * No real-world bias modeling.
124
+ * No multilingual coverage (English only).
125
+ * No sarcasm or pragmatic reasoning.
126
+
127
+ Not recommended for production sentiment systems.
128
+
129
+ ---
130
+
131
+ ## 🤗 How to Load
132
+
133
+ ```python
134
+ from datasets import load_dataset
135
+
136
+ dataset = load_dataset("NNEngine/Sentiment-Analysis-Complex")
137
+ print(dataset)
138
+ ```
139
+
140
+ Streaming mode:
141
+
142
+ ```python
143
+ dataset = load_dataset(
144
+ "NNEngine/Sentiment-Analysis-Complex",
145
+ streaming=True
146
+ )
147
+ ```
148
+
149
+ ---
150
+
151
+ ## 🏷️ Tags
152
+
153
+ ```
154
+ sentiment-analysis
155
+ nlp
156
+ synthetic-data
157
+ large-scale
158
+ text-classification
159
+ benchmark
160
+ huggingface-dataset
161
+ long-context
162
+ ```
163
+
164
+ ---
165
+
166
+ ## 📜 License
167
+
168
+ MIT License
169
+ Free for research, education, and experimentation.
170
+
171
+ ---
172
+
173
+ ## ✨ Author
174
+
175
+ Created by **NNEngine** for large-scale NLP benchmarking and experimentation.
176
+
177
+ ---