contestId
int64 0
1.01k
| index
stringclasses 57
values | name
stringlengths 2
58
| type
stringclasses 2
values | rating
int64 0
3.5k
| tags
listlengths 0
11
| title
stringclasses 522
values | time-limit
stringclasses 8
values | memory-limit
stringclasses 8
values | problem-description
stringlengths 0
7.15k
| input-specification
stringlengths 0
2.05k
| output-specification
stringlengths 0
1.5k
| demo-input
listlengths 0
7
| demo-output
listlengths 0
7
| note
stringlengths 0
5.24k
| points
float64 0
425k
| test_cases
listlengths 0
402
| creationTimeSeconds
int64 1.37B
1.7B
| relativeTimeSeconds
int64 8
2.15B
| programmingLanguage
stringclasses 3
values | verdict
stringclasses 14
values | testset
stringclasses 12
values | passedTestCount
int64 0
1k
| timeConsumedMillis
int64 0
15k
| memoryConsumedBytes
int64 0
805M
| code
stringlengths 3
65.5k
| prompt
stringlengths 262
8.2k
| response
stringlengths 17
65.5k
| score
float64 -1
3.99
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
680
|
A
|
Bear and Five Cards
|
PROGRAMMING
| 800
|
[
"constructive algorithms",
"implementation"
] | null | null |
A little bear Limak plays a game. He has five cards. There is one number written on each card. Each number is a positive integer.
Limak can discard (throw out) some cards. His goal is to minimize the sum of numbers written on remaining (not discarded) cards.
He is allowed to at most once discard two or three cards with the same number. Of course, he won't discard cards if it's impossible to choose two or three cards with the same number.
Given five numbers written on cards, cay you find the minimum sum of numbers on remaining cards?
|
The only line of the input contains five integers *t*1, *t*2, *t*3, *t*4 and *t*5 (1<=≤<=*t**i*<=≤<=100) — numbers written on cards.
|
Print the minimum possible sum of numbers written on remaining cards.
|
[
"7 3 7 3 20\n",
"7 9 3 1 8\n",
"10 10 10 10 10\n"
] |
[
"26\n",
"28\n",
"20\n"
] |
In the first sample, Limak has cards with numbers 7, 3, 7, 3 and 20. Limak can do one of the following.
- Do nothing and the sum would be 7 + 3 + 7 + 3 + 20 = 40. - Remove two cards with a number 7. The remaining sum would be 3 + 3 + 20 = 26. - Remove two cards with a number 3. The remaining sum would be 7 + 7 + 20 = 34.
You are asked to minimize the sum so the answer is 26.
In the second sample, it's impossible to find two or three cards with the same number. Hence, Limak does nothing and the sum is 7 + 9 + 1 + 3 + 8 = 28.
In the third sample, all cards have the same number. It's optimal to discard any three cards. The sum of two remaining numbers is 10 + 10 = 20.
| 500
|
[
{
"input": "7 3 7 3 20",
"output": "26"
},
{
"input": "7 9 3 1 8",
"output": "28"
},
{
"input": "10 10 10 10 10",
"output": "20"
},
{
"input": "8 7 1 8 7",
"output": "15"
},
{
"input": "7 7 7 8 8",
"output": "16"
},
{
"input": "8 8 8 2 2",
"output": "4"
},
{
"input": "8 8 2 2 2",
"output": "6"
},
{
"input": "5 50 5 5 60",
"output": "110"
},
{
"input": "100 100 100 100 100",
"output": "200"
},
{
"input": "1 1 1 1 1",
"output": "2"
},
{
"input": "29 29 20 20 20",
"output": "58"
},
{
"input": "20 29 20 29 20",
"output": "58"
},
{
"input": "31 31 20 20 20",
"output": "60"
},
{
"input": "20 20 20 31 31",
"output": "60"
},
{
"input": "20 31 20 31 20",
"output": "60"
},
{
"input": "20 20 20 30 30",
"output": "60"
},
{
"input": "30 30 20 20 20",
"output": "60"
},
{
"input": "8 1 8 8 8",
"output": "9"
},
{
"input": "1 1 1 8 1",
"output": "9"
},
{
"input": "1 2 3 4 5",
"output": "15"
},
{
"input": "100 99 98 97 96",
"output": "490"
},
{
"input": "1 1 100 100 100",
"output": "2"
},
{
"input": "100 100 99 99 98",
"output": "296"
},
{
"input": "98 99 100 99 100",
"output": "296"
},
{
"input": "1 90 1 91 1",
"output": "181"
},
{
"input": "60 1 75 1 92",
"output": "227"
},
{
"input": "15 40 90 40 90",
"output": "95"
},
{
"input": "1 1 15 20 20",
"output": "17"
},
{
"input": "90 11 11 10 10",
"output": "110"
},
{
"input": "20 21 22 23 24",
"output": "110"
},
{
"input": "1 1 2 98 99",
"output": "199"
},
{
"input": "3 7 7 7 10",
"output": "13"
},
{
"input": "1 3 3 3 1",
"output": "2"
},
{
"input": "1 9 9 9 10",
"output": "11"
},
{
"input": "100 1 1 1 1",
"output": "101"
},
{
"input": "2 2 2 100 100",
"output": "6"
},
{
"input": "1 2 2 2 2",
"output": "3"
},
{
"input": "1 1 2 2 5",
"output": "7"
},
{
"input": "1 2 3 4 1",
"output": "9"
},
{
"input": "11 10 10 10 10",
"output": "21"
},
{
"input": "2 2 2 10 10",
"output": "6"
},
{
"input": "1 1 1 1 4",
"output": "5"
},
{
"input": "98 98 98 98 23",
"output": "121"
},
{
"input": "1 2 3 100 100",
"output": "6"
},
{
"input": "2 2 5 10 10",
"output": "9"
},
{
"input": "2 2 3 3 3",
"output": "4"
},
{
"input": "1 1 1 1 2",
"output": "3"
},
{
"input": "12 12 7 7 7",
"output": "21"
}
] | 1,592,231,377
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 2
| 108
| 307,200
|
l = list(map(int,input().split()))
best = sum(l)
for i in range(5):
for j in range(i+1,5):
if l[i]==l[j]:
best = min(best,sum(l)-2*l[i])
for i in range(5):
for j in range(i+1,5):
for k in range(j+1,5):
if l[i]==l[j] and l[i]==l[k]:
best = min(best,sum-3*l[i])
print(best)
|
Title: Bear and Five Cards
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A little bear Limak plays a game. He has five cards. There is one number written on each card. Each number is a positive integer.
Limak can discard (throw out) some cards. His goal is to minimize the sum of numbers written on remaining (not discarded) cards.
He is allowed to at most once discard two or three cards with the same number. Of course, he won't discard cards if it's impossible to choose two or three cards with the same number.
Given five numbers written on cards, cay you find the minimum sum of numbers on remaining cards?
Input Specification:
The only line of the input contains five integers *t*1, *t*2, *t*3, *t*4 and *t*5 (1<=≤<=*t**i*<=≤<=100) — numbers written on cards.
Output Specification:
Print the minimum possible sum of numbers written on remaining cards.
Demo Input:
['7 3 7 3 20\n', '7 9 3 1 8\n', '10 10 10 10 10\n']
Demo Output:
['26\n', '28\n', '20\n']
Note:
In the first sample, Limak has cards with numbers 7, 3, 7, 3 and 20. Limak can do one of the following.
- Do nothing and the sum would be 7 + 3 + 7 + 3 + 20 = 40. - Remove two cards with a number 7. The remaining sum would be 3 + 3 + 20 = 26. - Remove two cards with a number 3. The remaining sum would be 7 + 7 + 20 = 34.
You are asked to minimize the sum so the answer is 26.
In the second sample, it's impossible to find two or three cards with the same number. Hence, Limak does nothing and the sum is 7 + 9 + 1 + 3 + 8 = 28.
In the third sample, all cards have the same number. It's optimal to discard any three cards. The sum of two remaining numbers is 10 + 10 = 20.
|
```python
l = list(map(int,input().split()))
best = sum(l)
for i in range(5):
for j in range(i+1,5):
if l[i]==l[j]:
best = min(best,sum(l)-2*l[i])
for i in range(5):
for j in range(i+1,5):
for k in range(j+1,5):
if l[i]==l[j] and l[i]==l[k]:
best = min(best,sum-3*l[i])
print(best)
```
| -1
|
|
369
|
A
|
Valera and Plates
|
PROGRAMMING
| 900
|
[
"greedy",
"implementation"
] | null | null |
Valera is a lazy student. He has *m* clean bowls and *k* clean plates.
Valera has made an eating plan for the next *n* days. As Valera is lazy, he will eat exactly one dish per day. At that, in order to eat a dish, he needs exactly one clean plate or bowl. We know that Valera can cook only two types of dishes. He can eat dishes of the first type from bowls and dishes of the second type from either bowls or plates.
When Valera finishes eating, he leaves a dirty plate/bowl behind. His life philosophy doesn't let him eat from dirty kitchenware. So sometimes he needs to wash his plate/bowl before eating. Find the minimum number of times Valera will need to wash a plate/bowl, if he acts optimally.
|
The first line of the input contains three integers *n*, *m*, *k* (1<=≤<=*n*,<=*m*,<=*k*<=≤<=1000) — the number of the planned days, the number of clean bowls and the number of clean plates.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=2). If *a**i* equals one, then on day *i* Valera will eat a first type dish. If *a**i* equals two, then on day *i* Valera will eat a second type dish.
|
Print a single integer — the minimum number of times Valera will need to wash a plate/bowl.
|
[
"3 1 1\n1 2 1\n",
"4 3 1\n1 1 1 1\n",
"3 1 2\n2 2 2\n",
"8 2 2\n1 2 1 2 1 2 1 2\n"
] |
[
"1\n",
"1\n",
"0\n",
"4\n"
] |
In the first sample Valera will wash a bowl only on the third day, so the answer is one.
In the second sample, Valera will have the first type of the dish during all four days, and since there are only three bowls, he will wash a bowl exactly once.
In the third sample, Valera will have the second type of dish for all three days, and as they can be eaten from either a plate or a bowl, he will never need to wash a plate/bowl.
| 500
|
[
{
"input": "3 1 1\n1 2 1",
"output": "1"
},
{
"input": "4 3 1\n1 1 1 1",
"output": "1"
},
{
"input": "3 1 2\n2 2 2",
"output": "0"
},
{
"input": "8 2 2\n1 2 1 2 1 2 1 2",
"output": "4"
},
{
"input": "2 100 100\n2 2",
"output": "0"
},
{
"input": "1 1 1\n2",
"output": "0"
},
{
"input": "233 100 1\n2 2 1 1 1 2 2 2 2 1 1 2 2 2 1 2 2 1 1 1 2 2 1 1 1 1 2 1 2 2 1 1 2 2 1 2 2 1 2 1 2 1 2 2 2 1 1 1 1 2 1 2 1 1 2 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 2 1 2 2 2 1 1 2 2 1 1 1 1 2 1 1 2 1 2 2 2 1 1 1 2 2 2 1 1 1 1 2 1 2 1 1 1 1 2 2 2 1 1 2 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 2 2 1 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 2 1 2 1 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 1 1 2 2 1 2 2 2 2 2 2 1 2 2 2 2 2 1 1 2 2 2 2 2 2 1 1 1 2 1 2 2 2 2 2 2 2 2 1 1 2 1 2 1 2 2",
"output": "132"
},
{
"input": "123 100 1\n2 2 2 1 1 2 2 2 2 1 1 2 2 2 1 2 2 2 2 1 2 2 2 1 1 1 2 2 2 2 1 2 2 2 2 2 2 1 2 1 2 1 2 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 2 2 1 1 1 1 2 1 2 2 1 2 2 2 1 1 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1 2 2 2 1 1 2 1 2 1 2 1 1 1",
"output": "22"
},
{
"input": "188 100 1\n2 2 1 1 1 2 2 2 2 1 1 2 2 2 1 2 2 1 1 1 2 2 1 1 1 1 2 1 2 2 1 1 2 2 1 2 2 1 2 1 2 1 2 2 2 1 1 1 1 2 1 2 1 1 2 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 2 1 2 2 2 1 1 2 2 1 1 1 1 2 1 1 2 1 2 2 2 1 1 1 2 2 2 1 1 1 1 2 1 2 1 1 1 1 2 2 2 1 1 2 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 2 2 1 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 2 1 2 1 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 1",
"output": "87"
},
{
"input": "3 1 2\n1 1 1",
"output": "2"
},
{
"input": "3 2 2\n1 1 1",
"output": "1"
},
{
"input": "3 2 1\n1 1 1",
"output": "1"
},
{
"input": "3 1 1\n1 1 1",
"output": "2"
},
{
"input": "5 1 2\n2 2 2 2 2",
"output": "2"
},
{
"input": "5 2 2\n2 2 2 2 2",
"output": "1"
},
{
"input": "5 2 1\n2 2 2 2 2",
"output": "2"
},
{
"input": "5 1 1\n2 2 2 2 2",
"output": "3"
},
{
"input": "1 1 2\n2",
"output": "0"
},
{
"input": "1 2 2\n2",
"output": "0"
},
{
"input": "1 2 1\n2",
"output": "0"
},
{
"input": "1 1 1\n2",
"output": "0"
},
{
"input": "6 3 1\n1 1 2 2 2 2",
"output": "2"
},
{
"input": "100 40 20\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "40"
},
{
"input": "7 5 2\n2 2 1 1 1 1 1",
"output": "0"
},
{
"input": "10 4 4\n2 2 2 2 2 2 1 1 1 1",
"output": "2"
},
{
"input": "3 2 1\n2 1 1",
"output": "0"
},
{
"input": "7 6 1\n2 1 1 1 1 1 1",
"output": "0"
},
{
"input": "7 5 1\n1 1 1 2 2 2 2",
"output": "1"
},
{
"input": "5 3 1\n1 1 2 2 2",
"output": "1"
},
{
"input": "3 1 1\n2 2 2",
"output": "1"
},
{
"input": "5 2 2\n2 2 2 2 2",
"output": "1"
},
{
"input": "3 1 3\n1 1 1",
"output": "2"
},
{
"input": "5 2 1\n1 1 2 2 2",
"output": "2"
},
{
"input": "4 3 2\n2 1 1 1",
"output": "0"
},
{
"input": "4 2 1\n1 2 2 2",
"output": "1"
},
{
"input": "14 4 7\n1 1 1 2 2 2 2 2 2 2 2 2 2 2",
"output": "3"
},
{
"input": "12 10 4\n2 2 2 2 2 2 1 1 1 1 1 1",
"output": "0"
},
{
"input": "5 3 2\n2 2 1 1 1",
"output": "0"
}
] | 1,594,533,799
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 77
| 6,656,000
|
a,b,c=map(int,input().split())
d=list(map(int,input().split()))
x=0
for i in d:
if(i==1):
b-=1
x+=1
elif(i==2):
if(b<c):
c-=1
x+=1
else:
b-=1
x+=1
print(abs(a-x))
|
Title: Valera and Plates
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Valera is a lazy student. He has *m* clean bowls and *k* clean plates.
Valera has made an eating plan for the next *n* days. As Valera is lazy, he will eat exactly one dish per day. At that, in order to eat a dish, he needs exactly one clean plate or bowl. We know that Valera can cook only two types of dishes. He can eat dishes of the first type from bowls and dishes of the second type from either bowls or plates.
When Valera finishes eating, he leaves a dirty plate/bowl behind. His life philosophy doesn't let him eat from dirty kitchenware. So sometimes he needs to wash his plate/bowl before eating. Find the minimum number of times Valera will need to wash a plate/bowl, if he acts optimally.
Input Specification:
The first line of the input contains three integers *n*, *m*, *k* (1<=≤<=*n*,<=*m*,<=*k*<=≤<=1000) — the number of the planned days, the number of clean bowls and the number of clean plates.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=2). If *a**i* equals one, then on day *i* Valera will eat a first type dish. If *a**i* equals two, then on day *i* Valera will eat a second type dish.
Output Specification:
Print a single integer — the minimum number of times Valera will need to wash a plate/bowl.
Demo Input:
['3 1 1\n1 2 1\n', '4 3 1\n1 1 1 1\n', '3 1 2\n2 2 2\n', '8 2 2\n1 2 1 2 1 2 1 2\n']
Demo Output:
['1\n', '1\n', '0\n', '4\n']
Note:
In the first sample Valera will wash a bowl only on the third day, so the answer is one.
In the second sample, Valera will have the first type of the dish during all four days, and since there are only three bowls, he will wash a bowl exactly once.
In the third sample, Valera will have the second type of dish for all three days, and as they can be eaten from either a plate or a bowl, he will never need to wash a plate/bowl.
|
```python
a,b,c=map(int,input().split())
d=list(map(int,input().split()))
x=0
for i in d:
if(i==1):
b-=1
x+=1
elif(i==2):
if(b<c):
c-=1
x+=1
else:
b-=1
x+=1
print(abs(a-x))
```
| 0
|
|
334
|
A
|
Candy Bags
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
Gerald has *n* younger brothers and their number happens to be even. One day he bought *n*2 candy bags. One bag has one candy, one bag has two candies, one bag has three candies and so on. In fact, for each integer *k* from 1 to *n*2 he has exactly one bag with *k* candies.
Help him give *n* bags of candies to each brother so that all brothers got the same number of candies.
|
The single line contains a single integer *n* (*n* is even, 2<=≤<=*n*<=≤<=100) — the number of Gerald's brothers.
|
Let's assume that Gerald indexes his brothers with numbers from 1 to *n*. You need to print *n* lines, on the *i*-th line print *n* integers — the numbers of candies in the bags for the *i*-th brother. Naturally, all these numbers should be distinct and be within limits from 1 to *n*2. You can print the numbers in the lines in any order.
It is guaranteed that the solution exists at the given limits.
|
[
"2\n"
] |
[
"1 4\n2 3\n"
] |
The sample shows Gerald's actions if he has two brothers. In this case, his bags contain 1, 2, 3 and 4 candies. He can give the bags with 1 and 4 candies to one brother and the bags with 2 and 3 to the other brother.
| 500
|
[
{
"input": "2",
"output": "1 4\n2 3"
},
{
"input": "4",
"output": "1 16 2 15\n3 14 4 13\n5 12 6 11\n7 10 8 9"
},
{
"input": "6",
"output": "1 36 2 35 3 34\n4 33 5 32 6 31\n7 30 8 29 9 28\n10 27 11 26 12 25\n13 24 14 23 15 22\n16 21 17 20 18 19"
},
{
"input": "8",
"output": "1 64 2 63 3 62 4 61\n5 60 6 59 7 58 8 57\n9 56 10 55 11 54 12 53\n13 52 14 51 15 50 16 49\n17 48 18 47 19 46 20 45\n21 44 22 43 23 42 24 41\n25 40 26 39 27 38 28 37\n29 36 30 35 31 34 32 33"
},
{
"input": "10",
"output": "1 100 2 99 3 98 4 97 5 96\n6 95 7 94 8 93 9 92 10 91\n11 90 12 89 13 88 14 87 15 86\n16 85 17 84 18 83 19 82 20 81\n21 80 22 79 23 78 24 77 25 76\n26 75 27 74 28 73 29 72 30 71\n31 70 32 69 33 68 34 67 35 66\n36 65 37 64 38 63 39 62 40 61\n41 60 42 59 43 58 44 57 45 56\n46 55 47 54 48 53 49 52 50 51"
},
{
"input": "100",
"output": "1 10000 2 9999 3 9998 4 9997 5 9996 6 9995 7 9994 8 9993 9 9992 10 9991 11 9990 12 9989 13 9988 14 9987 15 9986 16 9985 17 9984 18 9983 19 9982 20 9981 21 9980 22 9979 23 9978 24 9977 25 9976 26 9975 27 9974 28 9973 29 9972 30 9971 31 9970 32 9969 33 9968 34 9967 35 9966 36 9965 37 9964 38 9963 39 9962 40 9961 41 9960 42 9959 43 9958 44 9957 45 9956 46 9955 47 9954 48 9953 49 9952 50 9951\n51 9950 52 9949 53 9948 54 9947 55 9946 56 9945 57 9944 58 9943 59 9942 60 9941 61 9940 62 9939 63 9938 64 9937 65 993..."
},
{
"input": "62",
"output": "1 3844 2 3843 3 3842 4 3841 5 3840 6 3839 7 3838 8 3837 9 3836 10 3835 11 3834 12 3833 13 3832 14 3831 15 3830 16 3829 17 3828 18 3827 19 3826 20 3825 21 3824 22 3823 23 3822 24 3821 25 3820 26 3819 27 3818 28 3817 29 3816 30 3815 31 3814\n32 3813 33 3812 34 3811 35 3810 36 3809 37 3808 38 3807 39 3806 40 3805 41 3804 42 3803 43 3802 44 3801 45 3800 46 3799 47 3798 48 3797 49 3796 50 3795 51 3794 52 3793 53 3792 54 3791 55 3790 56 3789 57 3788 58 3787 59 3786 60 3785 61 3784 62 3783\n63 3782 64 3781 65 378..."
},
{
"input": "66",
"output": "1 4356 2 4355 3 4354 4 4353 5 4352 6 4351 7 4350 8 4349 9 4348 10 4347 11 4346 12 4345 13 4344 14 4343 15 4342 16 4341 17 4340 18 4339 19 4338 20 4337 21 4336 22 4335 23 4334 24 4333 25 4332 26 4331 27 4330 28 4329 29 4328 30 4327 31 4326 32 4325 33 4324\n34 4323 35 4322 36 4321 37 4320 38 4319 39 4318 40 4317 41 4316 42 4315 43 4314 44 4313 45 4312 46 4311 47 4310 48 4309 49 4308 50 4307 51 4306 52 4305 53 4304 54 4303 55 4302 56 4301 57 4300 58 4299 59 4298 60 4297 61 4296 62 4295 63 4294 64 4293 65 4292..."
},
{
"input": "18",
"output": "1 324 2 323 3 322 4 321 5 320 6 319 7 318 8 317 9 316\n10 315 11 314 12 313 13 312 14 311 15 310 16 309 17 308 18 307\n19 306 20 305 21 304 22 303 23 302 24 301 25 300 26 299 27 298\n28 297 29 296 30 295 31 294 32 293 33 292 34 291 35 290 36 289\n37 288 38 287 39 286 40 285 41 284 42 283 43 282 44 281 45 280\n46 279 47 278 48 277 49 276 50 275 51 274 52 273 53 272 54 271\n55 270 56 269 57 268 58 267 59 266 60 265 61 264 62 263 63 262\n64 261 65 260 66 259 67 258 68 257 69 256 70 255 71 254 72 253\n73 252 7..."
},
{
"input": "68",
"output": "1 4624 2 4623 3 4622 4 4621 5 4620 6 4619 7 4618 8 4617 9 4616 10 4615 11 4614 12 4613 13 4612 14 4611 15 4610 16 4609 17 4608 18 4607 19 4606 20 4605 21 4604 22 4603 23 4602 24 4601 25 4600 26 4599 27 4598 28 4597 29 4596 30 4595 31 4594 32 4593 33 4592 34 4591\n35 4590 36 4589 37 4588 38 4587 39 4586 40 4585 41 4584 42 4583 43 4582 44 4581 45 4580 46 4579 47 4578 48 4577 49 4576 50 4575 51 4574 52 4573 53 4572 54 4571 55 4570 56 4569 57 4568 58 4567 59 4566 60 4565 61 4564 62 4563 63 4562 64 4561 65 4560..."
},
{
"input": "86",
"output": "1 7396 2 7395 3 7394 4 7393 5 7392 6 7391 7 7390 8 7389 9 7388 10 7387 11 7386 12 7385 13 7384 14 7383 15 7382 16 7381 17 7380 18 7379 19 7378 20 7377 21 7376 22 7375 23 7374 24 7373 25 7372 26 7371 27 7370 28 7369 29 7368 30 7367 31 7366 32 7365 33 7364 34 7363 35 7362 36 7361 37 7360 38 7359 39 7358 40 7357 41 7356 42 7355 43 7354\n44 7353 45 7352 46 7351 47 7350 48 7349 49 7348 50 7347 51 7346 52 7345 53 7344 54 7343 55 7342 56 7341 57 7340 58 7339 59 7338 60 7337 61 7336 62 7335 63 7334 64 7333 65 7332..."
},
{
"input": "96",
"output": "1 9216 2 9215 3 9214 4 9213 5 9212 6 9211 7 9210 8 9209 9 9208 10 9207 11 9206 12 9205 13 9204 14 9203 15 9202 16 9201 17 9200 18 9199 19 9198 20 9197 21 9196 22 9195 23 9194 24 9193 25 9192 26 9191 27 9190 28 9189 29 9188 30 9187 31 9186 32 9185 33 9184 34 9183 35 9182 36 9181 37 9180 38 9179 39 9178 40 9177 41 9176 42 9175 43 9174 44 9173 45 9172 46 9171 47 9170 48 9169\n49 9168 50 9167 51 9166 52 9165 53 9164 54 9163 55 9162 56 9161 57 9160 58 9159 59 9158 60 9157 61 9156 62 9155 63 9154 64 9153 65 9152..."
},
{
"input": "12",
"output": "1 144 2 143 3 142 4 141 5 140 6 139\n7 138 8 137 9 136 10 135 11 134 12 133\n13 132 14 131 15 130 16 129 17 128 18 127\n19 126 20 125 21 124 22 123 23 122 24 121\n25 120 26 119 27 118 28 117 29 116 30 115\n31 114 32 113 33 112 34 111 35 110 36 109\n37 108 38 107 39 106 40 105 41 104 42 103\n43 102 44 101 45 100 46 99 47 98 48 97\n49 96 50 95 51 94 52 93 53 92 54 91\n55 90 56 89 57 88 58 87 59 86 60 85\n61 84 62 83 63 82 64 81 65 80 66 79\n67 78 68 77 69 76 70 75 71 74 72 73"
},
{
"input": "88",
"output": "1 7744 2 7743 3 7742 4 7741 5 7740 6 7739 7 7738 8 7737 9 7736 10 7735 11 7734 12 7733 13 7732 14 7731 15 7730 16 7729 17 7728 18 7727 19 7726 20 7725 21 7724 22 7723 23 7722 24 7721 25 7720 26 7719 27 7718 28 7717 29 7716 30 7715 31 7714 32 7713 33 7712 34 7711 35 7710 36 7709 37 7708 38 7707 39 7706 40 7705 41 7704 42 7703 43 7702 44 7701\n45 7700 46 7699 47 7698 48 7697 49 7696 50 7695 51 7694 52 7693 53 7692 54 7691 55 7690 56 7689 57 7688 58 7687 59 7686 60 7685 61 7684 62 7683 63 7682 64 7681 65 7680..."
},
{
"input": "28",
"output": "1 784 2 783 3 782 4 781 5 780 6 779 7 778 8 777 9 776 10 775 11 774 12 773 13 772 14 771\n15 770 16 769 17 768 18 767 19 766 20 765 21 764 22 763 23 762 24 761 25 760 26 759 27 758 28 757\n29 756 30 755 31 754 32 753 33 752 34 751 35 750 36 749 37 748 38 747 39 746 40 745 41 744 42 743\n43 742 44 741 45 740 46 739 47 738 48 737 49 736 50 735 51 734 52 733 53 732 54 731 55 730 56 729\n57 728 58 727 59 726 60 725 61 724 62 723 63 722 64 721 65 720 66 719 67 718 68 717 69 716 70 715\n71 714 72 713 73 712 74 7..."
},
{
"input": "80",
"output": "1 6400 2 6399 3 6398 4 6397 5 6396 6 6395 7 6394 8 6393 9 6392 10 6391 11 6390 12 6389 13 6388 14 6387 15 6386 16 6385 17 6384 18 6383 19 6382 20 6381 21 6380 22 6379 23 6378 24 6377 25 6376 26 6375 27 6374 28 6373 29 6372 30 6371 31 6370 32 6369 33 6368 34 6367 35 6366 36 6365 37 6364 38 6363 39 6362 40 6361\n41 6360 42 6359 43 6358 44 6357 45 6356 46 6355 47 6354 48 6353 49 6352 50 6351 51 6350 52 6349 53 6348 54 6347 55 6346 56 6345 57 6344 58 6343 59 6342 60 6341 61 6340 62 6339 63 6338 64 6337 65 6336..."
},
{
"input": "48",
"output": "1 2304 2 2303 3 2302 4 2301 5 2300 6 2299 7 2298 8 2297 9 2296 10 2295 11 2294 12 2293 13 2292 14 2291 15 2290 16 2289 17 2288 18 2287 19 2286 20 2285 21 2284 22 2283 23 2282 24 2281\n25 2280 26 2279 27 2278 28 2277 29 2276 30 2275 31 2274 32 2273 33 2272 34 2271 35 2270 36 2269 37 2268 38 2267 39 2266 40 2265 41 2264 42 2263 43 2262 44 2261 45 2260 46 2259 47 2258 48 2257\n49 2256 50 2255 51 2254 52 2253 53 2252 54 2251 55 2250 56 2249 57 2248 58 2247 59 2246 60 2245 61 2244 62 2243 63 2242 64 2241 65 224..."
},
{
"input": "54",
"output": "1 2916 2 2915 3 2914 4 2913 5 2912 6 2911 7 2910 8 2909 9 2908 10 2907 11 2906 12 2905 13 2904 14 2903 15 2902 16 2901 17 2900 18 2899 19 2898 20 2897 21 2896 22 2895 23 2894 24 2893 25 2892 26 2891 27 2890\n28 2889 29 2888 30 2887 31 2886 32 2885 33 2884 34 2883 35 2882 36 2881 37 2880 38 2879 39 2878 40 2877 41 2876 42 2875 43 2874 44 2873 45 2872 46 2871 47 2870 48 2869 49 2868 50 2867 51 2866 52 2865 53 2864 54 2863\n55 2862 56 2861 57 2860 58 2859 59 2858 60 2857 61 2856 62 2855 63 2854 64 2853 65 285..."
},
{
"input": "58",
"output": "1 3364 2 3363 3 3362 4 3361 5 3360 6 3359 7 3358 8 3357 9 3356 10 3355 11 3354 12 3353 13 3352 14 3351 15 3350 16 3349 17 3348 18 3347 19 3346 20 3345 21 3344 22 3343 23 3342 24 3341 25 3340 26 3339 27 3338 28 3337 29 3336\n30 3335 31 3334 32 3333 33 3332 34 3331 35 3330 36 3329 37 3328 38 3327 39 3326 40 3325 41 3324 42 3323 43 3322 44 3321 45 3320 46 3319 47 3318 48 3317 49 3316 50 3315 51 3314 52 3313 53 3312 54 3311 55 3310 56 3309 57 3308 58 3307\n59 3306 60 3305 61 3304 62 3303 63 3302 64 3301 65 330..."
},
{
"input": "64",
"output": "1 4096 2 4095 3 4094 4 4093 5 4092 6 4091 7 4090 8 4089 9 4088 10 4087 11 4086 12 4085 13 4084 14 4083 15 4082 16 4081 17 4080 18 4079 19 4078 20 4077 21 4076 22 4075 23 4074 24 4073 25 4072 26 4071 27 4070 28 4069 29 4068 30 4067 31 4066 32 4065\n33 4064 34 4063 35 4062 36 4061 37 4060 38 4059 39 4058 40 4057 41 4056 42 4055 43 4054 44 4053 45 4052 46 4051 47 4050 48 4049 49 4048 50 4047 51 4046 52 4045 53 4044 54 4043 55 4042 56 4041 57 4040 58 4039 59 4038 60 4037 61 4036 62 4035 63 4034 64 4033\n65 403..."
},
{
"input": "44",
"output": "1 1936 2 1935 3 1934 4 1933 5 1932 6 1931 7 1930 8 1929 9 1928 10 1927 11 1926 12 1925 13 1924 14 1923 15 1922 16 1921 17 1920 18 1919 19 1918 20 1917 21 1916 22 1915\n23 1914 24 1913 25 1912 26 1911 27 1910 28 1909 29 1908 30 1907 31 1906 32 1905 33 1904 34 1903 35 1902 36 1901 37 1900 38 1899 39 1898 40 1897 41 1896 42 1895 43 1894 44 1893\n45 1892 46 1891 47 1890 48 1889 49 1888 50 1887 51 1886 52 1885 53 1884 54 1883 55 1882 56 1881 57 1880 58 1879 59 1878 60 1877 61 1876 62 1875 63 1874 64 1873 65 187..."
}
] | 1,664,532,541
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 1
| 122
| 0
|
def testcase():
x = int(input().strip())
for i in range(x):
print(i+1, x*x-i)
if __name__ == '__main__':
t = 1
for _ in range(t):
testcase()
|
Title: Candy Bags
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Gerald has *n* younger brothers and their number happens to be even. One day he bought *n*2 candy bags. One bag has one candy, one bag has two candies, one bag has three candies and so on. In fact, for each integer *k* from 1 to *n*2 he has exactly one bag with *k* candies.
Help him give *n* bags of candies to each brother so that all brothers got the same number of candies.
Input Specification:
The single line contains a single integer *n* (*n* is even, 2<=≤<=*n*<=≤<=100) — the number of Gerald's brothers.
Output Specification:
Let's assume that Gerald indexes his brothers with numbers from 1 to *n*. You need to print *n* lines, on the *i*-th line print *n* integers — the numbers of candies in the bags for the *i*-th brother. Naturally, all these numbers should be distinct and be within limits from 1 to *n*2. You can print the numbers in the lines in any order.
It is guaranteed that the solution exists at the given limits.
Demo Input:
['2\n']
Demo Output:
['1 4\n2 3\n']
Note:
The sample shows Gerald's actions if he has two brothers. In this case, his bags contain 1, 2, 3 and 4 candies. He can give the bags with 1 and 4 candies to one brother and the bags with 2 and 3 to the other brother.
|
```python
def testcase():
x = int(input().strip())
for i in range(x):
print(i+1, x*x-i)
if __name__ == '__main__':
t = 1
for _ in range(t):
testcase()
```
| 0
|
|
461
|
A
|
Appleman and Toastman
|
PROGRAMMING
| 1,200
|
[
"greedy",
"sortings"
] | null | null |
Appleman and Toastman play a game. Initially Appleman gives one group of *n* numbers to the Toastman, then they start to complete the following tasks:
- Each time Toastman gets a group of numbers, he sums up all the numbers and adds this sum to the score. Then he gives the group to the Appleman. - Each time Appleman gets a group consisting of a single number, he throws this group out. Each time Appleman gets a group consisting of more than one number, he splits the group into two non-empty groups (he can do it in any way) and gives each of them to Toastman.
After guys complete all the tasks they look at the score value. What is the maximum possible value of score they can get?
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=3·105). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=106) — the initial group that is given to Toastman.
|
Print a single integer — the largest possible score.
|
[
"3\n3 1 5\n",
"1\n10\n"
] |
[
"26\n",
"10\n"
] |
Consider the following situation in the first example. Initially Toastman gets group [3, 1, 5] and adds 9 to the score, then he give the group to Appleman. Appleman splits group [3, 1, 5] into two groups: [3, 5] and [1]. Both of them should be given to Toastman. When Toastman receives group [1], he adds 1 to score and gives the group to Appleman (he will throw it out). When Toastman receives group [3, 5], he adds 8 to the score and gives the group to Appleman. Appleman splits [3, 5] in the only possible way: [5] and [3]. Then he gives both groups to Toastman. When Toastman receives [5], he adds 5 to the score and gives the group to Appleman (he will throws it out). When Toastman receives [3], he adds 3 to the score and gives the group to Appleman (he will throws it out). Finally Toastman have added 9 + 1 + 8 + 5 + 3 = 26 to the score. This is the optimal sequence of actions.
| 500
|
[
{
"input": "3\n3 1 5",
"output": "26"
},
{
"input": "1\n10",
"output": "10"
},
{
"input": "10\n8 10 2 5 6 2 4 7 2 1",
"output": "376"
},
{
"input": "10\n171308 397870 724672 431255 228496 892002 542924 718337 888642 161821",
"output": "40204082"
},
{
"input": "10\n1 2 2 2 4 5 6 7 8 10",
"output": "376"
},
{
"input": "10\n161821 171308 228496 397870 431255 542924 718337 724672 888642 892002",
"output": "40204082"
},
{
"input": "1\n397870",
"output": "397870"
},
{
"input": "1\n1000000",
"output": "1000000"
},
{
"input": "10\n10 8 7 6 5 4 2 2 2 1",
"output": "376"
},
{
"input": "10\n892002 888642 724672 718337 542924 431255 397870 228496 171308 161821",
"output": "40204082"
},
{
"input": "10\n5 2 6 10 10 10 10 2 2 5",
"output": "485"
},
{
"input": "10\n431255 724672 228496 397870 397870 397870 397870 724672 888642 431255",
"output": "36742665"
},
{
"input": "10\n2 2 2 5 5 6 10 10 10 10",
"output": "485"
},
{
"input": "10\n228496 397870 397870 397870 397870 431255 431255 724672 724672 888642",
"output": "36742665"
},
{
"input": "10\n10 10 10 10 6 5 5 2 2 2",
"output": "485"
},
{
"input": "10\n888642 724672 724672 431255 431255 397870 397870 397870 397870 228496",
"output": "36742665"
},
{
"input": "10\n10 10 10 10 10 10 10 10 10 10",
"output": "640"
},
{
"input": "10\n1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000",
"output": "64000000"
},
{
"input": "1\n397870",
"output": "397870"
},
{
"input": "2\n1 2",
"output": "6"
},
{
"input": "2\n2 3",
"output": "10"
},
{
"input": "2\n1 1",
"output": "4"
}
] | 1,481,006,985
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 36
| 483
| 29,286,400
|
n=int(input())
line=input().split()
lists=map(int,line)
a=[]
for i in lists:
a.append(i)
t=[]
for j in range(n):
t.append(0)
b=sorted(a)
for k in range(n-1):
t[k]=b[k]*(k+2)
t[n-1]=b[n-1]*(n)
num=sum(t)
print(num)
|
Title: Appleman and Toastman
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Appleman and Toastman play a game. Initially Appleman gives one group of *n* numbers to the Toastman, then they start to complete the following tasks:
- Each time Toastman gets a group of numbers, he sums up all the numbers and adds this sum to the score. Then he gives the group to the Appleman. - Each time Appleman gets a group consisting of a single number, he throws this group out. Each time Appleman gets a group consisting of more than one number, he splits the group into two non-empty groups (he can do it in any way) and gives each of them to Toastman.
After guys complete all the tasks they look at the score value. What is the maximum possible value of score they can get?
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=3·105). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=106) — the initial group that is given to Toastman.
Output Specification:
Print a single integer — the largest possible score.
Demo Input:
['3\n3 1 5\n', '1\n10\n']
Demo Output:
['26\n', '10\n']
Note:
Consider the following situation in the first example. Initially Toastman gets group [3, 1, 5] and adds 9 to the score, then he give the group to Appleman. Appleman splits group [3, 1, 5] into two groups: [3, 5] and [1]. Both of them should be given to Toastman. When Toastman receives group [1], he adds 1 to score and gives the group to Appleman (he will throw it out). When Toastman receives group [3, 5], he adds 8 to the score and gives the group to Appleman. Appleman splits [3, 5] in the only possible way: [5] and [3]. Then he gives both groups to Toastman. When Toastman receives [5], he adds 5 to the score and gives the group to Appleman (he will throws it out). When Toastman receives [3], he adds 3 to the score and gives the group to Appleman (he will throws it out). Finally Toastman have added 9 + 1 + 8 + 5 + 3 = 26 to the score. This is the optimal sequence of actions.
|
```python
n=int(input())
line=input().split()
lists=map(int,line)
a=[]
for i in lists:
a.append(i)
t=[]
for j in range(n):
t.append(0)
b=sorted(a)
for k in range(n-1):
t[k]=b[k]*(k+2)
t[n-1]=b[n-1]*(n)
num=sum(t)
print(num)
```
| 3
|
|
816
|
A
|
Karen and Morning
|
PROGRAMMING
| 1,000
|
[
"brute force",
"implementation"
] | null | null |
Karen is getting ready for a new school day!
It is currently hh:mm, given in a 24-hour format. As you know, Karen loves palindromes, and she believes that it is good luck to wake up when the time is a palindrome.
What is the minimum number of minutes she should sleep, such that, when she wakes up, the time is a palindrome?
Remember that a palindrome is a string that reads the same forwards and backwards. For instance, 05:39 is not a palindrome, because 05:39 backwards is 93:50. On the other hand, 05:50 is a palindrome, because 05:50 backwards is 05:50.
|
The first and only line of input contains a single string in the format hh:mm (00<=≤<= hh <=≤<=23, 00<=≤<= mm <=≤<=59).
|
Output a single integer on a line by itself, the minimum number of minutes she should sleep, such that, when she wakes up, the time is a palindrome.
|
[
"05:39\n",
"13:31\n",
"23:59\n"
] |
[
"11\n",
"0\n",
"1\n"
] |
In the first test case, the minimum number of minutes Karen should sleep for is 11. She can wake up at 05:50, when the time is a palindrome.
In the second test case, Karen can wake up immediately, as the current time, 13:31, is already a palindrome.
In the third test case, the minimum number of minutes Karen should sleep for is 1 minute. She can wake up at 00:00, when the time is a palindrome.
| 500
|
[
{
"input": "05:39",
"output": "11"
},
{
"input": "13:31",
"output": "0"
},
{
"input": "23:59",
"output": "1"
},
{
"input": "13:32",
"output": "69"
},
{
"input": "14:40",
"output": "1"
},
{
"input": "14:00",
"output": "41"
},
{
"input": "05:50",
"output": "0"
},
{
"input": "12:22",
"output": "69"
},
{
"input": "12:34",
"output": "57"
},
{
"input": "05:30",
"output": "20"
},
{
"input": "14:14",
"output": "27"
},
{
"input": "01:10",
"output": "0"
},
{
"input": "02:20",
"output": "0"
},
{
"input": "03:30",
"output": "0"
},
{
"input": "04:40",
"output": "0"
},
{
"input": "10:01",
"output": "0"
},
{
"input": "11:11",
"output": "0"
},
{
"input": "12:21",
"output": "0"
},
{
"input": "14:41",
"output": "0"
},
{
"input": "15:51",
"output": "0"
},
{
"input": "20:02",
"output": "0"
},
{
"input": "21:12",
"output": "0"
},
{
"input": "22:22",
"output": "0"
},
{
"input": "23:32",
"output": "0"
},
{
"input": "01:11",
"output": "69"
},
{
"input": "02:21",
"output": "69"
},
{
"input": "03:31",
"output": "69"
},
{
"input": "04:41",
"output": "69"
},
{
"input": "05:51",
"output": "250"
},
{
"input": "10:02",
"output": "69"
},
{
"input": "11:12",
"output": "69"
},
{
"input": "14:42",
"output": "69"
},
{
"input": "15:52",
"output": "250"
},
{
"input": "20:03",
"output": "69"
},
{
"input": "21:13",
"output": "69"
},
{
"input": "22:23",
"output": "69"
},
{
"input": "23:33",
"output": "27"
},
{
"input": "00:00",
"output": "0"
},
{
"input": "00:01",
"output": "69"
},
{
"input": "22:21",
"output": "1"
},
{
"input": "20:01",
"output": "1"
},
{
"input": "11:10",
"output": "1"
},
{
"input": "06:59",
"output": "182"
},
{
"input": "02:00",
"output": "20"
},
{
"input": "02:19",
"output": "1"
},
{
"input": "17:31",
"output": "151"
},
{
"input": "19:00",
"output": "62"
},
{
"input": "13:37",
"output": "64"
},
{
"input": "07:59",
"output": "122"
},
{
"input": "04:20",
"output": "20"
},
{
"input": "07:10",
"output": "171"
},
{
"input": "06:00",
"output": "241"
},
{
"input": "06:01",
"output": "240"
},
{
"input": "08:15",
"output": "106"
},
{
"input": "06:59",
"output": "182"
},
{
"input": "01:00",
"output": "10"
},
{
"input": "07:00",
"output": "181"
},
{
"input": "06:10",
"output": "231"
},
{
"input": "18:52",
"output": "70"
},
{
"input": "09:59",
"output": "2"
},
{
"input": "19:00",
"output": "62"
},
{
"input": "15:52",
"output": "250"
},
{
"input": "06:50",
"output": "191"
},
{
"input": "00:00",
"output": "0"
},
{
"input": "19:20",
"output": "42"
},
{
"input": "05:51",
"output": "250"
},
{
"input": "06:16",
"output": "225"
},
{
"input": "10:10",
"output": "61"
},
{
"input": "17:11",
"output": "171"
},
{
"input": "18:00",
"output": "122"
},
{
"input": "00:01",
"output": "69"
},
{
"input": "05:04",
"output": "46"
},
{
"input": "16:00",
"output": "242"
},
{
"input": "23:31",
"output": "1"
},
{
"input": "17:25",
"output": "157"
},
{
"input": "23:32",
"output": "0"
},
{
"input": "23:58",
"output": "2"
},
{
"input": "02:21",
"output": "69"
},
{
"input": "01:11",
"output": "69"
},
{
"input": "23:46",
"output": "14"
},
{
"input": "00:09",
"output": "61"
},
{
"input": "09:20",
"output": "41"
},
{
"input": "05:59",
"output": "242"
},
{
"input": "18:59",
"output": "63"
},
{
"input": "02:02",
"output": "18"
},
{
"input": "00:30",
"output": "40"
},
{
"input": "05:54",
"output": "247"
},
{
"input": "19:59",
"output": "3"
},
{
"input": "16:59",
"output": "183"
},
{
"input": "17:51",
"output": "131"
},
{
"input": "09:30",
"output": "31"
},
{
"input": "10:01",
"output": "0"
},
{
"input": "16:55",
"output": "187"
},
{
"input": "20:02",
"output": "0"
},
{
"input": "16:12",
"output": "230"
},
{
"input": "20:00",
"output": "2"
},
{
"input": "01:01",
"output": "9"
},
{
"input": "23:01",
"output": "31"
},
{
"input": "06:05",
"output": "236"
},
{
"input": "19:19",
"output": "43"
},
{
"input": "17:00",
"output": "182"
},
{
"input": "07:50",
"output": "131"
},
{
"input": "21:20",
"output": "62"
},
{
"input": "23:23",
"output": "9"
},
{
"input": "19:30",
"output": "32"
},
{
"input": "00:59",
"output": "11"
},
{
"input": "22:59",
"output": "33"
},
{
"input": "18:18",
"output": "104"
},
{
"input": "17:46",
"output": "136"
},
{
"input": "07:30",
"output": "151"
},
{
"input": "17:16",
"output": "166"
},
{
"input": "06:06",
"output": "235"
},
{
"input": "23:30",
"output": "2"
},
{
"input": "05:57",
"output": "244"
},
{
"input": "19:46",
"output": "16"
},
{
"input": "11:10",
"output": "1"
},
{
"input": "17:07",
"output": "175"
},
{
"input": "18:53",
"output": "69"
},
{
"input": "07:06",
"output": "175"
},
{
"input": "17:50",
"output": "132"
},
{
"input": "09:15",
"output": "46"
},
{
"input": "09:55",
"output": "6"
},
{
"input": "20:05",
"output": "67"
},
{
"input": "22:55",
"output": "37"
},
{
"input": "10:00",
"output": "1"
},
{
"input": "07:55",
"output": "126"
},
{
"input": "07:40",
"output": "141"
},
{
"input": "19:08",
"output": "54"
},
{
"input": "23:24",
"output": "8"
},
{
"input": "16:15",
"output": "227"
},
{
"input": "07:20",
"output": "161"
},
{
"input": "23:10",
"output": "22"
},
{
"input": "06:51",
"output": "190"
},
{
"input": "16:30",
"output": "212"
},
{
"input": "17:54",
"output": "128"
},
{
"input": "07:07",
"output": "174"
},
{
"input": "08:01",
"output": "120"
},
{
"input": "09:58",
"output": "3"
},
{
"input": "18:03",
"output": "119"
},
{
"input": "07:59",
"output": "122"
},
{
"input": "05:55",
"output": "246"
},
{
"input": "07:39",
"output": "142"
},
{
"input": "05:52",
"output": "249"
},
{
"input": "12:02",
"output": "19"
},
{
"input": "08:59",
"output": "62"
},
{
"input": "09:21",
"output": "40"
},
{
"input": "16:04",
"output": "238"
},
{
"input": "04:00",
"output": "40"
},
{
"input": "18:21",
"output": "101"
},
{
"input": "09:13",
"output": "48"
},
{
"input": "17:20",
"output": "162"
},
{
"input": "06:15",
"output": "226"
},
{
"input": "19:21",
"output": "41"
},
{
"input": "16:02",
"output": "240"
},
{
"input": "15:59",
"output": "243"
},
{
"input": "06:07",
"output": "234"
},
{
"input": "08:08",
"output": "113"
},
{
"input": "09:09",
"output": "52"
},
{
"input": "02:19",
"output": "1"
},
{
"input": "21:59",
"output": "23"
}
] | 1,588,937,596
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 160
| 155
| 20,172,800
|
hh, mm = [str(x) for x in input().split(':')]
ih = int(hh)
im = int(mm)
cnt = 0
while True:
sh = str(ih)
sm = str(im)
if len(sh) == 1:
sh = '0'+sh
if len(sm) == 1:
sm = '0'+sm
if sh == sm[::-1]:
print(cnt)
break
im += 1
if im >= 60:
ih += 1
im = 0
if ih >= 24:
ih = 0
cnt += 1
|
Title: Karen and Morning
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Karen is getting ready for a new school day!
It is currently hh:mm, given in a 24-hour format. As you know, Karen loves palindromes, and she believes that it is good luck to wake up when the time is a palindrome.
What is the minimum number of minutes she should sleep, such that, when she wakes up, the time is a palindrome?
Remember that a palindrome is a string that reads the same forwards and backwards. For instance, 05:39 is not a palindrome, because 05:39 backwards is 93:50. On the other hand, 05:50 is a palindrome, because 05:50 backwards is 05:50.
Input Specification:
The first and only line of input contains a single string in the format hh:mm (00<=≤<= hh <=≤<=23, 00<=≤<= mm <=≤<=59).
Output Specification:
Output a single integer on a line by itself, the minimum number of minutes she should sleep, such that, when she wakes up, the time is a palindrome.
Demo Input:
['05:39\n', '13:31\n', '23:59\n']
Demo Output:
['11\n', '0\n', '1\n']
Note:
In the first test case, the minimum number of minutes Karen should sleep for is 11. She can wake up at 05:50, when the time is a palindrome.
In the second test case, Karen can wake up immediately, as the current time, 13:31, is already a palindrome.
In the third test case, the minimum number of minutes Karen should sleep for is 1 minute. She can wake up at 00:00, when the time is a palindrome.
|
```python
hh, mm = [str(x) for x in input().split(':')]
ih = int(hh)
im = int(mm)
cnt = 0
while True:
sh = str(ih)
sm = str(im)
if len(sh) == 1:
sh = '0'+sh
if len(sm) == 1:
sm = '0'+sm
if sh == sm[::-1]:
print(cnt)
break
im += 1
if im >= 60:
ih += 1
im = 0
if ih >= 24:
ih = 0
cnt += 1
```
| 3
|
|
353
|
A
|
Domino
|
PROGRAMMING
| 1,200
|
[
"implementation",
"math"
] | null | null |
Valera has got *n* domino pieces in a row. Each piece consists of two halves — the upper one and the lower one. Each of the halves contains a number from 1 to 6. Valera loves even integers very much, so he wants the sum of the numbers on the upper halves and the sum of the numbers on the lower halves to be even.
To do that, Valera can rotate the dominoes by 180 degrees. After the rotation the upper and the lower halves swap places. This action takes one second. Help Valera find out the minimum time he must spend rotating dominoes to make his wish come true.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=100), denoting the number of dominoes Valera has. Next *n* lines contain two space-separated integers *x**i*,<=*y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=6). Number *x**i* is initially written on the upper half of the *i*-th domino, *y**i* is initially written on the lower half.
|
Print a single number — the minimum required number of seconds. If Valera can't do the task in any time, print <=-<=1.
|
[
"2\n4 2\n6 4\n",
"1\n2 3\n",
"3\n1 4\n2 3\n4 4\n"
] |
[
"0\n",
"-1\n",
"1\n"
] |
In the first test case the sum of the numbers on the upper halves equals 10 and the sum of the numbers on the lower halves equals 6. Both numbers are even, so Valera doesn't required to do anything.
In the second sample Valera has only one piece of domino. It is written 3 on the one of its halves, therefore one of the sums will always be odd.
In the third case Valera can rotate the first piece, and after that the sum on the upper halves will be equal to 10, and the sum on the lower halves will be equal to 8.
| 500
|
[
{
"input": "2\n4 2\n6 4",
"output": "0"
},
{
"input": "1\n2 3",
"output": "-1"
},
{
"input": "3\n1 4\n2 3\n4 4",
"output": "1"
},
{
"input": "5\n5 4\n5 4\n1 5\n5 5\n3 3",
"output": "1"
},
{
"input": "20\n1 3\n5 2\n5 2\n2 6\n2 4\n1 1\n1 3\n1 4\n2 6\n4 2\n5 6\n2 2\n6 2\n4 3\n2 1\n6 2\n6 5\n4 5\n2 4\n1 4",
"output": "-1"
},
{
"input": "100\n2 3\n2 4\n3 3\n1 4\n5 2\n5 4\n6 6\n3 4\n1 1\n4 2\n5 1\n5 5\n5 3\n3 6\n4 1\n1 6\n1 1\n3 2\n4 5\n6 1\n6 4\n1 1\n3 4\n3 3\n2 2\n1 1\n4 4\n6 4\n3 2\n5 2\n6 4\n3 2\n3 5\n4 4\n1 4\n5 2\n3 4\n1 4\n2 2\n5 6\n3 5\n6 1\n5 5\n1 6\n6 3\n1 4\n1 5\n5 5\n4 1\n3 2\n4 1\n5 5\n5 5\n1 5\n1 2\n6 4\n1 3\n3 6\n4 3\n3 5\n6 4\n2 6\n5 5\n1 4\n2 2\n2 3\n5 1\n2 5\n1 2\n2 6\n5 5\n4 6\n1 4\n3 6\n2 3\n6 1\n6 5\n3 2\n6 4\n4 5\n4 5\n2 6\n1 3\n6 2\n1 2\n2 3\n4 3\n5 4\n3 4\n1 6\n6 6\n2 4\n4 1\n3 1\n2 6\n5 4\n1 2\n6 5\n3 6\n2 4",
"output": "-1"
},
{
"input": "1\n2 4",
"output": "0"
},
{
"input": "1\n1 1",
"output": "-1"
},
{
"input": "1\n1 2",
"output": "-1"
},
{
"input": "2\n1 1\n3 3",
"output": "0"
},
{
"input": "2\n1 1\n2 2",
"output": "-1"
},
{
"input": "2\n1 1\n1 2",
"output": "-1"
},
{
"input": "5\n1 2\n6 6\n1 1\n3 3\n6 1",
"output": "1"
},
{
"input": "5\n5 4\n2 6\n6 2\n1 4\n6 2",
"output": "0"
},
{
"input": "10\n4 1\n3 2\n1 2\n2 6\n3 5\n2 1\n5 2\n4 6\n5 6\n3 1",
"output": "0"
},
{
"input": "10\n6 1\n4 4\n2 6\n6 5\n3 6\n6 3\n2 4\n5 1\n1 6\n1 5",
"output": "-1"
},
{
"input": "15\n1 2\n5 1\n6 4\n5 1\n1 6\n2 6\n3 1\n6 4\n3 1\n2 1\n6 4\n3 5\n6 2\n1 6\n1 1",
"output": "1"
},
{
"input": "15\n3 3\n2 1\n5 4\n3 3\n5 3\n5 4\n2 5\n1 3\n3 2\n3 3\n3 5\n2 5\n4 1\n2 3\n5 4",
"output": "-1"
},
{
"input": "20\n1 5\n6 4\n4 3\n6 2\n1 1\n1 5\n6 3\n2 3\n3 6\n3 6\n3 6\n2 5\n4 3\n4 6\n5 5\n4 6\n3 4\n4 2\n3 3\n5 2",
"output": "0"
},
{
"input": "20\n2 1\n6 5\n3 1\n2 5\n3 5\n4 1\n1 1\n5 4\n5 1\n2 4\n1 5\n3 2\n1 2\n3 5\n5 2\n1 2\n1 3\n4 2\n2 3\n4 5",
"output": "-1"
},
{
"input": "25\n4 1\n6 3\n1 3\n2 3\n2 4\n6 6\n4 2\n4 2\n1 5\n5 4\n1 2\n2 5\n3 6\n4 1\n3 4\n2 6\n6 1\n5 6\n6 6\n4 2\n1 5\n3 3\n3 3\n6 5\n1 4",
"output": "-1"
},
{
"input": "25\n5 5\n4 3\n2 5\n4 3\n4 6\n4 2\n5 6\n2 1\n5 4\n6 6\n1 3\n1 4\n2 3\n5 6\n5 4\n5 6\n5 4\n6 3\n3 5\n1 3\n2 5\n2 2\n4 4\n2 1\n4 4",
"output": "-1"
},
{
"input": "30\n3 5\n2 5\n1 6\n1 6\n2 4\n5 5\n5 4\n5 6\n5 4\n2 1\n2 4\n1 6\n3 5\n1 1\n3 6\n5 5\n1 6\n3 4\n1 4\n4 6\n2 1\n3 3\n1 3\n4 5\n1 4\n1 6\n2 1\n4 6\n3 5\n5 6",
"output": "1"
},
{
"input": "30\n2 3\n3 1\n6 6\n1 3\n5 5\n3 6\n4 5\n2 1\n1 3\n2 3\n4 4\n2 4\n6 4\n2 4\n5 4\n2 1\n2 5\n2 5\n4 2\n1 4\n2 6\n3 2\n3 2\n6 6\n4 2\n3 4\n6 3\n6 6\n6 6\n5 5",
"output": "1"
},
{
"input": "35\n6 1\n4 3\n1 2\n4 3\n6 4\n4 6\n3 1\n5 5\n3 4\n5 4\n4 6\n1 6\n2 4\n6 6\n5 4\n5 2\n1 3\n1 4\n3 5\n1 4\n2 3\n4 5\n4 3\n6 1\n5 3\n3 2\n5 6\n3 5\n6 5\n4 1\n1 3\n5 5\n4 6\n6 1\n1 3",
"output": "1"
},
{
"input": "35\n4 3\n5 6\n4 5\n2 5\n6 6\n4 1\n2 2\n4 2\n3 4\n4 1\n6 6\n6 3\n1 5\n1 5\n5 6\n4 2\n4 6\n5 5\n2 2\n5 2\n1 2\n4 6\n6 6\n6 5\n2 1\n3 5\n2 5\n3 1\n5 3\n6 4\n4 6\n5 6\n5 1\n3 4\n3 5",
"output": "1"
},
{
"input": "40\n5 6\n1 1\n3 3\n2 6\n6 6\n5 4\n6 4\n3 5\n1 3\n4 4\n4 4\n2 5\n1 3\n3 6\n5 2\n4 3\n4 4\n5 6\n2 3\n1 1\n3 1\n1 1\n1 5\n4 3\n5 5\n3 4\n6 6\n5 6\n2 2\n6 6\n2 1\n2 4\n5 2\n2 2\n1 1\n1 4\n4 2\n3 5\n5 5\n4 5",
"output": "-1"
},
{
"input": "40\n3 2\n5 3\n4 6\n3 5\n6 1\n5 2\n1 2\n6 2\n5 3\n3 2\n4 4\n3 3\n5 2\n4 5\n1 4\n5 1\n3 3\n1 3\n1 3\n2 1\n3 6\n4 2\n4 6\n6 2\n2 5\n2 2\n2 5\n3 3\n5 3\n2 1\n3 2\n2 3\n6 3\n6 3\n3 4\n3 2\n4 3\n5 4\n2 4\n4 6",
"output": "-1"
},
{
"input": "45\n2 4\n3 4\n6 1\n5 5\n1 1\n3 5\n4 3\n5 2\n3 6\n6 1\n4 4\n6 1\n2 1\n6 1\n3 6\n3 3\n6 1\n1 2\n1 5\n6 5\n1 3\n5 6\n6 1\n4 5\n3 6\n2 2\n1 2\n4 5\n5 6\n1 5\n6 2\n2 4\n3 3\n3 1\n6 5\n6 5\n2 1\n5 2\n2 1\n3 3\n2 2\n1 4\n2 2\n3 3\n2 1",
"output": "-1"
},
{
"input": "45\n6 6\n1 6\n1 2\n3 5\n4 4\n2 1\n5 3\n2 1\n5 2\n5 3\n1 4\n5 2\n4 2\n3 6\n5 2\n1 5\n4 4\n5 5\n6 5\n2 1\n2 6\n5 5\n2 1\n6 1\n1 6\n6 5\n2 4\n4 3\n2 6\n2 4\n6 5\n6 4\n6 3\n6 6\n2 1\n6 4\n5 6\n5 4\n1 5\n5 1\n3 3\n5 6\n2 5\n4 5\n3 6",
"output": "-1"
},
{
"input": "50\n4 4\n5 1\n6 4\n6 2\n6 2\n1 4\n5 5\n4 2\n5 5\n5 4\n1 3\n3 5\n6 1\n6 1\n1 4\n4 3\n5 1\n3 6\n2 2\n6 2\n4 4\n2 3\n4 2\n6 5\n5 6\n2 2\n2 4\n3 5\n1 5\n3 2\n3 4\n5 6\n4 6\n1 6\n4 5\n2 6\n2 2\n3 5\n6 4\n5 1\n4 3\n3 4\n3 5\n3 3\n2 3\n3 2\n2 2\n1 4\n3 1\n4 4",
"output": "1"
},
{
"input": "50\n1 2\n1 4\n1 1\n4 5\n4 4\n3 2\n4 5\n3 5\n1 1\n3 4\n3 2\n2 4\n2 6\n2 6\n3 2\n4 6\n1 6\n3 1\n1 6\n2 1\n4 1\n1 6\n4 3\n6 6\n5 2\n6 4\n2 1\n4 3\n6 4\n5 1\n5 5\n3 1\n1 1\n5 5\n2 2\n2 3\n2 3\n3 5\n5 5\n1 6\n1 5\n3 6\n3 6\n1 1\n3 3\n2 6\n5 5\n1 3\n6 3\n6 6",
"output": "-1"
},
{
"input": "55\n3 2\n5 6\n5 1\n3 5\n5 5\n1 5\n5 4\n6 3\n5 6\n4 2\n3 1\n1 2\n5 5\n1 1\n5 2\n6 3\n5 4\n3 6\n4 6\n2 6\n6 4\n1 4\n1 6\n4 1\n2 5\n4 3\n2 1\n2 1\n6 2\n3 1\n2 5\n4 4\n6 3\n2 2\n3 5\n5 1\n3 6\n5 4\n4 6\n6 5\n5 6\n2 2\n3 2\n5 2\n6 5\n2 2\n5 3\n3 1\n4 5\n6 4\n2 4\n1 2\n5 6\n2 6\n5 2",
"output": "0"
},
{
"input": "55\n4 6\n3 3\n6 5\n5 3\n5 6\n2 3\n2 2\n3 4\n3 1\n5 4\n5 4\n2 4\n3 4\n4 5\n1 5\n6 3\n1 1\n5 1\n3 4\n1 5\n3 1\n2 5\n3 3\n4 3\n3 3\n3 1\n6 6\n3 3\n3 3\n5 6\n5 3\n3 5\n1 4\n5 5\n1 3\n1 4\n3 5\n3 6\n2 4\n2 4\n5 1\n6 4\n5 1\n5 5\n1 1\n3 2\n4 3\n5 4\n5 1\n2 4\n4 3\n6 1\n3 4\n1 5\n6 3",
"output": "-1"
},
{
"input": "60\n2 6\n1 4\n3 2\n1 2\n3 2\n2 4\n6 4\n4 6\n1 3\n3 1\n6 5\n2 4\n5 4\n4 2\n1 6\n3 4\n4 5\n5 2\n1 5\n5 4\n3 4\n3 4\n4 4\n4 1\n6 6\n3 6\n2 4\n2 1\n4 4\n6 5\n3 1\n4 3\n1 3\n6 3\n5 5\n1 4\n3 1\n3 6\n1 5\n3 1\n1 5\n4 4\n1 3\n2 4\n6 2\n4 1\n5 3\n3 4\n5 6\n1 2\n1 6\n6 3\n1 6\n3 6\n3 4\n6 2\n4 6\n2 3\n3 3\n3 3",
"output": "-1"
},
{
"input": "60\n2 3\n4 6\n2 4\n1 3\n5 6\n1 5\n1 2\n1 3\n5 6\n4 3\n4 2\n3 1\n1 3\n3 5\n1 5\n3 4\n2 4\n3 5\n4 5\n1 2\n3 1\n1 5\n2 5\n6 2\n1 6\n3 3\n6 2\n5 3\n1 3\n1 4\n6 4\n6 3\n4 2\n4 2\n1 4\n1 3\n3 2\n3 1\n2 1\n1 2\n3 1\n2 6\n1 4\n3 6\n3 3\n1 5\n2 4\n5 5\n6 2\n5 2\n3 3\n5 3\n3 4\n4 5\n5 6\n2 4\n5 3\n3 1\n2 4\n5 4",
"output": "-1"
},
{
"input": "65\n5 4\n3 3\n1 2\n4 3\n3 5\n1 5\n4 5\n2 6\n1 2\n1 5\n6 3\n2 6\n4 3\n3 6\n1 5\n3 5\n4 6\n2 5\n6 5\n1 4\n3 4\n4 3\n1 4\n2 5\n6 5\n3 1\n4 3\n1 2\n1 1\n6 1\n5 2\n3 2\n1 6\n2 6\n3 3\n6 6\n4 6\n1 5\n5 1\n4 5\n1 4\n3 2\n5 4\n4 2\n6 2\n1 3\n4 2\n5 3\n6 4\n3 6\n1 2\n6 1\n6 6\n3 3\n4 2\n3 5\n4 6\n4 1\n5 4\n6 1\n5 1\n5 6\n6 1\n4 6\n5 5",
"output": "1"
},
{
"input": "65\n5 4\n6 3\n5 4\n4 5\n5 3\n3 6\n1 3\n3 1\n1 3\n6 1\n6 4\n1 3\n2 2\n4 6\n4 1\n5 6\n6 5\n1 1\n1 3\n6 6\n4 1\n2 4\n5 4\n4 1\n5 5\n5 3\n6 2\n2 6\n4 2\n2 2\n6 2\n3 3\n4 5\n4 3\n3 1\n1 4\n4 5\n3 2\n5 5\n4 6\n5 1\n3 4\n5 4\n5 2\n1 6\n4 2\n3 4\n3 4\n1 3\n1 2\n3 3\n3 6\n6 4\n4 6\n6 2\n6 5\n3 2\n2 1\n6 4\n2 1\n1 5\n5 2\n6 5\n3 6\n5 1",
"output": "1"
},
{
"input": "70\n4 1\n2 6\n1 1\n5 6\n5 1\n2 3\n3 5\n1 1\n1 1\n4 6\n4 3\n1 5\n2 2\n2 3\n3 1\n6 4\n3 1\n4 2\n5 4\n1 3\n3 5\n5 2\n5 6\n4 4\n4 5\n2 2\n4 5\n3 2\n3 5\n2 5\n2 6\n5 5\n2 6\n5 1\n1 1\n2 5\n3 1\n1 2\n6 4\n6 5\n5 5\n5 1\n1 5\n2 2\n6 3\n4 3\n6 2\n5 5\n1 1\n6 2\n6 6\n3 4\n2 2\n3 5\n1 5\n2 5\n4 5\n2 4\n6 3\n5 1\n2 6\n4 2\n1 4\n1 6\n6 2\n5 2\n5 6\n2 5\n5 6\n5 5",
"output": "-1"
},
{
"input": "70\n4 3\n6 4\n5 5\n3 1\n1 2\n2 5\n4 6\n4 2\n3 2\n4 2\n1 5\n2 2\n4 3\n1 2\n6 1\n6 6\n1 6\n5 1\n2 2\n6 3\n4 2\n4 3\n1 2\n6 6\n3 3\n6 5\n6 2\n3 6\n6 6\n4 6\n5 2\n5 4\n3 3\n1 6\n5 6\n2 3\n4 6\n1 1\n1 2\n6 6\n1 1\n3 4\n1 6\n2 6\n3 4\n6 3\n5 3\n1 2\n2 3\n4 6\n2 1\n6 4\n4 6\n4 6\n4 2\n5 5\n3 5\n3 2\n4 3\n3 6\n1 4\n3 6\n1 4\n1 6\n1 5\n5 6\n4 4\n3 3\n3 5\n2 2",
"output": "0"
},
{
"input": "75\n1 3\n4 5\n4 1\n6 5\n2 1\n1 4\n5 4\n1 5\n5 3\n1 2\n4 1\n1 1\n5 1\n5 3\n1 5\n4 2\n2 2\n6 3\n1 2\n4 3\n2 5\n5 3\n5 5\n4 1\n4 6\n2 5\n6 1\n2 4\n6 4\n5 2\n6 2\n2 4\n1 3\n5 4\n6 5\n5 4\n6 4\n1 5\n4 6\n1 5\n1 1\n4 4\n3 5\n6 3\n6 5\n1 5\n2 1\n1 5\n6 6\n2 2\n2 2\n4 4\n6 6\n5 4\n4 5\n3 2\n2 4\n1 1\n4 3\n3 2\n5 4\n1 6\n1 2\n2 2\n3 5\n2 6\n1 1\n2 2\n2 3\n6 2\n3 6\n4 4\n5 1\n4 1\n4 1",
"output": "0"
},
{
"input": "75\n1 1\n2 1\n5 5\n6 5\n6 3\n1 6\n6 1\n4 4\n2 1\n6 2\n3 1\n6 4\n1 6\n2 2\n4 3\n4 2\n1 2\n6 2\n4 2\n5 1\n1 2\n3 2\n6 6\n6 3\n2 4\n4 1\n4 1\n2 4\n5 5\n2 3\n5 5\n4 5\n3 1\n1 5\n4 3\n2 3\n3 5\n4 6\n5 6\n1 6\n2 3\n2 2\n1 2\n5 6\n1 4\n1 5\n1 3\n6 2\n1 2\n4 2\n2 1\n1 3\n6 4\n4 1\n5 2\n6 2\n3 5\n2 3\n4 2\n5 1\n5 6\n3 2\n2 1\n6 6\n2 1\n6 2\n1 1\n3 2\n1 2\n3 5\n4 6\n1 3\n3 4\n5 5\n6 2",
"output": "1"
},
{
"input": "80\n3 1\n6 3\n2 2\n2 2\n6 3\n6 1\n6 5\n1 4\n3 6\n6 5\n1 3\n2 4\n1 4\n3 1\n5 3\n5 3\n1 4\n2 5\n4 3\n4 4\n4 5\n6 1\n3 1\n2 6\n4 2\n3 1\n6 5\n2 6\n2 2\n5 1\n1 3\n5 1\n2 1\n4 3\n6 3\n3 5\n4 3\n5 6\n3 3\n4 1\n5 1\n6 5\n5 1\n2 5\n6 1\n3 2\n4 3\n3 3\n5 6\n1 6\n5 2\n1 5\n5 6\n6 4\n2 2\n4 2\n4 6\n4 2\n4 4\n6 5\n5 2\n6 2\n4 6\n6 4\n4 3\n5 1\n4 1\n3 5\n3 2\n3 2\n5 3\n5 4\n3 4\n1 3\n1 2\n6 6\n6 3\n6 1\n5 6\n3 2",
"output": "0"
},
{
"input": "80\n4 5\n3 3\n3 6\n4 5\n3 4\n6 5\n1 5\n2 5\n5 6\n5 1\n5 1\n1 2\n5 5\n5 1\n2 3\n1 1\n4 5\n4 1\n1 1\n5 5\n5 6\n5 2\n5 4\n4 2\n6 2\n5 3\n3 2\n4 2\n1 3\n1 6\n2 1\n6 6\n4 5\n6 4\n2 2\n1 6\n6 2\n4 3\n2 3\n4 6\n4 6\n6 2\n3 4\n4 3\n5 5\n1 6\n3 2\n4 6\n2 3\n1 6\n5 4\n4 2\n5 4\n1 1\n4 3\n5 1\n3 6\n6 2\n3 1\n4 1\n5 3\n2 2\n3 4\n3 6\n3 5\n5 5\n5 1\n3 5\n2 6\n6 3\n6 5\n3 3\n5 6\n1 2\n3 1\n6 3\n3 4\n6 6\n6 6\n1 2",
"output": "-1"
},
{
"input": "85\n6 3\n4 1\n1 2\n3 5\n6 4\n6 2\n2 6\n1 2\n1 5\n6 2\n1 4\n6 6\n2 4\n4 6\n4 5\n1 6\n3 1\n2 5\n5 1\n5 2\n3 5\n1 1\n4 1\n2 3\n1 1\n3 3\n6 4\n1 4\n1 1\n3 6\n1 5\n1 6\n2 5\n2 2\n5 1\n6 6\n1 3\n1 5\n5 6\n4 5\n4 3\n5 5\n1 3\n6 3\n4 6\n2 4\n5 6\n6 2\n4 5\n1 4\n1 4\n6 5\n1 6\n6 1\n1 6\n5 5\n2 1\n5 2\n2 3\n1 6\n1 6\n1 6\n5 6\n2 4\n6 5\n6 5\n4 2\n5 4\n3 4\n4 3\n6 6\n3 3\n3 2\n3 6\n2 5\n2 1\n2 5\n3 4\n1 2\n5 4\n6 2\n5 1\n1 4\n3 4\n4 5",
"output": "0"
},
{
"input": "85\n3 1\n3 2\n6 3\n1 3\n2 1\n3 6\n1 4\n2 5\n6 5\n1 6\n1 5\n1 1\n4 3\n3 5\n4 6\n3 2\n6 6\n4 4\n4 1\n5 5\n4 2\n6 2\n2 2\n4 5\n6 1\n3 4\n4 5\n3 5\n4 2\n3 5\n4 4\n3 1\n4 4\n6 4\n1 4\n5 5\n1 5\n2 2\n6 5\n5 6\n6 5\n3 2\n3 2\n6 1\n6 5\n2 1\n4 6\n2 1\n3 1\n5 6\n1 3\n5 4\n1 4\n1 4\n5 3\n2 3\n1 3\n2 2\n5 3\n2 3\n2 3\n1 3\n3 6\n4 4\n6 6\n6 2\n5 1\n5 5\n5 5\n1 2\n1 4\n2 4\n3 6\n4 6\n6 3\n6 4\n5 5\n3 2\n5 4\n5 4\n4 5\n6 4\n2 1\n5 2\n5 1",
"output": "-1"
},
{
"input": "90\n5 2\n5 5\n5 1\n4 6\n4 3\n5 3\n5 6\n5 1\n3 4\n1 3\n4 2\n1 6\n6 4\n1 2\n6 1\n4 1\n6 2\n6 5\n6 2\n5 4\n3 6\n1 1\n5 5\n2 2\n1 6\n3 5\n6 5\n1 6\n1 5\n2 3\n2 6\n2 3\n3 3\n1 3\n5 1\n2 5\n3 6\n1 2\n4 4\n1 6\n2 3\n1 5\n2 5\n1 3\n2 2\n4 6\n3 6\n6 3\n1 2\n4 3\n4 5\n4 6\n3 2\n6 5\n6 2\n2 5\n2 4\n1 3\n1 6\n4 3\n1 3\n6 4\n4 6\n4 1\n1 1\n4 1\n4 4\n6 2\n6 5\n1 1\n2 2\n3 1\n1 4\n6 2\n5 2\n1 4\n1 3\n6 5\n3 2\n6 4\n3 4\n2 6\n2 2\n6 3\n4 6\n1 2\n4 2\n3 4\n2 3\n1 5",
"output": "-1"
},
{
"input": "90\n1 4\n3 5\n4 2\n2 5\n4 3\n2 6\n2 6\n3 2\n4 4\n6 1\n4 3\n2 3\n5 3\n6 6\n2 2\n6 3\n4 1\n4 4\n5 6\n6 4\n4 2\n5 6\n4 6\n4 4\n6 4\n4 1\n5 3\n3 2\n4 4\n5 2\n5 4\n6 4\n1 2\n3 3\n3 4\n6 4\n1 6\n4 2\n3 2\n1 1\n2 2\n5 1\n6 6\n4 1\n5 2\n3 6\n2 1\n2 2\n4 6\n6 5\n4 4\n5 5\n5 6\n1 6\n1 4\n5 6\n3 6\n6 3\n5 6\n6 5\n5 1\n6 1\n6 6\n6 3\n1 5\n4 5\n3 1\n6 6\n3 4\n6 2\n1 4\n2 2\n3 2\n5 6\n2 4\n1 4\n6 3\n4 6\n1 4\n5 2\n1 2\n6 5\n1 5\n1 4\n4 2\n2 5\n3 2\n5 1\n5 4\n5 3",
"output": "-1"
},
{
"input": "95\n4 3\n3 2\n5 5\n5 3\n1 6\n4 4\n5 5\n6 5\n3 5\n1 5\n4 2\n5 1\n1 2\n2 3\n6 4\n2 3\n6 3\n6 5\n5 6\n1 4\n2 6\n2 6\n2 5\n2 1\n3 1\n3 5\n2 2\n6 1\n2 4\n4 6\n6 6\n6 4\n3 2\n5 1\n4 3\n6 5\n2 3\n4 1\n2 5\n6 5\n6 5\n6 5\n5 1\n5 4\n4 6\n3 2\n2 5\n2 6\n4 6\n6 3\n6 4\n5 6\n4 6\n2 4\n3 4\n1 4\n2 4\n2 3\n5 6\n6 4\n3 1\n5 1\n3 6\n3 5\n2 6\n6 3\n4 3\n3 1\n6 1\n2 2\n6 3\n2 2\n2 2\n6 4\n6 1\n2 1\n5 6\n5 4\n5 2\n3 4\n3 6\n2 1\n1 6\n5 5\n2 6\n2 3\n3 6\n1 3\n1 5\n5 1\n1 2\n2 2\n5 3\n6 4\n4 5",
"output": "0"
},
{
"input": "95\n4 5\n5 6\n3 2\n5 1\n4 3\n4 1\n6 1\n5 2\n2 4\n5 3\n2 3\n6 4\n4 1\n1 6\n2 6\n2 3\n4 6\n2 4\n3 4\n4 2\n5 5\n1 1\n1 5\n4 3\n4 5\n6 2\n6 1\n6 3\n5 5\n4 1\n5 1\n2 3\n5 1\n3 6\n6 6\n4 5\n4 4\n4 3\n1 6\n6 6\n4 6\n6 4\n1 2\n6 2\n4 6\n6 6\n5 5\n6 1\n5 2\n4 5\n6 6\n6 5\n4 4\n1 5\n4 6\n4 1\n3 6\n5 1\n3 1\n4 6\n4 5\n1 3\n5 4\n4 5\n2 2\n6 1\n5 2\n6 5\n2 2\n1 1\n6 3\n6 1\n2 6\n3 3\n2 1\n4 6\n2 4\n5 5\n5 2\n3 2\n1 2\n6 6\n6 2\n5 1\n2 6\n5 2\n2 2\n5 5\n3 5\n3 3\n2 6\n5 3\n4 3\n1 6\n5 4",
"output": "-1"
},
{
"input": "100\n1 1\n3 5\n2 1\n1 2\n3 4\n5 6\n5 6\n6 1\n5 5\n2 4\n5 5\n5 6\n6 2\n6 6\n2 6\n1 4\n2 2\n3 2\n1 3\n5 5\n6 3\n5 6\n1 1\n1 2\n1 2\n2 1\n2 3\n1 6\n4 3\n1 1\n2 5\n2 4\n4 4\n1 5\n3 3\n6 1\n3 5\n1 1\n3 6\n3 1\n4 2\n4 3\n3 6\n6 6\n1 6\n6 2\n2 5\n5 4\n6 3\n1 4\n2 6\n6 2\n3 4\n6 1\n6 5\n4 6\n6 5\n4 4\n3 1\n6 3\n5 1\n2 4\n5 1\n1 2\n2 4\n2 1\n6 6\n5 3\n4 6\n6 3\n5 5\n3 3\n1 1\n6 5\n4 3\n2 6\n1 5\n3 5\n2 4\n4 5\n1 6\n2 3\n6 3\n5 5\n2 6\n2 6\n3 4\n3 2\n6 1\n3 4\n6 4\n3 3\n2 3\n5 1\n3 1\n6 2\n2 3\n6 4\n1 4\n1 2",
"output": "-1"
},
{
"input": "100\n1 1\n5 5\n1 2\n5 3\n5 5\n2 2\n1 5\n3 4\n3 2\n1 3\n5 6\n4 5\n2 1\n5 5\n2 2\n1 6\n6 1\n5 1\n4 1\n4 6\n3 5\n6 1\n2 3\n5 6\n3 6\n2 3\n5 6\n1 6\n3 2\n2 2\n3 3\n6 5\n5 5\n1 4\n5 6\n6 4\n1 4\n1 2\n2 6\n3 2\n6 4\n5 3\n3 3\n6 4\n4 6\n2 2\n5 6\n5 1\n1 2\n3 4\n4 5\n1 1\n3 4\n5 2\n4 5\n3 3\n1 1\n3 4\n1 6\n2 4\n1 3\n3 2\n6 5\n1 6\n3 6\n2 3\n2 6\n5 1\n5 5\n5 6\n4 1\n6 2\n3 6\n5 3\n2 2\n2 4\n6 6\n3 6\n4 6\n2 5\n5 3\n1 2\n3 4\n3 4\n6 2\n2 4\n2 2\n4 6\n3 5\n4 2\n5 6\n4 2\n2 3\n6 2\n5 6\n2 1\n3 3\n6 6\n4 3\n4 2",
"output": "1"
},
{
"input": "1\n2 2",
"output": "0"
},
{
"input": "3\n2 4\n6 6\n3 3",
"output": "-1"
},
{
"input": "2\n3 6\n4 1",
"output": "1"
},
{
"input": "3\n1 1\n1 1\n3 3",
"output": "-1"
},
{
"input": "3\n2 3\n1 1\n2 3",
"output": "1"
},
{
"input": "3\n2 2\n2 1\n1 2",
"output": "1"
},
{
"input": "3\n1 1\n1 1\n1 1",
"output": "-1"
}
] | 1,681,105,169
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 60
| 0
|
def domino():
mat = []
n = int(input("enter the number of dominos"))
for i in range(0,n):
mat.append([])
for i in range(0,n):
for j in range(2):
mat[i].append(j)
mat[i][j]=0
print(mat)
for i in range(n):
for j in range(2):
print("en:ter the number")
mat[i][j] = int(input( ))
print(mat)
u_sum = 0
l_sum = 0
ans ,count = 0,0
for i in range(n):
u_sum += mat[i][0]
l_sum += mat[i][1]
if (u_sum % 2 != 0 and l_sum % 2 == 0 ) or (u_sum % 2 == 0 and l_sum % 2 != 0 ):
print(-1)
else:
if u_sum % 2 == 0 and l_sum % 2 == 0 :
print(0)
else:
for i in range(0,n):
if ((mat[i][0] % 2 == 0 and mat[i][1] % 2 == 1) or ( mat[i][0] % 2 == 1 and mat[i][1] % 2 == 0)):
print(ans + 1)
break
count += 1
if (count == n):
print(-1)
domino()
|
Title: Domino
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Valera has got *n* domino pieces in a row. Each piece consists of two halves — the upper one and the lower one. Each of the halves contains a number from 1 to 6. Valera loves even integers very much, so he wants the sum of the numbers on the upper halves and the sum of the numbers on the lower halves to be even.
To do that, Valera can rotate the dominoes by 180 degrees. After the rotation the upper and the lower halves swap places. This action takes one second. Help Valera find out the minimum time he must spend rotating dominoes to make his wish come true.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=100), denoting the number of dominoes Valera has. Next *n* lines contain two space-separated integers *x**i*,<=*y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=6). Number *x**i* is initially written on the upper half of the *i*-th domino, *y**i* is initially written on the lower half.
Output Specification:
Print a single number — the minimum required number of seconds. If Valera can't do the task in any time, print <=-<=1.
Demo Input:
['2\n4 2\n6 4\n', '1\n2 3\n', '3\n1 4\n2 3\n4 4\n']
Demo Output:
['0\n', '-1\n', '1\n']
Note:
In the first test case the sum of the numbers on the upper halves equals 10 and the sum of the numbers on the lower halves equals 6. Both numbers are even, so Valera doesn't required to do anything.
In the second sample Valera has only one piece of domino. It is written 3 on the one of its halves, therefore one of the sums will always be odd.
In the third case Valera can rotate the first piece, and after that the sum on the upper halves will be equal to 10, and the sum on the lower halves will be equal to 8.
|
```python
def domino():
mat = []
n = int(input("enter the number of dominos"))
for i in range(0,n):
mat.append([])
for i in range(0,n):
for j in range(2):
mat[i].append(j)
mat[i][j]=0
print(mat)
for i in range(n):
for j in range(2):
print("en:ter the number")
mat[i][j] = int(input( ))
print(mat)
u_sum = 0
l_sum = 0
ans ,count = 0,0
for i in range(n):
u_sum += mat[i][0]
l_sum += mat[i][1]
if (u_sum % 2 != 0 and l_sum % 2 == 0 ) or (u_sum % 2 == 0 and l_sum % 2 != 0 ):
print(-1)
else:
if u_sum % 2 == 0 and l_sum % 2 == 0 :
print(0)
else:
for i in range(0,n):
if ((mat[i][0] % 2 == 0 and mat[i][1] % 2 == 1) or ( mat[i][0] % 2 == 1 and mat[i][1] % 2 == 0)):
print(ans + 1)
break
count += 1
if (count == n):
print(-1)
domino()
```
| -1
|
|
143
|
A
|
Help Vasilisa the Wise 2
|
PROGRAMMING
| 1,000
|
[
"brute force",
"math"
] | null | null |
Vasilisa the Wise from the Kingdom of Far Far Away got a magic box with a secret as a present from her friend Hellawisa the Wise from the Kingdom of A Little Closer. However, Vasilisa the Wise does not know what the box's secret is, since she cannot open it again. She hopes that you will help her one more time with that.
The box's lock looks as follows: it contains 4 identical deepenings for gems as a 2<=×<=2 square, and some integer numbers are written at the lock's edge near the deepenings. The example of a lock is given on the picture below.
The box is accompanied with 9 gems. Their shapes match the deepenings' shapes and each gem contains one number from 1 to 9 (each number is written on exactly one gem). The box will only open after it is decorated with gems correctly: that is, each deepening in the lock should be filled with exactly one gem. Also, the sums of numbers in the square's rows, columns and two diagonals of the square should match the numbers written at the lock's edge. For example, the above lock will open if we fill the deepenings with gems with numbers as is shown on the picture below.
Now Vasilisa the Wise wants to define, given the numbers on the box's lock, which gems she should put in the deepenings to open the box. Help Vasilisa to solve this challenging task.
|
The input contains numbers written on the edges of the lock of the box. The first line contains space-separated integers *r*1 and *r*2 that define the required sums of numbers in the rows of the square. The second line contains space-separated integers *c*1 and *c*2 that define the required sums of numbers in the columns of the square. The third line contains space-separated integers *d*1 and *d*2 that define the required sums of numbers on the main and on the side diagonals of the square (1<=≤<=*r*1,<=*r*2,<=*c*1,<=*c*2,<=*d*1,<=*d*2<=≤<=20). Correspondence between the above 6 variables and places where they are written is shown on the picture below. For more clarifications please look at the second sample test that demonstrates the example given in the problem statement.
|
Print the scheme of decorating the box with stones: two lines containing two space-separated integers from 1 to 9. The numbers should be pairwise different. If there is no solution for the given lock, then print the single number "-1" (without the quotes).
If there are several solutions, output any.
|
[
"3 7\n4 6\n5 5\n",
"11 10\n13 8\n5 16\n",
"1 2\n3 4\n5 6\n",
"10 10\n10 10\n10 10\n"
] |
[
"1 2\n3 4\n",
"4 7\n9 1\n",
"-1\n",
"-1\n"
] |
Pay attention to the last test from the statement: it is impossible to open the box because for that Vasilisa the Wise would need 4 identical gems containing number "5". However, Vasilisa only has one gem with each number from 1 to 9.
| 500
|
[
{
"input": "3 7\n4 6\n5 5",
"output": "1 2\n3 4"
},
{
"input": "11 10\n13 8\n5 16",
"output": "4 7\n9 1"
},
{
"input": "1 2\n3 4\n5 6",
"output": "-1"
},
{
"input": "10 10\n10 10\n10 10",
"output": "-1"
},
{
"input": "5 13\n8 10\n11 7",
"output": "3 2\n5 8"
},
{
"input": "12 17\n10 19\n13 16",
"output": "-1"
},
{
"input": "11 11\n17 5\n12 10",
"output": "9 2\n8 3"
},
{
"input": "12 11\n11 12\n16 7",
"output": "-1"
},
{
"input": "5 9\n7 7\n8 6",
"output": "3 2\n4 5"
},
{
"input": "10 7\n4 13\n11 6",
"output": "-1"
},
{
"input": "18 10\n16 12\n12 16",
"output": "-1"
},
{
"input": "13 6\n10 9\n6 13",
"output": "-1"
},
{
"input": "14 16\n16 14\n18 12",
"output": "-1"
},
{
"input": "16 10\n16 10\n12 14",
"output": "-1"
},
{
"input": "11 9\n12 8\n11 9",
"output": "-1"
},
{
"input": "5 14\n10 9\n10 9",
"output": "-1"
},
{
"input": "2 4\n1 5\n3 3",
"output": "-1"
},
{
"input": "17 16\n14 19\n18 15",
"output": "-1"
},
{
"input": "12 12\n14 10\n16 8",
"output": "9 3\n5 7"
},
{
"input": "15 11\n16 10\n9 17",
"output": "7 8\n9 2"
},
{
"input": "8 10\n9 9\n13 5",
"output": "6 2\n3 7"
},
{
"input": "13 7\n10 10\n5 15",
"output": "4 9\n6 1"
},
{
"input": "14 11\n9 16\n16 9",
"output": "-1"
},
{
"input": "12 8\n14 6\n8 12",
"output": "-1"
},
{
"input": "10 6\n6 10\n4 12",
"output": "-1"
},
{
"input": "10 8\n10 8\n4 14",
"output": "-1"
},
{
"input": "14 13\n9 18\n14 13",
"output": "-1"
},
{
"input": "9 14\n8 15\n8 15",
"output": "-1"
},
{
"input": "3 8\n2 9\n6 5",
"output": "-1"
},
{
"input": "14 17\n18 13\n15 16",
"output": "-1"
},
{
"input": "16 14\n15 15\n17 13",
"output": "9 7\n6 8"
},
{
"input": "14 11\n16 9\n13 12",
"output": "9 5\n7 4"
},
{
"input": "13 10\n11 12\n7 16",
"output": "4 9\n7 3"
},
{
"input": "14 8\n11 11\n13 9",
"output": "8 6\n3 5"
},
{
"input": "12 11\n13 10\n10 13",
"output": "-1"
},
{
"input": "6 5\n2 9\n5 6",
"output": "-1"
},
{
"input": "7 8\n8 7\n12 3",
"output": "-1"
},
{
"input": "7 11\n7 11\n6 12",
"output": "-1"
},
{
"input": "8 5\n11 2\n8 5",
"output": "-1"
},
{
"input": "10 16\n14 12\n14 12",
"output": "-1"
},
{
"input": "7 9\n4 12\n5 11",
"output": "-1"
},
{
"input": "11 13\n19 5\n12 12",
"output": "-1"
},
{
"input": "8 12\n5 15\n11 9",
"output": "2 6\n3 9"
},
{
"input": "16 5\n13 8\n10 11",
"output": "9 7\n4 1"
},
{
"input": "3 14\n8 9\n10 7",
"output": "2 1\n6 8"
},
{
"input": "12 14\n11 15\n9 17",
"output": "3 9\n8 6"
},
{
"input": "13 7\n9 11\n14 6",
"output": "8 5\n1 6"
},
{
"input": "13 8\n15 6\n11 10",
"output": "9 4\n6 2"
},
{
"input": "9 6\n5 10\n3 12",
"output": "1 8\n4 2"
},
{
"input": "12 7\n5 14\n8 11",
"output": "3 9\n2 5"
},
{
"input": "9 12\n3 17\n10 10",
"output": "-1"
},
{
"input": "3 8\n4 6\n5 5",
"output": "-1"
}
] | 1,524,650,405
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 13
| 156
| 7,372,800
|
r=[int(i)for i in input().split()]
c=[int(i)for i in input().split()]
d=[int(i)for i in input().split()]
a=(d[0]-r[1]+c[0])//2
b= r[0]-a
y= c[0]-a
z= d[0]-a
if (a>9 or a<=0) or (b>9 or b<=0) or (y>9 or y<=0) or (z>9 or z<=0) or (a==b) or (a==c)or (a==y) or (a==z) or (z==y) or (z==c) or (c==y) :
print("-1")
else:
print(a,b)
print(y,z)
|
Title: Help Vasilisa the Wise 2
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasilisa the Wise from the Kingdom of Far Far Away got a magic box with a secret as a present from her friend Hellawisa the Wise from the Kingdom of A Little Closer. However, Vasilisa the Wise does not know what the box's secret is, since she cannot open it again. She hopes that you will help her one more time with that.
The box's lock looks as follows: it contains 4 identical deepenings for gems as a 2<=×<=2 square, and some integer numbers are written at the lock's edge near the deepenings. The example of a lock is given on the picture below.
The box is accompanied with 9 gems. Their shapes match the deepenings' shapes and each gem contains one number from 1 to 9 (each number is written on exactly one gem). The box will only open after it is decorated with gems correctly: that is, each deepening in the lock should be filled with exactly one gem. Also, the sums of numbers in the square's rows, columns and two diagonals of the square should match the numbers written at the lock's edge. For example, the above lock will open if we fill the deepenings with gems with numbers as is shown on the picture below.
Now Vasilisa the Wise wants to define, given the numbers on the box's lock, which gems she should put in the deepenings to open the box. Help Vasilisa to solve this challenging task.
Input Specification:
The input contains numbers written on the edges of the lock of the box. The first line contains space-separated integers *r*1 and *r*2 that define the required sums of numbers in the rows of the square. The second line contains space-separated integers *c*1 and *c*2 that define the required sums of numbers in the columns of the square. The third line contains space-separated integers *d*1 and *d*2 that define the required sums of numbers on the main and on the side diagonals of the square (1<=≤<=*r*1,<=*r*2,<=*c*1,<=*c*2,<=*d*1,<=*d*2<=≤<=20). Correspondence between the above 6 variables and places where they are written is shown on the picture below. For more clarifications please look at the second sample test that demonstrates the example given in the problem statement.
Output Specification:
Print the scheme of decorating the box with stones: two lines containing two space-separated integers from 1 to 9. The numbers should be pairwise different. If there is no solution for the given lock, then print the single number "-1" (without the quotes).
If there are several solutions, output any.
Demo Input:
['3 7\n4 6\n5 5\n', '11 10\n13 8\n5 16\n', '1 2\n3 4\n5 6\n', '10 10\n10 10\n10 10\n']
Demo Output:
['1 2\n3 4\n', '4 7\n9 1\n', '-1\n', '-1\n']
Note:
Pay attention to the last test from the statement: it is impossible to open the box because for that Vasilisa the Wise would need 4 identical gems containing number "5". However, Vasilisa only has one gem with each number from 1 to 9.
|
```python
r=[int(i)for i in input().split()]
c=[int(i)for i in input().split()]
d=[int(i)for i in input().split()]
a=(d[0]-r[1]+c[0])//2
b= r[0]-a
y= c[0]-a
z= d[0]-a
if (a>9 or a<=0) or (b>9 or b<=0) or (y>9 or y<=0) or (z>9 or z<=0) or (a==b) or (a==c)or (a==y) or (a==z) or (z==y) or (z==c) or (c==y) :
print("-1")
else:
print(a,b)
print(y,z)
```
| 0
|
|
385
|
A
|
Bear and Raspberry
|
PROGRAMMING
| 1,000
|
[
"brute force",
"greedy",
"implementation"
] | null | null |
The bear decided to store some raspberry for the winter. He cunningly found out the price for a barrel of honey in kilos of raspberry for each of the following *n* days. According to the bear's data, on the *i*-th (1<=≤<=*i*<=≤<=*n*) day, the price for one barrel of honey is going to is *x**i* kilos of raspberry.
Unfortunately, the bear has neither a honey barrel, nor the raspberry. At the same time, the bear's got a friend who is ready to lend him a barrel of honey for exactly one day for *c* kilograms of raspberry. That's why the bear came up with a smart plan. He wants to choose some day *d* (1<=≤<=*d*<=<<=*n*), lent a barrel of honey and immediately (on day *d*) sell it according to a daily exchange rate. The next day (*d*<=+<=1) the bear wants to buy a new barrel of honey according to a daily exchange rate (as he's got some raspberry left from selling the previous barrel) and immediately (on day *d*<=+<=1) give his friend the borrowed barrel of honey as well as *c* kilograms of raspberry for renting the barrel.
The bear wants to execute his plan at most once and then hibernate. What maximum number of kilograms of raspberry can he earn? Note that if at some point of the plan the bear runs out of the raspberry, then he won't execute such a plan.
|
The first line contains two space-separated integers, *n* and *c* (2<=≤<=*n*<=≤<=100,<=0<=≤<=*c*<=≤<=100), — the number of days and the number of kilos of raspberry that the bear should give for borrowing the barrel.
The second line contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=100), the price of a honey barrel on day *i*.
|
Print a single integer — the answer to the problem.
|
[
"5 1\n5 10 7 3 20\n",
"6 2\n100 1 10 40 10 40\n",
"3 0\n1 2 3\n"
] |
[
"3\n",
"97\n",
"0\n"
] |
In the first sample the bear will lend a honey barrel at day 3 and then sell it for 7. Then the bear will buy a barrel for 3 and return it to the friend. So, the profit is (7 - 3 - 1) = 3.
In the second sample bear will lend a honey barrel at day 1 and then sell it for 100. Then the bear buy the barrel for 1 at the day 2. So, the profit is (100 - 1 - 2) = 97.
| 500
|
[
{
"input": "5 1\n5 10 7 3 20",
"output": "3"
},
{
"input": "6 2\n100 1 10 40 10 40",
"output": "97"
},
{
"input": "3 0\n1 2 3",
"output": "0"
},
{
"input": "2 0\n2 1",
"output": "1"
},
{
"input": "10 5\n10 1 11 2 12 3 13 4 14 5",
"output": "4"
},
{
"input": "100 4\n2 57 70 8 44 10 88 67 50 44 93 79 72 50 69 19 21 9 71 47 95 13 46 10 68 72 54 40 15 83 57 92 58 25 4 22 84 9 8 55 87 0 16 46 86 58 5 21 32 28 10 46 11 29 13 33 37 34 78 33 33 21 46 70 77 51 45 97 6 21 68 61 87 54 8 91 37 12 76 61 57 9 100 45 44 88 5 71 98 98 26 45 37 87 34 50 33 60 64 77",
"output": "87"
},
{
"input": "100 5\n15 91 86 53 18 52 26 89 8 4 5 100 11 64 88 91 35 57 67 72 71 71 69 73 97 23 11 1 59 86 37 82 6 67 71 11 7 31 11 68 21 43 89 54 27 10 3 33 8 57 79 26 90 81 6 28 24 7 33 50 24 13 27 85 4 93 14 62 37 67 33 40 7 48 41 4 14 9 95 10 64 62 7 93 23 6 28 27 97 64 26 83 70 0 97 74 11 82 70 93",
"output": "84"
},
{
"input": "6 100\n10 9 8 7 6 5",
"output": "0"
},
{
"input": "100 9\n66 71 37 41 23 38 77 11 74 13 51 26 93 56 81 17 12 70 85 37 54 100 14 99 12 83 44 16 99 65 13 48 92 32 69 33 100 57 58 88 25 45 44 85 5 41 82 15 37 18 21 45 3 68 33 9 52 64 8 73 32 41 87 99 26 26 47 24 79 93 9 44 11 34 85 26 14 61 49 38 25 65 49 81 29 82 28 23 2 64 38 13 77 68 67 23 58 57 83 46",
"output": "78"
},
{
"input": "100 100\n9 72 46 37 26 94 80 1 43 85 26 53 58 18 24 19 67 2 100 52 61 81 48 15 73 41 97 93 45 1 73 54 75 51 28 79 0 14 41 42 24 50 70 18 96 100 67 1 68 48 44 39 63 77 78 18 10 51 32 53 26 60 1 13 66 39 55 27 23 71 75 0 27 88 73 31 16 95 87 84 86 71 37 40 66 70 65 83 19 4 81 99 26 51 67 63 80 54 23 44",
"output": "0"
},
{
"input": "43 65\n32 58 59 75 85 18 57 100 69 0 36 38 79 95 82 47 7 55 28 88 27 88 63 71 80 86 67 53 69 37 99 54 81 19 55 12 2 17 84 77 25 26 62",
"output": "4"
},
{
"input": "12 64\n14 87 40 24 32 36 4 41 38 77 68 71",
"output": "0"
},
{
"input": "75 94\n80 92 25 48 78 17 69 52 79 73 12 15 59 55 25 61 96 27 98 43 30 43 36 94 67 54 86 99 100 61 65 8 65 19 18 21 75 31 2 98 55 87 14 1 17 97 94 11 57 29 34 71 76 67 45 0 78 29 86 82 29 23 77 100 48 43 65 62 88 34 7 28 13 1 1",
"output": "0"
},
{
"input": "59 27\n76 61 24 66 48 18 69 84 21 8 64 90 19 71 36 90 9 36 30 37 99 37 100 56 9 79 55 37 54 63 11 11 49 71 91 70 14 100 10 44 52 23 21 19 96 13 93 66 52 79 76 5 62 6 90 35 94 7 27",
"output": "63"
},
{
"input": "86 54\n41 84 16 5 20 79 73 13 23 24 42 73 70 80 69 71 33 44 62 29 86 88 40 64 61 55 58 19 16 23 84 100 38 91 89 98 47 50 55 87 12 94 2 12 0 1 4 26 50 96 68 34 94 80 8 22 60 3 72 84 65 89 44 52 50 9 24 34 81 28 56 17 38 85 78 90 62 60 1 40 91 2 7 41 84 22",
"output": "38"
},
{
"input": "37 2\n65 36 92 92 92 76 63 56 15 95 75 26 15 4 73 50 41 92 26 20 19 100 63 55 25 75 61 96 35 0 14 6 96 3 28 41 83",
"output": "91"
},
{
"input": "19 4\n85 2 56 70 33 75 89 60 100 81 42 28 18 92 29 96 49 23 14",
"output": "79"
},
{
"input": "89 1\n50 53 97 41 68 27 53 66 93 19 11 78 46 49 38 69 96 9 43 16 1 63 95 64 96 6 34 34 45 40 19 4 53 8 11 18 95 25 50 16 64 33 97 49 23 81 63 10 30 73 76 55 7 70 9 98 6 36 75 78 3 92 85 75 40 75 55 71 9 91 15 17 47 55 44 35 55 88 53 87 61 22 100 56 14 87 36 84 24",
"output": "91"
},
{
"input": "67 0\n40 48 15 46 90 7 65 52 24 15 42 81 2 6 71 94 32 18 97 67 83 98 48 51 10 47 8 68 36 46 65 75 90 30 62 9 5 35 80 60 69 58 62 68 58 73 80 9 22 46 56 64 44 11 93 73 62 54 15 20 17 69 16 33 85 62 49",
"output": "83"
},
{
"input": "96 0\n38 97 82 43 80 40 1 99 50 94 81 63 92 13 57 24 4 10 25 32 79 56 96 19 25 14 69 56 66 22 23 78 87 76 37 30 75 77 61 64 35 64 62 32 44 62 6 84 91 44 99 5 71 19 17 12 35 52 1 14 35 18 8 36 54 42 4 67 80 11 88 44 34 35 12 38 66 42 4 90 45 10 1 44 37 96 23 28 100 90 75 17 27 67 51 70",
"output": "94"
},
{
"input": "14 14\n87 63 62 31 59 47 40 89 92 43 80 30 99 42",
"output": "43"
},
{
"input": "12 0\n100 1 100 2 100 3 100 4 100 5 100 0",
"output": "100"
},
{
"input": "3 1\n1 2 3",
"output": "0"
},
{
"input": "3 2\n3 3 3",
"output": "0"
},
{
"input": "3 3\n3 2 1",
"output": "0"
},
{
"input": "3 100\n1 2 3",
"output": "0"
},
{
"input": "2 100\n0 0",
"output": "0"
},
{
"input": "2 90\n10 5",
"output": "0"
},
{
"input": "2 5\n5 4",
"output": "0"
},
{
"input": "3 1\n19 20 1",
"output": "18"
},
{
"input": "5 1\n5 10 7 4 20",
"output": "2"
},
{
"input": "5 1\n1 2 3 4 5",
"output": "0"
}
] | 1,612,845,220
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 3
| 93
| 0
|
n,c = map(int,input().split())
arr = list(map(int,input().split()))
max=0
if n<3:
if arr[0]-arr[1]-c<=0:
print(0)
else:
print(arr[0]-arr[1]-c)
else:
for i in range(n-1):
if arr[i]>arr[i+1]:
j = i
while(j<n-1):
cnt = arr[j]- arr[j+1]
if cnt>max:
max=cnt
j+=1
print(max-c)
|
Title: Bear and Raspberry
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The bear decided to store some raspberry for the winter. He cunningly found out the price for a barrel of honey in kilos of raspberry for each of the following *n* days. According to the bear's data, on the *i*-th (1<=≤<=*i*<=≤<=*n*) day, the price for one barrel of honey is going to is *x**i* kilos of raspberry.
Unfortunately, the bear has neither a honey barrel, nor the raspberry. At the same time, the bear's got a friend who is ready to lend him a barrel of honey for exactly one day for *c* kilograms of raspberry. That's why the bear came up with a smart plan. He wants to choose some day *d* (1<=≤<=*d*<=<<=*n*), lent a barrel of honey and immediately (on day *d*) sell it according to a daily exchange rate. The next day (*d*<=+<=1) the bear wants to buy a new barrel of honey according to a daily exchange rate (as he's got some raspberry left from selling the previous barrel) and immediately (on day *d*<=+<=1) give his friend the borrowed barrel of honey as well as *c* kilograms of raspberry for renting the barrel.
The bear wants to execute his plan at most once and then hibernate. What maximum number of kilograms of raspberry can he earn? Note that if at some point of the plan the bear runs out of the raspberry, then he won't execute such a plan.
Input Specification:
The first line contains two space-separated integers, *n* and *c* (2<=≤<=*n*<=≤<=100,<=0<=≤<=*c*<=≤<=100), — the number of days and the number of kilos of raspberry that the bear should give for borrowing the barrel.
The second line contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=100), the price of a honey barrel on day *i*.
Output Specification:
Print a single integer — the answer to the problem.
Demo Input:
['5 1\n5 10 7 3 20\n', '6 2\n100 1 10 40 10 40\n', '3 0\n1 2 3\n']
Demo Output:
['3\n', '97\n', '0\n']
Note:
In the first sample the bear will lend a honey barrel at day 3 and then sell it for 7. Then the bear will buy a barrel for 3 and return it to the friend. So, the profit is (7 - 3 - 1) = 3.
In the second sample bear will lend a honey barrel at day 1 and then sell it for 100. Then the bear buy the barrel for 1 at the day 2. So, the profit is (100 - 1 - 2) = 97.
|
```python
n,c = map(int,input().split())
arr = list(map(int,input().split()))
max=0
if n<3:
if arr[0]-arr[1]-c<=0:
print(0)
else:
print(arr[0]-arr[1]-c)
else:
for i in range(n-1):
if arr[i]>arr[i+1]:
j = i
while(j<n-1):
cnt = arr[j]- arr[j+1]
if cnt>max:
max=cnt
j+=1
print(max-c)
```
| 0
|
|
557
|
B
|
Pasha and Tea
|
PROGRAMMING
| 1,500
|
[
"constructive algorithms",
"implementation",
"math",
"sortings"
] | null | null |
Pasha decided to invite his friends to a tea party. For that occasion, he has a large teapot with the capacity of *w* milliliters and 2*n* tea cups, each cup is for one of Pasha's friends. The *i*-th cup can hold at most *a**i* milliliters of water.
It turned out that among Pasha's friends there are exactly *n* boys and exactly *n* girls and all of them are going to come to the tea party. To please everyone, Pasha decided to pour the water for the tea as follows:
- Pasha can boil the teapot exactly once by pouring there at most *w* milliliters of water; - Pasha pours the same amount of water to each girl; - Pasha pours the same amount of water to each boy; - if each girl gets *x* milliliters of water, then each boy gets 2*x* milliliters of water.
In the other words, each boy should get two times more water than each girl does.
Pasha is very kind and polite, so he wants to maximize the total amount of the water that he pours to his friends. Your task is to help him and determine the optimum distribution of cups between Pasha's friends.
|
The first line of the input contains two integers, *n* and *w* (1<=≤<=*n*<=≤<=105, 1<=≤<=*w*<=≤<=109) — the number of Pasha's friends that are boys (equal to the number of Pasha's friends that are girls) and the capacity of Pasha's teapot in milliliters.
The second line of the input contains the sequence of integers *a**i* (1<=≤<=*a**i*<=≤<=109, 1<=≤<=*i*<=≤<=2*n*) — the capacities of Pasha's tea cups in milliliters.
|
Print a single real number — the maximum total amount of water in milliliters that Pasha can pour to his friends without violating the given conditions. Your answer will be considered correct if its absolute or relative error doesn't exceed 10<=-<=6.
|
[
"2 4\n1 1 1 1\n",
"3 18\n4 4 4 2 2 2\n",
"1 5\n2 3\n"
] |
[
"3",
"18",
"4.5"
] |
Pasha also has candies that he is going to give to girls but that is another task...
| 1,000
|
[
{
"input": "2 4\n1 1 1 1",
"output": "3.0000000000"
},
{
"input": "3 18\n4 4 4 2 2 2",
"output": "18.0000000000"
},
{
"input": "1 5\n2 3",
"output": "4.5000000000"
},
{
"input": "1 1\n1000000000 1000000000",
"output": "1.0000000000"
},
{
"input": "4 1000000000\n1 1 1 1 1 1 1 1",
"output": "6.0000000000"
},
{
"input": "4 1000000000\n1 1 1 1 2 2 2 2",
"output": "12.0000000000"
},
{
"input": "4 1\n3 3 3 3 4 4 4 4",
"output": "1.0000000000"
},
{
"input": "2 19\n3 3 5 5",
"output": "15.0000000000"
},
{
"input": "3 31\n3 3 3 5 5 5",
"output": "22.5000000000"
},
{
"input": "5 15\n2 3 4 1 2 4 5 3 5 10",
"output": "15.0000000000"
},
{
"input": "5 14\n2 3 4 1 2 4 5 3 5 10",
"output": "14.0000000000"
},
{
"input": "5 16\n2 3 4 1 2 4 5 3 5 10",
"output": "15.0000000000"
},
{
"input": "1 100\n1 200",
"output": "3.0000000000"
},
{
"input": "1 1\n1 1",
"output": "1.0000000000"
},
{
"input": "2 1000000000\n1 1 1 100",
"output": "3.0000000000"
},
{
"input": "4 30\n3 3 3 3 4 5 6 7",
"output": "24.0000000000"
},
{
"input": "2 100\n1 1 1 10",
"output": "3.0000000000"
},
{
"input": "3 18\n1 1 1 1 1 5",
"output": "4.5000000000"
}
] | 1,681,428,778
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 50
| 156
| 27,033,600
|
import sys
input = lambda: sys.stdin.readline().rstrip()
N,W = map(int, input().split())
A = list(map(int, input().split()))
A.sort()
k = W/(N+N/2)
k = min(k, A[N])
k = min(k, A[0]*2)
print(k*N*1.5)
|
Title: Pasha and Tea
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Pasha decided to invite his friends to a tea party. For that occasion, he has a large teapot with the capacity of *w* milliliters and 2*n* tea cups, each cup is for one of Pasha's friends. The *i*-th cup can hold at most *a**i* milliliters of water.
It turned out that among Pasha's friends there are exactly *n* boys and exactly *n* girls and all of them are going to come to the tea party. To please everyone, Pasha decided to pour the water for the tea as follows:
- Pasha can boil the teapot exactly once by pouring there at most *w* milliliters of water; - Pasha pours the same amount of water to each girl; - Pasha pours the same amount of water to each boy; - if each girl gets *x* milliliters of water, then each boy gets 2*x* milliliters of water.
In the other words, each boy should get two times more water than each girl does.
Pasha is very kind and polite, so he wants to maximize the total amount of the water that he pours to his friends. Your task is to help him and determine the optimum distribution of cups between Pasha's friends.
Input Specification:
The first line of the input contains two integers, *n* and *w* (1<=≤<=*n*<=≤<=105, 1<=≤<=*w*<=≤<=109) — the number of Pasha's friends that are boys (equal to the number of Pasha's friends that are girls) and the capacity of Pasha's teapot in milliliters.
The second line of the input contains the sequence of integers *a**i* (1<=≤<=*a**i*<=≤<=109, 1<=≤<=*i*<=≤<=2*n*) — the capacities of Pasha's tea cups in milliliters.
Output Specification:
Print a single real number — the maximum total amount of water in milliliters that Pasha can pour to his friends without violating the given conditions. Your answer will be considered correct if its absolute or relative error doesn't exceed 10<=-<=6.
Demo Input:
['2 4\n1 1 1 1\n', '3 18\n4 4 4 2 2 2\n', '1 5\n2 3\n']
Demo Output:
['3', '18', '4.5']
Note:
Pasha also has candies that he is going to give to girls but that is another task...
|
```python
import sys
input = lambda: sys.stdin.readline().rstrip()
N,W = map(int, input().split())
A = list(map(int, input().split()))
A.sort()
k = W/(N+N/2)
k = min(k, A[N])
k = min(k, A[0]*2)
print(k*N*1.5)
```
| 3
|
|
604
|
B
|
More Cowbell
|
PROGRAMMING
| 1,400
|
[
"binary search",
"greedy"
] | null | null |
Kevin Sun wants to move his precious collection of *n* cowbells from Naperthrill to Exeter, where there is actually grass instead of corn. Before moving, he must pack his cowbells into *k* boxes of a fixed size. In order to keep his collection safe during transportation, he won't place more than two cowbells into a single box. Since Kevin wishes to minimize expenses, he is curious about the smallest size box he can use to pack his entire collection.
Kevin is a meticulous cowbell collector and knows that the size of his *i*-th (1<=≤<=*i*<=≤<=*n*) cowbell is an integer *s**i*. In fact, he keeps his cowbells sorted by size, so *s**i*<=-<=1<=≤<=*s**i* for any *i*<=><=1. Also an expert packer, Kevin can fit one or two cowbells into a box of size *s* if and only if the sum of their sizes does not exceed *s*. Given this information, help Kevin determine the smallest *s* for which it is possible to put all of his cowbells into *k* boxes of size *s*.
|
The first line of the input contains two space-separated integers *n* and *k* (1<=≤<=*n*<=≤<=2·*k*<=≤<=100<=000), denoting the number of cowbells and the number of boxes, respectively.
The next line contains *n* space-separated integers *s*1,<=*s*2,<=...,<=*s**n* (1<=≤<=*s*1<=≤<=*s*2<=≤<=...<=≤<=*s**n*<=≤<=1<=000<=000), the sizes of Kevin's cowbells. It is guaranteed that the sizes *s**i* are given in non-decreasing order.
|
Print a single integer, the smallest *s* for which it is possible for Kevin to put all of his cowbells into *k* boxes of size *s*.
|
[
"2 1\n2 5\n",
"4 3\n2 3 5 9\n",
"3 2\n3 5 7\n"
] |
[
"7\n",
"9\n",
"8\n"
] |
In the first sample, Kevin must pack his two cowbells into the same box.
In the second sample, Kevin can pack together the following sets of cowbells: {2, 3}, {5} and {9}.
In the third sample, the optimal solution is {3, 5} and {7}.
| 1,000
|
[
{
"input": "2 1\n2 5",
"output": "7"
},
{
"input": "4 3\n2 3 5 9",
"output": "9"
},
{
"input": "3 2\n3 5 7",
"output": "8"
},
{
"input": "20 11\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "2"
},
{
"input": "10 10\n3 15 31 61 63 63 68 94 98 100",
"output": "100"
},
{
"input": "100 97\n340 402 415 466 559 565 649 689 727 771 774 776 789 795 973 1088 1212 1293 1429 1514 1587 1599 1929 1997 2278 2529 2656 2677 2839 2894 2951 3079 3237 3250 3556 3568 3569 3578 3615 3641 3673 3892 4142 4418 4515 4766 4846 4916 5225 5269 5352 5460 5472 5635 5732 5886 5941 5976 5984 6104 6113 6402 6409 6460 6550 6563 6925 7006 7289 7401 7441 7451 7709 7731 7742 7750 7752 7827 8101 8154 8376 8379 8432 8534 8578 8630 8706 8814 8882 8972 9041 9053 9109 9173 9473 9524 9547 9775 9791 9983",
"output": "9983"
},
{
"input": "10 9\n7 29 35 38 41 47 54 56 73 74",
"output": "74"
},
{
"input": "1 2342\n12345",
"output": "12345"
},
{
"input": "10 5\n15 15 20 28 38 44 46 52 69 94",
"output": "109"
},
{
"input": "10 9\n6 10 10 32 36 38 69 80 82 93",
"output": "93"
},
{
"input": "10 10\n4 19 22 24 25 43 49 56 78 88",
"output": "88"
},
{
"input": "100 89\n474 532 759 772 803 965 1043 1325 1342 1401 1411 1452 1531 1707 1906 1928 2034 2222 2335 2606 2757 2968 2978 3211 3513 3734 3772 3778 3842 3948 3976 4038 4055 4113 4182 4267 4390 4408 4478 4595 4668 4792 4919 5133 5184 5255 5312 5341 5476 5628 5683 5738 5767 5806 5973 6051 6134 6254 6266 6279 6314 6342 6599 6676 6747 6777 6827 6842 7057 7097 7259 7340 7378 7405 7510 7520 7698 7796 8148 8351 8507 8601 8805 8814 8826 8978 9116 9140 9174 9338 9394 9403 9407 9423 9429 9519 9764 9784 9838 9946",
"output": "9946"
},
{
"input": "100 74\n10 211 323 458 490 592 979 981 1143 1376 1443 1499 1539 1612 1657 1874 2001 2064 2123 2274 2346 2471 2522 2589 2879 2918 2933 2952 3160 3164 3167 3270 3382 3404 3501 3522 3616 3802 3868 3985 4007 4036 4101 4580 4687 4713 4714 4817 4955 5257 5280 5343 5428 5461 5566 5633 5727 5874 5925 6233 6309 6389 6500 6701 6731 6847 6916 7088 7088 7278 7296 7328 7564 7611 7646 7887 7887 8065 8075 8160 8300 8304 8316 8355 8404 8587 8758 8794 8890 9038 9163 9235 9243 9339 9410 9587 9868 9916 9923 9986",
"output": "9986"
},
{
"input": "100 61\n82 167 233 425 432 456 494 507 562 681 683 921 1218 1323 1395 1531 1586 1591 1675 1766 1802 1842 2116 2625 2697 2735 2739 3337 3349 3395 3406 3596 3610 3721 4059 4078 4305 4330 4357 4379 4558 4648 4651 4784 4819 4920 5049 5312 5361 5418 5440 5463 5547 5594 5821 5951 5972 6141 6193 6230 6797 6842 6853 6854 7017 7026 7145 7322 7391 7460 7599 7697 7756 7768 7872 7889 8094 8215 8408 8440 8462 8714 8756 8760 8881 9063 9111 9184 9281 9373 9406 9417 9430 9511 9563 9634 9660 9788 9883 9927",
"output": "9927"
},
{
"input": "100 84\n53 139 150 233 423 570 786 861 995 1017 1072 1196 1276 1331 1680 1692 1739 1748 1826 2067 2280 2324 2368 2389 2607 2633 2760 2782 2855 2996 3030 3093 3513 3536 3557 3594 3692 3707 3823 3832 4009 4047 4088 4095 4408 4537 4565 4601 4784 4878 4935 5029 5252 5322 5389 5407 5511 5567 5857 6182 6186 6198 6280 6290 6353 6454 6458 6567 6843 7166 7216 7257 7261 7375 7378 7539 7542 7762 7771 7797 7980 8363 8606 8612 8663 8801 8808 8823 8918 8975 8997 9240 9245 9259 9356 9755 9759 9760 9927 9970",
"output": "9970"
},
{
"input": "100 50\n130 248 312 312 334 589 702 916 921 1034 1047 1346 1445 1500 1585 1744 1951 2123 2273 2362 2400 2455 2496 2530 2532 2944 3074 3093 3094 3134 3698 3967 4047 4102 4109 4260 4355 4466 4617 4701 4852 4892 4915 4917 4936 4981 4999 5106 5152 5203 5214 5282 5412 5486 5525 5648 5897 5933 5969 6251 6400 6421 6422 6558 6805 6832 6908 6924 6943 6980 7092 7206 7374 7417 7479 7546 7672 7756 7973 8020 8028 8079 8084 8085 8137 8153 8178 8239 8639 8667 8829 9263 9333 9370 9420 9579 9723 9784 9841 9993",
"output": "11103"
},
{
"input": "100 50\n156 182 208 409 496 515 659 761 772 794 827 912 1003 1236 1305 1388 1412 1422 1428 1465 1613 2160 2411 2440 2495 2684 2724 2925 3033 3035 3155 3260 3378 3442 3483 3921 4031 4037 4091 4113 4119 4254 4257 4442 4559 4614 4687 4839 4896 5054 5246 5316 5346 5859 5928 5981 6148 6250 6422 6433 6448 6471 6473 6485 6503 6779 6812 7050 7064 7074 7141 7378 7424 7511 7574 7651 7808 7858 8286 8291 8446 8536 8599 8628 8636 8768 8900 8981 9042 9055 9114 9146 9186 9411 9480 9590 9681 9749 9757 9983",
"output": "10676"
},
{
"input": "100 50\n145 195 228 411 577 606 629 775 1040 1040 1058 1187 1307 1514 1784 1867 1891 2042 2042 2236 2549 2555 2560 2617 2766 2807 2829 2917 3070 3072 3078 3095 3138 3147 3149 3196 3285 3287 3309 3435 3531 3560 3563 3769 3830 3967 4081 4158 4315 4387 4590 4632 4897 4914 5128 5190 5224 5302 5402 5416 5420 5467 5517 5653 5820 5862 5941 6053 6082 6275 6292 6316 6490 6530 6619 6632 6895 7071 7234 7323 7334 7412 7626 7743 8098 8098 8136 8158 8264 8616 8701 8718 8770 8803 8809 8983 9422 9530 9811 9866",
"output": "10011"
},
{
"input": "100 50\n56 298 387 456 518 532 589 792 870 1041 1055 1122 1141 1166 1310 1329 1523 1548 1626 1730 1780 1833 1850 1911 2006 2157 2303 2377 2403 2442 2450 2522 2573 2822 2994 3200 3238 3252 3280 3311 3345 3422 3429 3506 3526 3617 3686 3791 4134 4467 4525 4614 4633 4792 5017 5220 5243 5338 5445 5536 5639 5675 5763 5875 6129 6220 6228 6287 6385 6616 6789 6822 6940 6959 6985 7297 7304 7391 7443 7580 7824 7884 7981 8055 8063 8223 8280 8322 8346 8473 8688 8986 9087 9323 9477 9489 9518 9621 9699 9804",
"output": "10009"
},
{
"input": "100 49990\n221 257 543 613 818 855 884 1195 1233 1293 1327 1474 1567 1568 1728 1789 1809 1957 1994 2198 2217 2289 2298 2360 2441 2454 2517 2519 2597 2652 2909 2958 2970 3271 3310 3409 3450 3646 3950 3965 4016 4116 4134 4159 4462 4624 4631 4783 4804 5031 5276 5538 5729 5845 5880 5894 5959 5961 6028 6105 6184 6335 6370 6523 6532 6677 6762 6868 6998 7066 7245 7360 7490 7492 7645 7677 7786 7804 8038 8131 8207 8400 8507 8556 8575 8599 8673 8676 8712 8816 9123 9158 9216 9369 9628 9707 9768 9800 9876 9934",
"output": "9934"
},
{
"input": "1 50000\n2",
"output": "2"
},
{
"input": "1 40000\n23456",
"output": "23456"
},
{
"input": "1 2\n10",
"output": "10"
},
{
"input": "1 1\n1",
"output": "1"
},
{
"input": "2 2\n2 3",
"output": "3"
},
{
"input": "4 2\n1 2 8 9",
"output": "10"
}
] | 1,448,985,036
| 936
|
PyPy 3
|
CHALLENGED
|
CHALLENGES
| 8
| 202
| 10,342,400
|
n,k = map(int, input().split())
a = list(map(int, input().split()))
t = k - (2*k - n)
res = 0
for i in range(t):
res = max ( res, a[2*i] + a[2*i+1])
for i in range(n):
if i >= t:
res = max(res, a[i])
print (res)
|
Title: More Cowbell
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Kevin Sun wants to move his precious collection of *n* cowbells from Naperthrill to Exeter, where there is actually grass instead of corn. Before moving, he must pack his cowbells into *k* boxes of a fixed size. In order to keep his collection safe during transportation, he won't place more than two cowbells into a single box. Since Kevin wishes to minimize expenses, he is curious about the smallest size box he can use to pack his entire collection.
Kevin is a meticulous cowbell collector and knows that the size of his *i*-th (1<=≤<=*i*<=≤<=*n*) cowbell is an integer *s**i*. In fact, he keeps his cowbells sorted by size, so *s**i*<=-<=1<=≤<=*s**i* for any *i*<=><=1. Also an expert packer, Kevin can fit one or two cowbells into a box of size *s* if and only if the sum of their sizes does not exceed *s*. Given this information, help Kevin determine the smallest *s* for which it is possible to put all of his cowbells into *k* boxes of size *s*.
Input Specification:
The first line of the input contains two space-separated integers *n* and *k* (1<=≤<=*n*<=≤<=2·*k*<=≤<=100<=000), denoting the number of cowbells and the number of boxes, respectively.
The next line contains *n* space-separated integers *s*1,<=*s*2,<=...,<=*s**n* (1<=≤<=*s*1<=≤<=*s*2<=≤<=...<=≤<=*s**n*<=≤<=1<=000<=000), the sizes of Kevin's cowbells. It is guaranteed that the sizes *s**i* are given in non-decreasing order.
Output Specification:
Print a single integer, the smallest *s* for which it is possible for Kevin to put all of his cowbells into *k* boxes of size *s*.
Demo Input:
['2 1\n2 5\n', '4 3\n2 3 5 9\n', '3 2\n3 5 7\n']
Demo Output:
['7\n', '9\n', '8\n']
Note:
In the first sample, Kevin must pack his two cowbells into the same box.
In the second sample, Kevin can pack together the following sets of cowbells: {2, 3}, {5} and {9}.
In the third sample, the optimal solution is {3, 5} and {7}.
|
```python
n,k = map(int, input().split())
a = list(map(int, input().split()))
t = k - (2*k - n)
res = 0
for i in range(t):
res = max ( res, a[2*i] + a[2*i+1])
for i in range(n):
if i >= t:
res = max(res, a[i])
print (res)
```
| -1
|
|
208
|
A
|
Dubstep
|
PROGRAMMING
| 900
|
[
"strings"
] | null | null |
Vasya works as a DJ in the best Berland nightclub, and he often uses dubstep music in his performance. Recently, he has decided to take a couple of old songs and make dubstep remixes from them.
Let's assume that a song consists of some number of words. To make the dubstep remix of this song, Vasya inserts a certain number of words "WUB" before the first word of the song (the number may be zero), after the last word (the number may be zero), and between words (at least one between any pair of neighbouring words), and then the boy glues together all the words, including "WUB", in one string and plays the song at the club.
For example, a song with words "I AM X" can transform into a dubstep remix as "WUBWUBIWUBAMWUBWUBX" and cannot transform into "WUBWUBIAMWUBX".
Recently, Petya has heard Vasya's new dubstep track, but since he isn't into modern music, he decided to find out what was the initial song that Vasya remixed. Help Petya restore the original song.
|
The input consists of a single non-empty string, consisting only of uppercase English letters, the string's length doesn't exceed 200 characters. It is guaranteed that before Vasya remixed the song, no word contained substring "WUB" in it; Vasya didn't change the word order. It is also guaranteed that initially the song had at least one word.
|
Print the words of the initial song that Vasya used to make a dubsteb remix. Separate the words with a space.
|
[
"WUBWUBABCWUB\n",
"WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB\n"
] |
[
"ABC ",
"WE ARE THE CHAMPIONS MY FRIEND "
] |
In the first sample: "WUBWUBABCWUB" = "WUB" + "WUB" + "ABC" + "WUB". That means that the song originally consisted of a single word "ABC", and all words "WUB" were added by Vasya.
In the second sample Vasya added a single word "WUB" between all neighbouring words, in the beginning and in the end, except for words "ARE" and "THE" — between them Vasya added two "WUB".
| 500
|
[
{
"input": "WUBWUBABCWUB",
"output": "ABC "
},
{
"input": "WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB",
"output": "WE ARE THE CHAMPIONS MY FRIEND "
},
{
"input": "WUBWUBWUBSR",
"output": "SR "
},
{
"input": "RWUBWUBWUBLWUB",
"output": "R L "
},
{
"input": "ZJWUBWUBWUBJWUBWUBWUBL",
"output": "ZJ J L "
},
{
"input": "CWUBBWUBWUBWUBEWUBWUBWUBQWUBWUBWUB",
"output": "C B E Q "
},
{
"input": "WUBJKDWUBWUBWBIRAQKFWUBWUBYEWUBWUBWUBWVWUBWUB",
"output": "JKD WBIRAQKF YE WV "
},
{
"input": "WUBKSDHEMIXUJWUBWUBRWUBWUBWUBSWUBWUBWUBHWUBWUBWUB",
"output": "KSDHEMIXUJ R S H "
},
{
"input": "OGWUBWUBWUBXWUBWUBWUBIWUBWUBWUBKOWUBWUB",
"output": "OG X I KO "
},
{
"input": "QWUBQQWUBWUBWUBIWUBWUBWWWUBWUBWUBJOPJPBRH",
"output": "Q QQ I WW JOPJPBRH "
},
{
"input": "VSRNVEATZTLGQRFEGBFPWUBWUBWUBAJWUBWUBWUBPQCHNWUBCWUB",
"output": "VSRNVEATZTLGQRFEGBFP AJ PQCHN C "
},
{
"input": "WUBWUBEWUBWUBWUBIQMJNIQWUBWUBWUBGZZBQZAUHYPWUBWUBWUBPMRWUBWUBWUBDCV",
"output": "E IQMJNIQ GZZBQZAUHYP PMR DCV "
},
{
"input": "WUBWUBWUBFVWUBWUBWUBBPSWUBWUBWUBRXNETCJWUBWUBWUBJDMBHWUBWUBWUBBWUBWUBVWUBWUBB",
"output": "FV BPS RXNETCJ JDMBH B V B "
},
{
"input": "WUBWUBWUBFBQWUBWUBWUBIDFSYWUBWUBWUBCTWDMWUBWUBWUBSXOWUBWUBWUBQIWUBWUBWUBL",
"output": "FBQ IDFSY CTWDM SXO QI L "
},
{
"input": "IWUBWUBQLHDWUBYIIKZDFQWUBWUBWUBCXWUBWUBUWUBWUBWUBKWUBWUBWUBNL",
"output": "I QLHD YIIKZDFQ CX U K NL "
},
{
"input": "KWUBUPDYXGOKUWUBWUBWUBAGOAHWUBIZDWUBWUBWUBIYWUBWUBWUBVWUBWUBWUBPWUBWUBWUBE",
"output": "K UPDYXGOKU AGOAH IZD IY V P E "
},
{
"input": "WUBWUBOWUBWUBWUBIPVCQAFWYWUBWUBWUBQWUBWUBWUBXHDKCPYKCTWWYWUBWUBWUBVWUBWUBWUBFZWUBWUB",
"output": "O IPVCQAFWY Q XHDKCPYKCTWWY V FZ "
},
{
"input": "PAMJGYWUBWUBWUBXGPQMWUBWUBWUBTKGSXUYWUBWUBWUBEWUBWUBWUBNWUBWUBWUBHWUBWUBWUBEWUBWUB",
"output": "PAMJGY XGPQM TKGSXUY E N H E "
},
{
"input": "WUBYYRTSMNWUWUBWUBWUBCWUBWUBWUBCWUBWUBWUBFSYUINDWOBVWUBWUBWUBFWUBWUBWUBAUWUBWUBWUBVWUBWUBWUBJB",
"output": "YYRTSMNWU C C FSYUINDWOBV F AU V JB "
},
{
"input": "WUBWUBYGPYEYBNRTFKOQCWUBWUBWUBUYGRTQEGWLFYWUBWUBWUBFVWUBHPWUBWUBWUBXZQWUBWUBWUBZDWUBWUBWUBM",
"output": "YGPYEYBNRTFKOQC UYGRTQEGWLFY FV HP XZQ ZD M "
},
{
"input": "WUBZVMJWUBWUBWUBFOIMJQWKNZUBOFOFYCCWUBWUBWUBAUWWUBRDRADWUBWUBWUBCHQVWUBWUBWUBKFTWUBWUBWUBW",
"output": "ZVMJ FOIMJQWKNZUBOFOFYCC AUW RDRAD CHQV KFT W "
},
{
"input": "WUBWUBZBKOKHQLGKRVIMZQMQNRWUBWUBWUBDACWUBWUBNZHFJMPEYKRVSWUBWUBWUBPPHGAVVPRZWUBWUBWUBQWUBWUBAWUBG",
"output": "ZBKOKHQLGKRVIMZQMQNR DAC NZHFJMPEYKRVS PPHGAVVPRZ Q A G "
},
{
"input": "WUBWUBJWUBWUBWUBNFLWUBWUBWUBGECAWUBYFKBYJWTGBYHVSSNTINKWSINWSMAWUBWUBWUBFWUBWUBWUBOVWUBWUBLPWUBWUBWUBN",
"output": "J NFL GECA YFKBYJWTGBYHVSSNTINKWSINWSMA F OV LP N "
},
{
"input": "WUBWUBLCWUBWUBWUBZGEQUEATJVIXETVTWUBWUBWUBEXMGWUBWUBWUBRSWUBWUBWUBVWUBWUBWUBTAWUBWUBWUBCWUBWUBWUBQG",
"output": "LC ZGEQUEATJVIXETVT EXMG RS V TA C QG "
},
{
"input": "WUBMPWUBWUBWUBORWUBWUBDLGKWUBWUBWUBVVZQCAAKVJTIKWUBWUBWUBTJLUBZJCILQDIFVZWUBWUBYXWUBWUBWUBQWUBWUBWUBLWUB",
"output": "MP OR DLGK VVZQCAAKVJTIK TJLUBZJCILQDIFVZ YX Q L "
},
{
"input": "WUBNXOLIBKEGXNWUBWUBWUBUWUBGITCNMDQFUAOVLWUBWUBWUBAIJDJZJHFMPVTPOXHPWUBWUBWUBISCIOWUBWUBWUBGWUBWUBWUBUWUB",
"output": "NXOLIBKEGXN U GITCNMDQFUAOVL AIJDJZJHFMPVTPOXHP ISCIO G U "
},
{
"input": "WUBWUBNMMWCZOLYPNBELIYVDNHJUNINWUBWUBWUBDXLHYOWUBWUBWUBOJXUWUBWUBWUBRFHTGJCEFHCGWARGWUBWUBWUBJKWUBWUBSJWUBWUB",
"output": "NMMWCZOLYPNBELIYVDNHJUNIN DXLHYO OJXU RFHTGJCEFHCGWARG JK SJ "
},
{
"input": "SGWLYSAUJOJBNOXNWUBWUBWUBBOSSFWKXPDPDCQEWUBWUBWUBDIRZINODWUBWUBWUBWWUBWUBWUBPPHWUBWUBWUBRWUBWUBWUBQWUBWUBWUBJWUB",
"output": "SGWLYSAUJOJBNOXN BOSSFWKXPDPDCQE DIRZINOD W PPH R Q J "
},
{
"input": "TOWUBWUBWUBGBTBNWUBWUBWUBJVIOJBIZFUUYHUAIEBQLQXPQKZJMPTCWBKPOSAWUBWUBWUBSWUBWUBWUBTOLVXWUBWUBWUBNHWUBWUBWUBO",
"output": "TO GBTBN JVIOJBIZFUUYHUAIEBQLQXPQKZJMPTCWBKPOSA S TOLVX NH O "
},
{
"input": "WUBWUBWSPLAYSZSAUDSWUBWUBWUBUWUBWUBWUBKRWUBWUBWUBRSOKQMZFIYZQUWUBWUBWUBELSHUWUBWUBWUBUKHWUBWUBWUBQXEUHQWUBWUBWUBBWUBWUBWUBR",
"output": "WSPLAYSZSAUDS U KR RSOKQMZFIYZQU ELSHU UKH QXEUHQ B R "
},
{
"input": "WUBXEMWWVUHLSUUGRWUBWUBWUBAWUBXEGILZUNKWUBWUBWUBJDHHKSWUBWUBWUBDTSUYSJHWUBWUBWUBPXFWUBMOHNJWUBWUBWUBZFXVMDWUBWUBWUBZMWUBWUB",
"output": "XEMWWVUHLSUUGR A XEGILZUNK JDHHKS DTSUYSJH PXF MOHNJ ZFXVMD ZM "
},
{
"input": "BMBWUBWUBWUBOQKWUBWUBWUBPITCIHXHCKLRQRUGXJWUBWUBWUBVWUBWUBWUBJCWUBWUBWUBQJPWUBWUBWUBBWUBWUBWUBBMYGIZOOXWUBWUBWUBTAGWUBWUBHWUB",
"output": "BMB OQK PITCIHXHCKLRQRUGXJ V JC QJP B BMYGIZOOX TAG H "
},
{
"input": "CBZNWUBWUBWUBNHWUBWUBWUBYQSYWUBWUBWUBMWUBWUBWUBXRHBTMWUBWUBWUBPCRCWUBWUBWUBTZUYLYOWUBWUBWUBCYGCWUBWUBWUBCLJWUBWUBWUBSWUBWUBWUB",
"output": "CBZN NH YQSY M XRHBTM PCRC TZUYLYO CYGC CLJ S "
},
{
"input": "DPDWUBWUBWUBEUQKWPUHLTLNXHAEKGWUBRRFYCAYZFJDCJLXBAWUBWUBWUBHJWUBOJWUBWUBWUBNHBJEYFWUBWUBWUBRWUBWUBWUBSWUBWWUBWUBWUBXDWUBWUBWUBJWUB",
"output": "DPD EUQKWPUHLTLNXHAEKG RRFYCAYZFJDCJLXBA HJ OJ NHBJEYF R S W XD J "
},
{
"input": "WUBWUBWUBISERPQITVIYERSCNWUBWUBWUBQWUBWUBWUBDGSDIPWUBWUBWUBCAHKDZWEXBIBJVVSKKVQJWUBWUBWUBKIWUBWUBWUBCWUBWUBWUBAWUBWUBWUBPWUBWUBWUBHWUBWUBWUBF",
"output": "ISERPQITVIYERSCN Q DGSDIP CAHKDZWEXBIBJVVSKKVQJ KI C A P H F "
},
{
"input": "WUBWUBWUBIWUBWUBLIKNQVWUBWUBWUBPWUBWUBWUBHWUBWUBWUBMWUBWUBWUBDPRSWUBWUBWUBBSAGYLQEENWXXVWUBWUBWUBXMHOWUBWUBWUBUWUBWUBWUBYRYWUBWUBWUBCWUBWUBWUBY",
"output": "I LIKNQV P H M DPRS BSAGYLQEENWXXV XMHO U YRY C Y "
},
{
"input": "WUBWUBWUBMWUBWUBWUBQWUBWUBWUBITCFEYEWUBWUBWUBHEUWGNDFNZGWKLJWUBWUBWUBMZPWUBWUBWUBUWUBWUBWUBBWUBWUBWUBDTJWUBHZVIWUBWUBWUBPWUBFNHHWUBWUBWUBVTOWUB",
"output": "M Q ITCFEYE HEUWGNDFNZGWKLJ MZP U B DTJ HZVI P FNHH VTO "
},
{
"input": "WUBWUBNDNRFHYJAAUULLHRRDEDHYFSRXJWUBWUBWUBMUJVDTIRSGYZAVWKRGIFWUBWUBWUBHMZWUBWUBWUBVAIWUBWUBWUBDDKJXPZRGWUBWUBWUBSGXWUBWUBWUBIFKWUBWUBWUBUWUBWUBWUBW",
"output": "NDNRFHYJAAUULLHRRDEDHYFSRXJ MUJVDTIRSGYZAVWKRGIF HMZ VAI DDKJXPZRG SGX IFK U W "
},
{
"input": "WUBOJMWRSLAXXHQRTPMJNCMPGWUBWUBWUBNYGMZIXNLAKSQYWDWUBWUBWUBXNIWUBWUBWUBFWUBWUBWUBXMBWUBWUBWUBIWUBWUBWUBINWUBWUBWUBWDWUBWUBWUBDDWUBWUBWUBD",
"output": "OJMWRSLAXXHQRTPMJNCMPG NYGMZIXNLAKSQYWD XNI F XMB I IN WD DD D "
},
{
"input": "WUBWUBWUBREHMWUBWUBWUBXWUBWUBWUBQASNWUBWUBWUBNLSMHLCMTICWUBWUBWUBVAWUBWUBWUBHNWUBWUBWUBNWUBWUBWUBUEXLSFOEULBWUBWUBWUBXWUBWUBWUBJWUBWUBWUBQWUBWUBWUBAWUBWUB",
"output": "REHM X QASN NLSMHLCMTIC VA HN N UEXLSFOEULB X J Q A "
},
{
"input": "WUBWUBWUBSTEZTZEFFIWUBWUBWUBSWUBWUBWUBCWUBFWUBHRJPVWUBWUBWUBDYJUWUBWUBWUBPWYDKCWUBWUBWUBCWUBWUBWUBUUEOGCVHHBWUBWUBWUBEXLWUBWUBWUBVCYWUBWUBWUBMWUBWUBWUBYWUB",
"output": "STEZTZEFFI S C F HRJPV DYJU PWYDKC C UUEOGCVHHB EXL VCY M Y "
},
{
"input": "WPPNMSQOQIWUBWUBWUBPNQXWUBWUBWUBHWUBWUBWUBNFLWUBWUBWUBGWSGAHVJFNUWUBWUBWUBFWUBWUBWUBWCMLRICFSCQQQTNBWUBWUBWUBSWUBWUBWUBKGWUBWUBWUBCWUBWUBWUBBMWUBWUBWUBRWUBWUB",
"output": "WPPNMSQOQI PNQX H NFL GWSGAHVJFNU F WCMLRICFSCQQQTNB S KG C BM R "
},
{
"input": "YZJOOYITZRARKVFYWUBWUBRZQGWUBWUBWUBUOQWUBWUBWUBIWUBWUBWUBNKVDTBOLETKZISTWUBWUBWUBWLWUBQQFMMGSONZMAWUBZWUBWUBWUBQZUXGCWUBWUBWUBIRZWUBWUBWUBLTTVTLCWUBWUBWUBY",
"output": "YZJOOYITZRARKVFY RZQG UOQ I NKVDTBOLETKZIST WL QQFMMGSONZMA Z QZUXGC IRZ LTTVTLC Y "
},
{
"input": "WUBCAXNCKFBVZLGCBWCOAWVWOFKZVQYLVTWUBWUBWUBNLGWUBWUBWUBAMGDZBDHZMRMQMDLIRMIWUBWUBWUBGAJSHTBSWUBWUBWUBCXWUBWUBWUBYWUBZLXAWWUBWUBWUBOHWUBWUBWUBZWUBWUBWUBGBWUBWUBWUBE",
"output": "CAXNCKFBVZLGCBWCOAWVWOFKZVQYLVT NLG AMGDZBDHZMRMQMDLIRMI GAJSHTBS CX Y ZLXAW OH Z GB E "
},
{
"input": "WUBWUBCHXSOWTSQWUBWUBWUBCYUZBPBWUBWUBWUBSGWUBWUBWKWORLRRLQYUUFDNWUBWUBWUBYYGOJNEVEMWUBWUBWUBRWUBWUBWUBQWUBWUBWUBIHCKWUBWUBWUBKTWUBWUBWUBRGSNTGGWUBWUBWUBXCXWUBWUBWUBS",
"output": "CHXSOWTSQ CYUZBPB SG WKWORLRRLQYUUFDN YYGOJNEVEM R Q IHCK KT RGSNTGG XCX S "
},
{
"input": "WUBWUBWUBHJHMSBURXTHXWSCHNAIJOWBHLZGJZDHEDSPWBWACCGQWUBWUBWUBXTZKGIITWUBWUBWUBAWUBWUBWUBVNCXPUBCQWUBWUBWUBIDPNAWUBWUBWUBOWUBWUBWUBYGFWUBWUBWUBMQOWUBWUBWUBKWUBWUBWUBAZVWUBWUBWUBEP",
"output": "HJHMSBURXTHXWSCHNAIJOWBHLZGJZDHEDSPWBWACCGQ XTZKGIIT A VNCXPUBCQ IDPNA O YGF MQO K AZV EP "
},
{
"input": "WUBKYDZOYWZSNGMKJSWAXFDFLTHDHEOGTDBNZMSMKZTVWUBWUBWUBLRMIIWUBWUBWUBGWUBWUBWUBADPSWUBWUBWUBANBWUBWUBPCWUBWUBWUBPWUBWUBWUBGPVNLSWIRFORYGAABUXMWUBWUBWUBOWUBWUBWUBNWUBWUBWUBYWUBWUB",
"output": "KYDZOYWZSNGMKJSWAXFDFLTHDHEOGTDBNZMSMKZTV LRMII G ADPS ANB PC P GPVNLSWIRFORYGAABUXM O N Y "
},
{
"input": "REWUBWUBWUBJDWUBWUBWUBNWUBWUBWUBTWWUBWUBWUBWZDOCKKWUBWUBWUBLDPOVBFRCFWUBWUBAKZIBQKEUAZEEWUBWUBWUBLQYPNPFWUBYEWUBWUBWUBFWUBWUBWUBBPWUBWUBWUBAWWUBWUBWUBQWUBWUBWUBBRWUBWUBWUBXJL",
"output": "RE JD N TW WZDOCKK LDPOVBFRCF AKZIBQKEUAZEE LQYPNPF YE F BP AW Q BR XJL "
},
{
"input": "CUFGJDXGMWUBWUBWUBOMWUBWUBWUBSIEWUBWUBWUBJJWKNOWUBWUBWUBYBHVNRNORGYWUBWUBWUBOAGCAWUBWUBWUBSBLBKTPFKPBIWUBWUBWUBJBWUBWUBWUBRMFCJPGWUBWUBWUBDWUBWUBWUBOJOWUBWUBWUBZPWUBWUBWUBMWUBRWUBWUBWUBFXWWUBWUBWUBO",
"output": "CUFGJDXGM OM SIE JJWKNO YBHVNRNORGY OAGCA SBLBKTPFKPBI JB RMFCJPG D OJO ZP M R FXW O "
},
{
"input": "WUBJZGAEXFMFEWMAKGQLUWUBWUBWUBICYTPQWGENELVYWANKUOJYWUBWUBWUBGWUBWUBWUBHYCJVLPHTUPNEGKCDGQWUBWUBWUBOFWUBWUBWUBCPGSOGZBRPRPVJJEWUBWUBWUBDQBCWUBWUBWUBHWUBWUBWUBMHOHYBMATWUBWUBWUBVWUBWUBWUBSWUBWUBWUBKOWU",
"output": "JZGAEXFMFEWMAKGQLU ICYTPQWGENELVYWANKUOJY G HYCJVLPHTUPNEGKCDGQ OF CPGSOGZBRPRPVJJE DQBC H MHOHYBMAT V S KOWU "
},
{
"input": "A",
"output": "A "
},
{
"input": "WUBA",
"output": "A "
},
{
"input": "WUBWUBA",
"output": "A "
},
{
"input": "AWUBWUBWUB",
"output": "A "
},
{
"input": "AWUBBWUBCWUBD",
"output": "A B C D "
},
{
"input": "WUBWWUBWUBWUBUWUBWUBBWUB",
"output": "W U B "
},
{
"input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
"output": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA "
},
{
"input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
"output": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA "
},
{
"input": "WUWUBBWWUBUB",
"output": "WU BW UB "
},
{
"input": "WUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUABWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUB",
"output": "WUAB "
},
{
"input": "ZWUB",
"output": "Z "
},
{
"input": "WU",
"output": "WU "
},
{
"input": "UB",
"output": "UB "
},
{
"input": "U",
"output": "U "
},
{
"input": "WUBW",
"output": "W "
},
{
"input": "WUBWU",
"output": "WU "
},
{
"input": "WUWUB",
"output": "WU "
},
{
"input": "UBWUB",
"output": "UB "
},
{
"input": "WUWUBUBWUBUWUB",
"output": "WU UB U "
},
{
"input": "WUBWWUBAWUB",
"output": "W A "
},
{
"input": "WUUUUU",
"output": "WUUUUU "
}
] | 1,681,137,072
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 49
| 92
| 0
|
x = input()
y = list(x)
i = 0
while (i < len(y)):
if i + 1 == len(y):
break
if y[i] == 'W' and y[i + 1] == 'U' and y[i + 2] == 'B':
y[i + 2] = ' '
y.pop(i + 1)
y.pop(i)
i = i + 1
for i in range(len(y)):
if y[i] == ' ':
y.pop(i)
else:
break
for i in range(len(y)):
if y[-i] == ' ':
y.pop(-i)
else:
break
print(''.join(y))
|
Title: Dubstep
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya works as a DJ in the best Berland nightclub, and he often uses dubstep music in his performance. Recently, he has decided to take a couple of old songs and make dubstep remixes from them.
Let's assume that a song consists of some number of words. To make the dubstep remix of this song, Vasya inserts a certain number of words "WUB" before the first word of the song (the number may be zero), after the last word (the number may be zero), and between words (at least one between any pair of neighbouring words), and then the boy glues together all the words, including "WUB", in one string and plays the song at the club.
For example, a song with words "I AM X" can transform into a dubstep remix as "WUBWUBIWUBAMWUBWUBX" and cannot transform into "WUBWUBIAMWUBX".
Recently, Petya has heard Vasya's new dubstep track, but since he isn't into modern music, he decided to find out what was the initial song that Vasya remixed. Help Petya restore the original song.
Input Specification:
The input consists of a single non-empty string, consisting only of uppercase English letters, the string's length doesn't exceed 200 characters. It is guaranteed that before Vasya remixed the song, no word contained substring "WUB" in it; Vasya didn't change the word order. It is also guaranteed that initially the song had at least one word.
Output Specification:
Print the words of the initial song that Vasya used to make a dubsteb remix. Separate the words with a space.
Demo Input:
['WUBWUBABCWUB\n', 'WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB\n']
Demo Output:
['ABC ', 'WE ARE THE CHAMPIONS MY FRIEND ']
Note:
In the first sample: "WUBWUBABCWUB" = "WUB" + "WUB" + "ABC" + "WUB". That means that the song originally consisted of a single word "ABC", and all words "WUB" were added by Vasya.
In the second sample Vasya added a single word "WUB" between all neighbouring words, in the beginning and in the end, except for words "ARE" and "THE" — between them Vasya added two "WUB".
|
```python
x = input()
y = list(x)
i = 0
while (i < len(y)):
if i + 1 == len(y):
break
if y[i] == 'W' and y[i + 1] == 'U' and y[i + 2] == 'B':
y[i + 2] = ' '
y.pop(i + 1)
y.pop(i)
i = i + 1
for i in range(len(y)):
if y[i] == ' ':
y.pop(i)
else:
break
for i in range(len(y)):
if y[-i] == ' ':
y.pop(-i)
else:
break
print(''.join(y))
```
| -1
|
|
192
|
A
|
Funky Numbers
|
PROGRAMMING
| 1,300
|
[
"binary search",
"brute force",
"implementation"
] | null | null |
As you very well know, this year's funkiest numbers are so called triangular numbers (that is, integers that are representable as , where *k* is some positive integer), and the coolest numbers are those that are representable as a sum of two triangular numbers.
A well-known hipster Andrew adores everything funky and cool but unfortunately, he isn't good at maths. Given number *n*, help him define whether this number can be represented by a sum of two triangular numbers (not necessarily different)!
|
The first input line contains an integer *n* (1<=≤<=*n*<=≤<=109).
|
Print "YES" (without the quotes), if *n* can be represented as a sum of two triangular numbers, otherwise print "NO" (without the quotes).
|
[
"256\n",
"512\n"
] |
[
"YES\n",
"NO\n"
] |
In the first sample number <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/92095692c6ea93e9e3b837a0408ba7543549d5b2.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second sample number 512 can not be represented as a sum of two triangular numbers.
| 500
|
[
{
"input": "256",
"output": "YES"
},
{
"input": "512",
"output": "NO"
},
{
"input": "80",
"output": "NO"
},
{
"input": "828",
"output": "YES"
},
{
"input": "6035",
"output": "NO"
},
{
"input": "39210",
"output": "YES"
},
{
"input": "79712",
"output": "NO"
},
{
"input": "190492",
"output": "YES"
},
{
"input": "5722367",
"output": "NO"
},
{
"input": "816761542",
"output": "YES"
},
{
"input": "1",
"output": "NO"
},
{
"input": "2",
"output": "YES"
},
{
"input": "3",
"output": "NO"
},
{
"input": "4",
"output": "YES"
},
{
"input": "5",
"output": "NO"
},
{
"input": "6",
"output": "YES"
},
{
"input": "7",
"output": "YES"
},
{
"input": "8",
"output": "NO"
},
{
"input": "9",
"output": "YES"
},
{
"input": "10",
"output": "NO"
},
{
"input": "12",
"output": "YES"
},
{
"input": "13",
"output": "YES"
},
{
"input": "14",
"output": "NO"
},
{
"input": "15",
"output": "NO"
},
{
"input": "16",
"output": "YES"
},
{
"input": "17",
"output": "NO"
},
{
"input": "18",
"output": "YES"
},
{
"input": "19",
"output": "NO"
},
{
"input": "20",
"output": "YES"
},
{
"input": "41",
"output": "NO"
},
{
"input": "11",
"output": "YES"
},
{
"input": "69",
"output": "YES"
},
{
"input": "82",
"output": "NO"
},
{
"input": "85",
"output": "NO"
},
{
"input": "736",
"output": "NO"
},
{
"input": "895",
"output": "YES"
},
{
"input": "934",
"output": "YES"
},
{
"input": "6213",
"output": "YES"
},
{
"input": "7405",
"output": "NO"
},
{
"input": "9919",
"output": "NO"
},
{
"input": "40942",
"output": "YES"
},
{
"input": "41992",
"output": "NO"
},
{
"input": "68535",
"output": "NO"
},
{
"input": "405718",
"output": "NO"
},
{
"input": "1046146",
"output": "YES"
},
{
"input": "3761248",
"output": "YES"
},
{
"input": "6195181",
"output": "YES"
},
{
"input": "35354345",
"output": "NO"
},
{
"input": "81282830",
"output": "NO"
},
{
"input": "187719774",
"output": "NO"
},
{
"input": "296798673",
"output": "NO"
},
{
"input": "938938476",
"output": "NO"
},
{
"input": "1000000000",
"output": "NO"
},
{
"input": "999887464",
"output": "YES"
},
{
"input": "999111944",
"output": "NO"
},
{
"input": "999966520",
"output": "YES"
},
{
"input": "999912080",
"output": "NO"
},
{
"input": "999992017",
"output": "YES"
},
{
"input": "999990474",
"output": "NO"
},
{
"input": "999999190",
"output": "YES"
},
{
"input": "999999125",
"output": "NO"
},
{
"input": "999999940",
"output": "YES"
},
{
"input": "999999995",
"output": "NO"
},
{
"input": "1000000000",
"output": "NO"
},
{
"input": "1",
"output": "NO"
},
{
"input": "999999999",
"output": "YES"
},
{
"input": "83495494",
"output": "NO"
},
{
"input": "968022000",
"output": "YES"
},
{
"input": "399980000",
"output": "YES"
},
{
"input": "4",
"output": "YES"
},
{
"input": "999999998",
"output": "NO"
}
] | 1,622,377,102
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 71
| 218
| 1,843,200
|
n = int(input())*2
f = int(n**0.5)+1
c = 0
for i in range(1,f):
x = i*(i+1)
left = 1
right = f
while left!=right-1:
mid = (left+right)//2
if x + mid * (mid + 1) > n:
right = mid
else:
left = mid
if right * (right+1) + x == n or left * (left+1) + x == n:
print('YES')
c+=1
break
if c==0:
print('NO')
|
Title: Funky Numbers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
As you very well know, this year's funkiest numbers are so called triangular numbers (that is, integers that are representable as , where *k* is some positive integer), and the coolest numbers are those that are representable as a sum of two triangular numbers.
A well-known hipster Andrew adores everything funky and cool but unfortunately, he isn't good at maths. Given number *n*, help him define whether this number can be represented by a sum of two triangular numbers (not necessarily different)!
Input Specification:
The first input line contains an integer *n* (1<=≤<=*n*<=≤<=109).
Output Specification:
Print "YES" (without the quotes), if *n* can be represented as a sum of two triangular numbers, otherwise print "NO" (without the quotes).
Demo Input:
['256\n', '512\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first sample number <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/92095692c6ea93e9e3b837a0408ba7543549d5b2.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second sample number 512 can not be represented as a sum of two triangular numbers.
|
```python
n = int(input())*2
f = int(n**0.5)+1
c = 0
for i in range(1,f):
x = i*(i+1)
left = 1
right = f
while left!=right-1:
mid = (left+right)//2
if x + mid * (mid + 1) > n:
right = mid
else:
left = mid
if right * (right+1) + x == n or left * (left+1) + x == n:
print('YES')
c+=1
break
if c==0:
print('NO')
```
| 3
|
|
271
|
A
|
Beautiful Year
|
PROGRAMMING
| 800
|
[
"brute force"
] | null | null |
It seems like the year of 2013 came only yesterday. Do you know a curious fact? The year of 2013 is the first year after the old 1987 with only distinct digits.
Now you are suggested to solve the following problem: given a year number, find the minimum year number which is strictly larger than the given one and has only distinct digits.
|
The single line contains integer *y* (1000<=≤<=*y*<=≤<=9000) — the year number.
|
Print a single integer — the minimum year number that is strictly larger than *y* and all it's digits are distinct. It is guaranteed that the answer exists.
|
[
"1987\n",
"2013\n"
] |
[
"2013\n",
"2014\n"
] |
none
| 500
|
[
{
"input": "1987",
"output": "2013"
},
{
"input": "2013",
"output": "2014"
},
{
"input": "1000",
"output": "1023"
},
{
"input": "1001",
"output": "1023"
},
{
"input": "1234",
"output": "1235"
},
{
"input": "5555",
"output": "5601"
},
{
"input": "9000",
"output": "9012"
},
{
"input": "1111",
"output": "1203"
},
{
"input": "8999",
"output": "9012"
},
{
"input": "4572",
"output": "4573"
},
{
"input": "6666",
"output": "6701"
},
{
"input": "2001",
"output": "2013"
},
{
"input": "3000",
"output": "3012"
},
{
"input": "7712",
"output": "7801"
},
{
"input": "8088",
"output": "8091"
},
{
"input": "1594",
"output": "1596"
},
{
"input": "6016",
"output": "6017"
},
{
"input": "8800",
"output": "8901"
},
{
"input": "3331",
"output": "3401"
},
{
"input": "5090",
"output": "5091"
},
{
"input": "2342",
"output": "2345"
},
{
"input": "2334",
"output": "2340"
},
{
"input": "1123",
"output": "1203"
},
{
"input": "8989",
"output": "9012"
},
{
"input": "8977",
"output": "9012"
},
{
"input": "6869",
"output": "6870"
},
{
"input": "8999",
"output": "9012"
}
] | 1,691,207,679
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 27
| 92
| 0
|
s=int(input())+1;
while len(set(str(s)))<4:s+=1
print(s)
|
Title: Beautiful Year
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
It seems like the year of 2013 came only yesterday. Do you know a curious fact? The year of 2013 is the first year after the old 1987 with only distinct digits.
Now you are suggested to solve the following problem: given a year number, find the minimum year number which is strictly larger than the given one and has only distinct digits.
Input Specification:
The single line contains integer *y* (1000<=≤<=*y*<=≤<=9000) — the year number.
Output Specification:
Print a single integer — the minimum year number that is strictly larger than *y* and all it's digits are distinct. It is guaranteed that the answer exists.
Demo Input:
['1987\n', '2013\n']
Demo Output:
['2013\n', '2014\n']
Note:
none
|
```python
s=int(input())+1;
while len(set(str(s)))<4:s+=1
print(s)
```
| 3
|
|
476
|
B
|
Dreamoon and WiFi
|
PROGRAMMING
| 1,300
|
[
"bitmasks",
"brute force",
"combinatorics",
"dp",
"math",
"probabilities"
] | null | null |
Dreamoon is standing at the position 0 on a number line. Drazil is sending a list of commands through Wi-Fi to Dreamoon's smartphone and Dreamoon follows them.
Each command is one of the following two types:
1. Go 1 unit towards the positive direction, denoted as '+' 1. Go 1 unit towards the negative direction, denoted as '-'
But the Wi-Fi condition is so poor that Dreamoon's smartphone reports some of the commands can't be recognized and Dreamoon knows that some of them might even be wrong though successfully recognized. Dreamoon decides to follow every recognized command and toss a fair coin to decide those unrecognized ones (that means, he moves to the 1 unit to the negative or positive direction with the same probability 0.5).
You are given an original list of commands sent by Drazil and list received by Dreamoon. What is the probability that Dreamoon ends in the position originally supposed to be final by Drazil's commands?
|
The first line contains a string *s*1 — the commands Drazil sends to Dreamoon, this string consists of only the characters in the set {'+', '-'}.
The second line contains a string *s*2 — the commands Dreamoon's smartphone recognizes, this string consists of only the characters in the set {'+', '-', '?'}. '?' denotes an unrecognized command.
Lengths of two strings are equal and do not exceed 10.
|
Output a single real number corresponding to the probability. The answer will be considered correct if its relative or absolute error doesn't exceed 10<=-<=9.
|
[
"++-+-\n+-+-+\n",
"+-+-\n+-??\n",
"+++\n??-\n"
] |
[
"1.000000000000\n",
"0.500000000000\n",
"0.000000000000\n"
] |
For the first sample, both *s*<sub class="lower-index">1</sub> and *s*<sub class="lower-index">2</sub> will lead Dreamoon to finish at the same position + 1.
For the second sample, *s*<sub class="lower-index">1</sub> will lead Dreamoon to finish at position 0, while there are four possibilites for *s*<sub class="lower-index">2</sub>: {"+-++", "+-+-", "+--+", "+---"} with ending position {+2, 0, 0, -2} respectively. So there are 2 correct cases out of 4, so the probability of finishing at the correct position is 0.5.
For the third sample, *s*<sub class="lower-index">2</sub> could only lead us to finish at positions {+1, -1, -3}, so the probability to finish at the correct position + 3 is 0.
| 1,500
|
[
{
"input": "++-+-\n+-+-+",
"output": "1.000000000000"
},
{
"input": "+-+-\n+-??",
"output": "0.500000000000"
},
{
"input": "+++\n??-",
"output": "0.000000000000"
},
{
"input": "++++++++++\n+++??++?++",
"output": "0.125000000000"
},
{
"input": "--+++---+-\n??????????",
"output": "0.205078125000"
},
{
"input": "+--+++--+-\n??????????",
"output": "0.246093750000"
},
{
"input": "+\n+",
"output": "1.000000000000"
},
{
"input": "-\n?",
"output": "0.500000000000"
},
{
"input": "+\n-",
"output": "0.000000000000"
},
{
"input": "-\n-",
"output": "1.000000000000"
},
{
"input": "-\n+",
"output": "0.000000000000"
},
{
"input": "+\n?",
"output": "0.500000000000"
},
{
"input": "++++++++++\n++++++++++",
"output": "1.000000000000"
},
{
"input": "++++++++++\n++++-+++++",
"output": "0.000000000000"
},
{
"input": "----------\n++++++++++",
"output": "0.000000000000"
},
{
"input": "++++++++++\n++++??++++",
"output": "0.250000000000"
},
{
"input": "----------\n+++?++++-+",
"output": "0.000000000000"
},
{
"input": "++++++++++\n++++++++?+",
"output": "0.500000000000"
},
{
"input": "--++++--+\n?-+?-??+-",
"output": "0.250000000000"
},
{
"input": "----------\n??????????",
"output": "0.000976562500"
},
{
"input": "+--++\n+--+-",
"output": "0.000000000000"
},
{
"input": "-----++---\n????????+?",
"output": "0.017578125000"
},
{
"input": "------+--+\n??????????",
"output": "0.043945312500"
},
{
"input": "---++--\n???????",
"output": "0.164062500000"
},
{
"input": "-----++\n???????",
"output": "0.164062500000"
},
{
"input": "+---+--\n???????",
"output": "0.164062500000"
},
{
"input": "---+-+\n??????",
"output": "0.234375000000"
},
{
"input": "+++-+\n---++",
"output": "0.000000000000"
},
{
"input": "++-+--+\n?-?+??+",
"output": "0.375000000000"
},
{
"input": "----+++--\n-+?+++?--",
"output": "0.000000000000"
},
{
"input": "+-----\n+?----",
"output": "0.500000000000"
}
] | 1,679,669,686
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 31
| 77
| 1,843,200
|
# author: birsnot - Nardos Wehabe
from sys import stdin
def input(): return stdin.readline()[:-1]
def I(): return int(input())
def II(): return map(int, input().split())
def IL(): return list(map(int, input().split()))
def SIL(): return sorted(map(int, input().split()))
def solve():
true = input()
prob = input()
target = 0
for ch in true:
target += 1 - 2*(ch == "-")
N = len(true)
cur = 0
correct = 0
incorrect = 0
def helper(i):
nonlocal cur, correct, incorrect
if i == N:
if cur == target:
correct += 1
else:
incorrect += 1
return
if prob[i] == "+":
cur += 1
helper(i + 1)
cur -= 1
elif prob[i] == "-":
cur -= 1
helper(i + 1)
cur += 1
else:
cur += 1
helper(i + 1)
cur -= 2
helper(i + 1)
cur += 1
helper(0)
print(correct/(correct + incorrect))
T = 1
for ___ in range(T):
solve()
|
Title: Dreamoon and WiFi
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Dreamoon is standing at the position 0 on a number line. Drazil is sending a list of commands through Wi-Fi to Dreamoon's smartphone and Dreamoon follows them.
Each command is one of the following two types:
1. Go 1 unit towards the positive direction, denoted as '+' 1. Go 1 unit towards the negative direction, denoted as '-'
But the Wi-Fi condition is so poor that Dreamoon's smartphone reports some of the commands can't be recognized and Dreamoon knows that some of them might even be wrong though successfully recognized. Dreamoon decides to follow every recognized command and toss a fair coin to decide those unrecognized ones (that means, he moves to the 1 unit to the negative or positive direction with the same probability 0.5).
You are given an original list of commands sent by Drazil and list received by Dreamoon. What is the probability that Dreamoon ends in the position originally supposed to be final by Drazil's commands?
Input Specification:
The first line contains a string *s*1 — the commands Drazil sends to Dreamoon, this string consists of only the characters in the set {'+', '-'}.
The second line contains a string *s*2 — the commands Dreamoon's smartphone recognizes, this string consists of only the characters in the set {'+', '-', '?'}. '?' denotes an unrecognized command.
Lengths of two strings are equal and do not exceed 10.
Output Specification:
Output a single real number corresponding to the probability. The answer will be considered correct if its relative or absolute error doesn't exceed 10<=-<=9.
Demo Input:
['++-+-\n+-+-+\n', '+-+-\n+-??\n', '+++\n??-\n']
Demo Output:
['1.000000000000\n', '0.500000000000\n', '0.000000000000\n']
Note:
For the first sample, both *s*<sub class="lower-index">1</sub> and *s*<sub class="lower-index">2</sub> will lead Dreamoon to finish at the same position + 1.
For the second sample, *s*<sub class="lower-index">1</sub> will lead Dreamoon to finish at position 0, while there are four possibilites for *s*<sub class="lower-index">2</sub>: {"+-++", "+-+-", "+--+", "+---"} with ending position {+2, 0, 0, -2} respectively. So there are 2 correct cases out of 4, so the probability of finishing at the correct position is 0.5.
For the third sample, *s*<sub class="lower-index">2</sub> could only lead us to finish at positions {+1, -1, -3}, so the probability to finish at the correct position + 3 is 0.
|
```python
# author: birsnot - Nardos Wehabe
from sys import stdin
def input(): return stdin.readline()[:-1]
def I(): return int(input())
def II(): return map(int, input().split())
def IL(): return list(map(int, input().split()))
def SIL(): return sorted(map(int, input().split()))
def solve():
true = input()
prob = input()
target = 0
for ch in true:
target += 1 - 2*(ch == "-")
N = len(true)
cur = 0
correct = 0
incorrect = 0
def helper(i):
nonlocal cur, correct, incorrect
if i == N:
if cur == target:
correct += 1
else:
incorrect += 1
return
if prob[i] == "+":
cur += 1
helper(i + 1)
cur -= 1
elif prob[i] == "-":
cur -= 1
helper(i + 1)
cur += 1
else:
cur += 1
helper(i + 1)
cur -= 2
helper(i + 1)
cur += 1
helper(0)
print(correct/(correct + incorrect))
T = 1
for ___ in range(T):
solve()
```
| 3
|
|
158
|
A
|
Next Round
|
PROGRAMMING
| 800
|
[
"*special",
"implementation"
] | null | null |
"Contestant who earns a score equal to or greater than the *k*-th place finisher's score will advance to the next round, as long as the contestant earns a positive score..." — an excerpt from contest rules.
A total of *n* participants took part in the contest (*n*<=≥<=*k*), and you already know their scores. Calculate how many participants will advance to the next round.
|
The first line of the input contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=50) separated by a single space.
The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=100), where *a**i* is the score earned by the participant who got the *i*-th place. The given sequence is non-increasing (that is, for all *i* from 1 to *n*<=-<=1 the following condition is fulfilled: *a**i*<=≥<=*a**i*<=+<=1).
|
Output the number of participants who advance to the next round.
|
[
"8 5\n10 9 8 7 7 7 5 5\n",
"4 2\n0 0 0 0\n"
] |
[
"6\n",
"0\n"
] |
In the first example the participant on the 5th place earned 7 points. As the participant on the 6th place also earned 7 points, there are 6 advancers.
In the second example nobody got a positive score.
| 500
|
[
{
"input": "8 5\n10 9 8 7 7 7 5 5",
"output": "6"
},
{
"input": "4 2\n0 0 0 0",
"output": "0"
},
{
"input": "5 1\n1 1 1 1 1",
"output": "5"
},
{
"input": "5 5\n1 1 1 1 1",
"output": "5"
},
{
"input": "1 1\n10",
"output": "1"
},
{
"input": "17 14\n16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0",
"output": "14"
},
{
"input": "5 5\n3 2 1 0 0",
"output": "3"
},
{
"input": "8 6\n10 9 8 7 7 7 5 5",
"output": "6"
},
{
"input": "8 7\n10 9 8 7 7 7 5 5",
"output": "8"
},
{
"input": "8 4\n10 9 8 7 7 7 5 5",
"output": "6"
},
{
"input": "8 3\n10 9 8 7 7 7 5 5",
"output": "3"
},
{
"input": "8 1\n10 9 8 7 7 7 5 5",
"output": "1"
},
{
"input": "8 2\n10 9 8 7 7 7 5 5",
"output": "2"
},
{
"input": "1 1\n100",
"output": "1"
},
{
"input": "1 1\n0",
"output": "0"
},
{
"input": "50 25\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "50"
},
{
"input": "50 25\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "25"
},
{
"input": "50 25\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "26"
},
{
"input": "50 25\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "50"
},
{
"input": "11 5\n100 99 98 97 96 95 94 93 92 91 90",
"output": "5"
},
{
"input": "10 4\n100 81 70 69 64 43 34 29 15 3",
"output": "4"
},
{
"input": "11 6\n87 71 62 52 46 46 43 35 32 25 12",
"output": "6"
},
{
"input": "17 12\n99 88 86 82 75 75 74 65 58 52 45 30 21 16 7 2 2",
"output": "12"
},
{
"input": "20 3\n98 98 96 89 87 82 82 80 76 74 74 68 61 60 43 32 30 22 4 2",
"output": "3"
},
{
"input": "36 12\n90 87 86 85 83 80 79 78 76 70 69 69 61 61 59 58 56 48 45 44 42 41 33 31 27 25 23 21 20 19 15 14 12 7 5 5",
"output": "12"
},
{
"input": "49 8\n99 98 98 96 92 92 90 89 89 86 86 85 83 80 79 76 74 69 67 67 58 56 55 51 49 47 47 46 45 41 41 40 39 34 34 33 25 23 18 15 13 13 11 9 5 4 3 3 1",
"output": "9"
},
{
"input": "49 29\n100 98 98 96 96 96 95 87 85 84 81 76 74 70 63 63 63 62 57 57 56 54 53 52 50 47 45 41 41 39 38 31 30 28 27 26 23 22 20 15 15 11 7 6 6 4 2 1 0",
"output": "29"
},
{
"input": "49 34\n99 98 96 96 93 92 90 89 88 86 85 85 82 76 73 69 66 64 63 63 60 59 57 57 56 55 54 54 51 48 47 44 42 42 40 39 38 36 33 26 24 23 19 17 17 14 12 7 4",
"output": "34"
},
{
"input": "50 44\n100 100 99 97 95 91 91 84 83 83 79 71 70 69 69 62 61 60 59 59 58 58 58 55 55 54 52 48 47 45 44 44 38 36 32 31 28 28 25 25 24 24 24 22 17 15 14 13 12 4",
"output": "44"
},
{
"input": "50 13\n99 95 94 94 88 87 81 79 78 76 74 72 72 69 68 67 67 67 66 63 62 61 58 57 55 55 54 51 50 50 48 48 42 41 38 35 34 32 31 30 26 24 13 13 12 6 5 4 3 3",
"output": "13"
},
{
"input": "50 30\n100 98 96 94 91 89 88 81 81 81 81 81 76 73 72 71 70 69 66 64 61 59 59 56 52 50 49 48 43 39 36 35 34 34 31 29 27 26 24 22 16 16 15 14 14 14 9 7 4 3",
"output": "30"
},
{
"input": "2 1\n10 10",
"output": "2"
},
{
"input": "2 2\n10 10",
"output": "2"
},
{
"input": "2 2\n10 0",
"output": "1"
},
{
"input": "2 2\n10 1",
"output": "2"
},
{
"input": "2 1\n10 0",
"output": "1"
},
{
"input": "2 1\n10 2",
"output": "1"
},
{
"input": "50 13\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "0"
},
{
"input": "50 1\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "0"
},
{
"input": "50 50\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "0"
},
{
"input": "10 1\n5 5 5 3 3 3 0 0 0 0",
"output": "3"
},
{
"input": "10 2\n5 5 5 3 3 3 0 0 0 0",
"output": "3"
},
{
"input": "10 3\n5 5 5 3 3 3 0 0 0 0",
"output": "3"
},
{
"input": "10 4\n5 5 5 3 3 3 0 0 0 0",
"output": "6"
},
{
"input": "10 5\n5 5 5 3 3 3 0 0 0 0",
"output": "6"
},
{
"input": "10 6\n5 5 5 3 3 3 0 0 0 0",
"output": "6"
},
{
"input": "10 7\n5 5 5 3 3 3 0 0 0 0",
"output": "6"
},
{
"input": "10 8\n5 5 5 3 3 3 0 0 0 0",
"output": "6"
},
{
"input": "10 9\n5 5 5 3 3 3 0 0 0 0",
"output": "6"
},
{
"input": "10 10\n5 5 5 3 3 3 0 0 0 0",
"output": "6"
}
] | 1,697,082,570
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 50
| 92
| 0
|
a,b=map(int,input().split())
x=list(map(int,input().split()))
y = x[b-1]
z = 0
for i in x:
if i >= y and i != 0:
z = z + 1
print(z)
|
Title: Next Round
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
"Contestant who earns a score equal to or greater than the *k*-th place finisher's score will advance to the next round, as long as the contestant earns a positive score..." — an excerpt from contest rules.
A total of *n* participants took part in the contest (*n*<=≥<=*k*), and you already know their scores. Calculate how many participants will advance to the next round.
Input Specification:
The first line of the input contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=50) separated by a single space.
The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=100), where *a**i* is the score earned by the participant who got the *i*-th place. The given sequence is non-increasing (that is, for all *i* from 1 to *n*<=-<=1 the following condition is fulfilled: *a**i*<=≥<=*a**i*<=+<=1).
Output Specification:
Output the number of participants who advance to the next round.
Demo Input:
['8 5\n10 9 8 7 7 7 5 5\n', '4 2\n0 0 0 0\n']
Demo Output:
['6\n', '0\n']
Note:
In the first example the participant on the 5th place earned 7 points. As the participant on the 6th place also earned 7 points, there are 6 advancers.
In the second example nobody got a positive score.
|
```python
a,b=map(int,input().split())
x=list(map(int,input().split()))
y = x[b-1]
z = 0
for i in x:
if i >= y and i != 0:
z = z + 1
print(z)
```
| 3
|
|
869
|
B
|
The Eternal Immortality
|
PROGRAMMING
| 1,100
|
[
"math"
] | null | null |
Even if the world is full of counterfeits, I still regard it as wonderful.
Pile up herbs and incense, and arise again from the flames and ashes of its predecessor — as is known to many, the phoenix does it like this.
The phoenix has a rather long lifespan, and reincarnates itself once every *a*! years. Here *a*! denotes the factorial of integer *a*, that is, *a*!<==<=1<=×<=2<=×<=...<=×<=*a*. Specifically, 0!<==<=1.
Koyomi doesn't care much about this, but before he gets into another mess with oddities, he is interested in the number of times the phoenix will reincarnate in a timespan of *b*! years, that is, . Note that when *b*<=≥<=*a* this value is always integer.
As the answer can be quite large, it would be enough for Koyomi just to know the last digit of the answer in decimal representation. And you're here to provide Koyomi with this knowledge.
|
The first and only line of input contains two space-separated integers *a* and *b* (0<=≤<=*a*<=≤<=*b*<=≤<=1018).
|
Output one line containing a single decimal digit — the last digit of the value that interests Koyomi.
|
[
"2 4\n",
"0 10\n",
"107 109\n"
] |
[
"2\n",
"0\n",
"2\n"
] |
In the first example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/99c47ca8b182f097e38094d12f0c06ce0b081b76.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 2;
In the second example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9642ef11a23e7c5a3f3c2b1255c1b1b3533802a4.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 0;
In the third example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/844938cef52ee264c183246d2a9df05cca94dc60.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 2.
| 1,000
|
[
{
"input": "2 4",
"output": "2"
},
{
"input": "0 10",
"output": "0"
},
{
"input": "107 109",
"output": "2"
},
{
"input": "10 13",
"output": "6"
},
{
"input": "998244355 998244359",
"output": "4"
},
{
"input": "999999999000000000 1000000000000000000",
"output": "0"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "3 15",
"output": "0"
},
{
"input": "24 26",
"output": "0"
},
{
"input": "14 60",
"output": "0"
},
{
"input": "11 79",
"output": "0"
},
{
"input": "1230 1232",
"output": "2"
},
{
"input": "2633 2634",
"output": "4"
},
{
"input": "535 536",
"output": "6"
},
{
"input": "344319135 396746843",
"output": "0"
},
{
"input": "696667767 696667767",
"output": "1"
},
{
"input": "419530302 610096911",
"output": "0"
},
{
"input": "238965115 821731161",
"output": "0"
},
{
"input": "414626436 728903812",
"output": "0"
},
{
"input": "274410639 293308324",
"output": "0"
},
{
"input": "650636673091305697 650636673091305702",
"output": "0"
},
{
"input": "651240548333620923 651240548333620924",
"output": "4"
},
{
"input": "500000000000000000 1000000000000000000",
"output": "0"
},
{
"input": "999999999999999999 1000000000000000000",
"output": "0"
},
{
"input": "1000000000000000000 1000000000000000000",
"output": "1"
},
{
"input": "0 4",
"output": "4"
},
{
"input": "50000000062000007 50000000062000011",
"output": "0"
},
{
"input": "0 0",
"output": "1"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "0 2",
"output": "2"
},
{
"input": "10000000000012 10000000000015",
"output": "0"
},
{
"input": "5 5",
"output": "1"
},
{
"input": "12 23",
"output": "0"
},
{
"input": "0 11",
"output": "0"
},
{
"input": "11111234567890 11111234567898",
"output": "0"
},
{
"input": "0 3",
"output": "6"
},
{
"input": "1 2",
"output": "2"
},
{
"input": "999999999999999997 999999999999999999",
"output": "2"
},
{
"input": "4 5",
"output": "5"
},
{
"input": "0 1",
"output": "1"
},
{
"input": "101 1002",
"output": "0"
},
{
"input": "0 100000000000000001",
"output": "0"
},
{
"input": "99999999999999997 99999999999999999",
"output": "2"
},
{
"input": "14 15",
"output": "5"
},
{
"input": "8 19",
"output": "0"
},
{
"input": "12 22",
"output": "0"
},
{
"input": "999999999999996 999999999999999",
"output": "4"
},
{
"input": "1 3",
"output": "6"
},
{
"input": "124 125",
"output": "5"
},
{
"input": "11 32",
"output": "0"
},
{
"input": "0 5",
"output": "0"
},
{
"input": "0 999999",
"output": "0"
},
{
"input": "151151151515 151151151526",
"output": "0"
},
{
"input": "6 107",
"output": "0"
},
{
"input": "5 16",
"output": "0"
},
{
"input": "7 16",
"output": "0"
},
{
"input": "6 19",
"output": "0"
},
{
"input": "11113111111111 13111111111111",
"output": "0"
},
{
"input": "1 1000",
"output": "0"
},
{
"input": "24 25",
"output": "5"
},
{
"input": "0 100000000000",
"output": "0"
},
{
"input": "1 22",
"output": "0"
},
{
"input": "999999999999999996 999999999999999999",
"output": "4"
}
] | 1,527,063,421
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 4
| 1,000
| 1,536,000
|
from math import factorial
a,b=list(map(int,input().split()))
if b-a<6:
print(factorial(b)//factorial(a)%10)
else:
print(0)
|
Title: The Eternal Immortality
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Even if the world is full of counterfeits, I still regard it as wonderful.
Pile up herbs and incense, and arise again from the flames and ashes of its predecessor — as is known to many, the phoenix does it like this.
The phoenix has a rather long lifespan, and reincarnates itself once every *a*! years. Here *a*! denotes the factorial of integer *a*, that is, *a*!<==<=1<=×<=2<=×<=...<=×<=*a*. Specifically, 0!<==<=1.
Koyomi doesn't care much about this, but before he gets into another mess with oddities, he is interested in the number of times the phoenix will reincarnate in a timespan of *b*! years, that is, . Note that when *b*<=≥<=*a* this value is always integer.
As the answer can be quite large, it would be enough for Koyomi just to know the last digit of the answer in decimal representation. And you're here to provide Koyomi with this knowledge.
Input Specification:
The first and only line of input contains two space-separated integers *a* and *b* (0<=≤<=*a*<=≤<=*b*<=≤<=1018).
Output Specification:
Output one line containing a single decimal digit — the last digit of the value that interests Koyomi.
Demo Input:
['2 4\n', '0 10\n', '107 109\n']
Demo Output:
['2\n', '0\n', '2\n']
Note:
In the first example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/99c47ca8b182f097e38094d12f0c06ce0b081b76.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 2;
In the second example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9642ef11a23e7c5a3f3c2b1255c1b1b3533802a4.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 0;
In the third example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/844938cef52ee264c183246d2a9df05cca94dc60.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 2.
|
```python
from math import factorial
a,b=list(map(int,input().split()))
if b-a<6:
print(factorial(b)//factorial(a)%10)
else:
print(0)
```
| 0
|
|
32
|
B
|
Borze
|
PROGRAMMING
| 800
|
[
"expression parsing",
"implementation"
] |
B. Borze
|
2
|
256
|
Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as «.», 1 as «-.» and 2 as «--». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet.
|
The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes).
|
Output the decoded ternary number. It can have leading zeroes.
|
[
".-.--\n",
"--.\n",
"-..-.--\n"
] |
[
"012",
"20",
"1012"
] |
none
| 1,000
|
[
{
"input": ".-.--",
"output": "012"
},
{
"input": "--.",
"output": "20"
},
{
"input": "-..-.--",
"output": "1012"
},
{
"input": "---..",
"output": "210"
},
{
"input": "..--.---..",
"output": "0020210"
},
{
"input": "-.....----.",
"output": "10000220"
},
{
"input": ".",
"output": "0"
},
{
"input": "-.",
"output": "1"
},
{
"input": "--",
"output": "2"
},
{
"input": "..",
"output": "00"
},
{
"input": "--.",
"output": "20"
},
{
"input": ".--.",
"output": "020"
},
{
"input": ".-.-..",
"output": "0110"
},
{
"input": "----.-.",
"output": "2201"
},
{
"input": "-..--.-.",
"output": "10201"
},
{
"input": "..--..--.",
"output": "0020020"
},
{
"input": "-.-.---.--..-..-.-.-..-..-.--.",
"output": "112120010111010120"
},
{
"input": "---.-.-.------..-..-..-..-.-..-.--.-.-..-.-.-----..-.-.",
"output": "21112220010101011012011011221011"
},
{
"input": "-.-..--.-.-.-.-.-..-.-.-.---------.--.---..--...--.-----.-.-.-...--.-.-.---.------.--..-.--.-----.-...-..------",
"output": "11020111110111222212021020002022111100201121222020012022110010222"
},
{
"input": "-.-..-.--.---..---.-..---.-...-.-.----..-.---.-.---..-.--.---.-.-------.---.--....----.-.---.---.---.----.-----..---.-.-.-.-----.--.-------.-..",
"output": "110120210211021100112200121121012021122212120000220121212122022102111122120222110"
},
{
"input": ".-..-.-.---.-----.--.---...-.--.-.-....-..",
"output": "01011212212021001201100010"
},
{
"input": ".------.-.---..--...-..-..-.-.-.--.--.-..-.--...-.-.---.-.-.------..--..-.---..----.-..-.--.---.-.----.-.---...-.-.-.-----.-.-.---.---.-.....-.-...-----.-...-.---.-..-.-----.--...---.-.-..-.--.-.---..",
"output": "022201210200010101112020101200011211122200200121022010120211220121001112211121211000011002211001211012212000211101201210"
},
{
"input": ".-.--.---.-----.-.-----.-.-..-----..-..----..--.-.--.----..---.---..-.-.-----..-------.----..----.-..---...-----..-..-----...-..-.-.-----....---..---..-.-----...-.--...--.-.---.-.-.-.-.-...---..----.",
"output": "01202122112211102210102200201202200212101122102221220022010210022101022100101122100021021012210012000201211111100210220"
},
{
"input": "..-.-.-.---.-.-.-..-.-..-.-.---.-------.---..-----.---....-.---.--.--.-.---.---------.-..---.-.-.--..---.---.-.---.-.-..-.-..-.-.-.----.--.-....--------.-.---..----.------.-.-.--.--.-----.-----.----",
"output": "0011121111011011212221210221210001212020121222211021112002121121110110111220201000222201210220222011202022122122"
},
{
"input": "-..-------.------.-..--.-.-..--.-.-..-----..-.-.-..-..-..--.---..-----..---..-..--.-..-.-.---...-.....-------.---.-----.-...-.-...-.-.---.---.-----.--.--...-.--..-.-..-...-.-.-.-.---..---.-..-.-.-.-..",
"output": "102221222010201102011022101110101020210221021010201011210010000222121221100110011212122120200012001101001111210211011110"
},
{
"input": ".-.----.-.--..-.-.-.-..----..-.-...--.-.---.---.-------..-.--..-......--.------.--.----.--...-.--.--..-----..-.....--.--.-.-.------..--------.----------..-.---.----.---.-..--..-.....-..------.--.",
"output": "012201200111102200110020121212221012001000002022202022020001202002210100002020112220022220222220012122021102001000010222020"
},
{
"input": "------.-----.-....--.-.----.-.---.-.-..---.-.---.-----..-...-.-.---..-.-.-..-.-.-...-.-.-.----..--.------.----.-..-.--...-.-------...-.-..-.-.--.--.---..--..--------.--.-.-.---.-.-.-...----.--..-.--..",
"output": "222022110002012201211102112122101001121011101110011122002022202201012000122210011011202021020022220201121111002202001200"
},
{
"input": "-.---...----...--.--...-.--.----",
"output": "121002200020200012022"
},
{
"input": "--.--.--.---.--.-.---.-.-..-..--.-..---.-.....-..---.-----.--...-.-.-------.-.--.-.----.-..-.------.",
"output": "202020212012111010201021100001021221200011222112012201012220"
}
] | 1,654,491,393
| 2,147,483,647
|
Python 3
|
COMPILATION_ERROR
|
TESTS
| 0
| 0
| 0
|
x=input()
j=0
while j < (len(x)):
if x[j]=='.':
print('0',end='')
j=j+1
if x[j]=='-' and x[j+1]=='.' :
print('1',end='')
j=j+2
if x[j]=='-' and x[j+1]=='-':
print('2',end='')
j=j+2
|
Title: Borze
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as «.», 1 as «-.» and 2 as «--». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet.
Input Specification:
The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes).
Output Specification:
Output the decoded ternary number. It can have leading zeroes.
Demo Input:
['.-.--\n', '--.\n', '-..-.--\n']
Demo Output:
['012', '20', '1012']
Note:
none
|
```python
x=input()
j=0
while j < (len(x)):
if x[j]=='.':
print('0',end='')
j=j+1
if x[j]=='-' and x[j+1]=='.' :
print('1',end='')
j=j+2
if x[j]=='-' and x[j+1]=='-':
print('2',end='')
j=j+2
```
| -1
|
58
|
A
|
Chat room
|
PROGRAMMING
| 1,000
|
[
"greedy",
"strings"
] |
A. Chat room
|
1
|
256
|
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
|
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
|
If Vasya managed to say hello, print "YES", otherwise print "NO".
|
[
"ahhellllloou\n",
"hlelo\n"
] |
[
"YES\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "ahhellllloou",
"output": "YES"
},
{
"input": "hlelo",
"output": "NO"
},
{
"input": "helhcludoo",
"output": "YES"
},
{
"input": "hehwelloho",
"output": "YES"
},
{
"input": "pnnepelqomhhheollvlo",
"output": "YES"
},
{
"input": "tymbzjyqhymedasloqbq",
"output": "NO"
},
{
"input": "yehluhlkwo",
"output": "NO"
},
{
"input": "hatlevhhalrohairnolsvocafgueelrqmlqlleello",
"output": "YES"
},
{
"input": "hhhtehdbllnhwmbyhvelqqyoulretpbfokflhlhreeflxeftelziclrwllrpflflbdtotvlqgoaoqldlroovbfsq",
"output": "YES"
},
{
"input": "rzlvihhghnelqtwlexmvdjjrliqllolhyewgozkuovaiezgcilelqapuoeglnwmnlftxxiigzczlouooi",
"output": "YES"
},
{
"input": "pfhhwctyqdlkrwhebfqfelhyebwllhemtrmeblgrynmvyhioesqklclocxmlffuormljszllpoo",
"output": "YES"
},
{
"input": "lqllcolohwflhfhlnaow",
"output": "NO"
},
{
"input": "heheeellollvoo",
"output": "YES"
},
{
"input": "hellooo",
"output": "YES"
},
{
"input": "o",
"output": "NO"
},
{
"input": "hhqhzeclohlehljlhtesllylrolmomvuhcxsobtsckogdv",
"output": "YES"
},
{
"input": "yoegfuzhqsihygnhpnukluutocvvwuldiighpogsifealtgkfzqbwtmgghmythcxflebrkctlldlkzlagovwlstsghbouk",
"output": "YES"
},
{
"input": "uatqtgbvrnywfacwursctpagasnhydvmlinrcnqrry",
"output": "NO"
},
{
"input": "tndtbldbllnrwmbyhvqaqqyoudrstpbfokfoclnraefuxtftmgzicorwisrpfnfpbdtatvwqgyalqtdtrjqvbfsq",
"output": "NO"
},
{
"input": "rzlvirhgemelnzdawzpaoqtxmqucnahvqnwldklrmjiiyageraijfivigvozgwngiulttxxgzczptusoi",
"output": "YES"
},
{
"input": "kgyelmchocojsnaqdsyeqgnllytbqietpdlgknwwumqkxrexgdcnwoldicwzwofpmuesjuxzrasscvyuqwspm",
"output": "YES"
},
{
"input": "pnyvrcotjvgynbeldnxieghfltmexttuxzyac",
"output": "NO"
},
{
"input": "dtwhbqoumejligbenxvzhjlhosqojetcqsynlzyhfaevbdpekgbtjrbhlltbceobcok",
"output": "YES"
},
{
"input": "crrfpfftjwhhikwzeedrlwzblckkteseofjuxjrktcjfsylmlsvogvrcxbxtffujqshslemnixoeezivksouefeqlhhokwbqjz",
"output": "YES"
},
{
"input": "jhfbndhyzdvhbvhmhmefqllujdflwdpjbehedlsqfdsqlyelwjtyloxwsvasrbqosblzbowlqjmyeilcvotdlaouxhdpoeloaovb",
"output": "YES"
},
{
"input": "hwlghueoemiqtjhhpashjsouyegdlvoyzeunlroypoprnhlyiwiuxrghekaylndhrhllllwhbebezoglydcvykllotrlaqtvmlla",
"output": "YES"
},
{
"input": "wshiaunnqnqxodholbipwhhjmyeblhgpeleblklpzwhdunmpqkbuzloetmwwxmeltkrcomulxauzlwmlklldjodozxryghsnwgcz",
"output": "YES"
},
{
"input": "shvksednttggehroewuiptvvxtrzgidravtnjwuqrlnnkxbplctzkckinpkgjopjfoxdbojtcvsuvablcbkrzajrlhgobkcxeqti",
"output": "YES"
},
{
"input": "hyyhddqhxhekehkwfhlnlsihzefwchzerevcjtokefplholrbvxlltdlafjxrfhleglrvlolojoqaolagtbeyogxlbgfolllslli",
"output": "YES"
},
{
"input": "iaagrdhhelxpdegueiulflquvlzidoprzkehthkldaytrjwhyhprwjxlltinxvuilxohqgjqcvkkdcuoliekcnlilwgqlnlzouoo",
"output": "YES"
},
{
"input": "wfluaeseldgxyvxpwuhkptdmlflnlhktwxiabsvkolsquymrmhzczzoybvlilhmvsuunggvgxzgyyffk",
"output": "NO"
},
{
"input": "loee",
"output": "NO"
},
{
"input": "izdipwylefqmjbuoznfglgcfvedeouflkeehxbasaqmiooppfsqlhprospqgxvzrcpwlfdddngoqvpwvggsnvvxhmjoslwjudjlo",
"output": "NO"
},
{
"input": "pplynflbjlseflaegzqpdxswgunhnlglqhycrbcwdfhclmcrwekkzsoosmfblljeenwfjyifcvxihhhbyhmhlkvtskeglaovjnsi",
"output": "YES"
},
{
"input": "xqjqmenkodmlhzyzmmvofdngktygbbxbzpluzcohohmalkoeuwfikblltaaigv",
"output": "NO"
},
{
"input": "hello",
"output": "YES"
},
{
"input": "oohell",
"output": "NO"
},
{
"input": "hell",
"output": "NO"
},
{
"input": "eloellohoelo",
"output": "NO"
},
{
"input": "helllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllo",
"output": "YES"
}
] | 1,628,937,874
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 46
| 6,963,200
|
str1=input()
y=len(str1)
a=str1.find('h')
b=str1.find('e',a)
c=str1.find('l',b)
d=str1.find('l',c+1)
e=str1.find('o',d)
print(a,b,c,d,e)
if -1!=a<b and -1!=b<c and -1!=c<d and -1!=d<e:
print("YES")
else:
print("NO")
|
Title: Chat room
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
Input Specification:
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
Output Specification:
If Vasya managed to say hello, print "YES", otherwise print "NO".
Demo Input:
['ahhellllloou\n', 'hlelo\n']
Demo Output:
['YES\n', 'NO\n']
Note:
none
|
```python
str1=input()
y=len(str1)
a=str1.find('h')
b=str1.find('e',a)
c=str1.find('l',b)
d=str1.find('l',c+1)
e=str1.find('o',d)
print(a,b,c,d,e)
if -1!=a<b and -1!=b<c and -1!=c<d and -1!=d<e:
print("YES")
else:
print("NO")
```
| 0
|
25
|
A
|
IQ test
|
PROGRAMMING
| 1,300
|
[
"brute force"
] |
A. IQ test
|
2
|
256
|
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
|
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
|
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
|
[
"5\n2 4 7 8 10\n",
"4\n1 2 1 1\n"
] |
[
"3\n",
"2\n"
] |
none
| 0
|
[
{
"input": "5\n2 4 7 8 10",
"output": "3"
},
{
"input": "4\n1 2 1 1",
"output": "2"
},
{
"input": "3\n1 2 2",
"output": "1"
},
{
"input": "3\n100 99 100",
"output": "2"
},
{
"input": "3\n5 3 2",
"output": "3"
},
{
"input": "4\n43 28 1 91",
"output": "2"
},
{
"input": "4\n75 13 94 77",
"output": "3"
},
{
"input": "4\n97 8 27 3",
"output": "2"
},
{
"input": "10\n95 51 12 91 85 3 1 31 25 7",
"output": "3"
},
{
"input": "20\n88 96 66 51 14 88 2 92 18 72 18 88 20 30 4 82 90 100 24 46",
"output": "4"
},
{
"input": "30\n20 94 56 50 10 98 52 32 14 22 24 60 4 8 98 46 34 68 82 82 98 90 50 20 78 49 52 94 64 36",
"output": "26"
},
{
"input": "50\n79 27 77 57 37 45 27 49 65 33 57 21 71 19 75 85 65 61 23 97 85 9 23 1 9 3 99 77 77 21 79 69 15 37 15 7 93 81 13 89 91 31 45 93 15 97 55 80 85 83",
"output": "48"
},
{
"input": "60\n46 11 73 65 3 69 3 53 43 53 97 47 55 93 31 75 35 3 9 73 23 31 3 81 91 79 61 21 15 11 11 11 81 7 83 75 39 87 83 59 89 55 93 27 49 67 67 29 1 93 11 17 9 19 35 21 63 31 31 25",
"output": "1"
},
{
"input": "70\n28 42 42 92 64 54 22 38 38 78 62 38 4 38 14 66 4 92 66 58 94 26 4 44 41 88 48 82 44 26 74 44 48 4 16 92 34 38 26 64 94 4 30 78 50 54 12 90 8 16 80 98 28 100 74 50 36 42 92 18 76 98 8 22 2 50 58 50 64 46",
"output": "25"
},
{
"input": "100\n43 35 79 53 13 91 91 45 65 83 57 9 42 39 85 45 71 51 61 59 31 13 63 39 25 21 79 39 91 67 21 61 97 75 93 83 29 79 59 97 11 37 63 51 39 55 91 23 21 17 47 23 35 75 49 5 69 99 5 7 41 17 25 89 15 79 21 63 53 81 43 91 59 91 69 99 85 15 91 51 49 37 65 7 89 81 21 93 61 63 97 93 45 17 13 69 57 25 75 73",
"output": "13"
},
{
"input": "100\n50 24 68 60 70 30 52 22 18 74 68 98 20 82 4 46 26 68 100 78 84 58 74 98 38 88 68 86 64 80 82 100 20 22 98 98 52 6 94 10 48 68 2 18 38 22 22 82 44 20 66 72 36 58 64 6 36 60 4 96 76 64 12 90 10 58 64 60 74 28 90 26 24 60 40 58 2 16 76 48 58 36 82 60 24 44 4 78 28 38 8 12 40 16 38 6 66 24 31 76",
"output": "99"
},
{
"input": "100\n47 48 94 48 14 18 94 36 96 22 12 30 94 20 48 98 40 58 2 94 8 36 98 18 98 68 2 60 76 38 18 100 8 72 100 68 2 86 92 72 58 16 48 14 6 58 72 76 6 88 80 66 20 28 74 62 86 68 90 86 2 56 34 38 56 90 4 8 76 44 32 86 12 98 38 34 54 92 70 94 10 24 82 66 90 58 62 2 32 58 100 22 58 72 2 22 68 72 42 14",
"output": "1"
},
{
"input": "99\n38 20 68 60 84 16 28 88 60 48 80 28 4 92 70 60 46 46 20 34 12 100 76 2 40 10 8 86 6 80 50 66 12 34 14 28 26 70 46 64 34 96 10 90 98 96 56 88 50 74 70 94 2 94 24 66 68 46 22 30 6 10 64 32 88 14 98 100 64 58 50 18 50 50 8 38 8 16 54 2 60 54 62 84 92 98 4 72 66 26 14 88 99 16 10 6 88 56 22",
"output": "93"
},
{
"input": "99\n50 83 43 89 53 47 69 1 5 37 63 87 95 15 55 95 75 89 33 53 89 75 93 75 11 85 49 29 11 97 49 67 87 11 25 37 97 73 67 49 87 43 53 97 43 29 53 33 45 91 37 73 39 49 59 5 21 43 87 35 5 63 89 57 63 47 29 99 19 85 13 13 3 13 43 19 5 9 61 51 51 57 15 89 13 97 41 13 99 79 13 27 97 95 73 33 99 27 23",
"output": "1"
},
{
"input": "98\n61 56 44 30 58 14 20 24 88 28 46 56 96 52 58 42 94 50 46 30 46 80 72 88 68 16 6 60 26 90 10 98 76 20 56 40 30 16 96 20 88 32 62 30 74 58 36 76 60 4 24 36 42 54 24 92 28 14 2 74 86 90 14 52 34 82 40 76 8 64 2 56 10 8 78 16 70 86 70 42 70 74 22 18 76 98 88 28 62 70 36 72 20 68 34 48 80 98",
"output": "1"
},
{
"input": "98\n66 26 46 42 78 32 76 42 26 82 8 12 4 10 24 26 64 44 100 46 94 64 30 18 88 28 8 66 30 82 82 28 74 52 62 80 80 60 94 86 64 32 44 88 92 20 12 74 94 28 34 58 4 22 16 10 94 76 82 58 40 66 22 6 30 32 92 54 16 76 74 98 18 48 48 30 92 2 16 42 84 74 30 60 64 52 50 26 16 86 58 96 79 60 20 62 82 94",
"output": "93"
},
{
"input": "95\n9 31 27 93 17 77 75 9 9 53 89 39 51 99 5 1 11 39 27 49 91 17 27 79 81 71 37 75 35 13 93 4 99 55 85 11 23 57 5 43 5 61 15 35 23 91 3 81 99 85 43 37 39 27 5 67 7 33 75 59 13 71 51 27 15 93 51 63 91 53 43 99 25 47 17 71 81 15 53 31 59 83 41 23 73 25 91 91 13 17 25 13 55 57 29",
"output": "32"
},
{
"input": "100\n91 89 81 45 53 1 41 3 77 93 55 97 55 97 87 27 69 95 73 41 93 21 75 35 53 56 5 51 87 59 91 67 33 3 99 45 83 17 97 47 75 97 7 89 17 99 23 23 81 25 55 97 27 35 69 5 77 35 93 19 55 59 37 21 31 37 49 41 91 53 73 69 7 37 37 39 17 71 7 97 55 17 47 23 15 73 31 39 57 37 9 5 61 41 65 57 77 79 35 47",
"output": "26"
},
{
"input": "99\n38 56 58 98 80 54 26 90 14 16 78 92 52 74 40 30 84 14 44 80 16 90 98 68 26 24 78 72 42 16 84 40 14 44 2 52 50 2 12 96 58 66 8 80 44 52 34 34 72 98 74 4 66 74 56 21 8 38 76 40 10 22 48 32 98 34 12 62 80 68 64 82 22 78 58 74 20 22 48 56 12 38 32 72 6 16 74 24 94 84 26 38 18 24 76 78 98 94 72",
"output": "56"
},
{
"input": "100\n44 40 6 40 56 90 98 8 36 64 76 86 98 76 36 92 6 30 98 70 24 98 96 60 24 82 88 68 86 96 34 42 58 10 40 26 56 10 88 58 70 32 24 28 14 82 52 12 62 36 70 60 52 34 74 30 78 76 10 16 42 94 66 90 70 38 52 12 58 22 98 96 14 68 24 70 4 30 84 98 8 50 14 52 66 34 100 10 28 100 56 48 38 12 38 14 91 80 70 86",
"output": "97"
},
{
"input": "100\n96 62 64 20 90 46 56 90 68 36 30 56 70 28 16 64 94 34 6 32 34 50 94 22 90 32 40 2 72 10 88 38 28 92 20 26 56 80 4 100 100 90 16 74 74 84 8 2 30 20 80 32 16 46 92 56 42 12 96 64 64 42 64 58 50 42 74 28 2 4 36 32 70 50 54 92 70 16 45 76 28 16 18 50 48 2 62 94 4 12 52 52 4 100 70 60 82 62 98 42",
"output": "79"
},
{
"input": "99\n14 26 34 68 90 58 50 36 8 16 18 6 2 74 54 20 36 84 32 50 52 2 26 24 3 64 20 10 54 26 66 44 28 72 4 96 78 90 96 86 68 28 94 4 12 46 100 32 22 36 84 32 44 94 76 94 4 52 12 30 74 4 34 64 58 72 44 16 70 56 54 8 14 74 8 6 58 62 98 54 14 40 80 20 36 72 28 98 20 58 40 52 90 64 22 48 54 70 52",
"output": "25"
},
{
"input": "95\n82 86 30 78 6 46 80 66 74 72 16 24 18 52 52 38 60 36 86 26 62 28 22 46 96 26 94 84 20 46 66 88 76 32 12 86 74 18 34 88 4 48 94 6 58 6 100 82 4 24 88 32 54 98 34 48 6 76 42 88 42 28 100 4 22 2 10 66 82 54 98 20 60 66 38 98 32 47 86 58 6 100 12 46 2 42 8 84 78 28 24 70 34 28 86",
"output": "78"
},
{
"input": "90\n40 50 8 42 76 24 58 42 26 68 20 48 54 12 34 84 14 36 32 88 6 50 96 56 20 92 48 16 40 34 96 46 20 84 30 50 20 98 8 44 96 42 8 76 70 38 84 30 40 88 84 72 2 22 52 58 16 62 100 66 80 40 50 32 14 62 88 72 22 99 76 50 84 82 8 82 98 46 26 40 2 98 18 78 30 72 70 18 34 68",
"output": "70"
},
{
"input": "80\n81 43 87 1 55 43 53 61 27 19 43 13 89 9 33 83 75 55 97 71 91 37 95 5 21 69 81 93 95 69 31 83 55 7 97 7 79 57 8 61 27 85 49 1 15 97 63 79 29 73 41 85 5 41 31 93 67 11 63 59 15 99 91 77 43 69 23 23 81 73 19 1 67 51 1 75 99 67 3 81",
"output": "39"
},
{
"input": "98\n13 83 61 27 35 1 85 95 97 73 95 65 73 45 5 43 27 83 91 19 11 3 85 59 9 39 69 23 45 7 51 85 5 71 5 95 1 51 75 3 43 57 3 11 33 71 21 99 47 41 87 39 71 87 31 85 91 49 83 5 49 85 47 91 55 99 33 23 31 23 23 73 29 77 55 31 25 5 81 49 91 15 15 39 87 5 9 40 69 47 29 33 11 21 49 79 51 83",
"output": "88"
},
{
"input": "3\n100 100 1",
"output": "3"
}
] | 1,598,962,702
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 3
| 248
| 0
|
a = [0]*99
br=int(input())
a = list(map(int, input().split()))
dif = a[1]-a[0]
for i in range(2, br):
if a[i]-a[i-1]!=dif:
print(br-i)
exit(0)
print(0)
|
Title: IQ test
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
Input Specification:
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
Output Specification:
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
Demo Input:
['5\n2 4 7 8 10\n', '4\n1 2 1 1\n']
Demo Output:
['3\n', '2\n']
Note:
none
|
```python
a = [0]*99
br=int(input())
a = list(map(int, input().split()))
dif = a[1]-a[0]
for i in range(2, br):
if a[i]-a[i-1]!=dif:
print(br-i)
exit(0)
print(0)
```
| 0
|
538
|
B
|
Quasi Binary
|
PROGRAMMING
| 1,400
|
[
"constructive algorithms",
"dp",
"greedy",
"implementation"
] | null | null |
A number is called quasibinary if its decimal representation contains only digits 0 or 1. For example, numbers 0, 1, 101, 110011 — are quasibinary and numbers 2, 12, 900 are not.
You are given a positive integer *n*. Represent it as a sum of minimum number of quasibinary numbers.
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=106).
|
In the first line print a single integer *k* — the minimum number of numbers in the representation of number *n* as a sum of quasibinary numbers.
In the second line print *k* numbers — the elements of the sum. All these numbers should be quasibinary according to the definition above, their sum should equal *n*. Do not have to print the leading zeroes in the numbers. The order of numbers doesn't matter. If there are multiple possible representations, you are allowed to print any of them.
|
[
"9\n",
"32\n"
] |
[
"9\n1 1 1 1 1 1 1 1 1 \n",
"3\n10 11 11 \n"
] |
none
| 1,000
|
[
{
"input": "9",
"output": "9\n1 1 1 1 1 1 1 1 1 "
},
{
"input": "32",
"output": "3\n10 11 11 "
},
{
"input": "1",
"output": "1\n1 "
},
{
"input": "415",
"output": "5\n1 101 101 101 111 "
},
{
"input": "10011",
"output": "1\n10011 "
},
{
"input": "10201",
"output": "2\n100 10101 "
},
{
"input": "314159",
"output": "9\n1 1 1 1 11 1011 101011 101011 111111 "
},
{
"input": "999999",
"output": "9\n111111 111111 111111 111111 111111 111111 111111 111111 111111 "
},
{
"input": "2",
"output": "2\n1 1 "
},
{
"input": "10",
"output": "1\n10 "
},
{
"input": "21",
"output": "2\n10 11 "
},
{
"input": "98",
"output": "9\n10 11 11 11 11 11 11 11 11 "
},
{
"input": "102030",
"output": "3\n10 1010 101010 "
},
{
"input": "909090",
"output": "9\n101010 101010 101010 101010 101010 101010 101010 101010 101010 "
},
{
"input": "909823",
"output": "9\n101000 101100 101100 101100 101100 101100 101101 101111 101111 "
},
{
"input": "1000000",
"output": "1\n1000000 "
},
{
"input": "111111",
"output": "1\n111111 "
},
{
"input": "123456",
"output": "6\n1 11 111 1111 11111 111111 "
},
{
"input": "987654",
"output": "9\n100000 110000 111000 111100 111110 111111 111111 111111 111111 "
},
{
"input": "908172",
"output": "9\n100000 101000 101010 101010 101010 101010 101010 101011 101111 "
},
{
"input": "8",
"output": "8\n1 1 1 1 1 1 1 1 "
},
{
"input": "100009",
"output": "9\n1 1 1 1 1 1 1 1 100001 "
},
{
"input": "900000",
"output": "9\n100000 100000 100000 100000 100000 100000 100000 100000 100000 "
},
{
"input": "1435",
"output": "5\n1 101 111 111 1111 "
},
{
"input": "1453",
"output": "5\n10 110 111 111 1111 "
}
] | 1,592,878,832
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 0
| 108
| 20,172,800
|
import os
import sys
debug = True
if debug and os.path.exists("input.in"):
input = open("input.in", "r").readline
else:
debug = False
input = sys.stdin.readline
def inp():
return (int(input()))
def inlt():
return (list(map(int, input().split())))
def insr():
s = input()
return s[:len(s) - 1] # Remove line char from end
def invr():
return (map(int, input().split()))
test_count = 1
if debug:
test_count = int(input())
for t in range(test_count):
if debug:
print("Test Case #", t + 1)
# Start code here
n = inp()
digits = str(n)
max_digits = int(max(list(digits)))
num = ["0"] * len(digits)
nums = list()
for _ in range(max_digits):
nums.append(num.copy())
for i in range(len(digits)):
x = int(digits[i])
for j in range(x):
nums[j][i] = "1"
for x in nums:
print("".join(x).lstrip("0"), end=" ")
print("\n")
|
Title: Quasi Binary
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A number is called quasibinary if its decimal representation contains only digits 0 or 1. For example, numbers 0, 1, 101, 110011 — are quasibinary and numbers 2, 12, 900 are not.
You are given a positive integer *n*. Represent it as a sum of minimum number of quasibinary numbers.
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=106).
Output Specification:
In the first line print a single integer *k* — the minimum number of numbers in the representation of number *n* as a sum of quasibinary numbers.
In the second line print *k* numbers — the elements of the sum. All these numbers should be quasibinary according to the definition above, their sum should equal *n*. Do not have to print the leading zeroes in the numbers. The order of numbers doesn't matter. If there are multiple possible representations, you are allowed to print any of them.
Demo Input:
['9\n', '32\n']
Demo Output:
['9\n1 1 1 1 1 1 1 1 1 \n', '3\n10 11 11 \n']
Note:
none
|
```python
import os
import sys
debug = True
if debug and os.path.exists("input.in"):
input = open("input.in", "r").readline
else:
debug = False
input = sys.stdin.readline
def inp():
return (int(input()))
def inlt():
return (list(map(int, input().split())))
def insr():
s = input()
return s[:len(s) - 1] # Remove line char from end
def invr():
return (map(int, input().split()))
test_count = 1
if debug:
test_count = int(input())
for t in range(test_count):
if debug:
print("Test Case #", t + 1)
# Start code here
n = inp()
digits = str(n)
max_digits = int(max(list(digits)))
num = ["0"] * len(digits)
nums = list()
for _ in range(max_digits):
nums.append(num.copy())
for i in range(len(digits)):
x = int(digits[i])
for j in range(x):
nums[j][i] = "1"
for x in nums:
print("".join(x).lstrip("0"), end=" ")
print("\n")
```
| 0
|
|
359
|
C
|
Prime Number
|
PROGRAMMING
| 1,900
|
[
"math",
"number theory"
] | null | null |
Simon has a prime number *x* and an array of non-negative integers *a*1,<=*a*2,<=...,<=*a**n*.
Simon loves fractions very much. Today he wrote out number on a piece of paper. After Simon led all fractions to a common denominator and summed them up, he got a fraction: , where number *t* equals *x**a*1<=+<=*a*2<=+<=...<=+<=*a**n*. Now Simon wants to reduce the resulting fraction.
Help him, find the greatest common divisor of numbers *s* and *t*. As GCD can be rather large, print it as a remainder after dividing it by number 1000000007 (109<=+<=7).
|
The first line contains two positive integers *n* and *x* (1<=≤<=*n*<=≤<=105, 2<=≤<=*x*<=≤<=109) — the size of the array and the prime number.
The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a*1<=≤<=*a*2<=≤<=...<=≤<=*a**n*<=≤<=109).
|
Print a single number — the answer to the problem modulo 1000000007 (109<=+<=7).
|
[
"2 2\n2 2\n",
"3 3\n1 2 3\n",
"2 2\n29 29\n",
"4 5\n0 0 0 0\n"
] |
[
"8\n",
"27\n",
"73741817\n",
"1\n"
] |
In the first sample <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7745f7cc87c6c5f753e3414fad9baa3b1e3fea48.png" style="max-width: 100.0%;max-height: 100.0%;"/>. Thus, the answer to the problem is 8.
In the second sample, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/acb3d7990f024100be499bcb59828fa6e23a867d.png" style="max-width: 100.0%;max-height: 100.0%;"/>. The answer to the problem is 27, as 351 = 13·27, 729 = 27·27.
In the third sample the answer to the problem is 1073741824 *mod* 1000000007 = 73741817.
In the fourth sample <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/05a5fca3fb4690369838ff6dfeda521c959aa937.png" style="max-width: 100.0%;max-height: 100.0%;"/>. Thus, the answer to the problem is 1.
| 1,500
|
[
{
"input": "2 2\n2 2",
"output": "8"
},
{
"input": "3 3\n1 2 3",
"output": "27"
},
{
"input": "2 2\n29 29",
"output": "73741817"
},
{
"input": "4 5\n0 0 0 0",
"output": "1"
},
{
"input": "1 2\n1000000000",
"output": "1"
},
{
"input": "26 2\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2",
"output": "8"
},
{
"input": "26 7\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2",
"output": "49"
},
{
"input": "3 2\n0 1 1",
"output": "4"
},
{
"input": "1 127\n1000000000",
"output": "1"
},
{
"input": "1 800000011\n800000011",
"output": "1"
},
{
"input": "1 800000011\n999999999",
"output": "1"
},
{
"input": "3 3\n1 1 1",
"output": "27"
}
] | 1,409,223,903
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 6
| 873
| 7,987,200
|
input_str = input()
n, x = int(input_str.split()[0]), int(input_str.split()[1])
input_str = input()
a = input_str.split()
s = 0
maximum = 0
for i in range(n):
a[i] = int(a[i])
s += a[i]
if a[i]>maximum:
maximum = a[i]
"""def FastPow1 (t, k):
res = 1
while k:
if (k & 1):
res *= t
k = k >> 1
if k == 0:
break
t = (t*t) % 1000000007
return res % 1000000007
def FastPow(x, n, m=1000000007):
y=1
X=x
N=n
while N>0:
if N&1:
y = (y * X) % m
X = (X * X) % m
N >>= 1
return y"""
"""a = []
for i in range(n):
temp = random.randint(0, 1000000000)
s += temp
if temp>maximum:
maximum = temp
a.append(temp)#(557523474, 999999999))"""
minimum = s - maximum
res = pow(x, minimum, 1000000007)#FastPow(x, minimum)#x**minimum
sum_a = 0
s_new = s - minimum
for i in range(n):
sum_a += pow(x, s_new - a[i], 1000000007)#FastPow(x, s_new - a[i])
c = sum_a % x#FastPow(x, s - minimum) % sum_a#x**(s - minimum) % sum_a
if c == 0:
res *= sum_a
print (res%1000000007)
|
Title: Prime Number
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Simon has a prime number *x* and an array of non-negative integers *a*1,<=*a*2,<=...,<=*a**n*.
Simon loves fractions very much. Today he wrote out number on a piece of paper. After Simon led all fractions to a common denominator and summed them up, he got a fraction: , where number *t* equals *x**a*1<=+<=*a*2<=+<=...<=+<=*a**n*. Now Simon wants to reduce the resulting fraction.
Help him, find the greatest common divisor of numbers *s* and *t*. As GCD can be rather large, print it as a remainder after dividing it by number 1000000007 (109<=+<=7).
Input Specification:
The first line contains two positive integers *n* and *x* (1<=≤<=*n*<=≤<=105, 2<=≤<=*x*<=≤<=109) — the size of the array and the prime number.
The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a*1<=≤<=*a*2<=≤<=...<=≤<=*a**n*<=≤<=109).
Output Specification:
Print a single number — the answer to the problem modulo 1000000007 (109<=+<=7).
Demo Input:
['2 2\n2 2\n', '3 3\n1 2 3\n', '2 2\n29 29\n', '4 5\n0 0 0 0\n']
Demo Output:
['8\n', '27\n', '73741817\n', '1\n']
Note:
In the first sample <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7745f7cc87c6c5f753e3414fad9baa3b1e3fea48.png" style="max-width: 100.0%;max-height: 100.0%;"/>. Thus, the answer to the problem is 8.
In the second sample, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/acb3d7990f024100be499bcb59828fa6e23a867d.png" style="max-width: 100.0%;max-height: 100.0%;"/>. The answer to the problem is 27, as 351 = 13·27, 729 = 27·27.
In the third sample the answer to the problem is 1073741824 *mod* 1000000007 = 73741817.
In the fourth sample <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/05a5fca3fb4690369838ff6dfeda521c959aa937.png" style="max-width: 100.0%;max-height: 100.0%;"/>. Thus, the answer to the problem is 1.
|
```python
input_str = input()
n, x = int(input_str.split()[0]), int(input_str.split()[1])
input_str = input()
a = input_str.split()
s = 0
maximum = 0
for i in range(n):
a[i] = int(a[i])
s += a[i]
if a[i]>maximum:
maximum = a[i]
"""def FastPow1 (t, k):
res = 1
while k:
if (k & 1):
res *= t
k = k >> 1
if k == 0:
break
t = (t*t) % 1000000007
return res % 1000000007
def FastPow(x, n, m=1000000007):
y=1
X=x
N=n
while N>0:
if N&1:
y = (y * X) % m
X = (X * X) % m
N >>= 1
return y"""
"""a = []
for i in range(n):
temp = random.randint(0, 1000000000)
s += temp
if temp>maximum:
maximum = temp
a.append(temp)#(557523474, 999999999))"""
minimum = s - maximum
res = pow(x, minimum, 1000000007)#FastPow(x, minimum)#x**minimum
sum_a = 0
s_new = s - minimum
for i in range(n):
sum_a += pow(x, s_new - a[i], 1000000007)#FastPow(x, s_new - a[i])
c = sum_a % x#FastPow(x, s - minimum) % sum_a#x**(s - minimum) % sum_a
if c == 0:
res *= sum_a
print (res%1000000007)
```
| 0
|
|
0
|
none
|
none
|
none
| 0
|
[
"none"
] | null | null |
Santa Claus decided to disassemble his keyboard to clean it. After he returned all the keys back, he suddenly realized that some pairs of keys took each other's place! That is, Santa suspects that each key is either on its place, or on the place of another key, which is located exactly where the first key should be.
In order to make sure that he's right and restore the correct order of keys, Santa typed his favorite patter looking only to his keyboard.
You are given the Santa's favorite patter and the string he actually typed. Determine which pairs of keys could be mixed. Each key must occur in pairs at most once.
|
The input consists of only two strings *s* and *t* denoting the favorite Santa's patter and the resulting string. *s* and *t* are not empty and have the same length, which is at most 1000. Both strings consist only of lowercase English letters.
|
If Santa is wrong, and there is no way to divide some of keys into pairs and swap keys in each pair so that the keyboard will be fixed, print «-1» (without quotes).
Otherwise, the first line of output should contain the only integer *k* (*k*<=≥<=0) — the number of pairs of keys that should be swapped. The following *k* lines should contain two space-separated letters each, denoting the keys which should be swapped. All printed letters must be distinct.
If there are several possible answers, print any of them. You are free to choose the order of the pairs and the order of keys in a pair.
Each letter must occur at most once. Santa considers the keyboard to be fixed if he can print his favorite patter without mistakes.
|
[
"helloworld\nehoolwlroz\n",
"hastalavistababy\nhastalavistababy\n",
"merrychristmas\nchristmasmerry\n"
] |
[
"3\nh e\nl o\nd z\n",
"0\n",
"-1\n"
] |
none
| 0
|
[
{
"input": "helloworld\nehoolwlroz",
"output": "3\nh e\nl o\nd z"
},
{
"input": "hastalavistababy\nhastalavistababy",
"output": "0"
},
{
"input": "merrychristmas\nchristmasmerry",
"output": "-1"
},
{
"input": "kusyvdgccw\nkusyvdgccw",
"output": "0"
},
{
"input": "bbbbbabbab\naaaaabaaba",
"output": "1\nb a"
},
{
"input": "zzzzzzzzzzzzzzzzzzzzz\nqwertyuiopasdfghjklzx",
"output": "-1"
},
{
"input": "accdccdcdccacddbcacc\naccbccbcbccacbbdcacc",
"output": "1\nd b"
},
{
"input": "giiibdbebjdaihdghahccdeffjhfgidfbdhjdggajfgaidadjd\ngiiibdbebjdaihdghahccdeffjhfgidfbdhjdggajfgaidadjd",
"output": "0"
},
{
"input": "gndggadlmdefgejidmmcglbjdcmglncfmbjjndjcibnjbabfab\nfihffahlmhogfojnhmmcflkjhcmflicgmkjjihjcnkijkakgak",
"output": "5\ng f\nn i\nd h\ne o\nb k"
},
{
"input": "ijpanyhovzwjjxsvaiyhchfaulcsdgfszjnwtoqbtaqygfmxuwvynvlhqhvmkjbooklxfhmqlqvfoxlnoclfxtbhvnkmhjcmrsdc\nijpanyhovzwjjxsvaiyhchfaulcsdgfszjnwtoqbtaqygfmxuwvynvlhqhvmkjbooklxfhmqlqvfoxlnoclfxtbhvnkmhjcmrsdc",
"output": "0"
},
{
"input": "ab\naa",
"output": "-1"
},
{
"input": "a\nz",
"output": "1\na z"
},
{
"input": "zz\nzy",
"output": "-1"
},
{
"input": "as\ndf",
"output": "2\na d\ns f"
},
{
"input": "abc\nbca",
"output": "-1"
},
{
"input": "rtfg\nrftg",
"output": "1\nt f"
},
{
"input": "y\ny",
"output": "0"
},
{
"input": "qwertyuiopasdfghjklzx\nzzzzzzzzzzzzzzzzzzzzz",
"output": "-1"
},
{
"input": "qazwsxedcrfvtgbyhnujmik\nqwertyuiasdfghjkzxcvbnm",
"output": "-1"
},
{
"input": "aaaaaa\nabcdef",
"output": "-1"
},
{
"input": "qwerty\nffffff",
"output": "-1"
},
{
"input": "dofbgdppdvmwjwtdyphhmqliydxyjfxoopxiscevowleccmhwybsxitvujkfliamvqinlrpytyaqdlbywccprukoisyaseibuqbfqjcabkieimsggsakpnqliwhehnemewhychqrfiuyaecoydnromrh\ndofbgdppdvmwjwtdyphhmqliydxyjfxoopxiscevowleccmhwybsxitvujkfliamvqinlrpytyaqdlbywccprukoisyaseibuqbfqjcabkieimsggsakpnqliwhehnemewhychqrfiuyaecoydnromrh",
"output": "0"
},
{
"input": "acdbccddadbcbabbebbaebdcedbbcebeaccecdabadeabeecbacacdcbccedeadadedeccedecdaabcedccccbbcbcedcaccdede\ndcbaccbbdbacadaaeaadeabcebaaceaedccecbdadbedaeecadcdcbcaccebedbdbebeccebecbddacebccccaacacebcdccbebe",
"output": "-1"
},
{
"input": "bacccbbacabbcaacbbba\nbacccbbacabbcaacbbba",
"output": "0"
},
{
"input": "dbadbddddb\nacbacaaaac",
"output": "-1"
},
{
"input": "dacbdbbbdd\nadbdadddaa",
"output": "-1"
},
{
"input": "bbbbcbcbbc\ndaddbabddb",
"output": "-1"
},
{
"input": "dddddbcdbd\nbcbbbdacdb",
"output": "-1"
},
{
"input": "cbadcbcdaa\nabbbababbb",
"output": "-1"
},
{
"input": "dmkgadidjgdjikgkehhfkhgkeamhdkfemikkjhhkdjfaenmkdgenijinamngjgkmgmmedfdehkhdigdnnkhmdkdindhkhndnakdgdhkdefagkedndnijekdmkdfedkhekgdkhgkimfeakdhhhgkkff\nbdenailbmnbmlcnehjjkcgnehadgickhdlecmggcimkahfdeinhflmlfadfnmncdnddhbkbhgejblnbffcgdbeilfigegfifaebnijeihkanehififlmhcbdcikhieghenbejneldkhaebjggncckk",
"output": "-1"
},
{
"input": "acbbccabaa\nabbbbbabaa",
"output": "-1"
},
{
"input": "ccccaccccc\naaaabaaaac",
"output": "-1"
},
{
"input": "acbacacbbb\nacbacacbbb",
"output": "0"
},
{
"input": "abbababbcc\nccccccccbb",
"output": "-1"
},
{
"input": "jbcbbjiifdcbeajgdeabddbfcecafejddcigfcaedbgicjihifgbahjihcjefgabgbccdiibfjgacehbbdjceacdbdeaiibaicih\nhhihhhddcfihddhjfddhffhcididcdhffidjciddfhjdihdhdcjhdhhdhihdcjdhjhiifddhchjdidhhhfhiddifhfddddhddidh",
"output": "-1"
},
{
"input": "ahaeheedefeehahfefhjhhedheeeedhehhfhdejdhffhhejhhhejadhefhahhadjjhdhheeeehfdaffhhefehhhefhhhhehehjda\neiefbdfgdhffieihfhjajifgjddffgifjbhigfagjhhjicaijbdaegidhiejiegaabgjidcfcjhgehhjjchcbjjdhjbiidjdjage",
"output": "-1"
},
{
"input": "fficficbidbcbfaddifbffdbbiaccbbciiaidbcbbiadcccbccbbaibabcbbdbcibcciibiccfifbiiicadibbiaafadacdficbc\nddjhdghbgcbhadeccjdbddcbfjeiiaaigjejcaiabgechiiahibfejbeahafcfhjbihgjfgihdgdagjjhecjafjeedecehcdjhai",
"output": "-1"
},
{
"input": "z\nz",
"output": "0"
},
{
"input": "a\nz",
"output": "1\na z"
},
{
"input": "z\na",
"output": "1\nz a"
},
{
"input": "aa\nzz",
"output": "1\na z"
},
{
"input": "az\nza",
"output": "1\na z"
},
{
"input": "aa\nza",
"output": "-1"
},
{
"input": "za\nzz",
"output": "-1"
},
{
"input": "aa\nab",
"output": "-1"
},
{
"input": "hehe\nheeh",
"output": "-1"
},
{
"input": "bd\ncc",
"output": "-1"
},
{
"input": "he\nhh",
"output": "-1"
},
{
"input": "hee\nheh",
"output": "-1"
},
{
"input": "aa\nac",
"output": "-1"
},
{
"input": "ab\naa",
"output": "-1"
},
{
"input": "hello\nehlol",
"output": "-1"
},
{
"input": "ac\naa",
"output": "-1"
},
{
"input": "aaabbb\nbbbaab",
"output": "-1"
},
{
"input": "aa\nfa",
"output": "-1"
},
{
"input": "hg\nee",
"output": "-1"
},
{
"input": "helloworld\nehoolwlrow",
"output": "-1"
},
{
"input": "abb\nbab",
"output": "-1"
},
{
"input": "aaa\naae",
"output": "-1"
},
{
"input": "aba\nbaa",
"output": "-1"
},
{
"input": "aa\nba",
"output": "-1"
},
{
"input": "da\naa",
"output": "-1"
},
{
"input": "aaa\naab",
"output": "-1"
},
{
"input": "xy\nzz",
"output": "-1"
}
] | 1,566,562,758
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 13
| 155
| 1,945,600
|
a = list(input())
b = list(input())
_Exit = []
Err = False
for i in range(len(a)):
flag = False
f = a[i]
g = b[i]
if Err is True:
break
if g != f:
for j in range(len(_Exit)):
pof = _Exit[j]
for k in range(len(pof)):
if pof[0] == g and pof[1] == f:
flag = True
elif pof[1] == g and pof[0] == f:
flag = True
elif pof[0] == g and pof[1] != f:
Err = True
break
elif pof[0] != g and pof[1] == f:
Err = True
break
if Err is True:
break
if flag is False:
_Exit.append([g,f])
if Err is True:
print(-1)
exit()
print(len(_Exit))
for i in range(len(_Exit)):
f = _Exit[i]
print(*f[::-1])
|
Title: none
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Santa Claus decided to disassemble his keyboard to clean it. After he returned all the keys back, he suddenly realized that some pairs of keys took each other's place! That is, Santa suspects that each key is either on its place, or on the place of another key, which is located exactly where the first key should be.
In order to make sure that he's right and restore the correct order of keys, Santa typed his favorite patter looking only to his keyboard.
You are given the Santa's favorite patter and the string he actually typed. Determine which pairs of keys could be mixed. Each key must occur in pairs at most once.
Input Specification:
The input consists of only two strings *s* and *t* denoting the favorite Santa's patter and the resulting string. *s* and *t* are not empty and have the same length, which is at most 1000. Both strings consist only of lowercase English letters.
Output Specification:
If Santa is wrong, and there is no way to divide some of keys into pairs and swap keys in each pair so that the keyboard will be fixed, print «-1» (without quotes).
Otherwise, the first line of output should contain the only integer *k* (*k*<=≥<=0) — the number of pairs of keys that should be swapped. The following *k* lines should contain two space-separated letters each, denoting the keys which should be swapped. All printed letters must be distinct.
If there are several possible answers, print any of them. You are free to choose the order of the pairs and the order of keys in a pair.
Each letter must occur at most once. Santa considers the keyboard to be fixed if he can print his favorite patter without mistakes.
Demo Input:
['helloworld\nehoolwlroz\n', 'hastalavistababy\nhastalavistababy\n', 'merrychristmas\nchristmasmerry\n']
Demo Output:
['3\nh e\nl o\nd z\n', '0\n', '-1\n']
Note:
none
|
```python
a = list(input())
b = list(input())
_Exit = []
Err = False
for i in range(len(a)):
flag = False
f = a[i]
g = b[i]
if Err is True:
break
if g != f:
for j in range(len(_Exit)):
pof = _Exit[j]
for k in range(len(pof)):
if pof[0] == g and pof[1] == f:
flag = True
elif pof[1] == g and pof[0] == f:
flag = True
elif pof[0] == g and pof[1] != f:
Err = True
break
elif pof[0] != g and pof[1] == f:
Err = True
break
if Err is True:
break
if flag is False:
_Exit.append([g,f])
if Err is True:
print(-1)
exit()
print(len(_Exit))
for i in range(len(_Exit)):
f = _Exit[i]
print(*f[::-1])
```
| 0
|
|
818
|
D
|
Multicolored Cars
|
PROGRAMMING
| 1,700
|
[
"data structures",
"implementation"
] | null | null |
Alice and Bob got very bored during a long car trip so they decided to play a game. From the window they can see cars of different colors running past them. Cars are going one after another.
The game rules are like this. Firstly Alice chooses some color *A*, then Bob chooses some color *B* (*A*<=≠<=*B*). After each car they update the number of cars of their chosen color that have run past them. Let's define this numbers after *i*-th car *cnt**A*(*i*) and *cnt**B*(*i*).
- If *cnt**A*(*i*)<=><=*cnt**B*(*i*) for every *i* then the winner is Alice. - If *cnt**B*(*i*)<=≥<=*cnt**A*(*i*) for every *i* then the winner is Bob. - Otherwise it's a draw.
Bob knows all the colors of cars that they will encounter and order of their appearance. Alice have already chosen her color *A* and Bob now wants to choose such color *B* that he will win the game (draw is not a win). Help him find this color.
If there are multiple solutions, print any of them. If there is no such color then print -1.
|
The first line contains two integer numbers *n* and *A* (1<=≤<=*n*<=≤<=105,<=1<=≤<=*A*<=≤<=106) – number of cars and the color chosen by Alice.
The second line contains *n* integer numbers *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=106) — colors of the cars that Alice and Bob will encounter in the order of their appearance.
|
Output such color *B* (1<=≤<=*B*<=≤<=106) that if Bob chooses it then he will win the game. If there are multiple solutions, print any of them. If there is no such color then print -1.
It is guaranteed that if there exists any solution then there exists solution with (1<=≤<=*B*<=≤<=106).
|
[
"4 1\n2 1 4 2\n",
"5 2\n2 2 4 5 3\n",
"3 10\n1 2 3\n"
] |
[
"2\n",
"-1\n",
"4\n"
] |
Let's consider availability of colors in the first example:
- *cnt*<sub class="lower-index">2</sub>(*i*) ≥ *cnt*<sub class="lower-index">1</sub>(*i*) for every *i*, and color 2 can be the answer. - *cnt*<sub class="lower-index">4</sub>(2) < *cnt*<sub class="lower-index">1</sub>(2), so color 4 isn't the winning one for Bob. - All the other colors also have *cnt*<sub class="lower-index">*j*</sub>(2) < *cnt*<sub class="lower-index">1</sub>(2), thus they are not available.
In the third example every color is acceptable except for 10.
| 0
|
[
{
"input": "4 1\n2 1 4 2",
"output": "2"
},
{
"input": "5 2\n2 2 4 5 3",
"output": "-1"
},
{
"input": "3 10\n1 2 3",
"output": "4"
},
{
"input": "1 1\n2",
"output": "3"
},
{
"input": "1 2\n2",
"output": "-1"
},
{
"input": "10 6\n8 5 1 6 6 5 10 6 9 8",
"output": "-1"
},
{
"input": "7 2\n1 2 2 1 1 1 1",
"output": "-1"
},
{
"input": "8 2\n1 1 3 2 3 2 3 2",
"output": "3"
},
{
"input": "10 9\n6 4 7 1 8 9 5 9 4 5",
"output": "-1"
},
{
"input": "6 1\n2 3 3 1 1 2",
"output": "3"
},
{
"input": "4 1\n2 1 1 2",
"output": "-1"
},
{
"input": "5 1\n3 2 1 2 1",
"output": "2"
},
{
"input": "5 3\n1 2 3 2 3",
"output": "2"
},
{
"input": "1 1000000\n1",
"output": "2"
},
{
"input": "6 3\n1 2 3 2 3 2",
"output": "2"
},
{
"input": "3 2\n1 2 3",
"output": "1"
},
{
"input": "6 2\n5 3 2 4 4 2",
"output": "-1"
},
{
"input": "6 1\n5 2 1 4 2 1",
"output": "2"
},
{
"input": "6 1\n2 2 2 1 1 1",
"output": "2"
},
{
"input": "5 2\n3 1 1 2 2",
"output": "1"
},
{
"input": "2 2\n1 2",
"output": "1"
},
{
"input": "30 1\n2 2 2 2 2 3 3 3 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 1 1 1",
"output": "2"
},
{
"input": "2 1\n1 2",
"output": "-1"
},
{
"input": "5 3\n1 2 2 3 3",
"output": "2"
},
{
"input": "10 1000000\n1 2 3 4 5 6 7 8 9 10",
"output": "11"
},
{
"input": "6 1\n3 1 2 2 3 1",
"output": "3"
},
{
"input": "5 1\n2 3 3 1 1",
"output": "3"
},
{
"input": "9 1\n2 3 3 1 4 1 3 2 1",
"output": "3"
},
{
"input": "10 9\n8 9 1 1 1 1 1 1 1 9",
"output": "-1"
},
{
"input": "13 2\n3 3 3 2 1 1 1 1 1 2 3 2 2",
"output": "3"
},
{
"input": "5 1\n2 3 1 3 1",
"output": "3"
},
{
"input": "8 7\n6 7 2 2 4 5 4 4",
"output": "6"
},
{
"input": "2 7\n6 7",
"output": "6"
},
{
"input": "3 5\n9 5 7",
"output": "9"
},
{
"input": "6 2\n1 2 1 2 1 2",
"output": "1"
},
{
"input": "6 3\n1000 2 3 2 2 3",
"output": "2"
},
{
"input": "10 5\n1 1 1 1 1 5 5 5 5 5",
"output": "1"
},
{
"input": "4 9\n4 9 9 4",
"output": "-1"
},
{
"input": "4 1\n2 1 3 3",
"output": "2"
},
{
"input": "19 3\n1 2 3 1 2 3 1 2 3 5 5 5 5 5 5 5 5 2 3",
"output": "2"
},
{
"input": "15 1\n2 5 5 1 2 1 5 2 1 5 2 1 5 1 5",
"output": "5"
},
{
"input": "14 1\n2 5 5 1 2 1 5 2 1 5 2 1 5 1",
"output": "5"
},
{
"input": "8 5\n1 2 5 1 2 5 2 5",
"output": "2"
},
{
"input": "5 1000000\n1 2 1000000 2 1",
"output": "1"
},
{
"input": "8 2\n1 2 1 3 2 3 3 3",
"output": "1"
},
{
"input": "9 10\n4 9 7 3 3 3 10 3 10",
"output": "3"
},
{
"input": "6 2\n5 3 9 2 10 1",
"output": "3"
},
{
"input": "10 4\n7 5 4 4 1 5 7 9 10 6",
"output": "-1"
},
{
"input": "2 1\n9 1",
"output": "9"
},
{
"input": "3 7\n5 7 1",
"output": "5"
},
{
"input": "6 3\n1 3 5 4 2 3",
"output": "-1"
},
{
"input": "7 1\n7 3 1 4 5 8 5",
"output": "3"
},
{
"input": "2 3\n6 3",
"output": "6"
},
{
"input": "10 8\n2 8 8 9 6 9 1 3 2 4",
"output": "-1"
},
{
"input": "6 1\n1 7 8 4 8 6",
"output": "-1"
}
] | 1,580,724,113
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 2
| 218
| 13,516,800
|
e = int(input().split(' ')[1])
l = [int(i) for i in input().split(' ')]
ans = [ True for i in range(1000005)]
b = True
a=list()
cnt=[0 for i in range(1000005)]
for i in l:
cnt[i]+=1
if i == e:
b = False;
c=list()
for j in a:
if cnt[j]<cnt[e]:
ans[j] = False
if b == True:
a.append(i)
bb = False
for i in a:
if ans[i] == True:
print(i)
bb=True
if bb == False:
print("-1")
|
Title: Multicolored Cars
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Alice and Bob got very bored during a long car trip so they decided to play a game. From the window they can see cars of different colors running past them. Cars are going one after another.
The game rules are like this. Firstly Alice chooses some color *A*, then Bob chooses some color *B* (*A*<=≠<=*B*). After each car they update the number of cars of their chosen color that have run past them. Let's define this numbers after *i*-th car *cnt**A*(*i*) and *cnt**B*(*i*).
- If *cnt**A*(*i*)<=><=*cnt**B*(*i*) for every *i* then the winner is Alice. - If *cnt**B*(*i*)<=≥<=*cnt**A*(*i*) for every *i* then the winner is Bob. - Otherwise it's a draw.
Bob knows all the colors of cars that they will encounter and order of their appearance. Alice have already chosen her color *A* and Bob now wants to choose such color *B* that he will win the game (draw is not a win). Help him find this color.
If there are multiple solutions, print any of them. If there is no such color then print -1.
Input Specification:
The first line contains two integer numbers *n* and *A* (1<=≤<=*n*<=≤<=105,<=1<=≤<=*A*<=≤<=106) – number of cars and the color chosen by Alice.
The second line contains *n* integer numbers *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=106) — colors of the cars that Alice and Bob will encounter in the order of their appearance.
Output Specification:
Output such color *B* (1<=≤<=*B*<=≤<=106) that if Bob chooses it then he will win the game. If there are multiple solutions, print any of them. If there is no such color then print -1.
It is guaranteed that if there exists any solution then there exists solution with (1<=≤<=*B*<=≤<=106).
Demo Input:
['4 1\n2 1 4 2\n', '5 2\n2 2 4 5 3\n', '3 10\n1 2 3\n']
Demo Output:
['2\n', '-1\n', '4\n']
Note:
Let's consider availability of colors in the first example:
- *cnt*<sub class="lower-index">2</sub>(*i*) ≥ *cnt*<sub class="lower-index">1</sub>(*i*) for every *i*, and color 2 can be the answer. - *cnt*<sub class="lower-index">4</sub>(2) < *cnt*<sub class="lower-index">1</sub>(2), so color 4 isn't the winning one for Bob. - All the other colors also have *cnt*<sub class="lower-index">*j*</sub>(2) < *cnt*<sub class="lower-index">1</sub>(2), thus they are not available.
In the third example every color is acceptable except for 10.
|
```python
e = int(input().split(' ')[1])
l = [int(i) for i in input().split(' ')]
ans = [ True for i in range(1000005)]
b = True
a=list()
cnt=[0 for i in range(1000005)]
for i in l:
cnt[i]+=1
if i == e:
b = False;
c=list()
for j in a:
if cnt[j]<cnt[e]:
ans[j] = False
if b == True:
a.append(i)
bb = False
for i in a:
if ans[i] == True:
print(i)
bb=True
if bb == False:
print("-1")
```
| 0
|
|
489
|
B
|
BerSU Ball
|
PROGRAMMING
| 1,200
|
[
"dfs and similar",
"dp",
"graph matchings",
"greedy",
"sortings",
"two pointers"
] | null | null |
The Berland State University is hosting a ballroom dance in celebration of its 100500-th anniversary! *n* boys and *m* girls are already busy rehearsing waltz, minuet, polonaise and quadrille moves.
We know that several boy&girl pairs are going to be invited to the ball. However, the partners' dancing skill in each pair must differ by at most one.
For each boy, we know his dancing skills. Similarly, for each girl we know her dancing skills. Write a code that can determine the largest possible number of pairs that can be formed from *n* boys and *m* girls.
|
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of boys. The second line contains sequence *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100), where *a**i* is the *i*-th boy's dancing skill.
Similarly, the third line contains an integer *m* (1<=≤<=*m*<=≤<=100) — the number of girls. The fourth line contains sequence *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**j*<=≤<=100), where *b**j* is the *j*-th girl's dancing skill.
|
Print a single number — the required maximum possible number of pairs.
|
[
"4\n1 4 6 2\n5\n5 1 5 7 9\n",
"4\n1 2 3 4\n4\n10 11 12 13\n",
"5\n1 1 1 1 1\n3\n1 2 3\n"
] |
[
"3\n",
"0\n",
"2\n"
] |
none
| 1,000
|
[
{
"input": "4\n1 4 6 2\n5\n5 1 5 7 9",
"output": "3"
},
{
"input": "4\n1 2 3 4\n4\n10 11 12 13",
"output": "0"
},
{
"input": "5\n1 1 1 1 1\n3\n1 2 3",
"output": "2"
},
{
"input": "1\n1\n1\n1",
"output": "1"
},
{
"input": "2\n1 10\n1\n9",
"output": "1"
},
{
"input": "4\n4 5 4 4\n5\n5 3 4 2 4",
"output": "4"
},
{
"input": "1\n2\n1\n1",
"output": "1"
},
{
"input": "1\n3\n2\n3 2",
"output": "1"
},
{
"input": "1\n4\n3\n4 4 4",
"output": "1"
},
{
"input": "1\n2\n4\n3 1 4 2",
"output": "1"
},
{
"input": "1\n4\n5\n2 5 5 3 1",
"output": "1"
},
{
"input": "2\n2 2\n1\n2",
"output": "1"
},
{
"input": "2\n4 2\n2\n4 4",
"output": "1"
},
{
"input": "2\n4 1\n3\n2 3 2",
"output": "2"
},
{
"input": "2\n4 3\n4\n5 5 5 6",
"output": "1"
},
{
"input": "2\n5 7\n5\n4 6 7 2 5",
"output": "2"
},
{
"input": "3\n1 2 3\n1\n1",
"output": "1"
},
{
"input": "3\n5 4 5\n2\n2 1",
"output": "0"
},
{
"input": "3\n6 3 4\n3\n4 5 2",
"output": "3"
},
{
"input": "3\n7 7 7\n4\n2 7 2 4",
"output": "1"
},
{
"input": "3\n1 3 3\n5\n1 3 4 1 2",
"output": "3"
},
{
"input": "4\n1 2 1 3\n1\n4",
"output": "1"
},
{
"input": "4\n4 4 6 6\n2\n2 1",
"output": "0"
},
{
"input": "4\n3 1 1 1\n3\n1 6 7",
"output": "1"
},
{
"input": "4\n2 5 1 2\n4\n2 3 3 1",
"output": "3"
},
{
"input": "4\n9 1 7 1\n5\n9 9 9 8 4",
"output": "2"
},
{
"input": "5\n1 6 5 5 6\n1\n2",
"output": "1"
},
{
"input": "5\n5 2 4 5 6\n2\n7 4",
"output": "2"
},
{
"input": "5\n4 1 3 1 4\n3\n6 3 6",
"output": "1"
},
{
"input": "5\n5 2 3 1 4\n4\n1 3 1 7",
"output": "3"
},
{
"input": "5\n9 8 10 9 10\n5\n2 1 5 4 6",
"output": "0"
},
{
"input": "1\n48\n100\n76 90 78 44 29 30 35 85 98 38 27 71 51 100 15 98 78 45 85 26 48 66 98 71 45 85 83 77 92 17 23 95 98 43 11 15 39 53 71 25 74 53 77 41 39 35 66 4 92 44 44 55 35 87 91 6 44 46 57 24 46 82 15 44 81 40 65 17 64 24 42 52 13 12 64 82 26 7 66 85 93 89 58 92 92 77 37 91 47 73 35 69 31 22 60 60 97 21 52 6",
"output": "1"
},
{
"input": "100\n9 90 66 62 60 9 10 97 47 73 26 81 97 60 80 84 19 4 25 77 19 17 91 12 1 27 15 54 18 45 71 79 96 90 51 62 9 13 92 34 7 52 55 8 16 61 96 12 52 38 50 9 60 3 30 3 48 46 77 64 90 35 16 16 21 42 67 70 23 19 90 14 50 96 98 92 82 62 7 51 93 38 84 82 37 78 99 3 20 69 44 96 94 71 3 55 27 86 92 82\n1\n58",
"output": "0"
},
{
"input": "10\n20 87 3 39 20 20 8 40 70 51\n100\n69 84 81 84 35 97 69 68 63 97 85 80 95 58 70 91 100 65 72 80 41 87 87 87 22 49 96 96 78 96 97 56 90 31 62 98 89 74 100 86 95 88 66 54 93 62 41 60 95 79 29 69 63 70 52 63 87 58 54 52 48 57 26 75 39 61 98 78 52 73 99 49 74 50 59 90 31 97 16 85 63 72 81 68 75 59 70 67 73 92 10 88 57 95 3 71 80 95 84 96",
"output": "6"
},
{
"input": "100\n10 10 9 18 56 64 92 66 54 42 66 65 58 5 74 68 80 57 58 30 58 69 70 13 38 19 34 63 38 17 26 24 66 83 48 77 44 37 78 97 13 90 51 56 60 23 49 32 14 86 90 100 13 14 52 69 85 95 81 53 5 3 91 66 2 64 45 59 7 30 80 42 61 82 70 10 62 82 5 34 50 28 24 47 85 68 27 50 24 61 76 17 63 24 3 67 83 76 42 60\n10\n66 74 40 67 28 82 99 57 93 64",
"output": "9"
},
{
"input": "100\n4 1 1 1 3 3 2 5 1 2 1 2 1 1 1 6 1 3 1 1 1 1 2 4 1 1 4 2 2 8 2 2 1 8 2 4 3 3 8 1 3 2 3 2 1 3 8 2 2 3 1 1 2 2 5 1 4 3 1 1 3 1 3 1 7 1 1 1 3 2 1 2 2 3 7 2 1 4 3 2 1 1 3 4 1 1 3 5 1 8 4 1 1 1 3 10 2 2 1 2\n100\n1 1 5 2 13 2 2 3 6 12 1 13 8 1 1 16 1 1 5 6 2 4 6 4 2 7 4 1 7 3 3 9 5 3 1 7 4 1 6 6 8 2 2 5 2 3 16 3 6 3 8 6 1 8 1 2 6 5 3 4 11 3 4 8 2 13 2 5 2 7 3 3 1 8 1 4 4 2 4 7 7 1 5 7 6 3 6 9 1 1 1 3 1 11 5 2 5 11 13 1",
"output": "76"
},
{
"input": "4\n1 6 9 15\n2\n5 8",
"output": "2"
},
{
"input": "2\n2 4\n2\n3 1",
"output": "2"
},
{
"input": "3\n2 3 5\n3\n3 4 6",
"output": "3"
},
{
"input": "3\n1 3 4\n3\n2 1 5",
"output": "3"
},
{
"input": "2\n5 5\n4\n1 1 1 5",
"output": "1"
},
{
"input": "2\n3 2\n2\n3 4",
"output": "2"
},
{
"input": "2\n3 1\n2\n2 4",
"output": "2"
},
{
"input": "2\n2 3\n2\n2 1",
"output": "2"
},
{
"input": "2\n10 12\n2\n11 9",
"output": "2"
},
{
"input": "3\n1 2 3\n3\n3 2 1",
"output": "3"
},
{
"input": "2\n1 3\n2\n2 1",
"output": "2"
},
{
"input": "2\n4 5\n2\n5 3",
"output": "2"
},
{
"input": "2\n7 5\n2\n6 8",
"output": "2"
},
{
"input": "4\n4 3 2 1\n4\n1 2 3 4",
"output": "4"
},
{
"input": "2\n2 3\n2\n3 1",
"output": "2"
},
{
"input": "2\n2 4\n3\n3 1 8",
"output": "2"
},
{
"input": "3\n3 1 1\n3\n2 4 4",
"output": "2"
},
{
"input": "2\n5 3\n2\n4 6",
"output": "2"
},
{
"input": "4\n1 1 3 3\n4\n2 2 1 1",
"output": "4"
},
{
"input": "3\n3 2 1\n3\n2 4 3",
"output": "3"
},
{
"input": "5\n1 2 3 4 5\n5\n2 3 4 5 1",
"output": "5"
},
{
"input": "3\n3 2 1\n3\n1 2 3",
"output": "3"
},
{
"input": "2\n5 4\n2\n4 6",
"output": "2"
},
{
"input": "4\n3 3 5 5\n4\n4 4 2 2",
"output": "4"
},
{
"input": "3\n2 7 5\n3\n2 4 8",
"output": "3"
},
{
"input": "100\n2 3 3 4 2 1 4 4 5 5 2 1 5 2 3 3 5 4 3 2 4 2 3 3 2 2 3 4 2 2 2 3 1 2 3 2 2 3 5 3 3 3 3 4 5 2 2 1 1 1 3 1 2 2 3 5 5 2 5 1 3 4 5 3 5 4 1 1 2 3 4 4 5 3 2 4 5 5 5 2 1 4 2 4 5 4 4 5 5 3 2 5 1 4 4 2 2 2 5 3\n100\n4 5 3 3 2 2 4 3 1 5 4 3 3 2 2 4 5 2 5 2 1 4 3 4 2 3 5 3 4 4 1 2 3 5 2 2 1 5 4 2 4 3 4 3 4 2 3 1 3 3 4 1 1 1 4 4 5 3 1 4 2 3 2 1 3 3 2 3 2 1 1 2 3 2 1 3 3 4 3 3 1 1 3 3 3 1 1 3 5 3 3 3 3 4 4 5 2 5 4 5",
"output": "100"
},
{
"input": "1\n3\n2\n2 3",
"output": "1"
},
{
"input": "2\n5 6\n3\n1 5 100",
"output": "1"
},
{
"input": "2\n2 7\n2\n6 8",
"output": "1"
},
{
"input": "4\n4 10 15 17\n4\n3 12 16 16",
"output": "3"
},
{
"input": "2\n2 3\n2\n1 2",
"output": "2"
}
] | 1,677,174,034
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 81
| 46
| 0
|
import heapq
n_boys = int(input())
boys = list(map(int, input().split()))
b_girls = int(input())
girls = list(map(int, input().split()))
boys = [-1*i for i in boys]
girls = [-1*i for i in girls]
heapq.heapify(boys)
heapq.heapify(girls)
ans = 0
while boys and girls:
diff = abs(boys[0] - girls[0])
if diff <= 1:
heapq.heappop(boys)
heapq.heappop(girls)
ans += 1
elif -1* boys[0] > -1* girls[0]:
heapq.heappop(boys)
else:
heapq.heappop(girls)
print(ans)
|
Title: BerSU Ball
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The Berland State University is hosting a ballroom dance in celebration of its 100500-th anniversary! *n* boys and *m* girls are already busy rehearsing waltz, minuet, polonaise and quadrille moves.
We know that several boy&girl pairs are going to be invited to the ball. However, the partners' dancing skill in each pair must differ by at most one.
For each boy, we know his dancing skills. Similarly, for each girl we know her dancing skills. Write a code that can determine the largest possible number of pairs that can be formed from *n* boys and *m* girls.
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of boys. The second line contains sequence *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100), where *a**i* is the *i*-th boy's dancing skill.
Similarly, the third line contains an integer *m* (1<=≤<=*m*<=≤<=100) — the number of girls. The fourth line contains sequence *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**j*<=≤<=100), where *b**j* is the *j*-th girl's dancing skill.
Output Specification:
Print a single number — the required maximum possible number of pairs.
Demo Input:
['4\n1 4 6 2\n5\n5 1 5 7 9\n', '4\n1 2 3 4\n4\n10 11 12 13\n', '5\n1 1 1 1 1\n3\n1 2 3\n']
Demo Output:
['3\n', '0\n', '2\n']
Note:
none
|
```python
import heapq
n_boys = int(input())
boys = list(map(int, input().split()))
b_girls = int(input())
girls = list(map(int, input().split()))
boys = [-1*i for i in boys]
girls = [-1*i for i in girls]
heapq.heapify(boys)
heapq.heapify(girls)
ans = 0
while boys and girls:
diff = abs(boys[0] - girls[0])
if diff <= 1:
heapq.heappop(boys)
heapq.heappop(girls)
ans += 1
elif -1* boys[0] > -1* girls[0]:
heapq.heappop(boys)
else:
heapq.heappop(girls)
print(ans)
```
| 3
|
|
677
|
A
|
Vanya and Fence
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Vanya and his friends are walking along the fence of height *h* and they do not want the guard to notice them. In order to achieve this the height of each of the friends should not exceed *h*. If the height of some person is greater than *h* he can bend down and then he surely won't be noticed by the guard. The height of the *i*-th person is equal to *a**i*.
Consider the width of the person walking as usual to be equal to 1, while the width of the bent person is equal to 2. Friends want to talk to each other while walking, so they would like to walk in a single row. What is the minimum width of the road, such that friends can walk in a row and remain unattended by the guard?
|
The first line of the input contains two integers *n* and *h* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=1000) — the number of friends and the height of the fence, respectively.
The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=2*h*), the *i*-th of them is equal to the height of the *i*-th person.
|
Print a single integer — the minimum possible valid width of the road.
|
[
"3 7\n4 5 14\n",
"6 1\n1 1 1 1 1 1\n",
"6 5\n7 6 8 9 10 5\n"
] |
[
"4\n",
"6\n",
"11\n"
] |
In the first sample, only person number 3 must bend down, so the required width is equal to 1 + 1 + 2 = 4.
In the second sample, all friends are short enough and no one has to bend, so the width 1 + 1 + 1 + 1 + 1 + 1 = 6 is enough.
In the third sample, all the persons have to bend, except the last one. The required minimum width of the road is equal to 2 + 2 + 2 + 2 + 2 + 1 = 11.
| 500
|
[
{
"input": "3 7\n4 5 14",
"output": "4"
},
{
"input": "6 1\n1 1 1 1 1 1",
"output": "6"
},
{
"input": "6 5\n7 6 8 9 10 5",
"output": "11"
},
{
"input": "10 420\n214 614 297 675 82 740 174 23 255 15",
"output": "13"
},
{
"input": "10 561\n657 23 1096 487 785 66 481 554 1000 821",
"output": "15"
},
{
"input": "100 342\n478 143 359 336 162 333 385 515 117 496 310 538 469 539 258 676 466 677 1 296 150 560 26 213 627 221 255 126 617 174 279 178 24 435 70 145 619 46 669 566 300 67 576 251 58 176 441 564 569 194 24 669 73 262 457 259 619 78 400 579 222 626 269 47 80 315 160 194 455 186 315 424 197 246 683 220 68 682 83 233 290 664 273 598 362 305 674 614 321 575 362 120 14 534 62 436 294 351 485 396",
"output": "144"
},
{
"input": "100 290\n244 49 276 77 449 261 468 458 201 424 9 131 300 88 432 394 104 77 13 289 435 259 111 453 168 394 156 412 351 576 178 530 81 271 228 564 125 328 42 372 205 61 180 471 33 360 567 331 222 318 241 117 529 169 188 484 202 202 299 268 246 343 44 364 333 494 59 236 84 485 50 8 428 8 571 227 205 310 210 9 324 472 368 490 114 84 296 305 411 351 569 393 283 120 510 171 232 151 134 366",
"output": "145"
},
{
"input": "1 1\n1",
"output": "1"
},
{
"input": "1 1\n2",
"output": "2"
},
{
"input": "46 71\n30 26 56 138 123 77 60 122 73 45 79 10 130 3 14 1 38 46 128 50 82 16 32 68 28 98 62 106 2 49 131 11 114 39 139 70 40 50 45 137 33 30 35 136 135 19",
"output": "63"
},
{
"input": "20 723\n212 602 293 591 754 91 1135 640 80 495 845 928 1399 498 926 1431 1226 869 814 1386",
"output": "31"
},
{
"input": "48 864\n843 1020 751 1694 18 1429 1395 1174 272 1158 1628 1233 1710 441 765 561 778 748 1501 1200 563 1263 1398 1687 1518 1640 1591 839 500 466 1603 1587 1201 1209 432 868 1159 639 649 628 9 91 1036 147 896 1557 941 518",
"output": "75"
},
{
"input": "26 708\n549 241 821 734 945 1161 566 1268 216 30 1142 730 529 1014 255 168 796 1148 89 113 1328 286 743 871 1259 1397",
"output": "41"
},
{
"input": "75 940\n1620 1745 1599 441 64 1466 1496 1239 1716 1475 778 106 1136 1212 1261 444 781 257 1071 747 626 232 609 1544 682 1326 469 1361 1460 1450 1207 1319 922 625 1737 1057 1698 592 692 80 1016 541 1254 201 682 1007 847 206 1066 809 259 109 240 1611 219 1455 1326 1377 1827 786 42 1002 1382 1592 543 1866 1198 334 1524 1760 340 1566 955 257 1118",
"output": "116"
}
] | 1,694,752,861
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 29
| 62
| 0
|
n,h = map(int , input().split())
l = list(map(int , input().split()))
c = 0
for i in range(len(l)):
if l[i] > h:
c = c+2
else:
c = c+1
print(c)
|
Title: Vanya and Fence
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vanya and his friends are walking along the fence of height *h* and they do not want the guard to notice them. In order to achieve this the height of each of the friends should not exceed *h*. If the height of some person is greater than *h* he can bend down and then he surely won't be noticed by the guard. The height of the *i*-th person is equal to *a**i*.
Consider the width of the person walking as usual to be equal to 1, while the width of the bent person is equal to 2. Friends want to talk to each other while walking, so they would like to walk in a single row. What is the minimum width of the road, such that friends can walk in a row and remain unattended by the guard?
Input Specification:
The first line of the input contains two integers *n* and *h* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=1000) — the number of friends and the height of the fence, respectively.
The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=2*h*), the *i*-th of them is equal to the height of the *i*-th person.
Output Specification:
Print a single integer — the minimum possible valid width of the road.
Demo Input:
['3 7\n4 5 14\n', '6 1\n1 1 1 1 1 1\n', '6 5\n7 6 8 9 10 5\n']
Demo Output:
['4\n', '6\n', '11\n']
Note:
In the first sample, only person number 3 must bend down, so the required width is equal to 1 + 1 + 2 = 4.
In the second sample, all friends are short enough and no one has to bend, so the width 1 + 1 + 1 + 1 + 1 + 1 = 6 is enough.
In the third sample, all the persons have to bend, except the last one. The required minimum width of the road is equal to 2 + 2 + 2 + 2 + 2 + 1 = 11.
|
```python
n,h = map(int , input().split())
l = list(map(int , input().split()))
c = 0
for i in range(len(l)):
if l[i] > h:
c = c+2
else:
c = c+1
print(c)
```
| 3
|
|
628
|
B
|
New Skateboard
|
PROGRAMMING
| 1,300
|
[
"dp"
] | null | null |
Max wants to buy a new skateboard. He has calculated the amount of money that is needed to buy a new skateboard. He left a calculator on the floor and went to ask some money from his parents. Meanwhile his little brother Yusuf came and started to press the keys randomly. Unfortunately Max has forgotten the number which he had calculated. The only thing he knows is that the number is divisible by 4.
You are given a string *s* consisting of digits (the number on the display of the calculator after Yusuf randomly pressed the keys). Your task is to find the number of substrings which are divisible by 4. A substring can start with a zero.
A substring of a string is a nonempty sequence of consecutive characters.
For example if string *s* is 124 then we have four substrings that are divisible by 4: 12, 4, 24 and 124. For the string 04 the answer is three: 0, 4, 04.
As input/output can reach huge size it is recommended to use fast input/output methods: for example, prefer to use gets/scanf/printf instead of getline/cin/cout in C++, prefer to use BufferedReader/PrintWriter instead of Scanner/System.out in Java.
|
The only line contains string *s* (1<=≤<=|*s*|<=≤<=3·105). The string *s* contains only digits from 0 to 9.
|
Print integer *a* — the number of substrings of the string *s* that are divisible by 4.
Note that the answer can be huge, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.
|
[
"124\n",
"04\n",
"5810438174\n"
] |
[
"4\n",
"3\n",
"9\n"
] |
none
| 0
|
[
{
"input": "124",
"output": "4"
},
{
"input": "04",
"output": "3"
},
{
"input": "5810438174",
"output": "9"
},
{
"input": "1",
"output": "0"
},
{
"input": "039",
"output": "1"
},
{
"input": "97247",
"output": "6"
},
{
"input": "5810438174",
"output": "9"
},
{
"input": "12883340691714056185860211260984431382156326935244",
"output": "424"
},
{
"input": "2144315253572020279108092911160072328496568665545836825277616363478721946398140227406814602154768031",
"output": "1528"
},
{
"input": "80124649014054971081213608137817466046254652492627741860478258558206397113198232823859870363821007188476405951611069347299689170240023979048198711745011542774268179055311013054073075176122755643483380248999657649211459997766221072399103579977409770898200358240970169892326442892826731631357561876251276209119521202062222947560634301788787748428236988789594458520867663257476744168528121470923031438015546006185059454402637036376247785881323277542968298682307854655591317046086531554595892680980142608",
"output": "30826"
},
{
"input": "123456",
"output": "7"
},
{
"input": "4",
"output": "1"
},
{
"input": "123",
"output": "1"
}
] | 1,550,402,435
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 22
| 530
| 2,355,200
|
s=input().rstrip()
x=list(s)
G=0;
for i in range(0,len(x)):
if i==0:
if int(x[i])%4==0:
G+=1;
else:
f=x[i];
if int(f)%4==0:
G+=1;
g=x[i-1]
c=g+f;
D=int(c)
if D%4==0:
G+=i;
print(G)
|
Title: New Skateboard
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Max wants to buy a new skateboard. He has calculated the amount of money that is needed to buy a new skateboard. He left a calculator on the floor and went to ask some money from his parents. Meanwhile his little brother Yusuf came and started to press the keys randomly. Unfortunately Max has forgotten the number which he had calculated. The only thing he knows is that the number is divisible by 4.
You are given a string *s* consisting of digits (the number on the display of the calculator after Yusuf randomly pressed the keys). Your task is to find the number of substrings which are divisible by 4. A substring can start with a zero.
A substring of a string is a nonempty sequence of consecutive characters.
For example if string *s* is 124 then we have four substrings that are divisible by 4: 12, 4, 24 and 124. For the string 04 the answer is three: 0, 4, 04.
As input/output can reach huge size it is recommended to use fast input/output methods: for example, prefer to use gets/scanf/printf instead of getline/cin/cout in C++, prefer to use BufferedReader/PrintWriter instead of Scanner/System.out in Java.
Input Specification:
The only line contains string *s* (1<=≤<=|*s*|<=≤<=3·105). The string *s* contains only digits from 0 to 9.
Output Specification:
Print integer *a* — the number of substrings of the string *s* that are divisible by 4.
Note that the answer can be huge, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.
Demo Input:
['124\n', '04\n', '5810438174\n']
Demo Output:
['4\n', '3\n', '9\n']
Note:
none
|
```python
s=input().rstrip()
x=list(s)
G=0;
for i in range(0,len(x)):
if i==0:
if int(x[i])%4==0:
G+=1;
else:
f=x[i];
if int(f)%4==0:
G+=1;
g=x[i-1]
c=g+f;
D=int(c)
if D%4==0:
G+=i;
print(G)
```
| 3
|
|
509
|
A
|
Maximum in Table
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation"
] | null | null |
An *n*<=×<=*n* table *a* is defined as follows:
- The first row and the first column contain ones, that is: *a**i*,<=1<==<=*a*1,<=*i*<==<=1 for all *i*<==<=1,<=2,<=...,<=*n*. - Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula *a**i*,<=*j*<==<=*a**i*<=-<=1,<=*j*<=+<=*a**i*,<=*j*<=-<=1.
These conditions define all the values in the table.
You are given a number *n*. You need to determine the maximum value in the *n*<=×<=*n* table defined by the rules above.
|
The only line of input contains a positive integer *n* (1<=≤<=*n*<=≤<=10) — the number of rows and columns of the table.
|
Print a single line containing a positive integer *m* — the maximum value in the table.
|
[
"1\n",
"5\n"
] |
[
"1",
"70"
] |
In the second test the rows of the table look as follows:
| 0
|
[
{
"input": "1",
"output": "1"
},
{
"input": "5",
"output": "70"
},
{
"input": "2",
"output": "2"
},
{
"input": "3",
"output": "6"
},
{
"input": "4",
"output": "20"
},
{
"input": "6",
"output": "252"
},
{
"input": "7",
"output": "924"
},
{
"input": "9",
"output": "12870"
},
{
"input": "10",
"output": "48620"
},
{
"input": "8",
"output": "3432"
}
] | 1,641,475,223
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 10
| 108
| 0
|
def pascaline(n):
n = n - 1
line = [1]
for k in range(max(n ,0)):
line.append(int(line[k]*(n-k)/(k+1)))
return line
n=int(input())
line=pascaline(2*n-1)
n=len(line)
print(max(line))
|
Title: Maximum in Table
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
An *n*<=×<=*n* table *a* is defined as follows:
- The first row and the first column contain ones, that is: *a**i*,<=1<==<=*a*1,<=*i*<==<=1 for all *i*<==<=1,<=2,<=...,<=*n*. - Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula *a**i*,<=*j*<==<=*a**i*<=-<=1,<=*j*<=+<=*a**i*,<=*j*<=-<=1.
These conditions define all the values in the table.
You are given a number *n*. You need to determine the maximum value in the *n*<=×<=*n* table defined by the rules above.
Input Specification:
The only line of input contains a positive integer *n* (1<=≤<=*n*<=≤<=10) — the number of rows and columns of the table.
Output Specification:
Print a single line containing a positive integer *m* — the maximum value in the table.
Demo Input:
['1\n', '5\n']
Demo Output:
['1', '70']
Note:
In the second test the rows of the table look as follows:
|
```python
def pascaline(n):
n = n - 1
line = [1]
for k in range(max(n ,0)):
line.append(int(line[k]*(n-k)/(k+1)))
return line
n=int(input())
line=pascaline(2*n-1)
n=len(line)
print(max(line))
```
| 3
|
|
611
|
A
|
New Year and Days
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Today is Wednesday, the third day of the week. What's more interesting is that tomorrow is the last day of the year 2015.
Limak is a little polar bear. He enjoyed this year a lot. Now, he is so eager to the coming year 2016.
Limak wants to prove how responsible a bear he is. He is going to regularly save candies for the entire year 2016! He considers various saving plans. He can save one candy either on some fixed day of the week or on some fixed day of the month.
Limak chose one particular plan. He isn't sure how many candies he will save in the 2016 with his plan. Please, calculate it and tell him.
|
The only line of the input is in one of the following two formats:
- "*x* of week" where *x* (1<=≤<=*x*<=≤<=7) denotes the day of the week. The 1-st day is Monday and the 7-th one is Sunday. - "*x* of month" where *x* (1<=≤<=*x*<=≤<=31) denotes the day of the month.
|
Print one integer — the number of candies Limak will save in the year 2016.
|
[
"4 of week\n",
"30 of month\n"
] |
[
"52\n",
"11\n"
] |
Polar bears use the Gregorian calendar. It is the most common calendar and you likely use it too. You can read about it on Wikipedia if you want to – [https://en.wikipedia.org/wiki/Gregorian_calendar](https://en.wikipedia.org/wiki/Gregorian_calendar). The week starts with Monday.
In the first sample Limak wants to save one candy on each Thursday (the 4-th day of the week). There are 52 Thursdays in the 2016. Thus, he will save 52 candies in total.
In the second sample Limak wants to save one candy on the 30-th day of each month. There is the 30-th day in exactly 11 months in the 2016 — all months but February. It means that Limak will save 11 candies in total.
| 500
|
[
{
"input": "4 of week",
"output": "52"
},
{
"input": "30 of month",
"output": "11"
},
{
"input": "17 of month",
"output": "12"
},
{
"input": "31 of month",
"output": "7"
},
{
"input": "6 of week",
"output": "53"
},
{
"input": "1 of week",
"output": "52"
},
{
"input": "2 of week",
"output": "52"
},
{
"input": "3 of week",
"output": "52"
},
{
"input": "5 of week",
"output": "53"
},
{
"input": "7 of week",
"output": "52"
},
{
"input": "1 of month",
"output": "12"
},
{
"input": "2 of month",
"output": "12"
},
{
"input": "3 of month",
"output": "12"
},
{
"input": "4 of month",
"output": "12"
},
{
"input": "5 of month",
"output": "12"
},
{
"input": "6 of month",
"output": "12"
},
{
"input": "7 of month",
"output": "12"
},
{
"input": "8 of month",
"output": "12"
},
{
"input": "9 of month",
"output": "12"
},
{
"input": "10 of month",
"output": "12"
},
{
"input": "11 of month",
"output": "12"
},
{
"input": "12 of month",
"output": "12"
},
{
"input": "13 of month",
"output": "12"
},
{
"input": "14 of month",
"output": "12"
},
{
"input": "15 of month",
"output": "12"
},
{
"input": "16 of month",
"output": "12"
},
{
"input": "18 of month",
"output": "12"
},
{
"input": "19 of month",
"output": "12"
},
{
"input": "20 of month",
"output": "12"
},
{
"input": "21 of month",
"output": "12"
},
{
"input": "22 of month",
"output": "12"
},
{
"input": "23 of month",
"output": "12"
},
{
"input": "24 of month",
"output": "12"
},
{
"input": "25 of month",
"output": "12"
},
{
"input": "26 of month",
"output": "12"
},
{
"input": "27 of month",
"output": "12"
},
{
"input": "28 of month",
"output": "12"
},
{
"input": "29 of month",
"output": "12"
}
] | 1,548,080,156
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 6
| 108
| 0
|
"""
██╗ ██████╗ ██╗ ██████╗ ██████╗ ██╗ █████╗
██║██╔═══██╗██║ ╚════██╗██╔═████╗███║██╔══██╗
██║██║ ██║██║ █████╔╝██║██╔██║╚██║╚██████║
██║██║ ██║██║ ██╔═══╝ ████╔╝██║ ██║ ╚═══██║
██║╚██████╔╝██║ ███████╗╚██████╔╝ ██║ █████╔╝
╚═╝ ╚═════╝ ╚═╝ ╚══════╝ ╚═════╝ ╚═╝ ╚════╝
"""
__author__ = "Dilshod"
s = input().split()
if s[-1] == "month":
if s[0] == "31":
print(7)
elif s[0] == "30":
print(11)
else:
print(12)
else:
if s[0] == '1':
print(4 * 12 + 4)
elif s[0] == "2":
print(4 * 12 + 5)
elif s[0] == "3":
print(4 * 12 + 4)
elif s[0] == "4":
print(4 * 12 + 4)
elif s[0] == "5":
print(4 * 12 + 4)
elif s[0] == "6":
print(4 * 12 + 5)
elif s[0] == "7":
print(4 * 12 + 4)
|
Title: New Year and Days
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Today is Wednesday, the third day of the week. What's more interesting is that tomorrow is the last day of the year 2015.
Limak is a little polar bear. He enjoyed this year a lot. Now, he is so eager to the coming year 2016.
Limak wants to prove how responsible a bear he is. He is going to regularly save candies for the entire year 2016! He considers various saving plans. He can save one candy either on some fixed day of the week or on some fixed day of the month.
Limak chose one particular plan. He isn't sure how many candies he will save in the 2016 with his plan. Please, calculate it and tell him.
Input Specification:
The only line of the input is in one of the following two formats:
- "*x* of week" where *x* (1<=≤<=*x*<=≤<=7) denotes the day of the week. The 1-st day is Monday and the 7-th one is Sunday. - "*x* of month" where *x* (1<=≤<=*x*<=≤<=31) denotes the day of the month.
Output Specification:
Print one integer — the number of candies Limak will save in the year 2016.
Demo Input:
['4 of week\n', '30 of month\n']
Demo Output:
['52\n', '11\n']
Note:
Polar bears use the Gregorian calendar. It is the most common calendar and you likely use it too. You can read about it on Wikipedia if you want to – [https://en.wikipedia.org/wiki/Gregorian_calendar](https://en.wikipedia.org/wiki/Gregorian_calendar). The week starts with Monday.
In the first sample Limak wants to save one candy on each Thursday (the 4-th day of the week). There are 52 Thursdays in the 2016. Thus, he will save 52 candies in total.
In the second sample Limak wants to save one candy on the 30-th day of each month. There is the 30-th day in exactly 11 months in the 2016 — all months but February. It means that Limak will save 11 candies in total.
|
```python
"""
██╗ ██████╗ ██╗ ██████╗ ██████╗ ██╗ █████╗
██║██╔═══██╗██║ ╚════██╗██╔═████╗███║██╔══██╗
██║██║ ██║██║ █████╔╝██║██╔██║╚██║╚██████║
██║██║ ██║██║ ██╔═══╝ ████╔╝██║ ██║ ╚═══██║
██║╚██████╔╝██║ ███████╗╚██████╔╝ ██║ █████╔╝
╚═╝ ╚═════╝ ╚═╝ ╚══════╝ ╚═════╝ ╚═╝ ╚════╝
"""
__author__ = "Dilshod"
s = input().split()
if s[-1] == "month":
if s[0] == "31":
print(7)
elif s[0] == "30":
print(11)
else:
print(12)
else:
if s[0] == '1':
print(4 * 12 + 4)
elif s[0] == "2":
print(4 * 12 + 5)
elif s[0] == "3":
print(4 * 12 + 4)
elif s[0] == "4":
print(4 * 12 + 4)
elif s[0] == "5":
print(4 * 12 + 4)
elif s[0] == "6":
print(4 * 12 + 5)
elif s[0] == "7":
print(4 * 12 + 4)
```
| 0
|
|
90
|
B
|
African Crossword
|
PROGRAMMING
| 1,100
|
[
"implementation",
"strings"
] |
B. African Crossword
|
2
|
256
|
An African crossword is a rectangular table *n*<=×<=*m* in size. Each cell of the table contains exactly one letter. This table (it is also referred to as grid) contains some encrypted word that needs to be decoded.
To solve the crossword you should cross out all repeated letters in rows and columns. In other words, a letter should only be crossed out if and only if the corresponding column or row contains at least one more letter that is exactly the same. Besides, all such letters are crossed out simultaneously.
When all repeated letters have been crossed out, we should write the remaining letters in a string. The letters that occupy a higher position follow before the letters that occupy a lower position. If the letters are located in one row, then the letter to the left goes first. The resulting word is the answer to the problem.
You are suggested to solve an African crossword and print the word encrypted there.
|
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100). Next *n* lines contain *m* lowercase Latin letters each. That is the crossword grid.
|
Print the encrypted word on a single line. It is guaranteed that the answer consists of at least one letter.
|
[
"3 3\ncba\nbcd\ncbc\n",
"5 5\nfcofd\nooedo\nafaoa\nrdcdf\neofsf\n"
] |
[
"abcd",
"codeforces"
] |
none
| 1,000
|
[
{
"input": "3 3\ncba\nbcd\ncbc",
"output": "abcd"
},
{
"input": "5 5\nfcofd\nooedo\nafaoa\nrdcdf\neofsf",
"output": "codeforces"
},
{
"input": "4 4\nusah\nusha\nhasu\nsuha",
"output": "ahhasusu"
},
{
"input": "7 5\naabcd\neffgh\niijkk\nlmnoo\npqqrs\nttuvw\nxxyyz",
"output": "bcdeghjlmnprsuvwz"
},
{
"input": "10 10\naaaaaaaaaa\nbccceeeeee\ncdfffffffe\ncdfiiiiile\ncdfjjjjile\ndddddddile\nedfkkkkile\nedddddddde\ngggggggggg\nhhhhhhhhhe",
"output": "b"
},
{
"input": "15 3\njhg\njkn\njui\nfth\noij\nyuf\nyfb\nugd\nhgd\noih\nhvc\nugg\nyvv\ntdg\nhgf",
"output": "hkniftjfbctd"
},
{
"input": "17 19\nbmzbmweyydiadtlcoue\ngmdbyfwurpwbpuvhifn\nuapwyndmhtqvkgkbhty\ntszotwflegsjzzszfwt\nzfpnscguemwrczqxyci\nvdqnkypnxnnpmuduhzn\noaquudhavrncwfwujpc\nmiggjmcmkkbnjfeodxk\ngjgwxtrxingiqquhuwq\nhdswxxrxuzzfhkplwun\nfagppcoildagktgdarv\neusjuqfistulgbglwmf\ngzrnyxryetwzhlnfewc\nzmnoozlqatugmdjwgzc\nfabbkoxyjxkatjmpprs\nwkdkobdagwdwxsufees\nrvncbszcepigpbzuzoo",
"output": "lcorviunqvgblgjfsgmrqxyivyxodhvrjpicbneodxjtfkpolvejqmllqadjwotmbgxrvs"
},
{
"input": "1 1\na",
"output": "a"
},
{
"input": "2 2\nzx\nxz",
"output": "zxxz"
},
{
"input": "1 2\nfg",
"output": "fg"
},
{
"input": "2 1\nh\nj",
"output": "hj"
},
{
"input": "1 3\niji",
"output": "j"
},
{
"input": "3 1\nk\np\nk",
"output": "p"
},
{
"input": "2 3\nmhw\nbfq",
"output": "mhwbfq"
},
{
"input": "3 2\nxe\ner\nwb",
"output": "xeerwb"
},
{
"input": "3 7\nnutuvjg\ntgqutfn\nyfjeiot",
"output": "ntvjggqfnyfjeiot"
},
{
"input": "5 4\nuzvs\namfz\nwypl\nxizp\nfhmf",
"output": "uzvsamfzwyplxizphm"
},
{
"input": "8 9\ntjqrtgrem\nrwjcfuoey\nywrjgpzca\nwabzggojv\najqmmcclh\nozilebskd\nqmgnbmtcq\nwakptzkjr",
"output": "mrjcfuyyrjpzabzvalhozilebskdgnbtpzr"
},
{
"input": "9 3\njel\njws\ntab\nvyo\nkgm\npls\nabq\nbjx\nljt",
"output": "elwtabvyokgmplabqbxlt"
},
{
"input": "7 6\neklgxi\nxmpzgf\nxvwcmr\nrqssed\nouiqpt\ndueiok\nbbuorv",
"output": "eklgximpzgfvwcmrrqedoiqptdeiokuorv"
},
{
"input": "14 27\npzoshpvvjdpmwfoeojapmkxjrnk\nitoojpcorxjdxrwyewtmmlhjxhx\ndoyopbwusgsmephixzcilxpskxh\nygpvepeuxjbnezdrnjfwdhjwjka\nrfjlbypoalbtjwrpjxzenmeipfg\nkhjhrtktcnajrnbefhpavxxfnlx\nvwlwumqpfegjgvoezevqsolaqhh\npdrvrtzqsoujqfeitkqgtxwckrl\nxtepjflcxcrfomhqimhimnzfxzg\nwhkfkfvvjwkmwhfgeovwowshyhw\nolchgmhiehumivswgtfyhqfagbp\ntdudrkttpkryvaiepsijuejqvmq\nmuratfqqdbfpefmhjzercortroh\nwxkebkzchupxumfizftgqvuwgau",
"output": "zshdanicdyldybwgclygzrhkayatwxznmicbpvlupfsoewcleploqngsyolceswtyqbpyasmuadbpcehqva"
},
{
"input": "1 100\nysijllpanprcrrtvokqmmupuptvawhvnekeybdkzqaduotmkfwybqvytkbjfzyqztmxckizheorvkhtyoohbswcmhknyzlgxordu",
"output": "g"
},
{
"input": "2 100\ngplwoaggwuxzutpwnmxhotbexntzmitmcvnvmuxknwvcrnsagvdojdgaccfbheqojgcqievijxapvepwqolmnjqsbejtnkaifstp\noictcmphxbrylaarcwpruiastazvmfhlcgticvwhpxyiiqokxcjgwlnfykkqdsfmrfaedzchrfzlwdclqjxvidhomhxqnlmuoowg",
"output": "rbe"
},
{
"input": "3 100\nonmhsoxoexfwavmamoecptondioxdjsoxfuqxkjviqnjukwqjwfadnohueaxrkreycicgxpmogijgejxsprwiweyvwembluwwqhj\nuofldyjyuhzgmkeurawgsrburovdppzjiyddpzxslhyesvmuwlgdjvzjqqcpubfgxliulyvxxloqyhxspoxvhllbrajlommpghlv\nvdohhghjlvihrzmwskxfatoodupmnouwyyfarhihxpdnbwrvrysrpxxptdidpqabwbfnxhiziiiqtozqjtnitgepxjxosspsjldo",
"output": "blkck"
},
{
"input": "100 1\na\nm\nn\nh\na\nx\nt\na\no\np\nj\nz\nr\nk\nq\nl\nb\nr\no\ni\ny\ni\np\ni\nt\nn\nd\nc\nz\np\nu\nn\nw\ny\ng\ns\nt\nm\nz\ne\nv\ng\ny\nj\nd\nz\ny\na\nn\nx\nk\nd\nq\nn\nv\ng\nk\ni\nk\nf\na\nb\nw\no\nu\nw\nk\nk\nb\nz\nu\ni\nu\nv\ng\nv\nx\ng\np\ni\nz\ns\nv\nq\ns\nb\nw\ne\np\nk\nt\np\nd\nr\ng\nd\nk\nm\nf\nd",
"output": "hlc"
},
{
"input": "100 2\nhd\ngx\nmz\nbq\nof\nst\nzc\ndg\nth\nba\new\nbw\noc\now\nvh\nqp\nin\neh\npj\nat\nnn\nbr\nij\nco\nlv\nsa\ntb\nbl\nsr\nxa\nbz\nrp\nsz\noi\nec\npw\nhf\njm\nwu\nhq\nra\npv\ntc\ngv\nik\nux\ntz\nbf\nty\ndk\nwo\nor\nza\nkv\nqt\nfa\njy\nbk\nuv\ngk\ncz\nds\nie\noq\nmf\nxn\nql\nxs\nfb\niv\ncj\nkn\nns\nlg\nji\nha\naj\ndg\nfj\nut\nsg\nju\noc\nov\nhe\nnw\nbl\nlp\nbx\nnm\nyq\ncw\nov\nxk\npg\noh\npl\nuo\ngf\nul",
"output": "dvy"
},
{
"input": "100 3\nruy\nmye\njgp\nscn\nktq\nalx\nmvk\nlpm\nkry\norb\nmpu\nzcv\nlge\nkft\ndzp\ntfb\nhqz\nuur\nhry\nzjx\ncuo\nqqc\ntih\nenj\nvnp\nbwi\nzzh\nhkc\nwdr\nldh\nvel\nizj\nfhb\nqrn\nqpp\nvzs\nlhg\nkee\nlbq\nzhy\nwcl\nyaa\nton\nfly\nkyw\nept\ngwq\ncoe\nopd\neez\nnmx\nnjg\nwhy\nvel\nafq\nnbq\nulx\noxs\nbbo\nyhx\nfmz\nnrg\nnfm\njek\nbeu\ntya\nxgs\nsgg\nnkq\nbbv\nwkd\ntns\nfdt\neox\nobc\neab\nkkj\noub\ngji\nrht\nozv\nysk\nsbt\nflf\npbu\nlxb\npzs\nrzh\ncea\nkmi\nuea\nncc\nzng\nvkn\njhn\njqw\nlqc\nmbt\nlov\ngam",
"output": "tvdiixs"
}
] | 1,626,759,306
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 60
| 6,963,200
|
w,h = map(int,input().split())
l = []
fi = []
for x in range(w):
fi.append(input())
for y in range(w):
c = fi[y]
for x in list(c):
if c.count(x) > 1:
c = c.replace(x, '#')
l.append(c)
t = []
for y in range(h):
tem = ''
for x in range(w):
tem += fi[x][y]
t.append(tem)
p = []
for x in range(h):
c = t[x]
for x in list(c):
if c.count(x) > 1:
c = c.replace(x, '#')
p.append(c)
t = []
for y in range(w):
tem = ''
for x in range(h):
tem += p[x][y]
t.append(tem)
final = ''
for x in range(h):
for y in range(w):
if l[y][x] == t[y][x]:
final += l[y][x]
print(final.replace('#', ''))
|
Title: African Crossword
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
An African crossword is a rectangular table *n*<=×<=*m* in size. Each cell of the table contains exactly one letter. This table (it is also referred to as grid) contains some encrypted word that needs to be decoded.
To solve the crossword you should cross out all repeated letters in rows and columns. In other words, a letter should only be crossed out if and only if the corresponding column or row contains at least one more letter that is exactly the same. Besides, all such letters are crossed out simultaneously.
When all repeated letters have been crossed out, we should write the remaining letters in a string. The letters that occupy a higher position follow before the letters that occupy a lower position. If the letters are located in one row, then the letter to the left goes first. The resulting word is the answer to the problem.
You are suggested to solve an African crossword and print the word encrypted there.
Input Specification:
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100). Next *n* lines contain *m* lowercase Latin letters each. That is the crossword grid.
Output Specification:
Print the encrypted word on a single line. It is guaranteed that the answer consists of at least one letter.
Demo Input:
['3 3\ncba\nbcd\ncbc\n', '5 5\nfcofd\nooedo\nafaoa\nrdcdf\neofsf\n']
Demo Output:
['abcd', 'codeforces']
Note:
none
|
```python
w,h = map(int,input().split())
l = []
fi = []
for x in range(w):
fi.append(input())
for y in range(w):
c = fi[y]
for x in list(c):
if c.count(x) > 1:
c = c.replace(x, '#')
l.append(c)
t = []
for y in range(h):
tem = ''
for x in range(w):
tem += fi[x][y]
t.append(tem)
p = []
for x in range(h):
c = t[x]
for x in list(c):
if c.count(x) > 1:
c = c.replace(x, '#')
p.append(c)
t = []
for y in range(w):
tem = ''
for x in range(h):
tem += p[x][y]
t.append(tem)
final = ''
for x in range(h):
for y in range(w):
if l[y][x] == t[y][x]:
final += l[y][x]
print(final.replace('#', ''))
```
| 0
|
223
|
A
|
Bracket Sequence
|
PROGRAMMING
| 1,700
|
[
"data structures",
"expression parsing",
"implementation"
] | null | null |
A bracket sequence is a string, containing only characters "(", ")", "[" and "]".
A correct bracket sequence is a bracket sequence that can be transformed into a correct arithmetic expression by inserting characters "1" and "+" between the original characters of the sequence. For example, bracket sequences "()[]", "([])" are correct (the resulting expressions are: "(1)+[1]", "([1+1]+1)"), and "](" and "[" are not. The empty string is a correct bracket sequence by definition.
A substring *s*[*l*... *r*] (1<=≤<=*l*<=≤<=*r*<=≤<=|*s*|) of string *s*<==<=*s*1*s*2... *s*|*s*| (where |*s*| is the length of string *s*) is the string *s**l**s**l*<=+<=1... *s**r*. The empty string is a substring of any string by definition.
You are given a bracket sequence, not necessarily correct. Find its substring which is a correct bracket sequence and contains as many opening square brackets «[» as possible.
|
The first and the only line contains the bracket sequence as a string, consisting only of characters "(", ")", "[" and "]". It is guaranteed that the string is non-empty and its length doesn't exceed 105 characters.
|
In the first line print a single integer — the number of brackets «[» in the required bracket sequence. In the second line print the optimal sequence. If there are more than one optimal solutions print any of them.
|
[
"([])\n",
"(((\n"
] |
[
"1\n([])\n",
"0\n\n"
] |
none
| 500
|
[
{
"input": "([])",
"output": "1\n([])"
},
{
"input": "(((",
"output": "0"
},
{
"input": "(][)",
"output": "0"
},
{
"input": "(()[))()[]",
"output": "1\n()[]"
},
{
"input": "(][](](][[(][",
"output": "1\n[]"
},
{
"input": "((])(]]))(](((()[[()[[[)([]()])[(]][)]])[]]()[()[[[[(([[)",
"output": "1\n[]()"
},
{
"input": "](]][)]()][[])[()(][)]))[)[]()()])[([((([[(([)][(])](][])([([)())))([(([][))[)()]][[])()[)](][[((]](](])]][(][[()(]][[)][])(][]))[])[)[(])[)()()[[))((()]]([([[(]))][(]())))))[[]]][][))[)])])()((((([[](([[()(([[()](([[([[(](]([)]())))[)]([]",
"output": "2\n[[]]"
},
{
"input": "[(()[])]()[()[]]",
"output": "4\n[(()[])]()[()[]]"
},
{
"input": "([])()[()]()()[(([])[]()[()([])()[][]()])]",
"output": "9\n([])()[()]()()[(([])[]()[()([])()[][]()])]"
},
{
"input": "[()][([[]])][[[]()]][()[]]()()([[][]][[]][](()))[[[(())]]][]()(([([])(([[[]]()])(()))]((())))([()]([()[[[]([][[[[][(())([[]()])]]][[(())]([])]()][[](())]()[])]()[][]]([[]])[]])[(()[()((()[][()]))][])[]()()([]())](()[][][])()()[]()))[]()[]",
"output": "61\n[()][([[]])][[[]()]][()[]]()()([[][]][[]][](()))[[[(())]]][]()(([([])(([[[]]()])(()))]((())))([()]([()[[[]([][[[[][(())([[]()])]]][[(())]([])]()][[](())]()[])]()[][]]([[]])[]])[(()[()((()[][()]))][])[]()()([]())](()[][][])()()[]()))[]()[]"
},
{
"input": "(][(](][[(][(",
"output": "0"
},
{
"input": ")[)][)))((([[)]((]][)[)((]([)[)(([)[)]][([",
"output": "0"
},
{
"input": "][([))][[))[[((]][([(([[)]]])([)][([([[[[([))]])][[[[[([)]]([[(((]([(](([([[)[(]])(][(((][)[[)][)(][[)[[)])))[)]))]])[([[))(([(]][))([(]]][(])]))))))[[[[[([[([)[[[)[(([)[[(][((([(([([(([))[[[[[[([(](])(][[)[)(](]])]]]((([))(])[[)[))[([[[[(]][)[([(]](([)([[)[[([))[)",
"output": "0"
},
{
"input": "()]])()()]",
"output": "0"
},
{
"input": "[([[)[(()[])[()][]()[[[)()[][[[()[]]]()]][",
"output": "5\n()[][[[()[]]]()]"
},
{
"input": "[()][][][][]()[)])))[(]()[]([)(])[)(])()[))][)]()[][][]][][)(((([))))[)[))]]([[[)[())))[(][(()[()[(]())]])([[)[)[[())[()[]()[[[[])][))](()()())()](((((([(()]][[)([)([]]))(()[((]]())[]])][)()(][]][][(([])]]((]])([[][)])(][)][([[[[(][()(][[(",
"output": "5\n[()][][][][]()"
},
{
"input": "(([])",
"output": "1\n([])"
},
{
"input": "()()([]]",
"output": "1\n[]"
},
{
"input": "([[[]]))",
"output": "2\n[[]]"
},
{
"input": "[[]",
"output": "1\n[]"
},
{
"input": "((((([]((((((((((",
"output": "1\n[]"
},
{
"input": "(((((([](((((((",
"output": "1\n[]"
},
{
"input": "[[])",
"output": "1\n[]"
},
{
"input": "((()))([]",
"output": "1\n[]"
},
{
"input": "([]",
"output": "1\n[]"
},
{
"input": "[]())])([)][[[]])))][])([]([]()]]))))())[[([))()(])))]][)[][[])(][()()]]](]][])[[))((]][)[)(]))([])((]([)([])]]]]]]][)[[[]]([[[]]][(][][])()[[([](])(]]((]([[)])]])([)(][([)(([))(]([)[[](([(](][[)()(][",
"output": "3\n[[[]]]"
}
] | 1,638,328,228
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 92
| 0
|
# f = open("data.txt", "r")
# get_input = f.readline
get_input = input
m_br = ("[", "]")
s_br = ("(", ")")
s = get_input().strip()
buffer = []
candidate = []
max_candidate_idx = -1
max_candidate = 0
def add_candidate(candidate, in_tuple):
start, end, num = in_tuple
while len(candidate) > 0 and (start < candidate[-1][0] or start - 1 == candidate[-1][1]):
last_start, _, last_num = candidate.pop(-1)
start = min(last_start, start)
num += last_num
candidate.append((start, end, num))
if num > max_candidate:
max_candidate_idx = len(candidate) - 1
for idx, br in enumerate(s):
if len(buffer) == 0:
buffer.append((br,idx))
continue
if (buffer[-1][0], br) == m_br:
last = buffer.pop(-1)
add_candidate(candidate, (last[1], idx, 1))
elif (buffer[-1][0], br) == s_br:
last = buffer.pop(-1)
add_candidate(candidate, (last[1], idx, 0))
else:
buffer.append((br,idx))
if max_candidate > 0:
res_start, res_end, res_num = candidate[max_candidate_idx]
print(res_num)
print(s[res_start:res_end + 1])
else:
print(0)
print()
# f.close()
|
Title: Bracket Sequence
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A bracket sequence is a string, containing only characters "(", ")", "[" and "]".
A correct bracket sequence is a bracket sequence that can be transformed into a correct arithmetic expression by inserting characters "1" and "+" between the original characters of the sequence. For example, bracket sequences "()[]", "([])" are correct (the resulting expressions are: "(1)+[1]", "([1+1]+1)"), and "](" and "[" are not. The empty string is a correct bracket sequence by definition.
A substring *s*[*l*... *r*] (1<=≤<=*l*<=≤<=*r*<=≤<=|*s*|) of string *s*<==<=*s*1*s*2... *s*|*s*| (where |*s*| is the length of string *s*) is the string *s**l**s**l*<=+<=1... *s**r*. The empty string is a substring of any string by definition.
You are given a bracket sequence, not necessarily correct. Find its substring which is a correct bracket sequence and contains as many opening square brackets «[» as possible.
Input Specification:
The first and the only line contains the bracket sequence as a string, consisting only of characters "(", ")", "[" and "]". It is guaranteed that the string is non-empty and its length doesn't exceed 105 characters.
Output Specification:
In the first line print a single integer — the number of brackets «[» in the required bracket sequence. In the second line print the optimal sequence. If there are more than one optimal solutions print any of them.
Demo Input:
['([])\n', '(((\n']
Demo Output:
['1\n([])\n', '0\n\n']
Note:
none
|
```python
# f = open("data.txt", "r")
# get_input = f.readline
get_input = input
m_br = ("[", "]")
s_br = ("(", ")")
s = get_input().strip()
buffer = []
candidate = []
max_candidate_idx = -1
max_candidate = 0
def add_candidate(candidate, in_tuple):
start, end, num = in_tuple
while len(candidate) > 0 and (start < candidate[-1][0] or start - 1 == candidate[-1][1]):
last_start, _, last_num = candidate.pop(-1)
start = min(last_start, start)
num += last_num
candidate.append((start, end, num))
if num > max_candidate:
max_candidate_idx = len(candidate) - 1
for idx, br in enumerate(s):
if len(buffer) == 0:
buffer.append((br,idx))
continue
if (buffer[-1][0], br) == m_br:
last = buffer.pop(-1)
add_candidate(candidate, (last[1], idx, 1))
elif (buffer[-1][0], br) == s_br:
last = buffer.pop(-1)
add_candidate(candidate, (last[1], idx, 0))
else:
buffer.append((br,idx))
if max_candidate > 0:
res_start, res_end, res_num = candidate[max_candidate_idx]
print(res_num)
print(s[res_start:res_end + 1])
else:
print(0)
print()
# f.close()
```
| 0
|
|
449
|
B
|
Jzzhu and Cities
|
PROGRAMMING
| 2,000
|
[
"graphs",
"greedy",
"shortest paths"
] | null | null |
Jzzhu is the president of country A. There are *n* cities numbered from 1 to *n* in his country. City 1 is the capital of A. Also there are *m* roads connecting the cities. One can go from city *u**i* to *v**i* (and vise versa) using the *i*-th road, the length of this road is *x**i*. Finally, there are *k* train routes in the country. One can use the *i*-th train route to go from capital of the country to city *s**i* (and vise versa), the length of this route is *y**i*.
Jzzhu doesn't want to waste the money of the country, so he is going to close some of the train routes. Please tell Jzzhu the maximum number of the train routes which can be closed under the following condition: the length of the shortest path from every city to the capital mustn't change.
|
The first line contains three integers *n*,<=*m*,<=*k* (2<=≤<=*n*<=≤<=105; 1<=≤<=*m*<=≤<=3·105; 1<=≤<=*k*<=≤<=105).
Each of the next *m* lines contains three integers *u**i*,<=*v**i*,<=*x**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*; *u**i*<=≠<=*v**i*; 1<=≤<=*x**i*<=≤<=109).
Each of the next *k* lines contains two integers *s**i* and *y**i* (2<=≤<=*s**i*<=≤<=*n*; 1<=≤<=*y**i*<=≤<=109).
It is guaranteed that there is at least one way from every city to the capital. Note, that there can be multiple roads between two cities. Also, there can be multiple routes going to the same city from the capital.
|
Output a single integer representing the maximum number of the train routes which can be closed.
|
[
"5 5 3\n1 2 1\n2 3 2\n1 3 3\n3 4 4\n1 5 5\n3 5\n4 5\n5 5\n",
"2 2 3\n1 2 2\n2 1 3\n2 1\n2 2\n2 3\n"
] |
[
"2\n",
"2\n"
] |
none
| 1,000
|
[
{
"input": "5 5 3\n1 2 1\n2 3 2\n1 3 3\n3 4 4\n1 5 5\n3 5\n4 5\n5 5",
"output": "2"
},
{
"input": "2 2 3\n1 2 2\n2 1 3\n2 1\n2 2\n2 3",
"output": "2"
},
{
"input": "5 4 3\n1 2 999999999\n2 3 1000000000\n3 4 529529529\n5 1 524524524\n5 524444444\n5 529999999\n2 1000000000",
"output": "2"
},
{
"input": "3 2 5\n1 2 2\n2 3 4\n3 5\n3 5\n3 5\n3 6\n3 7",
"output": "4"
},
{
"input": "5 5 3\n1 2 999999999\n2 3 1000000000\n3 4 529529529\n5 1 524524524\n5 3 1000000000\n5 524444444\n5 529999999\n2 1000000000",
"output": "2"
},
{
"input": "2 1 5\n1 2 4\n2 3\n2 5\n2 4\n2 4\n2 5",
"output": "4"
},
{
"input": "3 3 6\n1 2 499999999\n2 3 500000000\n1 3 999999999\n2 499999999\n2 500000000\n2 499999999\n3 999999999\n3 1000000000\n3 1000000000",
"output": "6"
},
{
"input": "2 1 1\n1 2 1\n2 1000000000",
"output": "1"
},
{
"input": "3 2 2\n1 2 4\n2 3 4\n2 2\n3 6",
"output": "1"
},
{
"input": "5 5 2\n1 2 100\n2 3 100\n3 4 100\n4 5 20\n2 5 5\n5 50\n4 1",
"output": "1"
},
{
"input": "3 2 2\n1 2 100\n2 3 1\n2 1\n3 3",
"output": "1"
}
] | 1,667,204,750
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 3
| 2,000
| 188,620,800
|
from collections import defaultdict, deque
from functools import lru_cache
import heapq
from bisect import bisect_right, bisect_left
import math
MOD = 10**9 + 7
def solution():
n, m, k = list(map(int, input().strip().split()))
'''
do two dijkstras
if it is lowered by using a train route
check if that is caused by itself or not
'''
graph = defaultdict(list)
train = []
cost1 = [float('inf')] * (n+1)
cost1[1] = 0
ans = 0
for _ in range(m):
start, end, cost__ = list(map(int, input().strip().split()))
graph[start].append((end, cost__))
graph[end].append((start, cost__))
cost2 = [float('inf')] * (n+1)
cost2[1] = 0
have_a_train = [False] * (n+1)
for i in range(k):
end, length = list(map(int, input().strip().split()))
train.append((end, length))
have_a_train[end] = True
if length < cost2[end]:
cost2[end] = length
else:
ans += 1
heap = [(0, 1)]
visited = set()
heapq.heapify(heap)
while heap:
cost_, node = heapq.heappop(heap)
if node in visited:
continue
visited.add(node)
if have_a_train[node]:
if cost2[node] < cost_:
cost_ = cost2[node]
else:
ans += 1
for dest, costx in graph[node]:
# print(dest, costx)
cost1[dest] = min(cost1[dest], cost_ + costx)
if dest not in visited:
heapq.heappush(heap, (cost_ + costx, dest))
return ans
def main():
t = 1
for _ in range(t):
print(solution())
import sys
import threading
sys.setrecursionlimit(1 << 30)
threading.stack_size(1 << 27)
thread = threading.Thread(target=main)
thread.start(); thread.join()
# main()
|
Title: Jzzhu and Cities
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Jzzhu is the president of country A. There are *n* cities numbered from 1 to *n* in his country. City 1 is the capital of A. Also there are *m* roads connecting the cities. One can go from city *u**i* to *v**i* (and vise versa) using the *i*-th road, the length of this road is *x**i*. Finally, there are *k* train routes in the country. One can use the *i*-th train route to go from capital of the country to city *s**i* (and vise versa), the length of this route is *y**i*.
Jzzhu doesn't want to waste the money of the country, so he is going to close some of the train routes. Please tell Jzzhu the maximum number of the train routes which can be closed under the following condition: the length of the shortest path from every city to the capital mustn't change.
Input Specification:
The first line contains three integers *n*,<=*m*,<=*k* (2<=≤<=*n*<=≤<=105; 1<=≤<=*m*<=≤<=3·105; 1<=≤<=*k*<=≤<=105).
Each of the next *m* lines contains three integers *u**i*,<=*v**i*,<=*x**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*; *u**i*<=≠<=*v**i*; 1<=≤<=*x**i*<=≤<=109).
Each of the next *k* lines contains two integers *s**i* and *y**i* (2<=≤<=*s**i*<=≤<=*n*; 1<=≤<=*y**i*<=≤<=109).
It is guaranteed that there is at least one way from every city to the capital. Note, that there can be multiple roads between two cities. Also, there can be multiple routes going to the same city from the capital.
Output Specification:
Output a single integer representing the maximum number of the train routes which can be closed.
Demo Input:
['5 5 3\n1 2 1\n2 3 2\n1 3 3\n3 4 4\n1 5 5\n3 5\n4 5\n5 5\n', '2 2 3\n1 2 2\n2 1 3\n2 1\n2 2\n2 3\n']
Demo Output:
['2\n', '2\n']
Note:
none
|
```python
from collections import defaultdict, deque
from functools import lru_cache
import heapq
from bisect import bisect_right, bisect_left
import math
MOD = 10**9 + 7
def solution():
n, m, k = list(map(int, input().strip().split()))
'''
do two dijkstras
if it is lowered by using a train route
check if that is caused by itself or not
'''
graph = defaultdict(list)
train = []
cost1 = [float('inf')] * (n+1)
cost1[1] = 0
ans = 0
for _ in range(m):
start, end, cost__ = list(map(int, input().strip().split()))
graph[start].append((end, cost__))
graph[end].append((start, cost__))
cost2 = [float('inf')] * (n+1)
cost2[1] = 0
have_a_train = [False] * (n+1)
for i in range(k):
end, length = list(map(int, input().strip().split()))
train.append((end, length))
have_a_train[end] = True
if length < cost2[end]:
cost2[end] = length
else:
ans += 1
heap = [(0, 1)]
visited = set()
heapq.heapify(heap)
while heap:
cost_, node = heapq.heappop(heap)
if node in visited:
continue
visited.add(node)
if have_a_train[node]:
if cost2[node] < cost_:
cost_ = cost2[node]
else:
ans += 1
for dest, costx in graph[node]:
# print(dest, costx)
cost1[dest] = min(cost1[dest], cost_ + costx)
if dest not in visited:
heapq.heappush(heap, (cost_ + costx, dest))
return ans
def main():
t = 1
for _ in range(t):
print(solution())
import sys
import threading
sys.setrecursionlimit(1 << 30)
threading.stack_size(1 << 27)
thread = threading.Thread(target=main)
thread.start(); thread.join()
# main()
```
| 0
|
|
479
|
A
|
Expression
|
PROGRAMMING
| 1,000
|
[
"brute force",
"math"
] | null | null |
Petya studies in a school and he adores Maths. His class has been studying arithmetic expressions. On the last class the teacher wrote three positive integers *a*, *b*, *c* on the blackboard. The task was to insert signs of operations '+' and '*', and probably brackets between the numbers so that the value of the resulting expression is as large as possible. Let's consider an example: assume that the teacher wrote numbers 1, 2 and 3 on the blackboard. Here are some ways of placing signs and brackets:
- 1+2*3=7 - 1*(2+3)=5 - 1*2*3=6 - (1+2)*3=9
Note that you can insert operation signs only between *a* and *b*, and between *b* and *c*, that is, you cannot swap integers. For instance, in the given sample you cannot get expression (1+3)*2.
It's easy to see that the maximum value that you can obtain is 9.
Your task is: given *a*, *b* and *c* print the maximum value that you can get.
|
The input contains three integers *a*, *b* and *c*, each on a single line (1<=≤<=*a*,<=*b*,<=*c*<=≤<=10).
|
Print the maximum value of the expression that you can obtain.
|
[
"1\n2\n3\n",
"2\n10\n3\n"
] |
[
"9\n",
"60\n"
] |
none
| 500
|
[
{
"input": "1\n2\n3",
"output": "9"
},
{
"input": "2\n10\n3",
"output": "60"
},
{
"input": "1\n1\n1",
"output": "3"
},
{
"input": "1\n2\n1",
"output": "4"
},
{
"input": "10\n10\n10",
"output": "1000"
},
{
"input": "5\n1\n3",
"output": "20"
},
{
"input": "3\n1\n5",
"output": "20"
},
{
"input": "6\n7\n1",
"output": "48"
},
{
"input": "1\n8\n3",
"output": "27"
},
{
"input": "9\n7\n2",
"output": "126"
},
{
"input": "1\n1\n10",
"output": "20"
},
{
"input": "9\n1\n1",
"output": "18"
},
{
"input": "10\n5\n6",
"output": "300"
},
{
"input": "8\n9\n7",
"output": "504"
},
{
"input": "4\n2\n10",
"output": "80"
},
{
"input": "2\n8\n3",
"output": "48"
},
{
"input": "3\n5\n7",
"output": "105"
},
{
"input": "1\n10\n1",
"output": "12"
},
{
"input": "2\n2\n2",
"output": "8"
},
{
"input": "5\n6\n1",
"output": "35"
},
{
"input": "10\n1\n1",
"output": "20"
},
{
"input": "1\n6\n1",
"output": "8"
},
{
"input": "1\n9\n1",
"output": "11"
},
{
"input": "2\n1\n2",
"output": "6"
},
{
"input": "2\n6\n1",
"output": "14"
},
{
"input": "9\n2\n1",
"output": "27"
},
{
"input": "1\n9\n2",
"output": "20"
},
{
"input": "1\n3\n1",
"output": "5"
},
{
"input": "2\n1\n1",
"output": "4"
}
] | 1,697,926,642
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 29
| 46
| 0
|
a = int(input())
b = int(input())
c = int(input())
maxAns = max(a+b+c,a*b*c,a+b*c,a*b+c,(a+b)*c,a*(b+c))
print(maxAns)
|
Title: Expression
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Petya studies in a school and he adores Maths. His class has been studying arithmetic expressions. On the last class the teacher wrote three positive integers *a*, *b*, *c* on the blackboard. The task was to insert signs of operations '+' and '*', and probably brackets between the numbers so that the value of the resulting expression is as large as possible. Let's consider an example: assume that the teacher wrote numbers 1, 2 and 3 on the blackboard. Here are some ways of placing signs and brackets:
- 1+2*3=7 - 1*(2+3)=5 - 1*2*3=6 - (1+2)*3=9
Note that you can insert operation signs only between *a* and *b*, and between *b* and *c*, that is, you cannot swap integers. For instance, in the given sample you cannot get expression (1+3)*2.
It's easy to see that the maximum value that you can obtain is 9.
Your task is: given *a*, *b* and *c* print the maximum value that you can get.
Input Specification:
The input contains three integers *a*, *b* and *c*, each on a single line (1<=≤<=*a*,<=*b*,<=*c*<=≤<=10).
Output Specification:
Print the maximum value of the expression that you can obtain.
Demo Input:
['1\n2\n3\n', '2\n10\n3\n']
Demo Output:
['9\n', '60\n']
Note:
none
|
```python
a = int(input())
b = int(input())
c = int(input())
maxAns = max(a+b+c,a*b*c,a+b*c,a*b+c,(a+b)*c,a*(b+c))
print(maxAns)
```
| 3
|
|
59
|
A
|
Word
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Word
|
2
|
256
|
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
|
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
|
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
|
[
"HoUse\n",
"ViP\n",
"maTRIx\n"
] |
[
"house\n",
"VIP\n",
"matrix\n"
] |
none
| 500
|
[
{
"input": "HoUse",
"output": "house"
},
{
"input": "ViP",
"output": "VIP"
},
{
"input": "maTRIx",
"output": "matrix"
},
{
"input": "BNHWpnpawg",
"output": "bnhwpnpawg"
},
{
"input": "VTYGP",
"output": "VTYGP"
},
{
"input": "CHNenu",
"output": "chnenu"
},
{
"input": "ERPZGrodyu",
"output": "erpzgrodyu"
},
{
"input": "KSXBXWpebh",
"output": "KSXBXWPEBH"
},
{
"input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv",
"output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv"
},
{
"input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd",
"output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd"
},
{
"input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv",
"output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv"
},
{
"input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg",
"output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg"
},
{
"input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak",
"output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK"
},
{
"input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw",
"output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW"
},
{
"input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB",
"output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB"
},
{
"input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge",
"output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge"
},
{
"input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw",
"output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw"
},
{
"input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks",
"output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks"
},
{
"input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz",
"output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ"
},
{
"input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg",
"output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG"
},
{
"input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO",
"output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO"
},
{
"input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd",
"output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD"
},
{
"input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas",
"output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas"
},
{
"input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm",
"output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM"
},
{
"input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn",
"output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn"
},
{
"input": "t",
"output": "t"
},
{
"input": "N",
"output": "N"
},
{
"input": "kv",
"output": "kv"
},
{
"input": "Ur",
"output": "ur"
},
{
"input": "CN",
"output": "CN"
}
] | 1,691,910,115
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 92
| 0
|
s = input()
lower = 0
capital = 0
for k in range(len(s)):
if ord(s[k]) >= 97:
lower += 1
else:
capital += 1
if capital > lower:
for u in range(len(s)):
if ord(s[u]) >= 97:
print(chr(ord(s[u]) - 32), end='')
else:
print(s[u], end='')
else:
for v in range(len(s)):
if ord(s[v]) <= 90:
print(chr(ord(s[v]) + 32), end='')
else:
print(s[v], end='')
|
Title: Word
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
Input Specification:
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Output Specification:
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
Demo Input:
['HoUse\n', 'ViP\n', 'maTRIx\n']
Demo Output:
['house\n', 'VIP\n', 'matrix\n']
Note:
none
|
```python
s = input()
lower = 0
capital = 0
for k in range(len(s)):
if ord(s[k]) >= 97:
lower += 1
else:
capital += 1
if capital > lower:
for u in range(len(s)):
if ord(s[u]) >= 97:
print(chr(ord(s[u]) - 32), end='')
else:
print(s[u], end='')
else:
for v in range(len(s)):
if ord(s[v]) <= 90:
print(chr(ord(s[v]) + 32), end='')
else:
print(s[v], end='')
```
| 3.977
|
508
|
A
|
Pasha and Pixels
|
PROGRAMMING
| 1,100
|
[
"brute force"
] | null | null |
Pasha loves his phone and also putting his hair up... But the hair is now irrelevant.
Pasha has installed a new game to his phone. The goal of the game is following. There is a rectangular field consisting of *n* row with *m* pixels in each row. Initially, all the pixels are colored white. In one move, Pasha can choose any pixel and color it black. In particular, he can choose the pixel that is already black, then after the boy's move the pixel does not change, that is, it remains black. Pasha loses the game when a 2<=×<=2 square consisting of black pixels is formed.
Pasha has made a plan of *k* moves, according to which he will paint pixels. Each turn in his plan is represented as a pair of numbers *i* and *j*, denoting respectively the row and the column of the pixel to be colored on the current move.
Determine whether Pasha loses if he acts in accordance with his plan, and if he does, on what move the 2<=×<=2 square consisting of black pixels is formed.
|
The first line of the input contains three integers *n*,<=*m*,<=*k* (1<=≤<=*n*,<=*m*<=≤<=1000, 1<=≤<=*k*<=≤<=105) — the number of rows, the number of columns and the number of moves that Pasha is going to perform.
The next *k* lines contain Pasha's moves in the order he makes them. Each line contains two integers *i* and *j* (1<=≤<=*i*<=≤<=*n*, 1<=≤<=*j*<=≤<=*m*), representing the row number and column number of the pixel that was painted during a move.
|
If Pasha loses, print the number of the move when the 2<=×<=2 square consisting of black pixels is formed.
If Pasha doesn't lose, that is, no 2<=×<=2 square consisting of black pixels is formed during the given *k* moves, print 0.
|
[
"2 2 4\n1 1\n1 2\n2 1\n2 2\n",
"2 3 6\n2 3\n2 2\n1 3\n2 2\n1 2\n1 1\n",
"5 3 7\n2 3\n1 2\n1 1\n4 1\n3 1\n5 3\n3 2\n"
] |
[
"4\n",
"5\n",
"0\n"
] |
none
| 500
|
[
{
"input": "2 2 4\n1 1\n1 2\n2 1\n2 2",
"output": "4"
},
{
"input": "2 3 6\n2 3\n2 2\n1 3\n2 2\n1 2\n1 1",
"output": "5"
},
{
"input": "5 3 7\n2 3\n1 2\n1 1\n4 1\n3 1\n5 3\n3 2",
"output": "0"
},
{
"input": "3 3 11\n2 1\n3 1\n1 1\n1 3\n1 2\n2 3\n3 3\n3 2\n2 2\n1 3\n3 3",
"output": "9"
},
{
"input": "2 2 5\n1 1\n2 1\n2 1\n1 2\n2 2",
"output": "5"
},
{
"input": "518 518 10\n37 97\n47 278\n17 467\n158 66\n483 351\n83 123\n285 219\n513 187\n380 75\n304 352",
"output": "0"
},
{
"input": "1 1 5\n1 1\n1 1\n1 1\n1 1\n1 1",
"output": "0"
},
{
"input": "1 5 5\n1 1\n1 2\n1 3\n1 4\n1 5",
"output": "0"
},
{
"input": "5 1 5\n1 1\n2 1\n3 1\n4 1\n5 1",
"output": "0"
},
{
"input": "1 1 1\n1 1",
"output": "0"
},
{
"input": "10 10 4\n5 9\n6 9\n6 10\n5 10",
"output": "4"
},
{
"input": "1000 1000 4\n999 999\n999 1000\n1000 999\n1000 1000",
"output": "4"
},
{
"input": "2 3 5\n2 3\n1 3\n1 2\n1 1\n2 2",
"output": "5"
},
{
"input": "1000 1000 4\n1000 1000\n999 999\n1000 999\n999 1000",
"output": "4"
}
] | 1,668,143,934
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 3
| 31
| 0
|
n,m,k = map(int,input().split())
a = [[0 for i in range(m)]for j in range(n)]
pixel = []
def check(p,q,alist):
if alist[p-1][q-1] + alist[p][q-1] + alist[p-1][q] + alist[p][q] == 4:
return 1
return 0
ans = 0
flag = True
for i in range(k):
pixel.append(list(map(int,input().split())))
a[pixel[-1][0]-1][pixel[-1][1]-1] = 1
for j in pixel:
if check(j[0]-1,j[1]-1,a) != 0 and flag:
ans = i + 1
flag = False
print(ans)
|
Title: Pasha and Pixels
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Pasha loves his phone and also putting his hair up... But the hair is now irrelevant.
Pasha has installed a new game to his phone. The goal of the game is following. There is a rectangular field consisting of *n* row with *m* pixels in each row. Initially, all the pixels are colored white. In one move, Pasha can choose any pixel and color it black. In particular, he can choose the pixel that is already black, then after the boy's move the pixel does not change, that is, it remains black. Pasha loses the game when a 2<=×<=2 square consisting of black pixels is formed.
Pasha has made a plan of *k* moves, according to which he will paint pixels. Each turn in his plan is represented as a pair of numbers *i* and *j*, denoting respectively the row and the column of the pixel to be colored on the current move.
Determine whether Pasha loses if he acts in accordance with his plan, and if he does, on what move the 2<=×<=2 square consisting of black pixels is formed.
Input Specification:
The first line of the input contains three integers *n*,<=*m*,<=*k* (1<=≤<=*n*,<=*m*<=≤<=1000, 1<=≤<=*k*<=≤<=105) — the number of rows, the number of columns and the number of moves that Pasha is going to perform.
The next *k* lines contain Pasha's moves in the order he makes them. Each line contains two integers *i* and *j* (1<=≤<=*i*<=≤<=*n*, 1<=≤<=*j*<=≤<=*m*), representing the row number and column number of the pixel that was painted during a move.
Output Specification:
If Pasha loses, print the number of the move when the 2<=×<=2 square consisting of black pixels is formed.
If Pasha doesn't lose, that is, no 2<=×<=2 square consisting of black pixels is formed during the given *k* moves, print 0.
Demo Input:
['2 2 4\n1 1\n1 2\n2 1\n2 2\n', '2 3 6\n2 3\n2 2\n1 3\n2 2\n1 2\n1 1\n', '5 3 7\n2 3\n1 2\n1 1\n4 1\n3 1\n5 3\n3 2\n']
Demo Output:
['4\n', '5\n', '0\n']
Note:
none
|
```python
n,m,k = map(int,input().split())
a = [[0 for i in range(m)]for j in range(n)]
pixel = []
def check(p,q,alist):
if alist[p-1][q-1] + alist[p][q-1] + alist[p-1][q] + alist[p][q] == 4:
return 1
return 0
ans = 0
flag = True
for i in range(k):
pixel.append(list(map(int,input().split())))
a[pixel[-1][0]-1][pixel[-1][1]-1] = 1
for j in pixel:
if check(j[0]-1,j[1]-1,a) != 0 and flag:
ans = i + 1
flag = False
print(ans)
```
| 0
|
|
792
|
D
|
Paths in a Complete Binary Tree
|
PROGRAMMING
| 1,900
|
[
"bitmasks",
"trees"
] | null | null |
*T* is a complete binary tree consisting of *n* vertices. It means that exactly one vertex is a root, and each vertex is either a leaf (and doesn't have children) or an inner node (and has exactly two children). All leaves of a complete binary tree have the same depth (distance from the root). So *n* is a number such that *n*<=+<=1 is a power of 2.
In the picture you can see a complete binary tree with *n*<==<=15.
Vertices are numbered from 1 to *n* in a special recursive way: we recursively assign numbers to all vertices from the left subtree (if current vertex is not a leaf), then assign a number to the current vertex, and then recursively assign numbers to all vertices from the right subtree (if it exists). In the picture vertices are numbered exactly using this algorithm. It is clear that for each size of a complete binary tree exists exactly one way to give numbers to all vertices. This way of numbering is called symmetric.
You have to write a program that for given *n* answers *q* queries to the tree.
Each query consists of an integer number *u**i* (1<=≤<=*u**i*<=≤<=*n*) and a string *s**i*, where *u**i* is the number of vertex, and *s**i* represents the path starting from this vertex. String *s**i* doesn't contain any characters other than 'L', 'R' and 'U', which mean traverse to the left child, to the right child and to the parent, respectively. Characters from *s**i* have to be processed from left to right, considering that *u**i* is the vertex where the path starts. If it's impossible to process a character (for example, to go to the left child of a leaf), then you have to skip it. The answer is the number of vertex where the path represented by *s**i* ends.
For example, if *u**i*<==<=4 and *s**i*<==<=«UURL», then the answer is 10.
|
The first line contains two integer numbers *n* and *q* (1<=≤<=*n*<=≤<=1018, *q*<=≥<=1). *n* is such that *n*<=+<=1 is a power of 2.
The next 2*q* lines represent queries; each query consists of two consecutive lines. The first of these two lines contains *u**i* (1<=≤<=*u**i*<=≤<=*n*), the second contains non-empty string *s**i*. *s**i* doesn't contain any characters other than 'L', 'R' and 'U'.
It is guaranteed that the sum of lengths of *s**i* (for each *i* such that 1<=≤<=*i*<=≤<=*q*) doesn't exceed 105.
|
Print *q* numbers, *i*-th number must be the answer to the *i*-th query.
|
[
"15 2\n4\nUURL\n8\nLRLLLLLLLL\n"
] |
[
"10\n5\n"
] |
none
| 0
|
[
{
"input": "15 2\n4\nUURL\n8\nLRLLLLLLLL",
"output": "10\n5"
},
{
"input": "1 1\n1\nL",
"output": "1"
},
{
"input": "1 1\n1\nR",
"output": "1"
},
{
"input": "1 1\n1\nU",
"output": "1"
},
{
"input": "1 10\n1\nURLRLULUR\n1\nLRRRURULULL\n1\nLURURRUUUU\n1\nRRULLLRRUL\n1\nUULLUURL\n1\nRLRRULUL\n1\nLURRLRUULRR\n1\nLULLULUUUL\n1\nURULLULL\n1\nLRRLRUUUURRLRRL",
"output": "1\n1\n1\n1\n1\n1\n1\n1\n1\n1"
},
{
"input": "3 10\n2\nRUUUULULULUU\n1\nULLLURLU\n3\nLLURLULU\n2\nRRLURLURLLR\n3\nLRURURLRLLL\n3\nLRLULRRUURURRL\n1\nRULLR\n2\nLRULLURUL\n3\nRLL\n1\nULRUULURLULLLLLLRLL",
"output": "2\n2\n2\n3\n3\n3\n1\n1\n3\n1"
},
{
"input": "7 10\n3\nLLULULLLR\n4\nLUUURLLLUURRU\n1\nULURR\n6\nLURLLLLRLR\n2\nULULURU\n7\nRRUUUURLRLR\n7\nUUURRULRRLUL\n7\nULLLRUULULR\n6\nUURRLL\n6\nRULUUULLRLLLUULL",
"output": "1\n6\n3\n7\n4\n5\n5\n3\n7\n1"
},
{
"input": "15 10\n1\nURUUUR\n15\nRRLLURRRURL\n1\nUURRLUR\n13\nLRUULUURLRRRL\n6\nLULUURULUURL\n15\nUULL\n8\nULLLULRLRUU\n8\nULRUULRUURLLRL\n5\nLLUULRLURRRULLR\n10\nLUULLRU",
"output": "12\n15\n7\n11\n10\n9\n4\n9\n1\n10"
},
{
"input": "31 10\n12\nRRRRRRULUURR\n9\nLUUURULLLLU\n24\nLLRRLURLLU\n25\nLLUUURL\n14\nRRRRRRULU\n11\nLRLUULRUULR\n10\nULULU\n30\nLLRLLLLRULRLL\n1\nRRULRLRLLLRULR\n20\nULLULLRR",
"output": "15\n2\n18\n26\n14\n11\n12\n29\n1\n17"
},
{
"input": "4503599627370495 1\n2251799813685248\nLLLLLLLL",
"output": "8796093022208"
},
{
"input": "4503599627370495 1\n2251799813685248\nLLLLLL",
"output": "35184372088832"
},
{
"input": "576460752303423487 1\n1125899906842624\nR",
"output": "1688849860263936"
},
{
"input": "1125899906842623 1\n1\nUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUULLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRLULLLLLLLLLLLLLLLLUUUULRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU",
"output": "2147483648"
}
] | 1,490,653,759
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 5
| 62
| 4,608,000
|
import sys
n,q = map(int, input().split())
def lev(x):
num = (x) & (-x)
l = 0
while num > 0:
num =( num >> 1)
l+=1
return l
def up(x):
l = lev(x)
# left child
if not (((1<<l) & x) > 0):
return x + (1<<(l - 1))
#right child
return x - (1<<(l - 1))
def left(x):
l = lev(x)
if( l == 1):
return 0
# left child
return x - (1<<(l - 1)) + (1<<(l -2))
def right(x):
l = lev(x)
if( l == 1):
return 0
# left child
return x + (1<<(l -2))
def isValid(x):
return 0<x < n
for i in range(q):
u = int(input())
s = input()
for a in s:
if a == 'U':
nu = up(u)
elif a == 'R':
nu = right(u)
else:
nu = left(u)
if isValid(nu):
u = nu
print(u)
|
Title: Paths in a Complete Binary Tree
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
*T* is a complete binary tree consisting of *n* vertices. It means that exactly one vertex is a root, and each vertex is either a leaf (and doesn't have children) or an inner node (and has exactly two children). All leaves of a complete binary tree have the same depth (distance from the root). So *n* is a number such that *n*<=+<=1 is a power of 2.
In the picture you can see a complete binary tree with *n*<==<=15.
Vertices are numbered from 1 to *n* in a special recursive way: we recursively assign numbers to all vertices from the left subtree (if current vertex is not a leaf), then assign a number to the current vertex, and then recursively assign numbers to all vertices from the right subtree (if it exists). In the picture vertices are numbered exactly using this algorithm. It is clear that for each size of a complete binary tree exists exactly one way to give numbers to all vertices. This way of numbering is called symmetric.
You have to write a program that for given *n* answers *q* queries to the tree.
Each query consists of an integer number *u**i* (1<=≤<=*u**i*<=≤<=*n*) and a string *s**i*, where *u**i* is the number of vertex, and *s**i* represents the path starting from this vertex. String *s**i* doesn't contain any characters other than 'L', 'R' and 'U', which mean traverse to the left child, to the right child and to the parent, respectively. Characters from *s**i* have to be processed from left to right, considering that *u**i* is the vertex where the path starts. If it's impossible to process a character (for example, to go to the left child of a leaf), then you have to skip it. The answer is the number of vertex where the path represented by *s**i* ends.
For example, if *u**i*<==<=4 and *s**i*<==<=«UURL», then the answer is 10.
Input Specification:
The first line contains two integer numbers *n* and *q* (1<=≤<=*n*<=≤<=1018, *q*<=≥<=1). *n* is such that *n*<=+<=1 is a power of 2.
The next 2*q* lines represent queries; each query consists of two consecutive lines. The first of these two lines contains *u**i* (1<=≤<=*u**i*<=≤<=*n*), the second contains non-empty string *s**i*. *s**i* doesn't contain any characters other than 'L', 'R' and 'U'.
It is guaranteed that the sum of lengths of *s**i* (for each *i* such that 1<=≤<=*i*<=≤<=*q*) doesn't exceed 105.
Output Specification:
Print *q* numbers, *i*-th number must be the answer to the *i*-th query.
Demo Input:
['15 2\n4\nUURL\n8\nLRLLLLLLLL\n']
Demo Output:
['10\n5\n']
Note:
none
|
```python
import sys
n,q = map(int, input().split())
def lev(x):
num = (x) & (-x)
l = 0
while num > 0:
num =( num >> 1)
l+=1
return l
def up(x):
l = lev(x)
# left child
if not (((1<<l) & x) > 0):
return x + (1<<(l - 1))
#right child
return x - (1<<(l - 1))
def left(x):
l = lev(x)
if( l == 1):
return 0
# left child
return x - (1<<(l - 1)) + (1<<(l -2))
def right(x):
l = lev(x)
if( l == 1):
return 0
# left child
return x + (1<<(l -2))
def isValid(x):
return 0<x < n
for i in range(q):
u = int(input())
s = input()
for a in s:
if a == 'U':
nu = up(u)
elif a == 'R':
nu = right(u)
else:
nu = left(u)
if isValid(nu):
u = nu
print(u)
```
| 0
|
|
615
|
A
|
Bulbs
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Vasya wants to turn on Christmas lights consisting of *m* bulbs. Initially, all bulbs are turned off. There are *n* buttons, each of them is connected to some set of bulbs. Vasya can press any of these buttons. When the button is pressed, it turns on all the bulbs it's connected to. Can Vasya light up all the bulbs?
If Vasya presses the button such that some bulbs connected to it are already turned on, they do not change their state, i.e. remain turned on.
|
The first line of the input contains integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of buttons and the number of bulbs respectively.
Each of the next *n* lines contains *x**i* (0<=≤<=*x**i*<=≤<=*m*) — the number of bulbs that are turned on by the *i*-th button, and then *x**i* numbers *y**ij* (1<=≤<=*y**ij*<=≤<=*m*) — the numbers of these bulbs.
|
If it's possible to turn on all *m* bulbs print "YES", otherwise print "NO".
|
[
"3 4\n2 1 4\n3 1 3 1\n1 2\n",
"3 3\n1 1\n1 2\n1 1\n"
] |
[
"YES\n",
"NO\n"
] |
In the first sample you can press each button once and turn on all the bulbs. In the 2 sample it is impossible to turn on the 3-rd lamp.
| 500
|
[
{
"input": "3 4\n2 1 4\n3 1 3 1\n1 2",
"output": "YES"
},
{
"input": "3 3\n1 1\n1 2\n1 1",
"output": "NO"
},
{
"input": "3 4\n1 1\n1 2\n1 3",
"output": "NO"
},
{
"input": "1 5\n5 1 2 3 4 5",
"output": "YES"
},
{
"input": "1 5\n5 4 4 1 2 3",
"output": "NO"
},
{
"input": "1 5\n5 1 1 1 1 5",
"output": "NO"
},
{
"input": "2 5\n4 3 1 4 2\n4 2 3 4 5",
"output": "YES"
},
{
"input": "5 7\n2 6 7\n5 1 1 1 1 1\n3 6 5 4\n0\n4 4 3 2 1",
"output": "YES"
},
{
"input": "100 100\n0\n0\n0\n1 53\n0\n0\n1 34\n1 54\n0\n1 14\n0\n1 33\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 82\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n1 26\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n0\n0\n0\n1 3\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 40\n0\n0\n0\n1 26\n0\n0\n0\n0\n0\n1 97\n0\n1 5\n0\n0\n0\n0\n0",
"output": "NO"
},
{
"input": "100 100\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0",
"output": "NO"
},
{
"input": "5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 4\n3 1 5 6",
"output": "YES"
},
{
"input": "5 2\n1 1\n1 1\n1 1\n1 1\n1 1",
"output": "NO"
},
{
"input": "1 4\n3 1 2 3",
"output": "NO"
},
{
"input": "1 4\n3 2 3 4",
"output": "NO"
},
{
"input": "2 4\n3 2 3 4\n1 1",
"output": "YES"
},
{
"input": "2 4\n3 1 2 3\n1 4",
"output": "YES"
},
{
"input": "5 1\n0\n0\n0\n0\n0",
"output": "NO"
},
{
"input": "1 1\n0",
"output": "NO"
},
{
"input": "1 10\n10 1 2 3 4 5 6 7 8 9 10",
"output": "YES"
},
{
"input": "1 1\n1 1",
"output": "YES"
},
{
"input": "1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99",
"output": "NO"
},
{
"input": "1 3\n3 1 2 1",
"output": "NO"
},
{
"input": "1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100",
"output": "YES"
}
] | 1,635,176,409
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 45
| 93
| 17,715,200
|
x,y = map(int,input().split())
n=set()
for _ in range(x):
n.update(input().split()[1:])
print(["NO","YES"][len(n)==y])
|
Title: Bulbs
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya wants to turn on Christmas lights consisting of *m* bulbs. Initially, all bulbs are turned off. There are *n* buttons, each of them is connected to some set of bulbs. Vasya can press any of these buttons. When the button is pressed, it turns on all the bulbs it's connected to. Can Vasya light up all the bulbs?
If Vasya presses the button such that some bulbs connected to it are already turned on, they do not change their state, i.e. remain turned on.
Input Specification:
The first line of the input contains integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of buttons and the number of bulbs respectively.
Each of the next *n* lines contains *x**i* (0<=≤<=*x**i*<=≤<=*m*) — the number of bulbs that are turned on by the *i*-th button, and then *x**i* numbers *y**ij* (1<=≤<=*y**ij*<=≤<=*m*) — the numbers of these bulbs.
Output Specification:
If it's possible to turn on all *m* bulbs print "YES", otherwise print "NO".
Demo Input:
['3 4\n2 1 4\n3 1 3 1\n1 2\n', '3 3\n1 1\n1 2\n1 1\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first sample you can press each button once and turn on all the bulbs. In the 2 sample it is impossible to turn on the 3-rd lamp.
|
```python
x,y = map(int,input().split())
n=set()
for _ in range(x):
n.update(input().split()[1:])
print(["NO","YES"][len(n)==y])
```
| 3
|
|
292
|
D
|
Connected Components
|
PROGRAMMING
| 1,900
|
[
"data structures",
"dfs and similar",
"dp",
"dsu"
] | null | null |
We already know of the large corporation where Polycarpus works as a system administrator. The computer network there consists of *n* computers and *m* cables that connect some pairs of computers. In other words, the computer network can be represented as some non-directed graph with *n* nodes and *m* edges. Let's index the computers with integers from 1 to *n*, let's index the cables with integers from 1 to *m*.
Polycarpus was given an important task — check the reliability of his company's network. For that Polycarpus decided to carry out a series of *k* experiments on the computer network, where the *i*-th experiment goes as follows:
1. Temporarily disconnect the cables with indexes from *l**i* to *r**i*, inclusive (the other cables remain connected). 1. Count the number of connected components in the graph that is defining the computer network at that moment. 1. Re-connect the disconnected cables with indexes from *l**i* to *r**i* (that is, restore the initial network).
Help Polycarpus carry out all experiments and for each print the number of connected components in the graph that defines the computer network through the given experiment. Isolated vertex should be counted as single component.
|
The first line contains two space-separated integers *n*, *m* (2<=≤<=*n*<=≤<=500; 1<=≤<=*m*<=≤<=104) — the number of computers and the number of cables, correspondingly.
The following *m* lines contain the cables' description. The *i*-th line contains space-separated pair of integers *x**i*, *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=*n*; *x**i*<=≠<=*y**i*) — the numbers of the computers that are connected by the *i*-th cable. Note that a pair of computers can be connected by multiple cables.
The next line contains integer *k* (1<=≤<=*k*<=≤<=2·104) — the number of experiments. Next *k* lines contain the experiments' descriptions. The *i*-th line contains space-separated integers *l**i*, *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*m*) — the numbers of the cables that Polycarpus disconnects during the *i*-th experiment.
|
Print *k* numbers, the *i*-th number represents the number of connected components of the graph that defines the computer network during the *i*-th experiment.
|
[
"6 5\n1 2\n5 4\n2 3\n3 1\n3 6\n6\n1 3\n2 5\n1 5\n5 5\n2 4\n3 3\n"
] |
[
"4\n5\n6\n3\n4\n2\n"
] |
none
| 2,000
|
[
{
"input": "6 5\n1 2\n5 4\n2 3\n3 1\n3 6\n6\n1 3\n2 5\n1 5\n5 5\n2 4\n3 3",
"output": "4\n5\n6\n3\n4\n2"
},
{
"input": "2 1\n2 1\n2\n1 1\n1 1",
"output": "2\n2"
},
{
"input": "3 2\n3 2\n3 1\n4\n1 1\n1 2\n2 2\n2 2",
"output": "2\n3\n2\n2"
},
{
"input": "3 3\n2 3\n3 1\n2 1\n5\n2 3\n3 3\n2 2\n2 2\n2 2",
"output": "2\n1\n1\n1\n1"
},
{
"input": "4 5\n1 4\n2 1\n4 3\n2 1\n3 4\n5\n4 5\n2 4\n4 4\n1 3\n4 4",
"output": "1\n2\n1\n2\n1"
},
{
"input": "5 4\n3 2\n5 2\n5 3\n2 3\n8\n4 4\n1 1\n3 4\n1 1\n3 3\n3 4\n3 4\n4 4",
"output": "3\n3\n3\n3\n3\n3\n3\n3"
},
{
"input": "8 10\n8 6\n8 7\n8 3\n3 7\n4 8\n1 6\n5 1\n8 7\n6 8\n1 6\n13\n1 10\n2 6\n3 3\n5 5\n2 2\n1 3\n10 10\n7 7\n2 4\n3 6\n2 7\n9 9\n3 6",
"output": "8\n4\n2\n3\n2\n2\n2\n3\n3\n4\n5\n2\n4"
},
{
"input": "10 10\n7 5\n5 9\n10 9\n8 7\n5 10\n4 2\n8 2\n9 1\n2 8\n10 7\n10\n10 10\n7 9\n2 6\n1 5\n4 7\n9 9\n7 7\n2 6\n6 9\n10 10",
"output": "3\n5\n6\n6\n5\n3\n3\n6\n6\n3"
},
{
"input": "7 14\n7 1\n1 5\n6 4\n7 6\n2 4\n2 4\n7 2\n3 1\n7 6\n6 7\n5 3\n5 4\n1 3\n6 2\n40\n2 3\n14 14\n13 14\n13 13\n7 9\n1 13\n12 14\n14 14\n12 12\n6 10\n6 14\n8 8\n14 14\n9 10\n8 9\n8 11\n9 9\n2 3\n1 11\n13 14\n4 11\n2 9\n1 10\n6 11\n3 3\n4 12\n5 11\n8 8\n7 14\n13 13\n14 14\n14 14\n8 12\n14 14\n8 8\n7 7\n2 11\n10 12\n4 5\n9 10",
"output": "1\n1\n1\n1\n1\n6\n1\n1\n1\n1\n2\n1\n1\n1\n1\n1\n1\n1\n4\n1\n1\n1\n3\n1\n1\n2\n1\n1\n2\n1\n1\n1\n1\n1\n1\n1\n3\n1\n1\n1"
}
] | 1,686,878,637
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 102
| 1,464
| 90,214,400
|
import os,sys,collections,heapq,itertools,functools
from functools import reduce , lru_cache
from itertools import accumulate,chain,combinations,count
from itertools import groupby,permutations,product,zip_longest
from heapq import heapify,heappush,heappop,heapreplace,merge,nlargest,nsmallest
from collections import Counter,defaultdict,deque
from bisect import bisect_left, bisect_right
from math import comb,floor,ceil,inf ,gcd ,sqrt ,atan2
from copy import copy
from io import BytesIO, IOBase
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, 8192))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, 8192))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
if os.path.exists('in.txt'):
file = open('in.txt')
input = file.readline
else :
input = IOWrapper(sys.stdin).readline
readi = lambda: int(input())
readis = lambda: list(map(int,input().split()))
reads = lambda: input().rstrip()
readss = lambda: input().split()
class UF:
def __init__(self,n,cp=None):
if cp: self.Fa = cp.Fa[:]
else : self.Fa = [n] + [-1] * n
def getroot(self,i):
root = i
while self.Fa[root] >= 0 :
root =self.Fa[root]
while i != root :
nex,self.Fa[i] =self.Fa[i], root
i = nex
return root
def union(self,a,b):
ra,rb = self.getroot(a),self.getroot(b)
if ra != rb:
self.Fa[0] -= 1
if self.Fa[ra] < self.Fa[rb] :
ra,rb = rb,ra
self.Fa[rb] += self.Fa[ra]
self.Fa[ra] = rb
def solution():
BLOCK = 60
n, m = readis()
edges = [[0,0]] + [readis() for _ in range(m)]
L = UF(n)
mp = {}
for i in range(m+1):
if i: L.union(*edges[i])
if i % BLOCK == 0:
mp[(i,m+1)] = UF(n,L)
R = UF(n,L)
for j in range(m,i,-1):
R.union(*edges[j])
if j % BLOCK == 0 :
mp[(i,j)] = UF(n,R)
res=[]
for _ in range(readi()):
a,b = readis()
l = (a-1)//BLOCK * BLOCK
r = min(m+1,ceil((b+1)/BLOCK)*BLOCK)
uf = UF(n,mp[(l,r)])
for i in range(l+1,a): uf.union(*edges[i])
for i in range(r-1,b,-1): uf.union(*edges[i])
res.append(uf.Fa[0])
print(*res,sep='\n')
for i in range( 1 ):
solution()
|
Title: Connected Components
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
We already know of the large corporation where Polycarpus works as a system administrator. The computer network there consists of *n* computers and *m* cables that connect some pairs of computers. In other words, the computer network can be represented as some non-directed graph with *n* nodes and *m* edges. Let's index the computers with integers from 1 to *n*, let's index the cables with integers from 1 to *m*.
Polycarpus was given an important task — check the reliability of his company's network. For that Polycarpus decided to carry out a series of *k* experiments on the computer network, where the *i*-th experiment goes as follows:
1. Temporarily disconnect the cables with indexes from *l**i* to *r**i*, inclusive (the other cables remain connected). 1. Count the number of connected components in the graph that is defining the computer network at that moment. 1. Re-connect the disconnected cables with indexes from *l**i* to *r**i* (that is, restore the initial network).
Help Polycarpus carry out all experiments and for each print the number of connected components in the graph that defines the computer network through the given experiment. Isolated vertex should be counted as single component.
Input Specification:
The first line contains two space-separated integers *n*, *m* (2<=≤<=*n*<=≤<=500; 1<=≤<=*m*<=≤<=104) — the number of computers and the number of cables, correspondingly.
The following *m* lines contain the cables' description. The *i*-th line contains space-separated pair of integers *x**i*, *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=*n*; *x**i*<=≠<=*y**i*) — the numbers of the computers that are connected by the *i*-th cable. Note that a pair of computers can be connected by multiple cables.
The next line contains integer *k* (1<=≤<=*k*<=≤<=2·104) — the number of experiments. Next *k* lines contain the experiments' descriptions. The *i*-th line contains space-separated integers *l**i*, *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*m*) — the numbers of the cables that Polycarpus disconnects during the *i*-th experiment.
Output Specification:
Print *k* numbers, the *i*-th number represents the number of connected components of the graph that defines the computer network during the *i*-th experiment.
Demo Input:
['6 5\n1 2\n5 4\n2 3\n3 1\n3 6\n6\n1 3\n2 5\n1 5\n5 5\n2 4\n3 3\n']
Demo Output:
['4\n5\n6\n3\n4\n2\n']
Note:
none
|
```python
import os,sys,collections,heapq,itertools,functools
from functools import reduce , lru_cache
from itertools import accumulate,chain,combinations,count
from itertools import groupby,permutations,product,zip_longest
from heapq import heapify,heappush,heappop,heapreplace,merge,nlargest,nsmallest
from collections import Counter,defaultdict,deque
from bisect import bisect_left, bisect_right
from math import comb,floor,ceil,inf ,gcd ,sqrt ,atan2
from copy import copy
from io import BytesIO, IOBase
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, 8192))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, 8192))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
if os.path.exists('in.txt'):
file = open('in.txt')
input = file.readline
else :
input = IOWrapper(sys.stdin).readline
readi = lambda: int(input())
readis = lambda: list(map(int,input().split()))
reads = lambda: input().rstrip()
readss = lambda: input().split()
class UF:
def __init__(self,n,cp=None):
if cp: self.Fa = cp.Fa[:]
else : self.Fa = [n] + [-1] * n
def getroot(self,i):
root = i
while self.Fa[root] >= 0 :
root =self.Fa[root]
while i != root :
nex,self.Fa[i] =self.Fa[i], root
i = nex
return root
def union(self,a,b):
ra,rb = self.getroot(a),self.getroot(b)
if ra != rb:
self.Fa[0] -= 1
if self.Fa[ra] < self.Fa[rb] :
ra,rb = rb,ra
self.Fa[rb] += self.Fa[ra]
self.Fa[ra] = rb
def solution():
BLOCK = 60
n, m = readis()
edges = [[0,0]] + [readis() for _ in range(m)]
L = UF(n)
mp = {}
for i in range(m+1):
if i: L.union(*edges[i])
if i % BLOCK == 0:
mp[(i,m+1)] = UF(n,L)
R = UF(n,L)
for j in range(m,i,-1):
R.union(*edges[j])
if j % BLOCK == 0 :
mp[(i,j)] = UF(n,R)
res=[]
for _ in range(readi()):
a,b = readis()
l = (a-1)//BLOCK * BLOCK
r = min(m+1,ceil((b+1)/BLOCK)*BLOCK)
uf = UF(n,mp[(l,r)])
for i in range(l+1,a): uf.union(*edges[i])
for i in range(r-1,b,-1): uf.union(*edges[i])
res.append(uf.Fa[0])
print(*res,sep='\n')
for i in range( 1 ):
solution()
```
| 3
|
|
488
|
A
|
Giga Tower
|
PROGRAMMING
| 1,100
|
[
"brute force"
] | null | null |
Giga Tower is the tallest and deepest building in Cyberland. There are 17<=777<=777<=777 floors, numbered from <=-<=8<=888<=888<=888 to 8<=888<=888<=888. In particular, there is floor 0 between floor <=-<=1 and floor 1. Every day, thousands of tourists come to this place to enjoy the wonderful view.
In Cyberland, it is believed that the number "8" is a lucky number (that's why Giga Tower has 8<=888<=888<=888 floors above the ground), and, an integer is lucky, if and only if its decimal notation contains at least one digit "8". For example, 8,<=<=-<=180,<=808 are all lucky while 42,<=<=-<=10 are not. In the Giga Tower, if you write code at a floor with lucky floor number, good luck will always be with you (Well, this round is #278, also lucky, huh?).
Tourist Henry goes to the tower to seek good luck. Now he is at the floor numbered *a*. He wants to find the minimum positive integer *b*, such that, if he walks *b* floors higher, he will arrive at a floor with a lucky number.
|
The only line of input contains an integer *a* (<=-<=109<=≤<=*a*<=≤<=109).
|
Print the minimum *b* in a line.
|
[
"179\n",
"-1\n",
"18\n"
] |
[
"1\n",
"9\n",
"10\n"
] |
For the first sample, he has to arrive at the floor numbered 180.
For the second sample, he will arrive at 8.
Note that *b* should be positive, so the answer for the third sample is 10, not 0.
| 500
|
[
{
"input": "179",
"output": "1"
},
{
"input": "-1",
"output": "9"
},
{
"input": "18",
"output": "10"
},
{
"input": "-410058385",
"output": "1"
},
{
"input": "-586825624",
"output": "1"
},
{
"input": "852318890",
"output": "1"
},
{
"input": "919067153",
"output": "5"
},
{
"input": "690422411",
"output": "7"
},
{
"input": "-408490162",
"output": "1"
},
{
"input": "-8",
"output": "16"
},
{
"input": "-6",
"output": "14"
},
{
"input": "-4",
"output": "12"
},
{
"input": "-2",
"output": "10"
},
{
"input": "0",
"output": "8"
},
{
"input": "2",
"output": "6"
},
{
"input": "4",
"output": "4"
},
{
"input": "6",
"output": "2"
},
{
"input": "8",
"output": "10"
},
{
"input": "1000000000",
"output": "8"
},
{
"input": "-1000000000",
"output": "2"
},
{
"input": "88888",
"output": "1"
},
{
"input": "89",
"output": "9"
},
{
"input": "-80000000",
"output": "2"
},
{
"input": "-8888",
"output": "1"
},
{
"input": "-17",
"output": "9"
},
{
"input": "78",
"output": "2"
},
{
"input": "-19",
"output": "1"
},
{
"input": "-999999998",
"output": "9"
},
{
"input": "-999999997",
"output": "8"
},
{
"input": "999999997",
"output": "1"
},
{
"input": "811111111",
"output": "1"
},
{
"input": "-8",
"output": "16"
},
{
"input": "-5",
"output": "13"
},
{
"input": "-7",
"output": "15"
},
{
"input": "1000000000",
"output": "8"
}
] | 1,600,942,120
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 77
| 307,200
|
from sys import stdin,stdout
st=lambda:list(stdin.readline().strip())
li=lambda:list(map(int,stdin.readline().split()))
mp=lambda:map(int,stdin.readline().split())
inp=lambda:int(stdin.readline())
pr=lambda n: stdout.write(str(n)+"\n")
from math import floor
mod=1000000007
INF= float('inf')
def solve():
n=inp()
ans=0
s=str(n)
a=s.count('8')
if a>1:
pr(1)
return
if a==1:
if s[-1]!='8':
pr(1)
else:
pr(10)
else:
if n<0:
n=-n
while n%10!=8:
n+=1
ans+=1
pr(ans)
for _ in range(1):
solve()
|
Title: Giga Tower
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Giga Tower is the tallest and deepest building in Cyberland. There are 17<=777<=777<=777 floors, numbered from <=-<=8<=888<=888<=888 to 8<=888<=888<=888. In particular, there is floor 0 between floor <=-<=1 and floor 1. Every day, thousands of tourists come to this place to enjoy the wonderful view.
In Cyberland, it is believed that the number "8" is a lucky number (that's why Giga Tower has 8<=888<=888<=888 floors above the ground), and, an integer is lucky, if and only if its decimal notation contains at least one digit "8". For example, 8,<=<=-<=180,<=808 are all lucky while 42,<=<=-<=10 are not. In the Giga Tower, if you write code at a floor with lucky floor number, good luck will always be with you (Well, this round is #278, also lucky, huh?).
Tourist Henry goes to the tower to seek good luck. Now he is at the floor numbered *a*. He wants to find the minimum positive integer *b*, such that, if he walks *b* floors higher, he will arrive at a floor with a lucky number.
Input Specification:
The only line of input contains an integer *a* (<=-<=109<=≤<=*a*<=≤<=109).
Output Specification:
Print the minimum *b* in a line.
Demo Input:
['179\n', '-1\n', '18\n']
Demo Output:
['1\n', '9\n', '10\n']
Note:
For the first sample, he has to arrive at the floor numbered 180.
For the second sample, he will arrive at 8.
Note that *b* should be positive, so the answer for the third sample is 10, not 0.
|
```python
from sys import stdin,stdout
st=lambda:list(stdin.readline().strip())
li=lambda:list(map(int,stdin.readline().split()))
mp=lambda:map(int,stdin.readline().split())
inp=lambda:int(stdin.readline())
pr=lambda n: stdout.write(str(n)+"\n")
from math import floor
mod=1000000007
INF= float('inf')
def solve():
n=inp()
ans=0
s=str(n)
a=s.count('8')
if a>1:
pr(1)
return
if a==1:
if s[-1]!='8':
pr(1)
else:
pr(10)
else:
if n<0:
n=-n
while n%10!=8:
n+=1
ans+=1
pr(ans)
for _ in range(1):
solve()
```
| 0
|
|
108
|
A
|
Palindromic Times
|
PROGRAMMING
| 1,000
|
[
"implementation",
"strings"
] |
A. Palindromic Times
|
2
|
256
|
Tattah is asleep if and only if Tattah is attending a lecture. This is a well-known formula among Tattah's colleagues.
On a Wednesday afternoon, Tattah was attending Professor HH's lecture. At 12:21, right before falling asleep, he was staring at the digital watch around Saher's wrist. He noticed that the digits on the clock were the same when read from both directions i.e. a palindrome.
In his sleep, he started dreaming about such rare moments of the day when the time displayed on a digital clock is a palindrome. As soon as he woke up, he felt destined to write a program that finds the next such moment.
However, he still hasn't mastered the skill of programming while sleeping, so your task is to help him.
|
The first and only line of the input starts with a string with the format "HH:MM" where "HH" is from "00" to "23" and "MM" is from "00" to "59". Both "HH" and "MM" have exactly two digits.
|
Print the palindromic time of day that comes soonest after the time given in the input. If the input time is palindromic, output the soonest palindromic time after the input time.
|
[
"12:21\n",
"23:59\n"
] |
[
"13:31\n",
"00:00\n"
] |
none
| 500
|
[
{
"input": "12:21",
"output": "13:31"
},
{
"input": "23:59",
"output": "00:00"
},
{
"input": "15:51",
"output": "20:02"
},
{
"input": "10:44",
"output": "11:11"
},
{
"input": "04:02",
"output": "04:40"
},
{
"input": "02:11",
"output": "02:20"
},
{
"input": "12:15",
"output": "12:21"
},
{
"input": "07:07",
"output": "10:01"
},
{
"input": "00:17",
"output": "01:10"
},
{
"input": "04:55",
"output": "05:50"
},
{
"input": "02:17",
"output": "02:20"
},
{
"input": "07:56",
"output": "10:01"
},
{
"input": "00:29",
"output": "01:10"
},
{
"input": "23:31",
"output": "23:32"
},
{
"input": "19:30",
"output": "20:02"
},
{
"input": "12:14",
"output": "12:21"
},
{
"input": "17:32",
"output": "20:02"
},
{
"input": "03:44",
"output": "04:40"
},
{
"input": "07:15",
"output": "10:01"
},
{
"input": "18:42",
"output": "20:02"
},
{
"input": "08:56",
"output": "10:01"
},
{
"input": "04:50",
"output": "05:50"
},
{
"input": "14:32",
"output": "14:41"
},
{
"input": "23:23",
"output": "23:32"
},
{
"input": "08:35",
"output": "10:01"
},
{
"input": "03:32",
"output": "04:40"
},
{
"input": "07:59",
"output": "10:01"
},
{
"input": "14:12",
"output": "14:41"
},
{
"input": "23:52",
"output": "00:00"
},
{
"input": "16:36",
"output": "20:02"
},
{
"input": "17:50",
"output": "20:02"
},
{
"input": "06:59",
"output": "10:01"
},
{
"input": "16:50",
"output": "20:02"
},
{
"input": "00:00",
"output": "01:10"
},
{
"input": "23:59",
"output": "00:00"
},
{
"input": "23:33",
"output": "00:00"
}
] | 1,631,496,938
| 2,147,483,647
|
PyPy 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 218
| 22,220,800
|
a,b = map(int,input().split(':'))
if a == 23 and b > 31:
print('00:00')
else:
if b >= int(aa[::-1]):
a += 1
elif 10 > a > 5:
a = 10
elif 20 > a > 15:
a = 20
print(f'{a}:{str(a)[::-1]}')
|
Title: Palindromic Times
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Tattah is asleep if and only if Tattah is attending a lecture. This is a well-known formula among Tattah's colleagues.
On a Wednesday afternoon, Tattah was attending Professor HH's lecture. At 12:21, right before falling asleep, he was staring at the digital watch around Saher's wrist. He noticed that the digits on the clock were the same when read from both directions i.e. a palindrome.
In his sleep, he started dreaming about such rare moments of the day when the time displayed on a digital clock is a palindrome. As soon as he woke up, he felt destined to write a program that finds the next such moment.
However, he still hasn't mastered the skill of programming while sleeping, so your task is to help him.
Input Specification:
The first and only line of the input starts with a string with the format "HH:MM" where "HH" is from "00" to "23" and "MM" is from "00" to "59". Both "HH" and "MM" have exactly two digits.
Output Specification:
Print the palindromic time of day that comes soonest after the time given in the input. If the input time is palindromic, output the soonest palindromic time after the input time.
Demo Input:
['12:21\n', '23:59\n']
Demo Output:
['13:31\n', '00:00\n']
Note:
none
|
```python
a,b = map(int,input().split(':'))
if a == 23 and b > 31:
print('00:00')
else:
if b >= int(aa[::-1]):
a += 1
elif 10 > a > 5:
a = 10
elif 20 > a > 15:
a = 20
print(f'{a}:{str(a)[::-1]}')
```
| -1
|
32
|
B
|
Borze
|
PROGRAMMING
| 800
|
[
"expression parsing",
"implementation"
] |
B. Borze
|
2
|
256
|
Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as «.», 1 as «-.» and 2 as «--». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet.
|
The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes).
|
Output the decoded ternary number. It can have leading zeroes.
|
[
".-.--\n",
"--.\n",
"-..-.--\n"
] |
[
"012",
"20",
"1012"
] |
none
| 1,000
|
[
{
"input": ".-.--",
"output": "012"
},
{
"input": "--.",
"output": "20"
},
{
"input": "-..-.--",
"output": "1012"
},
{
"input": "---..",
"output": "210"
},
{
"input": "..--.---..",
"output": "0020210"
},
{
"input": "-.....----.",
"output": "10000220"
},
{
"input": ".",
"output": "0"
},
{
"input": "-.",
"output": "1"
},
{
"input": "--",
"output": "2"
},
{
"input": "..",
"output": "00"
},
{
"input": "--.",
"output": "20"
},
{
"input": ".--.",
"output": "020"
},
{
"input": ".-.-..",
"output": "0110"
},
{
"input": "----.-.",
"output": "2201"
},
{
"input": "-..--.-.",
"output": "10201"
},
{
"input": "..--..--.",
"output": "0020020"
},
{
"input": "-.-.---.--..-..-.-.-..-..-.--.",
"output": "112120010111010120"
},
{
"input": "---.-.-.------..-..-..-..-.-..-.--.-.-..-.-.-----..-.-.",
"output": "21112220010101011012011011221011"
},
{
"input": "-.-..--.-.-.-.-.-..-.-.-.---------.--.---..--...--.-----.-.-.-...--.-.-.---.------.--..-.--.-----.-...-..------",
"output": "11020111110111222212021020002022111100201121222020012022110010222"
},
{
"input": "-.-..-.--.---..---.-..---.-...-.-.----..-.---.-.---..-.--.---.-.-------.---.--....----.-.---.---.---.----.-----..---.-.-.-.-----.--.-------.-..",
"output": "110120210211021100112200121121012021122212120000220121212122022102111122120222110"
},
{
"input": ".-..-.-.---.-----.--.---...-.--.-.-....-..",
"output": "01011212212021001201100010"
},
{
"input": ".------.-.---..--...-..-..-.-.-.--.--.-..-.--...-.-.---.-.-.------..--..-.---..----.-..-.--.---.-.----.-.---...-.-.-.-----.-.-.---.---.-.....-.-...-----.-...-.---.-..-.-----.--...---.-.-..-.--.-.---..",
"output": "022201210200010101112020101200011211122200200121022010120211220121001112211121211000011002211001211012212000211101201210"
},
{
"input": ".-.--.---.-----.-.-----.-.-..-----..-..----..--.-.--.----..---.---..-.-.-----..-------.----..----.-..---...-----..-..-----...-..-.-.-----....---..---..-.-----...-.--...--.-.---.-.-.-.-.-...---..----.",
"output": "01202122112211102210102200201202200212101122102221220022010210022101022100101122100021021012210012000201211111100210220"
},
{
"input": "..-.-.-.---.-.-.-..-.-..-.-.---.-------.---..-----.---....-.---.--.--.-.---.---------.-..---.-.-.--..---.---.-.---.-.-..-.-..-.-.-.----.--.-....--------.-.---..----.------.-.-.--.--.-----.-----.----",
"output": "0011121111011011212221210221210001212020121222211021112002121121110110111220201000222201210220222011202022122122"
},
{
"input": "-..-------.------.-..--.-.-..--.-.-..-----..-.-.-..-..-..--.---..-----..---..-..--.-..-.-.---...-.....-------.---.-----.-...-.-...-.-.---.---.-----.--.--...-.--..-.-..-...-.-.-.-.---..---.-..-.-.-.-..",
"output": "102221222010201102011022101110101020210221021010201011210010000222121221100110011212122120200012001101001111210211011110"
},
{
"input": ".-.----.-.--..-.-.-.-..----..-.-...--.-.---.---.-------..-.--..-......--.------.--.----.--...-.--.--..-----..-.....--.--.-.-.------..--------.----------..-.---.----.---.-..--..-.....-..------.--.",
"output": "012201200111102200110020121212221012001000002022202022020001202002210100002020112220022220222220012122021102001000010222020"
},
{
"input": "------.-----.-....--.-.----.-.---.-.-..---.-.---.-----..-...-.-.---..-.-.-..-.-.-...-.-.-.----..--.------.----.-..-.--...-.-------...-.-..-.-.--.--.---..--..--------.--.-.-.---.-.-.-...----.--..-.--..",
"output": "222022110002012201211102112122101001121011101110011122002022202201012000122210011011202021020022220201121111002202001200"
},
{
"input": "-.---...----...--.--...-.--.----",
"output": "121002200020200012022"
},
{
"input": "--.--.--.---.--.-.---.-.-..-..--.-..---.-.....-..---.-----.--...-.-.-------.-.--.-.----.-..-.------.",
"output": "202020212012111010201021100001021221200011222112012201012220"
}
] | 1,621,310,569
| 2,147,483,647
|
PyPy 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 280
| 2,150,400
|
l,b=map(int,input().split())
a=input()
for i in range(b):
if "BG" in a:
a=a.replace("BG","GB")
print(a)
|
Title: Borze
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as «.», 1 as «-.» and 2 as «--». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet.
Input Specification:
The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes).
Output Specification:
Output the decoded ternary number. It can have leading zeroes.
Demo Input:
['.-.--\n', '--.\n', '-..-.--\n']
Demo Output:
['012', '20', '1012']
Note:
none
|
```python
l,b=map(int,input().split())
a=input()
for i in range(b):
if "BG" in a:
a=a.replace("BG","GB")
print(a)
```
| -1
|
570
|
D
|
Tree Requests
|
PROGRAMMING
| 2,200
|
[
"binary search",
"bitmasks",
"constructive algorithms",
"dfs and similar",
"graphs",
"trees"
] | null | null |
Roman planted a tree consisting of *n* vertices. Each vertex contains a lowercase English letter. Vertex 1 is the root of the tree, each of the *n*<=-<=1 remaining vertices has a parent in the tree. Vertex is connected with its parent by an edge. The parent of vertex *i* is vertex *p**i*, the parent index is always less than the index of the vertex (i.e., *p**i*<=<<=*i*).
The depth of the vertex is the number of nodes on the path from the root to *v* along the edges. In particular, the depth of the root is equal to 1.
We say that vertex *u* is in the subtree of vertex *v*, if we can get from *u* to *v*, moving from the vertex to the parent. In particular, vertex *v* is in its subtree.
Roma gives you *m* queries, the *i*-th of which consists of two numbers *v**i*, *h**i*. Let's consider the vertices in the subtree *v**i* located at depth *h**i*. Determine whether you can use the letters written at these vertices to make a string that is a palindrome. The letters that are written in the vertexes, can be rearranged in any order to make a palindrome, but all letters should be used.
|
The first line contains two integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=500<=000) — the number of nodes in the tree and queries, respectively.
The following line contains *n*<=-<=1 integers *p*2,<=*p*3,<=...,<=*p**n* — the parents of vertices from the second to the *n*-th (1<=≤<=*p**i*<=<<=*i*).
The next line contains *n* lowercase English letters, the *i*-th of these letters is written on vertex *i*.
Next *m* lines describe the queries, the *i*-th line contains two numbers *v**i*, *h**i* (1<=≤<=*v**i*,<=*h**i*<=≤<=*n*) — the vertex and the depth that appear in the *i*-th query.
|
Print *m* lines. In the *i*-th line print "Yes" (without the quotes), if in the *i*-th query you can make a palindrome from the letters written on the vertices, otherwise print "No" (without the quotes).
|
[
"6 5\n1 1 1 3 3\nzacccd\n1 1\n3 3\n4 1\n6 1\n1 2\n"
] |
[
"Yes\nNo\nYes\nYes\nYes\n"
] |
String *s* is a palindrome if reads the same from left to right and from right to left. In particular, an empty string is a palindrome.
Clarification for the sample test.
In the first query there exists only a vertex 1 satisfying all the conditions, we can form a palindrome "z".
In the second query vertices 5 and 6 satisfy condititions, they contain letters "с" and "d" respectively. It is impossible to form a palindrome of them.
In the third query there exist no vertices at depth 1 and in subtree of 4. We may form an empty palindrome.
In the fourth query there exist no vertices in subtree of 6 at depth 1. We may form an empty palindrome.
In the fifth query there vertices 2, 3 and 4 satisfying all conditions above, they contain letters "a", "c" and "c". We may form a palindrome "cac".
| 2,000
|
[
{
"input": "6 5\n1 1 1 3 3\nzacccd\n1 1\n3 3\n4 1\n6 1\n1 2",
"output": "Yes\nNo\nYes\nYes\nYes"
},
{
"input": "5 6\n1 1 2 3\ncbcab\n3 1\n5 2\n1 3\n4 1\n4 2\n1 1",
"output": "Yes\nYes\nNo\nYes\nYes\nYes"
},
{
"input": "5 6\n1 2 2 1\nbaabb\n1 1\n1 2\n5 1\n4 1\n4 2\n3 2",
"output": "Yes\nNo\nYes\nYes\nYes\nYes"
},
{
"input": "5 9\n1 1 1 2\nedbcb\n1 3\n2 1\n1 3\n2 1\n2 2\n2 2\n1 1\n1 3\n2 1",
"output": "Yes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes"
},
{
"input": "8 12\n1 1 1 2 1 1 4\ncbecdcce\n1 2\n1 2\n2 1\n1 1\n2 1\n1 3\n1 3\n1 3\n1 2\n2 3\n1 3\n1 1",
"output": "No\nNo\nYes\nYes\nYes\nNo\nNo\nNo\nNo\nYes\nNo\nYes"
},
{
"input": "1 1\n\np\n1 1",
"output": "Yes"
},
{
"input": "1 1\n\na\n1 1",
"output": "Yes"
}
] | 1,698,225,586
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 0
| 46
| 0
|
import bisect
import sys
from types import GeneratorType
def bootstrap(f, stack=[]):
def wrappedfunc(*args, **kwargs):
if stack:
return f(*args, **kwargs)
else:
to = f(*args, **kwargs)
while True:
if type(to) is GeneratorType:
stack.append(to)
to = next(to)
else:
stack.pop()
if not stack:
break
to = stack[-1].send(to)
return to
return wrappedfunc
# sys.stdin = open('./../input.txt', 'r')
I = lambda: int(input())
MI = lambda: map(int, input().split())
LI = lambda: list(map(int, input().split()))
n, m = MI()
tree = [[] for i in range(n)]
for y, x in enumerate(LI(), start=1):
tree[x - 1].append(y)
s = input()
A = [0] * 26
for i in range(26):
A[i] = (1 << i)
queries = [LI() for _ in range(m)]
in_seq = [0] * n
out_seq = [0] * n
ts = 0
hh_ts = [[0] for _ in range(n)]
hh_xor = [[0] for _ in range(n)]
@bootstrap
def dfs(x, h):
global ts
ts += 1
in_seq[x] = ts
hh_ts[h].append(ts)
hh_xor[h].append(hh_xor[h][-1] ^ A[ord(s[x]) - 97])
for y in tree[x]:
yield dfs(y, h + 1)
ts += 1
out_seq[x] = ts
yield
dfs(0, 0)
for i in range(m):
v, h = queries[i]
v -= 1
h -= 1
l = bisect.bisect_left(hh_ts[h], in_seq[v])
r = bisect.bisect_left(hh_ts[h], out_seq[v])
if l >= r:
print('YES')
continue
l = max(l - 1, 0)
r -= 1
t = hh_xor[h][l] ^ hh_xor[h][r]
if t & (t - 1) == 0:
print('Yes')
else:
print('No')
|
Title: Tree Requests
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Roman planted a tree consisting of *n* vertices. Each vertex contains a lowercase English letter. Vertex 1 is the root of the tree, each of the *n*<=-<=1 remaining vertices has a parent in the tree. Vertex is connected with its parent by an edge. The parent of vertex *i* is vertex *p**i*, the parent index is always less than the index of the vertex (i.e., *p**i*<=<<=*i*).
The depth of the vertex is the number of nodes on the path from the root to *v* along the edges. In particular, the depth of the root is equal to 1.
We say that vertex *u* is in the subtree of vertex *v*, if we can get from *u* to *v*, moving from the vertex to the parent. In particular, vertex *v* is in its subtree.
Roma gives you *m* queries, the *i*-th of which consists of two numbers *v**i*, *h**i*. Let's consider the vertices in the subtree *v**i* located at depth *h**i*. Determine whether you can use the letters written at these vertices to make a string that is a palindrome. The letters that are written in the vertexes, can be rearranged in any order to make a palindrome, but all letters should be used.
Input Specification:
The first line contains two integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=500<=000) — the number of nodes in the tree and queries, respectively.
The following line contains *n*<=-<=1 integers *p*2,<=*p*3,<=...,<=*p**n* — the parents of vertices from the second to the *n*-th (1<=≤<=*p**i*<=<<=*i*).
The next line contains *n* lowercase English letters, the *i*-th of these letters is written on vertex *i*.
Next *m* lines describe the queries, the *i*-th line contains two numbers *v**i*, *h**i* (1<=≤<=*v**i*,<=*h**i*<=≤<=*n*) — the vertex and the depth that appear in the *i*-th query.
Output Specification:
Print *m* lines. In the *i*-th line print "Yes" (without the quotes), if in the *i*-th query you can make a palindrome from the letters written on the vertices, otherwise print "No" (without the quotes).
Demo Input:
['6 5\n1 1 1 3 3\nzacccd\n1 1\n3 3\n4 1\n6 1\n1 2\n']
Demo Output:
['Yes\nNo\nYes\nYes\nYes\n']
Note:
String *s* is a palindrome if reads the same from left to right and from right to left. In particular, an empty string is a palindrome.
Clarification for the sample test.
In the first query there exists only a vertex 1 satisfying all the conditions, we can form a palindrome "z".
In the second query vertices 5 and 6 satisfy condititions, they contain letters "с" and "d" respectively. It is impossible to form a palindrome of them.
In the third query there exist no vertices at depth 1 and in subtree of 4. We may form an empty palindrome.
In the fourth query there exist no vertices in subtree of 6 at depth 1. We may form an empty palindrome.
In the fifth query there vertices 2, 3 and 4 satisfying all conditions above, they contain letters "a", "c" and "c". We may form a palindrome "cac".
|
```python
import bisect
import sys
from types import GeneratorType
def bootstrap(f, stack=[]):
def wrappedfunc(*args, **kwargs):
if stack:
return f(*args, **kwargs)
else:
to = f(*args, **kwargs)
while True:
if type(to) is GeneratorType:
stack.append(to)
to = next(to)
else:
stack.pop()
if not stack:
break
to = stack[-1].send(to)
return to
return wrappedfunc
# sys.stdin = open('./../input.txt', 'r')
I = lambda: int(input())
MI = lambda: map(int, input().split())
LI = lambda: list(map(int, input().split()))
n, m = MI()
tree = [[] for i in range(n)]
for y, x in enumerate(LI(), start=1):
tree[x - 1].append(y)
s = input()
A = [0] * 26
for i in range(26):
A[i] = (1 << i)
queries = [LI() for _ in range(m)]
in_seq = [0] * n
out_seq = [0] * n
ts = 0
hh_ts = [[0] for _ in range(n)]
hh_xor = [[0] for _ in range(n)]
@bootstrap
def dfs(x, h):
global ts
ts += 1
in_seq[x] = ts
hh_ts[h].append(ts)
hh_xor[h].append(hh_xor[h][-1] ^ A[ord(s[x]) - 97])
for y in tree[x]:
yield dfs(y, h + 1)
ts += 1
out_seq[x] = ts
yield
dfs(0, 0)
for i in range(m):
v, h = queries[i]
v -= 1
h -= 1
l = bisect.bisect_left(hh_ts[h], in_seq[v])
r = bisect.bisect_left(hh_ts[h], out_seq[v])
if l >= r:
print('YES')
continue
l = max(l - 1, 0)
r -= 1
t = hh_xor[h][l] ^ hh_xor[h][r]
if t & (t - 1) == 0:
print('Yes')
else:
print('No')
```
| 0
|
|
493
|
D
|
Vasya and Chess
|
PROGRAMMING
| 1,700
|
[
"constructive algorithms",
"games",
"math"
] | null | null |
Vasya decided to learn to play chess. Classic chess doesn't seem interesting to him, so he plays his own sort of chess.
The queen is the piece that captures all squares on its vertical, horizontal and diagonal lines. If the cell is located on the same vertical, horizontal or diagonal line with queen, and the cell contains a piece of the enemy color, the queen is able to move to this square. After that the enemy's piece is removed from the board. The queen cannot move to a cell containing an enemy piece if there is some other piece between it and the queen.
There is an *n*<=×<=*n* chessboard. We'll denote a cell on the intersection of the *r*-th row and *c*-th column as (*r*,<=*c*). The square (1,<=1) contains the white queen and the square (1,<=*n*) contains the black queen. All other squares contain green pawns that don't belong to anyone.
The players move in turns. The player that moves first plays for the white queen, his opponent plays for the black queen.
On each move the player has to capture some piece with his queen (that is, move to a square that contains either a green pawn or the enemy queen). The player loses if either he cannot capture any piece during his move or the opponent took his queen during the previous move.
Help Vasya determine who wins if both players play with an optimal strategy on the board *n*<=×<=*n*.
|
The input contains a single number *n* (2<=≤<=*n*<=≤<=109) — the size of the board.
|
On the first line print the answer to problem — string "white" or string "black", depending on who wins if the both players play optimally.
If the answer is "white", then you should also print two integers *r* and *c* representing the cell (*r*,<=*c*), where the first player should make his first move to win. If there are multiple such cells, print the one with the minimum *r*. If there are still multiple squares, print the one with the minimum *c*.
|
[
"2\n",
"3\n"
] |
[
"white\n1 2\n",
"black\n"
] |
In the first sample test the white queen can capture the black queen at the first move, so the white player wins.
In the second test from the statement if the white queen captures the green pawn located on the central vertical line, then it will be captured by the black queen during the next move. So the only move for the white player is to capture the green pawn located at (2, 1).
Similarly, the black queen doesn't have any other options but to capture the green pawn located at (2, 3), otherwise if it goes to the middle vertical line, it will be captured by the white queen.
During the next move the same thing happens — neither the white, nor the black queen has other options rather than to capture green pawns situated above them. Thus, the white queen ends up on square (3, 1), and the black queen ends up on square (3, 3).
In this situation the white queen has to capture any of the green pawns located on the middle vertical line, after that it will be captured by the black queen. Thus, the player who plays for the black queen wins.
| 1,500
|
[
{
"input": "2",
"output": "white\n1 2"
},
{
"input": "3",
"output": "black"
},
{
"input": "4",
"output": "white\n1 2"
},
{
"input": "6",
"output": "white\n1 2"
},
{
"input": "10",
"output": "white\n1 2"
},
{
"input": "16",
"output": "white\n1 2"
},
{
"input": "100",
"output": "white\n1 2"
},
{
"input": "10006",
"output": "white\n1 2"
},
{
"input": "99966246",
"output": "white\n1 2"
},
{
"input": "1000000000",
"output": "white\n1 2"
},
{
"input": "999999999",
"output": "black"
},
{
"input": "999999997",
"output": "black"
},
{
"input": "900001",
"output": "black"
},
{
"input": "775681",
"output": "black"
},
{
"input": "666666",
"output": "white\n1 2"
},
{
"input": "12345",
"output": "black"
},
{
"input": "111111",
"output": "black"
},
{
"input": "346367",
"output": "black"
},
{
"input": "13",
"output": "black"
},
{
"input": "11",
"output": "black"
},
{
"input": "9",
"output": "black"
},
{
"input": "7",
"output": "black"
},
{
"input": "5",
"output": "black"
},
{
"input": "19",
"output": "black"
},
{
"input": "939698497",
"output": "black"
},
{
"input": "999999996",
"output": "white\n1 2"
}
] | 1,616,227,730
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 26
| 62
| 0
|
if int(input())%2==0:
print("white\n1 2")
else:
print("black")
|
Title: Vasya and Chess
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya decided to learn to play chess. Classic chess doesn't seem interesting to him, so he plays his own sort of chess.
The queen is the piece that captures all squares on its vertical, horizontal and diagonal lines. If the cell is located on the same vertical, horizontal or diagonal line with queen, and the cell contains a piece of the enemy color, the queen is able to move to this square. After that the enemy's piece is removed from the board. The queen cannot move to a cell containing an enemy piece if there is some other piece between it and the queen.
There is an *n*<=×<=*n* chessboard. We'll denote a cell on the intersection of the *r*-th row and *c*-th column as (*r*,<=*c*). The square (1,<=1) contains the white queen and the square (1,<=*n*) contains the black queen. All other squares contain green pawns that don't belong to anyone.
The players move in turns. The player that moves first plays for the white queen, his opponent plays for the black queen.
On each move the player has to capture some piece with his queen (that is, move to a square that contains either a green pawn or the enemy queen). The player loses if either he cannot capture any piece during his move or the opponent took his queen during the previous move.
Help Vasya determine who wins if both players play with an optimal strategy on the board *n*<=×<=*n*.
Input Specification:
The input contains a single number *n* (2<=≤<=*n*<=≤<=109) — the size of the board.
Output Specification:
On the first line print the answer to problem — string "white" or string "black", depending on who wins if the both players play optimally.
If the answer is "white", then you should also print two integers *r* and *c* representing the cell (*r*,<=*c*), where the first player should make his first move to win. If there are multiple such cells, print the one with the minimum *r*. If there are still multiple squares, print the one with the minimum *c*.
Demo Input:
['2\n', '3\n']
Demo Output:
['white\n1 2\n', 'black\n']
Note:
In the first sample test the white queen can capture the black queen at the first move, so the white player wins.
In the second test from the statement if the white queen captures the green pawn located on the central vertical line, then it will be captured by the black queen during the next move. So the only move for the white player is to capture the green pawn located at (2, 1).
Similarly, the black queen doesn't have any other options but to capture the green pawn located at (2, 3), otherwise if it goes to the middle vertical line, it will be captured by the white queen.
During the next move the same thing happens — neither the white, nor the black queen has other options rather than to capture green pawns situated above them. Thus, the white queen ends up on square (3, 1), and the black queen ends up on square (3, 3).
In this situation the white queen has to capture any of the green pawns located on the middle vertical line, after that it will be captured by the black queen. Thus, the player who plays for the black queen wins.
|
```python
if int(input())%2==0:
print("white\n1 2")
else:
print("black")
```
| 3
|
|
525
|
A
|
Vitaliy and Pie
|
PROGRAMMING
| 1,100
|
[
"greedy",
"hashing",
"strings"
] | null | null |
After a hard day Vitaly got very hungry and he wants to eat his favorite potato pie. But it's not that simple. Vitaly is in the first room of the house with *n* room located in a line and numbered starting from one from left to right. You can go from the first room to the second room, from the second room to the third room and so on — you can go from the (*n*<=-<=1)-th room to the *n*-th room. Thus, you can go to room *x* only from room *x*<=-<=1.
The potato pie is located in the *n*-th room and Vitaly needs to go there.
Each pair of consecutive rooms has a door between them. In order to go to room *x* from room *x*<=-<=1, you need to open the door between the rooms with the corresponding key.
In total the house has several types of doors (represented by uppercase Latin letters) and several types of keys (represented by lowercase Latin letters). The key of type *t* can open the door of type *T* if and only if *t* and *T* are the same letter, written in different cases. For example, key f can open door F.
Each of the first *n*<=-<=1 rooms contains exactly one key of some type that Vitaly can use to get to next rooms. Once the door is open with some key, Vitaly won't get the key from the keyhole but he will immediately run into the next room. In other words, each key can open no more than one door.
Vitaly realizes that he may end up in some room without the key that opens the door to the next room. Before the start his run for the potato pie Vitaly can buy any number of keys of any type that is guaranteed to get to room *n*.
Given the plan of the house, Vitaly wants to know what is the minimum number of keys he needs to buy to surely get to the room *n*, which has a delicious potato pie. Write a program that will help Vitaly find out this number.
|
The first line of the input contains a positive integer *n* (2<=≤<=*n*<=≤<=105) — the number of rooms in the house.
The second line of the input contains string *s* of length 2·*n*<=-<=2. Let's number the elements of the string from left to right, starting from one.
The odd positions in the given string *s* contain lowercase Latin letters — the types of the keys that lie in the corresponding rooms. Thus, each odd position *i* of the given string *s* contains a lowercase Latin letter — the type of the key that lies in room number (*i*<=+<=1)<=/<=2.
The even positions in the given string contain uppercase Latin letters — the types of doors between the rooms. Thus, each even position *i* of the given string *s* contains an uppercase letter — the type of the door that leads from room *i*<=/<=2 to room *i*<=/<=2<=+<=1.
|
Print the only integer — the minimum number of keys that Vitaly needs to buy to surely get from room one to room *n*.
|
[
"3\naAbB\n",
"4\naBaCaB\n",
"5\nxYyXzZaZ\n"
] |
[
"0\n",
"3\n",
"2\n"
] |
none
| 250
|
[
{
"input": "3\naAbB",
"output": "0"
},
{
"input": "4\naBaCaB",
"output": "3"
},
{
"input": "5\nxYyXzZaZ",
"output": "2"
},
{
"input": "26\naAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyY",
"output": "0"
},
{
"input": "26\nzAyBxCwDvEuFtGsHrIqJpKoLnMmNlOkPjQiRhSgTfUeVdWcXbY",
"output": "13"
},
{
"input": "5\naArRaRaR",
"output": "2"
},
{
"input": "2\ndA",
"output": "1"
},
{
"input": "2\ncB",
"output": "1"
},
{
"input": "10\nhNcMeXsSlHsUwYeMcA",
"output": "7"
},
{
"input": "100\nqDpInBmCrFwXpDbFgOzVvOcEmJrUcToAdEwEgTvBvBfWwRpGyEaXgDdRwVlQnYgWmWhMrHaIzPyXvGaFlRsVzHhZrOuVpXrKxFzAmWwPlFtNfPtJxVmLuHjKfYyArHrEnSwSzOvDpQhCgCqLlAcNpGhXrEeFuCmAqIkXyYtSsQwIxJzNiIuTgEbVuWrMwPrAlLyKaZ",
"output": "42"
},
{
"input": "2\ndD",
"output": "0"
},
{
"input": "2\ndE",
"output": "1"
},
{
"input": "3\ndDdD",
"output": "0"
},
{
"input": "3\ndEdD",
"output": "1"
},
{
"input": "3\ndEeD",
"output": "1"
},
{
"input": "3\ndEeF",
"output": "2"
}
] | 1,677,110,704
| 2,147,483,647
|
PyPy 3-64
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 7
| 2,000
| 8,806,400
|
n=int(input())
s=input()
k=len(s)
cpt=0
lst=[]
for i in range(0,k-1,2):
if s[i]!=s[i+1]:
cpt+=1
for i in range(1,k,2):
if s[i].lower() in s[:i] and s[i].lower() not in lst:
cpt-=1
lst.append(s[i].lower())
print(cpt)
|
Title: Vitaliy and Pie
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
After a hard day Vitaly got very hungry and he wants to eat his favorite potato pie. But it's not that simple. Vitaly is in the first room of the house with *n* room located in a line and numbered starting from one from left to right. You can go from the first room to the second room, from the second room to the third room and so on — you can go from the (*n*<=-<=1)-th room to the *n*-th room. Thus, you can go to room *x* only from room *x*<=-<=1.
The potato pie is located in the *n*-th room and Vitaly needs to go there.
Each pair of consecutive rooms has a door between them. In order to go to room *x* from room *x*<=-<=1, you need to open the door between the rooms with the corresponding key.
In total the house has several types of doors (represented by uppercase Latin letters) and several types of keys (represented by lowercase Latin letters). The key of type *t* can open the door of type *T* if and only if *t* and *T* are the same letter, written in different cases. For example, key f can open door F.
Each of the first *n*<=-<=1 rooms contains exactly one key of some type that Vitaly can use to get to next rooms. Once the door is open with some key, Vitaly won't get the key from the keyhole but he will immediately run into the next room. In other words, each key can open no more than one door.
Vitaly realizes that he may end up in some room without the key that opens the door to the next room. Before the start his run for the potato pie Vitaly can buy any number of keys of any type that is guaranteed to get to room *n*.
Given the plan of the house, Vitaly wants to know what is the minimum number of keys he needs to buy to surely get to the room *n*, which has a delicious potato pie. Write a program that will help Vitaly find out this number.
Input Specification:
The first line of the input contains a positive integer *n* (2<=≤<=*n*<=≤<=105) — the number of rooms in the house.
The second line of the input contains string *s* of length 2·*n*<=-<=2. Let's number the elements of the string from left to right, starting from one.
The odd positions in the given string *s* contain lowercase Latin letters — the types of the keys that lie in the corresponding rooms. Thus, each odd position *i* of the given string *s* contains a lowercase Latin letter — the type of the key that lies in room number (*i*<=+<=1)<=/<=2.
The even positions in the given string contain uppercase Latin letters — the types of doors between the rooms. Thus, each even position *i* of the given string *s* contains an uppercase letter — the type of the door that leads from room *i*<=/<=2 to room *i*<=/<=2<=+<=1.
Output Specification:
Print the only integer — the minimum number of keys that Vitaly needs to buy to surely get from room one to room *n*.
Demo Input:
['3\naAbB\n', '4\naBaCaB\n', '5\nxYyXzZaZ\n']
Demo Output:
['0\n', '3\n', '2\n']
Note:
none
|
```python
n=int(input())
s=input()
k=len(s)
cpt=0
lst=[]
for i in range(0,k-1,2):
if s[i]!=s[i+1]:
cpt+=1
for i in range(1,k,2):
if s[i].lower() in s[:i] and s[i].lower() not in lst:
cpt-=1
lst.append(s[i].lower())
print(cpt)
```
| 0
|
|
612
|
B
|
HDD is Outdated Technology
|
PROGRAMMING
| 1,200
|
[
"implementation",
"math"
] | null | null |
HDD hard drives group data by sectors. All files are split to fragments and each of them are written in some sector of hard drive. Note the fragments can be written in sectors in arbitrary order.
One of the problems of HDD hard drives is the following: the magnetic head should move from one sector to another to read some file.
Find the time need to read file split to *n* fragments. The *i*-th sector contains the *f**i*-th fragment of the file (1<=≤<=*f**i*<=≤<=*n*). Note different sectors contains the different fragments. At the start the magnetic head is in the position that contains the first fragment. The file are reading in the following manner: at first the first fragment is read, then the magnetic head moves to the sector that contains the second fragment, then the second fragment is read and so on until the *n*-th fragment is read. The fragments are read in the order from the first to the *n*-th.
It takes |*a*<=-<=*b*| time units to move the magnetic head from the sector *a* to the sector *b*. Reading a fragment takes no time.
|
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=2·105) — the number of fragments.
The second line contains *n* different integers *f**i* (1<=≤<=*f**i*<=≤<=*n*) — the number of the fragment written in the *i*-th sector.
|
Print the only integer — the number of time units needed to read the file.
|
[
"3\n3 1 2\n",
"5\n1 3 5 4 2\n"
] |
[
"3\n",
"10\n"
] |
In the second example the head moves in the following way:
- 1->2 means movement from the sector 1 to the sector 5, i.e. it takes 4 time units - 2->3 means movement from the sector 5 to the sector 2, i.e. it takes 3 time units - 3->4 means movement from the sector 2 to the sector 4, i.e. it takes 2 time units - 4->5 means movement from the sector 4 to the sector 3, i.e. it takes 1 time units
So the answer to the second example is 4 + 3 + 2 + 1 = 10.
| 0
|
[
{
"input": "3\n3 1 2",
"output": "3"
},
{
"input": "5\n1 3 5 4 2",
"output": "10"
},
{
"input": "1\n1",
"output": "0"
},
{
"input": "1\n1",
"output": "0"
},
{
"input": "1\n1",
"output": "0"
},
{
"input": "10\n8 2 10 3 4 6 1 7 9 5",
"output": "40"
},
{
"input": "10\n1 2 3 4 5 6 7 8 9 10",
"output": "9"
},
{
"input": "10\n1 3 5 7 9 10 8 6 4 2",
"output": "45"
},
{
"input": "100\n11 9 35 34 51 74 16 67 26 21 14 80 84 79 7 61 28 3 53 43 42 5 56 36 69 30 22 88 1 27 65 91 46 31 59 50 17 96 25 18 64 55 78 2 63 24 95 48 93 13 38 76 89 94 15 90 45 81 52 87 83 73 44 49 23 82 85 75 86 33 47 19 58 97 37 20 40 10 92 4 6 68 77 54 71 12 62 60 100 39 41 99 72 29 57 8 70 32 66 98",
"output": "3580"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100",
"output": "99"
},
{
"input": "100\n1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2",
"output": "4950"
}
] | 1,451,146,916
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 14
| 1,000
| 716,800
|
n=int(input())
a=list(map(int,input().split()))
b=sorted(a)
ans=0
for i in range(n):
if a[i]==b[0]:
c=i
for i in range(1,n):
for j in range(n):
if b[i]==a[j]:
ans+=abs(c-j)
c=j
break
print(ans)
|
Title: HDD is Outdated Technology
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
HDD hard drives group data by sectors. All files are split to fragments and each of them are written in some sector of hard drive. Note the fragments can be written in sectors in arbitrary order.
One of the problems of HDD hard drives is the following: the magnetic head should move from one sector to another to read some file.
Find the time need to read file split to *n* fragments. The *i*-th sector contains the *f**i*-th fragment of the file (1<=≤<=*f**i*<=≤<=*n*). Note different sectors contains the different fragments. At the start the magnetic head is in the position that contains the first fragment. The file are reading in the following manner: at first the first fragment is read, then the magnetic head moves to the sector that contains the second fragment, then the second fragment is read and so on until the *n*-th fragment is read. The fragments are read in the order from the first to the *n*-th.
It takes |*a*<=-<=*b*| time units to move the magnetic head from the sector *a* to the sector *b*. Reading a fragment takes no time.
Input Specification:
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=2·105) — the number of fragments.
The second line contains *n* different integers *f**i* (1<=≤<=*f**i*<=≤<=*n*) — the number of the fragment written in the *i*-th sector.
Output Specification:
Print the only integer — the number of time units needed to read the file.
Demo Input:
['3\n3 1 2\n', '5\n1 3 5 4 2\n']
Demo Output:
['3\n', '10\n']
Note:
In the second example the head moves in the following way:
- 1->2 means movement from the sector 1 to the sector 5, i.e. it takes 4 time units - 2->3 means movement from the sector 5 to the sector 2, i.e. it takes 3 time units - 3->4 means movement from the sector 2 to the sector 4, i.e. it takes 2 time units - 4->5 means movement from the sector 4 to the sector 3, i.e. it takes 1 time units
So the answer to the second example is 4 + 3 + 2 + 1 = 10.
|
```python
n=int(input())
a=list(map(int,input().split()))
b=sorted(a)
ans=0
for i in range(n):
if a[i]==b[0]:
c=i
for i in range(1,n):
for j in range(n):
if b[i]==a[j]:
ans+=abs(c-j)
c=j
break
print(ans)
```
| 0
|
|
222
|
A
|
Shooshuns and Sequence
|
PROGRAMMING
| 1,200
|
[
"brute force",
"implementation"
] | null | null |
One day shooshuns found a sequence of *n* integers, written on a blackboard. The shooshuns can perform one operation with it, the operation consists of two steps:
1. Find the number that goes *k*-th in the current sequence and add the same number to the end of the sequence; 1. Delete the first number of the current sequence.
The shooshuns wonder after how many operations all numbers on the board will be the same and whether all numbers will ever be the same.
|
The first line contains two space-separated integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=105).
The second line contains *n* space-separated integers: *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=105) — the sequence that the shooshuns found.
|
Print the minimum number of operations, required for all numbers on the blackboard to become the same. If it is impossible to achieve, print -1.
|
[
"3 2\n3 1 1\n",
"3 1\n3 1 1\n"
] |
[
"1\n",
"-1\n"
] |
In the first test case after the first operation the blackboard will have sequence [1, 1, 1]. So, one operation is enough to make all numbers the same. Thus, the answer equals one.
In the second test case the sequence will never consist of the same numbers. It will always contain at least two distinct numbers 3 and 1. Thus, the answer equals -1.
| 500
|
[
{
"input": "3 2\n3 1 1",
"output": "1"
},
{
"input": "3 1\n3 1 1",
"output": "-1"
},
{
"input": "1 1\n1",
"output": "0"
},
{
"input": "2 1\n1 1",
"output": "0"
},
{
"input": "2 1\n2 1",
"output": "-1"
},
{
"input": "4 4\n1 2 3 4",
"output": "3"
},
{
"input": "4 3\n1 2 3 4",
"output": "-1"
},
{
"input": "5 3\n2 1 1 1 1",
"output": "1"
},
{
"input": "5 3\n1 1 1 1 1",
"output": "0"
},
{
"input": "5 5\n1 1 1 1 1",
"output": "0"
},
{
"input": "10 1\n1 1 1 1 1 1 1 1 1 1",
"output": "0"
},
{
"input": "10 1\n1 2 1 1 1 1 1 1 1 1",
"output": "-1"
},
{
"input": "10 1\n2 1 1 1 1 1 1 1 1 1",
"output": "-1"
},
{
"input": "10 2\n2 1 1 1 1 1 1 1 1 1",
"output": "1"
},
{
"input": "10 2\n1 2 1 1 1 1 1 1 1 1",
"output": "-1"
},
{
"input": "10 3\n3 2 1 1 1 1 1 1 1 1",
"output": "2"
},
{
"input": "10 1\n1 2 3 4 5 6 7 8 9 10",
"output": "-1"
},
{
"input": "10 10\n1 2 3 4 5 6 7 8 9 10",
"output": "9"
},
{
"input": "20 10\n1 2 3 4 5 6 7 8 9 10 1 1 1 1 1 1 1 1 1 1",
"output": "-1"
},
{
"input": "20 11\n1 2 3 4 5 6 7 8 9 10 1 1 1 1 1 1 1 1 1 1",
"output": "10"
},
{
"input": "20 9\n1 2 3 4 5 6 7 8 9 10 1 1 1 1 1 1 1 1 1 1",
"output": "-1"
},
{
"input": "20 10\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "0"
},
{
"input": "20 20\n20 1 19 2 18 3 17 4 16 5 15 6 14 7 13 8 12 9 11 10",
"output": "19"
}
] | 1,635,516,701
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 2
| 62
| 4,505,600
|
n,k= list(map(int,input().split()))
arr= list(map(int,input().split()))
t= arr[k-1]
f=True
for i in range(k-1,n):
if t!= arr[i]:
f=False
if not f:
print(-1)
else:
i=1
while i<n:
if arr[-i]==t:
i+=1
else:
break
print(n-(i-1))
|
Title: Shooshuns and Sequence
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day shooshuns found a sequence of *n* integers, written on a blackboard. The shooshuns can perform one operation with it, the operation consists of two steps:
1. Find the number that goes *k*-th in the current sequence and add the same number to the end of the sequence; 1. Delete the first number of the current sequence.
The shooshuns wonder after how many operations all numbers on the board will be the same and whether all numbers will ever be the same.
Input Specification:
The first line contains two space-separated integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=105).
The second line contains *n* space-separated integers: *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=105) — the sequence that the shooshuns found.
Output Specification:
Print the minimum number of operations, required for all numbers on the blackboard to become the same. If it is impossible to achieve, print -1.
Demo Input:
['3 2\n3 1 1\n', '3 1\n3 1 1\n']
Demo Output:
['1\n', '-1\n']
Note:
In the first test case after the first operation the blackboard will have sequence [1, 1, 1]. So, one operation is enough to make all numbers the same. Thus, the answer equals one.
In the second test case the sequence will never consist of the same numbers. It will always contain at least two distinct numbers 3 and 1. Thus, the answer equals -1.
|
```python
n,k= list(map(int,input().split()))
arr= list(map(int,input().split()))
t= arr[k-1]
f=True
for i in range(k-1,n):
if t!= arr[i]:
f=False
if not f:
print(-1)
else:
i=1
while i<n:
if arr[-i]==t:
i+=1
else:
break
print(n-(i-1))
```
| 0
|
|
266
|
A
|
Stones on the Table
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
There are *n* stones on the table in a row, each of them can be red, green or blue. Count the minimum number of stones to take from the table so that any two neighboring stones had different colors. Stones in a row are considered neighboring if there are no other stones between them.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of stones on the table.
The next line contains string *s*, which represents the colors of the stones. We'll consider the stones in the row numbered from 1 to *n* from left to right. Then the *i*-th character *s* equals "R", if the *i*-th stone is red, "G", if it's green and "B", if it's blue.
|
Print a single integer — the answer to the problem.
|
[
"3\nRRG\n",
"5\nRRRRR\n",
"4\nBRBG\n"
] |
[
"1\n",
"4\n",
"0\n"
] |
none
| 500
|
[
{
"input": "3\nRRG",
"output": "1"
},
{
"input": "5\nRRRRR",
"output": "4"
},
{
"input": "4\nBRBG",
"output": "0"
},
{
"input": "1\nB",
"output": "0"
},
{
"input": "2\nBG",
"output": "0"
},
{
"input": "3\nBGB",
"output": "0"
},
{
"input": "4\nRBBR",
"output": "1"
},
{
"input": "5\nRGGBG",
"output": "1"
},
{
"input": "10\nGGBRBRGGRB",
"output": "2"
},
{
"input": "50\nGRBGGRBRGRBGGBBBBBGGGBBBBRBRGBRRBRGBBBRBBRRGBGGGRB",
"output": "18"
},
{
"input": "15\nBRRBRGGBBRRRRGR",
"output": "6"
},
{
"input": "20\nRRGBBRBRGRGBBGGRGRRR",
"output": "6"
},
{
"input": "25\nBBGBGRBGGBRRBGRRBGGBBRBRB",
"output": "6"
},
{
"input": "30\nGRGGGBGGRGBGGRGRBGBGBRRRRRRGRB",
"output": "9"
},
{
"input": "35\nGBBGBRGBBGGRBBGBRRGGRRRRRRRBRBBRRGB",
"output": "14"
},
{
"input": "40\nGBBRRGBGGGRGGGRRRRBRBGGBBGGGBGBBBBBRGGGG",
"output": "20"
},
{
"input": "45\nGGGBBRBBRRGRBBGGBGRBRGGBRBRGBRRGBGRRBGRGRBRRG",
"output": "11"
},
{
"input": "50\nRBGGBGGRBGRBBBGBBGRBBBGGGRBBBGBBBGRGGBGGBRBGBGRRGG",
"output": "17"
},
{
"input": "50\nGGGBBRGGGGGRRGGRBGGRGBBRBRRBGRGBBBGBRBGRGBBGRGGBRB",
"output": "16"
},
{
"input": "50\nGBGRGRRBRRRRRGGBBGBRRRBBBRBBBRRGRBBRGBRBGGRGRBBGGG",
"output": "19"
},
{
"input": "10\nGRRBRBRBGR",
"output": "1"
},
{
"input": "10\nBRBGBGRRBR",
"output": "1"
},
{
"input": "20\nGBGBGGRRRRGRBBGRGRGR",
"output": "5"
},
{
"input": "20\nRRGGRBBGBBRBGRRBRRBG",
"output": "6"
},
{
"input": "30\nBGBRGBBBGRGBBRGBGRBBBRGGRRGRRB",
"output": "8"
},
{
"input": "30\nBBBBGGBRBGBBGBGBGBGGGRGRRGGBBB",
"output": "11"
},
{
"input": "40\nGBRRGRBGBRRGBRGGGBRGBGBRGBBRRGRGGBBGBGBB",
"output": "9"
},
{
"input": "40\nBRGRGGRGGRBBRRRBRBBGGGRRGBGBBGRBBRGBRRGG",
"output": "13"
},
{
"input": "50\nRBGBGGRRGGRGGBGBGRRBGGBGBRRBBGBBGBBBGBBRBBRBRBRGRG",
"output": "13"
},
{
"input": "50\nRBRRGBGRRRBGRRBGRRGRBBRBBRRBRGGBRBRRBGGRBGGBRBRGRB",
"output": "12"
},
{
"input": "2\nBB",
"output": "1"
},
{
"input": "50\nRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR",
"output": "49"
},
{
"input": "50\nRRRRRRRRGRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR",
"output": "47"
},
{
"input": "50\nRRRRRRRRRRRRGGRRRRRRRRRBRRRRRRRRRRRRRRBBRRRRRRRRRR",
"output": "43"
}
] | 1,696,167,303
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 2
| 92
| 0
|
n = int(input())
s = input()
r = s.count('R')
g = s.count('G')
b = s.count('B')
max_count = max(r, g, b)
min_removals = max_count - 1
print(min_removals)
|
Title: Stones on the Table
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* stones on the table in a row, each of them can be red, green or blue. Count the minimum number of stones to take from the table so that any two neighboring stones had different colors. Stones in a row are considered neighboring if there are no other stones between them.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of stones on the table.
The next line contains string *s*, which represents the colors of the stones. We'll consider the stones in the row numbered from 1 to *n* from left to right. Then the *i*-th character *s* equals "R", if the *i*-th stone is red, "G", if it's green and "B", if it's blue.
Output Specification:
Print a single integer — the answer to the problem.
Demo Input:
['3\nRRG\n', '5\nRRRRR\n', '4\nBRBG\n']
Demo Output:
['1\n', '4\n', '0\n']
Note:
none
|
```python
n = int(input())
s = input()
r = s.count('R')
g = s.count('G')
b = s.count('B')
max_count = max(r, g, b)
min_removals = max_count - 1
print(min_removals)
```
| 0
|
|
69
|
A
|
Young Physicist
|
PROGRAMMING
| 1,000
|
[
"implementation",
"math"
] |
A. Young Physicist
|
2
|
256
|
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
|
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
|
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
|
[
"3\n4 1 7\n-2 4 -1\n1 -5 -3\n",
"3\n3 -1 7\n-5 2 -4\n2 -1 -3\n"
] |
[
"NO",
"YES"
] |
none
| 500
|
[
{
"input": "3\n4 1 7\n-2 4 -1\n1 -5 -3",
"output": "NO"
},
{
"input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3",
"output": "YES"
},
{
"input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41",
"output": "NO"
},
{
"input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33",
"output": "NO"
},
{
"input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7",
"output": "NO"
},
{
"input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38",
"output": "NO"
},
{
"input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6",
"output": "YES"
},
{
"input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0",
"output": "YES"
},
{
"input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0",
"output": "YES"
},
{
"input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0",
"output": "YES"
},
{
"input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0",
"output": "YES"
},
{
"input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0",
"output": "YES"
},
{
"input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87",
"output": "YES"
},
{
"input": "3\n1 2 3\n3 2 1\n0 0 0",
"output": "NO"
},
{
"input": "2\n5 -23 12\n0 0 0",
"output": "NO"
},
{
"input": "1\n0 0 0",
"output": "YES"
},
{
"input": "1\n1 -2 0",
"output": "NO"
},
{
"input": "2\n-23 77 -86\n23 -77 86",
"output": "YES"
},
{
"input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82",
"output": "YES"
},
{
"input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0",
"output": "YES"
},
{
"input": "3\n96 49 -12\n2 -66 28\n-98 17 -16",
"output": "YES"
},
{
"input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0",
"output": "YES"
},
{
"input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53",
"output": "YES"
},
{
"input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1",
"output": "YES"
},
{
"input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0",
"output": "YES"
},
{
"input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0",
"output": "YES"
},
{
"input": "3\n0 2 -2\n1 -1 3\n-3 0 0",
"output": "NO"
}
] | 1,596,727,204
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 80
| 218
| 6,656,000
|
n = int(input())
res=0
for i in range(n):
inp = list(map(int,input().split()))
for j in inp:
res+=j
if res==0:
print("YES")
else:
print("NO")
|
Title: Young Physicist
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
Input Specification:
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
Output Specification:
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
Demo Input:
['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n']
Demo Output:
['NO', 'YES']
Note:
none
|
```python
n = int(input())
res=0
for i in range(n):
inp = list(map(int,input().split()))
for j in inp:
res+=j
if res==0:
print("YES")
else:
print("NO")
```
| 0
|
765
|
C
|
Table Tennis Game 2
|
PROGRAMMING
| 1,200
|
[
"math"
] | null | null |
Misha and Vanya have played several table tennis sets. Each set consists of several serves, each serve is won by one of the players, he receives one point and the loser receives nothing. Once one of the players scores exactly *k* points, the score is reset and a new set begins.
Across all the sets Misha scored *a* points in total, and Vanya scored *b* points. Given this information, determine the maximum number of sets they could have played, or that the situation is impossible.
Note that the game consisted of several complete sets.
|
The first line contains three space-separated integers *k*, *a* and *b* (1<=≤<=*k*<=≤<=109, 0<=≤<=*a*,<=*b*<=≤<=109, *a*<=+<=*b*<=><=0).
|
If the situation is impossible, print a single number -1. Otherwise, print the maximum possible number of sets.
|
[
"11 11 5\n",
"11 2 3\n"
] |
[
"1\n",
"-1\n"
] |
Note that the rules of the game in this problem differ from the real table tennis game, for example, the rule of "balance" (the winning player has to be at least two points ahead to win a set) has no power within the present problem.
| 1,250
|
[
{
"input": "11 11 5",
"output": "1"
},
{
"input": "11 2 3",
"output": "-1"
},
{
"input": "1 5 9",
"output": "14"
},
{
"input": "2 3 3",
"output": "2"
},
{
"input": "1 1000000000 1000000000",
"output": "2000000000"
},
{
"input": "2 3 5",
"output": "3"
},
{
"input": "1000000000 1000000000 1000000000",
"output": "2"
},
{
"input": "1 0 1",
"output": "1"
},
{
"input": "101 99 97",
"output": "-1"
},
{
"input": "1000000000 0 1",
"output": "-1"
},
{
"input": "137 137 136",
"output": "1"
},
{
"input": "255 255 255",
"output": "2"
},
{
"input": "1 0 1000000000",
"output": "1000000000"
},
{
"input": "123 456 789",
"output": "9"
},
{
"input": "666666 6666666 666665",
"output": "-1"
},
{
"input": "1000000000 999999999 999999999",
"output": "-1"
},
{
"input": "100000000 100000001 99999999",
"output": "-1"
},
{
"input": "3 2 1000000000",
"output": "-1"
},
{
"input": "999999999 1000000000 999999998",
"output": "-1"
},
{
"input": "12938621 192872393 102739134",
"output": "21"
},
{
"input": "666666666 1230983 666666666",
"output": "1"
},
{
"input": "123456789 123456789 123456787",
"output": "1"
},
{
"input": "5 6 0",
"output": "-1"
},
{
"input": "11 0 12",
"output": "-1"
},
{
"input": "2 11 0",
"output": "-1"
},
{
"input": "2 1 0",
"output": "-1"
},
{
"input": "10 11 12",
"output": "2"
},
{
"input": "11 12 5",
"output": "-1"
},
{
"input": "11 12 3",
"output": "-1"
},
{
"input": "11 15 4",
"output": "-1"
},
{
"input": "2 3 1",
"output": "-1"
},
{
"input": "11 12 0",
"output": "-1"
},
{
"input": "11 13 2",
"output": "-1"
},
{
"input": "11 23 22",
"output": "4"
},
{
"input": "10 21 0",
"output": "-1"
},
{
"input": "11 23 1",
"output": "-1"
},
{
"input": "11 10 12",
"output": "-1"
},
{
"input": "11 1 12",
"output": "-1"
},
{
"input": "11 5 12",
"output": "-1"
},
{
"input": "11 8 12",
"output": "-1"
},
{
"input": "11 12 1",
"output": "-1"
},
{
"input": "5 4 6",
"output": "-1"
},
{
"input": "10 1 22",
"output": "-1"
},
{
"input": "2 3 0",
"output": "-1"
},
{
"input": "11 23 2",
"output": "-1"
},
{
"input": "2 1000000000 1000000000",
"output": "1000000000"
},
{
"input": "11 0 15",
"output": "-1"
},
{
"input": "11 5 0",
"output": "-1"
},
{
"input": "11 5 15",
"output": "-1"
},
{
"input": "10 0 13",
"output": "-1"
},
{
"input": "4 7 0",
"output": "-1"
},
{
"input": "10 2 8",
"output": "-1"
},
{
"input": "11 5 22",
"output": "2"
},
{
"input": "11 13 0",
"output": "-1"
},
{
"input": "2 0 3",
"output": "-1"
},
{
"input": "10 10 0",
"output": "1"
},
{
"input": "10 11 10",
"output": "2"
},
{
"input": "3 5 4",
"output": "2"
},
{
"input": "11 22 3",
"output": "2"
},
{
"input": "11 12 10",
"output": "-1"
},
{
"input": "10 2 13",
"output": "-1"
},
{
"input": "5 6 1",
"output": "-1"
},
{
"input": "10 21 5",
"output": "-1"
},
{
"input": "10 11 9",
"output": "-1"
},
{
"input": "10 17 7",
"output": "-1"
},
{
"input": "3 4 1",
"output": "-1"
},
{
"input": "4 5 3",
"output": "-1"
},
{
"input": "11 3 23",
"output": "-1"
},
{
"input": "11 3 12",
"output": "-1"
},
{
"input": "2 5 0",
"output": "-1"
},
{
"input": "10 21 2",
"output": "-1"
},
{
"input": "5 1 6",
"output": "-1"
},
{
"input": "10 11 0",
"output": "-1"
},
{
"input": "10 9 11",
"output": "-1"
},
{
"input": "7 10 5",
"output": "-1"
},
{
"input": "5 7 2",
"output": "-1"
},
{
"input": "6 5 7",
"output": "-1"
},
{
"input": "11 16 2",
"output": "-1"
},
{
"input": "11 1000000000 10",
"output": "-1"
},
{
"input": "10 2 21",
"output": "-1"
},
{
"input": "10 15 1",
"output": "-1"
},
{
"input": "5 2 8",
"output": "-1"
},
{
"input": "11 10000000 10",
"output": "-1"
},
{
"input": "10 1 101",
"output": "-1"
},
{
"input": "20 24 2",
"output": "-1"
},
{
"input": "11 24 0",
"output": "-1"
},
{
"input": "11 17 4",
"output": "-1"
},
{
"input": "11 13 1",
"output": "-1"
},
{
"input": "10 11 2",
"output": "-1"
},
{
"input": "11 23 3",
"output": "-1"
},
{
"input": "10 99 0",
"output": "-1"
},
{
"input": "6 7 4",
"output": "-1"
},
{
"input": "11 1 22",
"output": "2"
},
{
"input": "11 2 13",
"output": "-1"
},
{
"input": "2 1 3",
"output": "-1"
},
{
"input": "11 6 18",
"output": "-1"
},
{
"input": "11 122 4",
"output": "-1"
},
{
"input": "11 21 10",
"output": "-1"
},
{
"input": "3 2 4",
"output": "-1"
},
{
"input": "9 11 2",
"output": "-1"
},
{
"input": "11 0 7",
"output": "-1"
},
{
"input": "5 9 4",
"output": "-1"
},
{
"input": "100 105 5",
"output": "-1"
},
{
"input": "11 15 0",
"output": "-1"
},
{
"input": "5 6 4",
"output": "-1"
},
{
"input": "3 4 2",
"output": "-1"
},
{
"input": "2 9 0",
"output": "-1"
},
{
"input": "11 13 11",
"output": "2"
},
{
"input": "11 15 5",
"output": "-1"
},
{
"input": "11 4 15",
"output": "-1"
},
{
"input": "10 1 0",
"output": "-1"
},
{
"input": "11 16 8",
"output": "-1"
},
{
"input": "10 43 0",
"output": "-1"
},
{
"input": "11 13 5",
"output": "-1"
},
{
"input": "11 22 0",
"output": "2"
},
{
"input": "5 6 3",
"output": "-1"
},
{
"input": "2 1 11",
"output": "-1"
},
{
"input": "4 5 1",
"output": "-1"
},
{
"input": "11 23 0",
"output": "-1"
},
{
"input": "11 4 12",
"output": "-1"
},
{
"input": "12 13 1",
"output": "-1"
},
{
"input": "10 19 9",
"output": "-1"
},
{
"input": "3 7 2",
"output": "-1"
},
{
"input": "12 18 0",
"output": "-1"
},
{
"input": "11 25 3",
"output": "-1"
},
{
"input": "11 23 5",
"output": "-1"
},
{
"input": "2 1 5",
"output": "-1"
},
{
"input": "2 0 5",
"output": "-1"
},
{
"input": "11 24 1",
"output": "-1"
},
{
"input": "10 11 4",
"output": "-1"
},
{
"input": "2 0 1",
"output": "-1"
},
{
"input": "10 0 21",
"output": "-1"
},
{
"input": "3 0 7",
"output": "-1"
},
{
"input": "18 11 21",
"output": "-1"
},
{
"input": "3 7 0",
"output": "-1"
},
{
"input": "5 11 0",
"output": "-1"
},
{
"input": "11 5 13",
"output": "-1"
},
{
"input": "11 9 34",
"output": "-1"
},
{
"input": "11 13 9",
"output": "-1"
},
{
"input": "10 0 22",
"output": "-1"
},
{
"input": "5 1 12",
"output": "-1"
},
{
"input": "11 2 12",
"output": "-1"
},
{
"input": "11 9 12",
"output": "-1"
},
{
"input": "11 24 2",
"output": "-1"
},
{
"input": "11 23 6",
"output": "-1"
},
{
"input": "11 20 4",
"output": "-1"
},
{
"input": "2 5 1",
"output": "-1"
},
{
"input": "120 132 133",
"output": "2"
},
{
"input": "11 111 4",
"output": "-1"
},
{
"input": "10 7 11",
"output": "-1"
},
{
"input": "6 13 0",
"output": "-1"
},
{
"input": "5 11 1",
"output": "-1"
},
{
"input": "11 5 27",
"output": "-1"
},
{
"input": "11 15 3",
"output": "-1"
},
{
"input": "11 0 13",
"output": "-1"
},
{
"input": "11 13 10",
"output": "-1"
},
{
"input": "11 25 5",
"output": "-1"
},
{
"input": "4 3 5",
"output": "-1"
},
{
"input": "100 199 100",
"output": "2"
},
{
"input": "11 2 22",
"output": "2"
},
{
"input": "10 20 2",
"output": "2"
},
{
"input": "5 5 0",
"output": "1"
},
{
"input": "10 11 1",
"output": "-1"
},
{
"input": "11 12 2",
"output": "-1"
},
{
"input": "5 16 3",
"output": "-1"
},
{
"input": "12 14 1",
"output": "-1"
},
{
"input": "10 22 2",
"output": "-1"
},
{
"input": "2 4 0",
"output": "2"
},
{
"input": "11 34 7",
"output": "-1"
},
{
"input": "6 13 1",
"output": "-1"
},
{
"input": "11 0 23",
"output": "-1"
},
{
"input": "20 21 19",
"output": "-1"
},
{
"input": "11 33 22",
"output": "5"
},
{
"input": "10 4 41",
"output": "-1"
},
{
"input": "3 4 0",
"output": "-1"
},
{
"input": "11 15 7",
"output": "-1"
},
{
"input": "5 0 6",
"output": "-1"
},
{
"input": "11 3 22",
"output": "2"
},
{
"input": "2 6 0",
"output": "3"
},
{
"input": "10 11 11",
"output": "2"
},
{
"input": "11 33 0",
"output": "3"
},
{
"input": "4 6 2",
"output": "-1"
},
{
"input": "11 76 2",
"output": "-1"
},
{
"input": "7 9 4",
"output": "-1"
},
{
"input": "10 43 1",
"output": "-1"
},
{
"input": "22 25 5",
"output": "-1"
},
{
"input": "3 5 2",
"output": "-1"
},
{
"input": "11 1 24",
"output": "-1"
},
{
"input": "12 25 3",
"output": "-1"
},
{
"input": "11 0 22",
"output": "2"
},
{
"input": "4 2 5",
"output": "-1"
},
{
"input": "11 13 3",
"output": "-1"
},
{
"input": "11 12 9",
"output": "-1"
},
{
"input": "11 35 1",
"output": "-1"
},
{
"input": "5 3 6",
"output": "-1"
},
{
"input": "5 11 4",
"output": "-1"
},
{
"input": "12 8 14",
"output": "-1"
},
{
"input": "10 12 9",
"output": "-1"
},
{
"input": "11 12 13",
"output": "2"
},
{
"input": "11 15 2",
"output": "-1"
},
{
"input": "11 23 4",
"output": "-1"
},
{
"input": "5 3 11",
"output": "-1"
},
{
"input": "6 13 2",
"output": "-1"
},
{
"input": "4 1 0",
"output": "-1"
},
{
"input": "11 32 10",
"output": "-1"
},
{
"input": "2 11 1",
"output": "-1"
},
{
"input": "10 11 7",
"output": "-1"
},
{
"input": "11 26 0",
"output": "-1"
},
{
"input": "100 205 5",
"output": "-1"
},
{
"input": "4 0 2",
"output": "-1"
},
{
"input": "10 11 8",
"output": "-1"
},
{
"input": "11 22 5",
"output": "2"
},
{
"input": "4 0 5",
"output": "-1"
},
{
"input": "11 87 22",
"output": "9"
},
{
"input": "4 8 0",
"output": "2"
},
{
"input": "9 8 17",
"output": "-1"
},
{
"input": "10 20 0",
"output": "2"
},
{
"input": "10 9 19",
"output": "-1"
},
{
"input": "12 2 13",
"output": "-1"
},
{
"input": "11 24 5",
"output": "-1"
},
{
"input": "10 1 11",
"output": "-1"
},
{
"input": "4 0 9",
"output": "-1"
},
{
"input": "3 0 1",
"output": "-1"
},
{
"input": "11 12 4",
"output": "-1"
},
{
"input": "3 8 2",
"output": "-1"
},
{
"input": "11 17 10",
"output": "-1"
},
{
"input": "6 1 13",
"output": "-1"
},
{
"input": "11 25 0",
"output": "-1"
},
{
"input": "12 0 13",
"output": "-1"
},
{
"input": "10 5 20",
"output": "2"
},
{
"input": "11 89 2",
"output": "-1"
},
{
"input": "2 4 1",
"output": "2"
},
{
"input": "10 31 0",
"output": "-1"
},
{
"input": "11 34 1",
"output": "-1"
},
{
"input": "999 6693 8331",
"output": "14"
},
{
"input": "10 55 1",
"output": "-1"
},
{
"input": "11 12 8",
"output": "-1"
},
{
"input": "1 9 22",
"output": "31"
},
{
"input": "7572 9186 895",
"output": "-1"
},
{
"input": "3 2 11",
"output": "-1"
},
{
"input": "2 1 4",
"output": "2"
},
{
"input": "11 10 19",
"output": "-1"
},
{
"input": "100 199 99",
"output": "-1"
},
{
"input": "2537 8926 1523",
"output": "-1"
},
{
"input": "11 0 5",
"output": "-1"
},
{
"input": "5 1 11",
"output": "-1"
},
{
"input": "12 13 5",
"output": "-1"
},
{
"input": "10 12 0",
"output": "-1"
},
{
"input": "5 4 7",
"output": "-1"
},
{
"input": "12 25 1",
"output": "-1"
},
{
"input": "7 9 0",
"output": "-1"
},
{
"input": "4 15 0",
"output": "-1"
},
{
"input": "5 11 2",
"output": "-1"
},
{
"input": "11 58 3",
"output": "-1"
},
{
"input": "10 11 5",
"output": "-1"
},
{
"input": "10 3 1003",
"output": "-1"
},
{
"input": "11 14 0",
"output": "-1"
},
{
"input": "11 8 23",
"output": "-1"
},
{
"input": "11 22 4",
"output": "2"
},
{
"input": "5 2 0",
"output": "-1"
},
{
"input": "11 1 35",
"output": "-1"
},
{
"input": "12 25 5",
"output": "-1"
},
{
"input": "11 37 4",
"output": "-1"
},
{
"input": "20 42 3",
"output": "-1"
},
{
"input": "10 12 2",
"output": "-1"
},
{
"input": "4 1 5",
"output": "-1"
},
{
"input": "5 16 0",
"output": "-1"
},
{
"input": "11 13 7",
"output": "-1"
},
{
"input": "5 0 3",
"output": "-1"
},
{
"input": "11 2 11",
"output": "1"
},
{
"input": "3 2 2000",
"output": "-1"
},
{
"input": "3 0 4241",
"output": "-1"
},
{
"input": "2 12 11",
"output": "11"
},
{
"input": "10 2 82",
"output": "-1"
},
{
"input": "11 0 11",
"output": "1"
},
{
"input": "11 20 20",
"output": "2"
},
{
"input": "5 0 10",
"output": "2"
},
{
"input": "11 1 0",
"output": "-1"
},
{
"input": "11 13 13",
"output": "2"
}
] | 1,487,062,399
| 2,898
|
Python 3
|
WRONG_ANSWER
|
PRETESTS
| 3
| 46
| 4,608,000
|
k,a,b=map(int,input().split())
if (a%k==0 or b%k==0) and (a!=0 and b!=0):
print(a//k+b//k)
else:
print(-1)
|
Title: Table Tennis Game 2
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Misha and Vanya have played several table tennis sets. Each set consists of several serves, each serve is won by one of the players, he receives one point and the loser receives nothing. Once one of the players scores exactly *k* points, the score is reset and a new set begins.
Across all the sets Misha scored *a* points in total, and Vanya scored *b* points. Given this information, determine the maximum number of sets they could have played, or that the situation is impossible.
Note that the game consisted of several complete sets.
Input Specification:
The first line contains three space-separated integers *k*, *a* and *b* (1<=≤<=*k*<=≤<=109, 0<=≤<=*a*,<=*b*<=≤<=109, *a*<=+<=*b*<=><=0).
Output Specification:
If the situation is impossible, print a single number -1. Otherwise, print the maximum possible number of sets.
Demo Input:
['11 11 5\n', '11 2 3\n']
Demo Output:
['1\n', '-1\n']
Note:
Note that the rules of the game in this problem differ from the real table tennis game, for example, the rule of "balance" (the winning player has to be at least two points ahead to win a set) has no power within the present problem.
|
```python
k,a,b=map(int,input().split())
if (a%k==0 or b%k==0) and (a!=0 and b!=0):
print(a//k+b//k)
else:
print(-1)
```
| 0
|
|
433
|
B
|
Kuriyama Mirai's Stones
|
PROGRAMMING
| 1,200
|
[
"dp",
"implementation",
"sortings"
] | null | null |
Kuriyama Mirai has killed many monsters and got many (namely *n*) stones. She numbers the stones from 1 to *n*. The cost of the *i*-th stone is *v**i*. Kuriyama Mirai wants to know something about these stones so she will ask you two kinds of questions:
1. She will tell you two numbers, *l* and *r* (1<=≤<=*l*<=≤<=*r*<=≤<=*n*), and you should tell her . 1. Let *u**i* be the cost of the *i*-th cheapest stone (the cost that will be on the *i*-th place if we arrange all the stone costs in non-decreasing order). This time she will tell you two numbers, *l* and *r* (1<=≤<=*l*<=≤<=*r*<=≤<=*n*), and you should tell her .
For every question you should give the correct answer, or Kuriyama Mirai will say "fuyukai desu" and then become unhappy.
|
The first line contains an integer *n* (1<=≤<=*n*<=≤<=105). The second line contains *n* integers: *v*1,<=*v*2,<=...,<=*v**n* (1<=≤<=*v**i*<=≤<=109) — costs of the stones.
The third line contains an integer *m* (1<=≤<=*m*<=≤<=105) — the number of Kuriyama Mirai's questions. Then follow *m* lines, each line contains three integers *type*, *l* and *r* (1<=≤<=*l*<=≤<=*r*<=≤<=*n*; 1<=≤<=*type*<=≤<=2), describing a question. If *type* equal to 1, then you should output the answer for the first question, else you should output the answer for the second one.
|
Print *m* lines. Each line must contain an integer — the answer to Kuriyama Mirai's question. Print the answers to the questions in the order of input.
|
[
"6\n6 4 2 7 2 7\n3\n2 3 6\n1 3 4\n1 1 6\n",
"4\n5 5 2 3\n10\n1 2 4\n2 1 4\n1 1 1\n2 1 4\n2 1 2\n1 1 1\n1 3 3\n1 1 3\n1 4 4\n1 2 2\n"
] |
[
"24\n9\n28\n",
"10\n15\n5\n15\n5\n5\n2\n12\n3\n5\n"
] |
Please note that the answers to the questions may overflow 32-bit integer type.
| 1,500
|
[
{
"input": "6\n6 4 2 7 2 7\n3\n2 3 6\n1 3 4\n1 1 6",
"output": "24\n9\n28"
},
{
"input": "4\n5 5 2 3\n10\n1 2 4\n2 1 4\n1 1 1\n2 1 4\n2 1 2\n1 1 1\n1 3 3\n1 1 3\n1 4 4\n1 2 2",
"output": "10\n15\n5\n15\n5\n5\n2\n12\n3\n5"
},
{
"input": "4\n2 2 3 6\n9\n2 2 3\n1 1 3\n2 2 3\n2 2 3\n2 2 2\n1 1 3\n1 1 3\n2 1 4\n1 1 2",
"output": "5\n7\n5\n5\n2\n7\n7\n13\n4"
},
{
"input": "18\n26 46 56 18 78 88 86 93 13 77 21 84 59 61 5 74 72 52\n25\n1 10 10\n1 9 13\n2 13 17\n1 8 14\n2 2 6\n1 12 16\n2 15 17\n2 3 6\n1 3 13\n2 8 9\n2 17 17\n1 17 17\n2 5 10\n2 1 18\n1 4 16\n1 1 13\n1 1 8\n2 7 11\n2 6 12\n1 5 9\n1 4 5\n2 7 15\n1 8 8\n1 8 14\n1 3 7",
"output": "77\n254\n413\n408\n124\n283\n258\n111\n673\n115\n88\n72\n300\n1009\n757\n745\n491\n300\n420\n358\n96\n613\n93\n408\n326"
},
{
"input": "56\n43 100 44 66 65 11 26 75 96 77 5 15 75 96 11 44 11 97 75 53 33 26 32 33 90 26 68 72 5 44 53 26 33 88 68 25 84 21 25 92 1 84 21 66 94 35 76 51 11 95 67 4 61 3 34 18\n27\n1 20 38\n1 11 46\n2 42 53\n1 8 11\n2 11 42\n2 35 39\n2 37 41\n1 48 51\n1 32 51\n1 36 40\n1 31 56\n1 18 38\n2 9 51\n1 7 48\n1 15 52\n1 27 31\n2 5 19\n2 35 50\n1 31 34\n1 2 7\n2 15 33\n2 46 47\n1 26 28\n2 3 29\n1 23 45\n2 29 55\n1 14 29",
"output": "880\n1727\n1026\n253\n1429\n335\n350\n224\n1063\n247\n1236\n1052\n2215\n2128\n1840\n242\n278\n1223\n200\n312\n722\n168\n166\n662\n1151\n2028\n772"
},
{
"input": "18\n38 93 48 14 69 85 26 47 71 11 57 9 38 65 72 78 52 47\n38\n2 10 12\n1 6 18\n2 2 2\n1 3 15\n2 1 16\n2 5 13\n1 9 17\n1 2 15\n2 5 17\n1 15 15\n2 4 11\n2 3 4\n2 2 5\n2 1 17\n2 6 16\n2 8 16\n2 8 14\n1 9 12\n2 8 13\n2 1 14\n2 5 13\n1 2 3\n1 9 14\n2 12 15\n2 3 3\n2 9 13\n2 4 12\n2 11 14\n2 6 16\n1 8 14\n1 12 15\n2 3 4\n1 3 5\n2 4 14\n1 6 6\n2 7 14\n2 7 18\n1 8 12",
"output": "174\n658\n11\n612\n742\n461\n453\n705\n767\n72\n353\n40\n89\n827\n644\n559\n409\n148\n338\n592\n461\n141\n251\n277\n14\n291\n418\n262\n644\n298\n184\n40\n131\n558\n85\n456\n784\n195"
},
{
"input": "1\n2\n10\n1 1 1\n1 1 1\n2 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n2 1 1\n1 1 1\n1 1 1",
"output": "2\n2\n2\n2\n2\n2\n2\n2\n2\n2"
},
{
"input": "2\n1 5\n8\n2 1 2\n1 1 1\n1 1 2\n1 1 1\n2 2 2\n2 1 2\n1 1 1\n1 2 2",
"output": "6\n1\n6\n1\n5\n6\n1\n5"
},
{
"input": "8\n2 6 4 6 8 4 7 7\n9\n2 6 8\n1 2 3\n2 3 4\n2 1 2\n2 4 5\n1 3 8\n2 4 4\n2 2 4\n1 2 4",
"output": "22\n10\n10\n6\n12\n36\n6\n14\n16"
},
{
"input": "4\n1 1 2 8\n9\n1 2 4\n1 2 4\n1 1 2\n2 3 4\n2 1 1\n1 2 3\n2 3 4\n1 1 4\n1 1 4",
"output": "11\n11\n2\n10\n1\n3\n10\n12\n12"
},
{
"input": "5\n8 8 1 10 7\n5\n1 2 2\n1 1 4\n1 3 3\n1 2 2\n1 2 5",
"output": "8\n27\n1\n8\n26"
},
{
"input": "10\n10 3 3 2 1 2 7 1 1 1\n4\n2 10 10\n2 6 6\n1 5 10\n1 6 8",
"output": "10\n2\n13\n10"
},
{
"input": "6\n6 6 3 8 5 4\n3\n2 2 3\n2 1 5\n1 1 5",
"output": "9\n24\n28"
},
{
"input": "1\n1\n2\n1 1 1\n2 1 1",
"output": "1\n1"
}
] | 1,658,303,072
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 46
| 514
| 9,113,600
|
import sys
n = int(sys.stdin.readline())
arr = [int(i) for i in sys.stdin.readline().split()]
m = int(sys.stdin.readline())
pre_arr = []
pre_sort_arr = []
su = 0
for i in arr:
su+=i
pre_arr.append(su)
arr.sort()
su = 0
for i in arr:
su+=i
pre_sort_arr.append(su)
for i in range(m):
type,l,r = [int(j) for j in sys.stdin.readline().split()]
if type==1:
if l!=1:
print(pre_arr[r-1]-pre_arr[l-2])
else:
print(pre_arr[r-1])
else:
if l!=1:
print(pre_sort_arr[r-1]-pre_sort_arr[l-2])
else:
print(pre_sort_arr[r-1])
|
Title: Kuriyama Mirai's Stones
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Kuriyama Mirai has killed many monsters and got many (namely *n*) stones. She numbers the stones from 1 to *n*. The cost of the *i*-th stone is *v**i*. Kuriyama Mirai wants to know something about these stones so she will ask you two kinds of questions:
1. She will tell you two numbers, *l* and *r* (1<=≤<=*l*<=≤<=*r*<=≤<=*n*), and you should tell her . 1. Let *u**i* be the cost of the *i*-th cheapest stone (the cost that will be on the *i*-th place if we arrange all the stone costs in non-decreasing order). This time she will tell you two numbers, *l* and *r* (1<=≤<=*l*<=≤<=*r*<=≤<=*n*), and you should tell her .
For every question you should give the correct answer, or Kuriyama Mirai will say "fuyukai desu" and then become unhappy.
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=105). The second line contains *n* integers: *v*1,<=*v*2,<=...,<=*v**n* (1<=≤<=*v**i*<=≤<=109) — costs of the stones.
The third line contains an integer *m* (1<=≤<=*m*<=≤<=105) — the number of Kuriyama Mirai's questions. Then follow *m* lines, each line contains three integers *type*, *l* and *r* (1<=≤<=*l*<=≤<=*r*<=≤<=*n*; 1<=≤<=*type*<=≤<=2), describing a question. If *type* equal to 1, then you should output the answer for the first question, else you should output the answer for the second one.
Output Specification:
Print *m* lines. Each line must contain an integer — the answer to Kuriyama Mirai's question. Print the answers to the questions in the order of input.
Demo Input:
['6\n6 4 2 7 2 7\n3\n2 3 6\n1 3 4\n1 1 6\n', '4\n5 5 2 3\n10\n1 2 4\n2 1 4\n1 1 1\n2 1 4\n2 1 2\n1 1 1\n1 3 3\n1 1 3\n1 4 4\n1 2 2\n']
Demo Output:
['24\n9\n28\n', '10\n15\n5\n15\n5\n5\n2\n12\n3\n5\n']
Note:
Please note that the answers to the questions may overflow 32-bit integer type.
|
```python
import sys
n = int(sys.stdin.readline())
arr = [int(i) for i in sys.stdin.readline().split()]
m = int(sys.stdin.readline())
pre_arr = []
pre_sort_arr = []
su = 0
for i in arr:
su+=i
pre_arr.append(su)
arr.sort()
su = 0
for i in arr:
su+=i
pre_sort_arr.append(su)
for i in range(m):
type,l,r = [int(j) for j in sys.stdin.readline().split()]
if type==1:
if l!=1:
print(pre_arr[r-1]-pre_arr[l-2])
else:
print(pre_arr[r-1])
else:
if l!=1:
print(pre_sort_arr[r-1]-pre_sort_arr[l-2])
else:
print(pre_sort_arr[r-1])
```
| 3
|
|
25
|
A
|
IQ test
|
PROGRAMMING
| 1,300
|
[
"brute force"
] |
A. IQ test
|
2
|
256
|
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
|
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
|
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
|
[
"5\n2 4 7 8 10\n",
"4\n1 2 1 1\n"
] |
[
"3\n",
"2\n"
] |
none
| 0
|
[
{
"input": "5\n2 4 7 8 10",
"output": "3"
},
{
"input": "4\n1 2 1 1",
"output": "2"
},
{
"input": "3\n1 2 2",
"output": "1"
},
{
"input": "3\n100 99 100",
"output": "2"
},
{
"input": "3\n5 3 2",
"output": "3"
},
{
"input": "4\n43 28 1 91",
"output": "2"
},
{
"input": "4\n75 13 94 77",
"output": "3"
},
{
"input": "4\n97 8 27 3",
"output": "2"
},
{
"input": "10\n95 51 12 91 85 3 1 31 25 7",
"output": "3"
},
{
"input": "20\n88 96 66 51 14 88 2 92 18 72 18 88 20 30 4 82 90 100 24 46",
"output": "4"
},
{
"input": "30\n20 94 56 50 10 98 52 32 14 22 24 60 4 8 98 46 34 68 82 82 98 90 50 20 78 49 52 94 64 36",
"output": "26"
},
{
"input": "50\n79 27 77 57 37 45 27 49 65 33 57 21 71 19 75 85 65 61 23 97 85 9 23 1 9 3 99 77 77 21 79 69 15 37 15 7 93 81 13 89 91 31 45 93 15 97 55 80 85 83",
"output": "48"
},
{
"input": "60\n46 11 73 65 3 69 3 53 43 53 97 47 55 93 31 75 35 3 9 73 23 31 3 81 91 79 61 21 15 11 11 11 81 7 83 75 39 87 83 59 89 55 93 27 49 67 67 29 1 93 11 17 9 19 35 21 63 31 31 25",
"output": "1"
},
{
"input": "70\n28 42 42 92 64 54 22 38 38 78 62 38 4 38 14 66 4 92 66 58 94 26 4 44 41 88 48 82 44 26 74 44 48 4 16 92 34 38 26 64 94 4 30 78 50 54 12 90 8 16 80 98 28 100 74 50 36 42 92 18 76 98 8 22 2 50 58 50 64 46",
"output": "25"
},
{
"input": "100\n43 35 79 53 13 91 91 45 65 83 57 9 42 39 85 45 71 51 61 59 31 13 63 39 25 21 79 39 91 67 21 61 97 75 93 83 29 79 59 97 11 37 63 51 39 55 91 23 21 17 47 23 35 75 49 5 69 99 5 7 41 17 25 89 15 79 21 63 53 81 43 91 59 91 69 99 85 15 91 51 49 37 65 7 89 81 21 93 61 63 97 93 45 17 13 69 57 25 75 73",
"output": "13"
},
{
"input": "100\n50 24 68 60 70 30 52 22 18 74 68 98 20 82 4 46 26 68 100 78 84 58 74 98 38 88 68 86 64 80 82 100 20 22 98 98 52 6 94 10 48 68 2 18 38 22 22 82 44 20 66 72 36 58 64 6 36 60 4 96 76 64 12 90 10 58 64 60 74 28 90 26 24 60 40 58 2 16 76 48 58 36 82 60 24 44 4 78 28 38 8 12 40 16 38 6 66 24 31 76",
"output": "99"
},
{
"input": "100\n47 48 94 48 14 18 94 36 96 22 12 30 94 20 48 98 40 58 2 94 8 36 98 18 98 68 2 60 76 38 18 100 8 72 100 68 2 86 92 72 58 16 48 14 6 58 72 76 6 88 80 66 20 28 74 62 86 68 90 86 2 56 34 38 56 90 4 8 76 44 32 86 12 98 38 34 54 92 70 94 10 24 82 66 90 58 62 2 32 58 100 22 58 72 2 22 68 72 42 14",
"output": "1"
},
{
"input": "99\n38 20 68 60 84 16 28 88 60 48 80 28 4 92 70 60 46 46 20 34 12 100 76 2 40 10 8 86 6 80 50 66 12 34 14 28 26 70 46 64 34 96 10 90 98 96 56 88 50 74 70 94 2 94 24 66 68 46 22 30 6 10 64 32 88 14 98 100 64 58 50 18 50 50 8 38 8 16 54 2 60 54 62 84 92 98 4 72 66 26 14 88 99 16 10 6 88 56 22",
"output": "93"
},
{
"input": "99\n50 83 43 89 53 47 69 1 5 37 63 87 95 15 55 95 75 89 33 53 89 75 93 75 11 85 49 29 11 97 49 67 87 11 25 37 97 73 67 49 87 43 53 97 43 29 53 33 45 91 37 73 39 49 59 5 21 43 87 35 5 63 89 57 63 47 29 99 19 85 13 13 3 13 43 19 5 9 61 51 51 57 15 89 13 97 41 13 99 79 13 27 97 95 73 33 99 27 23",
"output": "1"
},
{
"input": "98\n61 56 44 30 58 14 20 24 88 28 46 56 96 52 58 42 94 50 46 30 46 80 72 88 68 16 6 60 26 90 10 98 76 20 56 40 30 16 96 20 88 32 62 30 74 58 36 76 60 4 24 36 42 54 24 92 28 14 2 74 86 90 14 52 34 82 40 76 8 64 2 56 10 8 78 16 70 86 70 42 70 74 22 18 76 98 88 28 62 70 36 72 20 68 34 48 80 98",
"output": "1"
},
{
"input": "98\n66 26 46 42 78 32 76 42 26 82 8 12 4 10 24 26 64 44 100 46 94 64 30 18 88 28 8 66 30 82 82 28 74 52 62 80 80 60 94 86 64 32 44 88 92 20 12 74 94 28 34 58 4 22 16 10 94 76 82 58 40 66 22 6 30 32 92 54 16 76 74 98 18 48 48 30 92 2 16 42 84 74 30 60 64 52 50 26 16 86 58 96 79 60 20 62 82 94",
"output": "93"
},
{
"input": "95\n9 31 27 93 17 77 75 9 9 53 89 39 51 99 5 1 11 39 27 49 91 17 27 79 81 71 37 75 35 13 93 4 99 55 85 11 23 57 5 43 5 61 15 35 23 91 3 81 99 85 43 37 39 27 5 67 7 33 75 59 13 71 51 27 15 93 51 63 91 53 43 99 25 47 17 71 81 15 53 31 59 83 41 23 73 25 91 91 13 17 25 13 55 57 29",
"output": "32"
},
{
"input": "100\n91 89 81 45 53 1 41 3 77 93 55 97 55 97 87 27 69 95 73 41 93 21 75 35 53 56 5 51 87 59 91 67 33 3 99 45 83 17 97 47 75 97 7 89 17 99 23 23 81 25 55 97 27 35 69 5 77 35 93 19 55 59 37 21 31 37 49 41 91 53 73 69 7 37 37 39 17 71 7 97 55 17 47 23 15 73 31 39 57 37 9 5 61 41 65 57 77 79 35 47",
"output": "26"
},
{
"input": "99\n38 56 58 98 80 54 26 90 14 16 78 92 52 74 40 30 84 14 44 80 16 90 98 68 26 24 78 72 42 16 84 40 14 44 2 52 50 2 12 96 58 66 8 80 44 52 34 34 72 98 74 4 66 74 56 21 8 38 76 40 10 22 48 32 98 34 12 62 80 68 64 82 22 78 58 74 20 22 48 56 12 38 32 72 6 16 74 24 94 84 26 38 18 24 76 78 98 94 72",
"output": "56"
},
{
"input": "100\n44 40 6 40 56 90 98 8 36 64 76 86 98 76 36 92 6 30 98 70 24 98 96 60 24 82 88 68 86 96 34 42 58 10 40 26 56 10 88 58 70 32 24 28 14 82 52 12 62 36 70 60 52 34 74 30 78 76 10 16 42 94 66 90 70 38 52 12 58 22 98 96 14 68 24 70 4 30 84 98 8 50 14 52 66 34 100 10 28 100 56 48 38 12 38 14 91 80 70 86",
"output": "97"
},
{
"input": "100\n96 62 64 20 90 46 56 90 68 36 30 56 70 28 16 64 94 34 6 32 34 50 94 22 90 32 40 2 72 10 88 38 28 92 20 26 56 80 4 100 100 90 16 74 74 84 8 2 30 20 80 32 16 46 92 56 42 12 96 64 64 42 64 58 50 42 74 28 2 4 36 32 70 50 54 92 70 16 45 76 28 16 18 50 48 2 62 94 4 12 52 52 4 100 70 60 82 62 98 42",
"output": "79"
},
{
"input": "99\n14 26 34 68 90 58 50 36 8 16 18 6 2 74 54 20 36 84 32 50 52 2 26 24 3 64 20 10 54 26 66 44 28 72 4 96 78 90 96 86 68 28 94 4 12 46 100 32 22 36 84 32 44 94 76 94 4 52 12 30 74 4 34 64 58 72 44 16 70 56 54 8 14 74 8 6 58 62 98 54 14 40 80 20 36 72 28 98 20 58 40 52 90 64 22 48 54 70 52",
"output": "25"
},
{
"input": "95\n82 86 30 78 6 46 80 66 74 72 16 24 18 52 52 38 60 36 86 26 62 28 22 46 96 26 94 84 20 46 66 88 76 32 12 86 74 18 34 88 4 48 94 6 58 6 100 82 4 24 88 32 54 98 34 48 6 76 42 88 42 28 100 4 22 2 10 66 82 54 98 20 60 66 38 98 32 47 86 58 6 100 12 46 2 42 8 84 78 28 24 70 34 28 86",
"output": "78"
},
{
"input": "90\n40 50 8 42 76 24 58 42 26 68 20 48 54 12 34 84 14 36 32 88 6 50 96 56 20 92 48 16 40 34 96 46 20 84 30 50 20 98 8 44 96 42 8 76 70 38 84 30 40 88 84 72 2 22 52 58 16 62 100 66 80 40 50 32 14 62 88 72 22 99 76 50 84 82 8 82 98 46 26 40 2 98 18 78 30 72 70 18 34 68",
"output": "70"
},
{
"input": "80\n81 43 87 1 55 43 53 61 27 19 43 13 89 9 33 83 75 55 97 71 91 37 95 5 21 69 81 93 95 69 31 83 55 7 97 7 79 57 8 61 27 85 49 1 15 97 63 79 29 73 41 85 5 41 31 93 67 11 63 59 15 99 91 77 43 69 23 23 81 73 19 1 67 51 1 75 99 67 3 81",
"output": "39"
},
{
"input": "98\n13 83 61 27 35 1 85 95 97 73 95 65 73 45 5 43 27 83 91 19 11 3 85 59 9 39 69 23 45 7 51 85 5 71 5 95 1 51 75 3 43 57 3 11 33 71 21 99 47 41 87 39 71 87 31 85 91 49 83 5 49 85 47 91 55 99 33 23 31 23 23 73 29 77 55 31 25 5 81 49 91 15 15 39 87 5 9 40 69 47 29 33 11 21 49 79 51 83",
"output": "88"
},
{
"input": "3\n100 100 1",
"output": "3"
}
] | 1,461,407,290
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 32
| 124
| 5,324,800
|
from collections import Counter
input()
eveness_li = list(map(lambda x: int(x) % 2, input().strip().split()))
print(eveness_li.index(Counter(eveness_li).most_common()[1][0]) + 1)
|
Title: IQ test
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
Input Specification:
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
Output Specification:
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
Demo Input:
['5\n2 4 7 8 10\n', '4\n1 2 1 1\n']
Demo Output:
['3\n', '2\n']
Note:
none
|
```python
from collections import Counter
input()
eveness_li = list(map(lambda x: int(x) % 2, input().strip().split()))
print(eveness_li.index(Counter(eveness_li).most_common()[1][0]) + 1)
```
| 3.959082
|
625
|
A
|
Guest From the Past
|
PROGRAMMING
| 1,700
|
[
"implementation",
"math"
] | null | null |
Kolya Gerasimov loves kefir very much. He lives in year 1984 and knows all the details of buying this delicious drink. One day, as you probably know, he found himself in year 2084, and buying kefir there is much more complicated.
Kolya is hungry, so he went to the nearest milk shop. In 2084 you may buy kefir in a plastic liter bottle, that costs *a* rubles, or in glass liter bottle, that costs *b* rubles. Also, you may return empty glass bottle and get *c* (*c*<=<<=*b*) rubles back, but you cannot return plastic bottles.
Kolya has *n* rubles and he is really hungry, so he wants to drink as much kefir as possible. There were no plastic bottles in his 1984, so Kolya doesn't know how to act optimally and asks for your help.
|
First line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=1018) — the number of rubles Kolya has at the beginning.
Then follow three lines containing integers *a*, *b* and *c* (1<=≤<=*a*<=≤<=1018, 1<=≤<=*c*<=<<=*b*<=≤<=1018) — the cost of one plastic liter bottle, the cost of one glass liter bottle and the money one can get back by returning an empty glass bottle, respectively.
|
Print the only integer — maximum number of liters of kefir, that Kolya can drink.
|
[
"10\n11\n9\n8\n",
"10\n5\n6\n1\n"
] |
[
"2\n",
"2\n"
] |
In the first sample, Kolya can buy one glass bottle, then return it and buy one more glass bottle. Thus he will drink 2 liters of kefir.
In the second sample, Kolya can buy two plastic bottle and get two liters of kefir, or he can buy one liter glass bottle, then return it and buy one plastic bottle. In both cases he will drink two liters of kefir.
| 750
|
[
{
"input": "10\n11\n9\n8",
"output": "2"
},
{
"input": "10\n5\n6\n1",
"output": "2"
},
{
"input": "2\n2\n2\n1",
"output": "1"
},
{
"input": "10\n3\n3\n1",
"output": "4"
},
{
"input": "10\n1\n2\n1",
"output": "10"
},
{
"input": "10\n2\n3\n1",
"output": "5"
},
{
"input": "9\n2\n4\n1",
"output": "4"
},
{
"input": "9\n2\n2\n1",
"output": "8"
},
{
"input": "9\n10\n10\n1",
"output": "0"
},
{
"input": "10\n2\n2\n1",
"output": "9"
},
{
"input": "1000000000000000000\n2\n10\n9",
"output": "999999999999999995"
},
{
"input": "501000000000000000\n300000000000000000\n301000000000000000\n100000000000000000",
"output": "2"
},
{
"input": "10\n1\n9\n8",
"output": "10"
},
{
"input": "10\n8\n8\n7",
"output": "3"
},
{
"input": "10\n5\n5\n1",
"output": "2"
},
{
"input": "29\n3\n3\n1",
"output": "14"
},
{
"input": "45\n9\n9\n8",
"output": "37"
},
{
"input": "45\n9\n9\n1",
"output": "5"
},
{
"input": "100\n10\n10\n9",
"output": "91"
},
{
"input": "179\n10\n9\n1",
"output": "22"
},
{
"input": "179\n2\n2\n1",
"output": "178"
},
{
"input": "179\n179\n179\n1",
"output": "1"
},
{
"input": "179\n59\n59\n58",
"output": "121"
},
{
"input": "500\n250\n250\n1",
"output": "2"
},
{
"input": "500\n1\n250\n1",
"output": "500"
},
{
"input": "501\n500\n500\n499",
"output": "2"
},
{
"input": "501\n450\n52\n1",
"output": "9"
},
{
"input": "501\n300\n301\n100",
"output": "2"
},
{
"input": "500\n179\n10\n1",
"output": "55"
},
{
"input": "1000\n500\n10\n9",
"output": "991"
},
{
"input": "1000\n2\n10\n9",
"output": "995"
},
{
"input": "1001\n1000\n1000\n999",
"output": "2"
},
{
"input": "10000\n10000\n10000\n1",
"output": "1"
},
{
"input": "10000\n10\n5000\n4999",
"output": "5500"
},
{
"input": "1000000000\n999999998\n999999999\n999999998",
"output": "3"
},
{
"input": "1000000000\n50\n50\n49",
"output": "999999951"
},
{
"input": "1000000000\n500\n5000\n4999",
"output": "999995010"
},
{
"input": "1000000000\n51\n100\n98",
"output": "499999952"
},
{
"input": "1000000000\n100\n51\n50",
"output": "999999950"
},
{
"input": "1000000000\n2\n5\n4",
"output": "999999998"
},
{
"input": "1000000000000000000\n999999998000000000\n999999999000000000\n999999998000000000",
"output": "3"
},
{
"input": "1000000000\n2\n2\n1",
"output": "999999999"
},
{
"input": "999999999\n2\n999999998\n1",
"output": "499999999"
},
{
"input": "999999999999999999\n2\n2\n1",
"output": "999999999999999998"
},
{
"input": "999999999999999999\n10\n10\n9",
"output": "999999999999999990"
},
{
"input": "999999999999999999\n999999999999999998\n999999999999999998\n999999999999999997",
"output": "2"
},
{
"input": "999999999999999999\n501\n501\n1",
"output": "1999999999999999"
},
{
"input": "999999999999999999\n2\n50000000000000000\n49999999999999999",
"output": "974999999999999999"
},
{
"input": "999999999999999999\n180\n180\n1",
"output": "5586592178770949"
},
{
"input": "1000000000000000000\n42\n41\n1",
"output": "24999999999999999"
},
{
"input": "1000000000000000000\n41\n40\n1",
"output": "25641025641025641"
},
{
"input": "100000000000000000\n79\n100\n25",
"output": "1333333333333333"
},
{
"input": "1\n100\n5\n4",
"output": "0"
},
{
"input": "1000000000000000000\n1000000000000000000\n10000000\n9999999",
"output": "999999999990000001"
},
{
"input": "999999999999999999\n999999999000000000\n900000000000000000\n899999999999999999",
"output": "100000000000000000"
},
{
"input": "13\n10\n15\n11",
"output": "1"
},
{
"input": "1\n1000\n5\n4",
"output": "0"
},
{
"input": "10\n100\n10\n1",
"output": "1"
},
{
"input": "3\n2\n100000\n99999",
"output": "1"
},
{
"input": "4\n2\n4\n2",
"output": "2"
},
{
"input": "5\n3\n6\n4",
"output": "1"
},
{
"input": "1\n7\n65\n49",
"output": "0"
},
{
"input": "10\n20\n100\n99",
"output": "0"
},
{
"input": "10000000000\n10000000000\n9000000000\n8999999999",
"output": "1000000001"
},
{
"input": "90\n30\n101\n100",
"output": "3"
},
{
"input": "999999999999999\n5\n500000000000000\n499999999999999",
"output": "599999999999999"
},
{
"input": "1000000000000000000\n1000000000000000000\n1000000000\n999999999",
"output": "999999999000000001"
},
{
"input": "1\n1000000000000000000\n1000000000\n999999999",
"output": "0"
},
{
"input": "100000000000000000\n100000000000000000\n1000000000\n999999999",
"output": "99999999000000001"
},
{
"input": "100000000000000009\n100\n1000000000000000\n999999999999999",
"output": "99010000000000009"
},
{
"input": "10\n20\n10\n9",
"output": "1"
},
{
"input": "10\n4\n14\n13",
"output": "2"
},
{
"input": "11\n3\n9\n7",
"output": "4"
},
{
"input": "1000000000\n5\n7\n4",
"output": "333333332"
},
{
"input": "12155\n1943\n28717\n24074",
"output": "6"
},
{
"input": "1000000000000000000\n10\n20\n5",
"output": "100000000000000000"
},
{
"input": "98\n33\n440\n314",
"output": "2"
},
{
"input": "1070252292\n57449678\n237309920\n221182550",
"output": "56"
},
{
"input": "100\n3\n102\n101",
"output": "33"
},
{
"input": "100000000000000000\n100000000000000001\n1000000000000000\n999999999999999",
"output": "99000000000000001"
},
{
"input": "66249876257975628\n302307316\n406102416\n182373516",
"output": "296116756"
},
{
"input": "10\n5\n10\n1",
"output": "2"
},
{
"input": "1000000000000000000\n10\n1000000000\n999999998",
"output": "499999999600000000"
}
] | 1,454,849,424
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 31
| 0
|
n=int(input())
a=int(input())
b=int(input())
c=int(input())
cost1=b-c
cost2=a
S=0
if cost1<cost2:
S=n//b+(c*(n//b)//b)
else:
S=n//a
print(S)
|
Title: Guest From the Past
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Kolya Gerasimov loves kefir very much. He lives in year 1984 and knows all the details of buying this delicious drink. One day, as you probably know, he found himself in year 2084, and buying kefir there is much more complicated.
Kolya is hungry, so he went to the nearest milk shop. In 2084 you may buy kefir in a plastic liter bottle, that costs *a* rubles, or in glass liter bottle, that costs *b* rubles. Also, you may return empty glass bottle and get *c* (*c*<=<<=*b*) rubles back, but you cannot return plastic bottles.
Kolya has *n* rubles and he is really hungry, so he wants to drink as much kefir as possible. There were no plastic bottles in his 1984, so Kolya doesn't know how to act optimally and asks for your help.
Input Specification:
First line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=1018) — the number of rubles Kolya has at the beginning.
Then follow three lines containing integers *a*, *b* and *c* (1<=≤<=*a*<=≤<=1018, 1<=≤<=*c*<=<<=*b*<=≤<=1018) — the cost of one plastic liter bottle, the cost of one glass liter bottle and the money one can get back by returning an empty glass bottle, respectively.
Output Specification:
Print the only integer — maximum number of liters of kefir, that Kolya can drink.
Demo Input:
['10\n11\n9\n8\n', '10\n5\n6\n1\n']
Demo Output:
['2\n', '2\n']
Note:
In the first sample, Kolya can buy one glass bottle, then return it and buy one more glass bottle. Thus he will drink 2 liters of kefir.
In the second sample, Kolya can buy two plastic bottle and get two liters of kefir, or he can buy one liter glass bottle, then return it and buy one plastic bottle. In both cases he will drink two liters of kefir.
|
```python
n=int(input())
a=int(input())
b=int(input())
c=int(input())
cost1=b-c
cost2=a
S=0
if cost1<cost2:
S=n//b+(c*(n//b)//b)
else:
S=n//a
print(S)
```
| 0
|
|
948
|
A
|
Protect Sheep
|
PROGRAMMING
| 900
|
[
"brute force",
"dfs and similar",
"graphs",
"implementation"
] | null | null |
Bob is a farmer. He has a large pasture with many sheep. Recently, he has lost some of them due to wolf attacks. He thus decided to place some shepherd dogs in such a way that all his sheep are protected.
The pasture is a rectangle consisting of *R*<=×<=*C* cells. Each cell is either empty, contains a sheep, a wolf or a dog. Sheep and dogs always stay in place, but wolves can roam freely around the pasture, by repeatedly moving to the left, right, up or down to a neighboring cell. When a wolf enters a cell with a sheep, it consumes it. However, no wolf can enter a cell with a dog.
Initially there are no dogs. Place dogs onto the pasture in such a way that no wolf can reach any sheep, or determine that it is impossible. Note that since you have many dogs, you do not need to minimize their number.
|
First line contains two integers *R* (1<=≤<=*R*<=≤<=500) and *C* (1<=≤<=*C*<=≤<=500), denoting the number of rows and the numbers of columns respectively.
Each of the following *R* lines is a string consisting of exactly *C* characters, representing one row of the pasture. Here, 'S' means a sheep, 'W' a wolf and '.' an empty cell.
|
If it is impossible to protect all sheep, output a single line with the word "No".
Otherwise, output a line with the word "Yes". Then print *R* lines, representing the pasture after placing dogs. Again, 'S' means a sheep, 'W' a wolf, 'D' is a dog and '.' an empty space. You are not allowed to move, remove or add a sheep or a wolf.
If there are multiple solutions, you may print any of them. You don't have to minimize the number of dogs.
|
[
"6 6\n..S...\n..S.W.\n.S....\n..W...\n...W..\n......\n",
"1 2\nSW\n",
"5 5\n.S...\n...S.\nS....\n...S.\n.S...\n"
] |
[
"Yes\n..SD..\n..SDW.\n.SD...\n.DW...\nDD.W..\n......\n",
"No\n",
"Yes\n.S...\n...S.\nS.D..\n...S.\n.S...\n"
] |
In the first example, we can split the pasture into two halves, one containing wolves and one containing sheep. Note that the sheep at (2,1) is safe, as wolves cannot move diagonally.
In the second example, there are no empty spots to put dogs that would guard the lone sheep.
In the third example, there are no wolves, so the task is very easy. We put a dog in the center to observe the peacefulness of the meadow, but the solution would be correct even without him.
| 500
|
[
{
"input": "1 2\nSW",
"output": "No"
},
{
"input": "10 10\n....W.W.W.\n.........S\n.S.S...S..\nW.......SS\n.W..W.....\n.W...W....\nS..S...S.S\n....W...S.\n..S..S.S.S\nSS.......S",
"output": "Yes\nDDDDWDWDWD\nDDDDDDDDDS\nDSDSDDDSDD\nWDDDDDDDSS\nDWDDWDDDDD\nDWDDDWDDDD\nSDDSDDDSDS\nDDDDWDDDSD\nDDSDDSDSDS\nSSDDDDDDDS"
},
{
"input": "10 10\n....W.W.W.\n...W.....S\n.S.S...S..\nW......WSS\n.W..W.....\n.W...W....\nS..S...S.S\n...WWW..S.\n..S..S.S.S\nSS.......S",
"output": "No"
},
{
"input": "1 50\nW...S..............W.....S..S...............S...W.",
"output": "Yes\nWDDDSDDDDDDDDDDDDDDWDDDDDSDDSDDDDDDDDDDDDDDDSDDDWD"
},
{
"input": "2 4\n...S\n...W",
"output": "No"
},
{
"input": "4 2\n..\n..\n..\nSW",
"output": "No"
},
{
"input": "4 2\n..\n..\n..\nWS",
"output": "No"
},
{
"input": "2 4\n...W\n...S",
"output": "No"
},
{
"input": "50 1\nS\n.\n.\n.\n.\n.\n.\nS\n.\n.\n.\n.\n.\n.\n.\n.\nS\n.\nW\n.\nS\n.\n.\n.\n.\nS\n.\n.\n.\n.\n.\n.\n.\nW\n.\n.\n.\nW\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.",
"output": "Yes\nS\nD\nD\nD\nD\nD\nD\nS\nD\nD\nD\nD\nD\nD\nD\nD\nS\nD\nW\nD\nS\nD\nD\nD\nD\nS\nD\nD\nD\nD\nD\nD\nD\nW\nD\nD\nD\nW\nD\nD\nD\nD\nD\nD\nD\nD\nD\nD\nD\nD"
},
{
"input": "4 4\nW..S\nW..S\nW..S\nW..S",
"output": "Yes\nWDDS\nWDDS\nWDDS\nWDDS"
},
{
"input": "4 4\nSSSS\n....\n....\nWWWW",
"output": "Yes\nSSSS\nDDDD\nDDDD\nWWWW"
},
{
"input": "4 4\nWWWW\n....\n....\nSSSS",
"output": "Yes\nWWWW\nDDDD\nDDDD\nSSSS"
},
{
"input": "4 4\nS..W\nS..W\nS..W\nS..W",
"output": "Yes\nSDDW\nSDDW\nSDDW\nSDDW"
},
{
"input": "1 1\n.",
"output": "Yes\nD"
},
{
"input": "1 1\nW",
"output": "Yes\nW"
},
{
"input": "1 1\nS",
"output": "Yes\nS"
},
{
"input": "4 2\n..\n..\n.W\n.S",
"output": "No"
},
{
"input": "4 2\n..\n..\n.S\n.W",
"output": "No"
},
{
"input": "4 2\n..\n..\nW.\nS.",
"output": "No"
},
{
"input": "4 2\n..\n..\nS.\nW.",
"output": "No"
},
{
"input": "2 4\n....\n..SW",
"output": "No"
},
{
"input": "2 4\n....\n..WS",
"output": "No"
},
{
"input": "1 2\nS.",
"output": "Yes\nSD"
}
] | 1,625,640,586
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 98
| 421
| 26,828,800
|
n,m=map(int,input().split())
a=[input() for _ in range(n)]
sheep_pos=list()
map=dict()
for i in range(n):
for j in range(m):
if a[i][j]=='S':
map[(i,j)]='S'
sheep_pos.append((i,j))
elif a[i][j]=='W':
map[(i,j)]='W'
else:
map[(i,j)]='.'
for i in sheep_pos:
x,y=i
poses=list()
if x>0:poses.append((x-1,y))
if x<n-1:poses.append((x+1,y))
if y>0:poses.append((x,y-1))
if y<m-1:poses.append((x,y+1))
for j in poses:
if map[j]=='W':
print("No")
quit()
if map[j]!='S':map[j]='D'
print('Yes')
for i in range(n):
for j in range(m):
print(map[(i,j)],end='')
print()
|
Title: Protect Sheep
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Bob is a farmer. He has a large pasture with many sheep. Recently, he has lost some of them due to wolf attacks. He thus decided to place some shepherd dogs in such a way that all his sheep are protected.
The pasture is a rectangle consisting of *R*<=×<=*C* cells. Each cell is either empty, contains a sheep, a wolf or a dog. Sheep and dogs always stay in place, but wolves can roam freely around the pasture, by repeatedly moving to the left, right, up or down to a neighboring cell. When a wolf enters a cell with a sheep, it consumes it. However, no wolf can enter a cell with a dog.
Initially there are no dogs. Place dogs onto the pasture in such a way that no wolf can reach any sheep, or determine that it is impossible. Note that since you have many dogs, you do not need to minimize their number.
Input Specification:
First line contains two integers *R* (1<=≤<=*R*<=≤<=500) and *C* (1<=≤<=*C*<=≤<=500), denoting the number of rows and the numbers of columns respectively.
Each of the following *R* lines is a string consisting of exactly *C* characters, representing one row of the pasture. Here, 'S' means a sheep, 'W' a wolf and '.' an empty cell.
Output Specification:
If it is impossible to protect all sheep, output a single line with the word "No".
Otherwise, output a line with the word "Yes". Then print *R* lines, representing the pasture after placing dogs. Again, 'S' means a sheep, 'W' a wolf, 'D' is a dog and '.' an empty space. You are not allowed to move, remove or add a sheep or a wolf.
If there are multiple solutions, you may print any of them. You don't have to minimize the number of dogs.
Demo Input:
['6 6\n..S...\n..S.W.\n.S....\n..W...\n...W..\n......\n', '1 2\nSW\n', '5 5\n.S...\n...S.\nS....\n...S.\n.S...\n']
Demo Output:
['Yes\n..SD..\n..SDW.\n.SD...\n.DW...\nDD.W..\n......\n', 'No\n', 'Yes\n.S...\n...S.\nS.D..\n...S.\n.S...\n']
Note:
In the first example, we can split the pasture into two halves, one containing wolves and one containing sheep. Note that the sheep at (2,1) is safe, as wolves cannot move diagonally.
In the second example, there are no empty spots to put dogs that would guard the lone sheep.
In the third example, there are no wolves, so the task is very easy. We put a dog in the center to observe the peacefulness of the meadow, but the solution would be correct even without him.
|
```python
n,m=map(int,input().split())
a=[input() for _ in range(n)]
sheep_pos=list()
map=dict()
for i in range(n):
for j in range(m):
if a[i][j]=='S':
map[(i,j)]='S'
sheep_pos.append((i,j))
elif a[i][j]=='W':
map[(i,j)]='W'
else:
map[(i,j)]='.'
for i in sheep_pos:
x,y=i
poses=list()
if x>0:poses.append((x-1,y))
if x<n-1:poses.append((x+1,y))
if y>0:poses.append((x,y-1))
if y<m-1:poses.append((x,y+1))
for j in poses:
if map[j]=='W':
print("No")
quit()
if map[j]!='S':map[j]='D'
print('Yes')
for i in range(n):
for j in range(m):
print(map[(i,j)],end='')
print()
```
| 3
|
|
381
|
A
|
Sereja and Dima
|
PROGRAMMING
| 800
|
[
"greedy",
"implementation",
"two pointers"
] | null | null |
Sereja and Dima play a game. The rules of the game are very simple. The players have *n* cards in a row. Each card contains a number, all numbers on the cards are distinct. The players take turns, Sereja moves first. During his turn a player can take one card: either the leftmost card in a row, or the rightmost one. The game ends when there is no more cards. The player who has the maximum sum of numbers on his cards by the end of the game, wins.
Sereja and Dima are being greedy. Each of them chooses the card with the larger number during his move.
Inna is a friend of Sereja and Dima. She knows which strategy the guys are using, so she wants to determine the final score, given the initial state of the game. Help her.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of cards on the table. The second line contains space-separated numbers on the cards from left to right. The numbers on the cards are distinct integers from 1 to 1000.
|
On a single line, print two integers. The first number is the number of Sereja's points at the end of the game, the second number is the number of Dima's points at the end of the game.
|
[
"4\n4 1 2 10\n",
"7\n1 2 3 4 5 6 7\n"
] |
[
"12 5\n",
"16 12\n"
] |
In the first sample Sereja will take cards with numbers 10 and 2, so Sereja's sum is 12. Dima will take cards with numbers 4 and 1, so Dima's sum is 5.
| 500
|
[
{
"input": "4\n4 1 2 10",
"output": "12 5"
},
{
"input": "7\n1 2 3 4 5 6 7",
"output": "16 12"
},
{
"input": "42\n15 29 37 22 16 5 26 31 6 32 19 3 45 36 33 14 25 20 48 7 42 11 24 28 9 18 8 21 47 17 38 40 44 4 35 1 43 39 41 27 12 13",
"output": "613 418"
},
{
"input": "43\n32 1 15 48 38 26 25 14 20 44 11 30 3 42 49 19 18 46 5 45 10 23 34 9 29 41 2 52 6 17 35 4 50 22 33 51 7 28 47 13 39 37 24",
"output": "644 500"
},
{
"input": "1\n3",
"output": "3 0"
},
{
"input": "45\n553 40 94 225 415 471 126 190 647 394 515 303 189 159 308 6 139 132 326 78 455 75 85 295 135 613 360 614 351 228 578 259 258 591 444 29 33 463 561 174 368 183 140 168 646",
"output": "6848 6568"
},
{
"input": "44\n849 373 112 307 479 608 856 769 526 82 168 143 573 762 115 501 688 36 214 450 396 496 236 309 287 786 397 43 811 141 745 846 350 270 276 677 420 459 403 722 267 54 394 727",
"output": "9562 9561"
},
{
"input": "35\n10 15 18 1 28 16 2 33 6 22 23 4 9 25 35 8 7 26 3 20 30 14 31 19 27 32 11 5 29 24 21 34 13 17 12",
"output": "315 315"
},
{
"input": "17\n580 376 191 496 73 44 520 357 483 149 81 178 514 300 216 598 304",
"output": "3238 2222"
},
{
"input": "30\n334 443 223 424 168 549 189 303 429 559 516 220 459 134 344 346 316 446 209 148 487 526 69 286 102 366 518 280 392 325",
"output": "5246 4864"
},
{
"input": "95\n122 29 188 265 292 287 183 225 222 187 155 256 64 148 173 278 218 136 290 17 31 130 2 87 57 283 255 280 68 166 174 142 102 39 116 206 288 154 26 78 296 172 184 232 77 91 277 8 249 186 94 93 207 251 257 195 101 299 193 124 293 65 58 35 24 302 220 189 252 125 27 284 247 182 141 103 198 97 234 83 281 216 85 180 267 236 109 143 149 239 79 300 191 244 71",
"output": "8147 7807"
},
{
"input": "1\n1",
"output": "1 0"
}
] | 1,698,501,864
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 2
| 31
| 0
|
a=int(input())
l=list(map(int,input().split()))
p1=len(l)-1
p2=len(l)-2
l.sort()
s1=0
s2=0
while p1>=0 and p2>=0:
s1+=l[p1]
s2+=l[p2]
#print(l[p1],l[p2])
p1-=2
p2-=2
if a%2==1:
s1+=l[0]
print(s1,s2)
|
Title: Sereja and Dima
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Sereja and Dima play a game. The rules of the game are very simple. The players have *n* cards in a row. Each card contains a number, all numbers on the cards are distinct. The players take turns, Sereja moves first. During his turn a player can take one card: either the leftmost card in a row, or the rightmost one. The game ends when there is no more cards. The player who has the maximum sum of numbers on his cards by the end of the game, wins.
Sereja and Dima are being greedy. Each of them chooses the card with the larger number during his move.
Inna is a friend of Sereja and Dima. She knows which strategy the guys are using, so she wants to determine the final score, given the initial state of the game. Help her.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of cards on the table. The second line contains space-separated numbers on the cards from left to right. The numbers on the cards are distinct integers from 1 to 1000.
Output Specification:
On a single line, print two integers. The first number is the number of Sereja's points at the end of the game, the second number is the number of Dima's points at the end of the game.
Demo Input:
['4\n4 1 2 10\n', '7\n1 2 3 4 5 6 7\n']
Demo Output:
['12 5\n', '16 12\n']
Note:
In the first sample Sereja will take cards with numbers 10 and 2, so Sereja's sum is 12. Dima will take cards with numbers 4 and 1, so Dima's sum is 5.
|
```python
a=int(input())
l=list(map(int,input().split()))
p1=len(l)-1
p2=len(l)-2
l.sort()
s1=0
s2=0
while p1>=0 and p2>=0:
s1+=l[p1]
s2+=l[p2]
#print(l[p1],l[p2])
p1-=2
p2-=2
if a%2==1:
s1+=l[0]
print(s1,s2)
```
| 0
|
|
69
|
A
|
Young Physicist
|
PROGRAMMING
| 1,000
|
[
"implementation",
"math"
] |
A. Young Physicist
|
2
|
256
|
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
|
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
|
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
|
[
"3\n4 1 7\n-2 4 -1\n1 -5 -3\n",
"3\n3 -1 7\n-5 2 -4\n2 -1 -3\n"
] |
[
"NO",
"YES"
] |
none
| 500
|
[
{
"input": "3\n4 1 7\n-2 4 -1\n1 -5 -3",
"output": "NO"
},
{
"input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3",
"output": "YES"
},
{
"input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41",
"output": "NO"
},
{
"input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33",
"output": "NO"
},
{
"input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7",
"output": "NO"
},
{
"input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38",
"output": "NO"
},
{
"input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6",
"output": "YES"
},
{
"input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0",
"output": "YES"
},
{
"input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0",
"output": "YES"
},
{
"input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0",
"output": "YES"
},
{
"input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0",
"output": "YES"
},
{
"input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0",
"output": "YES"
},
{
"input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87",
"output": "YES"
},
{
"input": "3\n1 2 3\n3 2 1\n0 0 0",
"output": "NO"
},
{
"input": "2\n5 -23 12\n0 0 0",
"output": "NO"
},
{
"input": "1\n0 0 0",
"output": "YES"
},
{
"input": "1\n1 -2 0",
"output": "NO"
},
{
"input": "2\n-23 77 -86\n23 -77 86",
"output": "YES"
},
{
"input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82",
"output": "YES"
},
{
"input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0",
"output": "YES"
},
{
"input": "3\n96 49 -12\n2 -66 28\n-98 17 -16",
"output": "YES"
},
{
"input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0",
"output": "YES"
},
{
"input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53",
"output": "YES"
},
{
"input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1",
"output": "YES"
},
{
"input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0",
"output": "YES"
},
{
"input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0",
"output": "YES"
},
{
"input": "3\n0 2 -2\n1 -1 3\n-3 0 0",
"output": "NO"
}
] | 1,695,562,024
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 81
| 92
| 0
|
n = int(input()) # Input: The number of force vectors
# Initialize variables to store the sum of force components
sum_x = 0
sum_y = 0
sum_z = 0
# Loop through the force vectors and accumulate their components
for _ in range(n):
x, y, z = map(int, input().split())
sum_x += x
sum_y += y
sum_z += z
# Check if the sum of components is zero
if sum_x == 0 and sum_y == 0 and sum_z == 0:
print("YES") # Output: The body is in equilibrium
else:
print("NO") # Output: The body is not in equilibrium
|
Title: Young Physicist
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
Input Specification:
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
Output Specification:
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
Demo Input:
['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n']
Demo Output:
['NO', 'YES']
Note:
none
|
```python
n = int(input()) # Input: The number of force vectors
# Initialize variables to store the sum of force components
sum_x = 0
sum_y = 0
sum_z = 0
# Loop through the force vectors and accumulate their components
for _ in range(n):
x, y, z = map(int, input().split())
sum_x += x
sum_y += y
sum_z += z
# Check if the sum of components is zero
if sum_x == 0 and sum_y == 0 and sum_z == 0:
print("YES") # Output: The body is in equilibrium
else:
print("NO") # Output: The body is not in equilibrium
```
| 3.977
|
263
|
A
|
Beautiful Matrix
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
You've got a 5<=×<=5 matrix, consisting of 24 zeroes and a single number one. Let's index the matrix rows by numbers from 1 to 5 from top to bottom, let's index the matrix columns by numbers from 1 to 5 from left to right. In one move, you are allowed to apply one of the two following transformations to the matrix:
1. Swap two neighboring matrix rows, that is, rows with indexes *i* and *i*<=+<=1 for some integer *i* (1<=≤<=*i*<=<<=5). 1. Swap two neighboring matrix columns, that is, columns with indexes *j* and *j*<=+<=1 for some integer *j* (1<=≤<=*j*<=<<=5).
You think that a matrix looks beautiful, if the single number one of the matrix is located in its middle (in the cell that is on the intersection of the third row and the third column). Count the minimum number of moves needed to make the matrix beautiful.
|
The input consists of five lines, each line contains five integers: the *j*-th integer in the *i*-th line of the input represents the element of the matrix that is located on the intersection of the *i*-th row and the *j*-th column. It is guaranteed that the matrix consists of 24 zeroes and a single number one.
|
Print a single integer — the minimum number of moves needed to make the matrix beautiful.
|
[
"0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n",
"0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n"
] |
[
"3\n",
"1\n"
] |
none
| 500
|
[
{
"input": "0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "0"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1",
"output": "4"
},
{
"input": "0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "4"
},
{
"input": "0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "4"
},
{
"input": "0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0",
"output": "4"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0",
"output": "3"
}
] | 1,698,497,806
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 25
| 92
| 0
|
# were finding the column number
for i in range(5):
columnlist= input().split()
if '1' in columnlist:
column=i+1
break
# finding the row number
row=(columnlist.index('1'))+1
# finding how many actions it takes to get to column 3 row 3 (the middle)
actions=0
while column!=3:
actions+=1
if column>3:
column-=1
elif column<3:
column+=1
while row!=3:
actions+=1
if row>3:
row-=1
elif row<3:
row+=1
print(actions)
|
Title: Beautiful Matrix
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You've got a 5<=×<=5 matrix, consisting of 24 zeroes and a single number one. Let's index the matrix rows by numbers from 1 to 5 from top to bottom, let's index the matrix columns by numbers from 1 to 5 from left to right. In one move, you are allowed to apply one of the two following transformations to the matrix:
1. Swap two neighboring matrix rows, that is, rows with indexes *i* and *i*<=+<=1 for some integer *i* (1<=≤<=*i*<=<<=5). 1. Swap two neighboring matrix columns, that is, columns with indexes *j* and *j*<=+<=1 for some integer *j* (1<=≤<=*j*<=<<=5).
You think that a matrix looks beautiful, if the single number one of the matrix is located in its middle (in the cell that is on the intersection of the third row and the third column). Count the minimum number of moves needed to make the matrix beautiful.
Input Specification:
The input consists of five lines, each line contains five integers: the *j*-th integer in the *i*-th line of the input represents the element of the matrix that is located on the intersection of the *i*-th row and the *j*-th column. It is guaranteed that the matrix consists of 24 zeroes and a single number one.
Output Specification:
Print a single integer — the minimum number of moves needed to make the matrix beautiful.
Demo Input:
['0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n', '0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n']
Demo Output:
['3\n', '1\n']
Note:
none
|
```python
# were finding the column number
for i in range(5):
columnlist= input().split()
if '1' in columnlist:
column=i+1
break
# finding the row number
row=(columnlist.index('1'))+1
# finding how many actions it takes to get to column 3 row 3 (the middle)
actions=0
while column!=3:
actions+=1
if column>3:
column-=1
elif column<3:
column+=1
while row!=3:
actions+=1
if row>3:
row-=1
elif row<3:
row+=1
print(actions)
```
| 3
|
|
725
|
A
|
Jumping Ball
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
In a new version of the famous Pinball game, one of the most important parts of the game field is a sequence of *n* bumpers. The bumpers are numbered with integers from 1 to *n* from left to right. There are two types of bumpers. They are denoted by the characters '<' and '>'. When the ball hits the bumper at position *i* it goes one position to the right (to the position *i*<=+<=1) if the type of this bumper is '>', or one position to the left (to *i*<=-<=1) if the type of the bumper at position *i* is '<'. If there is no such position, in other words if *i*<=-<=1<=<<=1 or *i*<=+<=1<=><=*n*, the ball falls from the game field.
Depending on the ball's starting position, the ball may eventually fall from the game field or it may stay there forever. You are given a string representing the bumpers' types. Calculate the number of positions such that the ball will eventually fall from the game field if it starts at that position.
|
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the length of the sequence of bumpers. The second line contains the string, which consists of the characters '<' and '>'. The character at the *i*-th position of this string corresponds to the type of the *i*-th bumper.
|
Print one integer — the number of positions in the sequence such that the ball will eventually fall from the game field if it starts at that position.
|
[
"4\n<<><\n",
"5\n>>>>>\n",
"4\n>><<\n"
] |
[
"2",
"5",
"0"
] |
In the first sample, the ball will fall from the field if starts at position 1 or position 2.
In the second sample, any starting position will result in the ball falling from the field.
| 500
|
[
{
"input": "4\n<<><",
"output": "2"
},
{
"input": "5\n>>>>>",
"output": "5"
},
{
"input": "4\n>><<",
"output": "0"
},
{
"input": "3\n<<>",
"output": "3"
},
{
"input": "3\n<<<",
"output": "3"
},
{
"input": "3\n><<",
"output": "0"
},
{
"input": "1\n<",
"output": "1"
},
{
"input": "2\n<>",
"output": "2"
},
{
"input": "3\n<>>",
"output": "3"
},
{
"input": "3\n><>",
"output": "1"
},
{
"input": "2\n><",
"output": "0"
},
{
"input": "2\n>>",
"output": "2"
},
{
"input": "2\n<<",
"output": "2"
},
{
"input": "1\n>",
"output": "1"
},
{
"input": "3\n>><",
"output": "0"
},
{
"input": "3\n>>>",
"output": "3"
},
{
"input": "3\n<><",
"output": "1"
},
{
"input": "10\n<<<><<<>>>",
"output": "6"
},
{
"input": "20\n><><<><<<>>>>>>>>>>>",
"output": "11"
},
{
"input": "20\n<<<<<<<<<<><<<<>>>>>",
"output": "15"
},
{
"input": "50\n<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>",
"output": "50"
},
{
"input": "100\n<<<<<<<<<<<<<<<<<<<<<<<<>><<>><<<<<>><>><<<>><><<>>><<>>><<<<><><><<><<<<><>>>>>>>>>>>>>>>>>>>>>>>>>",
"output": "49"
},
{
"input": "100\n<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>><<>><>><>><<><><><><>>>><><<<>>>><<<>>>>>>><><",
"output": "50"
},
{
"input": "100\n<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<",
"output": "100"
},
{
"input": "100\n>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>",
"output": "100"
},
{
"input": "12\n<<>><<>><<>>",
"output": "4"
},
{
"input": "6\n<<><>>",
"output": "4"
},
{
"input": "6\n><>>>>",
"output": "4"
},
{
"input": "8\n>>>><<<>",
"output": "1"
},
{
"input": "4\n<><>",
"output": "2"
},
{
"input": "4\n><><",
"output": "0"
},
{
"input": "7\n<<>>><>",
"output": "3"
},
{
"input": "10\n><><>>>>>>",
"output": "6"
},
{
"input": "5\n<><>>",
"output": "3"
},
{
"input": "12\n<><<<<>>>>>>",
"output": "7"
},
{
"input": "6\n<>><<>",
"output": "2"
},
{
"input": "6\n>>><>>",
"output": "2"
},
{
"input": "10\n><><>>>><>",
"output": "1"
},
{
"input": "5\n><>>>",
"output": "3"
},
{
"input": "5\n<<><>",
"output": "3"
},
{
"input": "5\n<><<<",
"output": "1"
},
{
"input": "4\n<><<",
"output": "1"
},
{
"input": "8\n<<>><<>>",
"output": "4"
},
{
"input": "7\n<<><>>>",
"output": "5"
},
{
"input": "5\n><<>>",
"output": "2"
},
{
"input": "10\n<<<<<>>>>>",
"output": "10"
},
{
"input": "6\n><<<<<",
"output": "0"
},
{
"input": "8\n<<><><>>",
"output": "4"
},
{
"input": "10\n<<<<><<<><",
"output": "4"
},
{
"input": "12\n<<<>>>><<>>>",
"output": "6"
},
{
"input": "4\n><>>",
"output": "2"
},
{
"input": "11\n<<><<>><<>>",
"output": "4"
}
] | 1,478,273,513
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 78
| 124
| 819,200
|
# your code goes here
import sys
import math
x=0
l = int(input())
s=input()
i=0
while i<l:
if s[i] == '<':
x+=1
i+=1
else:
i=l
i=l-1
while i>=0:
if s[i] == '>':
x+=1
i-=1
else:
i=-1
print(x)
sys.exit()
|
Title: Jumping Ball
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In a new version of the famous Pinball game, one of the most important parts of the game field is a sequence of *n* bumpers. The bumpers are numbered with integers from 1 to *n* from left to right. There are two types of bumpers. They are denoted by the characters '<' and '>'. When the ball hits the bumper at position *i* it goes one position to the right (to the position *i*<=+<=1) if the type of this bumper is '>', or one position to the left (to *i*<=-<=1) if the type of the bumper at position *i* is '<'. If there is no such position, in other words if *i*<=-<=1<=<<=1 or *i*<=+<=1<=><=*n*, the ball falls from the game field.
Depending on the ball's starting position, the ball may eventually fall from the game field or it may stay there forever. You are given a string representing the bumpers' types. Calculate the number of positions such that the ball will eventually fall from the game field if it starts at that position.
Input Specification:
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the length of the sequence of bumpers. The second line contains the string, which consists of the characters '<' and '>'. The character at the *i*-th position of this string corresponds to the type of the *i*-th bumper.
Output Specification:
Print one integer — the number of positions in the sequence such that the ball will eventually fall from the game field if it starts at that position.
Demo Input:
['4\n<<><\n', '5\n>>>>>\n', '4\n>><<\n']
Demo Output:
['2', '5', '0']
Note:
In the first sample, the ball will fall from the field if starts at position 1 or position 2.
In the second sample, any starting position will result in the ball falling from the field.
|
```python
# your code goes here
import sys
import math
x=0
l = int(input())
s=input()
i=0
while i<l:
if s[i] == '<':
x+=1
i+=1
else:
i=l
i=l-1
while i>=0:
if s[i] == '>':
x+=1
i-=1
else:
i=-1
print(x)
sys.exit()
```
| 3
|
|
910
|
A
|
The Way to Home
|
PROGRAMMING
| 800
|
[
"dfs and similar",
"dp",
"greedy",
"implementation"
] | null | null |
A frog lives on the axis *Ox* and needs to reach home which is in the point *n*. She starts from the point 1. The frog can jump to the right at a distance not more than *d*. So, after she jumped from the point *x* she can reach the point *x*<=+<=*a*, where *a* is an integer from 1 to *d*.
For each point from 1 to *n* is known if there is a lily flower in it. The frog can jump only in points with a lilies. Guaranteed that there are lilies in the points 1 and *n*.
Determine the minimal number of jumps that the frog needs to reach home which is in the point *n* from the point 1. Consider that initially the frog is in the point 1. If the frog can not reach home, print -1.
|
The first line contains two integers *n* and *d* (2<=≤<=*n*<=≤<=100, 1<=≤<=*d*<=≤<=*n*<=-<=1) — the point, which the frog wants to reach, and the maximal length of the frog jump.
The second line contains a string *s* of length *n*, consisting of zeros and ones. If a character of the string *s* equals to zero, then in the corresponding point there is no lily flower. In the other case, in the corresponding point there is a lily flower. Guaranteed that the first and the last characters of the string *s* equal to one.
|
If the frog can not reach the home, print -1.
In the other case, print the minimal number of jumps that the frog needs to reach the home which is in the point *n* from the point 1.
|
[
"8 4\n10010101\n",
"4 2\n1001\n",
"8 4\n11100101\n",
"12 3\n101111100101\n"
] |
[
"2\n",
"-1\n",
"3\n",
"4\n"
] |
In the first example the from can reach home in two jumps: the first jump from the point 1 to the point 4 (the length of the jump is three), and the second jump from the point 4 to the point 8 (the length of the jump is four).
In the second example the frog can not reach home, because to make it she need to jump on a distance three, but the maximum length of her jump equals to two.
| 500
|
[
{
"input": "8 4\n10010101",
"output": "2"
},
{
"input": "4 2\n1001",
"output": "-1"
},
{
"input": "8 4\n11100101",
"output": "3"
},
{
"input": "12 3\n101111100101",
"output": "4"
},
{
"input": "5 4\n11011",
"output": "1"
},
{
"input": "5 4\n10001",
"output": "1"
},
{
"input": "10 7\n1101111011",
"output": "2"
},
{
"input": "10 9\n1110000101",
"output": "1"
},
{
"input": "10 9\n1100000001",
"output": "1"
},
{
"input": "20 5\n11111111110111101001",
"output": "4"
},
{
"input": "20 11\n11100000111000011011",
"output": "2"
},
{
"input": "20 19\n10100000000000000001",
"output": "1"
},
{
"input": "50 13\n10011010100010100111010000010000000000010100000101",
"output": "5"
},
{
"input": "50 8\n11010100000011001100001100010001110000101100110011",
"output": "8"
},
{
"input": "99 4\n111111111111111111111111111111111111111111111111111111111011111111111111111111111111111111111111111",
"output": "25"
},
{
"input": "99 98\n100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"output": "1"
},
{
"input": "100 5\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111",
"output": "20"
},
{
"input": "100 4\n1111111111111111111111111111111111111111111111111111111111111111111111111111110111111111111111111111",
"output": "25"
},
{
"input": "100 4\n1111111111111111111111111111111111111111111111111111111111111101111111011111111111111111111111111111",
"output": "25"
},
{
"input": "100 3\n1111110111111111111111111111111111111111101111111111111111111111111101111111111111111111111111111111",
"output": "34"
},
{
"input": "100 8\n1111111111101110111111111111111111111111111111111111111111111111111111110011111111111111011111111111",
"output": "13"
},
{
"input": "100 7\n1011111111111111111011101111111011111101111111111101111011110111111111111111111111110111111011111111",
"output": "15"
},
{
"input": "100 9\n1101111110111110101111111111111111011001110111011101011111111111010101111111100011011111111010111111",
"output": "12"
},
{
"input": "100 6\n1011111011111111111011010110011001010101111110111111000111011011111110101101110110101111110000100111",
"output": "18"
},
{
"input": "100 7\n1110001111101001110011111111111101111101101001010001101000101100000101101101011111111101101000100001",
"output": "16"
},
{
"input": "100 11\n1000010100011100011011100000010011001111011110100100001011010100011011111001101101110110010110001101",
"output": "10"
},
{
"input": "100 9\n1001001110000011100100000001000110111101101010101001000101001010011001101100110011011110110011011111",
"output": "13"
},
{
"input": "100 7\n1010100001110101111011000111000001110100100110110001110110011010100001100100001110111100110000101001",
"output": "18"
},
{
"input": "100 10\n1110110000000110000000101110100000111000001011100000100110010001110111001010101000011000000001011011",
"output": "12"
},
{
"input": "100 13\n1000000100000000100011000010010000101010011110000000001000011000110100001000010001100000011001011001",
"output": "9"
},
{
"input": "100 11\n1000000000100000010000100001000100000000010000100100000000100100001000000001011000110001000000000101",
"output": "12"
},
{
"input": "100 22\n1000100000001010000000000000000001000000100000000000000000010000000000001000000000000000000100000001",
"output": "7"
},
{
"input": "100 48\n1000000000000000011000000000000000000000000000000001100000000000000000000000000000000000000000000001",
"output": "3"
},
{
"input": "100 48\n1000000000000000000000100000000000000000000000000000000000000000000001000000000000000000100000000001",
"output": "3"
},
{
"input": "100 75\n1000000100000000000000000000000000000000000000000000000000000000000000000000000001000000000000000001",
"output": "3"
},
{
"input": "100 73\n1000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000000001",
"output": "2"
},
{
"input": "100 99\n1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"output": "1"
},
{
"input": "100 1\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111",
"output": "99"
},
{
"input": "100 2\n1111111111111111111111111111111110111111111111111111111111111111111111111111111111111111111111111111",
"output": "50"
},
{
"input": "100 1\n1111111111111111011111111111111111111111111111111111111111111111111101111111111111111111111111111111",
"output": "-1"
},
{
"input": "100 3\n1111111111111111111111111101111111111111111111111011111111111111111111111111111011111111111111111111",
"output": "33"
},
{
"input": "100 1\n1101111111111111111111101111111111111111111111111111111111111011111111101111101111111111111111111111",
"output": "-1"
},
{
"input": "100 6\n1111111111111111111111101111111101011110001111111111111111110111111111111111111111111110010111111111",
"output": "17"
},
{
"input": "100 2\n1111111101111010110111011011110111101111111011111101010101011111011111111111111011111001101111101111",
"output": "-1"
},
{
"input": "100 8\n1100110101111001101001111000111100110100011110111011001011111110000110101000001110111011100111011011",
"output": "14"
},
{
"input": "100 10\n1000111110100000001001101100000010011100010101001100010011111001001101111110110111101111001010001101",
"output": "11"
},
{
"input": "100 7\n1110000011010001110101011010000011110001000000011101110111010110001000011101111010010001101111110001",
"output": "-1"
},
{
"input": "100 3\n1111010001000001011011000011001111000100101000101101000010111101111000010000011110110011001101010111",
"output": "-1"
},
{
"input": "100 9\n1101010101101100010111011000010100001010000101010011001001100010110110000000010000101000000001101101",
"output": "13"
},
{
"input": "100 14\n1010100000000000010101000010001100000000000011100010000001000001011010001110001010100000100001101101",
"output": "9"
},
{
"input": "100 13\n1000000001101001110000010000011001000000000000001010000000100001001010000000000000000100010000000001",
"output": "-1"
},
{
"input": "100 18\n1000000000000000110000000000000000010000000001000001000001000000000100000000000010000000000000000001",
"output": "-1"
},
{
"input": "100 32\n1000000000000000000000000001000000000000000000000101000000000000000000000000000000000001000000000001",
"output": "-1"
},
{
"input": "100 79\n1000000001000000000101000000000000000000000000000000000000000000000000000000000000000000000000000001",
"output": "2"
},
{
"input": "100 41\n1000000000000000000000000000000000010000000000000000000000000000000000000000100000000000000000000001",
"output": "3"
},
{
"input": "100 82\n1000000000000000000100000000000000000000000000000000000000000000000000000000000000000000000000000001",
"output": "2"
},
{
"input": "100 96\n1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"output": "-1"
},
{
"input": "43 30\n1001000001111111010100100100110101011101101",
"output": "2"
},
{
"input": "7 1\n1111111",
"output": "6"
},
{
"input": "9 3\n101000001",
"output": "-1"
},
{
"input": "10 3\n1100000001",
"output": "-1"
},
{
"input": "8 2\n10000101",
"output": "-1"
},
{
"input": "2 1\n11",
"output": "1"
}
] | 1,698,231,556
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 63
| 46
| 0
|
x = input().split()
n = int(x[0])
d = int(x[1])
nums = list(map(int,input()))
memo = {}
def dp(i):
if i in memo:
return memo[i]
if i == n-1:
memo[i] = 0
return 0
if i >= n:
memo[i] = float("inf")
return float("inf")
mini = float("inf")
for j in range(i + 1, i + d + 1):
if j < n and nums[j] != 0:
mini = min(mini, dp(j)+1)
memo[i] = mini
return mini
ans = dp(0)
if ans==float("inf"):
print(-1)
else:
print(ans)
|
Title: The Way to Home
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A frog lives on the axis *Ox* and needs to reach home which is in the point *n*. She starts from the point 1. The frog can jump to the right at a distance not more than *d*. So, after she jumped from the point *x* she can reach the point *x*<=+<=*a*, where *a* is an integer from 1 to *d*.
For each point from 1 to *n* is known if there is a lily flower in it. The frog can jump only in points with a lilies. Guaranteed that there are lilies in the points 1 and *n*.
Determine the minimal number of jumps that the frog needs to reach home which is in the point *n* from the point 1. Consider that initially the frog is in the point 1. If the frog can not reach home, print -1.
Input Specification:
The first line contains two integers *n* and *d* (2<=≤<=*n*<=≤<=100, 1<=≤<=*d*<=≤<=*n*<=-<=1) — the point, which the frog wants to reach, and the maximal length of the frog jump.
The second line contains a string *s* of length *n*, consisting of zeros and ones. If a character of the string *s* equals to zero, then in the corresponding point there is no lily flower. In the other case, in the corresponding point there is a lily flower. Guaranteed that the first and the last characters of the string *s* equal to one.
Output Specification:
If the frog can not reach the home, print -1.
In the other case, print the minimal number of jumps that the frog needs to reach the home which is in the point *n* from the point 1.
Demo Input:
['8 4\n10010101\n', '4 2\n1001\n', '8 4\n11100101\n', '12 3\n101111100101\n']
Demo Output:
['2\n', '-1\n', '3\n', '4\n']
Note:
In the first example the from can reach home in two jumps: the first jump from the point 1 to the point 4 (the length of the jump is three), and the second jump from the point 4 to the point 8 (the length of the jump is four).
In the second example the frog can not reach home, because to make it she need to jump on a distance three, but the maximum length of her jump equals to two.
|
```python
x = input().split()
n = int(x[0])
d = int(x[1])
nums = list(map(int,input()))
memo = {}
def dp(i):
if i in memo:
return memo[i]
if i == n-1:
memo[i] = 0
return 0
if i >= n:
memo[i] = float("inf")
return float("inf")
mini = float("inf")
for j in range(i + 1, i + d + 1):
if j < n and nums[j] != 0:
mini = min(mini, dp(j)+1)
memo[i] = mini
return mini
ans = dp(0)
if ans==float("inf"):
print(-1)
else:
print(ans)
```
| 3
|
|
0
|
none
|
none
|
none
| 0
|
[
"none"
] | null | null |
Appleman and Toastman play a game. Initially Appleman gives one group of *n* numbers to the Toastman, then they start to complete the following tasks:
- Each time Toastman gets a group of numbers, he sums up all the numbers and adds this sum to the score. Then he gives the group to the Appleman. - Each time Appleman gets a group consisting of a single number, he throws this group out. Each time Appleman gets a group consisting of more than one number, he splits the group into two non-empty groups (he can do it in any way) and gives each of them to Toastman.
After guys complete all the tasks they look at the score value. What is the maximum possible value of score they can get?
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=3·105). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=106) — the initial group that is given to Toastman.
|
Print a single integer — the largest possible score.
|
[
"3\n3 1 5\n",
"1\n10\n"
] |
[
"26\n",
"10\n"
] |
Consider the following situation in the first example. Initially Toastman gets group [3, 1, 5] and adds 9 to the score, then he give the group to Appleman. Appleman splits group [3, 1, 5] into two groups: [3, 5] and [1]. Both of them should be given to Toastman. When Toastman receives group [1], he adds 1 to score and gives the group to Appleman (he will throw it out). When Toastman receives group [3, 5], he adds 8 to the score and gives the group to Appleman. Appleman splits [3, 5] in the only possible way: [5] and [3]. Then he gives both groups to Toastman. When Toastman receives [5], he adds 5 to the score and gives the group to Appleman (he will throws it out). When Toastman receives [3], he adds 3 to the score and gives the group to Appleman (he will throws it out). Finally Toastman have added 9 + 1 + 8 + 5 + 3 = 26 to the score. This is the optimal sequence of actions.
| 0
|
[
{
"input": "3\n3 1 5",
"output": "26"
},
{
"input": "1\n10",
"output": "10"
},
{
"input": "10\n8 10 2 5 6 2 4 7 2 1",
"output": "376"
},
{
"input": "10\n171308 397870 724672 431255 228496 892002 542924 718337 888642 161821",
"output": "40204082"
},
{
"input": "10\n1 2 2 2 4 5 6 7 8 10",
"output": "376"
},
{
"input": "10\n161821 171308 228496 397870 431255 542924 718337 724672 888642 892002",
"output": "40204082"
},
{
"input": "1\n397870",
"output": "397870"
},
{
"input": "1\n1000000",
"output": "1000000"
},
{
"input": "10\n10 8 7 6 5 4 2 2 2 1",
"output": "376"
},
{
"input": "10\n892002 888642 724672 718337 542924 431255 397870 228496 171308 161821",
"output": "40204082"
},
{
"input": "10\n5 2 6 10 10 10 10 2 2 5",
"output": "485"
},
{
"input": "10\n431255 724672 228496 397870 397870 397870 397870 724672 888642 431255",
"output": "36742665"
},
{
"input": "10\n2 2 2 5 5 6 10 10 10 10",
"output": "485"
},
{
"input": "10\n228496 397870 397870 397870 397870 431255 431255 724672 724672 888642",
"output": "36742665"
},
{
"input": "10\n10 10 10 10 6 5 5 2 2 2",
"output": "485"
},
{
"input": "10\n888642 724672 724672 431255 431255 397870 397870 397870 397870 228496",
"output": "36742665"
},
{
"input": "10\n10 10 10 10 10 10 10 10 10 10",
"output": "640"
},
{
"input": "10\n1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000",
"output": "64000000"
},
{
"input": "1\n397870",
"output": "397870"
},
{
"input": "2\n1 2",
"output": "6"
},
{
"input": "2\n2 3",
"output": "10"
},
{
"input": "2\n1 1",
"output": "4"
}
] | 1,575,895,542
| 2,147,483,647
|
PyPy 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 218
| 2,867,200
|
#!/usr/bin/env python3
import sys, math, itertools, heapq, collections, bisect, string
input = lambda: sys.stdin.buffer.readline().rstrip().decode('utf-8')
sys.setrecursionlimit(10**7)
inf = float('inf')
mod = 10**9+7
ans = inf ;count = 0 ;pro = 1
n=int(input())
A=sorted(map(int,input().split()))
if n==1:
print(A[0])
exit()
for i in range(n-1):
count+=A[i]*(i+2)
count+=A[-1]*(n)
print(count)
|
Title: none
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Appleman and Toastman play a game. Initially Appleman gives one group of *n* numbers to the Toastman, then they start to complete the following tasks:
- Each time Toastman gets a group of numbers, he sums up all the numbers and adds this sum to the score. Then he gives the group to the Appleman. - Each time Appleman gets a group consisting of a single number, he throws this group out. Each time Appleman gets a group consisting of more than one number, he splits the group into two non-empty groups (he can do it in any way) and gives each of them to Toastman.
After guys complete all the tasks they look at the score value. What is the maximum possible value of score they can get?
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=3·105). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=106) — the initial group that is given to Toastman.
Output Specification:
Print a single integer — the largest possible score.
Demo Input:
['3\n3 1 5\n', '1\n10\n']
Demo Output:
['26\n', '10\n']
Note:
Consider the following situation in the first example. Initially Toastman gets group [3, 1, 5] and adds 9 to the score, then he give the group to Appleman. Appleman splits group [3, 1, 5] into two groups: [3, 5] and [1]. Both of them should be given to Toastman. When Toastman receives group [1], he adds 1 to score and gives the group to Appleman (he will throw it out). When Toastman receives group [3, 5], he adds 8 to the score and gives the group to Appleman. Appleman splits [3, 5] in the only possible way: [5] and [3]. Then he gives both groups to Toastman. When Toastman receives [5], he adds 5 to the score and gives the group to Appleman (he will throws it out). When Toastman receives [3], he adds 3 to the score and gives the group to Appleman (he will throws it out). Finally Toastman have added 9 + 1 + 8 + 5 + 3 = 26 to the score. This is the optimal sequence of actions.
|
```python
#!/usr/bin/env python3
import sys, math, itertools, heapq, collections, bisect, string
input = lambda: sys.stdin.buffer.readline().rstrip().decode('utf-8')
sys.setrecursionlimit(10**7)
inf = float('inf')
mod = 10**9+7
ans = inf ;count = 0 ;pro = 1
n=int(input())
A=sorted(map(int,input().split()))
if n==1:
print(A[0])
exit()
for i in range(n-1):
count+=A[i]*(i+2)
count+=A[-1]*(n)
print(count)
```
| -1
|
|
414
|
A
|
Mashmokh and Numbers
|
PROGRAMMING
| 1,500
|
[
"constructive algorithms",
"number theory"
] | null | null |
It's holiday. Mashmokh and his boss, Bimokh, are playing a game invented by Mashmokh.
In this game Mashmokh writes sequence of *n* distinct integers on the board. Then Bimokh makes several (possibly zero) moves. On the first move he removes the first and the second integer from from the board, on the second move he removes the first and the second integer of the remaining sequence from the board, and so on. Bimokh stops when the board contains less than two numbers. When Bimokh removes numbers *x* and *y* from the board, he gets *gcd*(*x*,<=*y*) points. At the beginning of the game Bimokh has zero points.
Mashmokh wants to win in the game. For this reason he wants his boss to get exactly *k* points in total. But the guy doesn't know how choose the initial sequence in the right way.
Please, help him. Find *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* such that his boss will score exactly *k* points. Also Mashmokh can't memorize too huge numbers. Therefore each of these integers must be at most 109.
|
The first line of input contains two space-separated integers *n*,<=*k* (1<=≤<=*n*<=≤<=105; 0<=≤<=*k*<=≤<=108).
|
If such sequence doesn't exist output -1 otherwise output *n* distinct space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109).
|
[
"5 2\n",
"5 3",
"7 2\n"
] |
[
"1 2 3 4 5\n",
"2 4 3 7 1",
"-1\n"
] |
*gcd*(*x*, *y*) is greatest common divisor of *x* and *y*.
| 500
|
[
{
"input": "5 2",
"output": "1 2 3 4 5"
},
{
"input": "5 3",
"output": "2 4 5 6 7"
},
{
"input": "7 2",
"output": "-1"
},
{
"input": "1 1",
"output": "-1"
},
{
"input": "2 0",
"output": "-1"
},
{
"input": "1 10",
"output": "-1"
},
{
"input": "1 0",
"output": "1"
},
{
"input": "7 3",
"output": "1 2 3 4 5 6 7"
},
{
"input": "7 6",
"output": "4 8 1 2 5 6 7"
},
{
"input": "7 7",
"output": "5 10 1 2 3 4 6"
},
{
"input": "100000 100000000",
"output": "99950001 199900002 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..."
},
{
"input": "3455 2792393",
"output": "2790667 5581334 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151..."
},
{
"input": "74086 16504611",
"output": "16467569 32935138 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..."
},
{
"input": "28515 44887064",
"output": "44872808 89745616 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..."
},
{
"input": "21324 73830196",
"output": "73819535 147639070 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..."
},
{
"input": "90212 5921828",
"output": "5876723 11753446 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 15..."
},
{
"input": "25095 2372924",
"output": "2360378 4720756 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151..."
},
{
"input": "92977 95851971",
"output": "95805484 191610968 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..."
},
{
"input": "39095 77350428",
"output": "77330882 154661764 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..."
},
{
"input": "785 70908164",
"output": "70907773 141815546 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..."
},
{
"input": "28051 5506872",
"output": "5492848 10985696 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 15..."
},
{
"input": "74077 37498088",
"output": "37461051 74922102 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..."
},
{
"input": "58284 12998910",
"output": "12969769 25939538 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..."
},
{
"input": "28768 33384329",
"output": "33369946 66739892 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..."
},
{
"input": "6357 92661202",
"output": "92658025 185316050 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..."
},
{
"input": "80996 61457012",
"output": "61416515 122833030 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..."
},
{
"input": "60752 21494069",
"output": "21463694 42927388 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..."
},
{
"input": "95065 81120597",
"output": "81073066 162146132 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..."
},
{
"input": "77240 1683376",
"output": "1644757 3289514 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151..."
},
{
"input": "35136 35044765",
"output": "35027198 70054396 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..."
},
{
"input": "98218 71868966",
"output": "71819858 143639716 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..."
},
{
"input": "45671 48503349",
"output": "48480515 96961030 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..."
},
{
"input": "7081 26961063",
"output": "26957524 53915048 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..."
},
{
"input": "69213 98333912",
"output": "98299307 196598614 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..."
},
{
"input": "91055 20775941",
"output": "20730415 41460830 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..."
},
{
"input": "14106 71280052",
"output": "71273000 142546000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..."
},
{
"input": "17599 34327121",
"output": "34318323 68636646 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..."
},
{
"input": "74244 96611492",
"output": "96574371 193148742 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..."
},
{
"input": "77554 5672752",
"output": "5633976 11267952 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 15..."
},
{
"input": "51040 32015531",
"output": "31990012 63980024 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..."
},
{
"input": "95593 16086029",
"output": "16038234 32076468 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..."
},
{
"input": "44405 95772109",
"output": "95749908 191499816 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..."
},
{
"input": "46297 84634875",
"output": "84611728 169223456 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..."
},
{
"input": "3842 99757561",
"output": "99755641 199511282 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..."
},
{
"input": "90252 19406877",
"output": "19361752 38723504 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..."
},
{
"input": "13321 67580511",
"output": "67573852 135147704 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..."
},
{
"input": "19919 79287791",
"output": "79277833 158555666 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..."
},
{
"input": "58499 59427255",
"output": "59398007 118796014 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..."
},
{
"input": "34423 86770315",
"output": "86753105 173506210 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..."
},
{
"input": "21460 11888516",
"output": "11877787 23755574 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..."
},
{
"input": "57534 85681593",
"output": "85652827 171305654 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..."
},
{
"input": "28652 18840000",
"output": "18825675 37651350 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..."
},
{
"input": "18247 23541343",
"output": "23532221 47064442 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..."
},
{
"input": "89529 95022203",
"output": "94977440 189954880 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..."
},
{
"input": "42775 89315917",
"output": "89294531 178589062 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..."
},
{
"input": "946 93333203",
"output": "93332731 186665462 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..."
},
{
"input": "93595 48782905",
"output": "48736109 97472218 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..."
},
{
"input": "87371 60145723",
"output": "60102039 120204078 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..."
},
{
"input": "7695 94816808",
"output": "94812962 189625924 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..."
},
{
"input": "21846 16967905",
"output": "16956983 33913966 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..."
},
{
"input": "10 3",
"output": "-1"
},
{
"input": "6 1000003",
"output": "1000001 2000002 1 2 3 4"
},
{
"input": "100000 549999",
"output": "500000 1000000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 ..."
},
{
"input": "10 4",
"output": "-1"
},
{
"input": "8 10",
"output": "7 14 1 2 3 4 5 6"
},
{
"input": "6 10000003",
"output": "10000001 20000002 1 2 3 4"
},
{
"input": "50 50000030",
"output": "50000006 100000012 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48"
},
{
"input": "7 11",
"output": "9 18 1 2 3 4 5"
},
{
"input": "2 96996900",
"output": "96996900 193993800"
},
{
"input": "3 99999997",
"output": "99999997 199999994 1"
},
{
"input": "10000 10",
"output": "-1"
},
{
"input": "5 100000000",
"output": "99999999 199999998 1 2 3"
},
{
"input": "20 15",
"output": "6 12 1 2 3 4 7 8 9 10 13 14 15 16 17 18 19 20 21 22"
},
{
"input": "10 50000006",
"output": "50000002 100000004 1 2 3 4 5 6 7 8"
},
{
"input": "4 1257",
"output": "1256 2512 1 2"
},
{
"input": "100 1",
"output": "-1"
},
{
"input": "6 1",
"output": "-1"
},
{
"input": "10 1000004",
"output": "1000000 2000000 1 2 3 4 5 6 7 8"
},
{
"input": "100000 100000",
"output": "50001 100002 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 15..."
},
{
"input": "10 3000004",
"output": "3000000 6000000 1 2 3 4 5 6 7 8"
},
{
"input": "99999 149998",
"output": "100000 200000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 1..."
},
{
"input": "11 1434567",
"output": "1434563 2869126 1 2 3 4 5 6 7 8 9"
},
{
"input": "205 110",
"output": "9 18 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155..."
},
{
"input": "11 14342267",
"output": "14342263 28684526 1 2 3 4 5 6 7 8 9"
}
] | 1,588,098,565
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 6
| 124
| 0
|
n, k = map(int, input().split())
t = n//2
z = k-t+1
ans = [i for i in range(1,n+1)]
if z<1 or n==1: ans = [-1]
elif z==1: pass
else:
if z >= n:
ans[0], ans[1] = z, z*2
if z==n and n>2: ans[-1] += 1
elif z < n:
if z%2==0:
ans[z-2] = (n//z + 1)*z
else:
ans[z] = (n//z + 1)*z
print(*ans)
|
Title: Mashmokh and Numbers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
It's holiday. Mashmokh and his boss, Bimokh, are playing a game invented by Mashmokh.
In this game Mashmokh writes sequence of *n* distinct integers on the board. Then Bimokh makes several (possibly zero) moves. On the first move he removes the first and the second integer from from the board, on the second move he removes the first and the second integer of the remaining sequence from the board, and so on. Bimokh stops when the board contains less than two numbers. When Bimokh removes numbers *x* and *y* from the board, he gets *gcd*(*x*,<=*y*) points. At the beginning of the game Bimokh has zero points.
Mashmokh wants to win in the game. For this reason he wants his boss to get exactly *k* points in total. But the guy doesn't know how choose the initial sequence in the right way.
Please, help him. Find *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* such that his boss will score exactly *k* points. Also Mashmokh can't memorize too huge numbers. Therefore each of these integers must be at most 109.
Input Specification:
The first line of input contains two space-separated integers *n*,<=*k* (1<=≤<=*n*<=≤<=105; 0<=≤<=*k*<=≤<=108).
Output Specification:
If such sequence doesn't exist output -1 otherwise output *n* distinct space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109).
Demo Input:
['5 2\n', '5 3', '7 2\n']
Demo Output:
['1 2 3 4 5\n', '2 4 3 7 1', '-1\n']
Note:
*gcd*(*x*, *y*) is greatest common divisor of *x* and *y*.
|
```python
n, k = map(int, input().split())
t = n//2
z = k-t+1
ans = [i for i in range(1,n+1)]
if z<1 or n==1: ans = [-1]
elif z==1: pass
else:
if z >= n:
ans[0], ans[1] = z, z*2
if z==n and n>2: ans[-1] += 1
elif z < n:
if z%2==0:
ans[z-2] = (n//z + 1)*z
else:
ans[z] = (n//z + 1)*z
print(*ans)
```
| 0
|
|
318
|
A
|
Even Odds
|
PROGRAMMING
| 900
|
[
"math"
] | null | null |
Being a nonconformist, Volodya is displeased with the current state of things, particularly with the order of natural numbers (natural number is positive integer number). He is determined to rearrange them. But there are too many natural numbers, so Volodya decided to start with the first *n*. He writes down the following sequence of numbers: firstly all odd integers from 1 to *n* (in ascending order), then all even integers from 1 to *n* (also in ascending order). Help our hero to find out which number will stand at the position number *k*.
|
The only line of input contains integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=1012).
Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier.
|
Print the number that will stand at the position number *k* after Volodya's manipulations.
|
[
"10 3\n",
"7 7\n"
] |
[
"5",
"6"
] |
In the first sample Volodya's sequence will look like this: {1, 3, 5, 7, 9, 2, 4, 6, 8, 10}. The third place in the sequence is therefore occupied by the number 5.
| 500
|
[
{
"input": "10 3",
"output": "5"
},
{
"input": "7 7",
"output": "6"
},
{
"input": "7 1",
"output": "1"
},
{
"input": "7 2",
"output": "3"
},
{
"input": "8 5",
"output": "2"
},
{
"input": "8 3",
"output": "5"
},
{
"input": "8 4",
"output": "7"
},
{
"input": "1000000000000 500000000001",
"output": "2"
},
{
"input": "999999999997 499999999999",
"output": "999999999997"
},
{
"input": "999999999999 999999999999",
"output": "999999999998"
},
{
"input": "1000000000000 1",
"output": "1"
},
{
"input": "999999999999 1",
"output": "1"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "1000000000000 1000000000000",
"output": "1000000000000"
},
{
"input": "1000000000000 500000000000",
"output": "999999999999"
},
{
"input": "1000000000000 499999999999",
"output": "999999999997"
},
{
"input": "999999999997 499999999998",
"output": "999999999995"
},
{
"input": "619234238 556154835",
"output": "493075432"
},
{
"input": "38151981 36650624",
"output": "35149266"
},
{
"input": "680402465 442571217",
"output": "204739968"
},
{
"input": "109135284 9408714",
"output": "18817427"
},
{
"input": "603701841 56038951",
"output": "112077901"
},
{
"input": "356764822 321510177",
"output": "286255532"
},
{
"input": "284911189 142190783",
"output": "284381565"
},
{
"input": "91028405 61435545",
"output": "31842684"
}
] | 1,697,110,383
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 6
| 122
| 0
|
n,m=map(int,input().split())
t=(n+1)//2
if m<t:
print(2*m-1)
else:
print((m-t)*2)
|
Title: Even Odds
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Being a nonconformist, Volodya is displeased with the current state of things, particularly with the order of natural numbers (natural number is positive integer number). He is determined to rearrange them. But there are too many natural numbers, so Volodya decided to start with the first *n*. He writes down the following sequence of numbers: firstly all odd integers from 1 to *n* (in ascending order), then all even integers from 1 to *n* (also in ascending order). Help our hero to find out which number will stand at the position number *k*.
Input Specification:
The only line of input contains integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=1012).
Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier.
Output Specification:
Print the number that will stand at the position number *k* after Volodya's manipulations.
Demo Input:
['10 3\n', '7 7\n']
Demo Output:
['5', '6']
Note:
In the first sample Volodya's sequence will look like this: {1, 3, 5, 7, 9, 2, 4, 6, 8, 10}. The third place in the sequence is therefore occupied by the number 5.
|
```python
n,m=map(int,input().split())
t=(n+1)//2
if m<t:
print(2*m-1)
else:
print((m-t)*2)
```
| 0
|
|
792
|
A
|
New Bus Route
|
PROGRAMMING
| 1,100
|
[
"implementation",
"sortings"
] | null | null |
There are *n* cities situated along the main road of Berland. Cities are represented by their coordinates — integer numbers *a*1,<=*a*2,<=...,<=*a**n*. All coordinates are pairwise distinct.
It is possible to get from one city to another only by bus. But all buses and roads are very old, so the Minister of Transport decided to build a new bus route. The Minister doesn't want to spend large amounts of money — he wants to choose two cities in such a way that the distance between them is minimal possible. The distance between two cities is equal to the absolute value of the difference between their coordinates.
It is possible that there are multiple pairs of cities with minimal possible distance, so the Minister wants to know the quantity of such pairs.
Your task is to write a program that will calculate the minimal possible distance between two pairs of cities and the quantity of pairs which have this distance.
|
The first line contains one integer number *n* (2<=≤<=*n*<=≤<=2·105).
The second line contains *n* integer numbers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109). All numbers *a**i* are pairwise distinct.
|
Print two integer numbers — the minimal distance and the quantity of pairs with this distance.
|
[
"4\n6 -3 0 4\n",
"3\n-2 0 2\n"
] |
[
"2 1\n",
"2 2\n"
] |
In the first example the distance between the first city and the fourth city is |4 - 6| = 2, and it is the only pair with this distance.
| 0
|
[
{
"input": "4\n6 -3 0 4",
"output": "2 1"
},
{
"input": "3\n-2 0 2",
"output": "2 2"
},
{
"input": "2\n1 2",
"output": "1 1"
},
{
"input": "2\n1000000000 -1000000000",
"output": "2000000000 1"
},
{
"input": "5\n-979619606 -979619602 -979619604 -979619605 -979619603",
"output": "1 4"
},
{
"input": "5\n-799147771 -799147773 -799147764 -799147774 -799147770",
"output": "1 2"
},
{
"input": "20\n553280626 553280623 553280627 553280624 553280625 553280618 553280620 553280629 553280637 553280631 553280628 553280636 553280635 553280632 553280634 553280622 553280633 553280621 553280630 553280619",
"output": "1 19"
},
{
"input": "20\n105619866 106083760 106090730 105809555 106115212 105155938 105979518 106075627 106145216 105637844 105925719 105498536 105927000 106155938 106134226 106125969 106130588 105464813 106145509 106114971",
"output": "241 1"
},
{
"input": "10\n570685866 570685854 570685858 570685850 570685856 570685864 570685860 570685852 570685862 570685868",
"output": "2 9"
},
{
"input": "2\n1 1000000000",
"output": "999999999 1"
},
{
"input": "6\n1 2 3 4 5 6",
"output": "1 5"
},
{
"input": "3\n7 10 12",
"output": "2 1"
},
{
"input": "5\n-7 -5 -4 -3 -1",
"output": "1 2"
},
{
"input": "4\n-6 -4 -2 1",
"output": "2 2"
},
{
"input": "4\n3 5 7 8",
"output": "1 1"
},
{
"input": "9\n-9 -8 -7 -6 -5 -4 -3 -2 -1",
"output": "1 8"
},
{
"input": "2\n15 13",
"output": "2 1"
},
{
"input": "2\n14 13",
"output": "1 1"
},
{
"input": "2\n12 13",
"output": "1 1"
},
{
"input": "2\n-1000000000 13265920",
"output": "1013265920 1"
},
{
"input": "2\n8 10",
"output": "2 1"
}
] | 1,491,601,747
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 8
| 1,000
| 13,107,200
|
n = int(input())
ip = input().split(' ')
ip2 = list(map(int, ip))
temp = float('inf')
for x in range(len(ip2)):
for y in ip2[x+1:len(ip2)+1]:
if abs(ip2[x]-y) < temp and abs(ip2[x]-y)!= 0:
temp = abs(ip2[x]-y)
count = 1
elif abs(ip2[x]-y) == temp:
count = count + 1
print(temp, count)
|
Title: New Bus Route
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* cities situated along the main road of Berland. Cities are represented by their coordinates — integer numbers *a*1,<=*a*2,<=...,<=*a**n*. All coordinates are pairwise distinct.
It is possible to get from one city to another only by bus. But all buses and roads are very old, so the Minister of Transport decided to build a new bus route. The Minister doesn't want to spend large amounts of money — he wants to choose two cities in such a way that the distance between them is minimal possible. The distance between two cities is equal to the absolute value of the difference between their coordinates.
It is possible that there are multiple pairs of cities with minimal possible distance, so the Minister wants to know the quantity of such pairs.
Your task is to write a program that will calculate the minimal possible distance between two pairs of cities and the quantity of pairs which have this distance.
Input Specification:
The first line contains one integer number *n* (2<=≤<=*n*<=≤<=2·105).
The second line contains *n* integer numbers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109). All numbers *a**i* are pairwise distinct.
Output Specification:
Print two integer numbers — the minimal distance and the quantity of pairs with this distance.
Demo Input:
['4\n6 -3 0 4\n', '3\n-2 0 2\n']
Demo Output:
['2 1\n', '2 2\n']
Note:
In the first example the distance between the first city and the fourth city is |4 - 6| = 2, and it is the only pair with this distance.
|
```python
n = int(input())
ip = input().split(' ')
ip2 = list(map(int, ip))
temp = float('inf')
for x in range(len(ip2)):
for y in ip2[x+1:len(ip2)+1]:
if abs(ip2[x]-y) < temp and abs(ip2[x]-y)!= 0:
temp = abs(ip2[x]-y)
count = 1
elif abs(ip2[x]-y) == temp:
count = count + 1
print(temp, count)
```
| 0
|
|
652
|
B
|
z-sort
|
PROGRAMMING
| 1,000
|
[
"sortings"
] | null | null |
A student of *z*-school found a kind of sorting called *z*-sort. The array *a* with *n* elements are *z*-sorted if two conditions hold:
1. *a**i*<=≥<=*a**i*<=-<=1 for all even *i*, 1. *a**i*<=≤<=*a**i*<=-<=1 for all odd *i*<=><=1.
For example the arrays [1,2,1,2] and [1,1,1,1] are *z*-sorted while the array [1,2,3,4] isn’t *z*-sorted.
Can you make the array *z*-sorted?
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of elements in the array *a*.
The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=109) — the elements of the array *a*.
|
If it's possible to make the array *a* *z*-sorted print *n* space separated integers *a**i* — the elements after *z*-sort. Otherwise print the only word "Impossible".
|
[
"4\n1 2 2 1\n",
"5\n1 3 2 2 5\n"
] |
[
"1 2 1 2\n",
"1 5 2 3 2\n"
] |
none
| 0
|
[
{
"input": "4\n1 2 2 1",
"output": "1 2 1 2"
},
{
"input": "5\n1 3 2 2 5",
"output": "1 5 2 3 2"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "10\n1 1 1 1 1 1 1 1 1 1",
"output": "1 1 1 1 1 1 1 1 1 1"
},
{
"input": "10\n1 9 7 6 2 4 7 8 1 3",
"output": "1 9 1 8 2 7 3 7 4 6"
},
{
"input": "100\n82 51 81 14 37 17 78 92 64 15 8 86 89 8 87 77 66 10 15 12 100 25 92 47 21 78 20 63 13 49 41 36 41 79 16 87 87 69 3 76 80 60 100 49 70 59 72 8 38 71 45 97 71 14 76 54 81 4 59 46 39 29 92 3 49 22 53 99 59 52 74 31 92 43 42 23 44 9 82 47 7 40 12 9 3 55 37 85 46 22 84 52 98 41 21 77 63 17 62 91",
"output": "3 100 3 100 3 99 4 98 7 97 8 92 8 92 8 92 9 92 9 91 10 89 12 87 12 87 13 87 14 86 14 85 15 84 15 82 16 82 17 81 17 81 20 80 21 79 21 78 22 78 22 77 23 77 25 76 29 76 31 74 36 72 37 71 37 71 38 70 39 69 40 66 41 64 41 63 41 63 42 62 43 60 44 59 45 59 46 59 46 55 47 54 47 53 49 52 49 52 49 51"
},
{
"input": "3\n1 2 6",
"output": "1 6 2"
},
{
"input": "136\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"
},
{
"input": "3\n1 2 3",
"output": "1 3 2"
},
{
"input": "7\n999999998 999999999 999999999 999999999 999999999 999999999 1000000000",
"output": "999999998 1000000000 999999999 999999999 999999999 999999999 999999999"
},
{
"input": "3\n100 1 2",
"output": "1 100 2"
}
] | 1,550,227,238
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 93
| 0
|
a,c = map(int,input().split())
if c+1 == a or a == c:
print(c-1)
exit()
if a > c:
print(c-1)
"""
"""
n = int(input())
a = list(map(int,input().split()))
z= []
for i in range(n):
if i % 2 == 0:
if a[i] >= a[i-1]:
z.append(a[i])
z.append(a[i-1])
z.reverse()
print(z)
for i in z:
print(i,end = " ")
|
Title: z-sort
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A student of *z*-school found a kind of sorting called *z*-sort. The array *a* with *n* elements are *z*-sorted if two conditions hold:
1. *a**i*<=≥<=*a**i*<=-<=1 for all even *i*, 1. *a**i*<=≤<=*a**i*<=-<=1 for all odd *i*<=><=1.
For example the arrays [1,2,1,2] and [1,1,1,1] are *z*-sorted while the array [1,2,3,4] isn’t *z*-sorted.
Can you make the array *z*-sorted?
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of elements in the array *a*.
The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=109) — the elements of the array *a*.
Output Specification:
If it's possible to make the array *a* *z*-sorted print *n* space separated integers *a**i* — the elements after *z*-sort. Otherwise print the only word "Impossible".
Demo Input:
['4\n1 2 2 1\n', '5\n1 3 2 2 5\n']
Demo Output:
['1 2 1 2\n', '1 5 2 3 2\n']
Note:
none
|
```python
a,c = map(int,input().split())
if c+1 == a or a == c:
print(c-1)
exit()
if a > c:
print(c-1)
"""
"""
n = int(input())
a = list(map(int,input().split()))
z= []
for i in range(n):
if i % 2 == 0:
if a[i] >= a[i-1]:
z.append(a[i])
z.append(a[i-1])
z.reverse()
print(z)
for i in z:
print(i,end = " ")
```
| -1
|
|
2
|
A
|
Winner
|
PROGRAMMING
| 1,500
|
[
"hashing",
"implementation"
] |
A. Winner
|
1
|
64
|
The winner of the card game popular in Berland "Berlogging" is determined according to the following rules. If at the end of the game there is only one player with the maximum number of points, he is the winner. The situation becomes more difficult if the number of such players is more than one. During each round a player gains or loses a particular number of points. In the course of the game the number of points is registered in the line "name score", where name is a player's name, and score is the number of points gained in this round, which is an integer number. If score is negative, this means that the player has lost in the round. So, if two or more players have the maximum number of points (say, it equals to *m*) at the end of the game, than wins the one of them who scored at least *m* points first. Initially each player has 0 points. It's guaranteed that at the end of the game at least one player has a positive number of points.
|
The first line contains an integer number *n* (1<=<=≤<=<=*n*<=<=≤<=<=1000), *n* is the number of rounds played. Then follow *n* lines, containing the information about the rounds in "name score" format in chronological order, where name is a string of lower-case Latin letters with the length from 1 to 32, and score is an integer number between -1000 and 1000, inclusive.
|
Print the name of the winner.
|
[
"3\nmike 3\nandrew 5\nmike 2\n",
"3\nandrew 3\nandrew 2\nmike 5\n"
] |
[
"andrew\n",
"andrew\n"
] |
none
| 0
|
[
{
"input": "3\nmike 3\nandrew 5\nmike 2",
"output": "andrew"
},
{
"input": "3\nandrew 3\nandrew 2\nmike 5",
"output": "andrew"
},
{
"input": "5\nkaxqybeultn -352\nmgochgrmeyieyskhuourfg -910\nkaxqybeultn 691\nmgochgrmeyieyskhuourfg -76\nkaxqybeultn -303",
"output": "kaxqybeultn"
},
{
"input": "7\nksjuuerbnlklcfdjeyq 312\ndthjlkrvvbyahttifpdewvyslsh -983\nksjuuerbnlklcfdjeyq 268\ndthjlkrvvbyahttifpdewvyslsh 788\nksjuuerbnlklcfdjeyq -79\nksjuuerbnlklcfdjeyq -593\nksjuuerbnlklcfdjeyq 734",
"output": "ksjuuerbnlklcfdjeyq"
},
{
"input": "12\natrtthfpcvishmqbakprquvnejr 185\natrtthfpcvishmqbakprquvnejr -699\natrtthfpcvishmqbakprquvnejr -911\natrtthfpcvishmqbakprquvnejr -220\nfcgslzkicjrpbqaifgweyzreajjfdo 132\nfcgslzkicjrpbqaifgweyzreajjfdo -242\nm 177\nm -549\natrtthfpcvishmqbakprquvnejr -242\nm 38\natrtthfpcvishmqbakprquvnejr -761\nfcgslzkicjrpbqaifgweyzreajjfdo 879",
"output": "fcgslzkicjrpbqaifgweyzreajjfdo"
},
{
"input": "15\naawtvezfntstrcpgbzjbf 681\nzhahpvqiptvksnbjkdvmknb -74\naawtvezfntstrcpgbzjbf 661\njpdwmyke 474\naawtvezfntstrcpgbzjbf -547\naawtvezfntstrcpgbzjbf 600\nzhahpvqiptvksnbjkdvmknb -11\njpdwmyke 711\nbjmj 652\naawtvezfntstrcpgbzjbf -1000\naawtvezfntstrcpgbzjbf -171\nbjmj -302\naawtvezfntstrcpgbzjbf 961\nzhahpvqiptvksnbjkdvmknb 848\nbjmj -735",
"output": "aawtvezfntstrcpgbzjbf"
},
{
"input": "17\nqdplghhx -649\nivhgbxiv 424\nivhgbxiv -72\nivhgbxiv 479\nugowfouebkelargxylsxn 83\nugowfouebkelargxylsxn -840\nivhgbxiv 382\nqdplghhx -904\nivhgbxiv -710\nugowfouebkelargxylsxn -838\nqdplghhx -974\nqdplghhx 571\nivhgbxiv -145\nugowfouebkelargxylsxn -788\nivhgbxiv 209\nivhgbxiv 420\nqdplghhx -158",
"output": "ivhgbxiv"
}
] | 1,568,728,474
| 2,147,483,647
|
PyPy 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 404
| 2,457,600
|
n = int(input())
dic={}
idic = {}
for i in range(n):
a,b = input().split()
if a not in dic:
dic[a] = {int(b):i}
elif a in dic:
dic[a][int(b)] = i
#print(dic)
k = list(dic.keys())
l = [[] for i in range(len(k))]
for i in range(len(k)):
l[i] = list(dic[k[i]].keys())
#print(l)
h = []
def sumation(self,li):
sum = 0
for i in range(len(li)):
sum += li[i]
return sum
for i in range(len(k)):
h.append(sum(l[i]))
#print(h)
#print(k)
gg = max(h)
keys_with_max_values = []
for i in range(len(k)):
if h[i] == gg:
keys_with_max_values.append(k[i])
#print(keys_with_max_values)
diction = {}
mini = 0
for i in range(len(keys_with_max_values)):
cc = list(dic[keys_with_max_values[i]].keys())
#print(cc)
for j in range(len(cc)-1):
mini = mini + cc[j]
if mini >= gg:
diction[keys_with_max_values[i]] = j
mini = 0
#print(diction)
#print(diction,key = lamda k:diction[k])
fff = list(diction.keys())
aaa = list(diction.values())
#print(aaa)
#print(fff)
jjjjjj = min(aaa)
print(fff[aaa.index(jjjjjj)])
|
Title: Winner
Time Limit: 1 seconds
Memory Limit: 64 megabytes
Problem Description:
The winner of the card game popular in Berland "Berlogging" is determined according to the following rules. If at the end of the game there is only one player with the maximum number of points, he is the winner. The situation becomes more difficult if the number of such players is more than one. During each round a player gains or loses a particular number of points. In the course of the game the number of points is registered in the line "name score", where name is a player's name, and score is the number of points gained in this round, which is an integer number. If score is negative, this means that the player has lost in the round. So, if two or more players have the maximum number of points (say, it equals to *m*) at the end of the game, than wins the one of them who scored at least *m* points first. Initially each player has 0 points. It's guaranteed that at the end of the game at least one player has a positive number of points.
Input Specification:
The first line contains an integer number *n* (1<=<=≤<=<=*n*<=<=≤<=<=1000), *n* is the number of rounds played. Then follow *n* lines, containing the information about the rounds in "name score" format in chronological order, where name is a string of lower-case Latin letters with the length from 1 to 32, and score is an integer number between -1000 and 1000, inclusive.
Output Specification:
Print the name of the winner.
Demo Input:
['3\nmike 3\nandrew 5\nmike 2\n', '3\nandrew 3\nandrew 2\nmike 5\n']
Demo Output:
['andrew\n', 'andrew\n']
Note:
none
|
```python
n = int(input())
dic={}
idic = {}
for i in range(n):
a,b = input().split()
if a not in dic:
dic[a] = {int(b):i}
elif a in dic:
dic[a][int(b)] = i
#print(dic)
k = list(dic.keys())
l = [[] for i in range(len(k))]
for i in range(len(k)):
l[i] = list(dic[k[i]].keys())
#print(l)
h = []
def sumation(self,li):
sum = 0
for i in range(len(li)):
sum += li[i]
return sum
for i in range(len(k)):
h.append(sum(l[i]))
#print(h)
#print(k)
gg = max(h)
keys_with_max_values = []
for i in range(len(k)):
if h[i] == gg:
keys_with_max_values.append(k[i])
#print(keys_with_max_values)
diction = {}
mini = 0
for i in range(len(keys_with_max_values)):
cc = list(dic[keys_with_max_values[i]].keys())
#print(cc)
for j in range(len(cc)-1):
mini = mini + cc[j]
if mini >= gg:
diction[keys_with_max_values[i]] = j
mini = 0
#print(diction)
#print(diction,key = lamda k:diction[k])
fff = list(diction.keys())
aaa = list(diction.values())
#print(aaa)
#print(fff)
jjjjjj = min(aaa)
print(fff[aaa.index(jjjjjj)])
```
| -1
|
109
|
A
|
Lucky Sum of Digits
|
PROGRAMMING
| 1,000
|
[
"brute force",
"implementation"
] |
A. Lucky Sum of Digits
|
2
|
256
|
Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
Petya wonders eagerly what minimum lucky number has the sum of digits equal to *n*. Help him cope with the task.
|
The single line contains an integer *n* (1<=≤<=*n*<=≤<=106) — the sum of digits of the required lucky number.
|
Print on the single line the result — the minimum lucky number, whose sum of digits equals *n*. If such number does not exist, print -1.
|
[
"11\n",
"10\n"
] |
[
"47\n",
"-1\n"
] |
none
| 500
|
[
{
"input": "11",
"output": "47"
},
{
"input": "10",
"output": "-1"
},
{
"input": "64",
"output": "4477777777"
},
{
"input": "1",
"output": "-1"
},
{
"input": "4",
"output": "4"
},
{
"input": "7",
"output": "7"
},
{
"input": "12",
"output": "444"
},
{
"input": "1000000",
"output": "4477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "47",
"output": "44477777"
},
{
"input": "100",
"output": "4444777777777777"
},
{
"input": "700",
"output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777"
},
{
"input": "485",
"output": "44447777777777777777777777777777777777777777777777777777777777777777777"
},
{
"input": "111",
"output": "444447777777777777"
},
{
"input": "85",
"output": "4477777777777"
},
{
"input": "114",
"output": "444477777777777777"
},
{
"input": "474",
"output": "444777777777777777777777777777777777777777777777777777777777777777777"
},
{
"input": "74",
"output": "47777777777"
},
{
"input": "1000",
"output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777"
},
{
"input": "1024",
"output": "4444777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777"
},
{
"input": "4444",
"output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "45784",
"output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "10000",
"output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "9854",
"output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "186",
"output": "477777777777777777777777777"
},
{
"input": "10416",
"output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "10417",
"output": "4477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "3840",
"output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "100000",
"output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "9876",
"output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "99999",
"output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "777777",
"output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "854759",
"output": "4444447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "11000",
"output": "4444447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "18951",
"output": "4444777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "999999",
"output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "888887",
"output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "999998",
"output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "40008",
"output": "4444447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "10691",
"output": "4444777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "5",
"output": "-1"
},
{
"input": "6",
"output": "-1"
},
{
"input": "9",
"output": "-1"
},
{
"input": "8",
"output": "44"
},
{
"input": "2",
"output": "-1"
},
{
"input": "3",
"output": "-1"
},
{
"input": "999997",
"output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "999996",
"output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "999990",
"output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "999980",
"output": "4444777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "800000",
"output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "980000",
"output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
}
] | 1,646,251,172
| 2,147,483,647
|
Python 3
|
COMPILATION_ERROR
|
TESTS
| 0
| 0
| 0
|
#include <iostream>
using namespace std;
string add( char s ,int number)
{
string result="";
for (int i=0;i<number;i++)
{
result+=s;
}
return result;
}
int main()
{
int inp;
cin>>inp;
string result="";
bool check=true;
while (true)
{
if (inp%7==0)
{
result+=add('7',inp%7);
}
inp-=4;
result+='4';
if (inp<4 && inp!=0 or inp*-1 !=inp)
{
cout<<-1;
check=false;
break;
}
if (check)
{
cout << result;
}
|
Title: Lucky Sum of Digits
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
Petya wonders eagerly what minimum lucky number has the sum of digits equal to *n*. Help him cope with the task.
Input Specification:
The single line contains an integer *n* (1<=≤<=*n*<=≤<=106) — the sum of digits of the required lucky number.
Output Specification:
Print on the single line the result — the minimum lucky number, whose sum of digits equals *n*. If such number does not exist, print -1.
Demo Input:
['11\n', '10\n']
Demo Output:
['47\n', '-1\n']
Note:
none
|
```python
#include <iostream>
using namespace std;
string add( char s ,int number)
{
string result="";
for (int i=0;i<number;i++)
{
result+=s;
}
return result;
}
int main()
{
int inp;
cin>>inp;
string result="";
bool check=true;
while (true)
{
if (inp%7==0)
{
result+=add('7',inp%7);
}
inp-=4;
result+='4';
if (inp<4 && inp!=0 or inp*-1 !=inp)
{
cout<<-1;
check=false;
break;
}
if (check)
{
cout << result;
}
```
| -1
|
34
|
B
|
Sale
|
PROGRAMMING
| 900
|
[
"greedy",
"sortings"
] |
B. Sale
|
2
|
256
|
Once Bob got to a sale of old TV sets. There were *n* TV sets at that sale. TV set with index *i* costs *a**i* bellars. Some TV sets have a negative price — their owners are ready to pay Bob if he buys their useless apparatus. Bob can «buy» any TV sets he wants. Though he's very strong, Bob can carry at most *m* TV sets, and he has no desire to go to the sale for the second time. Please, help Bob find out the maximum sum of money that he can earn.
|
The first line contains two space-separated integers *n* and *m* (1<=≤<=*m*<=≤<=*n*<=≤<=100) — amount of TV sets at the sale, and amount of TV sets that Bob can carry. The following line contains *n* space-separated integers *a**i* (<=-<=1000<=≤<=*a**i*<=≤<=1000) — prices of the TV sets.
|
Output the only number — the maximum sum of money that Bob can earn, given that he can carry at most *m* TV sets.
|
[
"5 3\n-6 0 35 -2 4\n",
"4 2\n7 0 0 -7\n"
] |
[
"8\n",
"7\n"
] |
none
| 1,000
|
[
{
"input": "5 3\n-6 0 35 -2 4",
"output": "8"
},
{
"input": "4 2\n7 0 0 -7",
"output": "7"
},
{
"input": "6 6\n756 -611 251 -66 572 -818",
"output": "1495"
},
{
"input": "5 5\n976 437 937 788 518",
"output": "0"
},
{
"input": "5 3\n-2 -2 -2 -2 -2",
"output": "6"
},
{
"input": "5 1\n998 997 985 937 998",
"output": "0"
},
{
"input": "2 2\n-742 -187",
"output": "929"
},
{
"input": "3 3\n522 597 384",
"output": "0"
},
{
"input": "4 2\n-215 -620 192 647",
"output": "835"
},
{
"input": "10 6\n557 605 685 231 910 633 130 838 -564 -85",
"output": "649"
},
{
"input": "20 14\n932 442 960 943 624 624 955 998 631 910 850 517 715 123 1000 155 -10 961 966 59",
"output": "10"
},
{
"input": "30 5\n991 997 996 967 977 999 991 986 1000 965 984 997 998 1000 958 983 974 1000 991 999 1000 978 961 992 990 998 998 978 998 1000",
"output": "0"
},
{
"input": "50 20\n-815 -947 -946 -993 -992 -846 -884 -954 -963 -733 -940 -746 -766 -930 -821 -937 -937 -999 -914 -938 -936 -975 -939 -981 -977 -952 -925 -901 -952 -978 -994 -957 -946 -896 -905 -836 -994 -951 -887 -939 -859 -953 -985 -988 -946 -829 -956 -842 -799 -886",
"output": "19441"
},
{
"input": "88 64\n999 999 1000 1000 999 996 995 1000 1000 999 1000 997 998 1000 999 1000 997 1000 993 998 994 999 998 996 1000 997 1000 1000 1000 997 1000 998 997 1000 1000 998 1000 998 999 1000 996 999 999 999 996 995 999 1000 998 999 1000 999 999 1000 1000 1000 996 1000 1000 1000 997 1000 1000 997 999 1000 1000 1000 1000 1000 999 999 1000 1000 996 999 1000 1000 995 999 1000 996 1000 998 999 999 1000 999",
"output": "0"
},
{
"input": "99 17\n-993 -994 -959 -989 -991 -995 -976 -997 -990 -1000 -996 -994 -999 -995 -1000 -983 -979 -1000 -989 -968 -994 -992 -962 -993 -999 -983 -991 -979 -995 -993 -973 -999 -995 -995 -999 -993 -995 -992 -947 -1000 -999 -998 -982 -988 -979 -993 -963 -988 -980 -990 -979 -976 -995 -999 -981 -988 -998 -999 -970 -1000 -983 -994 -943 -975 -998 -977 -973 -997 -959 -999 -983 -985 -950 -977 -977 -991 -998 -973 -987 -985 -985 -986 -984 -994 -978 -998 -989 -989 -988 -970 -985 -974 -997 -981 -962 -972 -995 -988 -993",
"output": "16984"
},
{
"input": "100 37\n205 19 -501 404 912 -435 -322 -469 -655 880 -804 -470 793 312 -108 586 -642 -928 906 605 -353 -800 745 -440 -207 752 -50 -28 498 -800 -62 -195 602 -833 489 352 536 404 -775 23 145 -512 524 759 651 -461 -427 -557 684 -366 62 592 -563 -811 64 418 -881 -308 591 -318 -145 -261 -321 -216 -18 595 -202 960 -4 219 226 -238 -882 -963 425 970 -434 -160 243 -672 -4 873 8 -633 904 -298 -151 -377 -61 -72 -677 -66 197 -716 3 -870 -30 152 -469 981",
"output": "21743"
},
{
"input": "100 99\n-931 -806 -830 -828 -916 -962 -660 -867 -952 -966 -820 -906 -724 -982 -680 -717 -488 -741 -897 -613 -986 -797 -964 -939 -808 -932 -810 -860 -641 -916 -858 -628 -821 -929 -917 -976 -664 -985 -778 -665 -624 -928 -940 -958 -884 -757 -878 -896 -634 -526 -514 -873 -990 -919 -988 -878 -650 -973 -774 -783 -733 -648 -756 -895 -833 -974 -832 -725 -841 -748 -806 -613 -924 -867 -881 -943 -864 -991 -809 -926 -777 -817 -998 -682 -910 -996 -241 -722 -964 -904 -821 -920 -835 -699 -805 -632 -779 -317 -915 -654",
"output": "81283"
},
{
"input": "100 14\n995 994 745 684 510 737 984 690 979 977 542 933 871 603 758 653 962 997 747 974 773 766 975 770 527 960 841 989 963 865 974 967 950 984 757 685 986 809 982 959 931 880 978 867 805 562 970 900 834 782 616 885 910 608 974 918 576 700 871 980 656 941 978 759 767 840 573 859 841 928 693 853 716 927 976 851 962 962 627 797 707 873 869 988 993 533 665 887 962 880 929 980 877 887 572 790 721 883 848 782",
"output": "0"
},
{
"input": "100 84\n768 946 998 752 931 912 826 1000 991 910 875 962 901 952 958 733 959 908 872 840 923 826 952 980 974 980 947 955 959 822 997 963 966 933 829 923 971 999 926 932 865 984 974 858 994 855 949 941 992 861 951 949 991 711 763 728 935 485 716 907 869 952 960 859 909 963 978 942 968 933 923 909 997 962 687 764 924 774 875 1000 961 951 987 974 848 921 966 859 995 997 974 931 886 941 974 986 906 978 998 823",
"output": "0"
},
{
"input": "100 80\n-795 -994 -833 -930 -974 -980 -950 -940 -788 -927 -583 -956 -945 -949 -809 -974 -957 -736 -967 -908 -975 -961 -986 -983 -963 -771 -952 -847 -751 -741 -982 -959 -925 -931 -839 -937 -880 -914 -858 -998 -812 -911 -862 -965 -943 -984 -738 -920 -950 -998 -909 -998 -781 -901 -677 -940 -985 -951 -675 -952 -967 -949 -882 -641 -969 -937 -975 -993 -913 -941 -807 -851 -832 -960 -939 -943 -895 -929 -528 -880 -823 -930 -888 -862 -948 -966 -962 -857 -799 -969 -833 -998 -952 -878 -946 -971 -976 -974 -723 -992",
"output": "75068"
},
{
"input": "1 1\n0",
"output": "0"
},
{
"input": "1 1\n1",
"output": "0"
},
{
"input": "1 1\n555",
"output": "0"
},
{
"input": "1 1\n-1",
"output": "1"
},
{
"input": "1 1\n-24",
"output": "24"
}
] | 1,673,884,332
| 2,147,483,647
|
PyPy 3-64
|
COMPILATION_ERROR
|
TESTS
| 0
| 0
| 0
|
By Motasem_Obeidat, contest: Codeforces Beta Round #34 (Div. 2), problem: (B) Sale, Wrong answer on test 13, #, Copy
n,m = map(int,input().split())
l = list(map(int,input().split()))
c = 0
x=0
for u in range(len(l)):
if x==m:
break
if l[u]<0:
c+=abs(l[u])
x+=1
print(c)
|
Title: Sale
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Once Bob got to a sale of old TV sets. There were *n* TV sets at that sale. TV set with index *i* costs *a**i* bellars. Some TV sets have a negative price — their owners are ready to pay Bob if he buys their useless apparatus. Bob can «buy» any TV sets he wants. Though he's very strong, Bob can carry at most *m* TV sets, and he has no desire to go to the sale for the second time. Please, help Bob find out the maximum sum of money that he can earn.
Input Specification:
The first line contains two space-separated integers *n* and *m* (1<=≤<=*m*<=≤<=*n*<=≤<=100) — amount of TV sets at the sale, and amount of TV sets that Bob can carry. The following line contains *n* space-separated integers *a**i* (<=-<=1000<=≤<=*a**i*<=≤<=1000) — prices of the TV sets.
Output Specification:
Output the only number — the maximum sum of money that Bob can earn, given that he can carry at most *m* TV sets.
Demo Input:
['5 3\n-6 0 35 -2 4\n', '4 2\n7 0 0 -7\n']
Demo Output:
['8\n', '7\n']
Note:
none
|
```python
By Motasem_Obeidat, contest: Codeforces Beta Round #34 (Div. 2), problem: (B) Sale, Wrong answer on test 13, #, Copy
n,m = map(int,input().split())
l = list(map(int,input().split()))
c = 0
x=0
for u in range(len(l)):
if x==m:
break
if l[u]<0:
c+=abs(l[u])
x+=1
print(c)
```
| -1
|
1,009
|
B
|
Minimum Ternary String
|
PROGRAMMING
| 1,400
|
[
"greedy",
"implementation"
] | null | null |
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves:
- "010210" $\rightarrow$ "100210"; - "010210" $\rightarrow$ "001210"; - "010210" $\rightarrow$ "010120"; - "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
|
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
|
Print a single string — the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
|
[
"100210\n",
"11222121\n",
"20\n"
] |
[
"001120\n",
"11112222\n",
"20\n"
] |
none
| 0
|
[
{
"input": "100210",
"output": "001120"
},
{
"input": "11222121",
"output": "11112222"
},
{
"input": "20",
"output": "20"
},
{
"input": "1002",
"output": "0012"
},
{
"input": "10",
"output": "01"
},
{
"input": "000021",
"output": "000012"
},
{
"input": "021",
"output": "012"
},
{
"input": "2",
"output": "2"
},
{
"input": "201",
"output": "120"
},
{
"input": "2112120",
"output": "1112220"
},
{
"input": "102",
"output": "012"
},
{
"input": "202",
"output": "202"
},
{
"input": "220201",
"output": "122020"
},
{
"input": "12",
"output": "12"
},
{
"input": "100022202",
"output": "000122202"
},
{
"input": "01",
"output": "01"
},
{
"input": "1",
"output": "1"
}
] | 1,532,165,385
| 2,147,483,647
|
PyPy 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 8
| 1,000
| 9,932,800
|
string = input()
ones, zeros, sawTwo, endString = "", "", False, ""
for i in string:
if i == "1": ones += "1"
elif i == "0" and sawTwo: endString += "0"
elif i == "0" and not sawTwo: zeros += "0"
elif i == "2":
endString += "2"
sawTwo = True
print(zeros + ones + endString)
|
Title: Minimum Ternary String
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given a ternary string (it is a string which consists only of characters '0', '1' and '2').
You can swap any two adjacent (consecutive) characters '0' and '1' (i.e. replace "01" with "10" or vice versa) or any two adjacent (consecutive) characters '1' and '2' (i.e. replace "12" with "21" or vice versa).
For example, for string "010210" we can perform the following moves:
- "010210" $\rightarrow$ "100210"; - "010210" $\rightarrow$ "001210"; - "010210" $\rightarrow$ "010120"; - "010210" $\rightarrow$ "010201".
Note than you cannot swap "02" $\rightarrow$ "20" and vice versa. You cannot perform any other operations with the given string excluding described above.
You task is to obtain the minimum possible (lexicographically) string by using these swaps arbitrary number of times (possibly, zero).
String $a$ is lexicographically less than string $b$ (if strings $a$ and $b$ have the same length) if there exists some position $i$ ($1 \le i \le |a|$, where $|s|$ is the length of the string $s$) such that for every $j < i$ holds $a_j = b_j$, and $a_i < b_i$.
Input Specification:
The first line of the input contains the string $s$ consisting only of characters '0', '1' and '2', its length is between $1$ and $10^5$ (inclusive).
Output Specification:
Print a single string — the minimum possible (lexicographically) string you can obtain by using the swaps described above arbitrary number of times (possibly, zero).
Demo Input:
['100210\n', '11222121\n', '20\n']
Demo Output:
['001120\n', '11112222\n', '20\n']
Note:
none
|
```python
string = input()
ones, zeros, sawTwo, endString = "", "", False, ""
for i in string:
if i == "1": ones += "1"
elif i == "0" and sawTwo: endString += "0"
elif i == "0" and not sawTwo: zeros += "0"
elif i == "2":
endString += "2"
sawTwo = True
print(zeros + ones + endString)
```
| 0
|
|
445
|
A
|
DZY Loves Chessboard
|
PROGRAMMING
| 1,200
|
[
"dfs and similar",
"implementation"
] | null | null |
DZY loves chessboard, and he enjoys playing with it.
He has a chessboard of *n* rows and *m* columns. Some cells of the chessboard are bad, others are good. For every good cell, DZY wants to put a chessman on it. Each chessman is either white or black. After putting all chessmen, DZY wants that no two chessmen with the same color are on two adjacent cells. Two cells are adjacent if and only if they share a common edge.
You task is to find any suitable placement of chessmen on the given chessboard.
|
The first line contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100).
Each of the next *n* lines contains a string of *m* characters: the *j*-th character of the *i*-th string is either "." or "-". A "." means that the corresponding cell (in the *i*-th row and the *j*-th column) is good, while a "-" means it is bad.
|
Output must contain *n* lines, each line must contain a string of *m* characters. The *j*-th character of the *i*-th string should be either "W", "B" or "-". Character "W" means the chessman on the cell is white, "B" means it is black, "-" means the cell is a bad cell.
If multiple answers exist, print any of them. It is guaranteed that at least one answer exists.
|
[
"1 1\n.\n",
"2 2\n..\n..\n",
"3 3\n.-.\n---\n--."
] |
[
"B\n",
"BW\nWB\n",
"B-B\n---\n--B"
] |
In the first sample, DZY puts a single black chessman. Of course putting a white one is also OK.
In the second sample, all 4 cells are good. No two same chessmen share an edge in the sample output.
In the third sample, no good cells are adjacent. So you can just put 3 chessmen, no matter what their colors are.
| 500
|
[
{
"input": "1 1\n.",
"output": "B"
},
{
"input": "2 2\n..\n..",
"output": "BW\nWB"
},
{
"input": "3 3\n.-.\n---\n--.",
"output": "B-B\n---\n--B"
},
{
"input": "3 1\n-\n.\n.",
"output": "-\nW\nB"
},
{
"input": "11 11\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------",
"output": "-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------"
},
{
"input": "1 1\n-",
"output": "-"
},
{
"input": "4 2\n..\n..\n..\n..",
"output": "BW\nWB\nBW\nWB"
},
{
"input": "5 1\n.\n.\n.\n.\n.",
"output": "B\nW\nB\nW\nB"
}
] | 1,637,997,928
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 2
| 31
| 0
|
n,m=list(map(int,input().split()))
grid=[input() for i in range(n)]
ans1,ans2='',''
for i in range(m):
if i%2==0:
ans1+='B'
ans2+='W'
else:
ans1+='W'
ans2+='B'
for i in range(n):
if i%2==0:
print(ans1)
else:print(ans2)
|
Title: DZY Loves Chessboard
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
DZY loves chessboard, and he enjoys playing with it.
He has a chessboard of *n* rows and *m* columns. Some cells of the chessboard are bad, others are good. For every good cell, DZY wants to put a chessman on it. Each chessman is either white or black. After putting all chessmen, DZY wants that no two chessmen with the same color are on two adjacent cells. Two cells are adjacent if and only if they share a common edge.
You task is to find any suitable placement of chessmen on the given chessboard.
Input Specification:
The first line contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100).
Each of the next *n* lines contains a string of *m* characters: the *j*-th character of the *i*-th string is either "." or "-". A "." means that the corresponding cell (in the *i*-th row and the *j*-th column) is good, while a "-" means it is bad.
Output Specification:
Output must contain *n* lines, each line must contain a string of *m* characters. The *j*-th character of the *i*-th string should be either "W", "B" or "-". Character "W" means the chessman on the cell is white, "B" means it is black, "-" means the cell is a bad cell.
If multiple answers exist, print any of them. It is guaranteed that at least one answer exists.
Demo Input:
['1 1\n.\n', '2 2\n..\n..\n', '3 3\n.-.\n---\n--.']
Demo Output:
['B\n', 'BW\nWB\n', 'B-B\n---\n--B']
Note:
In the first sample, DZY puts a single black chessman. Of course putting a white one is also OK.
In the second sample, all 4 cells are good. No two same chessmen share an edge in the sample output.
In the third sample, no good cells are adjacent. So you can just put 3 chessmen, no matter what their colors are.
|
```python
n,m=list(map(int,input().split()))
grid=[input() for i in range(n)]
ans1,ans2='',''
for i in range(m):
if i%2==0:
ans1+='B'
ans2+='W'
else:
ans1+='W'
ans2+='B'
for i in range(n):
if i%2==0:
print(ans1)
else:print(ans2)
```
| 0
|
|
897
|
B
|
Chtholly's request
|
PROGRAMMING
| 1,300
|
[
"brute force"
] | null | null |
— I experienced so many great things.
— You gave me memories like dreams... But I have to leave now...
— One last request, can you...
— Help me solve a Codeforces problem?
— ......
— What?
Chtholly has been thinking about a problem for days:
If a number is palindrome and length of its decimal representation without leading zeros is even, we call it a zcy number. A number is palindrome means when written in decimal representation, it contains no leading zeros and reads the same forwards and backwards. For example 12321 and 1221 are palindromes and 123 and 12451 are not. Moreover, 1221 is zcy number and 12321 is not.
Given integers *k* and *p*, calculate the sum of the *k* smallest zcy numbers and output this sum modulo *p*.
Unfortunately, Willem isn't good at solving this kind of problems, so he asks you for help!
|
The first line contains two integers *k* and *p* (1<=≤<=*k*<=≤<=105,<=1<=≤<=*p*<=≤<=109).
|
Output single integer — answer to the problem.
|
[
"2 100\n",
"5 30\n"
] |
[
"33\n",
"15\n"
] |
In the first example, the smallest zcy number is 11, and the second smallest zcy number is 22.
In the second example, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/68fffad54395f7d920ad0384e07c6215ddc64141.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
| 1,000
|
[
{
"input": "2 100",
"output": "33"
},
{
"input": "5 30",
"output": "15"
},
{
"input": "42147 412393322",
"output": "251637727"
},
{
"input": "77809 868097296",
"output": "440411873"
},
{
"input": "5105 443422097",
"output": "363192634"
},
{
"input": "75615 376679484",
"output": "373089399"
},
{
"input": "22951 23793302",
"output": "1898631"
},
{
"input": "12785 993582106",
"output": "286204743"
},
{
"input": "60276 428978808",
"output": "376477293"
},
{
"input": "84776 104860385",
"output": "10209596"
},
{
"input": "41984 653766991",
"output": "17823101"
},
{
"input": "100000 1000000000",
"output": "495495496"
},
{
"input": "41163 472310076",
"output": "207304047"
},
{
"input": "6983 765352180",
"output": "586866999"
},
{
"input": "33493 967727004",
"output": "305705165"
},
{
"input": "90898 94010922",
"output": "65928728"
},
{
"input": "67298 349286579",
"output": "156435206"
},
{
"input": "92452 296773064",
"output": "229486976"
},
{
"input": "58832 563860457",
"output": "16775206"
},
{
"input": "90234 156145441",
"output": "44023160"
},
{
"input": "91454 977186148",
"output": "681779748"
},
{
"input": "11108 444095250",
"output": "188075844"
},
{
"input": "46304 584475527",
"output": "275627129"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 1000000000",
"output": "11"
},
{
"input": "100000 1",
"output": "0"
}
] | 1,645,090,209
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 30
| 0
|
a, k = map(int, input().split())
sm = 0
for i in range(1, a + 1):
k = str(i)
sm += int(k + k[::-1])
sm %= k
print(sm % k)
# Thu Feb 17 2022 09:30:08 GMT+0000 (Coordinated Universal Time)
|
Title: Chtholly's request
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
— I experienced so many great things.
— You gave me memories like dreams... But I have to leave now...
— One last request, can you...
— Help me solve a Codeforces problem?
— ......
— What?
Chtholly has been thinking about a problem for days:
If a number is palindrome and length of its decimal representation without leading zeros is even, we call it a zcy number. A number is palindrome means when written in decimal representation, it contains no leading zeros and reads the same forwards and backwards. For example 12321 and 1221 are palindromes and 123 and 12451 are not. Moreover, 1221 is zcy number and 12321 is not.
Given integers *k* and *p*, calculate the sum of the *k* smallest zcy numbers and output this sum modulo *p*.
Unfortunately, Willem isn't good at solving this kind of problems, so he asks you for help!
Input Specification:
The first line contains two integers *k* and *p* (1<=≤<=*k*<=≤<=105,<=1<=≤<=*p*<=≤<=109).
Output Specification:
Output single integer — answer to the problem.
Demo Input:
['2 100\n', '5 30\n']
Demo Output:
['33\n', '15\n']
Note:
In the first example, the smallest zcy number is 11, and the second smallest zcy number is 22.
In the second example, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/68fffad54395f7d920ad0384e07c6215ddc64141.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
|
```python
a, k = map(int, input().split())
sm = 0
for i in range(1, a + 1):
k = str(i)
sm += int(k + k[::-1])
sm %= k
print(sm % k)
# Thu Feb 17 2022 09:30:08 GMT+0000 (Coordinated Universal Time)
```
| -1
|
|
580
|
B
|
Kefa and Company
|
PROGRAMMING
| 1,500
|
[
"binary search",
"sortings",
"two pointers"
] | null | null |
Kefa wants to celebrate his first big salary by going to restaurant. However, he needs company.
Kefa has *n* friends, each friend will agree to go to the restaurant if Kefa asks. Each friend is characterized by the amount of money he has and the friendship factor in respect to Kefa. The parrot doesn't want any friend to feel poor compared to somebody else in the company (Kefa doesn't count). A friend feels poor if in the company there is someone who has at least *d* units of money more than he does. Also, Kefa wants the total friendship factor of the members of the company to be maximum. Help him invite an optimal company!
|
The first line of the input contains two space-separated integers, *n* and *d* (1<=≤<=*n*<=≤<=105, ) — the number of Kefa's friends and the minimum difference between the amount of money in order to feel poor, respectively.
Next *n* lines contain the descriptions of Kefa's friends, the (*i*<=+<=1)-th line contains the description of the *i*-th friend of type *m**i*, *s**i* (0<=≤<=*m**i*,<=*s**i*<=≤<=109) — the amount of money and the friendship factor, respectively.
|
Print the maximum total friendship factir that can be reached.
|
[
"4 5\n75 5\n0 100\n150 20\n75 1\n",
"5 100\n0 7\n11 32\n99 10\n46 8\n87 54\n"
] |
[
"100\n",
"111\n"
] |
In the first sample test the most profitable strategy is to form a company from only the second friend. At all other variants the total degree of friendship will be worse.
In the second sample test we can take all the friends.
| 1,250
|
[
{
"input": "4 5\n75 5\n0 100\n150 20\n75 1",
"output": "100"
},
{
"input": "5 100\n0 7\n11 32\n99 10\n46 8\n87 54",
"output": "111"
},
{
"input": "1 1000000000\n15 12",
"output": "12"
},
{
"input": "5 1\n5 9\n2 10\n8 5\n18 12\n1 1",
"output": "12"
},
{
"input": "3 3\n4 15\n0 17\n9 11",
"output": "17"
},
{
"input": "5 10\n8 90\n1009 1000000\n9 121\n10 298\n0 109092",
"output": "1000000"
},
{
"input": "5 9\n0 98\n2 1000000000\n8 1000000000\n5 999999999\n3 989898989",
"output": "3989899086"
},
{
"input": "4 2\n10909234 9\n10909236 8\n10909237 10\n10909235 98",
"output": "107"
},
{
"input": "3 1\n801 10101\n802 134509124\n801 1",
"output": "134509124"
},
{
"input": "4 1\n2 4\n2 2\n3 3\n3 3",
"output": "6"
},
{
"input": "8 5\n3 227589091\n12 131068951\n8 492784630\n20 918918112\n11 6972428\n20 585402296\n12 220234661\n1 225083234",
"output": "1504320408"
},
{
"input": "15 1234\n2738 322313356\n1160 970909702\n2594 902749351\n3126 324754476\n3151 177963947\n3424 396145897\n5578 737768323\n3423 687640543\n381 848813098\n1058 197211286\n936 650181776\n1025 776492538\n3598 142176544\n3595 680519527\n1191 32199940",
"output": "3634263641"
},
{
"input": "5 6\n5 11\n10 11\n11 11\n12 11\n100 1",
"output": "33"
},
{
"input": "7 6\n5 11\n9 11\n10 11\n11 11\n12 11\n13 11\n100 1",
"output": "55"
},
{
"input": "4 2\n1 1\n2 100\n3 100\n4 1",
"output": "200"
}
] | 1,688,396,188
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 14
| 2,000
| 18,636,800
|
from math import ceil
def get_input():
lines = []
user_input = input()
for i in user_input.split():
lines.append(int(i))
return lines
friends_total, diff_money = get_input()
money_friendship = []
for friend in range(0, friends_total):
money_friendship.append(get_input())
current_friendship_f = 0
current_money_sum = 0
current_friends = []
money_friendship = sorted(money_friendship)
l = 0
res = 0
for r in range(friends_total):
current_friends.append(money_friendship[r][0])
current_friendship_f += money_friendship[r][1]
while abs(money_friendship[l][0] - max(current_friends)) >= diff_money:
current_friends.remove(money_friendship[l][0])
current_friendship_f -= money_friendship[l][1]
l += 1
res = max(res, current_friendship_f)
print(res)
|
Title: Kefa and Company
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Kefa wants to celebrate his first big salary by going to restaurant. However, he needs company.
Kefa has *n* friends, each friend will agree to go to the restaurant if Kefa asks. Each friend is characterized by the amount of money he has and the friendship factor in respect to Kefa. The parrot doesn't want any friend to feel poor compared to somebody else in the company (Kefa doesn't count). A friend feels poor if in the company there is someone who has at least *d* units of money more than he does. Also, Kefa wants the total friendship factor of the members of the company to be maximum. Help him invite an optimal company!
Input Specification:
The first line of the input contains two space-separated integers, *n* and *d* (1<=≤<=*n*<=≤<=105, ) — the number of Kefa's friends and the minimum difference between the amount of money in order to feel poor, respectively.
Next *n* lines contain the descriptions of Kefa's friends, the (*i*<=+<=1)-th line contains the description of the *i*-th friend of type *m**i*, *s**i* (0<=≤<=*m**i*,<=*s**i*<=≤<=109) — the amount of money and the friendship factor, respectively.
Output Specification:
Print the maximum total friendship factir that can be reached.
Demo Input:
['4 5\n75 5\n0 100\n150 20\n75 1\n', '5 100\n0 7\n11 32\n99 10\n46 8\n87 54\n']
Demo Output:
['100\n', '111\n']
Note:
In the first sample test the most profitable strategy is to form a company from only the second friend. At all other variants the total degree of friendship will be worse.
In the second sample test we can take all the friends.
|
```python
from math import ceil
def get_input():
lines = []
user_input = input()
for i in user_input.split():
lines.append(int(i))
return lines
friends_total, diff_money = get_input()
money_friendship = []
for friend in range(0, friends_total):
money_friendship.append(get_input())
current_friendship_f = 0
current_money_sum = 0
current_friends = []
money_friendship = sorted(money_friendship)
l = 0
res = 0
for r in range(friends_total):
current_friends.append(money_friendship[r][0])
current_friendship_f += money_friendship[r][1]
while abs(money_friendship[l][0] - max(current_friends)) >= diff_money:
current_friends.remove(money_friendship[l][0])
current_friendship_f -= money_friendship[l][1]
l += 1
res = max(res, current_friendship_f)
print(res)
```
| 0
|
|
912
|
B
|
New Year's Eve
|
PROGRAMMING
| 1,300
|
[
"bitmasks",
"constructive algorithms",
"number theory"
] | null | null |
Since Grisha behaved well last year, at New Year's Eve he was visited by Ded Moroz who brought an enormous bag of gifts with him! The bag contains *n* sweet candies from the good ol' bakery, each labeled from 1 to *n* corresponding to its tastiness. No two candies have the same tastiness.
The choice of candies has a direct effect on Grisha's happiness. One can assume that he should take the tastiest ones — but no, the holiday magic turns things upside down. It is the xor-sum of tastinesses that matters, not the ordinary sum!
A xor-sum of a sequence of integers *a*1,<=*a*2,<=...,<=*a**m* is defined as the bitwise XOR of all its elements: , here denotes the bitwise XOR operation; more about bitwise XOR can be found [here.](https://en.wikipedia.org/wiki/Bitwise_operation#XOR)
Ded Moroz warned Grisha he has more houses to visit, so Grisha can take no more than *k* candies from the bag. Help Grisha determine the largest xor-sum (largest xor-sum means maximum happiness!) he can obtain.
|
The sole string contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=1018).
|
Output one number — the largest possible xor-sum.
|
[
"4 3\n",
"6 6\n"
] |
[
"7\n",
"7\n"
] |
In the first sample case, one optimal answer is 1, 2 and 4, giving the xor-sum of 7.
In the second sample case, one can, for example, take all six candies and obtain the xor-sum of 7.
| 1,000
|
[
{
"input": "4 3",
"output": "7"
},
{
"input": "6 6",
"output": "7"
},
{
"input": "2 2",
"output": "3"
},
{
"input": "1022 10",
"output": "1023"
},
{
"input": "415853337373441 52",
"output": "562949953421311"
},
{
"input": "75 12",
"output": "127"
},
{
"input": "1000000000000000000 1000000000000000000",
"output": "1152921504606846975"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "1000000000000000000 2",
"output": "1152921504606846975"
},
{
"input": "49194939 22",
"output": "67108863"
},
{
"input": "228104606 17",
"output": "268435455"
},
{
"input": "817034381 7",
"output": "1073741823"
},
{
"input": "700976748 4",
"output": "1073741823"
},
{
"input": "879886415 9",
"output": "1073741823"
},
{
"input": "18007336 10353515",
"output": "33554431"
},
{
"input": "196917003 154783328",
"output": "268435455"
},
{
"input": "785846777 496205300",
"output": "1073741823"
},
{
"input": "964756444 503568330",
"output": "1073741823"
},
{
"input": "848698811 317703059",
"output": "1073741823"
},
{
"input": "676400020444788 1",
"output": "676400020444788"
},
{
"input": "502643198528213 1",
"output": "502643198528213"
},
{
"input": "815936580997298686 684083143940282566",
"output": "1152921504606846975"
},
{
"input": "816762824175382110 752185261508428780",
"output": "1152921504606846975"
},
{
"input": "327942415253132295 222598158321260499",
"output": "576460752303423487"
},
{
"input": "328768654136248423 284493129147496637",
"output": "576460752303423487"
},
{
"input": "329594893019364551 25055600080496801",
"output": "576460752303423487"
},
{
"input": "921874985256864012 297786684518764536",
"output": "1152921504606846975"
},
{
"input": "922701224139980141 573634416190460758",
"output": "1152921504606846975"
},
{
"input": "433880815217730325 45629641110945892",
"output": "576460752303423487"
},
{
"input": "434707058395813749 215729375494216481",
"output": "576460752303423487"
},
{
"input": "435533301573897173 34078453236225189",
"output": "576460752303423487"
},
{
"input": "436359544751980597 199220719961060641",
"output": "576460752303423487"
},
{
"input": "437185783635096725 370972992240105630",
"output": "576460752303423487"
},
{
"input": "438012026813180149 111323110116193830",
"output": "576460752303423487"
},
{
"input": "438838269991263573 295468957052046146",
"output": "576460752303423487"
},
{
"input": "439664513169346997 46560240538186155",
"output": "576460752303423487"
},
{
"input": "440490752052463125 216165966013438147",
"output": "576460752303423487"
},
{
"input": "441316995230546549 401964286420555423",
"output": "576460752303423487"
},
{
"input": "952496582013329437 673506882352402278",
"output": "1152921504606846975"
},
{
"input": "1000000000000000000 1",
"output": "1000000000000000000"
},
{
"input": "2147483647 1",
"output": "2147483647"
},
{
"input": "2147483647 2",
"output": "2147483647"
},
{
"input": "2147483647 31",
"output": "2147483647"
},
{
"input": "8 2",
"output": "15"
},
{
"input": "3 3",
"output": "3"
},
{
"input": "4 1",
"output": "4"
},
{
"input": "10 2",
"output": "15"
},
{
"input": "288230376151711743 2",
"output": "288230376151711743"
},
{
"input": "5 2",
"output": "7"
},
{
"input": "576460752303423487 2",
"output": "576460752303423487"
},
{
"input": "36028797018963967 123",
"output": "36028797018963967"
},
{
"input": "1125899906842623 2",
"output": "1125899906842623"
},
{
"input": "576460752303423489 5",
"output": "1152921504606846975"
},
{
"input": "288230376151711743 3",
"output": "288230376151711743"
},
{
"input": "36028797018963967 345",
"output": "36028797018963967"
},
{
"input": "18014398509481984 30",
"output": "36028797018963967"
},
{
"input": "8 8",
"output": "15"
},
{
"input": "8 1",
"output": "8"
}
] | 1,658,333,723
| 2,147,483,647
|
PyPy 3
|
MEMORY_LIMIT_EXCEEDED
|
TESTS
| 4
| 1,278
| 268,390,400
|
n,k = map(int,input().split())
bi = []
for i in range(1,n+1):
for j in range(i,n+1):
bi.append(i^j)
print(max(bi))
|
Title: New Year's Eve
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Since Grisha behaved well last year, at New Year's Eve he was visited by Ded Moroz who brought an enormous bag of gifts with him! The bag contains *n* sweet candies from the good ol' bakery, each labeled from 1 to *n* corresponding to its tastiness. No two candies have the same tastiness.
The choice of candies has a direct effect on Grisha's happiness. One can assume that he should take the tastiest ones — but no, the holiday magic turns things upside down. It is the xor-sum of tastinesses that matters, not the ordinary sum!
A xor-sum of a sequence of integers *a*1,<=*a*2,<=...,<=*a**m* is defined as the bitwise XOR of all its elements: , here denotes the bitwise XOR operation; more about bitwise XOR can be found [here.](https://en.wikipedia.org/wiki/Bitwise_operation#XOR)
Ded Moroz warned Grisha he has more houses to visit, so Grisha can take no more than *k* candies from the bag. Help Grisha determine the largest xor-sum (largest xor-sum means maximum happiness!) he can obtain.
Input Specification:
The sole string contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=1018).
Output Specification:
Output one number — the largest possible xor-sum.
Demo Input:
['4 3\n', '6 6\n']
Demo Output:
['7\n', '7\n']
Note:
In the first sample case, one optimal answer is 1, 2 and 4, giving the xor-sum of 7.
In the second sample case, one can, for example, take all six candies and obtain the xor-sum of 7.
|
```python
n,k = map(int,input().split())
bi = []
for i in range(1,n+1):
for j in range(i,n+1):
bi.append(i^j)
print(max(bi))
```
| 0
|
|
672
|
B
|
Different is Good
|
PROGRAMMING
| 1,000
|
[
"constructive algorithms",
"implementation",
"strings"
] | null | null |
A wise man told Kerem "Different is good" once, so Kerem wants all things in his life to be different.
Kerem recently got a string *s* consisting of lowercase English letters. Since Kerem likes it when things are different, he wants all substrings of his string *s* to be distinct. Substring is a string formed by some number of consecutive characters of the string. For example, string "aba" has substrings "" (empty substring), "a", "b", "a", "ab", "ba", "aba".
If string *s* has at least two equal substrings then Kerem will change characters at some positions to some other lowercase English letters. Changing characters is a very tiring job, so Kerem want to perform as few changes as possible.
Your task is to find the minimum number of changes needed to make all the substrings of the given string distinct, or determine that it is impossible.
|
The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=100<=000) — the length of the string *s*.
The second line contains the string *s* of length *n* consisting of only lowercase English letters.
|
If it's impossible to change the string *s* such that all its substring are distinct print -1. Otherwise print the minimum required number of changes.
|
[
"2\naa\n",
"4\nkoko\n",
"5\nmurat\n"
] |
[
"1\n",
"2\n",
"0\n"
] |
In the first sample one of the possible solutions is to change the first character to 'b'.
In the second sample, one may change the first character to 'a' and second character to 'b', so the string becomes "abko".
| 1,000
|
[
{
"input": "2\naa",
"output": "1"
},
{
"input": "4\nkoko",
"output": "2"
},
{
"input": "5\nmurat",
"output": "0"
},
{
"input": "6\nacbead",
"output": "1"
},
{
"input": "7\ncdaadad",
"output": "4"
},
{
"input": "25\npeoaicnbisdocqofsqdpgobpn",
"output": "12"
},
{
"input": "25\ntcqpchnqskqjacruoaqilgebu",
"output": "7"
},
{
"input": "13\naebaecedabbee",
"output": "8"
},
{
"input": "27\naaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "-1"
},
{
"input": "10\nbababbdaee",
"output": "6"
},
{
"input": "11\ndbadcdbdbca",
"output": "7"
},
{
"input": "12\nacceaabddaaa",
"output": "7"
},
{
"input": "13\nabddfbfaeecfa",
"output": "7"
},
{
"input": "14\neeceecacdbcbbb",
"output": "9"
},
{
"input": "15\ndcbceaaggabaheb",
"output": "8"
},
{
"input": "16\nhgiegfbadgcicbhd",
"output": "7"
},
{
"input": "17\nabhfibbdddfghgfdi",
"output": "10"
},
{
"input": "26\nbbbbbabbaababaaabaaababbaa",
"output": "24"
},
{
"input": "26\nahnxdnbfbcrirerssyzydihuee",
"output": "11"
},
{
"input": "26\nhwqeqhkpxwulbsiwmnlfyhgknc",
"output": "8"
},
{
"input": "26\nrvxmulriorilidecqwmfaemifj",
"output": "10"
},
{
"input": "26\naowpmreooavnmamogdoopuisge",
"output": "12"
},
{
"input": "26\ninimevtuefhvuefirdehmmfudh",
"output": "15"
},
{
"input": "26\naaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "25"
},
{
"input": "27\nqdcfjtblgglnilgassirrjekcjt",
"output": "-1"
},
{
"input": "27\nabcdefghijklmnopqrstuvwxyza",
"output": "-1"
},
{
"input": "26\nqwertyuiopasdfghjklzxcvbnm",
"output": "0"
},
{
"input": "5\nzzzzz",
"output": "4"
},
{
"input": "27\naaaaaaaaaaaaaaaaabaaaaaaaaa",
"output": "-1"
},
{
"input": "1\nq",
"output": "0"
},
{
"input": "27\nqwertyuioplkjhgfdsazxcvbnmm",
"output": "-1"
},
{
"input": "9\nxxxyyyzzz",
"output": "6"
},
{
"input": "45\naaabbbcccdddeeefffgghhiijjkkkkkkkkkkkkkkkkkkk",
"output": "-1"
},
{
"input": "27\nqwertyuiopasdfghjklzxcvbnmm",
"output": "-1"
},
{
"input": "26\nabcdefghijklmnopqrstuvwxyz",
"output": "0"
},
{
"input": "26\nabcdefghijklmnopqrstuvwxya",
"output": "1"
},
{
"input": "27\nabcdefghijklmnopqrstuvwxyzz",
"output": "-1"
},
{
"input": "26\naaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "25"
},
{
"input": "26\nqwertyuioplkjhgfdsazxcvbnm",
"output": "0"
},
{
"input": "10\nzzzzzzzzzz",
"output": "9"
},
{
"input": "1\na",
"output": "0"
},
{
"input": "30\nabcdefghtyabcdefghtyabcdefghty",
"output": "-1"
}
] | 1,565,774,719
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 7
| 109
| 614,400
|
n = int(input())
print(n-len(set(list(input()))))
|
Title: Different is Good
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A wise man told Kerem "Different is good" once, so Kerem wants all things in his life to be different.
Kerem recently got a string *s* consisting of lowercase English letters. Since Kerem likes it when things are different, he wants all substrings of his string *s* to be distinct. Substring is a string formed by some number of consecutive characters of the string. For example, string "aba" has substrings "" (empty substring), "a", "b", "a", "ab", "ba", "aba".
If string *s* has at least two equal substrings then Kerem will change characters at some positions to some other lowercase English letters. Changing characters is a very tiring job, so Kerem want to perform as few changes as possible.
Your task is to find the minimum number of changes needed to make all the substrings of the given string distinct, or determine that it is impossible.
Input Specification:
The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=100<=000) — the length of the string *s*.
The second line contains the string *s* of length *n* consisting of only lowercase English letters.
Output Specification:
If it's impossible to change the string *s* such that all its substring are distinct print -1. Otherwise print the minimum required number of changes.
Demo Input:
['2\naa\n', '4\nkoko\n', '5\nmurat\n']
Demo Output:
['1\n', '2\n', '0\n']
Note:
In the first sample one of the possible solutions is to change the first character to 'b'.
In the second sample, one may change the first character to 'a' and second character to 'b', so the string becomes "abko".
|
```python
n = int(input())
print(n-len(set(list(input()))))
```
| 0
|
|
1
|
A
|
Theatre Square
|
PROGRAMMING
| 1,000
|
[
"math"
] |
A. Theatre Square
|
1
|
256
|
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
|
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
|
Write the needed number of flagstones.
|
[
"6 6 4\n"
] |
[
"4\n"
] |
none
| 0
|
[
{
"input": "6 6 4",
"output": "4"
},
{
"input": "1 1 1",
"output": "1"
},
{
"input": "2 1 1",
"output": "2"
},
{
"input": "1 2 1",
"output": "2"
},
{
"input": "2 2 1",
"output": "4"
},
{
"input": "2 1 2",
"output": "1"
},
{
"input": "1 1 3",
"output": "1"
},
{
"input": "2 3 4",
"output": "1"
},
{
"input": "1000000000 1000000000 1",
"output": "1000000000000000000"
},
{
"input": "12 13 4",
"output": "12"
},
{
"input": "222 332 5",
"output": "3015"
},
{
"input": "1000 1000 10",
"output": "10000"
},
{
"input": "1001 1000 10",
"output": "10100"
},
{
"input": "100 10001 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 999999999",
"output": "4"
},
{
"input": "1000000000 1000000000 192",
"output": "27126743055556"
},
{
"input": "1000000000 987654321 1",
"output": "987654321000000000"
},
{
"input": "456784567 1000000000 51",
"output": "175618850864484"
},
{
"input": "39916800 134217728 40320",
"output": "3295710"
}
] | 1,681,652,717
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 20
| 46
| 0
|
import math
n,m,a = map(int,input().split())
A =math.ceil(n/a)
B =math.ceil(m/a)
print(int(A*B))
|
Title: Theatre Square
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
Input Specification:
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
Output Specification:
Write the needed number of flagstones.
Demo Input:
['6 6 4\n']
Demo Output:
['4\n']
Note:
none
|
```python
import math
n,m,a = map(int,input().split())
A =math.ceil(n/a)
B =math.ceil(m/a)
print(int(A*B))
```
| 3.977
|
226
|
E
|
Noble Knight's Path
|
PROGRAMMING
| 2,900
|
[
"data structures",
"trees"
] | null | null |
In Berland each feudal owns exactly one castle and each castle belongs to exactly one feudal.
Each feudal, except one (the King) is subordinate to another feudal. A feudal can have any number of vassals (subordinates).
Some castles are connected by roads, it is allowed to move along the roads in both ways. Two castles have a road between them if and only if the owner of one of these castles is a direct subordinate to the other owner.
Each year exactly one of these two events may happen in Berland.
1. The barbarians attacked castle *c*. The interesting fact is, the barbarians never attacked the same castle twice throughout the whole Berlandian history. 1. A noble knight sets off on a journey from castle *a* to castle *b* (provided that on his path he encounters each castle not more than once).
Let's consider the second event in detail. As the journey from *a* to *b* is not short, then the knight might want to stop at a castle he encounters on his way to have some rest. However, he can't stop at just any castle: his nobility doesn't let him stay in the castle that has been desecrated by the enemy's stench. A castle is desecrated if and only if it has been attacked after the year of *y*. So, the knight chooses the *k*-th castle he encounters, starting from *a* (castles *a* and *b* aren't taken into consideration), that hasn't been attacked in years from *y*<=+<=1 till current year.
The knights don't remember which castles were attacked on what years, so he asked the court scholar, aka you to help them. You've got a sequence of events in the Berland history. Tell each knight, in what city he should stop or else deliver the sad news — that the path from city *a* to city *b* has less than *k* cities that meet his requirements, so the knight won't be able to rest.
|
The first input line contains integer *n* (2<=≤<=*n*<=≤<=105) — the number of feudals.
The next line contains *n* space-separated integers: the *i*-th integer shows either the number of the *i*-th feudal's master, or a 0, if the *i*-th feudal is the King.
The third line contains integer *m* (1<=≤<=*m*<=≤<=105) — the number of queries.
Then follow *m* lines that describe the events. The *i*-th line (the lines are indexed starting from 1) contains the description of the event that occurred in year *i*. Each event is characterised by type *t**i* (1<=≤<=*t**i*<=≤<=2). The description of the first type event looks as two space-separated integers *t**i* *c**i* (*t**i*<==<=1; 1<=≤<=*c**i*<=≤<=*n*), where *c**i* is the number of the castle that was attacked by the barbarians in the *i*-th year. The description of the second type contains five space-separated integers: *t**i* *a**i* *b**i* *k**i* *y**i* (*t**i*<==<=2; 1<=≤<=*a**i*,<=*b**i*,<=*k**i*<=≤<=*n*; *a**i*<=≠<=*b**i*; 0<=≤<=*y**i*<=<<=*i*), where *a**i* is the number of the castle from which the knight is setting off, *b**i* is the number of the castle to which the knight is going, *k**i* and *y**i* are the *k* and *y* from the second event's description.
You can consider the feudals indexed from 1 to *n*. It is guaranteed that there is only one king among the feudals. It is guaranteed that for the first type events all values *c**i* are different.
|
For each second type event print an integer — the number of the castle where the knight must stay to rest, or -1, if he will have to cover the distance from *a**i* to *b**i* without a rest. Separate the answers by whitespaces.
Print the answers in the order, in which the second type events are given in the input.
|
[
"3\n0 1 2\n5\n2 1 3 1 0\n1 2\n2 1 3 1 0\n2 1 3 1 1\n2 1 3 1 2\n",
"6\n2 5 2 2 0 5\n3\n2 1 6 2 0\n1 2\n2 4 5 1 0\n"
] |
[
"2\n-1\n-1\n2\n",
"5\n-1\n"
] |
In the first sample there is only castle 2 on the knight's way from castle 1 to castle 3. When the knight covers the path 1 - 3 for the first time, castle 2 won't be desecrated by an enemy and the knight will stay there. In the second year the castle 2 will become desecrated, so the knight won't have anywhere to stay for the next two years (as finding a castle that hasn't been desecrated from years 1 and 2, correspondingly, is important for him). In the fifth year the knight won't consider the castle 2 desecrated, so he will stay there again.
| 2,500
|
[] | 1,689,416,460
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 0
| 124
| 0
|
print("_RANDOM_GUESS_1689416460.3916981")# 1689416460.3917177
|
Title: Noble Knight's Path
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In Berland each feudal owns exactly one castle and each castle belongs to exactly one feudal.
Each feudal, except one (the King) is subordinate to another feudal. A feudal can have any number of vassals (subordinates).
Some castles are connected by roads, it is allowed to move along the roads in both ways. Two castles have a road between them if and only if the owner of one of these castles is a direct subordinate to the other owner.
Each year exactly one of these two events may happen in Berland.
1. The barbarians attacked castle *c*. The interesting fact is, the barbarians never attacked the same castle twice throughout the whole Berlandian history. 1. A noble knight sets off on a journey from castle *a* to castle *b* (provided that on his path he encounters each castle not more than once).
Let's consider the second event in detail. As the journey from *a* to *b* is not short, then the knight might want to stop at a castle he encounters on his way to have some rest. However, he can't stop at just any castle: his nobility doesn't let him stay in the castle that has been desecrated by the enemy's stench. A castle is desecrated if and only if it has been attacked after the year of *y*. So, the knight chooses the *k*-th castle he encounters, starting from *a* (castles *a* and *b* aren't taken into consideration), that hasn't been attacked in years from *y*<=+<=1 till current year.
The knights don't remember which castles were attacked on what years, so he asked the court scholar, aka you to help them. You've got a sequence of events in the Berland history. Tell each knight, in what city he should stop or else deliver the sad news — that the path from city *a* to city *b* has less than *k* cities that meet his requirements, so the knight won't be able to rest.
Input Specification:
The first input line contains integer *n* (2<=≤<=*n*<=≤<=105) — the number of feudals.
The next line contains *n* space-separated integers: the *i*-th integer shows either the number of the *i*-th feudal's master, or a 0, if the *i*-th feudal is the King.
The third line contains integer *m* (1<=≤<=*m*<=≤<=105) — the number of queries.
Then follow *m* lines that describe the events. The *i*-th line (the lines are indexed starting from 1) contains the description of the event that occurred in year *i*. Each event is characterised by type *t**i* (1<=≤<=*t**i*<=≤<=2). The description of the first type event looks as two space-separated integers *t**i* *c**i* (*t**i*<==<=1; 1<=≤<=*c**i*<=≤<=*n*), where *c**i* is the number of the castle that was attacked by the barbarians in the *i*-th year. The description of the second type contains five space-separated integers: *t**i* *a**i* *b**i* *k**i* *y**i* (*t**i*<==<=2; 1<=≤<=*a**i*,<=*b**i*,<=*k**i*<=≤<=*n*; *a**i*<=≠<=*b**i*; 0<=≤<=*y**i*<=<<=*i*), where *a**i* is the number of the castle from which the knight is setting off, *b**i* is the number of the castle to which the knight is going, *k**i* and *y**i* are the *k* and *y* from the second event's description.
You can consider the feudals indexed from 1 to *n*. It is guaranteed that there is only one king among the feudals. It is guaranteed that for the first type events all values *c**i* are different.
Output Specification:
For each second type event print an integer — the number of the castle where the knight must stay to rest, or -1, if he will have to cover the distance from *a**i* to *b**i* without a rest. Separate the answers by whitespaces.
Print the answers in the order, in which the second type events are given in the input.
Demo Input:
['3\n0 1 2\n5\n2 1 3 1 0\n1 2\n2 1 3 1 0\n2 1 3 1 1\n2 1 3 1 2\n', '6\n2 5 2 2 0 5\n3\n2 1 6 2 0\n1 2\n2 4 5 1 0\n']
Demo Output:
['2\n-1\n-1\n2\n', '5\n-1\n']
Note:
In the first sample there is only castle 2 on the knight's way from castle 1 to castle 3. When the knight covers the path 1 - 3 for the first time, castle 2 won't be desecrated by an enemy and the knight will stay there. In the second year the castle 2 will become desecrated, so the knight won't have anywhere to stay for the next two years (as finding a castle that hasn't been desecrated from years 1 and 2, correspondingly, is important for him). In the fifth year the knight won't consider the castle 2 desecrated, so he will stay there again.
|
```python
print("_RANDOM_GUESS_1689416460.3916981")# 1689416460.3917177
```
| 0
|
|
754
|
A
|
Lesha and array splitting
|
PROGRAMMING
| 1,200
|
[
"constructive algorithms",
"greedy",
"implementation"
] | null | null |
One spring day on his way to university Lesha found an array *A*. Lesha likes to split arrays into several parts. This time Lesha decided to split the array *A* into several, possibly one, new arrays so that the sum of elements in each of the new arrays is not zero. One more condition is that if we place the new arrays one after another they will form the old array *A*.
Lesha is tired now so he asked you to split the array. Help Lesha!
|
The first line contains single integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in the array *A*.
The next line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=103<=≤<=*a**i*<=≤<=103) — the elements of the array *A*.
|
If it is not possible to split the array *A* and satisfy all the constraints, print single line containing "NO" (without quotes).
Otherwise in the first line print "YES" (without quotes). In the next line print single integer *k* — the number of new arrays. In each of the next *k* lines print two integers *l**i* and *r**i* which denote the subarray *A*[*l**i*... *r**i*] of the initial array *A* being the *i*-th new array. Integers *l**i*, *r**i* should satisfy the following conditions:
- *l*1<==<=1 - *r**k*<==<=*n* - *r**i*<=+<=1<==<=*l**i*<=+<=1 for each 1<=≤<=*i*<=<<=*k*.
If there are multiple answers, print any of them.
|
[
"3\n1 2 -3\n",
"8\n9 -12 3 4 -4 -10 7 3\n",
"1\n0\n",
"4\n1 2 3 -5\n"
] |
[
"YES\n2\n1 2\n3 3\n",
"YES\n2\n1 2\n3 8\n",
"NO\n",
"YES\n4\n1 1\n2 2\n3 3\n4 4\n"
] |
none
| 500
|
[
{
"input": "3\n1 2 -3",
"output": "YES\n3\n1 1\n2 2\n3 3"
},
{
"input": "8\n9 -12 3 4 -4 -10 7 3",
"output": "YES\n8\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8"
},
{
"input": "1\n0",
"output": "NO"
},
{
"input": "4\n1 2 3 -5",
"output": "YES\n4\n1 1\n2 2\n3 3\n4 4"
},
{
"input": "6\n0 0 0 0 0 0",
"output": "NO"
},
{
"input": "100\n507 -724 -243 -846 697 -569 -786 472 756 -272 731 -534 -664 202 592 -381 161 -668 -895 296 472 -868 599 396 -617 310 -283 -118 829 -218 807 939 -152 -343 -96 692 -570 110 442 159 -446 -631 -881 784 894 -3 -792 654 -273 -791 638 -599 -763 586 -812 248 -590 455 926 -402 61 228 209 419 -511 310 -283 857 369 472 -82 -435 -717 -421 862 -384 659 -235 406 793 -167 -504 -432 -951 0 165 36 650 -145 -500 988 -513 -495 -476 312 -754 332 819 -797 -715",
"output": "YES\n99\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 13\n14 14\n15 15\n16 16\n17 17\n18 18\n19 19\n20 20\n21 21\n22 22\n23 23\n24 24\n25 25\n26 26\n27 27\n28 28\n29 29\n30 30\n31 31\n32 32\n33 33\n34 34\n35 35\n36 36\n37 37\n38 38\n39 39\n40 40\n41 41\n42 42\n43 43\n44 44\n45 45\n46 46\n47 47\n48 48\n49 49\n50 50\n51 51\n52 52\n53 53\n54 54\n55 55\n56 56\n57 57\n58 58\n59 59\n60 60\n61 61\n62 62\n63 63\n64 64\n65 65\n66 66\n67 67\n68 68\n69 69\n70 70\n71 71\n72 72\n73 73\n74 74\n75..."
},
{
"input": "100\n1 -2 -1 -1 2 2 0 1 -1 1 0 -2 1 -1 0 -2 -1 -1 2 0 -1 2 0 1 -2 -2 -1 1 2 0 -2 -2 -1 1 1 -1 -2 -1 0 -1 2 1 -1 -2 0 2 1 1 -2 1 1 -1 2 -2 2 0 1 -1 1 -2 0 0 0 0 0 0 -2 -2 2 1 2 2 0 -1 1 1 -2 -2 -2 1 0 2 -1 -2 -1 0 0 0 2 1 -2 0 -2 0 2 1 -2 -1 2 1",
"output": "YES\n78\n1 1\n2 2\n3 3\n4 4\n5 5\n6 7\n8 8\n9 9\n10 11\n12 12\n13 13\n14 15\n16 16\n17 17\n18 18\n19 20\n21 21\n22 23\n24 24\n25 25\n26 26\n27 27\n28 28\n29 30\n31 31\n32 32\n33 33\n34 34\n35 35\n36 36\n37 37\n38 39\n40 40\n41 41\n42 42\n43 43\n44 45\n46 46\n47 47\n48 48\n49 49\n50 50\n51 51\n52 52\n53 53\n54 54\n55 56\n57 57\n58 58\n59 59\n60 66\n67 67\n68 68\n69 69\n70 70\n71 71\n72 73\n74 74\n75 75\n76 76\n77 77\n78 78\n79 79\n80 81\n82 82\n83 83\n84 84\n85 88\n89 89\n90 90\n91 92\n93 94\n95 95\n96 96\n..."
},
{
"input": "7\n0 0 0 0 3 -3 0",
"output": "YES\n2\n1 5\n6 7"
},
{
"input": "5\n0 0 -4 0 0",
"output": "YES\n1\n1 5"
},
{
"input": "100\n2 -38 51 -71 -24 19 35 -27 48 18 64 -4 30 -28 74 -17 -19 -25 54 41 3 -46 -43 -42 87 -76 -62 28 1 32 7 -76 15 0 -82 -33 17 40 -41 -7 43 -18 -27 65 -27 -13 46 -38 75 7 62 -23 7 -12 80 36 37 14 6 -40 -11 -35 -77 -24 -59 75 -41 -21 17 -21 -14 67 -36 16 -1 34 -26 30 -62 -4 -63 15 -49 18 57 7 77 23 -26 8 -20 8 -16 9 50 -24 -33 9 -9 -33",
"output": "YES\n99\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 13\n14 14\n15 15\n16 16\n17 17\n18 18\n19 19\n20 20\n21 21\n22 22\n23 23\n24 24\n25 25\n26 26\n27 27\n28 28\n29 29\n30 30\n31 31\n32 32\n33 34\n35 35\n36 36\n37 37\n38 38\n39 39\n40 40\n41 41\n42 42\n43 43\n44 44\n45 45\n46 46\n47 47\n48 48\n49 49\n50 50\n51 51\n52 52\n53 53\n54 54\n55 55\n56 56\n57 57\n58 58\n59 59\n60 60\n61 61\n62 62\n63 63\n64 64\n65 65\n66 66\n67 67\n68 68\n69 69\n70 70\n71 71\n72 72\n73 73\n74 74\n75 75\n76..."
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "YES\n1\n1 100"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "NO"
},
{
"input": "100\n0 0 -17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "YES\n2\n1 34\n35 100"
},
{
"input": "3\n1 -3 3",
"output": "YES\n3\n1 1\n2 2\n3 3"
},
{
"input": "3\n1 0 -1",
"output": "YES\n2\n1 2\n3 3"
},
{
"input": "3\n3 0 0",
"output": "YES\n1\n1 3"
},
{
"input": "3\n0 0 0",
"output": "NO"
},
{
"input": "3\n-3 3 0",
"output": "YES\n2\n1 1\n2 3"
},
{
"input": "4\n3 -2 -1 3",
"output": "YES\n4\n1 1\n2 2\n3 3\n4 4"
},
{
"input": "4\n-1 0 1 0",
"output": "YES\n2\n1 2\n3 4"
},
{
"input": "4\n0 0 0 3",
"output": "YES\n1\n1 4"
},
{
"input": "4\n0 0 0 0",
"output": "NO"
},
{
"input": "4\n3 0 -3 0",
"output": "YES\n2\n1 2\n3 4"
},
{
"input": "5\n-3 2 2 0 -2",
"output": "YES\n4\n1 1\n2 2\n3 4\n5 5"
},
{
"input": "5\n0 -1 2 0 -1",
"output": "YES\n3\n1 2\n3 4\n5 5"
},
{
"input": "5\n0 2 0 0 0",
"output": "YES\n1\n1 5"
},
{
"input": "5\n0 0 0 0 0",
"output": "NO"
},
{
"input": "5\n0 0 0 0 0",
"output": "NO"
},
{
"input": "20\n101 89 -166 -148 -38 -135 -138 193 14 -134 -185 -171 -52 -191 195 39 -148 200 51 -73",
"output": "YES\n20\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 13\n14 14\n15 15\n16 16\n17 17\n18 18\n19 19\n20 20"
},
{
"input": "20\n-118 -5 101 7 9 144 55 -55 -9 -126 -71 -71 189 -64 -187 123 0 -48 -12 138",
"output": "YES\n19\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 13\n14 14\n15 15\n16 17\n18 18\n19 19\n20 20"
},
{
"input": "20\n-161 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "YES\n1\n1 20"
},
{
"input": "20\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "NO"
},
{
"input": "20\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 -137 0 0 0 0 137",
"output": "YES\n2\n1 19\n20 20"
},
{
"input": "40\n64 -94 -386 -78 35 -233 33 82 -5 -200 368 -259 124 353 390 -305 -247 -133 379 44 133 -146 151 -217 -16 53 -157 186 -203 -8 117 -71 272 -290 -97 133 52 113 -280 -176",
"output": "YES\n40\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 13\n14 14\n15 15\n16 16\n17 17\n18 18\n19 19\n20 20\n21 21\n22 22\n23 23\n24 24\n25 25\n26 26\n27 27\n28 28\n29 29\n30 30\n31 31\n32 32\n33 33\n34 34\n35 35\n36 36\n37 37\n38 38\n39 39\n40 40"
},
{
"input": "40\n120 -96 -216 131 231 -80 -166 -102 16 227 -120 105 43 -83 -53 229 24 190 -268 119 230 348 -33 19 0 -187 -349 -25 80 -38 -30 138 -104 337 -98 0 1 -66 -243 -231",
"output": "YES\n38\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 13\n14 14\n15 15\n16 16\n17 17\n18 18\n19 19\n20 20\n21 21\n22 22\n23 23\n24 25\n26 26\n27 27\n28 28\n29 29\n30 30\n31 31\n32 32\n33 33\n34 34\n35 36\n37 37\n38 38\n39 39\n40 40"
},
{
"input": "40\n0 0 0 0 0 0 324 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "YES\n1\n1 40"
},
{
"input": "40\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "NO"
},
{
"input": "40\n0 0 0 0 0 308 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -308 0 0 0 0 0 0 0",
"output": "YES\n2\n1 32\n33 40"
},
{
"input": "60\n-288 -213 -213 -23 496 489 137 -301 -219 -296 -577 269 -153 -52 -505 -138 -377 500 -256 405 588 274 -115 375 -93 117 -360 -160 429 -339 502 310 502 572 -41 -26 152 -203 562 -525 -179 -67 424 62 -329 -127 352 -474 417 -30 518 326 200 -598 471 107 339 107 -9 -244",
"output": "YES\n60\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 13\n14 14\n15 15\n16 16\n17 17\n18 18\n19 19\n20 20\n21 21\n22 22\n23 23\n24 24\n25 25\n26 26\n27 27\n28 28\n29 29\n30 30\n31 31\n32 32\n33 33\n34 34\n35 35\n36 36\n37 37\n38 38\n39 39\n40 40\n41 41\n42 42\n43 43\n44 44\n45 45\n46 46\n47 47\n48 48\n49 49\n50 50\n51 51\n52 52\n53 53\n54 54\n55 55\n56 56\n57 57\n58 58\n59 59\n60 60"
},
{
"input": "60\n112 141 -146 -389 175 399 -59 327 -41 397 263 -422 157 0 471 -2 -381 -438 99 368 173 9 -171 118 24 111 120 70 11 317 -71 -574 -139 0 -477 -211 -116 -367 16 568 -75 -430 75 -179 -21 156 291 -422 441 -224 -8 -337 -104 381 60 -138 257 91 103 -359",
"output": "YES\n58\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 14\n15 15\n16 16\n17 17\n18 18\n19 19\n20 20\n21 21\n22 22\n23 23\n24 24\n25 25\n26 26\n27 27\n28 28\n29 29\n30 30\n31 31\n32 32\n33 34\n35 35\n36 36\n37 37\n38 38\n39 39\n40 40\n41 41\n42 42\n43 43\n44 44\n45 45\n46 46\n47 47\n48 48\n49 49\n50 50\n51 51\n52 52\n53 53\n54 54\n55 55\n56 56\n57 57\n58 58\n59 59\n60 60"
},
{
"input": "60\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -238 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "YES\n1\n1 60"
},
{
"input": "60\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "NO"
},
{
"input": "60\n0 0 0 0 0 0 0 0 0 -98 0 0 0 0 0 0 0 0 98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "YES\n2\n1 18\n19 60"
},
{
"input": "80\n-295 -774 -700 -366 -304 -173 -672 288 -721 -256 -348 650 223 211 379 -13 -483 162 800 631 -550 -704 -357 -306 490 713 -80 -234 -669 675 -688 471 315 607 -87 -327 -799 514 248 379 271 325 -244 98 -100 -447 574 -154 554 -377 380 -423 -140 -147 -189 -420 405 464 -110 273 -226 -109 -578 641 -426 -548 214 -184 -397 570 -428 -676 652 -155 127 462 338 534 -782 -481",
"output": "YES\n80\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 13\n14 14\n15 15\n16 16\n17 17\n18 18\n19 19\n20 20\n21 21\n22 22\n23 23\n24 24\n25 25\n26 26\n27 27\n28 28\n29 29\n30 30\n31 31\n32 32\n33 33\n34 34\n35 35\n36 36\n37 37\n38 38\n39 39\n40 40\n41 41\n42 42\n43 43\n44 44\n45 45\n46 46\n47 47\n48 48\n49 49\n50 50\n51 51\n52 52\n53 53\n54 54\n55 55\n56 56\n57 57\n58 58\n59 59\n60 60\n61 61\n62 62\n63 63\n64 64\n65 65\n66 66\n67 67\n68 68\n69 69\n70 70\n71 71\n72 72\n73 73\n74 74\n75..."
},
{
"input": "80\n237 66 409 -208 -460 4 -448 29 -420 -192 -21 -76 -147 435 205 -42 -299 -29 244 -480 -4 -38 2 -214 -311 556 692 111 -19 -84 -90 -350 -354 125 -207 -137 93 367 -481 -462 -440 -92 424 -107 221 -100 -631 -72 105 201 226 -90 197 -264 427 113 202 -144 -115 398 331 147 56 -24 292 -267 -31 -11 202 506 334 -103 534 -155 -472 -124 -257 209 12 360",
"output": "YES\n80\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 13\n14 14\n15 15\n16 16\n17 17\n18 18\n19 19\n20 20\n21 21\n22 22\n23 23\n24 24\n25 25\n26 26\n27 27\n28 28\n29 29\n30 30\n31 31\n32 32\n33 33\n34 34\n35 35\n36 36\n37 37\n38 38\n39 39\n40 40\n41 41\n42 42\n43 43\n44 44\n45 45\n46 46\n47 47\n48 48\n49 49\n50 50\n51 51\n52 52\n53 53\n54 54\n55 55\n56 56\n57 57\n58 58\n59 59\n60 60\n61 61\n62 62\n63 63\n64 64\n65 65\n66 66\n67 67\n68 68\n69 69\n70 70\n71 71\n72 72\n73 73\n74 74\n75..."
},
{
"input": "80\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 668 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "YES\n1\n1 80"
},
{
"input": "80\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "NO"
},
{
"input": "80\n0 0 0 0 0 0 0 0 0 0 0 0 -137 137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "YES\n2\n1 13\n14 80"
},
{
"input": "100\n-98 369 544 197 -991 231 399 521 582 -820 -650 -919 -615 -411 -843 -974 231 140 239 -209 721 84 -834 -27 162 460 -157 -40 0 -778 -491 -607 -34 -647 834 -7 -518 -5 -31 -766 -54 -698 -838 497 980 -77 238 549 -135 7 -629 -892 455 181 527 314 465 -321 656 -390 368 384 601 332 561 -1000 -636 -106 412 -216 -58 -365 -155 -445 404 114 260 -392 -20 840 -395 620 -860 -936 1 882 958 536 589 235 300 676 478 434 229 698 157 -95 908 -170",
"output": "YES\n99\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 13\n14 14\n15 15\n16 16\n17 17\n18 18\n19 19\n20 20\n21 21\n22 22\n23 23\n24 24\n25 25\n26 26\n27 27\n28 29\n30 30\n31 31\n32 32\n33 33\n34 34\n35 35\n36 36\n37 37\n38 38\n39 39\n40 40\n41 41\n42 42\n43 43\n44 44\n45 45\n46 46\n47 47\n48 48\n49 49\n50 50\n51 51\n52 52\n53 53\n54 54\n55 55\n56 56\n57 57\n58 58\n59 59\n60 60\n61 61\n62 62\n63 63\n64 64\n65 65\n66 66\n67 67\n68 68\n69 69\n70 70\n71 71\n72 72\n73 73\n74 74\n75 75\n76..."
},
{
"input": "100\n-149 -71 -300 288 -677 -580 248 49 -167 264 -215 878 7 252 -239 25 -369 -22 526 -415 -175 173 549 679 161 -411 743 -454 -34 -714 282 -198 -47 -519 -45 71 615 -214 -317 399 86 -97 246 689 -22 -197 -139 237 -501 477 -385 -421 -463 -641 409 -279 538 -382 48 189 652 -696 74 303 6 -183 336 17 -178 -617 -739 280 -202 454 864 218 480 293 -118 -518 -24 -866 -357 410 239 -833 510 316 -168 38 -370 -22 741 470 -60 -507 -209 704 141 -148",
"output": "YES\n100\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 13\n14 14\n15 15\n16 16\n17 17\n18 18\n19 19\n20 20\n21 21\n22 22\n23 23\n24 24\n25 25\n26 26\n27 27\n28 28\n29 29\n30 30\n31 31\n32 32\n33 33\n34 34\n35 35\n36 36\n37 37\n38 38\n39 39\n40 40\n41 41\n42 42\n43 43\n44 44\n45 45\n46 46\n47 47\n48 48\n49 49\n50 50\n51 51\n52 52\n53 53\n54 54\n55 55\n56 56\n57 57\n58 58\n59 59\n60 60\n61 61\n62 62\n63 63\n64 64\n65 65\n66 66\n67 67\n68 68\n69 69\n70 70\n71 71\n72 72\n73 73\n74 74\n7..."
},
{
"input": "100\n0 0 697 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "YES\n1\n1 100"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "NO"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -475 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 475 0 0 0 0",
"output": "YES\n2\n1 95\n96 100"
},
{
"input": "4\n0 0 3 -3",
"output": "YES\n2\n1 3\n4 4"
},
{
"input": "4\n1 0 0 0",
"output": "YES\n1\n1 4"
},
{
"input": "4\n3 3 3 3",
"output": "YES\n4\n1 1\n2 2\n3 3\n4 4"
},
{
"input": "2\n0 1",
"output": "YES\n1\n1 2"
},
{
"input": "4\n0 -1 1 0",
"output": "YES\n2\n1 2\n3 4"
},
{
"input": "1\n1",
"output": "YES\n1\n1 1"
},
{
"input": "5\n0 0 1 0 0",
"output": "YES\n1\n1 5"
},
{
"input": "4\n0 0 1 0",
"output": "YES\n1\n1 4"
},
{
"input": "10\n1 2 0 0 3 -3 0 0 -3 0",
"output": "YES\n5\n1 1\n2 4\n5 5\n6 8\n9 10"
},
{
"input": "3\n0 -1 0",
"output": "YES\n1\n1 3"
},
{
"input": "2\n1 0",
"output": "YES\n1\n1 2"
},
{
"input": "5\n3 -3 0 0 0",
"output": "YES\n2\n1 1\n2 5"
},
{
"input": "3\n0 1 0",
"output": "YES\n1\n1 3"
},
{
"input": "4\n0 0 0 1",
"output": "YES\n1\n1 4"
},
{
"input": "4\n1 -1 1 -1",
"output": "YES\n4\n1 1\n2 2\n3 3\n4 4"
},
{
"input": "1\n-1",
"output": "YES\n1\n1 1"
},
{
"input": "2\n1 1",
"output": "YES\n2\n1 1\n2 2"
},
{
"input": "2\n1 -1",
"output": "YES\n2\n1 1\n2 2"
},
{
"input": "2\n0 0",
"output": "NO"
},
{
"input": "2\n0 -1",
"output": "YES\n1\n1 2"
},
{
"input": "2\n-1 1",
"output": "YES\n2\n1 1\n2 2"
},
{
"input": "2\n-1 0",
"output": "YES\n1\n1 2"
},
{
"input": "2\n-1 -1",
"output": "YES\n2\n1 1\n2 2"
},
{
"input": "3\n5 -5 5",
"output": "YES\n3\n1 1\n2 2\n3 3"
},
{
"input": "5\n1 0 -1 0 1",
"output": "YES\n3\n1 2\n3 4\n5 5"
},
{
"input": "6\n0 0 0 3 0 0",
"output": "YES\n1\n1 6"
},
{
"input": "3\n1 -1 1",
"output": "YES\n3\n1 1\n2 2\n3 3"
}
] | 1,641,233,458
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 15
| 0
|
x=int(input())
A=list(map(int,input().split()))
if sum(A)!=0:
print('Yes')
print(1)
print(1,x)
else:
if A.count(0)==x:
print('No')
else:
print('Yes')
print(2)
for i in range(x):
if A[i]!=0:
break
print(1,i+1)
print(i+2,x)
|
Title: Lesha and array splitting
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One spring day on his way to university Lesha found an array *A*. Lesha likes to split arrays into several parts. This time Lesha decided to split the array *A* into several, possibly one, new arrays so that the sum of elements in each of the new arrays is not zero. One more condition is that if we place the new arrays one after another they will form the old array *A*.
Lesha is tired now so he asked you to split the array. Help Lesha!
Input Specification:
The first line contains single integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in the array *A*.
The next line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=103<=≤<=*a**i*<=≤<=103) — the elements of the array *A*.
Output Specification:
If it is not possible to split the array *A* and satisfy all the constraints, print single line containing "NO" (without quotes).
Otherwise in the first line print "YES" (without quotes). In the next line print single integer *k* — the number of new arrays. In each of the next *k* lines print two integers *l**i* and *r**i* which denote the subarray *A*[*l**i*... *r**i*] of the initial array *A* being the *i*-th new array. Integers *l**i*, *r**i* should satisfy the following conditions:
- *l*1<==<=1 - *r**k*<==<=*n* - *r**i*<=+<=1<==<=*l**i*<=+<=1 for each 1<=≤<=*i*<=<<=*k*.
If there are multiple answers, print any of them.
Demo Input:
['3\n1 2 -3\n', '8\n9 -12 3 4 -4 -10 7 3\n', '1\n0\n', '4\n1 2 3 -5\n']
Demo Output:
['YES\n2\n1 2\n3 3\n', 'YES\n2\n1 2\n3 8\n', 'NO\n', 'YES\n4\n1 1\n2 2\n3 3\n4 4\n']
Note:
none
|
```python
x=int(input())
A=list(map(int,input().split()))
if sum(A)!=0:
print('Yes')
print(1)
print(1,x)
else:
if A.count(0)==x:
print('No')
else:
print('Yes')
print(2)
for i in range(x):
if A[i]!=0:
break
print(1,i+1)
print(i+2,x)
```
| 0
|
|
807
|
A
|
Is it rated?
|
PROGRAMMING
| 900
|
[
"implementation",
"sortings"
] | null | null |
Is it rated?
Here it is. The Ultimate Question of Competitive Programming, Codeforces, and Everything. And you are here to answer it.
Another Codeforces round has been conducted. No two participants have the same number of points. For each participant, from the top to the bottom of the standings, their rating before and after the round is known.
It's known that if at least one participant's rating has changed, then the round was rated for sure.
It's also known that if the round was rated and a participant with lower rating took a better place in the standings than a participant with higher rating, then at least one round participant's rating has changed.
In this problem, you should not make any other assumptions about the rating system.
Determine if the current round is rated, unrated, or it's impossible to determine whether it is rated of not.
|
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=1000) — the number of round participants.
Each of the next *n* lines contains two integers *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=4126) — the rating of the *i*-th participant before and after the round, respectively. The participants are listed in order from the top to the bottom of the standings.
|
If the round is rated for sure, print "rated". If the round is unrated for sure, print "unrated". If it's impossible to determine whether the round is rated or not, print "maybe".
|
[
"6\n3060 3060\n2194 2194\n2876 2903\n2624 2624\n3007 2991\n2884 2884\n",
"4\n1500 1500\n1300 1300\n1200 1200\n1400 1400\n",
"5\n3123 3123\n2777 2777\n2246 2246\n2246 2246\n1699 1699\n"
] |
[
"rated\n",
"unrated\n",
"maybe\n"
] |
In the first example, the ratings of the participants in the third and fifth places have changed, therefore, the round was rated.
In the second example, no one's rating has changed, but the participant in the second place has lower rating than the participant in the fourth place. Therefore, if the round was rated, someone's rating would've changed for sure.
In the third example, no one's rating has changed, and the participants took places in non-increasing order of their rating. Therefore, it's impossible to determine whether the round is rated or not.
| 500
|
[
{
"input": "6\n3060 3060\n2194 2194\n2876 2903\n2624 2624\n3007 2991\n2884 2884",
"output": "rated"
},
{
"input": "4\n1500 1500\n1300 1300\n1200 1200\n1400 1400",
"output": "unrated"
},
{
"input": "5\n3123 3123\n2777 2777\n2246 2246\n2246 2246\n1699 1699",
"output": "maybe"
},
{
"input": "2\n1 1\n1 1",
"output": "maybe"
},
{
"input": "2\n4126 4126\n4126 4126",
"output": "maybe"
},
{
"input": "10\n446 446\n1331 1331\n3594 3594\n1346 1902\n91 91\n3590 3590\n2437 2437\n4007 3871\n2797 699\n1423 1423",
"output": "rated"
},
{
"input": "10\n4078 4078\n2876 2876\n1061 1061\n3721 3721\n143 143\n2992 2992\n3279 3279\n3389 3389\n1702 1702\n1110 1110",
"output": "unrated"
},
{
"input": "10\n4078 4078\n3721 3721\n3389 3389\n3279 3279\n2992 2992\n2876 2876\n1702 1702\n1110 1110\n1061 1061\n143 143",
"output": "maybe"
},
{
"input": "2\n3936 3936\n2967 2967",
"output": "maybe"
},
{
"input": "2\n1 1\n2 2",
"output": "unrated"
},
{
"input": "2\n2 2\n1 1",
"output": "maybe"
},
{
"input": "2\n2 1\n1 2",
"output": "rated"
},
{
"input": "2\n2967 2967\n3936 3936",
"output": "unrated"
},
{
"input": "3\n1200 1200\n1200 1200\n1300 1300",
"output": "unrated"
},
{
"input": "3\n3 3\n2 2\n1 1",
"output": "maybe"
},
{
"input": "3\n1 1\n1 1\n2 2",
"output": "unrated"
},
{
"input": "2\n3 2\n3 2",
"output": "rated"
},
{
"input": "3\n5 5\n4 4\n3 4",
"output": "rated"
},
{
"input": "3\n200 200\n200 200\n300 300",
"output": "unrated"
},
{
"input": "3\n1 1\n2 2\n3 3",
"output": "unrated"
},
{
"input": "5\n3123 3123\n2777 2777\n2246 2246\n2245 2245\n1699 1699",
"output": "maybe"
},
{
"input": "2\n10 10\n8 8",
"output": "maybe"
},
{
"input": "3\n1500 1500\n1500 1500\n1600 1600",
"output": "unrated"
},
{
"input": "3\n1500 1500\n1500 1500\n1700 1700",
"output": "unrated"
},
{
"input": "4\n100 100\n100 100\n70 70\n80 80",
"output": "unrated"
},
{
"input": "2\n1 2\n2 1",
"output": "rated"
},
{
"input": "3\n5 5\n4 3\n3 3",
"output": "rated"
},
{
"input": "3\n1600 1650\n1500 1550\n1400 1450",
"output": "rated"
},
{
"input": "4\n2000 2000\n1500 1500\n1500 1500\n1700 1700",
"output": "unrated"
},
{
"input": "4\n1500 1500\n1400 1400\n1400 1400\n1700 1700",
"output": "unrated"
},
{
"input": "2\n1600 1600\n1400 1400",
"output": "maybe"
},
{
"input": "2\n3 1\n9 8",
"output": "rated"
},
{
"input": "2\n2 1\n1 1",
"output": "rated"
},
{
"input": "4\n4123 4123\n4123 4123\n2670 2670\n3670 3670",
"output": "unrated"
},
{
"input": "2\n2 2\n3 3",
"output": "unrated"
},
{
"input": "2\n10 11\n5 4",
"output": "rated"
},
{
"input": "2\n15 14\n13 12",
"output": "rated"
},
{
"input": "2\n2 1\n2 2",
"output": "rated"
},
{
"input": "3\n2670 2670\n3670 3670\n4106 4106",
"output": "unrated"
},
{
"input": "3\n4 5\n3 3\n2 2",
"output": "rated"
},
{
"input": "2\n10 9\n10 10",
"output": "rated"
},
{
"input": "3\n1011 1011\n1011 999\n2200 2100",
"output": "rated"
},
{
"input": "2\n3 3\n5 5",
"output": "unrated"
},
{
"input": "2\n1500 1500\n3000 2000",
"output": "rated"
},
{
"input": "2\n5 6\n5 5",
"output": "rated"
},
{
"input": "3\n2000 2000\n1500 1501\n500 500",
"output": "rated"
},
{
"input": "2\n2 3\n2 2",
"output": "rated"
},
{
"input": "2\n3 3\n2 2",
"output": "maybe"
},
{
"input": "2\n1 2\n1 1",
"output": "rated"
},
{
"input": "4\n3123 3123\n2777 2777\n2246 2246\n1699 1699",
"output": "maybe"
},
{
"input": "2\n15 14\n14 13",
"output": "rated"
},
{
"input": "4\n3000 3000\n2900 2900\n3000 3000\n2900 2900",
"output": "unrated"
},
{
"input": "6\n30 3060\n24 2194\n26 2903\n24 2624\n37 2991\n24 2884",
"output": "rated"
},
{
"input": "2\n100 99\n100 100",
"output": "rated"
},
{
"input": "4\n2 2\n1 1\n1 1\n2 2",
"output": "unrated"
},
{
"input": "3\n100 101\n100 100\n100 100",
"output": "rated"
},
{
"input": "4\n1000 1001\n900 900\n950 950\n890 890",
"output": "rated"
},
{
"input": "2\n2 3\n1 1",
"output": "rated"
},
{
"input": "2\n2 2\n1 1",
"output": "maybe"
},
{
"input": "2\n3 2\n2 2",
"output": "rated"
},
{
"input": "2\n3 2\n3 3",
"output": "rated"
},
{
"input": "2\n1 1\n2 2",
"output": "unrated"
},
{
"input": "3\n3 2\n3 3\n3 3",
"output": "rated"
},
{
"input": "4\n1500 1501\n1300 1300\n1200 1200\n1400 1400",
"output": "rated"
},
{
"input": "3\n1000 1000\n500 500\n400 300",
"output": "rated"
},
{
"input": "5\n3123 3123\n2777 2777\n2246 2246\n2246 2246\n3000 3000",
"output": "unrated"
},
{
"input": "2\n1 1\n2 3",
"output": "rated"
},
{
"input": "2\n6 2\n6 2",
"output": "rated"
},
{
"input": "5\n3123 3123\n1699 1699\n2777 2777\n2246 2246\n2246 2246",
"output": "unrated"
},
{
"input": "2\n1500 1500\n1600 1600",
"output": "unrated"
},
{
"input": "5\n3123 3123\n2777 2777\n2246 2246\n2241 2241\n1699 1699",
"output": "maybe"
},
{
"input": "2\n20 30\n10 5",
"output": "rated"
},
{
"input": "3\n1 1\n2 2\n1 1",
"output": "unrated"
},
{
"input": "2\n1 2\n3 3",
"output": "rated"
},
{
"input": "5\n5 5\n4 4\n3 3\n2 2\n1 1",
"output": "maybe"
},
{
"input": "2\n2 2\n2 1",
"output": "rated"
},
{
"input": "2\n100 100\n90 89",
"output": "rated"
},
{
"input": "2\n1000 900\n2000 2000",
"output": "rated"
},
{
"input": "2\n50 10\n10 50",
"output": "rated"
},
{
"input": "2\n200 200\n100 100",
"output": "maybe"
},
{
"input": "3\n2 2\n2 2\n3 3",
"output": "unrated"
},
{
"input": "3\n1000 1000\n300 300\n100 100",
"output": "maybe"
},
{
"input": "4\n2 2\n2 2\n3 3\n4 4",
"output": "unrated"
},
{
"input": "2\n5 3\n6 3",
"output": "rated"
},
{
"input": "2\n1200 1100\n1200 1000",
"output": "rated"
},
{
"input": "2\n5 5\n4 4",
"output": "maybe"
},
{
"input": "2\n5 5\n3 3",
"output": "maybe"
},
{
"input": "5\n1500 1500\n1300 1300\n1200 1200\n1400 1400\n1100 1100",
"output": "unrated"
},
{
"input": "5\n10 10\n9 9\n8 8\n7 7\n6 6",
"output": "maybe"
},
{
"input": "3\n1000 1000\n300 300\n10 10",
"output": "maybe"
},
{
"input": "5\n6 6\n5 5\n4 4\n3 3\n2 2",
"output": "maybe"
},
{
"input": "2\n3 3\n1 1",
"output": "maybe"
},
{
"input": "4\n2 2\n2 2\n2 2\n3 3",
"output": "unrated"
},
{
"input": "2\n1000 1000\n700 700",
"output": "maybe"
},
{
"input": "2\n4 3\n5 3",
"output": "rated"
},
{
"input": "2\n1000 1000\n1100 1100",
"output": "unrated"
},
{
"input": "4\n5 5\n4 4\n3 3\n2 2",
"output": "maybe"
},
{
"input": "3\n1 1\n2 3\n2 2",
"output": "rated"
},
{
"input": "2\n1 2\n1 3",
"output": "rated"
},
{
"input": "2\n3 3\n1 2",
"output": "rated"
},
{
"input": "4\n1501 1500\n1300 1300\n1200 1200\n1400 1400",
"output": "rated"
},
{
"input": "5\n1 1\n2 2\n3 3\n4 4\n5 5",
"output": "unrated"
},
{
"input": "2\n10 10\n1 2",
"output": "rated"
},
{
"input": "6\n3123 3123\n2777 2777\n2246 2246\n2246 2246\n1699 1699\n1900 1900",
"output": "unrated"
},
{
"input": "6\n3123 3123\n2777 2777\n3000 3000\n2246 2246\n2246 2246\n1699 1699",
"output": "unrated"
},
{
"input": "2\n100 100\n110 110",
"output": "unrated"
},
{
"input": "3\n3 3\n3 3\n4 4",
"output": "unrated"
},
{
"input": "3\n3 3\n3 2\n4 4",
"output": "rated"
},
{
"input": "3\n5 2\n4 4\n3 3",
"output": "rated"
},
{
"input": "4\n4 4\n3 3\n2 2\n1 1",
"output": "maybe"
},
{
"input": "2\n1 1\n3 2",
"output": "rated"
},
{
"input": "5\n3123 3123\n2777 2777\n2246 2246\n2246 2246\n2699 2699",
"output": "unrated"
},
{
"input": "3\n3 3\n3 3\n3 4",
"output": "rated"
},
{
"input": "3\n1 2\n2 2\n3 3",
"output": "rated"
},
{
"input": "3\n1 2\n1 2\n1 2",
"output": "rated"
},
{
"input": "2\n2 1\n2 1",
"output": "rated"
},
{
"input": "2\n1 2\n3 4",
"output": "rated"
},
{
"input": "2\n3 2\n2 3",
"output": "rated"
},
{
"input": "3\n1500 1500\n1600 1600\n1600 1600",
"output": "unrated"
},
{
"input": "3\n1 1\n3 3\n4 4",
"output": "unrated"
},
{
"input": "3\n1 1\n2 2\n2 2",
"output": "unrated"
},
{
"input": "2\n10 12\n8 8",
"output": "rated"
},
{
"input": "5\n1200 1200\n1500 1500\n1500 1500\n1500 1500\n1500 1500",
"output": "unrated"
},
{
"input": "2\n1 2\n2 2",
"output": "rated"
},
{
"input": "3\n1500 1400\n1200 1200\n1100 1100",
"output": "rated"
},
{
"input": "2\n10 12\n10 10",
"output": "rated"
},
{
"input": "3\n1500 1500\n1400 1400\n1300 1300",
"output": "maybe"
},
{
"input": "3\n3 3\n4 4\n5 5",
"output": "unrated"
},
{
"input": "3\n2 6\n3 5\n4 4",
"output": "rated"
},
{
"input": "2\n5 6\n4 6",
"output": "rated"
},
{
"input": "4\n10 10\n10 10\n7 7\n8 8",
"output": "unrated"
},
{
"input": "2\n4 4\n3 3",
"output": "maybe"
}
] | 1,660,057,187
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 150
| 77
| 1,740,800
|
x = int(input())
mylist = []
broke = 0
broken = 0
for i in range(x):
string = input().split()
if(string[0] != string[1]):
broke = 1
mylist.append(int(string[1]))
mlist = sorted(mylist)
mlist = mlist[::-1]
for i in range(len(mylist)):
if(mylist[i] != mlist[i]):
broken = 1
break
if broke == 1:
print("rated")
elif(broken == 1):
print("unrated")
else:
print("maybe")
|
Title: Is it rated?
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Is it rated?
Here it is. The Ultimate Question of Competitive Programming, Codeforces, and Everything. And you are here to answer it.
Another Codeforces round has been conducted. No two participants have the same number of points. For each participant, from the top to the bottom of the standings, their rating before and after the round is known.
It's known that if at least one participant's rating has changed, then the round was rated for sure.
It's also known that if the round was rated and a participant with lower rating took a better place in the standings than a participant with higher rating, then at least one round participant's rating has changed.
In this problem, you should not make any other assumptions about the rating system.
Determine if the current round is rated, unrated, or it's impossible to determine whether it is rated of not.
Input Specification:
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=1000) — the number of round participants.
Each of the next *n* lines contains two integers *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=4126) — the rating of the *i*-th participant before and after the round, respectively. The participants are listed in order from the top to the bottom of the standings.
Output Specification:
If the round is rated for sure, print "rated". If the round is unrated for sure, print "unrated". If it's impossible to determine whether the round is rated or not, print "maybe".
Demo Input:
['6\n3060 3060\n2194 2194\n2876 2903\n2624 2624\n3007 2991\n2884 2884\n', '4\n1500 1500\n1300 1300\n1200 1200\n1400 1400\n', '5\n3123 3123\n2777 2777\n2246 2246\n2246 2246\n1699 1699\n']
Demo Output:
['rated\n', 'unrated\n', 'maybe\n']
Note:
In the first example, the ratings of the participants in the third and fifth places have changed, therefore, the round was rated.
In the second example, no one's rating has changed, but the participant in the second place has lower rating than the participant in the fourth place. Therefore, if the round was rated, someone's rating would've changed for sure.
In the third example, no one's rating has changed, and the participants took places in non-increasing order of their rating. Therefore, it's impossible to determine whether the round is rated or not.
|
```python
x = int(input())
mylist = []
broke = 0
broken = 0
for i in range(x):
string = input().split()
if(string[0] != string[1]):
broke = 1
mylist.append(int(string[1]))
mlist = sorted(mylist)
mlist = mlist[::-1]
for i in range(len(mylist)):
if(mylist[i] != mlist[i]):
broken = 1
break
if broke == 1:
print("rated")
elif(broken == 1):
print("unrated")
else:
print("maybe")
```
| 3
|
|
465
|
B
|
Inbox (100500)
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
Over time, Alexey's mail box got littered with too many letters. Some of them are read, while others are unread.
Alexey's mail program can either show a list of all letters or show the content of a single letter. As soon as the program shows the content of an unread letter, it becomes read letter (if the program shows the content of a read letter nothing happens). In one click he can do any of the following operations:
- Move from the list of letters to the content of any single letter.- Return to the list of letters from single letter viewing mode.- In single letter viewing mode, move to the next or to the previous letter in the list. You cannot move from the first letter to the previous one or from the last letter to the next one.
The program cannot delete the letters from the list or rearrange them.
Alexey wants to read all the unread letters and go watch football. Now he is viewing the list of all letters and for each letter he can see if it is read or unread. What minimum number of operations does Alexey need to perform to read all unread letters?
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of letters in the mailbox.
The second line contains *n* space-separated integers (zeros and ones) — the state of the letter list. The *i*-th number equals either 1, if the *i*-th number is unread, or 0, if the *i*-th letter is read.
|
Print a single number — the minimum number of operations needed to make all the letters read.
|
[
"5\n0 1 0 1 0\n",
"5\n1 1 0 0 1\n",
"2\n0 0\n"
] |
[
"3\n",
"4\n",
"0\n"
] |
In the first sample Alexey needs three operations to cope with the task: open the second letter, move to the third one, move to the fourth one.
In the second sample the action plan: open the first letter, move to the second letter, return to the list, open the fifth letter.
In the third sample all letters are already read.
| 1,000
|
[
{
"input": "5\n0 1 0 1 0",
"output": "3"
},
{
"input": "5\n1 1 0 0 1",
"output": "4"
},
{
"input": "2\n0 0",
"output": "0"
},
{
"input": "9\n1 0 1 0 1 0 1 0 1",
"output": "9"
},
{
"input": "5\n1 1 1 1 1",
"output": "5"
},
{
"input": "14\n0 0 1 1 1 0 1 1 1 0 1 1 1 0",
"output": "11"
},
{
"input": "23\n1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1",
"output": "23"
},
{
"input": "27\n0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0",
"output": "25"
},
{
"input": "10\n1 0 0 0 0 1 0 0 0 1",
"output": "5"
},
{
"input": "10\n1 0 0 1 0 0 1 1 0 1",
"output": "8"
},
{
"input": "27\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "0"
},
{
"input": "39\n1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1",
"output": "39"
},
{
"input": "48\n1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1",
"output": "39"
},
{
"input": "71\n0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0",
"output": "59"
},
{
"input": "99\n1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1",
"output": "99"
},
{
"input": "99\n1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1",
"output": "99"
},
{
"input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "100"
},
{
"input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "99"
},
{
"input": "193\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "1"
},
{
"input": "213\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "5"
},
{
"input": "2\n1 0",
"output": "1"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "1\n0",
"output": "0"
},
{
"input": "5\n0 0 0 0 1",
"output": "1"
},
{
"input": "12\n0 1 1 0 1 1 0 1 1 0 0 0",
"output": "8"
},
{
"input": "3\n1 0 0",
"output": "1"
},
{
"input": "5\n0 0 1 0 0",
"output": "1"
},
{
"input": "3\n0 1 0",
"output": "1"
},
{
"input": "6\n1 1 0 0 0 0",
"output": "2"
},
{
"input": "4\n0 1 0 0",
"output": "1"
},
{
"input": "5\n1 1 1 0 0",
"output": "3"
},
{
"input": "4\n1 0 0 0",
"output": "1"
},
{
"input": "6\n1 1 1 1 0 0",
"output": "4"
}
] | 1,550,126,840
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 44
| 109
| 0
|
f=lambda:map(int,input().split())
n=int(input())
l=list(f())
c=0
for i in range(1,n):
if [l[i-1],l[i]]!=[0,0]:
c+=1
if l[0]==1:
c+=1
if l[-1]==0:
c-=1
print(max(0,c))
|
Title: Inbox (100500)
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Over time, Alexey's mail box got littered with too many letters. Some of them are read, while others are unread.
Alexey's mail program can either show a list of all letters or show the content of a single letter. As soon as the program shows the content of an unread letter, it becomes read letter (if the program shows the content of a read letter nothing happens). In one click he can do any of the following operations:
- Move from the list of letters to the content of any single letter.- Return to the list of letters from single letter viewing mode.- In single letter viewing mode, move to the next or to the previous letter in the list. You cannot move from the first letter to the previous one or from the last letter to the next one.
The program cannot delete the letters from the list or rearrange them.
Alexey wants to read all the unread letters and go watch football. Now he is viewing the list of all letters and for each letter he can see if it is read or unread. What minimum number of operations does Alexey need to perform to read all unread letters?
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of letters in the mailbox.
The second line contains *n* space-separated integers (zeros and ones) — the state of the letter list. The *i*-th number equals either 1, if the *i*-th number is unread, or 0, if the *i*-th letter is read.
Output Specification:
Print a single number — the minimum number of operations needed to make all the letters read.
Demo Input:
['5\n0 1 0 1 0\n', '5\n1 1 0 0 1\n', '2\n0 0\n']
Demo Output:
['3\n', '4\n', '0\n']
Note:
In the first sample Alexey needs three operations to cope with the task: open the second letter, move to the third one, move to the fourth one.
In the second sample the action plan: open the first letter, move to the second letter, return to the list, open the fifth letter.
In the third sample all letters are already read.
|
```python
f=lambda:map(int,input().split())
n=int(input())
l=list(f())
c=0
for i in range(1,n):
if [l[i-1],l[i]]!=[0,0]:
c+=1
if l[0]==1:
c+=1
if l[-1]==0:
c-=1
print(max(0,c))
```
| 3
|
|
580
|
C
|
Kefa and Park
|
PROGRAMMING
| 1,500
|
[
"dfs and similar",
"graphs",
"trees"
] | null | null |
Kefa decided to celebrate his first big salary by going to the restaurant.
He lives by an unusual park. The park is a rooted tree consisting of *n* vertices with the root at vertex 1. Vertex 1 also contains Kefa's house. Unfortunaely for our hero, the park also contains cats. Kefa has already found out what are the vertices with cats in them.
The leaf vertices of the park contain restaurants. Kefa wants to choose a restaurant where he will go, but unfortunately he is very afraid of cats, so there is no way he will go to the restaurant if the path from the restaurant to his house contains more than *m* consecutive vertices with cats.
Your task is to help Kefa count the number of restaurants where he can go.
|
The first line contains two integers, *n* and *m* (2<=≤<=*n*<=≤<=105, 1<=≤<=*m*<=≤<=*n*) — the number of vertices of the tree and the maximum number of consecutive vertices with cats that is still ok for Kefa.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n*, where each *a**i* either equals to 0 (then vertex *i* has no cat), or equals to 1 (then vertex *i* has a cat).
Next *n*<=-<=1 lines contains the edges of the tree in the format "*x**i* *y**i*" (without the quotes) (1<=≤<=*x**i*,<=*y**i*<=≤<=*n*, *x**i*<=≠<=*y**i*), where *x**i* and *y**i* are the vertices of the tree, connected by an edge.
It is guaranteed that the given set of edges specifies a tree.
|
A single integer — the number of distinct leaves of a tree the path to which from Kefa's home contains at most *m* consecutive vertices with cats.
|
[
"4 1\n1 1 0 0\n1 2\n1 3\n1 4\n",
"7 1\n1 0 1 1 0 0 0\n1 2\n1 3\n2 4\n2 5\n3 6\n3 7\n"
] |
[
"2\n",
"2\n"
] |
Let us remind you that a tree is a connected graph on *n* vertices and *n* - 1 edge. A rooted tree is a tree with a special vertex called root. In a rooted tree among any two vertices connected by an edge, one vertex is a parent (the one closer to the root), and the other one is a child. A vertex is called a leaf, if it has no children.
Note to the first sample test: <img class="tex-graphics" src="https://espresso.codeforces.com/785114b4b3f5336f02078c25750f87c5a1d0b4be.png" style="max-width: 100.0%;max-height: 100.0%;"/> The vertices containing cats are marked red. The restaurants are at vertices 2, 3, 4. Kefa can't go only to the restaurant located at vertex 2.
Note to the second sample test: <img class="tex-graphics" src="https://espresso.codeforces.com/e5c07640680c837aec99126d94287872e69aa09a.png" style="max-width: 100.0%;max-height: 100.0%;"/> The restaurants are located at vertices 4, 5, 6, 7. Kefa can't go to restaurants 6, 7.
| 1,500
|
[
{
"input": "4 1\n1 1 0 0\n1 2\n1 3\n1 4",
"output": "2"
},
{
"input": "7 1\n1 0 1 1 0 0 0\n1 2\n1 3\n2 4\n2 5\n3 6\n3 7",
"output": "2"
},
{
"input": "3 2\n1 1 1\n1 2\n2 3",
"output": "0"
},
{
"input": "5 2\n1 1 0 1 1\n1 2\n2 3\n3 4\n4 5",
"output": "1"
},
{
"input": "6 1\n1 0 1 1 0 0\n1 2\n1 3\n1 4\n1 5\n1 6",
"output": "3"
},
{
"input": "7 3\n1 1 1 1 1 0 1\n1 2\n1 3\n2 4\n3 5\n5 6\n6 7",
"output": "2"
},
{
"input": "15 2\n1 0 1 0 1 0 0 0 0 0 0 0 0 0 0\n1 2\n1 3\n2 4\n2 5\n3 6\n3 7\n4 8\n4 9\n5 10\n5 11\n6 12\n6 13\n7 14\n7 15",
"output": "8"
},
{
"input": "2 1\n1 1\n2 1",
"output": "0"
},
{
"input": "12 3\n1 0 1 0 1 1 1 1 0 0 0 0\n6 7\n12 1\n9 7\n1 4\n10 7\n7 1\n11 8\n5 1\n3 7\n5 8\n4 2",
"output": "7"
}
] | 1,691,164,806
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 0
| 46
| 0
|
from collections import defaultdict
n,m=list(map(int,input().split()))
a=list(map(int,input().split()))
adj=defaultdict(list)
for _ in range(n-1):
x,y=list(map(int,input().split()))
adj[x-1].append(y-1)
adj[y-1].append(x-1)
|
Title: Kefa and Park
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Kefa decided to celebrate his first big salary by going to the restaurant.
He lives by an unusual park. The park is a rooted tree consisting of *n* vertices with the root at vertex 1. Vertex 1 also contains Kefa's house. Unfortunaely for our hero, the park also contains cats. Kefa has already found out what are the vertices with cats in them.
The leaf vertices of the park contain restaurants. Kefa wants to choose a restaurant where he will go, but unfortunately he is very afraid of cats, so there is no way he will go to the restaurant if the path from the restaurant to his house contains more than *m* consecutive vertices with cats.
Your task is to help Kefa count the number of restaurants where he can go.
Input Specification:
The first line contains two integers, *n* and *m* (2<=≤<=*n*<=≤<=105, 1<=≤<=*m*<=≤<=*n*) — the number of vertices of the tree and the maximum number of consecutive vertices with cats that is still ok for Kefa.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n*, where each *a**i* either equals to 0 (then vertex *i* has no cat), or equals to 1 (then vertex *i* has a cat).
Next *n*<=-<=1 lines contains the edges of the tree in the format "*x**i* *y**i*" (without the quotes) (1<=≤<=*x**i*,<=*y**i*<=≤<=*n*, *x**i*<=≠<=*y**i*), where *x**i* and *y**i* are the vertices of the tree, connected by an edge.
It is guaranteed that the given set of edges specifies a tree.
Output Specification:
A single integer — the number of distinct leaves of a tree the path to which from Kefa's home contains at most *m* consecutive vertices with cats.
Demo Input:
['4 1\n1 1 0 0\n1 2\n1 3\n1 4\n', '7 1\n1 0 1 1 0 0 0\n1 2\n1 3\n2 4\n2 5\n3 6\n3 7\n']
Demo Output:
['2\n', '2\n']
Note:
Let us remind you that a tree is a connected graph on *n* vertices and *n* - 1 edge. A rooted tree is a tree with a special vertex called root. In a rooted tree among any two vertices connected by an edge, one vertex is a parent (the one closer to the root), and the other one is a child. A vertex is called a leaf, if it has no children.
Note to the first sample test: <img class="tex-graphics" src="https://espresso.codeforces.com/785114b4b3f5336f02078c25750f87c5a1d0b4be.png" style="max-width: 100.0%;max-height: 100.0%;"/> The vertices containing cats are marked red. The restaurants are at vertices 2, 3, 4. Kefa can't go only to the restaurant located at vertex 2.
Note to the second sample test: <img class="tex-graphics" src="https://espresso.codeforces.com/e5c07640680c837aec99126d94287872e69aa09a.png" style="max-width: 100.0%;max-height: 100.0%;"/> The restaurants are located at vertices 4, 5, 6, 7. Kefa can't go to restaurants 6, 7.
|
```python
from collections import defaultdict
n,m=list(map(int,input().split()))
a=list(map(int,input().split()))
adj=defaultdict(list)
for _ in range(n-1):
x,y=list(map(int,input().split()))
adj[x-1].append(y-1)
adj[y-1].append(x-1)
```
| 0
|
|
214
|
A
|
System of Equations
|
PROGRAMMING
| 800
|
[
"brute force"
] | null | null |
Furik loves math lessons very much, so he doesn't attend them, unlike Rubik. But now Furik wants to get a good mark for math. For that Ms. Ivanova, his math teacher, gave him a new task. Furik solved the task immediately. Can you?
You are given a system of equations:
You should count, how many there are pairs of integers (*a*,<=*b*) (0<=≤<=*a*,<=*b*) which satisfy the system.
|
A single line contains two integers *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=1000) — the parameters of the system. The numbers on the line are separated by a space.
|
On a single line print the answer to the problem.
|
[
"9 3\n",
"14 28\n",
"4 20\n"
] |
[
"1\n",
"1\n",
"0\n"
] |
In the first sample the suitable pair is integers (3, 0). In the second sample the suitable pair is integers (3, 5). In the third sample there is no suitable pair.
| 500
|
[
{
"input": "9 3",
"output": "1"
},
{
"input": "14 28",
"output": "1"
},
{
"input": "4 20",
"output": "0"
},
{
"input": "18 198",
"output": "1"
},
{
"input": "22 326",
"output": "1"
},
{
"input": "26 104",
"output": "1"
},
{
"input": "14 10",
"output": "0"
},
{
"input": "8 20",
"output": "0"
},
{
"input": "2 8",
"output": "0"
},
{
"input": "20 11",
"output": "0"
},
{
"input": "57 447",
"output": "1"
},
{
"input": "1 1",
"output": "2"
},
{
"input": "66 296",
"output": "1"
},
{
"input": "75 683",
"output": "1"
},
{
"input": "227 975",
"output": "1"
},
{
"input": "247 499",
"output": "1"
},
{
"input": "266 116",
"output": "1"
},
{
"input": "286 916",
"output": "1"
},
{
"input": "307 341",
"output": "1"
},
{
"input": "451 121",
"output": "1"
},
{
"input": "471 921",
"output": "1"
},
{
"input": "502 346",
"output": "1"
},
{
"input": "535 59",
"output": "1"
},
{
"input": "555 699",
"output": "1"
},
{
"input": "747 351",
"output": "1"
},
{
"input": "790 64",
"output": "1"
},
{
"input": "810 704",
"output": "1"
},
{
"input": "855 225",
"output": "1"
},
{
"input": "902 34",
"output": "1"
},
{
"input": "922 514",
"output": "1"
},
{
"input": "971 131",
"output": "1"
},
{
"input": "991 931",
"output": "1"
},
{
"input": "840 780",
"output": "0"
},
{
"input": "102 595",
"output": "0"
},
{
"input": "139 433",
"output": "0"
},
{
"input": "968 288",
"output": "0"
},
{
"input": "563 354",
"output": "0"
},
{
"input": "994 975",
"output": "0"
},
{
"input": "456 221",
"output": "0"
},
{
"input": "205 210",
"output": "0"
},
{
"input": "1 11",
"output": "0"
},
{
"input": "1000 1000",
"output": "0"
},
{
"input": "3 3",
"output": "0"
},
{
"input": "11 99",
"output": "0"
},
{
"input": "2 2",
"output": "1"
},
{
"input": "11 1",
"output": "0"
},
{
"input": "6 6",
"output": "1"
},
{
"input": "100 452",
"output": "0"
},
{
"input": "420 380",
"output": "0"
},
{
"input": "31 31",
"output": "0"
},
{
"input": "2 6",
"output": "0"
},
{
"input": "112 134",
"output": "0"
},
{
"input": "13 13",
"output": "0"
},
{
"input": "1 571",
"output": "0"
}
] | 1,627,050,687
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 31
| 2,000
| 6,758,400
|
n,m=[int(x) for x in input().split()]
count=0
s=n+m
for a in range(s):
for b in range(s):
if pow(a,2)+b==n and a+pow(b,2)==m:
count+=1
print(count)
|
Title: System of Equations
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Furik loves math lessons very much, so he doesn't attend them, unlike Rubik. But now Furik wants to get a good mark for math. For that Ms. Ivanova, his math teacher, gave him a new task. Furik solved the task immediately. Can you?
You are given a system of equations:
You should count, how many there are pairs of integers (*a*,<=*b*) (0<=≤<=*a*,<=*b*) which satisfy the system.
Input Specification:
A single line contains two integers *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=1000) — the parameters of the system. The numbers on the line are separated by a space.
Output Specification:
On a single line print the answer to the problem.
Demo Input:
['9 3\n', '14 28\n', '4 20\n']
Demo Output:
['1\n', '1\n', '0\n']
Note:
In the first sample the suitable pair is integers (3, 0). In the second sample the suitable pair is integers (3, 5). In the third sample there is no suitable pair.
|
```python
n,m=[int(x) for x in input().split()]
count=0
s=n+m
for a in range(s):
for b in range(s):
if pow(a,2)+b==n and a+pow(b,2)==m:
count+=1
print(count)
```
| 0
|
|
0
|
none
|
none
|
none
| 0
|
[
"none"
] | null | null |
We'll call an array of *n* non-negative integers *a*[1],<=*a*[2],<=...,<=*a*[*n*] interesting, if it meets *m* constraints. The *i*-th of the *m* constraints consists of three integers *l**i*, *r**i*, *q**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*) meaning that value should be equal to *q**i*.
Your task is to find any interesting array of *n* elements or state that such array doesn't exist.
Expression *x*&*y* means the bitwise AND of numbers *x* and *y*. In programming languages C++, Java and Python this operation is represented as "&", in Pascal — as "and".
|
The first line contains two integers *n*, *m* (1<=≤<=*n*<=≤<=105, 1<=≤<=*m*<=≤<=105) — the number of elements in the array and the number of limits.
Each of the next *m* lines contains three integers *l**i*, *r**i*, *q**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*, 0<=≤<=*q**i*<=<<=230) describing the *i*-th limit.
|
If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print *n* integers *a*[1],<=*a*[2],<=...,<=*a*[*n*] (0<=≤<=*a*[*i*]<=<<=230) decribing the interesting array. If there are multiple answers, print any of them.
If the interesting array doesn't exist, print "NO" (without the quotes) in the single line.
|
[
"3 1\n1 3 3\n",
"3 2\n1 3 3\n1 3 2\n"
] |
[
"YES\n3 3 3\n",
"NO\n"
] |
none
| 0
|
[
{
"input": "3 1\n1 3 3",
"output": "YES\n3 3 3"
},
{
"input": "3 2\n1 3 3\n1 3 2",
"output": "NO"
},
{
"input": "3 2\n1 2 536870912\n2 3 536870911",
"output": "YES\n536870912 1073741823 536870911"
},
{
"input": "1 1\n1 1 10",
"output": "YES\n10"
},
{
"input": "1 2\n1 1 10\n1 1 5",
"output": "NO"
},
{
"input": "1 2\n1 1 1\n1 1 3",
"output": "NO"
}
] | 1,636,520,340
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 0
| 46
| 28,364,800
|
n,m=map(int,input().split())
l,r,q=list(map(int,input().split()))
a=[0]*n
for i in range(n):
a[i]+=l
a[i]&=l
print('YES')
print(a)
|
Title: none
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
We'll call an array of *n* non-negative integers *a*[1],<=*a*[2],<=...,<=*a*[*n*] interesting, if it meets *m* constraints. The *i*-th of the *m* constraints consists of three integers *l**i*, *r**i*, *q**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*) meaning that value should be equal to *q**i*.
Your task is to find any interesting array of *n* elements or state that such array doesn't exist.
Expression *x*&*y* means the bitwise AND of numbers *x* and *y*. In programming languages C++, Java and Python this operation is represented as "&", in Pascal — as "and".
Input Specification:
The first line contains two integers *n*, *m* (1<=≤<=*n*<=≤<=105, 1<=≤<=*m*<=≤<=105) — the number of elements in the array and the number of limits.
Each of the next *m* lines contains three integers *l**i*, *r**i*, *q**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*, 0<=≤<=*q**i*<=<<=230) describing the *i*-th limit.
Output Specification:
If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print *n* integers *a*[1],<=*a*[2],<=...,<=*a*[*n*] (0<=≤<=*a*[*i*]<=<<=230) decribing the interesting array. If there are multiple answers, print any of them.
If the interesting array doesn't exist, print "NO" (without the quotes) in the single line.
Demo Input:
['3 1\n1 3 3\n', '3 2\n1 3 3\n1 3 2\n']
Demo Output:
['YES\n3 3 3\n', 'NO\n']
Note:
none
|
```python
n,m=map(int,input().split())
l,r,q=list(map(int,input().split()))
a=[0]*n
for i in range(n):
a[i]+=l
a[i]&=l
print('YES')
print(a)
```
| 0
|
|
989
|
A
|
A Blend of Springtime
|
PROGRAMMING
| 900
|
[
"implementation",
"strings"
] | null | null |
"What a pity it's already late spring," sighs Mino with regret, "one more drizzling night and they'd be gone."
"But these blends are at their best, aren't they?" Absorbed in the landscape, Kanno remains optimistic.
The landscape can be expressed as a row of consecutive cells, each of which either contains a flower of colour amber or buff or canary yellow, or is empty.
When a flower withers, it disappears from the cell that it originally belonged to, and it spreads petals of its colour in its two neighbouring cells (or outside the field if the cell is on the side of the landscape). In case petals fall outside the given cells, they simply become invisible.
You are to help Kanno determine whether it's possible that after some (possibly none or all) flowers shed their petals, at least one of the cells contains all three colours, considering both petals and flowers. Note that flowers can wither in arbitrary order.
|
The first and only line of input contains a non-empty string $s$ consisting of uppercase English letters 'A', 'B', 'C' and characters '.' (dots) only ($\lvert s \rvert \leq 100$) — denoting cells containing an amber flower, a buff one, a canary yellow one, and no flowers, respectively.
|
Output "Yes" if it's possible that all three colours appear in some cell, and "No" otherwise.
You can print each letter in any case (upper or lower).
|
[
".BAC.\n",
"AA..CB\n"
] |
[
"Yes\n",
"No\n"
] |
In the first example, the buff and canary yellow flowers can leave their petals in the central cell, blending all three colours in it.
In the second example, it's impossible to satisfy the requirement because there is no way that amber and buff meet in any cell.
| 500
|
[
{
"input": ".BAC.",
"output": "Yes"
},
{
"input": "AA..CB",
"output": "No"
},
{
"input": ".",
"output": "No"
},
{
"input": "ACB.AAAAAA",
"output": "Yes"
},
{
"input": "B.BC.BBBCA",
"output": "Yes"
},
{
"input": "BA..CAB..B",
"output": "Yes"
},
{
"input": "CACCBAA.BC",
"output": "Yes"
},
{
"input": ".CAACCBBA.CBB.AC..BABCCBCCB..B.BC..CBC.CA.CC.C.CC.B.A.CC.BBCCBB..ACAACAC.CBCCB.AABAAC.CBCC.BA..CCBC.",
"output": "Yes"
},
{
"input": "A",
"output": "No"
},
{
"input": "..",
"output": "No"
},
{
"input": "BC",
"output": "No"
},
{
"input": "CAB",
"output": "Yes"
},
{
"input": "A.CB",
"output": "No"
},
{
"input": "B.ACAA.CA..CBCBBAA.B.CCBCB.CAC.ABC...BC.BCCC.BC.CB",
"output": "Yes"
},
{
"input": "B.B...CC.B..CCCB.CB..CBCB..CBCC.CCBC.B.CB..CA.C.C.",
"output": "No"
},
{
"input": "AA.CBAABABCCC..B..B.ABBABAB.B.B.CCA..CB.B...A..CBC",
"output": "Yes"
},
{
"input": "CA.ABB.CC.B.C.BBBABAAB.BBBAACACAAA.C.AACA.AAC.C.BCCB.CCBC.C..CCACA.CBCCB.CCAABAAB.AACAA..A.AAA.",
"output": "No"
},
{
"input": "CBC...AC.BBBB.BBABABA.CAAACC.AAABB..A.BA..BC.CBBBC.BBBBCCCAA.ACCBB.AB.C.BA..CC..AAAC...AB.A.AAABBA.A",
"output": "No"
},
{
"input": "CC.AAAC.BA.BBB.AABABBCCAA.A.CBCCB.B.BC.ABCBCBBAA.CACA.CCCA.CB.CCB.A.BCCCB...C.A.BCCBC..B.ABABB.C.BCB",
"output": "Yes"
},
{
"input": "CCC..A..CACACCA.CA.ABAAB.BBA..C.AAA...ACB.ACA.CA.B.AB.A..C.BC.BC.A.C....ABBCCACCCBCC.BBBAA.ACCACB.BB",
"output": "Yes"
},
{
"input": "BC.ABACAACC..AC.A..CCCAABBCCACAC.AA.CC.BAABABABBCBB.BA..C.C.C.A.BBA.C..BC.ACACCC.AAAACCCCC.AAC.AC.AB",
"output": "Yes"
},
{
"input": "ACAC.BAA.C..CAAC..ABBAACC..BAA...CC...ACCBBCA.BAABABAACCAC.A.BBCACCC..BCB.BABAAAACCBCB.BCAABBC.C.BBB",
"output": "Yes"
},
{
"input": "CCAC.BCBC.A.ABBAB.C.C.BC.CCABBCBCCBC..B.AA.C.BC...B..BAA.ACCCCBBB.AAAACA.CAACCB.CCB.CC.BCCAB.BBBBABB",
"output": "Yes"
},
{
"input": ".AACAA.AAAAC.BBBB.BC...CCACCACAAA.A..CCA..BCC.AB.ABAAB..AABA...B.C.CBAB.BAAB.A.C.AAC.BBBA.ACAAA.BB.C",
"output": "Yes"
},
{
"input": "CC.ACCC.BCCCCAA.BBAACB.ABABAAAA.A.CBAB.CBACBBC..C.CA.AAA..AA..ABBB.A.C..CBBCAAACC.B..CC.AC..CAABACB.",
"output": "Yes"
},
{
"input": ".BAB.",
"output": "No"
},
{
"input": "BBBBBBBBB",
"output": "No"
},
{
"input": "..AAC..",
"output": "No"
},
{
"input": ".AAABBBCCC.",
"output": "No"
},
{
"input": "AAABC",
"output": "Yes"
},
{
"input": "BBB",
"output": "No"
},
{
"input": "AAAAABABAAAAA",
"output": "No"
},
{
"input": "AABBCC",
"output": "No"
},
{
"input": ".BA",
"output": "No"
},
{
"input": "CAAAAB",
"output": "No"
}
] | 1,528,724,906
| 806
|
Python 3
|
OK
|
TESTS
| 37
| 93
| 0
|
F = input()
from itertools import permutations
P =list(permutations('ABC'))
for p in P:
if p[0]+p[1]+p[2] in F:
print('Yes')
break
else:
print('No')
|
Title: A Blend of Springtime
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
"What a pity it's already late spring," sighs Mino with regret, "one more drizzling night and they'd be gone."
"But these blends are at their best, aren't they?" Absorbed in the landscape, Kanno remains optimistic.
The landscape can be expressed as a row of consecutive cells, each of which either contains a flower of colour amber or buff or canary yellow, or is empty.
When a flower withers, it disappears from the cell that it originally belonged to, and it spreads petals of its colour in its two neighbouring cells (or outside the field if the cell is on the side of the landscape). In case petals fall outside the given cells, they simply become invisible.
You are to help Kanno determine whether it's possible that after some (possibly none or all) flowers shed their petals, at least one of the cells contains all three colours, considering both petals and flowers. Note that flowers can wither in arbitrary order.
Input Specification:
The first and only line of input contains a non-empty string $s$ consisting of uppercase English letters 'A', 'B', 'C' and characters '.' (dots) only ($\lvert s \rvert \leq 100$) — denoting cells containing an amber flower, a buff one, a canary yellow one, and no flowers, respectively.
Output Specification:
Output "Yes" if it's possible that all three colours appear in some cell, and "No" otherwise.
You can print each letter in any case (upper or lower).
Demo Input:
['.BAC.\n', 'AA..CB\n']
Demo Output:
['Yes\n', 'No\n']
Note:
In the first example, the buff and canary yellow flowers can leave their petals in the central cell, blending all three colours in it.
In the second example, it's impossible to satisfy the requirement because there is no way that amber and buff meet in any cell.
|
```python
F = input()
from itertools import permutations
P =list(permutations('ABC'))
for p in P:
if p[0]+p[1]+p[2] in F:
print('Yes')
break
else:
print('No')
```
| 3
|
|
450
|
A
|
Jzzhu and Children
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
There are *n* children in Jzzhu's school. Jzzhu is going to give some candies to them. Let's number all the children from 1 to *n*. The *i*-th child wants to get at least *a**i* candies.
Jzzhu asks children to line up. Initially, the *i*-th child stands at the *i*-th place of the line. Then Jzzhu start distribution of the candies. He follows the algorithm:
1. Give *m* candies to the first child of the line. 1. If this child still haven't got enough candies, then the child goes to the end of the line, else the child go home. 1. Repeat the first two steps while the line is not empty.
Consider all the children in the order they go home. Jzzhu wants to know, which child will be the last in this order?
|
The first line contains two integers *n*,<=*m* (1<=≤<=*n*<=≤<=100; 1<=≤<=*m*<=≤<=100). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100).
|
Output a single integer, representing the number of the last child.
|
[
"5 2\n1 3 1 4 2\n",
"6 4\n1 1 2 2 3 3\n"
] |
[
"4\n",
"6\n"
] |
Let's consider the first sample.
Firstly child 1 gets 2 candies and go home. Then child 2 gets 2 candies and go to the end of the line. Currently the line looks like [3, 4, 5, 2] (indices of the children in order of the line). Then child 3 gets 2 candies and go home, and then child 4 gets 2 candies and goes to the end of the line. Currently the line looks like [5, 2, 4]. Then child 5 gets 2 candies and goes home. Then child 2 gets two candies and goes home, and finally child 4 gets 2 candies and goes home.
Child 4 is the last one who goes home.
| 500
|
[
{
"input": "5 2\n1 3 1 4 2",
"output": "4"
},
{
"input": "6 4\n1 1 2 2 3 3",
"output": "6"
},
{
"input": "7 3\n6 1 5 4 2 3 1",
"output": "4"
},
{
"input": "10 5\n2 7 3 6 2 5 1 3 4 5",
"output": "4"
},
{
"input": "100 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100",
"output": "100"
},
{
"input": "9 3\n9 5 2 3 7 1 8 4 6",
"output": "7"
},
{
"input": "20 10\n58 4 32 10 73 7 30 39 47 6 59 21 24 66 79 79 46 13 29 58",
"output": "16"
},
{
"input": "50 5\n89 56 3 2 40 37 56 52 83 59 43 83 43 59 29 74 22 58 53 41 53 67 78 30 57 32 58 29 95 46 45 85 60 49 41 82 8 71 52 40 45 26 6 71 84 91 4 93 40 54",
"output": "48"
},
{
"input": "50 1\n4 3 9 7 6 8 3 7 10 9 8 8 10 2 9 3 2 4 4 10 4 6 8 10 9 9 4 2 8 9 4 4 9 5 1 5 2 4 4 9 10 2 5 10 7 2 8 6 8 1",
"output": "44"
},
{
"input": "50 5\n3 9 10 8 3 3 4 6 8 2 9 9 3 1 2 10 6 8 7 2 7 4 2 7 5 10 2 2 2 5 10 5 6 6 8 7 10 4 3 2 10 8 6 6 8 6 4 4 1 3",
"output": "46"
},
{
"input": "50 2\n56 69 72 15 95 92 51 1 74 87 100 29 46 54 18 81 84 72 84 83 20 63 71 27 45 74 50 89 48 8 21 15 47 3 39 73 80 84 6 99 17 25 56 3 74 64 71 39 89 78",
"output": "40"
},
{
"input": "50 3\n31 39 64 16 86 3 1 9 25 54 98 42 20 3 49 41 73 37 55 62 33 77 64 22 33 82 26 13 10 13 7 40 48 18 46 79 94 72 19 12 11 61 16 37 10 49 14 94 48 69",
"output": "11"
},
{
"input": "50 100\n67 67 61 68 42 29 70 77 12 61 71 27 4 73 87 52 59 38 93 90 31 27 87 47 26 57 76 6 28 72 81 68 50 84 69 79 39 93 52 6 88 12 46 13 90 68 71 38 90 95",
"output": "50"
},
{
"input": "100 3\n4 14 20 11 19 11 14 20 5 7 6 12 11 17 5 11 7 6 2 10 13 5 12 8 5 17 20 18 7 19 11 7 7 20 20 8 10 17 17 19 20 5 15 16 19 7 11 16 4 17 2 10 1 20 20 16 19 9 9 11 5 7 12 9 9 6 20 18 13 19 8 4 8 1 2 4 10 11 15 14 1 7 17 12 13 19 12 2 3 14 15 15 5 17 14 12 17 14 16 9",
"output": "86"
},
{
"input": "100 5\n16 8 14 16 12 11 17 19 19 2 8 9 5 6 19 9 11 18 6 9 14 16 14 18 17 17 17 5 15 20 19 7 7 10 10 5 14 20 5 19 11 16 16 19 17 9 7 12 14 10 2 11 14 5 20 8 10 11 19 2 14 14 19 17 5 10 8 8 4 2 1 10 20 12 14 11 7 6 6 15 1 5 9 15 3 17 16 17 5 14 11 9 16 15 1 11 10 6 15 7",
"output": "93"
},
{
"input": "100 1\n58 94 18 50 17 14 96 62 83 80 75 5 9 22 25 41 3 96 74 45 66 37 2 37 13 85 68 54 77 11 85 19 25 21 52 59 90 61 72 89 82 22 10 16 3 68 61 29 55 76 28 85 65 76 27 3 14 10 56 37 86 18 35 38 56 68 23 88 33 38 52 87 55 83 94 34 100 41 83 56 91 77 32 74 97 13 67 31 57 81 53 39 5 88 46 1 79 4 49 42",
"output": "77"
},
{
"input": "100 2\n1 51 76 62 34 93 90 43 57 59 52 78 3 48 11 60 57 48 5 54 28 81 87 23 44 77 67 61 14 73 29 53 21 89 67 41 47 9 63 37 1 71 40 85 4 14 77 40 78 75 89 74 4 70 32 65 81 95 49 90 72 41 76 55 69 83 73 84 85 93 46 6 74 90 62 37 97 7 7 37 83 30 37 88 34 16 11 59 85 19 57 63 85 20 63 97 97 65 61 48",
"output": "97"
},
{
"input": "100 3\n30 83 14 55 61 66 34 98 90 62 89 74 45 93 33 31 75 35 82 100 63 69 48 18 99 2 36 71 14 30 70 76 96 85 97 90 49 36 6 76 37 94 70 3 63 73 75 48 39 29 13 2 46 26 9 56 1 18 54 53 85 34 2 12 1 93 75 67 77 77 14 26 33 25 55 9 57 70 75 6 87 66 18 3 41 69 73 24 49 2 20 72 39 58 91 54 74 56 66 78",
"output": "20"
},
{
"input": "100 4\n69 92 76 3 32 50 15 38 21 22 14 3 67 41 95 12 10 62 83 52 78 1 18 58 94 35 62 71 58 75 13 73 60 34 50 97 50 70 19 96 53 10 100 26 20 39 62 59 88 26 24 83 70 68 66 8 6 38 16 93 2 91 81 89 78 74 21 8 31 56 28 53 77 5 81 5 94 42 77 75 92 15 59 36 61 18 55 45 69 68 81 51 12 42 85 74 98 31 17 41",
"output": "97"
},
{
"input": "100 5\n2 72 10 60 6 50 72 34 97 77 35 43 80 64 40 53 46 6 90 22 29 70 26 68 52 19 72 88 83 18 55 32 99 81 11 21 39 42 41 63 60 97 30 23 55 78 89 35 24 50 99 52 27 76 24 8 20 27 51 37 17 82 69 18 46 19 26 77 52 83 76 65 43 66 84 84 13 30 66 88 84 23 37 1 17 26 11 50 73 56 54 37 40 29 35 8 1 39 50 82",
"output": "51"
},
{
"input": "100 7\n6 73 7 54 92 33 66 65 80 47 2 53 28 59 61 16 54 89 37 48 77 40 49 59 27 52 17 22 78 80 81 80 8 93 50 7 87 57 29 16 89 55 20 7 51 54 30 98 44 96 27 70 1 1 32 61 22 92 84 98 31 89 91 90 28 56 49 25 86 49 55 16 19 1 18 8 88 47 16 18 73 86 2 96 16 91 74 49 38 98 94 25 34 85 29 27 99 31 31 58",
"output": "97"
},
{
"input": "100 9\n36 4 45 16 19 6 10 87 44 82 71 49 70 35 83 19 40 76 45 94 44 96 10 54 82 77 86 63 11 37 21 3 15 89 80 88 89 16 72 23 25 9 51 25 10 45 96 5 6 18 51 31 42 57 41 51 42 15 89 61 45 82 16 48 61 67 19 40 9 33 90 36 78 36 79 79 16 10 83 87 9 22 84 12 23 76 36 14 2 81 56 33 56 23 57 84 76 55 35 88",
"output": "47"
},
{
"input": "100 10\n75 81 39 64 90 58 92 28 75 9 96 78 92 83 77 68 76 71 14 46 58 60 80 25 78 11 13 63 22 82 65 68 47 6 33 63 90 50 85 43 73 94 80 48 67 11 83 17 22 15 94 80 66 99 66 4 46 35 52 1 62 39 96 57 37 47 97 49 64 12 36 63 90 16 4 75 85 82 85 56 13 4 92 45 44 93 17 35 22 46 18 44 29 7 52 4 100 98 87 51",
"output": "98"
},
{
"input": "100 20\n21 19 61 70 54 97 98 14 61 72 25 94 24 56 55 25 12 80 76 11 35 17 80 26 11 94 52 47 84 61 10 2 74 25 10 21 2 79 55 50 30 75 10 64 44 5 60 96 52 16 74 41 20 77 20 44 8 86 74 36 49 61 99 13 54 64 19 99 50 43 12 73 48 48 83 55 72 73 63 81 30 27 95 9 97 82 24 3 89 90 33 14 47 88 22 78 12 75 58 67",
"output": "94"
},
{
"input": "100 30\n56 79 59 23 11 23 67 82 81 80 99 79 8 58 93 36 98 81 46 39 34 67 3 50 4 68 70 71 2 21 52 30 75 23 33 21 16 100 56 43 8 27 40 8 56 24 17 40 94 10 67 49 61 36 95 87 17 41 7 94 33 19 17 50 26 11 94 54 38 46 77 9 53 35 98 42 50 20 43 6 78 6 38 24 100 45 43 16 1 50 16 46 14 91 95 88 10 1 50 19",
"output": "95"
},
{
"input": "100 40\n86 11 97 17 38 95 11 5 13 83 67 75 50 2 46 39 84 68 22 85 70 23 64 46 59 93 39 80 35 78 93 21 83 19 64 1 49 59 99 83 44 81 70 58 15 82 83 47 55 65 91 10 2 92 4 77 37 32 12 57 78 11 42 8 59 21 96 69 61 30 44 29 12 70 91 14 10 83 11 75 14 10 19 39 8 98 5 81 66 66 79 55 36 29 22 45 19 24 55 49",
"output": "88"
},
{
"input": "100 50\n22 39 95 69 94 53 80 73 33 90 40 60 2 4 84 50 70 38 92 12 36 74 87 70 51 36 57 5 54 6 35 81 52 17 55 100 95 81 32 76 21 1 100 1 95 1 40 91 98 59 84 19 11 51 79 19 47 86 45 15 62 2 59 77 31 68 71 92 17 33 10 33 85 57 5 2 88 97 91 99 63 20 63 54 79 93 24 62 46 27 30 87 3 64 95 88 16 50 79 1",
"output": "99"
},
{
"input": "100 70\n61 48 89 17 97 6 93 13 64 50 66 88 24 52 46 99 6 65 93 64 82 37 57 41 47 1 84 5 97 83 79 46 16 35 40 7 64 15 44 96 37 17 30 92 51 67 26 3 14 56 27 68 66 93 36 39 51 6 40 55 79 26 71 54 8 48 18 2 71 12 55 60 29 37 31 97 26 37 25 68 67 70 3 87 100 41 5 82 65 92 24 66 76 48 89 8 40 93 31 95",
"output": "100"
},
{
"input": "100 90\n87 32 30 15 10 52 93 63 84 1 82 41 27 51 75 32 42 94 39 53 70 13 4 22 99 35 44 38 5 23 18 100 61 80 9 12 42 93 9 77 3 7 60 95 66 78 95 42 69 8 1 88 93 66 96 20 76 63 15 36 92 52 2 72 36 57 48 63 29 20 74 88 49 47 81 61 94 74 70 93 47 3 19 52 59 41 5 40 22 3 76 97 91 37 95 88 91 99 76 15",
"output": "98"
},
{
"input": "100 100\n79 75 7 28 6 96 38 35 57 95 41 74 24 96 32 78 81 13 63 84 24 95 3 23 66 1 60 6 96 49 41 5 14 18 31 97 66 19 49 89 49 70 51 28 20 99 18 1 28 77 24 46 69 21 40 32 31 66 28 6 66 97 9 16 70 90 91 30 34 82 93 41 65 11 39 52 1 88 63 43 80 50 60 49 28 56 18 76 24 57 74 1 28 99 36 35 79 54 18 16",
"output": "100"
},
{
"input": "1 3\n5",
"output": "1"
},
{
"input": "1 1\n100",
"output": "1"
},
{
"input": "2 3\n4 2",
"output": "1"
},
{
"input": "2 5\n99 97",
"output": "2"
},
{
"input": "3 4\n7 5 2",
"output": "2"
},
{
"input": "3 50\n47 86 51",
"output": "3"
},
{
"input": "5 100\n82 100 85 1 37",
"output": "5"
},
{
"input": "5 20\n40 39 21 5 20",
"output": "3"
},
{
"input": "1 27\n81",
"output": "1"
},
{
"input": "20 13\n7 8 29 83 74 28 93 85 7 8 3 9 8 70 49 50 39 41 57 1",
"output": "7"
},
{
"input": "2 1\n100 2",
"output": "1"
},
{
"input": "2 2\n6 4",
"output": "1"
},
{
"input": "5 2\n6 4 4 1 1",
"output": "1"
},
{
"input": "1 4\n3",
"output": "1"
},
{
"input": "3 2\n1 5 3",
"output": "2"
},
{
"input": "3 1\n3 2 2",
"output": "1"
},
{
"input": "3 1\n2 3 2",
"output": "2"
},
{
"input": "5 1\n5 1 1 1 1",
"output": "1"
},
{
"input": "2 3\n7 4",
"output": "1"
}
] | 1,679,043,880
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 1
| 46
| 0
|
n,m=map(int,input().split())
l=list(map(int,input().split()))
q=[]
for i in range(len(l)):
if l[i]%2==0:
q.append(l[i]/2)
else:
q.append(l[i]%m)
print(q.index(max(q))+1)
|
Title: Jzzhu and Children
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* children in Jzzhu's school. Jzzhu is going to give some candies to them. Let's number all the children from 1 to *n*. The *i*-th child wants to get at least *a**i* candies.
Jzzhu asks children to line up. Initially, the *i*-th child stands at the *i*-th place of the line. Then Jzzhu start distribution of the candies. He follows the algorithm:
1. Give *m* candies to the first child of the line. 1. If this child still haven't got enough candies, then the child goes to the end of the line, else the child go home. 1. Repeat the first two steps while the line is not empty.
Consider all the children in the order they go home. Jzzhu wants to know, which child will be the last in this order?
Input Specification:
The first line contains two integers *n*,<=*m* (1<=≤<=*n*<=≤<=100; 1<=≤<=*m*<=≤<=100). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100).
Output Specification:
Output a single integer, representing the number of the last child.
Demo Input:
['5 2\n1 3 1 4 2\n', '6 4\n1 1 2 2 3 3\n']
Demo Output:
['4\n', '6\n']
Note:
Let's consider the first sample.
Firstly child 1 gets 2 candies and go home. Then child 2 gets 2 candies and go to the end of the line. Currently the line looks like [3, 4, 5, 2] (indices of the children in order of the line). Then child 3 gets 2 candies and go home, and then child 4 gets 2 candies and goes to the end of the line. Currently the line looks like [5, 2, 4]. Then child 5 gets 2 candies and goes home. Then child 2 gets two candies and goes home, and finally child 4 gets 2 candies and goes home.
Child 4 is the last one who goes home.
|
```python
n,m=map(int,input().split())
l=list(map(int,input().split()))
q=[]
for i in range(len(l)):
if l[i]%2==0:
q.append(l[i]/2)
else:
q.append(l[i]%m)
print(q.index(max(q))+1)
```
| 0
|
|
612
|
A
|
The Text Splitting
|
PROGRAMMING
| 1,300
|
[
"brute force",
"implementation",
"strings"
] | null | null |
You are given the string *s* of length *n* and the numbers *p*,<=*q*. Split the string *s* to pieces of length *p* and *q*.
For example, the string "Hello" for *p*<==<=2, *q*<==<=3 can be split to the two strings "Hel" and "lo" or to the two strings "He" and "llo".
Note it is allowed to split the string *s* to the strings only of length *p* or to the strings only of length *q* (see the second sample test).
|
The first line contains three positive integers *n*,<=*p*,<=*q* (1<=≤<=*p*,<=*q*<=≤<=*n*<=≤<=100).
The second line contains the string *s* consists of lowercase and uppercase latin letters and digits.
|
If it's impossible to split the string *s* to the strings of length *p* and *q* print the only number "-1".
Otherwise in the first line print integer *k* — the number of strings in partition of *s*.
Each of the next *k* lines should contain the strings in partition. Each string should be of the length *p* or *q*. The string should be in order of their appearing in string *s* — from left to right.
If there are several solutions print any of them.
|
[
"5 2 3\nHello\n",
"10 9 5\nCodeforces\n",
"6 4 5\nPrivet\n",
"8 1 1\nabacabac\n"
] |
[
"2\nHe\nllo\n",
"2\nCodef\norces\n",
"-1\n",
"8\na\nb\na\nc\na\nb\na\nc\n"
] |
none
| 0
|
[
{
"input": "5 2 3\nHello",
"output": "2\nHe\nllo"
},
{
"input": "10 9 5\nCodeforces",
"output": "2\nCodef\norces"
},
{
"input": "6 4 5\nPrivet",
"output": "-1"
},
{
"input": "8 1 1\nabacabac",
"output": "8\na\nb\na\nc\na\nb\na\nc"
},
{
"input": "1 1 1\n1",
"output": "1\n1"
},
{
"input": "10 8 1\nuTl9w4lcdo",
"output": "10\nu\nT\nl\n9\nw\n4\nl\nc\nd\no"
},
{
"input": "20 6 4\nfmFRpk2NrzSvnQC9gB61",
"output": "5\nfmFR\npk2N\nrzSv\nnQC9\ngB61"
},
{
"input": "30 23 6\nWXDjl9kitaDTY673R5xyTlbL9gqeQ6",
"output": "5\nWXDjl9\nkitaDT\nY673R5\nxyTlbL\n9gqeQ6"
},
{
"input": "40 14 3\nSOHBIkWEv7ScrkHgMtFFxP9G7JQLYXFoH1sJDAde",
"output": "6\nSOHBIkWEv7Scrk\nHgMtFFxP9G7JQL\nYXF\noH1\nsJD\nAde"
},
{
"input": "50 16 3\nXCgVJUu4aMQ7HMxZjNxe3XARNiahK303g9y7NV8oN6tWdyXrlu",
"output": "8\nXCgVJUu4aMQ7HMxZ\njNxe3XARNiahK303\ng9y\n7NV\n8oN\n6tW\ndyX\nrlu"
},
{
"input": "60 52 8\nhae0PYwXcW2ziQCOSci5VaElHLZCZI81ULSHgpyG3fuZaP0fHjN4hCKogONj",
"output": "2\nhae0PYwXcW2ziQCOSci5VaElHLZCZI81ULSHgpyG3fuZaP0fHjN4\nhCKogONj"
},
{
"input": "70 50 5\n1BH1ECq7hjzooQOZdbiYHTAgATcP5mxI7kLI9rqA9AriWc9kE5KoLa1zmuTDFsd2ClAPPY",
"output": "14\n1BH1E\nCq7hj\nzooQO\nZdbiY\nHTAgA\nTcP5m\nxI7kL\nI9rqA\n9AriW\nc9kE5\nKoLa1\nzmuTD\nFsd2C\nlAPPY"
},
{
"input": "80 51 8\no2mpu1FCofuiLQb472qczCNHfVzz5TfJtVMrzgN3ff7FwlAY0fQ0ROhWmIX2bggodORNA76bHMjA5yyc",
"output": "10\no2mpu1FC\nofuiLQb4\n72qczCNH\nfVzz5TfJ\ntVMrzgN3\nff7FwlAY\n0fQ0ROhW\nmIX2bggo\ndORNA76b\nHMjA5yyc"
},
{
"input": "90 12 7\nclcImtsw176FFOA6OHGFxtEfEyhFh5bH4iktV0Y8onIcn0soTwiiHUFRWC6Ow36tT5bsQjgrVSTcB8fAVoe7dJIWkE",
"output": "10\nclcImtsw176F\nFOA6OHGFxtEf\nEyhFh5bH4ikt\nV0Y8onIcn0so\nTwiiHUF\nRWC6Ow3\n6tT5bsQ\njgrVSTc\nB8fAVoe\n7dJIWkE"
},
{
"input": "100 25 5\n2SRB9mRpXMRND5zQjeRxc4GhUBlEQSmLgnUtB9xTKoC5QM9uptc8dKwB88XRJy02r7edEtN2C6D60EjzK1EHPJcWNj6fbF8kECeB",
"output": "20\n2SRB9\nmRpXM\nRND5z\nQjeRx\nc4GhU\nBlEQS\nmLgnU\ntB9xT\nKoC5Q\nM9upt\nc8dKw\nB88XR\nJy02r\n7edEt\nN2C6D\n60Ejz\nK1EHP\nJcWNj\n6fbF8\nkECeB"
},
{
"input": "100 97 74\nxL8yd8lENYnXZs28xleyci4SxqsjZqkYzkEbQXfLQ4l4gKf9QQ9xjBjeZ0f9xQySf5psDUDkJEtPLsa62n4CLc6lF6E2yEqvt4EJ",
"output": "-1"
},
{
"input": "51 25 11\nwpk5wqrB6d3qE1slUrzJwMFafnnOu8aESlvTEb7Pp42FDG2iGQn",
"output": "-1"
},
{
"input": "70 13 37\nfzL91QIJvNoZRP4A9aNRT2GTksd8jEb1713pnWFaCGKHQ1oYvlTHXIl95lqyZRKJ1UPYvT",
"output": "-1"
},
{
"input": "10 3 1\nXQ2vXLPShy",
"output": "10\nX\nQ\n2\nv\nX\nL\nP\nS\nh\ny"
},
{
"input": "4 2 3\naaaa",
"output": "2\naa\naa"
},
{
"input": "100 1 1\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb",
"output": "100\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb"
},
{
"input": "99 2 4\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "-1"
},
{
"input": "11 2 3\nhavanahavan",
"output": "4\nha\nvan\naha\nvan"
},
{
"input": "100 2 2\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "50\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa"
},
{
"input": "17 3 5\ngopstopmipodoshli",
"output": "5\ngop\nsto\npmi\npod\noshli"
},
{
"input": "5 4 3\nfoyku",
"output": "-1"
},
{
"input": "99 2 2\n123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789",
"output": "-1"
},
{
"input": "99 2 2\nrecursionishellrecursionishellrecursionishellrecursionishellrecursionishellrecursionishelldontuseit",
"output": "-1"
},
{
"input": "11 2 3\nqibwnnvqqgo",
"output": "4\nqi\nbwn\nnvq\nqgo"
},
{
"input": "4 4 3\nhhhh",
"output": "1\nhhhh"
},
{
"input": "99 2 2\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "-1"
},
{
"input": "99 2 5\nhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh",
"output": "21\nhh\nhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh"
},
{
"input": "10 5 9\nCodeforces",
"output": "2\nCodef\norces"
},
{
"input": "10 5 9\naaaaaaaaaa",
"output": "2\naaaaa\naaaaa"
},
{
"input": "11 3 2\nmlmqpohwtsf",
"output": "5\nmlm\nqp\noh\nwt\nsf"
},
{
"input": "3 3 2\nzyx",
"output": "1\nzyx"
},
{
"input": "100 3 3\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "-1"
},
{
"input": "4 2 3\nzyxw",
"output": "2\nzy\nxw"
},
{
"input": "3 2 3\nejt",
"output": "1\nejt"
},
{
"input": "5 2 4\nzyxwv",
"output": "-1"
},
{
"input": "100 1 1\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "100\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na"
},
{
"input": "100 5 4\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "25\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa"
},
{
"input": "3 2 2\nzyx",
"output": "-1"
},
{
"input": "99 2 2\nhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh",
"output": "-1"
},
{
"input": "26 8 9\nabcabcabcabcabcabcabcabcab",
"output": "3\nabcabcab\ncabcabcab\ncabcabcab"
},
{
"input": "6 3 5\naaaaaa",
"output": "2\naaa\naaa"
},
{
"input": "3 2 3\nzyx",
"output": "1\nzyx"
},
{
"input": "5 5 2\naaaaa",
"output": "1\naaaaa"
},
{
"input": "4 3 2\nzyxw",
"output": "2\nzy\nxw"
},
{
"input": "5 4 3\nzyxwv",
"output": "-1"
},
{
"input": "95 3 29\nabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcab",
"output": "23\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabcabcabcabcabcabcabcabcabcab"
},
{
"input": "3 2 2\naaa",
"output": "-1"
},
{
"input": "91 62 3\nfjzhkfwzoabaauvbkuzaahkozofaophaafhfpuhobufawkzbavaazwavwppfwapkapaofbfjwaavajojgjguahphofj",
"output": "-1"
},
{
"input": "99 2 2\nabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc",
"output": "-1"
},
{
"input": "56 13 5\nabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcab",
"output": "8\nabcabcabcabca\nbcabcabcabcab\ncabca\nbcabc\nabcab\ncabca\nbcabc\nabcab"
},
{
"input": "79 7 31\nabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabca",
"output": "-1"
},
{
"input": "92 79 6\nxlvplpckwnhmctoethhslkcyashqtsoeltriddglfwtgkfvkvgytygbcyohrvcxvosdioqvackxiuifmkgdngvbbudcb",
"output": "-1"
},
{
"input": "48 16 13\nibhfinipihcbsqnvtgsbkobepmwymlyfmlfgblvhlfhyojsy",
"output": "3\nibhfinipihcbsqnv\ntgsbkobepmwymlyf\nmlfgblvhlfhyojsy"
},
{
"input": "16 3 7\naaaaaaaaaaaaaaaa",
"output": "4\naaa\naaa\naaa\naaaaaaa"
},
{
"input": "11 10 3\naaaaaaaaaaa",
"output": "-1"
},
{
"input": "11 8 8\naaaaaaaaaaa",
"output": "-1"
},
{
"input": "11 7 3\naaaaaaaaaaa",
"output": "-1"
},
{
"input": "41 3 4\nabcabcabcabcabcabcabcabcabcabcabcabcabcab",
"output": "11\nabc\nabc\nabc\nabca\nbcab\ncabc\nabca\nbcab\ncabc\nabca\nbcab"
},
{
"input": "11 3 2\naaaaaaaaaaa",
"output": "5\naaa\naa\naa\naa\naa"
},
{
"input": "14 9 4\nabcdefghijklmn",
"output": "-1"
},
{
"input": "9 9 5\n123456789",
"output": "1\n123456789"
},
{
"input": "92 10 41\nmeotryyfneonmnrvfnhqlehlxtvpracifpadcofecvbikoitrlgeftiqofpvacgocrdiquhatlqosqvtduenaqkwrnnw",
"output": "3\nmeotryyfne\nonmnrvfnhqlehlxtvpracifpadcofecvbikoitrlg\neftiqofpvacgocrdiquhatlqosqvtduenaqkwrnnw"
},
{
"input": "17 16 3\ndxyhgtsxtuyljmclj",
"output": "-1"
},
{
"input": "82 13 30\nfmtwumakkejtolxqxrnydhqoufwtdwldfxcfjrndauqcarhbwmdwxsxfbqjsfspuxobywhcrvlndsdmkqd",
"output": "5\nfmtwumakkejto\nlxqxrnydhqouf\nwtdwldfxcfjrn\ndauqcarhbwmdw\nxsxfbqjsfspuxobywhcrvlndsdmkqd"
},
{
"input": "95 3 3\nihnfqcswushyoirjxlxxnwqtwtaowounkumxukwpacxwatimhhhoggqwkkspcplvyndfukbxickcixidgxkjtnpkoeiwlor",
"output": "-1"
},
{
"input": "7 5 3\nzyxwvut",
"output": "-1"
},
{
"input": "17 16 4\nctvfhkiakagcilrdw",
"output": "-1"
}
] | 1,635,435,269
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 8
| 77
| 4,505,600
|
n,p, q = map(int,input().split())
word = input()
x, y = 0,0
if n%p == 0:
x = n//p
elif n%q == 0:
y = n//q
elif (n-q)%p == 0:
y = 1
x = (n-q)//p
elif (n-q*2)%p==0:
y = 2
x = (n-q*2)//p
elif (n-p)%q == 0:
x = 1
y = (n-p)//q
elif (n-p*2)%q ==0:
x = 2
y = (n-p*2)//q
if x>=0 and y>=0 and (x or y):
print(x+y)
for i in range(x):
print(word[i:i+p])
for j in range(y):
print(word[x*p+j*q:x*p+j*q+q])
else:
print(-1)
|
Title: The Text Splitting
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given the string *s* of length *n* and the numbers *p*,<=*q*. Split the string *s* to pieces of length *p* and *q*.
For example, the string "Hello" for *p*<==<=2, *q*<==<=3 can be split to the two strings "Hel" and "lo" or to the two strings "He" and "llo".
Note it is allowed to split the string *s* to the strings only of length *p* or to the strings only of length *q* (see the second sample test).
Input Specification:
The first line contains three positive integers *n*,<=*p*,<=*q* (1<=≤<=*p*,<=*q*<=≤<=*n*<=≤<=100).
The second line contains the string *s* consists of lowercase and uppercase latin letters and digits.
Output Specification:
If it's impossible to split the string *s* to the strings of length *p* and *q* print the only number "-1".
Otherwise in the first line print integer *k* — the number of strings in partition of *s*.
Each of the next *k* lines should contain the strings in partition. Each string should be of the length *p* or *q*. The string should be in order of their appearing in string *s* — from left to right.
If there are several solutions print any of them.
Demo Input:
['5 2 3\nHello\n', '10 9 5\nCodeforces\n', '6 4 5\nPrivet\n', '8 1 1\nabacabac\n']
Demo Output:
['2\nHe\nllo\n', '2\nCodef\norces\n', '-1\n', '8\na\nb\na\nc\na\nb\na\nc\n']
Note:
none
|
```python
n,p, q = map(int,input().split())
word = input()
x, y = 0,0
if n%p == 0:
x = n//p
elif n%q == 0:
y = n//q
elif (n-q)%p == 0:
y = 1
x = (n-q)//p
elif (n-q*2)%p==0:
y = 2
x = (n-q*2)//p
elif (n-p)%q == 0:
x = 1
y = (n-p)//q
elif (n-p*2)%q ==0:
x = 2
y = (n-p*2)//q
if x>=0 and y>=0 and (x or y):
print(x+y)
for i in range(x):
print(word[i:i+p])
for j in range(y):
print(word[x*p+j*q:x*p+j*q+q])
else:
print(-1)
```
| 0
|
|
962
|
C
|
Make a Square
|
PROGRAMMING
| 1,400
|
[
"brute force",
"implementation",
"math"
] | null | null |
You are given a positive integer $n$, written without leading zeroes (for example, the number 04 is incorrect).
In one operation you can delete any digit of the given integer so that the result remains a positive integer without leading zeros.
Determine the minimum number of operations that you need to consistently apply to the given integer $n$ to make from it the square of some positive integer or report that it is impossible.
An integer $x$ is the square of some positive integer if and only if $x=y^2$ for some positive integer $y$.
|
The first line contains a single integer $n$ ($1 \le n \le 2 \cdot 10^{9}$). The number is given without leading zeroes.
|
If it is impossible to make the square of some positive integer from $n$, print -1. In the other case, print the minimal number of operations required to do it.
|
[
"8314\n",
"625\n",
"333\n"
] |
[
"2\n",
"0\n",
"-1\n"
] |
In the first example we should delete from $8314$ the digits $3$ and $4$. After that $8314$ become equals to $81$, which is the square of the integer $9$.
In the second example the given $625$ is the square of the integer $25$, so you should not delete anything.
In the third example it is impossible to make the square from $333$, so the answer is -1.
| 0
|
[
{
"input": "8314",
"output": "2"
},
{
"input": "625",
"output": "0"
},
{
"input": "333",
"output": "-1"
},
{
"input": "1881388645",
"output": "6"
},
{
"input": "1059472069",
"output": "3"
},
{
"input": "1354124829",
"output": "4"
},
{
"input": "149723943",
"output": "4"
},
{
"input": "101",
"output": "2"
},
{
"input": "1999967841",
"output": "0"
},
{
"input": "2000000000",
"output": "-1"
},
{
"input": "1999431225",
"output": "0"
},
{
"input": "30",
"output": "-1"
},
{
"input": "1000",
"output": "1"
},
{
"input": "3081",
"output": "2"
},
{
"input": "10",
"output": "1"
},
{
"input": "2003064",
"output": "3"
},
{
"input": "701",
"output": "2"
},
{
"input": "1234567891",
"output": "4"
},
{
"input": "10625",
"output": "2"
},
{
"input": "13579",
"output": "4"
},
{
"input": "1999999999",
"output": "9"
},
{
"input": "150000",
"output": "1"
},
{
"input": "8010902",
"output": "3"
},
{
"input": "20100",
"output": "2"
},
{
"input": "40404",
"output": "2"
},
{
"input": "70000729",
"output": "5"
},
{
"input": "1899933124",
"output": "5"
},
{
"input": "1999999081",
"output": "8"
},
{
"input": "326700",
"output": "2"
},
{
"input": "1",
"output": "0"
},
{
"input": "1000000990",
"output": "3"
},
{
"input": "10000",
"output": "0"
},
{
"input": "100001",
"output": "1"
},
{
"input": "1410065408",
"output": "7"
},
{
"input": "1409865409",
"output": "5"
},
{
"input": "1000050001",
"output": "3"
},
{
"input": "1044435556",
"output": "2"
},
{
"input": "520993450",
"output": "6"
},
{
"input": "131073",
"output": "5"
},
{
"input": "500040004",
"output": "6"
},
{
"input": "237555493",
"output": "7"
},
{
"input": "1120671621",
"output": "5"
},
{
"input": "298755045",
"output": "5"
},
{
"input": "1476838469",
"output": "5"
},
{
"input": "654921893",
"output": "4"
},
{
"input": "1538038021",
"output": "4"
},
{
"input": "716121445",
"output": "6"
},
{
"input": "1894204869",
"output": "5"
},
{
"input": "1800098866",
"output": "7"
},
{
"input": "890665277",
"output": "8"
},
{
"input": "1686264392",
"output": "6"
},
{
"input": "1336639314",
"output": "6"
},
{
"input": "132238429",
"output": "5"
},
{
"input": "927837544",
"output": "4"
},
{
"input": "18403955",
"output": "4"
},
{
"input": "1668778878",
"output": "8"
},
{
"input": "2",
"output": "-1"
},
{
"input": "3",
"output": "-1"
},
{
"input": "4",
"output": "0"
},
{
"input": "5",
"output": "-1"
},
{
"input": "6",
"output": "-1"
},
{
"input": "7",
"output": "-1"
},
{
"input": "8",
"output": "-1"
},
{
"input": "9",
"output": "0"
},
{
"input": "11",
"output": "1"
},
{
"input": "12",
"output": "1"
},
{
"input": "13",
"output": "1"
},
{
"input": "14",
"output": "1"
},
{
"input": "15",
"output": "1"
},
{
"input": "16",
"output": "0"
}
] | 1,548,794,379
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 3
| 2,000
| 0
|
from math import sqrt
def perebor(j, n):
global mx
for i in range(len(n)):
if sqrt(int(n)) % 1 == 0:
if mx > j:
mx = j
else:
perebor(j + 1, n[:i:] + n[i + 1::])
mx = 20e9 + 1
n = input()
perebor(0, n)
if mx == 20e9 + 1:
print(-1)
else:
print(mx)
|
Title: Make a Square
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given a positive integer $n$, written without leading zeroes (for example, the number 04 is incorrect).
In one operation you can delete any digit of the given integer so that the result remains a positive integer without leading zeros.
Determine the minimum number of operations that you need to consistently apply to the given integer $n$ to make from it the square of some positive integer or report that it is impossible.
An integer $x$ is the square of some positive integer if and only if $x=y^2$ for some positive integer $y$.
Input Specification:
The first line contains a single integer $n$ ($1 \le n \le 2 \cdot 10^{9}$). The number is given without leading zeroes.
Output Specification:
If it is impossible to make the square of some positive integer from $n$, print -1. In the other case, print the minimal number of operations required to do it.
Demo Input:
['8314\n', '625\n', '333\n']
Demo Output:
['2\n', '0\n', '-1\n']
Note:
In the first example we should delete from $8314$ the digits $3$ and $4$. After that $8314$ become equals to $81$, which is the square of the integer $9$.
In the second example the given $625$ is the square of the integer $25$, so you should not delete anything.
In the third example it is impossible to make the square from $333$, so the answer is -1.
|
```python
from math import sqrt
def perebor(j, n):
global mx
for i in range(len(n)):
if sqrt(int(n)) % 1 == 0:
if mx > j:
mx = j
else:
perebor(j + 1, n[:i:] + n[i + 1::])
mx = 20e9 + 1
n = input()
perebor(0, n)
if mx == 20e9 + 1:
print(-1)
else:
print(mx)
```
| 0
|
|
735
|
C
|
Tennis Championship
|
PROGRAMMING
| 1,600
|
[
"combinatorics",
"constructive algorithms",
"greedy",
"math"
] | null | null |
Famous Brazil city Rio de Janeiro holds a tennis tournament and Ostap Bender doesn't want to miss this event. There will be *n* players participating, and the tournament will follow knockout rules from the very first game. That means, that if someone loses a game he leaves the tournament immediately.
Organizers are still arranging tournament grid (i.e. the order games will happen and who is going to play with whom) but they have already fixed one rule: two players can play against each other only if the number of games one of them has already played differs by no more than one from the number of games the other one has already played. Of course, both players had to win all their games in order to continue participating in the tournament.
Tournament hasn't started yet so the audience is a bit bored. Ostap decided to find out what is the maximum number of games the winner of the tournament can take part in (assuming the rule above is used). However, it is unlikely he can deal with this problem without your help.
|
The only line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=1018) — the number of players to participate in the tournament.
|
Print the maximum number of games in which the winner of the tournament can take part.
|
[
"2\n",
"3\n",
"4\n",
"10\n"
] |
[
"1\n",
"2\n",
"2\n",
"4\n"
] |
In all samples we consider that player number 1 is the winner.
In the first sample, there would be only one game so the answer is 1.
In the second sample, player 1 can consequently beat players 2 and 3.
In the third sample, player 1 can't play with each other player as after he plays with players 2 and 3 he can't play against player 4, as he has 0 games played, while player 1 already played 2. Thus, the answer is 2 and to achieve we make pairs (1, 2) and (3, 4) and then clash the winners.
| 1,750
|
[
{
"input": "2",
"output": "1"
},
{
"input": "3",
"output": "2"
},
{
"input": "4",
"output": "2"
},
{
"input": "10",
"output": "4"
},
{
"input": "1000",
"output": "14"
},
{
"input": "2500",
"output": "15"
},
{
"input": "690000",
"output": "27"
},
{
"input": "3000000000",
"output": "45"
},
{
"input": "123456789123456789",
"output": "81"
},
{
"input": "5",
"output": "3"
},
{
"input": "143",
"output": "9"
},
{
"input": "144",
"output": "10"
},
{
"input": "145",
"output": "10"
},
{
"input": "232",
"output": "10"
},
{
"input": "233",
"output": "11"
},
{
"input": "234",
"output": "11"
},
{
"input": "679891637638612257",
"output": "84"
},
{
"input": "679891637638612258",
"output": "85"
},
{
"input": "679891637638612259",
"output": "85"
},
{
"input": "1000000000000000000",
"output": "85"
},
{
"input": "10235439547",
"output": "47"
},
{
"input": "1240723548",
"output": "43"
},
{
"input": "92353046212453",
"output": "66"
},
{
"input": "192403205846532",
"output": "68"
},
{
"input": "13925230525389",
"output": "62"
},
{
"input": "12048230592523",
"output": "62"
},
{
"input": "19204385325853",
"output": "63"
},
{
"input": "902353283921",
"output": "56"
},
{
"input": "793056859214355",
"output": "70"
},
{
"input": "982045466234565",
"output": "71"
},
{
"input": "126743950353465",
"output": "67"
},
{
"input": "12405430465",
"output": "47"
},
{
"input": "10238439257768",
"output": "61"
},
{
"input": "1728493055346",
"output": "58"
},
{
"input": "927553829046",
"output": "56"
},
{
"input": "62735129403",
"output": "51"
},
{
"input": "71624823950223",
"output": "65"
},
{
"input": "8902353464851212",
"output": "75"
},
{
"input": "61824012598535",
"output": "65"
},
{
"input": "1294902504603347",
"output": "71"
},
{
"input": "6",
"output": "3"
},
{
"input": "7",
"output": "3"
},
{
"input": "8",
"output": "4"
},
{
"input": "9",
"output": "4"
},
{
"input": "11",
"output": "4"
},
{
"input": "12",
"output": "4"
},
{
"input": "13",
"output": "5"
},
{
"input": "14",
"output": "5"
},
{
"input": "15",
"output": "5"
},
{
"input": "16",
"output": "5"
},
{
"input": "17",
"output": "5"
},
{
"input": "18",
"output": "5"
},
{
"input": "19",
"output": "5"
},
{
"input": "20",
"output": "5"
},
{
"input": "21",
"output": "6"
},
{
"input": "22",
"output": "6"
},
{
"input": "23",
"output": "6"
},
{
"input": "355687428096000",
"output": "69"
},
{
"input": "576460752303423488",
"output": "84"
},
{
"input": "32212254719",
"output": "49"
},
{
"input": "26388279066623",
"output": "63"
},
{
"input": "618473717761",
"output": "56"
},
{
"input": "262406072477",
"output": "54"
}
] | 1,486,639,721
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 63
| 62
| 4,608,000
|
import math
def main():
n = int(input())
phib = [1, 1]
ans = 0
while(phib[-1] + phib[-2] <= n):
phib.append(phib[-1] + phib[-2])
ans += 1
print(ans)
main()
|
Title: Tennis Championship
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Famous Brazil city Rio de Janeiro holds a tennis tournament and Ostap Bender doesn't want to miss this event. There will be *n* players participating, and the tournament will follow knockout rules from the very first game. That means, that if someone loses a game he leaves the tournament immediately.
Organizers are still arranging tournament grid (i.e. the order games will happen and who is going to play with whom) but they have already fixed one rule: two players can play against each other only if the number of games one of them has already played differs by no more than one from the number of games the other one has already played. Of course, both players had to win all their games in order to continue participating in the tournament.
Tournament hasn't started yet so the audience is a bit bored. Ostap decided to find out what is the maximum number of games the winner of the tournament can take part in (assuming the rule above is used). However, it is unlikely he can deal with this problem without your help.
Input Specification:
The only line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=1018) — the number of players to participate in the tournament.
Output Specification:
Print the maximum number of games in which the winner of the tournament can take part.
Demo Input:
['2\n', '3\n', '4\n', '10\n']
Demo Output:
['1\n', '2\n', '2\n', '4\n']
Note:
In all samples we consider that player number 1 is the winner.
In the first sample, there would be only one game so the answer is 1.
In the second sample, player 1 can consequently beat players 2 and 3.
In the third sample, player 1 can't play with each other player as after he plays with players 2 and 3 he can't play against player 4, as he has 0 games played, while player 1 already played 2. Thus, the answer is 2 and to achieve we make pairs (1, 2) and (3, 4) and then clash the winners.
|
```python
import math
def main():
n = int(input())
phib = [1, 1]
ans = 0
while(phib[-1] + phib[-2] <= n):
phib.append(phib[-1] + phib[-2])
ans += 1
print(ans)
main()
```
| 3
|
|
34
|
A
|
Reconnaissance 2
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Reconnaissance 2
|
2
|
256
|
*n* soldiers stand in a circle. For each soldier his height *a**i* is known. A reconnaissance unit can be made of such two neighbouring soldiers, whose heights difference is minimal, i.e. |*a**i*<=-<=*a**j*| is minimal. So each of them will be less noticeable with the other. Output any pair of soldiers that can form a reconnaissance unit.
|
The first line contains integer *n* (2<=≤<=*n*<=≤<=100) — amount of soldiers. Then follow the heights of the soldiers in their order in the circle — *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1000). The soldier heights are given in clockwise or counterclockwise direction.
|
Output two integers — indexes of neighbouring soldiers, who should form a reconnaissance unit. If there are many optimum solutions, output any of them. Remember, that the soldiers stand in a circle.
|
[
"5\n10 12 13 15 10\n",
"4\n10 20 30 40\n"
] |
[
"5 1\n",
"1 2\n"
] |
none
| 500
|
[
{
"input": "5\n10 12 13 15 10",
"output": "5 1"
},
{
"input": "4\n10 20 30 40",
"output": "1 2"
},
{
"input": "6\n744 359 230 586 944 442",
"output": "2 3"
},
{
"input": "5\n826 747 849 687 437",
"output": "1 2"
},
{
"input": "5\n999 999 993 969 999",
"output": "1 2"
},
{
"input": "5\n4 24 6 1 15",
"output": "3 4"
},
{
"input": "2\n511 32",
"output": "1 2"
},
{
"input": "3\n907 452 355",
"output": "2 3"
},
{
"input": "4\n303 872 764 401",
"output": "4 1"
},
{
"input": "10\n684 698 429 694 956 812 594 170 937 764",
"output": "1 2"
},
{
"input": "20\n646 840 437 946 640 564 936 917 487 752 844 734 468 969 674 646 728 642 514 695",
"output": "7 8"
},
{
"input": "30\n996 999 998 984 989 1000 996 993 1000 983 992 999 999 1000 979 992 987 1000 996 1000 1000 989 981 996 995 999 999 989 999 1000",
"output": "12 13"
},
{
"input": "50\n93 27 28 4 5 78 59 24 19 134 31 128 118 36 90 32 32 1 44 32 33 13 31 10 12 25 38 50 25 12 4 22 28 53 48 83 4 25 57 31 71 24 8 7 28 86 23 80 101 58",
"output": "16 17"
},
{
"input": "88\n1000 1000 1000 1000 1000 998 998 1000 1000 1000 1000 999 999 1000 1000 1000 999 1000 997 999 997 1000 999 998 1000 999 1000 1000 1000 999 1000 999 999 1000 1000 999 1000 999 1000 1000 998 1000 1000 1000 998 998 1000 1000 999 1000 1000 1000 1000 1000 1000 1000 998 1000 1000 1000 999 1000 1000 999 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 998 1000 1000 1000 998 1000 1000 998 1000 999 1000 1000 1000 1000",
"output": "1 2"
},
{
"input": "99\n4 4 21 6 5 3 13 2 6 1 3 4 1 3 1 9 11 1 6 17 4 5 20 4 1 9 5 11 3 4 14 1 3 3 1 4 3 5 27 1 1 2 10 7 11 4 19 7 11 6 11 13 3 1 10 7 2 1 16 1 9 4 29 13 2 12 14 2 21 1 9 8 26 12 12 5 2 14 7 8 8 8 9 4 12 2 6 6 7 16 8 14 2 10 20 15 3 7 4",
"output": "1 2"
},
{
"input": "100\n713 572 318 890 577 657 646 146 373 783 392 229 455 871 20 593 573 336 26 381 280 916 907 732 820 713 111 840 570 446 184 711 481 399 788 647 492 15 40 530 549 506 719 782 126 20 778 996 712 761 9 74 812 418 488 175 103 585 900 3 604 521 109 513 145 708 990 361 682 827 791 22 596 780 596 385 450 643 158 496 876 975 319 783 654 895 891 361 397 81 682 899 347 623 809 557 435 279 513 438",
"output": "86 87"
},
{
"input": "100\n31 75 86 68 111 27 22 22 26 30 54 163 107 75 160 122 14 23 17 26 27 20 43 58 59 71 21 148 9 32 43 91 133 286 132 70 90 156 84 14 77 93 23 18 13 72 18 131 33 28 72 175 30 86 249 20 14 208 28 57 63 199 6 10 24 30 62 267 43 479 60 28 138 1 45 3 19 47 7 166 116 117 50 140 28 14 95 85 93 43 61 15 2 70 10 51 7 95 9 25",
"output": "7 8"
},
{
"input": "100\n896 898 967 979 973 709 961 968 806 967 896 967 826 975 936 903 986 856 851 931 852 971 786 837 949 978 686 936 952 909 965 749 908 916 943 973 983 975 939 886 964 928 960 976 907 788 994 773 949 871 947 980 945 985 726 981 887 943 907 990 931 874 840 867 948 951 961 904 888 901 976 967 994 921 828 970 972 722 755 970 860 855 914 869 714 899 969 978 898 862 642 939 904 936 819 934 884 983 955 964",
"output": "1 2"
},
{
"input": "100\n994 927 872 970 815 986 952 996 965 1000 877 986 978 999 950 990 936 997 993 960 921 860 895 869 943 998 983 968 973 953 999 990 995 871 853 979 973 963 953 938 997 989 993 964 960 973 946 975 1000 962 920 746 989 957 904 965 920 979 966 961 1000 993 975 952 846 971 991 979 985 969 984 973 956 1000 952 778 983 974 956 927 995 997 980 997 1000 970 960 970 988 983 947 904 935 972 1000 863 992 996 932 967",
"output": "81 82"
},
{
"input": "100\n48 108 63 21 27 8 49 21 75 8 24 42 149 18 8 28 21 18 25 35 59 70 59 33 40 1 67 34 120 82 4 115 72 87 3 15 15 63 37 12 40 27 83 14 38 20 14 58 93 10 31 3 39 6 197 77 54 16 31 146 9 49 14 8 77 82 5 11 80 116 8 61 50 24 7 103 29 11 3 3 1 12 46 24 21 131 39 29 36 2 107 40 16 99 31 41 29 48 17 17",
"output": "36 37"
}
] | 1,682,672,196
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 2
| 62
| 0
|
import copy
n=int(input())
lst=list(map(int,input().rstrip().split()))
l=copy.deepcopy(lst)
l.sort()
#print(l,lst)
m=10000000000000000
for i in range(1,n):
if l[i]-l[i-1]<m:
m=l[i]-l[i-1]
if m==0:
for k in lst:
if k==l[i]:
i1=lst.index(k)
lst.remove(k)
break
i2=lst.index(l[i])+1
else:
i1=lst.index(l[i])
i2=lst.index(l[i-1])
if i1==n-1:
print(i1+1,i2+1)
elif i2==n-1:
print(i2+1,i1+1)
else:
print(min(i1+1,i2+1),max(i1+1,i2+1))
|
Title: Reconnaissance 2
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
*n* soldiers stand in a circle. For each soldier his height *a**i* is known. A reconnaissance unit can be made of such two neighbouring soldiers, whose heights difference is minimal, i.e. |*a**i*<=-<=*a**j*| is minimal. So each of them will be less noticeable with the other. Output any pair of soldiers that can form a reconnaissance unit.
Input Specification:
The first line contains integer *n* (2<=≤<=*n*<=≤<=100) — amount of soldiers. Then follow the heights of the soldiers in their order in the circle — *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1000). The soldier heights are given in clockwise or counterclockwise direction.
Output Specification:
Output two integers — indexes of neighbouring soldiers, who should form a reconnaissance unit. If there are many optimum solutions, output any of them. Remember, that the soldiers stand in a circle.
Demo Input:
['5\n10 12 13 15 10\n', '4\n10 20 30 40\n']
Demo Output:
['5 1\n', '1 2\n']
Note:
none
|
```python
import copy
n=int(input())
lst=list(map(int,input().rstrip().split()))
l=copy.deepcopy(lst)
l.sort()
#print(l,lst)
m=10000000000000000
for i in range(1,n):
if l[i]-l[i-1]<m:
m=l[i]-l[i-1]
if m==0:
for k in lst:
if k==l[i]:
i1=lst.index(k)
lst.remove(k)
break
i2=lst.index(l[i])+1
else:
i1=lst.index(l[i])
i2=lst.index(l[i-1])
if i1==n-1:
print(i1+1,i2+1)
elif i2==n-1:
print(i2+1,i1+1)
else:
print(min(i1+1,i2+1),max(i1+1,i2+1))
```
| 0
|
343
|
A
|
Rational Resistance
|
PROGRAMMING
| 1,600
|
[
"math",
"number theory"
] | null | null |
Mad scientist Mike is building a time machine in his spare time. To finish the work, he needs a resistor with a certain resistance value.
However, all Mike has is lots of identical resistors with unit resistance *R*0<==<=1. Elements with other resistance can be constructed from these resistors. In this problem, we will consider the following as elements:
1. one resistor; 1. an element and one resistor plugged in sequence; 1. an element and one resistor plugged in parallel.
With the consecutive connection the resistance of the new element equals *R*<==<=*R**e*<=+<=*R*0. With the parallel connection the resistance of the new element equals . In this case *R**e* equals the resistance of the element being connected.
Mike needs to assemble an element with a resistance equal to the fraction . Determine the smallest possible number of resistors he needs to make such an element.
|
The single input line contains two space-separated integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=1018). It is guaranteed that the fraction is irreducible. It is guaranteed that a solution always exists.
|
Print a single number — the answer to the problem.
Please do not use the %lld specifier to read or write 64-bit integers in С++. It is recommended to use the cin, cout streams or the %I64d specifier.
|
[
"1 1\n",
"3 2\n",
"199 200\n"
] |
[
"1\n",
"3\n",
"200\n"
] |
In the first sample, one resistor is enough.
In the second sample one can connect the resistors in parallel, take the resulting element and connect it to a third resistor consecutively. Then, we get an element with resistance <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/5305da389756aab6423d918a08ced468f05604df.png" style="max-width: 100.0%;max-height: 100.0%;"/>. We cannot make this element using two resistors.
| 500
|
[
{
"input": "1 1",
"output": "1"
},
{
"input": "3 2",
"output": "3"
},
{
"input": "199 200",
"output": "200"
},
{
"input": "1 1000000000000000000",
"output": "1000000000000000000"
},
{
"input": "3 1",
"output": "3"
},
{
"input": "21 8",
"output": "7"
},
{
"input": "18 55",
"output": "21"
},
{
"input": "1 2",
"output": "2"
},
{
"input": "2 1",
"output": "2"
},
{
"input": "1 3",
"output": "3"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "1 4",
"output": "4"
},
{
"input": "5 2",
"output": "4"
},
{
"input": "2 5",
"output": "4"
},
{
"input": "4 5",
"output": "5"
},
{
"input": "3 5",
"output": "4"
},
{
"input": "13 4",
"output": "7"
},
{
"input": "21 17",
"output": "9"
},
{
"input": "5 8",
"output": "5"
},
{
"input": "13 21",
"output": "7"
},
{
"input": "74 99",
"output": "28"
},
{
"input": "2377 1055",
"output": "33"
},
{
"input": "645597 134285",
"output": "87"
},
{
"input": "29906716 35911991",
"output": "92"
},
{
"input": "3052460231 856218974",
"output": "82"
},
{
"input": "288565475053 662099878640",
"output": "88"
},
{
"input": "11504415412768 12754036168327",
"output": "163"
},
{
"input": "9958408561221547 4644682781404278",
"output": "196"
},
{
"input": "60236007668635342 110624799949034113",
"output": "179"
},
{
"input": "4 43470202936783249",
"output": "10867550734195816"
},
{
"input": "16 310139055712567491",
"output": "19383690982035476"
},
{
"input": "15 110897893734203629",
"output": "7393192915613582"
},
{
"input": "439910263967866789 38",
"output": "11576585893891241"
},
{
"input": "36 316049483082136289",
"output": "8779152307837131"
},
{
"input": "752278442523506295 52",
"output": "14466893125452056"
},
{
"input": "4052739537881 6557470319842",
"output": "62"
},
{
"input": "44945570212853 72723460248141",
"output": "67"
},
{
"input": "498454011879264 806515533049393",
"output": "72"
},
{
"input": "8944394323791464 5527939700884757",
"output": "77"
},
{
"input": "679891637638612258 420196140727489673",
"output": "86"
},
{
"input": "1 923438",
"output": "923438"
},
{
"input": "3945894354376 1",
"output": "3945894354376"
},
{
"input": "999999999999999999 5",
"output": "200000000000000004"
},
{
"input": "999999999999999999 1000000000000000000",
"output": "1000000000000000000"
},
{
"input": "999999999999999991 1000000000000000000",
"output": "111111111111111120"
},
{
"input": "999999999999999993 999999999999999991",
"output": "499999999999999998"
},
{
"input": "3 1000000000000000000",
"output": "333333333333333336"
},
{
"input": "1000000000000000000 3",
"output": "333333333333333336"
},
{
"input": "10000000000 1000000001",
"output": "100000019"
},
{
"input": "2 999999999999999999",
"output": "500000000000000001"
},
{
"input": "999999999999999999 2",
"output": "500000000000000001"
},
{
"input": "2 1000000001",
"output": "500000002"
},
{
"input": "123 1000000000000000000",
"output": "8130081300813023"
}
] | 1,689,343,921
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 5
| 92
| 307,200
|
import sys
sys.setrecursionlimit(2000000)
from collections import defaultdict
import math
def clc():
a,b= map(int,input().split())
if a%b == 0:
print(a//b)
else:
print(max(a,b))
return True
cc = clc()
if not cc :
print(-1)
|
Title: Rational Resistance
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Mad scientist Mike is building a time machine in his spare time. To finish the work, he needs a resistor with a certain resistance value.
However, all Mike has is lots of identical resistors with unit resistance *R*0<==<=1. Elements with other resistance can be constructed from these resistors. In this problem, we will consider the following as elements:
1. one resistor; 1. an element and one resistor plugged in sequence; 1. an element and one resistor plugged in parallel.
With the consecutive connection the resistance of the new element equals *R*<==<=*R**e*<=+<=*R*0. With the parallel connection the resistance of the new element equals . In this case *R**e* equals the resistance of the element being connected.
Mike needs to assemble an element with a resistance equal to the fraction . Determine the smallest possible number of resistors he needs to make such an element.
Input Specification:
The single input line contains two space-separated integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=1018). It is guaranteed that the fraction is irreducible. It is guaranteed that a solution always exists.
Output Specification:
Print a single number — the answer to the problem.
Please do not use the %lld specifier to read or write 64-bit integers in С++. It is recommended to use the cin, cout streams or the %I64d specifier.
Demo Input:
['1 1\n', '3 2\n', '199 200\n']
Demo Output:
['1\n', '3\n', '200\n']
Note:
In the first sample, one resistor is enough.
In the second sample one can connect the resistors in parallel, take the resulting element and connect it to a third resistor consecutively. Then, we get an element with resistance <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/5305da389756aab6423d918a08ced468f05604df.png" style="max-width: 100.0%;max-height: 100.0%;"/>. We cannot make this element using two resistors.
|
```python
import sys
sys.setrecursionlimit(2000000)
from collections import defaultdict
import math
def clc():
a,b= map(int,input().split())
if a%b == 0:
print(a//b)
else:
print(max(a,b))
return True
cc = clc()
if not cc :
print(-1)
```
| 0
|
|
421
|
A
|
Pasha and Hamsters
|
PROGRAMMING
| 800
|
[
"constructive algorithms",
"implementation"
] | null | null |
Pasha has two hamsters: Arthur and Alexander. Pasha put *n* apples in front of them. Pasha knows which apples Arthur likes. Similarly, Pasha knows which apples Alexander likes. Pasha doesn't want any conflict between the hamsters (as they may like the same apple), so he decided to distribute the apples between the hamsters on his own. He is going to give some apples to Arthur and some apples to Alexander. It doesn't matter how many apples each hamster gets but it is important that each hamster gets only the apples he likes. It is possible that somebody doesn't get any apples.
Help Pasha distribute all the apples between the hamsters. Note that Pasha wants to distribute all the apples, not just some of them.
|
The first line contains integers *n*, *a*, *b* (1<=≤<=*n*<=≤<=100; 1<=≤<=*a*,<=*b*<=≤<=*n*) — the number of apples Pasha has, the number of apples Arthur likes and the number of apples Alexander likes, correspondingly.
The next line contains *a* distinct integers — the numbers of the apples Arthur likes. The next line contains *b* distinct integers — the numbers of the apples Alexander likes.
Assume that the apples are numbered from 1 to *n*. The input is such that the answer exists.
|
Print *n* characters, each of them equals either 1 or 2. If the *i*-h character equals 1, then the *i*-th apple should be given to Arthur, otherwise it should be given to Alexander. If there are multiple correct answers, you are allowed to print any of them.
|
[
"4 2 3\n1 2\n2 3 4\n",
"5 5 2\n3 4 1 2 5\n2 3\n"
] |
[
"1 1 2 2\n",
"1 1 1 1 1\n"
] |
none
| 500
|
[
{
"input": "4 2 3\n1 2\n2 3 4",
"output": "1 1 2 2"
},
{
"input": "5 5 2\n3 4 1 2 5\n2 3",
"output": "1 1 1 1 1"
},
{
"input": "100 69 31\n1 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 24 26 27 29 31 37 38 39 40 44 46 48 49 50 51 53 55 56 57 58 59 60 61 63 64 65 66 67 68 69 70 71 72 74 76 77 78 79 80 81 82 83 89 92 94 95 97 98 99 100\n2 13 22 23 25 28 30 32 33 34 35 36 41 42 43 45 47 52 54 62 73 75 84 85 86 87 88 90 91 93 96",
"output": "1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 2 1 2 1 1 2 1 2 1 2 2 2 2 2 1 1 1 1 2 2 2 1 2 1 2 1 1 1 1 2 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 2 2 2 2 2 1 2 2 1 2 1 1 2 1 1 1 1"
},
{
"input": "100 56 44\n1 2 5 8 14 15 17 18 20 21 23 24 25 27 30 33 34 35 36 38 41 42 44 45 46 47 48 49 50 53 56 58 59 60 62 63 64 65 68 69 71 75 76 80 81 84 87 88 90 91 92 94 95 96 98 100\n3 4 6 7 9 10 11 12 13 16 19 22 26 28 29 31 32 37 39 40 43 51 52 54 55 57 61 66 67 70 72 73 74 77 78 79 82 83 85 86 89 93 97 99",
"output": "1 1 2 2 1 2 2 1 2 2 2 2 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 2 2 1 2 2 1 1 1 1 2 1 2 2 1 1 2 1 1 1 1 1 1 1 2 2 1 2 2 1 2 1 1 1 2 1 1 1 1 2 2 1 1 2 1 2 2 2 1 1 2 2 2 1 1 2 2 1 2 2 1 1 2 1 1 1 2 1 1 1 2 1 2 1"
},
{
"input": "100 82 18\n1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 22 23 25 27 29 30 31 32 33 34 35 36 37 38 42 43 44 45 46 47 48 49 50 51 53 54 55 57 58 59 60 61 62 63 64 65 66 67 68 69 71 72 73 74 75 77 78 79 80 82 83 86 88 90 91 92 93 94 96 97 98 99 100\n12 21 24 26 28 39 40 41 52 56 70 76 81 84 85 87 89 95",
"output": "1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 2 2 1 2 1 2 1 1 1 1 1 2 1 1 1 1 1"
},
{
"input": "99 72 27\n1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 20 23 25 26 28 29 30 32 33 34 35 36 39 41 42 43 44 45 46 47 50 51 52 54 55 56 58 59 60 61 62 67 70 71 72 74 75 76 77 80 81 82 84 85 86 88 90 91 92 93 94 95 96 97 98 99\n9 18 19 21 22 24 27 31 37 38 40 48 49 53 57 63 64 65 66 68 69 73 78 79 83 87 89",
"output": "1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 2 1 2 2 1 2 1 1 2 1 1 1 2 1 1 1 1 1 2 2 1 2 1 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 2 1 1 1 1 1 2 2 2 2 1 2 2 1 1 1 2 1 1 1 1 2 2 1 1 1 2 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1"
},
{
"input": "99 38 61\n1 3 10 15 16 22 23 28 31 34 35 36 37 38 39 43 44 49 50 53 56 60 63 68 69 70 72 74 75 77 80 81 83 85 96 97 98 99\n2 4 5 6 7 8 9 11 12 13 14 17 18 19 20 21 24 25 26 27 29 30 32 33 40 41 42 45 46 47 48 51 52 54 55 57 58 59 61 62 64 65 66 67 71 73 76 78 79 82 84 86 87 88 89 90 91 92 93 94 95",
"output": "1 2 1 2 2 2 2 2 2 1 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 1 2 2 1 2 2 1 1 1 1 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 2 2 1 1 1 2 1 2 1 1 2 1 2 2 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 1 1 1 1"
},
{
"input": "99 84 15\n1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 21 22 23 24 25 26 27 28 29 30 31 32 34 35 36 37 38 39 40 41 42 43 44 47 48 50 51 52 53 55 56 58 59 60 61 62 63 64 65 68 69 70 71 72 73 74 75 77 79 80 81 82 83 84 85 86 87 89 90 91 92 93 94 97 98 99\n4 18 33 45 46 49 54 57 66 67 76 78 88 95 96",
"output": "1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 2 1 1 1"
},
{
"input": "4 3 1\n1 3 4\n2",
"output": "1 2 1 1"
},
{
"input": "4 3 1\n1 2 4\n3",
"output": "1 1 2 1"
},
{
"input": "4 2 2\n2 3\n1 4",
"output": "2 1 1 2"
},
{
"input": "4 3 1\n2 3 4\n1",
"output": "2 1 1 1"
},
{
"input": "1 1 1\n1\n1",
"output": "1"
},
{
"input": "2 1 1\n2\n1",
"output": "2 1"
},
{
"input": "2 1 1\n1\n2",
"output": "1 2"
},
{
"input": "3 3 1\n1 2 3\n1",
"output": "1 1 1"
},
{
"input": "3 3 1\n1 2 3\n3",
"output": "1 1 1"
},
{
"input": "3 2 1\n1 3\n2",
"output": "1 2 1"
},
{
"input": "100 1 100\n84\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100",
"output": "2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2"
},
{
"input": "100 100 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n17",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"
},
{
"input": "98 51 47\n1 2 3 4 6 7 8 10 13 15 16 18 19 21 22 23 25 26 27 29 31 32 36 37 39 40 41 43 44 48 49 50 51 52 54 56 58 59 65 66 68 79 80 84 86 88 89 90 94 95 97\n5 9 11 12 14 17 20 24 28 30 33 34 35 38 42 45 46 47 53 55 57 60 61 62 63 64 67 69 70 71 72 73 74 75 76 77 78 81 82 83 85 87 91 92 93 96 98",
"output": "1 1 1 1 2 1 1 1 2 1 2 2 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 2 1 1 2 2 2 1 1 2 1 1 1 2 1 1 2 2 2 1 1 1 1 1 2 1 2 1 2 1 1 2 2 2 2 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 1 2 1 2 1 1 1 2 2 2 1 1 2 1 2"
},
{
"input": "98 28 70\n1 13 15 16 19 27 28 40 42 43 46 53 54 57 61 63 67 68 69 71 75 76 78 80 88 93 97 98\n2 3 4 5 6 7 8 9 10 11 12 14 17 18 20 21 22 23 24 25 26 29 30 31 32 33 34 35 36 37 38 39 41 44 45 47 48 49 50 51 52 55 56 58 59 60 62 64 65 66 70 72 73 74 77 79 81 82 83 84 85 86 87 89 90 91 92 94 95 96",
"output": "1 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 2 2 1 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 2 2 1 2 2 2 2 2 2 1 1 2 2 1 2 2 2 1 2 1 2 2 2 1 1 1 2 1 2 2 2 1 1 2 1 2 1 2 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 1 1"
},
{
"input": "97 21 76\n7 10 16 17 26 30 34 39 40 42 44 46 53 54 56 64 67 72 78 79 94\n1 2 3 4 5 6 8 9 11 12 13 14 15 18 19 20 21 22 23 24 25 27 28 29 31 32 33 35 36 37 38 41 43 45 47 48 49 50 51 52 55 57 58 59 60 61 62 63 65 66 68 69 70 71 73 74 75 76 77 80 81 82 83 84 85 86 87 88 89 90 91 92 93 95 96 97",
"output": "2 2 2 2 2 2 1 2 2 1 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 1 2 1 2 1 2 1 2 2 2 2 2 2 1 1 2 1 2 2 2 2 2 2 2 1 2 2 1 2 2 2 2 1 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2"
},
{
"input": "97 21 76\n1 10 12 13 17 18 22 25 31 48 50 54 61 64 67 74 78 81 86 88 94\n2 3 4 5 6 7 8 9 11 14 15 16 19 20 21 23 24 26 27 28 29 30 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 49 51 52 53 55 56 57 58 59 60 62 63 65 66 68 69 70 71 72 73 75 76 77 79 80 82 83 84 85 87 89 90 91 92 93 95 96 97",
"output": "1 2 2 2 2 2 2 2 2 1 2 1 1 2 2 2 1 1 2 2 2 1 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2 1 2 2 2 1 2 2 1 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2"
},
{
"input": "96 10 86\n2 5 31 37 68 69 80 82 90 91\n1 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 32 33 34 35 36 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77 78 79 81 83 84 85 86 87 88 89 92 93 94 95 96",
"output": "2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 1 1 2 2 2 2 2"
},
{
"input": "95 4 91\n58 65 70 93\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 59 60 61 62 63 64 66 67 68 69 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 94 95",
"output": "2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2"
},
{
"input": "98 88 10\n1 2 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 33 34 35 36 38 39 40 41 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 62 63 64 65 66 67 68 69 71 72 73 74 75 76 77 79 80 81 83 84 85 86 87 88 89 90 92 93 94 95 96 97 98\n3 7 32 37 42 61 70 78 82 91",
"output": "1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1"
},
{
"input": "98 96 2\n1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98\n6 7",
"output": "1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"
},
{
"input": "97 97 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97\n94",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"
},
{
"input": "97 97 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97\n20",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"
},
{
"input": "96 96 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96\n48",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"
},
{
"input": "95 95 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95\n55",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"
}
] | 1,592,822,737
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 108
| 204,800
|
def main():
def inp():
return list(map(int, input().split()))
apples = inp()
pasha_n = apples[0]
arthur_n = apples[1]
alexander_n = apples[2]
arthur_cut = 3 + arthur_n
alexander_cut = arthur_cut + alexander_n
arthur_likes = apples[3:arthur_cut]
alexander_likes = apples[arthur_cut:alexander_cut]
ans = []
for i in range(1,pasha_n+1):
if(i in arthur_likes):
ans.append(1)
else:
ans.append(2)
print(*ans)
if __name__ == "__main__":
main()
|
Title: Pasha and Hamsters
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Pasha has two hamsters: Arthur and Alexander. Pasha put *n* apples in front of them. Pasha knows which apples Arthur likes. Similarly, Pasha knows which apples Alexander likes. Pasha doesn't want any conflict between the hamsters (as they may like the same apple), so he decided to distribute the apples between the hamsters on his own. He is going to give some apples to Arthur and some apples to Alexander. It doesn't matter how many apples each hamster gets but it is important that each hamster gets only the apples he likes. It is possible that somebody doesn't get any apples.
Help Pasha distribute all the apples between the hamsters. Note that Pasha wants to distribute all the apples, not just some of them.
Input Specification:
The first line contains integers *n*, *a*, *b* (1<=≤<=*n*<=≤<=100; 1<=≤<=*a*,<=*b*<=≤<=*n*) — the number of apples Pasha has, the number of apples Arthur likes and the number of apples Alexander likes, correspondingly.
The next line contains *a* distinct integers — the numbers of the apples Arthur likes. The next line contains *b* distinct integers — the numbers of the apples Alexander likes.
Assume that the apples are numbered from 1 to *n*. The input is such that the answer exists.
Output Specification:
Print *n* characters, each of them equals either 1 or 2. If the *i*-h character equals 1, then the *i*-th apple should be given to Arthur, otherwise it should be given to Alexander. If there are multiple correct answers, you are allowed to print any of them.
Demo Input:
['4 2 3\n1 2\n2 3 4\n', '5 5 2\n3 4 1 2 5\n2 3\n']
Demo Output:
['1 1 2 2\n', '1 1 1 1 1\n']
Note:
none
|
```python
def main():
def inp():
return list(map(int, input().split()))
apples = inp()
pasha_n = apples[0]
arthur_n = apples[1]
alexander_n = apples[2]
arthur_cut = 3 + arthur_n
alexander_cut = arthur_cut + alexander_n
arthur_likes = apples[3:arthur_cut]
alexander_likes = apples[arthur_cut:alexander_cut]
ans = []
for i in range(1,pasha_n+1):
if(i in arthur_likes):
ans.append(1)
else:
ans.append(2)
print(*ans)
if __name__ == "__main__":
main()
```
| 0
|
|
599
|
A
|
Patrick and Shopping
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Today Patrick waits for a visit from his friend Spongebob. To prepare for the visit, Patrick needs to buy some goodies in two stores located near his house. There is a *d*1 meter long road between his house and the first shop and a *d*2 meter long road between his house and the second shop. Also, there is a road of length *d*3 directly connecting these two shops to each other. Help Patrick calculate the minimum distance that he needs to walk in order to go to both shops and return to his house.
Patrick always starts at his house. He should visit both shops moving only along the three existing roads and return back to his house. He doesn't mind visiting the same shop or passing the same road multiple times. The only goal is to minimize the total distance traveled.
|
The first line of the input contains three integers *d*1, *d*2, *d*3 (1<=≤<=*d*1,<=*d*2,<=*d*3<=≤<=108) — the lengths of the paths.
- *d*1 is the length of the path connecting Patrick's house and the first shop; - *d*2 is the length of the path connecting Patrick's house and the second shop; - *d*3 is the length of the path connecting both shops.
|
Print the minimum distance that Patrick will have to walk in order to visit both shops and return to his house.
|
[
"10 20 30\n",
"1 1 5\n"
] |
[
"60\n",
"4\n"
] |
The first sample is shown on the picture in the problem statement. One of the optimal routes is: house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> first shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> second shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house.
In the second sample one of the optimal routes is: house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> first shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> second shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house.
| 500
|
[
{
"input": "10 20 30",
"output": "60"
},
{
"input": "1 1 5",
"output": "4"
},
{
"input": "100 33 34",
"output": "134"
},
{
"input": "777 777 777",
"output": "2331"
},
{
"input": "2 2 8",
"output": "8"
},
{
"input": "12 34 56",
"output": "92"
},
{
"input": "789 101112 131415",
"output": "203802"
},
{
"input": "27485716 99999999 35182",
"output": "55041796"
},
{
"input": "1 293548 5",
"output": "12"
},
{
"input": "12059 259855 5874875",
"output": "543828"
},
{
"input": "46981 105809 585858",
"output": "305580"
},
{
"input": "9889 1221 2442",
"output": "7326"
},
{
"input": "100500 200600 300700",
"output": "601800"
},
{
"input": "318476 318476 318476",
"output": "955428"
},
{
"input": "23985 3353 75633",
"output": "54676"
},
{
"input": "120 1298 2222",
"output": "2836"
},
{
"input": "98437 23487 666672",
"output": "243848"
},
{
"input": "100000000 100000000 100000000",
"output": "300000000"
},
{
"input": "2 5 2",
"output": "8"
},
{
"input": "1 1000 1",
"output": "4"
},
{
"input": "1 100000000 1",
"output": "4"
}
] | 1,623,642,032
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 46
| 0
|
a = list(map(int,input().split()))
a.sort()
print(min(sum(a),a[0]+a[1]))
|
Title: Patrick and Shopping
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Today Patrick waits for a visit from his friend Spongebob. To prepare for the visit, Patrick needs to buy some goodies in two stores located near his house. There is a *d*1 meter long road between his house and the first shop and a *d*2 meter long road between his house and the second shop. Also, there is a road of length *d*3 directly connecting these two shops to each other. Help Patrick calculate the minimum distance that he needs to walk in order to go to both shops and return to his house.
Patrick always starts at his house. He should visit both shops moving only along the three existing roads and return back to his house. He doesn't mind visiting the same shop or passing the same road multiple times. The only goal is to minimize the total distance traveled.
Input Specification:
The first line of the input contains three integers *d*1, *d*2, *d*3 (1<=≤<=*d*1,<=*d*2,<=*d*3<=≤<=108) — the lengths of the paths.
- *d*1 is the length of the path connecting Patrick's house and the first shop; - *d*2 is the length of the path connecting Patrick's house and the second shop; - *d*3 is the length of the path connecting both shops.
Output Specification:
Print the minimum distance that Patrick will have to walk in order to visit both shops and return to his house.
Demo Input:
['10 20 30\n', '1 1 5\n']
Demo Output:
['60\n', '4\n']
Note:
The first sample is shown on the picture in the problem statement. One of the optimal routes is: house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> first shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> second shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house.
In the second sample one of the optimal routes is: house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> first shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> second shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house.
|
```python
a = list(map(int,input().split()))
a.sort()
print(min(sum(a),a[0]+a[1]))
```
| 0
|
|
451
|
B
|
Sort the Array
|
PROGRAMMING
| 1,300
|
[
"implementation",
"sortings"
] | null | null |
Being a programmer, you like arrays a lot. For your birthday, your friends have given you an array *a* consisting of *n* distinct integers.
Unfortunately, the size of *a* is too small. You want a bigger array! Your friends agree to give you a bigger array, but only if you are able to answer the following question correctly: is it possible to sort the array *a* (in increasing order) by reversing exactly one segment of *a*? See definitions of segment and reversing in the notes.
|
The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=105) — the size of array *a*.
The second line contains *n* distinct space-separated integers: *a*[1],<=*a*[2],<=...,<=*a*[*n*] (1<=≤<=*a*[*i*]<=≤<=109).
|
Print "yes" or "no" (without quotes), depending on the answer.
If your answer is "yes", then also print two space-separated integers denoting start and end (start must not be greater than end) indices of the segment to be reversed. If there are multiple ways of selecting these indices, print any of them.
|
[
"3\n3 2 1\n",
"4\n2 1 3 4\n",
"4\n3 1 2 4\n",
"2\n1 2\n"
] |
[
"yes\n1 3\n",
"yes\n1 2\n",
"no\n",
"yes\n1 1\n"
] |
Sample 1. You can reverse the entire array to get [1, 2, 3], which is sorted.
Sample 3. No segment can be reversed such that the array will be sorted.
Definitions
A segment [*l*, *r*] of array *a* is the sequence *a*[*l*], *a*[*l* + 1], ..., *a*[*r*].
If you have an array *a* of size *n* and you reverse its segment [*l*, *r*], the array will become:
*a*[1], *a*[2], ..., *a*[*l* - 2], *a*[*l* - 1], *a*[*r*], *a*[*r* - 1], ..., *a*[*l* + 1], *a*[*l*], *a*[*r* + 1], *a*[*r* + 2], ..., *a*[*n* - 1], *a*[*n*].
| 1,000
|
[
{
"input": "3\n3 2 1",
"output": "yes\n1 3"
},
{
"input": "4\n2 1 3 4",
"output": "yes\n1 2"
},
{
"input": "4\n3 1 2 4",
"output": "no"
},
{
"input": "2\n1 2",
"output": "yes\n1 1"
},
{
"input": "2\n58 4",
"output": "yes\n1 2"
},
{
"input": "5\n69 37 27 4 2",
"output": "yes\n1 5"
},
{
"input": "9\n6 78 63 59 28 24 8 96 99",
"output": "yes\n2 7"
},
{
"input": "6\n19517752 43452931 112792556 68417469 779722934 921694415",
"output": "yes\n3 4"
},
{
"input": "6\n169793171 335736854 449917902 513287332 811627074 938727967",
"output": "yes\n1 1"
},
{
"input": "6\n509329 173849943 297546987 591032670 796346199 914588283",
"output": "yes\n1 1"
},
{
"input": "25\n46 45 37 35 26 25 21 19 11 3 1 51 54 55 57 58 59 62 66 67 76 85 88 96 100",
"output": "yes\n1 11"
},
{
"input": "46\n10 12 17 19 20 21 22 24 25 26 27 28 29 30 32 37 42 43 47 48 50 51 52 56 87 86 81 79 74 71 69 67 66 65 60 59 57 89 91 92 94 96 97 98 99 100",
"output": "yes\n25 37"
},
{
"input": "96\n1 2 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 68 69 70 71 72 73 74 75 76 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100",
"output": "yes\n3 22"
},
{
"input": "2\n404928771 698395106",
"output": "yes\n1 1"
},
{
"input": "2\n699573624 308238132",
"output": "yes\n1 2"
},
{
"input": "5\n75531609 242194958 437796493 433259361 942142185",
"output": "yes\n3 4"
},
{
"input": "5\n226959376 840957605 833410429 273566427 872976052",
"output": "yes\n2 4"
},
{
"input": "5\n373362086 994096202 767275079 734424844 515504383",
"output": "yes\n2 5"
},
{
"input": "5\n866379155 593548704 259097686 216134784 879911740",
"output": "yes\n1 4"
},
{
"input": "5\n738083041 719956102 420866851 307749161 257917459",
"output": "yes\n1 5"
},
{
"input": "5\n90786760 107075352 139104198 424911569 858427981",
"output": "yes\n1 1"
},
{
"input": "6\n41533825 525419745 636375901 636653266 879043107 967434399",
"output": "yes\n1 1"
},
{
"input": "40\n22993199 75843013 76710455 99749069 105296587 122559115 125881005 153961749 163646706 175409222 185819807 214465092 264449243 278246513 295514446 322935239 370349154 375773209 390474983 775646826 767329655 740310077 718820037 708508595 693119912 680958422 669537382 629123011 607511013 546574974 546572137 511951383 506996390 493995578 458256840 815612821 881161983 901337648 962275390 986568907",
"output": "yes\n20 35"
},
{
"input": "40\n3284161 23121669 24630274 33434127 178753820 231503277 271972002 272578266 346450638 355655265 372217434 376132047 386622863 387235708 389799554 427160037 466577363 491873718 492746058 502535866 535768673 551570285 557477055 583643014 586216753 588981593 592960633 605923775 611051145 643142759 632768011 634888864 736715552 750574599 867737742 924365786 927179496 934453020 954090860 977765165",
"output": "no"
},
{
"input": "40\n42131757 49645896 49957344 78716964 120937785 129116222 172128600 211446903 247833196 779340466 717548386 709969818 696716905 636153997 635635467 614115746 609201167 533608141 521874836 273044950 291514539 394083281 399369419 448830087 485128983 487192341 488673105 497678164 501864738 265305156 799595875 831638598 835155840 845617770 847736630 851436542 879757553 885618675 964068808 969215471",
"output": "no"
},
{
"input": "40\n25722567 28250400 47661056 108729970 119887370 142272261 145287693 178946020 182917658 187405805 209478929 278713296 312035195 393514697 403876943 410188367 413061616 420619615 477231590 511200584 560288373 571690007 603093961 615463729 631624043 723138759 726089658 728151980 756393077 785590533 809755752 823601179 828357990 866942019 869575503 877310377 881382070 901314141 929048602 947139655",
"output": "yes\n1 1"
},
{
"input": "40\n17927221 33153935 60257083 110553879 114654567 119809916 163899753 167741765 182812464 188486743 220036903 220127072 227545828 229552200 244963635 248298934 299478582 354141058 371400641 430054473 452548736 458695269 466968129 469000714 478004472 478693873 509342093 750631027 609759323 669427158 688490225 690701652 696893030 704668825 749028408 557906039 545356441 926901326 955586118 972642992",
"output": "no"
},
{
"input": "4\n1 4 2 3",
"output": "no"
},
{
"input": "6\n1 2 5 4 3 6",
"output": "yes\n3 5"
},
{
"input": "1\n1",
"output": "yes\n1 1"
},
{
"input": "6\n1 5 3 4 2 6",
"output": "no"
},
{
"input": "4\n3 4 1 2",
"output": "no"
},
{
"input": "5\n2 5 4 3 1",
"output": "no"
},
{
"input": "4\n2 1 4 3",
"output": "no"
},
{
"input": "6\n2 1 4 3 5 6",
"output": "no"
}
] | 1,696,061,644
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 76
| 93
| 12,800,000
|
n = int(input())
a = list(map(int, input().split()))
st = -1
end = -1
for i in range(1, n):
if a[i] < a[i - 1]:
if st == -1:
st = i - 1
end = i
if st == -1:
print("yes")
print("1 1")
else:
a[st:end + 1] = reversed(a[st:end + 1])
if a == sorted(a):
print("yes")
print(st + 1, end + 1)
else:
print("no")
|
Title: Sort the Array
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Being a programmer, you like arrays a lot. For your birthday, your friends have given you an array *a* consisting of *n* distinct integers.
Unfortunately, the size of *a* is too small. You want a bigger array! Your friends agree to give you a bigger array, but only if you are able to answer the following question correctly: is it possible to sort the array *a* (in increasing order) by reversing exactly one segment of *a*? See definitions of segment and reversing in the notes.
Input Specification:
The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=105) — the size of array *a*.
The second line contains *n* distinct space-separated integers: *a*[1],<=*a*[2],<=...,<=*a*[*n*] (1<=≤<=*a*[*i*]<=≤<=109).
Output Specification:
Print "yes" or "no" (without quotes), depending on the answer.
If your answer is "yes", then also print two space-separated integers denoting start and end (start must not be greater than end) indices of the segment to be reversed. If there are multiple ways of selecting these indices, print any of them.
Demo Input:
['3\n3 2 1\n', '4\n2 1 3 4\n', '4\n3 1 2 4\n', '2\n1 2\n']
Demo Output:
['yes\n1 3\n', 'yes\n1 2\n', 'no\n', 'yes\n1 1\n']
Note:
Sample 1. You can reverse the entire array to get [1, 2, 3], which is sorted.
Sample 3. No segment can be reversed such that the array will be sorted.
Definitions
A segment [*l*, *r*] of array *a* is the sequence *a*[*l*], *a*[*l* + 1], ..., *a*[*r*].
If you have an array *a* of size *n* and you reverse its segment [*l*, *r*], the array will become:
*a*[1], *a*[2], ..., *a*[*l* - 2], *a*[*l* - 1], *a*[*r*], *a*[*r* - 1], ..., *a*[*l* + 1], *a*[*l*], *a*[*r* + 1], *a*[*r* + 2], ..., *a*[*n* - 1], *a*[*n*].
|
```python
n = int(input())
a = list(map(int, input().split()))
st = -1
end = -1
for i in range(1, n):
if a[i] < a[i - 1]:
if st == -1:
st = i - 1
end = i
if st == -1:
print("yes")
print("1 1")
else:
a[st:end + 1] = reversed(a[st:end + 1])
if a == sorted(a):
print("yes")
print(st + 1, end + 1)
else:
print("no")
```
| 3
|
|
709
|
A
|
Juicer
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Kolya is going to make fresh orange juice. He has *n* oranges of sizes *a*1,<=*a*2,<=...,<=*a**n*. Kolya will put them in the juicer in the fixed order, starting with orange of size *a*1, then orange of size *a*2 and so on. To be put in the juicer the orange must have size not exceeding *b*, so if Kolya sees an orange that is strictly greater he throws it away and continues with the next one.
The juicer has a special section to collect waste. It overflows if Kolya squeezes oranges of the total size strictly greater than *d*. When it happens Kolya empties the waste section (even if there are no more oranges) and continues to squeeze the juice. How many times will he have to empty the waste section?
|
The first line of the input contains three integers *n*, *b* and *d* (1<=≤<=*n*<=≤<=100<=000, 1<=≤<=*b*<=≤<=*d*<=≤<=1<=000<=000) — the number of oranges, the maximum size of the orange that fits in the juicer and the value *d*, which determines the condition when the waste section should be emptied.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1<=000<=000) — sizes of the oranges listed in the order Kolya is going to try to put them in the juicer.
|
Print one integer — the number of times Kolya will have to empty the waste section.
|
[
"2 7 10\n5 6\n",
"1 5 10\n7\n",
"3 10 10\n5 7 7\n",
"1 1 1\n1\n"
] |
[
"1\n",
"0\n",
"1\n",
"0\n"
] |
In the first sample, Kolya will squeeze the juice from two oranges and empty the waste section afterwards.
In the second sample, the orange won't fit in the juicer so Kolya will have no juice at all.
| 500
|
[
{
"input": "2 7 10\n5 6",
"output": "1"
},
{
"input": "1 5 10\n7",
"output": "0"
},
{
"input": "3 10 10\n5 7 7",
"output": "1"
},
{
"input": "1 1 1\n1",
"output": "0"
},
{
"input": "2 951637 951638\n44069 951637",
"output": "1"
},
{
"input": "50 100 129\n55 130 91 19 116 3 63 52 104 76 75 27 151 99 149 147 39 148 84 9 132 49 40 112 124 141 144 93 36 32 146 74 48 38 150 55 94 32 107 69 77 81 33 57 62 98 78 127 154 126",
"output": "12"
},
{
"input": "100 1000 1083\n992 616 818 359 609 783 263 989 501 929 362 394 919 1081 870 830 1097 975 62 346 531 367 323 457 707 360 949 334 867 116 478 417 961 963 1029 114 867 1008 988 916 983 1077 959 942 572 961 579 318 721 337 488 717 111 70 416 685 987 130 353 107 61 191 827 849 106 815 211 953 111 398 889 860 801 71 375 320 395 1059 116 222 931 444 582 74 677 655 88 173 686 491 661 186 114 832 615 814 791 464 517 850",
"output": "36"
},
{
"input": "2 6 8\n2 1",
"output": "0"
},
{
"input": "5 15 16\n7 11 5 12 8",
"output": "2"
},
{
"input": "15 759966 759967\n890397 182209 878577 548548 759966 812923 759966 860479 200595 381358 299175 339368 759966 907668 69574",
"output": "4"
},
{
"input": "5 234613 716125\n642626 494941 234613 234613 234613",
"output": "0"
},
{
"input": "50 48547 567054\n529808 597004 242355 559114 78865 537318 631455 733020 655072 645093 309010 855034 306058 625046 524574 834944 27330 664392 443637 821584 338013 490702 289520 675471 885846 258814 134220 571301 84875 94132 200425 928833 375166 521232 317961 175315 947093 89971 322071 174033 48547 998535 954205 704114 943163 438900 48547 538422 48547 48547",
"output": "0"
},
{
"input": "5 10 20\n10 10 10 10 1",
"output": "1"
},
{
"input": "5 10 11\n10 10 10 10 1",
"output": "2"
},
{
"input": "3 10 10\n4 3 3",
"output": "0"
},
{
"input": "3 5 5\n5 5 5",
"output": "1"
},
{
"input": "3 4 14\n5 5 5",
"output": "0"
},
{
"input": "2 7 10\n1234 1234",
"output": "0"
},
{
"input": "1 5 6\n10",
"output": "0"
},
{
"input": "3 4 6\n1 2 3",
"output": "0"
},
{
"input": "5 10 12\n13 13 13 13 13",
"output": "0"
},
{
"input": "3 4 5\n5 7 9",
"output": "0"
},
{
"input": "3 10 100\n5 5 5",
"output": "0"
},
{
"input": "5 1 2\n2 2 2 2 2",
"output": "0"
},
{
"input": "5 5 5\n5 5 5 5 5",
"output": "2"
},
{
"input": "2 2 5\n5 5",
"output": "0"
},
{
"input": "3 1 4\n2 2 2",
"output": "0"
}
] | 1,632,037,246
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 2
| 92
| 20,172,800
|
n, b, d = map(int, input().split())
a = list(map(int, input().split()))
ans = 0
count = 0
for i in range(n):
if a[i] <= b:
ans += a[i]
if ans > d:
ans += 1
count += 1
print(count)
|
Title: Juicer
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Kolya is going to make fresh orange juice. He has *n* oranges of sizes *a*1,<=*a*2,<=...,<=*a**n*. Kolya will put them in the juicer in the fixed order, starting with orange of size *a*1, then orange of size *a*2 and so on. To be put in the juicer the orange must have size not exceeding *b*, so if Kolya sees an orange that is strictly greater he throws it away and continues with the next one.
The juicer has a special section to collect waste. It overflows if Kolya squeezes oranges of the total size strictly greater than *d*. When it happens Kolya empties the waste section (even if there are no more oranges) and continues to squeeze the juice. How many times will he have to empty the waste section?
Input Specification:
The first line of the input contains three integers *n*, *b* and *d* (1<=≤<=*n*<=≤<=100<=000, 1<=≤<=*b*<=≤<=*d*<=≤<=1<=000<=000) — the number of oranges, the maximum size of the orange that fits in the juicer and the value *d*, which determines the condition when the waste section should be emptied.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1<=000<=000) — sizes of the oranges listed in the order Kolya is going to try to put them in the juicer.
Output Specification:
Print one integer — the number of times Kolya will have to empty the waste section.
Demo Input:
['2 7 10\n5 6\n', '1 5 10\n7\n', '3 10 10\n5 7 7\n', '1 1 1\n1\n']
Demo Output:
['1\n', '0\n', '1\n', '0\n']
Note:
In the first sample, Kolya will squeeze the juice from two oranges and empty the waste section afterwards.
In the second sample, the orange won't fit in the juicer so Kolya will have no juice at all.
|
```python
n, b, d = map(int, input().split())
a = list(map(int, input().split()))
ans = 0
count = 0
for i in range(n):
if a[i] <= b:
ans += a[i]
if ans > d:
ans += 1
count += 1
print(count)
```
| 0
|
|
99
|
A
|
Help Far Away Kingdom
|
PROGRAMMING
| 800
|
[
"strings"
] |
A. Help Far Away Kingdom
|
2
|
256
|
In a far away kingdom lived the King, the Prince, the Shoemaker, the Dressmaker and many other citizens. They lived happily until great trouble came into the Kingdom. The ACMers settled there.
Most damage those strange creatures inflicted upon the kingdom was that they loved high precision numbers. As a result, the Kingdom healers had already had three appointments with the merchants who were asked to sell, say, exactly 0.273549107 beer barrels. To deal with the problem somehow, the King issued an order obliging rounding up all numbers to the closest integer to simplify calculations. Specifically, the order went like this:
- If a number's integer part does not end with digit 9 and its fractional part is strictly less than 0.5, then the rounded up number coincides with the number’s integer part. - If a number's integer part does not end with digit 9 and its fractional part is not less than 0.5, the rounded up number is obtained if we add 1 to the last digit of the number’s integer part.- If the number’s integer part ends with digit 9, to round up the numbers one should go to Vasilisa the Wise. In the whole Kingdom she is the only one who can perform the tricky operation of carrying into the next position.
Merchants found the algorithm very sophisticated and they asked you (the ACMers) to help them. Can you write a program that would perform the rounding according to the King’s order?
|
The first line contains a single number to round up — the integer part (a non-empty set of decimal digits that do not start with 0 — with the exception of a case when the set consists of a single digit — in this case 0 can go first), then follows character «.» (a dot), and then follows the fractional part (any non-empty set of decimal digits). The number's length does not exceed 1000 characters, including the dot. There are no other characters in the input data.
|
If the last number of the integer part is not equal to 9, print the rounded-up number without leading zeroes. Otherwise, print the message "GOTO Vasilisa." (without the quotes).
|
[
"0.0\n",
"1.49\n",
"1.50\n",
"2.71828182845904523536\n",
"3.14159265358979323846\n",
"12345678901234567890.1\n",
"123456789123456789.999\n"
] |
[
"0",
"1",
"2",
"3",
"3",
"12345678901234567890",
"GOTO Vasilisa."
] |
none
| 500
|
[
{
"input": "0.0",
"output": "0"
},
{
"input": "1.49",
"output": "1"
},
{
"input": "1.50",
"output": "2"
},
{
"input": "2.71828182845904523536",
"output": "3"
},
{
"input": "3.14159265358979323846",
"output": "3"
},
{
"input": "12345678901234567890.1",
"output": "12345678901234567890"
},
{
"input": "123456789123456789.999",
"output": "GOTO Vasilisa."
},
{
"input": "12345678901234567890.9",
"output": "12345678901234567891"
},
{
"input": "123456789123456788.999",
"output": "123456789123456789"
},
{
"input": "9.000",
"output": "GOTO Vasilisa."
},
{
"input": "0.1",
"output": "0"
},
{
"input": "0.2",
"output": "0"
},
{
"input": "0.3",
"output": "0"
},
{
"input": "0.4",
"output": "0"
},
{
"input": "0.5",
"output": "1"
},
{
"input": "0.6",
"output": "1"
},
{
"input": "0.7",
"output": "1"
},
{
"input": "0.8",
"output": "1"
},
{
"input": "0.9",
"output": "1"
},
{
"input": "1.0",
"output": "1"
},
{
"input": "1.1",
"output": "1"
},
{
"input": "1.2",
"output": "1"
},
{
"input": "1.3",
"output": "1"
},
{
"input": "1.4",
"output": "1"
},
{
"input": "1.5",
"output": "2"
},
{
"input": "1.6",
"output": "2"
},
{
"input": "1.7",
"output": "2"
},
{
"input": "1.8",
"output": "2"
},
{
"input": "1.9",
"output": "2"
},
{
"input": "2.0",
"output": "2"
},
{
"input": "2.1",
"output": "2"
},
{
"input": "2.2",
"output": "2"
},
{
"input": "2.3",
"output": "2"
},
{
"input": "2.4",
"output": "2"
},
{
"input": "2.5",
"output": "3"
},
{
"input": "2.6",
"output": "3"
},
{
"input": "2.7",
"output": "3"
},
{
"input": "2.8",
"output": "3"
},
{
"input": "2.9",
"output": "3"
},
{
"input": "3.0",
"output": "3"
},
{
"input": "3.1",
"output": "3"
},
{
"input": "3.2",
"output": "3"
},
{
"input": "3.3",
"output": "3"
},
{
"input": "3.4",
"output": "3"
},
{
"input": "3.5",
"output": "4"
},
{
"input": "3.6",
"output": "4"
},
{
"input": "3.7",
"output": "4"
},
{
"input": "3.8",
"output": "4"
},
{
"input": "3.9",
"output": "4"
},
{
"input": "4.0",
"output": "4"
},
{
"input": "4.1",
"output": "4"
},
{
"input": "4.2",
"output": "4"
},
{
"input": "4.3",
"output": "4"
},
{
"input": "4.4",
"output": "4"
},
{
"input": "4.5",
"output": "5"
},
{
"input": "4.6",
"output": "5"
},
{
"input": "4.7",
"output": "5"
},
{
"input": "4.8",
"output": "5"
},
{
"input": "4.9",
"output": "5"
},
{
"input": "5.0",
"output": "5"
},
{
"input": "5.1",
"output": "5"
},
{
"input": "5.2",
"output": "5"
},
{
"input": "5.3",
"output": "5"
},
{
"input": "5.4",
"output": "5"
},
{
"input": "5.5",
"output": "6"
},
{
"input": "5.6",
"output": "6"
},
{
"input": "5.7",
"output": "6"
},
{
"input": "5.8",
"output": "6"
},
{
"input": "5.9",
"output": "6"
},
{
"input": "6.0",
"output": "6"
},
{
"input": "6.1",
"output": "6"
},
{
"input": "6.2",
"output": "6"
},
{
"input": "6.3",
"output": "6"
},
{
"input": "6.4",
"output": "6"
},
{
"input": "6.5",
"output": "7"
},
{
"input": "6.6",
"output": "7"
},
{
"input": "6.7",
"output": "7"
},
{
"input": "6.8",
"output": "7"
},
{
"input": "6.9",
"output": "7"
},
{
"input": "7.0",
"output": "7"
},
{
"input": "7.1",
"output": "7"
},
{
"input": "7.2",
"output": "7"
},
{
"input": "7.3",
"output": "7"
},
{
"input": "7.4",
"output": "7"
},
{
"input": "7.5",
"output": "8"
},
{
"input": "7.6",
"output": "8"
},
{
"input": "7.7",
"output": "8"
},
{
"input": "7.8",
"output": "8"
},
{
"input": "7.9",
"output": "8"
},
{
"input": "8.0",
"output": "8"
},
{
"input": "8.1",
"output": "8"
},
{
"input": "8.2",
"output": "8"
},
{
"input": "8.3",
"output": "8"
},
{
"input": "8.4",
"output": "8"
},
{
"input": "8.5",
"output": "9"
},
{
"input": "8.6",
"output": "9"
},
{
"input": "8.7",
"output": "9"
},
{
"input": "8.8",
"output": "9"
},
{
"input": "8.9",
"output": "9"
},
{
"input": "9.0",
"output": "GOTO Vasilisa."
},
{
"input": "9.1",
"output": "GOTO Vasilisa."
},
{
"input": "9.2",
"output": "GOTO Vasilisa."
},
{
"input": "9.3",
"output": "GOTO Vasilisa."
},
{
"input": "9.4",
"output": "GOTO Vasilisa."
},
{
"input": "9.5",
"output": "GOTO Vasilisa."
},
{
"input": "9.6",
"output": "GOTO Vasilisa."
},
{
"input": "9.7",
"output": "GOTO Vasilisa."
},
{
"input": "9.8",
"output": "GOTO Vasilisa."
},
{
"input": "9.9",
"output": "GOTO Vasilisa."
},
{
"input": "609942239104813108618306232517836377583566292129955473517174437591594761209877970062547641606473593416245554763832875919009472288995880898848455284062760160557686724163817329189799336769669146848904803188614226720978399787805489531837751080926098.1664915772983166314490532653577560222779830866949001942720729759794777105570672781798092416748052690224813237139640723361527601154465287615917169132637313918577673651098507390501962",
"output": "609942239104813108618306232517836377583566292129955473517174437591594761209877970062547641606473593416245554763832875919009472288995880898848455284062760160557686724163817329189799336769669146848904803188614226720978399787805489531837751080926098"
},
{
"input": "7002108534951820589946967018226114921984364117669853212254634761258884835434844673935047882480101006606512119541798298905598015607366335061012709906661245805358900665571472645463994925687210711492820804158354236327017974683658305043146543214454877759341394.20211856263503281388748282682120712214711232598021393495443628276945042110862480888110959179019986486690931930108026302665438087068150666835901617457150158918705186964935221768346957536540345814875615118637945520917367155931078965",
"output": "7002108534951820589946967018226114921984364117669853212254634761258884835434844673935047882480101006606512119541798298905598015607366335061012709906661245805358900665571472645463994925687210711492820804158354236327017974683658305043146543214454877759341394"
},
{
"input": "1950583094879039694852660558765931995628486712128191844305265555887022812284005463780616067.5000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "1950583094879039694852660558765931995628486712128191844305265555887022812284005463780616068"
},
{
"input": "718130341896330596635811874410345440628950330.500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "718130341896330596635811874410345440628950331"
},
{
"input": "927925904158088313481229162503626281882161630091489367140850985555900173018122871746924067186432044676083646964286435457446768031295712712803570690846298544912543439221596866052681116386179629036945370280722.500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "927925904158088313481229162503626281882161630091489367140850985555900173018122871746924067186432044676083646964286435457446768031295712712803570690846298544912543439221596866052681116386179629036945370280723"
},
{
"input": "68289614863244584294178637364598054554769889.500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "GOTO Vasilisa."
},
{
"input": "7536521504744364134984603189602839063535643888645969434165019366202558753840519.4999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999",
"output": "GOTO Vasilisa."
},
{
"input": "646188694587964249318078225173.5000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "646188694587964249318078225174"
},
{
"input": "7017472758334494297677068672222822550374695787171163207025095950296957261530.50",
"output": "7017472758334494297677068672222822550374695787171163207025095950296957261531"
},
{
"input": "259085737066615534998640212505663524594409165063310128108448186246980628179842202905722595400477937071746695941939306735605849342959111887834258250883469840846714848774368.50000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "259085737066615534998640212505663524594409165063310128108448186246980628179842202905722595400477937071746695941939306735605849342959111887834258250883469840846714848774369"
},
{
"input": "682500858233333594535201113441004740771119672961581796618069185960107115823662126812159957094407454522028503739299.5000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "GOTO Vasilisa."
},
{
"input": "41203422675619090661099806687619.49999999999999999999999999999999999999999999999999999999999999999999999999999999999999999",
"output": "GOTO Vasilisa."
}
] | 1,595,628,688
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 9
| 312
| 20,172,800
|
s = input()
a, b = s.split('.')
if(int(b[0]) < 5):
print(a)
elif int(a[len(a)-1]) != 9 and int(b[0]) >= 5:
print(int(a)+1)
else:
print('GOTO Vasilisa.')
|
Title: Help Far Away Kingdom
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
In a far away kingdom lived the King, the Prince, the Shoemaker, the Dressmaker and many other citizens. They lived happily until great trouble came into the Kingdom. The ACMers settled there.
Most damage those strange creatures inflicted upon the kingdom was that they loved high precision numbers. As a result, the Kingdom healers had already had three appointments with the merchants who were asked to sell, say, exactly 0.273549107 beer barrels. To deal with the problem somehow, the King issued an order obliging rounding up all numbers to the closest integer to simplify calculations. Specifically, the order went like this:
- If a number's integer part does not end with digit 9 and its fractional part is strictly less than 0.5, then the rounded up number coincides with the number’s integer part. - If a number's integer part does not end with digit 9 and its fractional part is not less than 0.5, the rounded up number is obtained if we add 1 to the last digit of the number’s integer part.- If the number’s integer part ends with digit 9, to round up the numbers one should go to Vasilisa the Wise. In the whole Kingdom she is the only one who can perform the tricky operation of carrying into the next position.
Merchants found the algorithm very sophisticated and they asked you (the ACMers) to help them. Can you write a program that would perform the rounding according to the King’s order?
Input Specification:
The first line contains a single number to round up — the integer part (a non-empty set of decimal digits that do not start with 0 — with the exception of a case when the set consists of a single digit — in this case 0 can go first), then follows character «.» (a dot), and then follows the fractional part (any non-empty set of decimal digits). The number's length does not exceed 1000 characters, including the dot. There are no other characters in the input data.
Output Specification:
If the last number of the integer part is not equal to 9, print the rounded-up number without leading zeroes. Otherwise, print the message "GOTO Vasilisa." (without the quotes).
Demo Input:
['0.0\n', '1.49\n', '1.50\n', '2.71828182845904523536\n', '3.14159265358979323846\n', '12345678901234567890.1\n', '123456789123456789.999\n']
Demo Output:
['0', '1', '2', '3', '3', '12345678901234567890', 'GOTO Vasilisa.']
Note:
none
|
```python
s = input()
a, b = s.split('.')
if(int(b[0]) < 5):
print(a)
elif int(a[len(a)-1]) != 9 and int(b[0]) >= 5:
print(int(a)+1)
else:
print('GOTO Vasilisa.')
```
| 0
|
474
|
B
|
Worms
|
PROGRAMMING
| 1,200
|
[
"binary search",
"implementation"
] | null | null |
It is lunch time for Mole. His friend, Marmot, prepared him a nice game for lunch.
Marmot brought Mole *n* ordered piles of worms such that *i*-th pile contains *a**i* worms. He labeled all these worms with consecutive integers: worms in first pile are labeled with numbers 1 to *a*1, worms in second pile are labeled with numbers *a*1<=+<=1 to *a*1<=+<=*a*2 and so on. See the example for a better understanding.
Mole can't eat all the worms (Marmot brought a lot) and, as we all know, Mole is blind, so Marmot tells him the labels of the best juicy worms. Marmot will only give Mole a worm if Mole says correctly in which pile this worm is contained.
Poor Mole asks for your help. For all juicy worms said by Marmot, tell Mole the correct answers.
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105), the number of piles.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=103, *a*1<=+<=*a*2<=+<=...<=+<=*a**n*<=≤<=106), where *a**i* is the number of worms in the *i*-th pile.
The third line contains single integer *m* (1<=≤<=*m*<=≤<=105), the number of juicy worms said by Marmot.
The fourth line contains *m* integers *q*1,<=*q*2,<=...,<=*q**m* (1<=≤<=*q**i*<=≤<=*a*1<=+<=*a*2<=+<=...<=+<=*a**n*), the labels of the juicy worms.
|
Print *m* lines to the standard output. The *i*-th line should contain an integer, representing the number of the pile where the worm labeled with the number *q**i* is.
|
[
"5\n2 7 3 4 9\n3\n1 25 11\n"
] |
[
"1\n5\n3\n"
] |
For the sample input:
- The worms with labels from [1, 2] are in the first pile. - The worms with labels from [3, 9] are in the second pile. - The worms with labels from [10, 12] are in the third pile. - The worms with labels from [13, 16] are in the fourth pile. - The worms with labels from [17, 25] are in the fifth pile.
| 1,000
|
[
{
"input": "5\n2 7 3 4 9\n3\n1 25 11",
"output": "1\n5\n3"
}
] | 1,689,941,654
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 31
| 0
|
e=int(input())
a=list(map(int,input().split()))
c=int(input())
b=list(map(int,input().split()))
for i in range(1,len(a)):
a[i]+=a[i-1]
print(a)
for i in range(c):
for j in range(1,e):
if a[j] > b[i] and a[j-1] < b[i]:
print(j+1)
break
elif a[j]==b[i]:
print(j+1)
break
elif a[j]>a[i] and a[j-1] > b[i]:
print(j)
break
|
Title: Worms
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
It is lunch time for Mole. His friend, Marmot, prepared him a nice game for lunch.
Marmot brought Mole *n* ordered piles of worms such that *i*-th pile contains *a**i* worms. He labeled all these worms with consecutive integers: worms in first pile are labeled with numbers 1 to *a*1, worms in second pile are labeled with numbers *a*1<=+<=1 to *a*1<=+<=*a*2 and so on. See the example for a better understanding.
Mole can't eat all the worms (Marmot brought a lot) and, as we all know, Mole is blind, so Marmot tells him the labels of the best juicy worms. Marmot will only give Mole a worm if Mole says correctly in which pile this worm is contained.
Poor Mole asks for your help. For all juicy worms said by Marmot, tell Mole the correct answers.
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105), the number of piles.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=103, *a*1<=+<=*a*2<=+<=...<=+<=*a**n*<=≤<=106), where *a**i* is the number of worms in the *i*-th pile.
The third line contains single integer *m* (1<=≤<=*m*<=≤<=105), the number of juicy worms said by Marmot.
The fourth line contains *m* integers *q*1,<=*q*2,<=...,<=*q**m* (1<=≤<=*q**i*<=≤<=*a*1<=+<=*a*2<=+<=...<=+<=*a**n*), the labels of the juicy worms.
Output Specification:
Print *m* lines to the standard output. The *i*-th line should contain an integer, representing the number of the pile where the worm labeled with the number *q**i* is.
Demo Input:
['5\n2 7 3 4 9\n3\n1 25 11\n']
Demo Output:
['1\n5\n3\n']
Note:
For the sample input:
- The worms with labels from [1, 2] are in the first pile. - The worms with labels from [3, 9] are in the second pile. - The worms with labels from [10, 12] are in the third pile. - The worms with labels from [13, 16] are in the fourth pile. - The worms with labels from [17, 25] are in the fifth pile.
|
```python
e=int(input())
a=list(map(int,input().split()))
c=int(input())
b=list(map(int,input().split()))
for i in range(1,len(a)):
a[i]+=a[i-1]
print(a)
for i in range(c):
for j in range(1,e):
if a[j] > b[i] and a[j-1] < b[i]:
print(j+1)
break
elif a[j]==b[i]:
print(j+1)
break
elif a[j]>a[i] and a[j-1] > b[i]:
print(j)
break
```
| 0
|
|
804
|
A
|
Find Amir
|
PROGRAMMING
| 1,000
|
[
"constructive algorithms",
"greedy",
"math"
] | null | null |
A few years ago Sajjad left his school and register to another one due to security reasons. Now he wishes to find Amir, one of his schoolmates and good friends.
There are *n* schools numerated from 1 to *n*. One can travel between each pair of them, to do so, he needs to buy a ticket. The ticker between schools *i* and *j* costs and can be used multiple times. Help Sajjad to find the minimum cost he needs to pay for tickets to visit all schools. He can start and finish in any school.
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of schools.
|
Print single integer: the minimum cost of tickets needed to visit all schools.
|
[
"2\n",
"10\n"
] |
[
"0\n",
"4\n"
] |
In the first example we can buy a ticket between the schools that costs <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c67d72010e0498bfd065a6a38fdeaec90358507b.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
| 500
|
[
{
"input": "2",
"output": "0"
},
{
"input": "10",
"output": "4"
},
{
"input": "43670",
"output": "21834"
},
{
"input": "4217",
"output": "2108"
},
{
"input": "17879",
"output": "8939"
},
{
"input": "31809",
"output": "15904"
},
{
"input": "40873",
"output": "20436"
},
{
"input": "77859",
"output": "38929"
},
{
"input": "53022",
"output": "26510"
},
{
"input": "79227",
"output": "39613"
},
{
"input": "100000",
"output": "49999"
},
{
"input": "82801",
"output": "41400"
},
{
"input": "5188",
"output": "2593"
},
{
"input": "86539",
"output": "43269"
},
{
"input": "12802",
"output": "6400"
},
{
"input": "20289",
"output": "10144"
},
{
"input": "32866",
"output": "16432"
},
{
"input": "33377",
"output": "16688"
},
{
"input": "31775",
"output": "15887"
},
{
"input": "60397",
"output": "30198"
},
{
"input": "100000",
"output": "49999"
},
{
"input": "99999",
"output": "49999"
},
{
"input": "99998",
"output": "49998"
},
{
"input": "99997",
"output": "49998"
},
{
"input": "99996",
"output": "49997"
},
{
"input": "1",
"output": "0"
},
{
"input": "2",
"output": "0"
},
{
"input": "3",
"output": "1"
},
{
"input": "4",
"output": "1"
},
{
"input": "1",
"output": "0"
},
{
"input": "3",
"output": "1"
}
] | 1,495,425,490
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 31
| 62
| 0
|
from math import ceil
n = int(input())
print(ceil(max(0, n/2-1)))
|
Title: Find Amir
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A few years ago Sajjad left his school and register to another one due to security reasons. Now he wishes to find Amir, one of his schoolmates and good friends.
There are *n* schools numerated from 1 to *n*. One can travel between each pair of them, to do so, he needs to buy a ticket. The ticker between schools *i* and *j* costs and can be used multiple times. Help Sajjad to find the minimum cost he needs to pay for tickets to visit all schools. He can start and finish in any school.
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of schools.
Output Specification:
Print single integer: the minimum cost of tickets needed to visit all schools.
Demo Input:
['2\n', '10\n']
Demo Output:
['0\n', '4\n']
Note:
In the first example we can buy a ticket between the schools that costs <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c67d72010e0498bfd065a6a38fdeaec90358507b.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
|
```python
from math import ceil
n = int(input())
print(ceil(max(0, n/2-1)))
```
| 3
|
|
450
|
A
|
Jzzhu and Children
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
There are *n* children in Jzzhu's school. Jzzhu is going to give some candies to them. Let's number all the children from 1 to *n*. The *i*-th child wants to get at least *a**i* candies.
Jzzhu asks children to line up. Initially, the *i*-th child stands at the *i*-th place of the line. Then Jzzhu start distribution of the candies. He follows the algorithm:
1. Give *m* candies to the first child of the line. 1. If this child still haven't got enough candies, then the child goes to the end of the line, else the child go home. 1. Repeat the first two steps while the line is not empty.
Consider all the children in the order they go home. Jzzhu wants to know, which child will be the last in this order?
|
The first line contains two integers *n*,<=*m* (1<=≤<=*n*<=≤<=100; 1<=≤<=*m*<=≤<=100). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100).
|
Output a single integer, representing the number of the last child.
|
[
"5 2\n1 3 1 4 2\n",
"6 4\n1 1 2 2 3 3\n"
] |
[
"4\n",
"6\n"
] |
Let's consider the first sample.
Firstly child 1 gets 2 candies and go home. Then child 2 gets 2 candies and go to the end of the line. Currently the line looks like [3, 4, 5, 2] (indices of the children in order of the line). Then child 3 gets 2 candies and go home, and then child 4 gets 2 candies and goes to the end of the line. Currently the line looks like [5, 2, 4]. Then child 5 gets 2 candies and goes home. Then child 2 gets two candies and goes home, and finally child 4 gets 2 candies and goes home.
Child 4 is the last one who goes home.
| 500
|
[
{
"input": "5 2\n1 3 1 4 2",
"output": "4"
},
{
"input": "6 4\n1 1 2 2 3 3",
"output": "6"
},
{
"input": "7 3\n6 1 5 4 2 3 1",
"output": "4"
},
{
"input": "10 5\n2 7 3 6 2 5 1 3 4 5",
"output": "4"
},
{
"input": "100 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100",
"output": "100"
},
{
"input": "9 3\n9 5 2 3 7 1 8 4 6",
"output": "7"
},
{
"input": "20 10\n58 4 32 10 73 7 30 39 47 6 59 21 24 66 79 79 46 13 29 58",
"output": "16"
},
{
"input": "50 5\n89 56 3 2 40 37 56 52 83 59 43 83 43 59 29 74 22 58 53 41 53 67 78 30 57 32 58 29 95 46 45 85 60 49 41 82 8 71 52 40 45 26 6 71 84 91 4 93 40 54",
"output": "48"
},
{
"input": "50 1\n4 3 9 7 6 8 3 7 10 9 8 8 10 2 9 3 2 4 4 10 4 6 8 10 9 9 4 2 8 9 4 4 9 5 1 5 2 4 4 9 10 2 5 10 7 2 8 6 8 1",
"output": "44"
},
{
"input": "50 5\n3 9 10 8 3 3 4 6 8 2 9 9 3 1 2 10 6 8 7 2 7 4 2 7 5 10 2 2 2 5 10 5 6 6 8 7 10 4 3 2 10 8 6 6 8 6 4 4 1 3",
"output": "46"
},
{
"input": "50 2\n56 69 72 15 95 92 51 1 74 87 100 29 46 54 18 81 84 72 84 83 20 63 71 27 45 74 50 89 48 8 21 15 47 3 39 73 80 84 6 99 17 25 56 3 74 64 71 39 89 78",
"output": "40"
},
{
"input": "50 3\n31 39 64 16 86 3 1 9 25 54 98 42 20 3 49 41 73 37 55 62 33 77 64 22 33 82 26 13 10 13 7 40 48 18 46 79 94 72 19 12 11 61 16 37 10 49 14 94 48 69",
"output": "11"
},
{
"input": "50 100\n67 67 61 68 42 29 70 77 12 61 71 27 4 73 87 52 59 38 93 90 31 27 87 47 26 57 76 6 28 72 81 68 50 84 69 79 39 93 52 6 88 12 46 13 90 68 71 38 90 95",
"output": "50"
},
{
"input": "100 3\n4 14 20 11 19 11 14 20 5 7 6 12 11 17 5 11 7 6 2 10 13 5 12 8 5 17 20 18 7 19 11 7 7 20 20 8 10 17 17 19 20 5 15 16 19 7 11 16 4 17 2 10 1 20 20 16 19 9 9 11 5 7 12 9 9 6 20 18 13 19 8 4 8 1 2 4 10 11 15 14 1 7 17 12 13 19 12 2 3 14 15 15 5 17 14 12 17 14 16 9",
"output": "86"
},
{
"input": "100 5\n16 8 14 16 12 11 17 19 19 2 8 9 5 6 19 9 11 18 6 9 14 16 14 18 17 17 17 5 15 20 19 7 7 10 10 5 14 20 5 19 11 16 16 19 17 9 7 12 14 10 2 11 14 5 20 8 10 11 19 2 14 14 19 17 5 10 8 8 4 2 1 10 20 12 14 11 7 6 6 15 1 5 9 15 3 17 16 17 5 14 11 9 16 15 1 11 10 6 15 7",
"output": "93"
},
{
"input": "100 1\n58 94 18 50 17 14 96 62 83 80 75 5 9 22 25 41 3 96 74 45 66 37 2 37 13 85 68 54 77 11 85 19 25 21 52 59 90 61 72 89 82 22 10 16 3 68 61 29 55 76 28 85 65 76 27 3 14 10 56 37 86 18 35 38 56 68 23 88 33 38 52 87 55 83 94 34 100 41 83 56 91 77 32 74 97 13 67 31 57 81 53 39 5 88 46 1 79 4 49 42",
"output": "77"
},
{
"input": "100 2\n1 51 76 62 34 93 90 43 57 59 52 78 3 48 11 60 57 48 5 54 28 81 87 23 44 77 67 61 14 73 29 53 21 89 67 41 47 9 63 37 1 71 40 85 4 14 77 40 78 75 89 74 4 70 32 65 81 95 49 90 72 41 76 55 69 83 73 84 85 93 46 6 74 90 62 37 97 7 7 37 83 30 37 88 34 16 11 59 85 19 57 63 85 20 63 97 97 65 61 48",
"output": "97"
},
{
"input": "100 3\n30 83 14 55 61 66 34 98 90 62 89 74 45 93 33 31 75 35 82 100 63 69 48 18 99 2 36 71 14 30 70 76 96 85 97 90 49 36 6 76 37 94 70 3 63 73 75 48 39 29 13 2 46 26 9 56 1 18 54 53 85 34 2 12 1 93 75 67 77 77 14 26 33 25 55 9 57 70 75 6 87 66 18 3 41 69 73 24 49 2 20 72 39 58 91 54 74 56 66 78",
"output": "20"
},
{
"input": "100 4\n69 92 76 3 32 50 15 38 21 22 14 3 67 41 95 12 10 62 83 52 78 1 18 58 94 35 62 71 58 75 13 73 60 34 50 97 50 70 19 96 53 10 100 26 20 39 62 59 88 26 24 83 70 68 66 8 6 38 16 93 2 91 81 89 78 74 21 8 31 56 28 53 77 5 81 5 94 42 77 75 92 15 59 36 61 18 55 45 69 68 81 51 12 42 85 74 98 31 17 41",
"output": "97"
},
{
"input": "100 5\n2 72 10 60 6 50 72 34 97 77 35 43 80 64 40 53 46 6 90 22 29 70 26 68 52 19 72 88 83 18 55 32 99 81 11 21 39 42 41 63 60 97 30 23 55 78 89 35 24 50 99 52 27 76 24 8 20 27 51 37 17 82 69 18 46 19 26 77 52 83 76 65 43 66 84 84 13 30 66 88 84 23 37 1 17 26 11 50 73 56 54 37 40 29 35 8 1 39 50 82",
"output": "51"
},
{
"input": "100 7\n6 73 7 54 92 33 66 65 80 47 2 53 28 59 61 16 54 89 37 48 77 40 49 59 27 52 17 22 78 80 81 80 8 93 50 7 87 57 29 16 89 55 20 7 51 54 30 98 44 96 27 70 1 1 32 61 22 92 84 98 31 89 91 90 28 56 49 25 86 49 55 16 19 1 18 8 88 47 16 18 73 86 2 96 16 91 74 49 38 98 94 25 34 85 29 27 99 31 31 58",
"output": "97"
},
{
"input": "100 9\n36 4 45 16 19 6 10 87 44 82 71 49 70 35 83 19 40 76 45 94 44 96 10 54 82 77 86 63 11 37 21 3 15 89 80 88 89 16 72 23 25 9 51 25 10 45 96 5 6 18 51 31 42 57 41 51 42 15 89 61 45 82 16 48 61 67 19 40 9 33 90 36 78 36 79 79 16 10 83 87 9 22 84 12 23 76 36 14 2 81 56 33 56 23 57 84 76 55 35 88",
"output": "47"
},
{
"input": "100 10\n75 81 39 64 90 58 92 28 75 9 96 78 92 83 77 68 76 71 14 46 58 60 80 25 78 11 13 63 22 82 65 68 47 6 33 63 90 50 85 43 73 94 80 48 67 11 83 17 22 15 94 80 66 99 66 4 46 35 52 1 62 39 96 57 37 47 97 49 64 12 36 63 90 16 4 75 85 82 85 56 13 4 92 45 44 93 17 35 22 46 18 44 29 7 52 4 100 98 87 51",
"output": "98"
},
{
"input": "100 20\n21 19 61 70 54 97 98 14 61 72 25 94 24 56 55 25 12 80 76 11 35 17 80 26 11 94 52 47 84 61 10 2 74 25 10 21 2 79 55 50 30 75 10 64 44 5 60 96 52 16 74 41 20 77 20 44 8 86 74 36 49 61 99 13 54 64 19 99 50 43 12 73 48 48 83 55 72 73 63 81 30 27 95 9 97 82 24 3 89 90 33 14 47 88 22 78 12 75 58 67",
"output": "94"
},
{
"input": "100 30\n56 79 59 23 11 23 67 82 81 80 99 79 8 58 93 36 98 81 46 39 34 67 3 50 4 68 70 71 2 21 52 30 75 23 33 21 16 100 56 43 8 27 40 8 56 24 17 40 94 10 67 49 61 36 95 87 17 41 7 94 33 19 17 50 26 11 94 54 38 46 77 9 53 35 98 42 50 20 43 6 78 6 38 24 100 45 43 16 1 50 16 46 14 91 95 88 10 1 50 19",
"output": "95"
},
{
"input": "100 40\n86 11 97 17 38 95 11 5 13 83 67 75 50 2 46 39 84 68 22 85 70 23 64 46 59 93 39 80 35 78 93 21 83 19 64 1 49 59 99 83 44 81 70 58 15 82 83 47 55 65 91 10 2 92 4 77 37 32 12 57 78 11 42 8 59 21 96 69 61 30 44 29 12 70 91 14 10 83 11 75 14 10 19 39 8 98 5 81 66 66 79 55 36 29 22 45 19 24 55 49",
"output": "88"
},
{
"input": "100 50\n22 39 95 69 94 53 80 73 33 90 40 60 2 4 84 50 70 38 92 12 36 74 87 70 51 36 57 5 54 6 35 81 52 17 55 100 95 81 32 76 21 1 100 1 95 1 40 91 98 59 84 19 11 51 79 19 47 86 45 15 62 2 59 77 31 68 71 92 17 33 10 33 85 57 5 2 88 97 91 99 63 20 63 54 79 93 24 62 46 27 30 87 3 64 95 88 16 50 79 1",
"output": "99"
},
{
"input": "100 70\n61 48 89 17 97 6 93 13 64 50 66 88 24 52 46 99 6 65 93 64 82 37 57 41 47 1 84 5 97 83 79 46 16 35 40 7 64 15 44 96 37 17 30 92 51 67 26 3 14 56 27 68 66 93 36 39 51 6 40 55 79 26 71 54 8 48 18 2 71 12 55 60 29 37 31 97 26 37 25 68 67 70 3 87 100 41 5 82 65 92 24 66 76 48 89 8 40 93 31 95",
"output": "100"
},
{
"input": "100 90\n87 32 30 15 10 52 93 63 84 1 82 41 27 51 75 32 42 94 39 53 70 13 4 22 99 35 44 38 5 23 18 100 61 80 9 12 42 93 9 77 3 7 60 95 66 78 95 42 69 8 1 88 93 66 96 20 76 63 15 36 92 52 2 72 36 57 48 63 29 20 74 88 49 47 81 61 94 74 70 93 47 3 19 52 59 41 5 40 22 3 76 97 91 37 95 88 91 99 76 15",
"output": "98"
},
{
"input": "100 100\n79 75 7 28 6 96 38 35 57 95 41 74 24 96 32 78 81 13 63 84 24 95 3 23 66 1 60 6 96 49 41 5 14 18 31 97 66 19 49 89 49 70 51 28 20 99 18 1 28 77 24 46 69 21 40 32 31 66 28 6 66 97 9 16 70 90 91 30 34 82 93 41 65 11 39 52 1 88 63 43 80 50 60 49 28 56 18 76 24 57 74 1 28 99 36 35 79 54 18 16",
"output": "100"
},
{
"input": "1 3\n5",
"output": "1"
},
{
"input": "1 1\n100",
"output": "1"
},
{
"input": "2 3\n4 2",
"output": "1"
},
{
"input": "2 5\n99 97",
"output": "2"
},
{
"input": "3 4\n7 5 2",
"output": "2"
},
{
"input": "3 50\n47 86 51",
"output": "3"
},
{
"input": "5 100\n82 100 85 1 37",
"output": "5"
},
{
"input": "5 20\n40 39 21 5 20",
"output": "3"
},
{
"input": "1 27\n81",
"output": "1"
},
{
"input": "20 13\n7 8 29 83 74 28 93 85 7 8 3 9 8 70 49 50 39 41 57 1",
"output": "7"
},
{
"input": "2 1\n100 2",
"output": "1"
},
{
"input": "2 2\n6 4",
"output": "1"
},
{
"input": "5 2\n6 4 4 1 1",
"output": "1"
},
{
"input": "1 4\n3",
"output": "1"
},
{
"input": "3 2\n1 5 3",
"output": "2"
},
{
"input": "3 1\n3 2 2",
"output": "1"
},
{
"input": "3 1\n2 3 2",
"output": "2"
},
{
"input": "5 1\n5 1 1 1 1",
"output": "1"
},
{
"input": "2 3\n7 4",
"output": "1"
}
] | 1,633,879,666
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 49
| 77
| 6,963,200
|
import math
n,m = input().split()
n,m = [int(n),int(m)]
arr = [int(x) for x in input().split()]
ans = -1
p = -1
for i in range(n):
d = math.ceil(arr[i]/m)
if d >= ans:
ans = d
p = i+1
print(p)
|
Title: Jzzhu and Children
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* children in Jzzhu's school. Jzzhu is going to give some candies to them. Let's number all the children from 1 to *n*. The *i*-th child wants to get at least *a**i* candies.
Jzzhu asks children to line up. Initially, the *i*-th child stands at the *i*-th place of the line. Then Jzzhu start distribution of the candies. He follows the algorithm:
1. Give *m* candies to the first child of the line. 1. If this child still haven't got enough candies, then the child goes to the end of the line, else the child go home. 1. Repeat the first two steps while the line is not empty.
Consider all the children in the order they go home. Jzzhu wants to know, which child will be the last in this order?
Input Specification:
The first line contains two integers *n*,<=*m* (1<=≤<=*n*<=≤<=100; 1<=≤<=*m*<=≤<=100). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100).
Output Specification:
Output a single integer, representing the number of the last child.
Demo Input:
['5 2\n1 3 1 4 2\n', '6 4\n1 1 2 2 3 3\n']
Demo Output:
['4\n', '6\n']
Note:
Let's consider the first sample.
Firstly child 1 gets 2 candies and go home. Then child 2 gets 2 candies and go to the end of the line. Currently the line looks like [3, 4, 5, 2] (indices of the children in order of the line). Then child 3 gets 2 candies and go home, and then child 4 gets 2 candies and goes to the end of the line. Currently the line looks like [5, 2, 4]. Then child 5 gets 2 candies and goes home. Then child 2 gets two candies and goes home, and finally child 4 gets 2 candies and goes home.
Child 4 is the last one who goes home.
|
```python
import math
n,m = input().split()
n,m = [int(n),int(m)]
arr = [int(x) for x in input().split()]
ans = -1
p = -1
for i in range(n):
d = math.ceil(arr[i]/m)
if d >= ans:
ans = d
p = i+1
print(p)
```
| 3
|
|
527
|
A
|
Playing with Paper
|
PROGRAMMING
| 1,100
|
[
"implementation",
"math"
] | null | null |
One day Vasya was sitting on a not so interesting Maths lesson and making an origami from a rectangular *a* mm <=×<= *b* mm sheet of paper (*a*<=><=*b*). Usually the first step in making an origami is making a square piece of paper from the rectangular sheet by folding the sheet along the bisector of the right angle, and cutting the excess part.
After making a paper ship from the square piece, Vasya looked on the remaining (*a*<=-<=*b*) mm <=×<= *b* mm strip of paper. He got the idea to use this strip of paper in the same way to make an origami, and then use the remainder (if it exists) and so on. At the moment when he is left with a square piece of paper, he will make the last ship from it and stop.
Can you determine how many ships Vasya will make during the lesson?
|
The first line of the input contains two integers *a*, *b* (1<=≤<=*b*<=<<=*a*<=≤<=1012) — the sizes of the original sheet of paper.
|
Print a single integer — the number of ships that Vasya will make.
|
[
"2 1\n",
"10 7\n",
"1000000000000 1\n"
] |
[
"2\n",
"6\n",
"1000000000000\n"
] |
Pictures to the first and second sample test.
| 500
|
[
{
"input": "2 1",
"output": "2"
},
{
"input": "10 7",
"output": "6"
},
{
"input": "1000000000000 1",
"output": "1000000000000"
},
{
"input": "3 1",
"output": "3"
},
{
"input": "4 1",
"output": "4"
},
{
"input": "3 2",
"output": "3"
},
{
"input": "4 2",
"output": "2"
},
{
"input": "1000 700",
"output": "6"
},
{
"input": "959986566087 524054155168",
"output": "90"
},
{
"input": "4 3",
"output": "4"
},
{
"input": "7 6",
"output": "7"
},
{
"input": "1000 999",
"output": "1000"
},
{
"input": "1000 998",
"output": "500"
},
{
"input": "1000 997",
"output": "336"
},
{
"input": "42 1",
"output": "42"
},
{
"input": "1000 1",
"output": "1000"
},
{
"input": "8 5",
"output": "5"
},
{
"input": "13 8",
"output": "6"
},
{
"input": "987 610",
"output": "15"
},
{
"input": "442 42",
"output": "22"
},
{
"input": "754 466",
"output": "13"
},
{
"input": "1000000000000 999999999999",
"output": "1000000000000"
},
{
"input": "1000000000000 999999999998",
"output": "500000000000"
},
{
"input": "941 14",
"output": "74"
},
{
"input": "998 2",
"output": "499"
},
{
"input": "1000 42",
"output": "32"
},
{
"input": "1000 17",
"output": "66"
},
{
"input": "5 1",
"output": "5"
},
{
"input": "5 2",
"output": "4"
},
{
"input": "5 3",
"output": "4"
},
{
"input": "5 4",
"output": "5"
},
{
"input": "293 210",
"output": "17"
},
{
"input": "787878787878 424242424242",
"output": "8"
},
{
"input": "956722026041 591286729879",
"output": "58"
},
{
"input": "956722026041 365435296162",
"output": "58"
},
{
"input": "628625247282 464807889701",
"output": "102"
},
{
"input": "695928431619 424778620208",
"output": "167"
},
{
"input": "1000000000000 42",
"output": "23809523821"
},
{
"input": "987654345678 23",
"output": "42941493300"
},
{
"input": "10000000001 2",
"output": "5000000002"
},
{
"input": "1000000000000 2",
"output": "500000000000"
},
{
"input": "1000000000000 3",
"output": "333333333336"
},
{
"input": "100000000000 3",
"output": "33333333336"
},
{
"input": "100000000000 23",
"output": "4347826109"
},
{
"input": "999999999997 7",
"output": "142857142861"
},
{
"input": "8589934592 4294967296",
"output": "2"
}
] | 1,465,253,881
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 2
| 2,000
| 5,120,000
|
a,b = input().split(" ")
a = int(a)
b = int(b)
s = 1
while (a!=b):
if(a>b):
a-=b
else:
b-=a
s+=1
print(s)
|
Title: Playing with Paper
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Vasya was sitting on a not so interesting Maths lesson and making an origami from a rectangular *a* mm <=×<= *b* mm sheet of paper (*a*<=><=*b*). Usually the first step in making an origami is making a square piece of paper from the rectangular sheet by folding the sheet along the bisector of the right angle, and cutting the excess part.
After making a paper ship from the square piece, Vasya looked on the remaining (*a*<=-<=*b*) mm <=×<= *b* mm strip of paper. He got the idea to use this strip of paper in the same way to make an origami, and then use the remainder (if it exists) and so on. At the moment when he is left with a square piece of paper, he will make the last ship from it and stop.
Can you determine how many ships Vasya will make during the lesson?
Input Specification:
The first line of the input contains two integers *a*, *b* (1<=≤<=*b*<=<<=*a*<=≤<=1012) — the sizes of the original sheet of paper.
Output Specification:
Print a single integer — the number of ships that Vasya will make.
Demo Input:
['2 1\n', '10 7\n', '1000000000000 1\n']
Demo Output:
['2\n', '6\n', '1000000000000\n']
Note:
Pictures to the first and second sample test.
|
```python
a,b = input().split(" ")
a = int(a)
b = int(b)
s = 1
while (a!=b):
if(a>b):
a-=b
else:
b-=a
s+=1
print(s)
```
| 0
|
|
1,008
|
A
|
Romaji
|
PROGRAMMING
| 900
|
[
"implementation",
"strings"
] | null | null |
Vitya has just started learning Berlanese language. It is known that Berlanese uses the Latin alphabet. Vowel letters are "a", "o", "u", "i", and "e". Other letters are consonant.
In Berlanese, there has to be a vowel after every consonant, but there can be any letter after any vowel. The only exception is a consonant "n"; after this letter, there can be any letter (not only a vowel) or there can be no letter at all. For example, the words "harakiri", "yupie", "man", and "nbo" are Berlanese while the words "horse", "king", "my", and "nz" are not.
Help Vitya find out if a word $s$ is Berlanese.
|
The first line of the input contains the string $s$ consisting of $|s|$ ($1\leq |s|\leq 100$) lowercase Latin letters.
|
Print "YES" (without quotes) if there is a vowel after every consonant except "n", otherwise print "NO".
You can print each letter in any case (upper or lower).
|
[
"sumimasen\n",
"ninja\n",
"codeforces\n"
] |
[
"YES\n",
"YES\n",
"NO\n"
] |
In the first and second samples, a vowel goes after each consonant except "n", so the word is Berlanese.
In the third sample, the consonant "c" goes after the consonant "r", and the consonant "s" stands on the end, so the word is not Berlanese.
| 500
|
[
{
"input": "sumimasen",
"output": "YES"
},
{
"input": "ninja",
"output": "YES"
},
{
"input": "codeforces",
"output": "NO"
},
{
"input": "auuaoonntanonnuewannnnpuuinniwoonennyolonnnvienonpoujinndinunnenannmuveoiuuhikucuziuhunnnmunzancenen",
"output": "YES"
},
{
"input": "n",
"output": "YES"
},
{
"input": "necnei",
"output": "NO"
},
{
"input": "nternn",
"output": "NO"
},
{
"input": "aucunuohja",
"output": "NO"
},
{
"input": "a",
"output": "YES"
},
{
"input": "b",
"output": "NO"
},
{
"input": "nn",
"output": "YES"
},
{
"input": "nnnzaaa",
"output": "YES"
},
{
"input": "zn",
"output": "NO"
},
{
"input": "ab",
"output": "NO"
},
{
"input": "aaaaaaaaaa",
"output": "YES"
},
{
"input": "aaaaaaaaab",
"output": "NO"
},
{
"input": "aaaaaaaaan",
"output": "YES"
},
{
"input": "baaaaaaaaa",
"output": "YES"
},
{
"input": "naaaaaaaaa",
"output": "YES"
},
{
"input": "nbaaaaaaaa",
"output": "YES"
},
{
"input": "bbaaaaaaaa",
"output": "NO"
},
{
"input": "bnaaaaaaaa",
"output": "NO"
},
{
"input": "eonwonojannonnufimiiniewuqaienokacevecinfuqihatenhunliquuyebayiaenifuexuanenuaounnboancaeowonu",
"output": "YES"
},
{
"input": "uixinnepnlinqaingieianndeakuniooudidonnnqeaituioeneiroionxuowudiooonayenfeonuino",
"output": "NO"
},
{
"input": "nnnnnyigaveteononnnnxaalenxuiiwannntoxonyoqonlejuoxuoconnnentoinnul",
"output": "NO"
},
{
"input": "ndonneasoiunhomuunnhuitonnntunntoanerekonoupunanuauenu",
"output": "YES"
},
{
"input": "anujemogawautiedoneobninnibonuunaoennnyoorufonxionntinimiboonununnnnnleenqunminzayoutanlalo",
"output": "NO"
},
{
"input": "y",
"output": "NO"
},
{
"input": "by",
"output": "NO"
},
{
"input": "yy",
"output": "NO"
},
{
"input": "nbn",
"output": "NO"
},
{
"input": "nz",
"output": "NO"
},
{
"input": "king",
"output": "NO"
},
{
"input": "g",
"output": "NO"
},
{
"input": "az",
"output": "NO"
},
{
"input": "x",
"output": "NO"
},
{
"input": "z",
"output": "NO"
},
{
"input": "yn",
"output": "NO"
},
{
"input": "aeo",
"output": "YES"
},
{
"input": "nb",
"output": "NO"
},
{
"input": "npn",
"output": "NO"
},
{
"input": "kini",
"output": "YES"
},
{
"input": "pya",
"output": "NO"
},
{
"input": "m",
"output": "NO"
},
{
"input": "p",
"output": "NO"
},
{
"input": "aaaaaaaak",
"output": "NO"
},
{
"input": "aab",
"output": "NO"
},
{
"input": "d",
"output": "NO"
},
{
"input": "at",
"output": "NO"
},
{
"input": "aaaaaak",
"output": "NO"
},
{
"input": "aaz",
"output": "NO"
},
{
"input": "aaab",
"output": "NO"
},
{
"input": "s",
"output": "NO"
},
{
"input": "nzzen",
"output": "NO"
},
{
"input": "aeionnhhhn",
"output": "NO"
},
{
"input": "h",
"output": "NO"
},
{
"input": "ny",
"output": "NO"
}
] | 1,636,804,563
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 57
| 61
| 4,505,600
|
s=input()
n=len(s)
v='aeioun'
for i in range(1,n):
if (s[i] not in v and s[i-1] not in v) or (s[i]=='n' and s[i-1] not in v):
print("NO")
exit()
if s[-1] in v:
print("YES")
else:
print("NO")
|
Title: Romaji
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vitya has just started learning Berlanese language. It is known that Berlanese uses the Latin alphabet. Vowel letters are "a", "o", "u", "i", and "e". Other letters are consonant.
In Berlanese, there has to be a vowel after every consonant, but there can be any letter after any vowel. The only exception is a consonant "n"; after this letter, there can be any letter (not only a vowel) or there can be no letter at all. For example, the words "harakiri", "yupie", "man", and "nbo" are Berlanese while the words "horse", "king", "my", and "nz" are not.
Help Vitya find out if a word $s$ is Berlanese.
Input Specification:
The first line of the input contains the string $s$ consisting of $|s|$ ($1\leq |s|\leq 100$) lowercase Latin letters.
Output Specification:
Print "YES" (without quotes) if there is a vowel after every consonant except "n", otherwise print "NO".
You can print each letter in any case (upper or lower).
Demo Input:
['sumimasen\n', 'ninja\n', 'codeforces\n']
Demo Output:
['YES\n', 'YES\n', 'NO\n']
Note:
In the first and second samples, a vowel goes after each consonant except "n", so the word is Berlanese.
In the third sample, the consonant "c" goes after the consonant "r", and the consonant "s" stands on the end, so the word is not Berlanese.
|
```python
s=input()
n=len(s)
v='aeioun'
for i in range(1,n):
if (s[i] not in v and s[i-1] not in v) or (s[i]=='n' and s[i-1] not in v):
print("NO")
exit()
if s[-1] in v:
print("YES")
else:
print("NO")
```
| 3
|
|
545
|
D
|
Queue
|
PROGRAMMING
| 1,300
|
[
"greedy",
"implementation",
"sortings"
] | null | null |
Little girl Susie went shopping with her mom and she wondered how to improve service quality.
There are *n* people in the queue. For each person we know time *t**i* needed to serve him. A person will be disappointed if the time he waits is more than the time needed to serve him. The time a person waits is the total time when all the people who stand in the queue in front of him are served. Susie thought that if we swap some people in the queue, then we can decrease the number of people who are disappointed.
Help Susie find out what is the maximum number of not disappointed people can be achieved by swapping people in the queue.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=105).
The next line contains *n* integers *t**i* (1<=≤<=*t**i*<=≤<=109), separated by spaces.
|
Print a single number — the maximum number of not disappointed people in the queue.
|
[
"5\n15 2 1 5 3\n"
] |
[
"4\n"
] |
Value 4 is achieved at such an arrangement, for example: 1, 2, 3, 5, 15. Thus, you can make everything feel not disappointed except for the person with time 5.
| 1,750
|
[
{
"input": "5\n15 2 1 5 3",
"output": "4"
},
{
"input": "15\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "2"
},
{
"input": "10\n13 2 5 55 21 34 1 8 1 3",
"output": "6"
},
{
"input": "10\n8 256 16 1 2 1 64 4 128 32",
"output": "10"
},
{
"input": "10\n10000 40000 10000 50000 20000 100000 10000 100 30000 500",
"output": "6"
},
{
"input": "1\n1000000000",
"output": "1"
},
{
"input": "15\n9 11 45 86 52 65 35 3 93 7 21 45 15 11 39",
"output": "6"
},
{
"input": "20\n16839799 17525904 91276752 42650694 60106463 12243176 54892123 25142243 16015971 41250998 11150057 6994983 67700784 16562412 82163675 46178521 33914268 91966607 93976858 84100064",
"output": "5"
},
{
"input": "26\n1000 4110030 64221 131521030 942374833 1003 2055015 32110 513757 16440130 263042057 32880256 128439 557559573 16051 8220066 469240078 65760513 256878 790176315 4012 2005 1027508 928528684 8030 805074697",
"output": "21"
}
] | 1,682,170,994
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 31
| 0
|
n = input()
customers = [int(x) for x in input().split()]
customers.sort()
count = 1
prefixSums = [customers[0]]
for i in range(1, len(customers)):
prefixSums.append(prefixSums[i - 1] + customers[i])
i = 1
while i < len(prefixSums):
if customers[i] >= prefixSums[i - 1]:
count += 1
print(customers[i])
i += 1
else:
if i != len(prefixSums) - 1:
temp = customers[i]
del customers[i]
customers.append(temp)
else:
break
print(count)
|
Title: Queue
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little girl Susie went shopping with her mom and she wondered how to improve service quality.
There are *n* people in the queue. For each person we know time *t**i* needed to serve him. A person will be disappointed if the time he waits is more than the time needed to serve him. The time a person waits is the total time when all the people who stand in the queue in front of him are served. Susie thought that if we swap some people in the queue, then we can decrease the number of people who are disappointed.
Help Susie find out what is the maximum number of not disappointed people can be achieved by swapping people in the queue.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=105).
The next line contains *n* integers *t**i* (1<=≤<=*t**i*<=≤<=109), separated by spaces.
Output Specification:
Print a single number — the maximum number of not disappointed people in the queue.
Demo Input:
['5\n15 2 1 5 3\n']
Demo Output:
['4\n']
Note:
Value 4 is achieved at such an arrangement, for example: 1, 2, 3, 5, 15. Thus, you can make everything feel not disappointed except for the person with time 5.
|
```python
n = input()
customers = [int(x) for x in input().split()]
customers.sort()
count = 1
prefixSums = [customers[0]]
for i in range(1, len(customers)):
prefixSums.append(prefixSums[i - 1] + customers[i])
i = 1
while i < len(prefixSums):
if customers[i] >= prefixSums[i - 1]:
count += 1
print(customers[i])
i += 1
else:
if i != len(prefixSums) - 1:
temp = customers[i]
del customers[i]
customers.append(temp)
else:
break
print(count)
```
| 0
|
|
698
|
A
|
Vacations
|
PROGRAMMING
| 1,400
|
[
"dp"
] | null | null |
Vasya has *n* days of vacations! So he decided to improve his IT skills and do sport. Vasya knows the following information about each of this *n* days: whether that gym opened and whether a contest was carried out in the Internet on that day. For the *i*-th day there are four options:
1. on this day the gym is closed and the contest is not carried out; 1. on this day the gym is closed and the contest is carried out; 1. on this day the gym is open and the contest is not carried out; 1. on this day the gym is open and the contest is carried out.
On each of days Vasya can either have a rest or write the contest (if it is carried out on this day), or do sport (if the gym is open on this day).
Find the minimum number of days on which Vasya will have a rest (it means, he will not do sport and write the contest at the same time). The only limitation that Vasya has — he does not want to do the same activity on two consecutive days: it means, he will not do sport on two consecutive days, and write the contest on two consecutive days.
|
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100) — the number of days of Vasya's vacations.
The second line contains the sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=3) separated by space, where:
- *a**i* equals 0, if on the *i*-th day of vacations the gym is closed and the contest is not carried out; - *a**i* equals 1, if on the *i*-th day of vacations the gym is closed, but the contest is carried out; - *a**i* equals 2, if on the *i*-th day of vacations the gym is open and the contest is not carried out; - *a**i* equals 3, if on the *i*-th day of vacations the gym is open and the contest is carried out.
|
Print the minimum possible number of days on which Vasya will have a rest. Remember that Vasya refuses:
- to do sport on any two consecutive days, - to write the contest on any two consecutive days.
|
[
"4\n1 3 2 0\n",
"7\n1 3 3 2 1 2 3\n",
"2\n2 2\n"
] |
[
"2\n",
"0\n",
"1\n"
] |
In the first test Vasya can write the contest on the day number 1 and do sport on the day number 3. Thus, he will have a rest for only 2 days.
In the second test Vasya should write contests on days number 1, 3, 5 and 7, in other days do sport. Thus, he will not have a rest for a single day.
In the third test Vasya can do sport either on a day number 1 or number 2. He can not do sport in two days, because it will be contrary to the his limitation. Thus, he will have a rest for only one day.
| 500
|
[
{
"input": "4\n1 3 2 0",
"output": "2"
},
{
"input": "7\n1 3 3 2 1 2 3",
"output": "0"
},
{
"input": "2\n2 2",
"output": "1"
},
{
"input": "1\n0",
"output": "1"
},
{
"input": "10\n0 0 1 1 0 0 0 0 1 0",
"output": "8"
},
{
"input": "100\n3 2 3 3 3 2 3 1 3 2 2 3 2 3 3 3 3 3 3 1 2 2 3 1 3 3 2 2 2 3 1 0 3 3 3 2 3 3 1 1 3 1 3 3 3 1 3 1 3 0 1 3 2 3 2 1 1 3 2 3 3 3 2 3 1 3 3 3 3 2 2 2 1 3 1 3 3 3 3 1 3 2 3 3 0 3 3 3 3 3 1 0 2 1 3 3 0 2 3 3",
"output": "16"
},
{
"input": "10\n2 3 0 1 3 1 2 2 1 0",
"output": "3"
},
{
"input": "45\n3 3 2 3 2 3 3 3 0 3 3 3 3 3 3 3 1 3 2 3 2 3 2 2 2 3 2 3 3 3 3 3 1 2 3 3 2 2 2 3 3 3 3 1 3",
"output": "6"
},
{
"input": "1\n1",
"output": "0"
},
{
"input": "1\n2",
"output": "0"
},
{
"input": "1\n3",
"output": "0"
},
{
"input": "2\n1 1",
"output": "1"
},
{
"input": "2\n1 3",
"output": "0"
},
{
"input": "2\n0 1",
"output": "1"
},
{
"input": "2\n0 0",
"output": "2"
},
{
"input": "2\n3 3",
"output": "0"
},
{
"input": "3\n3 3 3",
"output": "0"
},
{
"input": "2\n3 2",
"output": "0"
},
{
"input": "2\n0 2",
"output": "1"
},
{
"input": "10\n2 2 3 3 3 3 2 1 3 2",
"output": "2"
},
{
"input": "15\n0 1 0 0 0 2 0 1 0 0 0 2 0 0 0",
"output": "11"
},
{
"input": "15\n1 3 2 2 2 3 3 3 3 2 3 2 2 1 1",
"output": "4"
},
{
"input": "15\n3 1 3 2 3 2 2 2 3 3 3 3 2 3 2",
"output": "3"
},
{
"input": "20\n0 2 0 1 0 0 0 1 2 0 1 1 1 0 1 1 0 1 1 0",
"output": "12"
},
{
"input": "20\n2 3 2 3 3 3 3 2 0 3 1 1 2 3 0 3 2 3 0 3",
"output": "5"
},
{
"input": "20\n3 3 3 3 2 3 3 2 1 3 3 2 2 2 3 2 2 2 2 2",
"output": "4"
},
{
"input": "25\n0 0 1 0 0 1 0 0 1 0 0 1 0 2 0 0 2 0 0 1 0 2 0 1 1",
"output": "16"
},
{
"input": "25\n1 3 3 2 2 3 3 3 3 3 1 2 2 3 2 0 2 1 0 1 3 2 2 3 3",
"output": "5"
},
{
"input": "25\n2 3 1 3 3 2 1 3 3 3 1 3 3 1 3 2 3 3 1 3 3 3 2 3 3",
"output": "3"
},
{
"input": "30\n0 0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 2 0 0 1 1 2 0 0 0",
"output": "22"
},
{
"input": "30\n1 1 3 2 2 0 3 2 3 3 1 2 0 1 1 2 3 3 2 3 1 3 2 3 0 2 0 3 3 2",
"output": "9"
},
{
"input": "30\n1 2 3 2 2 3 3 3 3 3 3 3 3 3 3 1 2 2 3 2 3 3 3 2 1 3 3 3 1 3",
"output": "2"
},
{
"input": "35\n0 1 1 0 0 2 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 2 1 0 2 2 1 0 1 0 1 1 1 0 0",
"output": "21"
},
{
"input": "35\n2 2 0 3 2 2 0 3 3 1 1 3 3 1 2 2 0 2 2 2 2 3 1 0 2 1 3 2 2 3 2 3 3 1 2",
"output": "11"
},
{
"input": "35\n1 2 2 3 3 3 3 3 2 2 3 3 2 3 3 2 3 2 3 3 2 2 2 3 3 2 3 3 3 1 3 3 2 2 2",
"output": "7"
},
{
"input": "40\n2 0 1 1 0 0 0 0 2 0 1 1 1 0 0 1 0 0 0 0 0 2 0 0 0 2 1 1 1 3 0 0 0 0 0 0 0 1 1 0",
"output": "28"
},
{
"input": "40\n2 2 3 2 0 2 3 2 1 2 3 0 2 3 2 1 1 3 1 1 0 2 3 1 3 3 1 1 3 3 2 2 1 3 3 3 2 3 3 1",
"output": "10"
},
{
"input": "40\n1 3 2 3 3 2 3 3 2 2 3 1 2 1 2 2 3 1 2 2 1 2 2 2 1 2 2 3 2 3 2 3 2 3 3 3 1 3 2 3",
"output": "8"
},
{
"input": "45\n2 1 0 0 0 2 1 0 1 0 0 2 2 1 1 0 0 2 0 0 0 0 0 0 1 0 0 2 0 0 1 1 0 0 1 0 0 1 1 2 0 0 2 0 2",
"output": "29"
},
{
"input": "45\n3 3 2 3 3 3 2 2 3 2 3 1 3 2 3 2 2 1 1 3 2 3 2 1 3 1 2 3 2 2 0 3 3 2 3 2 3 2 3 2 0 3 1 1 3",
"output": "8"
},
{
"input": "50\n3 0 0 0 2 0 0 0 0 0 0 0 2 1 0 2 0 1 0 1 3 0 2 1 1 0 0 1 1 0 0 1 2 1 1 2 1 1 0 0 0 0 0 0 0 1 2 2 0 0",
"output": "32"
},
{
"input": "50\n3 3 3 3 1 0 3 3 0 2 3 1 1 1 3 2 3 3 3 3 3 1 0 1 2 2 3 3 2 3 0 0 0 2 1 0 1 2 2 2 2 0 2 2 2 1 2 3 3 2",
"output": "16"
},
{
"input": "50\n3 2 3 1 2 1 2 3 3 2 3 3 2 1 3 3 3 3 3 3 2 3 2 3 2 2 3 3 3 2 3 3 3 3 2 3 1 2 3 3 2 3 3 1 2 2 1 1 3 3",
"output": "7"
},
{
"input": "55\n0 0 1 1 0 1 0 0 1 0 1 0 0 0 2 0 0 1 0 0 0 1 0 0 0 0 3 1 0 0 0 1 0 0 0 0 2 0 0 0 2 0 2 1 0 0 0 0 0 0 0 0 2 0 0",
"output": "40"
},
{
"input": "55\n3 0 3 3 3 2 0 2 3 0 3 2 3 3 0 3 3 1 3 3 1 2 3 2 0 3 3 2 1 2 3 2 3 0 3 2 2 1 2 3 2 2 1 3 2 2 3 1 3 2 2 3 3 2 2",
"output": "13"
},
{
"input": "55\n3 3 1 3 2 3 2 3 2 2 3 3 3 3 3 1 1 3 3 2 3 2 3 2 0 1 3 3 3 3 2 3 2 3 1 1 2 2 2 3 3 3 3 3 2 2 2 3 2 3 3 3 3 1 3",
"output": "7"
},
{
"input": "60\n0 1 0 0 0 0 0 0 0 2 1 1 3 0 0 0 0 0 1 0 1 1 0 0 0 3 0 1 0 1 0 2 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0",
"output": "44"
},
{
"input": "60\n3 2 1 3 2 2 3 3 3 1 1 3 2 2 3 3 1 3 2 2 3 3 2 2 2 2 0 2 2 3 2 3 0 3 3 3 2 3 3 0 1 3 2 1 3 1 1 2 1 3 1 1 2 2 1 3 3 3 2 2",
"output": "15"
},
{
"input": "60\n3 2 2 3 2 3 2 3 3 2 3 2 3 3 2 3 3 3 3 3 3 2 3 3 1 2 3 3 3 2 1 3 3 1 3 1 3 0 3 3 3 2 3 2 3 2 3 3 1 1 2 3 3 3 3 2 1 3 2 3",
"output": "8"
},
{
"input": "65\n1 0 2 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 2 0 2 1 0 2 1 0 1 0 1 1 0 1 1 1 2 1 0 1 0 0 0 0 1 2 2 1 0 0 1 2 1 2 0 2 0 0 0 1 1",
"output": "35"
},
{
"input": "65\n2 2 2 3 0 2 1 2 3 3 1 3 1 2 1 3 2 3 2 2 2 1 2 0 3 1 3 1 1 3 1 3 3 3 3 3 1 3 0 3 1 3 1 2 2 3 2 0 3 1 3 2 1 2 2 2 3 3 2 3 3 3 2 2 3",
"output": "13"
},
{
"input": "65\n3 2 3 3 3 2 3 2 3 3 3 3 3 3 3 3 3 2 3 2 3 2 2 3 3 3 3 3 2 2 2 3 3 2 3 3 2 3 3 3 3 2 3 3 3 2 2 3 3 3 3 3 3 2 2 3 3 2 3 3 1 3 3 3 3",
"output": "6"
},
{
"input": "70\n1 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1 1 0 0 1 1 1 3 1 1 0 1 2 0 2 1 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 1 1 3 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 1",
"output": "43"
},
{
"input": "70\n2 3 3 3 1 3 3 1 2 1 1 2 2 3 0 2 3 3 1 3 3 2 2 3 3 3 2 2 2 2 1 3 3 0 2 1 1 3 2 3 3 2 2 3 1 3 1 2 3 2 3 3 2 2 2 3 1 1 2 1 3 3 2 2 3 3 3 1 1 1",
"output": "16"
},
{
"input": "70\n3 3 2 2 1 2 1 2 2 2 2 2 3 3 2 3 3 3 3 2 2 2 2 3 3 3 1 3 3 3 2 3 3 3 3 2 3 3 1 3 1 3 2 3 3 2 3 3 3 2 3 2 3 3 1 2 3 3 2 2 2 3 2 3 3 3 3 3 3 1",
"output": "10"
},
{
"input": "75\n1 0 0 1 1 0 0 1 0 1 2 0 0 2 1 1 0 0 0 0 0 0 2 1 1 0 0 0 0 1 0 1 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 1 2 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 0",
"output": "51"
},
{
"input": "75\n1 3 3 3 1 1 3 2 3 3 1 3 3 3 2 1 3 2 2 3 1 1 1 1 1 1 2 3 3 3 3 3 3 2 3 3 3 3 3 2 3 3 2 2 2 1 2 3 3 2 2 3 0 1 1 3 3 0 0 1 1 3 2 3 3 3 3 1 2 2 3 3 3 3 1",
"output": "16"
},
{
"input": "75\n3 3 3 3 2 2 3 2 2 3 2 2 1 2 3 3 2 2 3 3 1 2 2 2 1 3 3 3 1 2 2 3 3 3 2 3 2 2 2 3 3 1 3 2 2 3 3 3 0 3 2 1 3 3 2 3 3 3 3 1 2 3 3 3 2 2 3 3 3 3 2 2 3 3 1",
"output": "11"
},
{
"input": "80\n0 0 0 0 2 0 1 1 1 1 1 0 0 0 0 2 0 0 1 0 0 0 0 1 1 0 2 2 1 1 0 1 0 1 0 1 1 1 0 1 2 1 1 0 0 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 2 2 0 1 1 0 0 0 0 0 0 0 0 1",
"output": "56"
},
{
"input": "80\n2 2 3 3 2 1 0 1 0 3 2 2 3 2 1 3 1 3 3 2 3 3 3 2 3 3 3 2 1 3 3 1 3 3 3 3 3 3 2 2 2 1 3 2 1 3 2 1 1 0 1 1 2 1 3 0 1 2 3 2 2 3 2 3 1 3 3 2 1 1 0 3 3 3 3 1 2 1 2 0",
"output": "17"
},
{
"input": "80\n2 3 3 2 2 2 3 3 2 3 3 3 3 3 2 3 2 3 2 3 3 3 3 3 3 3 3 3 2 3 1 3 2 3 3 0 3 1 2 3 3 1 2 3 2 3 3 2 3 3 3 3 3 2 2 3 0 3 3 3 3 3 2 2 3 2 3 3 3 3 3 2 3 2 3 3 3 3 2 3",
"output": "9"
},
{
"input": "85\n0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 2 0 1 0 0 2 0 1 1 0 0 0 0 2 2 0 0 0 1 0 0 0 1 2 0 1 0 0 0 2 1 1 2 0 3 1 0 2 2 1 0 0 1 1 0 0 0 0 1 0 2 1 1 2 1 0 0 1 2 1 2 0 0 1 0 1 0",
"output": "54"
},
{
"input": "85\n2 3 1 3 2 3 1 3 3 2 1 2 1 2 2 3 2 2 3 2 0 3 3 2 1 2 2 2 3 3 2 3 3 3 2 1 1 3 1 3 2 2 2 3 3 2 3 2 3 1 1 3 2 3 1 3 3 2 3 3 2 2 3 0 1 1 2 2 2 2 1 2 3 1 3 3 1 3 2 2 3 2 3 3 3",
"output": "19"
},
{
"input": "85\n1 2 1 2 3 2 3 3 3 3 3 3 3 2 1 3 2 3 3 3 3 2 3 3 3 1 3 3 3 3 2 3 3 3 3 3 3 2 2 1 3 3 3 3 2 2 3 1 1 2 3 3 3 2 3 3 3 3 3 2 3 3 3 2 2 3 3 1 1 1 3 3 3 3 1 3 3 3 1 3 3 1 3 2 3",
"output": "9"
},
{
"input": "90\n2 0 1 0 0 0 0 0 0 1 1 2 0 0 0 0 0 0 0 2 2 0 2 0 0 2 1 0 2 0 1 0 1 0 0 1 2 2 0 0 1 0 0 1 0 1 0 2 0 1 1 1 0 1 1 0 1 0 2 0 1 0 1 0 0 0 1 0 0 1 2 0 0 0 1 0 0 2 2 0 0 0 0 0 1 3 1 1 0 1",
"output": "57"
},
{
"input": "90\n2 3 3 3 2 3 2 1 3 0 3 2 3 3 2 1 3 3 2 3 2 3 3 2 1 3 1 3 3 1 2 2 3 3 2 1 2 3 2 3 0 3 3 2 2 3 1 0 3 3 1 3 3 3 3 2 1 2 2 1 3 2 1 3 3 1 2 0 2 2 3 2 2 3 3 3 1 3 2 1 2 3 3 2 3 2 3 3 2 1",
"output": "17"
},
{
"input": "90\n2 3 2 3 2 2 3 3 2 3 2 1 2 3 3 3 2 3 2 3 3 2 3 3 3 1 3 3 1 3 2 3 2 2 1 3 3 3 3 3 3 3 3 3 3 2 3 2 3 2 1 3 3 3 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3 1 3 2 3 3 3 2 2 3 2 3 2 1 3 2",
"output": "9"
},
{
"input": "95\n0 0 3 0 2 0 1 0 0 2 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 1 0 0 2 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 2 0 1 2 2 0 0 1 0 2 0 0 0 1 0 2 1 2 1 0 1 0 0 0 1 0 0 1 1 2 1 1 1 1 2 0 0 0 0 0 1 1 0 1",
"output": "61"
},
{
"input": "95\n2 3 3 2 1 1 3 3 3 2 3 3 3 2 3 2 3 3 3 2 3 2 2 3 3 2 1 2 3 3 3 1 3 0 3 3 1 3 3 1 0 1 3 3 3 0 2 1 3 3 3 3 0 1 3 2 3 3 2 1 3 1 2 1 1 2 3 0 3 3 2 1 3 2 1 3 3 3 2 2 3 2 3 3 3 2 1 3 3 3 2 3 3 1 2",
"output": "15"
},
{
"input": "95\n2 3 3 2 3 2 2 1 3 1 2 1 2 3 1 2 3 3 1 3 3 3 1 2 3 2 2 2 2 3 3 3 2 2 3 3 3 3 3 1 2 2 3 3 3 3 2 3 2 2 2 3 3 2 3 3 3 3 3 3 3 0 3 2 0 3 3 1 3 3 3 2 3 2 3 2 3 3 3 3 2 2 1 1 3 3 3 3 3 1 3 3 3 3 2",
"output": "14"
},
{
"input": "100\n1 0 2 0 0 0 0 2 0 0 0 1 0 1 0 0 1 0 1 2 0 1 1 0 0 1 0 1 1 0 0 0 2 0 1 0 0 2 0 0 0 0 0 1 1 1 0 0 1 0 2 0 0 0 0 1 0 1 0 1 0 1 0 1 2 2 0 0 2 0 1 0 1 0 1 0 0 0 1 0 0 2 1 1 1 0 0 1 0 0 0 2 0 0 2 1 1 0 0 2",
"output": "63"
},
{
"input": "100\n3 2 1 3 2 3 2 3 2 2 3 1 3 3 3 3 3 2 2 3 2 2 3 2 3 3 3 2 3 1 2 1 3 3 3 3 1 3 3 3 3 3 2 3 2 1 3 3 1 2 2 3 1 3 3 1 2 2 1 3 1 3 2 2 3 3 1 3 2 3 1 2 1 2 3 3 2 2 1 2 3 3 3 3 3 1 3 3 3 3 2 1 3 0 3 3 3 2 3 3",
"output": "15"
},
{
"input": "100\n1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2",
"output": "0"
},
{
"input": "100\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3",
"output": "0"
},
{
"input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "50"
},
{
"input": "100\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2",
"output": "50"
},
{
"input": "99\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "49"
},
{
"input": "100\n2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1",
"output": "0"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "100"
},
{
"input": "2\n0 3",
"output": "1"
},
{
"input": "2\n1 0",
"output": "1"
},
{
"input": "2\n1 2",
"output": "0"
},
{
"input": "2\n2 0",
"output": "1"
},
{
"input": "2\n2 1",
"output": "0"
},
{
"input": "2\n2 3",
"output": "0"
},
{
"input": "2\n3 0",
"output": "1"
},
{
"input": "2\n3 1",
"output": "0"
},
{
"input": "100\n3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0",
"output": "50"
}
] | 1,665,053,435
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 0
| 46
| 0
|
#n = int(input())
#days = list(map(int, input().split()))
days = [3 ,3 ,2 ,3 ,2 ,3 ,3 ,3, 0, 3, 3, 3, 3, 3, 3, 3, 1, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 3, 3, 3, 3, 3, 1, 2, 3, 3, 2, 2, 2, 3, 3, 3, 3, 1, 3]
days.append("x")
days.append("x")
days.append("x")
days.append("x")
days.append("x")
i = 0; rest = 0
while True:
if days[i] == "x":
break
else:
#print(days[i: i + 3], rest, i)
if days[i] == 0:
print(days[i])
rest += 1
i += 1
elif days[i] == days[i+1] == 1 or days[i] == days[i+1] == 2:
print(days[i], days[i + 1], days[i:i + 2])
rest += 1
i += 2
elif days[i: i + 3] == [1, 3, 2] or days[i: i + 3] == [2, 3, 1]:
print(days[i: i + 3])
rest += 1
i += 3
else:
i += 1
#print(days[i - 1: i + 2], rest, i)
print(rest)
#3 3 2 3 2 3 3 3 0 3 3 3 3 3 3 3 1 3 2 3 2 3 2 2 2 3 (2 3 3 3 3 3 1) 2 3 3 2 2 2 3 3 3 3 1 3
|
Title: Vacations
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya has *n* days of vacations! So he decided to improve his IT skills and do sport. Vasya knows the following information about each of this *n* days: whether that gym opened and whether a contest was carried out in the Internet on that day. For the *i*-th day there are four options:
1. on this day the gym is closed and the contest is not carried out; 1. on this day the gym is closed and the contest is carried out; 1. on this day the gym is open and the contest is not carried out; 1. on this day the gym is open and the contest is carried out.
On each of days Vasya can either have a rest or write the contest (if it is carried out on this day), or do sport (if the gym is open on this day).
Find the minimum number of days on which Vasya will have a rest (it means, he will not do sport and write the contest at the same time). The only limitation that Vasya has — he does not want to do the same activity on two consecutive days: it means, he will not do sport on two consecutive days, and write the contest on two consecutive days.
Input Specification:
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100) — the number of days of Vasya's vacations.
The second line contains the sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=3) separated by space, where:
- *a**i* equals 0, if on the *i*-th day of vacations the gym is closed and the contest is not carried out; - *a**i* equals 1, if on the *i*-th day of vacations the gym is closed, but the contest is carried out; - *a**i* equals 2, if on the *i*-th day of vacations the gym is open and the contest is not carried out; - *a**i* equals 3, if on the *i*-th day of vacations the gym is open and the contest is carried out.
Output Specification:
Print the minimum possible number of days on which Vasya will have a rest. Remember that Vasya refuses:
- to do sport on any two consecutive days, - to write the contest on any two consecutive days.
Demo Input:
['4\n1 3 2 0\n', '7\n1 3 3 2 1 2 3\n', '2\n2 2\n']
Demo Output:
['2\n', '0\n', '1\n']
Note:
In the first test Vasya can write the contest on the day number 1 and do sport on the day number 3. Thus, he will have a rest for only 2 days.
In the second test Vasya should write contests on days number 1, 3, 5 and 7, in other days do sport. Thus, he will not have a rest for a single day.
In the third test Vasya can do sport either on a day number 1 or number 2. He can not do sport in two days, because it will be contrary to the his limitation. Thus, he will have a rest for only one day.
|
```python
#n = int(input())
#days = list(map(int, input().split()))
days = [3 ,3 ,2 ,3 ,2 ,3 ,3 ,3, 0, 3, 3, 3, 3, 3, 3, 3, 1, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 3, 3, 3, 3, 3, 1, 2, 3, 3, 2, 2, 2, 3, 3, 3, 3, 1, 3]
days.append("x")
days.append("x")
days.append("x")
days.append("x")
days.append("x")
i = 0; rest = 0
while True:
if days[i] == "x":
break
else:
#print(days[i: i + 3], rest, i)
if days[i] == 0:
print(days[i])
rest += 1
i += 1
elif days[i] == days[i+1] == 1 or days[i] == days[i+1] == 2:
print(days[i], days[i + 1], days[i:i + 2])
rest += 1
i += 2
elif days[i: i + 3] == [1, 3, 2] or days[i: i + 3] == [2, 3, 1]:
print(days[i: i + 3])
rest += 1
i += 3
else:
i += 1
#print(days[i - 1: i + 2], rest, i)
print(rest)
#3 3 2 3 2 3 3 3 0 3 3 3 3 3 3 3 1 3 2 3 2 3 2 2 2 3 (2 3 3 3 3 3 1) 2 3 3 2 2 2 3 3 3 3 1 3
```
| 0
|
|
522
|
A
|
Reposts
|
PROGRAMMING
| 1,200
|
[
"*special",
"dfs and similar",
"dp",
"graphs",
"trees"
] | null | null |
One day Polycarp published a funny picture in a social network making a poll about the color of his handle. Many of his friends started reposting Polycarp's joke to their news feed. Some of them reposted the reposts and so on.
These events are given as a sequence of strings "name1 reposted name2", where name1 is the name of the person who reposted the joke, and name2 is the name of the person from whose news feed the joke was reposted. It is guaranteed that for each string "name1 reposted name2" user "name1" didn't have the joke in his feed yet, and "name2" already had it in his feed by the moment of repost. Polycarp was registered as "Polycarp" and initially the joke was only in his feed.
Polycarp measures the popularity of the joke as the length of the largest repost chain. Print the popularity of Polycarp's joke.
|
The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=200) — the number of reposts. Next follow the reposts in the order they were made. Each of them is written on a single line and looks as "name1 reposted name2". All the names in the input consist of lowercase or uppercase English letters and/or digits and have lengths from 2 to 24 characters, inclusive.
We know that the user names are case-insensitive, that is, two names that only differ in the letter case correspond to the same social network user.
|
Print a single integer — the maximum length of a repost chain.
|
[
"5\ntourist reposted Polycarp\nPetr reposted Tourist\nWJMZBMR reposted Petr\nsdya reposted wjmzbmr\nvepifanov reposted sdya\n",
"6\nMike reposted Polycarp\nMax reposted Polycarp\nEveryOne reposted Polycarp\n111 reposted Polycarp\nVkCup reposted Polycarp\nCodeforces reposted Polycarp\n",
"1\nSoMeStRaNgEgUe reposted PoLyCaRp\n"
] |
[
"6\n",
"2\n",
"2\n"
] |
none
| 500
|
[
{
"input": "5\ntourist reposted Polycarp\nPetr reposted Tourist\nWJMZBMR reposted Petr\nsdya reposted wjmzbmr\nvepifanov reposted sdya",
"output": "6"
},
{
"input": "6\nMike reposted Polycarp\nMax reposted Polycarp\nEveryOne reposted Polycarp\n111 reposted Polycarp\nVkCup reposted Polycarp\nCodeforces reposted Polycarp",
"output": "2"
},
{
"input": "1\nSoMeStRaNgEgUe reposted PoLyCaRp",
"output": "2"
},
{
"input": "1\niuNtwVf reposted POlYcarP",
"output": "2"
},
{
"input": "10\ncs reposted poLYCaRp\nAFIkDrY7Of4V7Mq reposted CS\nsoBiwyN7KOvoFUfbhux reposted aFikDry7Of4v7MQ\nvb6LbwA reposted sObIWYN7KOvoFufBHUx\nDtWKIcVwIHgj4Rcv reposted vb6lbwa\nkt reposted DTwKicvwihgJ4rCV\n75K reposted kT\njKzyxx1 reposted 75K\nuoS reposted jkZyXX1\npZJskHTCIqE3YyZ5ME reposted uoS",
"output": "11"
},
{
"input": "10\nvxrUpCXvx8Isq reposted pOLYcaRP\nICb1 reposted vXRUpCxvX8ISq\nJFMt4b8jZE7iF2m8by7y2 reposted Icb1\nqkG6ZkMIf9QRrBFQU reposted ICb1\nnawsNfcR2palIMnmKZ reposted pOlYcaRP\nKksyH reposted jFMT4b8JzE7If2M8by7y2\nwJtWwQS5FvzN0h8CxrYyL reposted NawsNfcR2paLIMnmKz\nDpBcBPYAcTXEdhldI6tPl reposted NaWSnFCr2pALiMnmkZ\nlEnwTVnlwdQg2vaIRQry reposted kKSYh\nQUVFgwllaWO reposted Wjtwwqs5FVzN0H8cxRyyl",
"output": "6"
},
{
"input": "10\nkkuLGEiHv reposted POLYcArp\n3oX1AoUqyw1eR3nCADY9hLwd reposted kkuLGeIHV\nwf97dqq5bx1dPIchCoT reposted 3OX1AOuQYW1eR3ncAdY9hLwD\nWANr8h reposted Wf97dQQ5bx1dpIcHcoT\n3Fb736lkljZK2LtSbfL reposted wANR8h\n6nq9xLOn reposted 3fB736lKlJZk2LtSbFL\nWL reposted 3Fb736lKLjZk2LTSbfl\ndvxn4Xtc6SBcvKf1 reposted wF97DQq5bX1dPiChCOt\nMCcPLIMISqxDzrj reposted 6nQ9XLOn\nxsQL4Z2Iu reposted MCcpLiMiSqxdzrj",
"output": "9"
},
{
"input": "10\nsMA4 reposted pOLyCARP\nlq3 reposted pOlycARp\nEa16LSFTQxLJnE reposted polYcARp\nkvZVZhJwXcWsnC7NA1DV2WvS reposted polYCArp\nEYqqlrjRwddI reposted pOlyCArP\nsPqQCA67Y6PBBbcaV3EhooO reposted ea16LSFTqxLJne\njjPnneZdF6WLZ3v reposted Ea16LSFTqxLjNe\nWEoi6UpnfBUx79 reposted ea16LSFtqXljNe\nqi4yra reposted eYqqlRJrWDDI\ncw7E1UCSUD reposted eYqqLRJRwDdI",
"output": "3"
}
] | 1,675,350,532
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 31
| 0
|
l=[]
c=1
for _ in range(int(input(''))):
p=input().split()
p[0]=p.lower()
p[-1]=p.lower()
l.append(p)
for i in range(1,len(l)):
if l[i-1][0]==l[i][-1]:
c+=1
print(c)
|
Title: Reposts
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Polycarp published a funny picture in a social network making a poll about the color of his handle. Many of his friends started reposting Polycarp's joke to their news feed. Some of them reposted the reposts and so on.
These events are given as a sequence of strings "name1 reposted name2", where name1 is the name of the person who reposted the joke, and name2 is the name of the person from whose news feed the joke was reposted. It is guaranteed that for each string "name1 reposted name2" user "name1" didn't have the joke in his feed yet, and "name2" already had it in his feed by the moment of repost. Polycarp was registered as "Polycarp" and initially the joke was only in his feed.
Polycarp measures the popularity of the joke as the length of the largest repost chain. Print the popularity of Polycarp's joke.
Input Specification:
The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=200) — the number of reposts. Next follow the reposts in the order they were made. Each of them is written on a single line and looks as "name1 reposted name2". All the names in the input consist of lowercase or uppercase English letters and/or digits and have lengths from 2 to 24 characters, inclusive.
We know that the user names are case-insensitive, that is, two names that only differ in the letter case correspond to the same social network user.
Output Specification:
Print a single integer — the maximum length of a repost chain.
Demo Input:
['5\ntourist reposted Polycarp\nPetr reposted Tourist\nWJMZBMR reposted Petr\nsdya reposted wjmzbmr\nvepifanov reposted sdya\n', '6\nMike reposted Polycarp\nMax reposted Polycarp\nEveryOne reposted Polycarp\n111 reposted Polycarp\nVkCup reposted Polycarp\nCodeforces reposted Polycarp\n', '1\nSoMeStRaNgEgUe reposted PoLyCaRp\n']
Demo Output:
['6\n', '2\n', '2\n']
Note:
none
|
```python
l=[]
c=1
for _ in range(int(input(''))):
p=input().split()
p[0]=p.lower()
p[-1]=p.lower()
l.append(p)
for i in range(1,len(l)):
if l[i-1][0]==l[i][-1]:
c+=1
print(c)
```
| -1
|
|
750
|
A
|
New Year and Hurry
|
PROGRAMMING
| 800
|
[
"binary search",
"brute force",
"implementation",
"math"
] | null | null |
Limak is going to participate in a contest on the last day of the 2016. The contest will start at 20:00 and will last four hours, exactly until midnight. There will be *n* problems, sorted by difficulty, i.e. problem 1 is the easiest and problem *n* is the hardest. Limak knows it will take him 5·*i* minutes to solve the *i*-th problem.
Limak's friends organize a New Year's Eve party and Limak wants to be there at midnight or earlier. He needs *k* minutes to get there from his house, where he will participate in the contest first.
How many problems can Limak solve if he wants to make it to the party?
|
The only line of the input contains two integers *n* and *k* (1<=≤<=*n*<=≤<=10, 1<=≤<=*k*<=≤<=240) — the number of the problems in the contest and the number of minutes Limak needs to get to the party from his house.
|
Print one integer, denoting the maximum possible number of problems Limak can solve so that he could get to the party at midnight or earlier.
|
[
"3 222\n",
"4 190\n",
"7 1\n"
] |
[
"2\n",
"4\n",
"7\n"
] |
In the first sample, there are 3 problems and Limak needs 222 minutes to get to the party. The three problems require 5, 10 and 15 minutes respectively. Limak can spend 5 + 10 = 15 minutes to solve first two problems. Then, at 20:15 he can leave his house to get to the party at 23:57 (after 222 minutes). In this scenario Limak would solve 2 problems. He doesn't have enough time to solve 3 problems so the answer is 2.
In the second sample, Limak can solve all 4 problems in 5 + 10 + 15 + 20 = 50 minutes. At 20:50 he will leave the house and go to the party. He will get there exactly at midnight.
In the third sample, Limak needs only 1 minute to get to the party. He has enough time to solve all 7 problems.
| 500
|
[
{
"input": "3 222",
"output": "2"
},
{
"input": "4 190",
"output": "4"
},
{
"input": "7 1",
"output": "7"
},
{
"input": "10 135",
"output": "6"
},
{
"input": "10 136",
"output": "5"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "1 240",
"output": "0"
},
{
"input": "10 1",
"output": "9"
},
{
"input": "10 240",
"output": "0"
},
{
"input": "9 240",
"output": "0"
},
{
"input": "9 1",
"output": "9"
},
{
"input": "9 235",
"output": "1"
},
{
"input": "9 236",
"output": "0"
},
{
"input": "5 225",
"output": "2"
},
{
"input": "5 226",
"output": "1"
},
{
"input": "4 210",
"output": "3"
},
{
"input": "4 211",
"output": "2"
},
{
"input": "4 191",
"output": "3"
},
{
"input": "10 165",
"output": "5"
},
{
"input": "10 166",
"output": "4"
},
{
"input": "8 100",
"output": "7"
},
{
"input": "8 101",
"output": "6"
},
{
"input": "8 60",
"output": "8"
},
{
"input": "8 61",
"output": "7"
},
{
"input": "10 15",
"output": "9"
},
{
"input": "10 16",
"output": "8"
},
{
"input": "4 100",
"output": "4"
},
{
"input": "4 101",
"output": "4"
},
{
"input": "7 167",
"output": "4"
},
{
"input": "10 164",
"output": "5"
},
{
"input": "9 170",
"output": "4"
},
{
"input": "8 160",
"output": "5"
},
{
"input": "1 100",
"output": "1"
},
{
"input": "8 123",
"output": "6"
},
{
"input": "2 99",
"output": "2"
},
{
"input": "10 88",
"output": "7"
},
{
"input": "1 235",
"output": "1"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "4 240",
"output": "0"
},
{
"input": "1 55",
"output": "1"
},
{
"input": "1 240",
"output": "0"
},
{
"input": "3 240",
"output": "0"
},
{
"input": "10 240",
"output": "0"
},
{
"input": "2 240",
"output": "0"
},
{
"input": "10 1",
"output": "9"
},
{
"input": "9 1",
"output": "9"
},
{
"input": "2 236",
"output": "0"
},
{
"input": "10 2",
"output": "9"
},
{
"input": "3 239",
"output": "0"
},
{
"input": "1 237",
"output": "0"
},
{
"input": "7 8",
"output": "7"
},
{
"input": "10 235",
"output": "1"
}
] | 1,696,875,600
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 52
| 61
| 0
|
total=240
n,k=map(int,input().split())
c=0
t=0
for i in range(1,n+1):
t+=5*i
c+=1
if (k+t)>total:
k-=5*i
c-=1
break
print(c)
|
Title: New Year and Hurry
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Limak is going to participate in a contest on the last day of the 2016. The contest will start at 20:00 and will last four hours, exactly until midnight. There will be *n* problems, sorted by difficulty, i.e. problem 1 is the easiest and problem *n* is the hardest. Limak knows it will take him 5·*i* minutes to solve the *i*-th problem.
Limak's friends organize a New Year's Eve party and Limak wants to be there at midnight or earlier. He needs *k* minutes to get there from his house, where he will participate in the contest first.
How many problems can Limak solve if he wants to make it to the party?
Input Specification:
The only line of the input contains two integers *n* and *k* (1<=≤<=*n*<=≤<=10, 1<=≤<=*k*<=≤<=240) — the number of the problems in the contest and the number of minutes Limak needs to get to the party from his house.
Output Specification:
Print one integer, denoting the maximum possible number of problems Limak can solve so that he could get to the party at midnight or earlier.
Demo Input:
['3 222\n', '4 190\n', '7 1\n']
Demo Output:
['2\n', '4\n', '7\n']
Note:
In the first sample, there are 3 problems and Limak needs 222 minutes to get to the party. The three problems require 5, 10 and 15 minutes respectively. Limak can spend 5 + 10 = 15 minutes to solve first two problems. Then, at 20:15 he can leave his house to get to the party at 23:57 (after 222 minutes). In this scenario Limak would solve 2 problems. He doesn't have enough time to solve 3 problems so the answer is 2.
In the second sample, Limak can solve all 4 problems in 5 + 10 + 15 + 20 = 50 minutes. At 20:50 he will leave the house and go to the party. He will get there exactly at midnight.
In the third sample, Limak needs only 1 minute to get to the party. He has enough time to solve all 7 problems.
|
```python
total=240
n,k=map(int,input().split())
c=0
t=0
for i in range(1,n+1):
t+=5*i
c+=1
if (k+t)>total:
k-=5*i
c-=1
break
print(c)
```
| 3
|
Subsets and Splits
Successful Python Submissions
Retrieves all records from the train dataset where the verdict is 'OK', providing basic filtering but limited analytical value.
SQL Console for MatrixStudio/Codeforces-Python-Submissions
Retrieves records of users with a rating of 1600 or higher and a verdict of 'OK', providing basic filtering but limited analytical value.
SQL Console for MatrixStudio/Codeforces-Python-Submissions
Counts the number of entries with a rating above 2000 and a verdict of 'OK', providing basic filtering but limited analytical value.
SQL Console for MatrixStudio/Codeforces-Python-Submissions
Counts the number of entries with a 'OK' verdict, providing a basic overview of a specific category within the dataset.