contestId
int64 0
1.01k
| index
stringclasses 57
values | name
stringlengths 2
58
| type
stringclasses 2
values | rating
int64 0
3.5k
| tags
listlengths 0
11
| title
stringclasses 522
values | time-limit
stringclasses 8
values | memory-limit
stringclasses 8
values | problem-description
stringlengths 0
7.15k
| input-specification
stringlengths 0
2.05k
| output-specification
stringlengths 0
1.5k
| demo-input
listlengths 0
7
| demo-output
listlengths 0
7
| note
stringlengths 0
5.24k
| points
float64 0
425k
| test_cases
listlengths 0
402
| creationTimeSeconds
int64 1.37B
1.7B
| relativeTimeSeconds
int64 8
2.15B
| programmingLanguage
stringclasses 3
values | verdict
stringclasses 14
values | testset
stringclasses 12
values | passedTestCount
int64 0
1k
| timeConsumedMillis
int64 0
15k
| memoryConsumedBytes
int64 0
805M
| code
stringlengths 3
65.5k
| prompt
stringlengths 262
8.2k
| response
stringlengths 17
65.5k
| score
float64 -1
3.99
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
699
|
A
|
Launch of Collider
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. *n* particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, *x**i* is the coordinate of the *i*-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement — it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
|
The first line contains the positive integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of particles.
The second line contains *n* symbols "L" and "R". If the *i*-th symbol equals "L", then the *i*-th particle will move to the left, otherwise the *i*-th symbol equals "R" and the *i*-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=109) — the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
|
In the first line print the only integer — the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
|
[
"4\nRLRL\n2 4 6 10\n",
"3\nLLR\n40 50 60\n"
] |
[
"1\n",
"-1\n"
] |
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
| 500
|
[
{
"input": "4\nRLRL\n2 4 6 10",
"output": "1"
},
{
"input": "3\nLLR\n40 50 60",
"output": "-1"
},
{
"input": "4\nRLLR\n46 230 264 470",
"output": "92"
},
{
"input": "6\nLLRLLL\n446 492 650 844 930 970",
"output": "97"
},
{
"input": "8\nRRLLLLLL\n338 478 512 574 594 622 834 922",
"output": "17"
},
{
"input": "10\nLRLRLLRRLR\n82 268 430 598 604 658 670 788 838 1000",
"output": "3"
},
{
"input": "2\nRL\n0 1000000000",
"output": "500000000"
},
{
"input": "12\nLRLLRRRRLRLL\n254 1260 1476 1768 2924 4126 4150 4602 5578 7142 8134 9082",
"output": "108"
},
{
"input": "14\nRLLRRLRLLRLLLR\n698 2900 3476 3724 3772 3948 4320 4798 5680 6578 7754 8034 8300 8418",
"output": "88"
},
{
"input": "16\nRRLLLRLRLLLLRLLR\n222 306 968 1060 1636 1782 2314 2710 3728 4608 5088 6790 6910 7156 7418 7668",
"output": "123"
},
{
"input": "18\nRLRLLRRRLLLRLRRLRL\n1692 2028 2966 3008 3632 4890 5124 5838 6596 6598 6890 8294 8314 8752 8868 9396 9616 9808",
"output": "10"
},
{
"input": "20\nRLLLLLLLRRRRLRRLRRLR\n380 902 1400 1834 2180 2366 2562 2596 2702 2816 3222 3238 3742 5434 6480 7220 7410 8752 9708 9970",
"output": "252"
},
{
"input": "22\nLRRRRRRRRRRRLLRRRRRLRL\n1790 2150 2178 2456 2736 3282 3622 4114 4490 4772 5204 5240 5720 5840 5910 5912 6586 7920 8584 9404 9734 9830",
"output": "48"
},
{
"input": "24\nLLRLRRLLRLRRRRLLRRLRLRRL\n100 360 864 1078 1360 1384 1438 2320 2618 3074 3874 3916 3964 5178 5578 6278 6630 6992 8648 8738 8922 8930 9276 9720",
"output": "27"
},
{
"input": "26\nRLLLLLLLRLRRLRLRLRLRLLLRRR\n908 1826 2472 2474 2728 3654 3716 3718 3810 3928 4058 4418 4700 5024 5768 6006 6128 6386 6968 7040 7452 7774 7822 8726 9338 9402",
"output": "59"
},
{
"input": "28\nRRLRLRRRRRRLLLRRLRRLLLRRLLLR\n156 172 1120 1362 2512 3326 3718 4804 4990 5810 6242 6756 6812 6890 6974 7014 7088 7724 8136 8596 8770 8840 9244 9250 9270 9372 9400 9626",
"output": "10"
},
{
"input": "30\nRLLRLRLLRRRLRRRLLLLLLRRRLRRLRL\n128 610 1680 2436 2896 2994 3008 3358 3392 4020 4298 4582 4712 4728 5136 5900 6088 6232 6282 6858 6934 7186 7224 7256 7614 8802 8872 9170 9384 9794",
"output": "7"
},
{
"input": "10\nLLLLRRRRRR\n0 2 4 6 8 10 12 14 16 18",
"output": "-1"
},
{
"input": "5\nLLLLL\n0 10 20 30 40",
"output": "-1"
},
{
"input": "6\nRRRRRR\n40 50 60 70 80 100",
"output": "-1"
},
{
"input": "1\nR\n0",
"output": "-1"
},
{
"input": "2\nRL\n2 1000000000",
"output": "499999999"
},
{
"input": "2\nRL\n0 400000",
"output": "200000"
},
{
"input": "2\nRL\n0 200002",
"output": "100001"
},
{
"input": "2\nRL\n2 20000000",
"output": "9999999"
},
{
"input": "4\nLLRL\n2 4 10 100",
"output": "45"
},
{
"input": "4\nRLRL\n2 10 12 14",
"output": "1"
},
{
"input": "2\nRL\n0 100000000",
"output": "50000000"
},
{
"input": "2\nRL\n2 600002",
"output": "300000"
},
{
"input": "1\nL\n0",
"output": "-1"
},
{
"input": "2\nRL\n0 600000",
"output": "300000"
},
{
"input": "5\nRRRRR\n0 2 4 6 8",
"output": "-1"
},
{
"input": "2\nRL\n2 200000000",
"output": "99999999"
},
{
"input": "2\nRL\n0 267382766",
"output": "133691383"
},
{
"input": "3\nRRL\n4 8 999999998",
"output": "499999995"
},
{
"input": "2\nRL\n0 2",
"output": "1"
},
{
"input": "2\nRL\n2 400002",
"output": "200000"
},
{
"input": "2\nLL\n2 4",
"output": "-1"
},
{
"input": "2\nLL\n0 2",
"output": "-1"
},
{
"input": "2\nRL\n0 100000",
"output": "50000"
},
{
"input": "2\nRL\n2 200000020",
"output": "100000009"
},
{
"input": "2\nRL\n2000000 4000000",
"output": "1000000"
},
{
"input": "2\nRL\n0 199998",
"output": "99999"
},
{
"input": "3\nLRR\n40 50 60",
"output": "-1"
},
{
"input": "2\nRL\n200 400400",
"output": "200100"
},
{
"input": "2\nRL\n2 400004",
"output": "200001"
},
{
"input": "2\nRL\n0 200000000",
"output": "100000000"
}
] | 1,620,807,713
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 85
| 1,325
| 23,142,400
|
n=eval(input())
a=input()
b=list(map(eval,input().split()))
d=[]
for i in range(n-1):
if a[i]=='R' and a[i+1]=='L':
d.append(b[i+1]-b[i])
if len(d)!=0:
print(int(min(d)/2))
else:
print(-1)
|
Title: Launch of Collider
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. *n* particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, *x**i* is the coordinate of the *i*-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement — it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input Specification:
The first line contains the positive integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of particles.
The second line contains *n* symbols "L" and "R". If the *i*-th symbol equals "L", then the *i*-th particle will move to the left, otherwise the *i*-th symbol equals "R" and the *i*-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=109) — the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output Specification:
In the first line print the only integer — the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Demo Input:
['4\nRLRL\n2 4 6 10\n', '3\nLLR\n40 50 60\n']
Demo Output:
['1\n', '-1\n']
Note:
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
|
```python
n=eval(input())
a=input()
b=list(map(eval,input().split()))
d=[]
for i in range(n-1):
if a[i]=='R' and a[i+1]=='L':
d.append(b[i+1]-b[i])
if len(d)!=0:
print(int(min(d)/2))
else:
print(-1)
```
| 3
|
|
483
|
A
|
Counterexample
|
PROGRAMMING
| 1,100
|
[
"brute force",
"implementation",
"math",
"number theory"
] | null | null |
Your friend has recently learned about coprime numbers. A pair of numbers {*a*,<=*b*} is called coprime if the maximum number that divides both *a* and *b* is equal to one.
Your friend often comes up with different statements. He has recently supposed that if the pair (*a*,<=*b*) is coprime and the pair (*b*,<=*c*) is coprime, then the pair (*a*,<=*c*) is coprime.
You want to find a counterexample for your friend's statement. Therefore, your task is to find three distinct numbers (*a*,<=*b*,<=*c*), for which the statement is false, and the numbers meet the condition *l*<=≤<=*a*<=<<=*b*<=<<=*c*<=≤<=*r*.
More specifically, you need to find three numbers (*a*,<=*b*,<=*c*), such that *l*<=≤<=*a*<=<<=*b*<=<<=*c*<=≤<=*r*, pairs (*a*,<=*b*) and (*b*,<=*c*) are coprime, and pair (*a*,<=*c*) is not coprime.
|
The single line contains two positive space-separated integers *l*, *r* (1<=≤<=*l*<=≤<=*r*<=≤<=1018; *r*<=-<=*l*<=≤<=50).
|
Print three positive space-separated integers *a*, *b*, *c* — three distinct numbers (*a*,<=*b*,<=*c*) that form the counterexample. If there are several solutions, you are allowed to print any of them. The numbers must be printed in ascending order.
If the counterexample does not exist, print the single number -1.
|
[
"2 4\n",
"10 11\n",
"900000000000000009 900000000000000029\n"
] |
[
"2 3 4\n",
"-1\n",
"900000000000000009 900000000000000010 900000000000000021\n"
] |
In the first sample pair (2, 4) is not coprime and pairs (2, 3) and (3, 4) are.
In the second sample you cannot form a group of three distinct integers, so the answer is -1.
In the third sample it is easy to see that numbers 900000000000000009 and 900000000000000021 are divisible by three.
| 500
|
[
{
"input": "2 4",
"output": "2 3 4"
},
{
"input": "10 11",
"output": "-1"
},
{
"input": "900000000000000009 900000000000000029",
"output": "900000000000000009 900000000000000010 900000000000000021"
},
{
"input": "640097987171091791 640097987171091835",
"output": "640097987171091792 640097987171091793 640097987171091794"
},
{
"input": "19534350415104721 19534350415104725",
"output": "19534350415104722 19534350415104723 19534350415104724"
},
{
"input": "933700505788726243 933700505788726280",
"output": "933700505788726244 933700505788726245 933700505788726246"
},
{
"input": "1 3",
"output": "-1"
},
{
"input": "1 4",
"output": "2 3 4"
},
{
"input": "1 1",
"output": "-1"
},
{
"input": "266540997167959130 266540997167959164",
"output": "266540997167959130 266540997167959131 266540997167959132"
},
{
"input": "267367244641009850 267367244641009899",
"output": "267367244641009850 267367244641009851 267367244641009852"
},
{
"input": "268193483524125978 268193483524125993",
"output": "268193483524125978 268193483524125979 268193483524125980"
},
{
"input": "269019726702209402 269019726702209432",
"output": "269019726702209402 269019726702209403 269019726702209404"
},
{
"input": "269845965585325530 269845965585325576",
"output": "269845965585325530 269845965585325531 269845965585325532"
},
{
"input": "270672213058376250 270672213058376260",
"output": "270672213058376250 270672213058376251 270672213058376252"
},
{
"input": "271498451941492378 271498451941492378",
"output": "-1"
},
{
"input": "272324690824608506 272324690824608523",
"output": "272324690824608506 272324690824608507 272324690824608508"
},
{
"input": "273150934002691930 273150934002691962",
"output": "273150934002691930 273150934002691931 273150934002691932"
},
{
"input": "996517375802030516 996517375802030524",
"output": "996517375802030516 996517375802030517 996517375802030518"
},
{
"input": "997343614685146644 997343614685146694",
"output": "997343614685146644 997343614685146645 997343614685146646"
},
{
"input": "998169857863230068 998169857863230083",
"output": "998169857863230068 998169857863230069 998169857863230070"
},
{
"input": "998996101041313492 998996101041313522",
"output": "998996101041313492 998996101041313493 998996101041313494"
},
{
"input": "999822344219396916 999822344219396961",
"output": "999822344219396916 999822344219396917 999822344219396918"
},
{
"input": "648583102513043 648583102513053",
"output": "648583102513044 648583102513045 648583102513046"
},
{
"input": "266540997167959130 266540997167959131",
"output": "-1"
},
{
"input": "267367244641009850 267367244641009850",
"output": "-1"
},
{
"input": "268193483524125978 268193483524125979",
"output": "-1"
},
{
"input": "269019726702209402 269019726702209402",
"output": "-1"
},
{
"input": "269845965585325530 269845965585325530",
"output": "-1"
},
{
"input": "270672213058376250 270672213058376254",
"output": "270672213058376250 270672213058376251 270672213058376252"
},
{
"input": "271498451941492378 271498451941492379",
"output": "-1"
},
{
"input": "272324690824608506 272324690824608508",
"output": "272324690824608506 272324690824608507 272324690824608508"
},
{
"input": "273150934002691930 273150934002691931",
"output": "-1"
},
{
"input": "996517375802030516 996517375802030518",
"output": "996517375802030516 996517375802030517 996517375802030518"
},
{
"input": "997343614685146644 997343614685146644",
"output": "-1"
},
{
"input": "2147483647 2147483649",
"output": "-1"
},
{
"input": "3 5",
"output": "-1"
},
{
"input": "1 7",
"output": "2 3 4"
},
{
"input": "9 12",
"output": "9 11 12"
},
{
"input": "4 4",
"output": "-1"
},
{
"input": "11 13",
"output": "-1"
},
{
"input": "2 2",
"output": "-1"
}
] | 1,585,762,986
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 1
| 124
| 0
|
l,r = map(int,input().split())
a = l
while not(a%2 == 0):
a += 1
b = a + 1
c = a + 2
print(a,b,c)
|
Title: Counterexample
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Your friend has recently learned about coprime numbers. A pair of numbers {*a*,<=*b*} is called coprime if the maximum number that divides both *a* and *b* is equal to one.
Your friend often comes up with different statements. He has recently supposed that if the pair (*a*,<=*b*) is coprime and the pair (*b*,<=*c*) is coprime, then the pair (*a*,<=*c*) is coprime.
You want to find a counterexample for your friend's statement. Therefore, your task is to find three distinct numbers (*a*,<=*b*,<=*c*), for which the statement is false, and the numbers meet the condition *l*<=≤<=*a*<=<<=*b*<=<<=*c*<=≤<=*r*.
More specifically, you need to find three numbers (*a*,<=*b*,<=*c*), such that *l*<=≤<=*a*<=<<=*b*<=<<=*c*<=≤<=*r*, pairs (*a*,<=*b*) and (*b*,<=*c*) are coprime, and pair (*a*,<=*c*) is not coprime.
Input Specification:
The single line contains two positive space-separated integers *l*, *r* (1<=≤<=*l*<=≤<=*r*<=≤<=1018; *r*<=-<=*l*<=≤<=50).
Output Specification:
Print three positive space-separated integers *a*, *b*, *c* — three distinct numbers (*a*,<=*b*,<=*c*) that form the counterexample. If there are several solutions, you are allowed to print any of them. The numbers must be printed in ascending order.
If the counterexample does not exist, print the single number -1.
Demo Input:
['2 4\n', '10 11\n', '900000000000000009 900000000000000029\n']
Demo Output:
['2 3 4\n', '-1\n', '900000000000000009 900000000000000010 900000000000000021\n']
Note:
In the first sample pair (2, 4) is not coprime and pairs (2, 3) and (3, 4) are.
In the second sample you cannot form a group of three distinct integers, so the answer is -1.
In the third sample it is easy to see that numbers 900000000000000009 and 900000000000000021 are divisible by three.
|
```python
l,r = map(int,input().split())
a = l
while not(a%2 == 0):
a += 1
b = a + 1
c = a + 2
print(a,b,c)
```
| 0
|
|
186
|
A
|
Comparing Strings
|
PROGRAMMING
| 1,100
|
[
"implementation",
"strings"
] | null | null |
Some dwarves that are finishing the StUDY (State University for Dwarven Youngsters) Bachelor courses, have been told "no genome, no degree". That means that all dwarves should write a thesis on genome. Dwarven genome is far from simple. It is represented by a string that consists of lowercase Latin letters.
Dwarf Misha has already chosen the subject for his thesis: determining by two dwarven genomes, whether they belong to the same race. Two dwarves belong to the same race if we can swap two characters in the first dwarf's genome and get the second dwarf's genome as a result. Help Dwarf Misha and find out whether two gnomes belong to the same race or not.
|
The first line contains the first dwarf's genome: a non-empty string, consisting of lowercase Latin letters.
The second line contains the second dwarf's genome: a non-empty string, consisting of lowercase Latin letters.
The number of letters in each genome doesn't exceed 105. It is guaranteed that the strings that correspond to the genomes are different. The given genomes may have different length.
|
Print "YES", if the dwarves belong to the same race. Otherwise, print "NO".
|
[
"ab\nba\n",
"aa\nab\n"
] |
[
"YES\n",
"NO\n"
] |
- First example: you can simply swap two letters in string "ab". So we get "ba". - Second example: we can't change string "aa" into string "ab", because "aa" does not contain letter "b".
| 500
|
[
{
"input": "ab\nba",
"output": "YES"
},
{
"input": "aa\nab",
"output": "NO"
},
{
"input": "a\nza",
"output": "NO"
},
{
"input": "vvea\nvvae",
"output": "YES"
},
{
"input": "rtfabanpc\natfabrnpc",
"output": "YES"
},
{
"input": "mt\ntm",
"output": "YES"
},
{
"input": "qxolmbkkt\naovlajmlf",
"output": "NO"
},
{
"input": "b\ng",
"output": "NO"
},
{
"input": "ab\naba",
"output": "NO"
},
{
"input": "ba\na",
"output": "NO"
},
{
"input": "a\nab",
"output": "NO"
},
{
"input": "a\naa",
"output": "NO"
},
{
"input": "a\nz",
"output": "NO"
},
{
"input": "aabb\nbbaa",
"output": "NO"
},
{
"input": "ab\nbd",
"output": "NO"
},
{
"input": "bac\ndae",
"output": "NO"
},
{
"input": "abc\nakl",
"output": "NO"
},
{
"input": "cb\naa",
"output": "NO"
},
{
"input": "abaab\naabba",
"output": "NO"
},
{
"input": "aab\naaa",
"output": "NO"
},
{
"input": "abcde\nedcba",
"output": "NO"
},
{
"input": "abab\nbaba",
"output": "NO"
},
{
"input": "ab\nbac",
"output": "NO"
},
{
"input": "abcd\naqcb",
"output": "NO"
},
{
"input": "abc\nbad",
"output": "NO"
},
{
"input": "ab\nca",
"output": "NO"
},
{
"input": "abc\nab",
"output": "NO"
},
{
"input": "ab\nbae",
"output": "NO"
},
{
"input": "aaaabcccca\naaaadccccb",
"output": "NO"
},
{
"input": "acaa\nabca",
"output": "NO"
},
{
"input": "aba\naab",
"output": "YES"
},
{
"input": "ah\nla",
"output": "NO"
},
{
"input": "aab\naa",
"output": "NO"
},
{
"input": "abab\nabcd",
"output": "NO"
},
{
"input": "ed\nab",
"output": "NO"
}
] | 1,616,150,520
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 53
| 218
| 10,035,200
|
genome1=list(input())
genome2=list(input())
indexs=[]
flag=0
for i in range(min(len(genome2),len(genome1))):
if genome1[i]!=genome2[i] :
indexs.append(i)
if len(indexs)<=1 or len(indexs)>2:
print('NO')
exit()
genome1[indexs[0]],genome1[indexs[1]]=genome1[indexs[1]],genome1[indexs[0]]
if genome1==genome2:
print('YES')
else:
print('NO')
|
Title: Comparing Strings
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Some dwarves that are finishing the StUDY (State University for Dwarven Youngsters) Bachelor courses, have been told "no genome, no degree". That means that all dwarves should write a thesis on genome. Dwarven genome is far from simple. It is represented by a string that consists of lowercase Latin letters.
Dwarf Misha has already chosen the subject for his thesis: determining by two dwarven genomes, whether they belong to the same race. Two dwarves belong to the same race if we can swap two characters in the first dwarf's genome and get the second dwarf's genome as a result. Help Dwarf Misha and find out whether two gnomes belong to the same race or not.
Input Specification:
The first line contains the first dwarf's genome: a non-empty string, consisting of lowercase Latin letters.
The second line contains the second dwarf's genome: a non-empty string, consisting of lowercase Latin letters.
The number of letters in each genome doesn't exceed 105. It is guaranteed that the strings that correspond to the genomes are different. The given genomes may have different length.
Output Specification:
Print "YES", if the dwarves belong to the same race. Otherwise, print "NO".
Demo Input:
['ab\nba\n', 'aa\nab\n']
Demo Output:
['YES\n', 'NO\n']
Note:
- First example: you can simply swap two letters in string "ab". So we get "ba". - Second example: we can't change string "aa" into string "ab", because "aa" does not contain letter "b".
|
```python
genome1=list(input())
genome2=list(input())
indexs=[]
flag=0
for i in range(min(len(genome2),len(genome1))):
if genome1[i]!=genome2[i] :
indexs.append(i)
if len(indexs)<=1 or len(indexs)>2:
print('NO')
exit()
genome1[indexs[0]],genome1[indexs[1]]=genome1[indexs[1]],genome1[indexs[0]]
if genome1==genome2:
print('YES')
else:
print('NO')
```
| 3
|
|
376
|
B
|
I.O.U.
|
PROGRAMMING
| 1,300
|
[
"implementation"
] | null | null |
Imagine that there is a group of three friends: A, B and С. A owes B 20 rubles and B owes C 20 rubles. The total sum of the debts is 40 rubles. You can see that the debts are not organized in a very optimal manner. Let's rearrange them like that: assume that A owes C 20 rubles and B doesn't owe anything to anybody. The debts still mean the same but the total sum of the debts now equals 20 rubles.
This task is a generalisation of a described example. Imagine that your group of friends has *n* people and you know the debts between the people. Optimize the given debts without changing their meaning. In other words, finally for each friend the difference between the total money he should give and the total money he should take must be the same. Print the minimum sum of all debts in the optimal rearrangement of the debts. See the notes to the test samples to better understand the problem.
|
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=100; 0<=≤<=*m*<=≤<=104). The next *m* lines contain the debts. The *i*-th line contains three integers *a**i*,<=*b**i*,<=*c**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*; *a**i*<=≠<=*b**i*; 1<=≤<=*c**i*<=≤<=100), which mean that person *a**i* owes person *b**i* *c**i* rubles.
Assume that the people are numbered by integers from 1 to *n*.
It is guaranteed that the same pair of people occurs at most once in the input. The input doesn't simultaneously contain pair of people (*x*,<=*y*) and pair of people (*y*,<=*x*).
|
Print a single integer — the minimum sum of debts in the optimal rearrangement.
|
[
"5 3\n1 2 10\n2 3 1\n2 4 1\n",
"3 0\n",
"4 3\n1 2 1\n2 3 1\n3 1 1\n"
] |
[
"10\n",
"0\n",
"0\n"
] |
In the first sample, you can assume that person number 1 owes 8 rubles to person number 2, 1 ruble to person number 3 and 1 ruble to person number 4. He doesn't owe anybody else anything. In the end, the total debt equals 10.
In the second sample, there are no debts.
In the third sample, you can annul all the debts.
| 1,000
|
[
{
"input": "5 3\n1 2 10\n2 3 1\n2 4 1",
"output": "10"
},
{
"input": "3 0",
"output": "0"
},
{
"input": "4 3\n1 2 1\n2 3 1\n3 1 1",
"output": "0"
},
{
"input": "20 28\n1 5 6\n1 12 7\n1 13 4\n1 15 7\n1 20 3\n2 4 1\n2 15 6\n3 5 3\n3 8 10\n3 13 8\n3 20 6\n4 6 10\n4 12 8\n4 19 5\n5 17 8\n6 9 9\n6 16 2\n6 19 9\n7 14 6\n8 9 3\n8 16 10\n9 11 7\n9 17 8\n11 13 8\n11 17 17\n11 19 1\n15 20 2\n17 20 1",
"output": "124"
},
{
"input": "20 36\n1 2 13\n1 3 1\n1 6 4\n1 12 8\n1 13 9\n1 15 3\n1 18 4\n2 10 2\n2 15 2\n2 18 6\n3 7 8\n3 16 19\n4 7 1\n4 18 4\n5 9 2\n5 15 9\n5 17 4\n5 18 5\n6 11 7\n6 13 1\n6 14 9\n7 10 4\n7 12 10\n7 15 9\n7 17 8\n8 14 4\n10 13 8\n10 19 9\n11 12 5\n12 17 6\n13 15 8\n13 19 4\n14 15 9\n14 16 8\n17 19 8\n17 20 7",
"output": "147"
},
{
"input": "20 40\n1 13 4\n2 3 3\n2 4 5\n2 7 7\n2 17 10\n3 5 3\n3 6 9\n3 10 4\n3 12 2\n3 13 2\n3 14 3\n4 5 4\n4 8 7\n4 13 9\n5 6 14\n5 14 5\n7 11 5\n7 12 13\n7 15 7\n8 14 5\n8 16 7\n8 18 17\n9 11 8\n9 19 19\n10 12 4\n10 16 3\n10 18 10\n10 20 9\n11 13 9\n11 20 2\n12 13 8\n12 18 2\n12 20 3\n13 17 1\n13 20 4\n14 16 8\n16 19 3\n18 19 3\n18 20 7\n19 20 10",
"output": "165"
},
{
"input": "50 10\n1 5 1\n2 34 2\n3 8 10\n5 28 4\n7 28 6\n13 49 9\n15 42 7\n16 26 7\n18 47 5\n20 41 10",
"output": "60"
},
{
"input": "50 46\n1 6 10\n1 18 1\n1 24 10\n1 33 2\n1 40 8\n3 16 7\n4 26 8\n4 32 2\n4 34 6\n5 29 8\n6 44 3\n8 20 5\n8 42 13\n10 13 5\n10 25 7\n10 27 9\n10 29 10\n11 23 4\n12 28 7\n12 30 10\n12 40 10\n13 18 2\n13 33 2\n14 15 7\n14 43 10\n14 47 3\n16 27 10\n17 21 6\n17 30 9\n19 40 4\n22 24 8\n22 25 7\n22 38 18\n25 38 1\n27 31 7\n27 40 8\n30 36 8\n31 34 1\n32 49 6\n33 35 4\n33 50 7\n38 47 1\n42 47 2\n42 50 5\n43 44 9\n47 50 5",
"output": "228"
},
{
"input": "100 48\n1 56 6\n2 42 3\n3 52 1\n9 50 8\n10 96 8\n11 39 2\n12 51 6\n12 68 7\n13 40 5\n14 18 10\n14 70 6\n15 37 4\n15 38 8\n15 82 6\n15 85 5\n16 48 4\n16 50 9\n16 71 9\n17 18 3\n17 100 10\n20 73 3\n22 32 9\n22 89 9\n23 53 3\n24 53 1\n27 78 10\n30 50 5\n33 94 8\n34 87 9\n35 73 3\n36 51 8\n37 88 10\n37 97 2\n40 47 8\n40 90 6\n44 53 3\n44 65 3\n47 48 8\n48 72 10\n49 98 2\n53 68 10\n53 71 9\n57 62 2\n63 76 10\n66 90 9\n71 76 8\n72 80 5\n75 77 7",
"output": "253"
},
{
"input": "4 3\n1 4 1\n2 3 1\n4 2 2",
"output": "2"
}
] | 1,615,792,733
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 29
| 62
| 0
|
n, m = map(int, input().split())
d = [0 for i in range(n)]
for i in range(m):
a, b, c = map(int, input().split())
d[a-1] -= c
d[b-1] += c
print(sum(i for i in d if i > 0))
|
Title: I.O.U.
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Imagine that there is a group of three friends: A, B and С. A owes B 20 rubles and B owes C 20 rubles. The total sum of the debts is 40 rubles. You can see that the debts are not organized in a very optimal manner. Let's rearrange them like that: assume that A owes C 20 rubles and B doesn't owe anything to anybody. The debts still mean the same but the total sum of the debts now equals 20 rubles.
This task is a generalisation of a described example. Imagine that your group of friends has *n* people and you know the debts between the people. Optimize the given debts without changing their meaning. In other words, finally for each friend the difference between the total money he should give and the total money he should take must be the same. Print the minimum sum of all debts in the optimal rearrangement of the debts. See the notes to the test samples to better understand the problem.
Input Specification:
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=100; 0<=≤<=*m*<=≤<=104). The next *m* lines contain the debts. The *i*-th line contains three integers *a**i*,<=*b**i*,<=*c**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*; *a**i*<=≠<=*b**i*; 1<=≤<=*c**i*<=≤<=100), which mean that person *a**i* owes person *b**i* *c**i* rubles.
Assume that the people are numbered by integers from 1 to *n*.
It is guaranteed that the same pair of people occurs at most once in the input. The input doesn't simultaneously contain pair of people (*x*,<=*y*) and pair of people (*y*,<=*x*).
Output Specification:
Print a single integer — the minimum sum of debts in the optimal rearrangement.
Demo Input:
['5 3\n1 2 10\n2 3 1\n2 4 1\n', '3 0\n', '4 3\n1 2 1\n2 3 1\n3 1 1\n']
Demo Output:
['10\n', '0\n', '0\n']
Note:
In the first sample, you can assume that person number 1 owes 8 rubles to person number 2, 1 ruble to person number 3 and 1 ruble to person number 4. He doesn't owe anybody else anything. In the end, the total debt equals 10.
In the second sample, there are no debts.
In the third sample, you can annul all the debts.
|
```python
n, m = map(int, input().split())
d = [0 for i in range(n)]
for i in range(m):
a, b, c = map(int, input().split())
d[a-1] -= c
d[b-1] += c
print(sum(i for i in d if i > 0))
```
| 3
|
|
155
|
A
|
I_love_\%username\%
|
PROGRAMMING
| 800
|
[
"brute force"
] | null | null |
Vasya adores sport programming. He can't write programs but he loves to watch the contests' progress. Vasya even has a favorite coder and Vasya pays special attention to him.
One day Vasya decided to collect the results of all contests where his favorite coder participated and track the progress of his coolness. For each contest where this coder participated, he wrote out a single non-negative number — the number of points his favorite coder earned in the contest. Vasya wrote out the points for the contest in the order, in which the contests run (naturally, no two contests ran simultaneously).
Vasya considers a coder's performance in a contest amazing in two situations: he can break either his best or his worst performance record. First, it is amazing if during the contest the coder earns strictly more points that he earned on each past contest. Second, it is amazing if during the contest the coder earns strictly less points that he earned on each past contest. A coder's first contest isn't considered amazing. Now he wants to count the number of amazing performances the coder had throughout his whole history of participating in contests. But the list of earned points turned out long and Vasya can't code... That's why he asks you to help him.
|
The first line contains the single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of contests where the coder participated.
The next line contains *n* space-separated non-negative integer numbers — they are the points which the coder has earned. The points are given in the chronological order. All points do not exceed 10000.
|
Print the single number — the number of amazing performances the coder has had during his whole history of participating in the contests.
|
[
"5\n100 50 200 150 200\n",
"10\n4664 6496 5814 7010 5762 5736 6944 4850 3698 7242\n"
] |
[
"2\n",
"4\n"
] |
In the first sample the performances number 2 and 3 are amazing.
In the second sample the performances number 2, 4, 9 and 10 are amazing.
| 500
|
[
{
"input": "5\n100 50 200 150 200",
"output": "2"
},
{
"input": "10\n4664 6496 5814 7010 5762 5736 6944 4850 3698 7242",
"output": "4"
},
{
"input": "1\n6",
"output": "0"
},
{
"input": "2\n2 1",
"output": "1"
},
{
"input": "5\n100 36 53 7 81",
"output": "2"
},
{
"input": "5\n7 36 53 81 100",
"output": "4"
},
{
"input": "5\n100 81 53 36 7",
"output": "4"
},
{
"input": "10\n8 6 3 4 9 10 7 7 1 3",
"output": "5"
},
{
"input": "10\n1627 1675 1488 1390 1812 1137 1746 1324 1952 1862",
"output": "6"
},
{
"input": "10\n1 3 3 4 6 7 7 8 9 10",
"output": "7"
},
{
"input": "10\n1952 1862 1812 1746 1675 1627 1488 1390 1324 1137",
"output": "9"
},
{
"input": "25\n1448 4549 2310 2725 2091 3509 1565 2475 2232 3989 4231 779 2967 2702 608 3739 721 1552 2767 530 3114 665 1940 48 4198",
"output": "5"
},
{
"input": "33\n1097 1132 1091 1104 1049 1038 1023 1080 1104 1029 1035 1061 1049 1060 1088 1106 1105 1087 1063 1076 1054 1103 1047 1041 1028 1120 1126 1063 1117 1110 1044 1093 1101",
"output": "5"
},
{
"input": "34\n821 5536 2491 6074 7216 9885 764 1603 778 8736 8987 771 617 1587 8943 7922 439 7367 4115 8886 7878 6899 8811 5752 3184 3401 9760 9400 8995 4681 1323 6637 6554 6498",
"output": "7"
},
{
"input": "68\n6764 6877 6950 6768 6839 6755 6726 6778 6699 6805 6777 6985 6821 6801 6791 6805 6940 6761 6677 6999 6911 6699 6959 6933 6903 6843 6972 6717 6997 6756 6789 6668 6735 6852 6735 6880 6723 6834 6810 6694 6780 6679 6698 6857 6826 6896 6979 6968 6957 6988 6960 6700 6919 6892 6984 6685 6813 6678 6715 6857 6976 6902 6780 6686 6777 6686 6842 6679",
"output": "9"
},
{
"input": "60\n9000 9014 9034 9081 9131 9162 9174 9199 9202 9220 9221 9223 9229 9235 9251 9260 9268 9269 9270 9298 9307 9309 9313 9323 9386 9399 9407 9495 9497 9529 9531 9544 9614 9615 9627 9627 9643 9654 9656 9657 9685 9699 9701 9736 9745 9758 9799 9827 9843 9845 9854 9854 9885 9891 9896 9913 9942 9963 9986 9992",
"output": "57"
},
{
"input": "100\n7 61 12 52 41 16 34 99 30 44 48 89 31 54 21 1 48 52 61 15 35 87 21 76 64 92 44 81 16 93 84 92 32 15 68 76 53 39 26 4 11 26 7 4 99 99 61 65 55 85 65 67 47 39 2 74 63 49 98 87 5 94 22 30 25 42 31 84 49 23 89 60 16 26 92 27 9 57 75 61 94 35 83 47 99 100 63 24 91 88 79 10 15 45 22 64 3 11 89 83",
"output": "4"
},
{
"input": "100\n9999 9999 9999 9998 9998 9998 9997 9996 9996 9995 9993 9993 9991 9990 9989 9986 9984 9984 9983 9981 9981 9980 9980 9980 9979 9977 9977 9977 9977 9977 9976 9976 9975 9975 9973 9972 9972 9972 9972 9971 9969 9969 9969 9968 9967 9965 9962 9962 9962 9962 9960 9958 9958 9955 9954 9954 9954 9954 9950 9949 9949 9947 9943 9943 9940 9940 9939 9937 9937 9937 9936 9935 9932 9932 9931 9929 9927 9927 9926 9923 9919 9919 9918 9918 9918 9917 9917 9916 9916 9915 9914 9911 9910 9907 9907 9906 9905 9905 9904 9901",
"output": "57"
},
{
"input": "100\n158 159 157 156 155 154 160 153 161 152 162 163 151 164 150 165 149 148 147 166 146 167 145 144 143 142 168 141 169 170 140 139 138 137 171 136 135 134 172 173 174 133 175 132 177 178 131 179 180 130 129 181 128 127 182 126 183 125 124 184 123 122 121 120 119 118 117 185 186 187 188 189 116 190 115 191 192 193 114 113 112 111 110 109 108 194 195 107 106 105 196 197 104 198 199 103 102 200 101 100",
"output": "99"
},
{
"input": "2\n0 10000",
"output": "1"
},
{
"input": "2\n5 5",
"output": "0"
},
{
"input": "2\n1 1",
"output": "0"
},
{
"input": "2\n10 10",
"output": "0"
},
{
"input": "1\n0",
"output": "0"
}
] | 1,697,371,207
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 37
| 92
| 0
|
n = int(input())
a = list(map(int, input().split()))
l = a[0]
b = a[0]
c = 0
for i in range(1,n):
if(a[i] > b):
c = c + 1
b = a[i]
if(a[i] < l):
c = c + 1
l = a[i]
print(c)
|
Title: I_love_\%username\%
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya adores sport programming. He can't write programs but he loves to watch the contests' progress. Vasya even has a favorite coder and Vasya pays special attention to him.
One day Vasya decided to collect the results of all contests where his favorite coder participated and track the progress of his coolness. For each contest where this coder participated, he wrote out a single non-negative number — the number of points his favorite coder earned in the contest. Vasya wrote out the points for the contest in the order, in which the contests run (naturally, no two contests ran simultaneously).
Vasya considers a coder's performance in a contest amazing in two situations: he can break either his best or his worst performance record. First, it is amazing if during the contest the coder earns strictly more points that he earned on each past contest. Second, it is amazing if during the contest the coder earns strictly less points that he earned on each past contest. A coder's first contest isn't considered amazing. Now he wants to count the number of amazing performances the coder had throughout his whole history of participating in contests. But the list of earned points turned out long and Vasya can't code... That's why he asks you to help him.
Input Specification:
The first line contains the single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of contests where the coder participated.
The next line contains *n* space-separated non-negative integer numbers — they are the points which the coder has earned. The points are given in the chronological order. All points do not exceed 10000.
Output Specification:
Print the single number — the number of amazing performances the coder has had during his whole history of participating in the contests.
Demo Input:
['5\n100 50 200 150 200\n', '10\n4664 6496 5814 7010 5762 5736 6944 4850 3698 7242\n']
Demo Output:
['2\n', '4\n']
Note:
In the first sample the performances number 2 and 3 are amazing.
In the second sample the performances number 2, 4, 9 and 10 are amazing.
|
```python
n = int(input())
a = list(map(int, input().split()))
l = a[0]
b = a[0]
c = 0
for i in range(1,n):
if(a[i] > b):
c = c + 1
b = a[i]
if(a[i] < l):
c = c + 1
l = a[i]
print(c)
```
| 3
|
|
228
|
A
|
Is your horseshoe on the other hoof?
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Valera the Horse is going to the party with friends. He has been following the fashion trends for a while, and he knows that it is very popular to wear all horseshoes of different color. Valera has got four horseshoes left from the last year, but maybe some of them have the same color. In this case he needs to go to the store and buy some few more horseshoes, not to lose face in front of his stylish comrades.
Fortunately, the store sells horseshoes of all colors under the sun and Valera has enough money to buy any four of them. However, in order to save the money, he would like to spend as little money as possible, so you need to help Valera and determine what is the minimum number of horseshoes he needs to buy to wear four horseshoes of different colors to a party.
|
The first line contains four space-separated integers *s*1,<=*s*2,<=*s*3,<=*s*4 (1<=≤<=*s*1,<=*s*2,<=*s*3,<=*s*4<=≤<=109) — the colors of horseshoes Valera has.
Consider all possible colors indexed with integers.
|
Print a single integer — the minimum number of horseshoes Valera needs to buy.
|
[
"1 7 3 3\n",
"7 7 7 7\n"
] |
[
"1\n",
"3\n"
] |
none
| 500
|
[
{
"input": "1 7 3 3",
"output": "1"
},
{
"input": "7 7 7 7",
"output": "3"
},
{
"input": "81170865 673572653 756938629 995577259",
"output": "0"
},
{
"input": "3491663 217797045 522540872 715355328",
"output": "0"
},
{
"input": "251590420 586975278 916631563 586975278",
"output": "1"
},
{
"input": "259504825 377489979 588153796 377489979",
"output": "1"
},
{
"input": "652588203 931100304 931100304 652588203",
"output": "2"
},
{
"input": "391958720 651507265 391958720 651507265",
"output": "2"
},
{
"input": "90793237 90793237 90793237 90793237",
"output": "3"
},
{
"input": "551651653 551651653 551651653 551651653",
"output": "3"
},
{
"input": "156630260 609654355 668943582 973622757",
"output": "0"
},
{
"input": "17061017 110313588 434481173 796661222",
"output": "0"
},
{
"input": "24975422 256716298 337790533 690960249",
"output": "0"
},
{
"input": "255635360 732742923 798648949 883146723",
"output": "0"
},
{
"input": "133315691 265159773 734556507 265159773",
"output": "1"
},
{
"input": "28442865 741657755 978106882 978106882",
"output": "1"
},
{
"input": "131245479 174845575 497483467 131245479",
"output": "1"
},
{
"input": "139159884 616215581 958341883 616215581",
"output": "1"
},
{
"input": "147784432 947653080 947653080 947653080",
"output": "2"
},
{
"input": "94055790 756126496 756126496 94055790",
"output": "2"
},
{
"input": "240458500 511952208 240458500 511952208",
"output": "2"
},
{
"input": "681828506 972810624 972810624 681828506",
"output": "2"
},
{
"input": "454961014 454961014 454961014 454961014",
"output": "3"
},
{
"input": "915819430 915819430 915819430 915819430",
"output": "3"
},
{
"input": "671645142 671645142 671645142 671645142",
"output": "3"
},
{
"input": "132503558 132503558 132503558 132503558",
"output": "3"
},
{
"input": "5 5 999999 6",
"output": "1"
},
{
"input": "1 1 2 5",
"output": "1"
},
{
"input": "2 1 2 3",
"output": "1"
},
{
"input": "1 1 3 5",
"output": "1"
},
{
"input": "1 1 3 3",
"output": "2"
},
{
"input": "2 2 2 1",
"output": "2"
},
{
"input": "3 1 1 1",
"output": "2"
},
{
"input": "1 2 2 2",
"output": "2"
}
] | 1,687,141,561
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 4
| 92
| 0
|
a,b,c,d = map(int,input().split())
hoes = [a,b,c,d,0]
cout = 0
for i in range(len(hoes)):
if i == 4:
break
if hoes[i] == hoes[i+1]:
cout += 1
print(cout)
|
Title: Is your horseshoe on the other hoof?
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Valera the Horse is going to the party with friends. He has been following the fashion trends for a while, and he knows that it is very popular to wear all horseshoes of different color. Valera has got four horseshoes left from the last year, but maybe some of them have the same color. In this case he needs to go to the store and buy some few more horseshoes, not to lose face in front of his stylish comrades.
Fortunately, the store sells horseshoes of all colors under the sun and Valera has enough money to buy any four of them. However, in order to save the money, he would like to spend as little money as possible, so you need to help Valera and determine what is the minimum number of horseshoes he needs to buy to wear four horseshoes of different colors to a party.
Input Specification:
The first line contains four space-separated integers *s*1,<=*s*2,<=*s*3,<=*s*4 (1<=≤<=*s*1,<=*s*2,<=*s*3,<=*s*4<=≤<=109) — the colors of horseshoes Valera has.
Consider all possible colors indexed with integers.
Output Specification:
Print a single integer — the minimum number of horseshoes Valera needs to buy.
Demo Input:
['1 7 3 3\n', '7 7 7 7\n']
Demo Output:
['1\n', '3\n']
Note:
none
|
```python
a,b,c,d = map(int,input().split())
hoes = [a,b,c,d,0]
cout = 0
for i in range(len(hoes)):
if i == 4:
break
if hoes[i] == hoes[i+1]:
cout += 1
print(cout)
```
| 0
|
|
714
|
B
|
Filya and Homework
|
PROGRAMMING
| 1,200
|
[
"implementation",
"sortings"
] | null | null |
Today, hedgehog Filya went to school for the very first time! Teacher gave him a homework which Filya was unable to complete without your help.
Filya is given an array of non-negative integers *a*1,<=*a*2,<=...,<=*a**n*. First, he pick an integer *x* and then he adds *x* to some elements of the array (no more than once), subtract *x* from some other elements (also, no more than once) and do no change other elements. He wants all elements of the array to be equal.
Now he wonders if it's possible to pick such integer *x* and change some elements of the array using this *x* in order to make all elements equal.
|
The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of integers in the Filya's array. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=109) — elements of the array.
|
If it's impossible to make all elements of the array equal using the process given in the problem statement, then print "NO" (without quotes) in the only line of the output. Otherwise print "YES" (without quotes).
|
[
"5\n1 3 3 2 1\n",
"5\n1 2 3 4 5\n"
] |
[
"YES\n",
"NO\n"
] |
In the first sample Filya should select *x* = 1, then add it to the first and the last elements of the array and subtract from the second and the third elements.
| 1,000
|
[
{
"input": "5\n1 3 3 2 1",
"output": "YES"
},
{
"input": "5\n1 2 3 4 5",
"output": "NO"
},
{
"input": "2\n1 2",
"output": "YES"
},
{
"input": "3\n1 2 3",
"output": "YES"
},
{
"input": "3\n1 1 1",
"output": "YES"
},
{
"input": "2\n1 1000000000",
"output": "YES"
},
{
"input": "4\n1 2 3 4",
"output": "NO"
},
{
"input": "10\n1 1 1 1 1 2 2 2 2 2",
"output": "YES"
},
{
"input": "2\n4 2",
"output": "YES"
},
{
"input": "4\n1 1 4 7",
"output": "YES"
},
{
"input": "3\n99999999 1 50000000",
"output": "YES"
},
{
"input": "1\n0",
"output": "YES"
},
{
"input": "5\n0 0 0 0 0",
"output": "YES"
},
{
"input": "4\n4 2 2 1",
"output": "NO"
},
{
"input": "3\n1 4 2",
"output": "NO"
},
{
"input": "3\n1 4 100",
"output": "NO"
},
{
"input": "3\n2 5 11",
"output": "NO"
},
{
"input": "3\n1 4 6",
"output": "NO"
},
{
"input": "3\n1 2 4",
"output": "NO"
},
{
"input": "3\n1 2 7",
"output": "NO"
},
{
"input": "5\n1 1 1 4 5",
"output": "NO"
},
{
"input": "2\n100000001 100000003",
"output": "YES"
},
{
"input": "3\n7 4 5",
"output": "NO"
},
{
"input": "3\n2 3 5",
"output": "NO"
},
{
"input": "3\n1 2 5",
"output": "NO"
},
{
"input": "2\n2 3",
"output": "YES"
},
{
"input": "3\n2 100 29",
"output": "NO"
},
{
"input": "3\n0 1 5",
"output": "NO"
},
{
"input": "3\n1 3 6",
"output": "NO"
},
{
"input": "3\n2 1 3",
"output": "YES"
},
{
"input": "3\n1 5 100",
"output": "NO"
},
{
"input": "3\n1 4 8",
"output": "NO"
},
{
"input": "3\n1 7 10",
"output": "NO"
},
{
"input": "3\n5 4 1",
"output": "NO"
},
{
"input": "3\n1 6 10",
"output": "NO"
},
{
"input": "4\n1 3 4 5",
"output": "NO"
},
{
"input": "3\n1 5 4",
"output": "NO"
},
{
"input": "5\n1 2 3 3 5",
"output": "NO"
},
{
"input": "3\n2 3 1",
"output": "YES"
},
{
"input": "3\n2 3 8",
"output": "NO"
},
{
"input": "3\n0 3 5",
"output": "NO"
},
{
"input": "3\n1 5 10",
"output": "NO"
},
{
"input": "3\n1 7 2",
"output": "NO"
},
{
"input": "3\n1 3 9",
"output": "NO"
},
{
"input": "3\n1 1 2",
"output": "YES"
},
{
"input": "7\n1 1 1 1 1 2 4",
"output": "NO"
},
{
"input": "5\n1 4 4 4 6",
"output": "NO"
},
{
"input": "5\n1 2 2 4 4",
"output": "NO"
},
{
"input": "3\n1 9 10",
"output": "NO"
},
{
"input": "8\n1 1 1 1 1 1 2 3",
"output": "YES"
},
{
"input": "3\n1 2 100",
"output": "NO"
},
{
"input": "3\n1 3 4",
"output": "NO"
},
{
"input": "3\n1 15 14",
"output": "NO"
},
{
"input": "3\n1 3 8",
"output": "NO"
},
{
"input": "3\n1 2 10",
"output": "NO"
},
{
"input": "4\n2 2 4 5",
"output": "NO"
},
{
"input": "3\n1 3 5",
"output": "YES"
},
{
"input": "5\n3 6 7 8 9",
"output": "NO"
},
{
"input": "3\n7 6 8",
"output": "YES"
},
{
"input": "3\n3 2 1",
"output": "YES"
},
{
"input": "5\n1 2 2 2 3",
"output": "YES"
},
{
"input": "3\n4 6 7",
"output": "NO"
},
{
"input": "3\n2 0 4",
"output": "YES"
},
{
"input": "4\n10 20 21 30",
"output": "NO"
},
{
"input": "4\n0 2 3 4",
"output": "NO"
},
{
"input": "3\n3 6 12",
"output": "NO"
},
{
"input": "5\n0 0 1 3 5",
"output": "NO"
},
{
"input": "3\n3 5 8",
"output": "NO"
},
{
"input": "3\n1 4 4",
"output": "YES"
},
{
"input": "4\n2 4 5 6",
"output": "NO"
}
] | 1,631,231,192
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 14
| 967
| 20,582,400
|
def func(hashMap, currentSum):
if currentSum not in hashMap:
hashMap[currentSum] = 1
else:
hashMap[currentSum] += 1
def balance(array, num):
hashMap = {}
for currentNum in array:
currentSum = currentNum + num
func(hashMap, currentSum)
currentSum = currentNum + num
func(hashMap, currentSum)
func(hashMap, currentNum)
for num in hashMap:
if hashMap[num] >= len(array):
return True
return False
n = int(input())
array = []
currentInput = input().split()
for i in range(n):
array.append(int(currentInput[i]))
array.sort()
result = "NO"
for i in range(1, 10):
if balance(array, i):
result = "YES"
break
print(result)
|
Title: Filya and Homework
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Today, hedgehog Filya went to school for the very first time! Teacher gave him a homework which Filya was unable to complete without your help.
Filya is given an array of non-negative integers *a*1,<=*a*2,<=...,<=*a**n*. First, he pick an integer *x* and then he adds *x* to some elements of the array (no more than once), subtract *x* from some other elements (also, no more than once) and do no change other elements. He wants all elements of the array to be equal.
Now he wonders if it's possible to pick such integer *x* and change some elements of the array using this *x* in order to make all elements equal.
Input Specification:
The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of integers in the Filya's array. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=109) — elements of the array.
Output Specification:
If it's impossible to make all elements of the array equal using the process given in the problem statement, then print "NO" (without quotes) in the only line of the output. Otherwise print "YES" (without quotes).
Demo Input:
['5\n1 3 3 2 1\n', '5\n1 2 3 4 5\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first sample Filya should select *x* = 1, then add it to the first and the last elements of the array and subtract from the second and the third elements.
|
```python
def func(hashMap, currentSum):
if currentSum not in hashMap:
hashMap[currentSum] = 1
else:
hashMap[currentSum] += 1
def balance(array, num):
hashMap = {}
for currentNum in array:
currentSum = currentNum + num
func(hashMap, currentSum)
currentSum = currentNum + num
func(hashMap, currentSum)
func(hashMap, currentNum)
for num in hashMap:
if hashMap[num] >= len(array):
return True
return False
n = int(input())
array = []
currentInput = input().split()
for i in range(n):
array.append(int(currentInput[i]))
array.sort()
result = "NO"
for i in range(1, 10):
if balance(array, i):
result = "YES"
break
print(result)
```
| 0
|
|
776
|
A
|
A Serial Killer
|
PROGRAMMING
| 900
|
[
"brute force",
"implementation",
"strings"
] | null | null |
Our beloved detective, Sherlock is currently trying to catch a serial killer who kills a person each day. Using his powers of deduction, he came to know that the killer has a strategy for selecting his next victim.
The killer starts with two potential victims on his first day, selects one of these two, kills selected victim and replaces him with a new person. He repeats this procedure each day. This way, each day he has two potential victims to choose from. Sherlock knows the initial two potential victims. Also, he knows the murder that happened on a particular day and the new person who replaced this victim.
You need to help him get all the pairs of potential victims at each day so that Sherlock can observe some pattern.
|
First line of input contains two names (length of each of them doesn't exceed 10), the two initials potential victims. Next line contains integer *n* (1<=≤<=*n*<=≤<=1000), the number of days.
Next *n* lines contains two names (length of each of them doesn't exceed 10), first being the person murdered on this day and the second being the one who replaced that person.
The input format is consistent, that is, a person murdered is guaranteed to be from the two potential victims at that time. Also, all the names are guaranteed to be distinct and consists of lowercase English letters.
|
Output *n*<=+<=1 lines, the *i*-th line should contain the two persons from which the killer selects for the *i*-th murder. The (*n*<=+<=1)-th line should contain the two persons from which the next victim is selected. In each line, the two names can be printed in any order.
|
[
"ross rachel\n4\nross joey\nrachel phoebe\nphoebe monica\nmonica chandler\n",
"icm codeforces\n1\ncodeforces technex\n"
] |
[
"ross rachel\njoey rachel\njoey phoebe\njoey monica\njoey chandler\n",
"icm codeforces\nicm technex\n"
] |
In first example, the killer starts with ross and rachel.
- After day 1, ross is killed and joey appears. - After day 2, rachel is killed and phoebe appears. - After day 3, phoebe is killed and monica appears. - After day 4, monica is killed and chandler appears.
| 500
|
[
{
"input": "ross rachel\n4\nross joey\nrachel phoebe\nphoebe monica\nmonica chandler",
"output": "ross rachel\njoey rachel\njoey phoebe\njoey monica\njoey chandler"
},
{
"input": "icm codeforces\n1\ncodeforces technex",
"output": "icm codeforces\nicm technex"
},
{
"input": "a b\n3\na c\nb d\nd e",
"output": "a b\nc b\nc d\nc e"
},
{
"input": "ze udggmyop\n4\nze szhrbmft\nudggmyop mjorab\nszhrbmft ojdtfnzxj\nojdtfnzxj yjlkg",
"output": "ze udggmyop\nszhrbmft udggmyop\nszhrbmft mjorab\nojdtfnzxj mjorab\nyjlkg mjorab"
},
{
"input": "q s\n10\nq b\nb j\ns g\nj f\nf m\ng c\nc a\nm d\nd z\nz o",
"output": "q s\nb s\nj s\nj g\nf g\nm g\nm c\nm a\nd a\nz a\no a"
},
{
"input": "iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii iiiiiiiii\ni iiiii\niiiii ii",
"output": "iii iiiiii\niiiiiiiiii iiiiii\niiii iiiiii\ni iiiiii\ni iiiiiiii\ni iiiiiiiii\niiiii iiiiiiiii\nii iiiiiiiii"
},
{
"input": "bwyplnjn zkms\n26\nzkms nzmcsytxh\nnzmcsytxh yujsb\nbwyplnjn gtbzhudpb\ngtbzhudpb hpk\nyujsb xvy\nhpk wrwnfokml\nwrwnfokml ndouuikw\nndouuikw ucgrja\nucgrja tgfmpldz\nxvy nycrfphn\nnycrfphn quvs\nquvs htdy\nhtdy k\ntgfmpldz xtdpkxm\nxtdpkxm suwqxs\nk fv\nsuwqxs qckllwy\nqckllwy diun\nfv lefa\nlefa gdoqjysx\ndiun dhpz\ngdoqjysx bdmqdyt\ndhpz dgz\ndgz v\nbdmqdyt aswy\naswy ydkayhlrnm",
"output": "bwyplnjn zkms\nbwyplnjn nzmcsytxh\nbwyplnjn yujsb\ngtbzhudpb yujsb\nhpk yujsb\nhpk xvy\nwrwnfokml xvy\nndouuikw xvy\nucgrja xvy\ntgfmpldz xvy\ntgfmpldz nycrfphn\ntgfmpldz quvs\ntgfmpldz htdy\ntgfmpldz k\nxtdpkxm k\nsuwqxs k\nsuwqxs fv\nqckllwy fv\ndiun fv\ndiun lefa\ndiun gdoqjysx\ndhpz gdoqjysx\ndhpz bdmqdyt\ndgz bdmqdyt\nv bdmqdyt\nv aswy\nv ydkayhlrnm"
},
{
"input": "wxz hbeqwqp\n7\nhbeqwqp cpieghnszh\ncpieghnszh tlqrpd\ntlqrpd ttwrtio\nttwrtio xapvds\nxapvds zk\nwxz yryk\nzk b",
"output": "wxz hbeqwqp\nwxz cpieghnszh\nwxz tlqrpd\nwxz ttwrtio\nwxz xapvds\nwxz zk\nyryk zk\nyryk b"
},
{
"input": "wced gnsgv\n23\ngnsgv japawpaf\njapawpaf nnvpeu\nnnvpeu a\na ddupputljq\nddupputljq qyhnvbh\nqyhnvbh pqwijl\nwced khuvs\nkhuvs bjkh\npqwijl ysacmboc\nbjkh srf\nsrf jknoz\njknoz hodf\nysacmboc xqtkoyh\nhodf rfp\nxqtkoyh bivgnwqvoe\nbivgnwqvoe nknf\nnknf wuig\nrfp e\ne bqqknq\nwuig sznhhhu\nbqqknq dhrtdld\ndhrtdld n\nsznhhhu bguylf",
"output": "wced gnsgv\nwced japawpaf\nwced nnvpeu\nwced a\nwced ddupputljq\nwced qyhnvbh\nwced pqwijl\nkhuvs pqwijl\nbjkh pqwijl\nbjkh ysacmboc\nsrf ysacmboc\njknoz ysacmboc\nhodf ysacmboc\nhodf xqtkoyh\nrfp xqtkoyh\nrfp bivgnwqvoe\nrfp nknf\nrfp wuig\ne wuig\nbqqknq wuig\nbqqknq sznhhhu\ndhrtdld sznhhhu\nn sznhhhu\nn bguylf"
},
{
"input": "qqqqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q",
"output": "qqqqqqqqqq qqqqqqqq\nqqqqqqqqqq qqqqqqqqq\nqqqqqqqqqq qqqqq\nqqqqqqqqqq q"
},
{
"input": "wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wwwwwww",
"output": "wwwww w\nwwwwwwww w\nwwwwwwwww w\nwwwwwwwwww w\nwwwwwwwwww www\nwwww www\nww www\nww wwwwww\nww wwwwwww"
},
{
"input": "k d\n17\nk l\nd v\nv z\nl r\nz i\nr s\ns p\np w\nw j\nj h\ni c\nh m\nm q\nc o\no g\nq x\nx n",
"output": "k d\nl d\nl v\nl z\nr z\nr i\ns i\np i\nw i\nj i\nh i\nh c\nm c\nq c\nq o\nq g\nx g\nn g"
}
] | 1,673,628,791
| 2,147,483,647
|
Python 3
|
COMPILATION_ERROR
|
TESTS
| 0
| 0
| 0
|
names = [input()]
for _ in range(int(input())):
string = input().split()
new_names = names[-1].split()
new_names[new_names.index(string[0])] = string[1]
names.append(' '.join(new_names)
print(*names, sep='\n')
|
Title: A Serial Killer
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Our beloved detective, Sherlock is currently trying to catch a serial killer who kills a person each day. Using his powers of deduction, he came to know that the killer has a strategy for selecting his next victim.
The killer starts with two potential victims on his first day, selects one of these two, kills selected victim and replaces him with a new person. He repeats this procedure each day. This way, each day he has two potential victims to choose from. Sherlock knows the initial two potential victims. Also, he knows the murder that happened on a particular day and the new person who replaced this victim.
You need to help him get all the pairs of potential victims at each day so that Sherlock can observe some pattern.
Input Specification:
First line of input contains two names (length of each of them doesn't exceed 10), the two initials potential victims. Next line contains integer *n* (1<=≤<=*n*<=≤<=1000), the number of days.
Next *n* lines contains two names (length of each of them doesn't exceed 10), first being the person murdered on this day and the second being the one who replaced that person.
The input format is consistent, that is, a person murdered is guaranteed to be from the two potential victims at that time. Also, all the names are guaranteed to be distinct and consists of lowercase English letters.
Output Specification:
Output *n*<=+<=1 lines, the *i*-th line should contain the two persons from which the killer selects for the *i*-th murder. The (*n*<=+<=1)-th line should contain the two persons from which the next victim is selected. In each line, the two names can be printed in any order.
Demo Input:
['ross rachel\n4\nross joey\nrachel phoebe\nphoebe monica\nmonica chandler\n', 'icm codeforces\n1\ncodeforces technex\n']
Demo Output:
['ross rachel\njoey rachel\njoey phoebe\njoey monica\njoey chandler\n', 'icm codeforces\nicm technex\n']
Note:
In first example, the killer starts with ross and rachel.
- After day 1, ross is killed and joey appears. - After day 2, rachel is killed and phoebe appears. - After day 3, phoebe is killed and monica appears. - After day 4, monica is killed and chandler appears.
|
```python
names = [input()]
for _ in range(int(input())):
string = input().split()
new_names = names[-1].split()
new_names[new_names.index(string[0])] = string[1]
names.append(' '.join(new_names)
print(*names, sep='\n')
```
| -1
|
|
32
|
E
|
Hide-and-Seek
|
PROGRAMMING
| 2,400
|
[
"geometry",
"implementation"
] |
E. Hide-and-Seek
|
2
|
256
|
Victor and Peter are playing hide-and-seek. Peter has hidden, and Victor is to find him. In the room where they are playing, there is only one non-transparent wall and one double-sided mirror. Victor and Peter are points with coordinates (*x**v*,<=*y**v*) and (*x**p*,<=*y**p*) respectively. The wall is a segment joining points with coordinates (*x**w*,<=1,<=*y**w*,<=1) and (*x**w*,<=2,<=*y**w*,<=2), the mirror — a segment joining points (*x**m*,<=1,<=*y**m*,<=1) and (*x**m*,<=2,<=*y**m*,<=2).
If an obstacle has a common point with a line of vision, it's considered, that the boys can't see each other with this line of vision. If the mirror has a common point with the line of vision, it's considered, that the boys can see each other in the mirror, i.e. reflection takes place. The reflection process is governed by laws of physics — the angle of incidence is equal to the angle of reflection. The incident ray is in the same half-plane as the reflected ray, relative to the mirror. I.e. to see each other Victor and Peter should be to the same side of the line, containing the mirror (see example 1). If the line of vision is parallel to the mirror, reflection doesn't take place, and the mirror isn't regarded as an obstacle (see example 4).
Victor got interested if he can see Peter, while standing at the same spot. Help him solve this problem.
|
The first line contains two numbers *x**v* and *y**v* — coordinates of Victor.
The second line contains two numbers *x**p* and *y**p* — coordinates of Peter.
The third line contains 4 numbers *x**w*,<=1, *y**w*,<=1, *x**w*,<=2, *y**w*,<=2 — coordinates of the wall.
The forth line contains 4 numbers *x**m*,<=1, *y**m*,<=1, *x**m*,<=2, *y**m*,<=2 — coordinates of the mirror.
All the coordinates are integer numbers, and don't exceed 104 in absolute value. It's guaranteed, that the segments don't have common points, Victor and Peter are not on any of the segments, coordinates of Victor and Peter aren't the same, the segments don't degenerate into points.
|
Output YES, if Victor can see Peter without leaving the initial spot. Otherwise output NO.
|
[
"-1 3\n1 3\n0 2 0 4\n0 0 0 1\n",
"0 0\n1 1\n0 1 1 0\n-100 -100 -101 -101\n",
"0 0\n1 1\n0 1 1 0\n-1 1 1 3\n",
"0 0\n10 0\n100 100 101 101\n1 0 3 0\n"
] |
[
"NO\n",
"NO\n",
"YES\n",
"YES\n"
] |
none
| 2,500
|
[
{
"input": "-1 3\n1 3\n0 2 0 4\n0 0 0 1",
"output": "NO"
},
{
"input": "0 0\n1 1\n0 1 1 0\n-100 -100 -101 -101",
"output": "NO"
},
{
"input": "0 0\n1 1\n0 1 1 0\n-1 1 1 3",
"output": "YES"
},
{
"input": "0 0\n10 0\n100 100 101 101\n1 0 3 0",
"output": "YES"
},
{
"input": "0 0\n1 1\n100 100 101 101\n-100 -100 -101 -101",
"output": "YES"
},
{
"input": "-1 1\n1 1\n0 3 0 4\n0 0 0 2",
"output": "NO"
},
{
"input": "0 0\n2 0\n1 1 1 -1\n0 2 1 2",
"output": "YES"
},
{
"input": "0 0\n2 0\n1 1 1 -1\n-10 2 -12 2",
"output": "NO"
},
{
"input": "0 0\n2 0\n0 2 2 2\n1 1 1 -1",
"output": "NO"
},
{
"input": "0 0\n2 0\n0 2 2 2\n1 0 1 -1",
"output": "NO"
},
{
"input": "0 0\n2 0\n0 2 2 2\n1 1 1 0",
"output": "NO"
},
{
"input": "0 0\n3 0\n0 2 2 2\n1 0 2 0",
"output": "YES"
},
{
"input": "0 0\n3 0\n1 0 2 0\n0 2 2 2",
"output": "YES"
},
{
"input": "0 0\n3 0\n1 0 2 0\n-10 2 -12 2",
"output": "NO"
},
{
"input": "0 0\n5 0\n1 0 2 0\n3 0 4 0",
"output": "NO"
},
{
"input": "0 0\n10 0\n0 1 10 1\n1 0 9 0",
"output": "YES"
},
{
"input": "0 0\n2 0\n1 1 1 -1\n0 2 2 2",
"output": "YES"
},
{
"input": "0 0\n2 0\n1 1 1 -1\n1 2 2 2",
"output": "YES"
},
{
"input": "-1 2\n1 2\n0 2 0 4\n0 0 0 1",
"output": "NO"
},
{
"input": "-1 4\n1 4\n0 2 0 4\n0 0 0 1",
"output": "NO"
},
{
"input": "-1 5\n1 5\n0 2 0 4\n0 0 0 1",
"output": "YES"
},
{
"input": "-1 2\n1 2\n0 3 0 4\n0 0 0 2",
"output": "NO"
},
{
"input": "5023 -2243\n5648 1799\n1758 9228 -5815 3403\n-5967 -5718 -9900 -7956",
"output": "YES"
},
{
"input": "5498 9900\n7010 -7756\n-7598 8619 -7166 -3069\n-7486 -727 -9707 7115",
"output": "YES"
},
{
"input": "5974 2044\n8371 6409\n-675 4290 -8517 -9542\n-9005 4263 -9763 -8777",
"output": "YES"
},
{
"input": "2729 -5812\n9733 574\n9967 3682 -9868 3984\n9477 9254 2347 3997",
"output": "YES"
},
{
"input": "3205 -9947\n7374 -5260\n-3110 3073 5060 -2488\n7958 -5755 -7406 -816",
"output": "NO"
},
{
"input": "3680 2196\n8736 8904\n7532 2465 3709 -8961\n6439 -765 3053 3026",
"output": "NO"
},
{
"input": "4156 -5659\n-9903 3069\n-5545 1857 2358 4566\n4920 4225 5236 7868",
"output": "YES"
},
{
"input": "4632 -9795\n7738 -6486\n1377 1248 1007 -1906\n3402 9216 250 6991",
"output": "YES"
},
{
"input": "5108 2348\n9100 7679\n-7980 640 -4064 -8379\n1883 -5793 9041 8957",
"output": "NO"
},
{
"input": "509 -7077\n1396 9890\n1192 2964 -1072 -8932\n-3260 -6877 -1781 1603",
"output": "NO"
},
{
"input": "9060 4628\n5720 -2370\n-1791 9325 1552 -3684\n-161 -4597 2287 -3890",
"output": "YES"
},
{
"input": "-2389 53\n-9955 5368\n-4775 -593 7898 -2157\n6659 1403 9634 -3275",
"output": "YES"
},
{
"input": "6161 -4520\n-5630 -3171\n-7760 9489 -9477 -630\n9758 7404 -4730 -8056",
"output": "NO"
},
{
"input": "-5289 7185\n-5026 4568\n9256 -429 -3131 4617\n-7143 -6595 -5505 -370",
"output": "YES"
},
{
"input": "3261 2610\n-701 -7693\n6272 9652 -506 6144\n-322 -4315 -1436 -2142",
"output": "YES"
},
{
"input": "-8188 -5684\n3623 46\n3288 -265 5839 7672\n2776 1685 2632 -7636",
"output": "NO"
},
{
"input": "362 9742\n7948 7786\n303 6095 -7816 9199\n5875 7686 6702 6871",
"output": "YES"
},
{
"input": "-7366 1446\n-7727 -754\n-2680 -3822 -5191 -5553\n-7304 -6313 -9229 1377",
"output": "YES"
},
{
"input": "1184 -3127\n-7123 6985\n-1943 6259 1154 -4026\n-4205 -4033 -5160 -4115",
"output": "NO"
},
{
"input": "-4496 6192\n-8443 7736\n2227 9746 -7197 6992\n-4002 -6638 7315 -9557",
"output": "NO"
},
{
"input": "-3802 -741\n-9954 6119\n-1364 -1523 -8659 2791\n6451 -4606 -7143 2288",
"output": "NO"
},
{
"input": "-3107 -7674\n4815 780\n-4957 3486 1980 -2625\n-432 -4075 -9497 -171",
"output": "NO"
},
{
"input": "1307 5392\n3305 -837\n-8550 -7782 5287 1042\n-2922 -287 8944 3865",
"output": "NO"
},
{
"input": "2001 2179\n-1925 -2455\n7858 948 71 2256\n4850 9947 1159 2295",
"output": "NO"
},
{
"input": "2696 -4753\n-3435 -7793\n4265 5958 -3218 -8692\n4458 4449 4175 1539",
"output": "NO"
},
{
"input": "7111 8313\n-4946 -9411\n672 -5310 -7733 -1889\n378 8589 -915 7675",
"output": "NO"
},
{
"input": "7806 5101\n9823 8971\n-6640 -300 9044 7390\n-2297 -3829 7806 2982",
"output": "NO"
},
{
"input": "-7779 -1832\n8313 7354\n9767 8430 -8438 -3487\n3855 4077 1085 -5181",
"output": "NO"
},
{
"input": "-7086 -8767\n6803 2015\n6175 -6560 3372 573\n256 3769 393 9678",
"output": "NO"
},
{
"input": "6777 -4260\n1717 5583\n3262 248 5800 1524\n9267 -7380 8541 5269",
"output": "YES"
},
{
"input": "3336 -9832\n-9350 -9113\n-939 3907 -3643 -9931\n8186 6365 6202 6802",
"output": "NO"
},
{
"input": "-6319 2768\n-431 5862\n-5417 8036 -5331 3150\n2385 -1888 3450 7359",
"output": "YES"
},
{
"input": "-7267 -975\n-7760 5217\n-9341 -5054 -7370 3072\n-4926 1220 7603 -1721",
"output": "NO"
},
{
"input": "9293 -6547\n4895 -9479\n2738 -1395 8489 -8324\n3540 -4860 -8555 1675",
"output": "NO"
},
{
"input": "5851 7882\n-6171 -4174\n-1463 5985 4956 -8663\n6370 -9777 -864 9154",
"output": "NO"
},
{
"input": "-1311 2310\n2764 1131\n-1964 -5465 -199 2630\n-5664 9644 9110 2262",
"output": "YES"
},
{
"input": "-4752 -3262\n-4582 6436\n-8997 -6490 -4630 1426\n-9865 -6697 -2371 -5622",
"output": "YES"
},
{
"input": "-8193 -8833\n4353 -8260\n2214 683 -8074 -8978\n5548 -850 -1486 -8372",
"output": "NO"
},
{
"input": "4646 5596\n-2993 766\n2443 -3831 3479 5022\n-1987 4342 9668 7192",
"output": "YES"
},
{
"input": "1772 9009\n-8123 3429\n-1873 9437 -2887 -997\n8018 -9250 -5090 -9980",
"output": "YES"
},
{
"input": "97 -43\n7213 -4204\n5460 -8068 4212 -2411\n9853 -8477 7807 6052",
"output": "YES"
},
{
"input": "-823 -3132\n-1924 -8397\n3277 5496 -1772 -6699\n-5322 -4634 922 182",
"output": "YES"
},
{
"input": "7880 -7342\n1175 7552\n-6177 6690 6086 -2763\n6149 -2325 8602 -8496",
"output": "YES"
},
{
"input": "-3417 8449\n7996 3499\n3163 7949 5262 4575\n1340 -17 -3934 8703",
"output": "YES"
},
{
"input": "5286 518\n-8906 -4274\n-2162 1352 -751 -3408\n-3469 2291 -9521 -462",
"output": "YES"
},
{
"input": "-1541 -7140\n-3434 7016\n-831 6470 -4500 2354\n-5503 -553 -5998 6361",
"output": "YES"
},
{
"input": "-3234 2278\n-1683 1276\n-8143 -2879 -903 2275\n9053 -2468 7486 6408",
"output": "YES"
},
{
"input": "-8607 4167\n4114 -152\n3668 -1725 -7827 4541\n-5338 9216 880 9081",
"output": "YES"
},
{
"input": "-1971 -1636\n8799 -5185\n2406 2302 1967 -7166\n-4122 5320 7348 337",
"output": "NO"
},
{
"input": "-1541 -7140\n-3434 7016\n-831 6470 -7233 -5530\n-5503 -553 -5998 6361",
"output": "NO"
},
{
"input": "-9867 3736\n2889 5086\n2601 -5285 -8930 4748\n-3752 511 3554 1104",
"output": "NO"
},
{
"input": "3874 -278\n-8905 -3524\n-1544 -3249 4063 -111\n-59 1361 7173 -847",
"output": "NO"
},
{
"input": "5567 -9695\n5625 2216\n1965 -7804 8129 -7554\n1665 -446 5340 7652",
"output": "NO"
},
{
"input": "-8240 -4453\n8478 -878\n7033 7520 -1002 -3146\n-9913 8035 -9876 -8757",
"output": "NO"
},
{
"input": "866 4303\n-2945 -7242\n-8638 4653 -1155 -7439\n-950 -5491 2786 3812",
"output": "NO"
},
{
"input": "1462 5132\n-8664 2428\n175 -8258 -9863 8483\n-5685 3527 1556 5387",
"output": "NO"
},
{
"input": "866 4303\n-2945 -7242\n-8638 4653 -1155 -7439\n-950 -5491 2786 3812",
"output": "NO"
},
{
"input": "-8836 -5283\n-5804 9454\n-4442 76 -9550 -986\n-5178 -982 -7763 -7108",
"output": "NO"
}
] | 1,617,739,826
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 80
| 186
| 0
|
xv,yv=list(map(int,input().split()))
xp,yp=list(map(int,input().split()))
xw1,yw1,xw2,yw2=list(map(int,input().split()))
xm1,ym1,xm2,ym2=list(map(int,input().split()))
def a(x1,y1,x2,y2,x3,y3,x4,y4):
if x1==x2:
if x3==x4:
return False
else:
k2=(y3-y4)/(x3-x4)
b2=y3-k2*x3
return min(y3,y4)<=k2*x1+b2<=max(y3,y4) and min(y1,y2)<=k2*x1+b2<=max(y1,y2) and min(x3,x4)<=x1<=max(x3,x4) and min(x1,x2)<=x1<=max(x1,x2)
else:
if x3==x4:
k1=(y1-y2)/(x1-x2)
b1=y1-k1*x1
return min(y3,y4)<=k1*x3+b1<=max(y3,y4) and min(y1,y2)<=k1*x3+b1<=max(y1,y2) and min(x3,x4)<=x3<=max(x3,x4) and min(x1,x2)<=x3<=max(x1,x2)
else:
k1=(y1-y2)/(x1-x2)
b1=y1-k1*x1
k2=(y3-y4)/(x3-x4)
b2=y3-k2*x3
if k1==k2:
return b1==b2 and min(x1,x2)<=min(x3,x4)<=max(x1,x2) and min(y1,y2)<=min(y3,y4)<=max(y1,y2)
x=(b2-b1)/(k1-k2)
y=k1*x+b1
return min(y3,y4)<=y<=max(y3,y4) and min(y1,y2)<=y<=max(y1,y2) and min(x3,x4)<=x<=max(x3,x4) and min(x1,x2)<=x<=max(x1,x2)
def b(xm1,xm2,ym1,ym2,x,y):
if ym1==ym2:
xi=x
yi=2*ym1-y
elif xm1==xm2:
yi=y
xi=2*xm1-x
else:
k1=-(xm1-xm2)/(ym1-ym2)
b1=y-k1*x
k2=(ym1-ym2)/(xm1-xm2)
b2=ym1-k2*xm1
x1=(b2-b1)/(k1-k2)
xi=2*x1-x
yi=k1*xi+b1
return [xi,yi]
xw3,yw3=b(xm1,xm2,ym1,ym2,xw1,yw1)
xw4,yw4=b(xm1,xm2,ym1,ym2,xw2,yw2)
if a(xv,yv,xp,yp,xw1,yw1,xw2,yw2) or a(xv,yv,xp,yp,xm1,ym1,xm2,ym2):
xip,yip=b(xm1,xm2,ym1,ym2,xp,yp)
if [xip,yip]!=[xv,yv] and a(xv,yv,xip,yip,xm1,ym1,xm2,ym2) and not(a(xv,yv,xip,yip,xw1,yw1,xw2,yw2)) and not(a(xv,yv,xip,yip,xw3,yw3,xw4,yw4)):
print('YES')
else:
print('NO')
else:
print('YES')
|
Title: Hide-and-Seek
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Victor and Peter are playing hide-and-seek. Peter has hidden, and Victor is to find him. In the room where they are playing, there is only one non-transparent wall and one double-sided mirror. Victor and Peter are points with coordinates (*x**v*,<=*y**v*) and (*x**p*,<=*y**p*) respectively. The wall is a segment joining points with coordinates (*x**w*,<=1,<=*y**w*,<=1) and (*x**w*,<=2,<=*y**w*,<=2), the mirror — a segment joining points (*x**m*,<=1,<=*y**m*,<=1) and (*x**m*,<=2,<=*y**m*,<=2).
If an obstacle has a common point with a line of vision, it's considered, that the boys can't see each other with this line of vision. If the mirror has a common point with the line of vision, it's considered, that the boys can see each other in the mirror, i.e. reflection takes place. The reflection process is governed by laws of physics — the angle of incidence is equal to the angle of reflection. The incident ray is in the same half-plane as the reflected ray, relative to the mirror. I.e. to see each other Victor and Peter should be to the same side of the line, containing the mirror (see example 1). If the line of vision is parallel to the mirror, reflection doesn't take place, and the mirror isn't regarded as an obstacle (see example 4).
Victor got interested if he can see Peter, while standing at the same spot. Help him solve this problem.
Input Specification:
The first line contains two numbers *x**v* and *y**v* — coordinates of Victor.
The second line contains two numbers *x**p* and *y**p* — coordinates of Peter.
The third line contains 4 numbers *x**w*,<=1, *y**w*,<=1, *x**w*,<=2, *y**w*,<=2 — coordinates of the wall.
The forth line contains 4 numbers *x**m*,<=1, *y**m*,<=1, *x**m*,<=2, *y**m*,<=2 — coordinates of the mirror.
All the coordinates are integer numbers, and don't exceed 104 in absolute value. It's guaranteed, that the segments don't have common points, Victor and Peter are not on any of the segments, coordinates of Victor and Peter aren't the same, the segments don't degenerate into points.
Output Specification:
Output YES, if Victor can see Peter without leaving the initial spot. Otherwise output NO.
Demo Input:
['-1 3\n1 3\n0 2 0 4\n0 0 0 1\n', '0 0\n1 1\n0 1 1 0\n-100 -100 -101 -101\n', '0 0\n1 1\n0 1 1 0\n-1 1 1 3\n', '0 0\n10 0\n100 100 101 101\n1 0 3 0\n']
Demo Output:
['NO\n', 'NO\n', 'YES\n', 'YES\n']
Note:
none
|
```python
xv,yv=list(map(int,input().split()))
xp,yp=list(map(int,input().split()))
xw1,yw1,xw2,yw2=list(map(int,input().split()))
xm1,ym1,xm2,ym2=list(map(int,input().split()))
def a(x1,y1,x2,y2,x3,y3,x4,y4):
if x1==x2:
if x3==x4:
return False
else:
k2=(y3-y4)/(x3-x4)
b2=y3-k2*x3
return min(y3,y4)<=k2*x1+b2<=max(y3,y4) and min(y1,y2)<=k2*x1+b2<=max(y1,y2) and min(x3,x4)<=x1<=max(x3,x4) and min(x1,x2)<=x1<=max(x1,x2)
else:
if x3==x4:
k1=(y1-y2)/(x1-x2)
b1=y1-k1*x1
return min(y3,y4)<=k1*x3+b1<=max(y3,y4) and min(y1,y2)<=k1*x3+b1<=max(y1,y2) and min(x3,x4)<=x3<=max(x3,x4) and min(x1,x2)<=x3<=max(x1,x2)
else:
k1=(y1-y2)/(x1-x2)
b1=y1-k1*x1
k2=(y3-y4)/(x3-x4)
b2=y3-k2*x3
if k1==k2:
return b1==b2 and min(x1,x2)<=min(x3,x4)<=max(x1,x2) and min(y1,y2)<=min(y3,y4)<=max(y1,y2)
x=(b2-b1)/(k1-k2)
y=k1*x+b1
return min(y3,y4)<=y<=max(y3,y4) and min(y1,y2)<=y<=max(y1,y2) and min(x3,x4)<=x<=max(x3,x4) and min(x1,x2)<=x<=max(x1,x2)
def b(xm1,xm2,ym1,ym2,x,y):
if ym1==ym2:
xi=x
yi=2*ym1-y
elif xm1==xm2:
yi=y
xi=2*xm1-x
else:
k1=-(xm1-xm2)/(ym1-ym2)
b1=y-k1*x
k2=(ym1-ym2)/(xm1-xm2)
b2=ym1-k2*xm1
x1=(b2-b1)/(k1-k2)
xi=2*x1-x
yi=k1*xi+b1
return [xi,yi]
xw3,yw3=b(xm1,xm2,ym1,ym2,xw1,yw1)
xw4,yw4=b(xm1,xm2,ym1,ym2,xw2,yw2)
if a(xv,yv,xp,yp,xw1,yw1,xw2,yw2) or a(xv,yv,xp,yp,xm1,ym1,xm2,ym2):
xip,yip=b(xm1,xm2,ym1,ym2,xp,yp)
if [xip,yip]!=[xv,yv] and a(xv,yv,xip,yip,xm1,ym1,xm2,ym2) and not(a(xv,yv,xip,yip,xw1,yw1,xw2,yw2)) and not(a(xv,yv,xip,yip,xw3,yw3,xw4,yw4)):
print('YES')
else:
print('NO')
else:
print('YES')
```
| 3.9535
|
671
|
A
|
Recycling Bottles
|
PROGRAMMING
| 1,800
|
[
"dp",
"geometry",
"greedy",
"implementation"
] | null | null |
It was recycling day in Kekoland. To celebrate it Adil and Bera went to Central Perk where they can take bottles from the ground and put them into a recycling bin.
We can think Central Perk as coordinate plane. There are *n* bottles on the ground, the *i*-th bottle is located at position (*x**i*,<=*y**i*). Both Adil and Bera can carry only one bottle at once each.
For both Adil and Bera the process looks as follows:
1. Choose to stop or to continue to collect bottles. 1. If the choice was to continue then choose some bottle and walk towards it. 1. Pick this bottle and walk to the recycling bin. 1. Go to step 1.
Adil and Bera may move independently. They are allowed to pick bottles simultaneously, all bottles may be picked by any of the two, it's allowed that one of them stays still while the other one continues to pick bottles.
They want to organize the process such that the total distance they walk (the sum of distance walked by Adil and distance walked by Bera) is minimum possible. Of course, at the end all bottles should lie in the recycling bin.
|
First line of the input contains six integers *a**x*, *a**y*, *b**x*, *b**y*, *t**x* and *t**y* (0<=≤<=*a**x*,<=*a**y*,<=*b**x*,<=*b**y*,<=*t**x*,<=*t**y*<=≤<=109) — initial positions of Adil, Bera and recycling bin respectively.
The second line contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of bottles on the ground.
Then follow *n* lines, each of them contains two integers *x**i* and *y**i* (0<=≤<=*x**i*,<=*y**i*<=≤<=109) — position of the *i*-th bottle.
It's guaranteed that positions of Adil, Bera, recycling bin and all bottles are distinct.
|
Print one real number — the minimum possible total distance Adil and Bera need to walk in order to put all bottles into recycling bin. Your answer will be considered correct if its absolute or relative error does not exceed 10<=-<=6.
Namely: let's assume that your answer is *a*, and the answer of the jury is *b*. The checker program will consider your answer correct if .
|
[
"3 1 1 2 0 0\n3\n1 1\n2 1\n2 3\n",
"5 0 4 2 2 0\n5\n5 2\n3 0\n5 5\n3 5\n3 3\n"
] |
[
"11.084259940083\n",
"33.121375178000\n"
] |
Consider the first sample.
Adil will use the following path: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/37eea809c04afe04f2670475cc5b21df4a90afd1.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
Bera will use the following path: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/08e917ff238fec015f897516a95529b6d9aed5c7.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
Adil's path will be <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/f58aa00f71a0b723b5de3c8e56ce41dc8afec7f8.png" style="max-width: 100.0%;max-height: 100.0%;"/> units long, while Bera's path will be <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/3615db76a2cdd77d711b73d2894f03bdd52af736.png" style="max-width: 100.0%;max-height: 100.0%;"/> units long.
| 500
|
[
{
"input": "3 1 1 2 0 0\n3\n1 1\n2 1\n2 3",
"output": "11.084259940083"
},
{
"input": "5 0 4 2 2 0\n5\n5 2\n3 0\n5 5\n3 5\n3 3",
"output": "33.121375178000"
},
{
"input": "107 50 116 37 104 118\n12\n16 78\n95 113\n112 84\n5 88\n54 85\n112 80\n19 98\n25 14\n48 76\n95 70\n77 94\n38 32",
"output": "1576.895607473206"
},
{
"input": "446799 395535 281981 494983 755701 57488\n20\n770380 454998\n147325 211816\n818964 223521\n408463 253399\n49120 253709\n478114 283776\n909705 631953\n303154 889956\n126532 258846\n597028 708070\n147061 192478\n39515 879057\n911737 878857\n26966 701951\n616099 715301\n998385 735514\n277633 346417\n642301 188888\n617247 256225\n668067 352814",
"output": "22423982.398765542000"
},
{
"input": "0 0 214409724 980408402 975413181 157577991\n4\n390610378 473484159\n920351980 785918656\n706277914 753279807\n159291646 213569247",
"output": "4854671149.842136400000"
},
{
"input": "214409724 980408402 0 0 975413181 157577991\n4\n390610378 473484159\n920351980 785918656\n706277914 753279807\n159291646 213569247",
"output": "4854671149.842136400000"
},
{
"input": "383677880 965754167 658001115 941943959 0 0\n10\n9412 5230\n4896 7518\n3635 6202\n2365 1525\n241 1398\n7004 5166\n1294 9162\n3898 6706\n6135 8199\n4195 4410",
"output": "1039303750.884648200000"
},
{
"input": "825153337 326797826 774256604 103765336 0 0\n21\n6537 9734\n3998 8433\n560 7638\n1937 2557\n3487 244\n8299 4519\n73 9952\n2858 3719\n9267 5675\n9584 7636\n9234 1049\n7415 6018\n7653 9345\n7752 9628\n7476 8917\n7207 2352\n2602 4612\n1971 3307\n5530 3694\n2393 8573\n7506 9810",
"output": "781520533.726828810000"
},
{
"input": "214409724 980408402 975413181 157577991 0 0\n4\n3721 6099\n5225 4247\n940 340\n8612 7341",
"output": "988090959.937532070000"
},
{
"input": "235810013 344493922 0 0 975204641 211157253\n18\n977686151 621301932\n408277582 166435161\n595105725 194278844\n967498841 705149530\n551735395 659209387\n492239556 317614998\n741520864 843275770\n585383143 903832112\n272581169 285871890\n339100580 134101148\n920610054 824829107\n657996186 852771589\n948065129 573712142\n615254670 698346010\n365251531 883011553\n304877602 625498272\n418150850 280945187\n731399551 643859052",
"output": "20756961047.556908000000"
},
{
"input": "0 0 1 1 2 2\n1\n1 3",
"output": "3.414213562373"
},
{
"input": "10000 1000 151 121 10 10\n2\n1 1\n2 2",
"output": "227.449066182313"
},
{
"input": "5 5 10 10 15 15\n2\n1 1\n11 11",
"output": "32.526911934581"
},
{
"input": "1000000 1000000 1 1 0 0\n1\n2 2",
"output": "4.242640687119"
},
{
"input": "100 0 0 1 0 0\n2\n1 1\n1 2",
"output": "6.478708664619"
},
{
"input": "0 0 1000000000 1000000000 1 1\n2\n0 1\n1 0",
"output": "4.000000000000"
},
{
"input": "1000 1000 0 0 1 1\n1\n2 2",
"output": "4.242640687119"
},
{
"input": "1 0 1000000 0 0 0\n2\n1 1\n2 2",
"output": "7.892922226992"
},
{
"input": "3 0 100 100 0 0\n2\n1 0\n2 0",
"output": "5.000000000000"
},
{
"input": "0 100 0 101 0 0\n1\n0 99",
"output": "100.000000000000"
},
{
"input": "1000 1000 3 3 0 0\n2\n1 0\n0 1",
"output": "6.605551275464"
},
{
"input": "0 5 0 6 0 7\n1\n0 100",
"output": "187.000000000000"
},
{
"input": "1 1 1000000 1000000 0 0\n2\n1 2\n2 1",
"output": "7.708203932499"
},
{
"input": "1 0 10000000 1000000 0 0\n2\n1 1\n2 2",
"output": "7.892922226992"
},
{
"input": "2 2 10 2 6 5\n2\n6 2\n5 5",
"output": "9.000000000000"
},
{
"input": "100000001 100000001 100000000 100000000 1 1\n1\n1 0",
"output": "141421356.530202720000"
},
{
"input": "1000 1000 1001 1001 0 0\n2\n1 1\n2 2",
"output": "1417.041989497841"
},
{
"input": "1000000000 1000000000 999999999 999999999 1 1\n4\n1 2\n1 3\n2 2\n2 3",
"output": "1414213568.487842800000"
},
{
"input": "0 100 1 1 1 0\n2\n2 1\n0 1",
"output": "5.242640687119"
},
{
"input": "0 100 0 1 0 0\n5\n0 2\n0 3\n0 4\n0 5\n0 6",
"output": "39.000000000000"
},
{
"input": "100 0 0 100 0 0\n2\n0 1\n1 0",
"output": "102.000000000000"
},
{
"input": "0 0 1000000 1000000 0 1\n2\n1 1\n2 2",
"output": "6.886349517373"
},
{
"input": "0 0 1000 1000 1 0\n2\n1 1\n1 2",
"output": "6.236067977500"
},
{
"input": "1 0 100000 100000 0 0\n1\n2 0",
"output": "3.000000000000"
},
{
"input": "5 5 5 4 4 5\n2\n3 4\n3 5",
"output": "5.414213562373"
},
{
"input": "10000 10000 9000 9000 0 0\n3\n1 1\n2 2\n3 3",
"output": "12736.407342732093"
},
{
"input": "1 1 1000 1000 0 0\n3\n2 2\n3 3\n4 4",
"output": "24.041630560343"
},
{
"input": "7 0 8 0 0 0\n2\n1 0\n1 1",
"output": "9.496976092671"
},
{
"input": "1 3 3 3 2 1\n2\n2 3\n3 1",
"output": "5.000000000000"
},
{
"input": "1 2 3 4 5 6\n1\n1 1",
"output": "7.403124237433"
},
{
"input": "1000000000 1000000000 0 0 1 1\n5\n2 2\n2 3\n2 4\n2 5\n2 6",
"output": "33.294904485247"
},
{
"input": "2 1 1 2 0 0\n1\n1 1",
"output": "2.414213562373"
},
{
"input": "1 0 100000 0 0 0\n2\n1 1\n2 2",
"output": "7.892922226992"
},
{
"input": "0 100 1 100 1 0\n2\n2 1\n0 1",
"output": "103.242640687119"
},
{
"input": "0 0 2 0 1 5\n2\n1 0\n1 20",
"output": "36.000000000000"
},
{
"input": "1000 1000 999 999 0 0\n2\n1 0\n0 1",
"output": "1415.092419071783"
},
{
"input": "5 0 1000 1000 2 0\n2\n4 0\n6 7",
"output": "19.124515496597"
},
{
"input": "10000 0 1000000 0 0 0\n2\n1 1\n2 2",
"output": "10003.657054289499"
},
{
"input": "0 100 0 101 0 0\n2\n0 1\n0 2",
"output": "102.000000000000"
},
{
"input": "0 0 10000 10000 1 0\n2\n2 0\n3 0",
"output": "7.000000000000"
},
{
"input": "3 1 1 2 0 0\n1\n1 1",
"output": "2.414213562373"
},
{
"input": "1000 0 0 1000 0 0\n2\n1 0\n0 1",
"output": "1002.000000000000"
},
{
"input": "1 1 1000000 1000000 0 0\n2\n2 1\n1 2",
"output": "7.708203932499"
},
{
"input": "1000 1000 2000 2000 1 1\n3\n2 2\n1 2\n3 3",
"output": "1417.627775935468"
},
{
"input": "0 0 1000000000 1000000000 1 1\n4\n2 2\n3 3\n4 4\n5 5",
"output": "29.698484809835"
},
{
"input": "10000000 1 2 1 1 1\n3\n1 3\n1 4\n1 5",
"output": "18.123105625618"
},
{
"input": "3 7 5 7 4 4\n2\n4 6\n4 0",
"output": "11.414213562373"
},
{
"input": "0 0 3 0 1 5\n2\n1 0\n1 20",
"output": "36.000000000000"
},
{
"input": "0 0 0 1 1000 3\n2\n1000 2\n1000 1",
"output": "1004.000000000000"
},
{
"input": "1000000000 0 0 1 0 0\n2\n0 2\n0 3",
"output": "9.000000000000"
},
{
"input": "0 1000000000 1000000000 0 0 0\n1\n1 1",
"output": "1000000000.414213500000"
},
{
"input": "1000 1000 1000 1001 0 0\n2\n0 1\n1 1",
"output": "1416.213562373095"
},
{
"input": "1002 0 1001 0 0 0\n1\n1000 0",
"output": "1001.000000000000"
},
{
"input": "1002 0 1001 0 0 0\n2\n2 0\n1 0",
"output": "1003.000000000000"
},
{
"input": "3 0 0 100 0 0\n2\n1 0\n2 0",
"output": "5.000000000000"
},
{
"input": "10 10 0 0 0 1\n2\n1 0\n1 1",
"output": "4.414213562373"
},
{
"input": "1000 1000 1001 1001 0 0\n2\n0 1\n1 1",
"output": "1416.213562373095"
},
{
"input": "0 100 0 200 0 0\n2\n0 1\n0 2",
"output": "102.000000000000"
},
{
"input": "100 100 0 0 1 1\n1\n2 2",
"output": "4.242640687119"
},
{
"input": "123123 154345 123123 123123 2 2\n3\n3 3\n4 4\n5 5",
"output": "174127.873294312070"
},
{
"input": "0 1 0 2 0 0\n1\n1 0",
"output": "2.414213562373"
},
{
"input": "1 2 3 4 1000 1000\n1\n156 608",
"output": "1553.668251715911"
},
{
"input": "0 0 10 0 5 0\n3\n4 1\n5 1\n6 1",
"output": "10.365746312737"
},
{
"input": "0 0 0 1 1000000000 999999999\n1\n1000000000 1000000000",
"output": "1414213562.665988200000"
},
{
"input": "1231231 2342342 123124 123151 12315 12312\n1\n354345 234234",
"output": "664238.053973730540"
},
{
"input": "0 0 1000000 0 1 1\n2\n0 1\n3 0",
"output": "6.472135955000"
},
{
"input": "1000 1000 2000 2000 1 1\n1\n2 2",
"output": "1412.799348810722"
},
{
"input": "10 20 10 0 10 10\n2\n10 11\n10 9",
"output": "12.000000000000"
},
{
"input": "1000000000 1 1 1000000000 0 0\n1\n2 2",
"output": "1000000000.828427200000"
},
{
"input": "0 0 1000 1000 1 0\n2\n2 0\n3 0",
"output": "7.000000000000"
},
{
"input": "1000 0 100000000 100000000 0 0\n2\n999 0\n1100 0",
"output": "3198.000000000000"
},
{
"input": "2 2 1000000000 1000000000 0 0\n3\n1 1\n5 5\n100 100",
"output": "296.984848098350"
},
{
"input": "2 0 4 0 0 0\n1\n3 0",
"output": "4.000000000000"
},
{
"input": "2 2 1000 1000 0 0\n2\n1 1\n1 2",
"output": "6.064495102246"
},
{
"input": "0 0 1000000000 1000000000 0 1\n3\n1 0\n2 0\n3 0",
"output": "13.210904837709"
},
{
"input": "1 10000 10000 1 0 0\n2\n1 100\n100 1",
"output": "10200.014999625020"
},
{
"input": "5 0 6 0 0 0\n2\n2 0\n0 2",
"output": "9.000000000000"
},
{
"input": "2 4 1000000000 1000000000 0 0\n4\n2 3\n2 1\n3 2\n1 2",
"output": "20.760925736391"
},
{
"input": "0 100 1 1 0 0\n2\n0 1\n3 1",
"output": "7.162277660168"
},
{
"input": "0 0 10 0 8 2\n1\n6 0",
"output": "6.828427124746"
},
{
"input": "0 9 0 8 0 1\n1\n0 0",
"output": "9.000000000000"
},
{
"input": "100 0 0 100 0 0\n2\n40 0\n0 40",
"output": "180.000000000000"
},
{
"input": "0 0 0 1 1000 3\n2\n1000 1\n1000 2",
"output": "1004.000000000000"
},
{
"input": "1 1 123123 123123 2 2\n3\n3 3\n4 4\n5 5",
"output": "18.384776310850"
},
{
"input": "999999999 999999999 1000000000 1000000000 1 1\n1\n1 0",
"output": "1414213561.251774800000"
},
{
"input": "3 2 1 1 0 0\n1\n2 2",
"output": "3.828427124746"
},
{
"input": "0 0 1 1 100 100\n2\n101 101\n102 102",
"output": "148.492424049175"
},
{
"input": "1 15 4 10 1 1\n2\n1 10\n4 5",
"output": "22.000000000000"
},
{
"input": "100 0 0 100 0 0\n2\n60 0\n0 40",
"output": "180.000000000000"
},
{
"input": "0 0 0 1000 1 0\n4\n0 1\n0 2\n0 3\n0 4",
"output": "21.457116088945"
},
{
"input": "0 0 100 0 3 0\n1\n2 0",
"output": "3.000000000000"
},
{
"input": "0 0 100 0 98 2\n1\n98 0",
"output": "4.000000000000"
},
{
"input": "1 1 2 2 3 3\n1\n0 0",
"output": "5.656854249492"
},
{
"input": "2 2 1 1 0 0\n1\n1 2",
"output": "3.236067977500"
},
{
"input": "10000000 1 2 1 1 1\n3\n1 40\n1 20\n1 5",
"output": "124.012818406262"
},
{
"input": "1000 1000 1001 1000 0 0\n3\n1 1\n1 2\n1 3",
"output": "1421.848684511914"
},
{
"input": "10000 10000 9999 9999 0 0\n3\n0 1\n0 2\n0 3",
"output": "14147.600248963827"
}
] | 1,553,454,346
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 40
| 1,435
| 10,035,200
|
R = lambda: map(int, input().split())
ax, ay, bx, by, tx, ty = R()
n = int(input())
dp = [[0] * (n + 1) for i in range(4)]
for i in range(n):
x, y = R()
da, db, dt = ((x - ax) ** 2 + (y - ay) ** 2) ** 0.5, ((x - bx) ** 2 + (y - by) ** 2) ** 0.5, ((x - tx) ** 2 + (y - ty) ** 2) ** 0.5
dp[0][i] = dp[0][i - 1] + dt * 2
dp[1][i] = min(dp[0][i - 1] + db + dt, dp[1][i - 1] + dt * 2)
dp[2][i] = min(dp[0][i - 1] + da + dt, dp[2][i - 1] + dt * 2)
dp[3][i] = min(dp[1][i - 1] + da + dt, dp[2][i - 1] + db + dt, dp[3][i - 1] + dt * 2)
print(min(dp[3][n - 1], dp[2][n - 1], dp[1][n - 1]))
|
Title: Recycling Bottles
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
It was recycling day in Kekoland. To celebrate it Adil and Bera went to Central Perk where they can take bottles from the ground and put them into a recycling bin.
We can think Central Perk as coordinate plane. There are *n* bottles on the ground, the *i*-th bottle is located at position (*x**i*,<=*y**i*). Both Adil and Bera can carry only one bottle at once each.
For both Adil and Bera the process looks as follows:
1. Choose to stop or to continue to collect bottles. 1. If the choice was to continue then choose some bottle and walk towards it. 1. Pick this bottle and walk to the recycling bin. 1. Go to step 1.
Adil and Bera may move independently. They are allowed to pick bottles simultaneously, all bottles may be picked by any of the two, it's allowed that one of them stays still while the other one continues to pick bottles.
They want to organize the process such that the total distance they walk (the sum of distance walked by Adil and distance walked by Bera) is minimum possible. Of course, at the end all bottles should lie in the recycling bin.
Input Specification:
First line of the input contains six integers *a**x*, *a**y*, *b**x*, *b**y*, *t**x* and *t**y* (0<=≤<=*a**x*,<=*a**y*,<=*b**x*,<=*b**y*,<=*t**x*,<=*t**y*<=≤<=109) — initial positions of Adil, Bera and recycling bin respectively.
The second line contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of bottles on the ground.
Then follow *n* lines, each of them contains two integers *x**i* and *y**i* (0<=≤<=*x**i*,<=*y**i*<=≤<=109) — position of the *i*-th bottle.
It's guaranteed that positions of Adil, Bera, recycling bin and all bottles are distinct.
Output Specification:
Print one real number — the minimum possible total distance Adil and Bera need to walk in order to put all bottles into recycling bin. Your answer will be considered correct if its absolute or relative error does not exceed 10<=-<=6.
Namely: let's assume that your answer is *a*, and the answer of the jury is *b*. The checker program will consider your answer correct if .
Demo Input:
['3 1 1 2 0 0\n3\n1 1\n2 1\n2 3\n', '5 0 4 2 2 0\n5\n5 2\n3 0\n5 5\n3 5\n3 3\n']
Demo Output:
['11.084259940083\n', '33.121375178000\n']
Note:
Consider the first sample.
Adil will use the following path: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/37eea809c04afe04f2670475cc5b21df4a90afd1.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
Bera will use the following path: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/08e917ff238fec015f897516a95529b6d9aed5c7.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
Adil's path will be <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/f58aa00f71a0b723b5de3c8e56ce41dc8afec7f8.png" style="max-width: 100.0%;max-height: 100.0%;"/> units long, while Bera's path will be <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/3615db76a2cdd77d711b73d2894f03bdd52af736.png" style="max-width: 100.0%;max-height: 100.0%;"/> units long.
|
```python
R = lambda: map(int, input().split())
ax, ay, bx, by, tx, ty = R()
n = int(input())
dp = [[0] * (n + 1) for i in range(4)]
for i in range(n):
x, y = R()
da, db, dt = ((x - ax) ** 2 + (y - ay) ** 2) ** 0.5, ((x - bx) ** 2 + (y - by) ** 2) ** 0.5, ((x - tx) ** 2 + (y - ty) ** 2) ** 0.5
dp[0][i] = dp[0][i - 1] + dt * 2
dp[1][i] = min(dp[0][i - 1] + db + dt, dp[1][i - 1] + dt * 2)
dp[2][i] = min(dp[0][i - 1] + da + dt, dp[2][i - 1] + dt * 2)
dp[3][i] = min(dp[1][i - 1] + da + dt, dp[2][i - 1] + db + dt, dp[3][i - 1] + dt * 2)
print(min(dp[3][n - 1], dp[2][n - 1], dp[1][n - 1]))
```
| 0
|
|
883
|
A
|
Automatic Door
|
PROGRAMMING
| 2,200
|
[
"implementation"
] | null | null |
There is an automatic door at the entrance of a factory. The door works in the following way:
- when one or several people come to the door and it is closed, the door immediately opens automatically and all people immediately come inside, - when one or several people come to the door and it is open, all people immediately come inside, - opened door immediately closes in *d* seconds after its opening, - if the door is closing and one or several people are coming to the door at the same moment, then all of them will have enough time to enter and only after that the door will close.
For example, if *d*<==<=3 and four people are coming at four different moments of time *t*1<==<=4, *t*2<==<=7, *t*3<==<=9 and *t*4<==<=13 then the door will open three times: at moments 4, 9 and 13. It will close at moments 7 and 12.
It is known that *n* employees will enter at moments *a*,<=2·*a*,<=3·*a*,<=...,<=*n*·*a* (the value *a* is positive integer). Also *m* clients will enter at moments *t*1,<=*t*2,<=...,<=*t**m*.
Write program to find the number of times the automatic door will open. Assume that the door is initially closed.
|
The first line contains four integers *n*, *m*, *a* and *d* (1<=≤<=*n*,<=*a*<=≤<=109, 1<=≤<=*m*<=≤<=105, 1<=≤<=*d*<=≤<=1018) — the number of the employees, the number of the clients, the moment of time when the first employee will come and the period of time in which the door closes.
The second line contains integer sequence *t*1,<=*t*2,<=...,<=*t**m* (1<=≤<=*t**i*<=≤<=1018) — moments of time when clients will come. The values *t**i* are given in non-decreasing order.
|
Print the number of times the door will open.
|
[
"1 1 3 4\n7\n",
"4 3 4 2\n7 9 11\n"
] |
[
"1\n",
"4\n"
] |
In the first example the only employee will come at moment 3. At this moment the door will open and will stay open until the moment 7. At the same moment of time the client will come, so at first he will enter and only after it the door will close. Thus the door will open one time.
| 0
|
[
{
"input": "1 1 3 4\n7",
"output": "1"
},
{
"input": "4 3 4 2\n7 9 11",
"output": "4"
},
{
"input": "10 10 51 69\n154 170 170 183 251 337 412 426 445 452",
"output": "6"
},
{
"input": "70 10 26 17\n361 371 579 585 629 872 944 1017 1048 1541",
"output": "70"
},
{
"input": "100 20 49 52\n224 380 690 1585 1830 1973 2490 2592 3240 3341 3406 3429 3549 3560 3895 3944 4344 4390 4649 4800",
"output": "55"
},
{
"input": "100 30 36 47\n44 155 275 390 464 532 1186 1205 1345 1349 1432 1469 1482 1775 1832 1856 1869 2049 2079 2095 2374 2427 2577 2655 2792 2976 3020 3317 3482 3582",
"output": "51"
},
{
"input": "97 60 1 1\n5 6 6 7 9 10 10 11 11 11 12 13 13 13 13 14 14 15 16 18 20 23 23 24 25 26 29 31 32 35 38 41 43 43 46 47 48 48 49 52 53 54 55 56 58 59 68 70 72 74 78 81 81 82 91 92 96 96 97 98",
"output": "49"
},
{
"input": "1000000000 1 157 468\n57575875712",
"output": "333333334"
},
{
"input": "1000000000 1 1000000000 1000000000000000000\n1000000000000000000",
"output": "1"
}
] | 1,509,363,462
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 10
| 1,000
| 86,220,800
|
#Sol3
n, m, a, d = map(int, input().split())
lst = []
c = 1
for i in list(map(int, input().split())):
while a * c < i:
lst.append(a * c)
c += 1
lst.append(i)
while c <= n:
lst.append(c * a)
c += 1
#print(lst)
count = 1
openPoint = lst[0]
closePoint = lst[0] + d
for i in range(1, len(lst)):
if lst[i] > closePoint:
count += 1
openPoint = lst[i]
closePoint = lst[i] + d
print(count)
|
Title: Automatic Door
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There is an automatic door at the entrance of a factory. The door works in the following way:
- when one or several people come to the door and it is closed, the door immediately opens automatically and all people immediately come inside, - when one or several people come to the door and it is open, all people immediately come inside, - opened door immediately closes in *d* seconds after its opening, - if the door is closing and one or several people are coming to the door at the same moment, then all of them will have enough time to enter and only after that the door will close.
For example, if *d*<==<=3 and four people are coming at four different moments of time *t*1<==<=4, *t*2<==<=7, *t*3<==<=9 and *t*4<==<=13 then the door will open three times: at moments 4, 9 and 13. It will close at moments 7 and 12.
It is known that *n* employees will enter at moments *a*,<=2·*a*,<=3·*a*,<=...,<=*n*·*a* (the value *a* is positive integer). Also *m* clients will enter at moments *t*1,<=*t*2,<=...,<=*t**m*.
Write program to find the number of times the automatic door will open. Assume that the door is initially closed.
Input Specification:
The first line contains four integers *n*, *m*, *a* and *d* (1<=≤<=*n*,<=*a*<=≤<=109, 1<=≤<=*m*<=≤<=105, 1<=≤<=*d*<=≤<=1018) — the number of the employees, the number of the clients, the moment of time when the first employee will come and the period of time in which the door closes.
The second line contains integer sequence *t*1,<=*t*2,<=...,<=*t**m* (1<=≤<=*t**i*<=≤<=1018) — moments of time when clients will come. The values *t**i* are given in non-decreasing order.
Output Specification:
Print the number of times the door will open.
Demo Input:
['1 1 3 4\n7\n', '4 3 4 2\n7 9 11\n']
Demo Output:
['1\n', '4\n']
Note:
In the first example the only employee will come at moment 3. At this moment the door will open and will stay open until the moment 7. At the same moment of time the client will come, so at first he will enter and only after it the door will close. Thus the door will open one time.
|
```python
#Sol3
n, m, a, d = map(int, input().split())
lst = []
c = 1
for i in list(map(int, input().split())):
while a * c < i:
lst.append(a * c)
c += 1
lst.append(i)
while c <= n:
lst.append(c * a)
c += 1
#print(lst)
count = 1
openPoint = lst[0]
closePoint = lst[0] + d
for i in range(1, len(lst)):
if lst[i] > closePoint:
count += 1
openPoint = lst[i]
closePoint = lst[i] + d
print(count)
```
| 0
|
|
664
|
A
|
Complicated GCD
|
PROGRAMMING
| 800
|
[
"math",
"number theory"
] | null | null |
Greatest common divisor *GCD*(*a*,<=*b*) of two positive integers *a* and *b* is equal to the biggest integer *d* such that both integers *a* and *b* are divisible by *d*. There are many efficient algorithms to find greatest common divisor *GCD*(*a*,<=*b*), for example, Euclid algorithm.
Formally, find the biggest integer *d*, such that all integers *a*,<=*a*<=+<=1,<=*a*<=+<=2,<=...,<=*b* are divisible by *d*. To make the problem even more complicated we allow *a* and *b* to be up to googol, 10100 — such number do not fit even in 64-bit integer type!
|
The only line of the input contains two integers *a* and *b* (1<=≤<=*a*<=≤<=*b*<=≤<=10100).
|
Output one integer — greatest common divisor of all integers from *a* to *b* inclusive.
|
[
"1 2\n",
"61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576\n"
] |
[
"1\n",
"61803398874989484820458683436563811772030917980576\n"
] |
none
| 500
|
[
{
"input": "1 2",
"output": "1"
},
{
"input": "61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576",
"output": "61803398874989484820458683436563811772030917980576"
},
{
"input": "1 100",
"output": "1"
},
{
"input": "100 100000",
"output": "1"
},
{
"input": "12345 67890123456789123457",
"output": "1"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "8392739158839273915883927391588392739158839273915883927391588392739158839273915883927391588392739158 8392739158839273915883927391588392739158839273915883927391588392739158839273915883927391588392739158",
"output": "8392739158839273915883927391588392739158839273915883927391588392739158839273915883927391588392739158"
},
{
"input": "1 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "1"
},
{
"input": "8328748239473982794239847237438782379810988324751 9328748239473982794239847237438782379810988324751",
"output": "1"
},
{
"input": "1029398958432734901284327523909481928483573793 1029398958432734901284327523909481928483573794",
"output": "1"
},
{
"input": "10000 1000000000",
"output": "1"
},
{
"input": "10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"
},
{
"input": "11210171722243 65715435710585778347",
"output": "1"
},
{
"input": "2921881079263974825226940825843 767693191032295360887755303860323261471",
"output": "1"
},
{
"input": "8025352957265704896940312528736939363590612908210603 96027920417708260814607687034511406492969694925539085",
"output": "1"
},
{
"input": "23510978780782786207241069904470895053213996267165977112058175452757132930 210352653280909370107314249722987050753257161175393375412301228883856435481424",
"output": "1"
},
{
"input": "8150070767079366215626260746398623663859344142817267779361251788637547414925170226504788118262 49924902262298336032630839998470954964895251605110946547855439236151401194070172107435992986913614",
"output": "1"
},
{
"input": "15943150466658398903 15943150466658398903",
"output": "15943150466658398903"
},
{
"input": "410470228200245407491525399055972 410470228200245407491525399055972",
"output": "410470228200245407491525399055972"
},
{
"input": "51894705655711504622197349350106792045098781545973899451307 51894705655711504622197349350106792045098781545973899451307",
"output": "51894705655711504622197349350106792045098781545973899451307"
},
{
"input": "60353594589897438036015726222485085035927634677598681595162804007836722215668410 60353594589897438036015726222485085035927634677598681595162804007836722215668410",
"output": "60353594589897438036015726222485085035927634677598681595162804007836722215668410"
},
{
"input": "761733780145118977868180796896376577405349682060892737466239031663476251177476275459280340045369535 761733780145118977868180796896376577405349682060892737466239031663476251177476275459280340045369535",
"output": "761733780145118977868180796896376577405349682060892737466239031663476251177476275459280340045369535"
},
{
"input": "1 2000000000",
"output": "1"
},
{
"input": "13 1928834874",
"output": "1"
},
{
"input": "87 2938984237482934238",
"output": "1"
},
{
"input": "213 413",
"output": "1"
},
{
"input": "3 4",
"output": "1"
}
] | 1,672,246,545
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 30
| 0
|
import math
x,y=map(int,input().split())
if(x<=y):
for i in range(x+1):
if(x%i==0 and y%i==0):
t=i
else:
for i in range(y+1):
if(x%i==0 and y%i==0):
t=i
print(t)
|
Title: Complicated GCD
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Greatest common divisor *GCD*(*a*,<=*b*) of two positive integers *a* and *b* is equal to the biggest integer *d* such that both integers *a* and *b* are divisible by *d*. There are many efficient algorithms to find greatest common divisor *GCD*(*a*,<=*b*), for example, Euclid algorithm.
Formally, find the biggest integer *d*, such that all integers *a*,<=*a*<=+<=1,<=*a*<=+<=2,<=...,<=*b* are divisible by *d*. To make the problem even more complicated we allow *a* and *b* to be up to googol, 10100 — such number do not fit even in 64-bit integer type!
Input Specification:
The only line of the input contains two integers *a* and *b* (1<=≤<=*a*<=≤<=*b*<=≤<=10100).
Output Specification:
Output one integer — greatest common divisor of all integers from *a* to *b* inclusive.
Demo Input:
['1 2\n', '61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576\n']
Demo Output:
['1\n', '61803398874989484820458683436563811772030917980576\n']
Note:
none
|
```python
import math
x,y=map(int,input().split())
if(x<=y):
for i in range(x+1):
if(x%i==0 and y%i==0):
t=i
else:
for i in range(y+1):
if(x%i==0 and y%i==0):
t=i
print(t)
```
| -1
|
|
691
|
B
|
s-palindrome
|
PROGRAMMING
| 1,600
|
[
"implementation",
"strings"
] | null | null |
Let's call a string "s-palindrome" if it is symmetric about the middle of the string. For example, the string "oHo" is "s-palindrome", but the string "aa" is not. The string "aa" is not "s-palindrome", because the second half of it is not a mirror reflection of the first half.
You are given a string *s*. Check if the string is "s-palindrome".
|
The only line contains the string *s* (1<=≤<=|*s*|<=≤<=1000) which consists of only English letters.
|
Print "TAK" if the string *s* is "s-palindrome" and "NIE" otherwise.
|
[
"oXoxoXo\n",
"bod\n",
"ER\n"
] |
[
"TAK\n",
"TAK\n",
"NIE\n"
] |
none
| 0
|
[
{
"input": "oXoxoXo",
"output": "TAK"
},
{
"input": "bod",
"output": "TAK"
},
{
"input": "ER",
"output": "NIE"
},
{
"input": "o",
"output": "TAK"
},
{
"input": "a",
"output": "NIE"
},
{
"input": "opo",
"output": "NIE"
},
{
"input": "HCMoxkgbNb",
"output": "NIE"
},
{
"input": "vMhhXCMWDe",
"output": "NIE"
},
{
"input": "iIcamjTRFH",
"output": "NIE"
},
{
"input": "WvoWvvWovW",
"output": "TAK"
},
{
"input": "WXxAdbAxXW",
"output": "TAK"
},
{
"input": "vqMTUUTMpv",
"output": "TAK"
},
{
"input": "iii",
"output": "NIE"
},
{
"input": "AAWW",
"output": "NIE"
},
{
"input": "ss",
"output": "NIE"
},
{
"input": "i",
"output": "NIE"
},
{
"input": "ii",
"output": "NIE"
},
{
"input": "mm",
"output": "NIE"
},
{
"input": "LJ",
"output": "NIE"
},
{
"input": "m",
"output": "NIE"
},
{
"input": "ioi",
"output": "NIE"
},
{
"input": "OA",
"output": "NIE"
},
{
"input": "aaaiaaa",
"output": "NIE"
},
{
"input": "SS",
"output": "NIE"
},
{
"input": "iiii",
"output": "NIE"
},
{
"input": "ssops",
"output": "NIE"
},
{
"input": "ssss",
"output": "NIE"
},
{
"input": "ll",
"output": "NIE"
},
{
"input": "s",
"output": "NIE"
},
{
"input": "bb",
"output": "NIE"
},
{
"input": "uu",
"output": "NIE"
},
{
"input": "ZoZ",
"output": "NIE"
},
{
"input": "mom",
"output": "NIE"
},
{
"input": "uou",
"output": "NIE"
},
{
"input": "u",
"output": "NIE"
},
{
"input": "JL",
"output": "NIE"
},
{
"input": "mOm",
"output": "NIE"
},
{
"input": "llll",
"output": "NIE"
},
{
"input": "ouo",
"output": "NIE"
},
{
"input": "aa",
"output": "NIE"
},
{
"input": "olo",
"output": "NIE"
},
{
"input": "S",
"output": "NIE"
},
{
"input": "lAl",
"output": "NIE"
},
{
"input": "nnnn",
"output": "NIE"
},
{
"input": "ZzZ",
"output": "NIE"
},
{
"input": "bNd",
"output": "NIE"
},
{
"input": "ZZ",
"output": "NIE"
},
{
"input": "oNoNo",
"output": "NIE"
},
{
"input": "l",
"output": "NIE"
},
{
"input": "zz",
"output": "NIE"
},
{
"input": "NON",
"output": "NIE"
},
{
"input": "nn",
"output": "NIE"
},
{
"input": "NoN",
"output": "NIE"
},
{
"input": "sos",
"output": "NIE"
},
{
"input": "lol",
"output": "NIE"
},
{
"input": "mmm",
"output": "NIE"
},
{
"input": "YAiAY",
"output": "NIE"
},
{
"input": "ipIqi",
"output": "NIE"
},
{
"input": "AAA",
"output": "TAK"
},
{
"input": "uoOou",
"output": "NIE"
},
{
"input": "SOS",
"output": "NIE"
},
{
"input": "NN",
"output": "NIE"
},
{
"input": "n",
"output": "NIE"
},
{
"input": "h",
"output": "NIE"
},
{
"input": "blld",
"output": "NIE"
},
{
"input": "ipOqi",
"output": "NIE"
},
{
"input": "pop",
"output": "NIE"
},
{
"input": "BB",
"output": "NIE"
},
{
"input": "OuO",
"output": "NIE"
},
{
"input": "lxl",
"output": "NIE"
},
{
"input": "Z",
"output": "NIE"
},
{
"input": "vvivv",
"output": "NIE"
},
{
"input": "nnnnnnnnnnnnn",
"output": "NIE"
},
{
"input": "AA",
"output": "TAK"
},
{
"input": "t",
"output": "NIE"
},
{
"input": "z",
"output": "NIE"
},
{
"input": "mmmAmmm",
"output": "NIE"
},
{
"input": "qlililp",
"output": "NIE"
},
{
"input": "mpOqm",
"output": "NIE"
},
{
"input": "iiiiiiiiii",
"output": "NIE"
},
{
"input": "BAAAB",
"output": "NIE"
},
{
"input": "UA",
"output": "NIE"
},
{
"input": "mmmmmmm",
"output": "NIE"
},
{
"input": "NpOqN",
"output": "NIE"
},
{
"input": "uOu",
"output": "NIE"
},
{
"input": "uuu",
"output": "NIE"
},
{
"input": "NAMAN",
"output": "NIE"
},
{
"input": "lllll",
"output": "NIE"
},
{
"input": "T",
"output": "TAK"
},
{
"input": "mmmmmmmmmmmmmmmm",
"output": "NIE"
},
{
"input": "AiiA",
"output": "NIE"
},
{
"input": "iOi",
"output": "NIE"
},
{
"input": "lll",
"output": "NIE"
},
{
"input": "N",
"output": "NIE"
},
{
"input": "viv",
"output": "NIE"
},
{
"input": "oiio",
"output": "NIE"
},
{
"input": "AiiiA",
"output": "NIE"
},
{
"input": "NNNN",
"output": "NIE"
},
{
"input": "ixi",
"output": "NIE"
},
{
"input": "AuuA",
"output": "NIE"
},
{
"input": "AAAANANAAAA",
"output": "NIE"
},
{
"input": "mmmmm",
"output": "NIE"
},
{
"input": "oYo",
"output": "TAK"
},
{
"input": "dd",
"output": "NIE"
},
{
"input": "A",
"output": "TAK"
},
{
"input": "ioh",
"output": "NIE"
},
{
"input": "mmmm",
"output": "NIE"
},
{
"input": "uuuu",
"output": "NIE"
},
{
"input": "puq",
"output": "NIE"
},
{
"input": "rrrrrr",
"output": "NIE"
},
{
"input": "c",
"output": "NIE"
},
{
"input": "AbpA",
"output": "NIE"
},
{
"input": "qAq",
"output": "NIE"
},
{
"input": "tt",
"output": "NIE"
},
{
"input": "mnmnm",
"output": "NIE"
},
{
"input": "sss",
"output": "NIE"
},
{
"input": "yy",
"output": "NIE"
},
{
"input": "bob",
"output": "NIE"
},
{
"input": "NAN",
"output": "NIE"
},
{
"input": "mAm",
"output": "NIE"
},
{
"input": "tAt",
"output": "NIE"
},
{
"input": "yAy",
"output": "NIE"
},
{
"input": "zAz",
"output": "NIE"
},
{
"input": "aZ",
"output": "NIE"
},
{
"input": "hh",
"output": "NIE"
},
{
"input": "bbbb",
"output": "NIE"
},
{
"input": "ZAZ",
"output": "NIE"
},
{
"input": "Y",
"output": "TAK"
},
{
"input": "AAMM",
"output": "NIE"
},
{
"input": "lml",
"output": "NIE"
},
{
"input": "AZA",
"output": "NIE"
},
{
"input": "mXm",
"output": "NIE"
},
{
"input": "bd",
"output": "TAK"
},
{
"input": "H",
"output": "TAK"
},
{
"input": "uvu",
"output": "NIE"
},
{
"input": "dxxd",
"output": "NIE"
},
{
"input": "dp",
"output": "NIE"
},
{
"input": "vV",
"output": "NIE"
},
{
"input": "vMo",
"output": "NIE"
},
{
"input": "O",
"output": "TAK"
},
{
"input": "vYv",
"output": "TAK"
},
{
"input": "fv",
"output": "NIE"
},
{
"input": "U",
"output": "TAK"
},
{
"input": "iAi",
"output": "NIE"
},
{
"input": "I",
"output": "TAK"
},
{
"input": "VxrV",
"output": "NIE"
},
{
"input": "POP",
"output": "NIE"
},
{
"input": "bid",
"output": "NIE"
},
{
"input": "bmd",
"output": "NIE"
},
{
"input": "AiA",
"output": "NIE"
},
{
"input": "mmmmmm",
"output": "NIE"
},
{
"input": "XHX",
"output": "TAK"
},
{
"input": "llllll",
"output": "NIE"
},
{
"input": "aAa",
"output": "NIE"
},
{
"input": "Db",
"output": "NIE"
},
{
"input": "lOl",
"output": "NIE"
},
{
"input": "bzd",
"output": "NIE"
}
] | 1,471,246,844
| 1,544
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 10
| 61
| 4,608,000
|
s=input()
l=len(s)
li=['O','o','H','V','v','X','x','W','w','M','T','I','U','Y']
if(l&1):
if s[l//2] not in li:
print("NIE")
exit()
f=0
for i in range(len(s)//2):
if(s[i]==s[l-1-i]):
if s[i] not in li:
f=1
break
else:
if(s[i]!='b' or (s[i]=='b' and s[l-1-i]!='d')):
f=1
break
if(f):
print("NIE")
else:
print("TAK")
|
Title: s-palindrome
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Let's call a string "s-palindrome" if it is symmetric about the middle of the string. For example, the string "oHo" is "s-palindrome", but the string "aa" is not. The string "aa" is not "s-palindrome", because the second half of it is not a mirror reflection of the first half.
You are given a string *s*. Check if the string is "s-palindrome".
Input Specification:
The only line contains the string *s* (1<=≤<=|*s*|<=≤<=1000) which consists of only English letters.
Output Specification:
Print "TAK" if the string *s* is "s-palindrome" and "NIE" otherwise.
Demo Input:
['oXoxoXo\n', 'bod\n', 'ER\n']
Demo Output:
['TAK\n', 'TAK\n', 'NIE\n']
Note:
none
|
```python
s=input()
l=len(s)
li=['O','o','H','V','v','X','x','W','w','M','T','I','U','Y']
if(l&1):
if s[l//2] not in li:
print("NIE")
exit()
f=0
for i in range(len(s)//2):
if(s[i]==s[l-1-i]):
if s[i] not in li:
f=1
break
else:
if(s[i]!='b' or (s[i]=='b' and s[l-1-i]!='d')):
f=1
break
if(f):
print("NIE")
else:
print("TAK")
```
| 0
|
|
451
|
B
|
Sort the Array
|
PROGRAMMING
| 1,300
|
[
"implementation",
"sortings"
] | null | null |
Being a programmer, you like arrays a lot. For your birthday, your friends have given you an array *a* consisting of *n* distinct integers.
Unfortunately, the size of *a* is too small. You want a bigger array! Your friends agree to give you a bigger array, but only if you are able to answer the following question correctly: is it possible to sort the array *a* (in increasing order) by reversing exactly one segment of *a*? See definitions of segment and reversing in the notes.
|
The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=105) — the size of array *a*.
The second line contains *n* distinct space-separated integers: *a*[1],<=*a*[2],<=...,<=*a*[*n*] (1<=≤<=*a*[*i*]<=≤<=109).
|
Print "yes" or "no" (without quotes), depending on the answer.
If your answer is "yes", then also print two space-separated integers denoting start and end (start must not be greater than end) indices of the segment to be reversed. If there are multiple ways of selecting these indices, print any of them.
|
[
"3\n3 2 1\n",
"4\n2 1 3 4\n",
"4\n3 1 2 4\n",
"2\n1 2\n"
] |
[
"yes\n1 3\n",
"yes\n1 2\n",
"no\n",
"yes\n1 1\n"
] |
Sample 1. You can reverse the entire array to get [1, 2, 3], which is sorted.
Sample 3. No segment can be reversed such that the array will be sorted.
Definitions
A segment [*l*, *r*] of array *a* is the sequence *a*[*l*], *a*[*l* + 1], ..., *a*[*r*].
If you have an array *a* of size *n* and you reverse its segment [*l*, *r*], the array will become:
*a*[1], *a*[2], ..., *a*[*l* - 2], *a*[*l* - 1], *a*[*r*], *a*[*r* - 1], ..., *a*[*l* + 1], *a*[*l*], *a*[*r* + 1], *a*[*r* + 2], ..., *a*[*n* - 1], *a*[*n*].
| 1,000
|
[
{
"input": "3\n3 2 1",
"output": "yes\n1 3"
},
{
"input": "4\n2 1 3 4",
"output": "yes\n1 2"
},
{
"input": "4\n3 1 2 4",
"output": "no"
},
{
"input": "2\n1 2",
"output": "yes\n1 1"
},
{
"input": "2\n58 4",
"output": "yes\n1 2"
},
{
"input": "5\n69 37 27 4 2",
"output": "yes\n1 5"
},
{
"input": "9\n6 78 63 59 28 24 8 96 99",
"output": "yes\n2 7"
},
{
"input": "6\n19517752 43452931 112792556 68417469 779722934 921694415",
"output": "yes\n3 4"
},
{
"input": "6\n169793171 335736854 449917902 513287332 811627074 938727967",
"output": "yes\n1 1"
},
{
"input": "6\n509329 173849943 297546987 591032670 796346199 914588283",
"output": "yes\n1 1"
},
{
"input": "25\n46 45 37 35 26 25 21 19 11 3 1 51 54 55 57 58 59 62 66 67 76 85 88 96 100",
"output": "yes\n1 11"
},
{
"input": "46\n10 12 17 19 20 21 22 24 25 26 27 28 29 30 32 37 42 43 47 48 50 51 52 56 87 86 81 79 74 71 69 67 66 65 60 59 57 89 91 92 94 96 97 98 99 100",
"output": "yes\n25 37"
},
{
"input": "96\n1 2 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 68 69 70 71 72 73 74 75 76 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100",
"output": "yes\n3 22"
},
{
"input": "2\n404928771 698395106",
"output": "yes\n1 1"
},
{
"input": "2\n699573624 308238132",
"output": "yes\n1 2"
},
{
"input": "5\n75531609 242194958 437796493 433259361 942142185",
"output": "yes\n3 4"
},
{
"input": "5\n226959376 840957605 833410429 273566427 872976052",
"output": "yes\n2 4"
},
{
"input": "5\n373362086 994096202 767275079 734424844 515504383",
"output": "yes\n2 5"
},
{
"input": "5\n866379155 593548704 259097686 216134784 879911740",
"output": "yes\n1 4"
},
{
"input": "5\n738083041 719956102 420866851 307749161 257917459",
"output": "yes\n1 5"
},
{
"input": "5\n90786760 107075352 139104198 424911569 858427981",
"output": "yes\n1 1"
},
{
"input": "6\n41533825 525419745 636375901 636653266 879043107 967434399",
"output": "yes\n1 1"
},
{
"input": "40\n22993199 75843013 76710455 99749069 105296587 122559115 125881005 153961749 163646706 175409222 185819807 214465092 264449243 278246513 295514446 322935239 370349154 375773209 390474983 775646826 767329655 740310077 718820037 708508595 693119912 680958422 669537382 629123011 607511013 546574974 546572137 511951383 506996390 493995578 458256840 815612821 881161983 901337648 962275390 986568907",
"output": "yes\n20 35"
},
{
"input": "40\n3284161 23121669 24630274 33434127 178753820 231503277 271972002 272578266 346450638 355655265 372217434 376132047 386622863 387235708 389799554 427160037 466577363 491873718 492746058 502535866 535768673 551570285 557477055 583643014 586216753 588981593 592960633 605923775 611051145 643142759 632768011 634888864 736715552 750574599 867737742 924365786 927179496 934453020 954090860 977765165",
"output": "no"
},
{
"input": "40\n42131757 49645896 49957344 78716964 120937785 129116222 172128600 211446903 247833196 779340466 717548386 709969818 696716905 636153997 635635467 614115746 609201167 533608141 521874836 273044950 291514539 394083281 399369419 448830087 485128983 487192341 488673105 497678164 501864738 265305156 799595875 831638598 835155840 845617770 847736630 851436542 879757553 885618675 964068808 969215471",
"output": "no"
},
{
"input": "40\n25722567 28250400 47661056 108729970 119887370 142272261 145287693 178946020 182917658 187405805 209478929 278713296 312035195 393514697 403876943 410188367 413061616 420619615 477231590 511200584 560288373 571690007 603093961 615463729 631624043 723138759 726089658 728151980 756393077 785590533 809755752 823601179 828357990 866942019 869575503 877310377 881382070 901314141 929048602 947139655",
"output": "yes\n1 1"
},
{
"input": "40\n17927221 33153935 60257083 110553879 114654567 119809916 163899753 167741765 182812464 188486743 220036903 220127072 227545828 229552200 244963635 248298934 299478582 354141058 371400641 430054473 452548736 458695269 466968129 469000714 478004472 478693873 509342093 750631027 609759323 669427158 688490225 690701652 696893030 704668825 749028408 557906039 545356441 926901326 955586118 972642992",
"output": "no"
},
{
"input": "4\n1 4 2 3",
"output": "no"
},
{
"input": "6\n1 2 5 4 3 6",
"output": "yes\n3 5"
},
{
"input": "1\n1",
"output": "yes\n1 1"
},
{
"input": "6\n1 5 3 4 2 6",
"output": "no"
},
{
"input": "4\n3 4 1 2",
"output": "no"
},
{
"input": "5\n2 5 4 3 1",
"output": "no"
},
{
"input": "4\n2 1 4 3",
"output": "no"
},
{
"input": "6\n2 1 4 3 5 6",
"output": "no"
}
] | 1,684,551,175
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 30
| 0
|
l = int(input())
nums = [int(value) for value in input().split(" ")]
in_dec = False
exit_dec = False
dec_start = 1
dec_end = 1
for i in range(1, l):
is_dec = nums[i] < nums[i-1]
if exit_dec:
if is_dec:
print("NO")
break
elif in_dec:
if not is_dec:
in_dec = False
exit_dec = True
dec_end = i-1
else:
if is_dec:
in_dec = True
dec_start = i-1
else:
if not exit_dec and in_dec:
dec_end = l-1
# print(dec_start, dec_end)
if dec_start != 0 and nums[dec_end] < nums[dec_start-1]:
print("NO")
elif dec_end != len(nums)-1 and nums[dec_start] > nums[dec_end+1]:
print("NO")
else:
print("YES")
print(dec_start+1, dec_end+1)
|
Title: Sort the Array
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Being a programmer, you like arrays a lot. For your birthday, your friends have given you an array *a* consisting of *n* distinct integers.
Unfortunately, the size of *a* is too small. You want a bigger array! Your friends agree to give you a bigger array, but only if you are able to answer the following question correctly: is it possible to sort the array *a* (in increasing order) by reversing exactly one segment of *a*? See definitions of segment and reversing in the notes.
Input Specification:
The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=105) — the size of array *a*.
The second line contains *n* distinct space-separated integers: *a*[1],<=*a*[2],<=...,<=*a*[*n*] (1<=≤<=*a*[*i*]<=≤<=109).
Output Specification:
Print "yes" or "no" (without quotes), depending on the answer.
If your answer is "yes", then also print two space-separated integers denoting start and end (start must not be greater than end) indices of the segment to be reversed. If there are multiple ways of selecting these indices, print any of them.
Demo Input:
['3\n3 2 1\n', '4\n2 1 3 4\n', '4\n3 1 2 4\n', '2\n1 2\n']
Demo Output:
['yes\n1 3\n', 'yes\n1 2\n', 'no\n', 'yes\n1 1\n']
Note:
Sample 1. You can reverse the entire array to get [1, 2, 3], which is sorted.
Sample 3. No segment can be reversed such that the array will be sorted.
Definitions
A segment [*l*, *r*] of array *a* is the sequence *a*[*l*], *a*[*l* + 1], ..., *a*[*r*].
If you have an array *a* of size *n* and you reverse its segment [*l*, *r*], the array will become:
*a*[1], *a*[2], ..., *a*[*l* - 2], *a*[*l* - 1], *a*[*r*], *a*[*r* - 1], ..., *a*[*l* + 1], *a*[*l*], *a*[*r* + 1], *a*[*r* + 2], ..., *a*[*n* - 1], *a*[*n*].
|
```python
l = int(input())
nums = [int(value) for value in input().split(" ")]
in_dec = False
exit_dec = False
dec_start = 1
dec_end = 1
for i in range(1, l):
is_dec = nums[i] < nums[i-1]
if exit_dec:
if is_dec:
print("NO")
break
elif in_dec:
if not is_dec:
in_dec = False
exit_dec = True
dec_end = i-1
else:
if is_dec:
in_dec = True
dec_start = i-1
else:
if not exit_dec and in_dec:
dec_end = l-1
# print(dec_start, dec_end)
if dec_start != 0 and nums[dec_end] < nums[dec_start-1]:
print("NO")
elif dec_end != len(nums)-1 and nums[dec_start] > nums[dec_end+1]:
print("NO")
else:
print("YES")
print(dec_start+1, dec_end+1)
```
| 0
|
|
276
|
C
|
Little Girl and Maximum Sum
|
PROGRAMMING
| 1,500
|
[
"data structures",
"greedy",
"implementation",
"sortings"
] | null | null |
The little girl loves the problems on array queries very much.
One day she came across a rather well-known problem: you've got an array of $n$ elements (the elements of the array are indexed starting from 1); also, there are $q$ queries, each one is defined by a pair of integers $l_i$, $r_i$ $(1 \le l_i \le r_i \le n)$. You need to find for each query the sum of elements of the array with indexes from $l_i$ to $r_i$, inclusive.
The little girl found the problem rather boring. She decided to reorder the array elements before replying to the queries in a way that makes the sum of query replies maximum possible. Your task is to find the value of this maximum sum.
|
The first line contains two space-separated integers $n$ ($1 \le n \le 2\cdot10^5$) and $q$ ($1 \le q \le 2\cdot10^5$) — the number of elements in the array and the number of queries, correspondingly.
The next line contains $n$ space-separated integers $a_i$ ($1 \le a_i \le 2\cdot10^5$) — the array elements.
Each of the following $q$ lines contains two space-separated integers $l_i$ and $r_i$ ($1 \le l_i \le r_i \le n$) — the $i$-th query.
|
In a single line print, a single integer — the maximum sum of query replies after the array elements are reordered.
Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier.
|
[
"3 3\n5 3 2\n1 2\n2 3\n1 3\n",
"5 3\n5 2 4 1 3\n1 5\n2 3\n2 3\n"
] |
[
"25\n",
"33\n"
] |
none
| 1,500
|
[
{
"input": "3 3\n5 3 2\n1 2\n2 3\n1 3",
"output": "25"
},
{
"input": "5 3\n5 2 4 1 3\n1 5\n2 3\n2 3",
"output": "33"
},
{
"input": "34 21\n23 38 16 49 44 50 48 34 33 19 18 31 11 15 20 47 44 30 39 33 45 46 1 13 27 16 31 36 17 23 38 5 30 16\n8 16\n14 27\n8 26\n1 8\n5 6\n23 28\n4 33\n13 30\n12 30\n11 30\n9 21\n1 14\n15 22\n4 11\n5 24\n8 20\n17 33\n6 9\n3 14\n25 34\n10 17",
"output": "9382"
},
{
"input": "16 13\n40 32 15 16 35 36 45 23 30 42 25 8 29 21 39 23\n2 9\n3 11\n8 9\n4 14\n1 6\n5 10\n5 14\n5 11\n13 13\n2 8\n9 16\n6 10\n7 8",
"output": "2838"
},
{
"input": "31 48\n45 19 16 42 38 18 50 7 28 40 39 25 45 14 36 18 27 30 16 4 22 6 1 23 16 47 14 35 27 47 2\n6 16\n11 28\n4 30\n25 26\n11 30\n5 9\n4 17\n15 17\n10 25\n15 26\n1 3\n9 26\n8 29\n16 30\n5 24\n27 30\n9 10\n22 29\n2 6\n15 24\n6 21\n19 21\n4 28\n1 7\n18 21\n10 22\n6 15\n14 28\n4 29\n12 13\n19 29\n5 6\n13 31\n21 27\n9 25\n6 18\n6 8\n28 30\n2 4\n15 21\n1 1\n8 30\n3 31\n11 27\n28 29\n6 22\n20 22\n9 25",
"output": "17471"
},
{
"input": "22 7\n44 41 40 41 37 42 46 16 50 47 30 7 32 6 20 14 47 25 11 1 35 12\n1 10\n10 20\n4 5\n1 8\n2 12\n8 8\n2 16",
"output": "2202"
},
{
"input": "3 2\n1 2 3\n2 3\n1 2",
"output": "9"
}
] | 1,670,323,429
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 0
| 92
| 0
|
n,m=map(int,input().split())
arr=sorted(map(int,input().split()))
ans=[0 for _ in range(n)]
for _ in range(m):
x,y=map(int,input().split())
ans[x-1]+=1
if y!=n:
ans[y]-=1
for i in range(1,n):
ans[i]+=ans[i-1]
arr.sort()
solution=0
for i in range(n):
solution+=(ans[i]*arr[i])
print(solution)
|
Title: Little Girl and Maximum Sum
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The little girl loves the problems on array queries very much.
One day she came across a rather well-known problem: you've got an array of $n$ elements (the elements of the array are indexed starting from 1); also, there are $q$ queries, each one is defined by a pair of integers $l_i$, $r_i$ $(1 \le l_i \le r_i \le n)$. You need to find for each query the sum of elements of the array with indexes from $l_i$ to $r_i$, inclusive.
The little girl found the problem rather boring. She decided to reorder the array elements before replying to the queries in a way that makes the sum of query replies maximum possible. Your task is to find the value of this maximum sum.
Input Specification:
The first line contains two space-separated integers $n$ ($1 \le n \le 2\cdot10^5$) and $q$ ($1 \le q \le 2\cdot10^5$) — the number of elements in the array and the number of queries, correspondingly.
The next line contains $n$ space-separated integers $a_i$ ($1 \le a_i \le 2\cdot10^5$) — the array elements.
Each of the following $q$ lines contains two space-separated integers $l_i$ and $r_i$ ($1 \le l_i \le r_i \le n$) — the $i$-th query.
Output Specification:
In a single line print, a single integer — the maximum sum of query replies after the array elements are reordered.
Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier.
Demo Input:
['3 3\n5 3 2\n1 2\n2 3\n1 3\n', '5 3\n5 2 4 1 3\n1 5\n2 3\n2 3\n']
Demo Output:
['25\n', '33\n']
Note:
none
|
```python
n,m=map(int,input().split())
arr=sorted(map(int,input().split()))
ans=[0 for _ in range(n)]
for _ in range(m):
x,y=map(int,input().split())
ans[x-1]+=1
if y!=n:
ans[y]-=1
for i in range(1,n):
ans[i]+=ans[i-1]
arr.sort()
solution=0
for i in range(n):
solution+=(ans[i]*arr[i])
print(solution)
```
| 0
|
|
319
|
B
|
Psychos in a Line
|
PROGRAMMING
| 1,900
|
[
"data structures",
"implementation"
] | null | null |
There are *n* psychos standing in a line. Each psycho is assigned a unique integer from 1 to *n*. At each step every psycho who has an id greater than the psycho to his right (if exists) kills his right neighbor in the line. Note that a psycho might kill and get killed at the same step.
You're given the initial arrangement of the psychos in the line. Calculate how many steps are needed to the moment of time such, that nobody kills his neighbor after that moment. Look notes to understand the statement more precise.
|
The first line of input contains integer *n* denoting the number of psychos, (1<=≤<=*n*<=≤<=105). In the second line there will be a list of *n* space separated distinct integers each in range 1 to *n*, inclusive — ids of the psychos in the line from left to right.
|
Print the number of steps, so that the line remains the same afterward.
|
[
"10\n10 9 7 8 6 5 3 4 2 1\n",
"6\n1 2 3 4 5 6\n"
] |
[
"2\n",
"0\n"
] |
In the first sample line of the psychos transforms as follows: [10 9 7 8 6 5 3 4 2 1] → [10 8 4] → [10]. So, there are two steps.
| 1,000
|
[
{
"input": "10\n10 9 7 8 6 5 3 4 2 1",
"output": "2"
},
{
"input": "6\n1 2 3 4 5 6",
"output": "0"
},
{
"input": "6\n6 5 4 3 2 1",
"output": "1"
},
{
"input": "10\n10 7 4 2 5 8 9 6 3 1",
"output": "4"
},
{
"input": "15\n15 9 5 10 7 11 14 6 2 3 12 1 8 13 4",
"output": "4"
},
{
"input": "100\n61 96 25 10 50 71 38 77 76 75 59 100 89 66 6 99 2 13 3 23 91 93 22 92 4 86 90 44 39 31 9 47 28 95 18 54 1 73 94 78 60 20 42 84 97 83 16 81 67 64 74 46 82 5 88 80 14 48 53 79 30 11 62 21 41 70 63 58 51 56 57 17 87 72 27 85 68 49 52 8 12 98 43 37 35 69 55 32 26 40 29 65 19 24 34 33 15 45 36 7",
"output": "8"
},
{
"input": "1\n1",
"output": "0"
},
{
"input": "2\n1 2",
"output": "0"
},
{
"input": "2\n2 1",
"output": "1"
}
] | 1,372,200,158
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 1
| 1,000
| 204,800
|
from symbol import continue_stmt
__author__ = 'Lokki'
n = input()
b = input()
lst = b.split()
t = []
flag = True
c = 0
while (flag):
flag = False
c += 1
k = len(lst) - 1
while (k > 0):
if (int(lst[k - 1]) < int(lst[k])):
t.insert(0, lst[k])
flag = True
k -= 1
if (len(lst) >= 2):
if (int(lst[0]) > int(lst[1])):
t.insert(0, lst[k])
flag = True
lst = t
# flag = True
# c = 0
# while (flag):
# k = len(lst) - 1
# flag = False
# c += 1
# while (k > 0):
# if (int(lst[k - 1]) > int(lst[k])):
# flag = True
# else:
# t.insert(0, lst[k])
# k = k - 1
# lst = t
# print(t)
c -= 1
print(c)
|
Title: Psychos in a Line
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* psychos standing in a line. Each psycho is assigned a unique integer from 1 to *n*. At each step every psycho who has an id greater than the psycho to his right (if exists) kills his right neighbor in the line. Note that a psycho might kill and get killed at the same step.
You're given the initial arrangement of the psychos in the line. Calculate how many steps are needed to the moment of time such, that nobody kills his neighbor after that moment. Look notes to understand the statement more precise.
Input Specification:
The first line of input contains integer *n* denoting the number of psychos, (1<=≤<=*n*<=≤<=105). In the second line there will be a list of *n* space separated distinct integers each in range 1 to *n*, inclusive — ids of the psychos in the line from left to right.
Output Specification:
Print the number of steps, so that the line remains the same afterward.
Demo Input:
['10\n10 9 7 8 6 5 3 4 2 1\n', '6\n1 2 3 4 5 6\n']
Demo Output:
['2\n', '0\n']
Note:
In the first sample line of the psychos transforms as follows: [10 9 7 8 6 5 3 4 2 1] → [10 8 4] → [10]. So, there are two steps.
|
```python
from symbol import continue_stmt
__author__ = 'Lokki'
n = input()
b = input()
lst = b.split()
t = []
flag = True
c = 0
while (flag):
flag = False
c += 1
k = len(lst) - 1
while (k > 0):
if (int(lst[k - 1]) < int(lst[k])):
t.insert(0, lst[k])
flag = True
k -= 1
if (len(lst) >= 2):
if (int(lst[0]) > int(lst[1])):
t.insert(0, lst[k])
flag = True
lst = t
# flag = True
# c = 0
# while (flag):
# k = len(lst) - 1
# flag = False
# c += 1
# while (k > 0):
# if (int(lst[k - 1]) > int(lst[k])):
# flag = True
# else:
# t.insert(0, lst[k])
# k = k - 1
# lst = t
# print(t)
c -= 1
print(c)
```
| 0
|
|
427
|
A
|
Police Recruits
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
The police department of your city has just started its journey. Initially, they don’t have any manpower. So, they started hiring new recruits in groups.
Meanwhile, crimes keeps occurring within the city. One member of the police force can investigate only one crime during his/her lifetime.
If there is no police officer free (isn't busy with crime) during the occurrence of a crime, it will go untreated.
Given the chronological order of crime occurrences and recruit hirings, find the number of crimes which will go untreated.
|
The first line of input will contain an integer *n* (1<=≤<=*n*<=≤<=105), the number of events. The next line will contain *n* space-separated integers.
If the integer is -1 then it means a crime has occurred. Otherwise, the integer will be positive, the number of officers recruited together at that time. No more than 10 officers will be recruited at a time.
|
Print a single integer, the number of crimes which will go untreated.
|
[
"3\n-1 -1 1\n",
"8\n1 -1 1 -1 -1 1 1 1\n",
"11\n-1 -1 2 -1 -1 -1 -1 -1 -1 -1 -1\n"
] |
[
"2\n",
"1\n",
"8\n"
] |
Lets consider the second example:
1. Firstly one person is hired. 1. Then crime appears, the last hired person will investigate this crime. 1. One more person is hired. 1. One more crime appears, the last hired person will investigate this crime. 1. Crime appears. There is no free policeman at the time, so this crime will go untreated. 1. One more person is hired. 1. One more person is hired. 1. One more person is hired.
The answer is one, as one crime (on step 5) will go untreated.
| 500
|
[
{
"input": "3\n-1 -1 1",
"output": "2"
},
{
"input": "8\n1 -1 1 -1 -1 1 1 1",
"output": "1"
},
{
"input": "11\n-1 -1 2 -1 -1 -1 -1 -1 -1 -1 -1",
"output": "8"
},
{
"input": "7\n-1 -1 1 1 -1 -1 1",
"output": "2"
},
{
"input": "21\n-1 -1 -1 -1 -1 3 2 -1 6 -1 -1 2 1 -1 2 2 1 6 5 -1 5",
"output": "5"
},
{
"input": "98\n-1 -1 1 -1 -1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1 1 1 -1 1 1 1 1 1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 -1 1 1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 1 -1 1 -1 1 1 1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 1 1 -1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1 -1 1 1",
"output": "13"
},
{
"input": "3\n-1 5 4",
"output": "1"
},
{
"input": "146\n4 -1 -1 -1 -1 -1 -1 -1 -1 -1 4 -1 3 -1 3 -1 -1 1 4 -1 2 -1 -1 3 -1 -1 -1 4 1 -1 -1 -1 4 -1 -1 -1 -1 -1 -1 3 2 -1 3 2 4 5 2 4 1 5 -1 -1 2 -1 -1 1 -1 5 3 -1 1 2 2 3 5 3 -1 -1 3 -1 -1 3 5 5 -1 -1 5 -1 4 4 1 -1 -1 -1 2 1 -1 -1 -1 2 5 3 -1 -1 -1 3 -1 5 4 -1 1 -1 -1 3 -1 -1 3 1 1 2 -1 -1 -1 1 3 1 -1 2 -1 -1 5 5 -1 -1 3 4 5 1 -1 2 -1 -1 -1 3 -1 5 3 2 -1 2 -1 -1 5 -1 3 -1",
"output": "5"
},
{
"input": "1\n2",
"output": "0"
},
{
"input": "1\n-1",
"output": "1"
},
{
"input": "2\n1 -1",
"output": "0"
},
{
"input": "2\n-1 1",
"output": "1"
},
{
"input": "2\n1 1",
"output": "0"
},
{
"input": "2\n-1 -1",
"output": "2"
},
{
"input": "4\n10 -1 -1 -1",
"output": "0"
},
{
"input": "1\n1",
"output": "0"
},
{
"input": "4\n-1 -1 1 1",
"output": "2"
}
] | 1,679,186,897
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 63
| 77
| 13,209,600
|
t=int(input())
l=list(map(int,input().strip().split()))
a=0
for i in range(t):
if l[i]>0:
a=a+l[i]
else:
if a>0:
l[i]=l[i]+1
a=a-1
print(l.count(-1))
|
Title: Police Recruits
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The police department of your city has just started its journey. Initially, they don’t have any manpower. So, they started hiring new recruits in groups.
Meanwhile, crimes keeps occurring within the city. One member of the police force can investigate only one crime during his/her lifetime.
If there is no police officer free (isn't busy with crime) during the occurrence of a crime, it will go untreated.
Given the chronological order of crime occurrences and recruit hirings, find the number of crimes which will go untreated.
Input Specification:
The first line of input will contain an integer *n* (1<=≤<=*n*<=≤<=105), the number of events. The next line will contain *n* space-separated integers.
If the integer is -1 then it means a crime has occurred. Otherwise, the integer will be positive, the number of officers recruited together at that time. No more than 10 officers will be recruited at a time.
Output Specification:
Print a single integer, the number of crimes which will go untreated.
Demo Input:
['3\n-1 -1 1\n', '8\n1 -1 1 -1 -1 1 1 1\n', '11\n-1 -1 2 -1 -1 -1 -1 -1 -1 -1 -1\n']
Demo Output:
['2\n', '1\n', '8\n']
Note:
Lets consider the second example:
1. Firstly one person is hired. 1. Then crime appears, the last hired person will investigate this crime. 1. One more person is hired. 1. One more crime appears, the last hired person will investigate this crime. 1. Crime appears. There is no free policeman at the time, so this crime will go untreated. 1. One more person is hired. 1. One more person is hired. 1. One more person is hired.
The answer is one, as one crime (on step 5) will go untreated.
|
```python
t=int(input())
l=list(map(int,input().strip().split()))
a=0
for i in range(t):
if l[i]>0:
a=a+l[i]
else:
if a>0:
l[i]=l[i]+1
a=a-1
print(l.count(-1))
```
| 3
|
|
900
|
A
|
Find Extra One
|
PROGRAMMING
| 800
|
[
"geometry",
"implementation"
] | null | null |
You have *n* distinct points on a plane, none of them lie on *OY* axis. Check that there is a point after removal of which the remaining points are located on one side of the *OY* axis.
|
The first line contains a single positive integer *n* (2<=≤<=*n*<=≤<=105).
The following *n* lines contain coordinates of the points. The *i*-th of these lines contains two single integers *x**i* and *y**i* (|*x**i*|,<=|*y**i*|<=≤<=109, *x**i*<=≠<=0). No two points coincide.
|
Print "Yes" if there is such a point, "No" — otherwise.
You can print every letter in any case (upper or lower).
|
[
"3\n1 1\n-1 -1\n2 -1\n",
"4\n1 1\n2 2\n-1 1\n-2 2\n",
"3\n1 2\n2 1\n4 60\n"
] |
[
"Yes",
"No",
"Yes"
] |
In the first example the second point can be removed.
In the second example there is no suitable for the condition point.
In the third example any point can be removed.
| 500
|
[
{
"input": "3\n1 1\n-1 -1\n2 -1",
"output": "Yes"
},
{
"input": "4\n1 1\n2 2\n-1 1\n-2 2",
"output": "No"
},
{
"input": "3\n1 2\n2 1\n4 60",
"output": "Yes"
},
{
"input": "10\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n-1 -1",
"output": "Yes"
},
{
"input": "2\n1000000000 -1000000000\n1000000000 1000000000",
"output": "Yes"
},
{
"input": "23\n-1 1\n-1 2\n-2 4\n-7 -8\n-3 3\n-9 -14\n-5 3\n-6 2\n-7 11\n-4 4\n-8 5\n1 1\n-1 -1\n-1 -2\n-2 -4\n-7 8\n-3 -3\n-9 14\n-5 -3\n-6 -2\n-7 -11\n-4 -4\n-8 -5",
"output": "Yes"
},
{
"input": "4\n-1000000000 -1000000000\n1000000000 1000000000\n-1000000000 1000000000\n1000000000 -1000000000",
"output": "No"
},
{
"input": "2\n-1000000000 1000000000\n-1000000000 -1000000000",
"output": "Yes"
},
{
"input": "5\n-1 -1\n-2 2\n2 2\n2 -2\n3 2",
"output": "No"
},
{
"input": "2\n1 0\n-1 0",
"output": "Yes"
},
{
"input": "4\n-1 1\n-1 2\n-1 3\n-1 4",
"output": "Yes"
},
{
"input": "2\n-1 0\n1 0",
"output": "Yes"
},
{
"input": "2\n1 2\n-1 2",
"output": "Yes"
},
{
"input": "2\n8 0\n7 0",
"output": "Yes"
},
{
"input": "6\n-1 0\n-2 0\n-1 -1\n-1 5\n1 0\n1 1",
"output": "No"
},
{
"input": "4\n1 0\n2 0\n-1 0\n-2 0",
"output": "No"
},
{
"input": "4\n-2 0\n-1 0\n1 0\n2 0",
"output": "No"
},
{
"input": "2\n1 1\n-1 1",
"output": "Yes"
},
{
"input": "4\n-1 0\n-2 0\n1 0\n2 0",
"output": "No"
},
{
"input": "2\n4 3\n-4 -2",
"output": "Yes"
},
{
"input": "4\n1 0\n2 0\n-1 1\n-1 2",
"output": "No"
},
{
"input": "5\n1 1\n2 1\n3 1\n-1 1\n-2 1",
"output": "No"
},
{
"input": "2\n1 1\n-1 -1",
"output": "Yes"
},
{
"input": "4\n1 2\n1 0\n1 -2\n-1 2",
"output": "Yes"
},
{
"input": "5\n-2 3\n-3 3\n4 2\n3 2\n1 2",
"output": "No"
},
{
"input": "3\n2 0\n3 0\n4 0",
"output": "Yes"
},
{
"input": "5\n-3 1\n-2 1\n-1 1\n1 1\n2 1",
"output": "No"
},
{
"input": "4\n-3 0\n1 0\n2 0\n3 0",
"output": "Yes"
},
{
"input": "2\n1 0\n-1 1",
"output": "Yes"
},
{
"input": "3\n-1 0\n1 0\n2 0",
"output": "Yes"
},
{
"input": "5\n1 0\n3 0\n-1 0\n-6 0\n-4 1",
"output": "No"
},
{
"input": "5\n-1 2\n-2 2\n-3 1\n1 2\n2 3",
"output": "No"
},
{
"input": "3\n1 0\n-1 0\n-2 0",
"output": "Yes"
},
{
"input": "4\n1 0\n2 0\n3 1\n4 1",
"output": "Yes"
},
{
"input": "4\n1 0\n1 2\n1 3\n-1 5",
"output": "Yes"
},
{
"input": "4\n2 2\n2 5\n-2 3\n-2 0",
"output": "No"
},
{
"input": "4\n1 1\n-1 1\n-1 0\n-1 -1",
"output": "Yes"
},
{
"input": "4\n2 0\n3 0\n-3 -3\n-3 -4",
"output": "No"
},
{
"input": "4\n-1 0\n-2 0\n-3 0\n-4 0",
"output": "Yes"
},
{
"input": "2\n-1 1\n1 1",
"output": "Yes"
},
{
"input": "5\n1 1\n2 2\n3 3\n-4 -4\n-5 -5",
"output": "No"
},
{
"input": "5\n2 0\n3 0\n4 0\n5 0\n6 0",
"output": "Yes"
},
{
"input": "2\n-1 2\n1 2",
"output": "Yes"
},
{
"input": "4\n1 1\n2 1\n-3 0\n-4 0",
"output": "No"
},
{
"input": "4\n-1 0\n-2 0\n3 0\n4 0",
"output": "No"
},
{
"input": "3\n3 0\n2 0\n1 0",
"output": "Yes"
},
{
"input": "4\n-2 0\n-3 0\n1 -1\n3 1",
"output": "No"
},
{
"input": "3\n-1 -1\n1 1\n2 2",
"output": "Yes"
},
{
"input": "4\n-2 0\n-1 0\n2 0\n1 0",
"output": "No"
},
{
"input": "2\n-3 5\n3 5",
"output": "Yes"
},
{
"input": "2\n-1 5\n1 5",
"output": "Yes"
},
{
"input": "4\n2 0\n3 0\n-2 0\n-3 0",
"output": "No"
},
{
"input": "3\n-1 1\n1 1\n1 -1",
"output": "Yes"
},
{
"input": "2\n1 0\n2 0",
"output": "Yes"
},
{
"input": "4\n-1 1\n-2 1\n2 -1\n3 -1",
"output": "No"
},
{
"input": "5\n1 0\n2 0\n3 0\n-1 0\n-2 0",
"output": "No"
},
{
"input": "4\n-3 0\n-4 0\n-5 0\n-6 0",
"output": "Yes"
},
{
"input": "6\n-3 0\n-2 0\n-1 0\n1 0\n2 0\n3 0",
"output": "No"
},
{
"input": "4\n5 0\n5 1\n6 0\n6 1",
"output": "Yes"
}
] | 1,566,162,754
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 71
| 997
| 9,420,800
|
import sys
from collections import defaultdict
#input = sys.stdin.readline
def main():
n = int(input())
x_pos = 0
x_neg = 0
for _ in range(n):
x, y = map(int, input().split())
if x > 0:
x_pos += 1
else:
x_neg += 1
print('YES' if n < 3 or x_pos <= 1 or x_neg <= 1 else 'NO')
if __name__ == '__main__':
main()
|
Title: Find Extra One
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You have *n* distinct points on a plane, none of them lie on *OY* axis. Check that there is a point after removal of which the remaining points are located on one side of the *OY* axis.
Input Specification:
The first line contains a single positive integer *n* (2<=≤<=*n*<=≤<=105).
The following *n* lines contain coordinates of the points. The *i*-th of these lines contains two single integers *x**i* and *y**i* (|*x**i*|,<=|*y**i*|<=≤<=109, *x**i*<=≠<=0). No two points coincide.
Output Specification:
Print "Yes" if there is such a point, "No" — otherwise.
You can print every letter in any case (upper or lower).
Demo Input:
['3\n1 1\n-1 -1\n2 -1\n', '4\n1 1\n2 2\n-1 1\n-2 2\n', '3\n1 2\n2 1\n4 60\n']
Demo Output:
['Yes', 'No', 'Yes']
Note:
In the first example the second point can be removed.
In the second example there is no suitable for the condition point.
In the third example any point can be removed.
|
```python
import sys
from collections import defaultdict
#input = sys.stdin.readline
def main():
n = int(input())
x_pos = 0
x_neg = 0
for _ in range(n):
x, y = map(int, input().split())
if x > 0:
x_pos += 1
else:
x_neg += 1
print('YES' if n < 3 or x_pos <= 1 or x_neg <= 1 else 'NO')
if __name__ == '__main__':
main()
```
| 3
|
|
151
|
A
|
Soft Drinking
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
This winter is so cold in Nvodsk! A group of *n* friends decided to buy *k* bottles of a soft drink called "Take-It-Light" to warm up a bit. Each bottle has *l* milliliters of the drink. Also they bought *c* limes and cut each of them into *d* slices. After that they found *p* grams of salt.
To make a toast, each friend needs *nl* milliliters of the drink, a slice of lime and *np* grams of salt. The friends want to make as many toasts as they can, provided they all drink the same amount. How many toasts can each friend make?
|
The first and only line contains positive integers *n*, *k*, *l*, *c*, *d*, *p*, *nl*, *np*, not exceeding 1000 and no less than 1. The numbers are separated by exactly one space.
|
Print a single integer — the number of toasts each friend can make.
|
[
"3 4 5 10 8 100 3 1\n",
"5 100 10 1 19 90 4 3\n",
"10 1000 1000 25 23 1 50 1\n"
] |
[
"2\n",
"3\n",
"0\n"
] |
A comment to the first sample:
Overall the friends have 4 * 5 = 20 milliliters of the drink, it is enough to make 20 / 3 = 6 toasts. The limes are enough for 10 * 8 = 80 toasts and the salt is enough for 100 / 1 = 100 toasts. However, there are 3 friends in the group, so the answer is *min*(6, 80, 100) / 3 = 2.
| 500
|
[
{
"input": "3 4 5 10 8 100 3 1",
"output": "2"
},
{
"input": "5 100 10 1 19 90 4 3",
"output": "3"
},
{
"input": "10 1000 1000 25 23 1 50 1",
"output": "0"
},
{
"input": "1 7 4 5 5 8 3 2",
"output": "4"
},
{
"input": "2 3 3 5 5 10 1 3",
"output": "1"
},
{
"input": "2 6 4 5 6 5 1 3",
"output": "0"
},
{
"input": "1 7 3 5 3 6 2 1",
"output": "6"
},
{
"input": "2 4 5 4 5 7 3 2",
"output": "1"
},
{
"input": "2 3 6 5 7 8 2 1",
"output": "4"
},
{
"input": "1 4 5 5 3 10 3 1",
"output": "6"
},
{
"input": "1 4 6 7 3 5 1 3",
"output": "1"
},
{
"input": "1 6 5 5 5 8 3 1",
"output": "8"
},
{
"input": "1 7 5 3 3 9 2 1",
"output": "9"
},
{
"input": "3 5 3 7 6 10 3 1",
"output": "1"
},
{
"input": "3 6 3 5 3 6 3 1",
"output": "2"
},
{
"input": "1 7 5 5 5 5 2 2",
"output": "2"
},
{
"input": "2 5 3 5 6 9 2 1",
"output": "3"
},
{
"input": "3 4 3 5 3 6 2 1",
"output": "2"
},
{
"input": "1 5 5 4 7 6 3 1",
"output": "6"
},
{
"input": "2 3 7 6 5 9 3 1",
"output": "3"
},
{
"input": "2 6 5 3 3 8 1 1",
"output": "4"
},
{
"input": "2 4 7 3 4 10 2 1",
"output": "5"
},
{
"input": "1 1000 1000 1000 1000 1000 1 1",
"output": "1000"
},
{
"input": "17 1000 1000 1000 1000 1000 3 7",
"output": "8"
},
{
"input": "115 1000 1000 1000 1000 1000 17 15",
"output": "0"
},
{
"input": "1 587 981 1 2 1 1 1",
"output": "1"
},
{
"input": "1 1 2 1 2 2 1 1",
"output": "2"
}
] | 1,676,054,468
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 27
| 92
| 0
|
z=[int(i) for i in input().split()]
n=z[0]
k=z[1]
l=z[2]
c=z[3]
d=z[4]
p=z[5]
nl=z[6]
np=z[7]
t=(k*l)//nl
slic=c*d
salt=p//np
print(min(t,slic,salt)//n)
|
Title: Soft Drinking
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
This winter is so cold in Nvodsk! A group of *n* friends decided to buy *k* bottles of a soft drink called "Take-It-Light" to warm up a bit. Each bottle has *l* milliliters of the drink. Also they bought *c* limes and cut each of them into *d* slices. After that they found *p* grams of salt.
To make a toast, each friend needs *nl* milliliters of the drink, a slice of lime and *np* grams of salt. The friends want to make as many toasts as they can, provided they all drink the same amount. How many toasts can each friend make?
Input Specification:
The first and only line contains positive integers *n*, *k*, *l*, *c*, *d*, *p*, *nl*, *np*, not exceeding 1000 and no less than 1. The numbers are separated by exactly one space.
Output Specification:
Print a single integer — the number of toasts each friend can make.
Demo Input:
['3 4 5 10 8 100 3 1\n', '5 100 10 1 19 90 4 3\n', '10 1000 1000 25 23 1 50 1\n']
Demo Output:
['2\n', '3\n', '0\n']
Note:
A comment to the first sample:
Overall the friends have 4 * 5 = 20 milliliters of the drink, it is enough to make 20 / 3 = 6 toasts. The limes are enough for 10 * 8 = 80 toasts and the salt is enough for 100 / 1 = 100 toasts. However, there are 3 friends in the group, so the answer is *min*(6, 80, 100) / 3 = 2.
|
```python
z=[int(i) for i in input().split()]
n=z[0]
k=z[1]
l=z[2]
c=z[3]
d=z[4]
p=z[5]
nl=z[6]
np=z[7]
t=(k*l)//nl
slic=c*d
salt=p//np
print(min(t,slic,salt)//n)
```
| 3
|
|
469
|
A
|
I Wanna Be the Guy
|
PROGRAMMING
| 800
|
[
"greedy",
"implementation"
] | null | null |
There is a game called "I Wanna Be the Guy", consisting of *n* levels. Little X and his friend Little Y are addicted to the game. Each of them wants to pass the whole game.
Little X can pass only *p* levels of the game. And Little Y can pass only *q* levels of the game. You are given the indices of levels Little X can pass and the indices of levels Little Y can pass. Will Little X and Little Y pass the whole game, if they cooperate each other?
|
The first line contains a single integer *n* (1<=≤<=<=*n*<=≤<=100).
The next line contains an integer *p* (0<=≤<=*p*<=≤<=*n*) at first, then follows *p* distinct integers *a*1,<=*a*2,<=...,<=*a**p* (1<=≤<=*a**i*<=≤<=*n*). These integers denote the indices of levels Little X can pass. The next line contains the levels Little Y can pass in the same format. It's assumed that levels are numbered from 1 to *n*.
|
If they can pass all the levels, print "I become the guy.". If it's impossible, print "Oh, my keyboard!" (without the quotes).
|
[
"4\n3 1 2 3\n2 2 4\n",
"4\n3 1 2 3\n2 2 3\n"
] |
[
"I become the guy.\n",
"Oh, my keyboard!\n"
] |
In the first sample, Little X can pass levels [1 2 3], and Little Y can pass level [2 4], so they can pass all the levels both.
In the second sample, no one can pass level 4.
| 500
|
[
{
"input": "4\n3 1 2 3\n2 2 4",
"output": "I become the guy."
},
{
"input": "4\n3 1 2 3\n2 2 3",
"output": "Oh, my keyboard!"
},
{
"input": "10\n5 8 6 1 5 4\n6 1 3 2 9 4 6",
"output": "Oh, my keyboard!"
},
{
"input": "10\n8 8 10 7 3 1 4 2 6\n8 9 5 10 3 7 2 4 8",
"output": "I become the guy."
},
{
"input": "10\n9 6 1 8 3 9 7 5 10 4\n7 1 3 2 7 6 9 5",
"output": "I become the guy."
},
{
"input": "100\n75 83 69 73 30 76 37 48 14 41 42 21 35 15 50 61 86 85 46 3 31 13 78 10 2 44 80 95 56 82 38 75 77 4 99 9 84 53 12 11 36 74 39 72 43 89 57 28 54 1 51 66 27 22 93 59 68 88 91 29 7 20 63 8 52 23 64 58 100 79 65 49 96 71 33 45\n83 50 89 73 34 28 99 67 77 44 19 60 68 42 8 27 94 85 14 39 17 78 24 21 29 63 92 32 86 22 71 81 31 82 65 48 80 59 98 3 70 55 37 12 15 72 47 9 11 33 16 7 91 74 13 64 38 84 6 61 93 90 45 69 1 54 52 100 57 10 35 49 53 75 76 43 62 5 4 18 36 96 79 23",
"output": "Oh, my keyboard!"
},
{
"input": "1\n1 1\n1 1",
"output": "I become the guy."
},
{
"input": "1\n0\n1 1",
"output": "I become the guy."
},
{
"input": "1\n1 1\n0",
"output": "I become the guy."
},
{
"input": "1\n0\n0",
"output": "Oh, my keyboard!"
},
{
"input": "100\n0\n0",
"output": "Oh, my keyboard!"
},
{
"input": "100\n44 71 70 55 49 43 16 53 7 95 58 56 38 76 67 94 20 73 29 90 25 30 8 84 5 14 77 52 99 91 66 24 39 37 22 44 78 12 63 59 32 51 15 82 34\n56 17 10 96 80 69 13 81 31 57 4 48 68 89 50 45 3 33 36 2 72 100 64 87 21 75 54 74 92 65 23 40 97 61 18 28 98 93 35 83 9 79 46 27 41 62 88 6 47 60 86 26 42 85 19 1 11",
"output": "I become the guy."
},
{
"input": "100\n78 63 59 39 11 58 4 2 80 69 22 95 90 26 65 16 30 100 66 99 67 79 54 12 23 28 45 56 70 74 60 82 73 91 68 43 92 75 51 21 17 97 86 44 62 47 85 78 72 64 50 81 71 5 57 13 31 76 87 9 49 96 25 42 19 35 88 53 7 83 38 27 29 41 89 93 10 84 18\n78 1 16 53 72 99 9 36 59 49 75 77 94 79 35 4 92 42 82 83 76 97 20 68 55 47 65 50 14 30 13 67 98 8 7 40 64 32 87 10 33 90 93 18 26 71 17 46 24 28 89 58 37 91 39 34 25 48 84 31 96 95 80 88 3 51 62 52 85 61 12 15 27 6 45 38 2 22 60",
"output": "I become the guy."
},
{
"input": "2\n2 2 1\n0",
"output": "I become the guy."
},
{
"input": "2\n1 2\n2 1 2",
"output": "I become the guy."
},
{
"input": "80\n57 40 1 47 36 69 24 76 5 72 26 4 29 62 6 60 3 70 8 64 18 37 16 14 13 21 25 7 66 68 44 74 61 39 38 33 15 63 34 65 10 23 56 51 80 58 49 75 71 12 50 57 2 30 54 27 17 52\n61 22 67 15 28 41 26 1 80 44 3 38 18 37 79 57 11 7 65 34 9 36 40 5 48 29 64 31 51 63 27 4 50 13 24 32 58 23 19 46 8 73 39 2 21 56 77 53 59 78 43 12 55 45 30 74 33 68 42 47 17 54",
"output": "Oh, my keyboard!"
},
{
"input": "100\n78 87 96 18 73 32 38 44 29 64 40 70 47 91 60 69 24 1 5 34 92 94 99 22 83 65 14 68 15 20 74 31 39 100 42 4 97 46 25 6 8 56 79 9 71 35 54 19 59 93 58 62 10 85 57 45 33 7 86 81 30 98 26 61 84 41 23 28 88 36 66 51 80 53 37 63 43 95 75\n76 81 53 15 26 37 31 62 24 87 41 39 75 86 46 76 34 4 51 5 45 65 67 48 68 23 71 27 94 47 16 17 9 96 84 89 88 100 18 52 69 42 6 92 7 64 49 12 98 28 21 99 25 55 44 40 82 19 36 30 77 90 14 43 50 3 13 95 78 35 20 54 58 11 2 1 33",
"output": "Oh, my keyboard!"
},
{
"input": "100\n77 55 26 98 13 91 78 60 23 76 12 11 36 62 84 80 18 1 68 92 81 67 19 4 2 10 17 77 96 63 15 69 46 97 82 42 83 59 50 72 14 40 89 9 52 29 56 31 74 39 45 85 22 99 44 65 95 6 90 38 54 32 49 34 3 70 75 33 94 53 21 71 5 66 73 41 100 24\n69 76 93 5 24 57 59 6 81 4 30 12 44 15 67 45 73 3 16 8 47 95 20 64 68 85 54 17 90 86 66 58 13 37 42 51 35 32 1 28 43 80 7 14 48 19 62 55 2 91 25 49 27 26 38 79 89 99 22 60 75 53 88 82 34 21 87 71 72 61",
"output": "I become the guy."
},
{
"input": "100\n74 96 32 63 12 69 72 99 15 22 1 41 79 77 71 31 20 28 75 73 85 37 38 59 42 100 86 89 55 87 68 4 24 57 52 8 92 27 56 98 95 58 34 9 45 14 11 36 66 76 61 19 25 23 78 49 90 26 80 43 70 13 65 10 5 74 81 21 44 60 97 3 47 93 6\n64 68 21 27 16 91 23 22 33 12 71 88 90 50 62 43 28 29 57 59 5 74 10 95 35 1 67 93 36 32 86 40 6 64 78 46 89 15 84 53 18 30 17 85 2 3 47 92 25 48 76 51 20 82 52 83 99 63 80 11 94 54 39 7 58",
"output": "I become the guy."
},
{
"input": "100\n75 11 98 44 47 88 94 23 78 59 70 2 43 39 34 63 71 19 42 61 30 74 14 77 97 53 92 60 67 36 37 13 6 86 62 46 41 3 25 93 7 12 27 48 55 49 31 35 51 10 57 54 95 82 28 90 73 26 17 50 81 56 20 87 40 85 72 64 99 29 91 5 80 18 24 52\n72 93 59 5 88 47 9 58 48 1 43 50 100 87 61 91 45 98 99 56 25 84 53 73 78 54 63 38 37 2 77 95 89 85 4 90 10 33 12 22 74 32 34 70 71 52 96 57 15 66 31 27 75 8 21 39 62 44 67 94 81 68 14 19 36 28 11 79 16 65 46 83 76",
"output": "Oh, my keyboard!"
},
{
"input": "3\n1 2\n2 2 3",
"output": "Oh, my keyboard!"
},
{
"input": "4\n1 2\n3 1 3 4",
"output": "I become the guy."
},
{
"input": "6\n2 1 2\n3 4 5 6",
"output": "Oh, my keyboard!"
}
] | 1,691,571,008
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 29
| 62
| 0
|
n = int(input())
a = input().split()
b = input().split()
a.pop(0)
b.pop(0)
c = a+b
for i in range(1, n+1):
if str(i) not in c:
print("Oh, my keyboard!")
raise SystemExit
print("I become the guy.")
|
Title: I Wanna Be the Guy
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There is a game called "I Wanna Be the Guy", consisting of *n* levels. Little X and his friend Little Y are addicted to the game. Each of them wants to pass the whole game.
Little X can pass only *p* levels of the game. And Little Y can pass only *q* levels of the game. You are given the indices of levels Little X can pass and the indices of levels Little Y can pass. Will Little X and Little Y pass the whole game, if they cooperate each other?
Input Specification:
The first line contains a single integer *n* (1<=≤<=<=*n*<=≤<=100).
The next line contains an integer *p* (0<=≤<=*p*<=≤<=*n*) at first, then follows *p* distinct integers *a*1,<=*a*2,<=...,<=*a**p* (1<=≤<=*a**i*<=≤<=*n*). These integers denote the indices of levels Little X can pass. The next line contains the levels Little Y can pass in the same format. It's assumed that levels are numbered from 1 to *n*.
Output Specification:
If they can pass all the levels, print "I become the guy.". If it's impossible, print "Oh, my keyboard!" (without the quotes).
Demo Input:
['4\n3 1 2 3\n2 2 4\n', '4\n3 1 2 3\n2 2 3\n']
Demo Output:
['I become the guy.\n', 'Oh, my keyboard!\n']
Note:
In the first sample, Little X can pass levels [1 2 3], and Little Y can pass level [2 4], so they can pass all the levels both.
In the second sample, no one can pass level 4.
|
```python
n = int(input())
a = input().split()
b = input().split()
a.pop(0)
b.pop(0)
c = a+b
for i in range(1, n+1):
if str(i) not in c:
print("Oh, my keyboard!")
raise SystemExit
print("I become the guy.")
```
| 3
|
|
69
|
A
|
Young Physicist
|
PROGRAMMING
| 1,000
|
[
"implementation",
"math"
] |
A. Young Physicist
|
2
|
256
|
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
|
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
|
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
|
[
"3\n4 1 7\n-2 4 -1\n1 -5 -3\n",
"3\n3 -1 7\n-5 2 -4\n2 -1 -3\n"
] |
[
"NO",
"YES"
] |
none
| 500
|
[
{
"input": "3\n4 1 7\n-2 4 -1\n1 -5 -3",
"output": "NO"
},
{
"input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3",
"output": "YES"
},
{
"input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41",
"output": "NO"
},
{
"input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33",
"output": "NO"
},
{
"input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7",
"output": "NO"
},
{
"input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38",
"output": "NO"
},
{
"input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6",
"output": "YES"
},
{
"input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0",
"output": "YES"
},
{
"input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0",
"output": "YES"
},
{
"input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0",
"output": "YES"
},
{
"input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0",
"output": "YES"
},
{
"input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0",
"output": "YES"
},
{
"input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87",
"output": "YES"
},
{
"input": "3\n1 2 3\n3 2 1\n0 0 0",
"output": "NO"
},
{
"input": "2\n5 -23 12\n0 0 0",
"output": "NO"
},
{
"input": "1\n0 0 0",
"output": "YES"
},
{
"input": "1\n1 -2 0",
"output": "NO"
},
{
"input": "2\n-23 77 -86\n23 -77 86",
"output": "YES"
},
{
"input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82",
"output": "YES"
},
{
"input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0",
"output": "YES"
},
{
"input": "3\n96 49 -12\n2 -66 28\n-98 17 -16",
"output": "YES"
},
{
"input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0",
"output": "YES"
},
{
"input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53",
"output": "YES"
},
{
"input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1",
"output": "YES"
},
{
"input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0",
"output": "YES"
},
{
"input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0",
"output": "YES"
},
{
"input": "3\n0 2 -2\n1 -1 3\n-3 0 0",
"output": "NO"
}
] | 1,660,143,851
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 81
| 92
| 0
|
import math
loop = int(input())
x = 0
y = 0
z = 0
somme = 0
for i in range(loop):
frc = list(map(int, input().split()))
x = frc[0] + x
y = frc[1] + y
z = frc[2] + z
if x == 0 and y == 0 and z == 0:
print('YES')
else:
print('NO')
|
Title: Young Physicist
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
Input Specification:
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
Output Specification:
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
Demo Input:
['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n']
Demo Output:
['NO', 'YES']
Note:
none
|
```python
import math
loop = int(input())
x = 0
y = 0
z = 0
somme = 0
for i in range(loop):
frc = list(map(int, input().split()))
x = frc[0] + x
y = frc[1] + y
z = frc[2] + z
if x == 0 and y == 0 and z == 0:
print('YES')
else:
print('NO')
```
| 3.977
|
805
|
A
|
Fake NP
|
PROGRAMMING
| 1,000
|
[
"greedy",
"math"
] | null | null |
Tavak and Seyyed are good friends. Seyyed is very funny and he told Tavak to solve the following problem instead of longest-path.
You are given *l* and *r*. For all integers from *l* to *r*, inclusive, we wrote down all of their integer divisors except 1. Find the integer that we wrote down the maximum number of times.
Solve the problem to show that it's not a NP problem.
|
The first line contains two integers *l* and *r* (2<=≤<=*l*<=≤<=*r*<=≤<=109).
|
Print single integer, the integer that appears maximum number of times in the divisors.
If there are multiple answers, print any of them.
|
[
"19 29\n",
"3 6\n"
] |
[
"2\n",
"3\n"
] |
Definition of a divisor: [https://www.mathsisfun.com/definitions/divisor-of-an-integer-.html](https://www.mathsisfun.com/definitions/divisor-of-an-integer-.html)
The first example: from 19 to 29 these numbers are divisible by 2: {20, 22, 24, 26, 28}.
The second example: from 3 to 6 these numbers are divisible by 3: {3, 6}.
| 500
|
[
{
"input": "19 29",
"output": "2"
},
{
"input": "3 6",
"output": "2"
},
{
"input": "39 91",
"output": "2"
},
{
"input": "76 134",
"output": "2"
},
{
"input": "93 95",
"output": "2"
},
{
"input": "17 35",
"output": "2"
},
{
"input": "94 95",
"output": "2"
},
{
"input": "51 52",
"output": "2"
},
{
"input": "47 52",
"output": "2"
},
{
"input": "38 98",
"output": "2"
},
{
"input": "30 37",
"output": "2"
},
{
"input": "56 92",
"output": "2"
},
{
"input": "900000000 1000000000",
"output": "2"
},
{
"input": "37622224 162971117",
"output": "2"
},
{
"input": "760632746 850720703",
"output": "2"
},
{
"input": "908580370 968054552",
"output": "2"
},
{
"input": "951594860 953554446",
"output": "2"
},
{
"input": "347877978 913527175",
"output": "2"
},
{
"input": "620769961 988145114",
"output": "2"
},
{
"input": "820844234 892579936",
"output": "2"
},
{
"input": "741254764 741254768",
"output": "2"
},
{
"input": "80270976 80270977",
"output": "2"
},
{
"input": "392602363 392602367",
"output": "2"
},
{
"input": "519002744 519002744",
"output": "519002744"
},
{
"input": "331900277 331900277",
"output": "331900277"
},
{
"input": "419873015 419873018",
"output": "2"
},
{
"input": "349533413 349533413",
"output": "349533413"
},
{
"input": "28829775 28829776",
"output": "2"
},
{
"input": "568814539 568814539",
"output": "568814539"
},
{
"input": "720270740 720270743",
"output": "2"
},
{
"input": "871232720 871232722",
"output": "2"
},
{
"input": "305693653 305693653",
"output": "305693653"
},
{
"input": "634097178 634097179",
"output": "2"
},
{
"input": "450868287 450868290",
"output": "2"
},
{
"input": "252662256 252662260",
"output": "2"
},
{
"input": "575062045 575062049",
"output": "2"
},
{
"input": "273072892 273072894",
"output": "2"
},
{
"input": "770439256 770439256",
"output": "770439256"
},
{
"input": "2 1000000000",
"output": "2"
},
{
"input": "6 8",
"output": "2"
},
{
"input": "2 879190747",
"output": "2"
},
{
"input": "5 5",
"output": "5"
},
{
"input": "999999937 999999937",
"output": "999999937"
},
{
"input": "3 3",
"output": "3"
},
{
"input": "5 100",
"output": "2"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 18",
"output": "2"
},
{
"input": "7 7",
"output": "7"
},
{
"input": "39916801 39916801",
"output": "39916801"
},
{
"input": "3 8",
"output": "2"
},
{
"input": "13 13",
"output": "13"
},
{
"input": "4 8",
"output": "2"
},
{
"input": "3 12",
"output": "2"
},
{
"input": "6 12",
"output": "2"
},
{
"input": "999999103 999999103",
"output": "999999103"
},
{
"input": "100000007 100000007",
"output": "100000007"
},
{
"input": "3 99",
"output": "2"
},
{
"input": "999999733 999999733",
"output": "999999733"
},
{
"input": "5 10",
"output": "2"
},
{
"input": "982451653 982451653",
"output": "982451653"
},
{
"input": "999900001 1000000000",
"output": "2"
},
{
"input": "999727999 999727999",
"output": "999727999"
},
{
"input": "2 999999999",
"output": "2"
},
{
"input": "242 244",
"output": "2"
},
{
"input": "3 10",
"output": "2"
},
{
"input": "15 27",
"output": "2"
},
{
"input": "998244353 998244353",
"output": "998244353"
},
{
"input": "5 15",
"output": "2"
},
{
"input": "999999797 999999797",
"output": "999999797"
},
{
"input": "2 3",
"output": "2"
},
{
"input": "999999929 999999929",
"output": "999999929"
},
{
"input": "3 111111",
"output": "2"
},
{
"input": "12 18",
"output": "2"
},
{
"input": "479001599 479001599",
"output": "479001599"
},
{
"input": "10000019 10000019",
"output": "10000019"
},
{
"input": "715827883 715827883",
"output": "715827883"
},
{
"input": "999992977 999992977",
"output": "999992977"
},
{
"input": "11 11",
"output": "11"
},
{
"input": "29 29",
"output": "29"
},
{
"input": "1000003 1000003",
"output": "1000003"
},
{
"input": "6 15",
"output": "2"
},
{
"input": "1200007 1200007",
"output": "1200007"
},
{
"input": "3 1000000000",
"output": "2"
},
{
"input": "990000023 990000023",
"output": "990000023"
},
{
"input": "1717 1717",
"output": "1717"
},
{
"input": "141650963 141650963",
"output": "141650963"
},
{
"input": "1002523 1002523",
"output": "1002523"
},
{
"input": "900000011 900000011",
"output": "900000011"
},
{
"input": "104729 104729",
"output": "104729"
},
{
"input": "4 12",
"output": "2"
},
{
"input": "100003 100003",
"output": "100003"
},
{
"input": "17 17",
"output": "17"
},
{
"input": "10 100",
"output": "2"
}
] | 1,577,725,058
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 93
| 124
| 307,200
|
l,r = list(map(int, input().split()))
print(l) if l==r else print(2)
|
Title: Fake NP
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Tavak and Seyyed are good friends. Seyyed is very funny and he told Tavak to solve the following problem instead of longest-path.
You are given *l* and *r*. For all integers from *l* to *r*, inclusive, we wrote down all of their integer divisors except 1. Find the integer that we wrote down the maximum number of times.
Solve the problem to show that it's not a NP problem.
Input Specification:
The first line contains two integers *l* and *r* (2<=≤<=*l*<=≤<=*r*<=≤<=109).
Output Specification:
Print single integer, the integer that appears maximum number of times in the divisors.
If there are multiple answers, print any of them.
Demo Input:
['19 29\n', '3 6\n']
Demo Output:
['2\n', '3\n']
Note:
Definition of a divisor: [https://www.mathsisfun.com/definitions/divisor-of-an-integer-.html](https://www.mathsisfun.com/definitions/divisor-of-an-integer-.html)
The first example: from 19 to 29 these numbers are divisible by 2: {20, 22, 24, 26, 28}.
The second example: from 3 to 6 these numbers are divisible by 3: {3, 6}.
|
```python
l,r = list(map(int, input().split()))
print(l) if l==r else print(2)
```
| 3
|
|
749
|
A
|
Bachgold Problem
|
PROGRAMMING
| 800
|
[
"greedy",
"implementation",
"math",
"number theory"
] | null | null |
Bachgold problem is very easy to formulate. Given a positive integer *n* represent it as a sum of maximum possible number of prime numbers. One can prove that such representation exists for any integer greater than 1.
Recall that integer *k* is called prime if it is greater than 1 and has exactly two positive integer divisors — 1 and *k*.
|
The only line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000).
|
The first line of the output contains a single integer *k* — maximum possible number of primes in representation.
The second line should contain *k* primes with their sum equal to *n*. You can print them in any order. If there are several optimal solution, print any of them.
|
[
"5\n",
"6\n"
] |
[
"2\n2 3\n",
"3\n2 2 2\n"
] |
none
| 500
|
[
{
"input": "5",
"output": "2\n2 3"
},
{
"input": "6",
"output": "3\n2 2 2"
},
{
"input": "2",
"output": "1\n2"
},
{
"input": "3",
"output": "1\n3"
},
{
"input": "99999",
"output": "49999\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..."
},
{
"input": "100000",
"output": "50000\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..."
},
{
"input": "7",
"output": "3\n2 2 3"
},
{
"input": "4",
"output": "2\n2 2"
},
{
"input": "8",
"output": "4\n2 2 2 2"
},
{
"input": "9",
"output": "4\n2 2 2 3"
},
{
"input": "99995",
"output": "49997\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..."
},
{
"input": "99996",
"output": "49998\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..."
},
{
"input": "10",
"output": "5\n2 2 2 2 2"
},
{
"input": "11",
"output": "5\n2 2 2 2 3"
},
{
"input": "99997",
"output": "49998\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..."
},
{
"input": "99998",
"output": "49999\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..."
},
{
"input": "12",
"output": "6\n2 2 2 2 2 2"
},
{
"input": "13",
"output": "6\n2 2 2 2 2 3"
},
{
"input": "99993",
"output": "49996\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..."
},
{
"input": "99994",
"output": "49997\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..."
},
{
"input": "14",
"output": "7\n2 2 2 2 2 2 2"
},
{
"input": "15",
"output": "7\n2 2 2 2 2 2 3"
},
{
"input": "53",
"output": "26\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3"
},
{
"input": "57",
"output": "28\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3"
},
{
"input": "61",
"output": "30\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3"
},
{
"input": "774",
"output": "387\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..."
},
{
"input": "202",
"output": "101\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2"
},
{
"input": "530",
"output": "265\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..."
},
{
"input": "7166",
"output": "3583\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..."
},
{
"input": "9294",
"output": "4647\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..."
},
{
"input": "2422",
"output": "1211\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..."
},
{
"input": "15326",
"output": "7663\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..."
},
{
"input": "11454",
"output": "5727\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..."
},
{
"input": "14878",
"output": "7439\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..."
},
{
"input": "90672",
"output": "45336\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..."
},
{
"input": "99544",
"output": "49772\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..."
},
{
"input": "90472",
"output": "45236\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..."
},
{
"input": "23",
"output": "11\n2 2 2 2 2 2 2 2 2 2 3"
},
{
"input": "93",
"output": "46\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3"
},
{
"input": "19",
"output": "9\n2 2 2 2 2 2 2 2 3"
},
{
"input": "11110",
"output": "5555\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..."
}
] | 1,621,503,533
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 4
| 77
| 102,400
|
n = int(input())
if(n%2 == 0):
print(n//2)
for i in range(1,(n//2) + 1):
print(2 , end = " ")
print()
else:
if(n%3 == 0):
print(n//3)
for i in range(1, (n//3) + 1):
print(3, end = " ")
print()
else:
print(n//2)
for i in range(1,n//2):
print(2 , end = " ")
print(3)
|
Title: Bachgold Problem
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Bachgold problem is very easy to formulate. Given a positive integer *n* represent it as a sum of maximum possible number of prime numbers. One can prove that such representation exists for any integer greater than 1.
Recall that integer *k* is called prime if it is greater than 1 and has exactly two positive integer divisors — 1 and *k*.
Input Specification:
The only line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000).
Output Specification:
The first line of the output contains a single integer *k* — maximum possible number of primes in representation.
The second line should contain *k* primes with their sum equal to *n*. You can print them in any order. If there are several optimal solution, print any of them.
Demo Input:
['5\n', '6\n']
Demo Output:
['2\n2 3\n', '3\n2 2 2\n']
Note:
none
|
```python
n = int(input())
if(n%2 == 0):
print(n//2)
for i in range(1,(n//2) + 1):
print(2 , end = " ")
print()
else:
if(n%3 == 0):
print(n//3)
for i in range(1, (n//3) + 1):
print(3, end = " ")
print()
else:
print(n//2)
for i in range(1,n//2):
print(2 , end = " ")
print(3)
```
| 0
|
|
41
|
A
|
Translation
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Translation
|
2
|
256
|
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
|
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
|
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
|
[
"code\nedoc\n",
"abb\naba\n",
"code\ncode\n"
] |
[
"YES\n",
"NO\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "code\nedoc",
"output": "YES"
},
{
"input": "abb\naba",
"output": "NO"
},
{
"input": "code\ncode",
"output": "NO"
},
{
"input": "abacaba\nabacaba",
"output": "YES"
},
{
"input": "q\nq",
"output": "YES"
},
{
"input": "asrgdfngfnmfgnhweratgjkk\nasrgdfngfnmfgnhweratgjkk",
"output": "NO"
},
{
"input": "z\na",
"output": "NO"
},
{
"input": "asd\ndsa",
"output": "YES"
},
{
"input": "abcdef\nfecdba",
"output": "NO"
},
{
"input": "ywjjbirapvskozubvxoemscfwl\ngnduubaogtfaiowjizlvjcu",
"output": "NO"
},
{
"input": "mfrmqxtzvgaeuleubcmcxcfqyruwzenguhgrmkuhdgnhgtgkdszwqyd\nmfxufheiperjnhyczclkmzyhcxntdfskzkzdwzzujdinf",
"output": "NO"
},
{
"input": "bnbnemvybqizywlnghlykniaxxxlkhftppbdeqpesrtgkcpoeqowjwhrylpsziiwcldodcoonpimudvrxejjo\ntiynnekmlalogyvrgptbinkoqdwzuiyjlrldxhzjmmp",
"output": "NO"
},
{
"input": "pwlpubwyhzqvcitemnhvvwkmwcaawjvdiwtoxyhbhbxerlypelevasmelpfqwjk\nstruuzebbcenziscuoecywugxncdwzyfozhljjyizpqcgkyonyetarcpwkqhuugsqjuixsxptmbnlfupdcfigacdhhrzb",
"output": "NO"
},
{
"input": "gdvqjoyxnkypfvdxssgrihnwxkeojmnpdeobpecytkbdwujqfjtxsqspxvxpqioyfagzjxupqqzpgnpnpxcuipweunqch\nkkqkiwwasbhezqcfeceyngcyuogrkhqecwsyerdniqiocjehrpkljiljophqhyaiefjpavoom",
"output": "NO"
},
{
"input": "umeszdawsvgkjhlqwzents\nhxqhdungbylhnikwviuh",
"output": "NO"
},
{
"input": "juotpscvyfmgntshcealgbsrwwksgrwnrrbyaqqsxdlzhkbugdyx\nibqvffmfktyipgiopznsqtrtxiijntdbgyy",
"output": "NO"
},
{
"input": "zbwueheveouatecaglziqmudxemhrsozmaujrwlqmppzoumxhamwugedikvkblvmxwuofmpafdprbcftew\nulczwrqhctbtbxrhhodwbcxwimncnexosksujlisgclllxokrsbnozthajnnlilyffmsyko",
"output": "NO"
},
{
"input": "nkgwuugukzcv\nqktnpxedwxpxkrxdvgmfgoxkdfpbzvwsduyiybynbkouonhvmzakeiruhfmvrktghadbfkmwxduoqv",
"output": "NO"
},
{
"input": "incenvizhqpcenhjhehvjvgbsnfixbatrrjstxjzhlmdmxijztphxbrldlqwdfimweepkggzcxsrwelodpnryntepioqpvk\ndhjbjjftlvnxibkklxquwmzhjfvnmwpapdrslioxisbyhhfymyiaqhlgecpxamqnocizwxniubrmpyubvpenoukhcobkdojlybxd",
"output": "NO"
},
{
"input": "w\nw",
"output": "YES"
},
{
"input": "vz\nzv",
"output": "YES"
},
{
"input": "ry\nyr",
"output": "YES"
},
{
"input": "xou\nuox",
"output": "YES"
},
{
"input": "axg\ngax",
"output": "NO"
},
{
"input": "zdsl\nlsdz",
"output": "YES"
},
{
"input": "kudl\nldku",
"output": "NO"
},
{
"input": "zzlzwnqlcl\nlclqnwzlzz",
"output": "YES"
},
{
"input": "vzzgicnzqooejpjzads\nsdazjpjeooqzncigzzv",
"output": "YES"
},
{
"input": "raqhmvmzuwaykjpyxsykr\nxkysrypjkyawuzmvmhqar",
"output": "NO"
},
{
"input": "ngedczubzdcqbxksnxuavdjaqtmdwncjnoaicvmodcqvhfezew\nwezefhvqcdomvciaonjcnwdmtqajdvauxnskxbqcdzbuzcdegn",
"output": "YES"
},
{
"input": "muooqttvrrljcxbroizkymuidvfmhhsjtumksdkcbwwpfqdyvxtrlymofendqvznzlmim\nmimlznzvqdnefomylrtxvydqfpwwbckdskmutjshhmfvdiumykziorbxcjlrrvttqooum",
"output": "YES"
},
{
"input": "vxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaivg\ngviayyikkitmuomcpiakhbxszgbnhvwyzkftwoagzixaearxpjacrnvpvbuzenvovehkmmxvblqyxvctroddksdsgebcmlluqpxv",
"output": "YES"
},
{
"input": "mnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfdc\ncdfmkdgrdptkpewbsqvszipgxvgvuiuzbkkwuowbafkikgvnqdkxnayzdjygvezmtsgywnupocdntipiyiorblqkrzjpzatxahnm",
"output": "NO"
},
{
"input": "dgxmzbqofstzcdgthbaewbwocowvhqpinehpjatnnbrijcolvsatbblsrxabzrpszoiecpwhfjmwuhqrapvtcgvikuxtzbftydkw\nwkdytfbztxukivgctvparqhuwmjfhwpceiozsprzbaxrslbbqasvlocjirbnntajphenipthvwocowbweabhtgdcztsfoqbzmxgd",
"output": "NO"
},
{
"input": "gxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwgeh\nhegwxvocotmzstqfbmpjvijgkcyodlxyjawrpkczpmdspsuhoiruavnnnuwvtwohglkdxjetshkboalvzqbgjgthoteceixioxg",
"output": "YES"
},
{
"input": "sihxuwvmaambplxvjfoskinghzicyfqebjtkysotattkahssumfcgrkheotdxwjckpvapbkaepqrxseyfrwtyaycmrzsrsngkh\nhkgnsrszrmcyaytwrfyesxrqpeakbpavpkcjwxdtoehkrgcfmusshakttatosyktjbeqfycizhgniksofjvxlpbmaamvwuxhis",
"output": "YES"
},
{
"input": "ycnahksbughnonldzrhkysujmylcgcfuludjvjiahtkyzqvkopzqcnwhltbzfugzojqkjjlggmvnultascmygelkiktmfieok\nkoeifmtkiklegkmcsatlunvmggkjjlqjozgufzbtlhwncqzpokvqzykthaijvjdulufcgclymjusyyhrzdlnonhgubskhancy",
"output": "NO"
},
{
"input": "wbqasaehtkfojruzyhrlgwmtyiovmzyfifslvlemhqheyaelzwnthrenjsbmntwaoryzwfbxmscmypvxlfmzpnkkjlvwvmtz\nztmvwvljkknpzmflxvpymcsmxbfwzyroawtnmbsjnerhtnwzleayehqhmelvlsfifyzmvoiytmwglrhyzurjofktheasaqbw",
"output": "YES"
},
{
"input": "imippqurprbhfugngtgifelytadegwrgaefnfhbjjnmzikvjaccotqzemufqieqldgnbmviisgkynzeldlhqxuqphjfmyij\njiymfjhpquxqhldleznykgsiivmbngdlqeiqfumezqtoccajvkizmnjjbhfnfeagrwgedatylefigtgngufhbrpruqppimi",
"output": "YES"
},
{
"input": "bikydffiuisckpvzqlteqfhegsagimodb\nbdomigasgehfqetlqzvpkcsiuiffdykib",
"output": "YES"
}
] | 1,613,224,913
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 9
| 124
| 0
|
# Solving
s = input()
t = input()
count = 0
for i in range(len(s)):
if t[i] == s[-(i + 1)]:
count += 1
if count == len(s):
print("YES")
else:
print("NO")
|
Title: Translation
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
Input Specification:
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
Output Specification:
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
Demo Input:
['code\nedoc\n', 'abb\naba\n', 'code\ncode\n']
Demo Output:
['YES\n', 'NO\n', 'NO\n']
Note:
none
|
```python
# Solving
s = input()
t = input()
count = 0
for i in range(len(s)):
if t[i] == s[-(i + 1)]:
count += 1
if count == len(s):
print("YES")
else:
print("NO")
```
| -1
|
50
|
A
|
Domino piling
|
PROGRAMMING
| 800
|
[
"greedy",
"math"
] |
A. Domino piling
|
2
|
256
|
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
|
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
|
Output one number — the maximal number of dominoes, which can be placed.
|
[
"2 4\n",
"3 3\n"
] |
[
"4\n",
"4\n"
] |
none
| 500
|
[
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,632,843,376
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 124
| 6,758,400
|
m,n=[int(x) for x in input().split()]
print(int(m*n//2))
|
Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output Specification:
Output one number — the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none
|
```python
m,n=[int(x) for x in input().split()]
print(int(m*n//2))
```
| 3.956411
|
910
|
A
|
The Way to Home
|
PROGRAMMING
| 800
|
[
"dfs and similar",
"dp",
"greedy",
"implementation"
] | null | null |
A frog lives on the axis *Ox* and needs to reach home which is in the point *n*. She starts from the point 1. The frog can jump to the right at a distance not more than *d*. So, after she jumped from the point *x* she can reach the point *x*<=+<=*a*, where *a* is an integer from 1 to *d*.
For each point from 1 to *n* is known if there is a lily flower in it. The frog can jump only in points with a lilies. Guaranteed that there are lilies in the points 1 and *n*.
Determine the minimal number of jumps that the frog needs to reach home which is in the point *n* from the point 1. Consider that initially the frog is in the point 1. If the frog can not reach home, print -1.
|
The first line contains two integers *n* and *d* (2<=≤<=*n*<=≤<=100, 1<=≤<=*d*<=≤<=*n*<=-<=1) — the point, which the frog wants to reach, and the maximal length of the frog jump.
The second line contains a string *s* of length *n*, consisting of zeros and ones. If a character of the string *s* equals to zero, then in the corresponding point there is no lily flower. In the other case, in the corresponding point there is a lily flower. Guaranteed that the first and the last characters of the string *s* equal to one.
|
If the frog can not reach the home, print -1.
In the other case, print the minimal number of jumps that the frog needs to reach the home which is in the point *n* from the point 1.
|
[
"8 4\n10010101\n",
"4 2\n1001\n",
"8 4\n11100101\n",
"12 3\n101111100101\n"
] |
[
"2\n",
"-1\n",
"3\n",
"4\n"
] |
In the first example the from can reach home in two jumps: the first jump from the point 1 to the point 4 (the length of the jump is three), and the second jump from the point 4 to the point 8 (the length of the jump is four).
In the second example the frog can not reach home, because to make it she need to jump on a distance three, but the maximum length of her jump equals to two.
| 500
|
[
{
"input": "8 4\n10010101",
"output": "2"
},
{
"input": "4 2\n1001",
"output": "-1"
},
{
"input": "8 4\n11100101",
"output": "3"
},
{
"input": "12 3\n101111100101",
"output": "4"
},
{
"input": "5 4\n11011",
"output": "1"
},
{
"input": "5 4\n10001",
"output": "1"
},
{
"input": "10 7\n1101111011",
"output": "2"
},
{
"input": "10 9\n1110000101",
"output": "1"
},
{
"input": "10 9\n1100000001",
"output": "1"
},
{
"input": "20 5\n11111111110111101001",
"output": "4"
},
{
"input": "20 11\n11100000111000011011",
"output": "2"
},
{
"input": "20 19\n10100000000000000001",
"output": "1"
},
{
"input": "50 13\n10011010100010100111010000010000000000010100000101",
"output": "5"
},
{
"input": "50 8\n11010100000011001100001100010001110000101100110011",
"output": "8"
},
{
"input": "99 4\n111111111111111111111111111111111111111111111111111111111011111111111111111111111111111111111111111",
"output": "25"
},
{
"input": "99 98\n100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"output": "1"
},
{
"input": "100 5\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111",
"output": "20"
},
{
"input": "100 4\n1111111111111111111111111111111111111111111111111111111111111111111111111111110111111111111111111111",
"output": "25"
},
{
"input": "100 4\n1111111111111111111111111111111111111111111111111111111111111101111111011111111111111111111111111111",
"output": "25"
},
{
"input": "100 3\n1111110111111111111111111111111111111111101111111111111111111111111101111111111111111111111111111111",
"output": "34"
},
{
"input": "100 8\n1111111111101110111111111111111111111111111111111111111111111111111111110011111111111111011111111111",
"output": "13"
},
{
"input": "100 7\n1011111111111111111011101111111011111101111111111101111011110111111111111111111111110111111011111111",
"output": "15"
},
{
"input": "100 9\n1101111110111110101111111111111111011001110111011101011111111111010101111111100011011111111010111111",
"output": "12"
},
{
"input": "100 6\n1011111011111111111011010110011001010101111110111111000111011011111110101101110110101111110000100111",
"output": "18"
},
{
"input": "100 7\n1110001111101001110011111111111101111101101001010001101000101100000101101101011111111101101000100001",
"output": "16"
},
{
"input": "100 11\n1000010100011100011011100000010011001111011110100100001011010100011011111001101101110110010110001101",
"output": "10"
},
{
"input": "100 9\n1001001110000011100100000001000110111101101010101001000101001010011001101100110011011110110011011111",
"output": "13"
},
{
"input": "100 7\n1010100001110101111011000111000001110100100110110001110110011010100001100100001110111100110000101001",
"output": "18"
},
{
"input": "100 10\n1110110000000110000000101110100000111000001011100000100110010001110111001010101000011000000001011011",
"output": "12"
},
{
"input": "100 13\n1000000100000000100011000010010000101010011110000000001000011000110100001000010001100000011001011001",
"output": "9"
},
{
"input": "100 11\n1000000000100000010000100001000100000000010000100100000000100100001000000001011000110001000000000101",
"output": "12"
},
{
"input": "100 22\n1000100000001010000000000000000001000000100000000000000000010000000000001000000000000000000100000001",
"output": "7"
},
{
"input": "100 48\n1000000000000000011000000000000000000000000000000001100000000000000000000000000000000000000000000001",
"output": "3"
},
{
"input": "100 48\n1000000000000000000000100000000000000000000000000000000000000000000001000000000000000000100000000001",
"output": "3"
},
{
"input": "100 75\n1000000100000000000000000000000000000000000000000000000000000000000000000000000001000000000000000001",
"output": "3"
},
{
"input": "100 73\n1000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000000001",
"output": "2"
},
{
"input": "100 99\n1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"output": "1"
},
{
"input": "100 1\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111",
"output": "99"
},
{
"input": "100 2\n1111111111111111111111111111111110111111111111111111111111111111111111111111111111111111111111111111",
"output": "50"
},
{
"input": "100 1\n1111111111111111011111111111111111111111111111111111111111111111111101111111111111111111111111111111",
"output": "-1"
},
{
"input": "100 3\n1111111111111111111111111101111111111111111111111011111111111111111111111111111011111111111111111111",
"output": "33"
},
{
"input": "100 1\n1101111111111111111111101111111111111111111111111111111111111011111111101111101111111111111111111111",
"output": "-1"
},
{
"input": "100 6\n1111111111111111111111101111111101011110001111111111111111110111111111111111111111111110010111111111",
"output": "17"
},
{
"input": "100 2\n1111111101111010110111011011110111101111111011111101010101011111011111111111111011111001101111101111",
"output": "-1"
},
{
"input": "100 8\n1100110101111001101001111000111100110100011110111011001011111110000110101000001110111011100111011011",
"output": "14"
},
{
"input": "100 10\n1000111110100000001001101100000010011100010101001100010011111001001101111110110111101111001010001101",
"output": "11"
},
{
"input": "100 7\n1110000011010001110101011010000011110001000000011101110111010110001000011101111010010001101111110001",
"output": "-1"
},
{
"input": "100 3\n1111010001000001011011000011001111000100101000101101000010111101111000010000011110110011001101010111",
"output": "-1"
},
{
"input": "100 9\n1101010101101100010111011000010100001010000101010011001001100010110110000000010000101000000001101101",
"output": "13"
},
{
"input": "100 14\n1010100000000000010101000010001100000000000011100010000001000001011010001110001010100000100001101101",
"output": "9"
},
{
"input": "100 13\n1000000001101001110000010000011001000000000000001010000000100001001010000000000000000100010000000001",
"output": "-1"
},
{
"input": "100 18\n1000000000000000110000000000000000010000000001000001000001000000000100000000000010000000000000000001",
"output": "-1"
},
{
"input": "100 32\n1000000000000000000000000001000000000000000000000101000000000000000000000000000000000001000000000001",
"output": "-1"
},
{
"input": "100 79\n1000000001000000000101000000000000000000000000000000000000000000000000000000000000000000000000000001",
"output": "2"
},
{
"input": "100 41\n1000000000000000000000000000000000010000000000000000000000000000000000000000100000000000000000000001",
"output": "3"
},
{
"input": "100 82\n1000000000000000000100000000000000000000000000000000000000000000000000000000000000000000000000000001",
"output": "2"
},
{
"input": "100 96\n1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"output": "-1"
},
{
"input": "43 30\n1001000001111111010100100100110101011101101",
"output": "2"
},
{
"input": "7 1\n1111111",
"output": "6"
},
{
"input": "9 3\n101000001",
"output": "-1"
},
{
"input": "10 3\n1100000001",
"output": "-1"
},
{
"input": "8 2\n10000101",
"output": "-1"
},
{
"input": "2 1\n11",
"output": "1"
}
] | 1,612,206,717
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 63
| 109
| 1,638,400
|
from collections import defaultdict
class Graph:
def __init__(self):
self.graph = defaultdict(list)
self.visit = {}
self.ff=0
self.count=0
def flag(self):
return self.ff
def creategh(self,a,b):
self.graph[a].append(b)
def DFSUtil(self, v):
self.visit[v]=1
if(v==n):
print(self.count)
self.ff=1
return
else:
self.count+=1
for neighbour in self.graph[v]:
if neighbour not in self.visit:
self.DFSUtil(neighbour)
def DFS(self, v):
self.DFSUtil(v)
g = Graph()
n,m = map(int,input().split())
x = list(input())
for i in range(len(x)-1):
if(x[i]=="1"):
for j in range(min(len(x),i+m+1),i+1,-1):
g.creategh(i+1,j)
else:
for j in range(min(len(x),i+m+1),i+1,-1):
g.creategh(i+1,j)
g.visit[i+1]=1
g.DFS(1)
if(g.ff==0):
print("-1")
|
Title: The Way to Home
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A frog lives on the axis *Ox* and needs to reach home which is in the point *n*. She starts from the point 1. The frog can jump to the right at a distance not more than *d*. So, after she jumped from the point *x* she can reach the point *x*<=+<=*a*, where *a* is an integer from 1 to *d*.
For each point from 1 to *n* is known if there is a lily flower in it. The frog can jump only in points with a lilies. Guaranteed that there are lilies in the points 1 and *n*.
Determine the minimal number of jumps that the frog needs to reach home which is in the point *n* from the point 1. Consider that initially the frog is in the point 1. If the frog can not reach home, print -1.
Input Specification:
The first line contains two integers *n* and *d* (2<=≤<=*n*<=≤<=100, 1<=≤<=*d*<=≤<=*n*<=-<=1) — the point, which the frog wants to reach, and the maximal length of the frog jump.
The second line contains a string *s* of length *n*, consisting of zeros and ones. If a character of the string *s* equals to zero, then in the corresponding point there is no lily flower. In the other case, in the corresponding point there is a lily flower. Guaranteed that the first and the last characters of the string *s* equal to one.
Output Specification:
If the frog can not reach the home, print -1.
In the other case, print the minimal number of jumps that the frog needs to reach the home which is in the point *n* from the point 1.
Demo Input:
['8 4\n10010101\n', '4 2\n1001\n', '8 4\n11100101\n', '12 3\n101111100101\n']
Demo Output:
['2\n', '-1\n', '3\n', '4\n']
Note:
In the first example the from can reach home in two jumps: the first jump from the point 1 to the point 4 (the length of the jump is three), and the second jump from the point 4 to the point 8 (the length of the jump is four).
In the second example the frog can not reach home, because to make it she need to jump on a distance three, but the maximum length of her jump equals to two.
|
```python
from collections import defaultdict
class Graph:
def __init__(self):
self.graph = defaultdict(list)
self.visit = {}
self.ff=0
self.count=0
def flag(self):
return self.ff
def creategh(self,a,b):
self.graph[a].append(b)
def DFSUtil(self, v):
self.visit[v]=1
if(v==n):
print(self.count)
self.ff=1
return
else:
self.count+=1
for neighbour in self.graph[v]:
if neighbour not in self.visit:
self.DFSUtil(neighbour)
def DFS(self, v):
self.DFSUtil(v)
g = Graph()
n,m = map(int,input().split())
x = list(input())
for i in range(len(x)-1):
if(x[i]=="1"):
for j in range(min(len(x),i+m+1),i+1,-1):
g.creategh(i+1,j)
else:
for j in range(min(len(x),i+m+1),i+1,-1):
g.creategh(i+1,j)
g.visit[i+1]=1
g.DFS(1)
if(g.ff==0):
print("-1")
```
| 3
|
|
284
|
A
|
Cows and Primitive Roots
|
PROGRAMMING
| 1,400
|
[
"implementation",
"math",
"number theory"
] | null | null |
The cows have just learned what a primitive root is! Given a prime *p*, a primitive root is an integer *x* (1<=≤<=*x*<=<<=*p*) such that none of integers *x*<=-<=1,<=*x*2<=-<=1,<=...,<=*x**p*<=-<=2<=-<=1 are divisible by *p*, but *x**p*<=-<=1<=-<=1 is.
Unfortunately, computing primitive roots can be time consuming, so the cows need your help. Given a prime *p*, help the cows find the number of primitive roots .
|
The input contains a single line containing an integer *p* (2<=≤<=*p*<=<<=2000). It is guaranteed that *p* is a prime.
|
Output on a single line the number of primitive roots .
|
[
"3\n",
"5\n"
] |
[
"1\n",
"2\n"
] |
The only primitive root <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/3722298ba062e95b18705d1253eb4e5d31e3b2d1.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 2.
The primitive roots <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/1d85c6a17ef1c42b53cf94d00bc49a7ac458fd58.png" style="max-width: 100.0%;max-height: 100.0%;"/> are 2 and 3.
| 500
|
[
{
"input": "3",
"output": "1"
},
{
"input": "5",
"output": "2"
},
{
"input": "7",
"output": "2"
},
{
"input": "11",
"output": "4"
},
{
"input": "17",
"output": "8"
},
{
"input": "19",
"output": "6"
},
{
"input": "1583",
"output": "672"
},
{
"input": "997",
"output": "328"
},
{
"input": "2",
"output": "1"
},
{
"input": "1987",
"output": "660"
},
{
"input": "1993",
"output": "656"
},
{
"input": "1997",
"output": "996"
},
{
"input": "1999",
"output": "648"
},
{
"input": "1297",
"output": "432"
},
{
"input": "163",
"output": "54"
},
{
"input": "1259",
"output": "576"
},
{
"input": "821",
"output": "320"
},
{
"input": "29",
"output": "12"
},
{
"input": "43",
"output": "12"
},
{
"input": "1949",
"output": "972"
},
{
"input": "1879",
"output": "624"
},
{
"input": "1759",
"output": "584"
},
{
"input": "1597",
"output": "432"
},
{
"input": "1619",
"output": "808"
},
{
"input": "1277",
"output": "560"
},
{
"input": "1097",
"output": "544"
},
{
"input": "953",
"output": "384"
},
{
"input": "751",
"output": "200"
},
{
"input": "607",
"output": "200"
},
{
"input": "509",
"output": "252"
},
{
"input": "431",
"output": "168"
},
{
"input": "317",
"output": "156"
},
{
"input": "211",
"output": "48"
},
{
"input": "127",
"output": "36"
},
{
"input": "101",
"output": "40"
},
{
"input": "31",
"output": "8"
}
] | 1,368,473,001
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 6
| 2,000
| 102,400
|
##A
def phi(n):
res=n
i=2
while(i*i<=n):
if not n%i:
while(not n%i): n/=i
res-=(res/i)
i+=1
if (n>1):
res-=(res/n)
return int(res)
p=int(input())
print(phi(p-1))
|
Title: Cows and Primitive Roots
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The cows have just learned what a primitive root is! Given a prime *p*, a primitive root is an integer *x* (1<=≤<=*x*<=<<=*p*) such that none of integers *x*<=-<=1,<=*x*2<=-<=1,<=...,<=*x**p*<=-<=2<=-<=1 are divisible by *p*, but *x**p*<=-<=1<=-<=1 is.
Unfortunately, computing primitive roots can be time consuming, so the cows need your help. Given a prime *p*, help the cows find the number of primitive roots .
Input Specification:
The input contains a single line containing an integer *p* (2<=≤<=*p*<=<<=2000). It is guaranteed that *p* is a prime.
Output Specification:
Output on a single line the number of primitive roots .
Demo Input:
['3\n', '5\n']
Demo Output:
['1\n', '2\n']
Note:
The only primitive root <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/3722298ba062e95b18705d1253eb4e5d31e3b2d1.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 2.
The primitive roots <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/1d85c6a17ef1c42b53cf94d00bc49a7ac458fd58.png" style="max-width: 100.0%;max-height: 100.0%;"/> are 2 and 3.
|
```python
##A
def phi(n):
res=n
i=2
while(i*i<=n):
if not n%i:
while(not n%i): n/=i
res-=(res/i)
i+=1
if (n>1):
res-=(res/n)
return int(res)
p=int(input())
print(phi(p-1))
```
| 0
|
|
378
|
A
|
Playing with Dice
|
PROGRAMMING
| 800
|
[
"brute force"
] | null | null |
Two players are playing a game. First each of them writes an integer from 1 to 6, and then a dice is thrown. The player whose written number got closer to the number on the dice wins. If both payers have the same difference, it's a draw.
The first player wrote number *a*, the second player wrote number *b*. How many ways to throw a dice are there, at which the first player wins, or there is a draw, or the second player wins?
|
The single line contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=6) — the numbers written on the paper by the first and second player, correspondingly.
|
Print three integers: the number of ways to throw the dice at which the first player wins, the game ends with a draw or the second player wins, correspondingly.
|
[
"2 5\n",
"2 4\n"
] |
[
"3 0 3\n",
"2 1 3\n"
] |
The dice is a standard cube-shaped six-sided object with each side containing a number from 1 to 6, and where all numbers on all sides are distinct.
You can assume that number *a* is closer to number *x* than number *b*, if |*a* - *x*| < |*b* - *x*|.
| 500
|
[
{
"input": "2 5",
"output": "3 0 3"
},
{
"input": "2 4",
"output": "2 1 3"
},
{
"input": "5 3",
"output": "2 1 3"
},
{
"input": "1 6",
"output": "3 0 3"
},
{
"input": "5 1",
"output": "3 1 2"
},
{
"input": "6 3",
"output": "2 0 4"
},
{
"input": "2 3",
"output": "2 0 4"
},
{
"input": "5 6",
"output": "5 0 1"
},
{
"input": "4 4",
"output": "0 6 0"
},
{
"input": "1 1",
"output": "0 6 0"
},
{
"input": "6 4",
"output": "1 1 4"
},
{
"input": "1 4",
"output": "2 0 4"
},
{
"input": "5 5",
"output": "0 6 0"
},
{
"input": "4 5",
"output": "4 0 2"
},
{
"input": "4 3",
"output": "3 0 3"
},
{
"input": "1 5",
"output": "2 1 3"
},
{
"input": "6 5",
"output": "1 0 5"
},
{
"input": "2 2",
"output": "0 6 0"
},
{
"input": "1 3",
"output": "1 1 4"
},
{
"input": "3 6",
"output": "4 0 2"
},
{
"input": "3 1",
"output": "4 1 1"
},
{
"input": "3 2",
"output": "4 0 2"
},
{
"input": "3 5",
"output": "3 1 2"
},
{
"input": "3 3",
"output": "0 6 0"
},
{
"input": "6 2",
"output": "2 1 3"
},
{
"input": "4 1",
"output": "4 0 2"
},
{
"input": "5 2",
"output": "3 0 3"
},
{
"input": "4 2",
"output": "3 1 2"
},
{
"input": "2 1",
"output": "5 0 1"
},
{
"input": "6 1",
"output": "3 0 3"
},
{
"input": "4 6",
"output": "4 1 1"
},
{
"input": "2 6",
"output": "3 1 2"
},
{
"input": "3 4",
"output": "3 0 3"
},
{
"input": "1 2",
"output": "1 0 5"
},
{
"input": "6 6",
"output": "0 6 0"
},
{
"input": "5 4",
"output": "2 0 4"
},
{
"input": "3 3",
"output": "0 6 0"
},
{
"input": "1 1",
"output": "0 6 0"
}
] | 1,639,670,919
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 38
| 139
| 0
|
a,b=[int(x) for x in input().split()]
A=0
D=0
B=0
for x in range(1,7):
if(abs(a-x)<abs(b-x)):
A+=1
elif(abs(a-x)==abs(b-x)):
D+=1
elif((abs(a-x)>abs(b-x))):
B+=1
print(A,D,B)
|
Title: Playing with Dice
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Two players are playing a game. First each of them writes an integer from 1 to 6, and then a dice is thrown. The player whose written number got closer to the number on the dice wins. If both payers have the same difference, it's a draw.
The first player wrote number *a*, the second player wrote number *b*. How many ways to throw a dice are there, at which the first player wins, or there is a draw, or the second player wins?
Input Specification:
The single line contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=6) — the numbers written on the paper by the first and second player, correspondingly.
Output Specification:
Print three integers: the number of ways to throw the dice at which the first player wins, the game ends with a draw or the second player wins, correspondingly.
Demo Input:
['2 5\n', '2 4\n']
Demo Output:
['3 0 3\n', '2 1 3\n']
Note:
The dice is a standard cube-shaped six-sided object with each side containing a number from 1 to 6, and where all numbers on all sides are distinct.
You can assume that number *a* is closer to number *x* than number *b*, if |*a* - *x*| < |*b* - *x*|.
|
```python
a,b=[int(x) for x in input().split()]
A=0
D=0
B=0
for x in range(1,7):
if(abs(a-x)<abs(b-x)):
A+=1
elif(abs(a-x)==abs(b-x)):
D+=1
elif((abs(a-x)>abs(b-x))):
B+=1
print(A,D,B)
```
| 3
|
|
443
|
A
|
Anton and Letters
|
PROGRAMMING
| 800
|
[
"constructive algorithms",
"implementation"
] | null | null |
Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line.
Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set.
|
The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space.
|
Print a single number — the number of distinct letters in Anton's set.
|
[
"{a, b, c}\n",
"{b, a, b, a}\n",
"{}\n"
] |
[
"3\n",
"2\n",
"0\n"
] |
none
| 500
|
[
{
"input": "{a, b, c}",
"output": "3"
},
{
"input": "{b, a, b, a}",
"output": "2"
},
{
"input": "{}",
"output": "0"
},
{
"input": "{a, a, c, b, b, b, c, c, c, c}",
"output": "3"
},
{
"input": "{a, c, b, b}",
"output": "3"
},
{
"input": "{a, b}",
"output": "2"
},
{
"input": "{a}",
"output": "1"
},
{
"input": "{b, a, b, a, b, c, c, b, c, b}",
"output": "3"
},
{
"input": "{e, g, c, e}",
"output": "3"
},
{
"input": "{a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a}",
"output": "1"
},
{
"input": "{a, a, b}",
"output": "2"
},
{
"input": "{a, b, b, b, a, b, a, a, a, a, a, a, b, a, b, a, a, a, a, a, b, a, b, a}",
"output": "2"
},
{
"input": "{j, u, a, c, f, w, e, w, x, t, h, p, v, n, i, l, x, n, i, b, u, c, a, a}",
"output": "16"
},
{
"input": "{x, i, w, c, p, e, h, z, k, i}",
"output": "9"
},
{
"input": "{t, k, o, x, r, d, q, j, k, e, z, w, y, r, z, s, s, e, s, b, k, i}",
"output": "15"
},
{
"input": "{y}",
"output": "1"
},
{
"input": "{x}",
"output": "1"
},
{
"input": "{b, z, a, z}",
"output": "3"
},
{
"input": "{z}",
"output": "1"
},
{
"input": "{a, z}",
"output": "2"
},
{
"input": "{a, b, z}",
"output": "3"
},
{
"input": "{s, q, z, r, t, a, b, h, j, i, o, z, r, q}",
"output": "11"
}
] | 1,699,235,473
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 2
| 62
| 0
|
#gets the set of unique letters
actualSet = set(input())
#prints number of unique letters (removing ' ', '{', '}', and ',')
print(len(actualSet) - 4)
|
Title: Anton and Letters
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line.
Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set.
Input Specification:
The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space.
Output Specification:
Print a single number — the number of distinct letters in Anton's set.
Demo Input:
['{a, b, c}\n', '{b, a, b, a}\n', '{}\n']
Demo Output:
['3\n', '2\n', '0\n']
Note:
none
|
```python
#gets the set of unique letters
actualSet = set(input())
#prints number of unique letters (removing ' ', '{', '}', and ',')
print(len(actualSet) - 4)
```
| 0
|
|
349
|
A
|
Cinema Line
|
PROGRAMMING
| 1,100
|
[
"greedy",
"implementation"
] | null | null |
The new "Die Hard" movie has just been released! There are *n* people at the cinema box office standing in a huge line. Each of them has a single 100, 50 or 25 ruble bill. A "Die Hard" ticket costs 25 rubles. Can the booking clerk sell a ticket to each person and give the change if he initially has no money and sells the tickets strictly in the order people follow in the line?
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of people in the line. The next line contains *n* integers, each of them equals 25, 50 or 100 — the values of the bills the people have. The numbers are given in the order from the beginning of the line (at the box office) to the end of the line.
|
Print "YES" (without the quotes) if the booking clerk can sell a ticket to each person and give the change. Otherwise print "NO".
|
[
"4\n25 25 50 50\n",
"2\n25 100\n",
"4\n50 50 25 25\n"
] |
[
"YES\n",
"NO\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "4\n25 25 50 50",
"output": "YES"
},
{
"input": "2\n25 100",
"output": "NO"
},
{
"input": "4\n50 50 25 25",
"output": "NO"
},
{
"input": "3\n25 50 100",
"output": "NO"
},
{
"input": "10\n25 25 25 25 25 25 25 25 25 25",
"output": "YES"
},
{
"input": "10\n50 50 50 50 50 50 50 50 50 50",
"output": "NO"
},
{
"input": "10\n100 100 100 100 100 100 100 100 100 100",
"output": "NO"
},
{
"input": "7\n25 25 25 25 50 100 50",
"output": "YES"
},
{
"input": "2\n25 25",
"output": "YES"
},
{
"input": "3\n50 100 100",
"output": "NO"
},
{
"input": "3\n25 50 50",
"output": "NO"
},
{
"input": "2\n50 25",
"output": "NO"
},
{
"input": "14\n25 25 25 25 25 25 25 50 50 50 100 100 100 100",
"output": "NO"
},
{
"input": "5\n25 25 25 100 100",
"output": "NO"
},
{
"input": "7\n25 50 25 50 25 50 100",
"output": "NO"
},
{
"input": "5\n25 50 25 50 100",
"output": "NO"
},
{
"input": "5\n25 25 50 50 50",
"output": "NO"
},
{
"input": "5\n25 25 50 100 50",
"output": "NO"
},
{
"input": "5\n25 25 50 50 100",
"output": "NO"
},
{
"input": "1\n50",
"output": "NO"
}
] | 1,642,961,658
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 25
| 154
| 5,222,400
|
n = int(input())
money = [i for i in input().split()]
twenty5 = 0
fifty = 0
hundred = 0
flag = True
for i in range(n):
if money[i] == '25':
twenty5 += 1
elif money[i] == '50':
if twenty5 > 0:
twenty5 -= 1
else:
flag = False
break
fifty += 1
elif money[i] == '100':
if fifty > 0 and twenty5 > 0:
fifty -= 1
twenty5 -= 1
elif fifty == 0 and twenty5 > 1:
twenty5 -= 2
elif fifty >= 0 and twenty5 <= 1:
flag = False
break
if flag:
print('YES')
else:
print('NO')
|
Title: Cinema Line
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The new "Die Hard" movie has just been released! There are *n* people at the cinema box office standing in a huge line. Each of them has a single 100, 50 or 25 ruble bill. A "Die Hard" ticket costs 25 rubles. Can the booking clerk sell a ticket to each person and give the change if he initially has no money and sells the tickets strictly in the order people follow in the line?
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of people in the line. The next line contains *n* integers, each of them equals 25, 50 or 100 — the values of the bills the people have. The numbers are given in the order from the beginning of the line (at the box office) to the end of the line.
Output Specification:
Print "YES" (without the quotes) if the booking clerk can sell a ticket to each person and give the change. Otherwise print "NO".
Demo Input:
['4\n25 25 50 50\n', '2\n25 100\n', '4\n50 50 25 25\n']
Demo Output:
['YES\n', 'NO\n', 'NO\n']
Note:
none
|
```python
n = int(input())
money = [i for i in input().split()]
twenty5 = 0
fifty = 0
hundred = 0
flag = True
for i in range(n):
if money[i] == '25':
twenty5 += 1
elif money[i] == '50':
if twenty5 > 0:
twenty5 -= 1
else:
flag = False
break
fifty += 1
elif money[i] == '100':
if fifty > 0 and twenty5 > 0:
fifty -= 1
twenty5 -= 1
elif fifty == 0 and twenty5 > 1:
twenty5 -= 2
elif fifty >= 0 and twenty5 <= 1:
flag = False
break
if flag:
print('YES')
else:
print('NO')
```
| 0
|
|
253
|
B
|
Physics Practical
|
PROGRAMMING
| 1,400
|
[
"binary search",
"dp",
"sortings",
"two pointers"
] | null | null |
One day Vasya was on a physics practical, performing the task on measuring the capacitance. He followed the teacher's advice and did as much as *n* measurements, and recorded the results in the notebook. After that he was about to show the results to the teacher, but he remembered that at the last lesson, the teacher had made his friend Petya redo the experiment because the largest and the smallest results differed by more than two times. Vasya is lazy, and he does not want to redo the experiment. He wants to do the task and go home play computer games. So he decided to cheat: before Vasya shows the measurements to the teacher, he will erase some of them, so as to make the largest and the smallest results of the remaining measurements differ in no more than two times. In other words, if the remaining measurements have the smallest result *x*, and the largest result *y*, then the inequality *y*<=≤<=2·*x* must fulfill. Of course, to avoid the teacher's suspicion, Vasya wants to remove as few measurement results as possible from his notes.
Help Vasya, find what minimum number of measurement results he will have to erase from his notes so that the largest and the smallest of the remaining results of the measurements differed in no more than two times.
|
The first line contains integer *n* (2<=≤<=*n*<=≤<=105) — the number of measurements Vasya made. The second line contains *n* integers *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=5000) — the results of the measurements. The numbers on the second line are separated by single spaces.
|
Print a single integer — the minimum number of results Vasya will have to remove.
|
[
"6\n4 5 3 8 3 7\n",
"4\n4 3 2 4\n"
] |
[
"2\n",
"0\n"
] |
In the first sample you can remove the fourth and the sixth measurement results (values 8 and 7). Then the maximum of the remaining values will be 5, and the minimum one will be 3. Or else, you can remove the third and fifth results (both equal 3). After that the largest remaining result will be 8, and the smallest one will be 4.
| 1,000
|
[
{
"input": "6\n4 5 3 8 3 7",
"output": "2"
},
{
"input": "4\n4 3 2 4",
"output": "0"
},
{
"input": "6\n5 6 4 9 4 8",
"output": "1"
},
{
"input": "4\n5 4 1 5",
"output": "1"
},
{
"input": "2\n3 2",
"output": "0"
},
{
"input": "10\n39 9 18 13 6 16 47 15 1 24",
"output": "5"
},
{
"input": "20\n43 49 46 46 40 41 49 49 48 30 35 36 33 34 42 38 40 46 50 45",
"output": "0"
},
{
"input": "30\n6 1 26 13 16 30 16 23 9 1 5 14 7 2 17 22 21 23 16 3 5 17 22 10 1 24 4 30 8 18",
"output": "15"
},
{
"input": "50\n3 61 16 13 13 12 3 8 14 16 1 32 8 23 29 7 28 13 8 5 9 2 3 2 29 13 1 2 18 29 28 4 13 3 14 9 20 26 1 19 13 7 8 22 7 5 13 14 10 23",
"output": "29"
},
{
"input": "10\n135 188 160 167 179 192 195 192 193 191",
"output": "0"
},
{
"input": "15\n2 19 19 22 15 24 6 36 20 3 18 27 20 1 10",
"output": "6"
},
{
"input": "25\n8 1 2 1 2 5 3 4 2 6 3 3 4 1 6 1 6 1 4 5 2 9 1 2 1",
"output": "13"
},
{
"input": "40\n4784 4824 4707 4343 4376 4585 4917 4848 3748 4554 3390 4944 4845 3922 4617 4606 4815 4698 4595 4942 4327 4983 4833 4507 3721 4863 4633 4553 4991 4922 4733 4396 4747 4724 4886 4226 4025 4928 4990 4792",
"output": "0"
},
{
"input": "60\n1219 19 647 1321 21 242 677 901 10 165 434 978 448 163 919 517 1085 10 516 920 653 1363 62 98 629 928 998 1335 1448 85 357 432 1298 561 663 182 2095 801 59 208 765 1653 642 645 1378 221 911 749 347 849 43 1804 62 73 613 143 860 297 278 148",
"output": "37"
},
{
"input": "100\n4204 4719 4688 3104 4012 4927 4696 4614 4826 4792 3891 4672 4914 4740 4968 3879 4424 4755 3856 3837 4965 4939 4030 4941 4504 4668 4908 4608 3660 4822 4846 3945 4539 4819 4895 3746 4324 4233 4135 4956 4983 4546 4673 4617 3533 4851 4868 4838 4998 4769 4899 4578 3841 4974 4627 4990 4524 4939 4469 4233 4434 4339 4446 4979 4354 4912 4558 4609 4436 3883 4379 4927 4824 4819 4984 4660 4874 3732 4853 4268 4761 4402 4642 4577 4635 4564 4113 4896 4943 4122 4413 4597 3768 4731 4669 4958 4548 4263 4657 3651",
"output": "0"
},
{
"input": "100\n1354 1797 588 3046 1290 745 217 907 113 381 523 935 791 415 92 1597 1739 1774 240 27 1262 2498 52 1339 1031 1355 2036 230 489 7 69 877 530 2664 1230 940 2712 2651 3410 480 332 699 957 2257 1877 1940 452 1652 1216 3144 236 165 1109 888 1649 346 24 183 1061 1226 2694 3225 2021 1145 907 1671 1599 3395 942 1959 555 1281 675 1125 1386 732 1081 326 256 26 1009 1772 2687 1173 491 709 390 992 519 203 1029 1381 846 1515 705 2859 282 147 1824 299",
"output": "63"
},
{
"input": "100\n2794 2201 4935 564 2876 4472 4196 2571 2260 1479 1451 3497 245 2805 4834 3872 4294 1299 937 2983 1458 3278 1098 2990 4447 4337 4388 947 3708 3382 3694 4562 3827 2312 3760 1181 2830 1256 1054 1583 2094 931 86 2526 998 3420 2248 3461 3662 1715 5 4123 1051 545 3704 1084 1916 695 794 121 1000 1611 3674 1910 4795 2805 825 2392 3551 1148 3738 4650 791 288 1064 2011 2991 2116 2179 3333 1303 498 1610 3092 1935 3450 3524 2624 1596 2801 2290 2297 2327 1602 4779 3135 1231 4203 3283 3580",
"output": "51"
},
{
"input": "2\n1 5",
"output": "1"
}
] | 1,620,463,658
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 9
| 1,000
| 13,107,200
|
# open file
fp = open('input.txt','r')
# read first line
line = fp.readline().strip()
line = fp.readline().strip()
data = [int(w) for w in line.split()]
fp.close()
data.sort()
max_value = 0
for i in range(len(data)):
for j in range(len(data) - 1, i - 1, -1):
if 2 * data[i] >= data[j]:
if max_value < j - i + 1:
max_value = j - i + 1
break
# write output
out = open('output.txt','w')
print(len(data) - max_value, file=out)
out.close()
|
Title: Physics Practical
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Vasya was on a physics practical, performing the task on measuring the capacitance. He followed the teacher's advice and did as much as *n* measurements, and recorded the results in the notebook. After that he was about to show the results to the teacher, but he remembered that at the last lesson, the teacher had made his friend Petya redo the experiment because the largest and the smallest results differed by more than two times. Vasya is lazy, and he does not want to redo the experiment. He wants to do the task and go home play computer games. So he decided to cheat: before Vasya shows the measurements to the teacher, he will erase some of them, so as to make the largest and the smallest results of the remaining measurements differ in no more than two times. In other words, if the remaining measurements have the smallest result *x*, and the largest result *y*, then the inequality *y*<=≤<=2·*x* must fulfill. Of course, to avoid the teacher's suspicion, Vasya wants to remove as few measurement results as possible from his notes.
Help Vasya, find what minimum number of measurement results he will have to erase from his notes so that the largest and the smallest of the remaining results of the measurements differed in no more than two times.
Input Specification:
The first line contains integer *n* (2<=≤<=*n*<=≤<=105) — the number of measurements Vasya made. The second line contains *n* integers *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=5000) — the results of the measurements. The numbers on the second line are separated by single spaces.
Output Specification:
Print a single integer — the minimum number of results Vasya will have to remove.
Demo Input:
['6\n4 5 3 8 3 7\n', '4\n4 3 2 4\n']
Demo Output:
['2\n', '0\n']
Note:
In the first sample you can remove the fourth and the sixth measurement results (values 8 and 7). Then the maximum of the remaining values will be 5, and the minimum one will be 3. Or else, you can remove the third and fifth results (both equal 3). After that the largest remaining result will be 8, and the smallest one will be 4.
|
```python
# open file
fp = open('input.txt','r')
# read first line
line = fp.readline().strip()
line = fp.readline().strip()
data = [int(w) for w in line.split()]
fp.close()
data.sort()
max_value = 0
for i in range(len(data)):
for j in range(len(data) - 1, i - 1, -1):
if 2 * data[i] >= data[j]:
if max_value < j - i + 1:
max_value = j - i + 1
break
# write output
out = open('output.txt','w')
print(len(data) - max_value, file=out)
out.close()
```
| 0
|
|
535
|
B
|
Tavas and SaDDas
|
PROGRAMMING
| 1,100
|
[
"bitmasks",
"brute force",
"combinatorics",
"implementation"
] | null | null |
Once again Tavas started eating coffee mix without water! Keione told him that it smells awful, but he didn't stop doing that. That's why Keione told his smart friend, SaDDas to punish him! SaDDas took Tavas' headphones and told him: "If you solve the following problem, I'll return it to you."
The problem is:
You are given a lucky number *n*. Lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
If we sort all lucky numbers in increasing order, what's the 1-based index of *n*?
Tavas is not as smart as SaDDas, so he asked you to do him a favor and solve this problem so he can have his headphones back.
|
The first and only line of input contains a lucky number *n* (1<=≤<=*n*<=≤<=109).
|
Print the index of *n* among all lucky numbers.
|
[
"4\n",
"7\n",
"77\n"
] |
[
"1\n",
"2\n",
"6\n"
] |
none
| 1,000
|
[
{
"input": "4",
"output": "1"
},
{
"input": "7",
"output": "2"
},
{
"input": "77",
"output": "6"
},
{
"input": "4",
"output": "1"
},
{
"input": "474744",
"output": "83"
},
{
"input": "777774",
"output": "125"
},
{
"input": "447",
"output": "8"
},
{
"input": "774",
"output": "13"
},
{
"input": "4",
"output": "1"
},
{
"input": "4447747",
"output": "140"
},
{
"input": "7747474",
"output": "233"
},
{
"input": "4444",
"output": "15"
},
{
"input": "4447",
"output": "16"
},
{
"input": "7",
"output": "2"
},
{
"input": "4",
"output": "1"
},
{
"input": "4447744",
"output": "139"
},
{
"input": "77474",
"output": "57"
},
{
"input": "7747",
"output": "28"
},
{
"input": "444",
"output": "7"
},
{
"input": "7",
"output": "2"
},
{
"input": "7774477",
"output": "242"
},
{
"input": "4477774",
"output": "157"
},
{
"input": "7444",
"output": "23"
},
{
"input": "7474747",
"output": "212"
},
{
"input": "77",
"output": "6"
},
{
"input": "774477",
"output": "114"
},
{
"input": "7",
"output": "2"
},
{
"input": "47",
"output": "4"
},
{
"input": "747777",
"output": "110"
},
{
"input": "444444444",
"output": "511"
},
{
"input": "777777777",
"output": "1022"
},
{
"input": "477477447",
"output": "728"
},
{
"input": "777744747",
"output": "996"
}
] | 1,577,981,144
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 33
| 155
| 0
|
n = "7"+input()
n = n.replace("4", "0").replace("7", "1")
print(int(n, 2) - 1)
|
Title: Tavas and SaDDas
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Once again Tavas started eating coffee mix without water! Keione told him that it smells awful, but he didn't stop doing that. That's why Keione told his smart friend, SaDDas to punish him! SaDDas took Tavas' headphones and told him: "If you solve the following problem, I'll return it to you."
The problem is:
You are given a lucky number *n*. Lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
If we sort all lucky numbers in increasing order, what's the 1-based index of *n*?
Tavas is not as smart as SaDDas, so he asked you to do him a favor and solve this problem so he can have his headphones back.
Input Specification:
The first and only line of input contains a lucky number *n* (1<=≤<=*n*<=≤<=109).
Output Specification:
Print the index of *n* among all lucky numbers.
Demo Input:
['4\n', '7\n', '77\n']
Demo Output:
['1\n', '2\n', '6\n']
Note:
none
|
```python
n = "7"+input()
n = n.replace("4", "0").replace("7", "1")
print(int(n, 2) - 1)
```
| 3
|
|
99
|
A
|
Help Far Away Kingdom
|
PROGRAMMING
| 800
|
[
"strings"
] |
A. Help Far Away Kingdom
|
2
|
256
|
In a far away kingdom lived the King, the Prince, the Shoemaker, the Dressmaker and many other citizens. They lived happily until great trouble came into the Kingdom. The ACMers settled there.
Most damage those strange creatures inflicted upon the kingdom was that they loved high precision numbers. As a result, the Kingdom healers had already had three appointments with the merchants who were asked to sell, say, exactly 0.273549107 beer barrels. To deal with the problem somehow, the King issued an order obliging rounding up all numbers to the closest integer to simplify calculations. Specifically, the order went like this:
- If a number's integer part does not end with digit 9 and its fractional part is strictly less than 0.5, then the rounded up number coincides with the number’s integer part. - If a number's integer part does not end with digit 9 and its fractional part is not less than 0.5, the rounded up number is obtained if we add 1 to the last digit of the number’s integer part.- If the number’s integer part ends with digit 9, to round up the numbers one should go to Vasilisa the Wise. In the whole Kingdom she is the only one who can perform the tricky operation of carrying into the next position.
Merchants found the algorithm very sophisticated and they asked you (the ACMers) to help them. Can you write a program that would perform the rounding according to the King’s order?
|
The first line contains a single number to round up — the integer part (a non-empty set of decimal digits that do not start with 0 — with the exception of a case when the set consists of a single digit — in this case 0 can go first), then follows character «.» (a dot), and then follows the fractional part (any non-empty set of decimal digits). The number's length does not exceed 1000 characters, including the dot. There are no other characters in the input data.
|
If the last number of the integer part is not equal to 9, print the rounded-up number without leading zeroes. Otherwise, print the message "GOTO Vasilisa." (without the quotes).
|
[
"0.0\n",
"1.49\n",
"1.50\n",
"2.71828182845904523536\n",
"3.14159265358979323846\n",
"12345678901234567890.1\n",
"123456789123456789.999\n"
] |
[
"0",
"1",
"2",
"3",
"3",
"12345678901234567890",
"GOTO Vasilisa."
] |
none
| 500
|
[
{
"input": "0.0",
"output": "0"
},
{
"input": "1.49",
"output": "1"
},
{
"input": "1.50",
"output": "2"
},
{
"input": "2.71828182845904523536",
"output": "3"
},
{
"input": "3.14159265358979323846",
"output": "3"
},
{
"input": "12345678901234567890.1",
"output": "12345678901234567890"
},
{
"input": "123456789123456789.999",
"output": "GOTO Vasilisa."
},
{
"input": "12345678901234567890.9",
"output": "12345678901234567891"
},
{
"input": "123456789123456788.999",
"output": "123456789123456789"
},
{
"input": "9.000",
"output": "GOTO Vasilisa."
},
{
"input": "0.1",
"output": "0"
},
{
"input": "0.2",
"output": "0"
},
{
"input": "0.3",
"output": "0"
},
{
"input": "0.4",
"output": "0"
},
{
"input": "0.5",
"output": "1"
},
{
"input": "0.6",
"output": "1"
},
{
"input": "0.7",
"output": "1"
},
{
"input": "0.8",
"output": "1"
},
{
"input": "0.9",
"output": "1"
},
{
"input": "1.0",
"output": "1"
},
{
"input": "1.1",
"output": "1"
},
{
"input": "1.2",
"output": "1"
},
{
"input": "1.3",
"output": "1"
},
{
"input": "1.4",
"output": "1"
},
{
"input": "1.5",
"output": "2"
},
{
"input": "1.6",
"output": "2"
},
{
"input": "1.7",
"output": "2"
},
{
"input": "1.8",
"output": "2"
},
{
"input": "1.9",
"output": "2"
},
{
"input": "2.0",
"output": "2"
},
{
"input": "2.1",
"output": "2"
},
{
"input": "2.2",
"output": "2"
},
{
"input": "2.3",
"output": "2"
},
{
"input": "2.4",
"output": "2"
},
{
"input": "2.5",
"output": "3"
},
{
"input": "2.6",
"output": "3"
},
{
"input": "2.7",
"output": "3"
},
{
"input": "2.8",
"output": "3"
},
{
"input": "2.9",
"output": "3"
},
{
"input": "3.0",
"output": "3"
},
{
"input": "3.1",
"output": "3"
},
{
"input": "3.2",
"output": "3"
},
{
"input": "3.3",
"output": "3"
},
{
"input": "3.4",
"output": "3"
},
{
"input": "3.5",
"output": "4"
},
{
"input": "3.6",
"output": "4"
},
{
"input": "3.7",
"output": "4"
},
{
"input": "3.8",
"output": "4"
},
{
"input": "3.9",
"output": "4"
},
{
"input": "4.0",
"output": "4"
},
{
"input": "4.1",
"output": "4"
},
{
"input": "4.2",
"output": "4"
},
{
"input": "4.3",
"output": "4"
},
{
"input": "4.4",
"output": "4"
},
{
"input": "4.5",
"output": "5"
},
{
"input": "4.6",
"output": "5"
},
{
"input": "4.7",
"output": "5"
},
{
"input": "4.8",
"output": "5"
},
{
"input": "4.9",
"output": "5"
},
{
"input": "5.0",
"output": "5"
},
{
"input": "5.1",
"output": "5"
},
{
"input": "5.2",
"output": "5"
},
{
"input": "5.3",
"output": "5"
},
{
"input": "5.4",
"output": "5"
},
{
"input": "5.5",
"output": "6"
},
{
"input": "5.6",
"output": "6"
},
{
"input": "5.7",
"output": "6"
},
{
"input": "5.8",
"output": "6"
},
{
"input": "5.9",
"output": "6"
},
{
"input": "6.0",
"output": "6"
},
{
"input": "6.1",
"output": "6"
},
{
"input": "6.2",
"output": "6"
},
{
"input": "6.3",
"output": "6"
},
{
"input": "6.4",
"output": "6"
},
{
"input": "6.5",
"output": "7"
},
{
"input": "6.6",
"output": "7"
},
{
"input": "6.7",
"output": "7"
},
{
"input": "6.8",
"output": "7"
},
{
"input": "6.9",
"output": "7"
},
{
"input": "7.0",
"output": "7"
},
{
"input": "7.1",
"output": "7"
},
{
"input": "7.2",
"output": "7"
},
{
"input": "7.3",
"output": "7"
},
{
"input": "7.4",
"output": "7"
},
{
"input": "7.5",
"output": "8"
},
{
"input": "7.6",
"output": "8"
},
{
"input": "7.7",
"output": "8"
},
{
"input": "7.8",
"output": "8"
},
{
"input": "7.9",
"output": "8"
},
{
"input": "8.0",
"output": "8"
},
{
"input": "8.1",
"output": "8"
},
{
"input": "8.2",
"output": "8"
},
{
"input": "8.3",
"output": "8"
},
{
"input": "8.4",
"output": "8"
},
{
"input": "8.5",
"output": "9"
},
{
"input": "8.6",
"output": "9"
},
{
"input": "8.7",
"output": "9"
},
{
"input": "8.8",
"output": "9"
},
{
"input": "8.9",
"output": "9"
},
{
"input": "9.0",
"output": "GOTO Vasilisa."
},
{
"input": "9.1",
"output": "GOTO Vasilisa."
},
{
"input": "9.2",
"output": "GOTO Vasilisa."
},
{
"input": "9.3",
"output": "GOTO Vasilisa."
},
{
"input": "9.4",
"output": "GOTO Vasilisa."
},
{
"input": "9.5",
"output": "GOTO Vasilisa."
},
{
"input": "9.6",
"output": "GOTO Vasilisa."
},
{
"input": "9.7",
"output": "GOTO Vasilisa."
},
{
"input": "9.8",
"output": "GOTO Vasilisa."
},
{
"input": "9.9",
"output": "GOTO Vasilisa."
},
{
"input": "609942239104813108618306232517836377583566292129955473517174437591594761209877970062547641606473593416245554763832875919009472288995880898848455284062760160557686724163817329189799336769669146848904803188614226720978399787805489531837751080926098.1664915772983166314490532653577560222779830866949001942720729759794777105570672781798092416748052690224813237139640723361527601154465287615917169132637313918577673651098507390501962",
"output": "609942239104813108618306232517836377583566292129955473517174437591594761209877970062547641606473593416245554763832875919009472288995880898848455284062760160557686724163817329189799336769669146848904803188614226720978399787805489531837751080926098"
},
{
"input": "7002108534951820589946967018226114921984364117669853212254634761258884835434844673935047882480101006606512119541798298905598015607366335061012709906661245805358900665571472645463994925687210711492820804158354236327017974683658305043146543214454877759341394.20211856263503281388748282682120712214711232598021393495443628276945042110862480888110959179019986486690931930108026302665438087068150666835901617457150158918705186964935221768346957536540345814875615118637945520917367155931078965",
"output": "7002108534951820589946967018226114921984364117669853212254634761258884835434844673935047882480101006606512119541798298905598015607366335061012709906661245805358900665571472645463994925687210711492820804158354236327017974683658305043146543214454877759341394"
},
{
"input": "1950583094879039694852660558765931995628486712128191844305265555887022812284005463780616067.5000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "1950583094879039694852660558765931995628486712128191844305265555887022812284005463780616068"
},
{
"input": "718130341896330596635811874410345440628950330.500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "718130341896330596635811874410345440628950331"
},
{
"input": "927925904158088313481229162503626281882161630091489367140850985555900173018122871746924067186432044676083646964286435457446768031295712712803570690846298544912543439221596866052681116386179629036945370280722.500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "927925904158088313481229162503626281882161630091489367140850985555900173018122871746924067186432044676083646964286435457446768031295712712803570690846298544912543439221596866052681116386179629036945370280723"
},
{
"input": "68289614863244584294178637364598054554769889.500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "GOTO Vasilisa."
},
{
"input": "7536521504744364134984603189602839063535643888645969434165019366202558753840519.4999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999",
"output": "GOTO Vasilisa."
},
{
"input": "646188694587964249318078225173.5000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "646188694587964249318078225174"
},
{
"input": "7017472758334494297677068672222822550374695787171163207025095950296957261530.50",
"output": "7017472758334494297677068672222822550374695787171163207025095950296957261531"
},
{
"input": "259085737066615534998640212505663524594409165063310128108448186246980628179842202905722595400477937071746695941939306735605849342959111887834258250883469840846714848774368.50000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "259085737066615534998640212505663524594409165063310128108448186246980628179842202905722595400477937071746695941939306735605849342959111887834258250883469840846714848774369"
},
{
"input": "682500858233333594535201113441004740771119672961581796618069185960107115823662126812159957094407454522028503739299.5000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "GOTO Vasilisa."
},
{
"input": "41203422675619090661099806687619.49999999999999999999999999999999999999999999999999999999999999999999999999999999999999999",
"output": "GOTO Vasilisa."
}
] | 1,600,171,935
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 6
| 280
| 0
|
n=input()
ss=n
s=ss.split('.')
d=(s[0][-1])+'.'+s[1]
d=float(d)
f=round(d)
s[0]=s[0].replace(s[0][-1],str(f))
print(int(s[0]))
|
Title: Help Far Away Kingdom
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
In a far away kingdom lived the King, the Prince, the Shoemaker, the Dressmaker and many other citizens. They lived happily until great trouble came into the Kingdom. The ACMers settled there.
Most damage those strange creatures inflicted upon the kingdom was that they loved high precision numbers. As a result, the Kingdom healers had already had three appointments with the merchants who were asked to sell, say, exactly 0.273549107 beer barrels. To deal with the problem somehow, the King issued an order obliging rounding up all numbers to the closest integer to simplify calculations. Specifically, the order went like this:
- If a number's integer part does not end with digit 9 and its fractional part is strictly less than 0.5, then the rounded up number coincides with the number’s integer part. - If a number's integer part does not end with digit 9 and its fractional part is not less than 0.5, the rounded up number is obtained if we add 1 to the last digit of the number’s integer part.- If the number’s integer part ends with digit 9, to round up the numbers one should go to Vasilisa the Wise. In the whole Kingdom she is the only one who can perform the tricky operation of carrying into the next position.
Merchants found the algorithm very sophisticated and they asked you (the ACMers) to help them. Can you write a program that would perform the rounding according to the King’s order?
Input Specification:
The first line contains a single number to round up — the integer part (a non-empty set of decimal digits that do not start with 0 — with the exception of a case when the set consists of a single digit — in this case 0 can go first), then follows character «.» (a dot), and then follows the fractional part (any non-empty set of decimal digits). The number's length does not exceed 1000 characters, including the dot. There are no other characters in the input data.
Output Specification:
If the last number of the integer part is not equal to 9, print the rounded-up number without leading zeroes. Otherwise, print the message "GOTO Vasilisa." (without the quotes).
Demo Input:
['0.0\n', '1.49\n', '1.50\n', '2.71828182845904523536\n', '3.14159265358979323846\n', '12345678901234567890.1\n', '123456789123456789.999\n']
Demo Output:
['0', '1', '2', '3', '3', '12345678901234567890', 'GOTO Vasilisa.']
Note:
none
|
```python
n=input()
ss=n
s=ss.split('.')
d=(s[0][-1])+'.'+s[1]
d=float(d)
f=round(d)
s[0]=s[0].replace(s[0][-1],str(f))
print(int(s[0]))
```
| 0
|
851
|
A
|
Arpa and a research in Mexican wave
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
Arpa is researching the Mexican wave.
There are *n* spectators in the stadium, labeled from 1 to *n*. They start the Mexican wave at time 0.
- At time 1, the first spectator stands. - At time 2, the second spectator stands. - ... - At time *k*, the *k*-th spectator stands. - At time *k*<=+<=1, the (*k*<=+<=1)-th spectator stands and the first spectator sits. - At time *k*<=+<=2, the (*k*<=+<=2)-th spectator stands and the second spectator sits. - ... - At time *n*, the *n*-th spectator stands and the (*n*<=-<=*k*)-th spectator sits. - At time *n*<=+<=1, the (*n*<=+<=1<=-<=*k*)-th spectator sits. - ... - At time *n*<=+<=*k*, the *n*-th spectator sits.
Arpa wants to know how many spectators are standing at time *t*.
|
The first line contains three integers *n*, *k*, *t* (1<=≤<=*n*<=≤<=109, 1<=≤<=*k*<=≤<=*n*, 1<=≤<=*t*<=<<=*n*<=+<=*k*).
|
Print single integer: how many spectators are standing at time *t*.
|
[
"10 5 3\n",
"10 5 7\n",
"10 5 12\n"
] |
[
"3\n",
"5\n",
"3\n"
] |
In the following a sitting spectator is represented as -, a standing spectator is represented as ^.
- At *t* = 0 ---------- <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 0. - At *t* = 1 ^--------- <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 1. - At *t* = 2 ^^-------- <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 2. - At *t* = 3 ^^^------- <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 3. - At *t* = 4 ^^^^------ <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 4. - At *t* = 5 ^^^^^----- <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 5. - At *t* = 6 -^^^^^---- <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 5. - At *t* = 7 --^^^^^--- <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 5. - At *t* = 8 ---^^^^^-- <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 5. - At *t* = 9 ----^^^^^- <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 5. - At *t* = 10 -----^^^^^ <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 5. - At *t* = 11 ------^^^^ <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 4. - At *t* = 12 -------^^^ <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 3. - At *t* = 13 --------^^ <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 2. - At *t* = 14 ---------^ <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 1. - At *t* = 15 ---------- <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 0.
| 500
|
[
{
"input": "10 5 3",
"output": "3"
},
{
"input": "10 5 7",
"output": "5"
},
{
"input": "10 5 12",
"output": "3"
},
{
"input": "840585600 770678331 788528791",
"output": "770678331"
},
{
"input": "25462281 23343504 8024619",
"output": "8024619"
},
{
"input": "723717988 205757169 291917494",
"output": "205757169"
},
{
"input": "27462087 20831796 15492397",
"output": "15492397"
},
{
"input": "966696824 346707476 1196846860",
"output": "116557440"
},
{
"input": "290274403 41153108 327683325",
"output": "3744186"
},
{
"input": "170963478 151220598 222269210",
"output": "99914866"
},
{
"input": "14264008 309456 11132789",
"output": "309456"
},
{
"input": "886869816 281212106 52891064",
"output": "52891064"
},
{
"input": "330543750 243917820 205522400",
"output": "205522400"
},
{
"input": "457658451 18625039 157624558",
"output": "18625039"
},
{
"input": "385908940 143313325 509731380",
"output": "19490885"
},
{
"input": "241227633 220621961 10025257",
"output": "10025257"
},
{
"input": "474139818 268918981 388282504",
"output": "268918981"
},
{
"input": "25963410 3071034 820199",
"output": "820199"
},
{
"input": "656346757 647995766 75748423",
"output": "75748423"
},
{
"input": "588568132 411878522 521753621",
"output": "411878522"
},
{
"input": "735788762 355228487 139602545",
"output": "139602545"
},
{
"input": "860798593 463398487 506871376",
"output": "463398487"
},
{
"input": "362624055 110824996 194551217",
"output": "110824996"
},
{
"input": "211691721 195866131 313244576",
"output": "94313276"
},
{
"input": "45661815 26072719 9643822",
"output": "9643822"
},
{
"input": "757183104 590795077 709609355",
"output": "590795077"
},
{
"input": "418386749 1915035 197248338",
"output": "1915035"
},
{
"input": "763782282 297277890 246562421",
"output": "246562421"
},
{
"input": "893323188 617630677 607049638",
"output": "607049638"
},
{
"input": "506708261 356545583 296093684",
"output": "296093684"
},
{
"input": "984295813 427551190 84113823",
"output": "84113823"
},
{
"input": "774984967 61373612 96603505",
"output": "61373612"
},
{
"input": "774578969 342441237 91492393",
"output": "91492393"
},
{
"input": "76495801 8780305 56447339",
"output": "8780305"
},
{
"input": "48538385 582843 16805978",
"output": "582843"
},
{
"input": "325794610 238970909 553089099",
"output": "11676420"
},
{
"input": "834925315 316928679 711068031",
"output": "316928679"
},
{
"input": "932182199 454838315 267066713",
"output": "267066713"
},
{
"input": "627793782 552043394 67061810",
"output": "67061810"
},
{
"input": "24317170 17881607 218412",
"output": "218412"
},
{
"input": "1000000000 1000 1",
"output": "1"
},
{
"input": "1000000000 1000 2",
"output": "2"
},
{
"input": "1000000000 1 1000",
"output": "1"
},
{
"input": "100 100 100",
"output": "100"
},
{
"input": "100 100 99",
"output": "99"
},
{
"input": "100 100 101",
"output": "99"
},
{
"input": "100 100 199",
"output": "1"
},
{
"input": "1000000000 1000000000 1999999999",
"output": "1"
},
{
"input": "10 5 5",
"output": "5"
},
{
"input": "5 3 5",
"output": "3"
},
{
"input": "10 3 3",
"output": "3"
},
{
"input": "10 5 6",
"output": "5"
},
{
"input": "3 2 4",
"output": "1"
},
{
"input": "10 5 14",
"output": "1"
},
{
"input": "6 1 4",
"output": "1"
},
{
"input": "10 10 19",
"output": "1"
},
{
"input": "10 4 11",
"output": "3"
},
{
"input": "2 2 3",
"output": "1"
},
{
"input": "10 5 11",
"output": "4"
},
{
"input": "600 200 700",
"output": "100"
},
{
"input": "2000 1000 2001",
"output": "999"
},
{
"input": "1000 1000 1001",
"output": "999"
},
{
"input": "5 4 6",
"output": "3"
},
{
"input": "2 1 2",
"output": "1"
},
{
"input": "10 3 10",
"output": "3"
},
{
"input": "15 10 10",
"output": "10"
},
{
"input": "10 5 13",
"output": "2"
},
{
"input": "2 2 2",
"output": "2"
},
{
"input": "5 5 6",
"output": "4"
},
{
"input": "10 6 12",
"output": "4"
},
{
"input": "7 5 8",
"output": "4"
},
{
"input": "10 4 9",
"output": "4"
},
{
"input": "9 2 6",
"output": "2"
},
{
"input": "5 2 6",
"output": "1"
},
{
"input": "6 2 6",
"output": "2"
},
{
"input": "5 5 8",
"output": "2"
},
{
"input": "3 3 5",
"output": "1"
},
{
"input": "10 2 5",
"output": "2"
},
{
"input": "5 3 7",
"output": "1"
},
{
"input": "5 4 8",
"output": "1"
},
{
"input": "10 6 11",
"output": "5"
},
{
"input": "5 3 6",
"output": "2"
},
{
"input": "10 6 14",
"output": "2"
},
{
"input": "10 10 10",
"output": "10"
},
{
"input": "1000000000 1 1000000000",
"output": "1"
},
{
"input": "20 4 22",
"output": "2"
},
{
"input": "5 4 4",
"output": "4"
},
{
"input": "4 3 6",
"output": "1"
},
{
"input": "12 8 18",
"output": "2"
},
{
"input": "10 5 10",
"output": "5"
},
{
"input": "100 50 149",
"output": "1"
},
{
"input": "4 4 4",
"output": "4"
},
{
"input": "7 6 9",
"output": "4"
},
{
"input": "16 10 21",
"output": "5"
},
{
"input": "10 2 11",
"output": "1"
},
{
"input": "600 200 500",
"output": "200"
},
{
"input": "100 30 102",
"output": "28"
},
{
"input": "10 10 18",
"output": "2"
},
{
"input": "15 3 10",
"output": "3"
},
{
"input": "1000000000 1000000000 1000000000",
"output": "1000000000"
},
{
"input": "5 5 5",
"output": "5"
},
{
"input": "10 3 12",
"output": "1"
},
{
"input": "747 457 789",
"output": "415"
},
{
"input": "5 4 7",
"output": "2"
},
{
"input": "15 5 11",
"output": "5"
},
{
"input": "3 2 2",
"output": "2"
},
{
"input": "7 6 8",
"output": "5"
},
{
"input": "7 4 8",
"output": "3"
},
{
"input": "10 4 13",
"output": "1"
},
{
"input": "10 3 9",
"output": "3"
},
{
"input": "20 2 21",
"output": "1"
},
{
"input": "6 5 9",
"output": "2"
},
{
"input": "10 9 18",
"output": "1"
},
{
"input": "12 4 9",
"output": "4"
},
{
"input": "10 7 15",
"output": "2"
},
{
"input": "999999999 999999998 1500000000",
"output": "499999997"
},
{
"input": "20 5 20",
"output": "5"
},
{
"input": "4745 4574 4757",
"output": "4562"
},
{
"input": "10 7 12",
"output": "5"
},
{
"input": "17 15 18",
"output": "14"
},
{
"input": "3 1 3",
"output": "1"
},
{
"input": "100 3 7",
"output": "3"
},
{
"input": "6 2 7",
"output": "1"
},
{
"input": "8 5 10",
"output": "3"
},
{
"input": "3 3 3",
"output": "3"
},
{
"input": "9 5 10",
"output": "4"
},
{
"input": "10 6 13",
"output": "3"
},
{
"input": "13 10 14",
"output": "9"
},
{
"input": "13 12 15",
"output": "10"
},
{
"input": "10 4 12",
"output": "2"
},
{
"input": "41 3 3",
"output": "3"
},
{
"input": "1000000000 1000000000 1400000000",
"output": "600000000"
},
{
"input": "10 3 11",
"output": "2"
},
{
"input": "12 7 18",
"output": "1"
},
{
"input": "15 3 17",
"output": "1"
},
{
"input": "10 2 8",
"output": "2"
},
{
"input": "1000000000 1000 1000000999",
"output": "1"
},
{
"input": "5 5 9",
"output": "1"
},
{
"input": "100 3 6",
"output": "3"
},
{
"input": "100 5 50",
"output": "5"
},
{
"input": "10000 10 10000",
"output": "10"
},
{
"input": "1 1 1",
"output": "1"
},
{
"input": "6 4 4",
"output": "4"
},
{
"input": "9979797 555554 10101010",
"output": "434341"
},
{
"input": "13 5 12",
"output": "5"
},
{
"input": "9 4 10",
"output": "3"
},
{
"input": "7 5 10",
"output": "2"
},
{
"input": "100000000 10000000 100005000",
"output": "9995000"
},
{
"input": "100000 50000 100001",
"output": "49999"
},
{
"input": "15 10 20",
"output": "5"
},
{
"input": "4 4 5",
"output": "3"
},
{
"input": "5 3 3",
"output": "3"
},
{
"input": "30 5 30",
"output": "5"
},
{
"input": "200000 10 200005",
"output": "5"
},
{
"input": "10 9 12",
"output": "7"
},
{
"input": "10 6 15",
"output": "1"
},
{
"input": "1000000000 10 1000000000",
"output": "10"
},
{
"input": "7 5 11",
"output": "1"
},
{
"input": "9 4 4",
"output": "4"
},
{
"input": "14 3 15",
"output": "2"
},
{
"input": "1000000000 100000000 1000000000",
"output": "100000000"
},
{
"input": "40 10 22",
"output": "10"
},
{
"input": "50 10 51",
"output": "9"
},
{
"input": "999999997 999999995 1999999991",
"output": "1"
},
{
"input": "92 79 144",
"output": "27"
},
{
"input": "8 4 4",
"output": "4"
}
] | 1,504,554,119
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 166
| 62
| 0
|
n,k,t=map(int,input().split())
if t<=k:
print(t)
elif t >= k+1 and t<=n:
print(k)
else:
u= t -n
print( k -u )
|
Title: Arpa and a research in Mexican wave
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Arpa is researching the Mexican wave.
There are *n* spectators in the stadium, labeled from 1 to *n*. They start the Mexican wave at time 0.
- At time 1, the first spectator stands. - At time 2, the second spectator stands. - ... - At time *k*, the *k*-th spectator stands. - At time *k*<=+<=1, the (*k*<=+<=1)-th spectator stands and the first spectator sits. - At time *k*<=+<=2, the (*k*<=+<=2)-th spectator stands and the second spectator sits. - ... - At time *n*, the *n*-th spectator stands and the (*n*<=-<=*k*)-th spectator sits. - At time *n*<=+<=1, the (*n*<=+<=1<=-<=*k*)-th spectator sits. - ... - At time *n*<=+<=*k*, the *n*-th spectator sits.
Arpa wants to know how many spectators are standing at time *t*.
Input Specification:
The first line contains three integers *n*, *k*, *t* (1<=≤<=*n*<=≤<=109, 1<=≤<=*k*<=≤<=*n*, 1<=≤<=*t*<=<<=*n*<=+<=*k*).
Output Specification:
Print single integer: how many spectators are standing at time *t*.
Demo Input:
['10 5 3\n', '10 5 7\n', '10 5 12\n']
Demo Output:
['3\n', '5\n', '3\n']
Note:
In the following a sitting spectator is represented as -, a standing spectator is represented as ^.
- At *t* = 0 ---------- <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 0. - At *t* = 1 ^--------- <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 1. - At *t* = 2 ^^-------- <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 2. - At *t* = 3 ^^^------- <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 3. - At *t* = 4 ^^^^------ <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 4. - At *t* = 5 ^^^^^----- <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 5. - At *t* = 6 -^^^^^---- <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 5. - At *t* = 7 --^^^^^--- <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 5. - At *t* = 8 ---^^^^^-- <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 5. - At *t* = 9 ----^^^^^- <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 5. - At *t* = 10 -----^^^^^ <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 5. - At *t* = 11 ------^^^^ <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 4. - At *t* = 12 -------^^^ <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 3. - At *t* = 13 --------^^ <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 2. - At *t* = 14 ---------^ <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 1. - At *t* = 15 ---------- <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4d97e684117250a9afe9be022ab8a63653dd15aa.png" style="max-width: 100.0%;max-height: 100.0%;"/> number of standing spectators = 0.
|
```python
n,k,t=map(int,input().split())
if t<=k:
print(t)
elif t >= k+1 and t<=n:
print(k)
else:
u= t -n
print( k -u )
```
| 3
|
|
724
|
A
|
Checking the Calendar
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
You are given names of two days of the week.
Please, determine whether it is possible that during some non-leap year the first day of some month was equal to the first day of the week you are given, while the first day of the next month was equal to the second day of the week you are given. Both months should belong to one year.
In this problem, we consider the Gregorian calendar to be used. The number of months in this calendar is equal to 12. The number of days in months during any non-leap year is: 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31.
Names of the days of the week are given with lowercase English letters: "monday", "tuesday", "wednesday", "thursday", "friday", "saturday", "sunday".
|
The input consists of two lines, each of them containing the name of exactly one day of the week. It's guaranteed that each string in the input is from the set "monday", "tuesday", "wednesday", "thursday", "friday", "saturday", "sunday".
|
Print "YES" (without quotes) if such situation is possible during some non-leap year. Otherwise, print "NO" (without quotes).
|
[
"monday\ntuesday\n",
"sunday\nsunday\n",
"saturday\ntuesday\n"
] |
[
"NO\n",
"YES\n",
"YES\n"
] |
In the second sample, one can consider February 1 and March 1 of year 2015. Both these days were Sundays.
In the third sample, one can consider July 1 and August 1 of year 2017. First of these two days is Saturday, while the second one is Tuesday.
| 500
|
[
{
"input": "monday\ntuesday",
"output": "NO"
},
{
"input": "sunday\nsunday",
"output": "YES"
},
{
"input": "saturday\ntuesday",
"output": "YES"
},
{
"input": "tuesday\nthursday",
"output": "YES"
},
{
"input": "friday\nwednesday",
"output": "NO"
},
{
"input": "sunday\nsaturday",
"output": "NO"
},
{
"input": "monday\nmonday",
"output": "YES"
},
{
"input": "monday\nwednesday",
"output": "YES"
},
{
"input": "monday\nthursday",
"output": "YES"
},
{
"input": "monday\nfriday",
"output": "NO"
},
{
"input": "monday\nsaturday",
"output": "NO"
},
{
"input": "monday\nsunday",
"output": "NO"
},
{
"input": "tuesday\nmonday",
"output": "NO"
},
{
"input": "tuesday\ntuesday",
"output": "YES"
},
{
"input": "tuesday\nwednesday",
"output": "NO"
},
{
"input": "tuesday\nfriday",
"output": "YES"
},
{
"input": "tuesday\nsaturday",
"output": "NO"
},
{
"input": "tuesday\nsunday",
"output": "NO"
},
{
"input": "wednesday\nmonday",
"output": "NO"
},
{
"input": "wednesday\ntuesday",
"output": "NO"
},
{
"input": "wednesday\nwednesday",
"output": "YES"
},
{
"input": "wednesday\nthursday",
"output": "NO"
},
{
"input": "wednesday\nfriday",
"output": "YES"
},
{
"input": "wednesday\nsaturday",
"output": "YES"
},
{
"input": "wednesday\nsunday",
"output": "NO"
},
{
"input": "thursday\nmonday",
"output": "NO"
},
{
"input": "thursday\ntuesday",
"output": "NO"
},
{
"input": "thursday\nwednesday",
"output": "NO"
},
{
"input": "thursday\nthursday",
"output": "YES"
},
{
"input": "thursday\nfriday",
"output": "NO"
},
{
"input": "thursday\nsaturday",
"output": "YES"
},
{
"input": "thursday\nsunday",
"output": "YES"
},
{
"input": "friday\nmonday",
"output": "YES"
},
{
"input": "friday\ntuesday",
"output": "NO"
},
{
"input": "friday\nthursday",
"output": "NO"
},
{
"input": "friday\nsaturday",
"output": "NO"
},
{
"input": "friday\nsunday",
"output": "YES"
},
{
"input": "saturday\nmonday",
"output": "YES"
},
{
"input": "saturday\nwednesday",
"output": "NO"
},
{
"input": "saturday\nthursday",
"output": "NO"
},
{
"input": "saturday\nfriday",
"output": "NO"
},
{
"input": "saturday\nsaturday",
"output": "YES"
},
{
"input": "saturday\nsunday",
"output": "NO"
},
{
"input": "sunday\nmonday",
"output": "NO"
},
{
"input": "sunday\ntuesday",
"output": "YES"
},
{
"input": "sunday\nwednesday",
"output": "YES"
},
{
"input": "sunday\nthursday",
"output": "NO"
},
{
"input": "sunday\nfriday",
"output": "NO"
},
{
"input": "friday\nfriday",
"output": "YES"
},
{
"input": "friday\nsunday",
"output": "YES"
},
{
"input": "monday\nmonday",
"output": "YES"
},
{
"input": "friday\ntuesday",
"output": "NO"
},
{
"input": "thursday\nsaturday",
"output": "YES"
},
{
"input": "tuesday\nfriday",
"output": "YES"
},
{
"input": "sunday\nwednesday",
"output": "YES"
},
{
"input": "monday\nthursday",
"output": "YES"
},
{
"input": "saturday\nsunday",
"output": "NO"
},
{
"input": "friday\nmonday",
"output": "YES"
},
{
"input": "thursday\nthursday",
"output": "YES"
},
{
"input": "wednesday\nfriday",
"output": "YES"
},
{
"input": "thursday\nmonday",
"output": "NO"
},
{
"input": "wednesday\nsunday",
"output": "NO"
},
{
"input": "thursday\nfriday",
"output": "NO"
},
{
"input": "monday\nfriday",
"output": "NO"
},
{
"input": "wednesday\nsaturday",
"output": "YES"
},
{
"input": "thursday\nsunday",
"output": "YES"
},
{
"input": "saturday\nfriday",
"output": "NO"
},
{
"input": "saturday\nmonday",
"output": "YES"
}
] | 1,475,929,683
| 783
|
Python 3
|
WRONG_ANSWER
|
PRETESTS
| 2
| 61
| 4,608,000
|
monday, tuesday, wednesday, thursday, friday, saturday, sunday = range(7)
week = ["monday", "tuesday", "wednesday", "thursday", "friday", "saturday", "sunday"]
day1 = input()
day2 = input()
months = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
f = 0
s = 0
for i in range(7):
if week[i] == day1:
f = i
if week[i] == day2:
s = i
def next_week(first, second):
for month in months:
if (first + month) // 6 == second:
return True
return False
if next_week(f, s):
print('YES')
else:
print('NO')
|
Title: Checking the Calendar
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given names of two days of the week.
Please, determine whether it is possible that during some non-leap year the first day of some month was equal to the first day of the week you are given, while the first day of the next month was equal to the second day of the week you are given. Both months should belong to one year.
In this problem, we consider the Gregorian calendar to be used. The number of months in this calendar is equal to 12. The number of days in months during any non-leap year is: 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31.
Names of the days of the week are given with lowercase English letters: "monday", "tuesday", "wednesday", "thursday", "friday", "saturday", "sunday".
Input Specification:
The input consists of two lines, each of them containing the name of exactly one day of the week. It's guaranteed that each string in the input is from the set "monday", "tuesday", "wednesday", "thursday", "friday", "saturday", "sunday".
Output Specification:
Print "YES" (without quotes) if such situation is possible during some non-leap year. Otherwise, print "NO" (without quotes).
Demo Input:
['monday\ntuesday\n', 'sunday\nsunday\n', 'saturday\ntuesday\n']
Demo Output:
['NO\n', 'YES\n', 'YES\n']
Note:
In the second sample, one can consider February 1 and March 1 of year 2015. Both these days were Sundays.
In the third sample, one can consider July 1 and August 1 of year 2017. First of these two days is Saturday, while the second one is Tuesday.
|
```python
monday, tuesday, wednesday, thursday, friday, saturday, sunday = range(7)
week = ["monday", "tuesday", "wednesday", "thursday", "friday", "saturday", "sunday"]
day1 = input()
day2 = input()
months = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
f = 0
s = 0
for i in range(7):
if week[i] == day1:
f = i
if week[i] == day2:
s = i
def next_week(first, second):
for month in months:
if (first + month) // 6 == second:
return True
return False
if next_week(f, s):
print('YES')
else:
print('NO')
```
| 0
|
|
812
|
C
|
Sagheer and Nubian Market
|
PROGRAMMING
| 1,500
|
[
"binary search",
"sortings"
] | null | null |
On his trip to Luxor and Aswan, Sagheer went to a Nubian market to buy some souvenirs for his friends and relatives. The market has some strange rules. It contains *n* different items numbered from 1 to *n*. The *i*-th item has base cost *a**i* Egyptian pounds. If Sagheer buys *k* items with indices *x*1,<=*x*2,<=...,<=*x**k*, then the cost of item *x**j* is *a**x**j*<=+<=*x**j*·*k* for 1<=≤<=*j*<=≤<=*k*. In other words, the cost of an item is equal to its base cost in addition to its index multiplied by the factor *k*.
Sagheer wants to buy as many souvenirs as possible without paying more than *S* Egyptian pounds. Note that he cannot buy a souvenir more than once. If there are many ways to maximize the number of souvenirs, he will choose the way that will minimize the total cost. Can you help him with this task?
|
The first line contains two integers *n* and *S* (1<=≤<=*n*<=≤<=105 and 1<=≤<=*S*<=≤<=109) — the number of souvenirs in the market and Sagheer's budget.
The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=105) — the base costs of the souvenirs.
|
On a single line, print two integers *k*, *T* — the maximum number of souvenirs Sagheer can buy and the minimum total cost to buy these *k* souvenirs.
|
[
"3 11\n2 3 5\n",
"4 100\n1 2 5 6\n",
"1 7\n7\n"
] |
[
"2 11\n",
"4 54\n",
"0 0\n"
] |
In the first example, he cannot take the three items because they will cost him [5, 9, 14] with total cost 28. If he decides to take only two items, then the costs will be [4, 7, 11]. So he can afford the first and second items.
In the second example, he can buy all items as they will cost him [5, 10, 17, 22].
In the third example, there is only one souvenir in the market which will cost him 8 pounds, so he cannot buy it.
| 1,500
|
[
{
"input": "3 11\n2 3 5",
"output": "2 11"
},
{
"input": "4 100\n1 2 5 6",
"output": "4 54"
},
{
"input": "1 7\n7",
"output": "0 0"
},
{
"input": "1 7\n5",
"output": "1 6"
},
{
"input": "1 1\n1",
"output": "0 0"
},
{
"input": "4 33\n4 3 2 1",
"output": "3 27"
},
{
"input": "86 96\n89 48 14 55 5 35 7 79 49 70 74 18 64 63 35 93 63 97 90 77 33 11 100 75 60 99 54 38 3 6 55 1 7 64 56 90 21 76 35 16 61 78 38 78 93 21 89 1 58 53 34 77 56 37 46 59 30 5 85 1 52 87 84 99 97 9 15 66 29 60 17 16 59 23 88 93 32 2 98 89 63 42 9 86 70 80",
"output": "3 71"
},
{
"input": "9 2727\n73 41 68 90 51 7 20 48 69",
"output": "9 872"
},
{
"input": "35 792600\n61 11 82 29 3 50 65 60 62 86 83 78 15 82 7 77 38 87 100 12 93 86 96 79 14 58 60 47 94 39 36 23 69 93 18",
"output": "35 24043"
},
{
"input": "63 47677090\n53 4 59 68 6 12 47 63 28 93 9 53 61 63 53 70 77 63 49 76 70 23 4 40 4 34 24 70 42 83 84 95 11 46 38 83 26 85 34 29 67 96 3 62 97 7 42 65 49 45 50 54 81 74 83 59 10 87 95 87 89 27 3",
"output": "63 130272"
},
{
"input": "88 631662736\n93 75 25 7 6 55 92 23 22 32 4 48 61 29 91 79 16 18 18 9 66 9 57 62 3 81 48 16 21 90 93 58 30 8 31 47 44 70 34 85 52 71 58 42 99 53 43 54 96 26 6 13 38 4 13 60 1 48 32 100 52 8 27 99 66 34 98 45 19 50 37 59 31 56 58 70 61 14 100 66 74 85 64 57 92 89 7 92",
"output": "88 348883"
},
{
"input": "12 12\n1232 1848 2048 4694 5121 3735 9968 4687 2040 6033 5839 2507",
"output": "0 0"
},
{
"input": "37 5271\n368 6194 4856 8534 944 4953 2085 5350 788 7772 9786 1321 4310 4453 7078 9912 5799 4066 5471 5079 5161 9773 1300 5474 1202 1353 9499 9694 9020 6332 595 7619 1271 7430 1199 3127 8867",
"output": "5 4252"
},
{
"input": "65 958484\n9597 1867 5346 637 6115 5833 3318 6059 4430 9169 8155 7895 3534 7962 9900 9495 5694 3461 5370 1945 1724 9264 3475 618 3421 551 8359 6889 1843 6716 9216 2356 1592 6265 2945 6496 4947 2840 9057 6141 887 4823 4004 8027 1993 1391 796 7059 5500 4369 4012 4983 6495 8990 3633 5439 421 1129 6970 8796 7826 1200 8741 6555 5037",
"output": "65 468998"
},
{
"input": "90 61394040\n2480 6212 4506 829 8191 797 5336 6722 3178 1007 5849 3061 3588 6684 5983 5452 7654 5321 660 2569 2809 2179 679 4858 6887 2580 6880 6120 4159 5542 4999 8703 2386 8221 7046 1229 1662 4542 7089 3548 4298 1973 1854 2473 5507 241 359 5248 7907 5201 9624 4596 1723 2622 4800 4716 693 961 7402 9004 7994 8048 6590 5866 7502 3304 4331 5218 6906 1016 5342 6644 2205 5823 8525 4839 1914 2651 3940 7751 3489 4178 7234 6640 7602 9765 8559 7819 5827 163",
"output": "90 795634"
},
{
"input": "14 891190480\n1424 3077 9632 6506 4568 9650 5534 1085 6934 9340 2867 367 7075 618",
"output": "14 70147"
},
{
"input": "39 43\n22166 81842 15513 80979 39645 60168 96994 13493 12904 79871 49910 45356 93691 51829 18226 34288 11525 41944 40433 67295 30123 1081 55623 22279 75814 82316 2963 39329 38223 8445 43202 61912 15122 86367 37200 68113 57194 38541 49641",
"output": "0 0"
},
{
"input": "67 8824\n75515 67590 86373 34191 3446 27408 31581 24727 40005 23718 39738 30960 4786 51040 32590 80454 14335 47173 20079 41204 67289 58347 88969 88396 37681 43963 13886 85690 12259 14732 42036 62620 15011 41890 20150 59469 62104 30136 47163 19790 25699 27453 36151 52914 52684 20503 78622 81082 94500 55756 94030 54764 72763 37830 13210 64559 53600 87998 80472 19001 83769 79700 88794 10161 99980 95184 74439",
"output": "2 8268"
},
{
"input": "16 56532535\n84567 85265 99012 62115 58908 10120 27355 90226 17191 35588 43807 6327 89157 71156 16253 22387",
"output": "16 821610"
},
{
"input": "42 818723640\n57019 99450 43192 25131 80678 41786 52490 34454 51620 56132 41773 94622 23949 11597 96944 51420 44164 85727 72959 26622 1838 36302 99335 35572 92734 10651 22293 97601 38634 24066 81870 10904 5825 71968 2377 61198 3104 4191 97851 99920 65295 1385",
"output": "42 2094569"
}
] | 1,618,046,701
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 6
| 93
| 0
|
def ap_function(a,d,n):
ans = a+ (d*(n-1))
return ans
n,k = map(int,input().split())
arr = list(map(int,input().split()))
if k<=arr[0]:
print(0,0)
elif n==1:
print(1,arr[0]+1)
else:
curr_sum = arr[0]+1
to_plus = 1
plus = 2
last_one = arr[-1]
items,cost = 1,arr[0]
for i in range(1,n):
last_one = ap_function(arr[i],i+1,i+2)
s = curr_sum+to_plus+last_one
if s<=k:
items,cost = items+1,s
else:
break
curr_sum = s
to_plus += plus
plus+=1
print(items,cost)
|
Title: Sagheer and Nubian Market
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
On his trip to Luxor and Aswan, Sagheer went to a Nubian market to buy some souvenirs for his friends and relatives. The market has some strange rules. It contains *n* different items numbered from 1 to *n*. The *i*-th item has base cost *a**i* Egyptian pounds. If Sagheer buys *k* items with indices *x*1,<=*x*2,<=...,<=*x**k*, then the cost of item *x**j* is *a**x**j*<=+<=*x**j*·*k* for 1<=≤<=*j*<=≤<=*k*. In other words, the cost of an item is equal to its base cost in addition to its index multiplied by the factor *k*.
Sagheer wants to buy as many souvenirs as possible without paying more than *S* Egyptian pounds. Note that he cannot buy a souvenir more than once. If there are many ways to maximize the number of souvenirs, he will choose the way that will minimize the total cost. Can you help him with this task?
Input Specification:
The first line contains two integers *n* and *S* (1<=≤<=*n*<=≤<=105 and 1<=≤<=*S*<=≤<=109) — the number of souvenirs in the market and Sagheer's budget.
The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=105) — the base costs of the souvenirs.
Output Specification:
On a single line, print two integers *k*, *T* — the maximum number of souvenirs Sagheer can buy and the minimum total cost to buy these *k* souvenirs.
Demo Input:
['3 11\n2 3 5\n', '4 100\n1 2 5 6\n', '1 7\n7\n']
Demo Output:
['2 11\n', '4 54\n', '0 0\n']
Note:
In the first example, he cannot take the three items because they will cost him [5, 9, 14] with total cost 28. If he decides to take only two items, then the costs will be [4, 7, 11]. So he can afford the first and second items.
In the second example, he can buy all items as they will cost him [5, 10, 17, 22].
In the third example, there is only one souvenir in the market which will cost him 8 pounds, so he cannot buy it.
|
```python
def ap_function(a,d,n):
ans = a+ (d*(n-1))
return ans
n,k = map(int,input().split())
arr = list(map(int,input().split()))
if k<=arr[0]:
print(0,0)
elif n==1:
print(1,arr[0]+1)
else:
curr_sum = arr[0]+1
to_plus = 1
plus = 2
last_one = arr[-1]
items,cost = 1,arr[0]
for i in range(1,n):
last_one = ap_function(arr[i],i+1,i+2)
s = curr_sum+to_plus+last_one
if s<=k:
items,cost = items+1,s
else:
break
curr_sum = s
to_plus += plus
plus+=1
print(items,cost)
```
| 0
|
|
664
|
A
|
Complicated GCD
|
PROGRAMMING
| 800
|
[
"math",
"number theory"
] | null | null |
Greatest common divisor *GCD*(*a*,<=*b*) of two positive integers *a* and *b* is equal to the biggest integer *d* such that both integers *a* and *b* are divisible by *d*. There are many efficient algorithms to find greatest common divisor *GCD*(*a*,<=*b*), for example, Euclid algorithm.
Formally, find the biggest integer *d*, such that all integers *a*,<=*a*<=+<=1,<=*a*<=+<=2,<=...,<=*b* are divisible by *d*. To make the problem even more complicated we allow *a* and *b* to be up to googol, 10100 — such number do not fit even in 64-bit integer type!
|
The only line of the input contains two integers *a* and *b* (1<=≤<=*a*<=≤<=*b*<=≤<=10100).
|
Output one integer — greatest common divisor of all integers from *a* to *b* inclusive.
|
[
"1 2\n",
"61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576\n"
] |
[
"1\n",
"61803398874989484820458683436563811772030917980576\n"
] |
none
| 500
|
[
{
"input": "1 2",
"output": "1"
},
{
"input": "61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576",
"output": "61803398874989484820458683436563811772030917980576"
},
{
"input": "1 100",
"output": "1"
},
{
"input": "100 100000",
"output": "1"
},
{
"input": "12345 67890123456789123457",
"output": "1"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "8392739158839273915883927391588392739158839273915883927391588392739158839273915883927391588392739158 8392739158839273915883927391588392739158839273915883927391588392739158839273915883927391588392739158",
"output": "8392739158839273915883927391588392739158839273915883927391588392739158839273915883927391588392739158"
},
{
"input": "1 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "1"
},
{
"input": "8328748239473982794239847237438782379810988324751 9328748239473982794239847237438782379810988324751",
"output": "1"
},
{
"input": "1029398958432734901284327523909481928483573793 1029398958432734901284327523909481928483573794",
"output": "1"
},
{
"input": "10000 1000000000",
"output": "1"
},
{
"input": "10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"
},
{
"input": "11210171722243 65715435710585778347",
"output": "1"
},
{
"input": "2921881079263974825226940825843 767693191032295360887755303860323261471",
"output": "1"
},
{
"input": "8025352957265704896940312528736939363590612908210603 96027920417708260814607687034511406492969694925539085",
"output": "1"
},
{
"input": "23510978780782786207241069904470895053213996267165977112058175452757132930 210352653280909370107314249722987050753257161175393375412301228883856435481424",
"output": "1"
},
{
"input": "8150070767079366215626260746398623663859344142817267779361251788637547414925170226504788118262 49924902262298336032630839998470954964895251605110946547855439236151401194070172107435992986913614",
"output": "1"
},
{
"input": "15943150466658398903 15943150466658398903",
"output": "15943150466658398903"
},
{
"input": "410470228200245407491525399055972 410470228200245407491525399055972",
"output": "410470228200245407491525399055972"
},
{
"input": "51894705655711504622197349350106792045098781545973899451307 51894705655711504622197349350106792045098781545973899451307",
"output": "51894705655711504622197349350106792045098781545973899451307"
},
{
"input": "60353594589897438036015726222485085035927634677598681595162804007836722215668410 60353594589897438036015726222485085035927634677598681595162804007836722215668410",
"output": "60353594589897438036015726222485085035927634677598681595162804007836722215668410"
},
{
"input": "761733780145118977868180796896376577405349682060892737466239031663476251177476275459280340045369535 761733780145118977868180796896376577405349682060892737466239031663476251177476275459280340045369535",
"output": "761733780145118977868180796896376577405349682060892737466239031663476251177476275459280340045369535"
},
{
"input": "1 2000000000",
"output": "1"
},
{
"input": "13 1928834874",
"output": "1"
},
{
"input": "87 2938984237482934238",
"output": "1"
},
{
"input": "213 413",
"output": "1"
},
{
"input": "3 4",
"output": "1"
}
] | 1,580,208,982
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 28
| 109
| 307,200
|
a,b=input().split()
if a==b:print(a)
else:print(1)
|
Title: Complicated GCD
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Greatest common divisor *GCD*(*a*,<=*b*) of two positive integers *a* and *b* is equal to the biggest integer *d* such that both integers *a* and *b* are divisible by *d*. There are many efficient algorithms to find greatest common divisor *GCD*(*a*,<=*b*), for example, Euclid algorithm.
Formally, find the biggest integer *d*, such that all integers *a*,<=*a*<=+<=1,<=*a*<=+<=2,<=...,<=*b* are divisible by *d*. To make the problem even more complicated we allow *a* and *b* to be up to googol, 10100 — such number do not fit even in 64-bit integer type!
Input Specification:
The only line of the input contains two integers *a* and *b* (1<=≤<=*a*<=≤<=*b*<=≤<=10100).
Output Specification:
Output one integer — greatest common divisor of all integers from *a* to *b* inclusive.
Demo Input:
['1 2\n', '61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576\n']
Demo Output:
['1\n', '61803398874989484820458683436563811772030917980576\n']
Note:
none
|
```python
a,b=input().split()
if a==b:print(a)
else:print(1)
```
| 3
|
|
80
|
A
|
Panoramix's Prediction
|
PROGRAMMING
| 800
|
[
"brute force"
] |
A. Panoramix's Prediction
|
2
|
256
|
A prime number is a number which has exactly two distinct divisors: one and itself. For example, numbers 2, 7, 3 are prime, and 1, 6, 4 are not.
The next prime number after *x* is the smallest prime number greater than *x*. For example, the next prime number after 2 is 3, and the next prime number after 3 is 5. Note that there is exactly one next prime number after each number. So 5 is not the next prime number for 2.
One cold April morning Panoramix predicted that soon Kakofonix will break free from his straitjacket, and this will be a black day for the residents of the Gallic countryside.
Panoramix's prophecy tells that if some day Asterix and Obelix beat exactly *x* Roman soldiers, where *x* is a prime number, and next day they beat exactly *y* Roman soldiers, where *y* is the next prime number after *x*, then it's time to wait for Armageddon, for nothing can shut Kakofonix up while he sings his infernal song.
Yesterday the Gauls beat *n* Roman soldiers and it turned out that the number *n* was prime! Today their victims were a troop of *m* Romans (*m*<=><=*n*). Determine whether the Gauls should wait for the black day after today's victory of Asterix and Obelix?
|
The first and only input line contains two positive integers — *n* and *m* (2<=≤<=*n*<=<<=*m*<=≤<=50). It is guaranteed that *n* is prime.
Pretests contain all the cases with restrictions 2<=≤<=*n*<=<<=*m*<=≤<=4.
|
Print YES, if *m* is the next prime number after *n*, or NO otherwise.
|
[
"3 5\n",
"7 11\n",
"7 9\n"
] |
[
"YES",
"YES",
"NO"
] |
none
| 500
|
[
{
"input": "3 5",
"output": "YES"
},
{
"input": "7 11",
"output": "YES"
},
{
"input": "7 9",
"output": "NO"
},
{
"input": "2 3",
"output": "YES"
},
{
"input": "2 4",
"output": "NO"
},
{
"input": "3 4",
"output": "NO"
},
{
"input": "3 5",
"output": "YES"
},
{
"input": "5 7",
"output": "YES"
},
{
"input": "7 11",
"output": "YES"
},
{
"input": "11 13",
"output": "YES"
},
{
"input": "13 17",
"output": "YES"
},
{
"input": "17 19",
"output": "YES"
},
{
"input": "19 23",
"output": "YES"
},
{
"input": "23 29",
"output": "YES"
},
{
"input": "29 31",
"output": "YES"
},
{
"input": "31 37",
"output": "YES"
},
{
"input": "37 41",
"output": "YES"
},
{
"input": "41 43",
"output": "YES"
},
{
"input": "43 47",
"output": "YES"
},
{
"input": "2 5",
"output": "NO"
},
{
"input": "2 7",
"output": "NO"
},
{
"input": "2 6",
"output": "NO"
},
{
"input": "2 11",
"output": "NO"
},
{
"input": "3 6",
"output": "NO"
},
{
"input": "3 7",
"output": "NO"
},
{
"input": "3 9",
"output": "NO"
},
{
"input": "5 6",
"output": "NO"
},
{
"input": "5 9",
"output": "NO"
},
{
"input": "5 11",
"output": "NO"
},
{
"input": "5 13",
"output": "NO"
},
{
"input": "5 15",
"output": "NO"
},
{
"input": "7 8",
"output": "NO"
},
{
"input": "7 13",
"output": "NO"
},
{
"input": "13 15",
"output": "NO"
},
{
"input": "13 17",
"output": "YES"
},
{
"input": "19 21",
"output": "NO"
},
{
"input": "13 20",
"output": "NO"
},
{
"input": "41 49",
"output": "NO"
},
{
"input": "43 49",
"output": "NO"
},
{
"input": "47 50",
"output": "NO"
},
{
"input": "47 49",
"output": "NO"
},
{
"input": "47 48",
"output": "NO"
},
{
"input": "23 25",
"output": "NO"
},
{
"input": "2 50",
"output": "NO"
},
{
"input": "31 33",
"output": "NO"
}
] | 1,623,440,133
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 4
| 124
| 0
|
a,b=list(map(int,input().split()))
l=[]
for i in range(a,b+1):
f=0
for j in range(2,i):
if (i%j==0):
f+=1
if f==0:
l.append(i)
if len(l)==1:
print("NO")
elif len(l)==2:
if l[1]==b:
print("YES")
else:
print("NO")
|
Title: Panoramix's Prediction
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A prime number is a number which has exactly two distinct divisors: one and itself. For example, numbers 2, 7, 3 are prime, and 1, 6, 4 are not.
The next prime number after *x* is the smallest prime number greater than *x*. For example, the next prime number after 2 is 3, and the next prime number after 3 is 5. Note that there is exactly one next prime number after each number. So 5 is not the next prime number for 2.
One cold April morning Panoramix predicted that soon Kakofonix will break free from his straitjacket, and this will be a black day for the residents of the Gallic countryside.
Panoramix's prophecy tells that if some day Asterix and Obelix beat exactly *x* Roman soldiers, where *x* is a prime number, and next day they beat exactly *y* Roman soldiers, where *y* is the next prime number after *x*, then it's time to wait for Armageddon, for nothing can shut Kakofonix up while he sings his infernal song.
Yesterday the Gauls beat *n* Roman soldiers and it turned out that the number *n* was prime! Today their victims were a troop of *m* Romans (*m*<=><=*n*). Determine whether the Gauls should wait for the black day after today's victory of Asterix and Obelix?
Input Specification:
The first and only input line contains two positive integers — *n* and *m* (2<=≤<=*n*<=<<=*m*<=≤<=50). It is guaranteed that *n* is prime.
Pretests contain all the cases with restrictions 2<=≤<=*n*<=<<=*m*<=≤<=4.
Output Specification:
Print YES, if *m* is the next prime number after *n*, or NO otherwise.
Demo Input:
['3 5\n', '7 11\n', '7 9\n']
Demo Output:
['YES', 'YES', 'NO']
Note:
none
|
```python
a,b=list(map(int,input().split()))
l=[]
for i in range(a,b+1):
f=0
for j in range(2,i):
if (i%j==0):
f+=1
if f==0:
l.append(i)
if len(l)==1:
print("NO")
elif len(l)==2:
if l[1]==b:
print("YES")
else:
print("NO")
```
| 0
|
592
|
B
|
The Monster and the Squirrel
|
PROGRAMMING
| 1,100
|
[
"math"
] | null | null |
Ari the monster always wakes up very early with the first ray of the sun and the first thing she does is feeding her squirrel.
Ari draws a regular convex polygon on the floor and numbers it's vertices 1,<=2,<=...,<=*n* in clockwise order. Then starting from the vertex 1 she draws a ray in the direction of each other vertex. The ray stops when it reaches a vertex or intersects with another ray drawn before. Ari repeats this process for vertex 2,<=3,<=...,<=*n* (in this particular order). And then she puts a walnut in each region inside the polygon.
Ada the squirrel wants to collect all the walnuts, but she is not allowed to step on the lines drawn by Ari. That means Ada have to perform a small jump if she wants to go from one region to another. Ada can jump from one region P to another region Q if and only if P and Q share a side or a corner.
Assuming that Ada starts from outside of the picture, what is the minimum number of jumps she has to perform in order to collect all the walnuts?
|
The first and only line of the input contains a single integer *n* (3<=≤<=*n*<=≤<=54321) - the number of vertices of the regular polygon drawn by Ari.
|
Print the minimum number of jumps Ada should make to collect all the walnuts. Note, that she doesn't need to leave the polygon after.
|
[
"5\n",
"3\n"
] |
[
"9\n",
"1\n"
] |
One of the possible solutions for the first sample is shown on the picture above.
| 1,000
|
[
{
"input": "5",
"output": "9"
},
{
"input": "3",
"output": "1"
},
{
"input": "54321",
"output": "2950553761"
},
{
"input": "4",
"output": "4"
},
{
"input": "6",
"output": "16"
},
{
"input": "7",
"output": "25"
},
{
"input": "8",
"output": "36"
},
{
"input": "9",
"output": "49"
},
{
"input": "10",
"output": "64"
},
{
"input": "54320",
"output": "2950445124"
},
{
"input": "54319",
"output": "2950336489"
},
{
"input": "54318",
"output": "2950227856"
},
{
"input": "54317",
"output": "2950119225"
},
{
"input": "54316",
"output": "2950010596"
},
{
"input": "54315",
"output": "2949901969"
},
{
"input": "54314",
"output": "2949793344"
},
{
"input": "8153",
"output": "66438801"
},
{
"input": "51689",
"output": "2671545969"
},
{
"input": "16659",
"output": "277455649"
},
{
"input": "47389",
"output": "2245527769"
},
{
"input": "314",
"output": "97344"
},
{
"input": "23481",
"output": "551263441"
},
{
"input": "20380",
"output": "415262884"
},
{
"input": "1994",
"output": "3968064"
}
] | 1,446,310,862
| 1,862
|
Python 3
|
OK
|
TESTS
| 24
| 61
| 0
|
import sys
#sys.stdin = open("input.txt")
#sys.stdout = open("output.txt", "w")
n = int(input())
ans = (n - 4) * (n - 3) + 2 * (n - 3) + (n - 2)
print(ans)
|
Title: The Monster and the Squirrel
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Ari the monster always wakes up very early with the first ray of the sun and the first thing she does is feeding her squirrel.
Ari draws a regular convex polygon on the floor and numbers it's vertices 1,<=2,<=...,<=*n* in clockwise order. Then starting from the vertex 1 she draws a ray in the direction of each other vertex. The ray stops when it reaches a vertex or intersects with another ray drawn before. Ari repeats this process for vertex 2,<=3,<=...,<=*n* (in this particular order). And then she puts a walnut in each region inside the polygon.
Ada the squirrel wants to collect all the walnuts, but she is not allowed to step on the lines drawn by Ari. That means Ada have to perform a small jump if she wants to go from one region to another. Ada can jump from one region P to another region Q if and only if P and Q share a side or a corner.
Assuming that Ada starts from outside of the picture, what is the minimum number of jumps she has to perform in order to collect all the walnuts?
Input Specification:
The first and only line of the input contains a single integer *n* (3<=≤<=*n*<=≤<=54321) - the number of vertices of the regular polygon drawn by Ari.
Output Specification:
Print the minimum number of jumps Ada should make to collect all the walnuts. Note, that she doesn't need to leave the polygon after.
Demo Input:
['5\n', '3\n']
Demo Output:
['9\n', '1\n']
Note:
One of the possible solutions for the first sample is shown on the picture above.
|
```python
import sys
#sys.stdin = open("input.txt")
#sys.stdout = open("output.txt", "w")
n = int(input())
ans = (n - 4) * (n - 3) + 2 * (n - 3) + (n - 2)
print(ans)
```
| 3
|
|
0
|
none
|
none
|
none
| 0
|
[
"none"
] | null | null |
Hooray! Berl II, the king of Berland is making a knight tournament. The king has already sent the message to all knights in the kingdom and they in turn agreed to participate in this grand event.
As for you, you're just a simple peasant. There's no surprise that you slept in this morning and were late for the tournament (it was a weekend, after all). Now you are really curious about the results of the tournament. This time the tournament in Berland went as follows:
- There are *n* knights participating in the tournament. Each knight was assigned his unique number — an integer from 1 to *n*. - The tournament consisted of *m* fights, in the *i*-th fight the knights that were still in the game with numbers at least *l**i* and at most *r**i* have fought for the right to continue taking part in the tournament. - After the *i*-th fight among all participants of the fight only one knight won — the knight number *x**i*, he continued participating in the tournament. Other knights left the tournament. - The winner of the last (the *m*-th) fight (the knight number *x**m*) became the winner of the tournament.
You fished out all the information about the fights from your friends. Now for each knight you want to know the name of the knight he was conquered by. We think that the knight number *b* was conquered by the knight number *a*, if there was a fight with both of these knights present and the winner was the knight number *a*.
Write the code that calculates for each knight, the name of the knight that beat him.
|
The first line contains two integers *n*, *m* (2<=≤<=*n*<=≤<=3·105; 1<=≤<=*m*<=≤<=3·105) — the number of knights and the number of fights. Each of the following *m* lines contains three integers *l**i*,<=*r**i*,<=*x**i* (1<=≤<=*l**i*<=<<=*r**i*<=≤<=*n*; *l**i*<=≤<=*x**i*<=≤<=*r**i*) — the description of the *i*-th fight.
It is guaranteed that the input is correct and matches the problem statement. It is guaranteed that at least two knights took part in each battle.
|
Print *n* integers. If the *i*-th knight lost, then the *i*-th number should equal the number of the knight that beat the knight number *i*. If the *i*-th knight is the winner, then the *i*-th number must equal 0.
|
[
"4 3\n1 2 1\n1 3 3\n1 4 4\n",
"8 4\n3 5 4\n3 7 6\n2 8 8\n1 8 1\n"
] |
[
"3 1 4 0 ",
"0 8 4 6 4 8 6 1 "
] |
Consider the first test case. Knights 1 and 2 fought the first fight and knight 1 won. Knights 1 and 3 fought the second fight and knight 3 won. The last fight was between knights 3 and 4, knight 4 won.
| 0
|
[
{
"input": "4 3\n1 2 1\n1 3 3\n1 4 4",
"output": "3 1 4 0 "
},
{
"input": "8 4\n3 5 4\n3 7 6\n2 8 8\n1 8 1",
"output": "0 8 4 6 4 8 6 1 "
},
{
"input": "2 1\n1 2 1",
"output": "0 1 "
},
{
"input": "2 1\n1 2 2",
"output": "2 0 "
},
{
"input": "3 1\n1 3 1",
"output": "0 1 1 "
},
{
"input": "3 1\n1 3 2",
"output": "2 0 2 "
},
{
"input": "3 1\n1 3 3",
"output": "3 3 0 "
},
{
"input": "3 2\n1 2 1\n1 3 3",
"output": "3 1 0 "
},
{
"input": "3 2\n1 2 2\n1 3 2",
"output": "2 0 2 "
},
{
"input": "3 2\n2 3 3\n1 3 3",
"output": "3 3 0 "
},
{
"input": "11 6\n1 2 2\n7 8 7\n3 4 4\n6 9 6\n5 10 10\n2 11 11",
"output": "2 11 4 11 10 10 6 7 6 11 0 "
},
{
"input": "10 6\n9 10 10\n6 7 7\n2 4 2\n2 5 5\n1 7 5\n4 10 8",
"output": "5 5 2 2 8 7 5 0 10 8 "
},
{
"input": "11 8\n3 5 5\n8 9 9\n4 6 6\n8 10 10\n5 7 7\n2 7 2\n10 11 11\n1 11 1",
"output": "0 1 5 5 6 7 2 9 10 11 1 "
},
{
"input": "10 7\n7 8 7\n7 9 9\n5 9 5\n5 10 10\n1 2 2\n3 4 4\n2 10 4",
"output": "2 4 4 0 10 5 9 7 5 4 "
},
{
"input": "11 5\n8 10 9\n6 10 7\n6 11 11\n3 5 5\n1 11 1",
"output": "0 1 5 5 1 7 11 9 7 9 1 "
},
{
"input": "10 6\n6 7 6\n5 7 5\n3 7 4\n2 8 2\n2 10 10\n1 10 10",
"output": "10 10 4 2 4 5 6 2 10 0 "
},
{
"input": "11 7\n7 8 8\n5 6 5\n1 3 3\n7 9 9\n5 10 10\n10 11 11\n1 11 4",
"output": "3 3 4 0 10 5 8 9 10 11 4 "
},
{
"input": "10 7\n8 9 9\n3 4 3\n2 3 2\n1 5 2\n6 7 6\n6 10 10\n1 10 10",
"output": "2 10 2 3 2 10 6 9 10 0 "
},
{
"input": "11 6\n1 2 1\n8 9 9\n3 5 5\n3 6 6\n9 10 10\n1 11 10",
"output": "10 1 5 5 6 10 10 9 10 0 10 "
},
{
"input": "10 5\n1 2 1\n8 10 8\n3 6 4\n4 7 7\n1 8 7",
"output": "7 1 4 7 4 4 0 7 8 8 "
},
{
"input": "4 3\n1 2 2\n1 3 3\n1 4 4",
"output": "2 3 4 0 "
}
] | 1,382,424,639
| 3,339
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 10
| 3,000
| 1,126,400
|
n,m=map(int,input().split())
a=[0]*n
k=0
for i in range(m):
l,r,x=map(int,input().split())
for j in range(l-1,r):
if a[j]==0 and j+1!=x:
a[j]=x
k+=1
if k==n-1:
break
print(*a)
|
Title: none
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Hooray! Berl II, the king of Berland is making a knight tournament. The king has already sent the message to all knights in the kingdom and they in turn agreed to participate in this grand event.
As for you, you're just a simple peasant. There's no surprise that you slept in this morning and were late for the tournament (it was a weekend, after all). Now you are really curious about the results of the tournament. This time the tournament in Berland went as follows:
- There are *n* knights participating in the tournament. Each knight was assigned his unique number — an integer from 1 to *n*. - The tournament consisted of *m* fights, in the *i*-th fight the knights that were still in the game with numbers at least *l**i* and at most *r**i* have fought for the right to continue taking part in the tournament. - After the *i*-th fight among all participants of the fight only one knight won — the knight number *x**i*, he continued participating in the tournament. Other knights left the tournament. - The winner of the last (the *m*-th) fight (the knight number *x**m*) became the winner of the tournament.
You fished out all the information about the fights from your friends. Now for each knight you want to know the name of the knight he was conquered by. We think that the knight number *b* was conquered by the knight number *a*, if there was a fight with both of these knights present and the winner was the knight number *a*.
Write the code that calculates for each knight, the name of the knight that beat him.
Input Specification:
The first line contains two integers *n*, *m* (2<=≤<=*n*<=≤<=3·105; 1<=≤<=*m*<=≤<=3·105) — the number of knights and the number of fights. Each of the following *m* lines contains three integers *l**i*,<=*r**i*,<=*x**i* (1<=≤<=*l**i*<=<<=*r**i*<=≤<=*n*; *l**i*<=≤<=*x**i*<=≤<=*r**i*) — the description of the *i*-th fight.
It is guaranteed that the input is correct and matches the problem statement. It is guaranteed that at least two knights took part in each battle.
Output Specification:
Print *n* integers. If the *i*-th knight lost, then the *i*-th number should equal the number of the knight that beat the knight number *i*. If the *i*-th knight is the winner, then the *i*-th number must equal 0.
Demo Input:
['4 3\n1 2 1\n1 3 3\n1 4 4\n', '8 4\n3 5 4\n3 7 6\n2 8 8\n1 8 1\n']
Demo Output:
['3 1 4 0 ', '0 8 4 6 4 8 6 1 ']
Note:
Consider the first test case. Knights 1 and 2 fought the first fight and knight 1 won. Knights 1 and 3 fought the second fight and knight 3 won. The last fight was between knights 3 and 4, knight 4 won.
|
```python
n,m=map(int,input().split())
a=[0]*n
k=0
for i in range(m):
l,r,x=map(int,input().split())
for j in range(l-1,r):
if a[j]==0 and j+1!=x:
a[j]=x
k+=1
if k==n-1:
break
print(*a)
```
| 0
|
|
387
|
B
|
George and Round
|
PROGRAMMING
| 1,200
|
[
"brute force",
"greedy",
"two pointers"
] | null | null |
George decided to prepare a Codesecrof round, so he has prepared *m* problems for the round. Let's number the problems with integers 1 through *m*. George estimates the *i*-th problem's complexity by integer *b**i*.
To make the round good, he needs to put at least *n* problems there. Besides, he needs to have at least one problem with complexity exactly *a*1, at least one with complexity exactly *a*2, ..., and at least one with complexity exactly *a**n*. Of course, the round can also have problems with other complexities.
George has a poor imagination. It's easier for him to make some already prepared problem simpler than to come up with a new one and prepare it. George is magnificent at simplifying problems. He can simplify any already prepared problem with complexity *c* to any positive integer complexity *d* (*c*<=≥<=*d*), by changing limits on the input data.
However, nothing is so simple. George understood that even if he simplifies some problems, he can run out of problems for a good round. That's why he decided to find out the minimum number of problems he needs to come up with in addition to the *m* he's prepared in order to make a good round. Note that George can come up with a new problem of any complexity.
|
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=3000) — the minimal number of problems in a good round and the number of problems George's prepared. The second line contains space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a*1<=<<=*a*2<=<<=...<=<<=*a**n*<=≤<=106) — the requirements for the complexity of the problems in a good round. The third line contains space-separated integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b*1<=≤<=*b*2...<=≤<=*b**m*<=≤<=106) — the complexities of the problems prepared by George.
|
Print a single integer — the answer to the problem.
|
[
"3 5\n1 2 3\n1 2 2 3 3\n",
"3 5\n1 2 3\n1 1 1 1 1\n",
"3 1\n2 3 4\n1\n"
] |
[
"0\n",
"2\n",
"3\n"
] |
In the first sample the set of the prepared problems meets the requirements for a good round.
In the second sample, it is enough to come up with and prepare two problems with complexities 2 and 3 to get a good round.
In the third sample it is very easy to get a good round if come up with and prepare extra problems with complexities: 2, 3, 4.
| 1,000
|
[
{
"input": "3 5\n1 2 3\n1 2 2 3 3",
"output": "0"
},
{
"input": "3 5\n1 2 3\n1 1 1 1 1",
"output": "2"
},
{
"input": "3 1\n2 3 4\n1",
"output": "3"
},
{
"input": "29 100\n20 32 41 67 72 155 331 382 399 412 465 470 484 511 515 529 616 637 679 715 733 763 826 843 862 903 925 979 989\n15 15 15 17 18 19 19 20 21 21 22 24 25 26 26 27 28 31 32 32 37 38 38 39 39 40 41 42 43 43 45 45 46 47 49 49 50 50 50 51 52 53 53 55 56 57 59 59 59 60 60 62 62 63 63 64 64 64 66 67 69 69 70 70 72 72 73 74 75 76 77 78 80 80 81 81 83 83 83 84 86 86 86 86 87 88 89 91 91 91 92 93 94 94 96 97 97 97 98 98",
"output": "24"
}
] | 1,630,448,657
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 41
| 77
| 7,372,800
|
# /*@@@@@@@@@@@@@@@@@@@@@@@@@@&..@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
# @@@@@@@@@@@@@@@@@@@@@@@@@@@& * *@@@@@@@% .&@@@@@@@@@@@@@@@@@@@@@@@@
# @@@@@@@@@@@@@@@*%@@@@@@@@@@ .&@# @@@@@ *& .@@@@@@@@@@@@@@@@@@@@@@@@
# @@@@@@@@@@@@@@& . %@@@@@, @@@@@, &@# *@@@% /@@@@@@#. %@@@@@@@@@@@@
# @@@@@@@@@@@@@@& %@@%. #@( &@@@@@@/ %@@@@@# &@#. ,%% (@@@@@@@@@@@@
# @@@@@@@@@@@@@@@ %@@@@@@&, #@@@@@@@@@&@@@@@@@@, .#@@@@@% *@@@@@@@@@@@@
# @@@@@@@@@@@@@@@ %@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@% ,@@@@@@@@@@@@
# @@@@% .,*( (@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@% ,@@@@@@&&@@@@
# @@@@@, %@@@@@@@&&@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@& ,,/ ,@@@@
# @@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@, &@@@@
# @@@@@@&..@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ &@@@@@
# @@@@@@@& *@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@. #@@@@@@
# &, ,&@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@% ,(@@@@@
# @, *@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&/ ,&
# @@&. #@@@@@@@@@@@@@@@@@@@@@@@@@@&&&&@@@@@@@@@@@@@@@@@@@@@@@@@@@@# .@
# @@@@# ,@@@@@@@@@@@@@@&%, ./%@@@@@@@@@@@@@@#, .&@@@
# @@@@# #@@@@@@@@&, ,#@@@@@@@@@@%//%@@@% *@@@@@@@@# .&@@@@
# @@* @@@@@@@@@# *@@@@@@@@@@@(.&((&@@@@@@ #@@@@@@@@# .@@
# @#. ,/&@@@# &@@@@@@@@@@*,%#/@(%@@@@@&. *@@@@@@#. &
# @@@@@@# @&. %@@@@@@@@@@%# ,. @@@@@@@% @@* *%@@@@@
# @@@@@& %% /@@@@@@@@@@@@@@@@@@@@@@@, .@@% *@@@@@@@
# @@@@@*,,#%&. ,,, . %@@@@@@
# @@@@@@@@@@&. *. .@@@@@@@@@@@@@. ,* @@@@%%@@@@@@
# @@@@@@@@@@, /. *# &@.%@@@@@@@@@/.&. ,%&, &%. %@@@@@@@@@@@
# @@@@@@@@@( .%&../(@, @/ (@@@@@@@@@@@@@& @& #@ ,@ ** %@@@@@@@@@@
# @@@@@@@@% %%/*@,@@@. #@@@@@@@@@@@@@@. ,@&(% **% &@@@@@@@@@
# @@@@@@@@% @@ %@@@@@ *@@@@@@@@@@@@@@@@ @@@@%( (&./@@@@@@@@@
# @@@@@@@@@ %@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@% %/ %@@@@@@@@@
# @@@@@@@@@/ #@, *@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@% *& ,@@@@@@@@@@
# @@@@@@@@@@( *@@@(%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@%,@@@# #@@@@@@@@@@@
# @@@@@@@@@@@@@#, /*%@@@@@@@@@@@@@@@@@@@%/,*@@@@@&** (&@@@@@@@@@@@@@
# @@@@@@@@@@@@@@@@% ,@/@@@@, ,#%%%%@@@@@* @@@@#@* (@@@@@@@@@@@@@@@@@
# @@@@@@@@@@@@@@@&/ .#@@@@@@@@@@&%%%%%&@@@@@@@@@# @@@@@@@@@@@@@@@@@@@
# @@@@@@@@@@@@* #@@#*&@@@@@@@@, @/@@@@@@@@#,&@& ,/%&@@@@@@@@@@@@@@@
# @@@@@# .&@@@@@@&/*%@@%(.@%,@@@#*&@@@@@@, .@@@@@@@@@@@@
# @@@@* ,@*%@@@@@*@@ *@%,%&%@@@@@@@@, .@@@@@@@@@@
# @@ *%%/. ,(@@@@(@%&,@@ .**%@@@*%* *@@@@@
# / @@@@@@@@@@/ *@*&%/. ,%. %@@@@@@@( .@@@@
# @@@@@@@@@@@/@*@@@@@@@,., @@@@@@@@@% ,/% (@@@
# @@@@@@@@@&.#*@@@@@@%,,,. @@@@@&*.(( *@@@@@% @@
# .*#%@@@@@@,(,@@@@@@@@@@@@@@@@@@@@%%@@@@%* /&@@@ .,*. ,(@@@@@@@@/.
# % ., ..@@@@@@@@@@@@@@@@@@@@%@@@@@@@%%@@@, @@@@@@@@#@#@@@@@@@@@,
# @# ,*%&@@@@@@@@@@@@%%*@@@@@%%&%, . @@@@@@@@*%,@@@@@&(
# @@@@&(, .@@@%, ,/* .@@%%@%%@@@@@@ @@@@@@@%*,
# @@@@@@@@@@@@* ,(,, ,#@@@@@%,@@/ *%@@@@@@@@@@@@ &@@*. .
# @@@@@@@@@@@@@% *%@/ ,@@@@@@@@@@@@@ #@
# @@@@@@@@@@@@@@% ,@@@%#, .(%&@@@@@
# @@@@@@@@@@@@@@@ ., .,@@@@@@@@@@
# @@@@@@@@@@@@@@& ,%@@@@@@@@@,&&*%&@@@@@@, .%@@ ,@@@@@@@@@@@@@@@@@@
# @@@@@@@@@@@&%* #@@@@@@@@@@@@@@@,@@(@@@@@@@@@@@@%, ,@@@@@@@@@@@@@@@@@@
# @@@@@@@@@% @@@@@@@@@@@@@@@@,@@*@@@@@@@@@@@@@@%.&@@@@@@@@@@@@@@@@@
# @@@@@@@@@, ,@@@@@@@@@@@@@@@@,@*@@@@@@@@@@@@@@@@ /@@@@@@@@@@@@@@@@@
# @@@@@@@@@. /@@@@@@@@@@@@%@@@,.#@@@%@@@@@@@@@@@@* @@@@@@@@@@@@@@@@@
# @@@@@@@@@. (&@@@@@@@@@& %@@@@@@@@@@@@% %@@@@@@@@@@@@@@@@
# @@@@@@@@& .,/* &@@@@@@@@@@@@@@,,@@@@@@@@@@@@@@@@
# @@@@@@@@* ,@@@@@@@@@@@@@@@% @@@@@@@@@@@@@@@@
# @@@@@@@@ ,@@% ,@@@@@@@@@@@@@@@& &@@@@@@@@@@@@@@@
# @@@@@@@% .@@@&/. &@@@.,@@@@@@@@@@@@@@@@ %@@@@@@@@@@@@@@@
# @@@@@@@@@, %@@@@@@@@@@@@@@@ ,@@@@% %,(@@@@@@@@@@@@& &@@@@@@@@@@@@@@@
# @@@@@@@@@@ /@@@@@@@@@@@@@@, &@@@@@ ,@@@@@@@@@@@@& %@@@@@@@@@@@@@@@
# @@@@@@@@@//**@@@@@@@@@@@&. %@@@@@@& ,@@@@@@@@@@@@@ %@@@@@@@@@@@@@@
# @@@@@@@@@ %@@@@/. ,%@@, .@@@@@@@@% &@@@@%, *%@#,@@@@@@@@@@@@@@
# @@@@@@@@@ %@@@@@@@@@@@@% %@@@@@@@@@. ,@@@@@@@@@@@@@%.@@@@@@@@@@@@@@
# @@@@@@@@@/ (@@@@@@@@@@@, ,@@@@@@@@@@# (@@@@@@@@@@@@,*@@@@@@@@@@@@@@
# @@@@@@@@@@. *%%&&%%# @@@@@@@@@@@@. @@@@@@@@%/. #@@@@@@@@@@@@@@@
# @@@@@@@@@& &@@@@@@@@@@@@@@@@# &@@@@@@@@@@@@@@@
# @@@@@@@@% @@@@@@@@@@@@@@@@@% *&@@@@@@@@@@@@@@@
# @@@@@# @@@@@@@@@@@@@@@@@% /@@@@@@@@@@@@
# @@@@( @@@@@@@@@@@@@@@@@/ . .@@@@@@@@@@
# @@@% (*%@%@@@# &@@@@@@@@@@@@@@@@, %@@@@&.#@ @@@@@@@@@
# @@@. %*@#(@@@ @@@@@@@@@@@@@@@@@* %@@%(@@# .,@@@@@@@@
# @@% ,#@@@@@@@@@@@@@@@@@@@@@@%*. @@@@@@@@
# @@@@&* .#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@#. @@@@@@@*/
n,m = [int(i) for i in input().split()]
x = [int(i) for i in input().split()]
y = [int(i) for i in input().split()]
x.sort()
y.sort()
j = 0
for i in x:
while j<m and y[j]<i:
j+=1
if j==m:
break
n-=1
j+=1
print(n)
|
Title: George and Round
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
George decided to prepare a Codesecrof round, so he has prepared *m* problems for the round. Let's number the problems with integers 1 through *m*. George estimates the *i*-th problem's complexity by integer *b**i*.
To make the round good, he needs to put at least *n* problems there. Besides, he needs to have at least one problem with complexity exactly *a*1, at least one with complexity exactly *a*2, ..., and at least one with complexity exactly *a**n*. Of course, the round can also have problems with other complexities.
George has a poor imagination. It's easier for him to make some already prepared problem simpler than to come up with a new one and prepare it. George is magnificent at simplifying problems. He can simplify any already prepared problem with complexity *c* to any positive integer complexity *d* (*c*<=≥<=*d*), by changing limits on the input data.
However, nothing is so simple. George understood that even if he simplifies some problems, he can run out of problems for a good round. That's why he decided to find out the minimum number of problems he needs to come up with in addition to the *m* he's prepared in order to make a good round. Note that George can come up with a new problem of any complexity.
Input Specification:
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=3000) — the minimal number of problems in a good round and the number of problems George's prepared. The second line contains space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a*1<=<<=*a*2<=<<=...<=<<=*a**n*<=≤<=106) — the requirements for the complexity of the problems in a good round. The third line contains space-separated integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b*1<=≤<=*b*2...<=≤<=*b**m*<=≤<=106) — the complexities of the problems prepared by George.
Output Specification:
Print a single integer — the answer to the problem.
Demo Input:
['3 5\n1 2 3\n1 2 2 3 3\n', '3 5\n1 2 3\n1 1 1 1 1\n', '3 1\n2 3 4\n1\n']
Demo Output:
['0\n', '2\n', '3\n']
Note:
In the first sample the set of the prepared problems meets the requirements for a good round.
In the second sample, it is enough to come up with and prepare two problems with complexities 2 and 3 to get a good round.
In the third sample it is very easy to get a good round if come up with and prepare extra problems with complexities: 2, 3, 4.
|
```python
# /*@@@@@@@@@@@@@@@@@@@@@@@@@@&..@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
# @@@@@@@@@@@@@@@@@@@@@@@@@@@& * *@@@@@@@% .&@@@@@@@@@@@@@@@@@@@@@@@@
# @@@@@@@@@@@@@@@*%@@@@@@@@@@ .&@# @@@@@ *& .@@@@@@@@@@@@@@@@@@@@@@@@
# @@@@@@@@@@@@@@& . %@@@@@, @@@@@, &@# *@@@% /@@@@@@#. %@@@@@@@@@@@@
# @@@@@@@@@@@@@@& %@@%. #@( &@@@@@@/ %@@@@@# &@#. ,%% (@@@@@@@@@@@@
# @@@@@@@@@@@@@@@ %@@@@@@&, #@@@@@@@@@&@@@@@@@@, .#@@@@@% *@@@@@@@@@@@@
# @@@@@@@@@@@@@@@ %@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@% ,@@@@@@@@@@@@
# @@@@% .,*( (@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@% ,@@@@@@&&@@@@
# @@@@@, %@@@@@@@&&@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@& ,,/ ,@@@@
# @@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@, &@@@@
# @@@@@@&..@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ &@@@@@
# @@@@@@@& *@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@. #@@@@@@
# &, ,&@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@% ,(@@@@@
# @, *@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&/ ,&
# @@&. #@@@@@@@@@@@@@@@@@@@@@@@@@@&&&&@@@@@@@@@@@@@@@@@@@@@@@@@@@@# .@
# @@@@# ,@@@@@@@@@@@@@@&%, ./%@@@@@@@@@@@@@@#, .&@@@
# @@@@# #@@@@@@@@&, ,#@@@@@@@@@@%//%@@@% *@@@@@@@@# .&@@@@
# @@* @@@@@@@@@# *@@@@@@@@@@@(.&((&@@@@@@ #@@@@@@@@# .@@
# @#. ,/&@@@# &@@@@@@@@@@*,%#/@(%@@@@@&. *@@@@@@#. &
# @@@@@@# @&. %@@@@@@@@@@%# ,. @@@@@@@% @@* *%@@@@@
# @@@@@& %% /@@@@@@@@@@@@@@@@@@@@@@@, .@@% *@@@@@@@
# @@@@@*,,#%&. ,,, . %@@@@@@
# @@@@@@@@@@&. *. .@@@@@@@@@@@@@. ,* @@@@%%@@@@@@
# @@@@@@@@@@, /. *# &@.%@@@@@@@@@/.&. ,%&, &%. %@@@@@@@@@@@
# @@@@@@@@@( .%&../(@, @/ (@@@@@@@@@@@@@& @& #@ ,@ ** %@@@@@@@@@@
# @@@@@@@@% %%/*@,@@@. #@@@@@@@@@@@@@@. ,@&(% **% &@@@@@@@@@
# @@@@@@@@% @@ %@@@@@ *@@@@@@@@@@@@@@@@ @@@@%( (&./@@@@@@@@@
# @@@@@@@@@ %@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@% %/ %@@@@@@@@@
# @@@@@@@@@/ #@, *@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@% *& ,@@@@@@@@@@
# @@@@@@@@@@( *@@@(%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@%,@@@# #@@@@@@@@@@@
# @@@@@@@@@@@@@#, /*%@@@@@@@@@@@@@@@@@@@%/,*@@@@@&** (&@@@@@@@@@@@@@
# @@@@@@@@@@@@@@@@% ,@/@@@@, ,#%%%%@@@@@* @@@@#@* (@@@@@@@@@@@@@@@@@
# @@@@@@@@@@@@@@@&/ .#@@@@@@@@@@&%%%%%&@@@@@@@@@# @@@@@@@@@@@@@@@@@@@
# @@@@@@@@@@@@* #@@#*&@@@@@@@@, @/@@@@@@@@#,&@& ,/%&@@@@@@@@@@@@@@@
# @@@@@# .&@@@@@@&/*%@@%(.@%,@@@#*&@@@@@@, .@@@@@@@@@@@@
# @@@@* ,@*%@@@@@*@@ *@%,%&%@@@@@@@@, .@@@@@@@@@@
# @@ *%%/. ,(@@@@(@%&,@@ .**%@@@*%* *@@@@@
# / @@@@@@@@@@/ *@*&%/. ,%. %@@@@@@@( .@@@@
# @@@@@@@@@@@/@*@@@@@@@,., @@@@@@@@@% ,/% (@@@
# @@@@@@@@@&.#*@@@@@@%,,,. @@@@@&*.(( *@@@@@% @@
# .*#%@@@@@@,(,@@@@@@@@@@@@@@@@@@@@%%@@@@%* /&@@@ .,*. ,(@@@@@@@@/.
# % ., ..@@@@@@@@@@@@@@@@@@@@%@@@@@@@%%@@@, @@@@@@@@#@#@@@@@@@@@,
# @# ,*%&@@@@@@@@@@@@%%*@@@@@%%&%, . @@@@@@@@*%,@@@@@&(
# @@@@&(, .@@@%, ,/* .@@%%@%%@@@@@@ @@@@@@@%*,
# @@@@@@@@@@@@* ,(,, ,#@@@@@%,@@/ *%@@@@@@@@@@@@ &@@*. .
# @@@@@@@@@@@@@% *%@/ ,@@@@@@@@@@@@@ #@
# @@@@@@@@@@@@@@% ,@@@%#, .(%&@@@@@
# @@@@@@@@@@@@@@@ ., .,@@@@@@@@@@
# @@@@@@@@@@@@@@& ,%@@@@@@@@@,&&*%&@@@@@@, .%@@ ,@@@@@@@@@@@@@@@@@@
# @@@@@@@@@@@&%* #@@@@@@@@@@@@@@@,@@(@@@@@@@@@@@@%, ,@@@@@@@@@@@@@@@@@@
# @@@@@@@@@% @@@@@@@@@@@@@@@@,@@*@@@@@@@@@@@@@@%.&@@@@@@@@@@@@@@@@@
# @@@@@@@@@, ,@@@@@@@@@@@@@@@@,@*@@@@@@@@@@@@@@@@ /@@@@@@@@@@@@@@@@@
# @@@@@@@@@. /@@@@@@@@@@@@%@@@,.#@@@%@@@@@@@@@@@@* @@@@@@@@@@@@@@@@@
# @@@@@@@@@. (&@@@@@@@@@& %@@@@@@@@@@@@% %@@@@@@@@@@@@@@@@
# @@@@@@@@& .,/* &@@@@@@@@@@@@@@,,@@@@@@@@@@@@@@@@
# @@@@@@@@* ,@@@@@@@@@@@@@@@% @@@@@@@@@@@@@@@@
# @@@@@@@@ ,@@% ,@@@@@@@@@@@@@@@& &@@@@@@@@@@@@@@@
# @@@@@@@% .@@@&/. &@@@.,@@@@@@@@@@@@@@@@ %@@@@@@@@@@@@@@@
# @@@@@@@@@, %@@@@@@@@@@@@@@@ ,@@@@% %,(@@@@@@@@@@@@& &@@@@@@@@@@@@@@@
# @@@@@@@@@@ /@@@@@@@@@@@@@@, &@@@@@ ,@@@@@@@@@@@@& %@@@@@@@@@@@@@@@
# @@@@@@@@@//**@@@@@@@@@@@&. %@@@@@@& ,@@@@@@@@@@@@@ %@@@@@@@@@@@@@@
# @@@@@@@@@ %@@@@/. ,%@@, .@@@@@@@@% &@@@@%, *%@#,@@@@@@@@@@@@@@
# @@@@@@@@@ %@@@@@@@@@@@@% %@@@@@@@@@. ,@@@@@@@@@@@@@%.@@@@@@@@@@@@@@
# @@@@@@@@@/ (@@@@@@@@@@@, ,@@@@@@@@@@# (@@@@@@@@@@@@,*@@@@@@@@@@@@@@
# @@@@@@@@@@. *%%&&%%# @@@@@@@@@@@@. @@@@@@@@%/. #@@@@@@@@@@@@@@@
# @@@@@@@@@& &@@@@@@@@@@@@@@@@# &@@@@@@@@@@@@@@@
# @@@@@@@@% @@@@@@@@@@@@@@@@@% *&@@@@@@@@@@@@@@@
# @@@@@# @@@@@@@@@@@@@@@@@% /@@@@@@@@@@@@
# @@@@( @@@@@@@@@@@@@@@@@/ . .@@@@@@@@@@
# @@@% (*%@%@@@# &@@@@@@@@@@@@@@@@, %@@@@&.#@ @@@@@@@@@
# @@@. %*@#(@@@ @@@@@@@@@@@@@@@@@* %@@%(@@# .,@@@@@@@@
# @@% ,#@@@@@@@@@@@@@@@@@@@@@@%*. @@@@@@@@
# @@@@&* .#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@#. @@@@@@@*/
n,m = [int(i) for i in input().split()]
x = [int(i) for i in input().split()]
y = [int(i) for i in input().split()]
x.sort()
y.sort()
j = 0
for i in x:
while j<m and y[j]<i:
j+=1
if j==m:
break
n-=1
j+=1
print(n)
```
| 3
|
|
0
|
none
|
none
|
none
| 0
|
[
"none"
] | null | null |
We'll call a set of positive integers *a* beautiful if the following condition fulfills: for any prime *p*, if , then . In other words, if one number from the set is divisible by prime *p*, then at least half of numbers from the set is divisible by *p*.
Your task is to find any beautiful set, where the number of elements is equal to *k* and each element doesn't exceed 2*k*2.
|
The first line contains integer *k* (10<=≤<=*k*<=≤<=5000) that shows how many numbers the required beautiful set should have.
|
In the first line print *k* space-separated integers that are a beautiful set. If there are multiple such sets, you are allowed to print any of them.
|
[
"10\n"
] |
[
"16 18 24 27 36 48 54 72 108 144 \n"
] |
none
| 0
|
[] | 1,659,312,056
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 0
| 46
| 0
|
x = 0
for _ in range(int(input())):
print(x,end=' ')
x+=2
|
Title: none
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
We'll call a set of positive integers *a* beautiful if the following condition fulfills: for any prime *p*, if , then . In other words, if one number from the set is divisible by prime *p*, then at least half of numbers from the set is divisible by *p*.
Your task is to find any beautiful set, where the number of elements is equal to *k* and each element doesn't exceed 2*k*2.
Input Specification:
The first line contains integer *k* (10<=≤<=*k*<=≤<=5000) that shows how many numbers the required beautiful set should have.
Output Specification:
In the first line print *k* space-separated integers that are a beautiful set. If there are multiple such sets, you are allowed to print any of them.
Demo Input:
['10\n']
Demo Output:
['16 18 24 27 36 48 54 72 108 144 \n']
Note:
none
|
```python
x = 0
for _ in range(int(input())):
print(x,end=' ')
x+=2
```
| 0
|
|
609
|
A
|
USB Flash Drives
|
PROGRAMMING
| 800
|
[
"greedy",
"implementation",
"sortings"
] | null | null |
Sean is trying to save a large file to a USB flash drive. He has *n* USB flash drives with capacities equal to *a*1,<=*a*2,<=...,<=*a**n* megabytes. The file size is equal to *m* megabytes.
Find the minimum number of USB flash drives needed to write Sean's file, if he can split the file between drives.
|
The first line contains positive integer *n* (1<=≤<=*n*<=≤<=100) — the number of USB flash drives.
The second line contains positive integer *m* (1<=≤<=*m*<=≤<=105) — the size of Sean's file.
Each of the next *n* lines contains positive integer *a**i* (1<=≤<=*a**i*<=≤<=1000) — the sizes of USB flash drives in megabytes.
It is guaranteed that the answer exists, i. e. the sum of all *a**i* is not less than *m*.
|
Print the minimum number of USB flash drives to write Sean's file, if he can split the file between drives.
|
[
"3\n5\n2\n1\n3\n",
"3\n6\n2\n3\n2\n",
"2\n5\n5\n10\n"
] |
[
"2\n",
"3\n",
"1\n"
] |
In the first example Sean needs only two USB flash drives — the first and the third.
In the second example Sean needs all three USB flash drives.
In the third example Sean needs only one USB flash drive and he can use any available USB flash drive — the first or the second.
| 0
|
[
{
"input": "3\n5\n2\n1\n3",
"output": "2"
},
{
"input": "3\n6\n2\n3\n2",
"output": "3"
},
{
"input": "2\n5\n5\n10",
"output": "1"
},
{
"input": "5\n16\n8\n1\n3\n4\n9",
"output": "2"
},
{
"input": "10\n121\n10\n37\n74\n56\n42\n39\n6\n68\n8\n100",
"output": "2"
},
{
"input": "12\n4773\n325\n377\n192\n780\n881\n816\n839\n223\n215\n125\n952\n8",
"output": "7"
},
{
"input": "15\n7758\n182\n272\n763\n910\n24\n359\n583\n890\n735\n819\n66\n992\n440\n496\n227",
"output": "15"
},
{
"input": "30\n70\n6\n2\n10\n4\n7\n10\n5\n1\n8\n10\n4\n3\n5\n9\n3\n6\n6\n4\n2\n6\n5\n10\n1\n9\n7\n2\n1\n10\n7\n5",
"output": "8"
},
{
"input": "40\n15705\n702\n722\n105\n873\n417\n477\n794\n300\n869\n496\n572\n232\n456\n298\n473\n584\n486\n713\n934\n121\n303\n956\n934\n840\n358\n201\n861\n497\n131\n312\n957\n96\n914\n509\n60\n300\n722\n658\n820\n103",
"output": "21"
},
{
"input": "50\n18239\n300\n151\n770\n9\n200\n52\n247\n753\n523\n263\n744\n463\n540\n244\n608\n569\n771\n32\n425\n777\n624\n761\n628\n124\n405\n396\n726\n626\n679\n237\n229\n49\n512\n18\n671\n290\n768\n632\n739\n18\n136\n413\n117\n83\n413\n452\n767\n664\n203\n404",
"output": "31"
},
{
"input": "70\n149\n5\n3\n3\n4\n6\n1\n2\n9\n8\n3\n1\n8\n4\n4\n3\n6\n10\n7\n1\n10\n8\n4\n9\n3\n8\n3\n2\n5\n1\n8\n6\n9\n10\n4\n8\n6\n9\n9\n9\n3\n4\n2\n2\n5\n8\n9\n1\n10\n3\n4\n3\n1\n9\n3\n5\n1\n3\n7\n6\n9\n8\n9\n1\n7\n4\n4\n2\n3\n5\n7",
"output": "17"
},
{
"input": "70\n2731\n26\n75\n86\n94\n37\n25\n32\n35\n92\n1\n51\n73\n53\n66\n16\n80\n15\n81\n100\n87\n55\n48\n30\n71\n39\n87\n77\n25\n70\n22\n75\n23\n97\n16\n75\n95\n61\n61\n28\n10\n78\n54\n80\n51\n25\n24\n90\n58\n4\n77\n40\n54\n53\n47\n62\n30\n38\n71\n97\n71\n60\n58\n1\n21\n15\n55\n99\n34\n88\n99",
"output": "35"
},
{
"input": "70\n28625\n34\n132\n181\n232\n593\n413\n862\n887\n808\n18\n35\n89\n356\n640\n339\n280\n975\n82\n345\n398\n948\n372\n91\n755\n75\n153\n948\n603\n35\n694\n722\n293\n363\n884\n264\n813\n175\n169\n646\n138\n449\n488\n828\n417\n134\n84\n763\n288\n845\n801\n556\n972\n332\n564\n934\n699\n842\n942\n644\n203\n406\n140\n37\n9\n423\n546\n675\n491\n113\n587",
"output": "45"
},
{
"input": "80\n248\n3\n9\n4\n5\n10\n7\n2\n6\n2\n2\n8\n2\n1\n3\n7\n9\n2\n8\n4\n4\n8\n5\n4\n4\n10\n2\n1\n4\n8\n4\n10\n1\n2\n10\n2\n3\n3\n1\n1\n8\n9\n5\n10\n2\n8\n10\n5\n3\n6\n1\n7\n8\n9\n10\n5\n10\n10\n2\n10\n1\n2\n4\n1\n9\n4\n7\n10\n8\n5\n8\n1\n4\n2\n2\n3\n9\n9\n9\n10\n6",
"output": "27"
},
{
"input": "80\n2993\n18\n14\n73\n38\n14\n73\n77\n18\n81\n6\n96\n65\n77\n86\n76\n8\n16\n81\n83\n83\n34\n69\n58\n15\n19\n1\n16\n57\n95\n35\n5\n49\n8\n15\n47\n84\n99\n94\n93\n55\n43\n47\n51\n61\n57\n13\n7\n92\n14\n4\n83\n100\n60\n75\n41\n95\n74\n40\n1\n4\n95\n68\n59\n65\n15\n15\n75\n85\n46\n77\n26\n30\n51\n64\n75\n40\n22\n88\n68\n24",
"output": "38"
},
{
"input": "80\n37947\n117\n569\n702\n272\n573\n629\n90\n337\n673\n589\n576\n205\n11\n284\n645\n719\n777\n271\n567\n466\n251\n402\n3\n97\n288\n699\n208\n173\n530\n782\n266\n395\n957\n159\n463\n43\n316\n603\n197\n386\n132\n799\n778\n905\n784\n71\n851\n963\n883\n705\n454\n275\n425\n727\n223\n4\n870\n833\n431\n463\n85\n505\n800\n41\n954\n981\n242\n578\n336\n48\n858\n702\n349\n929\n646\n528\n993\n506\n274\n227",
"output": "70"
},
{
"input": "90\n413\n5\n8\n10\n7\n5\n7\n5\n7\n1\n7\n8\n4\n3\n9\n4\n1\n10\n3\n1\n10\n9\n3\n1\n8\n4\n7\n5\n2\n9\n3\n10\n10\n3\n6\n3\n3\n10\n7\n5\n1\n1\n2\n4\n8\n2\n5\n5\n3\n9\n5\n5\n3\n10\n2\n3\n8\n5\n9\n1\n3\n6\n5\n9\n2\n3\n7\n10\n3\n4\n4\n1\n5\n9\n2\n6\n9\n1\n1\n9\n9\n7\n7\n7\n8\n4\n5\n3\n4\n6\n9",
"output": "59"
},
{
"input": "90\n4226\n33\n43\n83\n46\n75\n14\n88\n36\n8\n25\n47\n4\n96\n19\n33\n49\n65\n17\n59\n72\n1\n55\n94\n92\n27\n33\n39\n14\n62\n79\n12\n89\n22\n86\n13\n19\n77\n53\n96\n74\n24\n25\n17\n64\n71\n81\n87\n52\n72\n55\n49\n74\n36\n65\n86\n91\n33\n61\n97\n38\n87\n61\n14\n73\n95\n43\n67\n42\n67\n22\n12\n62\n32\n96\n24\n49\n82\n46\n89\n36\n75\n91\n11\n10\n9\n33\n86\n28\n75\n39",
"output": "64"
},
{
"input": "90\n40579\n448\n977\n607\n745\n268\n826\n479\n59\n330\n609\n43\n301\n970\n726\n172\n632\n600\n181\n712\n195\n491\n312\n849\n722\n679\n682\n780\n131\n404\n293\n387\n567\n660\n54\n339\n111\n833\n612\n911\n869\n356\n884\n635\n126\n639\n712\n473\n663\n773\n435\n32\n973\n484\n662\n464\n699\n274\n919\n95\n904\n253\n589\n543\n454\n250\n349\n237\n829\n511\n536\n36\n45\n152\n626\n384\n199\n877\n941\n84\n781\n115\n20\n52\n726\n751\n920\n291\n571\n6\n199",
"output": "64"
},
{
"input": "100\n66\n7\n9\n10\n5\n2\n8\n6\n5\n4\n10\n10\n6\n5\n2\n2\n1\n1\n5\n8\n7\n8\n10\n5\n6\n6\n5\n9\n9\n6\n3\n8\n7\n10\n5\n9\n6\n7\n3\n5\n8\n6\n8\n9\n1\n1\n1\n2\n4\n5\n5\n1\n1\n2\n6\n7\n1\n5\n8\n7\n2\n1\n7\n10\n9\n10\n2\n4\n10\n4\n10\n10\n5\n3\n9\n1\n2\n1\n10\n5\n1\n7\n4\n4\n5\n7\n6\n10\n4\n7\n3\n4\n3\n6\n2\n5\n2\n4\n9\n5\n3",
"output": "7"
},
{
"input": "100\n4862\n20\n47\n85\n47\n76\n38\n48\n93\n91\n81\n31\n51\n23\n60\n59\n3\n73\n72\n57\n67\n54\n9\n42\n5\n32\n46\n72\n79\n95\n61\n79\n88\n33\n52\n97\n10\n3\n20\n79\n82\n93\n90\n38\n80\n18\n21\n43\n60\n73\n34\n75\n65\n10\n84\n100\n29\n94\n56\n22\n59\n95\n46\n22\n57\n69\n67\n90\n11\n10\n61\n27\n2\n48\n69\n86\n91\n69\n76\n36\n71\n18\n54\n90\n74\n69\n50\n46\n8\n5\n41\n96\n5\n14\n55\n85\n39\n6\n79\n75\n87",
"output": "70"
},
{
"input": "100\n45570\n14\n881\n678\n687\n993\n413\n760\n451\n426\n787\n503\n343\n234\n530\n294\n725\n941\n524\n574\n441\n798\n399\n360\n609\n376\n525\n229\n995\n478\n347\n47\n23\n468\n525\n749\n601\n235\n89\n995\n489\n1\n239\n415\n122\n671\n128\n357\n886\n401\n964\n212\n968\n210\n130\n871\n360\n661\n844\n414\n187\n21\n824\n266\n713\n126\n496\n916\n37\n193\n755\n894\n641\n300\n170\n176\n383\n488\n627\n61\n897\n33\n242\n419\n881\n698\n107\n391\n418\n774\n905\n87\n5\n896\n835\n318\n373\n916\n393\n91\n460",
"output": "78"
},
{
"input": "100\n522\n1\n5\n2\n4\n2\n6\n3\n4\n2\n10\n10\n6\n7\n9\n7\n1\n7\n2\n5\n3\n1\n5\n2\n3\n5\n1\n7\n10\n10\n4\n4\n10\n9\n10\n6\n2\n8\n2\n6\n10\n9\n2\n7\n5\n9\n4\n6\n10\n7\n3\n1\n1\n9\n5\n10\n9\n2\n8\n3\n7\n5\n4\n7\n5\n9\n10\n6\n2\n9\n2\n5\n10\n1\n7\n7\n10\n5\n6\n2\n9\n4\n7\n10\n10\n8\n3\n4\n9\n3\n6\n9\n10\n2\n9\n9\n3\n4\n1\n10\n2",
"output": "74"
},
{
"input": "100\n32294\n414\n116\n131\n649\n130\n476\n630\n605\n213\n117\n757\n42\n109\n85\n127\n635\n629\n994\n410\n764\n204\n161\n231\n577\n116\n936\n537\n565\n571\n317\n722\n819\n229\n284\n487\n649\n304\n628\n727\n816\n854\n91\n111\n549\n87\n374\n417\n3\n868\n882\n168\n743\n77\n534\n781\n75\n956\n910\n734\n507\n568\n802\n946\n891\n659\n116\n678\n375\n380\n430\n627\n873\n350\n930\n285\n6\n183\n96\n517\n81\n794\n235\n360\n551\n6\n28\n799\n226\n996\n894\n981\n551\n60\n40\n460\n479\n161\n318\n952\n433",
"output": "42"
},
{
"input": "100\n178\n71\n23\n84\n98\n8\n14\n4\n42\n56\n83\n87\n28\n22\n32\n50\n5\n96\n90\n1\n59\n74\n56\n96\n77\n88\n71\n38\n62\n36\n85\n1\n97\n98\n98\n32\n99\n42\n6\n81\n20\n49\n57\n71\n66\n9\n45\n41\n29\n28\n32\n68\n38\n29\n35\n29\n19\n27\n76\n85\n68\n68\n41\n32\n78\n72\n38\n19\n55\n83\n83\n25\n46\n62\n48\n26\n53\n14\n39\n31\n94\n84\n22\n39\n34\n96\n63\n37\n42\n6\n78\n76\n64\n16\n26\n6\n79\n53\n24\n29\n63",
"output": "2"
},
{
"input": "100\n885\n226\n266\n321\n72\n719\n29\n121\n533\n85\n672\n225\n830\n783\n822\n30\n791\n618\n166\n487\n922\n434\n814\n473\n5\n741\n947\n910\n305\n998\n49\n945\n588\n868\n809\n803\n168\n280\n614\n434\n634\n538\n591\n437\n540\n445\n313\n177\n171\n799\n778\n55\n617\n554\n583\n611\n12\n94\n599\n182\n765\n556\n965\n542\n35\n460\n177\n313\n485\n744\n384\n21\n52\n879\n792\n411\n614\n811\n565\n695\n428\n587\n631\n794\n461\n258\n193\n696\n936\n646\n756\n267\n55\n690\n730\n742\n734\n988\n235\n762\n440",
"output": "1"
},
{
"input": "100\n29\n9\n2\n10\n8\n6\n7\n7\n3\n3\n10\n4\n5\n2\n5\n1\n6\n3\n2\n5\n10\n10\n9\n1\n4\n5\n2\n2\n3\n1\n2\n2\n9\n6\n9\n7\n8\n8\n1\n5\n5\n3\n1\n5\n6\n1\n9\n2\n3\n8\n10\n8\n3\n2\n7\n1\n2\n1\n2\n8\n10\n5\n2\n3\n1\n10\n7\n1\n7\n4\n9\n6\n6\n4\n7\n1\n2\n7\n7\n9\n9\n7\n10\n4\n10\n8\n2\n1\n5\n5\n10\n5\n8\n1\n5\n6\n5\n1\n5\n6\n8",
"output": "3"
},
{
"input": "100\n644\n94\n69\n43\n36\n54\n93\n30\n74\n56\n95\n70\n49\n11\n36\n57\n30\n59\n3\n52\n59\n90\n82\n39\n67\n32\n8\n80\n64\n8\n65\n51\n48\n89\n90\n35\n4\n54\n66\n96\n68\n90\n30\n4\n13\n97\n41\n90\n85\n17\n45\n94\n31\n58\n4\n39\n76\n95\n92\n59\n67\n46\n96\n55\n82\n64\n20\n20\n83\n46\n37\n15\n60\n37\n79\n45\n47\n63\n73\n76\n31\n52\n36\n32\n49\n26\n61\n91\n31\n25\n62\n90\n65\n65\n5\n94\n7\n15\n97\n88\n68",
"output": "7"
},
{
"input": "100\n1756\n98\n229\n158\n281\n16\n169\n149\n239\n235\n182\n147\n215\n49\n270\n194\n242\n295\n289\n249\n19\n12\n144\n157\n92\n270\n122\n212\n97\n152\n14\n42\n12\n198\n98\n295\n154\n229\n191\n294\n5\n156\n43\n185\n184\n20\n125\n23\n10\n257\n244\n264\n79\n46\n277\n13\n22\n97\n212\n77\n293\n20\n51\n17\n109\n37\n68\n117\n51\n248\n10\n149\n179\n192\n239\n161\n13\n173\n297\n73\n43\n109\n288\n198\n81\n70\n254\n187\n277\n1\n295\n113\n95\n291\n293\n119\n205\n191\n37\n34\n116",
"output": "6"
},
{
"input": "100\n20562\n721\n452\n11\n703\n376\n183\n197\n203\n406\n642\n346\n446\n256\n760\n201\n360\n702\n707\n388\n779\n653\n610\n497\n768\n670\n134\n780\n306\n661\n180\n259\n256\n362\n6\n121\n415\n747\n170\n67\n439\n728\n193\n622\n481\n38\n225\n343\n303\n253\n436\n305\n68\n794\n247\n291\n600\n750\n188\n199\n757\n28\n776\n749\n253\n351\n53\n629\n129\n578\n209\n89\n651\n262\n638\n353\n469\n31\n144\n460\n176\n535\n562\n366\n639\n234\n577\n364\n761\n617\n303\n450\n778\n311\n289\n221\n274\n239\n626\n194\n36",
"output": "30"
},
{
"input": "100\n32630\n548\n21\n756\n138\n56\n719\n97\n86\n599\n531\n464\n137\n737\n239\n626\n179\n170\n271\n335\n178\n298\n597\n616\n104\n190\n216\n333\n606\n621\n310\n70\n286\n593\n655\n472\n556\n77\n625\n744\n395\n487\n762\n316\n469\n258\n475\n596\n651\n180\n737\n101\n511\n708\n163\n713\n475\n557\n649\n705\n583\n97\n447\n119\n91\n372\n194\n394\n667\n384\n635\n611\n746\n758\n613\n54\n508\n405\n188\n570\n254\n28\n599\n767\n115\n737\n194\n148\n686\n705\n236\n762\n613\n770\n633\n401\n773\n448\n274\n141\n718",
"output": "52"
},
{
"input": "1\n1\n1",
"output": "1"
}
] | 1,617,794,698
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 34
| 109
| 1,331,200
|
def insertion_sort(l):
for i in range(len(l)):
for j in (range(i)):
k = i - j
if l[k] >= l[k - 1]:
l[k - 1], l[k] = l[k], l[k - 1]
else:
break
return l
def selection_sort(l):
for i in range(len(l)):
min_ind = i
min_val = l[i]
for j in range(i, len(l)):
if min_val > l[j]:
min_val = l[j]
min_ind = j
l[i], l[min_ind] = l[min_ind], l[i]
return l
def bubble_sort(l):
for i in range(len(l) - 1):
for j in range(len(l) - 1 - i):
if l[j] > l[j + 1]:
l[j], l[j + 1] = l[j + 1], l[j]
return l
# l = [5,4,3,2,6,1,3,5,6,7,8,9,0,9,8,7,6,7,8,9,8,7,1,6,4,8,32]
# print(insertion_sort(l))
def main_function():
n = int(input())
m = int(input())
a = []
for i in range(n):
a_i = int(input())
a.append(a_i)
sorted_a = insertion_sort(a)
sum = 0
count = 0
for i in a:
if sum >= m:
return count
else:
sum += i
count += 1
return count
print(main_function())
|
Title: USB Flash Drives
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Sean is trying to save a large file to a USB flash drive. He has *n* USB flash drives with capacities equal to *a*1,<=*a*2,<=...,<=*a**n* megabytes. The file size is equal to *m* megabytes.
Find the minimum number of USB flash drives needed to write Sean's file, if he can split the file between drives.
Input Specification:
The first line contains positive integer *n* (1<=≤<=*n*<=≤<=100) — the number of USB flash drives.
The second line contains positive integer *m* (1<=≤<=*m*<=≤<=105) — the size of Sean's file.
Each of the next *n* lines contains positive integer *a**i* (1<=≤<=*a**i*<=≤<=1000) — the sizes of USB flash drives in megabytes.
It is guaranteed that the answer exists, i. e. the sum of all *a**i* is not less than *m*.
Output Specification:
Print the minimum number of USB flash drives to write Sean's file, if he can split the file between drives.
Demo Input:
['3\n5\n2\n1\n3\n', '3\n6\n2\n3\n2\n', '2\n5\n5\n10\n']
Demo Output:
['2\n', '3\n', '1\n']
Note:
In the first example Sean needs only two USB flash drives — the first and the third.
In the second example Sean needs all three USB flash drives.
In the third example Sean needs only one USB flash drive and he can use any available USB flash drive — the first or the second.
|
```python
def insertion_sort(l):
for i in range(len(l)):
for j in (range(i)):
k = i - j
if l[k] >= l[k - 1]:
l[k - 1], l[k] = l[k], l[k - 1]
else:
break
return l
def selection_sort(l):
for i in range(len(l)):
min_ind = i
min_val = l[i]
for j in range(i, len(l)):
if min_val > l[j]:
min_val = l[j]
min_ind = j
l[i], l[min_ind] = l[min_ind], l[i]
return l
def bubble_sort(l):
for i in range(len(l) - 1):
for j in range(len(l) - 1 - i):
if l[j] > l[j + 1]:
l[j], l[j + 1] = l[j + 1], l[j]
return l
# l = [5,4,3,2,6,1,3,5,6,7,8,9,0,9,8,7,6,7,8,9,8,7,1,6,4,8,32]
# print(insertion_sort(l))
def main_function():
n = int(input())
m = int(input())
a = []
for i in range(n):
a_i = int(input())
a.append(a_i)
sorted_a = insertion_sort(a)
sum = 0
count = 0
for i in a:
if sum >= m:
return count
else:
sum += i
count += 1
return count
print(main_function())
```
| 3
|
|
368
|
B
|
Sereja and Suffixes
|
PROGRAMMING
| 1,100
|
[
"data structures",
"dp"
] | null | null |
Sereja has an array *a*, consisting of *n* integers *a*1, *a*2, ..., *a**n*. The boy cannot sit and do nothing, he decided to study an array. Sereja took a piece of paper and wrote out *m* integers *l*1,<=*l*2,<=...,<=*l**m* (1<=≤<=*l**i*<=≤<=*n*). For each number *l**i* he wants to know how many distinct numbers are staying on the positions *l**i*, *l**i*<=+<=1, ..., *n*. Formally, he want to find the number of distinct numbers among *a**l**i*,<=*a**l**i*<=+<=1,<=...,<=*a**n*.?
Sereja wrote out the necessary array elements but the array was so large and the boy was so pressed for time. Help him, find the answer for the described question for each *l**i*.
|
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105) — the array elements.
Next *m* lines contain integers *l*1,<=*l*2,<=...,<=*l**m*. The *i*-th line contains integer *l**i* (1<=≤<=*l**i*<=≤<=*n*).
|
Print *m* lines — on the *i*-th line print the answer to the number *l**i*.
|
[
"10 10\n1 2 3 4 1 2 3 4 100000 99999\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n"
] |
[
"6\n6\n6\n6\n6\n5\n4\n3\n2\n1\n"
] |
none
| 1,000
|
[
{
"input": "10 10\n1 2 3 4 1 2 3 4 100000 99999\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10",
"output": "6\n6\n6\n6\n6\n5\n4\n3\n2\n1"
},
{
"input": "8 3\n8 6 4 3 4 2 4 8\n6\n4\n2",
"output": "3\n4\n5"
},
{
"input": "7 10\n1 3 8 6 2 2 7\n4\n2\n6\n3\n4\n4\n6\n2\n7\n4",
"output": "3\n5\n2\n4\n3\n3\n2\n5\n1\n3"
},
{
"input": "10 2\n2 6 5 7 2 2 3 2 4 8\n1\n2",
"output": "7\n7"
},
{
"input": "7 1\n68346 10956 76708 23018 84063 34833 80407\n1",
"output": "7"
},
{
"input": "2 2\n8 4\n1\n1",
"output": "2\n2"
},
{
"input": "1 5\n5\n1\n1\n1\n1\n1",
"output": "1\n1\n1\n1\n1"
},
{
"input": "4 7\n3 1 4 2\n4\n1\n2\n3\n2\n4\n4",
"output": "1\n4\n3\n2\n3\n1\n1"
},
{
"input": "4 3\n9 1 7 1\n1\n4\n2",
"output": "3\n1\n2"
},
{
"input": "8 3\n9280 6676 2720 6172 8329 10413 3975 1394\n5\n6\n7",
"output": "4\n3\n2"
},
{
"input": "1 1\n1\n1",
"output": "1"
}
] | 1,690,002,995
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 30
| 140
| 19,763,200
|
from sys import stdin
def solve():
n, m = map(int, stdin.readline().split())
A = [int(x) for x in stdin.readline().split()]
res = [0] * n
seen = set()
for i in range(n - 1, -1, -1):
seen.add(A[i])
res[i] = len(seen)
for _ in range(m):
i = int(stdin.readline())
print(res[i - 1])
solve()
|
Title: Sereja and Suffixes
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Sereja has an array *a*, consisting of *n* integers *a*1, *a*2, ..., *a**n*. The boy cannot sit and do nothing, he decided to study an array. Sereja took a piece of paper and wrote out *m* integers *l*1,<=*l*2,<=...,<=*l**m* (1<=≤<=*l**i*<=≤<=*n*). For each number *l**i* he wants to know how many distinct numbers are staying on the positions *l**i*, *l**i*<=+<=1, ..., *n*. Formally, he want to find the number of distinct numbers among *a**l**i*,<=*a**l**i*<=+<=1,<=...,<=*a**n*.?
Sereja wrote out the necessary array elements but the array was so large and the boy was so pressed for time. Help him, find the answer for the described question for each *l**i*.
Input Specification:
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105) — the array elements.
Next *m* lines contain integers *l*1,<=*l*2,<=...,<=*l**m*. The *i*-th line contains integer *l**i* (1<=≤<=*l**i*<=≤<=*n*).
Output Specification:
Print *m* lines — on the *i*-th line print the answer to the number *l**i*.
Demo Input:
['10 10\n1 2 3 4 1 2 3 4 100000 99999\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n']
Demo Output:
['6\n6\n6\n6\n6\n5\n4\n3\n2\n1\n']
Note:
none
|
```python
from sys import stdin
def solve():
n, m = map(int, stdin.readline().split())
A = [int(x) for x in stdin.readline().split()]
res = [0] * n
seen = set()
for i in range(n - 1, -1, -1):
seen.add(A[i])
res[i] = len(seen)
for _ in range(m):
i = int(stdin.readline())
print(res[i - 1])
solve()
```
| 3
|
|
443
|
A
|
Anton and Letters
|
PROGRAMMING
| 800
|
[
"constructive algorithms",
"implementation"
] | null | null |
Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line.
Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set.
|
The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space.
|
Print a single number — the number of distinct letters in Anton's set.
|
[
"{a, b, c}\n",
"{b, a, b, a}\n",
"{}\n"
] |
[
"3\n",
"2\n",
"0\n"
] |
none
| 500
|
[
{
"input": "{a, b, c}",
"output": "3"
},
{
"input": "{b, a, b, a}",
"output": "2"
},
{
"input": "{}",
"output": "0"
},
{
"input": "{a, a, c, b, b, b, c, c, c, c}",
"output": "3"
},
{
"input": "{a, c, b, b}",
"output": "3"
},
{
"input": "{a, b}",
"output": "2"
},
{
"input": "{a}",
"output": "1"
},
{
"input": "{b, a, b, a, b, c, c, b, c, b}",
"output": "3"
},
{
"input": "{e, g, c, e}",
"output": "3"
},
{
"input": "{a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a}",
"output": "1"
},
{
"input": "{a, a, b}",
"output": "2"
},
{
"input": "{a, b, b, b, a, b, a, a, a, a, a, a, b, a, b, a, a, a, a, a, b, a, b, a}",
"output": "2"
},
{
"input": "{j, u, a, c, f, w, e, w, x, t, h, p, v, n, i, l, x, n, i, b, u, c, a, a}",
"output": "16"
},
{
"input": "{x, i, w, c, p, e, h, z, k, i}",
"output": "9"
},
{
"input": "{t, k, o, x, r, d, q, j, k, e, z, w, y, r, z, s, s, e, s, b, k, i}",
"output": "15"
},
{
"input": "{y}",
"output": "1"
},
{
"input": "{x}",
"output": "1"
},
{
"input": "{b, z, a, z}",
"output": "3"
},
{
"input": "{z}",
"output": "1"
},
{
"input": "{a, z}",
"output": "2"
},
{
"input": "{a, b, z}",
"output": "3"
},
{
"input": "{s, q, z, r, t, a, b, h, j, i, o, z, r, q}",
"output": "11"
}
] | 1,688,586,845
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 27
| 46
| 0
|
a=(input(""))
a.translate("{")
a.translate("}")
gazly=[]
wazly=a.translate( { ord(i): None for i in '{}, '} )
for x in wazly:
if x in gazly:
continue
else:
gazly.append(x)
print(len(gazly))
|
Title: Anton and Letters
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line.
Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set.
Input Specification:
The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space.
Output Specification:
Print a single number — the number of distinct letters in Anton's set.
Demo Input:
['{a, b, c}\n', '{b, a, b, a}\n', '{}\n']
Demo Output:
['3\n', '2\n', '0\n']
Note:
none
|
```python
a=(input(""))
a.translate("{")
a.translate("}")
gazly=[]
wazly=a.translate( { ord(i): None for i in '{}, '} )
for x in wazly:
if x in gazly:
continue
else:
gazly.append(x)
print(len(gazly))
```
| 3
|
|
158
|
B
|
Taxi
|
PROGRAMMING
| 1,100
|
[
"*special",
"greedy",
"implementation"
] | null | null |
After the lessons *n* groups of schoolchildren went outside and decided to visit Polycarpus to celebrate his birthday. We know that the *i*-th group consists of *s**i* friends (1<=≤<=*s**i*<=≤<=4), and they want to go to Polycarpus together. They decided to get there by taxi. Each car can carry at most four passengers. What minimum number of cars will the children need if all members of each group should ride in the same taxi (but one taxi can take more than one group)?
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of groups of schoolchildren. The second line contains a sequence of integers *s*1,<=*s*2,<=...,<=*s**n* (1<=≤<=*s**i*<=≤<=4). The integers are separated by a space, *s**i* is the number of children in the *i*-th group.
|
Print the single number — the minimum number of taxis necessary to drive all children to Polycarpus.
|
[
"5\n1 2 4 3 3\n",
"8\n2 3 4 4 2 1 3 1\n"
] |
[
"4\n",
"5\n"
] |
In the first test we can sort the children into four cars like this:
- the third group (consisting of four children), - the fourth group (consisting of three children), - the fifth group (consisting of three children), - the first and the second group (consisting of one and two children, correspondingly).
There are other ways to sort the groups into four cars.
| 1,000
|
[
{
"input": "5\n1 2 4 3 3",
"output": "4"
},
{
"input": "8\n2 3 4 4 2 1 3 1",
"output": "5"
},
{
"input": "5\n4 4 4 4 4",
"output": "5"
},
{
"input": "12\n1 1 1 1 1 1 1 1 1 1 1 1",
"output": "3"
},
{
"input": "2\n2 1",
"output": "1"
},
{
"input": "4\n3 2 1 3",
"output": "3"
},
{
"input": "4\n2 4 1 3",
"output": "3"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "1\n2",
"output": "1"
},
{
"input": "1\n3",
"output": "1"
},
{
"input": "1\n4",
"output": "1"
},
{
"input": "2\n1 1",
"output": "1"
},
{
"input": "2\n2 2",
"output": "1"
},
{
"input": "2\n3 3",
"output": "2"
},
{
"input": "2\n4 4",
"output": "2"
},
{
"input": "2\n2 1",
"output": "1"
},
{
"input": "2\n3 1",
"output": "1"
},
{
"input": "2\n4 1",
"output": "2"
},
{
"input": "2\n2 3",
"output": "2"
},
{
"input": "2\n4 2",
"output": "2"
},
{
"input": "2\n4 3",
"output": "2"
},
{
"input": "4\n2 2 1 1",
"output": "2"
},
{
"input": "4\n3 1 3 1",
"output": "2"
},
{
"input": "4\n1 4 1 4",
"output": "3"
},
{
"input": "4\n2 2 3 3",
"output": "3"
},
{
"input": "4\n2 4 4 2",
"output": "3"
},
{
"input": "4\n3 3 4 4",
"output": "4"
},
{
"input": "3\n1 1 2",
"output": "1"
},
{
"input": "3\n1 3 1",
"output": "2"
},
{
"input": "3\n4 1 1",
"output": "2"
},
{
"input": "3\n3 2 2",
"output": "2"
},
{
"input": "3\n2 4 2",
"output": "2"
},
{
"input": "3\n3 4 3",
"output": "3"
},
{
"input": "3\n2 2 1",
"output": "2"
},
{
"input": "3\n1 3 3",
"output": "2"
},
{
"input": "3\n4 4 1",
"output": "3"
},
{
"input": "3\n3 3 2",
"output": "3"
},
{
"input": "3\n4 2 4",
"output": "3"
},
{
"input": "3\n4 3 4",
"output": "3"
},
{
"input": "3\n4 3 2",
"output": "3"
},
{
"input": "3\n3 1 4",
"output": "2"
},
{
"input": "3\n2 1 4",
"output": "2"
},
{
"input": "3\n3 1 2",
"output": "2"
},
{
"input": "4\n4 4 3 2",
"output": "4"
},
{
"input": "4\n1 4 3 1",
"output": "3"
},
{
"input": "4\n2 2 4 1",
"output": "3"
},
{
"input": "4\n3 2 1 2",
"output": "2"
},
{
"input": "5\n2 4 2 3 4",
"output": "4"
},
{
"input": "5\n1 3 4 1 3",
"output": "3"
},
{
"input": "5\n1 1 2 4 2",
"output": "3"
},
{
"input": "5\n1 3 2 3 2",
"output": "3"
},
{
"input": "8\n1 1 2 1 1 1 3 2",
"output": "3"
},
{
"input": "78\n2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 3 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2",
"output": "39"
},
{
"input": "7\n2 2 2 1 2 1 2",
"output": "3"
},
{
"input": "9\n3 1 2 1 1 1 1 1 1",
"output": "3"
},
{
"input": "10\n3 1 2 2 2 2 2 2 1 2",
"output": "5"
},
{
"input": "18\n1 3 3 3 1 1 3 1 1 1 3 3 3 3 1 3 1 1",
"output": "9"
},
{
"input": "26\n3 1 3 3 1 3 2 3 1 3 3 2 1 2 3 2 2 1 2 1 2 1 1 3 2 1",
"output": "13"
}
] | 1,699,098,663
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 3
| 92
| 0
|
x = int(input())
arr = [int(i) for i in input().split()]
t1 = 0
t2 = 0
t3 = 0
t4 = 0
t = 0
for i in arr:
if i == 1:
t1 += 1
elif i == 2:
t2 += 1
elif i == 3:
t3 += 1
else:
t4 += 1
while x != 0:
if t1 != 0:
if t3 != 0:
t += 1
t1 -= 1
t3 -= 1
x -= 2
elif t2 != 0:
if t1 > 1:
t -= 1
x -= 1
else:
t += 1
t1 -= 1
t2 -= 1
x -= 2
else:
t1 -= 1
t += 1
x -= 1
elif t2 != 0:
if t2 > 1:
t2 -= 2
t += 1
x -= 2
else:
t2 -= 1
t += 1
x -= 1
elif t3 != 0:
t3 -= 1
t += 1
x -= 1
elif t4 != 0:
t4 -= 1
t += 1
x -= 1
print(t)
|
Title: Taxi
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
After the lessons *n* groups of schoolchildren went outside and decided to visit Polycarpus to celebrate his birthday. We know that the *i*-th group consists of *s**i* friends (1<=≤<=*s**i*<=≤<=4), and they want to go to Polycarpus together. They decided to get there by taxi. Each car can carry at most four passengers. What minimum number of cars will the children need if all members of each group should ride in the same taxi (but one taxi can take more than one group)?
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of groups of schoolchildren. The second line contains a sequence of integers *s*1,<=*s*2,<=...,<=*s**n* (1<=≤<=*s**i*<=≤<=4). The integers are separated by a space, *s**i* is the number of children in the *i*-th group.
Output Specification:
Print the single number — the minimum number of taxis necessary to drive all children to Polycarpus.
Demo Input:
['5\n1 2 4 3 3\n', '8\n2 3 4 4 2 1 3 1\n']
Demo Output:
['4\n', '5\n']
Note:
In the first test we can sort the children into four cars like this:
- the third group (consisting of four children), - the fourth group (consisting of three children), - the fifth group (consisting of three children), - the first and the second group (consisting of one and two children, correspondingly).
There are other ways to sort the groups into four cars.
|
```python
x = int(input())
arr = [int(i) for i in input().split()]
t1 = 0
t2 = 0
t3 = 0
t4 = 0
t = 0
for i in arr:
if i == 1:
t1 += 1
elif i == 2:
t2 += 1
elif i == 3:
t3 += 1
else:
t4 += 1
while x != 0:
if t1 != 0:
if t3 != 0:
t += 1
t1 -= 1
t3 -= 1
x -= 2
elif t2 != 0:
if t1 > 1:
t -= 1
x -= 1
else:
t += 1
t1 -= 1
t2 -= 1
x -= 2
else:
t1 -= 1
t += 1
x -= 1
elif t2 != 0:
if t2 > 1:
t2 -= 2
t += 1
x -= 2
else:
t2 -= 1
t += 1
x -= 1
elif t3 != 0:
t3 -= 1
t += 1
x -= 1
elif t4 != 0:
t4 -= 1
t += 1
x -= 1
print(t)
```
| 0
|
|
23
|
A
|
You're Given a String...
|
PROGRAMMING
| 1,200
|
[
"brute force",
"greedy"
] |
A. You're Given a String...
|
2
|
256
|
You're given a string of lower-case Latin letters. Your task is to find the length of its longest substring that can be met in the string at least twice. These occurrences can overlap (see sample test 2).
|
The first input line contains the string. It's guaranteed, that the string is non-empty, consists of lower-case Latin letters, and its length doesn't exceed 100.
|
Output one number — length of the longest substring that can be met in the string at least twice.
|
[
"abcd\n",
"ababa\n",
"zzz\n"
] |
[
"0",
"3",
"2"
] |
none
| 0
|
[
{
"input": "abcd",
"output": "0"
},
{
"input": "ababa",
"output": "3"
},
{
"input": "zzz",
"output": "2"
},
{
"input": "kmmm",
"output": "2"
},
{
"input": "wzznz",
"output": "1"
},
{
"input": "qlzazaaqll",
"output": "2"
},
{
"input": "lzggglgpep",
"output": "2"
},
{
"input": "iegdlraaidefgegiagrdfhihe",
"output": "2"
},
{
"input": "esxpqmdrtidgtkxojuxyrcwxlycywtzbjzpxvbngnlepgzcaeg",
"output": "1"
},
{
"input": "garvpaimjdjiivamusjdwfcaoswuhxyyxvrxzajoyihggvuxumaadycfphrzbprraicvjjlsdhojihaw",
"output": "2"
},
{
"input": "ckvfndqgkmhcyojaqgdkenmbexufryhqejdhctxujmtrwkpbqxufxamgoeigzfyzbhevpbkvviwntdhqscvkmphnkkljizndnbjt",
"output": "3"
},
{
"input": "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb",
"output": "99"
},
{
"input": "ikiikiikikiiikkkkkikkkkiiiiikkiiikkiikiikkkkikkkikikkikiiikkikikiiikikkkiiikkkikkikkikkkkiiikkiiiiii",
"output": "10"
},
{
"input": "ovovhoovvhohhhvhhvhhvhovoohovhhoooooovohvooooohvvoooohvvovhhvhovhhvoovhvhvoovovvhooovhhooovohvhhovhv",
"output": "8"
},
{
"input": "ccwckkkycccccckwckwkwkwkkkkyycykcccycyckwywcckwykcycykkkwcycwwcykcwkwkwwykwkwcykywwwyyykckkyycckwcwk",
"output": "5"
},
{
"input": "ttketfkefktfztezzkzfkkeetkkfktftzktezekkeezkeeetteeteefetefkzzzetekfftkeffzkktffzkzzeftfeezfefzffeef",
"output": "4"
},
{
"input": "rtharczpfznrgdnkltchafduydgbgkdjqrmjqyfmpwjwphrtsjbmswkanjlprbnduaqbcjqxlxmkspkhkcnzbqwxonzxxdmoigti",
"output": "2"
},
{
"input": "fplrkfklvwdeiynbjgaypekambmbjfnoknlhczhkdmljicookdywdgpnlnqlpunnkebnikgcgcjefeqhknvlynmvjcegvcdgvvdb",
"output": "2"
},
{
"input": "txbciieycswqpniwvzipwlottivvnfsysgzvzxwbctcchfpvlbcjikdofhpvsknptpjdbxemtmjcimetkemdbettqnbvzzbdyxxb",
"output": "2"
},
{
"input": "fmubmfwefikoxtqvmaavwjxmoqltapexkqxcsztpezfcltqavuicefxovuswmqimuikoppgqpiapqutkczgcvxzutavkujxvpklv",
"output": "3"
},
{
"input": "ipsrjylhpkjvlzncfixipstwcicxqygqcfrawpzzvckoveyqhathglblhpkjvlzncfixipfajaqobtzvthmhgbuawoxoknirclxg",
"output": "15"
},
{
"input": "kcnjsntjzcbgzjscrsrjkrbytqsrptzspzctjrorsyggrtkcnjsntjzcbgzjscrsrjyqbrtpcgqirsrrjbbbrnyqstnrozcoztt",
"output": "20"
},
{
"input": "unhcfnrhsqetuerjqcetrhlsqgfnqfntvkgxsscquolxxroqgtchffyccetrhlsqgfnqfntvkgxsscquolxxroqgtchffhfqvx",
"output": "37"
},
{
"input": "kkcckkccckkcckcccckcckkkkcckkkkckkkcckckkkkkckkkkkcckkccckkcckcccckcckkkkcckkkkckkkcckckkkkkckckckkc",
"output": "46"
},
{
"input": "mlhsyijxeydqxhtkmpdeqwzogjvxahmssyhfhqessbxzvydbrxdmlhsyijxeydqxhtkmpdeqwzogjvxahmssyhfhqessbxzvydik",
"output": "47"
},
{
"input": "abcdefghijklmnopqrstuvwxyz",
"output": "0"
},
{
"input": "tttttbttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttmttttttt",
"output": "85"
},
{
"input": "ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffffffffffffffffffffffffffffffffffff",
"output": "61"
},
{
"input": "cccccccccccccccccccccccwcccccccccccccccccccccuccccccccccccccnccccccccccccccccccccccccccccccccccccccc",
"output": "38"
},
{
"input": "ffffffffffffffffffffffffffufffgfffffffffffffffffffffffffffffffffffffffgffffffftffffffgffffffffffffff",
"output": "38"
},
{
"input": "rrrrrrrrrrrrrrrrrrrlhbrrrrrrrrurrrrrrrfrrqrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrewrrrrrrryrrxrrrrrrrrrrr",
"output": "33"
},
{
"input": "vyvvvvvvvvzvvvvvzvvvwvvvvrvvvvvvvvvvvvvvvrvvvvvvvvvpkvvpvgvvvvvvvvvvvvvgvvvvvvvvvvvvvvvvvvysvvvbvvvv",
"output": "17"
},
{
"input": "cbubbbbbbbbbbfbbbbbbbbjbobbbbbbbbbbibbubbbbjbbbnzgbbzbbfbbbbbbbbbbbfbpbbbbbbbbbbygbbbgbabbbbbbbhibbb",
"output": "12"
},
{
"input": "lrqrrrrrrrjrrrrrcdrrgrrmwvrrrrrrrrrxfzrmrmrryrrrurrrdrrrrrrrrrrererrrsrrrrrrrrrrrqrrrrcrrwjsrrlrrrrr",
"output": "10"
},
{
"input": "ssssusisisosscssssztzessssyspskjssvosiissussszsosssslsssdsssvssvsssslsssmsfjasjsssssowscsjsssszsspss",
"output": "8"
},
{
"input": "uukuuuumueuuuujuukgdhbztuuuubbguuocuozfaunqufjujuguyuuvkuuauubuubuucuvtjuuuuuusduduuuuuuuueunuuuuuzu",
"output": "7"
},
{
"input": "jpkkgwklngwqcfzmwkkpcwkkkkkekkkekkkdsykqwjkkkhkkkxdnukkkkkkmkqykkkxqklkskkrkkkkkqqjikkkkkkpknkkkkkoh",
"output": "7"
},
{
"input": "bmzbbfbbhqxwthtbbisbbbbbtbbfbbpbfbbpbkbjfbcbbbbzbbbdwmbbbrnvqdbbtbbuglrnbbbbvmbyblebbabibrevaxbbjbqb",
"output": "6"
},
{
"input": "qqqmqqqsbteqqopsuqiqumrqzpqnqgqeniqqkyqqyqqqpxzqeqqquhdqquhqqqfqjirqaqqaquxqoqqjqqqqbjbgqcqqqqicnkqc",
"output": "4"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaasaaaavaaaaaaauaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "44"
},
{
"input": "a",
"output": "0"
},
{
"input": "fg",
"output": "0"
},
{
"input": "yy",
"output": "1"
},
{
"input": "abcabcabc",
"output": "6"
},
{
"input": "qwerqwedqwes",
"output": "3"
}
] | 1,378,943,242
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 45
| 124
| 0
|
s=input()
n=len(s)
done=False
for length in range(n-1,0,-1):
if(done):
break
for start in range(n):
if(start+length-1>=n):
break
x=s.count(s[start:start+length])
if(x>1):
print(length)
done=True
break
if(x==1):
i=s.index(s[start:start+length])
h=s[i+1:].count(s[start:start+length])
if(h>0):
print(length)
done=True
break
if(not done):
print(0)
|
Title: You're Given a String...
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You're given a string of lower-case Latin letters. Your task is to find the length of its longest substring that can be met in the string at least twice. These occurrences can overlap (see sample test 2).
Input Specification:
The first input line contains the string. It's guaranteed, that the string is non-empty, consists of lower-case Latin letters, and its length doesn't exceed 100.
Output Specification:
Output one number — length of the longest substring that can be met in the string at least twice.
Demo Input:
['abcd\n', 'ababa\n', 'zzz\n']
Demo Output:
['0', '3', '2']
Note:
none
|
```python
s=input()
n=len(s)
done=False
for length in range(n-1,0,-1):
if(done):
break
for start in range(n):
if(start+length-1>=n):
break
x=s.count(s[start:start+length])
if(x>1):
print(length)
done=True
break
if(x==1):
i=s.index(s[start:start+length])
h=s[i+1:].count(s[start:start+length])
if(h>0):
print(length)
done=True
break
if(not done):
print(0)
```
| 3.969
|
821
|
A
|
Okabe and Future Gadget Laboratory
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Okabe needs to renovate the Future Gadget Laboratory after he tried doing some crazy experiments! The lab is represented as an *n* by *n* square grid of integers. A good lab is defined as a lab in which every number not equal to 1 can be expressed as the sum of a number in the same row and a number in the same column. In other words, for every *x*,<=*y* such that 1<=≤<=*x*,<=*y*<=≤<=*n* and *a**x*,<=*y*<=≠<=1, there should exist two indices *s* and *t* so that *a**x*,<=*y*<==<=*a**x*,<=*s*<=+<=*a**t*,<=*y*, where *a**i*,<=*j* denotes the integer in *i*-th row and *j*-th column.
Help Okabe determine whether a given lab is good!
|
The first line of input contains the integer *n* (1<=≤<=*n*<=≤<=50) — the size of the lab.
The next *n* lines contain *n* space-separated integers denoting a row of the grid. The *j*-th integer in the *i*-th row is *a**i*,<=*j* (1<=≤<=*a**i*,<=*j*<=≤<=105).
|
Print "Yes" if the given lab is good and "No" otherwise.
You can output each letter in upper or lower case.
|
[
"3\n1 1 2\n2 3 1\n6 4 1\n",
"3\n1 5 2\n1 1 1\n1 2 3\n"
] |
[
"Yes\n",
"No\n"
] |
In the first sample test, the 6 in the bottom left corner is valid because it is the sum of the 2 above it and the 4 on the right. The same holds for every number not equal to 1 in this table, so the answer is "Yes".
In the second sample test, the 5 cannot be formed as the sum of an integer in the same row and an integer in the same column. Thus the answer is "No".
| 500
|
[
{
"input": "3\n1 1 2\n2 3 1\n6 4 1",
"output": "Yes"
},
{
"input": "3\n1 5 2\n1 1 1\n1 2 3",
"output": "No"
},
{
"input": "1\n1",
"output": "Yes"
},
{
"input": "4\n1 1 1 1\n1 11 1 2\n2 5 1 4\n3 9 4 1",
"output": "Yes"
},
{
"input": "4\n1 1 1 1\n1 7 1 1\n1 3 1 2\n2 6 3 1",
"output": "Yes"
},
{
"input": "4\n1 1 1 1\n1 12 1 2\n4 4 1 3\n5 10 6 1",
"output": "Yes"
},
{
"input": "4\n1 1 1 1\n1 13 1 2\n4 5 1 3\n5 11 6 1",
"output": "Yes"
},
{
"input": "4\n1 1 1 1\n1 13 1 2\n4 5 1 3\n7 11 6 1",
"output": "No"
},
{
"input": "4\n1 1 1 1\n1 14 1 6\n4 5 1 5\n3 8 2 1",
"output": "Yes"
},
{
"input": "10\n3 2 6 5 1 2 1 1 2 1\n1 2 2 3 1 4 1 1 1 1\n1 1 3 1 2 2 2 1 1 1\n1 3 1 2 1 2 1 1 1 1\n12 1 4 3 3 1 1 1 2 1\n8 1 1 1 1 3 6 5 1 3\n1 1 1 2 4 1 3 2 1 1\n1 1 1 1 1 1 1 2 1 1\n1 2 1 1 1 1 1 1 1 1\n2 1 1 1 1 1 1 1 1 2",
"output": "Yes"
},
{
"input": "4\n1 2 3 5\n1 1 1 1\n1 1 1 1\n1 1 1 1",
"output": "No"
},
{
"input": "1\n2",
"output": "No"
},
{
"input": "3\n1 1 4\n1 1 2\n1 1 2",
"output": "No"
},
{
"input": "1\n5",
"output": "No"
},
{
"input": "3\n1 2 1\n2 2 3\n1 3 1",
"output": "No"
},
{
"input": "3\n2 1 1\n2 1 1\n2 1 1",
"output": "No"
},
{
"input": "1\n60000",
"output": "No"
}
] | 1,512,707,164
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 46
| 5,529,600
|
n = int(input())
arr = []
for i in range(n):
arr.append(map(int, input().split()))
f = True
for i in range(n):
for j in range(n):
if arr[i][j] > 1:
if not any(arr[i][j] == arr[i][k] + arr[l][j] for k in range(n) for l in range(n)):
f = False
print("Yes" if f else "No")
|
Title: Okabe and Future Gadget Laboratory
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Okabe needs to renovate the Future Gadget Laboratory after he tried doing some crazy experiments! The lab is represented as an *n* by *n* square grid of integers. A good lab is defined as a lab in which every number not equal to 1 can be expressed as the sum of a number in the same row and a number in the same column. In other words, for every *x*,<=*y* such that 1<=≤<=*x*,<=*y*<=≤<=*n* and *a**x*,<=*y*<=≠<=1, there should exist two indices *s* and *t* so that *a**x*,<=*y*<==<=*a**x*,<=*s*<=+<=*a**t*,<=*y*, where *a**i*,<=*j* denotes the integer in *i*-th row and *j*-th column.
Help Okabe determine whether a given lab is good!
Input Specification:
The first line of input contains the integer *n* (1<=≤<=*n*<=≤<=50) — the size of the lab.
The next *n* lines contain *n* space-separated integers denoting a row of the grid. The *j*-th integer in the *i*-th row is *a**i*,<=*j* (1<=≤<=*a**i*,<=*j*<=≤<=105).
Output Specification:
Print "Yes" if the given lab is good and "No" otherwise.
You can output each letter in upper or lower case.
Demo Input:
['3\n1 1 2\n2 3 1\n6 4 1\n', '3\n1 5 2\n1 1 1\n1 2 3\n']
Demo Output:
['Yes\n', 'No\n']
Note:
In the first sample test, the 6 in the bottom left corner is valid because it is the sum of the 2 above it and the 4 on the right. The same holds for every number not equal to 1 in this table, so the answer is "Yes".
In the second sample test, the 5 cannot be formed as the sum of an integer in the same row and an integer in the same column. Thus the answer is "No".
|
```python
n = int(input())
arr = []
for i in range(n):
arr.append(map(int, input().split()))
f = True
for i in range(n):
for j in range(n):
if arr[i][j] > 1:
if not any(arr[i][j] == arr[i][k] + arr[l][j] for k in range(n) for l in range(n)):
f = False
print("Yes" if f else "No")
```
| -1
|
|
996
|
B
|
World Cup
|
PROGRAMMING
| 1,300
|
[
"binary search",
"math"
] | null | null |
Allen wants to enter a fan zone that occupies a round square and has $n$ entrances.
There already is a queue of $a_i$ people in front of the $i$-th entrance. Each entrance allows one person from its queue to enter the fan zone in one minute.
Allen uses the following strategy to enter the fan zone:
- Initially he stands in the end of the queue in front of the first entrance. - Each minute, if he is not allowed into the fan zone during the minute (meaning he is not the first in the queue), he leaves the current queue and stands in the end of the queue of the next entrance (or the first entrance if he leaves the last entrance).
Determine the entrance through which Allen will finally enter the fan zone.
|
The first line contains a single integer $n$ ($2 \le n \le 10^5$) — the number of entrances.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le 10^9$) — the number of people in queues. These numbers do not include Allen.
|
Print a single integer — the number of entrance that Allen will use.
|
[
"4\n2 3 2 0\n",
"2\n10 10\n",
"6\n5 2 6 5 7 4\n"
] |
[
"3\n",
"1\n",
"6\n"
] |
In the first example the number of people (not including Allen) changes as follows: $[\textbf{2}, 3, 2, 0] \to [1, \textbf{2}, 1, 0] \to [0, 1, \textbf{0}, 0]$. The number in bold is the queue Alles stands in. We see that he will enter the fan zone through the third entrance.
In the second example the number of people (not including Allen) changes as follows: $[\textbf{10}, 10] \to [9, \textbf{9}] \to [\textbf{8}, 8] \to [7, \textbf{7}] \to [\textbf{6}, 6] \to \\ [5, \textbf{5}] \to [\textbf{4}, 4] \to [3, \textbf{3}] \to [\textbf{2}, 2] \to [1, \textbf{1}] \to [\textbf{0}, 0]$.
In the third example the number of people (not including Allen) changes as follows: $[\textbf{5}, 2, 6, 5, 7, 4] \to [4, \textbf{1}, 5, 4, 6, 3] \to [3, 0, \textbf{4}, 3, 5, 2] \to \\ [2, 0, 3, \textbf{2}, 4, 1] \to [1, 0, 2, 1, \textbf{3}, 0] \to [0, 0, 1, 0, 2, \textbf{0}]$.
| 1,000
|
[
{
"input": "4\n2 3 2 0",
"output": "3"
},
{
"input": "2\n10 10",
"output": "1"
},
{
"input": "6\n5 2 6 5 7 4",
"output": "6"
},
{
"input": "2\n483544186 940350702",
"output": "1"
},
{
"input": "10\n3 3 3 5 6 9 3 1 7 3",
"output": "7"
},
{
"input": "10\n0 8 45 88 48 68 28 55 17 24",
"output": "1"
},
{
"input": "100\n8 8 9 10 6 8 2 4 2 2 10 6 6 10 10 2 3 5 1 2 10 4 2 0 9 4 9 3 0 6 3 2 3 10 10 6 4 6 4 4 2 5 1 4 1 1 9 8 9 5 3 5 5 4 5 5 6 5 3 3 7 2 0 10 9 7 7 3 5 1 0 9 6 3 1 3 4 4 3 6 3 2 1 4 10 2 3 4 4 3 6 7 6 2 1 7 0 6 8 10",
"output": "7"
},
{
"input": "10\n5 6 7 8 9 10 11 12 13 14",
"output": "1"
},
{
"input": "10\n15 14 13 12 11 10 9 8 7 6",
"output": "9"
},
{
"input": "2\n1000000000 1000000000",
"output": "1"
},
{
"input": "3\n3 3 1",
"output": "3"
},
{
"input": "10\n1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000",
"output": "1"
},
{
"input": "3\n15 8 9",
"output": "2"
},
{
"input": "3\n5 5 5",
"output": "3"
},
{
"input": "3\n41 5 6",
"output": "2"
},
{
"input": "2\n999999999 1000000000",
"output": "1"
},
{
"input": "2\n0 1",
"output": "1"
},
{
"input": "3\n3 2 3",
"output": "1"
},
{
"input": "3\n8 5 8",
"output": "2"
},
{
"input": "4\n5 2 3 4",
"output": "2"
},
{
"input": "2\n0 0",
"output": "1"
},
{
"input": "2\n3 3",
"output": "2"
},
{
"input": "4\n9 2 4 7",
"output": "2"
},
{
"input": "30\n1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000",
"output": "11"
},
{
"input": "4\n11 10 12 12",
"output": "1"
},
{
"input": "2\n1 0",
"output": "2"
},
{
"input": "6\n7 2 6 5 7 9",
"output": "2"
},
{
"input": "3\n1000000000 1000000000 1000000000",
"output": "2"
},
{
"input": "2\n999999999 999999699",
"output": "2"
},
{
"input": "5\n5 5 5 5 5",
"output": "1"
},
{
"input": "2\n1 1",
"output": "2"
}
] | 1,688,752,952
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 2
| 1,000
| 0
|
#L
n = int(input())
a = [int(x) for x in input().split()]
for i in range(10**9):
if (a[i%n]-i==0):
print(i%n+1)
break
|
Title: World Cup
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Allen wants to enter a fan zone that occupies a round square and has $n$ entrances.
There already is a queue of $a_i$ people in front of the $i$-th entrance. Each entrance allows one person from its queue to enter the fan zone in one minute.
Allen uses the following strategy to enter the fan zone:
- Initially he stands in the end of the queue in front of the first entrance. - Each minute, if he is not allowed into the fan zone during the minute (meaning he is not the first in the queue), he leaves the current queue and stands in the end of the queue of the next entrance (or the first entrance if he leaves the last entrance).
Determine the entrance through which Allen will finally enter the fan zone.
Input Specification:
The first line contains a single integer $n$ ($2 \le n \le 10^5$) — the number of entrances.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le 10^9$) — the number of people in queues. These numbers do not include Allen.
Output Specification:
Print a single integer — the number of entrance that Allen will use.
Demo Input:
['4\n2 3 2 0\n', '2\n10 10\n', '6\n5 2 6 5 7 4\n']
Demo Output:
['3\n', '1\n', '6\n']
Note:
In the first example the number of people (not including Allen) changes as follows: $[\textbf{2}, 3, 2, 0] \to [1, \textbf{2}, 1, 0] \to [0, 1, \textbf{0}, 0]$. The number in bold is the queue Alles stands in. We see that he will enter the fan zone through the third entrance.
In the second example the number of people (not including Allen) changes as follows: $[\textbf{10}, 10] \to [9, \textbf{9}] \to [\textbf{8}, 8] \to [7, \textbf{7}] \to [\textbf{6}, 6] \to \\ [5, \textbf{5}] \to [\textbf{4}, 4] \to [3, \textbf{3}] \to [\textbf{2}, 2] \to [1, \textbf{1}] \to [\textbf{0}, 0]$.
In the third example the number of people (not including Allen) changes as follows: $[\textbf{5}, 2, 6, 5, 7, 4] \to [4, \textbf{1}, 5, 4, 6, 3] \to [3, 0, \textbf{4}, 3, 5, 2] \to \\ [2, 0, 3, \textbf{2}, 4, 1] \to [1, 0, 2, 1, \textbf{3}, 0] \to [0, 0, 1, 0, 2, \textbf{0}]$.
|
```python
#L
n = int(input())
a = [int(x) for x in input().split()]
for i in range(10**9):
if (a[i%n]-i==0):
print(i%n+1)
break
```
| 0
|
|
320
|
A
|
Magic Numbers
|
PROGRAMMING
| 900
|
[
"brute force",
"greedy"
] | null | null |
A magic number is a number formed by concatenation of numbers 1, 14 and 144. We can use each of these numbers any number of times. Therefore 14144, 141414 and 1411 are magic numbers but 1444, 514 and 414 are not.
You're given a number. Determine if it is a magic number or not.
|
The first line of input contains an integer *n*, (1<=≤<=*n*<=≤<=109). This number doesn't contain leading zeros.
|
Print "YES" if *n* is a magic number or print "NO" if it's not.
|
[
"114114\n",
"1111\n",
"441231\n"
] |
[
"YES\n",
"YES\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "114114",
"output": "YES"
},
{
"input": "1111",
"output": "YES"
},
{
"input": "441231",
"output": "NO"
},
{
"input": "1",
"output": "YES"
},
{
"input": "14",
"output": "YES"
},
{
"input": "114",
"output": "YES"
},
{
"input": "9",
"output": "NO"
},
{
"input": "414",
"output": "NO"
},
{
"input": "1000000000",
"output": "NO"
},
{
"input": "144144144",
"output": "YES"
},
{
"input": "1444",
"output": "NO"
},
{
"input": "11",
"output": "YES"
},
{
"input": "141414141",
"output": "YES"
},
{
"input": "11110111",
"output": "NO"
},
{
"input": "114114144",
"output": "YES"
},
{
"input": "444",
"output": "NO"
},
{
"input": "9999",
"output": "NO"
},
{
"input": "111444",
"output": "NO"
},
{
"input": "11114",
"output": "YES"
},
{
"input": "41111",
"output": "NO"
},
{
"input": "114414441",
"output": "NO"
},
{
"input": "144414441",
"output": "NO"
},
{
"input": "144244144",
"output": "NO"
},
{
"input": "111111111",
"output": "YES"
},
{
"input": "144444444",
"output": "NO"
},
{
"input": "444444444",
"output": "NO"
},
{
"input": "141441441",
"output": "YES"
},
{
"input": "441",
"output": "NO"
},
{
"input": "15",
"output": "NO"
},
{
"input": "14444",
"output": "NO"
},
{
"input": "11444",
"output": "NO"
},
{
"input": "144",
"output": "YES"
},
{
"input": "1414414",
"output": "YES"
},
{
"input": "141444",
"output": "NO"
},
{
"input": "14144",
"output": "YES"
},
{
"input": "4",
"output": "NO"
},
{
"input": "1144",
"output": "YES"
},
{
"input": "141111444",
"output": "NO"
},
{
"input": "14414414",
"output": "YES"
},
{
"input": "141414144",
"output": "YES"
},
{
"input": "1414",
"output": "YES"
},
{
"input": "1441",
"output": "YES"
},
{
"input": "12",
"output": "NO"
},
{
"input": "144144141",
"output": "YES"
},
{
"input": "144144",
"output": "YES"
},
{
"input": "14414411",
"output": "YES"
},
{
"input": "14414",
"output": "YES"
}
] | 1,667,150,821
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 17
| 62
| 0
|
a = input()
a = a.replace("144", "")
a = a.replace("14", "")
a = a.replace("1", "")
if (len(a) == 0):
print("YES")
else:
print("NO")
|
Title: Magic Numbers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A magic number is a number formed by concatenation of numbers 1, 14 and 144. We can use each of these numbers any number of times. Therefore 14144, 141414 and 1411 are magic numbers but 1444, 514 and 414 are not.
You're given a number. Determine if it is a magic number or not.
Input Specification:
The first line of input contains an integer *n*, (1<=≤<=*n*<=≤<=109). This number doesn't contain leading zeros.
Output Specification:
Print "YES" if *n* is a magic number or print "NO" if it's not.
Demo Input:
['114114\n', '1111\n', '441231\n']
Demo Output:
['YES\n', 'YES\n', 'NO\n']
Note:
none
|
```python
a = input()
a = a.replace("144", "")
a = a.replace("14", "")
a = a.replace("1", "")
if (len(a) == 0):
print("YES")
else:
print("NO")
```
| 0
|
|
119
|
A
|
Epic Game
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Simon and Antisimon play a game. Initially each player receives one fixed positive integer that doesn't change throughout the game. Simon receives number *a* and Antisimon receives number *b*. They also have a heap of *n* stones. The players take turns to make a move and Simon starts. During a move a player should take from the heap the number of stones equal to the greatest common divisor of the fixed number he has received and the number of stones left in the heap. A player loses when he cannot take the required number of stones (i. e. the heap has strictly less stones left than one needs to take).
Your task is to determine by the given *a*, *b* and *n* who wins the game.
|
The only string contains space-separated integers *a*, *b* and *n* (1<=≤<=*a*,<=*b*,<=*n*<=≤<=100) — the fixed numbers Simon and Antisimon have received correspondingly and the initial number of stones in the pile.
|
If Simon wins, print "0" (without the quotes), otherwise print "1" (without the quotes).
|
[
"3 5 9\n",
"1 1 100\n"
] |
[
"0",
"1"
] |
The greatest common divisor of two non-negative integers *a* and *b* is such maximum positive integer *k*, that *a* is divisible by *k* without remainder and similarly, *b* is divisible by *k* without remainder. Let *gcd*(*a*, *b*) represent the operation of calculating the greatest common divisor of numbers *a* and *b*. Specifically, *gcd*(*x*, 0) = *gcd*(0, *x*) = *x*.
In the first sample the game will go like that:
- Simon should take *gcd*(3, 9) = 3 stones from the heap. After his move the heap has 6 stones left.- Antisimon should take *gcd*(5, 6) = 1 stone from the heap. After his move the heap has 5 stones left.- Simon should take *gcd*(3, 5) = 1 stone from the heap. After his move the heap has 4 stones left.- Antisimon should take *gcd*(5, 4) = 1 stone from the heap. After his move the heap has 3 stones left.- Simon should take *gcd*(3, 3) = 3 stones from the heap. After his move the heap has 0 stones left.- Antisimon should take *gcd*(5, 0) = 5 stones from the heap. As 0 < 5, it is impossible and Antisimon loses.
In the second sample each player during each move takes one stone from the heap. As *n* is even, Antisimon takes the last stone and Simon can't make a move after that.
| 500
|
[
{
"input": "3 5 9",
"output": "0"
},
{
"input": "1 1 100",
"output": "1"
},
{
"input": "23 12 16",
"output": "1"
},
{
"input": "95 26 29",
"output": "1"
},
{
"input": "73 32 99",
"output": "1"
},
{
"input": "1 1 1",
"output": "0"
},
{
"input": "41 12 65",
"output": "1"
},
{
"input": "13 61 100",
"output": "1"
},
{
"input": "100 100 10",
"output": "0"
},
{
"input": "12 24 26",
"output": "1"
},
{
"input": "73 21 96",
"output": "1"
},
{
"input": "17 22 81",
"output": "1"
},
{
"input": "14 88 97",
"output": "1"
},
{
"input": "42 81 17",
"output": "0"
},
{
"input": "34 36 19",
"output": "1"
},
{
"input": "21 87 12",
"output": "1"
},
{
"input": "97 92 98",
"output": "1"
},
{
"input": "49 25 62",
"output": "1"
},
{
"input": "29 17 44",
"output": "1"
},
{
"input": "10 1 10",
"output": "0"
},
{
"input": "99 98 100",
"output": "1"
},
{
"input": "100 100 1",
"output": "0"
},
{
"input": "11 99 55",
"output": "0"
},
{
"input": "8 13 21",
"output": "0"
},
{
"input": "34 55 89",
"output": "0"
},
{
"input": "21 34 55",
"output": "1"
},
{
"input": "13 21 34",
"output": "1"
},
{
"input": "34 21 55",
"output": "0"
},
{
"input": "10 20 84",
"output": "1"
},
{
"input": "4 2 5",
"output": "0"
},
{
"input": "3 2 3",
"output": "0"
},
{
"input": "31 23 1",
"output": "0"
},
{
"input": "100 100 100",
"output": "0"
},
{
"input": "100 1 100",
"output": "0"
},
{
"input": "1 100 100",
"output": "1"
},
{
"input": "1 1 100",
"output": "1"
},
{
"input": "17 23 100",
"output": "1"
},
{
"input": "99 98 100",
"output": "1"
},
{
"input": "1 1 2",
"output": "1"
},
{
"input": "2 1 1",
"output": "0"
},
{
"input": "1 2 1",
"output": "0"
},
{
"input": "2 1 2",
"output": "0"
},
{
"input": "10 10 3",
"output": "1"
},
{
"input": "2 2 1",
"output": "0"
},
{
"input": "9 5 1",
"output": "0"
}
] | 1,622,310,045
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 2
| 154
| 0
|
from math import gcd
a,b,n=input().split()
a=int(a)
b=int(b)
n=int(n)
m=n
if(a==b):
if(n%2==0):
print("1")
else:
print("0")
else:
while(n>0):
n=n-(gcd(a,n))
if(n==0):
print("0")
break
n-n-(gcd(b,m))
if(n==0):
print("1")
break
|
Title: Epic Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Simon and Antisimon play a game. Initially each player receives one fixed positive integer that doesn't change throughout the game. Simon receives number *a* and Antisimon receives number *b*. They also have a heap of *n* stones. The players take turns to make a move and Simon starts. During a move a player should take from the heap the number of stones equal to the greatest common divisor of the fixed number he has received and the number of stones left in the heap. A player loses when he cannot take the required number of stones (i. e. the heap has strictly less stones left than one needs to take).
Your task is to determine by the given *a*, *b* and *n* who wins the game.
Input Specification:
The only string contains space-separated integers *a*, *b* and *n* (1<=≤<=*a*,<=*b*,<=*n*<=≤<=100) — the fixed numbers Simon and Antisimon have received correspondingly and the initial number of stones in the pile.
Output Specification:
If Simon wins, print "0" (without the quotes), otherwise print "1" (without the quotes).
Demo Input:
['3 5 9\n', '1 1 100\n']
Demo Output:
['0', '1']
Note:
The greatest common divisor of two non-negative integers *a* and *b* is such maximum positive integer *k*, that *a* is divisible by *k* without remainder and similarly, *b* is divisible by *k* without remainder. Let *gcd*(*a*, *b*) represent the operation of calculating the greatest common divisor of numbers *a* and *b*. Specifically, *gcd*(*x*, 0) = *gcd*(0, *x*) = *x*.
In the first sample the game will go like that:
- Simon should take *gcd*(3, 9) = 3 stones from the heap. After his move the heap has 6 stones left.- Antisimon should take *gcd*(5, 6) = 1 stone from the heap. After his move the heap has 5 stones left.- Simon should take *gcd*(3, 5) = 1 stone from the heap. After his move the heap has 4 stones left.- Antisimon should take *gcd*(5, 4) = 1 stone from the heap. After his move the heap has 3 stones left.- Simon should take *gcd*(3, 3) = 3 stones from the heap. After his move the heap has 0 stones left.- Antisimon should take *gcd*(5, 0) = 5 stones from the heap. As 0 < 5, it is impossible and Antisimon loses.
In the second sample each player during each move takes one stone from the heap. As *n* is even, Antisimon takes the last stone and Simon can't make a move after that.
|
```python
from math import gcd
a,b,n=input().split()
a=int(a)
b=int(b)
n=int(n)
m=n
if(a==b):
if(n%2==0):
print("1")
else:
print("0")
else:
while(n>0):
n=n-(gcd(a,n))
if(n==0):
print("0")
break
n-n-(gcd(b,m))
if(n==0):
print("1")
break
```
| 0
|
|
780
|
A
|
Andryusha and Socks
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Andryusha is an orderly boy and likes to keep things in their place.
Today he faced a problem to put his socks in the wardrobe. He has *n* distinct pairs of socks which are initially in a bag. The pairs are numbered from 1 to *n*. Andryusha wants to put paired socks together and put them in the wardrobe. He takes the socks one by one from the bag, and for each sock he looks whether the pair of this sock has been already took out of the bag, or not. If not (that means the pair of this sock is still in the bag), he puts the current socks on the table in front of him. Otherwise, he puts both socks from the pair to the wardrobe.
Andryusha remembers the order in which he took the socks from the bag. Can you tell him what is the maximum number of socks that were on the table at the same time?
|
The first line contains the single integer *n* (1<=≤<=*n*<=≤<=105) — the number of sock pairs.
The second line contains 2*n* integers *x*1,<=*x*2,<=...,<=*x*2*n* (1<=≤<=*x**i*<=≤<=*n*), which describe the order in which Andryusha took the socks from the bag. More precisely, *x**i* means that the *i*-th sock Andryusha took out was from pair *x**i*.
It is guaranteed that Andryusha took exactly two socks of each pair.
|
Print single integer — the maximum number of socks that were on the table at the same time.
|
[
"1\n1 1\n",
"3\n2 1 1 3 2 3\n"
] |
[
"1\n",
"2\n"
] |
In the first example Andryusha took a sock from the first pair and put it on the table. Then he took the next sock which is from the first pair as well, so he immediately puts both socks to the wardrobe. Thus, at most one sock was on the table at the same time.
In the second example Andryusha behaved as follows:
- Initially the table was empty, he took out a sock from pair 2 and put it on the table. - Sock (2) was on the table. Andryusha took out a sock from pair 1 and put it on the table. - Socks (1, 2) were on the table. Andryusha took out a sock from pair 1, and put this pair into the wardrobe. - Sock (2) was on the table. Andryusha took out a sock from pair 3 and put it on the table. - Socks (2, 3) were on the table. Andryusha took out a sock from pair 2, and put this pair into the wardrobe. - Sock (3) was on the table. Andryusha took out a sock from pair 3 and put this pair into the wardrobe.
| 500
|
[
{
"input": "1\n1 1",
"output": "1"
},
{
"input": "3\n2 1 1 3 2 3",
"output": "2"
},
{
"input": "5\n5 1 3 2 4 3 1 2 4 5",
"output": "5"
},
{
"input": "10\n4 2 6 3 4 8 7 1 1 5 2 10 6 8 3 5 10 9 9 7",
"output": "6"
},
{
"input": "50\n30 47 31 38 37 50 36 43 9 23 2 2 15 31 14 49 9 16 6 44 27 14 5 6 3 47 25 26 1 35 3 15 24 19 8 46 49 41 4 26 40 28 42 11 34 35 46 18 7 28 18 40 19 42 4 41 38 48 50 12 29 39 33 17 25 22 22 21 36 45 27 30 20 7 13 29 39 44 21 8 37 45 34 1 20 10 11 17 33 12 43 13 10 16 48 24 32 5 23 32",
"output": "25"
},
{
"input": "50\n1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 43 43 44 44 45 45 46 46 47 47 48 48 49 49 50 50",
"output": "1"
},
{
"input": "50\n50 50 49 49 48 48 47 47 46 46 45 45 44 44 43 43 42 42 41 41 40 40 39 39 38 38 37 37 36 36 35 35 34 34 33 33 32 32 31 31 30 30 29 29 28 28 27 27 26 26 25 25 24 24 23 23 22 22 21 21 20 20 19 19 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1",
"output": "1"
},
{
"input": "50\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50",
"output": "50"
},
{
"input": "50\n50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "50"
},
{
"input": "10\n2 9 4 1 6 7 10 3 1 5 8 6 2 3 10 7 4 8 5 9",
"output": "9"
}
] | 1,592,884,990
| 2,147,483,647
|
PyPy 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 3
| 2,000
| 31,948,800
|
def answer():
a = int(input())
b = input().split()
c=[]
d=[]
for x in b:
if x not in d:
c.append(1)
d.append(x)
else:
c.append(0)
i=0
ans=0
temp=0
#print(c)
while i<len(c):
if c[i]:
temp+=1
else:
temp-=1
ans=max(temp,ans)
i+=1
print(ans)
answer()
|
Title: Andryusha and Socks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Andryusha is an orderly boy and likes to keep things in their place.
Today he faced a problem to put his socks in the wardrobe. He has *n* distinct pairs of socks which are initially in a bag. The pairs are numbered from 1 to *n*. Andryusha wants to put paired socks together and put them in the wardrobe. He takes the socks one by one from the bag, and for each sock he looks whether the pair of this sock has been already took out of the bag, or not. If not (that means the pair of this sock is still in the bag), he puts the current socks on the table in front of him. Otherwise, he puts both socks from the pair to the wardrobe.
Andryusha remembers the order in which he took the socks from the bag. Can you tell him what is the maximum number of socks that were on the table at the same time?
Input Specification:
The first line contains the single integer *n* (1<=≤<=*n*<=≤<=105) — the number of sock pairs.
The second line contains 2*n* integers *x*1,<=*x*2,<=...,<=*x*2*n* (1<=≤<=*x**i*<=≤<=*n*), which describe the order in which Andryusha took the socks from the bag. More precisely, *x**i* means that the *i*-th sock Andryusha took out was from pair *x**i*.
It is guaranteed that Andryusha took exactly two socks of each pair.
Output Specification:
Print single integer — the maximum number of socks that were on the table at the same time.
Demo Input:
['1\n1 1\n', '3\n2 1 1 3 2 3\n']
Demo Output:
['1\n', '2\n']
Note:
In the first example Andryusha took a sock from the first pair and put it on the table. Then he took the next sock which is from the first pair as well, so he immediately puts both socks to the wardrobe. Thus, at most one sock was on the table at the same time.
In the second example Andryusha behaved as follows:
- Initially the table was empty, he took out a sock from pair 2 and put it on the table. - Sock (2) was on the table. Andryusha took out a sock from pair 1 and put it on the table. - Socks (1, 2) were on the table. Andryusha took out a sock from pair 1, and put this pair into the wardrobe. - Sock (2) was on the table. Andryusha took out a sock from pair 3 and put it on the table. - Socks (2, 3) were on the table. Andryusha took out a sock from pair 2, and put this pair into the wardrobe. - Sock (3) was on the table. Andryusha took out a sock from pair 3 and put this pair into the wardrobe.
|
```python
def answer():
a = int(input())
b = input().split()
c=[]
d=[]
for x in b:
if x not in d:
c.append(1)
d.append(x)
else:
c.append(0)
i=0
ans=0
temp=0
#print(c)
while i<len(c):
if c[i]:
temp+=1
else:
temp-=1
ans=max(temp,ans)
i+=1
print(ans)
answer()
```
| 0
|
|
59
|
A
|
Word
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Word
|
2
|
256
|
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
|
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
|
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
|
[
"HoUse\n",
"ViP\n",
"maTRIx\n"
] |
[
"house\n",
"VIP\n",
"matrix\n"
] |
none
| 500
|
[
{
"input": "HoUse",
"output": "house"
},
{
"input": "ViP",
"output": "VIP"
},
{
"input": "maTRIx",
"output": "matrix"
},
{
"input": "BNHWpnpawg",
"output": "bnhwpnpawg"
},
{
"input": "VTYGP",
"output": "VTYGP"
},
{
"input": "CHNenu",
"output": "chnenu"
},
{
"input": "ERPZGrodyu",
"output": "erpzgrodyu"
},
{
"input": "KSXBXWpebh",
"output": "KSXBXWPEBH"
},
{
"input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv",
"output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv"
},
{
"input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd",
"output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd"
},
{
"input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv",
"output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv"
},
{
"input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg",
"output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg"
},
{
"input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak",
"output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK"
},
{
"input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw",
"output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW"
},
{
"input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB",
"output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB"
},
{
"input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge",
"output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge"
},
{
"input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw",
"output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw"
},
{
"input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks",
"output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks"
},
{
"input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz",
"output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ"
},
{
"input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg",
"output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG"
},
{
"input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO",
"output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO"
},
{
"input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd",
"output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD"
},
{
"input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas",
"output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas"
},
{
"input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm",
"output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM"
},
{
"input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn",
"output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn"
},
{
"input": "t",
"output": "t"
},
{
"input": "N",
"output": "N"
},
{
"input": "kv",
"output": "kv"
},
{
"input": "Ur",
"output": "ur"
},
{
"input": "CN",
"output": "CN"
}
] | 1,599,215,767
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 30
| 280
| 0
|
s=input()
l=[]
uc=0
lc=0
for i in s:
l.append(i)
for i in range(len(s)):
if ord(l[i]) in range (65,91):
uc+=1
if ord(l[i]) in range (97,123):
lc+=1
if uc>lc:
s=s.upper()
if uc<lc or uc==lc:
s=s.lower()
print(s)
|
Title: Word
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
Input Specification:
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Output Specification:
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
Demo Input:
['HoUse\n', 'ViP\n', 'maTRIx\n']
Demo Output:
['house\n', 'VIP\n', 'matrix\n']
Note:
none
|
```python
s=input()
l=[]
uc=0
lc=0
for i in s:
l.append(i)
for i in range(len(s)):
if ord(l[i]) in range (65,91):
uc+=1
if ord(l[i]) in range (97,123):
lc+=1
if uc>lc:
s=s.upper()
if uc<lc or uc==lc:
s=s.lower()
print(s)
```
| 3.93
|
617
|
A
|
Elephant
|
PROGRAMMING
| 800
|
[
"math"
] | null | null |
An elephant decided to visit his friend. It turned out that the elephant's house is located at point 0 and his friend's house is located at point *x*(*x*<=><=0) of the coordinate line. In one step the elephant can move 1, 2, 3, 4 or 5 positions forward. Determine, what is the minimum number of steps he need to make in order to get to his friend's house.
|
The first line of the input contains an integer *x* (1<=≤<=*x*<=≤<=1<=000<=000) — The coordinate of the friend's house.
|
Print the minimum number of steps that elephant needs to make to get from point 0 to point *x*.
|
[
"5\n",
"12\n"
] |
[
"1\n",
"3\n"
] |
In the first sample the elephant needs to make one step of length 5 to reach the point *x*.
In the second sample the elephant can get to point *x* if he moves by 3, 5 and 4. There are other ways to get the optimal answer but the elephant cannot reach *x* in less than three moves.
| 500
|
[
{
"input": "5",
"output": "1"
},
{
"input": "12",
"output": "3"
},
{
"input": "999999",
"output": "200000"
},
{
"input": "41",
"output": "9"
},
{
"input": "1000000",
"output": "200000"
},
{
"input": "1",
"output": "1"
},
{
"input": "2",
"output": "1"
},
{
"input": "3",
"output": "1"
},
{
"input": "4",
"output": "1"
},
{
"input": "534204",
"output": "106841"
},
{
"input": "469569",
"output": "93914"
},
{
"input": "502877",
"output": "100576"
},
{
"input": "942212",
"output": "188443"
},
{
"input": "97",
"output": "20"
},
{
"input": "53",
"output": "11"
},
{
"input": "89",
"output": "18"
},
{
"input": "574",
"output": "115"
},
{
"input": "716",
"output": "144"
},
{
"input": "729",
"output": "146"
},
{
"input": "8901",
"output": "1781"
},
{
"input": "3645",
"output": "729"
},
{
"input": "4426",
"output": "886"
},
{
"input": "46573",
"output": "9315"
},
{
"input": "86380",
"output": "17276"
},
{
"input": "94190",
"output": "18838"
},
{
"input": "999990",
"output": "199998"
},
{
"input": "999991",
"output": "199999"
},
{
"input": "999992",
"output": "199999"
},
{
"input": "999993",
"output": "199999"
},
{
"input": "999994",
"output": "199999"
},
{
"input": "999995",
"output": "199999"
},
{
"input": "999996",
"output": "200000"
},
{
"input": "999997",
"output": "200000"
},
{
"input": "999998",
"output": "200000"
}
] | 1,694,084,775
| 2,147,483,647
|
Python 3
|
COMPILATION_ERROR
|
TESTS
| 0
| 0
| 0
|
x=int(input())
if(x>5):
x=x-5
elif(x>=4);
x=x-4
elif(x>=3):
x=x-3
elif(x>=2):
x=x-2
else:
x=x-1
print(x)
|
Title: Elephant
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
An elephant decided to visit his friend. It turned out that the elephant's house is located at point 0 and his friend's house is located at point *x*(*x*<=><=0) of the coordinate line. In one step the elephant can move 1, 2, 3, 4 or 5 positions forward. Determine, what is the minimum number of steps he need to make in order to get to his friend's house.
Input Specification:
The first line of the input contains an integer *x* (1<=≤<=*x*<=≤<=1<=000<=000) — The coordinate of the friend's house.
Output Specification:
Print the minimum number of steps that elephant needs to make to get from point 0 to point *x*.
Demo Input:
['5\n', '12\n']
Demo Output:
['1\n', '3\n']
Note:
In the first sample the elephant needs to make one step of length 5 to reach the point *x*.
In the second sample the elephant can get to point *x* if he moves by 3, 5 and 4. There are other ways to get the optimal answer but the elephant cannot reach *x* in less than three moves.
|
```python
x=int(input())
if(x>5):
x=x-5
elif(x>=4);
x=x-4
elif(x>=3):
x=x-3
elif(x>=2):
x=x-2
else:
x=x-1
print(x)
```
| -1
|
|
59
|
A
|
Word
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Word
|
2
|
256
|
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
|
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
|
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
|
[
"HoUse\n",
"ViP\n",
"maTRIx\n"
] |
[
"house\n",
"VIP\n",
"matrix\n"
] |
none
| 500
|
[
{
"input": "HoUse",
"output": "house"
},
{
"input": "ViP",
"output": "VIP"
},
{
"input": "maTRIx",
"output": "matrix"
},
{
"input": "BNHWpnpawg",
"output": "bnhwpnpawg"
},
{
"input": "VTYGP",
"output": "VTYGP"
},
{
"input": "CHNenu",
"output": "chnenu"
},
{
"input": "ERPZGrodyu",
"output": "erpzgrodyu"
},
{
"input": "KSXBXWpebh",
"output": "KSXBXWPEBH"
},
{
"input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv",
"output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv"
},
{
"input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd",
"output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd"
},
{
"input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv",
"output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv"
},
{
"input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg",
"output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg"
},
{
"input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak",
"output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK"
},
{
"input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw",
"output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW"
},
{
"input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB",
"output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB"
},
{
"input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge",
"output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge"
},
{
"input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw",
"output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw"
},
{
"input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks",
"output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks"
},
{
"input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz",
"output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ"
},
{
"input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg",
"output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG"
},
{
"input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO",
"output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO"
},
{
"input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd",
"output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD"
},
{
"input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas",
"output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas"
},
{
"input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm",
"output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM"
},
{
"input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn",
"output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn"
},
{
"input": "t",
"output": "t"
},
{
"input": "N",
"output": "N"
},
{
"input": "kv",
"output": "kv"
},
{
"input": "Ur",
"output": "ur"
},
{
"input": "CN",
"output": "CN"
}
] | 1,626,816,829
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 154
| 6,758,400
|
a = input()
l_c = 0
u_c = 0
for i in range(len(a)):
if a[i] == a[i].lower():
l_c += 1
else:
u_c += 1
print(*([a.lower()], [a.upper()])[int(u_c > l_c)])
|
Title: Word
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
Input Specification:
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Output Specification:
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
Demo Input:
['HoUse\n', 'ViP\n', 'maTRIx\n']
Demo Output:
['house\n', 'VIP\n', 'matrix\n']
Note:
none
|
```python
a = input()
l_c = 0
u_c = 0
for i in range(len(a)):
if a[i] == a[i].lower():
l_c += 1
else:
u_c += 1
print(*([a.lower()], [a.upper()])[int(u_c > l_c)])
```
| 3.948911
|
83
|
A
|
Magical Array
|
PROGRAMMING
| 1,300
|
[
"math"
] |
A. Magical Array
|
2
|
256
|
Valery is very interested in magic. Magic attracts him so much that he sees it everywhere. He explains any strange and weird phenomenon through intervention of supernatural forces. But who would have thought that even in a regular array of numbers Valera manages to see something beautiful and magical.
Valera absolutely accidentally got a piece of ancient parchment on which an array of numbers was written. He immediately thought that the numbers in this array were not random. As a result of extensive research Valera worked out a wonderful property that a magical array should have: an array is defined as magic if its minimum and maximum coincide.
He decided to share this outstanding discovery with you, but he asks you for help in return. Despite the tremendous intelligence and wit, Valera counts very badly and so you will have to complete his work. All you have to do is count the number of magical subarrays of the original array of numbers, written on the parchment. Subarray is defined as non-empty sequence of consecutive elements.
|
The first line of the input data contains an integer *n* (1<=≤<=*n*<=≤<=105). The second line contains an array of original integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109).
|
Print on the single line the answer to the problem: the amount of subarrays, which are magical.
Please do not use the %lld specificator to read or write 64-bit numbers in C++. It is recommended to use cin, cout streams (you can also use the %I64d specificator).
|
[
"4\n2 1 1 4\n",
"5\n-2 -2 -2 0 1\n"
] |
[
"5\n",
"8\n"
] |
Notes to sample tests:
Magical subarrays are shown with pairs of indices [a;b] of the beginning and the end.
In the first sample: [1;1], [2;2], [3;3], [4;4], [2;3].
In the second sample: [1;1], [2;2], [3;3], [4;4], [5;5], [1;2], [2;3], [1;3].
| 500
|
[
{
"input": "4\n2 1 1 4",
"output": "5"
},
{
"input": "5\n-2 -2 -2 0 1",
"output": "8"
},
{
"input": "1\n10",
"output": "1"
},
{
"input": "2\n5 6",
"output": "2"
},
{
"input": "5\n5 5 4 5 5",
"output": "7"
},
{
"input": "8\n1 2 0 0 0 0 3 3",
"output": "15"
},
{
"input": "12\n-4 3 3 2 3 3 3 -4 2 -4 -4 -4",
"output": "19"
},
{
"input": "10\n7 1 0 10 0 -5 -3 -2 0 0",
"output": "11"
},
{
"input": "20\n6 0 0 -3 1 -3 0 -8 1 3 5 2 -1 -5 -1 9 0 6 -2 4",
"output": "21"
},
{
"input": "100\n0 -18 -9 -15 3 16 -28 0 -28 0 28 -20 -9 9 -11 0 18 -15 -18 -26 0 -27 -25 -22 6 -5 8 14 -17 24 20 3 -6 24 -27 1 -23 0 4 12 -20 0 -10 30 22 -6 13 16 0 15 17 -8 -2 0 -5 13 11 23 -17 -29 10 15 -28 0 -23 4 20 17 -7 -5 -16 -17 16 2 20 19 -8 0 8 -5 12 0 0 -14 -15 -28 -10 20 0 8 -1 10 14 9 0 4 -16 15 13 -10",
"output": "101"
},
{
"input": "50\n2 0 2 0 0 0 0 -1 -2 -2 -2 1 1 2 2 0 2 0 2 -3 0 0 0 0 3 1 -2 0 -1 0 -2 3 -1 2 0 2 0 0 0 0 2 0 1 0 0 3 0 0 -2 0",
"output": "75"
},
{
"input": "2\n-510468670 0",
"output": "2"
},
{
"input": "150\n0 -2 1 -2 0 0 0 0 -2 0 -2 -1 0 0 2 0 1 -2 1 -1 0 0 0 2 -2 2 -1 0 0 0 -2 0 2 0 1 0 -2 0 -2 -1 -1 -2 -2 2 0 0 1 -2 -2 -1 -2 0 2 1 1 -1 1 0 -2 2 0 0 0 1 -1 0 -2 -1 0 -2 2 1 1 0 0 2 0 0 2 -1 0 0 2 0 2 0 -2 -1 1 -2 1 0 0 -2 -1 -1 0 0 2 -1 -1 -1 -1 -2 0 0 2 -1 -1 1 0 0 1 -1 0 0 -1 2 2 0 0 0 -1 -2 0 1 0 -1 0 -1 -1 0 2 0 1 2 0 0 2 0 0 1 2 0 2 -2 2 0 2 2",
"output": "196"
}
] | 1,385,224,223
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 92
| 0
|
j = 1000000001
k = s = 0
for i in map(int, input().split()):
if i == j: k += 1
else:
s += k * (k + 1)
j, k = i, 1
print((s + k * (k + 1)) // 2)
|
Title: Magical Array
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Valery is very interested in magic. Magic attracts him so much that he sees it everywhere. He explains any strange and weird phenomenon through intervention of supernatural forces. But who would have thought that even in a regular array of numbers Valera manages to see something beautiful and magical.
Valera absolutely accidentally got a piece of ancient parchment on which an array of numbers was written. He immediately thought that the numbers in this array were not random. As a result of extensive research Valera worked out a wonderful property that a magical array should have: an array is defined as magic if its minimum and maximum coincide.
He decided to share this outstanding discovery with you, but he asks you for help in return. Despite the tremendous intelligence and wit, Valera counts very badly and so you will have to complete his work. All you have to do is count the number of magical subarrays of the original array of numbers, written on the parchment. Subarray is defined as non-empty sequence of consecutive elements.
Input Specification:
The first line of the input data contains an integer *n* (1<=≤<=*n*<=≤<=105). The second line contains an array of original integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109).
Output Specification:
Print on the single line the answer to the problem: the amount of subarrays, which are magical.
Please do not use the %lld specificator to read or write 64-bit numbers in C++. It is recommended to use cin, cout streams (you can also use the %I64d specificator).
Demo Input:
['4\n2 1 1 4\n', '5\n-2 -2 -2 0 1\n']
Demo Output:
['5\n', '8\n']
Note:
Notes to sample tests:
Magical subarrays are shown with pairs of indices [a;b] of the beginning and the end.
In the first sample: [1;1], [2;2], [3;3], [4;4], [2;3].
In the second sample: [1;1], [2;2], [3;3], [4;4], [5;5], [1;2], [2;3], [1;3].
|
```python
j = 1000000001
k = s = 0
for i in map(int, input().split()):
if i == j: k += 1
else:
s += k * (k + 1)
j, k = i, 1
print((s + k * (k + 1)) // 2)
```
| 0
|
975
|
D
|
Ghosts
|
PROGRAMMING
| 2,000
|
[
"geometry",
"math"
] | null | null |
Ghosts live in harmony and peace, they travel the space without any purpose other than scare whoever stands in their way.
There are $n$ ghosts in the universe, they move in the $OXY$ plane, each one of them has its own velocity that does not change in time: $\overrightarrow{V} = V_{x}\overrightarrow{i} + V_{y}\overrightarrow{j}$ where $V_{x}$ is its speed on the $x$-axis and $V_{y}$ is on the $y$-axis.
A ghost $i$ has experience value $EX_i$, which represent how many ghosts tried to scare him in his past. Two ghosts scare each other if they were in the same cartesian point at a moment of time.
As the ghosts move with constant speed, after some moment of time there will be no further scaring (what a relief!) and the experience of ghost kind $GX = \sum_{i=1}^{n} EX_i$ will never increase.
Tameem is a red giant, he took a picture of the cartesian plane at a certain moment of time $T$, and magically all the ghosts were aligned on a line of the form $y = a \cdot x + b$. You have to compute what will be the experience index of the ghost kind $GX$ in the indefinite future, this is your task for today.
Note that when Tameem took the picture, $GX$ may already be greater than $0$, because many ghosts may have scared one another at any moment between $[-\infty, T]$.
|
The first line contains three integers $n$, $a$ and $b$ ($1 \leq n \leq 200000$, $1 \leq |a| \leq 10^9$, $0 \le |b| \le 10^9$) — the number of ghosts in the universe and the parameters of the straight line.
Each of the next $n$ lines contains three integers $x_i$, $V_{xi}$, $V_{yi}$ ($-10^9 \leq x_i \leq 10^9$, $-10^9 \leq V_{x i}, V_{y i} \leq 10^9$), where $x_i$ is the current $x$-coordinate of the $i$-th ghost (and $y_i = a \cdot x_i + b$).
It is guaranteed that no two ghosts share the same initial position, in other words, it is guaranteed that for all $(i,j)$ $x_i \neq x_j$ for $i \ne j$.
|
Output one line: experience index of the ghost kind $GX$ in the indefinite future.
|
[
"4 1 1\n1 -1 -1\n2 1 1\n3 1 1\n4 -1 -1\n",
"3 1 0\n-1 1 0\n0 0 -1\n1 -1 -2\n",
"3 1 0\n0 0 0\n1 0 0\n2 0 0\n"
] |
[
"8\n",
"6\n",
"0\n"
] |
There are four collisions $(1,2,T-0.5)$, $(1,3,T-1)$, $(2,4,T+1)$, $(3,4,T+0.5)$, where $(u,v,t)$ means a collision happened between ghosts $u$ and $v$ at moment $t$. At each collision, each ghost gained one experience point, this means that $GX = 4 \cdot 2 = 8$.
In the second test, all points will collide when $t = T + 1$.
The red arrow represents the 1-st ghost velocity, orange represents the 2-nd ghost velocity, and blue represents the 3-rd ghost velocity.
| 2,000
|
[
{
"input": "4 1 1\n1 -1 -1\n2 1 1\n3 1 1\n4 -1 -1",
"output": "8"
},
{
"input": "3 1 0\n-1 1 0\n0 0 -1\n1 -1 -2",
"output": "6"
},
{
"input": "3 1 0\n0 0 0\n1 0 0\n2 0 0",
"output": "0"
},
{
"input": "10 7 -626288749\n795312099 49439844 266151109\n-842143911 23740808 624973405\n-513221420 -44452680 -391096559\n-350963348 -5068756 -160670209\n690883790 11897718 3356227\n-509035268 -45646185 -210137445\n-121282138 -32581578 230716703\n491731655 9500548 -13423963\n-665038289 48170248 446577586\n495114076 -38468595 -159894315",
"output": "20"
},
{
"input": "10 65536 0\n1 0 0\n2 0 0\n3 65536 0\n4 -65536 0\n5 -65536 0\n6 65536 0\n7 -65536 0\n8 65536 0\n9 -65536 0\n10 -65536 0",
"output": "0"
},
{
"input": "20 1 123123\n100 0 -100\n10100 0 -100\n20100 0 -100\n30100 0 -100\n40100 0 -100\n50100 0 -100\n60100 0 -100\n70100 0 -100\n80100 0 -100\n90100 0 -100\n0 100 0\n-10000 100 0\n-20000 100 0\n-30000 100 0\n-40000 100 0\n-50000 100 0\n-60000 100 0\n-70000 100 0\n-80000 100 0\n-90000 100 0",
"output": "200"
},
{
"input": "2 4 0\n0 -536870912 0\n1 536870911 -4",
"output": "0"
}
] | 1,525,231,728
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 36
| 904
| 43,008,000
|
import sys
if locals()['__file__'][-2:] == 'py':
sys.stdin = open('in.txt', 'r')
from sys import stdin
rl = lambda l: tuple(map(int, l.split()))
n, a, b = rl(input())
l = list(map(rl, stdin.readlines()))
c, d = {}, {}
r = 0
for _, x, y in l:
i, j = a * x - y, (x, y)
r += c.get(i, 0) - d.get(j, 0)
c[i] = c.get(i, 0) + 1
d[j] = d.get(j, 0) + 1
print(2 * r)
|
Title: Ghosts
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Ghosts live in harmony and peace, they travel the space without any purpose other than scare whoever stands in their way.
There are $n$ ghosts in the universe, they move in the $OXY$ plane, each one of them has its own velocity that does not change in time: $\overrightarrow{V} = V_{x}\overrightarrow{i} + V_{y}\overrightarrow{j}$ where $V_{x}$ is its speed on the $x$-axis and $V_{y}$ is on the $y$-axis.
A ghost $i$ has experience value $EX_i$, which represent how many ghosts tried to scare him in his past. Two ghosts scare each other if they were in the same cartesian point at a moment of time.
As the ghosts move with constant speed, after some moment of time there will be no further scaring (what a relief!) and the experience of ghost kind $GX = \sum_{i=1}^{n} EX_i$ will never increase.
Tameem is a red giant, he took a picture of the cartesian plane at a certain moment of time $T$, and magically all the ghosts were aligned on a line of the form $y = a \cdot x + b$. You have to compute what will be the experience index of the ghost kind $GX$ in the indefinite future, this is your task for today.
Note that when Tameem took the picture, $GX$ may already be greater than $0$, because many ghosts may have scared one another at any moment between $[-\infty, T]$.
Input Specification:
The first line contains three integers $n$, $a$ and $b$ ($1 \leq n \leq 200000$, $1 \leq |a| \leq 10^9$, $0 \le |b| \le 10^9$) — the number of ghosts in the universe and the parameters of the straight line.
Each of the next $n$ lines contains three integers $x_i$, $V_{xi}$, $V_{yi}$ ($-10^9 \leq x_i \leq 10^9$, $-10^9 \leq V_{x i}, V_{y i} \leq 10^9$), where $x_i$ is the current $x$-coordinate of the $i$-th ghost (and $y_i = a \cdot x_i + b$).
It is guaranteed that no two ghosts share the same initial position, in other words, it is guaranteed that for all $(i,j)$ $x_i \neq x_j$ for $i \ne j$.
Output Specification:
Output one line: experience index of the ghost kind $GX$ in the indefinite future.
Demo Input:
['4 1 1\n1 -1 -1\n2 1 1\n3 1 1\n4 -1 -1\n', '3 1 0\n-1 1 0\n0 0 -1\n1 -1 -2\n', '3 1 0\n0 0 0\n1 0 0\n2 0 0\n']
Demo Output:
['8\n', '6\n', '0\n']
Note:
There are four collisions $(1,2,T-0.5)$, $(1,3,T-1)$, $(2,4,T+1)$, $(3,4,T+0.5)$, where $(u,v,t)$ means a collision happened between ghosts $u$ and $v$ at moment $t$. At each collision, each ghost gained one experience point, this means that $GX = 4 \cdot 2 = 8$.
In the second test, all points will collide when $t = T + 1$.
The red arrow represents the 1-st ghost velocity, orange represents the 2-nd ghost velocity, and blue represents the 3-rd ghost velocity.
|
```python
import sys
if locals()['__file__'][-2:] == 'py':
sys.stdin = open('in.txt', 'r')
from sys import stdin
rl = lambda l: tuple(map(int, l.split()))
n, a, b = rl(input())
l = list(map(rl, stdin.readlines()))
c, d = {}, {}
r = 0
for _, x, y in l:
i, j = a * x - y, (x, y)
r += c.get(i, 0) - d.get(j, 0)
c[i] = c.get(i, 0) + 1
d[j] = d.get(j, 0) + 1
print(2 * r)
```
| 3
|
|
884
|
A
|
Book Reading
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Recently Luba bought a very interesting book. She knows that it will take *t* seconds to read the book. Luba wants to finish reading as fast as she can.
But she has some work to do in each of *n* next days. The number of seconds that Luba has to spend working during *i*-th day is *a**i*. If some free time remains, she can spend it on reading.
Help Luba to determine the minimum number of day when she finishes reading.
It is guaranteed that the answer doesn't exceed *n*.
Remember that there are 86400 seconds in a day.
|
The first line contains two integers *n* and *t* (1<=≤<=*n*<=≤<=100, 1<=≤<=*t*<=≤<=106) — the number of days and the time required to read the book.
The second line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=86400) — the time Luba has to spend on her work during *i*-th day.
|
Print the minimum day Luba can finish reading the book.
It is guaranteed that answer doesn't exceed *n*.
|
[
"2 2\n86400 86398\n",
"2 86400\n0 86400\n"
] |
[
"2\n",
"1\n"
] |
none
| 0
|
[
{
"input": "2 2\n86400 86398",
"output": "2"
},
{
"input": "2 86400\n0 86400",
"output": "1"
},
{
"input": "2 86400\n1 86399",
"output": "2"
},
{
"input": "100 1000000\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "12"
},
{
"input": "1 1\n86399",
"output": "1"
},
{
"input": "6 1200\n86400 86400 86000 86000 86000 86400",
"output": "5"
},
{
"input": "6 1200\n86400 86400 86000 86000 86001 86399",
"output": "6"
},
{
"input": "4 172799\n1 1 86400 0",
"output": "4"
},
{
"input": "4 172799\n0 86400 86399 0",
"output": "4"
},
{
"input": "6 1\n1 1 86400 1 86399 1",
"output": "1"
},
{
"input": "4 1\n86400 86399 86400 86400",
"output": "2"
},
{
"input": "4 1\n86400 86400 0 86400",
"output": "3"
}
] | 1,644,449,320
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 31
| 0
|
# for the number of days and the time to read a book
n, t = input("Enter two values: ").split()
# take the number of times she have to work
lst = input("enter the time: ").split()
for i in range(len(lst)):
lst[i] = int(lst[i])
counter = 0
for item in range(len(lst)):
s = 86400 - lst[item]
if s >= int(t):
print(item + 1)
break
|
Title: Book Reading
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Recently Luba bought a very interesting book. She knows that it will take *t* seconds to read the book. Luba wants to finish reading as fast as she can.
But she has some work to do in each of *n* next days. The number of seconds that Luba has to spend working during *i*-th day is *a**i*. If some free time remains, she can spend it on reading.
Help Luba to determine the minimum number of day when she finishes reading.
It is guaranteed that the answer doesn't exceed *n*.
Remember that there are 86400 seconds in a day.
Input Specification:
The first line contains two integers *n* and *t* (1<=≤<=*n*<=≤<=100, 1<=≤<=*t*<=≤<=106) — the number of days and the time required to read the book.
The second line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=86400) — the time Luba has to spend on her work during *i*-th day.
Output Specification:
Print the minimum day Luba can finish reading the book.
It is guaranteed that answer doesn't exceed *n*.
Demo Input:
['2 2\n86400 86398\n', '2 86400\n0 86400\n']
Demo Output:
['2\n', '1\n']
Note:
none
|
```python
# for the number of days and the time to read a book
n, t = input("Enter two values: ").split()
# take the number of times she have to work
lst = input("enter the time: ").split()
for i in range(len(lst)):
lst[i] = int(lst[i])
counter = 0
for item in range(len(lst)):
s = 86400 - lst[item]
if s >= int(t):
print(item + 1)
break
```
| 0
|
|
282
|
A
|
Bit++
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
The classic programming language of Bitland is Bit++. This language is so peculiar and complicated.
The language is that peculiar as it has exactly one variable, called *x*. Also, there are two operations:
- Operation ++ increases the value of variable *x* by 1. - Operation -- decreases the value of variable *x* by 1.
A statement in language Bit++ is a sequence, consisting of exactly one operation and one variable *x*. The statement is written without spaces, that is, it can only contain characters "+", "-", "X". Executing a statement means applying the operation it contains.
A programme in Bit++ is a sequence of statements, each of them needs to be executed. Executing a programme means executing all the statements it contains.
You're given a programme in language Bit++. The initial value of *x* is 0. Execute the programme and find its final value (the value of the variable when this programme is executed).
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=150) — the number of statements in the programme.
Next *n* lines contain a statement each. Each statement contains exactly one operation (++ or --) and exactly one variable *x* (denoted as letter «X»). Thus, there are no empty statements. The operation and the variable can be written in any order.
|
Print a single integer — the final value of *x*.
|
[
"1\n++X\n",
"2\nX++\n--X\n"
] |
[
"1\n",
"0\n"
] |
none
| 500
|
[
{
"input": "1\n++X",
"output": "1"
},
{
"input": "2\nX++\n--X",
"output": "0"
},
{
"input": "3\n++X\n++X\n++X",
"output": "3"
},
{
"input": "2\n--X\n--X",
"output": "-2"
},
{
"input": "5\n++X\n--X\n++X\n--X\n--X",
"output": "-1"
},
{
"input": "28\nX--\n++X\nX++\nX++\nX++\n--X\n--X\nX++\nX--\n++X\nX++\n--X\nX--\nX++\nX--\n++X\n++X\nX++\nX++\nX++\nX++\n--X\n++X\n--X\n--X\n--X\n--X\nX++",
"output": "4"
},
{
"input": "94\nX++\nX++\n++X\n++X\nX--\n--X\nX++\n--X\nX++\n++X\nX++\n++X\n--X\n--X\n++X\nX++\n--X\nX--\nX--\n--X\nX--\nX--\n--X\n++X\n--X\nX--\nX--\nX++\n++X\n--X\nX--\n++X\n--X\n--X\nX--\nX--\nX++\nX++\nX--\nX++\nX--\nX--\nX--\n--X\nX--\nX--\nX--\nX++\n++X\nX--\n++X\nX++\n--X\n--X\n--X\n--X\n++X\nX--\n--X\n--X\n++X\nX--\nX--\nX++\n++X\nX++\n++X\n--X\n--X\nX--\n++X\nX--\nX--\n++X\n++X\n++X\n++X\nX++\n++X\n--X\nX++\n--X\n--X\n++X\n--X\nX++\n++X\nX++\n--X\nX--\nX--\n--X\n++X\nX++",
"output": "-10"
},
{
"input": "56\n--X\nX--\n--X\n--X\nX--\nX--\n--X\nX++\n++X\n--X\nX++\nX--\n--X\n++X\n--X\nX--\nX--\n++X\nX--\nX--\n--X\n++X\n--X\n++X\n--X\nX++\n++X\nX++\n--X\n++X\nX++\nX++\n--X\nX++\nX--\n--X\nX--\n--X\nX++\n++X\n--X\n++X\nX++\nX--\n--X\n--X\n++X\nX--\nX--\n--X\nX--\n--X\nX++\n--X\n++X\n--X",
"output": "-14"
},
{
"input": "59\nX--\n--X\nX++\n++X\nX--\n--X\n--X\n++X\n++X\n++X\n++X\nX++\n++X\n++X\nX++\n--X\nX--\nX++\n++X\n--X\nX++\n--X\n++X\nX++\n--X\n--X\nX++\nX++\n--X\nX++\nX++\nX++\nX--\nX--\n--X\nX++\nX--\nX--\n++X\nX--\nX++\n--X\nX++\nX--\nX--\nX--\nX--\n++X\n--X\nX++\nX++\nX--\nX++\n++X\nX--\nX++\nX--\nX--\n++X",
"output": "3"
},
{
"input": "87\n--X\n++X\n--X\nX++\n--X\nX--\n--X\n++X\nX--\n++X\n--X\n--X\nX++\n--X\nX--\nX++\n++X\n--X\n++X\n++X\n--X\n++X\n--X\nX--\n++X\n++X\nX--\nX++\nX++\n--X\n--X\n++X\nX--\n--X\n++X\n--X\nX++\n--X\n--X\nX--\n++X\n++X\n--X\nX--\nX--\nX--\nX--\nX--\nX++\n--X\n++X\n--X\nX++\n++X\nX++\n++X\n--X\nX++\n++X\nX--\n--X\nX++\n++X\nX++\nX++\n--X\n--X\n++X\n--X\nX++\nX++\n++X\nX++\nX++\nX++\nX++\n--X\n--X\n--X\n--X\n--X\n--X\n--X\nX--\n--X\n++X\n++X",
"output": "-5"
},
{
"input": "101\nX++\nX++\nX++\n++X\n--X\nX--\nX++\nX--\nX--\n--X\n--X\n++X\nX++\n++X\n++X\nX--\n--X\n++X\nX++\nX--\n++X\n--X\n--X\n--X\n++X\n--X\n++X\nX++\nX++\n++X\n--X\nX++\nX--\nX++\n++X\n++X\nX--\nX--\nX--\nX++\nX++\nX--\nX--\nX++\n++X\n++X\n++X\n--X\n--X\n++X\nX--\nX--\n--X\n++X\nX--\n++X\nX++\n++X\nX--\nX--\n--X\n++X\n--X\n++X\n++X\n--X\nX++\n++X\nX--\n++X\nX--\n++X\nX++\nX--\n++X\nX++\n--X\nX++\nX++\n++X\n--X\n++X\n--X\nX++\n--X\nX--\n--X\n++X\n++X\n++X\n--X\nX--\nX--\nX--\nX--\n--X\n--X\n--X\n++X\n--X\n--X",
"output": "1"
},
{
"input": "63\n--X\nX--\n++X\n--X\n++X\nX++\n--X\n--X\nX++\n--X\n--X\nX++\nX--\nX--\n--X\n++X\nX--\nX--\nX++\n++X\nX++\nX++\n--X\n--X\n++X\nX--\nX--\nX--\n++X\nX++\nX--\n--X\nX--\n++X\n++X\nX++\n++X\nX++\nX++\n--X\nX--\n++X\nX--\n--X\nX--\nX--\nX--\n++X\n++X\n++X\n++X\nX++\nX++\n++X\n--X\n--X\n++X\n++X\n++X\nX--\n++X\n++X\nX--",
"output": "1"
},
{
"input": "45\n--X\n++X\nX--\n++X\n++X\nX++\n--X\n--X\n--X\n--X\n--X\n--X\n--X\nX++\n++X\nX--\n++X\n++X\nX--\nX++\nX--\n--X\nX--\n++X\n++X\n--X\n--X\nX--\nX--\n--X\n++X\nX--\n--X\n++X\n++X\n--X\n--X\nX--\n++X\n++X\nX++\nX++\n++X\n++X\nX++",
"output": "-3"
},
{
"input": "21\n++X\nX++\n--X\nX--\nX++\n++X\n--X\nX--\nX++\nX--\nX--\nX--\nX++\n++X\nX++\n++X\n--X\nX--\n--X\nX++\n++X",
"output": "1"
},
{
"input": "100\n--X\n++X\nX++\n++X\nX--\n++X\nX--\nX++\n--X\nX++\nX--\nX--\nX--\n++X\nX--\nX++\nX++\n++X\nX++\nX++\nX++\nX++\n++X\nX++\n++X\nX--\n--X\n++X\nX--\n--X\n++X\n++X\nX--\nX++\nX++\nX++\n++X\n--X\n++X\nX++\nX--\n++X\n++X\n--X\n++X\nX--\nX--\nX--\nX++\nX--\nX--\nX++\nX++\n--X\nX++\nX++\n--X\nX--\n--X\n++X\n--X\n++X\n++X\nX--\n--X\n++X\n++X\n--X\n--X\n++X\nX++\nX--\nX++\nX--\nX++\nX++\n--X\nX--\nX--\n++X\nX--\n--X\n--X\nX++\n--X\n--X\nX--\nX--\n++X\n++X\nX--\n++X\nX++\n--X\n++X\n++X\nX++\n--X\n--X\nX++",
"output": "8"
},
{
"input": "17\nX++\nX++\n++X\n--X\n--X\n++X\n++X\n--X\nX--\nX++\nX--\n--X\n--X\nX--\n++X\nX--\nX++",
"output": "-1"
},
{
"input": "77\n++X\nX++\n--X\nX--\n--X\n--X\nX--\nX++\nX--\nX++\nX--\n++X\n--X\n--X\n--X\n--X\n++X\nX--\nX++\nX--\n--X\nX--\n--X\nX--\n++X\n--X\n++X\n++X\nX++\nX++\nX--\n--X\nX--\nX--\nX++\n--X\n--X\n++X\nX--\nX--\n++X\nX++\nX--\n++X\n--X\nX++\nX--\n++X\n++X\n++X\nX--\nX--\nX--\n--X\n++X\n++X\n++X\nX++\n--X\n--X\n++X\n--X\nX--\nX++\n++X\nX++\n++X\nX--\nX++\nX++\n--X\nX++\nX++\nX++\n--X\nX++\nX--",
"output": "-5"
},
{
"input": "21\nX--\n++X\n--X\nX--\n++X\nX--\n++X\nX--\n--X\n++X\nX++\n++X\nX++\n++X\nX--\n--X\nX++\nX++\nX--\n++X\nX--",
"output": "1"
},
{
"input": "1\nX--",
"output": "-1"
}
] | 1,698,383,336
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 36
| 46
| 0
|
n=int(input())
x=0
for i in range(0,n):
j=input()
if(j=="X++" or j=="++X"):
x=x+1
elif(j=="X--"or j=="--X"):
x=x-1
print(x)
|
Title: Bit++
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The classic programming language of Bitland is Bit++. This language is so peculiar and complicated.
The language is that peculiar as it has exactly one variable, called *x*. Also, there are two operations:
- Operation ++ increases the value of variable *x* by 1. - Operation -- decreases the value of variable *x* by 1.
A statement in language Bit++ is a sequence, consisting of exactly one operation and one variable *x*. The statement is written without spaces, that is, it can only contain characters "+", "-", "X". Executing a statement means applying the operation it contains.
A programme in Bit++ is a sequence of statements, each of them needs to be executed. Executing a programme means executing all the statements it contains.
You're given a programme in language Bit++. The initial value of *x* is 0. Execute the programme and find its final value (the value of the variable when this programme is executed).
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=150) — the number of statements in the programme.
Next *n* lines contain a statement each. Each statement contains exactly one operation (++ or --) and exactly one variable *x* (denoted as letter «X»). Thus, there are no empty statements. The operation and the variable can be written in any order.
Output Specification:
Print a single integer — the final value of *x*.
Demo Input:
['1\n++X\n', '2\nX++\n--X\n']
Demo Output:
['1\n', '0\n']
Note:
none
|
```python
n=int(input())
x=0
for i in range(0,n):
j=input()
if(j=="X++" or j=="++X"):
x=x+1
elif(j=="X--"or j=="--X"):
x=x-1
print(x)
```
| 3
|
|
702
|
A
|
Maximum Increase
|
PROGRAMMING
| 800
|
[
"dp",
"greedy",
"implementation"
] | null | null |
You are given array consisting of *n* integers. Your task is to find the maximum length of an increasing subarray of the given array.
A subarray is the sequence of consecutive elements of the array. Subarray is called increasing if each element of this subarray strictly greater than previous.
|
The first line contains single positive integer *n* (1<=≤<=*n*<=≤<=105) — the number of integers.
The second line contains *n* positive integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109).
|
Print the maximum length of an increasing subarray of the given array.
|
[
"5\n1 7 2 11 15\n",
"6\n100 100 100 100 100 100\n",
"3\n1 2 3\n"
] |
[
"3\n",
"1\n",
"3\n"
] |
none
| 0
|
[
{
"input": "5\n1 7 2 11 15",
"output": "3"
},
{
"input": "6\n100 100 100 100 100 100",
"output": "1"
},
{
"input": "3\n1 2 3",
"output": "3"
},
{
"input": "1\n1000000000",
"output": "1"
},
{
"input": "10\n802030518 598196518 640274071 983359971 71550121 96204862 799843967 446173607 796619138 402690754",
"output": "3"
},
{
"input": "2\n2 1",
"output": "1"
},
{
"input": "5\n1 2 3 3 4",
"output": "3"
},
{
"input": "4\n1 2 2 3",
"output": "2"
},
{
"input": "3\n2 1 1",
"output": "1"
},
{
"input": "3\n1 2 1",
"output": "2"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "2\n1 2",
"output": "2"
},
{
"input": "3\n1 1 2",
"output": "2"
},
{
"input": "11\n1 2 3 1 2 3 2 1 2 3 4",
"output": "4"
},
{
"input": "9\n1 2 3 4 5 6 7 8 9",
"output": "9"
},
{
"input": "9\n1 1 1 1 1 1 1 1 1",
"output": "1"
},
{
"input": "3\n3 2 1",
"output": "1"
},
{
"input": "7\n1 2 3 4 5 6 7",
"output": "7"
},
{
"input": "1\n1234394",
"output": "1"
}
] | 1,657,991,497
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 4
| 77
| 0
|
n = int(input())
l = list(map(int, input().split()))
length = 1
maxlen = 1
for i in range(1,len(l)):
if l[i] > l[i-1]:
length = length + 1
# print(l[i],l[i-1], length)
else:
if(length>maxlen):
maxlen = length
length = 1
maxlen = length
print(maxlen)
|
Title: Maximum Increase
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given array consisting of *n* integers. Your task is to find the maximum length of an increasing subarray of the given array.
A subarray is the sequence of consecutive elements of the array. Subarray is called increasing if each element of this subarray strictly greater than previous.
Input Specification:
The first line contains single positive integer *n* (1<=≤<=*n*<=≤<=105) — the number of integers.
The second line contains *n* positive integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109).
Output Specification:
Print the maximum length of an increasing subarray of the given array.
Demo Input:
['5\n1 7 2 11 15\n', '6\n100 100 100 100 100 100\n', '3\n1 2 3\n']
Demo Output:
['3\n', '1\n', '3\n']
Note:
none
|
```python
n = int(input())
l = list(map(int, input().split()))
length = 1
maxlen = 1
for i in range(1,len(l)):
if l[i] > l[i-1]:
length = length + 1
# print(l[i],l[i-1], length)
else:
if(length>maxlen):
maxlen = length
length = 1
maxlen = length
print(maxlen)
```
| 0
|
|
769
|
B
|
News About Credit
|
PROGRAMMING
| 1,200
|
[
"*special",
"greedy",
"two pointers"
] | null | null |
Polycarp studies at the university in the group which consists of *n* students (including himself). All they are registrated in the social net "TheContacnt!".
Not all students are equally sociable. About each student you know the value *a**i* — the maximum number of messages which the *i*-th student is agree to send per day. The student can't send messages to himself.
In early morning Polycarp knew important news that the programming credit will be tomorrow. For this reason it is necessary to urgently inform all groupmates about this news using private messages.
Your task is to make a plan of using private messages, so that:
- the student *i* sends no more than *a**i* messages (for all *i* from 1 to *n*); - all students knew the news about the credit (initially only Polycarp knew it); - the student can inform the other student only if he knows it himself.
Let's consider that all students are numerated by distinct numbers from 1 to *n*, and Polycarp always has the number 1.
In that task you shouldn't minimize the number of messages, the moment of time, when all knew about credit or some other parameters. Find any way how to use private messages which satisfies requirements above.
|
The first line contains the positive integer *n* (2<=≤<=*n*<=≤<=100) — the number of students.
The second line contains the sequence *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=100), where *a**i* equals to the maximum number of messages which can the *i*-th student agree to send. Consider that Polycarp always has the number 1.
|
Print -1 to the first line if it is impossible to inform all students about credit.
Otherwise, in the first line print the integer *k* — the number of messages which will be sent. In each of the next *k* lines print two distinct integers *f* and *t*, meaning that the student number *f* sent the message with news to the student number *t*. All messages should be printed in chronological order. It means that the student, who is sending the message, must already know this news. It is assumed that students can receive repeated messages with news of the credit.
If there are several answers, it is acceptable to print any of them.
|
[
"4\n1 2 1 0\n",
"6\n2 0 1 3 2 0\n",
"3\n0 2 2\n"
] |
[
"3\n1 2\n2 4\n2 3\n",
"6\n1 3\n3 4\n1 2\n4 5\n5 6\n4 6\n",
"-1\n"
] |
In the first test Polycarp (the student number 1) can send the message to the student number 2, who after that can send the message to students number 3 and 4. Thus, all students knew about the credit.
| 1,000
|
[
{
"input": "4\n1 2 1 0",
"output": "3\n1 2\n2 3\n2 4"
},
{
"input": "6\n2 0 1 3 2 0",
"output": "5\n1 4\n1 5\n4 3\n4 2\n4 6"
},
{
"input": "3\n0 2 2",
"output": "-1"
},
{
"input": "2\n0 0",
"output": "-1"
},
{
"input": "2\n1 0",
"output": "1\n1 2"
},
{
"input": "2\n0 1",
"output": "-1"
},
{
"input": "2\n1 1",
"output": "1\n1 2"
},
{
"input": "3\n1 1 0",
"output": "2\n1 2\n2 3"
},
{
"input": "3\n0 1 1",
"output": "-1"
},
{
"input": "3\n1 0 0",
"output": "-1"
},
{
"input": "3\n2 0 0",
"output": "2\n1 2\n1 3"
},
{
"input": "3\n1 0 1",
"output": "2\n1 3\n3 2"
},
{
"input": "3\n1 1 1",
"output": "2\n1 2\n2 3"
},
{
"input": "40\n3 3 2 1 0 0 0 4 5 4 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 2 3 2 0 1 0 0 2 0 3 0 1 0",
"output": "-1"
},
{
"input": "100\n1 0 0 2 0 2 0 0 2 0 0 2 0 0 2 2 2 1 1 2 1 2 2 2 1 2 0 1 0 1 0 2 2 2 0 1 2 0 0 2 0 2 0 1 1 0 1 0 2 0 0 2 1 2 1 2 2 2 2 1 0 2 0 0 1 0 2 0 0 2 0 1 0 2 1 1 2 2 2 2 0 0 2 0 2 1 0 0 0 1 0 2 2 2 0 1 0 1 1 0",
"output": "99\n1 4\n4 6\n4 9\n6 12\n6 15\n9 16\n9 17\n12 20\n12 22\n15 23\n15 24\n16 26\n16 32\n17 33\n17 34\n20 37\n20 40\n22 42\n22 49\n23 52\n23 54\n24 56\n24 57\n26 58\n26 59\n32 62\n32 67\n33 70\n33 74\n34 77\n34 78\n37 79\n37 80\n40 83\n40 85\n42 92\n42 93\n49 94\n49 18\n52 19\n52 21\n54 25\n54 28\n56 30\n56 36\n57 44\n57 45\n58 47\n58 53\n59 55\n59 60\n62 65\n62 72\n67 75\n67 76\n70 86\n70 90\n74 96\n74 98\n77 99\n77 2\n78 3\n78 5\n79 7\n79 8\n80 10\n80 11\n83 13\n83 14\n85 27\n85 29\n92 31\n92 35\n93 38\n93 3..."
},
{
"input": "4\n2 0 0 0",
"output": "-1"
},
{
"input": "4\n2 0 0 1",
"output": "3\n1 4\n1 2\n4 3"
},
{
"input": "4\n2 0 1 0",
"output": "3\n1 3\n1 2\n3 4"
},
{
"input": "4\n2 1 0 0",
"output": "3\n1 2\n1 3\n2 4"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "-1"
},
{
"input": "100\n99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "99\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84\n1 85\n1 86\n1 87\n..."
},
{
"input": "100\n98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "-1"
},
{
"input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "99\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 10\n10 11\n11 12\n12 13\n13 14\n14 15\n15 16\n16 17\n17 18\n18 19\n19 20\n20 21\n21 22\n22 23\n23 24\n24 25\n25 26\n26 27\n27 28\n28 29\n29 30\n30 31\n31 32\n32 33\n33 34\n34 35\n35 36\n36 37\n37 38\n38 39\n39 40\n40 41\n41 42\n42 44\n44 45\n45 46\n46 47\n47 48\n48 49\n49 50\n50 51\n51 52\n52 53\n53 54\n54 55\n55 56\n56 57\n57 58\n58 59\n59 60\n60 61\n61 62\n62 63\n63 64\n64 65\n65 66\n66 67\n67 68\n68 69\n69 70\n70 71\n71 72\n72 73\n73 74\n74 75\n75 76\n76 77\n..."
},
{
"input": "100\n1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "99\n1 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 10\n10 11\n11 12\n12 13\n13 14\n14 15\n15 16\n16 17\n17 18\n18 19\n19 20\n20 21\n21 22\n22 23\n23 24\n24 25\n25 26\n26 27\n27 28\n28 29\n29 30\n30 31\n31 32\n32 33\n33 34\n34 35\n35 36\n36 37\n37 38\n38 39\n39 40\n40 41\n41 42\n42 43\n43 44\n44 45\n45 46\n46 47\n47 48\n48 49\n49 50\n50 51\n51 52\n52 53\n53 54\n54 55\n55 56\n56 57\n57 58\n58 59\n59 60\n60 61\n61 62\n62 63\n63 64\n64 65\n65 66\n66 67\n67 68\n68 69\n69 70\n70 71\n71 72\n72 73\n73 74\n74 75\n75 76\n76 7..."
},
{
"input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0",
"output": "99\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 10\n10 11\n11 12\n12 13\n13 14\n14 15\n15 16\n16 17\n17 18\n18 19\n19 20\n20 21\n21 22\n22 23\n23 24\n24 25\n25 26\n26 27\n27 28\n28 29\n29 30\n30 31\n31 32\n32 33\n33 34\n34 35\n35 36\n36 37\n37 38\n38 39\n39 40\n40 41\n41 42\n42 43\n43 44\n44 45\n45 46\n46 47\n47 48\n48 49\n49 50\n50 51\n51 52\n52 53\n53 54\n54 55\n55 56\n56 57\n57 58\n58 59\n59 60\n60 61\n61 62\n62 63\n63 64\n64 65\n65 66\n66 67\n67 68\n68 69\n69 70\n70 71\n71 72\n72 73\n73 74\n74 75\n75 76\n..."
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "99\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84\n1 85\n1 86\n1 87\n..."
},
{
"input": "100\n1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "99\n1 2\n2 3\n2 4\n2 5\n2 6\n2 7\n2 8\n2 9\n2 10\n2 11\n2 12\n2 13\n2 14\n2 15\n2 16\n2 17\n2 18\n2 19\n2 20\n2 21\n2 22\n2 23\n2 24\n2 25\n2 26\n2 27\n2 28\n2 29\n2 30\n2 31\n2 32\n2 33\n2 34\n2 35\n2 36\n2 37\n2 38\n2 39\n2 40\n2 41\n2 42\n2 43\n2 44\n2 45\n2 46\n2 47\n2 48\n2 49\n2 50\n2 51\n2 52\n2 53\n2 54\n2 55\n2 56\n2 57\n2 58\n2 59\n2 60\n2 61\n2 62\n2 63\n2 64\n2 65\n2 66\n2 67\n2 68\n2 69\n2 70\n2 71\n2 72\n2 73\n2 74\n2 75\n2 76\n2 77\n2 78\n2 79\n2 80\n2 81\n2 82\n2 83\n2 84\n2 85\n2 86\n2 87\n..."
},
{
"input": "100\n1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "99\n1 55\n55 2\n55 3\n55 4\n55 5\n55 6\n55 7\n55 8\n55 9\n55 10\n55 11\n55 12\n55 13\n55 14\n55 15\n55 16\n55 17\n55 18\n55 19\n55 20\n55 21\n55 22\n55 23\n55 24\n55 25\n55 26\n55 27\n55 28\n55 29\n55 30\n55 31\n55 32\n55 33\n55 34\n55 35\n55 36\n55 37\n55 38\n55 39\n55 40\n55 41\n55 42\n55 43\n55 44\n55 45\n55 46\n55 47\n55 48\n55 49\n55 50\n55 51\n55 52\n55 53\n55 54\n55 56\n55 57\n55 58\n55 59\n55 60\n55 61\n55 62\n55 63\n55 64\n55 65\n55 66\n55 67\n55 68\n55 69\n55 70\n55 71\n55 72\n55 73\n55 74\n55 75..."
},
{
"input": "2\n0 1",
"output": "-1"
},
{
"input": "5\n0 0 1 1 2",
"output": "-1"
},
{
"input": "7\n2 0 0 0 1 0 3",
"output": "6\n1 7\n1 5\n7 2\n7 3\n7 4\n5 6"
},
{
"input": "10\n3 0 0 0 0 2 0 1 0 3",
"output": "9\n1 10\n1 6\n1 8\n10 2\n10 3\n10 4\n6 5\n6 7\n8 9"
},
{
"input": "20\n0 2 0 0 2 0 0 2 2 0 0 2 0 2 1 0 1 3 1 1",
"output": "-1"
},
{
"input": "30\n2 0 2 2 0 2 2 0 0 0 3 0 1 1 2 0 0 2 2 0 1 0 3 0 1 0 2 0 0 1",
"output": "29\n1 11\n1 23\n11 3\n11 4\n11 6\n23 7\n23 15\n23 18\n3 19\n3 27\n4 13\n4 14\n6 21\n6 25\n7 30\n7 2\n15 5\n15 8\n18 9\n18 10\n19 12\n19 16\n27 17\n27 20\n13 22\n14 24\n21 26\n25 28\n30 29"
},
{
"input": "31\n2 0 0 4 0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 3 0 4 3 0 2 0 0 0 3 4",
"output": "30\n1 4\n1 23\n4 31\n4 14\n4 21\n4 24\n23 30\n23 15\n23 26\n23 2\n31 3\n31 5\n31 6\n31 7\n14 8\n14 9\n14 10\n21 11\n21 12\n21 13\n24 16\n24 17\n24 18\n30 19\n30 20\n30 22\n15 25\n15 27\n26 28\n26 29"
},
{
"input": "39\n2 0 3 0 0 2 0 0 2 1 1 0 0 3 3 0 2 0 2 3 0 0 3 0 3 2 0 0 3 0 0 0 3 0 0 0 0 0 0",
"output": "38\n1 3\n1 14\n3 15\n3 20\n3 23\n14 25\n14 29\n14 33\n15 6\n15 9\n15 17\n20 19\n20 26\n20 10\n23 11\n23 2\n23 4\n25 5\n25 7\n25 8\n29 12\n29 13\n29 16\n33 18\n33 21\n33 22\n6 24\n6 27\n9 28\n9 30\n17 31\n17 32\n19 34\n19 35\n26 36\n26 37\n10 38\n11 39"
},
{
"input": "58\n4 2 1 3 5 3 0 0 1 0 3 0 2 1 0 0 0 4 0 0 0 0 0 1 2 3 4 0 1 1 0 0 1 0 0 0 2 0 0 0 0 2 2 0 2 0 0 4 0 2 0 0 0 0 0 1 0 0",
"output": "57\n1 5\n1 18\n1 27\n1 48\n5 4\n5 6\n5 11\n5 26\n5 2\n18 13\n18 25\n18 37\n18 42\n27 43\n27 45\n27 50\n27 3\n48 9\n48 14\n48 24\n48 29\n4 30\n4 33\n4 56\n6 7\n6 8\n6 10\n11 12\n11 15\n11 16\n26 17\n26 19\n26 20\n2 21\n2 22\n13 23\n13 28\n25 31\n25 32\n37 34\n37 35\n42 36\n42 38\n43 39\n43 40\n45 41\n45 44\n50 46\n50 47\n3 49\n9 51\n14 52\n24 53\n29 54\n30 55\n33 57\n56 58"
},
{
"input": "65\n3 0 0 0 0 3 0 0 0 0 0 4 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 6 7 0 3 0 0 0 0 4 0 3 0 0 0 0 1 0 0 5 0 0 0 0 3 0 0 4 0 0 0 0 0 1 0 0 0 0 7",
"output": "64\n1 22\n1 29\n1 65\n22 28\n22 46\n22 12\n22 36\n22 54\n22 6\n22 31\n22 38\n29 51\n29 13\n29 43\n29 60\n29 2\n29 3\n29 4\n65 5\n65 7\n65 8\n65 9\n65 10\n65 11\n65 14\n28 15\n28 16\n28 17\n28 18\n28 19\n28 20\n46 21\n46 23\n46 24\n46 25\n46 26\n12 27\n12 30\n12 32\n12 33\n36 34\n36 35\n36 37\n36 39\n54 40\n54 41\n54 42\n54 44\n6 45\n6 47\n6 48\n31 49\n31 50\n31 52\n38 53\n38 55\n38 56\n51 57\n51 58\n51 59\n13 61\n13 62\n43 63\n60 64"
},
{
"input": "77\n7 0 0 0 0 0 0 0 0 8 0 0 0 0 3 0 0 0 0 9 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 2 6 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 7 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 8",
"output": "76\n1 20\n1 63\n1 10\n1 37\n1 77\n1 24\n1 60\n20 44\n20 15\n20 43\n20 55\n20 2\n20 3\n20 4\n20 5\n20 6\n63 7\n63 8\n63 9\n63 11\n63 12\n63 13\n63 14\n63 16\n63 17\n10 18\n10 19\n10 21\n10 22\n10 23\n10 25\n10 26\n10 27\n37 28\n37 29\n37 30\n37 31\n37 32\n37 33\n37 34\n37 35\n77 36\n77 38\n77 39\n77 40\n77 41\n77 42\n77 45\n77 46\n24 47\n24 48\n24 49\n24 50\n24 51\n24 52\n24 53\n60 54\n60 56\n60 57\n60 58\n60 59\n60 61\n60 62\n44 64\n44 65\n44 66\n44 67\n44 68\n44 69\n15 70\n15 71\n15 72\n43 73\n43 74\n55 7..."
},
{
"input": "80\n2 3 0 2 2 1 3 3 3 0 0 0 1 0 1 0 3 1 0 2 0 2 3 0 2 3 0 3 0 0 0 3 0 0 0 2 3 0 0 2 0 0 0 0 0 3 2 0 0 3 0 3 0 3 0 3 1 2 0 0 0 0 0 0 0 1 0 3 0 0 0 1 0 2 0 2 0 0 0 0",
"output": "79\n1 2\n1 7\n2 8\n2 9\n2 17\n7 23\n7 26\n7 28\n8 32\n8 37\n8 46\n9 50\n9 52\n9 54\n17 56\n17 68\n17 4\n23 5\n23 20\n23 22\n26 25\n26 36\n26 40\n28 47\n28 58\n28 74\n32 76\n32 6\n32 13\n37 15\n37 18\n37 57\n46 66\n46 72\n46 3\n50 10\n50 11\n50 12\n52 14\n52 16\n52 19\n54 21\n54 24\n54 27\n56 29\n56 30\n56 31\n68 33\n68 34\n68 35\n4 38\n4 39\n5 41\n5 42\n20 43\n20 44\n22 45\n22 48\n25 49\n25 51\n36 53\n36 55\n40 59\n40 60\n47 61\n47 62\n58 63\n58 64\n74 65\n74 67\n76 69\n76 70\n6 71\n13 73\n15 75\n18 77\n57..."
},
{
"input": "90\n2 0 0 0 0 1 2 0 1 1 0 1 0 4 0 1 1 0 1 0 1 0 1 1 2 0 0 1 2 3 0 1 1 0 0 1 1 0 0 2 0 2 2 1 0 1 0 0 2 0 1 4 2 0 1 2 2 0 1 0 0 5 0 0 3 0 1 2 0 0 0 0 2 3 0 0 3 3 0 3 3 0 0 0 1 0 1 2 2 2",
"output": "89\n1 62\n1 14\n62 52\n62 30\n62 65\n62 74\n62 77\n14 78\n14 80\n14 81\n14 7\n52 25\n52 29\n52 40\n52 42\n30 43\n30 49\n30 53\n65 56\n65 57\n65 68\n74 73\n74 88\n74 89\n77 90\n77 6\n77 9\n78 10\n78 12\n78 16\n80 17\n80 19\n80 21\n81 23\n81 24\n81 28\n7 32\n7 33\n25 36\n25 37\n29 44\n29 46\n40 51\n40 55\n42 59\n42 67\n43 85\n43 87\n49 2\n49 3\n53 4\n53 5\n56 8\n56 11\n57 13\n57 15\n68 18\n68 20\n73 22\n73 26\n88 27\n88 31\n89 34\n89 35\n90 38\n90 39\n6 41\n9 45\n10 47\n12 48\n16 50\n17 54\n19 58\n21 60\n23 ..."
},
{
"input": "99\n1 2 1 0 2 1 2 0 1 2 1 1 2 1 0 2 0 0 1 2 0 1 1 1 0 0 1 1 2 3 1 0 0 0 1 1 0 0 1 2 1 0 2 0 0 2 0 1 0 2 1 1 0 0 3 1 0 2 2 2 2 1 0 2 0 1 1 0 3 2 0 0 1 1 2 0 0 2 0 0 1 2 3 0 3 0 0 3 0 3 0 1 2 1 0 1 0 1 1",
"output": "98\n1 30\n30 55\n30 69\n30 83\n55 85\n55 88\n55 90\n69 2\n69 5\n69 7\n83 10\n83 13\n83 16\n85 20\n85 29\n85 40\n88 43\n88 46\n88 50\n90 58\n90 59\n90 60\n2 61\n2 64\n5 70\n5 75\n7 78\n7 82\n10 93\n10 3\n13 6\n13 9\n16 11\n16 12\n20 14\n20 19\n29 22\n29 23\n40 24\n40 27\n43 28\n43 31\n46 35\n46 36\n50 39\n50 41\n58 48\n58 51\n59 52\n59 56\n60 62\n60 66\n61 67\n61 73\n64 74\n64 81\n70 92\n70 94\n75 96\n75 98\n78 99\n78 4\n82 8\n82 15\n93 17\n93 18\n3 21\n6 25\n9 26\n11 32\n12 33\n14 34\n19 37\n22 38\n23 42\n..."
},
{
"input": "100\n18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 13 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0",
"output": "99\n1 26\n1 99\n1 38\n1 62\n1 32\n1 71\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n26 14\n26 15\n26 16\n26 17\n26 18\n26 19\n26 20\n26 21\n26 22\n26 23\n26 24\n26 25\n26 27\n26 28\n26 29\n26 30\n99 31\n99 33\n99 34\n99 35\n99 36\n99 37\n99 39\n99 40\n99 41\n99 42\n99 43\n99 44\n99 45\n99 46\n99 47\n99 48\n38 49\n38 50\n38 51\n38 52\n38 53\n38 54\n38 55\n38 56\n38 57\n38 58\n38 59\n38 60\n38 61\n38 63\n38 64\n62 65\n62 66\n62 67\n62 68\n62 69\n62 70\n62 72\n62 73\n62 74\n62 75\n62 76\n6..."
},
{
"input": "100\n3 2 1 0 1 0 0 0 2 3 2 1 0 0 0 3 1 1 3 0 1 1 1 3 0 2 2 2 0 1 1 1 0 0 1 0 2 1 1 2 1 0 0 0 1 1 0 3 0 0 0 4 1 2 0 0 0 1 0 3 2 0 0 2 0 3 0 1 4 2 1 0 0 1 1 0 1 0 0 4 0 1 0 1 0 1 1 0 0 0 0 1 2 0 0 0 3 3 0 2",
"output": "99\n1 52\n1 69\n1 80\n52 10\n52 16\n52 19\n52 24\n69 48\n69 60\n69 66\n69 97\n80 98\n80 2\n80 9\n80 11\n10 26\n10 27\n10 28\n16 37\n16 40\n16 54\n19 61\n19 64\n19 70\n24 93\n24 100\n24 3\n48 5\n48 12\n48 17\n60 18\n60 21\n60 22\n66 23\n66 30\n66 31\n97 32\n97 35\n97 38\n98 39\n98 41\n98 45\n2 46\n2 53\n9 58\n9 68\n11 71\n11 74\n26 75\n26 77\n27 82\n27 84\n28 86\n28 87\n37 92\n37 4\n40 6\n40 7\n54 8\n54 13\n61 14\n61 15\n64 20\n64 25\n70 29\n70 33\n93 34\n93 36\n100 42\n100 43\n3 44\n5 47\n12 49\n17 50\n18 ..."
},
{
"input": "100\n66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 0 0 0",
"output": "99\n1 97\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n97 67\n97 68\n97 69\n97 70\n97 71\n97 72\n97 73\n97 74\n97 75\n97 76\n97 77\n97 78\n97 79\n97 80\n97 81\n97 82\n97 83\n..."
},
{
"input": "20\n0 0 3 0 0 0 3 4 2 0 2 0 0 0 0 1 0 1 0 1",
"output": "-1"
},
{
"input": "60\n3 0 0 1 0 0 0 0 3 1 3 4 0 0 0 3 0 0 0 2 0 3 4 1 3 3 0 2 0 4 1 5 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 1 0 1 0 3 0 0",
"output": "-1"
},
{
"input": "80\n4 0 0 0 0 0 0 3 0 3 0 0 0 4 3 0 1 0 2 0 0 0 5 0 5 0 0 0 0 4 0 3 0 0 0 1 0 0 2 0 5 2 0 0 4 4 0 3 0 0 0 0 0 0 0 2 5 0 2 0 0 0 0 0 0 0 0 0 0 3 0 0 3 5 0 0 0 0 0 0",
"output": "-1"
},
{
"input": "100\n2 0 0 2 0 0 0 0 0 2 0 0 0 5 0 0 0 0 0 0 0 1 0 7 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 6 0 7 4 0 0 0 0 5 0 0 0 0 0 0 7 4 0 0 0 0 0 0 7 7 0 0 0 0 0 2 0 0 0 0 0 0 0 0 4 7 7 0 0 0",
"output": "-1"
},
{
"input": "100\n1 0 0 0 1 2 3 2 1 0 1 2 3 1 3 1 0 0 1 1 0 0 2 1 2 1 3 3 1 0 0 1 0 2 2 0 3 0 1 1 1 2 0 2 0 1 0 2 0 1 2 2 0 0 0 0 1 0 0 0 1 1 4 0 2 0 1 0 2 0 2 2 2 1 1 0 0 2 0 3 1 0 0 1 1 0 1 0 2 3 2 0 1 2 0 0 0 0 0 1",
"output": "99\n1 63\n63 7\n63 13\n63 15\n63 27\n7 28\n7 37\n7 80\n13 90\n13 6\n13 8\n15 12\n15 23\n15 25\n27 34\n27 35\n27 42\n28 44\n28 48\n28 51\n37 52\n37 65\n37 69\n80 71\n80 72\n80 73\n90 78\n90 89\n90 91\n6 94\n6 5\n8 9\n8 11\n12 14\n12 16\n23 19\n23 20\n25 24\n25 26\n34 29\n34 32\n35 39\n35 40\n42 41\n42 46\n44 50\n44 57\n48 61\n48 62\n51 67\n51 74\n52 75\n52 81\n65 84\n65 85\n69 87\n69 93\n71 100\n71 2\n72 3\n72 4\n73 10\n73 17\n78 18\n78 21\n89 22\n89 30\n91 31\n91 33\n94 36\n94 38\n5 43\n9 45\n11 47\n14 49\n..."
},
{
"input": "100\n5 0 0 1 1 0 0 0 1 0 0 0 0 0 5 0 2 1 0 1 0 6 0 0 0 3 0 0 0 0 0 0 0 0 1 0 3 0 0 0 0 0 0 4 0 0 3 1 1 0 0 4 0 0 0 0 0 0 3 2 3 3 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 1 0 5 1 0 8 0 1 0 0 10 4 0 0 0 6 4 0 0 0 0 1",
"output": "99\n1 89\n1 84\n1 22\n1 94\n1 15\n89 81\n89 44\n89 52\n89 90\n89 95\n89 26\n89 37\n89 47\n89 59\n89 61\n84 62\n84 17\n84 60\n84 75\n84 78\n84 4\n84 5\n84 9\n22 18\n22 20\n22 35\n22 48\n22 49\n22 79\n94 82\n94 86\n94 100\n94 2\n94 3\n94 6\n15 7\n15 8\n15 10\n15 11\n15 12\n81 13\n81 14\n81 16\n81 19\n81 21\n44 23\n44 24\n44 25\n44 27\n52 28\n52 29\n52 30\n52 31\n90 32\n90 33\n90 34\n90 36\n95 38\n95 39\n95 40\n95 41\n26 42\n26 43\n26 45\n37 46\n37 50\n37 51\n47 53\n47 54\n47 55\n59 56\n59 57\n59 58\n61 63\n6..."
},
{
"input": "100\n47 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 4 0 1 0 2 0 0 1 0 0 0 0 0 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0",
"output": "99\n1 47\n1 12\n1 66\n1 33\n1 93\n1 37\n1 81\n1 25\n1 35\n1 40\n1 46\n1 61\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 34\n1 36\n1 38\n1 39\n1 41\n1 42\n47 43\n47 44\n47 45\n47 48\n47 49\n47 50\n47 51\n47 52\n47 53\n47 54\n47 55\n47 56\n47 57\n47 58\n47 59\n47 60\n47 62\n47 63\n12 64\n12 65\n12 67\n12 68\n12 69\n12 70\n12 71\n12 72\n12 73\n66 74\n66 75\n66 76\n66 77\n66 78\n66 79\n66..."
},
{
"input": "100\n1 0 2 1 1 1 0 0 0 3 2 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 1 2 1 0 2 1 1 1 0 0 1 2 1 3 1 1 0 0 2 1 0 1 1 1 2 1 2 0 3 1 2 0 1 1 2 2 1 1 1 1 1 2 0 0 2 1 1 0 1 2 1 1 1 1 1 0 1 1 1 0 3 0 0 2 2 0 0 0 2 1 2 0",
"output": "99\n1 10\n10 42\n10 57\n10 89\n42 3\n42 11\n42 30\n57 33\n57 40\n57 47\n89 53\n89 55\n89 59\n3 63\n3 64\n11 70\n11 73\n30 78\n30 92\n33 93\n33 97\n40 99\n40 4\n47 5\n47 6\n53 12\n53 13\n55 14\n55 16\n59 18\n59 19\n63 20\n63 22\n64 23\n64 24\n70 26\n70 27\n73 28\n73 29\n78 31\n78 34\n92 35\n92 36\n93 39\n93 41\n97 43\n97 44\n99 48\n99 50\n4 51\n5 52\n6 54\n12 58\n13 61\n14 62\n16 65\n18 66\n19 67\n20 68\n22 69\n23 74\n24 75\n26 77\n27 79\n28 80\n29 81\n31 82\n34 83\n35 85\n36 86\n39 87\n41 98\n43 2\n44 7\n4..."
},
{
"input": "100\n83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0",
"output": "99\n1 99\n1 83\n1 22\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n99 84\n99 85\n99 ..."
},
{
"input": "100\n1 1 0 1 0 1 1 1 2 1 0 1 1 0 1 2 1 1 1 1 2 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 2 2 2 2 1 1 0 1 2 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 1 1 1 2 0 2 1 2 1 1 0 0 1 1 1 1 0 2 4 2 1 1 1 0 1 2 1 1 1 0 2 1 2",
"output": "99\n1 86\n86 9\n86 16\n86 21\n86 44\n9 45\n9 46\n16 47\n16 52\n21 71\n21 73\n44 75\n44 85\n45 87\n45 93\n46 98\n46 100\n47 2\n47 4\n52 6\n52 7\n71 8\n71 10\n73 12\n73 13\n75 15\n75 17\n85 18\n85 19\n87 20\n87 22\n93 23\n93 25\n98 27\n98 28\n100 29\n100 30\n2 31\n4 32\n6 33\n7 34\n8 35\n10 36\n12 37\n13 38\n15 39\n17 41\n18 42\n19 48\n20 49\n22 51\n23 53\n25 54\n27 56\n28 57\n29 59\n30 61\n31 62\n32 65\n33 66\n34 67\n35 68\n36 69\n37 70\n38 74\n39 76\n41 77\n42 80\n48 81\n49 82\n51 83\n53 88\n54 89\n56 90\n..."
},
{
"input": "100\n99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "99\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19\n1 20\n1 21\n1 22\n1 23\n1 24\n1 25\n1 26\n1 27\n1 28\n1 29\n1 30\n1 31\n1 32\n1 33\n1 34\n1 35\n1 36\n1 37\n1 38\n1 39\n1 40\n1 41\n1 42\n1 43\n1 44\n1 45\n1 46\n1 47\n1 48\n1 49\n1 50\n1 51\n1 52\n1 53\n1 54\n1 55\n1 56\n1 57\n1 58\n1 59\n1 60\n1 61\n1 62\n1 63\n1 64\n1 65\n1 66\n1 67\n1 68\n1 69\n1 70\n1 71\n1 72\n1 73\n1 74\n1 75\n1 76\n1 77\n1 78\n1 79\n1 80\n1 81\n1 82\n1 83\n1 84\n1 85\n1 86\n1 87\n..."
},
{
"input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "99\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 10\n10 11\n11 12\n12 13\n13 14\n14 15\n15 16\n16 17\n17 18\n18 19\n19 20\n20 21\n21 22\n22 23\n23 24\n24 25\n25 26\n26 27\n27 28\n28 29\n29 30\n30 31\n31 32\n32 33\n33 34\n34 35\n35 36\n36 37\n37 38\n38 39\n39 40\n40 41\n41 42\n42 43\n43 44\n44 45\n45 46\n46 47\n47 48\n48 49\n49 50\n50 52\n52 53\n53 54\n54 55\n55 56\n56 57\n57 58\n58 59\n59 60\n60 61\n61 62\n62 63\n63 64\n64 65\n65 66\n66 67\n67 68\n68 69\n69 70\n70 71\n71 72\n72 73\n73 74\n74 75\n75 76\n76 77\n..."
},
{
"input": "2\n0 100",
"output": "-1"
},
{
"input": "2\n100 0",
"output": "1\n1 2"
},
{
"input": "2\n100 100",
"output": "1\n1 2"
}
] | 1,488,648,807
| 20,007
|
Python 3
|
OK
|
TESTS
| 60
| 62
| 4,915,200
|
n=int(input())
ai=input().split()
res=[]
prov=[1]
for i in range(0,n):
ai[i]=int(ai[i])
prov.append(0)
prov.remove(0)
i=0
if ai[0]!=0 and sum(ai)>=(n-1):
it=True
else:
it=False
if it:
for j in range(0,n):
if prov[j]==1:
for i in range(0,n):
if prov[i]==0 and ai[i]!=0 and i!=j and ai[j]!=0:
res.append(str(j+1)+' '+str(i+1))
ai[j]-=1
prov[i]=1
if ai[j]==0:
prov[j]=2
for j in range(0,n):
if prov[j]==1:
for i in range(0,n):
if prov[i]==0 and ai[i]==0 and i!=j and ai[j]!=0:
res.append(str(j+1)+' '+str(i+1))
ai[j]-=1
prov[i]=2
if ai[j]==0:
prov[j]=2
if it:
print(len(res))
for i in range(0, len(res)):
V=res[i].split()
print(V[0], V[1])
else:
print(-1)
|
Title: News About Credit
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarp studies at the university in the group which consists of *n* students (including himself). All they are registrated in the social net "TheContacnt!".
Not all students are equally sociable. About each student you know the value *a**i* — the maximum number of messages which the *i*-th student is agree to send per day. The student can't send messages to himself.
In early morning Polycarp knew important news that the programming credit will be tomorrow. For this reason it is necessary to urgently inform all groupmates about this news using private messages.
Your task is to make a plan of using private messages, so that:
- the student *i* sends no more than *a**i* messages (for all *i* from 1 to *n*); - all students knew the news about the credit (initially only Polycarp knew it); - the student can inform the other student only if he knows it himself.
Let's consider that all students are numerated by distinct numbers from 1 to *n*, and Polycarp always has the number 1.
In that task you shouldn't minimize the number of messages, the moment of time, when all knew about credit or some other parameters. Find any way how to use private messages which satisfies requirements above.
Input Specification:
The first line contains the positive integer *n* (2<=≤<=*n*<=≤<=100) — the number of students.
The second line contains the sequence *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=100), where *a**i* equals to the maximum number of messages which can the *i*-th student agree to send. Consider that Polycarp always has the number 1.
Output Specification:
Print -1 to the first line if it is impossible to inform all students about credit.
Otherwise, in the first line print the integer *k* — the number of messages which will be sent. In each of the next *k* lines print two distinct integers *f* and *t*, meaning that the student number *f* sent the message with news to the student number *t*. All messages should be printed in chronological order. It means that the student, who is sending the message, must already know this news. It is assumed that students can receive repeated messages with news of the credit.
If there are several answers, it is acceptable to print any of them.
Demo Input:
['4\n1 2 1 0\n', '6\n2 0 1 3 2 0\n', '3\n0 2 2\n']
Demo Output:
['3\n1 2\n2 4\n2 3\n', '6\n1 3\n3 4\n1 2\n4 5\n5 6\n4 6\n', '-1\n']
Note:
In the first test Polycarp (the student number 1) can send the message to the student number 2, who after that can send the message to students number 3 and 4. Thus, all students knew about the credit.
|
```python
n=int(input())
ai=input().split()
res=[]
prov=[1]
for i in range(0,n):
ai[i]=int(ai[i])
prov.append(0)
prov.remove(0)
i=0
if ai[0]!=0 and sum(ai)>=(n-1):
it=True
else:
it=False
if it:
for j in range(0,n):
if prov[j]==1:
for i in range(0,n):
if prov[i]==0 and ai[i]!=0 and i!=j and ai[j]!=0:
res.append(str(j+1)+' '+str(i+1))
ai[j]-=1
prov[i]=1
if ai[j]==0:
prov[j]=2
for j in range(0,n):
if prov[j]==1:
for i in range(0,n):
if prov[i]==0 and ai[i]==0 and i!=j and ai[j]!=0:
res.append(str(j+1)+' '+str(i+1))
ai[j]-=1
prov[i]=2
if ai[j]==0:
prov[j]=2
if it:
print(len(res))
for i in range(0, len(res)):
V=res[i].split()
print(V[0], V[1])
else:
print(-1)
```
| 3
|
|
686
|
A
|
Free Ice Cream
|
PROGRAMMING
| 800
|
[
"constructive algorithms",
"implementation"
] | null | null |
After their adventure with the magic mirror Kay and Gerda have returned home and sometimes give free ice cream to kids in the summer.
At the start of the day they have *x* ice cream packs. Since the ice cream is free, people start standing in the queue before Kay and Gerda's house even in the night. Each person in the queue wants either to take several ice cream packs for himself and his friends or to give several ice cream packs to Kay and Gerda (carriers that bring ice cream have to stand in the same queue).
If a carrier with *d* ice cream packs comes to the house, then Kay and Gerda take all his packs. If a child who wants to take *d* ice cream packs comes to the house, then Kay and Gerda will give him *d* packs if they have enough ice cream, otherwise the child will get no ice cream at all and will leave in distress.
Kay wants to find the amount of ice cream they will have after all people will leave from the queue, and Gerda wants to find the number of distressed kids.
|
The first line contains two space-separated integers *n* and *x* (1<=≤<=*n*<=≤<=1000, 0<=≤<=*x*<=≤<=109).
Each of the next *n* lines contains a character '+' or '-', and an integer *d**i*, separated by a space (1<=≤<=*d**i*<=≤<=109). Record "+ *d**i*" in *i*-th line means that a carrier with *d**i* ice cream packs occupies *i*-th place from the start of the queue, and record "- *d**i*" means that a child who wants to take *d**i* packs stands in *i*-th place.
|
Print two space-separated integers — number of ice cream packs left after all operations, and number of kids that left the house in distress.
|
[
"5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20\n",
"5 17\n- 16\n- 2\n- 98\n+ 100\n- 98\n"
] |
[
"22 1\n",
"3 2\n"
] |
Consider the first sample.
1. Initially Kay and Gerda have 7 packs of ice cream. 1. Carrier brings 5 more, so now they have 12 packs. 1. A kid asks for 10 packs and receives them. There are only 2 packs remaining. 1. Another kid asks for 20 packs. Kay and Gerda do not have them, so the kid goes away distressed. 1. Carrier bring 40 packs, now Kay and Gerda have 42 packs. 1. Kid asks for 20 packs and receives them. There are 22 packs remaining.
| 500
|
[
{
"input": "5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20",
"output": "22 1"
},
{
"input": "5 17\n- 16\n- 2\n- 98\n+ 100\n- 98",
"output": "3 2"
},
{
"input": "6 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000",
"output": "7000000000 0"
},
{
"input": "5 12\n- 12\n+ 7\n- 6\n- 1\n+ 46",
"output": "46 0"
},
{
"input": "11 1000\n- 100\n+ 100\n+ 100\n+ 100\n+ 100\n- 100\n- 100\n- 100\n- 100\n- 100\n- 100",
"output": "700 0"
},
{
"input": "1 0\n- 526403222",
"output": "0 1"
},
{
"input": "1 897986543\n- 371188251",
"output": "526798292 0"
},
{
"input": "1 0\n+ 1",
"output": "1 0"
},
{
"input": "1 0\n- 1",
"output": "0 1"
},
{
"input": "1 10\n+ 10",
"output": "20 0"
},
{
"input": "1 3\n- 5",
"output": "3 1"
},
{
"input": "1 0\n- 5",
"output": "0 1"
},
{
"input": "1 0\n+ 5",
"output": "5 0"
}
] | 1,611,012,142
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 77
| 0
|
kidscounter =0
x , y =map(int,input().split())
for i in range(x):
s = input().split()
A = s[0]
B = int(s[1])
if A == '+':
y+=B
else:
if y >= B:
y-=B
else:
kidscounter+=1
print(y,kidscounter)
|
Title: Free Ice Cream
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
After their adventure with the magic mirror Kay and Gerda have returned home and sometimes give free ice cream to kids in the summer.
At the start of the day they have *x* ice cream packs. Since the ice cream is free, people start standing in the queue before Kay and Gerda's house even in the night. Each person in the queue wants either to take several ice cream packs for himself and his friends or to give several ice cream packs to Kay and Gerda (carriers that bring ice cream have to stand in the same queue).
If a carrier with *d* ice cream packs comes to the house, then Kay and Gerda take all his packs. If a child who wants to take *d* ice cream packs comes to the house, then Kay and Gerda will give him *d* packs if they have enough ice cream, otherwise the child will get no ice cream at all and will leave in distress.
Kay wants to find the amount of ice cream they will have after all people will leave from the queue, and Gerda wants to find the number of distressed kids.
Input Specification:
The first line contains two space-separated integers *n* and *x* (1<=≤<=*n*<=≤<=1000, 0<=≤<=*x*<=≤<=109).
Each of the next *n* lines contains a character '+' or '-', and an integer *d**i*, separated by a space (1<=≤<=*d**i*<=≤<=109). Record "+ *d**i*" in *i*-th line means that a carrier with *d**i* ice cream packs occupies *i*-th place from the start of the queue, and record "- *d**i*" means that a child who wants to take *d**i* packs stands in *i*-th place.
Output Specification:
Print two space-separated integers — number of ice cream packs left after all operations, and number of kids that left the house in distress.
Demo Input:
['5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20\n', '5 17\n- 16\n- 2\n- 98\n+ 100\n- 98\n']
Demo Output:
['22 1\n', '3 2\n']
Note:
Consider the first sample.
1. Initially Kay and Gerda have 7 packs of ice cream. 1. Carrier brings 5 more, so now they have 12 packs. 1. A kid asks for 10 packs and receives them. There are only 2 packs remaining. 1. Another kid asks for 20 packs. Kay and Gerda do not have them, so the kid goes away distressed. 1. Carrier bring 40 packs, now Kay and Gerda have 42 packs. 1. Kid asks for 20 packs and receives them. There are 22 packs remaining.
|
```python
kidscounter =0
x , y =map(int,input().split())
for i in range(x):
s = input().split()
A = s[0]
B = int(s[1])
if A == '+':
y+=B
else:
if y >= B:
y-=B
else:
kidscounter+=1
print(y,kidscounter)
```
| 3
|
|
478
|
B
|
Random Teams
|
PROGRAMMING
| 1,300
|
[
"combinatorics",
"constructive algorithms",
"greedy",
"math"
] | null | null |
*n* participants of the competition were split into *m* teams in some manner so that each team has at least one participant. After the competition each pair of participants from the same team became friends.
Your task is to write a program that will find the minimum and the maximum number of pairs of friends that could have formed by the end of the competition.
|
The only line of input contains two integers *n* and *m*, separated by a single space (1<=≤<=*m*<=≤<=*n*<=≤<=109) — the number of participants and the number of teams respectively.
|
The only line of the output should contain two integers *k**min* and *k**max* — the minimum possible number of pairs of friends and the maximum possible number of pairs of friends respectively.
|
[
"5 1\n",
"3 2\n",
"6 3\n"
] |
[
"10 10\n",
"1 1\n",
"3 6\n"
] |
In the first sample all the participants get into one team, so there will be exactly ten pairs of friends.
In the second sample at any possible arrangement one team will always have two participants and the other team will always have one participant. Thus, the number of pairs of friends will always be equal to one.
In the third sample minimum number of newly formed friendships can be achieved if participants were split on teams consisting of 2 people, maximum number can be achieved if participants were split on teams of 1, 1 and 4 people.
| 1,000
|
[
{
"input": "5 1",
"output": "10 10"
},
{
"input": "3 2",
"output": "1 1"
},
{
"input": "6 3",
"output": "3 6"
},
{
"input": "5 3",
"output": "2 3"
},
{
"input": "10 2",
"output": "20 36"
},
{
"input": "10 6",
"output": "4 10"
},
{
"input": "1000000000 1",
"output": "499999999500000000 499999999500000000"
},
{
"input": "5000000 12",
"output": "1041664166668 12499942500066"
},
{
"input": "1833 195",
"output": "7722 1342341"
},
{
"input": "1000000000 1000000000",
"output": "0 0"
},
{
"input": "1000000000 1000000",
"output": "499500000000 499000500499500000"
},
{
"input": "1000000000 32170",
"output": "15541930838100 499967831017438365"
},
{
"input": "1000000 1000",
"output": "499500000 499000999500"
},
{
"input": "1234 1123",
"output": "111 6216"
},
{
"input": "599222887 298488",
"output": "601178656545 179355218158217800"
},
{
"input": "999999999 500000000",
"output": "499999999 124999999750000000"
},
{
"input": "1000000000 384842119",
"output": "845473643 189209609585784021"
},
{
"input": "1000000000 384842119",
"output": "845473643 189209609585784021"
},
{
"input": "1000000000 2",
"output": "249999999500000000 499999998500000001"
},
{
"input": "1000000000 999999999",
"output": "1 1"
},
{
"input": "38447 383",
"output": "1910550 724453080"
},
{
"input": "100000000 99999799",
"output": "201 20301"
},
{
"input": "1 1",
"output": "0 0"
},
{
"input": "2 1",
"output": "1 1"
},
{
"input": "2 2",
"output": "0 0"
},
{
"input": "10 10",
"output": "0 0"
}
] | 1,694,905,076
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 3
| 61
| 0
|
from math import comb, ceil
n, m = map(int, input().split())
# pior caso
time_menor = comb((n // m), 2) * (m - 1)
time_maior = comb(ceil(n / m), 2)
print(time_menor + time_maior, comb(n - (m - 1), 2))
|
Title: Random Teams
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
*n* participants of the competition were split into *m* teams in some manner so that each team has at least one participant. After the competition each pair of participants from the same team became friends.
Your task is to write a program that will find the minimum and the maximum number of pairs of friends that could have formed by the end of the competition.
Input Specification:
The only line of input contains two integers *n* and *m*, separated by a single space (1<=≤<=*m*<=≤<=*n*<=≤<=109) — the number of participants and the number of teams respectively.
Output Specification:
The only line of the output should contain two integers *k**min* and *k**max* — the minimum possible number of pairs of friends and the maximum possible number of pairs of friends respectively.
Demo Input:
['5 1\n', '3 2\n', '6 3\n']
Demo Output:
['10 10\n', '1 1\n', '3 6\n']
Note:
In the first sample all the participants get into one team, so there will be exactly ten pairs of friends.
In the second sample at any possible arrangement one team will always have two participants and the other team will always have one participant. Thus, the number of pairs of friends will always be equal to one.
In the third sample minimum number of newly formed friendships can be achieved if participants were split on teams consisting of 2 people, maximum number can be achieved if participants were split on teams of 1, 1 and 4 people.
|
```python
from math import comb, ceil
n, m = map(int, input().split())
# pior caso
time_menor = comb((n // m), 2) * (m - 1)
time_maior = comb(ceil(n / m), 2)
print(time_menor + time_maior, comb(n - (m - 1), 2))
```
| 0
|
|
275
|
A
|
Lights Out
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Lenny is playing a game on a 3<=×<=3 grid of lights. In the beginning of the game all lights are switched on. Pressing any of the lights will toggle it and all side-adjacent lights. The goal of the game is to switch all the lights off. We consider the toggling as follows: if the light was switched on then it will be switched off, if it was switched off then it will be switched on.
Lenny has spent some time playing with the grid and by now he has pressed each light a certain number of times. Given the number of times each light is pressed, you have to print the current state of each light.
|
The input consists of three rows. Each row contains three integers each between 0 to 100 inclusive. The *j*-th number in the *i*-th row is the number of times the *j*-th light of the *i*-th row of the grid is pressed.
|
Print three lines, each containing three characters. The *j*-th character of the *i*-th line is "1" if and only if the corresponding light is switched on, otherwise it's "0".
|
[
"1 0 0\n0 0 0\n0 0 1\n",
"1 0 1\n8 8 8\n2 0 3\n"
] |
[
"001\n010\n100\n",
"010\n011\n100\n"
] |
none
| 500
|
[
{
"input": "1 0 0\n0 0 0\n0 0 1",
"output": "001\n010\n100"
},
{
"input": "1 0 1\n8 8 8\n2 0 3",
"output": "010\n011\n100"
},
{
"input": "13 85 77\n25 50 45\n65 79 9",
"output": "000\n010\n000"
},
{
"input": "96 95 5\n8 84 74\n67 31 61",
"output": "011\n011\n101"
},
{
"input": "24 54 37\n60 63 6\n1 84 26",
"output": "110\n101\n011"
},
{
"input": "23 10 40\n15 6 40\n92 80 77",
"output": "101\n100\n000"
},
{
"input": "62 74 80\n95 74 93\n2 47 95",
"output": "010\n001\n110"
},
{
"input": "80 83 48\n26 0 66\n47 76 37",
"output": "000\n000\n010"
},
{
"input": "32 15 65\n7 54 36\n5 51 3",
"output": "111\n101\n001"
},
{
"input": "22 97 12\n71 8 24\n100 21 64",
"output": "100\n001\n100"
},
{
"input": "46 37 13\n87 0 50\n90 8 55",
"output": "111\n011\n000"
},
{
"input": "57 43 58\n20 82 83\n66 16 52",
"output": "111\n010\n110"
},
{
"input": "45 56 93\n47 51 59\n18 51 63",
"output": "101\n011\n100"
},
{
"input": "47 66 67\n14 1 37\n27 81 69",
"output": "001\n001\n110"
},
{
"input": "26 69 69\n85 18 23\n14 22 74",
"output": "110\n001\n010"
},
{
"input": "10 70 65\n94 27 25\n74 66 30",
"output": "111\n010\n100"
},
{
"input": "97 1 74\n15 99 1\n88 68 86",
"output": "001\n011\n000"
},
{
"input": "36 48 42\n45 41 66\n26 64 1",
"output": "001\n111\n010"
},
{
"input": "52 81 97\n29 77 71\n66 11 2",
"output": "100\n100\n111"
},
{
"input": "18 66 33\n19 49 49\n48 46 26",
"output": "011\n100\n000"
},
{
"input": "68 79 52\n51 39 100\n29 14 26",
"output": "110\n000\n111"
},
{
"input": "91 69 77\n91 26 64\n91 88 57",
"output": "001\n011\n110"
},
{
"input": "16 69 64\n48 21 80\n81 51 51",
"output": "010\n101\n111"
},
{
"input": "96 14 2\n100 18 12\n65 34 89",
"output": "111\n010\n010"
},
{
"input": "93 95 90\n8 59 42\n53 13 19",
"output": "100\n001\n111"
},
{
"input": "71 84 18\n100 19 67\n9 76 15",
"output": "010\n010\n001"
},
{
"input": "38 93 85\n21 88 64\n4 96 25",
"output": "111\n011\n000"
},
{
"input": "75 20 20\n60 5 78\n77 4 69",
"output": "011\n001\n000"
},
{
"input": "65 70 96\n19 6 83\n33 37 82",
"output": "100\n000\n011"
},
{
"input": "11 13 60\n17 13 46\n42 21 39",
"output": "000\n011\n101"
},
{
"input": "0 0 0\n0 0 0\n0 0 0",
"output": "111\n111\n111"
},
{
"input": "0 0 0\n0 1 0\n0 0 0",
"output": "101\n000\n101"
},
{
"input": "0 0 0\n0 0 0\n0 0 1",
"output": "111\n110\n100"
}
] | 1,641,808,489
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 33
| 62
| 0
|
(a,b,c)=[int(x) for x in input().split()]
(d,e,f)=[int(x) for x in input().split()]
(g,h,i)=[int(x) for x in input().split()]
j=k=l=m=n=o=p=q=r=1
for z in range (a):
if j==1:j=0
else:j=1
if k==1:k=0
else:k=1
if m==1:m=0
else:m=1
for z in range (b):
if j==1:j=0
else:j=1
if k==1:k=0
else:k=1
if l==1:l=0
else:l=1
if n==1:n=0
else:n=1
for z in range (c):
if l==1:l=0
else:l=1
if k==1:k=0
else:k=1
if o==1:o=0
else:o=1
for z in range (d):
if j==1:j=0
else:j=1
if p==1:p=0
else:p=1
if m==1:m=0
else:m=1
if n==1:n=0
else:n=1
for z in range (e):
if k==1:k=0
else:k=1
if m==1:m=0
else:m=1
if n==1:n=0
else:n=1
if o==1:o=0
else:o=1
if q==1:q=0
else:q=1
for z in range (f):
if l==1:l=0
else:l=1
if n==1:n=0
else:n=1
if o==1:o=0
else:o=1
if r==1:r=0
else:r=1
for z in range (g):
if m==1:m=0
else:m=1
if p==1:p=0
else:p=1
if q==1:q=0
else:q=1
for z in range (h):
if p==1:p=0
else:p=1
if n==1:n=0
else:n=1
if r==1:r=0
else:r=1
if q==1:q=0
else:q=1
for z in range (i):
if r==1:r=0
else:r=1
if o==1:o=0
else:o=1
if q==1:q=0
else:q=1
print(j,end='')
print(k,end='')
print(l,)
print(m,end='')
print(n,end='')
print(o)
print(p,end='')
print(q,end='')
print(r)
|
Title: Lights Out
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Lenny is playing a game on a 3<=×<=3 grid of lights. In the beginning of the game all lights are switched on. Pressing any of the lights will toggle it and all side-adjacent lights. The goal of the game is to switch all the lights off. We consider the toggling as follows: if the light was switched on then it will be switched off, if it was switched off then it will be switched on.
Lenny has spent some time playing with the grid and by now he has pressed each light a certain number of times. Given the number of times each light is pressed, you have to print the current state of each light.
Input Specification:
The input consists of three rows. Each row contains three integers each between 0 to 100 inclusive. The *j*-th number in the *i*-th row is the number of times the *j*-th light of the *i*-th row of the grid is pressed.
Output Specification:
Print three lines, each containing three characters. The *j*-th character of the *i*-th line is "1" if and only if the corresponding light is switched on, otherwise it's "0".
Demo Input:
['1 0 0\n0 0 0\n0 0 1\n', '1 0 1\n8 8 8\n2 0 3\n']
Demo Output:
['001\n010\n100\n', '010\n011\n100\n']
Note:
none
|
```python
(a,b,c)=[int(x) for x in input().split()]
(d,e,f)=[int(x) for x in input().split()]
(g,h,i)=[int(x) for x in input().split()]
j=k=l=m=n=o=p=q=r=1
for z in range (a):
if j==1:j=0
else:j=1
if k==1:k=0
else:k=1
if m==1:m=0
else:m=1
for z in range (b):
if j==1:j=0
else:j=1
if k==1:k=0
else:k=1
if l==1:l=0
else:l=1
if n==1:n=0
else:n=1
for z in range (c):
if l==1:l=0
else:l=1
if k==1:k=0
else:k=1
if o==1:o=0
else:o=1
for z in range (d):
if j==1:j=0
else:j=1
if p==1:p=0
else:p=1
if m==1:m=0
else:m=1
if n==1:n=0
else:n=1
for z in range (e):
if k==1:k=0
else:k=1
if m==1:m=0
else:m=1
if n==1:n=0
else:n=1
if o==1:o=0
else:o=1
if q==1:q=0
else:q=1
for z in range (f):
if l==1:l=0
else:l=1
if n==1:n=0
else:n=1
if o==1:o=0
else:o=1
if r==1:r=0
else:r=1
for z in range (g):
if m==1:m=0
else:m=1
if p==1:p=0
else:p=1
if q==1:q=0
else:q=1
for z in range (h):
if p==1:p=0
else:p=1
if n==1:n=0
else:n=1
if r==1:r=0
else:r=1
if q==1:q=0
else:q=1
for z in range (i):
if r==1:r=0
else:r=1
if o==1:o=0
else:o=1
if q==1:q=0
else:q=1
print(j,end='')
print(k,end='')
print(l,)
print(m,end='')
print(n,end='')
print(o)
print(p,end='')
print(q,end='')
print(r)
```
| 3
|
|
377
|
A
|
Maze
|
PROGRAMMING
| 1,600
|
[
"dfs and similar"
] | null | null |
Pavel loves grid mazes. A grid maze is an *n*<=×<=*m* rectangle maze where each cell is either empty, or is a wall. You can go from one cell to another only if both cells are empty and have a common side.
Pavel drew a grid maze with all empty cells forming a connected area. That is, you can go from any empty cell to any other one. Pavel doesn't like it when his maze has too little walls. He wants to turn exactly *k* empty cells into walls so that all the remaining cells still formed a connected area. Help him.
|
The first line contains three integers *n*, *m*, *k* (1<=≤<=*n*,<=*m*<=≤<=500, 0<=≤<=*k*<=<<=*s*), where *n* and *m* are the maze's height and width, correspondingly, *k* is the number of walls Pavel wants to add and letter *s* represents the number of empty cells in the original maze.
Each of the next *n* lines contains *m* characters. They describe the original maze. If a character on a line equals ".", then the corresponding cell is empty and if the character equals "#", then the cell is a wall.
|
Print *n* lines containing *m* characters each: the new maze that fits Pavel's requirements. Mark the empty cells that you transformed into walls as "X", the other cells must be left without changes (that is, "." and "#").
It is guaranteed that a solution exists. If there are multiple solutions you can output any of them.
|
[
"3 4 2\n#..#\n..#.\n#...\n",
"5 4 5\n#...\n#.#.\n.#..\n...#\n.#.#\n"
] |
[
"#.X#\nX.#.\n#...\n",
"#XXX\n#X#.\nX#..\n...#\n.#.#\n"
] |
none
| 500
|
[
{
"input": "5 4 5\n#...\n#.#.\n.#..\n...#\n.#.#",
"output": "#XXX\n#X#.\nX#..\n...#\n.#.#"
},
{
"input": "3 3 2\n#.#\n...\n#.#",
"output": "#X#\nX..\n#.#"
},
{
"input": "7 7 18\n#.....#\n..#.#..\n.#...#.\n...#...\n.#...#.\n..#.#..\n#.....#",
"output": "#XXXXX#\nXX#X#X.\nX#XXX#.\nXXX#...\nX#...#.\nX.#.#..\n#.....#"
},
{
"input": "1 1 0\n.",
"output": "."
},
{
"input": "2 3 1\n..#\n#..",
"output": "X.#\n#.."
},
{
"input": "2 3 1\n#..\n..#",
"output": "#.X\n..#"
},
{
"input": "3 3 1\n...\n.#.\n..#",
"output": "...\n.#X\n..#"
},
{
"input": "3 3 1\n...\n.#.\n#..",
"output": "...\nX#.\n#.."
},
{
"input": "5 4 4\n#..#\n....\n.##.\n....\n#..#",
"output": "#XX#\nXX..\n.##.\n....\n#..#"
},
{
"input": "5 5 2\n.#..#\n..#.#\n#....\n##.#.\n###..",
"output": "X#..#\nX.#.#\n#....\n##.#.\n###.."
},
{
"input": "4 6 3\n#.....\n#.#.#.\n.#...#\n...#.#",
"output": "#.....\n#X#.#X\nX#...#\n...#.#"
},
{
"input": "7 5 4\n.....\n.#.#.\n#...#\n.#.#.\n.#...\n..#..\n....#",
"output": "X...X\nX#.#X\n#...#\n.#.#.\n.#...\n..#..\n....#"
},
{
"input": "16 14 19\n##############\n..############\n#.############\n#..###########\n....##########\n..############\n.#############\n.#.###########\n....##########\n###..#########\n##...#########\n###....#######\n###.##.......#\n###..###.#..#.\n###....#......\n#...#...##.###",
"output": "##############\nXX############\n#X############\n#XX###########\nXXXX##########\nXX############\nX#############\nX#.###########\nX...##########\n###..#########\n##...#########\n###....#######\n###.##.......#\n###..###.#..#.\n###...X#......\n#X..#XXX##.###"
},
{
"input": "10 17 32\n######.##########\n####.#.##########\n...#....#########\n.........########\n##.......########\n........#########\n#.....###########\n#################\n#################\n#################",
"output": "######X##########\n####X#X##########\nXXX#XXXX#########\nXXXXXXXXX########\n##XXX.XXX########\nXXXX...X#########\n#XX...###########\n#################\n#################\n#################"
},
{
"input": "16 10 38\n##########\n##########\n##########\n..########\n...#######\n...#######\n...#######\n....######\n.....####.\n......###.\n......##..\n.......#..\n.........#\n.........#\n.........#\n.........#",
"output": "##########\n##########\n##########\nXX########\nXXX#######\nXXX#######\nXXX#######\nXXXX######\nXXXXX####.\nXXXXX.###.\nXXXX..##..\nXXX....#..\nXXX......#\nXX.......#\nX........#\n.........#"
},
{
"input": "15 16 19\n########.....###\n########.....###\n############.###\n############.###\n############.###\n############.###\n############.###\n############.###\n############.###\n############.###\n.....#####.#..##\n................\n.#...........###\n###.########.###\n###.########.###",
"output": "########XXXXX###\n########XXXXX###\n############.###\n############.###\n############.###\n############.###\n############.###\n############.###\n############.###\n############.###\nXXXX.#####.#..##\nXXX.............\nX#...........###\n###.########.###\n###X########.###"
},
{
"input": "12 19 42\n.........##########\n...................\n.##.##############.\n..################.\n..#################\n..#################\n..#################\n..#################\n..#################\n..#################\n..##########.######\n.............######",
"output": "XXXXXXXXX##########\nXXXXXXXXXXXXXXXXXXX\nX##X##############X\nXX################X\nXX#################\nXX#################\nXX#################\nX.#################\nX.#################\n..#################\n..##########.######\n.............######"
},
{
"input": "3 5 1\n#...#\n..#..\n..#..",
"output": "#...#\n..#..\nX.#.."
},
{
"input": "4 5 10\n.....\n.....\n..#..\n..#..",
"output": "XXX..\nXXX..\nXX#..\nXX#.."
},
{
"input": "3 5 3\n.....\n..#..\n..#..",
"output": ".....\nX.#..\nXX#.."
},
{
"input": "3 5 1\n#....\n..#..\n..###",
"output": "#....\n..#.X\n..###"
},
{
"input": "4 5 1\n.....\n.##..\n..#..\n..###",
"output": ".....\n.##..\n..#.X\n..###"
},
{
"input": "3 5 2\n..#..\n..#..\n....#",
"output": "X.#..\nX.#..\n....#"
},
{
"input": "10 10 1\n##########\n##......##\n#..#..#..#\n#..####..#\n#######.##\n#######.##\n#..####..#\n#..#..#..#\n##......##\n##########",
"output": "##########\n##......##\n#..#..#..#\n#X.####..#\n#######.##\n#######.##\n#..####..#\n#..#..#..#\n##......##\n##########"
},
{
"input": "10 10 3\n..........\n.########.\n.########.\n.########.\n.########.\n.########.\n.#######..\n.#######..\n.####..###\n.......###",
"output": "..........\n.########.\n.########.\n.########.\n.########.\n.########.\n.#######X.\n.#######XX\n.####..###\n.......###"
},
{
"input": "5 7 10\n..#....\n..#.#..\n.##.#..\n..#.#..\n....#..",
"output": "XX#....\nXX#.#..\nX##.#..\nXX#.#..\nXXX.#.."
},
{
"input": "5 7 10\n..#....\n..#.##.\n.##.##.\n..#.#..\n....#..",
"output": "XX#....\nXX#.##.\nX##.##.\nXX#.#..\nXXX.#.."
},
{
"input": "10 10 1\n##########\n##..##..##\n#...##...#\n#.######.#\n#..####..#\n#..####..#\n#.######.#\n#........#\n##..##..##\n##########",
"output": "##########\n##.X##..##\n#...##...#\n#.######.#\n#..####..#\n#..####..#\n#.######.#\n#........#\n##..##..##\n##########"
},
{
"input": "4 5 1\n.....\n.###.\n..#..\n..#..",
"output": ".....\n.###.\n..#..\n.X#.."
},
{
"input": "2 5 2\n###..\n###..",
"output": "###X.\n###X."
},
{
"input": "2 5 3\n.....\n..#..",
"output": "X....\nXX#.."
},
{
"input": "12 12 3\n############\n#..........#\n#.########.#\n#.########.#\n#.########.#\n#.########.#\n#.########.#\n#.#######..#\n#.#######..#\n#.####..####\n#.......####\n############",
"output": "############\n#..........#\n#.########.#\n#.########.#\n#.########.#\n#.########.#\n#.########.#\n#.#######X.#\n#.#######XX#\n#.####..####\n#.......####\n############"
},
{
"input": "5 5 1\n.....\n.##..\n..###\n..###\n#####",
"output": ".....\n.##.X\n..###\n..###\n#####"
},
{
"input": "4 4 1\n....\n.#..\n..##\n..##",
"output": "....\n.#.X\n..##\n..##"
},
{
"input": "5 5 1\n....#\n.##..\n.##..\n...##\n...##",
"output": "....#\n.##..\n.##.X\n...##\n...##"
},
{
"input": "5 5 1\n.....\n.##..\n..###\n..###\n..###",
"output": ".....\n.##.X\n..###\n..###\n..###"
},
{
"input": "4 5 1\n#....\n#.#..\n..###\n..###",
"output": "#....\n#.#.X\n..###\n..###"
},
{
"input": "4 4 3\n....\n.#..\n..##\n..##",
"output": "...X\n.#XX\n..##\n..##"
},
{
"input": "4 7 6\n.......\n....#..\n.##.#..\n....#..",
"output": "X......\nX...#..\nX##.#..\nXXX.#.."
},
{
"input": "8 8 7\n........\n.##.....\n.#######\n..######\n..######\n..######\n..######\n..######",
"output": ".....XXX\n.##.XXXX\n.#######\n..######\n..######\n..######\n..######\n..######"
}
] | 1,670,649,138
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 0
| 77
| 3,584,000
|
from queue import Queue
H, W, K = map(int, input().split())
G = [list(input()) for _ in range(H)]
start = None
for i in range(H):
if '.' in G[i]:
start = i, G[i].index('.')
break
visited = [W * [False] for _ in range(H)]
dots = []
visited[start[0]][start[1]] = True
queue = Queue()
queue.put(start)
while not queue.empty() and len(dots) < K:
x, y = queue.get()
dots.append((x, y))
neighbors = {
((x - 1 + H) % H, y),
((x + 1) % H, y),
(x, (y - 1 + W) % W),
(x, (y + 1) % W)
}
for a, b in neighbors:
if not visited[a][b] and G[a][b] == '.':
visited[a][b] = True
queue.put((a, b))
for x, y in dots:
G[x][y] = 'X'
print(*[''.join(x) for x in G], sep='\n')
|
Title: Maze
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Pavel loves grid mazes. A grid maze is an *n*<=×<=*m* rectangle maze where each cell is either empty, or is a wall. You can go from one cell to another only if both cells are empty and have a common side.
Pavel drew a grid maze with all empty cells forming a connected area. That is, you can go from any empty cell to any other one. Pavel doesn't like it when his maze has too little walls. He wants to turn exactly *k* empty cells into walls so that all the remaining cells still formed a connected area. Help him.
Input Specification:
The first line contains three integers *n*, *m*, *k* (1<=≤<=*n*,<=*m*<=≤<=500, 0<=≤<=*k*<=<<=*s*), where *n* and *m* are the maze's height and width, correspondingly, *k* is the number of walls Pavel wants to add and letter *s* represents the number of empty cells in the original maze.
Each of the next *n* lines contains *m* characters. They describe the original maze. If a character on a line equals ".", then the corresponding cell is empty and if the character equals "#", then the cell is a wall.
Output Specification:
Print *n* lines containing *m* characters each: the new maze that fits Pavel's requirements. Mark the empty cells that you transformed into walls as "X", the other cells must be left without changes (that is, "." and "#").
It is guaranteed that a solution exists. If there are multiple solutions you can output any of them.
Demo Input:
['3 4 2\n#..#\n..#.\n#...\n', '5 4 5\n#...\n#.#.\n.#..\n...#\n.#.#\n']
Demo Output:
['#.X#\nX.#.\n#...\n', '#XXX\n#X#.\nX#..\n...#\n.#.#\n']
Note:
none
|
```python
from queue import Queue
H, W, K = map(int, input().split())
G = [list(input()) for _ in range(H)]
start = None
for i in range(H):
if '.' in G[i]:
start = i, G[i].index('.')
break
visited = [W * [False] for _ in range(H)]
dots = []
visited[start[0]][start[1]] = True
queue = Queue()
queue.put(start)
while not queue.empty() and len(dots) < K:
x, y = queue.get()
dots.append((x, y))
neighbors = {
((x - 1 + H) % H, y),
((x + 1) % H, y),
(x, (y - 1 + W) % W),
(x, (y + 1) % W)
}
for a, b in neighbors:
if not visited[a][b] and G[a][b] == '.':
visited[a][b] = True
queue.put((a, b))
for x, y in dots:
G[x][y] = 'X'
print(*[''.join(x) for x in G], sep='\n')
```
| 0
|
|
803
|
A
|
Maximal Binary Matrix
|
PROGRAMMING
| 1,400
|
[
"constructive algorithms"
] | null | null |
You are given matrix with *n* rows and *n* columns filled with zeroes. You should put *k* ones in it in such a way that the resulting matrix is symmetrical with respect to the main diagonal (the diagonal that goes from the top left to the bottom right corner) and is lexicographically maximal.
One matrix is lexicographically greater than the other if the first different number in the first different row from the top in the first matrix is greater than the corresponding number in the second one.
If there exists no such matrix then output -1.
|
The first line consists of two numbers *n* and *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=106).
|
If the answer exists then output resulting matrix. Otherwise output -1.
|
[
"2 1\n",
"3 2\n",
"2 5\n"
] |
[
"1 0 \n0 0 \n",
"1 0 0 \n0 1 0 \n0 0 0 \n",
"-1\n"
] |
none
| 0
|
[
{
"input": "2 1",
"output": "1 0 \n0 0 "
},
{
"input": "3 2",
"output": "1 0 0 \n0 1 0 \n0 0 0 "
},
{
"input": "2 5",
"output": "-1"
},
{
"input": "1 0",
"output": "0 "
},
{
"input": "1 1",
"output": "1 "
},
{
"input": "20 398",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1..."
},
{
"input": "20 401",
"output": "-1"
},
{
"input": "100 3574",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1..."
},
{
"input": "100 10000",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1..."
},
{
"input": "100 10001",
"output": "-1"
},
{
"input": "2 3",
"output": "1 1 \n1 0 "
},
{
"input": "4 5",
"output": "1 1 1 0 \n1 0 0 0 \n1 0 0 0 \n0 0 0 0 "
},
{
"input": "5 6",
"output": "1 1 1 0 0 \n1 1 0 0 0 \n1 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 "
},
{
"input": "5 24",
"output": "1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 0 "
},
{
"input": "2 0",
"output": "0 0 \n0 0 "
},
{
"input": "3 5",
"output": "1 1 1 \n1 0 0 \n1 0 0 "
},
{
"input": "3 3",
"output": "1 1 0 \n1 0 0 \n0 0 0 "
},
{
"input": "5 10",
"output": "1 1 1 1 1 \n1 1 0 0 0 \n1 0 0 0 0 \n1 0 0 0 0 \n1 0 0 0 0 "
},
{
"input": "3 4",
"output": "1 1 0 \n1 1 0 \n0 0 0 "
},
{
"input": "4 3",
"output": "1 1 0 0 \n1 0 0 0 \n0 0 0 0 \n0 0 0 0 "
},
{
"input": "1 1000000",
"output": "-1"
},
{
"input": "3 6",
"output": "1 1 1 \n1 1 0 \n1 0 0 "
},
{
"input": "1 2",
"output": "-1"
},
{
"input": "1 0",
"output": "0 "
},
{
"input": "1 1",
"output": "1 "
},
{
"input": "1 2",
"output": "-1"
},
{
"input": "1 3",
"output": "-1"
},
{
"input": "1 4",
"output": "-1"
},
{
"input": "1 5",
"output": "-1"
},
{
"input": "1 6",
"output": "-1"
},
{
"input": "1 7",
"output": "-1"
},
{
"input": "1 8",
"output": "-1"
},
{
"input": "1 9",
"output": "-1"
},
{
"input": "1 10",
"output": "-1"
},
{
"input": "1 11",
"output": "-1"
},
{
"input": "1 12",
"output": "-1"
},
{
"input": "1 13",
"output": "-1"
},
{
"input": "1 14",
"output": "-1"
},
{
"input": "1 15",
"output": "-1"
},
{
"input": "1 16",
"output": "-1"
},
{
"input": "1 17",
"output": "-1"
},
{
"input": "1 18",
"output": "-1"
},
{
"input": "1 19",
"output": "-1"
},
{
"input": "1 20",
"output": "-1"
},
{
"input": "1 21",
"output": "-1"
},
{
"input": "1 22",
"output": "-1"
},
{
"input": "1 23",
"output": "-1"
},
{
"input": "1 24",
"output": "-1"
},
{
"input": "1 25",
"output": "-1"
},
{
"input": "1 26",
"output": "-1"
},
{
"input": "2 0",
"output": "0 0 \n0 0 "
},
{
"input": "2 1",
"output": "1 0 \n0 0 "
},
{
"input": "2 2",
"output": "1 0 \n0 1 "
},
{
"input": "2 3",
"output": "1 1 \n1 0 "
},
{
"input": "2 4",
"output": "1 1 \n1 1 "
},
{
"input": "2 5",
"output": "-1"
},
{
"input": "2 6",
"output": "-1"
},
{
"input": "2 7",
"output": "-1"
},
{
"input": "2 8",
"output": "-1"
},
{
"input": "2 9",
"output": "-1"
},
{
"input": "2 10",
"output": "-1"
},
{
"input": "2 11",
"output": "-1"
},
{
"input": "2 12",
"output": "-1"
},
{
"input": "2 13",
"output": "-1"
},
{
"input": "2 14",
"output": "-1"
},
{
"input": "2 15",
"output": "-1"
},
{
"input": "2 16",
"output": "-1"
},
{
"input": "2 17",
"output": "-1"
},
{
"input": "2 18",
"output": "-1"
},
{
"input": "2 19",
"output": "-1"
},
{
"input": "2 20",
"output": "-1"
},
{
"input": "2 21",
"output": "-1"
},
{
"input": "2 22",
"output": "-1"
},
{
"input": "2 23",
"output": "-1"
},
{
"input": "2 24",
"output": "-1"
},
{
"input": "2 25",
"output": "-1"
},
{
"input": "2 26",
"output": "-1"
},
{
"input": "3 0",
"output": "0 0 0 \n0 0 0 \n0 0 0 "
},
{
"input": "3 1",
"output": "1 0 0 \n0 0 0 \n0 0 0 "
},
{
"input": "3 2",
"output": "1 0 0 \n0 1 0 \n0 0 0 "
},
{
"input": "3 3",
"output": "1 1 0 \n1 0 0 \n0 0 0 "
},
{
"input": "3 4",
"output": "1 1 0 \n1 1 0 \n0 0 0 "
},
{
"input": "3 5",
"output": "1 1 1 \n1 0 0 \n1 0 0 "
},
{
"input": "3 6",
"output": "1 1 1 \n1 1 0 \n1 0 0 "
},
{
"input": "3 7",
"output": "1 1 1 \n1 1 0 \n1 0 1 "
},
{
"input": "3 8",
"output": "1 1 1 \n1 1 1 \n1 1 0 "
},
{
"input": "3 9",
"output": "1 1 1 \n1 1 1 \n1 1 1 "
},
{
"input": "3 10",
"output": "-1"
},
{
"input": "3 11",
"output": "-1"
},
{
"input": "3 12",
"output": "-1"
},
{
"input": "3 13",
"output": "-1"
},
{
"input": "3 14",
"output": "-1"
},
{
"input": "3 15",
"output": "-1"
},
{
"input": "3 16",
"output": "-1"
},
{
"input": "3 17",
"output": "-1"
},
{
"input": "3 18",
"output": "-1"
},
{
"input": "3 19",
"output": "-1"
},
{
"input": "3 20",
"output": "-1"
},
{
"input": "3 21",
"output": "-1"
},
{
"input": "3 22",
"output": "-1"
},
{
"input": "3 23",
"output": "-1"
},
{
"input": "3 24",
"output": "-1"
},
{
"input": "3 25",
"output": "-1"
},
{
"input": "3 26",
"output": "-1"
},
{
"input": "4 0",
"output": "0 0 0 0 \n0 0 0 0 \n0 0 0 0 \n0 0 0 0 "
},
{
"input": "4 1",
"output": "1 0 0 0 \n0 0 0 0 \n0 0 0 0 \n0 0 0 0 "
},
{
"input": "4 2",
"output": "1 0 0 0 \n0 1 0 0 \n0 0 0 0 \n0 0 0 0 "
},
{
"input": "4 3",
"output": "1 1 0 0 \n1 0 0 0 \n0 0 0 0 \n0 0 0 0 "
},
{
"input": "4 4",
"output": "1 1 0 0 \n1 1 0 0 \n0 0 0 0 \n0 0 0 0 "
},
{
"input": "4 5",
"output": "1 1 1 0 \n1 0 0 0 \n1 0 0 0 \n0 0 0 0 "
},
{
"input": "4 6",
"output": "1 1 1 0 \n1 1 0 0 \n1 0 0 0 \n0 0 0 0 "
},
{
"input": "4 7",
"output": "1 1 1 1 \n1 0 0 0 \n1 0 0 0 \n1 0 0 0 "
},
{
"input": "4 8",
"output": "1 1 1 1 \n1 1 0 0 \n1 0 0 0 \n1 0 0 0 "
},
{
"input": "4 9",
"output": "1 1 1 1 \n1 1 0 0 \n1 0 1 0 \n1 0 0 0 "
},
{
"input": "4 10",
"output": "1 1 1 1 \n1 1 1 0 \n1 1 0 0 \n1 0 0 0 "
},
{
"input": "4 11",
"output": "1 1 1 1 \n1 1 1 0 \n1 1 1 0 \n1 0 0 0 "
},
{
"input": "4 12",
"output": "1 1 1 1 \n1 1 1 1 \n1 1 0 0 \n1 1 0 0 "
},
{
"input": "4 13",
"output": "1 1 1 1 \n1 1 1 1 \n1 1 1 0 \n1 1 0 0 "
},
{
"input": "4 14",
"output": "1 1 1 1 \n1 1 1 1 \n1 1 1 0 \n1 1 0 1 "
},
{
"input": "4 15",
"output": "1 1 1 1 \n1 1 1 1 \n1 1 1 1 \n1 1 1 0 "
},
{
"input": "4 16",
"output": "1 1 1 1 \n1 1 1 1 \n1 1 1 1 \n1 1 1 1 "
},
{
"input": "4 17",
"output": "-1"
},
{
"input": "4 18",
"output": "-1"
},
{
"input": "4 19",
"output": "-1"
},
{
"input": "4 20",
"output": "-1"
},
{
"input": "4 21",
"output": "-1"
},
{
"input": "4 22",
"output": "-1"
},
{
"input": "4 23",
"output": "-1"
},
{
"input": "4 24",
"output": "-1"
},
{
"input": "4 25",
"output": "-1"
},
{
"input": "4 26",
"output": "-1"
},
{
"input": "5 0",
"output": "0 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 "
},
{
"input": "5 1",
"output": "1 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 "
},
{
"input": "5 2",
"output": "1 0 0 0 0 \n0 1 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 "
},
{
"input": "5 3",
"output": "1 1 0 0 0 \n1 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 "
},
{
"input": "5 4",
"output": "1 1 0 0 0 \n1 1 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 "
},
{
"input": "5 5",
"output": "1 1 1 0 0 \n1 0 0 0 0 \n1 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 "
},
{
"input": "5 6",
"output": "1 1 1 0 0 \n1 1 0 0 0 \n1 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 "
},
{
"input": "5 7",
"output": "1 1 1 1 0 \n1 0 0 0 0 \n1 0 0 0 0 \n1 0 0 0 0 \n0 0 0 0 0 "
},
{
"input": "5 8",
"output": "1 1 1 1 0 \n1 1 0 0 0 \n1 0 0 0 0 \n1 0 0 0 0 \n0 0 0 0 0 "
},
{
"input": "5 9",
"output": "1 1 1 1 1 \n1 0 0 0 0 \n1 0 0 0 0 \n1 0 0 0 0 \n1 0 0 0 0 "
},
{
"input": "5 10",
"output": "1 1 1 1 1 \n1 1 0 0 0 \n1 0 0 0 0 \n1 0 0 0 0 \n1 0 0 0 0 "
},
{
"input": "5 11",
"output": "1 1 1 1 1 \n1 1 0 0 0 \n1 0 1 0 0 \n1 0 0 0 0 \n1 0 0 0 0 "
},
{
"input": "5 12",
"output": "1 1 1 1 1 \n1 1 1 0 0 \n1 1 0 0 0 \n1 0 0 0 0 \n1 0 0 0 0 "
},
{
"input": "5 13",
"output": "1 1 1 1 1 \n1 1 1 0 0 \n1 1 1 0 0 \n1 0 0 0 0 \n1 0 0 0 0 "
},
{
"input": "5 14",
"output": "1 1 1 1 1 \n1 1 1 1 0 \n1 1 0 0 0 \n1 1 0 0 0 \n1 0 0 0 0 "
},
{
"input": "5 15",
"output": "1 1 1 1 1 \n1 1 1 1 0 \n1 1 1 0 0 \n1 1 0 0 0 \n1 0 0 0 0 "
},
{
"input": "5 16",
"output": "1 1 1 1 1 \n1 1 1 1 1 \n1 1 0 0 0 \n1 1 0 0 0 \n1 1 0 0 0 "
},
{
"input": "5 17",
"output": "1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 0 0 \n1 1 0 0 0 \n1 1 0 0 0 "
},
{
"input": "5 18",
"output": "1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 0 0 \n1 1 0 1 0 \n1 1 0 0 0 "
},
{
"input": "5 19",
"output": "1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 0 \n1 1 1 0 0 \n1 1 0 0 0 "
},
{
"input": "5 20",
"output": "1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 0 \n1 1 1 1 0 \n1 1 0 0 0 "
},
{
"input": "5 21",
"output": "1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 0 0 \n1 1 1 0 0 "
},
{
"input": "5 22",
"output": "1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 0 \n1 1 1 0 0 "
},
{
"input": "5 23",
"output": "1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 0 \n1 1 1 0 1 "
},
{
"input": "5 24",
"output": "1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 0 "
},
{
"input": "5 25",
"output": "1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 1 "
},
{
"input": "5 26",
"output": "-1"
},
{
"input": "100 0",
"output": "0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..."
},
{
"input": "100 1",
"output": "1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..."
},
{
"input": "100 2",
"output": "1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..."
},
{
"input": "100 3",
"output": "1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..."
},
{
"input": "100 99",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..."
},
{
"input": "100 100",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..."
},
{
"input": "100 101",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..."
},
{
"input": "100 9999",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1..."
},
{
"input": "100 10000",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1..."
},
{
"input": "100 10001",
"output": "-1"
}
] | 1,698,214,083
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 4
| 31
| 0
|
def create_symmetrical_matrix(n, k):
# If k is larger than the maximum number of ones in the matrix, or the matrix size is too small, return -1
max_ones = (n * n) // 2
if k > max_ones or k < 0:
return -1
# Create an empty matrix of zeros
matrix = [[0] * n for _ in range(n)]
# Distribute k ones along the main diagonal symmetrically
rows = min(n, k)
for i in range(rows):
matrix[i][i] = 1
k -= 1
# Distribute remaining ones symmetrically in the upper triangular part of the matrix
row = 0
col = 1
while k > 0 and row < n and col < n:
if k >= 2:
matrix[row][col] = 1
matrix[col][row] = 1
k -= 2
else:
matrix[row][col] = 1
k -= 1
if col == n - 1:
row += 1
col = row + 1
else:
col += 1
return matrix
# Read input
n, k = map(int, input().split())
# Call the function and print the resulting matrix or -1 if it doesn't exist
result = create_symmetrical_matrix(n, k)
if result == -1:
print(-1)
else:
for row in result:
print(" ".join(map(str, row)))
|
Title: Maximal Binary Matrix
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given matrix with *n* rows and *n* columns filled with zeroes. You should put *k* ones in it in such a way that the resulting matrix is symmetrical with respect to the main diagonal (the diagonal that goes from the top left to the bottom right corner) and is lexicographically maximal.
One matrix is lexicographically greater than the other if the first different number in the first different row from the top in the first matrix is greater than the corresponding number in the second one.
If there exists no such matrix then output -1.
Input Specification:
The first line consists of two numbers *n* and *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=106).
Output Specification:
If the answer exists then output resulting matrix. Otherwise output -1.
Demo Input:
['2 1\n', '3 2\n', '2 5\n']
Demo Output:
['1 0 \n0 0 \n', '1 0 0 \n0 1 0 \n0 0 0 \n', '-1\n']
Note:
none
|
```python
def create_symmetrical_matrix(n, k):
# If k is larger than the maximum number of ones in the matrix, or the matrix size is too small, return -1
max_ones = (n * n) // 2
if k > max_ones or k < 0:
return -1
# Create an empty matrix of zeros
matrix = [[0] * n for _ in range(n)]
# Distribute k ones along the main diagonal symmetrically
rows = min(n, k)
for i in range(rows):
matrix[i][i] = 1
k -= 1
# Distribute remaining ones symmetrically in the upper triangular part of the matrix
row = 0
col = 1
while k > 0 and row < n and col < n:
if k >= 2:
matrix[row][col] = 1
matrix[col][row] = 1
k -= 2
else:
matrix[row][col] = 1
k -= 1
if col == n - 1:
row += 1
col = row + 1
else:
col += 1
return matrix
# Read input
n, k = map(int, input().split())
# Call the function and print the resulting matrix or -1 if it doesn't exist
result = create_symmetrical_matrix(n, k)
if result == -1:
print(-1)
else:
for row in result:
print(" ".join(map(str, row)))
```
| 0
|
|
205
|
A
|
Little Elephant and Rozdil
|
PROGRAMMING
| 900
|
[
"brute force",
"implementation"
] | null | null |
The Little Elephant loves Ukraine very much. Most of all he loves town Rozdol (ukr. "Rozdil").
However, Rozdil is dangerous to settle, so the Little Elephant wants to go to some other town. The Little Elephant doesn't like to spend much time on travelling, so for his journey he will choose a town that needs minimum time to travel to. If there are multiple such cities, then the Little Elephant won't go anywhere.
For each town except for Rozdil you know the time needed to travel to this town. Find the town the Little Elephant will go to or print "Still Rozdil", if he stays in Rozdil.
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of cities. The next line contains *n* integers, separated by single spaces: the *i*-th integer represents the time needed to go from town Rozdil to the *i*-th town. The time values are positive integers, not exceeding 109.
You can consider the cities numbered from 1 to *n*, inclusive. Rozdil is not among the numbered cities.
|
Print the answer on a single line — the number of the town the Little Elephant will go to. If there are multiple cities with minimum travel time, print "Still Rozdil" (without the quotes).
|
[
"2\n7 4\n",
"7\n7 4 47 100 4 9 12\n"
] |
[
"2\n",
"Still Rozdil\n"
] |
In the first sample there are only two cities where the Little Elephant can go. The travel time for the first town equals 7, to the second one — 4. The town which is closest to Rodzil (the only one) is the second one, so the answer is 2.
In the second sample the closest cities are cities two and five, the travelling time to both of them equals 4, so the answer is "Still Rozdil".
| 500
|
[
{
"input": "2\n7 4",
"output": "2"
},
{
"input": "7\n7 4 47 100 4 9 12",
"output": "Still Rozdil"
},
{
"input": "1\n47",
"output": "1"
},
{
"input": "2\n1000000000 1000000000",
"output": "Still Rozdil"
},
{
"input": "7\n7 6 5 4 3 2 1",
"output": "7"
},
{
"input": "10\n1 1 1 1 1 1 1 1 1 1",
"output": "Still Rozdil"
},
{
"input": "4\n1000000000 100000000 1000000 1000000",
"output": "Still Rozdil"
},
{
"input": "20\n7 1 1 2 1 1 8 7 7 8 4 3 7 10 5 3 10 5 10 6",
"output": "Still Rozdil"
},
{
"input": "20\n3 3 6 9 8 2 4 1 7 3 2 9 7 7 9 7 2 6 2 7",
"output": "8"
},
{
"input": "47\n35 79 84 56 67 95 80 34 77 68 14 55 95 32 40 89 58 79 96 66 50 79 35 86 31 74 91 35 22 72 84 38 11 59 73 51 65 11 11 62 30 12 32 71 69 15 11",
"output": "Still Rozdil"
},
{
"input": "47\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3",
"output": "32"
},
{
"input": "25\n73 56 65 70 57 57 49 50 65 68 54 48 66 55 55 66 60 70 47 62 63 70 62 70 63",
"output": "19"
},
{
"input": "100\n922 938 103 689 526 118 314 496 373 47 224 544 495 656 804 754 269 356 354 536 817 597 787 178 516 659 790 993 786 169 866 779 997 350 674 437 219 546 564 893 402 449 751 628 238 686 392 951 716 439 332 563 215 146 746 311 866 773 548 675 731 183 890 802 488 944 473 25 662 559 732 534 777 144 502 593 839 692 84 337 679 718 1005 663 709 940 86 469 310 960 902 233 606 761 116 231 662 903 68 622",
"output": "68"
},
{
"input": "5\n5 5 2 3 1",
"output": "5"
},
{
"input": "1\n1000000000",
"output": "1"
},
{
"input": "3\n7 7 4",
"output": "3"
},
{
"input": "3\n2 2 1",
"output": "3"
},
{
"input": "3\n4 4 3",
"output": "3"
},
{
"input": "2\n10000001 10000002",
"output": "1"
},
{
"input": "4\n3 3 2 1",
"output": "4"
},
{
"input": "3\n1 2 3",
"output": "1"
},
{
"input": "2\n1000000000 100000000",
"output": "2"
},
{
"input": "1\n99999999",
"output": "1"
},
{
"input": "3\n5 5 3",
"output": "3"
},
{
"input": "3\n7 7 5",
"output": "3"
},
{
"input": "3\n3 3 1",
"output": "3"
},
{
"input": "4\n10 10 10 1",
"output": "4"
}
] | 1,578,916,746
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 45
| 278
| 8,806,400
|
input()
A = list(map(int, input().split()))
x = min(A)
print(A.index(x)+1 if A.count(x) < 2 else 'Still Rozdil')
|
Title: Little Elephant and Rozdil
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The Little Elephant loves Ukraine very much. Most of all he loves town Rozdol (ukr. "Rozdil").
However, Rozdil is dangerous to settle, so the Little Elephant wants to go to some other town. The Little Elephant doesn't like to spend much time on travelling, so for his journey he will choose a town that needs minimum time to travel to. If there are multiple such cities, then the Little Elephant won't go anywhere.
For each town except for Rozdil you know the time needed to travel to this town. Find the town the Little Elephant will go to or print "Still Rozdil", if he stays in Rozdil.
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of cities. The next line contains *n* integers, separated by single spaces: the *i*-th integer represents the time needed to go from town Rozdil to the *i*-th town. The time values are positive integers, not exceeding 109.
You can consider the cities numbered from 1 to *n*, inclusive. Rozdil is not among the numbered cities.
Output Specification:
Print the answer on a single line — the number of the town the Little Elephant will go to. If there are multiple cities with minimum travel time, print "Still Rozdil" (without the quotes).
Demo Input:
['2\n7 4\n', '7\n7 4 47 100 4 9 12\n']
Demo Output:
['2\n', 'Still Rozdil\n']
Note:
In the first sample there are only two cities where the Little Elephant can go. The travel time for the first town equals 7, to the second one — 4. The town which is closest to Rodzil (the only one) is the second one, so the answer is 2.
In the second sample the closest cities are cities two and five, the travelling time to both of them equals 4, so the answer is "Still Rozdil".
|
```python
input()
A = list(map(int, input().split()))
x = min(A)
print(A.index(x)+1 if A.count(x) < 2 else 'Still Rozdil')
```
| 3
|
|
821
|
B
|
Okabe and Banana Trees
|
PROGRAMMING
| 1,300
|
[
"brute force",
"math"
] | null | null |
Okabe needs bananas for one of his experiments for some strange reason. So he decides to go to the forest and cut banana trees.
Consider the point (*x*,<=*y*) in the 2D plane such that *x* and *y* are integers and 0<=≤<=*x*,<=*y*. There is a tree in such a point, and it has *x*<=+<=*y* bananas. There are no trees nor bananas in other points. Now, Okabe draws a line with equation . Okabe can select a single rectangle with axis aligned sides with all points on or under the line and cut all the trees in all points that are inside or on the border of this rectangle and take their bananas. Okabe's rectangle can be degenerate; that is, it can be a line segment or even a point.
Help Okabe and find the maximum number of bananas he can get if he chooses the rectangle wisely.
Okabe is sure that the answer does not exceed 1018. You can trust him.
|
The first line of input contains two space-separated integers *m* and *b* (1<=≤<=*m*<=≤<=1000, 1<=≤<=*b*<=≤<=10000).
|
Print the maximum number of bananas Okabe can get from the trees he cuts.
|
[
"1 5\n",
"2 3\n"
] |
[
"30\n",
"25\n"
] |
The graph above corresponds to sample test 1. The optimal rectangle is shown in red and has 30 bananas.
| 1,000
|
[
{
"input": "1 5",
"output": "30"
},
{
"input": "2 3",
"output": "25"
},
{
"input": "4 6",
"output": "459"
},
{
"input": "6 3",
"output": "171"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "10 1",
"output": "55"
},
{
"input": "20 10",
"output": "40326"
},
{
"input": "1000 10000",
"output": "74133360011484445"
},
{
"input": "139 9252",
"output": "1137907933561080"
},
{
"input": "859 8096",
"output": "29032056230649780"
},
{
"input": "987 4237",
"output": "5495451829240878"
},
{
"input": "411 3081",
"output": "366755153481948"
},
{
"input": "539 9221",
"output": "16893595018603386"
},
{
"input": "259 770",
"output": "2281741798549"
},
{
"input": "387 5422",
"output": "1771610559998400"
},
{
"input": "515 1563",
"output": "75233740231341"
},
{
"input": "939 407",
"output": "4438222781916"
},
{
"input": "518 6518",
"output": "5511730799718825"
},
{
"input": "646 1171",
"output": "49802404050106"
},
{
"input": "70 7311",
"output": "142915220249910"
},
{
"input": "494 6155",
"output": "4221391613846823"
},
{
"input": "918 7704",
"output": "28569727339126165"
},
{
"input": "46 3844",
"output": "9007500020760"
},
{
"input": "174 2688",
"output": "43730657099581"
},
{
"input": "894 4637",
"output": "5909849585253250"
},
{
"input": "22 3481",
"output": "1548544125646"
},
{
"input": "446 5030",
"output": "1878390629993745"
},
{
"input": "440 8704",
"output": "9470470760118060"
},
{
"input": "569 7548",
"output": "10326205017481606"
},
{
"input": "289 6393",
"output": "1620061541812350"
},
{
"input": "417 1045",
"output": "14758909519725"
},
{
"input": "841 7185",
"output": "19452619774222875"
},
{
"input": "969 6030",
"output": "15265318959845745"
},
{
"input": "393 4874",
"output": "1327174123029975"
},
{
"input": "817 3719",
"output": "2546859449982016"
},
{
"input": "945 2563",
"output": "1115613396515835"
},
{
"input": "369 4511",
"output": "927715710215505"
},
{
"input": "555 3594",
"output": "1061060598862891"
}
] | 1,624,943,386
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 2
| 46
| 0
|
def se(m,b,s,v):
if s=="x":
return (m*b-v)//m
else:
return (m*b-m*v)
def main():
m, b=tuple(map(int,input().split()))
y=se(m,b,"x",0)//2
x=se(m,b,"y",y)
print((y+1)*(x+1)*(x+y)//2)
if __name__=='__main__':
main()
|
Title: Okabe and Banana Trees
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Okabe needs bananas for one of his experiments for some strange reason. So he decides to go to the forest and cut banana trees.
Consider the point (*x*,<=*y*) in the 2D plane such that *x* and *y* are integers and 0<=≤<=*x*,<=*y*. There is a tree in such a point, and it has *x*<=+<=*y* bananas. There are no trees nor bananas in other points. Now, Okabe draws a line with equation . Okabe can select a single rectangle with axis aligned sides with all points on or under the line and cut all the trees in all points that are inside or on the border of this rectangle and take their bananas. Okabe's rectangle can be degenerate; that is, it can be a line segment or even a point.
Help Okabe and find the maximum number of bananas he can get if he chooses the rectangle wisely.
Okabe is sure that the answer does not exceed 1018. You can trust him.
Input Specification:
The first line of input contains two space-separated integers *m* and *b* (1<=≤<=*m*<=≤<=1000, 1<=≤<=*b*<=≤<=10000).
Output Specification:
Print the maximum number of bananas Okabe can get from the trees he cuts.
Demo Input:
['1 5\n', '2 3\n']
Demo Output:
['30\n', '25\n']
Note:
The graph above corresponds to sample test 1. The optimal rectangle is shown in red and has 30 bananas.
|
```python
def se(m,b,s,v):
if s=="x":
return (m*b-v)//m
else:
return (m*b-m*v)
def main():
m, b=tuple(map(int,input().split()))
y=se(m,b,"x",0)//2
x=se(m,b,"y",y)
print((y+1)*(x+1)*(x+y)//2)
if __name__=='__main__':
main()
```
| 0
|
|
281
|
A
|
Word Capitalization
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] | null | null |
Capitalization is writing a word with its first letter as a capital letter. Your task is to capitalize the given word.
Note, that during capitalization all the letters except the first one remains unchanged.
|
A single line contains a non-empty word. This word consists of lowercase and uppercase English letters. The length of the word will not exceed 103.
|
Output the given word after capitalization.
|
[
"ApPLe\n",
"konjac\n"
] |
[
"ApPLe\n",
"Konjac\n"
] |
none
| 500
|
[
{
"input": "ApPLe",
"output": "ApPLe"
},
{
"input": "konjac",
"output": "Konjac"
},
{
"input": "a",
"output": "A"
},
{
"input": "A",
"output": "A"
},
{
"input": "z",
"output": "Z"
},
{
"input": "ABACABA",
"output": "ABACABA"
},
{
"input": "xYaPxPxHxGePfGtQySlNrLxSjDtNnTaRaEpAhPaQpWnDzMqGgRgEwJxGiBdZnMtHxFbObCaGiCeZkUqIgBhHtNvAqAlHpMnQhNeQbMyZrCdElVwHtKrPpJjIaHuIlYwHaRkAkUpPlOhNlBtXwDsKzPyHrPiUwNlXtTaPuMwTqYtJySgFoXvLiHbQwMjSvXsQfKhVlOxGdQkWjBhEyQvBjPoFkThNeRhTuIzFjInJtEfPjOlOsJpJuLgLzFnZmKvFgFrNsOnVqFcNiMfCqTpKnVyLwNqFiTySpWeTdFnWuTwDkRjVxNyQvTrOoEiExYiFaIrLoFmJfZcDkHuWjYfCeEqCvEsZiWnJaEmFbMjDvYwEeJeGcKbVbChGsIzNlExHzHiTlHcSaKxLuZxX",
"output": "XYaPxPxHxGePfGtQySlNrLxSjDtNnTaRaEpAhPaQpWnDzMqGgRgEwJxGiBdZnMtHxFbObCaGiCeZkUqIgBhHtNvAqAlHpMnQhNeQbMyZrCdElVwHtKrPpJjIaHuIlYwHaRkAkUpPlOhNlBtXwDsKzPyHrPiUwNlXtTaPuMwTqYtJySgFoXvLiHbQwMjSvXsQfKhVlOxGdQkWjBhEyQvBjPoFkThNeRhTuIzFjInJtEfPjOlOsJpJuLgLzFnZmKvFgFrNsOnVqFcNiMfCqTpKnVyLwNqFiTySpWeTdFnWuTwDkRjVxNyQvTrOoEiExYiFaIrLoFmJfZcDkHuWjYfCeEqCvEsZiWnJaEmFbMjDvYwEeJeGcKbVbChGsIzNlExHzHiTlHcSaKxLuZxX"
},
{
"input": "rZhIcQlXpNcPgXrOjTiOlMoTgXgIhCfMwZfWoFzGhEkQlOoMjIuShPlZfWkNnMyQfYdUhVgQuSmYoElEtZpDyHtOxXgCpWbZqSbYnPqBcNqRtPgCnJnAyIvNsAhRbNeVlMwZyRyJnFgIsCnSbOdLvUyIeOzQvRpMoMoHfNhHwKvTcHuYnYySfPmAiNwAiWdZnWlLvGfBbRbRrCrBqIgIdWkWiBsNyYkKdNxZdGaToSsDnXpRaGrKxBpQsCzBdQgZzBkGeHgGxNrIyQlSzWsTmSnZwOcHqQpNcQvJlPvKaPiQaMaYsQjUeCqQdCjPgUbDmWiJmNiXgExLqOcCtSwSePnUxIuZfIfBeWbEiVbXnUsPwWyAiXyRbZgKwOqFfCtQuKxEmVeRlAkOeXkO",
"output": "RZhIcQlXpNcPgXrOjTiOlMoTgXgIhCfMwZfWoFzGhEkQlOoMjIuShPlZfWkNnMyQfYdUhVgQuSmYoElEtZpDyHtOxXgCpWbZqSbYnPqBcNqRtPgCnJnAyIvNsAhRbNeVlMwZyRyJnFgIsCnSbOdLvUyIeOzQvRpMoMoHfNhHwKvTcHuYnYySfPmAiNwAiWdZnWlLvGfBbRbRrCrBqIgIdWkWiBsNyYkKdNxZdGaToSsDnXpRaGrKxBpQsCzBdQgZzBkGeHgGxNrIyQlSzWsTmSnZwOcHqQpNcQvJlPvKaPiQaMaYsQjUeCqQdCjPgUbDmWiJmNiXgExLqOcCtSwSePnUxIuZfIfBeWbEiVbXnUsPwWyAiXyRbZgKwOqFfCtQuKxEmVeRlAkOeXkO"
},
{
"input": "hDgZlUmLhYbLkLcNcKeOwJwTePbOvLaRvNzQbSbLsPeHqLhUqWtUbNdQfQqFfXeJqJwWuOrFnDdZiPxIkDyVmHbHvXfIlFqSgAcSyWbOlSlRuPhWdEpEzEeLnXwCtWuVcHaUeRgCiYsIvOaIgDnFuDbRnMoCmPrZfLeFpSjQaTfHgZwZvAzDuSeNwSoWuJvLqKqAuUxFaCxFfRcEjEsJpOfCtDiVrBqNsNwPuGoRgPzRpLpYnNyQxKaNnDnYiJrCrVcHlOxPiPcDbEgKfLwBjLhKcNeMgJhJmOiJvPfOaPaEuGqWvRbErKrIpDkEoQnKwJnTlStLyNsHyOjZfKoIjXwUvRrWpSyYhRpQdLqGmErAiNcGqAqIrTeTiMuPmCrEkHdBrLyCxPtYpRqD",
"output": "HDgZlUmLhYbLkLcNcKeOwJwTePbOvLaRvNzQbSbLsPeHqLhUqWtUbNdQfQqFfXeJqJwWuOrFnDdZiPxIkDyVmHbHvXfIlFqSgAcSyWbOlSlRuPhWdEpEzEeLnXwCtWuVcHaUeRgCiYsIvOaIgDnFuDbRnMoCmPrZfLeFpSjQaTfHgZwZvAzDuSeNwSoWuJvLqKqAuUxFaCxFfRcEjEsJpOfCtDiVrBqNsNwPuGoRgPzRpLpYnNyQxKaNnDnYiJrCrVcHlOxPiPcDbEgKfLwBjLhKcNeMgJhJmOiJvPfOaPaEuGqWvRbErKrIpDkEoQnKwJnTlStLyNsHyOjZfKoIjXwUvRrWpSyYhRpQdLqGmErAiNcGqAqIrTeTiMuPmCrEkHdBrLyCxPtYpRqD"
},
{
"input": "qUdLgGrJeGmIzIeZrCjUtBpYfRvNdXdRpGsThIsEmJjTiMqEwRxBeBaSxEuWrNvExKePjPnXhPzBpWnHiDhTvZhBuIjDnZpTcEkCvRkAcTmMuXhGgErWgFyGyToOyVwYlCuQpTfJkVdWmFyBqQhJjYtXrBbFdHzDlGsFbHmHbFgXgFhIyDhZyEqEiEwNxSeByBwLiVeSnCxIdHbGjOjJrZeVkOzGeMmQrJkVyGhDtCzOlPeAzGrBlWwEnAdUfVaIjNrRyJjCnHkUvFuKuKeKbLzSbEmUcXtVkZzXzKlOrPgQiDmCcCvIyAdBwOeUuLbRmScNcWxIkOkJuIsBxTrIqXhDzLcYdVtPgZdZfAxTmUtByGiTsJkSySjXdJvEwNmSmNoWsChPdAzJrBoW",
"output": "QUdLgGrJeGmIzIeZrCjUtBpYfRvNdXdRpGsThIsEmJjTiMqEwRxBeBaSxEuWrNvExKePjPnXhPzBpWnHiDhTvZhBuIjDnZpTcEkCvRkAcTmMuXhGgErWgFyGyToOyVwYlCuQpTfJkVdWmFyBqQhJjYtXrBbFdHzDlGsFbHmHbFgXgFhIyDhZyEqEiEwNxSeByBwLiVeSnCxIdHbGjOjJrZeVkOzGeMmQrJkVyGhDtCzOlPeAzGrBlWwEnAdUfVaIjNrRyJjCnHkUvFuKuKeKbLzSbEmUcXtVkZzXzKlOrPgQiDmCcCvIyAdBwOeUuLbRmScNcWxIkOkJuIsBxTrIqXhDzLcYdVtPgZdZfAxTmUtByGiTsJkSySjXdJvEwNmSmNoWsChPdAzJrBoW"
},
{
"input": "kHbApGoBcLmIwUlXkVgUmWzYeLoDbGaOkWbIuXoRwMfKuOoMzAoXrBoTvYxGrMbRjDuRxAbGsTnErIiHnHoLeRnTbFiRfDdOkNlWiAcOsChLdLqFqXlDpDoDtPxXqAmSvYgPvOcCpOlWtOjYwFkGkHuCaHwZcFdOfHjBmIxTeSiHkWjXyFcCtOlSuJsZkDxUgPeZkJwMmNpErUlBcGuMlJwKkWnOzFeFiSiPsEvMmQiCsYeHlLuHoMgBjFoZkXlObDkSoQcVyReTmRsFzRhTuIvCeBqVsQdQyTyZjStGrTyDcEcAgTgMiIcVkLbZbGvWeHtXwEqWkXfTcPyHhHjYwIeVxLyVmHmMkUsGiHmNnQuMsXaFyPpVqNrBhOiWmNkBbQuHvQdOjPjKiZcL",
"output": "KHbApGoBcLmIwUlXkVgUmWzYeLoDbGaOkWbIuXoRwMfKuOoMzAoXrBoTvYxGrMbRjDuRxAbGsTnErIiHnHoLeRnTbFiRfDdOkNlWiAcOsChLdLqFqXlDpDoDtPxXqAmSvYgPvOcCpOlWtOjYwFkGkHuCaHwZcFdOfHjBmIxTeSiHkWjXyFcCtOlSuJsZkDxUgPeZkJwMmNpErUlBcGuMlJwKkWnOzFeFiSiPsEvMmQiCsYeHlLuHoMgBjFoZkXlObDkSoQcVyReTmRsFzRhTuIvCeBqVsQdQyTyZjStGrTyDcEcAgTgMiIcVkLbZbGvWeHtXwEqWkXfTcPyHhHjYwIeVxLyVmHmMkUsGiHmNnQuMsXaFyPpVqNrBhOiWmNkBbQuHvQdOjPjKiZcL"
},
{
"input": "aHmRbLgNuWkLxLnWvUbYwTeZeYiOlLhTuOvKfLnVmCiPcMkSgVrYjZiLuRjCiXhAnVzVcTlVeJdBvPdDfFvHkTuIhCdBjEsXbVmGcLrPfNvRdFsZkSdNpYsJeIhIcNqSoLkOjUlYlDmXsOxPbQtIoUxFjGnRtBhFaJvBeEzHsAtVoQbAfYjJqReBiKeUwRqYrUjPjBoHkOkPzDwEwUgTxQxAvKzUpMhKyOhPmEhYhItQwPeKsKaKlUhGuMcTtSwFtXfJsDsFlTtOjVvVfGtBtFlQyIcBaMsPaJlPqUcUvLmReZiFbXxVtRhTzJkLkAjVqTyVuFeKlTyQgUzMsXjOxQnVfTaWmThEnEoIhZeZdStBkKeLpAhJnFoJvQyGwDiStLjEwGfZwBuWsEfC",
"output": "AHmRbLgNuWkLxLnWvUbYwTeZeYiOlLhTuOvKfLnVmCiPcMkSgVrYjZiLuRjCiXhAnVzVcTlVeJdBvPdDfFvHkTuIhCdBjEsXbVmGcLrPfNvRdFsZkSdNpYsJeIhIcNqSoLkOjUlYlDmXsOxPbQtIoUxFjGnRtBhFaJvBeEzHsAtVoQbAfYjJqReBiKeUwRqYrUjPjBoHkOkPzDwEwUgTxQxAvKzUpMhKyOhPmEhYhItQwPeKsKaKlUhGuMcTtSwFtXfJsDsFlTtOjVvVfGtBtFlQyIcBaMsPaJlPqUcUvLmReZiFbXxVtRhTzJkLkAjVqTyVuFeKlTyQgUzMsXjOxQnVfTaWmThEnEoIhZeZdStBkKeLpAhJnFoJvQyGwDiStLjEwGfZwBuWsEfC"
},
{
"input": "sLlZkDiDmEdNaXuUuJwHqYvRtOdGfTiTpEpAoSqAbJaChOiCvHgSwZwEuPkMmXiLcKdXqSsEyViEbZpZsHeZpTuXoGcRmOiQfBfApPjDqSqElWeSeOhUyWjLyNoRuYeGfGwNqUsQoTyVvWeNgNdZfDxGwGfLsDjIdInSqDlMuNvFaHbScZkTlVwNcJpEjMaPaOtFgJjBjOcLlLmDnQrShIrJhOcUmPnZhTxNeClQsZaEaVaReLyQpLwEqJpUwYhLiRzCzKfOoFeTiXzPiNbOsZaZaLgCiNnMkBcFwGgAwPeNyTxJcCtBgXcToKlWaWcBaIvBpNxPeClQlWeQqRyEtAkJdBtSrFdDvAbUlKyLdCuTtXxFvRcKnYnWzVdYqDeCmOqPxUaFjQdTdCtN",
"output": "SLlZkDiDmEdNaXuUuJwHqYvRtOdGfTiTpEpAoSqAbJaChOiCvHgSwZwEuPkMmXiLcKdXqSsEyViEbZpZsHeZpTuXoGcRmOiQfBfApPjDqSqElWeSeOhUyWjLyNoRuYeGfGwNqUsQoTyVvWeNgNdZfDxGwGfLsDjIdInSqDlMuNvFaHbScZkTlVwNcJpEjMaPaOtFgJjBjOcLlLmDnQrShIrJhOcUmPnZhTxNeClQsZaEaVaReLyQpLwEqJpUwYhLiRzCzKfOoFeTiXzPiNbOsZaZaLgCiNnMkBcFwGgAwPeNyTxJcCtBgXcToKlWaWcBaIvBpNxPeClQlWeQqRyEtAkJdBtSrFdDvAbUlKyLdCuTtXxFvRcKnYnWzVdYqDeCmOqPxUaFjQdTdCtN"
},
{
"input": "iRuStKvVhJdJbQwRoIuLiVdTpKaOqKfYlYwAzIpPtUwUtMeKyCaOlXmVrKwWeImYmVuXdLkRlHwFxKqZbZtTzNgOzDbGqTfZnKmUzAcIjDcEmQgYyFbEfWzRpKvCkDmAqDiIiRcLvMxWaJqCgYqXgIcLdNaZlBnXtJyKaMnEaWfXfXwTbDnAiYnWqKbAtDpYdUbZrCzWgRnHzYxFgCdDbOkAgTqBuLqMeStHcDxGnVhSgMzVeTaZoTfLjMxQfRuPcFqVlRyYdHyOdJsDoCeWrUuJyIiAqHwHyVpEeEoMaJwAoUfPtBeJqGhMaHiBjKwAlXoZpUsDhHgMxBkVbLcEvNtJbGnPsUwAvXrAkTlXwYvEnOpNeWyIkRnEnTrIyAcLkRgMyYcKrGiDaAyE",
"output": "IRuStKvVhJdJbQwRoIuLiVdTpKaOqKfYlYwAzIpPtUwUtMeKyCaOlXmVrKwWeImYmVuXdLkRlHwFxKqZbZtTzNgOzDbGqTfZnKmUzAcIjDcEmQgYyFbEfWzRpKvCkDmAqDiIiRcLvMxWaJqCgYqXgIcLdNaZlBnXtJyKaMnEaWfXfXwTbDnAiYnWqKbAtDpYdUbZrCzWgRnHzYxFgCdDbOkAgTqBuLqMeStHcDxGnVhSgMzVeTaZoTfLjMxQfRuPcFqVlRyYdHyOdJsDoCeWrUuJyIiAqHwHyVpEeEoMaJwAoUfPtBeJqGhMaHiBjKwAlXoZpUsDhHgMxBkVbLcEvNtJbGnPsUwAvXrAkTlXwYvEnOpNeWyIkRnEnTrIyAcLkRgMyYcKrGiDaAyE"
},
{
"input": "cRtJkOxHzUbJcDdHzJtLbVmSoWuHoTkVrPqQaVmXeBrHxJbQfNrQbAaMrEhVdQnPxNyCjErKxPoEdWkVrBbDeNmEgBxYiBtWdAfHiLuSwIxJuHpSkAxPoYdNkGoLySsNhUmGoZhDzAfWhJdPlJzQkZbOnMtTkClIoCqOlIcJcMlGjUyOiEmHdYfIcPtTgQhLlLcPqQjAnQnUzHpCaQsCnYgQsBcJrQwBnWsIwFfSfGuYgTzQmShFpKqEeRlRkVfMuZbUsDoFoPrNuNwTtJqFkRiXxPvKyElDzLoUnIwAaBaOiNxMpEvPzSpGpFhMtGhGdJrFnZmNiMcUfMtBnDuUnXqDcMsNyGoLwLeNnLfRsIwRfBtXkHrFcPsLdXaAoYaDzYnZuQeVcZrElWmP",
"output": "CRtJkOxHzUbJcDdHzJtLbVmSoWuHoTkVrPqQaVmXeBrHxJbQfNrQbAaMrEhVdQnPxNyCjErKxPoEdWkVrBbDeNmEgBxYiBtWdAfHiLuSwIxJuHpSkAxPoYdNkGoLySsNhUmGoZhDzAfWhJdPlJzQkZbOnMtTkClIoCqOlIcJcMlGjUyOiEmHdYfIcPtTgQhLlLcPqQjAnQnUzHpCaQsCnYgQsBcJrQwBnWsIwFfSfGuYgTzQmShFpKqEeRlRkVfMuZbUsDoFoPrNuNwTtJqFkRiXxPvKyElDzLoUnIwAaBaOiNxMpEvPzSpGpFhMtGhGdJrFnZmNiMcUfMtBnDuUnXqDcMsNyGoLwLeNnLfRsIwRfBtXkHrFcPsLdXaAoYaDzYnZuQeVcZrElWmP"
},
{
"input": "wVaCsGxZrBbFnTbKsCoYlAvUkIpBaYpYmJkMlPwCaFvUkDxAiJgIqWsFqZlFvTtAnGzEwXbYiBdFfFxRiDoUkLmRfAwOlKeOlKgXdUnVqLkTuXtNdQpBpXtLvZxWoBeNePyHcWmZyRiUkPlRqYiQdGeXwOhHbCqVjDcEvJmBkRwWnMqPjXpUsIyXqGjHsEsDwZiFpIbTkQaUlUeFxMwJzSaHdHnDhLaLdTuYgFuJsEcMmDvXyPjKsSeBaRwNtPuOuBtNeOhQdVgKzPzOdYtPjPfDzQzHoWcYjFbSvRgGdGsCmGnQsErToBkCwGeQaCbBpYkLhHxTbUvRnJpZtXjKrHdRiUmUbSlJyGaLnWsCrJbBnSjFaZrIzIrThCmGhQcMsTtOxCuUcRaEyPaG",
"output": "WVaCsGxZrBbFnTbKsCoYlAvUkIpBaYpYmJkMlPwCaFvUkDxAiJgIqWsFqZlFvTtAnGzEwXbYiBdFfFxRiDoUkLmRfAwOlKeOlKgXdUnVqLkTuXtNdQpBpXtLvZxWoBeNePyHcWmZyRiUkPlRqYiQdGeXwOhHbCqVjDcEvJmBkRwWnMqPjXpUsIyXqGjHsEsDwZiFpIbTkQaUlUeFxMwJzSaHdHnDhLaLdTuYgFuJsEcMmDvXyPjKsSeBaRwNtPuOuBtNeOhQdVgKzPzOdYtPjPfDzQzHoWcYjFbSvRgGdGsCmGnQsErToBkCwGeQaCbBpYkLhHxTbUvRnJpZtXjKrHdRiUmUbSlJyGaLnWsCrJbBnSjFaZrIzIrThCmGhQcMsTtOxCuUcRaEyPaG"
},
{
"input": "kEiLxLmPjGzNoGkJdBlAfXhThYhMsHmZoZbGyCvNiUoLoZdAxUbGyQiEfXvPzZzJrPbEcMpHsMjIkRrVvDvQtHuKmXvGpQtXbPzJpFjJdUgWcPdFxLjLtXgVpEiFhImHnKkGiWnZbJqRjCyEwHsNbYfYfTyBaEuKlCtWnOqHmIgGrFmQiYrBnLiFcGuZxXlMfEuVoCxPkVrQvZoIpEhKsYtXrPxLcSfQqXsWaDgVlOnAzUvAhOhMrJfGtWcOwQfRjPmGhDyAeXrNqBvEiDfCiIvWxPjTwPlXpVsMjVjUnCkXgBuWnZaDyJpWkCfBrWnHxMhJgItHdRqNrQaEeRjAuUwRkUdRhEeGlSqVqGmOjNcUhFfXjCmWzBrGvIuZpRyWkWiLyUwFpYjNmNfV",
"output": "KEiLxLmPjGzNoGkJdBlAfXhThYhMsHmZoZbGyCvNiUoLoZdAxUbGyQiEfXvPzZzJrPbEcMpHsMjIkRrVvDvQtHuKmXvGpQtXbPzJpFjJdUgWcPdFxLjLtXgVpEiFhImHnKkGiWnZbJqRjCyEwHsNbYfYfTyBaEuKlCtWnOqHmIgGrFmQiYrBnLiFcGuZxXlMfEuVoCxPkVrQvZoIpEhKsYtXrPxLcSfQqXsWaDgVlOnAzUvAhOhMrJfGtWcOwQfRjPmGhDyAeXrNqBvEiDfCiIvWxPjTwPlXpVsMjVjUnCkXgBuWnZaDyJpWkCfBrWnHxMhJgItHdRqNrQaEeRjAuUwRkUdRhEeGlSqVqGmOjNcUhFfXjCmWzBrGvIuZpRyWkWiLyUwFpYjNmNfV"
},
{
"input": "eIhDoLmDeReKqXsHcVgFxUqNfScAiQnFrTlCgSuTtXiYvBxKaPaGvUeYfSgHqEaWcHxKpFaSlCxGqAmNeFcIzFcZsBiVoZhUjXaDaIcKoBzYdIlEnKfScRqSkYpPtVsVhXsBwUsUfAqRoCkBxWbHgDiCkRtPvUwVgDjOzObYwNiQwXlGnAqEkHdSqLgUkOdZiWaHqQnOhUnDhIzCiQtVcJlGoRfLuVlFjWqSuMsLgLwOdZvKtWdRuRqDoBoInKqPbJdXpIqLtFlMlDaWgSiKbFpCxOnQeNeQzXeKsBzIjCyPxCmBnYuHzQoYxZgGzSgGtZiTeQmUeWlNzZeKiJbQmEjIiDhPeSyZlNdHpZnIkPdJzSeJpPiXxToKyBjJfPwNzZpWzIzGySqPxLtI",
"output": "EIhDoLmDeReKqXsHcVgFxUqNfScAiQnFrTlCgSuTtXiYvBxKaPaGvUeYfSgHqEaWcHxKpFaSlCxGqAmNeFcIzFcZsBiVoZhUjXaDaIcKoBzYdIlEnKfScRqSkYpPtVsVhXsBwUsUfAqRoCkBxWbHgDiCkRtPvUwVgDjOzObYwNiQwXlGnAqEkHdSqLgUkOdZiWaHqQnOhUnDhIzCiQtVcJlGoRfLuVlFjWqSuMsLgLwOdZvKtWdRuRqDoBoInKqPbJdXpIqLtFlMlDaWgSiKbFpCxOnQeNeQzXeKsBzIjCyPxCmBnYuHzQoYxZgGzSgGtZiTeQmUeWlNzZeKiJbQmEjIiDhPeSyZlNdHpZnIkPdJzSeJpPiXxToKyBjJfPwNzZpWzIzGySqPxLtI"
},
{
"input": "uOoQzIeTwYeKpJtGoUdNiXbPgEwVsZkAnJcArHxIpEnEhZwQhZvAiOuLeMkVqLeDsAyKeYgFxGmRoLaRsZjAeXgNfYhBkHeDrHdPuTuYhKmDlAvYzYxCdYgYfVaYlGeVqTeSfBxQePbQrKsTaIkGzMjFrQlJuYaMxWpQkLdEcDsIiMnHnDtThRvAcKyGwBsHqKdXpJfIeTeZtYjFbMeUoXoXzGrShTwSwBpQlKeDrZdCjRqNtXoTsIzBkWbMsObTtDvYaPhUeLeHqHeMpZmTaCcIqXzAmGnPfNdDaFhOqWqDrWuFiBpRjZrQmAdViOuMbFfRyXyWfHgRkGpPnDrEqQcEmHcKpEvWlBrOtJbUaXbThJaSxCbVoGvTmHvZrHvXpCvLaYbRiHzYuQyX",
"output": "UOoQzIeTwYeKpJtGoUdNiXbPgEwVsZkAnJcArHxIpEnEhZwQhZvAiOuLeMkVqLeDsAyKeYgFxGmRoLaRsZjAeXgNfYhBkHeDrHdPuTuYhKmDlAvYzYxCdYgYfVaYlGeVqTeSfBxQePbQrKsTaIkGzMjFrQlJuYaMxWpQkLdEcDsIiMnHnDtThRvAcKyGwBsHqKdXpJfIeTeZtYjFbMeUoXoXzGrShTwSwBpQlKeDrZdCjRqNtXoTsIzBkWbMsObTtDvYaPhUeLeHqHeMpZmTaCcIqXzAmGnPfNdDaFhOqWqDrWuFiBpRjZrQmAdViOuMbFfRyXyWfHgRkGpPnDrEqQcEmHcKpEvWlBrOtJbUaXbThJaSxCbVoGvTmHvZrHvXpCvLaYbRiHzYuQyX"
},
{
"input": "lZqBqKeGvNdSeYuWxRiVnFtYbKuJwQtUcKnVtQhAlOeUzMaAuTaEnDdPfDcNyHgEoBmYjZyFePeJrRiKyAzFnBfAuGiUyLrIeLrNhBeBdVcEeKgCcBrQzDsPwGcNnZvTsEaYmFfMeOmMdNuZbUtDoQoNcGwDqEkEjIdQaPwAxJbXeNxOgKgXoEbZiIsVkRrNpNyAkLeHkNfEpLuQvEcMbIoGaDzXbEtNsLgGfOkZaFiUsOvEjVeCaMcZqMzKeAdXxJsVeCrZaFpJtZxInQxFaSmGgSsVyGeLlFgFqTpIbAvPkIfJrVcJeBxSdEvPyVwIjHpYrLrKqLnAmCuGmPoZrSbOtGaLaTmBmSuUyAmAsRiMqOtRjJhPhAfXaJnTpLbFqPmJgFcBxImTqIiJ",
"output": "LZqBqKeGvNdSeYuWxRiVnFtYbKuJwQtUcKnVtQhAlOeUzMaAuTaEnDdPfDcNyHgEoBmYjZyFePeJrRiKyAzFnBfAuGiUyLrIeLrNhBeBdVcEeKgCcBrQzDsPwGcNnZvTsEaYmFfMeOmMdNuZbUtDoQoNcGwDqEkEjIdQaPwAxJbXeNxOgKgXoEbZiIsVkRrNpNyAkLeHkNfEpLuQvEcMbIoGaDzXbEtNsLgGfOkZaFiUsOvEjVeCaMcZqMzKeAdXxJsVeCrZaFpJtZxInQxFaSmGgSsVyGeLlFgFqTpIbAvPkIfJrVcJeBxSdEvPyVwIjHpYrLrKqLnAmCuGmPoZrSbOtGaLaTmBmSuUyAmAsRiMqOtRjJhPhAfXaJnTpLbFqPmJgFcBxImTqIiJ"
},
{
"input": "P",
"output": "P"
},
{
"input": "Xyzzy",
"output": "Xyzzy"
},
{
"input": "Zzz",
"output": "Zzz"
},
{
"input": "Zp",
"output": "Zp"
}
] | 1,696,510,026
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 25
| 92
| 0
|
x = input()
c = x[0].upper()
print(c+x[1:])
|
Title: Word Capitalization
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Capitalization is writing a word with its first letter as a capital letter. Your task is to capitalize the given word.
Note, that during capitalization all the letters except the first one remains unchanged.
Input Specification:
A single line contains a non-empty word. This word consists of lowercase and uppercase English letters. The length of the word will not exceed 103.
Output Specification:
Output the given word after capitalization.
Demo Input:
['ApPLe\n', 'konjac\n']
Demo Output:
['ApPLe\n', 'Konjac\n']
Note:
none
|
```python
x = input()
c = x[0].upper()
print(c+x[1:])
```
| 3
|
|
205
|
A
|
Little Elephant and Rozdil
|
PROGRAMMING
| 900
|
[
"brute force",
"implementation"
] | null | null |
The Little Elephant loves Ukraine very much. Most of all he loves town Rozdol (ukr. "Rozdil").
However, Rozdil is dangerous to settle, so the Little Elephant wants to go to some other town. The Little Elephant doesn't like to spend much time on travelling, so for his journey he will choose a town that needs minimum time to travel to. If there are multiple such cities, then the Little Elephant won't go anywhere.
For each town except for Rozdil you know the time needed to travel to this town. Find the town the Little Elephant will go to or print "Still Rozdil", if he stays in Rozdil.
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of cities. The next line contains *n* integers, separated by single spaces: the *i*-th integer represents the time needed to go from town Rozdil to the *i*-th town. The time values are positive integers, not exceeding 109.
You can consider the cities numbered from 1 to *n*, inclusive. Rozdil is not among the numbered cities.
|
Print the answer on a single line — the number of the town the Little Elephant will go to. If there are multiple cities with minimum travel time, print "Still Rozdil" (without the quotes).
|
[
"2\n7 4\n",
"7\n7 4 47 100 4 9 12\n"
] |
[
"2\n",
"Still Rozdil\n"
] |
In the first sample there are only two cities where the Little Elephant can go. The travel time for the first town equals 7, to the second one — 4. The town which is closest to Rodzil (the only one) is the second one, so the answer is 2.
In the second sample the closest cities are cities two and five, the travelling time to both of them equals 4, so the answer is "Still Rozdil".
| 500
|
[
{
"input": "2\n7 4",
"output": "2"
},
{
"input": "7\n7 4 47 100 4 9 12",
"output": "Still Rozdil"
},
{
"input": "1\n47",
"output": "1"
},
{
"input": "2\n1000000000 1000000000",
"output": "Still Rozdil"
},
{
"input": "7\n7 6 5 4 3 2 1",
"output": "7"
},
{
"input": "10\n1 1 1 1 1 1 1 1 1 1",
"output": "Still Rozdil"
},
{
"input": "4\n1000000000 100000000 1000000 1000000",
"output": "Still Rozdil"
},
{
"input": "20\n7 1 1 2 1 1 8 7 7 8 4 3 7 10 5 3 10 5 10 6",
"output": "Still Rozdil"
},
{
"input": "20\n3 3 6 9 8 2 4 1 7 3 2 9 7 7 9 7 2 6 2 7",
"output": "8"
},
{
"input": "47\n35 79 84 56 67 95 80 34 77 68 14 55 95 32 40 89 58 79 96 66 50 79 35 86 31 74 91 35 22 72 84 38 11 59 73 51 65 11 11 62 30 12 32 71 69 15 11",
"output": "Still Rozdil"
},
{
"input": "47\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3",
"output": "32"
},
{
"input": "25\n73 56 65 70 57 57 49 50 65 68 54 48 66 55 55 66 60 70 47 62 63 70 62 70 63",
"output": "19"
},
{
"input": "100\n922 938 103 689 526 118 314 496 373 47 224 544 495 656 804 754 269 356 354 536 817 597 787 178 516 659 790 993 786 169 866 779 997 350 674 437 219 546 564 893 402 449 751 628 238 686 392 951 716 439 332 563 215 146 746 311 866 773 548 675 731 183 890 802 488 944 473 25 662 559 732 534 777 144 502 593 839 692 84 337 679 718 1005 663 709 940 86 469 310 960 902 233 606 761 116 231 662 903 68 622",
"output": "68"
},
{
"input": "5\n5 5 2 3 1",
"output": "5"
},
{
"input": "1\n1000000000",
"output": "1"
},
{
"input": "3\n7 7 4",
"output": "3"
},
{
"input": "3\n2 2 1",
"output": "3"
},
{
"input": "3\n4 4 3",
"output": "3"
},
{
"input": "2\n10000001 10000002",
"output": "1"
},
{
"input": "4\n3 3 2 1",
"output": "4"
},
{
"input": "3\n1 2 3",
"output": "1"
},
{
"input": "2\n1000000000 100000000",
"output": "2"
},
{
"input": "1\n99999999",
"output": "1"
},
{
"input": "3\n5 5 3",
"output": "3"
},
{
"input": "3\n7 7 5",
"output": "3"
},
{
"input": "3\n3 3 1",
"output": "3"
},
{
"input": "4\n10 10 10 1",
"output": "4"
}
] | 1,628,225,653
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 45
| 404
| 30,924,800
|
def process():
n = int(input())
arr = list(map(int, input().split()))
min_index = -1
min_value = float('inf')
count = 0
for i in range(len(arr)):
if arr[i] < min_value:
min_value = arr[i]
min_index = i
count = 1
elif arr[i] == min_value:
count += 1
if count == 1:
print(min_index + 1)
else:
print('Still Rozdil')
process()
|
Title: Little Elephant and Rozdil
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The Little Elephant loves Ukraine very much. Most of all he loves town Rozdol (ukr. "Rozdil").
However, Rozdil is dangerous to settle, so the Little Elephant wants to go to some other town. The Little Elephant doesn't like to spend much time on travelling, so for his journey he will choose a town that needs minimum time to travel to. If there are multiple such cities, then the Little Elephant won't go anywhere.
For each town except for Rozdil you know the time needed to travel to this town. Find the town the Little Elephant will go to or print "Still Rozdil", if he stays in Rozdil.
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of cities. The next line contains *n* integers, separated by single spaces: the *i*-th integer represents the time needed to go from town Rozdil to the *i*-th town. The time values are positive integers, not exceeding 109.
You can consider the cities numbered from 1 to *n*, inclusive. Rozdil is not among the numbered cities.
Output Specification:
Print the answer on a single line — the number of the town the Little Elephant will go to. If there are multiple cities with minimum travel time, print "Still Rozdil" (without the quotes).
Demo Input:
['2\n7 4\n', '7\n7 4 47 100 4 9 12\n']
Demo Output:
['2\n', 'Still Rozdil\n']
Note:
In the first sample there are only two cities where the Little Elephant can go. The travel time for the first town equals 7, to the second one — 4. The town which is closest to Rodzil (the only one) is the second one, so the answer is 2.
In the second sample the closest cities are cities two and five, the travelling time to both of them equals 4, so the answer is "Still Rozdil".
|
```python
def process():
n = int(input())
arr = list(map(int, input().split()))
min_index = -1
min_value = float('inf')
count = 0
for i in range(len(arr)):
if arr[i] < min_value:
min_value = arr[i]
min_index = i
count = 1
elif arr[i] == min_value:
count += 1
if count == 1:
print(min_index + 1)
else:
print('Still Rozdil')
process()
```
| 3
|
|
535
|
B
|
Tavas and SaDDas
|
PROGRAMMING
| 1,100
|
[
"bitmasks",
"brute force",
"combinatorics",
"implementation"
] | null | null |
Once again Tavas started eating coffee mix without water! Keione told him that it smells awful, but he didn't stop doing that. That's why Keione told his smart friend, SaDDas to punish him! SaDDas took Tavas' headphones and told him: "If you solve the following problem, I'll return it to you."
The problem is:
You are given a lucky number *n*. Lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
If we sort all lucky numbers in increasing order, what's the 1-based index of *n*?
Tavas is not as smart as SaDDas, so he asked you to do him a favor and solve this problem so he can have his headphones back.
|
The first and only line of input contains a lucky number *n* (1<=≤<=*n*<=≤<=109).
|
Print the index of *n* among all lucky numbers.
|
[
"4\n",
"7\n",
"77\n"
] |
[
"1\n",
"2\n",
"6\n"
] |
none
| 1,000
|
[
{
"input": "4",
"output": "1"
},
{
"input": "7",
"output": "2"
},
{
"input": "77",
"output": "6"
},
{
"input": "4",
"output": "1"
},
{
"input": "474744",
"output": "83"
},
{
"input": "777774",
"output": "125"
},
{
"input": "447",
"output": "8"
},
{
"input": "774",
"output": "13"
},
{
"input": "4",
"output": "1"
},
{
"input": "4447747",
"output": "140"
},
{
"input": "7747474",
"output": "233"
},
{
"input": "4444",
"output": "15"
},
{
"input": "4447",
"output": "16"
},
{
"input": "7",
"output": "2"
},
{
"input": "4",
"output": "1"
},
{
"input": "4447744",
"output": "139"
},
{
"input": "77474",
"output": "57"
},
{
"input": "7747",
"output": "28"
},
{
"input": "444",
"output": "7"
},
{
"input": "7",
"output": "2"
},
{
"input": "7774477",
"output": "242"
},
{
"input": "4477774",
"output": "157"
},
{
"input": "7444",
"output": "23"
},
{
"input": "7474747",
"output": "212"
},
{
"input": "77",
"output": "6"
},
{
"input": "774477",
"output": "114"
},
{
"input": "7",
"output": "2"
},
{
"input": "47",
"output": "4"
},
{
"input": "747777",
"output": "110"
},
{
"input": "444444444",
"output": "511"
},
{
"input": "777777777",
"output": "1022"
},
{
"input": "477477447",
"output": "728"
},
{
"input": "777744747",
"output": "996"
}
] | 1,434,704,061
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 33
| 62
| 0
|
def main():
res = 1
for c in input():
res *= 2
if c == '7':
res += 1
print(res - 1)
if __name__ == '__main__':
main()
|
Title: Tavas and SaDDas
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Once again Tavas started eating coffee mix without water! Keione told him that it smells awful, but he didn't stop doing that. That's why Keione told his smart friend, SaDDas to punish him! SaDDas took Tavas' headphones and told him: "If you solve the following problem, I'll return it to you."
The problem is:
You are given a lucky number *n*. Lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
If we sort all lucky numbers in increasing order, what's the 1-based index of *n*?
Tavas is not as smart as SaDDas, so he asked you to do him a favor and solve this problem so he can have his headphones back.
Input Specification:
The first and only line of input contains a lucky number *n* (1<=≤<=*n*<=≤<=109).
Output Specification:
Print the index of *n* among all lucky numbers.
Demo Input:
['4\n', '7\n', '77\n']
Demo Output:
['1\n', '2\n', '6\n']
Note:
none
|
```python
def main():
res = 1
for c in input():
res *= 2
if c == '7':
res += 1
print(res - 1)
if __name__ == '__main__':
main()
```
| 3
|
|
43
|
B
|
Letter
|
PROGRAMMING
| 1,100
|
[
"implementation",
"strings"
] |
B. Letter
|
2
|
256
|
Vasya decided to write an anonymous letter cutting the letters out of a newspaper heading. He knows heading *s*1 and text *s*2 that he wants to send. Vasya can use every single heading letter no more than once. Vasya doesn't have to cut the spaces out of the heading — he just leaves some blank space to mark them. Help him; find out if he will manage to compose the needed text.
|
The first line contains a newspaper heading *s*1. The second line contains the letter text *s*2. *s*1 и *s*2 are non-empty lines consisting of spaces, uppercase and lowercase Latin letters, whose lengths do not exceed 200 symbols. The uppercase and lowercase letters should be differentiated. Vasya does not cut spaces out of the heading.
|
If Vasya can write the given anonymous letter, print YES, otherwise print NO
|
[
"Instead of dogging Your footsteps it disappears but you dont notice anything\nwhere is your dog\n",
"Instead of dogging Your footsteps it disappears but you dont notice anything\nYour dog is upstears\n",
"Instead of dogging your footsteps it disappears but you dont notice anything\nYour dog is upstears\n",
"abcdefg hijk\nk j i h g f e d c b a\n"
] |
[
"NO\n",
"YES\n",
"NO\n",
"YES\n"
] |
none
| 1,000
|
[
{
"input": "Instead of dogging Your footsteps it disappears but you dont notice anything\nwhere is your dog",
"output": "NO"
},
{
"input": "Instead of dogging Your footsteps it disappears but you dont notice anything\nYour dog is upstears",
"output": "YES"
},
{
"input": "Instead of dogging your footsteps it disappears but you dont notice anything\nYour dog is upstears",
"output": "NO"
},
{
"input": "abcdefg hijk\nk j i h g f e d c b a",
"output": "YES"
},
{
"input": "HpOKgo\neAtAVB",
"output": "NO"
},
{
"input": "GRZGc\nLPzD",
"output": "NO"
},
{
"input": "GtPXu\nd",
"output": "NO"
},
{
"input": "FVF\nr ",
"output": "NO"
},
{
"input": "HpOKgo\nogK",
"output": "YES"
},
{
"input": "GRZGc\nZG",
"output": "YES"
},
{
"input": "HpOKgoueAtAVBdGffvQheJDejNDHhhwyKJisugiRAH OseK yUwqPPNuThUxTfthqIUeb wS jChGOdFDarNrKRT MlwKecxWNoKEeD BbiHAruE XMlvKYVsJGPP\nAHN XvoaNwV AVBKwKjr u U K wKE D K Jy KiHsR h d W Js IHyMPK Br iSqe E fDA g H",
"output": "YES"
},
{
"input": "GRZGcsLPzDrCSXhhNTaibJqVphhjbcPoZhCDUlzAbDnRWjHvxLKtpGiFWiGbfeDxBwCrdJmJGCGv GebAOinUsFrlqKTILOmxrFjSpEoVGoTdSSstJWVgMLKMPettxHASaQZNdOIObcTxtF qTHWBdNIKwj\nWqrxze Ji x q aT GllLrRV jMpGiMDTwwS JDsPGpAZKACmsFCOS CD Sj bCDgKF jJxa RddtLFAi VGLHH SecObzG q hPF ",
"output": "YES"
},
{
"input": "GtPXuwdAxNhODQbjRslDDKciOALJrCifTjDQurQEBeFUUSZWwCZQPdYwZkYbrduMijFjgodAOrKIuUKwSXageZuOWMIhAMexyLRzFuzuXqBDTEaWMzVdbzhxDGSJC SsIYuYILwpiwwcObEHWpFvHeBkWYNitqYrxqgHReHcKnHbtjcWZuaxPBVPb\nTQIKyqFaewOkY lZUOOuxEw EwuKcArxRQGFYkvVWIAe SuanPeHuDjquurJu aSxwgOSw jYMwjxItNUUArQjO BIujAhSwttLWp",
"output": "YES"
},
{
"input": "FVFSr unvtXbpKWF vPaAgNaoTqklzVqiGYcUcBIcattzBrRuNSnKUtmdGKbjcE\nUzrU K an GFGR Wc zt iBa P c T K v p V In b B c",
"output": "YES"
},
{
"input": "lSwjnYLYtDNIZjxHiTawdh ntSzggZogcIZTuiTMWVgwyloMtEhqkrOxgIcFvwvsboXUPILPIymFAEXnhApewJXJNtFyZ\nAoxe jWZ u yImg o AZ FNI w lpj tNhT g y ZYcb rc J w Dlv",
"output": "YES"
},
{
"input": "kvlekcdJqODUKdsJlXkRaileTmdGwUHWWgvgUokQxRzzbpFnswvNKiDnjfOFGvFcnaaiRnBGQmqoPxDHepgYasLhzjDgmvaFfVNEcSPVQCJKAbSyTGpXsAjIHr\nGjzUllNaGGKXUdYmDFpqFAKIwvTpjmqnyswWRTnxlBnavAGvavxJemrjvRJc",
"output": "YES"
},
{
"input": "kWbvhgvvoYOhwXmgTwOSCDXrtFHhqwvMlCvsuuAUXMmWaYXiqHplFZZemhgkTuvsUtIaUxtyYauBIpjdbyYxjZ ZkaBPzwqPfqF kCqGRmXvWuabnQognnkvdNDtRUsSUvSzgBuxCMBWJifbxWegsknp\nBsH bWHJD n Ca T xq PRCv tatn Wjy sm I q s WCjFqdWe t W XUs Do eb Pfh ii hTbF O Fll",
"output": "YES"
},
{
"input": "OTmLdkMhmDEOMQMiW ZpzEIjyElHFrNCfFQDp SZyoZaEIUIpyCHfwOUqiSkKtFHggrTBGkqfOxkChPztmPrsHoxVwAdrxbZLKxPXHlMnrkgMgiaHFopiFFiUEtKwCjpJtwdwkbJCgA bxeDIscFdmHQJLAMNhWlrZisQrHQpvbALWTwpf jnx\nDbZwrQbydCdkJMCrftiwtPFfpMiwwrfIrKidEChKECxQUBVUEfFirbGWiLkFQkdJiFtkrtkbIAEXCEDkwLpK",
"output": "YES"
},
{
"input": "NwcGaIeSkOva\naIa",
"output": "YES"
},
{
"input": "gSrAcVYgAdbdayzbKGhIzLDjyznLRIJH KyvilAaEddmgkBPCNzpmPNeGEbmmpAyHvUSoPvnaORrPUuafpReEGoDOQsAYnUHYfBqhdcopQfxJuGXgKnbdVMQNhJYkyjiJDKlShqBTtnnDQQzEijOMcYRGMgPGVhfIReYennKBLwDTVvcHMIHMgVpJkvzTrezxqS\nHJerIVvRyfrPgAQMTI AqGNO mQDfDwQHKgeeYmuRmozKHILvehMPOJNMRtPTAfvKvsoGKi xHEeKqDAYmQJPUXRJbIbHrgVOMGMTdvYiLui",
"output": "YES"
},
{
"input": "ReB hksbHqQXxUgpvoNK bFqmNVCEiOyKdKcAJQRkpeohpfuqZabvrLfmpZOMcfyFBJGZwVMxiUPP pbZZtJjxhEwvrAba\nJTCpQnIViIGIdQtLnmkVzmcbBZR CoxAdTtWSYpbOglDFifqIVQ vfGKGtLpxpJHiHSWCMeRcrVOXBGBhoEnVhNTPWGTOErNtSvokcGdgZXbgTEtISUyTwaXUEIlJMmutsdCbiyrPZPJyRdOjnSuAGttLy",
"output": "NO"
},
{
"input": "hrLzRegCuDGxTrhDgVvM KowwyYuXGzIpcXdSMgeQVfVOtJZdkhNYSegwFWWoPqcZoeapbQnyCtojgkcyezUNHGGIZrhzsKrvvcrtokIdcnqXXkCNKjrOjrnEAKBNxyDdiMVeyLvXxUYMZQRFdlcdlcxzKTeYzBlmpNiwWbNAAhWkMoGpRxkCuyqkzXdKWwGH\nJESKDOfnFdxPvUOCkrgSBEPQHJtJHzuNGstRbTCcchRWJvCcveSEAtwtOmZZiW",
"output": "NO"
},
{
"input": "yDBxCtUygQwWqONxQCcuAvVCkMGlqgC zvkfEkwqbhMCQxnkwQIUhucCbVUyOBUcXvTNEGriTBwMDMfdsPZgWRgIUDqM\neptVnORTTyixxmWIBpSTEwOXqGZllBgSxPenYCDlFwckJlWsoVwWLAIbPOmFqcKcTcoQqahetl KLfVSyaLVebzsGwPSVbtQAeUdZAaJtfxlCEvvaRhLlVvRJhKat IaB awdqcDlrrhTbRxjEbzGwcdmdavkhcjHjzmwbxAgw",
"output": "NO"
},
{
"input": "jlMwnnotSdlQMluKWkJwAeCetcqbIEnKeNyLWoKCGONDRBQOjbkGpUvDlmSFUJ bWhohqmmIUWTlDsvelUArAcZJBipMDwUvRfBsYzMdQnPDPAuBaeJmAxVKwUMJrwMDxNtlrtAowVWqWiwFGtmquZAcrpFsLHCrvMSMMlvQUqypAihQWrFMNoaqfs IBg\nNzeWQ bafrmDsYlpNHSGTBBgPl WIcuNhyNaNOEFvL",
"output": "NO"
},
{
"input": "zyWvXBcUZqGqjHwZHQryBtFliLYnweXAoMKNpLaunaOlzaauWmLtywsEvWPiwxJapocAFRMjrqWJXYqfKEbBKnzLO\npsbi bsXpSeJaCkIuPWfSRADXdIClxcDCowwJzGCDTyAl",
"output": "NO"
},
{
"input": "kKhuIwRPLCwPFfcnsyCfBdnsraGeOCcLTfXuGjqFSGPSAeDZJSS bXKFanNqWjpFnvRpWxHJspvisDlADJBioxXNbVoXeUedoPcNEpUyEeYxdJXhGzFAmpAiHotSVwbZQsuWjIVhVaEGgqbZHIoDpiEmjTtFylCwCkWWzUOoUfOHxEZvDwNpXhBWamHn\nK VpJjGhNbwCRhcfmNGVjewBFpEmPlIKeTuWiukDtEWpjgqciqglkyNfWrBLbGAKvlNWxaUelJmSlSoakSpRzePvJsshOsTYrMPXdxKpaShjyVIXGhRIAdtiGpNwtiRmGTBZhkJqIMdxMHX RMxCMYcWjcjhtCHyFnCvjjezGbkRDRiVxkbh",
"output": "NO"
},
{
"input": "AXssNpFKyQmJcBdBdfkhhMUzfqJVgcLBddkwtnFSzSRUCjiDcdtmkzIGkCKSxWUEGhmHmciktJyGMkgCductyHx\nI nYhmJfPnvoKUiXYUBIPIcxNYTtvwPUoXERZvY ahlDpQFNMmVZqEBiYqYlHNqcpSCmhFczBlOAhsYFeqMGfqL EJsDNOgwoJfBzqijKOFcYQ",
"output": "NO"
},
{
"input": "lkhrzDZmkdbjzYKPNMRkiwCFoZsMzBQMnxxdKKVJezSBjnLjPpUYtabcPTIaDJeDEobbWHdKOdVfMQwDXzDDcSrwVenDEYpMqfiOQ xSsqApWnAMoyhQXCKFzHvvzvUvkWwmwZrvZz\nsUzGspYpRFsHRbRgTQuCBgnFgPkisTUfFNwyEEWWRiweWWgjRkVQxgTwxOzdsOwfrGIH O gCXpzvHzfItuEHaihmugEyymSJIogYwX qAwcwIItidfnzZDhZgQHi eRjMAeVkJHceDZuJkmxGowOsmcGYYvk Ajtgi TxwihvjLViNZjvscTWvsaQUelTSivLShhEl",
"output": "NO"
},
{
"input": "BRsVjyNhrqRHVwrJzuzRigEhdpbDmaACSPfed\nlWqKTjlrqOCUbgBBZdZDGCeQJDXawPnnDkQdZDgwrEQk",
"output": "NO"
},
{
"input": "KRmINuyBYPwiTsdlyiNVuylToysJKmOpcLovAtwGPqrgFJQNAYvuAiyQRkeFMECVZvkDEmTauXlyjAaYRnTJXORMZRnTakBaUzSelMilejySDIZjQjzcOIrwXdvDvpeRIkoBgreyFXIyyIZutjiEBtwrmzQtPVUhvvdEtDMbXjBpoPVjGdM EXTAK JbCnw\nXZZqlJvzKKtvdNlzFPDTYxidqlsgufVzyEmO FZuLQ vVQsJESNviUCovCK NwwlbxsmPtOJNmAonCqrOZ bZ LVKAsQGmoLnYjeekvEIECFk",
"output": "NO"
}
] | 1,598,249,343
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 218
| 6,963,200
|
newsP = input()
s = input()
countN = [0]*(52)
countS = [0]*(52)
a = ord("a")
A = ord("A")
z = ord("z")
Z = ord("Z")
for x in newsP:
if(x == " "):
continue
if(ord(x) >= a and ord(x) <= z):
countN[ord(x) - a] += 1
else:
countN[26 + ord(x)-A] += 1
for x in s:
if(x == " "):
continue
if(ord(x) >= a and ord(x) <= z):
countS[ord(x) - a] += 1
else:
countS[26 + ord(x)-A] += 1
f = 1
for i in range(52):
if(countS[i] > countN[i]):
print("NO")
f = 0
break
if f:
print("YES")
|
Title: Letter
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya decided to write an anonymous letter cutting the letters out of a newspaper heading. He knows heading *s*1 and text *s*2 that he wants to send. Vasya can use every single heading letter no more than once. Vasya doesn't have to cut the spaces out of the heading — he just leaves some blank space to mark them. Help him; find out if he will manage to compose the needed text.
Input Specification:
The first line contains a newspaper heading *s*1. The second line contains the letter text *s*2. *s*1 и *s*2 are non-empty lines consisting of spaces, uppercase and lowercase Latin letters, whose lengths do not exceed 200 symbols. The uppercase and lowercase letters should be differentiated. Vasya does not cut spaces out of the heading.
Output Specification:
If Vasya can write the given anonymous letter, print YES, otherwise print NO
Demo Input:
['Instead of dogging Your footsteps it disappears but you dont notice anything\nwhere is your dog\n', 'Instead of dogging Your footsteps it disappears but you dont notice anything\nYour dog is upstears\n', 'Instead of dogging your footsteps it disappears but you dont notice anything\nYour dog is upstears\n', 'abcdefg hijk\nk j i h g f e d c b a\n']
Demo Output:
['NO\n', 'YES\n', 'NO\n', 'YES\n']
Note:
none
|
```python
newsP = input()
s = input()
countN = [0]*(52)
countS = [0]*(52)
a = ord("a")
A = ord("A")
z = ord("z")
Z = ord("Z")
for x in newsP:
if(x == " "):
continue
if(ord(x) >= a and ord(x) <= z):
countN[ord(x) - a] += 1
else:
countN[26 + ord(x)-A] += 1
for x in s:
if(x == " "):
continue
if(ord(x) >= a and ord(x) <= z):
countS[ord(x) - a] += 1
else:
countS[26 + ord(x)-A] += 1
f = 1
for i in range(52):
if(countS[i] > countN[i]):
print("NO")
f = 0
break
if f:
print("YES")
```
| 3.93253
|
876
|
A
|
Trip For Meal
|
PROGRAMMING
| 900
|
[
"math"
] | null | null |
Winnie-the-Pooh likes honey very much! That is why he decided to visit his friends. Winnie has got three best friends: Rabbit, Owl and Eeyore, each of them lives in his own house. There are winding paths between each pair of houses. The length of a path between Rabbit's and Owl's houses is *a* meters, between Rabbit's and Eeyore's house is *b* meters, between Owl's and Eeyore's house is *c* meters.
For enjoying his life and singing merry songs Winnie-the-Pooh should have a meal *n* times a day. Now he is in the Rabbit's house and has a meal for the first time. Each time when in the friend's house where Winnie is now the supply of honey is about to end, Winnie leaves that house. If Winnie has not had a meal the required amount of times, he comes out from the house and goes to someone else of his two friends. For this he chooses one of two adjacent paths, arrives to the house on the other end and visits his friend. You may assume that when Winnie is eating in one of his friend's house, the supply of honey in other friend's houses recover (most probably, they go to the supply store).
Winnie-the-Pooh does not like physical activity. He wants to have a meal *n* times, traveling minimum possible distance. Help him to find this distance.
|
First line contains an integer *n* (1<=≤<=*n*<=≤<=100) — number of visits.
Second line contains an integer *a* (1<=≤<=*a*<=≤<=100) — distance between Rabbit's and Owl's houses.
Third line contains an integer *b* (1<=≤<=*b*<=≤<=100) — distance between Rabbit's and Eeyore's houses.
Fourth line contains an integer *c* (1<=≤<=*c*<=≤<=100) — distance between Owl's and Eeyore's houses.
|
Output one number — minimum distance in meters Winnie must go through to have a meal *n* times.
|
[
"3\n2\n3\n1\n",
"1\n2\n3\n5\n"
] |
[
"3\n",
"0\n"
] |
In the first test case the optimal path for Winnie is the following: first have a meal in Rabbit's house, then in Owl's house, then in Eeyore's house. Thus he will pass the distance 2 + 1 = 3.
In the second test case Winnie has a meal in Rabbit's house and that is for him. So he doesn't have to walk anywhere at all.
| 500
|
[
{
"input": "3\n2\n3\n1",
"output": "3"
},
{
"input": "1\n2\n3\n5",
"output": "0"
},
{
"input": "10\n1\n8\n3",
"output": "9"
},
{
"input": "7\n10\n5\n6",
"output": "30"
},
{
"input": "9\n9\n7\n5",
"output": "42"
},
{
"input": "9\n37\n85\n76",
"output": "296"
},
{
"input": "76\n46\n77\n11",
"output": "860"
},
{
"input": "80\n42\n1\n37",
"output": "79"
},
{
"input": "8\n80\n55\n1",
"output": "61"
},
{
"input": "10\n13\n72\n17",
"output": "117"
},
{
"input": "9\n24\n1\n63",
"output": "8"
},
{
"input": "65\n5\n8\n7",
"output": "320"
},
{
"input": "56\n8\n9\n3",
"output": "170"
},
{
"input": "59\n8\n1\n2",
"output": "58"
},
{
"input": "75\n50\n50\n5",
"output": "415"
},
{
"input": "75\n54\n76\n66",
"output": "3996"
},
{
"input": "73\n71\n69\n66",
"output": "4755"
},
{
"input": "83\n58\n88\n16",
"output": "1354"
},
{
"input": "74\n31\n11\n79",
"output": "803"
},
{
"input": "62\n27\n16\n72",
"output": "976"
},
{
"input": "72\n95\n27\n9",
"output": "657"
},
{
"input": "1\n2\n2\n1",
"output": "0"
},
{
"input": "1\n1\n1\n1",
"output": "0"
},
{
"input": "1\n1\n1\n99",
"output": "0"
},
{
"input": "100\n100\n100\n100",
"output": "9900"
},
{
"input": "2\n1\n1\n3",
"output": "1"
},
{
"input": "1\n3\n2\n1",
"output": "0"
},
{
"input": "1\n5\n6\n1",
"output": "0"
},
{
"input": "1\n2\n6\n1",
"output": "0"
},
{
"input": "1\n30\n20\n1",
"output": "0"
},
{
"input": "1\n15\n13\n11",
"output": "0"
},
{
"input": "1\n100\n50\n1",
"output": "0"
},
{
"input": "1\n2\n3\n1",
"output": "0"
},
{
"input": "5\n5\n5\n5",
"output": "20"
},
{
"input": "1\n100\n50\n5",
"output": "0"
},
{
"input": "1\n5\n7\n3",
"output": "0"
},
{
"input": "1\n3\n4\n2",
"output": "0"
},
{
"input": "3\n3\n3\n3",
"output": "6"
},
{
"input": "1\n99\n98\n1",
"output": "0"
},
{
"input": "5\n3\n3\n1",
"output": "6"
},
{
"input": "2\n1\n1\n1",
"output": "1"
},
{
"input": "2\n1\n7\n8",
"output": "1"
},
{
"input": "2\n2\n2\n1",
"output": "2"
},
{
"input": "2\n2\n3\n1",
"output": "2"
},
{
"input": "1\n5\n6\n2",
"output": "0"
},
{
"input": "100\n1\n1\n100",
"output": "99"
},
{
"input": "2\n3\n2\n1",
"output": "2"
},
{
"input": "1\n99\n98\n97",
"output": "0"
}
] | 1,689,299,124
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 48
| 46
| 0
|
n=int(input())
a=int(input())
b=int(input())
c=int(input())
h1=a
h2=b
h3=c
d=1
e=0
while(d!=n):
house = min(h1, h2)
e=e+house
if house==h1:
h1=house
h2=h3
h3=max(h1,h2)
else:
h2=house
h1=h3
h3=max(h1,h2)
d=d+1
print(e)
|
Title: Trip For Meal
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Winnie-the-Pooh likes honey very much! That is why he decided to visit his friends. Winnie has got three best friends: Rabbit, Owl and Eeyore, each of them lives in his own house. There are winding paths between each pair of houses. The length of a path between Rabbit's and Owl's houses is *a* meters, between Rabbit's and Eeyore's house is *b* meters, between Owl's and Eeyore's house is *c* meters.
For enjoying his life and singing merry songs Winnie-the-Pooh should have a meal *n* times a day. Now he is in the Rabbit's house and has a meal for the first time. Each time when in the friend's house where Winnie is now the supply of honey is about to end, Winnie leaves that house. If Winnie has not had a meal the required amount of times, he comes out from the house and goes to someone else of his two friends. For this he chooses one of two adjacent paths, arrives to the house on the other end and visits his friend. You may assume that when Winnie is eating in one of his friend's house, the supply of honey in other friend's houses recover (most probably, they go to the supply store).
Winnie-the-Pooh does not like physical activity. He wants to have a meal *n* times, traveling minimum possible distance. Help him to find this distance.
Input Specification:
First line contains an integer *n* (1<=≤<=*n*<=≤<=100) — number of visits.
Second line contains an integer *a* (1<=≤<=*a*<=≤<=100) — distance between Rabbit's and Owl's houses.
Third line contains an integer *b* (1<=≤<=*b*<=≤<=100) — distance between Rabbit's and Eeyore's houses.
Fourth line contains an integer *c* (1<=≤<=*c*<=≤<=100) — distance between Owl's and Eeyore's houses.
Output Specification:
Output one number — minimum distance in meters Winnie must go through to have a meal *n* times.
Demo Input:
['3\n2\n3\n1\n', '1\n2\n3\n5\n']
Demo Output:
['3\n', '0\n']
Note:
In the first test case the optimal path for Winnie is the following: first have a meal in Rabbit's house, then in Owl's house, then in Eeyore's house. Thus he will pass the distance 2 + 1 = 3.
In the second test case Winnie has a meal in Rabbit's house and that is for him. So he doesn't have to walk anywhere at all.
|
```python
n=int(input())
a=int(input())
b=int(input())
c=int(input())
h1=a
h2=b
h3=c
d=1
e=0
while(d!=n):
house = min(h1, h2)
e=e+house
if house==h1:
h1=house
h2=h3
h3=max(h1,h2)
else:
h2=house
h1=h3
h3=max(h1,h2)
d=d+1
print(e)
```
| 3
|
|
157
|
A
|
Game Outcome
|
PROGRAMMING
| 800
|
[
"brute force"
] | null | null |
Sherlock Holmes and Dr. Watson played some game on a checkered board *n*<=×<=*n* in size. During the game they put numbers on the board's squares by some tricky rules we don't know. However, the game is now over and each square of the board contains exactly one number. To understand who has won, they need to count the number of winning squares. To determine if the particular square is winning you should do the following. Calculate the sum of all numbers on the squares that share this column (including the given square) and separately calculate the sum of all numbers on the squares that share this row (including the given square). A square is considered winning if the sum of the column numbers is strictly greater than the sum of the row numbers.
For instance, lets game was ended like is shown in the picture. Then the purple cell is winning, because the sum of its column numbers equals 8<=+<=3<=+<=6<=+<=7<==<=24, sum of its row numbers equals 9<=+<=5<=+<=3<=+<=2<==<=19, and 24<=><=19.
|
The first line contains an integer *n* (1<=≤<=*n*<=≤<=30). Each of the following *n* lines contain *n* space-separated integers. The *j*-th number on the *i*-th line represents the number on the square that belongs to the *j*-th column and the *i*-th row on the board. All number on the board are integers from 1 to 100.
|
Print the single number — the number of the winning squares.
|
[
"1\n1\n",
"2\n1 2\n3 4\n",
"4\n5 7 8 4\n9 5 3 2\n1 6 6 4\n9 5 7 3\n"
] |
[
"0\n",
"2\n",
"6\n"
] |
In the first example two upper squares are winning.
In the third example three left squares in the both middle rows are winning:
| 500
|
[
{
"input": "1\n1",
"output": "0"
},
{
"input": "2\n1 2\n3 4",
"output": "2"
},
{
"input": "4\n5 7 8 4\n9 5 3 2\n1 6 6 4\n9 5 7 3",
"output": "6"
},
{
"input": "2\n1 1\n1 1",
"output": "0"
},
{
"input": "3\n1 2 3\n4 5 6\n7 8 9",
"output": "4"
},
{
"input": "3\n1 2 3\n3 1 2\n2 3 1",
"output": "0"
},
{
"input": "4\n1 2 3 4\n8 7 6 5\n9 10 11 12\n16 15 14 13",
"output": "8"
},
{
"input": "1\n53",
"output": "0"
},
{
"input": "5\n1 98 22 9 39\n10 9 44 49 66\n79 17 23 8 47\n59 69 72 47 14\n94 91 98 19 54",
"output": "13"
},
{
"input": "1\n31",
"output": "0"
},
{
"input": "1\n92",
"output": "0"
},
{
"input": "5\n61 45 70 19 48\n52 29 98 21 74\n21 66 12 6 55\n62 75 66 62 57\n94 74 9 86 24",
"output": "13"
},
{
"input": "2\n73 99\n13 100",
"output": "2"
},
{
"input": "4\n89 79 14 89\n73 24 58 89\n62 88 69 65\n58 92 18 83",
"output": "10"
},
{
"input": "5\n99 77 32 20 49\n93 81 63 7 58\n37 1 17 35 53\n18 94 38 80 23\n91 50 42 61 63",
"output": "12"
},
{
"input": "4\n81 100 38 54\n8 64 39 59\n6 12 53 65\n79 50 99 71",
"output": "8"
},
{
"input": "5\n42 74 45 85 14\n68 94 11 3 89\n68 67 97 62 66\n65 76 96 18 84\n61 98 28 94 74",
"output": "12"
},
{
"input": "9\n53 80 94 41 58 49 88 24 42\n85 11 32 64 40 56 63 95 73\n17 85 60 41 13 71 54 67 87\n38 14 21 81 66 59 52 33 86\n29 34 46 18 19 80 10 44 51\n4 27 65 75 77 21 15 49 50\n35 68 86 98 98 62 69 52 71\n43 28 56 91 89 21 14 57 79\n27 27 29 26 15 76 21 70 78",
"output": "40"
},
{
"input": "7\n80 81 45 81 72 19 65\n31 24 15 52 47 1 14\n81 35 42 24 96 59 46\n16 2 59 56 60 98 76\n20 95 10 68 68 56 93\n60 16 68 77 89 52 43\n11 22 43 36 99 2 11",
"output": "21"
},
{
"input": "9\n33 80 34 56 56 33 27 74 57\n14 69 78 44 56 70 26 73 47\n13 42 17 33 78 83 94 70 37\n96 78 92 6 16 68 8 31 46\n67 97 21 10 44 64 15 77 28\n34 44 83 96 63 52 29 27 79\n23 23 57 54 35 16 5 64 36\n29 71 36 78 47 81 72 97 36\n24 83 70 58 36 82 42 44 26",
"output": "41"
},
{
"input": "9\n57 70 94 69 77 59 88 63 83\n6 79 46 5 9 43 20 39 48\n46 35 58 22 17 3 81 82 34\n77 10 40 53 71 84 14 58 56\n6 92 77 81 13 20 77 29 40\n59 53 3 97 21 97 22 11 64\n52 91 82 20 6 3 99 17 44\n79 25 43 69 85 55 95 61 31\n89 24 50 84 54 93 54 60 87",
"output": "46"
},
{
"input": "5\n77 44 22 21 20\n84 3 35 86 35\n97 50 1 44 92\n4 88 56 20 3\n32 56 26 17 80",
"output": "13"
},
{
"input": "7\n62 73 50 63 66 92 2\n27 13 83 84 88 81 47\n60 41 25 2 68 32 60\n7 94 18 98 41 25 72\n69 37 4 10 82 49 91\n76 26 67 27 30 49 18\n44 78 6 1 41 94 80",
"output": "26"
},
{
"input": "9\n40 70 98 28 44 78 15 73 20\n25 74 46 3 27 59 33 96 19\n100 47 99 68 68 67 66 87 31\n26 39 8 91 58 20 91 69 81\n77 43 90 60 17 91 78 85 68\n41 46 47 50 96 18 69 81 26\n10 58 2 36 54 64 69 10 65\n6 86 26 7 88 20 43 92 59\n61 76 13 23 49 28 22 79 8",
"output": "44"
},
{
"input": "8\n44 74 25 81 32 33 55 58\n36 13 28 28 20 65 87 58\n8 35 52 59 34 15 33 16\n2 22 42 29 11 66 30 72\n33 47 8 61 31 64 59 63\n79 36 38 42 12 21 92 36\n56 47 44 6 6 1 37 2\n79 88 79 53 50 69 94 39",
"output": "31"
},
{
"input": "5\n4 91 100 8 48\n78 56 61 49 83\n12 21 95 77 78\n40 20 91 79 25\n32 88 94 28 55",
"output": "10"
},
{
"input": "5\n23 70 5 36 69\n83 18 19 98 40\n84 91 18 51 35\n17 18 35 47 59\n29 72 35 87 27",
"output": "13"
},
{
"input": "12\n8 42 23 20 39 5 23 86 26 65 93 82\n48 35 12 4 59 19 19 28 38 81 97 99\n93 24 31 44 97 50 44 99 50 7 10 64\n79 43 65 29 84 43 46 41 89 16 6 1\n34 90 33 1 7 12 46 84 67 30 1 58\n58 21 100 66 56 22 7 24 72 73 86 37\n2 17 85 6 2 73 85 44 43 79 34 65\n3 53 29 76 87 2 27 19 11 42 71 38\n69 82 73 52 44 23 92 10 13 72 59 16\n73 32 37 93 21 94 43 39 27 53 14 15\n86 16 90 91 14 50 73 61 77 36 93 90\n22 56 30 52 81 70 12 92 75 27 38 12",
"output": "77"
},
{
"input": "3\n41 94 58\n73 61 8\n34 88 89",
"output": "5"
},
{
"input": "3\n1 2 3\n1 1 1\n1 1 1",
"output": "4"
},
{
"input": "2\n7 3\n9 5",
"output": "2"
},
{
"input": "3\n4 3 2\n2 2 2\n2 2 2",
"output": "4"
}
] | 1,567,427,870
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 49
| 280
| 2,048,000
|
n = int(input())
m = []
for i in range(n):
m.append(list(map(int, input().split())))
ans = 0
for i in range(n):
for j in range(n):
t = 0
for k in range(n):
t += m[k][j]
if t > sum(m[i]):
ans += 1
print(ans)
|
Title: Game Outcome
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Sherlock Holmes and Dr. Watson played some game on a checkered board *n*<=×<=*n* in size. During the game they put numbers on the board's squares by some tricky rules we don't know. However, the game is now over and each square of the board contains exactly one number. To understand who has won, they need to count the number of winning squares. To determine if the particular square is winning you should do the following. Calculate the sum of all numbers on the squares that share this column (including the given square) and separately calculate the sum of all numbers on the squares that share this row (including the given square). A square is considered winning if the sum of the column numbers is strictly greater than the sum of the row numbers.
For instance, lets game was ended like is shown in the picture. Then the purple cell is winning, because the sum of its column numbers equals 8<=+<=3<=+<=6<=+<=7<==<=24, sum of its row numbers equals 9<=+<=5<=+<=3<=+<=2<==<=19, and 24<=><=19.
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=30). Each of the following *n* lines contain *n* space-separated integers. The *j*-th number on the *i*-th line represents the number on the square that belongs to the *j*-th column and the *i*-th row on the board. All number on the board are integers from 1 to 100.
Output Specification:
Print the single number — the number of the winning squares.
Demo Input:
['1\n1\n', '2\n1 2\n3 4\n', '4\n5 7 8 4\n9 5 3 2\n1 6 6 4\n9 5 7 3\n']
Demo Output:
['0\n', '2\n', '6\n']
Note:
In the first example two upper squares are winning.
In the third example three left squares in the both middle rows are winning:
|
```python
n = int(input())
m = []
for i in range(n):
m.append(list(map(int, input().split())))
ans = 0
for i in range(n):
for j in range(n):
t = 0
for k in range(n):
t += m[k][j]
if t > sum(m[i]):
ans += 1
print(ans)
```
| 3
|
|
63
|
A
|
Sinking Ship
|
PROGRAMMING
| 900
|
[
"implementation",
"sortings",
"strings"
] |
A. Sinking Ship
|
2
|
256
|
The ship crashed into a reef and is sinking. Now the entire crew must be evacuated. All *n* crew members have already lined up in a row (for convenience let's label them all from left to right with positive integers from 1 to *n*) and await further instructions. However, one should evacuate the crew properly, in a strict order. Specifically:
The first crew members to leave the ship are rats. Then women and children (both groups have the same priority) leave the ship. After that all men are evacuated from the ship. The captain leaves the sinking ship last.
If we cannot determine exactly who should leave the ship first for any two members of the crew by the rules from the previous paragraph, then the one who stands to the left in the line leaves the ship first (or in other words, the one whose number in the line is less).
For each crew member we know his status as a crew member, and also his name. All crew members have different names. Determine the order in which to evacuate the crew.
|
The first line contains an integer *n*, which is the number of people in the crew (1<=≤<=*n*<=≤<=100). Then follow *n* lines. The *i*-th of those lines contains two words — the name of the crew member who is *i*-th in line, and his status on the ship. The words are separated by exactly one space. There are no other spaces in the line. The names consist of Latin letters, the first letter is uppercase, the rest are lowercase. The length of any name is from 1 to 10 characters. The status can have the following values: rat for a rat, woman for a woman, child for a child, man for a man, captain for the captain. The crew contains exactly one captain.
|
Print *n* lines. The *i*-th of them should contain the name of the crew member who must be the *i*-th one to leave the ship.
|
[
"6\nJack captain\nAlice woman\nCharlie man\nTeddy rat\nBob child\nJulia woman\n"
] |
[
"Teddy\nAlice\nBob\nJulia\nCharlie\nJack\n"
] |
none
| 500
|
[
{
"input": "6\nJack captain\nAlice woman\nCharlie man\nTeddy rat\nBob child\nJulia woman",
"output": "Teddy\nAlice\nBob\nJulia\nCharlie\nJack"
},
{
"input": "1\nA captain",
"output": "A"
},
{
"input": "1\nAbcdefjhij captain",
"output": "Abcdefjhij"
},
{
"input": "5\nA captain\nB man\nD woman\nC child\nE rat",
"output": "E\nD\nC\nB\nA"
},
{
"input": "10\nCap captain\nD child\nC woman\nA woman\nE child\nMan man\nB child\nF woman\nRat rat\nRatt rat",
"output": "Rat\nRatt\nD\nC\nA\nE\nB\nF\nMan\nCap"
},
{
"input": "5\nJoyxnkypf captain\nDxssgr woman\nKeojmnpd rat\nGdv man\nHnw man",
"output": "Keojmnpd\nDxssgr\nGdv\nHnw\nJoyxnkypf"
},
{
"input": "11\nJue rat\nWyglbyphk rat\nGjlgu child\nGi man\nAttx rat\nTheorpkgx man\nYm rat\nX child\nB captain\nEnualf rat\nKktsgyuyv woman",
"output": "Jue\nWyglbyphk\nAttx\nYm\nEnualf\nGjlgu\nX\nKktsgyuyv\nGi\nTheorpkgx\nB"
},
{
"input": "22\nWswwcvvm woman\nBtmfats rat\nI rat\nOcmtsnwx man\nUrcqv rat\nYghnogt woman\nWtyfc man\nWqle child\nUjfrelpu rat\nDstixj man\nAhksnio woman\nKhkvaap woman\nSjppvwm rat\nEgdmsv rat\nDank rat\nNquicjnw rat\nLh captain\nTdyaqaqln rat\nQtj rat\nTfgwijvq rat\nNbiso child\nNqthvbf woman",
"output": "Btmfats\nI\nUrcqv\nUjfrelpu\nSjppvwm\nEgdmsv\nDank\nNquicjnw\nTdyaqaqln\nQtj\nTfgwijvq\nWswwcvvm\nYghnogt\nWqle\nAhksnio\nKhkvaap\nNbiso\nNqthvbf\nOcmtsnwx\nWtyfc\nDstixj\nLh"
},
{
"input": "36\nKqxmtwmsf child\nIze woman\nDlpr child\nK woman\nF captain\nRjwfeuhba rat\nBbv rat\nS rat\nMnmg woman\nSmzyx woman\nSr man\nQmhroracn rat\nSoqpuqock rat\nPibdq man\nIlrkrptx rat\nZaecfyqka man\nMmersfs child\nVvvocqi man\nHjeqxvq rat\nMpmb woman\nWmgu woman\nCerelmhoxi child\nA man\nDylv man\nXrdgmmtcpq woman\nXj woman\nCeh child\nOfccguo man\nNevr man\nAknkwdkq child\nBmo man\nLqo woman\nVej child\nT child\nRlijc man\nNsdtpdg woman",
"output": "Rjwfeuhba\nBbv\nS\nQmhroracn\nSoqpuqock\nIlrkrptx\nHjeqxvq\nKqxmtwmsf\nIze\nDlpr\nK\nMnmg\nSmzyx\nMmersfs\nMpmb\nWmgu\nCerelmhoxi\nXrdgmmtcpq\nXj\nCeh\nAknkwdkq\nLqo\nVej\nT\nNsdtpdg\nSr\nPibdq\nZaecfyqka\nVvvocqi\nA\nDylv\nOfccguo\nNevr\nBmo\nRlijc\nF"
},
{
"input": "2\nA captain\nB man",
"output": "B\nA"
},
{
"input": "2\nB woman\nA captain",
"output": "B\nA"
},
{
"input": "2\nX child\nY captain",
"output": "X\nY"
},
{
"input": "2\nX captain\nY rat",
"output": "Y\nX"
},
{
"input": "6\nAbdelrhman captain\nAlice woman\nCharlie man\nTeddy rat\nBob child\nJulia woman",
"output": "Teddy\nAlice\nBob\nJulia\nCharlie\nAbdelrhman"
},
{
"input": "4\nAratos captain\nMind child\nAman woman\nCarrot man",
"output": "Mind\nAman\nCarrot\nAratos"
}
] | 1,626,630,738
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 26
| 216
| 20,172,800
|
r,w,m,c=[],[],[],[]
for i in range(int(input())):
x,y=input().split()
if y=='rat':r.append(x)
elif y=='woman' or y=='child':w.append(x)
elif y=='man':m.append(x)
else:c.append(x)
for i in r:print(i)
for j in w:print(j)
for i in m:print(i)
for i in c:print(i)
|
Title: Sinking Ship
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
The ship crashed into a reef and is sinking. Now the entire crew must be evacuated. All *n* crew members have already lined up in a row (for convenience let's label them all from left to right with positive integers from 1 to *n*) and await further instructions. However, one should evacuate the crew properly, in a strict order. Specifically:
The first crew members to leave the ship are rats. Then women and children (both groups have the same priority) leave the ship. After that all men are evacuated from the ship. The captain leaves the sinking ship last.
If we cannot determine exactly who should leave the ship first for any two members of the crew by the rules from the previous paragraph, then the one who stands to the left in the line leaves the ship first (or in other words, the one whose number in the line is less).
For each crew member we know his status as a crew member, and also his name. All crew members have different names. Determine the order in which to evacuate the crew.
Input Specification:
The first line contains an integer *n*, which is the number of people in the crew (1<=≤<=*n*<=≤<=100). Then follow *n* lines. The *i*-th of those lines contains two words — the name of the crew member who is *i*-th in line, and his status on the ship. The words are separated by exactly one space. There are no other spaces in the line. The names consist of Latin letters, the first letter is uppercase, the rest are lowercase. The length of any name is from 1 to 10 characters. The status can have the following values: rat for a rat, woman for a woman, child for a child, man for a man, captain for the captain. The crew contains exactly one captain.
Output Specification:
Print *n* lines. The *i*-th of them should contain the name of the crew member who must be the *i*-th one to leave the ship.
Demo Input:
['6\nJack captain\nAlice woman\nCharlie man\nTeddy rat\nBob child\nJulia woman\n']
Demo Output:
['Teddy\nAlice\nBob\nJulia\nCharlie\nJack\n']
Note:
none
|
```python
r,w,m,c=[],[],[],[]
for i in range(int(input())):
x,y=input().split()
if y=='rat':r.append(x)
elif y=='woman' or y=='child':w.append(x)
elif y=='man':m.append(x)
else:c.append(x)
for i in r:print(i)
for j in w:print(j)
for i in m:print(i)
for i in c:print(i)
```
| 3.908425
|
1,006
|
C
|
Three Parts of the Array
|
PROGRAMMING
| 1,200
|
[
"binary search",
"data structures",
"two pointers"
] | null | null |
You are given an array $d_1, d_2, \dots, d_n$ consisting of $n$ integer numbers.
Your task is to split this array into three parts (some of which may be empty) in such a way that each element of the array belongs to exactly one of the three parts, and each of the parts forms a consecutive contiguous subsegment (possibly, empty) of the original array.
Let the sum of elements of the first part be $sum_1$, the sum of elements of the second part be $sum_2$ and the sum of elements of the third part be $sum_3$. Among all possible ways to split the array you have to choose a way such that $sum_1 = sum_3$ and $sum_1$ is maximum possible.
More formally, if the first part of the array contains $a$ elements, the second part of the array contains $b$ elements and the third part contains $c$ elements, then:
$$sum_1 = \sum\limits_{1 \le i \le a}d_i,$$ $$sum_2 = \sum\limits_{a + 1 \le i \le a + b}d_i,$$ $$sum_3 = \sum\limits_{a + b + 1 \le i \le a + b + c}d_i.$$
The sum of an empty array is $0$.
Your task is to find a way to split the array such that $sum_1 = sum_3$ and $sum_1$ is maximum possible.
|
The first line of the input contains one integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the number of elements in the array $d$.
The second line of the input contains $n$ integers $d_1, d_2, \dots, d_n$ ($1 \le d_i \le 10^9$) — the elements of the array $d$.
|
Print a single integer — the maximum possible value of $sum_1$, considering that the condition $sum_1 = sum_3$ must be met.
Obviously, at least one valid way to split the array exists (use $a=c=0$ and $b=n$).
|
[
"5\n1 3 1 1 4\n",
"5\n1 3 2 1 4\n",
"3\n4 1 2\n"
] |
[
"5\n",
"4\n",
"0\n"
] |
In the first example there is only one possible splitting which maximizes $sum_1$: $[1, 3, 1], [~], [1, 4]$.
In the second example the only way to have $sum_1=4$ is: $[1, 3], [2, 1], [4]$.
In the third example there is only one way to split the array: $[~], [4, 1, 2], [~]$.
| 0
|
[
{
"input": "5\n1 3 1 1 4",
"output": "5"
},
{
"input": "5\n1 3 2 1 4",
"output": "4"
},
{
"input": "3\n4 1 2",
"output": "0"
},
{
"input": "1\n1000000000",
"output": "0"
},
{
"input": "2\n1 1",
"output": "1"
},
{
"input": "5\n1 3 5 4 5",
"output": "9"
}
] | 1,624,855,360
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 4
| 982
| 5,529,600
|
size_array = 2 * int(input())
raw_array = map(int, input().split())
array = []
for i in raw_array:
array.append(i)
array.append(0)
b = size_array // 2
a = b -1
while True:
sum1 = sum(array[:a + 1])
sum2 = sum(array[b :])
if sum1 == sum2:
break
if sum1 < sum2:
a += 1
b += 1
else:
a -= 1
print(sum1)
|
Title: Three Parts of the Array
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given an array $d_1, d_2, \dots, d_n$ consisting of $n$ integer numbers.
Your task is to split this array into three parts (some of which may be empty) in such a way that each element of the array belongs to exactly one of the three parts, and each of the parts forms a consecutive contiguous subsegment (possibly, empty) of the original array.
Let the sum of elements of the first part be $sum_1$, the sum of elements of the second part be $sum_2$ and the sum of elements of the third part be $sum_3$. Among all possible ways to split the array you have to choose a way such that $sum_1 = sum_3$ and $sum_1$ is maximum possible.
More formally, if the first part of the array contains $a$ elements, the second part of the array contains $b$ elements and the third part contains $c$ elements, then:
$$sum_1 = \sum\limits_{1 \le i \le a}d_i,$$ $$sum_2 = \sum\limits_{a + 1 \le i \le a + b}d_i,$$ $$sum_3 = \sum\limits_{a + b + 1 \le i \le a + b + c}d_i.$$
The sum of an empty array is $0$.
Your task is to find a way to split the array such that $sum_1 = sum_3$ and $sum_1$ is maximum possible.
Input Specification:
The first line of the input contains one integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the number of elements in the array $d$.
The second line of the input contains $n$ integers $d_1, d_2, \dots, d_n$ ($1 \le d_i \le 10^9$) — the elements of the array $d$.
Output Specification:
Print a single integer — the maximum possible value of $sum_1$, considering that the condition $sum_1 = sum_3$ must be met.
Obviously, at least one valid way to split the array exists (use $a=c=0$ and $b=n$).
Demo Input:
['5\n1 3 1 1 4\n', '5\n1 3 2 1 4\n', '3\n4 1 2\n']
Demo Output:
['5\n', '4\n', '0\n']
Note:
In the first example there is only one possible splitting which maximizes $sum_1$: $[1, 3, 1], [~], [1, 4]$.
In the second example the only way to have $sum_1=4$ is: $[1, 3], [2, 1], [4]$.
In the third example there is only one way to split the array: $[~], [4, 1, 2], [~]$.
|
```python
size_array = 2 * int(input())
raw_array = map(int, input().split())
array = []
for i in raw_array:
array.append(i)
array.append(0)
b = size_array // 2
a = b -1
while True:
sum1 = sum(array[:a + 1])
sum2 = sum(array[b :])
if sum1 == sum2:
break
if sum1 < sum2:
a += 1
b += 1
else:
a -= 1
print(sum1)
```
| 0
|
|
26
|
A
|
Almost Prime
|
PROGRAMMING
| 900
|
[
"number theory"
] |
A. Almost Prime
|
2
|
256
|
A number is called almost prime if it has exactly two distinct prime divisors. For example, numbers 6, 18, 24 are almost prime, while 4, 8, 9, 42 are not. Find the amount of almost prime numbers which are between 1 and *n*, inclusive.
|
Input contains one integer number *n* (1<=≤<=*n*<=≤<=3000).
|
Output the amount of almost prime numbers between 1 and *n*, inclusive.
|
[
"10\n",
"21\n"
] |
[
"2\n",
"8\n"
] |
none
| 500
|
[
{
"input": "10",
"output": "2"
},
{
"input": "21",
"output": "8"
},
{
"input": "1",
"output": "0"
},
{
"input": "2",
"output": "0"
},
{
"input": "4",
"output": "0"
},
{
"input": "3",
"output": "0"
},
{
"input": "8",
"output": "1"
},
{
"input": "19",
"output": "6"
},
{
"input": "40",
"output": "19"
},
{
"input": "77",
"output": "41"
},
{
"input": "222",
"output": "125"
},
{
"input": "987",
"output": "501"
},
{
"input": "1000",
"output": "508"
},
{
"input": "2000",
"output": "958"
},
{
"input": "3000",
"output": "1375"
},
{
"input": "2999",
"output": "1375"
},
{
"input": "2998",
"output": "1375"
},
{
"input": "2997",
"output": "1374"
},
{
"input": "1429",
"output": "706"
},
{
"input": "1673",
"output": "808"
},
{
"input": "1500",
"output": "732"
},
{
"input": "500",
"output": "266"
},
{
"input": "856",
"output": "439"
}
] | 1,638,188,192
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 12
| 186
| 0
|
n = int(input())
res: int = 0
list1 = []
for z in range(1000):
list1.append(0)
for i in range(2, n+1):
for j in range(2, i):
if list1[j] == 0 and i % j == 0:
list1[i] = list1[i] + 1
if list1[i] == 2:
res = res + 1
print(res)
|
Title: Almost Prime
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A number is called almost prime if it has exactly two distinct prime divisors. For example, numbers 6, 18, 24 are almost prime, while 4, 8, 9, 42 are not. Find the amount of almost prime numbers which are between 1 and *n*, inclusive.
Input Specification:
Input contains one integer number *n* (1<=≤<=*n*<=≤<=3000).
Output Specification:
Output the amount of almost prime numbers between 1 and *n*, inclusive.
Demo Input:
['10\n', '21\n']
Demo Output:
['2\n', '8\n']
Note:
none
|
```python
n = int(input())
res: int = 0
list1 = []
for z in range(1000):
list1.append(0)
for i in range(2, n+1):
for j in range(2, i):
if list1[j] == 0 and i % j == 0:
list1[i] = list1[i] + 1
if list1[i] == 2:
res = res + 1
print(res)
```
| -1
|
27
|
E
|
Number With The Given Amount Of Divisors
|
PROGRAMMING
| 2,000
|
[
"brute force",
"dp",
"number theory"
] |
E. Number With The Given Amount Of Divisors
|
2
|
256
|
Given the number *n*, find the smallest positive integer which has exactly *n* divisors. It is guaranteed that for the given *n* the answer will not exceed 1018.
|
The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=1000).
|
Output the smallest positive integer with exactly *n* divisors.
|
[
"4\n",
"6\n"
] |
[
"6\n",
"12\n"
] |
none
| 2,500
|
[
{
"input": "1",
"output": "1"
},
{
"input": "7",
"output": "64"
},
{
"input": "8",
"output": "24"
},
{
"input": "9",
"output": "36"
},
{
"input": "10",
"output": "48"
},
{
"input": "15",
"output": "144"
},
{
"input": "20",
"output": "240"
},
{
"input": "47",
"output": "70368744177664"
},
{
"input": "59",
"output": "288230376151711744"
},
{
"input": "100",
"output": "45360"
},
{
"input": "159",
"output": "40532396646334464"
},
{
"input": "265",
"output": "364791569817010176"
},
{
"input": "312",
"output": "14192640"
},
{
"input": "473",
"output": "259700248434180096"
},
{
"input": "637",
"output": "46656000000"
},
{
"input": "500",
"output": "62370000"
},
{
"input": "720",
"output": "61261200"
},
{
"input": "902",
"output": "324625310542725120"
},
{
"input": "940",
"output": "199495389743677440"
},
{
"input": "1000",
"output": "810810000"
},
{
"input": "999",
"output": "757632231014400"
},
{
"input": "118",
"output": "864691128455135232"
}
] | 1,688,918,318
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 22
| 92
| 0
|
ans = 2e18
now = []
p = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
def dfs(x):
global ans
if x == 1:
res = 1
for i in range(len(now)):
res *= pow(p[i], now[i] - 1)
if res > 1e18:
return
ans = min(ans, res)
for i in range(x, 1, -1):
if x % i == 0:
now.append(i)
dfs(x // i)
now.pop()
n = int(input())
dfs(n)
print(ans)
|
Title: Number With The Given Amount Of Divisors
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Given the number *n*, find the smallest positive integer which has exactly *n* divisors. It is guaranteed that for the given *n* the answer will not exceed 1018.
Input Specification:
The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=1000).
Output Specification:
Output the smallest positive integer with exactly *n* divisors.
Demo Input:
['4\n', '6\n']
Demo Output:
['6\n', '12\n']
Note:
none
|
```python
ans = 2e18
now = []
p = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
def dfs(x):
global ans
if x == 1:
res = 1
for i in range(len(now)):
res *= pow(p[i], now[i] - 1)
if res > 1e18:
return
ans = min(ans, res)
for i in range(x, 1, -1):
if x % i == 0:
now.append(i)
dfs(x // i)
now.pop()
n = int(input())
dfs(n)
print(ans)
```
| 3.977
|
454
|
A
|
Little Pony and Crystal Mine
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Twilight Sparkle once got a crystal from the Crystal Mine. A crystal of size *n* (*n* is odd; *n*<=><=1) is an *n*<=×<=*n* matrix with a diamond inscribed into it.
You are given an odd integer *n*. You need to draw a crystal of size *n*. The diamond cells of the matrix should be represented by character "D". All other cells of the matrix should be represented by character "*". Look at the examples to understand what you need to draw.
|
The only line contains an integer *n* (3<=≤<=*n*<=≤<=101; *n* is odd).
|
Output a crystal of size *n*.
|
[
"3\n",
"5\n",
"7\n"
] |
[
"*D*\nDDD\n*D*\n",
"**D**\n*DDD*\nDDDDD\n*DDD*\n**D**\n",
"***D***\n**DDD**\n*DDDDD*\nDDDDDDD\n*DDDDD*\n**DDD**\n***D***\n"
] |
none
| 500
|
[
{
"input": "3",
"output": "*D*\nDDD\n*D*"
},
{
"input": "5",
"output": "**D**\n*DDD*\nDDDDD\n*DDD*\n**D**"
},
{
"input": "7",
"output": "***D***\n**DDD**\n*DDDDD*\nDDDDDDD\n*DDDDD*\n**DDD**\n***D***"
},
{
"input": "11",
"output": "*****D*****\n****DDD****\n***DDDDD***\n**DDDDDDD**\n*DDDDDDDDD*\nDDDDDDDDDDD\n*DDDDDDDDD*\n**DDDDDDD**\n***DDDDD***\n****DDD****\n*****D*****"
},
{
"input": "15",
"output": "*******D*******\n******DDD******\n*****DDDDD*****\n****DDDDDDD****\n***DDDDDDDDD***\n**DDDDDDDDDDD**\n*DDDDDDDDDDDDD*\nDDDDDDDDDDDDDDD\n*DDDDDDDDDDDDD*\n**DDDDDDDDDDD**\n***DDDDDDDDD***\n****DDDDDDD****\n*****DDDDD*****\n******DDD******\n*******D*******"
},
{
"input": "21",
"output": "**********D**********\n*********DDD*********\n********DDDDD********\n*******DDDDDDD*******\n******DDDDDDDDD******\n*****DDDDDDDDDDD*****\n****DDDDDDDDDDDDD****\n***DDDDDDDDDDDDDDD***\n**DDDDDDDDDDDDDDDDD**\n*DDDDDDDDDDDDDDDDDDD*\nDDDDDDDDDDDDDDDDDDDDD\n*DDDDDDDDDDDDDDDDDDD*\n**DDDDDDDDDDDDDDDDD**\n***DDDDDDDDDDDDDDD***\n****DDDDDDDDDDDDD****\n*****DDDDDDDDDDD*****\n******DDDDDDDDD******\n*******DDDDDDD*******\n********DDDDD********\n*********DDD*********\n**********D**********"
},
{
"input": "33",
"output": "****************D****************\n***************DDD***************\n**************DDDDD**************\n*************DDDDDDD*************\n************DDDDDDDDD************\n***********DDDDDDDDDDD***********\n**********DDDDDDDDDDDDD**********\n*********DDDDDDDDDDDDDDD*********\n********DDDDDDDDDDDDDDDDD********\n*******DDDDDDDDDDDDDDDDDDD*******\n******DDDDDDDDDDDDDDDDDDDDD******\n*****DDDDDDDDDDDDDDDDDDDDDDD*****\n****DDDDDDDDDDDDDDDDDDDDDDDDD****\n***DDDDDDDDDDDDDDDDDDDDDDDDDDD***\n**DDDDDDDDDDDDDDDDDDD..."
},
{
"input": "57",
"output": "****************************D****************************\n***************************DDD***************************\n**************************DDDDD**************************\n*************************DDDDDDD*************************\n************************DDDDDDDDD************************\n***********************DDDDDDDDDDD***********************\n**********************DDDDDDDDDDDDD**********************\n*********************DDDDDDDDDDDDDDD*********************\n********************DDDDDDDDDDDDDDDDD**..."
},
{
"input": "69",
"output": "**********************************D**********************************\n*********************************DDD*********************************\n********************************DDDDD********************************\n*******************************DDDDDDD*******************************\n******************************DDDDDDDDD******************************\n*****************************DDDDDDDDDDD*****************************\n****************************DDDDDDDDDDDDD****************************\n**************..."
},
{
"input": "81",
"output": "****************************************D****************************************\n***************************************DDD***************************************\n**************************************DDDDD**************************************\n*************************************DDDDDDD*************************************\n************************************DDDDDDDDD************************************\n***********************************DDDDDDDDDDD***********************************\n*************..."
},
{
"input": "91",
"output": "*********************************************D*********************************************\n********************************************DDD********************************************\n*******************************************DDDDD*******************************************\n******************************************DDDDDDD******************************************\n*****************************************DDDDDDDDD*****************************************\n****************************************DDDDDD..."
},
{
"input": "101",
"output": "**************************************************D**************************************************\n*************************************************DDD*************************************************\n************************************************DDDDD************************************************\n***********************************************DDDDDDD***********************************************\n**********************************************DDDDDDDDD********************************************..."
}
] | 1,647,017,362
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 15
| 0
|
n = int(input())
for i in range((n//2)+1):
print((abs((n//2)-i))*"*"+("D"*(2*i+1))+(abs((n//2)-i))*"*")
k = 0
for j in range(1,n,2):
k += 1
print((k*"*")+((n-j)*"D")+(k*"*"))
|
Title: Little Pony and Crystal Mine
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Twilight Sparkle once got a crystal from the Crystal Mine. A crystal of size *n* (*n* is odd; *n*<=><=1) is an *n*<=×<=*n* matrix with a diamond inscribed into it.
You are given an odd integer *n*. You need to draw a crystal of size *n*. The diamond cells of the matrix should be represented by character "D". All other cells of the matrix should be represented by character "*". Look at the examples to understand what you need to draw.
Input Specification:
The only line contains an integer *n* (3<=≤<=*n*<=≤<=101; *n* is odd).
Output Specification:
Output a crystal of size *n*.
Demo Input:
['3\n', '5\n', '7\n']
Demo Output:
['*D*\nDDD\n*D*\n', '**D**\n*DDD*\nDDDDD\n*DDD*\n**D**\n', '***D***\n**DDD**\n*DDDDD*\nDDDDDDD\n*DDDDD*\n**DDD**\n***D***\n']
Note:
none
|
```python
n = int(input())
for i in range((n//2)+1):
print((abs((n//2)-i))*"*"+("D"*(2*i+1))+(abs((n//2)-i))*"*")
k = 0
for j in range(1,n,2):
k += 1
print((k*"*")+((n-j)*"D")+(k*"*"))
```
| 0
|
|
632
|
A
|
Grandma Laura and Apples
|
PROGRAMMING
| 1,200
|
[] | null | null |
Grandma Laura came to the market to sell some apples. During the day she sold all the apples she had. But grandma is old, so she forgot how many apples she had brought to the market.
She precisely remembers she had *n* buyers and each of them bought exactly half of the apples she had at the moment of the purchase and also she gave a half of an apple to some of them as a gift (if the number of apples at the moment of purchase was odd), until she sold all the apples she had.
So each buyer took some integral positive number of apples, but maybe he didn't pay for a half of an apple (if the number of apples at the moment of the purchase was odd).
For each buyer grandma remembers if she gave a half of an apple as a gift or not. The cost of an apple is *p* (the number *p* is even).
Print the total money grandma should have at the end of the day to check if some buyers cheated her.
|
The first line contains two integers *n* and *p* (1<=≤<=*n*<=≤<=40,<=2<=≤<=*p*<=≤<=1000) — the number of the buyers and the cost of one apple. It is guaranteed that the number *p* is even.
The next *n* lines contains the description of buyers. Each buyer is described with the string half if he simply bought half of the apples and with the string halfplus if grandma also gave him a half of an apple as a gift.
It is guaranteed that grandma has at least one apple at the start of the day and she has no apples at the end of the day.
|
Print the only integer *a* — the total money grandma should have at the end of the day.
Note that the answer can be too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.
|
[
"2 10\nhalf\nhalfplus\n",
"3 10\nhalfplus\nhalfplus\nhalfplus\n"
] |
[
"15\n",
"55\n"
] |
In the first sample at the start of the day the grandma had two apples. First she sold one apple and then she sold a half of the second apple and gave a half of the second apple as a present to the second buyer.
| 0
|
[
{
"input": "2 10\nhalf\nhalfplus",
"output": "15"
},
{
"input": "3 10\nhalfplus\nhalfplus\nhalfplus",
"output": "55"
},
{
"input": "10 328\nhalf\nhalfplus\nhalfplus\nhalf\nhalfplus\nhalf\nhalf\nhalf\nhalfplus\nhalfplus",
"output": "258300"
},
{
"input": "1 2\nhalfplus",
"output": "1"
},
{
"input": "5 6\nhalf\nhalf\nhalfplus\nhalf\nhalfplus",
"output": "114"
},
{
"input": "10 2\nhalfplus\nhalfplus\nhalfplus\nhalf\nhalfplus\nhalf\nhalfplus\nhalf\nhalfplus\nhalfplus",
"output": "1703"
},
{
"input": "20 6\nhalf\nhalfplus\nhalfplus\nhalfplus\nhalf\nhalf\nhalfplus\nhalf\nhalfplus\nhalfplus\nhalfplus\nhalf\nhalf\nhalfplus\nhalfplus\nhalf\nhalfplus\nhalfplus\nhalfplus\nhalfplus",
"output": "6056877"
},
{
"input": "30 68\nhalf\nhalf\nhalf\nhalfplus\nhalfplus\nhalf\nhalf\nhalf\nhalf\nhalf\nhalf\nhalf\nhalf\nhalfplus\nhalfplus\nhalf\nhalfplus\nhalf\nhalfplus\nhalf\nhalfplus\nhalfplus\nhalfplus\nhalf\nhalf\nhalf\nhalfplus\nhalf\nhalfplus\nhalfplus",
"output": "59847312584"
},
{
"input": "40 562\nhalfplus\nhalfplus\nhalfplus\nhalfplus\nhalfplus\nhalfplus\nhalfplus\nhalfplus\nhalf\nhalf\nhalf\nhalfplus\nhalf\nhalf\nhalfplus\nhalf\nhalfplus\nhalf\nhalfplus\nhalf\nhalfplus\nhalf\nhalfplus\nhalfplus\nhalfplus\nhalfplus\nhalfplus\nhalf\nhalf\nhalfplus\nhalf\nhalfplus\nhalfplus\nhalf\nhalf\nhalfplus\nhalf\nhalf\nhalfplus\nhalfplus",
"output": "486750560068982"
}
] | 1,565,868,989
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 9
| 140
| 0
|
n,k = map(int,input().split())
tot = 0
h = 0
l = []
for _ in range(n):
a = input()
if a == "half":
l.append(0)
else:
l.append(1)
h += 1
l.reverse()
for i in l:
if i == 1:
tot *= 2
tot += 1
else:
tot *= 2
print(tot*k-h*k//2)
|
Title: Grandma Laura and Apples
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Grandma Laura came to the market to sell some apples. During the day she sold all the apples she had. But grandma is old, so she forgot how many apples she had brought to the market.
She precisely remembers she had *n* buyers and each of them bought exactly half of the apples she had at the moment of the purchase and also she gave a half of an apple to some of them as a gift (if the number of apples at the moment of purchase was odd), until she sold all the apples she had.
So each buyer took some integral positive number of apples, but maybe he didn't pay for a half of an apple (if the number of apples at the moment of the purchase was odd).
For each buyer grandma remembers if she gave a half of an apple as a gift or not. The cost of an apple is *p* (the number *p* is even).
Print the total money grandma should have at the end of the day to check if some buyers cheated her.
Input Specification:
The first line contains two integers *n* and *p* (1<=≤<=*n*<=≤<=40,<=2<=≤<=*p*<=≤<=1000) — the number of the buyers and the cost of one apple. It is guaranteed that the number *p* is even.
The next *n* lines contains the description of buyers. Each buyer is described with the string half if he simply bought half of the apples and with the string halfplus if grandma also gave him a half of an apple as a gift.
It is guaranteed that grandma has at least one apple at the start of the day and she has no apples at the end of the day.
Output Specification:
Print the only integer *a* — the total money grandma should have at the end of the day.
Note that the answer can be too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.
Demo Input:
['2 10\nhalf\nhalfplus\n', '3 10\nhalfplus\nhalfplus\nhalfplus\n']
Demo Output:
['15\n', '55\n']
Note:
In the first sample at the start of the day the grandma had two apples. First she sold one apple and then she sold a half of the second apple and gave a half of the second apple as a present to the second buyer.
|
```python
n,k = map(int,input().split())
tot = 0
h = 0
l = []
for _ in range(n):
a = input()
if a == "half":
l.append(0)
else:
l.append(1)
h += 1
l.reverse()
for i in l:
if i == 1:
tot *= 2
tot += 1
else:
tot *= 2
print(tot*k-h*k//2)
```
| 3
|
|
731
|
A
|
Night at the Museum
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] | null | null |
Grigoriy, like the hero of one famous comedy film, found a job as a night security guard at the museum. At first night he received embosser and was to take stock of the whole exposition.
Embosser is a special devise that allows to "print" the text of a plastic tape. Text is printed sequentially, character by character. The device consists of a wheel with a lowercase English letters written in a circle, static pointer to the current letter and a button that print the chosen letter. At one move it's allowed to rotate the alphabetic wheel one step clockwise or counterclockwise. Initially, static pointer points to letter 'a'. Other letters are located as shown on the picture:
After Grigoriy add new item to the base he has to print its name on the plastic tape and attach it to the corresponding exhibit. It's not required to return the wheel to its initial position with pointer on the letter 'a'.
Our hero is afraid that some exhibits may become alive and start to attack him, so he wants to print the names as fast as possible. Help him, for the given string find the minimum number of rotations of the wheel required to print it.
|
The only line of input contains the name of some exhibit — the non-empty string consisting of no more than 100 characters. It's guaranteed that the string consists of only lowercase English letters.
|
Print one integer — the minimum number of rotations of the wheel, required to print the name given in the input.
|
[
"zeus\n",
"map\n",
"ares\n"
] |
[
"18\n",
"35\n",
"34\n"
] |
To print the string from the first sample it would be optimal to perform the following sequence of rotations:
1. from 'a' to 'z' (1 rotation counterclockwise), 1. from 'z' to 'e' (5 clockwise rotations), 1. from 'e' to 'u' (10 rotations counterclockwise), 1. from 'u' to 's' (2 counterclockwise rotations).
| 500
|
[
{
"input": "zeus",
"output": "18"
},
{
"input": "map",
"output": "35"
},
{
"input": "ares",
"output": "34"
},
{
"input": "l",
"output": "11"
},
{
"input": "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuv",
"output": "99"
},
{
"input": "gngvi",
"output": "44"
},
{
"input": "aaaaa",
"output": "0"
},
{
"input": "a",
"output": "0"
},
{
"input": "z",
"output": "1"
},
{
"input": "vyadeehhikklnoqrs",
"output": "28"
},
{
"input": "jjiihhhhgggfedcccbazyxx",
"output": "21"
},
{
"input": "fyyptqqxuciqvwdewyppjdzur",
"output": "117"
},
{
"input": "fqcnzmzmbobmancqcoalzmanaobpdse",
"output": "368"
},
{
"input": "zzzzzaaaaaaazzzzzzaaaaaaazzzzzzaaaazzzza",
"output": "8"
},
{
"input": "aucnwhfixuruefkypvrvnvznwtjgwlghoqtisbkhuwxmgzuljvqhmnwzisnsgjhivnjmbknptxatdkelhzkhsuxzrmlcpeoyukiy",
"output": "644"
},
{
"input": "sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss",
"output": "8"
},
{
"input": "nypjygrdtpzpigzyrisqeqfriwgwlengnezppgttgtndbrryjdl",
"output": "421"
},
{
"input": "pnllnnmmmmoqqqqqrrtssssuuvtsrpopqoonllmonnnpppopnonoopooqpnopppqppqstuuuwwwwvxzxzzaa",
"output": "84"
},
{
"input": "btaoahqgxnfsdmzsjxgvdwjukcvereqeskrdufqfqgzqfsftdqcthtkcnaipftcnco",
"output": "666"
},
{
"input": "eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrrwwwwwwwwww",
"output": "22"
},
{
"input": "uyknzcrwjyzmscqucclvacmorepdgmnyhmakmmnygqwglrxkxhkpansbmruwxdeoprxzmpsvwackopujxbbkpwyeggsvjykpxh",
"output": "643"
},
{
"input": "gzwpooohffcxwtpjgfzwtooiccxsrrokezutoojdzwsrmmhecaxwrojcbyrqlfdwwrliiib",
"output": "245"
},
{
"input": "dbvnkktasjdwqsrzfwwtmjgbcxggdxsoeilecihduypktkkbwfbruxzzhlttrssicgdwqruddwrlbtxgmhdbatzvdxbbro",
"output": "468"
},
{
"input": "mdtvowlktxzzbuaeiuebfeorgbdczauxsovbucactkvyvemsknsjfhifqgycqredzchipmkvzbxdjkcbyukomjlzvxzoswumned",
"output": "523"
},
{
"input": "kkkkkkkaaaaxxaaaaaaaxxxxxxxxaaaaaaxaaaaaaaaaakkkkkkkkkaaaaaaannnnnxxxxkkkkkkkkaannnnnnna",
"output": "130"
},
{
"input": "dffiknqqrsvwzcdgjkmpqtuwxadfhkkkmpqrtwxyadfggjmpppsuuwyyzcdgghhknnpsvvvwwwyabccffiloqruwwyyzabeeehh",
"output": "163"
},
{
"input": "qpppmmkjihgecbyvvsppnnnkjiffeebaaywutrrqpmkjhgddbzzzywtssssqnmmljheddbbaxvusrqonmlifedbbzyywwtqnkheb",
"output": "155"
},
{
"input": "wvvwwwvvwxxxyyyxxwwvwwvuttttttuvvwxxwxxyxxwwwwwvvuttssrssstsssssrqpqqppqrssrsrrssrssssrrsrqqrrqpppqp",
"output": "57"
},
{
"input": "dqcpcobpcobnznamznamzlykxkxlxlylzmaobnaobpbnanbpcoaobnboaoboanzlymzmykylymylzlylymanboanaocqdqesfrfs",
"output": "1236"
},
{
"input": "nnnnnnnnnnnnnnnnnnnnaaaaaaaaaaaaaaaaaaaakkkkkkkkkkkkkkkkkkkkkkaaaaaaaaaaaaaaaaaaaaxxxxxxxxxxxxxxxxxx",
"output": "49"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "0"
},
{
"input": "cgilqsuwzaffilptwwbgmnttyyejkorxzflqvzbddhmnrvxchijpuwaeiimosxyycejlpquuwbfkpvbgijkqvxybdjjjptxcfkqt",
"output": "331"
},
{
"input": "ufsepwgtzgtgjssxaitgpailuvgqweoppszjwhoxdhhhpwwdorwfrdjwcdekxiktwziqwbkvbknrtvajpyeqbjvhiikxxaejjpte",
"output": "692"
},
{
"input": "uhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuh",
"output": "1293"
},
{
"input": "vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvgggggggggggggggggggggggggggggggggggggggggggggggggg",
"output": "16"
},
{
"input": "lyidmjyzbszgiwkxhhpnnthfwcvvstueionspfrvqgkvngmwyhezlosrpdnbvtcjjxxsykixwnepbumaacdzadlqhnjlcejovple",
"output": "616"
},
{
"input": "etzqqbaveffalkdguunfmyyrzkccnxmlluxeasqmopxzfvlkbhipqdwjgrttoemruohgwukfisdhznqyvhswbbypoxgtxyappcrl",
"output": "605"
},
{
"input": "lizussgedcbdjhrbeskhgatyozvwwekanlggcstijrniivupmcoofbaxfqrxddyzzptwxcftlhajsmmkkriarrqtkoauhcqefyud",
"output": "549"
},
{
"input": "dvjuvgfdogpknmbowlsfjzcimnygbtjiucyeeroqwhmzwpjqxlbjkqawrdtmvxbiqufllfuqibxvmtdrwaqkjblxqjpwzmhwqore",
"output": "688"
},
{
"input": "eeycuijtbgynmiczjfslwobmnkpgodfgvujvduyfeqchuaoktqrrairkkmmsjahltfcxwtpzzyddxrqfxabfoocmpuviinrjitsc",
"output": "604"
},
{
"input": "cgglnakewwvzoytaghksebrhjdbcdegssuzilrcppayxtgxopybbwshvyqnzhdsifkuwghourmeottrgjwdqpihbklvfzxpomqsa",
"output": "572"
},
{
"input": "aexullmxncckzryymfnuugdklaffevabqqztelpvojecljnhqldazdcaamubpenwxikysxxjjctvbndprsolzehywmgnvkgqvrfp",
"output": "609"
},
{
"input": "psnoieutsvvcwfhtnnphhxkwigzsbzyjmdiyl",
"output": "223"
},
{
"input": "aa",
"output": "0"
}
] | 1,670,304,595
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 44
| 46
| 0
|
s=input()
t=27
r=[]
for i in s:
x=abs(t-(ord(i)-96))
r.append(min(x,26-x))
t=ord(i)-96
print(sum(r))
|
Title: Night at the Museum
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Grigoriy, like the hero of one famous comedy film, found a job as a night security guard at the museum. At first night he received embosser and was to take stock of the whole exposition.
Embosser is a special devise that allows to "print" the text of a plastic tape. Text is printed sequentially, character by character. The device consists of a wheel with a lowercase English letters written in a circle, static pointer to the current letter and a button that print the chosen letter. At one move it's allowed to rotate the alphabetic wheel one step clockwise or counterclockwise. Initially, static pointer points to letter 'a'. Other letters are located as shown on the picture:
After Grigoriy add new item to the base he has to print its name on the plastic tape and attach it to the corresponding exhibit. It's not required to return the wheel to its initial position with pointer on the letter 'a'.
Our hero is afraid that some exhibits may become alive and start to attack him, so he wants to print the names as fast as possible. Help him, for the given string find the minimum number of rotations of the wheel required to print it.
Input Specification:
The only line of input contains the name of some exhibit — the non-empty string consisting of no more than 100 characters. It's guaranteed that the string consists of only lowercase English letters.
Output Specification:
Print one integer — the minimum number of rotations of the wheel, required to print the name given in the input.
Demo Input:
['zeus\n', 'map\n', 'ares\n']
Demo Output:
['18\n', '35\n', '34\n']
Note:
To print the string from the first sample it would be optimal to perform the following sequence of rotations:
1. from 'a' to 'z' (1 rotation counterclockwise), 1. from 'z' to 'e' (5 clockwise rotations), 1. from 'e' to 'u' (10 rotations counterclockwise), 1. from 'u' to 's' (2 counterclockwise rotations).
|
```python
s=input()
t=27
r=[]
for i in s:
x=abs(t-(ord(i)-96))
r.append(min(x,26-x))
t=ord(i)-96
print(sum(r))
```
| 3
|
|
146
|
A
|
Lucky Ticket
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Petya loves lucky numbers very much. Everybody knows that lucky numbers are positive integers whose decimal record contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
Petya loves tickets very much. As we know, each ticket has a number that is a positive integer. Its length equals *n* (*n* is always even). Petya calls a ticket lucky if the ticket's number is a lucky number and the sum of digits in the first half (the sum of the first *n*<=/<=2 digits) equals the sum of digits in the second half (the sum of the last *n*<=/<=2 digits). Check if the given ticket is lucky.
|
The first line contains an even integer *n* (2<=≤<=*n*<=≤<=50) — the length of the ticket number that needs to be checked. The second line contains an integer whose length equals exactly *n* — the ticket number. The number may contain leading zeros.
|
On the first line print "YES" if the given ticket number is lucky. Otherwise, print "NO" (without the quotes).
|
[
"2\n47\n",
"4\n4738\n",
"4\n4774\n"
] |
[
"NO\n",
"NO\n",
"YES\n"
] |
In the first sample the sum of digits in the first half does not equal the sum of digits in the second half (4 ≠ 7).
In the second sample the ticket number is not the lucky number.
| 500
|
[
{
"input": "2\n47",
"output": "NO"
},
{
"input": "4\n4738",
"output": "NO"
},
{
"input": "4\n4774",
"output": "YES"
},
{
"input": "4\n4570",
"output": "NO"
},
{
"input": "6\n477477",
"output": "YES"
},
{
"input": "6\n777777",
"output": "YES"
},
{
"input": "20\n44444444444444444444",
"output": "YES"
},
{
"input": "2\n44",
"output": "YES"
},
{
"input": "10\n4745474547",
"output": "NO"
},
{
"input": "14\n77770004444444",
"output": "NO"
},
{
"input": "10\n4747777744",
"output": "YES"
},
{
"input": "10\n1234567890",
"output": "NO"
},
{
"input": "50\n44444444444444444444444444444444444444444444444444",
"output": "YES"
},
{
"input": "50\n44444444444444444444444444444444444444444444444447",
"output": "NO"
},
{
"input": "50\n74444444444444444444444444444444444444444444444444",
"output": "NO"
},
{
"input": "50\n07777777777777777777777777777777777777777777777770",
"output": "NO"
},
{
"input": "50\n77777777777777777777777777777777777777777777777777",
"output": "YES"
},
{
"input": "50\n44747747774474747747747447777447774747447477444474",
"output": "YES"
},
{
"input": "48\n447474444777444474747747744774447444747474774474",
"output": "YES"
},
{
"input": "32\n74474474777444474444747774474774",
"output": "YES"
},
{
"input": "40\n4747777444447747777447447747447474774777",
"output": "YES"
},
{
"input": "10\n4477477444",
"output": "YES"
},
{
"input": "18\n447747474447744747",
"output": "YES"
},
{
"input": "26\n44747744444774744774474447",
"output": "YES"
},
{
"input": "50\n44707747774474747747747447777447774747447477444474",
"output": "NO"
},
{
"input": "40\n4747777444447737777447447747447474774777",
"output": "NO"
},
{
"input": "36\n764477744747444444447747747474744444",
"output": "NO"
},
{
"input": "22\n4477407474777477744447",
"output": "NO"
},
{
"input": "32\n74274474777444474444747774474774",
"output": "NO"
},
{
"input": "16\n4744447974444747",
"output": "NO"
},
{
"input": "2\n11",
"output": "NO"
},
{
"input": "2\n22",
"output": "NO"
},
{
"input": "2\n33",
"output": "NO"
},
{
"input": "2\n74",
"output": "NO"
},
{
"input": "2\n55",
"output": "NO"
},
{
"input": "2\n66",
"output": "NO"
},
{
"input": "2\n77",
"output": "YES"
},
{
"input": "2\n88",
"output": "NO"
},
{
"input": "2\n99",
"output": "NO"
},
{
"input": "4\n4004",
"output": "NO"
},
{
"input": "14\n00077774444444",
"output": "NO"
},
{
"input": "6\n004444",
"output": "NO"
},
{
"input": "4\n0044",
"output": "NO"
},
{
"input": "14\n77771114444444",
"output": "NO"
},
{
"input": "14\n44444447777000",
"output": "NO"
},
{
"input": "6\n004774",
"output": "NO"
}
] | 1,597,625,280
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 46
| 216
| 307,200
|
num=int(input())
a=list(map(int,input()))
l4=l7=0
for i in range(num):
if a[i]==4:
l4+=1
elif a[i]==7:
l7+=1
else:
break
if l4+l7!=num:
print("NO")
else:
h=num//2
s0=sum(a[:h]);s1=sum(a[h:])
if s0!=s1:
print("NO")
else:
print("YES")
|
Title: Lucky Ticket
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Petya loves lucky numbers very much. Everybody knows that lucky numbers are positive integers whose decimal record contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
Petya loves tickets very much. As we know, each ticket has a number that is a positive integer. Its length equals *n* (*n* is always even). Petya calls a ticket lucky if the ticket's number is a lucky number and the sum of digits in the first half (the sum of the first *n*<=/<=2 digits) equals the sum of digits in the second half (the sum of the last *n*<=/<=2 digits). Check if the given ticket is lucky.
Input Specification:
The first line contains an even integer *n* (2<=≤<=*n*<=≤<=50) — the length of the ticket number that needs to be checked. The second line contains an integer whose length equals exactly *n* — the ticket number. The number may contain leading zeros.
Output Specification:
On the first line print "YES" if the given ticket number is lucky. Otherwise, print "NO" (without the quotes).
Demo Input:
['2\n47\n', '4\n4738\n', '4\n4774\n']
Demo Output:
['NO\n', 'NO\n', 'YES\n']
Note:
In the first sample the sum of digits in the first half does not equal the sum of digits in the second half (4 ≠ 7).
In the second sample the ticket number is not the lucky number.
|
```python
num=int(input())
a=list(map(int,input()))
l4=l7=0
for i in range(num):
if a[i]==4:
l4+=1
elif a[i]==7:
l7+=1
else:
break
if l4+l7!=num:
print("NO")
else:
h=num//2
s0=sum(a[:h]);s1=sum(a[h:])
if s0!=s1:
print("NO")
else:
print("YES")
```
| 3
|
|
551
|
A
|
GukiZ and Contest
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation",
"sortings"
] | null | null |
Professor GukiZ likes programming contests. He especially likes to rate his students on the contests he prepares. Now, he has decided to prepare a new contest.
In total, *n* students will attend, and before the start, every one of them has some positive integer rating. Students are indexed from 1 to *n*. Let's denote the rating of *i*-th student as *a**i*. After the contest ends, every student will end up with some positive integer position. GukiZ expects that his students will take places according to their ratings.
He thinks that each student will take place equal to . In particular, if student *A* has rating strictly lower then student *B*, *A* will get the strictly better position than *B*, and if two students have equal ratings, they will share the same position.
GukiZ would like you to reconstruct the results by following his expectations. Help him and determine the position after the end of the contest for each of his students if everything goes as expected.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=2000), number of GukiZ's students.
The second line contains *n* numbers *a*1,<=*a*2,<=... *a**n* (1<=≤<=*a**i*<=≤<=2000) where *a**i* is the rating of *i*-th student (1<=≤<=*i*<=≤<=*n*).
|
In a single line, print the position after the end of the contest for each of *n* students in the same order as they appear in the input.
|
[
"3\n1 3 3\n",
"1\n1\n",
"5\n3 5 3 4 5\n"
] |
[
"3 1 1\n",
"1\n",
"4 1 4 3 1\n"
] |
In the first sample, students 2 and 3 are positioned first (there is no other student with higher rating), and student 1 is positioned third since there are two students with higher rating.
In the second sample, first student is the only one on the contest.
In the third sample, students 2 and 5 share the first position with highest rating, student 4 is next with third position, and students 1 and 3 are the last sharing fourth position.
| 500
|
[
{
"input": "3\n1 3 3",
"output": "3 1 1"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "5\n3 5 3 4 5",
"output": "4 1 4 3 1"
},
{
"input": "7\n1 3 5 4 2 2 1",
"output": "6 3 1 2 4 4 6"
},
{
"input": "11\n5 6 4 2 9 7 6 6 6 6 7",
"output": "9 4 10 11 1 2 4 4 4 4 2"
},
{
"input": "1\n2000",
"output": "1"
},
{
"input": "2\n2000 2000",
"output": "1 1"
},
{
"input": "3\n500 501 502",
"output": "3 2 1"
},
{
"input": "10\n105 106 1 1 1 11 1000 999 1000 999",
"output": "6 5 8 8 8 7 1 3 1 3"
},
{
"input": "6\n1 2 3 4 5 6",
"output": "6 5 4 3 2 1"
},
{
"input": "7\n6 5 4 3 2 1 1",
"output": "1 2 3 4 5 6 6"
},
{
"input": "8\n153 100 87 14 10 8 6 5",
"output": "1 2 3 4 5 6 7 8"
},
{
"input": "70\n11 54 37 62 1 46 13 17 38 47 28 15 63 5 61 34 49 66 32 59 3 41 58 28 23 62 41 64 20 5 14 41 10 37 51 32 65 46 61 8 15 19 16 44 31 42 19 46 66 25 26 58 60 5 19 18 69 53 20 40 45 27 24 41 32 23 57 56 62 10",
"output": "62 18 35 7 70 23 61 56 34 22 42 58 6 66 10 37 21 2 38 13 69 29 14 42 48 7 29 5 50 66 60 29 63 35 20 38 4 23 10 65 58 52 57 27 41 28 52 23 2 46 45 14 12 66 52 55 1 19 50 33 26 44 47 29 38 48 16 17 7 63"
},
{
"input": "5\n1 2000 1 1 2000",
"output": "3 1 3 3 1"
}
] | 1,624,254,156
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 36
| 108
| 0
|
n = int(input())
nums = [int(x) for x in input().strip().split()]
s = sorted(nums)[::-1]
#print(nums)
#print(s)
for i in nums:
print(1 + s.index(i), end = " ")
|
Title: GukiZ and Contest
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Professor GukiZ likes programming contests. He especially likes to rate his students on the contests he prepares. Now, he has decided to prepare a new contest.
In total, *n* students will attend, and before the start, every one of them has some positive integer rating. Students are indexed from 1 to *n*. Let's denote the rating of *i*-th student as *a**i*. After the contest ends, every student will end up with some positive integer position. GukiZ expects that his students will take places according to their ratings.
He thinks that each student will take place equal to . In particular, if student *A* has rating strictly lower then student *B*, *A* will get the strictly better position than *B*, and if two students have equal ratings, they will share the same position.
GukiZ would like you to reconstruct the results by following his expectations. Help him and determine the position after the end of the contest for each of his students if everything goes as expected.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=2000), number of GukiZ's students.
The second line contains *n* numbers *a*1,<=*a*2,<=... *a**n* (1<=≤<=*a**i*<=≤<=2000) where *a**i* is the rating of *i*-th student (1<=≤<=*i*<=≤<=*n*).
Output Specification:
In a single line, print the position after the end of the contest for each of *n* students in the same order as they appear in the input.
Demo Input:
['3\n1 3 3\n', '1\n1\n', '5\n3 5 3 4 5\n']
Demo Output:
['3 1 1\n', '1\n', '4 1 4 3 1\n']
Note:
In the first sample, students 2 and 3 are positioned first (there is no other student with higher rating), and student 1 is positioned third since there are two students with higher rating.
In the second sample, first student is the only one on the contest.
In the third sample, students 2 and 5 share the first position with highest rating, student 4 is next with third position, and students 1 and 3 are the last sharing fourth position.
|
```python
n = int(input())
nums = [int(x) for x in input().strip().split()]
s = sorted(nums)[::-1]
#print(nums)
#print(s)
for i in nums:
print(1 + s.index(i), end = " ")
```
| 3
|
|
305
|
B
|
Continued Fractions
|
PROGRAMMING
| 1,700
|
[
"brute force",
"implementation",
"math"
] | null | null |
A continued fraction of height *n* is a fraction of form . You are given two rational numbers, one is represented as and the other one is represented as a finite fraction of height *n*. Check if they are equal.
|
The first line contains two space-separated integers *p*,<=*q* (1<=≤<=*q*<=≤<=*p*<=≤<=1018) — the numerator and the denominator of the first fraction.
The second line contains integer *n* (1<=≤<=*n*<=≤<=90) — the height of the second fraction. The third line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1018) — the continued fraction.
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
|
Print "YES" if these fractions are equal and "NO" otherwise.
|
[
"9 4\n2\n2 4\n",
"9 4\n3\n2 3 1\n",
"9 4\n3\n1 2 4\n"
] |
[
"YES\n",
"YES\n",
"NO\n"
] |
In the first sample <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/5ff92f27aebea2560d99ad61202d20bab5ee5390.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second sample <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/221368c79c05fc0ecad4e5f7a64f30b832fd99f5.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the third sample <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4fb4b411afc0fbad27a1c8fdd08ba88ec3830ef5.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
| 1,000
|
[
{
"input": "9 4\n2\n2 4",
"output": "YES"
},
{
"input": "9 4\n3\n2 3 1",
"output": "YES"
},
{
"input": "9 4\n3\n1 2 4",
"output": "NO"
},
{
"input": "39088169 24157817\n36\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2",
"output": "YES"
},
{
"input": "39088169 24157817\n36\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4",
"output": "NO"
},
{
"input": "61305790721611591 37889062373143906\n80\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4",
"output": "NO"
},
{
"input": "61305790721611591 37889062373143906\n80\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2",
"output": "YES"
},
{
"input": "565049485241691020 228217260073568804\n40\n2 2 9 1 7 1 2 1 2 1 1 1 9 1 2 1 9 1 3 2 3 10 13 2 1 2 7 1 1 2 2 2 1 1 2 1 6 5 3 2",
"output": "YES"
},
{
"input": "2 1\n4\n2 1 1 1",
"output": "NO"
},
{
"input": "4 1\n2\n3 1",
"output": "YES"
},
{
"input": "72723460248141 1597\n1\n45537545554",
"output": "NO"
},
{
"input": "14930352 13\n6\n1148488 1 1 1 1 2",
"output": "YES"
},
{
"input": "86267571272 102334155\n6\n842 1 841 1 842 145",
"output": "NO"
},
{
"input": "72723460248141 121393\n7\n599074578 122 1 122 2 1 2",
"output": "YES"
},
{
"input": "168455988218483660 53310571951833359\n32\n3 6 3 1 14 1 48 1 3 2 1 1 39 2 1 3 13 23 4 1 11 1 1 23 1 3 3 2 1 1 1 3",
"output": "NO"
},
{
"input": "382460255113156464 275525972692563593\n37\n1 2 1 1 2 1 3 4 5 5 1 4 2 1 1 1 4 2 2 1 2 1 1 2 3 3 1 2 2 50 4 1 4 2 5 109 8",
"output": "YES"
},
{
"input": "1000000000000000000 1\n1\n1000000000000000000",
"output": "YES"
},
{
"input": "362912509915545727 266073193475139553\n30\n1 2 1 2 1 25 75 1 14 6 6 9 1 1 1 1 210 2 2 2 5 2 1 3 1 1 13 3 14 3",
"output": "NO"
},
{
"input": "933329105990871495 607249523603826772\n33\n1 1 1 6 3 1 5 24 3 55 1 15 2 2 1 12 2 2 3 109 1 1 4 1 4 1 7 2 4 1 3 3 2",
"output": "YES"
},
{
"input": "790637895857383456 679586240913926415\n40\n1 6 8 2 1 2 1 7 2 4 1 1 1 10 1 10 1 4 1 4 41 1 1 7 1 1 2 1 2 4 1 2 1 63 1 2 1 1 4 3",
"output": "NO"
},
{
"input": "525403371166594848 423455864168639615\n38\n1 4 6 1 1 32 3 1 14 1 3 1 2 4 5 4 1 2 1 5 8 1 3 1 2 1 46 1 1 1 3 1 4 1 11 1 2 4",
"output": "YES"
},
{
"input": "1 1\n1\n1",
"output": "YES"
},
{
"input": "2 1\n2\n1 2",
"output": "NO"
},
{
"input": "531983955813463755 371380136962341468\n38\n1 2 3 4 1 37 1 12 1 3 2 1 6 3 1 7 3 2 8 1 2 1 1 7 1 1 1 7 1 47 2 1 3 1 1 5 1 2",
"output": "YES"
},
{
"input": "32951280099 987\n7\n33385288 1 5 1 5 1 6",
"output": "YES"
},
{
"input": "6557470319842 86267571272\n6\n76 76 76 76 76 76",
"output": "YES"
},
{
"input": "934648630114363087 6565775686518446\n31\n142 2 1 5 2 2 1 1 3 1 2 8 1 3 12 2 1 23 5 1 10 1 863 1 1 1 2 1 14 2 3",
"output": "YES"
},
{
"input": "61305790721611591 37889062373143906\n81\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "YES"
},
{
"input": "4 1\n1\n4",
"output": "YES"
},
{
"input": "500000000000000001 5\n2\n100000000000000000 5",
"output": "YES"
},
{
"input": "1000000000000000000 3\n3\n3 4 5",
"output": "NO"
},
{
"input": "822981258385599125 28316248989464296\n39\n29 15 1 1 1 4 4 4 1 3 1 5 12 1 1 1 1 1 6 5 2 1 11 1 1 26 1 2 2 2 14 1 1 1 3 2 4 1 1",
"output": "NO"
},
{
"input": "823443107025550834 331822464812968648\n42\n2 2 13 14 4 4 1 1 1 1 2 1 1 1 1 113 1 1 8 1 1 1 1 2 2 1 15 1 5 1 1 2 1 1 1 14 4 3 1 5 1 1",
"output": "NO"
},
{
"input": "226137305050296073 27076290603746056\n30\n8 2 1 5 3 67 2 1 6 1 2 1 5 1 11 8 43 2 1 7 1 95 2 3 1 11 5 2 1 1",
"output": "NO"
},
{
"input": "524928871965838747 313083111434773473\n35\n1 1 2 10 1 4 12 3 28 1 23 1 1 1 4 1 4 3 1 3 2 3 1 4 3 1 3 2 3 11 21 1 35 1 1",
"output": "NO"
},
{
"input": "633468529243155234 4\n90\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "NO"
},
{
"input": "742143496299253703 2\n90\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "NO"
},
{
"input": "550736960584023286 3\n90\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "NO"
},
{
"input": "2 1\n10\n99999999999999999 99999999999999999 99999999999999999 99999999999999999 99999999999999999 99999999999999999 99999999999999999 99999999999999999 99999999999999999 99999999999999999",
"output": "NO"
},
{
"input": "262882295792523313 105000000000078855\n1\n105000000000078855",
"output": "NO"
},
{
"input": "990130967049151695 166430169817556175\n1\n564668656008429569",
"output": "NO"
},
{
"input": "9 4\n2\n2 3",
"output": "NO"
},
{
"input": "529824479480396864 4705882352941177\n2\n80000000000000007 80000000000000009",
"output": "NO"
},
{
"input": "985625905209512860 565433601688714177\n10\n6423 24947 27507 13031 16414 29169 901 32592 18763 1656",
"output": "NO"
},
{
"input": "913255926290448385 4400000000\n2\n4400000000 4400000000",
"output": "NO"
},
{
"input": "7 2\n2\n2 1",
"output": "NO"
},
{
"input": "10 3\n1\n3",
"output": "NO"
},
{
"input": "4 2\n1\n2",
"output": "YES"
},
{
"input": "1337 42\n1\n31",
"output": "NO"
}
] | 1,518,308,883
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 49
| 124
| 5,632,000
|
from sys import stdin
def read(): return map(int, stdin.readline().split())
def gcd(a,b): return a if b == 0 else gcd(b, a%b)
def simp(a,b):
g = gcd(a,b)
return a//g, b//g
def calc(a):
if len(a) == 1:
return a[0], 1
y, x = calc(a[1:])
return simp(a[0]*y+x, y)
num, den = read()
num, den = simp(num, den)
read()
print ( "YES" if calc(list(read())) == (num,den) else "NO" )
|
Title: Continued Fractions
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A continued fraction of height *n* is a fraction of form . You are given two rational numbers, one is represented as and the other one is represented as a finite fraction of height *n*. Check if they are equal.
Input Specification:
The first line contains two space-separated integers *p*,<=*q* (1<=≤<=*q*<=≤<=*p*<=≤<=1018) — the numerator and the denominator of the first fraction.
The second line contains integer *n* (1<=≤<=*n*<=≤<=90) — the height of the second fraction. The third line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1018) — the continued fraction.
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
Output Specification:
Print "YES" if these fractions are equal and "NO" otherwise.
Demo Input:
['9 4\n2\n2 4\n', '9 4\n3\n2 3 1\n', '9 4\n3\n1 2 4\n']
Demo Output:
['YES\n', 'YES\n', 'NO\n']
Note:
In the first sample <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/5ff92f27aebea2560d99ad61202d20bab5ee5390.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second sample <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/221368c79c05fc0ecad4e5f7a64f30b832fd99f5.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the third sample <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4fb4b411afc0fbad27a1c8fdd08ba88ec3830ef5.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
|
```python
from sys import stdin
def read(): return map(int, stdin.readline().split())
def gcd(a,b): return a if b == 0 else gcd(b, a%b)
def simp(a,b):
g = gcd(a,b)
return a//g, b//g
def calc(a):
if len(a) == 1:
return a[0], 1
y, x = calc(a[1:])
return simp(a[0]*y+x, y)
num, den = read()
num, den = simp(num, den)
read()
print ( "YES" if calc(list(read())) == (num,den) else "NO" )
```
| 3
|
|
774
|
E
|
Big Number and Remainder
|
PROGRAMMING
| 2,300
|
[
"*special",
"math",
"number theory"
] | null | null |
Stepan has a very big positive integer.
Let's consider all cyclic shifts of Stepan's integer (if we look at his integer like at a string) which are also integers (i.e. they do not have leading zeros). Let's call such shifts as good shifts. For example, for the integer 10203 the good shifts are the integer itself 10203 and integers 20310 and 31020.
Stepan wants to know the minimum remainder of the division by the given number *m* among all good shifts. Your task is to determine the minimum remainder of the division by *m*.
|
The first line contains the integer which Stepan has. The length of Stepan's integer is between 2 and 200<=000 digits, inclusive. It is guaranteed that Stepan's integer does not contain leading zeros.
The second line contains the integer *m* (2<=≤<=*m*<=≤<=108) — the number by which Stepan divides good shifts of his integer.
|
Print the minimum remainder which Stepan can get if he divides all good shifts of his integer by the given number *m*.
|
[
"521\n3\n",
"1001\n5\n",
"5678901234567890123456789\n10000\n"
] |
[
"2\n",
"0\n",
"123\n"
] |
In the first example all good shifts of the integer 521 (good shifts are equal to 521, 215 and 152) has same remainder 2 when dividing by 3.
In the second example there are only two good shifts: the Stepan's integer itself and the shift by one position to the right. The integer itself is 1001 and the remainder after dividing it by 5 equals 1. The shift by one position to the right equals to 1100 and the remainder after dividing it by 5 equals 0, which is the minimum possible remainder.
| 0
|
[
{
"input": "521\n3",
"output": "2"
},
{
"input": "1001\n5",
"output": "0"
},
{
"input": "5678901234567890123456789\n10000",
"output": "123"
},
{
"input": "552352155\n13",
"output": "2"
},
{
"input": "11533077525260\n193983",
"output": "22331"
},
{
"input": "15\n19",
"output": "13"
},
{
"input": "2342341\n2342340",
"output": "1"
},
{
"input": "12345\n12344",
"output": "1"
},
{
"input": "23457\n23456",
"output": "1"
},
{
"input": "79\n60847671",
"output": "79"
},
{
"input": "456\n79575973",
"output": "456"
},
{
"input": "1908\n86567928",
"output": "1908"
},
{
"input": "30866\n55357692",
"output": "30866"
},
{
"input": "980552\n32506042",
"output": "298055"
},
{
"input": "4865180\n11799246",
"output": "1804865"
},
{
"input": "63014535\n5261418",
"output": "948834"
},
{
"input": "260597722\n10577910",
"output": "38629"
},
{
"input": "8460711003592660299377170851036141857177105821455679225940496548902563144980707248030407967017317182\n13315371",
"output": "16290"
}
] | 1,492,195,753
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 9
| 3,000
| 5,529,600
|
n = input()
m = input()
m = int(m)
l = len(n)
minimum = m-1
for i in range(l):
if(n[i] == '0'):
continue
x = n[i:] + n[:i]
x = int(x)
if(minimum > x%m):
minimum = x%m
print(minimum)
|
Title: Big Number and Remainder
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Stepan has a very big positive integer.
Let's consider all cyclic shifts of Stepan's integer (if we look at his integer like at a string) which are also integers (i.e. they do not have leading zeros). Let's call such shifts as good shifts. For example, for the integer 10203 the good shifts are the integer itself 10203 and integers 20310 and 31020.
Stepan wants to know the minimum remainder of the division by the given number *m* among all good shifts. Your task is to determine the minimum remainder of the division by *m*.
Input Specification:
The first line contains the integer which Stepan has. The length of Stepan's integer is between 2 and 200<=000 digits, inclusive. It is guaranteed that Stepan's integer does not contain leading zeros.
The second line contains the integer *m* (2<=≤<=*m*<=≤<=108) — the number by which Stepan divides good shifts of his integer.
Output Specification:
Print the minimum remainder which Stepan can get if he divides all good shifts of his integer by the given number *m*.
Demo Input:
['521\n3\n', '1001\n5\n', '5678901234567890123456789\n10000\n']
Demo Output:
['2\n', '0\n', '123\n']
Note:
In the first example all good shifts of the integer 521 (good shifts are equal to 521, 215 and 152) has same remainder 2 when dividing by 3.
In the second example there are only two good shifts: the Stepan's integer itself and the shift by one position to the right. The integer itself is 1001 and the remainder after dividing it by 5 equals 1. The shift by one position to the right equals to 1100 and the remainder after dividing it by 5 equals 0, which is the minimum possible remainder.
|
```python
n = input()
m = input()
m = int(m)
l = len(n)
minimum = m-1
for i in range(l):
if(n[i] == '0'):
continue
x = n[i:] + n[:i]
x = int(x)
if(minimum > x%m):
minimum = x%m
print(minimum)
```
| 0
|
|
611
|
A
|
New Year and Days
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Today is Wednesday, the third day of the week. What's more interesting is that tomorrow is the last day of the year 2015.
Limak is a little polar bear. He enjoyed this year a lot. Now, he is so eager to the coming year 2016.
Limak wants to prove how responsible a bear he is. He is going to regularly save candies for the entire year 2016! He considers various saving plans. He can save one candy either on some fixed day of the week or on some fixed day of the month.
Limak chose one particular plan. He isn't sure how many candies he will save in the 2016 with his plan. Please, calculate it and tell him.
|
The only line of the input is in one of the following two formats:
- "*x* of week" where *x* (1<=≤<=*x*<=≤<=7) denotes the day of the week. The 1-st day is Monday and the 7-th one is Sunday. - "*x* of month" where *x* (1<=≤<=*x*<=≤<=31) denotes the day of the month.
|
Print one integer — the number of candies Limak will save in the year 2016.
|
[
"4 of week\n",
"30 of month\n"
] |
[
"52\n",
"11\n"
] |
Polar bears use the Gregorian calendar. It is the most common calendar and you likely use it too. You can read about it on Wikipedia if you want to – [https://en.wikipedia.org/wiki/Gregorian_calendar](https://en.wikipedia.org/wiki/Gregorian_calendar). The week starts with Monday.
In the first sample Limak wants to save one candy on each Thursday (the 4-th day of the week). There are 52 Thursdays in the 2016. Thus, he will save 52 candies in total.
In the second sample Limak wants to save one candy on the 30-th day of each month. There is the 30-th day in exactly 11 months in the 2016 — all months but February. It means that Limak will save 11 candies in total.
| 500
|
[
{
"input": "4 of week",
"output": "52"
},
{
"input": "30 of month",
"output": "11"
},
{
"input": "17 of month",
"output": "12"
},
{
"input": "31 of month",
"output": "7"
},
{
"input": "6 of week",
"output": "53"
},
{
"input": "1 of week",
"output": "52"
},
{
"input": "2 of week",
"output": "52"
},
{
"input": "3 of week",
"output": "52"
},
{
"input": "5 of week",
"output": "53"
},
{
"input": "7 of week",
"output": "52"
},
{
"input": "1 of month",
"output": "12"
},
{
"input": "2 of month",
"output": "12"
},
{
"input": "3 of month",
"output": "12"
},
{
"input": "4 of month",
"output": "12"
},
{
"input": "5 of month",
"output": "12"
},
{
"input": "6 of month",
"output": "12"
},
{
"input": "7 of month",
"output": "12"
},
{
"input": "8 of month",
"output": "12"
},
{
"input": "9 of month",
"output": "12"
},
{
"input": "10 of month",
"output": "12"
},
{
"input": "11 of month",
"output": "12"
},
{
"input": "12 of month",
"output": "12"
},
{
"input": "13 of month",
"output": "12"
},
{
"input": "14 of month",
"output": "12"
},
{
"input": "15 of month",
"output": "12"
},
{
"input": "16 of month",
"output": "12"
},
{
"input": "18 of month",
"output": "12"
},
{
"input": "19 of month",
"output": "12"
},
{
"input": "20 of month",
"output": "12"
},
{
"input": "21 of month",
"output": "12"
},
{
"input": "22 of month",
"output": "12"
},
{
"input": "23 of month",
"output": "12"
},
{
"input": "24 of month",
"output": "12"
},
{
"input": "25 of month",
"output": "12"
},
{
"input": "26 of month",
"output": "12"
},
{
"input": "27 of month",
"output": "12"
},
{
"input": "28 of month",
"output": "12"
},
{
"input": "29 of month",
"output": "12"
}
] | 1,451,488,358
| 458
|
Python 3
|
OK
|
TESTS
| 38
| 61
| 0
|
sent = input().split()
x = int(sent[0])
if sent[-1] == 'week':
if x in [5, 6]:
print(53)
else:
print(52)
else:
if x == 31:
print(7)
elif x == 30:
print(11)
else:
print(12)
|
Title: New Year and Days
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Today is Wednesday, the third day of the week. What's more interesting is that tomorrow is the last day of the year 2015.
Limak is a little polar bear. He enjoyed this year a lot. Now, he is so eager to the coming year 2016.
Limak wants to prove how responsible a bear he is. He is going to regularly save candies for the entire year 2016! He considers various saving plans. He can save one candy either on some fixed day of the week or on some fixed day of the month.
Limak chose one particular plan. He isn't sure how many candies he will save in the 2016 with his plan. Please, calculate it and tell him.
Input Specification:
The only line of the input is in one of the following two formats:
- "*x* of week" where *x* (1<=≤<=*x*<=≤<=7) denotes the day of the week. The 1-st day is Monday and the 7-th one is Sunday. - "*x* of month" where *x* (1<=≤<=*x*<=≤<=31) denotes the day of the month.
Output Specification:
Print one integer — the number of candies Limak will save in the year 2016.
Demo Input:
['4 of week\n', '30 of month\n']
Demo Output:
['52\n', '11\n']
Note:
Polar bears use the Gregorian calendar. It is the most common calendar and you likely use it too. You can read about it on Wikipedia if you want to – [https://en.wikipedia.org/wiki/Gregorian_calendar](https://en.wikipedia.org/wiki/Gregorian_calendar). The week starts with Monday.
In the first sample Limak wants to save one candy on each Thursday (the 4-th day of the week). There are 52 Thursdays in the 2016. Thus, he will save 52 candies in total.
In the second sample Limak wants to save one candy on the 30-th day of each month. There is the 30-th day in exactly 11 months in the 2016 — all months but February. It means that Limak will save 11 candies in total.
|
```python
sent = input().split()
x = int(sent[0])
if sent[-1] == 'week':
if x in [5, 6]:
print(53)
else:
print(52)
else:
if x == 31:
print(7)
elif x == 30:
print(11)
else:
print(12)
```
| 3
|
|
200
|
B
|
Drinks
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
Little Vasya loves orange juice very much. That's why any food and drink in his kitchen necessarily contains orange juice. There are *n* drinks in his fridge, the volume fraction of orange juice in the *i*-th drink equals *p**i* percent.
One day Vasya decided to make himself an orange cocktail. He took equal proportions of each of the *n* drinks and mixed them. Then he wondered, how much orange juice the cocktail has.
Find the volume fraction of orange juice in the final drink.
|
The first input line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of orange-containing drinks in Vasya's fridge. The second line contains *n* integers *p**i* (0<=≤<=*p**i*<=≤<=100) — the volume fraction of orange juice in the *i*-th drink, in percent. The numbers are separated by a space.
|
Print the volume fraction in percent of orange juice in Vasya's cocktail. The answer will be considered correct if the absolute or relative error does not exceed 10<=<=-<=4.
|
[
"3\n50 50 100\n",
"4\n0 25 50 75\n"
] |
[
"66.666666666667\n",
"37.500000000000\n"
] |
Note to the first sample: let's assume that Vasya takes *x* milliliters of each drink from the fridge. Then the volume of pure juice in the cocktail will equal <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c1fac6e64d3a8ee6a5ac138cbe51e60039b22473.png" style="max-width: 100.0%;max-height: 100.0%;"/> milliliters. The total cocktail's volume equals 3·*x* milliliters, so the volume fraction of the juice in the cocktail equals <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ceb0664e55a1f9f5fa1243ec74680a4665a4d58d.png" style="max-width: 100.0%;max-height: 100.0%;"/>, that is, 66.(6) percent.
| 500
|
[
{
"input": "3\n50 50 100",
"output": "66.666666666667"
},
{
"input": "4\n0 25 50 75",
"output": "37.500000000000"
},
{
"input": "3\n0 1 8",
"output": "3.000000000000"
},
{
"input": "5\n96 89 93 95 70",
"output": "88.600000000000"
},
{
"input": "7\n62 41 78 4 38 39 75",
"output": "48.142857142857"
},
{
"input": "13\n2 22 7 0 1 17 3 17 11 2 21 26 22",
"output": "11.615384615385"
},
{
"input": "21\n5 4 11 7 0 5 45 21 0 14 51 6 0 16 10 19 8 9 7 12 18",
"output": "12.761904761905"
},
{
"input": "26\n95 70 93 74 94 70 91 70 39 79 80 57 87 75 37 93 48 67 51 90 85 26 23 64 66 84",
"output": "69.538461538462"
},
{
"input": "29\n84 99 72 96 83 92 95 98 97 93 76 84 99 93 81 76 93 99 99 100 95 100 96 95 97 100 71 98 94",
"output": "91.551724137931"
},
{
"input": "33\n100 99 100 100 99 99 99 100 100 100 99 99 99 100 100 100 100 99 100 99 100 100 97 100 100 100 100 100 100 100 98 98 100",
"output": "99.515151515152"
},
{
"input": "34\n14 9 10 5 4 26 18 23 0 1 0 20 18 15 2 2 3 5 14 1 9 4 2 15 7 1 7 19 10 0 0 11 0 2",
"output": "8.147058823529"
},
{
"input": "38\n99 98 100 100 99 92 99 99 98 84 88 94 86 99 93 100 98 99 65 98 85 84 64 97 96 89 79 96 91 84 99 93 72 96 94 97 96 93",
"output": "91.921052631579"
},
{
"input": "52\n100 94 99 98 99 99 99 95 97 97 98 100 100 98 97 100 98 90 100 99 97 94 90 98 100 100 90 99 100 95 98 95 94 85 97 94 96 94 99 99 99 98 100 100 94 99 99 100 98 87 100 100",
"output": "97.019230769231"
},
{
"input": "58\n10 70 12 89 1 82 100 53 40 100 21 69 92 91 67 66 99 77 25 48 8 63 93 39 46 79 82 14 44 42 1 79 0 69 56 73 67 17 59 4 65 80 20 60 77 52 3 61 16 76 33 18 46 100 28 59 9 6",
"output": "50.965517241379"
},
{
"input": "85\n7 8 1 16 0 15 1 7 0 11 15 6 2 12 2 8 9 8 2 0 3 7 15 7 1 8 5 7 2 26 0 3 11 1 8 10 31 0 7 6 1 8 1 0 9 14 4 8 7 16 9 1 0 16 10 9 6 1 1 4 2 7 4 5 4 1 20 6 16 16 1 1 10 17 8 12 14 19 3 8 1 7 10 23 10",
"output": "7.505882352941"
},
{
"input": "74\n5 3 0 7 13 10 12 10 18 5 0 18 2 13 7 17 2 7 5 2 40 19 0 2 2 3 0 45 4 20 0 4 2 8 1 19 3 9 17 1 15 0 16 1 9 4 0 9 32 2 6 18 11 18 1 15 16 12 7 19 5 3 9 28 26 8 3 10 33 29 4 13 28 6",
"output": "10.418918918919"
},
{
"input": "98\n42 9 21 11 9 11 22 12 52 20 10 6 56 9 26 27 1 29 29 14 38 17 41 21 7 45 15 5 29 4 51 20 6 8 34 17 13 53 30 45 0 10 16 41 4 5 6 4 14 2 31 6 0 11 13 3 3 43 13 36 51 0 7 16 28 23 8 36 30 22 8 54 21 45 39 4 50 15 1 30 17 8 18 10 2 20 16 50 6 68 15 6 38 7 28 8 29 41",
"output": "20.928571428571"
},
{
"input": "99\n60 65 40 63 57 44 30 84 3 10 39 53 40 45 72 20 76 11 61 32 4 26 97 55 14 57 86 96 34 69 52 22 26 79 31 4 21 35 82 47 81 28 72 70 93 84 40 4 69 39 83 58 30 7 32 73 74 12 92 23 61 88 9 58 70 32 75 40 63 71 46 55 39 36 14 97 32 16 95 41 28 20 85 40 5 50 50 50 75 6 10 64 38 19 77 91 50 72 96",
"output": "49.191919191919"
},
{
"input": "99\n100 88 40 30 81 80 91 98 69 73 88 96 79 58 14 100 87 84 52 91 83 88 72 83 99 35 54 80 46 79 52 72 85 32 99 39 79 79 45 83 88 50 75 75 50 59 65 75 97 63 92 58 89 46 93 80 89 33 69 86 99 99 66 85 72 74 79 98 85 95 46 63 77 97 49 81 89 39 70 76 68 91 90 56 31 93 51 87 73 95 74 69 87 95 57 68 49 95 92",
"output": "73.484848484848"
},
{
"input": "100\n18 15 17 0 3 3 0 4 1 8 2 22 7 21 5 0 0 8 3 16 1 0 2 9 9 3 10 8 17 20 5 4 8 12 2 3 1 1 3 2 23 0 1 0 5 7 4 0 1 3 3 4 25 2 2 14 8 4 9 3 0 11 0 3 12 3 14 16 7 7 14 1 17 9 0 35 42 12 3 1 25 9 3 8 5 3 2 8 22 14 11 6 3 9 6 8 7 7 4 6",
"output": "7.640000000000"
},
{
"input": "100\n88 77 65 87 100 63 91 96 92 89 77 95 76 80 84 83 100 71 85 98 26 54 74 78 69 59 96 86 88 91 95 26 52 88 64 70 84 81 76 84 94 82 100 66 97 98 43 94 59 94 100 80 98 73 69 83 94 70 74 79 91 31 62 88 69 55 62 97 40 64 62 83 87 85 50 90 69 72 67 49 100 51 69 96 81 90 83 91 86 34 79 69 100 66 97 98 47 97 74 100",
"output": "77.660000000000"
},
{
"input": "100\n91 92 90 91 98 84 85 96 83 98 99 87 94 70 87 75 86 90 89 88 82 83 91 94 88 86 90 99 100 98 97 75 95 99 95 100 91 92 76 93 95 97 88 93 95 81 96 89 88 100 98 87 90 96 100 99 58 90 96 77 92 82 100 100 93 93 98 99 79 88 97 95 98 66 96 83 96 100 99 92 98 98 92 93 100 97 98 100 98 97 100 100 94 90 99 100 98 79 80 81",
"output": "91.480000000000"
},
{
"input": "1\n0",
"output": "0.000000000000"
},
{
"input": "1\n100",
"output": "100.000000000000"
},
{
"input": "1\n78",
"output": "78.000000000000"
},
{
"input": "2\n0 100",
"output": "50.000000000000"
},
{
"input": "2\n100 100",
"output": "100.000000000000"
},
{
"input": "5\n0 0 0 0 1",
"output": "0.200000000000"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99",
"output": "99.990000000000"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1",
"output": "0.010000000000"
},
{
"input": "5\n100 100 100 100 100",
"output": "100.000000000000"
}
] | 1,695,265,724
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 31
| 156
| 0
|
n = int(input())
list = [int(x) for x in input().split()]
print(sum(list)/n)
|
Title: Drinks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Vasya loves orange juice very much. That's why any food and drink in his kitchen necessarily contains orange juice. There are *n* drinks in his fridge, the volume fraction of orange juice in the *i*-th drink equals *p**i* percent.
One day Vasya decided to make himself an orange cocktail. He took equal proportions of each of the *n* drinks and mixed them. Then he wondered, how much orange juice the cocktail has.
Find the volume fraction of orange juice in the final drink.
Input Specification:
The first input line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of orange-containing drinks in Vasya's fridge. The second line contains *n* integers *p**i* (0<=≤<=*p**i*<=≤<=100) — the volume fraction of orange juice in the *i*-th drink, in percent. The numbers are separated by a space.
Output Specification:
Print the volume fraction in percent of orange juice in Vasya's cocktail. The answer will be considered correct if the absolute or relative error does not exceed 10<=<=-<=4.
Demo Input:
['3\n50 50 100\n', '4\n0 25 50 75\n']
Demo Output:
['66.666666666667\n', '37.500000000000\n']
Note:
Note to the first sample: let's assume that Vasya takes *x* milliliters of each drink from the fridge. Then the volume of pure juice in the cocktail will equal <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c1fac6e64d3a8ee6a5ac138cbe51e60039b22473.png" style="max-width: 100.0%;max-height: 100.0%;"/> milliliters. The total cocktail's volume equals 3·*x* milliliters, so the volume fraction of the juice in the cocktail equals <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ceb0664e55a1f9f5fa1243ec74680a4665a4d58d.png" style="max-width: 100.0%;max-height: 100.0%;"/>, that is, 66.(6) percent.
|
```python
n = int(input())
list = [int(x) for x in input().split()]
print(sum(list)/n)
```
| 3
|
|
70
|
A
|
Cookies
|
PROGRAMMING
| 1,300
|
[
"math"
] |
A. Cookies
|
1
|
256
|
Fangy collects cookies. Once he decided to take a box and put cookies into it in some way. If we take a square *k*<=×<=*k* in size, divided into blocks 1<=×<=1 in size and paint there the main diagonal together with cells, which lie above it, then the painted area will be equal to the area occupied by one cookie *k* in size. Fangy also has a box with a square base 2*n*<=×<=2*n*, divided into blocks 1<=×<=1 in size. In a box the cookies should not overlap, and they should not be turned over or rotated. See cookies of sizes 2 and 4 respectively on the figure:
To stack the cookies the little walrus uses the following algorithm. He takes out of the repository the largest cookie which can fit in some place in the box and puts it there. Everything could be perfect but alas, in the repository the little walrus has infinitely many cookies of size 2 and larger, and there are no cookies of size 1, therefore, empty cells will remain in the box. Fangy wants to know how many empty cells will be left in the end.
|
The first line contains a single integer *n* (0<=≤<=*n*<=≤<=1000).
|
Print the single number, equal to the number of empty cells in the box. The answer should be printed modulo 106<=+<=3.
|
[
"3\n"
] |
[
"9"
] |
If the box possesses the base of 2<sup class="upper-index">3</sup> × 2<sup class="upper-index">3</sup> (as in the example), then the cookies will be put there in the following manner:
| 500
|
[
{
"input": "3",
"output": "9"
},
{
"input": "1",
"output": "1"
},
{
"input": "2",
"output": "3"
},
{
"input": "4",
"output": "27"
},
{
"input": "6",
"output": "243"
},
{
"input": "11",
"output": "59049"
},
{
"input": "14",
"output": "594320"
},
{
"input": "15",
"output": "782957"
},
{
"input": "7",
"output": "729"
},
{
"input": "0",
"output": "1"
},
{
"input": "1000",
"output": "691074"
},
{
"input": "657",
"output": "874011"
},
{
"input": "561",
"output": "842553"
},
{
"input": "823",
"output": "858672"
},
{
"input": "850",
"output": "557186"
},
{
"input": "298",
"output": "999535"
},
{
"input": "262",
"output": "946384"
},
{
"input": "910",
"output": "678945"
},
{
"input": "617",
"output": "247876"
},
{
"input": "857",
"output": "562128"
},
{
"input": "69",
"output": "327984"
},
{
"input": "589",
"output": "889192"
},
{
"input": "928",
"output": "794863"
},
{
"input": "696",
"output": "695035"
},
{
"input": "226",
"output": "376094"
}
] | 1,607,431,298
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 3
| 93
| 307,200
|
def solve():
n = int(input())
mod = 10 **6 + 3
if (n == 0):
print(1)
return
if (n == 1):
print(1)
return
dp = [0] * (n + 1)
dp[0] = 0
dp[1] = 1
dp[2] = 3
for i in range(3, n + 1):
dp[i] = (dp[i - 1] + dp[i - 2] * 2 + 4) % mod
print(dp[n])
solve()
|
Title: Cookies
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Fangy collects cookies. Once he decided to take a box and put cookies into it in some way. If we take a square *k*<=×<=*k* in size, divided into blocks 1<=×<=1 in size and paint there the main diagonal together with cells, which lie above it, then the painted area will be equal to the area occupied by one cookie *k* in size. Fangy also has a box with a square base 2*n*<=×<=2*n*, divided into blocks 1<=×<=1 in size. In a box the cookies should not overlap, and they should not be turned over or rotated. See cookies of sizes 2 and 4 respectively on the figure:
To stack the cookies the little walrus uses the following algorithm. He takes out of the repository the largest cookie which can fit in some place in the box and puts it there. Everything could be perfect but alas, in the repository the little walrus has infinitely many cookies of size 2 and larger, and there are no cookies of size 1, therefore, empty cells will remain in the box. Fangy wants to know how many empty cells will be left in the end.
Input Specification:
The first line contains a single integer *n* (0<=≤<=*n*<=≤<=1000).
Output Specification:
Print the single number, equal to the number of empty cells in the box. The answer should be printed modulo 106<=+<=3.
Demo Input:
['3\n']
Demo Output:
['9']
Note:
If the box possesses the base of 2<sup class="upper-index">3</sup> × 2<sup class="upper-index">3</sup> (as in the example), then the cookies will be put there in the following manner:
|
```python
def solve():
n = int(input())
mod = 10 **6 + 3
if (n == 0):
print(1)
return
if (n == 1):
print(1)
return
dp = [0] * (n + 1)
dp[0] = 0
dp[1] = 1
dp[2] = 3
for i in range(3, n + 1):
dp[i] = (dp[i - 1] + dp[i - 2] * 2 + 4) % mod
print(dp[n])
solve()
```
| 0
|
581
|
A
|
Vasya the Hipster
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
One day Vasya the Hipster decided to count how many socks he had. It turned out that he had *a* red socks and *b* blue socks.
According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot.
Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them.
Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Can you help him?
|
The single line of the input contains two positive integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100) — the number of red and blue socks that Vasya's got.
|
Print two space-separated integers — the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day.
|
[
"3 1\n",
"2 3\n",
"7 3\n"
] |
[
"1 1\n",
"2 0\n",
"3 2\n"
] |
In the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day.
| 500
|
[
{
"input": "3 1",
"output": "1 1"
},
{
"input": "2 3",
"output": "2 0"
},
{
"input": "7 3",
"output": "3 2"
},
{
"input": "100 100",
"output": "100 0"
},
{
"input": "4 10",
"output": "4 3"
},
{
"input": "6 10",
"output": "6 2"
},
{
"input": "6 11",
"output": "6 2"
},
{
"input": "10 40",
"output": "10 15"
},
{
"input": "11 56",
"output": "11 22"
},
{
"input": "34 30",
"output": "30 2"
},
{
"input": "33 33",
"output": "33 0"
},
{
"input": "100 45",
"output": "45 27"
},
{
"input": "100 23",
"output": "23 38"
},
{
"input": "45 12",
"output": "12 16"
},
{
"input": "1 1",
"output": "1 0"
},
{
"input": "1 100",
"output": "1 49"
},
{
"input": "100 1",
"output": "1 49"
},
{
"input": "68 59",
"output": "59 4"
},
{
"input": "45 99",
"output": "45 27"
},
{
"input": "99 100",
"output": "99 0"
},
{
"input": "100 98",
"output": "98 1"
},
{
"input": "59 12",
"output": "12 23"
},
{
"input": "86 4",
"output": "4 41"
},
{
"input": "68 21",
"output": "21 23"
},
{
"input": "100 11",
"output": "11 44"
},
{
"input": "100 10",
"output": "10 45"
},
{
"input": "15 45",
"output": "15 15"
},
{
"input": "11 32",
"output": "11 10"
},
{
"input": "34 96",
"output": "34 31"
},
{
"input": "89 89",
"output": "89 0"
}
] | 1,673,363,619
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 46
| 0
|
socks = list(map(int,input().split(" ")))
red = socks[0]
blue = socks[1]
print(str(min(red,blue)) + " " + str(int((max(red,blue) - min(red,blue))/2)))
|
Title: Vasya the Hipster
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Vasya the Hipster decided to count how many socks he had. It turned out that he had *a* red socks and *b* blue socks.
According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot.
Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them.
Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Can you help him?
Input Specification:
The single line of the input contains two positive integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100) — the number of red and blue socks that Vasya's got.
Output Specification:
Print two space-separated integers — the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day.
Demo Input:
['3 1\n', '2 3\n', '7 3\n']
Demo Output:
['1 1\n', '2 0\n', '3 2\n']
Note:
In the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day.
|
```python
socks = list(map(int,input().split(" ")))
red = socks[0]
blue = socks[1]
print(str(min(red,blue)) + " " + str(int((max(red,blue) - min(red,blue))/2)))
```
| 3
|
|
485
|
A
|
Factory
|
PROGRAMMING
| 1,400
|
[
"implementation",
"math",
"matrices"
] | null | null |
One industrial factory is reforming working plan. The director suggested to set a mythical detail production norm. If at the beginning of the day there were *x* details in the factory storage, then by the end of the day the factory has to produce (remainder after dividing *x* by *m*) more details. Unfortunately, no customer has ever bought any mythical detail, so all the details produced stay on the factory.
The board of directors are worried that the production by the given plan may eventually stop (that means that there will be а moment when the current number of details on the factory is divisible by *m*).
Given the number of details *a* on the first day and number *m* check if the production stops at some moment.
|
The first line contains two integers *a* and *m* (1<=≤<=*a*,<=*m*<=≤<=105).
|
Print "Yes" (without quotes) if the production will eventually stop, otherwise print "No".
|
[
"1 5\n",
"3 6\n"
] |
[
"No\n",
"Yes\n"
] |
none
| 1,000
|
[
{
"input": "1 5",
"output": "No"
},
{
"input": "3 6",
"output": "Yes"
},
{
"input": "1 8",
"output": "Yes"
},
{
"input": "2 3",
"output": "No"
},
{
"input": "3 24",
"output": "Yes"
},
{
"input": "1 1",
"output": "Yes"
},
{
"input": "100000 100000",
"output": "Yes"
},
{
"input": "1 99989",
"output": "No"
},
{
"input": "512 2",
"output": "Yes"
},
{
"input": "100 24",
"output": "No"
},
{
"input": "1 100000",
"output": "No"
},
{
"input": "100000 1",
"output": "Yes"
},
{
"input": "3 99929",
"output": "No"
},
{
"input": "99961 99971",
"output": "No"
},
{
"input": "1 65536",
"output": "Yes"
},
{
"input": "4 65536",
"output": "Yes"
},
{
"input": "3 65536",
"output": "Yes"
},
{
"input": "32768 65536",
"output": "Yes"
},
{
"input": "65535 65536",
"output": "Yes"
},
{
"input": "1 65535",
"output": "No"
},
{
"input": "98812 100000",
"output": "No"
},
{
"input": "10 5",
"output": "Yes"
},
{
"input": "6 8",
"output": "Yes"
}
] | 1,614,769,245
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 31
| 0
|
def factory(a,m):
s = set()
while a%m != 0:
r = a%m
if r in s:
return False
else:
a += r
s.add(r)
return True
a,m = map(int, input().split())
if factory(a,m):
print("YES")
else:
print("NO")
|
Title: Factory
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One industrial factory is reforming working plan. The director suggested to set a mythical detail production norm. If at the beginning of the day there were *x* details in the factory storage, then by the end of the day the factory has to produce (remainder after dividing *x* by *m*) more details. Unfortunately, no customer has ever bought any mythical detail, so all the details produced stay on the factory.
The board of directors are worried that the production by the given plan may eventually stop (that means that there will be а moment when the current number of details on the factory is divisible by *m*).
Given the number of details *a* on the first day and number *m* check if the production stops at some moment.
Input Specification:
The first line contains two integers *a* and *m* (1<=≤<=*a*,<=*m*<=≤<=105).
Output Specification:
Print "Yes" (without quotes) if the production will eventually stop, otherwise print "No".
Demo Input:
['1 5\n', '3 6\n']
Demo Output:
['No\n', 'Yes\n']
Note:
none
|
```python
def factory(a,m):
s = set()
while a%m != 0:
r = a%m
if r in s:
return False
else:
a += r
s.add(r)
return True
a,m = map(int, input().split())
if factory(a,m):
print("YES")
else:
print("NO")
```
| 0
|
|
61
|
A
|
Ultra-Fast Mathematician
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Ultra-Fast Mathematician
|
2
|
256
|
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
|
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
|
Write one line — the corresponding answer. Do not omit the leading 0s.
|
[
"1010100\n0100101\n",
"000\n111\n",
"1110\n1010\n",
"01110\n01100\n"
] |
[
"1110001\n",
"111\n",
"0100\n",
"00010\n"
] |
none
| 500
|
[
{
"input": "1010100\n0100101",
"output": "1110001"
},
{
"input": "000\n111",
"output": "111"
},
{
"input": "1110\n1010",
"output": "0100"
},
{
"input": "01110\n01100",
"output": "00010"
},
{
"input": "011101\n000001",
"output": "011100"
},
{
"input": "10\n01",
"output": "11"
},
{
"input": "00111111\n11011101",
"output": "11100010"
},
{
"input": "011001100\n101001010",
"output": "110000110"
},
{
"input": "1100100001\n0110101100",
"output": "1010001101"
},
{
"input": "00011101010\n10010100101",
"output": "10001001111"
},
{
"input": "100000101101\n111010100011",
"output": "011010001110"
},
{
"input": "1000001111010\n1101100110001",
"output": "0101101001011"
},
{
"input": "01011111010111\n10001110111010",
"output": "11010001101101"
},
{
"input": "110010000111100\n001100101011010",
"output": "111110101100110"
},
{
"input": "0010010111110000\n0000000011010110",
"output": "0010010100100110"
},
{
"input": "00111110111110000\n01111100001100000",
"output": "01000010110010000"
},
{
"input": "101010101111010001\n001001111101111101",
"output": "100011010010101100"
},
{
"input": "0110010101111100000\n0011000101000000110",
"output": "0101010000111100110"
},
{
"input": "11110100011101010111\n00001000011011000000",
"output": "11111100000110010111"
},
{
"input": "101010101111101101001\n111010010010000011111",
"output": "010000111101101110110"
},
{
"input": "0000111111100011000010\n1110110110110000001010",
"output": "1110001001010011001000"
},
{
"input": "10010010101000110111000\n00101110100110111000111",
"output": "10111100001110001111111"
},
{
"input": "010010010010111100000111\n100100111111100011001110",
"output": "110110101101011111001001"
},
{
"input": "0101110100100111011010010\n0101100011010111001010001",
"output": "0000010111110000010000011"
},
{
"input": "10010010100011110111111011\n10000110101100000001000100",
"output": "00010100001111110110111111"
},
{
"input": "000001111000000100001000000\n011100111101111001110110001",
"output": "011101000101111101111110001"
},
{
"input": "0011110010001001011001011100\n0000101101000011101011001010",
"output": "0011011111001010110010010110"
},
{
"input": "11111000000000010011001101111\n11101110011001010100010000000",
"output": "00010110011001000111011101111"
},
{
"input": "011001110000110100001100101100\n001010000011110000001000101001",
"output": "010011110011000100000100000101"
},
{
"input": "1011111010001100011010110101111\n1011001110010000000101100010101",
"output": "0000110100011100011111010111010"
},
{
"input": "10111000100001000001010110000001\n10111000001100101011011001011000",
"output": "00000000101101101010001111011001"
},
{
"input": "000001010000100001000000011011100\n111111111001010100100001100000111",
"output": "111110101001110101100001111011011"
},
{
"input": "1101000000000010011011101100000110\n1110000001100010011010000011011110",
"output": "0011000001100000000001101111011000"
},
{
"input": "01011011000010100001100100011110001\n01011010111000001010010100001110000",
"output": "00000001111010101011110000010000001"
},
{
"input": "000011111000011001000110111100000100\n011011000110000111101011100111000111",
"output": "011000111110011110101101011011000011"
},
{
"input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000",
"output": "1011001001111001001011101010101000010"
},
{
"input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011",
"output": "10001110000010101110000111000011111110"
},
{
"input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100",
"output": "000100001011110000011101110111010001110"
},
{
"input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001",
"output": "1101110101010110000011000000101011110011"
},
{
"input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100",
"output": "11001011110010010000010111001100001001110"
},
{
"input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110",
"output": "001100101000011111111101111011101010111001"
},
{
"input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001",
"output": "0111010010100110110101100010000100010100000"
},
{
"input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100",
"output": "11111110000000100101000100110111001100011001"
},
{
"input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011",
"output": "101011011100100010100011011001101010100100010"
},
{
"input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001",
"output": "1101001100111011010111110110101111001011110111"
},
{
"input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001",
"output": "10010101000101000000011010011110011110011110001"
},
{
"input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100",
"output": "011011011100000000010101110010000000101000111101"
},
{
"input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100",
"output": "0101010111101001011011110110011101010101010100011"
},
{
"input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011",
"output": "11001011010010111000010110011101100100001110111111"
},
{
"input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011",
"output": "111011101010011100001111101001101011110010010110001"
},
{
"input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001",
"output": "0100111110110011111110010010010000110111100101101101"
},
{
"input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100",
"output": "01011001110111010111001100010011010100010000111011000"
},
{
"input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111",
"output": "100011101001001000011011011001111000100000010100100100"
},
{
"input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110",
"output": "1100110010000101101010111111101001001001110101110010110"
},
{
"input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110",
"output": "01000111100111001011110010100011111111110010101100001101"
},
{
"input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010",
"output": "110001010001000011000101110101000100001011111001011001001"
},
{
"input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111",
"output": "1110100010111000101001001011101110011111100111000011011011"
},
{
"input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110",
"output": "01110110101110100100110011010000001000101100101111000111011"
},
{
"input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011",
"output": "111100101000000011101011011001110010101111000110010010000000"
},
{
"input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111",
"output": "0100100010111110010011101010000011111110001110010110010111001"
},
{
"input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111",
"output": "00110100000011001101101100100010110010001100000001100110011101"
},
{
"input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011",
"output": "000000011000111011110011101000010000010100101000000011010110010"
},
{
"input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010",
"output": "0010100110110100111100100100101101010100100111011010001001010101"
},
{
"input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111",
"output": "11010110111100101111101001100001110100010110010110110111100110100"
},
{
"input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111",
"output": "111111010011011100101110100110111111111001111110011010111111110000"
},
{
"input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110",
"output": "1010101010100010001001001001100000111000010010010100010011000100000"
},
{
"input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000",
"output": "00011111011111001000011100010011100011010100101011011000001001111110"
},
{
"input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111",
"output": "001111000011001110100111010101111111011100110011001010010010000111011"
},
{
"input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101",
"output": "0110001100110100010000110111000010011010011000011001010011010100010100"
},
{
"input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010",
"output": "00010000000110110101000011001000000100100110111010011111101010001010000"
},
{
"input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001",
"output": "000100100000000110011100100001010110101001100101110010010011111001110111"
},
{
"input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000",
"output": "1000111100010011010110011101000000101010101100011111100001101111001010010"
},
{
"input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011",
"output": "01000010011110111001011011110000001011000111101101101010010110001010100100"
},
{
"input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101",
"output": "101101110110110010011100001011111100100001110000101100110000100011011100110"
},
{
"input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001",
"output": "1110111111110010111000001100101010101011010100101010100101100011001001111111"
},
{
"input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111",
"output": "10111011000111000101110100101000100111011011100011110110000101010001111010111"
},
{
"input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110",
"output": "110100100110000101010010011010011001100110000111010000010100001011110111111101"
},
{
"input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111",
"output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111"
},
{
"input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001",
"output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001"
},
{
"input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110",
"output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011"
},
{
"input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111",
"output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101"
},
{
"input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010",
"output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101"
},
{
"input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000",
"output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001"
},
{
"input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011",
"output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110"
},
{
"input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011",
"output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011"
},
{
"input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011",
"output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011"
},
{
"input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010",
"output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011"
},
{
"input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001",
"output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110"
},
{
"input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111",
"output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010"
},
{
"input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011",
"output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011"
},
{
"input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100",
"output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000"
},
{
"input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001",
"output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101"
},
{
"input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110",
"output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101"
},
{
"input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011",
"output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110"
},
{
"input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111",
"output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110"
},
{
"input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000",
"output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001"
},
{
"input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010",
"output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101"
},
{
"input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101",
"output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011"
},
{
"input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011",
"output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010",
"output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011"
},
{
"input": "0\n0",
"output": "0"
},
{
"input": "0\n1",
"output": "1"
}
] | 1,674,577,248
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 102
| 46
| 0
|
n1 = input()
n2 = input()
output = ''
for i in range(len(n1)) :
output += str(int(n1[i]) ^ int(n2[i]) )
print(output)
|
Title: Ultra-Fast Mathematician
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
Input Specification:
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Output Specification:
Write one line — the corresponding answer. Do not omit the leading 0s.
Demo Input:
['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n']
Demo Output:
['1110001\n', '111\n', '0100\n', '00010\n']
Note:
none
|
```python
n1 = input()
n2 = input()
output = ''
for i in range(len(n1)) :
output += str(int(n1[i]) ^ int(n2[i]) )
print(output)
```
| 3.9885
|
664
|
A
|
Complicated GCD
|
PROGRAMMING
| 800
|
[
"math",
"number theory"
] | null | null |
Greatest common divisor *GCD*(*a*,<=*b*) of two positive integers *a* and *b* is equal to the biggest integer *d* such that both integers *a* and *b* are divisible by *d*. There are many efficient algorithms to find greatest common divisor *GCD*(*a*,<=*b*), for example, Euclid algorithm.
Formally, find the biggest integer *d*, such that all integers *a*,<=*a*<=+<=1,<=*a*<=+<=2,<=...,<=*b* are divisible by *d*. To make the problem even more complicated we allow *a* and *b* to be up to googol, 10100 — such number do not fit even in 64-bit integer type!
|
The only line of the input contains two integers *a* and *b* (1<=≤<=*a*<=≤<=*b*<=≤<=10100).
|
Output one integer — greatest common divisor of all integers from *a* to *b* inclusive.
|
[
"1 2\n",
"61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576\n"
] |
[
"1\n",
"61803398874989484820458683436563811772030917980576\n"
] |
none
| 500
|
[
{
"input": "1 2",
"output": "1"
},
{
"input": "61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576",
"output": "61803398874989484820458683436563811772030917980576"
},
{
"input": "1 100",
"output": "1"
},
{
"input": "100 100000",
"output": "1"
},
{
"input": "12345 67890123456789123457",
"output": "1"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "8392739158839273915883927391588392739158839273915883927391588392739158839273915883927391588392739158 8392739158839273915883927391588392739158839273915883927391588392739158839273915883927391588392739158",
"output": "8392739158839273915883927391588392739158839273915883927391588392739158839273915883927391588392739158"
},
{
"input": "1 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "1"
},
{
"input": "8328748239473982794239847237438782379810988324751 9328748239473982794239847237438782379810988324751",
"output": "1"
},
{
"input": "1029398958432734901284327523909481928483573793 1029398958432734901284327523909481928483573794",
"output": "1"
},
{
"input": "10000 1000000000",
"output": "1"
},
{
"input": "10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"
},
{
"input": "11210171722243 65715435710585778347",
"output": "1"
},
{
"input": "2921881079263974825226940825843 767693191032295360887755303860323261471",
"output": "1"
},
{
"input": "8025352957265704896940312528736939363590612908210603 96027920417708260814607687034511406492969694925539085",
"output": "1"
},
{
"input": "23510978780782786207241069904470895053213996267165977112058175452757132930 210352653280909370107314249722987050753257161175393375412301228883856435481424",
"output": "1"
},
{
"input": "8150070767079366215626260746398623663859344142817267779361251788637547414925170226504788118262 49924902262298336032630839998470954964895251605110946547855439236151401194070172107435992986913614",
"output": "1"
},
{
"input": "15943150466658398903 15943150466658398903",
"output": "15943150466658398903"
},
{
"input": "410470228200245407491525399055972 410470228200245407491525399055972",
"output": "410470228200245407491525399055972"
},
{
"input": "51894705655711504622197349350106792045098781545973899451307 51894705655711504622197349350106792045098781545973899451307",
"output": "51894705655711504622197349350106792045098781545973899451307"
},
{
"input": "60353594589897438036015726222485085035927634677598681595162804007836722215668410 60353594589897438036015726222485085035927634677598681595162804007836722215668410",
"output": "60353594589897438036015726222485085035927634677598681595162804007836722215668410"
},
{
"input": "761733780145118977868180796896376577405349682060892737466239031663476251177476275459280340045369535 761733780145118977868180796896376577405349682060892737466239031663476251177476275459280340045369535",
"output": "761733780145118977868180796896376577405349682060892737466239031663476251177476275459280340045369535"
},
{
"input": "1 2000000000",
"output": "1"
},
{
"input": "13 1928834874",
"output": "1"
},
{
"input": "87 2938984237482934238",
"output": "1"
},
{
"input": "213 413",
"output": "1"
},
{
"input": "3 4",
"output": "1"
}
] | 1,644,178,873
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 15
| 0
|
import math
key1 = int(input())
key2 = int(input())
print (math.gcd(key1, key2))
|
Title: Complicated GCD
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Greatest common divisor *GCD*(*a*,<=*b*) of two positive integers *a* and *b* is equal to the biggest integer *d* such that both integers *a* and *b* are divisible by *d*. There are many efficient algorithms to find greatest common divisor *GCD*(*a*,<=*b*), for example, Euclid algorithm.
Formally, find the biggest integer *d*, such that all integers *a*,<=*a*<=+<=1,<=*a*<=+<=2,<=...,<=*b* are divisible by *d*. To make the problem even more complicated we allow *a* and *b* to be up to googol, 10100 — such number do not fit even in 64-bit integer type!
Input Specification:
The only line of the input contains two integers *a* and *b* (1<=≤<=*a*<=≤<=*b*<=≤<=10100).
Output Specification:
Output one integer — greatest common divisor of all integers from *a* to *b* inclusive.
Demo Input:
['1 2\n', '61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576\n']
Demo Output:
['1\n', '61803398874989484820458683436563811772030917980576\n']
Note:
none
|
```python
import math
key1 = int(input())
key2 = int(input())
print (math.gcd(key1, key2))
```
| -1
|
|
813
|
B
|
The Golden Age
|
PROGRAMMING
| 1,800
|
[
"brute force",
"math"
] | null | null |
Unlucky year in Berland is such a year that its number *n* can be represented as *n*<==<=*x**a*<=+<=*y**b*, where *a* and *b* are non-negative integer numbers.
For example, if *x*<==<=2 and *y*<==<=3 then the years 4 and 17 are unlucky (4<==<=20<=+<=31, 17<==<=23<=+<=32<==<=24<=+<=30) and year 18 isn't unlucky as there is no such representation for it.
Such interval of years that there are no unlucky years in it is called The Golden Age.
You should write a program which will find maximum length of The Golden Age which starts no earlier than the year *l* and ends no later than the year *r*. If all years in the interval [*l*,<=*r*] are unlucky then the answer is 0.
|
The first line contains four integer numbers *x*, *y*, *l* and *r* (2<=≤<=*x*,<=*y*<=≤<=1018, 1<=≤<=*l*<=≤<=*r*<=≤<=1018).
|
Print the maximum length of The Golden Age within the interval [*l*,<=*r*].
If all years in the interval [*l*,<=*r*] are unlucky then print 0.
|
[
"2 3 1 10\n",
"3 5 10 22\n",
"2 3 3 5\n"
] |
[
"1\n",
"8\n",
"0\n"
] |
In the first example the unlucky years are 2, 3, 4, 5, 7, 9 and 10. So maximum length of The Golden Age is achived in the intervals [1, 1], [6, 6] and [8, 8].
In the second example the longest Golden Age is the interval [15, 22].
| 0
|
[
{
"input": "2 3 1 10",
"output": "1"
},
{
"input": "3 5 10 22",
"output": "8"
},
{
"input": "2 3 3 5",
"output": "0"
},
{
"input": "2 2 1 10",
"output": "1"
},
{
"input": "2 2 1 1000000",
"output": "213568"
},
{
"input": "2 2 1 1000000000000000000",
"output": "144115188075855871"
},
{
"input": "2 3 1 1000000",
"output": "206415"
},
{
"input": "2 3 1 1000000000000000000",
"output": "261485717957290893"
},
{
"input": "12345 54321 1 1000000",
"output": "933334"
},
{
"input": "54321 12345 1 1000000000000000000",
"output": "976614248345331214"
},
{
"input": "2 3 100000000 1000000000000",
"output": "188286357653"
},
{
"input": "2 14 732028847861235712 732028847861235712",
"output": "0"
},
{
"input": "14 2 732028847861235713 732028847861235713",
"output": "1"
},
{
"input": "3 2 6 7",
"output": "1"
},
{
"input": "16 5 821690667 821691481",
"output": "815"
},
{
"input": "1000000000000000000 2 1 1000000000000000000",
"output": "423539247696576511"
},
{
"input": "2 1000000000000000000 1000000000000000 1000000000000000000",
"output": "423539247696576511"
},
{
"input": "2 2 1000000000000000000 1000000000000000000",
"output": "1"
},
{
"input": "3 3 1 1",
"output": "1"
},
{
"input": "2 3 626492297402423196 726555387600422608",
"output": "100063090197999413"
},
{
"input": "4 4 1 1",
"output": "1"
},
{
"input": "304279187938024110 126610724244348052 78460471576735729 451077737144268785",
"output": "177668463693676057"
},
{
"input": "510000000000 510000000000 1 1000000000000000000",
"output": "999998980000000000"
},
{
"input": "2 10000000000000000 1 1000000000000000000",
"output": "413539247696576512"
},
{
"input": "84826654960259 220116531311479700 375314289098080160 890689132792406667",
"output": "515374843694326508"
},
{
"input": "1001 9999 1 1000000000000000000",
"output": "988998989390034998"
},
{
"input": "106561009498593483 3066011339919949 752858505287719337 958026822891358781",
"output": "205168317603639445"
},
{
"input": "650233444262690661 556292951587380938 715689923804218376 898772439356652923",
"output": "183082515552434548"
},
{
"input": "4294967297 4294967297 1 1000000000000000000",
"output": "999999991410065406"
},
{
"input": "1000000000000000000 1000000000000000000 1000000000000000000 1000000000000000000",
"output": "1"
},
{
"input": "2 2 1 1",
"output": "1"
},
{
"input": "73429332516742239 589598864615747534 555287238606698050 981268715519611449",
"output": "318240518387121676"
},
{
"input": "282060925969693883 446418005951342865 709861829378794811 826972744183396568",
"output": "98493812262359820"
},
{
"input": "97958277744315833 443452631396066615 33878596673318768 306383421710156519",
"output": "208425143965840685"
},
{
"input": "40975442958818854 7397733549114401 299774870238987084 658001214206968260",
"output": "358226343967981177"
},
{
"input": "699 700 1 1000",
"output": "697"
},
{
"input": "483076744475822225 425097332543006422 404961220953110704 826152774360856248",
"output": "343076029885034022"
},
{
"input": "4294967297 4294967297 1 999999999999999999",
"output": "999999991410065405"
},
{
"input": "702012794 124925148 2623100012 1000000000000000000",
"output": "491571744457491660"
},
{
"input": "433333986179614514 1000000000000000000 433333986179614515 726628630292055493",
"output": "293294644112440978"
},
{
"input": "999999999999999999 364973116927770629 4 4",
"output": "1"
},
{
"input": "4 2 40 812",
"output": "191"
},
{
"input": "2 3 1 1",
"output": "1"
},
{
"input": "1556368728 1110129598 120230736 1258235681",
"output": "989898863"
},
{
"input": "7 9 164249007852879073 459223650245359577",
"output": "229336748650748455"
},
{
"input": "324693328712373699 541961409169732375 513851377473048715 873677521504257312",
"output": "324693328712373697"
},
{
"input": "370083000139673112 230227213530985315 476750241623737312 746365058930029530",
"output": "146054845259371103"
},
{
"input": "4 3 584 899",
"output": "146"
},
{
"input": "4 3 286 581",
"output": "161"
},
{
"input": "304045744870965151 464630021384225732 142628934177558000 844155070300317027",
"output": "304045744870965149"
},
{
"input": "195627622825327857 666148746663834172 1 1000000000000000000",
"output": "470521123838506314"
},
{
"input": "459168731438725410 459955118458373596 410157890472128901 669197645706452507",
"output": "209242527248078910"
},
{
"input": "999999999999999999 999999999999999999 1 1000000000000000000",
"output": "999999999999999997"
},
{
"input": "752299248283963354 680566564599126819 73681814274367577 960486443362068685",
"output": "606884750324759243"
},
{
"input": "20373217421623606 233158243228114207 97091516440255589 395722640217125926",
"output": "142191179567388113"
},
{
"input": "203004070900 20036005000 1 1000000000000000000",
"output": "999999776959924100"
},
{
"input": "565269817339236857 318270460838647700 914534538271870694 956123707310168659",
"output": "41589169038297966"
},
{
"input": "2 5 330 669",
"output": "131"
},
{
"input": "9 9 91 547",
"output": "385"
},
{
"input": "9 4 866389615074294253 992899492208527253",
"output": "126509877134233001"
},
{
"input": "3037000500 3037000500 1 1000000000000000000",
"output": "999999993925999000"
},
{
"input": "4294967297 4294967297 12 1000000000000000000",
"output": "999999991410065406"
},
{
"input": "5 3 78510497842978003 917156799600023483",
"output": "238418579101562499"
},
{
"input": "749206377024033575 287723056504284448 387669391392789697 931234393488075794",
"output": "361536985631243879"
},
{
"input": "999999999999999999 454135 1000000000000000000 1000000000000000000",
"output": "0"
},
{
"input": "759826429841877401 105086867783910112 667080043736858072 797465019478234768",
"output": "92746386105019330"
},
{
"input": "1000000000000000000 1000000000000000000 5 7",
"output": "3"
},
{
"input": "440968000218771383 43378854522801881 169393324037146024 995429539593716237",
"output": "511082684852142973"
},
{
"input": "15049917793417622 113425474361704411 87565655389309185 803955352361026671",
"output": "675479960205904638"
},
{
"input": "4 6 264626841724745187 925995096479842591",
"output": "369878143059623936"
},
{
"input": "4294967297 4294967297 13 1000000000000000000",
"output": "999999991410065406"
},
{
"input": "315729630349763416 22614591055604717 66895291338255006 947444311481017774",
"output": "609100090075649641"
},
{
"input": "3 10 173 739",
"output": "386"
},
{
"input": "161309010783040325 128259041753158864 5843045875031294 854024306926137845",
"output": "564456254389938656"
},
{
"input": "239838434825939759 805278168279318096 202337849919104640 672893754916863788",
"output": "433055320090924028"
},
{
"input": "9 9 435779695685310822 697902619874412541",
"output": "262122924189101720"
},
{
"input": "967302429573451368 723751675006196376 143219686319239751 266477897142546404",
"output": "123258210823306654"
},
{
"input": "10 8 139979660652061677 941135332855173888",
"output": "697020144779318016"
},
{
"input": "4294967297 1000000000000000000 4294967296 17179869184",
"output": "12884901886"
},
{
"input": "100914030314340517 512922595840756536 812829791042966971 966156272123068006",
"output": "153326481080101036"
},
{
"input": "288230376151711744 288230376151711744 1 1000000000000000000",
"output": "423539247696576512"
},
{
"input": "6 9 681 750",
"output": "49"
},
{
"input": "880356874212472951 178538501711453307 162918237570625233 224969951233811739",
"output": "46431449522358431"
},
{
"input": "2 7 405373082004080437 771991379629433514",
"output": "153172782079203571"
},
{
"input": "10 11 10 11",
"output": "1"
}
] | 1,629,121,040
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 18
| 109
| 22,323,200
|
overlap = lambda a, b: min(a[1], b[1]) - max(a[0], b[0]) + 1
x, y, l, r = map(int, input().split())
curx, dis, ans = 1, {1, 10 ** 18 + 5}, 0
while curx <= r:
cury = 1
while cury + curx <= r:
dis.add(curx + cury)
cury *= y
curx *= x
dis = sorted(dis)
for i in range(1, len(dis)):
ans = max(ans, overlap((l, r), (dis[i - 1] + 1, dis[i] - 1)))
print(ans)
|
Title: The Golden Age
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Unlucky year in Berland is such a year that its number *n* can be represented as *n*<==<=*x**a*<=+<=*y**b*, where *a* and *b* are non-negative integer numbers.
For example, if *x*<==<=2 and *y*<==<=3 then the years 4 and 17 are unlucky (4<==<=20<=+<=31, 17<==<=23<=+<=32<==<=24<=+<=30) and year 18 isn't unlucky as there is no such representation for it.
Such interval of years that there are no unlucky years in it is called The Golden Age.
You should write a program which will find maximum length of The Golden Age which starts no earlier than the year *l* and ends no later than the year *r*. If all years in the interval [*l*,<=*r*] are unlucky then the answer is 0.
Input Specification:
The first line contains four integer numbers *x*, *y*, *l* and *r* (2<=≤<=*x*,<=*y*<=≤<=1018, 1<=≤<=*l*<=≤<=*r*<=≤<=1018).
Output Specification:
Print the maximum length of The Golden Age within the interval [*l*,<=*r*].
If all years in the interval [*l*,<=*r*] are unlucky then print 0.
Demo Input:
['2 3 1 10\n', '3 5 10 22\n', '2 3 3 5\n']
Demo Output:
['1\n', '8\n', '0\n']
Note:
In the first example the unlucky years are 2, 3, 4, 5, 7, 9 and 10. So maximum length of The Golden Age is achived in the intervals [1, 1], [6, 6] and [8, 8].
In the second example the longest Golden Age is the interval [15, 22].
|
```python
overlap = lambda a, b: min(a[1], b[1]) - max(a[0], b[0]) + 1
x, y, l, r = map(int, input().split())
curx, dis, ans = 1, {1, 10 ** 18 + 5}, 0
while curx <= r:
cury = 1
while cury + curx <= r:
dis.add(curx + cury)
cury *= y
curx *= x
dis = sorted(dis)
for i in range(1, len(dis)):
ans = max(ans, overlap((l, r), (dis[i - 1] + 1, dis[i] - 1)))
print(ans)
```
| 0
|
|
2
|
A
|
Winner
|
PROGRAMMING
| 1,500
|
[
"hashing",
"implementation"
] |
A. Winner
|
1
|
64
|
The winner of the card game popular in Berland "Berlogging" is determined according to the following rules. If at the end of the game there is only one player with the maximum number of points, he is the winner. The situation becomes more difficult if the number of such players is more than one. During each round a player gains or loses a particular number of points. In the course of the game the number of points is registered in the line "name score", where name is a player's name, and score is the number of points gained in this round, which is an integer number. If score is negative, this means that the player has lost in the round. So, if two or more players have the maximum number of points (say, it equals to *m*) at the end of the game, than wins the one of them who scored at least *m* points first. Initially each player has 0 points. It's guaranteed that at the end of the game at least one player has a positive number of points.
|
The first line contains an integer number *n* (1<=<=≤<=<=*n*<=<=≤<=<=1000), *n* is the number of rounds played. Then follow *n* lines, containing the information about the rounds in "name score" format in chronological order, where name is a string of lower-case Latin letters with the length from 1 to 32, and score is an integer number between -1000 and 1000, inclusive.
|
Print the name of the winner.
|
[
"3\nmike 3\nandrew 5\nmike 2\n",
"3\nandrew 3\nandrew 2\nmike 5\n"
] |
[
"andrew\n",
"andrew\n"
] |
none
| 0
|
[
{
"input": "3\nmike 3\nandrew 5\nmike 2",
"output": "andrew"
},
{
"input": "3\nandrew 3\nandrew 2\nmike 5",
"output": "andrew"
},
{
"input": "5\nkaxqybeultn -352\nmgochgrmeyieyskhuourfg -910\nkaxqybeultn 691\nmgochgrmeyieyskhuourfg -76\nkaxqybeultn -303",
"output": "kaxqybeultn"
},
{
"input": "7\nksjuuerbnlklcfdjeyq 312\ndthjlkrvvbyahttifpdewvyslsh -983\nksjuuerbnlklcfdjeyq 268\ndthjlkrvvbyahttifpdewvyslsh 788\nksjuuerbnlklcfdjeyq -79\nksjuuerbnlklcfdjeyq -593\nksjuuerbnlklcfdjeyq 734",
"output": "ksjuuerbnlklcfdjeyq"
},
{
"input": "12\natrtthfpcvishmqbakprquvnejr 185\natrtthfpcvishmqbakprquvnejr -699\natrtthfpcvishmqbakprquvnejr -911\natrtthfpcvishmqbakprquvnejr -220\nfcgslzkicjrpbqaifgweyzreajjfdo 132\nfcgslzkicjrpbqaifgweyzreajjfdo -242\nm 177\nm -549\natrtthfpcvishmqbakprquvnejr -242\nm 38\natrtthfpcvishmqbakprquvnejr -761\nfcgslzkicjrpbqaifgweyzreajjfdo 879",
"output": "fcgslzkicjrpbqaifgweyzreajjfdo"
},
{
"input": "15\naawtvezfntstrcpgbzjbf 681\nzhahpvqiptvksnbjkdvmknb -74\naawtvezfntstrcpgbzjbf 661\njpdwmyke 474\naawtvezfntstrcpgbzjbf -547\naawtvezfntstrcpgbzjbf 600\nzhahpvqiptvksnbjkdvmknb -11\njpdwmyke 711\nbjmj 652\naawtvezfntstrcpgbzjbf -1000\naawtvezfntstrcpgbzjbf -171\nbjmj -302\naawtvezfntstrcpgbzjbf 961\nzhahpvqiptvksnbjkdvmknb 848\nbjmj -735",
"output": "aawtvezfntstrcpgbzjbf"
},
{
"input": "17\nqdplghhx -649\nivhgbxiv 424\nivhgbxiv -72\nivhgbxiv 479\nugowfouebkelargxylsxn 83\nugowfouebkelargxylsxn -840\nivhgbxiv 382\nqdplghhx -904\nivhgbxiv -710\nugowfouebkelargxylsxn -838\nqdplghhx -974\nqdplghhx 571\nivhgbxiv -145\nugowfouebkelargxylsxn -788\nivhgbxiv 209\nivhgbxiv 420\nqdplghhx -158",
"output": "ivhgbxiv"
}
] | 1,620,095,870
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 20
| 248
| 1,843,200
|
from collections import OrderedDict
n = int(input())
names_score_dict = OrderedDict()
lis = []
for _ in range(n):
name, score = input().split()
names_score_dict[name] = names_score_dict.get(name, 0) + int(score)
lis += [(names_score_dict[name], name)]
m = max(names_score_dict.values())
for v, k in lis:
if names_score_dict[k] == m and v >=m:
print (k)
break
|
Title: Winner
Time Limit: 1 seconds
Memory Limit: 64 megabytes
Problem Description:
The winner of the card game popular in Berland "Berlogging" is determined according to the following rules. If at the end of the game there is only one player with the maximum number of points, he is the winner. The situation becomes more difficult if the number of such players is more than one. During each round a player gains or loses a particular number of points. In the course of the game the number of points is registered in the line "name score", where name is a player's name, and score is the number of points gained in this round, which is an integer number. If score is negative, this means that the player has lost in the round. So, if two or more players have the maximum number of points (say, it equals to *m*) at the end of the game, than wins the one of them who scored at least *m* points first. Initially each player has 0 points. It's guaranteed that at the end of the game at least one player has a positive number of points.
Input Specification:
The first line contains an integer number *n* (1<=<=≤<=<=*n*<=<=≤<=<=1000), *n* is the number of rounds played. Then follow *n* lines, containing the information about the rounds in "name score" format in chronological order, where name is a string of lower-case Latin letters with the length from 1 to 32, and score is an integer number between -1000 and 1000, inclusive.
Output Specification:
Print the name of the winner.
Demo Input:
['3\nmike 3\nandrew 5\nmike 2\n', '3\nandrew 3\nandrew 2\nmike 5\n']
Demo Output:
['andrew\n', 'andrew\n']
Note:
none
|
```python
from collections import OrderedDict
n = int(input())
names_score_dict = OrderedDict()
lis = []
for _ in range(n):
name, score = input().split()
names_score_dict[name] = names_score_dict.get(name, 0) + int(score)
lis += [(names_score_dict[name], name)]
m = max(names_score_dict.values())
for v, k in lis:
if names_score_dict[k] == m and v >=m:
print (k)
break
```
| 3.862267
|
394
|
A
|
Counting Sticks
|
PROGRAMMING
| 0
|
[
"brute force",
"implementation"
] | null | null |
When new students come to the Specialized Educational and Scientific Centre (SESC) they need to start many things from the beginning. Sometimes the teachers say (not always unfairly) that we cannot even count. So our teachers decided to teach us arithmetics from the start. And what is the best way to teach students add and subtract? — That's right, using counting sticks! An here's our new task:
An expression of counting sticks is an expression of type:
Sign + consists of two crossed sticks: one vertical and one horizontal. Sign = consists of two horizontal sticks. The expression is arithmetically correct if *A*<=+<=*B*<==<=*C*.
We've got an expression that looks like *A*<=+<=*B*<==<=*C* given by counting sticks. Our task is to shift at most one stick (or we can shift nothing) so that the expression became arithmetically correct. Note that we cannot remove the sticks from the expression, also we cannot shift the sticks from the signs + and =.
We really aren't fabulous at arithmetics. Can you help us?
|
The single line contains the initial expression. It is guaranteed that the expression looks like *A*<=+<=*B*<==<=*C*, where 1<=≤<=*A*,<=*B*,<=*C*<=≤<=100.
|
If there isn't a way to shift the stick so the expression becomes correct, print on a single line "Impossible" (without the quotes). If there is a way, print the resulting expression. Follow the format of the output from the test samples. Don't print extra space characters.
If there are multiple correct answers, print any of them. For clarifications, you are recommended to see the test samples.
|
[
"||+|=|||||\n",
"|||||+||=||\n",
"|+|=||||||\n",
"||||+||=||||||\n"
] |
[
"|||+|=||||\n",
"Impossible\n",
"Impossible\n",
"||||+||=||||||\n"
] |
In the first sample we can shift stick from the third group of sticks to the first one.
In the second sample we cannot shift vertical stick from + sign to the second group of sticks. So we cannot make a - sign.
There is no answer in the third sample because we cannot remove sticks from the expression.
In the forth sample the initial expression is already arithmetically correct and that is why we don't have to shift sticks.
| 500
|
[
{
"input": "||+|=|||||",
"output": "|||+|=||||"
},
{
"input": "|||||+||=||",
"output": "Impossible"
},
{
"input": "|+|=||||||",
"output": "Impossible"
},
{
"input": "||||+||=||||||",
"output": "||||+||=||||||"
},
{
"input": "||||||||||||+|||||||||||=||||||||||||||||||||||",
"output": "Impossible"
},
{
"input": "||||||||||||||||||+||||||||||||||||||=||||||||||||||||||||||||||||||||||||||||||",
"output": "Impossible"
},
{
"input": "|||||||||||||||||||||||||||||||||||||||||||||||||+|||||||||||||||||||||||||=|||||||||||||||||||||||||",
"output": "Impossible"
},
{
"input": "||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||+|=|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||",
"output": "|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||+|=||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||"
},
{
"input": "|+|=|",
"output": "Impossible"
},
{
"input": "||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||+|||||||||||||||||||||=||||||||||||||||||||||||||||||||||||||||||||||||||",
"output": "Impossible"
},
{
"input": "|||||||||||||||||||||||||||||||||||||||||+||||||||||||||||||||||||||||||||||||||||||=||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||",
"output": "Impossible"
},
{
"input": "|||||||||||||||||||||||||||||||||||||||||+|||||||||||||||||||||||||||||||||||||||||=|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||",
"output": "Impossible"
},
{
"input": "|||||||||||||||||||||||||||||||||||||||||||+|||||||||||||||||||||||||||||||||||||||||||=|",
"output": "Impossible"
},
{
"input": "||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||+||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||=|",
"output": "Impossible"
},
{
"input": "||||||||||||||||||||||||||||||||||||||||||||||||+||||||||||||||||||||||||||||||||||||||||||||||||||=||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||",
"output": "|||||||||||||||||||||||||||||||||||||||||||||||||+||||||||||||||||||||||||||||||||||||||||||||||||||=|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||"
},
{
"input": "||||||||||||||||||||||||||||||||||||||||||||||||||+||||||||||||||||||||||||||||||||||||||||||||||||=||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||",
"output": "|||||||||||||||||||||||||||||||||||||||||||||||||||+||||||||||||||||||||||||||||||||||||||||||||||||=|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||"
},
{
"input": "||||||||||||||||||||||||||||||||||||||||||||||||||+||||||||||||||||||||||||||||||||||||||||||||||||||=|",
"output": "Impossible"
},
{
"input": "|||||||||||||||||||||||||||||||||||||||||||||||||||+|||||||||||||||||||||||||||||||||||||||||||||||||=|",
"output": "Impossible"
},
{
"input": "||+||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||=||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||",
"output": "|+||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||=|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||"
},
{
"input": "||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||+||=||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||",
"output": "|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||+||=|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||"
},
{
"input": "||+|=|",
"output": "|+|=||"
},
{
"input": "|+||=|",
"output": "|+|=||"
},
{
"input": "|+|=||",
"output": "|+|=||"
},
{
"input": "|||+|=|",
"output": "Impossible"
},
{
"input": "|||+|=|",
"output": "Impossible"
},
{
"input": "|||||||||||||||||||||||||||||||||||||||||||||||||||+|||||||||||||||||||||||||||||||||||||||||||||||||||=||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||",
"output": "||||||||||||||||||||||||||||||||||||||||||||||||||+|||||||||||||||||||||||||||||||||||||||||||||||||||=|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||"
},
{
"input": "||+||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||=||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||",
"output": "|+||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||=|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||"
},
{
"input": "||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||+||||||||||||||||||||||||||||||||||||=|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||",
"output": "Impossible"
},
{
"input": "|+|=|||",
"output": "Impossible"
},
{
"input": "|+|=||||",
"output": "||+|=|||"
},
{
"input": "|+||=|",
"output": "|+|=||"
},
{
"input": "|+||||||=|||||",
"output": "|+|||||=||||||"
},
{
"input": "|+|||=||",
"output": "|+||=|||"
},
{
"input": "|+||||=|||",
"output": "|+|||=||||"
},
{
"input": "|+|||||=||||",
"output": "|+||||=|||||"
},
{
"input": "||+||=||",
"output": "|+||=|||"
},
{
"input": "||+|||=|||",
"output": "|+|||=||||"
},
{
"input": "|||||+||=||||||||||",
"output": "Impossible"
},
{
"input": "|||+|||=||||",
"output": "||+|||=|||||"
},
{
"input": "||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||+||=||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||",
"output": "|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||+||=|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||"
},
{
"input": "|||||+|||||=||||||||||||",
"output": "||||||+|||||=|||||||||||"
},
{
"input": "||+|||||||=|||||||",
"output": "|+|||||||=||||||||"
},
{
"input": "||||+||||=||||||",
"output": "|||+||||=|||||||"
},
{
"input": "||||+|||=|||||",
"output": "|||+|||=||||||"
},
{
"input": "||+|||=|||||||",
"output": "|||+|||=||||||"
},
{
"input": "||+|=|",
"output": "|+|=||"
},
{
"input": "|||+|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||=||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||",
"output": "||+|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||=|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||"
},
{
"input": "||+|=||||||",
"output": "Impossible"
},
{
"input": "||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||+||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||=||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||",
"output": "Impossible"
}
] | 1,569,592,877
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 7
| 139
| 102,400
|
__author__ = 'Esfandiar'
s1,s2 = input().split('=')
a = s1.count('|')
b = s2.count('|')
if a == b:
print(s1+'='+s2)
elif abs(a-b) != 2:
print('Impossible')
else:
if a < b:
print(s1+'|'+'='+s2[:len(s2)-1])
else:
q1,q2=s1.split('+')
if q1.count('|') == 1:
print(s1[:len(s1)-1]+'='+s2[:len(s2)]+'|')
elif q2.count('|') == 1:
print(q1[:len(q1)-1]+'+'+'q2'+'='+s2[:len(s2)]+'|')
else:
print(s1[:len(s1)-1]+'='+s2[:len(s2)]+'|')
|
Title: Counting Sticks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
When new students come to the Specialized Educational and Scientific Centre (SESC) they need to start many things from the beginning. Sometimes the teachers say (not always unfairly) that we cannot even count. So our teachers decided to teach us arithmetics from the start. And what is the best way to teach students add and subtract? — That's right, using counting sticks! An here's our new task:
An expression of counting sticks is an expression of type:
Sign + consists of two crossed sticks: one vertical and one horizontal. Sign = consists of two horizontal sticks. The expression is arithmetically correct if *A*<=+<=*B*<==<=*C*.
We've got an expression that looks like *A*<=+<=*B*<==<=*C* given by counting sticks. Our task is to shift at most one stick (or we can shift nothing) so that the expression became arithmetically correct. Note that we cannot remove the sticks from the expression, also we cannot shift the sticks from the signs + and =.
We really aren't fabulous at arithmetics. Can you help us?
Input Specification:
The single line contains the initial expression. It is guaranteed that the expression looks like *A*<=+<=*B*<==<=*C*, where 1<=≤<=*A*,<=*B*,<=*C*<=≤<=100.
Output Specification:
If there isn't a way to shift the stick so the expression becomes correct, print on a single line "Impossible" (without the quotes). If there is a way, print the resulting expression. Follow the format of the output from the test samples. Don't print extra space characters.
If there are multiple correct answers, print any of them. For clarifications, you are recommended to see the test samples.
Demo Input:
['||+|=|||||\n', '|||||+||=||\n', '|+|=||||||\n', '||||+||=||||||\n']
Demo Output:
['|||+|=||||\n', 'Impossible\n', 'Impossible\n', '||||+||=||||||\n']
Note:
In the first sample we can shift stick from the third group of sticks to the first one.
In the second sample we cannot shift vertical stick from + sign to the second group of sticks. So we cannot make a - sign.
There is no answer in the third sample because we cannot remove sticks from the expression.
In the forth sample the initial expression is already arithmetically correct and that is why we don't have to shift sticks.
|
```python
__author__ = 'Esfandiar'
s1,s2 = input().split('=')
a = s1.count('|')
b = s2.count('|')
if a == b:
print(s1+'='+s2)
elif abs(a-b) != 2:
print('Impossible')
else:
if a < b:
print(s1+'|'+'='+s2[:len(s2)-1])
else:
q1,q2=s1.split('+')
if q1.count('|') == 1:
print(s1[:len(s1)-1]+'='+s2[:len(s2)]+'|')
elif q2.count('|') == 1:
print(q1[:len(q1)-1]+'+'+'q2'+'='+s2[:len(s2)]+'|')
else:
print(s1[:len(s1)-1]+'='+s2[:len(s2)]+'|')
```
| 0
|
|
765
|
B
|
Code obfuscation
|
PROGRAMMING
| 1,100
|
[
"greedy",
"implementation",
"strings"
] | null | null |
Kostya likes Codeforces contests very much. However, he is very disappointed that his solutions are frequently hacked. That's why he decided to obfuscate (intentionally make less readable) his code before upcoming contest.
To obfuscate the code, Kostya first looks at the first variable name used in his program and replaces all its occurrences with a single symbol *a*, then he looks at the second variable name that has not been replaced yet, and replaces all its occurrences with *b*, and so on. Kostya is well-mannered, so he doesn't use any one-letter names before obfuscation. Moreover, there are at most 26 unique identifiers in his programs.
You are given a list of identifiers of some program with removed spaces and line breaks. Check if this program can be a result of Kostya's obfuscation.
|
In the only line of input there is a string *S* of lowercase English letters (1<=≤<=|*S*|<=≤<=500) — the identifiers of a program with removed whitespace characters.
|
If this program can be a result of Kostya's obfuscation, print "YES" (without quotes), otherwise print "NO".
|
[
"abacaba\n",
"jinotega\n"
] |
[
"YES\n",
"NO\n"
] |
In the first sample case, one possible list of identifiers would be "number string number character number string number". Here how Kostya would obfuscate the program:
- replace all occurences of number with a, the result would be "a string a character a string a",- replace all occurences of string with b, the result would be "a b a character a b a",- replace all occurences of character with c, the result would be "a b a c a b a",- all identifiers have been replaced, thus the obfuscation is finished.
| 1,000
|
[
{
"input": "abacaba",
"output": "YES"
},
{
"input": "jinotega",
"output": "NO"
},
{
"input": "aaaaaaaaaaa",
"output": "YES"
},
{
"input": "aba",
"output": "YES"
},
{
"input": "bab",
"output": "NO"
},
{
"input": "a",
"output": "YES"
},
{
"input": "abcdefghijklmnopqrstuvwxyz",
"output": "YES"
},
{
"input": "fihyxmbnzq",
"output": "NO"
},
{
"input": "aamlaswqzotaanasdhcvjoaiwdhctezzawagkdgfffeqkyrvbcrfqgkdsvximsnvmkmjyofswmtjdoxgwamsaatngenqvsvrvwlbzuoeaolfcnmdacrmdleafbsmerwmxzyylfhemnkoayuhtpbikm",
"output": "NO"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "YES"
},
{
"input": "darbbbcwynbbbbaacbkvbakavabbbabzajlbajryaabbbccxraakgniagbtsswcfbkubdmcasccepybkaefcfsbzdddxgcjadybcfjtmqbspflqrdghgfwnccfveogdmifkociqscahdejctacwzbkhihajfilrgcjiofwfklifobozikcmvcfeqlidrgsgdfxffaaebzjxngsjxiclyolhjokqpdbfffooticxsezpgqkhhzmbmqgskkqvefzyijrwhpftcmbedmaflapmeljaudllojfpgfkpvgylaglrhrslxlprbhgknrctilngqccbddvpamhifsbmyowohczizjcbleehfrecjbqtxertnpfmalejmbxkhkkbyopuwlhkxuqellsybgcndvniyyxfoufalstdsdfjoxlnmigkqwmgojsppaannfstxytelluvvkdcezlqfsperwyjsdsmkvgjdbksswamhmoukcawiigkggztr",
"output": "NO"
},
{
"input": "bbbbbb",
"output": "NO"
},
{
"input": "aabbbd",
"output": "NO"
},
{
"input": "abdefghijklmnopqrstuvwxyz",
"output": "NO"
},
{
"input": "abcdeghijklmnopqrstuvwxyz",
"output": "NO"
},
{
"input": "abcdefghijklmnopqrsuvwxyz",
"output": "NO"
},
{
"input": "abcdefghijklmnopqrstuvwxy",
"output": "YES"
},
{
"input": "abcdefghijklmnopqrsutvwxyz",
"output": "NO"
},
{
"input": "acdef",
"output": "NO"
},
{
"input": "z",
"output": "NO"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaababaaababaabababccbabdbcbadccacdbdedabbeecbcabbdcaecdabbedddafeffaccgeacefbcahabfiiegecdbebabhhbdgfeghhbfahgagefbgghdbhadeicbdfgdchhefhigfcgdhcihecacfhadfgfejccibcjkfhbigbealjjkfldiecfdcafbamgfkbjlbifldghmiifkkglaflmjfmkfdjlbliijkgfdelklfnadbifgbmklfbqkhirhcadoadhmjrghlmelmjfpakqkdfcgqdkaeqpbcdoeqglqrarkipncckpfmajrqsfffldegbmahsfcqdfdqtrgrouqajgsojmmukptgerpanpcbejmergqtavwsvtveufdseuemwrhfmjqinxjodddnpcgqullrhmogflsxgsbapoghortiwcovejtinncozk",
"output": "NO"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "YES"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbabbbabbaaabbaaaaabaabbaa",
"output": "YES"
},
{
"input": "aababbabbaabbbbbaabababaabbbaaaaabbabbabbaabbbbabaabbaaababbaaacbbabbbbbbcbcababbccaaacbaccaccaababbccaacccaabaaccaaabacacbaabacbaacbaaabcbbbcbbaacaabcbcbccbacabbcbabcaccaaaaaabcbacabcbabbbbbabccbbcacbaaabbccbbaaaaaaaaaaaadbbbabdacabdaddddbaabbddbdabbdacbacbacaaaabbacadbcddddadaddabbdccaddbaaacbceebbceadbeaadecddbbbcaaecbdeaebaddbbdebbcbaabcacbdcdc",
"output": "YES"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbaabaabaababbbabbacacbbbacbbaaaabbccacbaabaaccbbbbbcbbbacabbccaaabbaaacabcbacbcabbbbecbecadcbacbaadeeadabeacdebccdbbcaecdbeeebbebcaaaeacdcbdeccdbbdcdebdcbdacebcecbacddeeaebcedffedfggbeedceacaecagdfedfabcfchffceachgcbicbcffeeebgcgiefcafhibhceiedgbfebbccegbehhibhhfedbaeedbghggffehggaeaidifhdhaggdjcfjhiaieaichjacedchejg",
"output": "NO"
},
{
"input": "b",
"output": "NO"
},
{
"input": "ac",
"output": "NO"
},
{
"input": "cde",
"output": "NO"
},
{
"input": "abd",
"output": "NO"
},
{
"input": "zx",
"output": "NO"
},
{
"input": "bcd",
"output": "NO"
},
{
"input": "aaac",
"output": "NO"
},
{
"input": "aacb",
"output": "NO"
},
{
"input": "acd",
"output": "NO"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaz",
"output": "NO"
},
{
"input": "abcdefghijklmnopqrstuvwxyzz",
"output": "YES"
},
{
"input": "bc",
"output": "NO"
},
{
"input": "aaaaaaaaad",
"output": "NO"
},
{
"input": "abb",
"output": "YES"
},
{
"input": "abcb",
"output": "YES"
},
{
"input": "aac",
"output": "NO"
},
{
"input": "abcbcb",
"output": "YES"
},
{
"input": "bb",
"output": "NO"
},
{
"input": "abbb",
"output": "YES"
},
{
"input": "bbb",
"output": "NO"
},
{
"input": "x",
"output": "NO"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaazz",
"output": "NO"
},
{
"input": "acbccccccccccc",
"output": "NO"
},
{
"input": "za",
"output": "NO"
},
{
"input": "ade",
"output": "NO"
},
{
"input": "bbbbbbbbbb",
"output": "NO"
},
{
"input": "bac",
"output": "NO"
},
{
"input": "bcddcb",
"output": "NO"
},
{
"input": "aaacb",
"output": "NO"
},
{
"input": "aaaaac",
"output": "NO"
},
{
"input": "aaaaaaaaaaad",
"output": "NO"
},
{
"input": "c",
"output": "NO"
},
{
"input": "abcccccccc",
"output": "YES"
},
{
"input": "aaaaaaac",
"output": "NO"
}
] | 1,516,955,127
| 1,587
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 11
| 77
| 5,734,400
|
from collections import OrderedDict
s = input()
print('YES' if ''.join(list(OrderedDict.fromkeys(list(s)))) in 'abcdefghijklmnopqrstuvwxyz' else 'NO')
|
Title: Code obfuscation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Kostya likes Codeforces contests very much. However, he is very disappointed that his solutions are frequently hacked. That's why he decided to obfuscate (intentionally make less readable) his code before upcoming contest.
To obfuscate the code, Kostya first looks at the first variable name used in his program and replaces all its occurrences with a single symbol *a*, then he looks at the second variable name that has not been replaced yet, and replaces all its occurrences with *b*, and so on. Kostya is well-mannered, so he doesn't use any one-letter names before obfuscation. Moreover, there are at most 26 unique identifiers in his programs.
You are given a list of identifiers of some program with removed spaces and line breaks. Check if this program can be a result of Kostya's obfuscation.
Input Specification:
In the only line of input there is a string *S* of lowercase English letters (1<=≤<=|*S*|<=≤<=500) — the identifiers of a program with removed whitespace characters.
Output Specification:
If this program can be a result of Kostya's obfuscation, print "YES" (without quotes), otherwise print "NO".
Demo Input:
['abacaba\n', 'jinotega\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first sample case, one possible list of identifiers would be "number string number character number string number". Here how Kostya would obfuscate the program:
- replace all occurences of number with a, the result would be "a string a character a string a",- replace all occurences of string with b, the result would be "a b a character a b a",- replace all occurences of character with c, the result would be "a b a c a b a",- all identifiers have been replaced, thus the obfuscation is finished.
|
```python
from collections import OrderedDict
s = input()
print('YES' if ''.join(list(OrderedDict.fromkeys(list(s)))) in 'abcdefghijklmnopqrstuvwxyz' else 'NO')
```
| 0
|
|
670
|
A
|
Holidays
|
PROGRAMMING
| 900
|
[
"brute force",
"constructive algorithms",
"greedy",
"math"
] | null | null |
On the planet Mars a year lasts exactly *n* days (there are no leap years on Mars). But Martians have the same weeks as earthlings — 5 work days and then 2 days off. Your task is to determine the minimum possible and the maximum possible number of days off per year on Mars.
|
The first line of the input contains a positive integer *n* (1<=≤<=*n*<=≤<=1<=000<=000) — the number of days in a year on Mars.
|
Print two integers — the minimum possible and the maximum possible number of days off per year on Mars.
|
[
"14\n",
"2\n"
] |
[
"4 4\n",
"0 2\n"
] |
In the first sample there are 14 days in a year on Mars, and therefore independently of the day a year starts with there will be exactly 4 days off .
In the second sample there are only 2 days in a year on Mars, and they can both be either work days or days off.
| 500
|
[
{
"input": "14",
"output": "4 4"
},
{
"input": "2",
"output": "0 2"
},
{
"input": "1",
"output": "0 1"
},
{
"input": "3",
"output": "0 2"
},
{
"input": "4",
"output": "0 2"
},
{
"input": "5",
"output": "0 2"
},
{
"input": "6",
"output": "1 2"
},
{
"input": "7",
"output": "2 2"
},
{
"input": "8",
"output": "2 3"
},
{
"input": "9",
"output": "2 4"
},
{
"input": "10",
"output": "2 4"
},
{
"input": "11",
"output": "2 4"
},
{
"input": "12",
"output": "2 4"
},
{
"input": "13",
"output": "3 4"
},
{
"input": "1000000",
"output": "285714 285715"
},
{
"input": "16",
"output": "4 6"
},
{
"input": "17",
"output": "4 6"
},
{
"input": "18",
"output": "4 6"
},
{
"input": "19",
"output": "4 6"
},
{
"input": "20",
"output": "5 6"
},
{
"input": "21",
"output": "6 6"
},
{
"input": "22",
"output": "6 7"
},
{
"input": "23",
"output": "6 8"
},
{
"input": "24",
"output": "6 8"
},
{
"input": "25",
"output": "6 8"
},
{
"input": "26",
"output": "6 8"
},
{
"input": "27",
"output": "7 8"
},
{
"input": "28",
"output": "8 8"
},
{
"input": "29",
"output": "8 9"
},
{
"input": "30",
"output": "8 10"
},
{
"input": "100",
"output": "28 30"
},
{
"input": "99",
"output": "28 29"
},
{
"input": "98",
"output": "28 28"
},
{
"input": "97",
"output": "27 28"
},
{
"input": "96",
"output": "26 28"
},
{
"input": "95",
"output": "26 28"
},
{
"input": "94",
"output": "26 28"
},
{
"input": "93",
"output": "26 28"
},
{
"input": "92",
"output": "26 27"
},
{
"input": "91",
"output": "26 26"
},
{
"input": "90",
"output": "25 26"
},
{
"input": "89",
"output": "24 26"
},
{
"input": "88",
"output": "24 26"
},
{
"input": "87",
"output": "24 26"
},
{
"input": "86",
"output": "24 26"
},
{
"input": "85",
"output": "24 25"
},
{
"input": "84",
"output": "24 24"
},
{
"input": "83",
"output": "23 24"
},
{
"input": "82",
"output": "22 24"
},
{
"input": "81",
"output": "22 24"
},
{
"input": "80",
"output": "22 24"
},
{
"input": "1000",
"output": "285 286"
},
{
"input": "999",
"output": "284 286"
},
{
"input": "998",
"output": "284 286"
},
{
"input": "997",
"output": "284 286"
},
{
"input": "996",
"output": "284 286"
},
{
"input": "995",
"output": "284 285"
},
{
"input": "994",
"output": "284 284"
},
{
"input": "993",
"output": "283 284"
},
{
"input": "992",
"output": "282 284"
},
{
"input": "991",
"output": "282 284"
},
{
"input": "990",
"output": "282 284"
},
{
"input": "989",
"output": "282 284"
},
{
"input": "988",
"output": "282 283"
},
{
"input": "987",
"output": "282 282"
},
{
"input": "986",
"output": "281 282"
},
{
"input": "985",
"output": "280 282"
},
{
"input": "984",
"output": "280 282"
},
{
"input": "983",
"output": "280 282"
},
{
"input": "982",
"output": "280 282"
},
{
"input": "981",
"output": "280 281"
},
{
"input": "980",
"output": "280 280"
},
{
"input": "10000",
"output": "2856 2858"
},
{
"input": "9999",
"output": "2856 2858"
},
{
"input": "9998",
"output": "2856 2858"
},
{
"input": "9997",
"output": "2856 2857"
},
{
"input": "9996",
"output": "2856 2856"
},
{
"input": "9995",
"output": "2855 2856"
},
{
"input": "9994",
"output": "2854 2856"
},
{
"input": "9993",
"output": "2854 2856"
},
{
"input": "9992",
"output": "2854 2856"
},
{
"input": "9991",
"output": "2854 2856"
},
{
"input": "9990",
"output": "2854 2855"
},
{
"input": "9989",
"output": "2854 2854"
},
{
"input": "9988",
"output": "2853 2854"
},
{
"input": "9987",
"output": "2852 2854"
},
{
"input": "9986",
"output": "2852 2854"
},
{
"input": "9985",
"output": "2852 2854"
},
{
"input": "9984",
"output": "2852 2854"
},
{
"input": "9983",
"output": "2852 2853"
},
{
"input": "9982",
"output": "2852 2852"
},
{
"input": "9981",
"output": "2851 2852"
},
{
"input": "9980",
"output": "2850 2852"
},
{
"input": "100000",
"output": "28570 28572"
},
{
"input": "99999",
"output": "28570 28572"
},
{
"input": "99998",
"output": "28570 28572"
},
{
"input": "99997",
"output": "28570 28572"
},
{
"input": "99996",
"output": "28570 28571"
},
{
"input": "99995",
"output": "28570 28570"
},
{
"input": "99994",
"output": "28569 28570"
},
{
"input": "99993",
"output": "28568 28570"
},
{
"input": "99992",
"output": "28568 28570"
},
{
"input": "99991",
"output": "28568 28570"
},
{
"input": "99990",
"output": "28568 28570"
},
{
"input": "99989",
"output": "28568 28569"
},
{
"input": "99988",
"output": "28568 28568"
},
{
"input": "99987",
"output": "28567 28568"
},
{
"input": "99986",
"output": "28566 28568"
},
{
"input": "99985",
"output": "28566 28568"
},
{
"input": "99984",
"output": "28566 28568"
},
{
"input": "99983",
"output": "28566 28568"
},
{
"input": "99982",
"output": "28566 28567"
},
{
"input": "99981",
"output": "28566 28566"
},
{
"input": "99980",
"output": "28565 28566"
},
{
"input": "999999",
"output": "285714 285714"
},
{
"input": "999998",
"output": "285713 285714"
},
{
"input": "999997",
"output": "285712 285714"
},
{
"input": "999996",
"output": "285712 285714"
},
{
"input": "999995",
"output": "285712 285714"
},
{
"input": "999994",
"output": "285712 285714"
},
{
"input": "999993",
"output": "285712 285713"
},
{
"input": "999992",
"output": "285712 285712"
},
{
"input": "999991",
"output": "285711 285712"
},
{
"input": "999990",
"output": "285710 285712"
},
{
"input": "999989",
"output": "285710 285712"
},
{
"input": "999988",
"output": "285710 285712"
},
{
"input": "999987",
"output": "285710 285712"
},
{
"input": "999986",
"output": "285710 285711"
},
{
"input": "999985",
"output": "285710 285710"
},
{
"input": "999984",
"output": "285709 285710"
},
{
"input": "999983",
"output": "285708 285710"
},
{
"input": "999982",
"output": "285708 285710"
},
{
"input": "999981",
"output": "285708 285710"
},
{
"input": "999980",
"output": "285708 285710"
},
{
"input": "234123",
"output": "66892 66893"
},
{
"input": "234122",
"output": "66892 66892"
},
{
"input": "234121",
"output": "66891 66892"
},
{
"input": "234120",
"output": "66890 66892"
},
{
"input": "234119",
"output": "66890 66892"
},
{
"input": "234118",
"output": "66890 66892"
},
{
"input": "234117",
"output": "66890 66892"
},
{
"input": "234116",
"output": "66890 66891"
},
{
"input": "234115",
"output": "66890 66890"
},
{
"input": "234114",
"output": "66889 66890"
},
{
"input": "234113",
"output": "66888 66890"
},
{
"input": "234112",
"output": "66888 66890"
},
{
"input": "234111",
"output": "66888 66890"
},
{
"input": "234110",
"output": "66888 66890"
},
{
"input": "234109",
"output": "66888 66889"
},
{
"input": "234108",
"output": "66888 66888"
},
{
"input": "234107",
"output": "66887 66888"
},
{
"input": "234106",
"output": "66886 66888"
},
{
"input": "234105",
"output": "66886 66888"
},
{
"input": "234104",
"output": "66886 66888"
},
{
"input": "234103",
"output": "66886 66888"
},
{
"input": "868531",
"output": "248151 248152"
},
{
"input": "868530",
"output": "248150 248152"
},
{
"input": "868529",
"output": "248150 248152"
},
{
"input": "868528",
"output": "248150 248152"
},
{
"input": "868527",
"output": "248150 248152"
},
{
"input": "868526",
"output": "248150 248151"
},
{
"input": "868525",
"output": "248150 248150"
},
{
"input": "868524",
"output": "248149 248150"
},
{
"input": "868523",
"output": "248148 248150"
},
{
"input": "868522",
"output": "248148 248150"
},
{
"input": "868521",
"output": "248148 248150"
},
{
"input": "868520",
"output": "248148 248150"
},
{
"input": "868519",
"output": "248148 248149"
},
{
"input": "868518",
"output": "248148 248148"
},
{
"input": "868517",
"output": "248147 248148"
},
{
"input": "868516",
"output": "248146 248148"
},
{
"input": "868515",
"output": "248146 248148"
},
{
"input": "868514",
"output": "248146 248148"
},
{
"input": "868513",
"output": "248146 248148"
},
{
"input": "868512",
"output": "248146 248147"
},
{
"input": "868511",
"output": "248146 248146"
},
{
"input": "123413",
"output": "35260 35262"
},
{
"input": "123412",
"output": "35260 35262"
},
{
"input": "123411",
"output": "35260 35261"
},
{
"input": "123410",
"output": "35260 35260"
},
{
"input": "123409",
"output": "35259 35260"
},
{
"input": "123408",
"output": "35258 35260"
},
{
"input": "123407",
"output": "35258 35260"
},
{
"input": "123406",
"output": "35258 35260"
},
{
"input": "123405",
"output": "35258 35260"
},
{
"input": "123404",
"output": "35258 35259"
},
{
"input": "123403",
"output": "35258 35258"
},
{
"input": "123402",
"output": "35257 35258"
},
{
"input": "123401",
"output": "35256 35258"
},
{
"input": "123400",
"output": "35256 35258"
},
{
"input": "123399",
"output": "35256 35258"
},
{
"input": "123398",
"output": "35256 35258"
},
{
"input": "123397",
"output": "35256 35257"
},
{
"input": "123396",
"output": "35256 35256"
},
{
"input": "123395",
"output": "35255 35256"
},
{
"input": "123394",
"output": "35254 35256"
},
{
"input": "123393",
"output": "35254 35256"
},
{
"input": "15",
"output": "4 5"
}
] | 1,667,257,364
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 3
| 30
| 0
|
n=int(input())
c=((n//7)*2)
print(c,(n%7)+c)
|
Title: Holidays
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
On the planet Mars a year lasts exactly *n* days (there are no leap years on Mars). But Martians have the same weeks as earthlings — 5 work days and then 2 days off. Your task is to determine the minimum possible and the maximum possible number of days off per year on Mars.
Input Specification:
The first line of the input contains a positive integer *n* (1<=≤<=*n*<=≤<=1<=000<=000) — the number of days in a year on Mars.
Output Specification:
Print two integers — the minimum possible and the maximum possible number of days off per year on Mars.
Demo Input:
['14\n', '2\n']
Demo Output:
['4 4\n', '0 2\n']
Note:
In the first sample there are 14 days in a year on Mars, and therefore independently of the day a year starts with there will be exactly 4 days off .
In the second sample there are only 2 days in a year on Mars, and they can both be either work days or days off.
|
```python
n=int(input())
c=((n//7)*2)
print(c,(n%7)+c)
```
| 0
|
|
279
|
B
|
Books
|
PROGRAMMING
| 1,400
|
[
"binary search",
"brute force",
"implementation",
"two pointers"
] | null | null |
When Valera has got some free time, he goes to the library to read some books. Today he's got *t* free minutes to read. That's why Valera took *n* books in the library and for each book he estimated the time he is going to need to read it. Let's number the books by integers from 1 to *n*. Valera needs *a**i* minutes to read the *i*-th book.
Valera decided to choose an arbitrary book with number *i* and read the books one by one, starting from this book. In other words, he will first read book number *i*, then book number *i*<=+<=1, then book number *i*<=+<=2 and so on. He continues the process until he either runs out of the free time or finishes reading the *n*-th book. Valera reads each book up to the end, that is, he doesn't start reading the book if he doesn't have enough free time to finish reading it.
Print the maximum number of books Valera can read.
|
The first line contains two integers *n* and *t* (1<=≤<=*n*<=≤<=105; 1<=≤<=*t*<=≤<=109) — the number of books and the number of free minutes Valera's got. The second line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=104), where number *a**i* shows the number of minutes that the boy needs to read the *i*-th book.
|
Print a single integer — the maximum number of books Valera can read.
|
[
"4 5\n3 1 2 1\n",
"3 3\n2 2 3\n"
] |
[
"3\n",
"1\n"
] |
none
| 1,000
|
[
{
"input": "4 5\n3 1 2 1",
"output": "3"
},
{
"input": "3 3\n2 2 3",
"output": "1"
},
{
"input": "1 3\n5",
"output": "0"
},
{
"input": "1 10\n4",
"output": "1"
},
{
"input": "2 10\n6 4",
"output": "2"
},
{
"input": "6 10\n2 3 4 2 1 1",
"output": "4"
},
{
"input": "7 13\n6 8 14 9 4 11 10",
"output": "2"
},
{
"input": "10 15\n10 9 1 1 5 10 5 3 7 2",
"output": "3"
},
{
"input": "20 30\n8 1 2 6 9 4 1 9 9 10 4 7 8 9 5 7 1 8 7 4",
"output": "6"
},
{
"input": "30 60\n16 13 22 38 13 35 17 17 20 38 12 19 9 22 20 3 35 34 34 21 35 40 22 3 27 19 12 4 8 19",
"output": "4"
},
{
"input": "100 100\n75 92 18 6 81 67 7 92 100 65 82 32 50 67 85 31 80 91 84 63 39 52 92 81 1 98 24 12 43 48 17 86 51 72 48 95 45 50 12 66 19 79 49 89 34 1 97 75 20 33 96 27 42 23 73 71 93 1 85 19 66 14 17 61 20 39 36 33 42 61 56 64 23 91 80 99 40 74 13 18 98 85 74 39 62 84 46 74 50 23 38 11 79 14 9 25 66 100 25 52",
"output": "3"
},
{
"input": "10 1\n4418 7528 8170 1736 1317 3205 8183 4995 8039 4708",
"output": "0"
},
{
"input": "50 2\n124 214 63 73 996 760 38 571 451 300 970 1 706 937 837 494 619 88 851 411 957 990 842 613 821 649 627 34 693 678 734 116 816 985 705 940 499 493 922 967 854 439 112 644 961 438 189 572 655 550",
"output": "1"
}
] | 1,671,997,748
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 38
| 186
| 14,131,200
|
n,t=map(int,input().split())
arr=list(map(int,input().split()))
psum=[0]
for i in range(n):
psum.append(psum[i]+arr[i])
bmax=0
p1=0
p2=1
while True:
if psum[p2]-psum[p1]<=t:
if p2-p1>bmax:
bmax=p2-p1
if p2==n:
break
else:
p2+=1
else:
if p2-p1==1:
if p2==n:
break
else:
p1+=1
p2+=1
else:
p1+=1
print(bmax)
|
Title: Books
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
When Valera has got some free time, he goes to the library to read some books. Today he's got *t* free minutes to read. That's why Valera took *n* books in the library and for each book he estimated the time he is going to need to read it. Let's number the books by integers from 1 to *n*. Valera needs *a**i* minutes to read the *i*-th book.
Valera decided to choose an arbitrary book with number *i* and read the books one by one, starting from this book. In other words, he will first read book number *i*, then book number *i*<=+<=1, then book number *i*<=+<=2 and so on. He continues the process until he either runs out of the free time or finishes reading the *n*-th book. Valera reads each book up to the end, that is, he doesn't start reading the book if he doesn't have enough free time to finish reading it.
Print the maximum number of books Valera can read.
Input Specification:
The first line contains two integers *n* and *t* (1<=≤<=*n*<=≤<=105; 1<=≤<=*t*<=≤<=109) — the number of books and the number of free minutes Valera's got. The second line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=104), where number *a**i* shows the number of minutes that the boy needs to read the *i*-th book.
Output Specification:
Print a single integer — the maximum number of books Valera can read.
Demo Input:
['4 5\n3 1 2 1\n', '3 3\n2 2 3\n']
Demo Output:
['3\n', '1\n']
Note:
none
|
```python
n,t=map(int,input().split())
arr=list(map(int,input().split()))
psum=[0]
for i in range(n):
psum.append(psum[i]+arr[i])
bmax=0
p1=0
p2=1
while True:
if psum[p2]-psum[p1]<=t:
if p2-p1>bmax:
bmax=p2-p1
if p2==n:
break
else:
p2+=1
else:
if p2-p1==1:
if p2==n:
break
else:
p1+=1
p2+=1
else:
p1+=1
print(bmax)
```
| 3
|
|
0
|
none
|
none
|
none
| 0
|
[
"none"
] | null | null |
One day Natalia was walking in the woods when she met a little mushroom gnome. The gnome told her the following story:
Everybody knows that the mushroom gnomes' power lies in the magic mushrooms that grow in the native woods of the gnomes. There are *n* trees and *m* magic mushrooms in the woods: the *i*-th tree grows at a point on a straight line with coordinates *a**i* and has the height of *h**i*, the *j*-th mushroom grows at the point with coordinates *b**j* and has magical powers *z**j*.
But one day wild mushroommunchers, the sworn enemies of mushroom gnomes unleashed a terrible storm on their home forest. As a result, some of the trees began to fall and crush the magic mushrooms. The supreme oracle of mushroom gnomes calculated in advance the probability for each tree that it will fall to the left, to the right or will stand on. If the tree with the coordinate *x* and height *h* falls to the left, then all the mushrooms that belong to the right-open interval [*x*<=-<=*h*,<=*x*), are destroyed. If a tree falls to the right, then the mushrooms that belong to the left-open interval (*x*,<=*x*<=+<=*h*] are destroyed. Only those mushrooms that are not hit by a single tree survive.
Knowing that all the trees fall independently of each other (i.e., all the events are mutually independent, and besides, the trees do not interfere with other trees falling in an arbitrary direction), the supreme oracle was also able to quickly calculate what would be the expectation of the total power of the mushrooms which survived after the storm. His calculations ultimately saved the mushroom gnomes from imminent death.
Natalia, as a good Olympiad programmer, got interested in this story, and she decided to come up with a way to quickly calculate the expectation of the sum of the surviving mushrooms' power.
|
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=105, 1<=≤<=*m*<=≤<=104) — the number of trees and mushrooms, respectively.
Each of the next *n* lines contain four integers — *a**i*, *h**i*, *l**i*, *r**i* (|*a**i*|<=≤<=109, 1<=≤<=*h**i*<=≤<=109, 0<=≤<=*l**i*,<=*r**i*,<=*l**i*<=+<=*r**i*<=≤<=100) which represent the coordinate of the *i*-th tree, its height, the percentage of the probabilities that the tree falls to the left and to the right, respectively (the remaining percentage is the probability that the tree will stand on).
Each of next *m* lines contain two integers *b**j*, *z**j* (|*b**j*|<=≤<=109, 1<=≤<=*z**j*<=≤<=103) which represent the coordinate and the magical power of the *j*-th mushroom, respectively.
An arbitrary number of trees and mushrooms can grow in one point.
|
Print a real number — the expectation of the total magical power of the surviving mushrooms. The result is accepted with relative or absolute accuracy 10<=-<=4.
|
[
"1 1\n2 2 50 50\n1 1\n",
"2 1\n2 2 50 50\n4 2 50 50\n3 1\n"
] |
[
"0.5000000000\n",
"0.2500000000\n"
] |
It is believed that the mushroom with the coordinate *x* belongs to the right-open interval [*l*, *r*) if and only if *l* ≤ *x* < *r*. Similarly, the mushroom with the coordinate *x* belongs to the left-open interval (*l*, *r*] if and only if *l* < *x* ≤ *r*.
In the first test the mushroom survives with the probability of 50%, depending on where the single tree falls.
In the second test the mushroom survives only if neither of the two trees falls on it. It occurs with the probability of 50% × 50% = 25%.
Pretest №12 is the large test with 10<sup class="upper-index">5</sup> trees and one mushroom.
| 0
|
[] | 1,689,447,846
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 0
| 31
| 0
|
print("_RANDOM_GUESS_1689447846.407337")# 1689447846.407357
|
Title: none
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Natalia was walking in the woods when she met a little mushroom gnome. The gnome told her the following story:
Everybody knows that the mushroom gnomes' power lies in the magic mushrooms that grow in the native woods of the gnomes. There are *n* trees and *m* magic mushrooms in the woods: the *i*-th tree grows at a point on a straight line with coordinates *a**i* and has the height of *h**i*, the *j*-th mushroom grows at the point with coordinates *b**j* and has magical powers *z**j*.
But one day wild mushroommunchers, the sworn enemies of mushroom gnomes unleashed a terrible storm on their home forest. As a result, some of the trees began to fall and crush the magic mushrooms. The supreme oracle of mushroom gnomes calculated in advance the probability for each tree that it will fall to the left, to the right or will stand on. If the tree with the coordinate *x* and height *h* falls to the left, then all the mushrooms that belong to the right-open interval [*x*<=-<=*h*,<=*x*), are destroyed. If a tree falls to the right, then the mushrooms that belong to the left-open interval (*x*,<=*x*<=+<=*h*] are destroyed. Only those mushrooms that are not hit by a single tree survive.
Knowing that all the trees fall independently of each other (i.e., all the events are mutually independent, and besides, the trees do not interfere with other trees falling in an arbitrary direction), the supreme oracle was also able to quickly calculate what would be the expectation of the total power of the mushrooms which survived after the storm. His calculations ultimately saved the mushroom gnomes from imminent death.
Natalia, as a good Olympiad programmer, got interested in this story, and she decided to come up with a way to quickly calculate the expectation of the sum of the surviving mushrooms' power.
Input Specification:
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=105, 1<=≤<=*m*<=≤<=104) — the number of trees and mushrooms, respectively.
Each of the next *n* lines contain four integers — *a**i*, *h**i*, *l**i*, *r**i* (|*a**i*|<=≤<=109, 1<=≤<=*h**i*<=≤<=109, 0<=≤<=*l**i*,<=*r**i*,<=*l**i*<=+<=*r**i*<=≤<=100) which represent the coordinate of the *i*-th tree, its height, the percentage of the probabilities that the tree falls to the left and to the right, respectively (the remaining percentage is the probability that the tree will stand on).
Each of next *m* lines contain two integers *b**j*, *z**j* (|*b**j*|<=≤<=109, 1<=≤<=*z**j*<=≤<=103) which represent the coordinate and the magical power of the *j*-th mushroom, respectively.
An arbitrary number of trees and mushrooms can grow in one point.
Output Specification:
Print a real number — the expectation of the total magical power of the surviving mushrooms. The result is accepted with relative or absolute accuracy 10<=-<=4.
Demo Input:
['1 1\n2 2 50 50\n1 1\n', '2 1\n2 2 50 50\n4 2 50 50\n3 1\n']
Demo Output:
['0.5000000000\n', '0.2500000000\n']
Note:
It is believed that the mushroom with the coordinate *x* belongs to the right-open interval [*l*, *r*) if and only if *l* ≤ *x* < *r*. Similarly, the mushroom with the coordinate *x* belongs to the left-open interval (*l*, *r*] if and only if *l* < *x* ≤ *r*.
In the first test the mushroom survives with the probability of 50%, depending on where the single tree falls.
In the second test the mushroom survives only if neither of the two trees falls on it. It occurs with the probability of 50% × 50% = 25%.
Pretest №12 is the large test with 10<sup class="upper-index">5</sup> trees and one mushroom.
|
```python
print("_RANDOM_GUESS_1689447846.407337")# 1689447846.407357
```
| 0
|
|
546
|
A
|
Soldier and Bananas
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation",
"math"
] | null | null |
A soldier wants to buy *w* bananas in the shop. He has to pay *k* dollars for the first banana, 2*k* dollars for the second one and so on (in other words, he has to pay *i*·*k* dollars for the *i*-th banana).
He has *n* dollars. How many dollars does he have to borrow from his friend soldier to buy *w* bananas?
|
The first line contains three positive integers *k*,<=*n*,<=*w* (1<=<=≤<=<=*k*,<=*w*<=<=≤<=<=1000, 0<=≤<=*n*<=≤<=109), the cost of the first banana, initial number of dollars the soldier has and number of bananas he wants.
|
Output one integer — the amount of dollars that the soldier must borrow from his friend. If he doesn't have to borrow money, output 0.
|
[
"3 17 4\n"
] |
[
"13"
] |
none
| 500
|
[
{
"input": "3 17 4",
"output": "13"
},
{
"input": "1 2 1",
"output": "0"
},
{
"input": "1 1 1",
"output": "0"
},
{
"input": "1 5 6",
"output": "16"
},
{
"input": "1 1000000000 1",
"output": "0"
},
{
"input": "1000 0 1000",
"output": "500500000"
},
{
"input": "859 453892 543",
"output": "126416972"
},
{
"input": "1000 1000000000 1000",
"output": "0"
},
{
"input": "1000 500500000 1000",
"output": "0"
},
{
"input": "1000 500500001 1000",
"output": "0"
},
{
"input": "1000 500499999 1000",
"output": "1"
},
{
"input": "634 87973 214",
"output": "14497197"
},
{
"input": "432 10000 241",
"output": "12587552"
},
{
"input": "111 111111111 111",
"output": "0"
},
{
"input": "20 43 3",
"output": "77"
}
] | 1,698,784,646
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 15
| 31
| 0
|
x,y,z=map(int,input().split())
a=0
for i in range(1,z+1):
a+=i*x
if a>y:
print(a-y)
else:
print(0)
|
Title: Soldier and Bananas
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A soldier wants to buy *w* bananas in the shop. He has to pay *k* dollars for the first banana, 2*k* dollars for the second one and so on (in other words, he has to pay *i*·*k* dollars for the *i*-th banana).
He has *n* dollars. How many dollars does he have to borrow from his friend soldier to buy *w* bananas?
Input Specification:
The first line contains three positive integers *k*,<=*n*,<=*w* (1<=<=≤<=<=*k*,<=*w*<=<=≤<=<=1000, 0<=≤<=*n*<=≤<=109), the cost of the first banana, initial number of dollars the soldier has and number of bananas he wants.
Output Specification:
Output one integer — the amount of dollars that the soldier must borrow from his friend. If he doesn't have to borrow money, output 0.
Demo Input:
['3 17 4\n']
Demo Output:
['13']
Note:
none
|
```python
x,y,z=map(int,input().split())
a=0
for i in range(1,z+1):
a+=i*x
if a>y:
print(a-y)
else:
print(0)
```
| 3
|
Subsets and Splits
Successful Python Submissions
Retrieves all records from the train dataset where the verdict is 'OK', providing basic filtering but limited analytical value.
SQL Console for MatrixStudio/Codeforces-Python-Submissions
Retrieves records of users with a rating of 1600 or higher and a verdict of 'OK', providing basic filtering but limited analytical value.
SQL Console for MatrixStudio/Codeforces-Python-Submissions
Counts the number of entries with a rating above 2000 and a verdict of 'OK', providing basic filtering but limited analytical value.
SQL Console for MatrixStudio/Codeforces-Python-Submissions
Counts the number of entries with a 'OK' verdict, providing a basic overview of a specific category within the dataset.