contestId
int64 0
1.01k
| index
stringclasses 57
values | name
stringlengths 2
58
| type
stringclasses 2
values | rating
int64 0
3.5k
| tags
listlengths 0
11
| title
stringclasses 522
values | time-limit
stringclasses 8
values | memory-limit
stringclasses 8
values | problem-description
stringlengths 0
7.15k
| input-specification
stringlengths 0
2.05k
| output-specification
stringlengths 0
1.5k
| demo-input
listlengths 0
7
| demo-output
listlengths 0
7
| note
stringlengths 0
5.24k
| points
float64 0
425k
| test_cases
listlengths 0
402
| creationTimeSeconds
int64 1.37B
1.7B
| relativeTimeSeconds
int64 8
2.15B
| programmingLanguage
stringclasses 3
values | verdict
stringclasses 14
values | testset
stringclasses 12
values | passedTestCount
int64 0
1k
| timeConsumedMillis
int64 0
15k
| memoryConsumedBytes
int64 0
805M
| code
stringlengths 3
65.5k
| prompt
stringlengths 262
8.2k
| response
stringlengths 17
65.5k
| score
float64 -1
3.99
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
588
|
B
|
Duff in Love
|
PROGRAMMING
| 1,300
|
[
"math"
] | null | null |
Duff is in love with lovely numbers! A positive integer *x* is called lovely if and only if there is no such positive integer *a*<=><=1 such that *a*2 is a divisor of *x*.
Malek has a number store! In his store, he has only divisors of positive integer *n* (and he has all of them). As a birthday present, Malek wants to give her a lovely number from his store. He wants this number to be as big as possible.
Malek always had issues in math, so he asked for your help. Please tell him what is the biggest lovely number in his store.
|
The first and only line of input contains one integer, *n* (1<=≤<=*n*<=≤<=1012).
|
Print the answer in one line.
|
[
"10\n",
"12\n"
] |
[
"10\n",
"6\n"
] |
In first sample case, there are numbers 1, 2, 5 and 10 in the shop. 10 isn't divisible by any perfect square, so 10 is lovely.
In second sample case, there are numbers 1, 2, 3, 4, 6 and 12 in the shop. 12 is divisible by 4 = 2<sup class="upper-index">2</sup>, so 12 is not lovely, while 6 is indeed lovely.
| 1,000
|
[
{
"input": "10",
"output": "10"
},
{
"input": "12",
"output": "6"
},
{
"input": "1",
"output": "1"
},
{
"input": "2",
"output": "2"
},
{
"input": "4",
"output": "2"
},
{
"input": "8",
"output": "2"
},
{
"input": "3",
"output": "3"
},
{
"input": "31",
"output": "31"
},
{
"input": "97",
"output": "97"
},
{
"input": "1000000000000",
"output": "10"
},
{
"input": "15",
"output": "15"
},
{
"input": "894",
"output": "894"
},
{
"input": "271",
"output": "271"
},
{
"input": "2457",
"output": "273"
},
{
"input": "2829",
"output": "2829"
},
{
"input": "5000",
"output": "10"
},
{
"input": "20",
"output": "10"
},
{
"input": "68",
"output": "34"
},
{
"input": "3096",
"output": "258"
},
{
"input": "1024",
"output": "2"
},
{
"input": "1048576",
"output": "2"
},
{
"input": "413933789280",
"output": "25870861830"
},
{
"input": "817634153013",
"output": "817634153013"
},
{
"input": "56517269141",
"output": "56517269141"
},
{
"input": "30707328551",
"output": "30707328551"
},
{
"input": "279564127218",
"output": "10354226934"
},
{
"input": "491159577042",
"output": "18191095446"
},
{
"input": "734337660466",
"output": "734337660466"
},
{
"input": "808453785117",
"output": "808453785117"
},
{
"input": "55926835837",
"output": "55926835837"
},
{
"input": "294809951965",
"output": "294809951965"
},
{
"input": "537988035389",
"output": "76855433627"
},
{
"input": "822722434952",
"output": "205680608738"
},
{
"input": "699511759613",
"output": "699511759613"
},
{
"input": "942689843037",
"output": "104743315893"
},
{
"input": "663634158717",
"output": "663634158717"
},
{
"input": "213612977250",
"output": "11730"
},
{
"input": "999999999989",
"output": "999999999989"
},
{
"input": "999999999988",
"output": "499999999994"
},
{
"input": "87178291200",
"output": "30030"
},
{
"input": "927668721948",
"output": "463834360974"
},
{
"input": "562436815639",
"output": "37927"
},
{
"input": "302981118597",
"output": "35853"
},
{
"input": "5",
"output": "5"
},
{
"input": "9",
"output": "3"
},
{
"input": "36",
"output": "6"
},
{
"input": "2231",
"output": "2231"
},
{
"input": "27648",
"output": "6"
},
{
"input": "40320",
"output": "210"
},
{
"input": "648000",
"output": "30"
},
{
"input": "999966000289",
"output": "999983"
},
{
"input": "999985999949",
"output": "999985999949"
},
{
"input": "991921850317",
"output": "9973"
}
] | 1,600,516,496
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 9
| 2,000
| 307,200
|
n = int(input())
divisors = []
for i in range(2, (n//2)+1):
if n % i == 0:
divisors.append(i)
divisors.append(n)
perfect_squares = []
i = 2
while i*i <= n:
perfect_squares.append(i*i)
i += 1
# print(perfect_squares)
for divisor in divisors[::-1]:
is_valid = True
for square in perfect_squares:
# print(divisor, square)
if divisor % square == 0:
is_valid = False
break
if is_valid:
print(divisor)
break
|
Title: Duff in Love
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Duff is in love with lovely numbers! A positive integer *x* is called lovely if and only if there is no such positive integer *a*<=><=1 such that *a*2 is a divisor of *x*.
Malek has a number store! In his store, he has only divisors of positive integer *n* (and he has all of them). As a birthday present, Malek wants to give her a lovely number from his store. He wants this number to be as big as possible.
Malek always had issues in math, so he asked for your help. Please tell him what is the biggest lovely number in his store.
Input Specification:
The first and only line of input contains one integer, *n* (1<=≤<=*n*<=≤<=1012).
Output Specification:
Print the answer in one line.
Demo Input:
['10\n', '12\n']
Demo Output:
['10\n', '6\n']
Note:
In first sample case, there are numbers 1, 2, 5 and 10 in the shop. 10 isn't divisible by any perfect square, so 10 is lovely.
In second sample case, there are numbers 1, 2, 3, 4, 6 and 12 in the shop. 12 is divisible by 4 = 2<sup class="upper-index">2</sup>, so 12 is not lovely, while 6 is indeed lovely.
|
```python
n = int(input())
divisors = []
for i in range(2, (n//2)+1):
if n % i == 0:
divisors.append(i)
divisors.append(n)
perfect_squares = []
i = 2
while i*i <= n:
perfect_squares.append(i*i)
i += 1
# print(perfect_squares)
for divisor in divisors[::-1]:
is_valid = True
for square in perfect_squares:
# print(divisor, square)
if divisor % square == 0:
is_valid = False
break
if is_valid:
print(divisor)
break
```
| 0
|
|
220
|
A
|
Little Elephant and Problem
|
PROGRAMMING
| 1,300
|
[
"implementation",
"sortings"
] | null | null |
The Little Elephant has got a problem — somebody has been touching his sorted by non-decreasing array *a* of length *n* and possibly swapped some elements of the array.
The Little Elephant doesn't want to call the police until he understands if he could have accidentally changed the array himself. He thinks that he could have accidentally changed array *a*, only if array *a* can be sorted in no more than one operation of swapping elements (not necessarily adjacent). That is, the Little Elephant could have accidentally swapped some two elements.
Help the Little Elephant, determine if he could have accidentally changed the array *a*, sorted by non-decreasing, himself.
|
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=105) — the size of array *a*. The next line contains *n* positive integers, separated by single spaces and not exceeding 109, — array *a*.
Note that the elements of the array are not necessarily distinct numbers.
|
In a single line print "YES" (without the quotes) if the Little Elephant could have accidentally changed the array himself, and "NO" (without the quotes) otherwise.
|
[
"2\n1 2\n",
"3\n3 2 1\n",
"4\n4 3 2 1\n"
] |
[
"YES\n",
"YES\n",
"NO\n"
] |
In the first sample the array has already been sorted, so to sort it, we need 0 swap operations, that is not more than 1. Thus, the answer is "YES".
In the second sample we can sort the array if we swap elements 1 and 3, so we need 1 swap operation to sort the array. Thus, the answer is "YES".
In the third sample we can't sort the array in more than one swap operation, so the answer is "NO".
| 500
|
[
{
"input": "2\n1 2",
"output": "YES"
},
{
"input": "3\n3 2 1",
"output": "YES"
},
{
"input": "4\n4 3 2 1",
"output": "NO"
},
{
"input": "3\n1 3 2",
"output": "YES"
},
{
"input": "2\n2 1",
"output": "YES"
},
{
"input": "9\n7 7 8 8 10 10 10 10 1000000000",
"output": "YES"
},
{
"input": "10\n1 2 9 4 5 6 7 8 3 10",
"output": "YES"
},
{
"input": "4\n2 2 2 1",
"output": "YES"
},
{
"input": "10\n1 2 4 4 4 5 5 7 7 10",
"output": "YES"
},
{
"input": "10\n4 5 11 12 13 14 16 16 16 18",
"output": "YES"
},
{
"input": "20\n38205814 119727790 127848638 189351562 742927936 284688399 318826601 326499046 387938139 395996609 494453625 551393005 561264192 573569187 600766727 606718722 730549586 261502770 751513115 943272321",
"output": "YES"
},
{
"input": "47\n6 277 329 393 410 432 434 505 529 545 650 896 949 1053 1543 1554 1599 1648 1927 1976 1998 2141 2248 2384 2542 2638 2995 3155 3216 3355 3409 3597 3851 3940 4169 4176 4378 4378 4425 4490 4627 4986 5025 5033 5374 5453 5644",
"output": "YES"
},
{
"input": "50\n6 7 8 4 10 3 2 7 1 3 10 3 4 7 2 3 7 4 10 6 8 10 9 6 5 10 9 6 1 8 9 4 3 7 3 10 5 3 10 1 6 10 6 7 10 7 1 5 9 5",
"output": "NO"
},
{
"input": "100\n3 7 7 8 15 25 26 31 37 41 43 43 46 64 65 82 94 102 102 103 107 124 125 131 140 145 146 150 151 160 160 161 162 165 169 175 182 191 201 211 214 216 218 304 224 229 236 241 244 249 252 269 270 271 273 289 285 295 222 307 312 317 319 319 320 321 325 330 340 341 345 347 354 356 366 366 375 376 380 383 386 398 401 407 414 417 423 426 431 438 440 444 446 454 457 458 458 466 466 472",
"output": "NO"
},
{
"input": "128\n1 2 4 6 8 17 20 20 23 33 43 49 49 49 52 73 74 75 82 84 85 87 90 91 102 103 104 105 111 111 401 142 142 152 155 160 175 176 178 181 183 184 187 188 191 193 326 202 202 214 224 225 236 239 240 243 246 247 249 249 257 257 261 264 265 271 277 281 284 284 286 289 290 296 297 303 305 307 307 317 318 320 322 200 332 342 393 349 350 350 369 375 381 381 385 385 387 393 347 397 398 115 402 407 407 408 410 411 411 416 423 426 429 429 430 440 447 449 463 464 466 471 473 480 480 483 497 503",
"output": "NO"
},
{
"input": "4\n5 12 12 6",
"output": "YES"
},
{
"input": "5\n1 3 3 3 2",
"output": "YES"
},
{
"input": "4\n2 1 1 1",
"output": "YES"
},
{
"input": "2\n1 1",
"output": "YES"
},
{
"input": "4\n1000000000 1 1000000000 1",
"output": "YES"
},
{
"input": "11\n2 2 2 2 2 2 2 2 2 2 1",
"output": "YES"
},
{
"input": "6\n1 2 3 4 5 3",
"output": "NO"
},
{
"input": "9\n3 3 3 2 2 2 1 1 1",
"output": "NO"
},
{
"input": "4\n4 1 2 3",
"output": "NO"
},
{
"input": "6\n3 4 5 6 7 2",
"output": "NO"
},
{
"input": "4\n4 2 1 3",
"output": "NO"
},
{
"input": "4\n3 3 2 2",
"output": "NO"
},
{
"input": "4\n3 2 1 1",
"output": "NO"
},
{
"input": "4\n4 5 1 1",
"output": "NO"
},
{
"input": "6\n1 6 2 4 3 5",
"output": "NO"
},
{
"input": "5\n1 4 5 2 3",
"output": "NO"
},
{
"input": "4\n2 2 1 1",
"output": "NO"
},
{
"input": "5\n1 4 3 2 1",
"output": "NO"
},
{
"input": "5\n1 4 2 2 3",
"output": "NO"
},
{
"input": "6\n1 2 3 1 2 3",
"output": "NO"
},
{
"input": "3\n3 1 2",
"output": "NO"
},
{
"input": "5\n5 1 2 3 4",
"output": "NO"
},
{
"input": "5\n3 3 3 2 2",
"output": "NO"
},
{
"input": "5\n100 5 6 10 7",
"output": "NO"
},
{
"input": "3\n2 3 1",
"output": "NO"
},
{
"input": "5\n4 4 1 1 1",
"output": "NO"
},
{
"input": "5\n1 2 5 3 4",
"output": "NO"
},
{
"input": "4\n3 4 1 2",
"output": "NO"
},
{
"input": "4\n2 4 1 5",
"output": "NO"
},
{
"input": "5\n1 3 3 2 2",
"output": "NO"
},
{
"input": "5\n1 5 4 4 4",
"output": "YES"
},
{
"input": "7\n3 2 1 2 3 5 4",
"output": "NO"
},
{
"input": "5\n1 1 3 2 2",
"output": "YES"
},
{
"input": "9\n1 8 7 7 7 7 7 8 3",
"output": "YES"
},
{
"input": "5\n1 3 2 3 3",
"output": "YES"
},
{
"input": "10\n4 4 4 4 10 4 4 4 4 4",
"output": "YES"
},
{
"input": "8\n3 6 6 6 6 6 4 9",
"output": "YES"
},
{
"input": "4\n4 4 3 3",
"output": "NO"
},
{
"input": "4\n3 2 2 4",
"output": "YES"
},
{
"input": "5\n2 2 1 3 3",
"output": "YES"
},
{
"input": "5\n1 2 7 3 5",
"output": "NO"
},
{
"input": "5\n2 3 4 5 1",
"output": "NO"
},
{
"input": "6\n1 4 3 6 2 5",
"output": "NO"
},
{
"input": "5\n3 3 1 5 4",
"output": "NO"
},
{
"input": "4\n1 2 1 2",
"output": "YES"
},
{
"input": "6\n4 5 3 4 2 6",
"output": "NO"
},
{
"input": "11\n1 2 3 4 5 1 2 3 4 5 1",
"output": "NO"
},
{
"input": "6\n6 1 2 3 4 5",
"output": "NO"
},
{
"input": "5\n4 1 1 1 1",
"output": "YES"
},
{
"input": "9\n1 2 3 5 4 6 7 8 9",
"output": "YES"
},
{
"input": "6\n6 1 2 3 4 2",
"output": "NO"
},
{
"input": "6\n2 2 2 2 3 2",
"output": "YES"
},
{
"input": "3\n2 1 1",
"output": "YES"
},
{
"input": "5\n1 2 1 1 2",
"output": "YES"
},
{
"input": "5\n1 2 2 1 2",
"output": "YES"
},
{
"input": "8\n5 5 5 5 5 5 1 1",
"output": "NO"
}
] | 1,677,940,098
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 96
| 77
| 14,131,200
|
n = int(input())
a = list(map(int,input().split()))
b = sorted(a)
cnt = 0
for i in range(n):
if a[i] != b[i]:
cnt += 1
if cnt < 3:
print('YES')
else:
print('NO')
|
Title: Little Elephant and Problem
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The Little Elephant has got a problem — somebody has been touching his sorted by non-decreasing array *a* of length *n* and possibly swapped some elements of the array.
The Little Elephant doesn't want to call the police until he understands if he could have accidentally changed the array himself. He thinks that he could have accidentally changed array *a*, only if array *a* can be sorted in no more than one operation of swapping elements (not necessarily adjacent). That is, the Little Elephant could have accidentally swapped some two elements.
Help the Little Elephant, determine if he could have accidentally changed the array *a*, sorted by non-decreasing, himself.
Input Specification:
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=105) — the size of array *a*. The next line contains *n* positive integers, separated by single spaces and not exceeding 109, — array *a*.
Note that the elements of the array are not necessarily distinct numbers.
Output Specification:
In a single line print "YES" (without the quotes) if the Little Elephant could have accidentally changed the array himself, and "NO" (without the quotes) otherwise.
Demo Input:
['2\n1 2\n', '3\n3 2 1\n', '4\n4 3 2 1\n']
Demo Output:
['YES\n', 'YES\n', 'NO\n']
Note:
In the first sample the array has already been sorted, so to sort it, we need 0 swap operations, that is not more than 1. Thus, the answer is "YES".
In the second sample we can sort the array if we swap elements 1 and 3, so we need 1 swap operation to sort the array. Thus, the answer is "YES".
In the third sample we can't sort the array in more than one swap operation, so the answer is "NO".
|
```python
n = int(input())
a = list(map(int,input().split()))
b = sorted(a)
cnt = 0
for i in range(n):
if a[i] != b[i]:
cnt += 1
if cnt < 3:
print('YES')
else:
print('NO')
```
| 3
|
|
620
|
A
|
Professor GukiZ's Robot
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
Professor GukiZ makes a new robot. The robot are in the point with coordinates (*x*1,<=*y*1) and should go to the point (*x*2,<=*y*2). In a single step the robot can change any of its coordinates (maybe both of them) by one (decrease or increase). So the robot can move in one of the 8 directions. Find the minimal number of steps the robot should make to get the finish position.
|
The first line contains two integers *x*1,<=*y*1 (<=-<=109<=≤<=*x*1,<=*y*1<=≤<=109) — the start position of the robot.
The second line contains two integers *x*2,<=*y*2 (<=-<=109<=≤<=*x*2,<=*y*2<=≤<=109) — the finish position of the robot.
|
Print the only integer *d* — the minimal number of steps to get the finish position.
|
[
"0 0\n4 5\n",
"3 4\n6 1\n"
] |
[
"5\n",
"3\n"
] |
In the first example robot should increase both of its coordinates by one four times, so it will be in position (4, 4). After that robot should simply increase its *y* coordinate and get the finish position.
In the second example robot should simultaneously increase *x* coordinate and decrease *y* coordinate by one three times.
| 0
|
[
{
"input": "0 0\n4 5",
"output": "5"
},
{
"input": "3 4\n6 1",
"output": "3"
},
{
"input": "0 0\n4 6",
"output": "6"
},
{
"input": "1 1\n-3 -5",
"output": "6"
},
{
"input": "-1 -1\n-10 100",
"output": "101"
},
{
"input": "1 -1\n100 -100",
"output": "99"
},
{
"input": "-1000000000 -1000000000\n1000000000 1000000000",
"output": "2000000000"
},
{
"input": "-1000000000 -1000000000\n0 999999999",
"output": "1999999999"
},
{
"input": "0 0\n2 1",
"output": "2"
},
{
"input": "10 0\n100 0",
"output": "90"
},
{
"input": "1 5\n6 4",
"output": "5"
},
{
"input": "0 0\n5 4",
"output": "5"
},
{
"input": "10 1\n20 1",
"output": "10"
},
{
"input": "1 1\n-3 4",
"output": "4"
},
{
"input": "-863407280 504312726\n786535210 -661703810",
"output": "1649942490"
},
{
"input": "-588306085 -741137832\n341385643 152943311",
"output": "929691728"
},
{
"input": "0 0\n4 0",
"output": "4"
},
{
"input": "93097194 -48405232\n-716984003 -428596062",
"output": "810081197"
},
{
"input": "9 1\n1 1",
"output": "8"
},
{
"input": "4 6\n0 4",
"output": "4"
},
{
"input": "2 4\n5 2",
"output": "3"
},
{
"input": "-100000000 -100000000\n100000000 100000123",
"output": "200000123"
},
{
"input": "5 6\n5 7",
"output": "1"
},
{
"input": "12 16\n12 1",
"output": "15"
},
{
"input": "0 0\n5 1",
"output": "5"
},
{
"input": "0 1\n1 1",
"output": "1"
},
{
"input": "-44602634 913365223\n-572368780 933284951",
"output": "527766146"
},
{
"input": "-2 0\n2 -2",
"output": "4"
},
{
"input": "0 0\n3 1",
"output": "3"
},
{
"input": "-458 2\n1255 4548",
"output": "4546"
},
{
"input": "-5 -4\n-3 -3",
"output": "2"
},
{
"input": "4 5\n7 3",
"output": "3"
},
{
"input": "-1000000000 -999999999\n1000000000 999999998",
"output": "2000000000"
},
{
"input": "-1000000000 -1000000000\n1000000000 -1000000000",
"output": "2000000000"
},
{
"input": "-464122675 -898521847\n656107323 -625340409",
"output": "1120229998"
},
{
"input": "-463154699 -654742385\n-699179052 -789004997",
"output": "236024353"
},
{
"input": "982747270 -593488945\n342286841 -593604186",
"output": "640460429"
},
{
"input": "-80625246 708958515\n468950878 574646184",
"output": "549576124"
},
{
"input": "0 0\n1 0",
"output": "1"
},
{
"input": "109810 1\n2 3",
"output": "109808"
},
{
"input": "-9 0\n9 9",
"output": "18"
},
{
"input": "9 9\n9 9",
"output": "0"
},
{
"input": "1 1\n4 3",
"output": "3"
},
{
"input": "1 2\n45 1",
"output": "44"
},
{
"input": "207558188 -313753260\n-211535387 -721675423",
"output": "419093575"
},
{
"input": "-11 0\n0 0",
"output": "11"
},
{
"input": "-1000000000 1000000000\n1000000000 -1000000000",
"output": "2000000000"
},
{
"input": "0 0\n1 1",
"output": "1"
},
{
"input": "0 0\n0 1",
"output": "1"
},
{
"input": "0 0\n-1 1",
"output": "1"
},
{
"input": "0 0\n-1 0",
"output": "1"
},
{
"input": "0 0\n-1 -1",
"output": "1"
},
{
"input": "0 0\n0 -1",
"output": "1"
},
{
"input": "0 0\n1 -1",
"output": "1"
},
{
"input": "10 90\n90 10",
"output": "80"
},
{
"input": "851016864 573579544\n-761410925 -380746263",
"output": "1612427789"
},
{
"input": "1 9\n9 9",
"output": "8"
},
{
"input": "1000 1000\n1000 1000",
"output": "0"
},
{
"input": "1 9\n9 1",
"output": "8"
},
{
"input": "1 90\n90 90",
"output": "89"
},
{
"input": "100 100\n1000 1000",
"output": "900"
},
{
"input": "-1 0\n0 0",
"output": "1"
},
{
"input": "-750595959 -2984043\n649569876 -749608783",
"output": "1400165835"
},
{
"input": "958048496 712083589\n423286949 810566863",
"output": "534761547"
},
{
"input": "146316710 53945094\n-523054748 147499505",
"output": "669371458"
},
{
"input": "50383856 -596516251\n-802950224 -557916272",
"output": "853334080"
},
{
"input": "-637204864 -280290367\n-119020929 153679771",
"output": "518183935"
},
{
"input": "-100 -100\n-60 -91",
"output": "40"
},
{
"input": "337537326 74909428\n-765558776 167951547",
"output": "1103096102"
},
{
"input": "0 81\n18 90",
"output": "18"
},
{
"input": "283722202 -902633305\n-831696497 -160868946",
"output": "1115418699"
},
{
"input": "1000 1000\n-1000 1000",
"output": "2000"
},
{
"input": "5 6\n4 8",
"output": "2"
},
{
"input": "40572000 597493595\n-935051731 368493185",
"output": "975623731"
},
{
"input": "-5 5\n5 5",
"output": "10"
}
] | 1,453,390,591
| 2,191
|
Python 3
|
OK
|
TESTS
| 75
| 62
| 0
|
c1 = list(map(int, input().split()))
c2 = list(map(int, input().split()))
print(max(abs(c1[0] - c2[0]), abs(c1[1] - c2[1])))
|
Title: Professor GukiZ's Robot
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Professor GukiZ makes a new robot. The robot are in the point with coordinates (*x*1,<=*y*1) and should go to the point (*x*2,<=*y*2). In a single step the robot can change any of its coordinates (maybe both of them) by one (decrease or increase). So the robot can move in one of the 8 directions. Find the minimal number of steps the robot should make to get the finish position.
Input Specification:
The first line contains two integers *x*1,<=*y*1 (<=-<=109<=≤<=*x*1,<=*y*1<=≤<=109) — the start position of the robot.
The second line contains two integers *x*2,<=*y*2 (<=-<=109<=≤<=*x*2,<=*y*2<=≤<=109) — the finish position of the robot.
Output Specification:
Print the only integer *d* — the minimal number of steps to get the finish position.
Demo Input:
['0 0\n4 5\n', '3 4\n6 1\n']
Demo Output:
['5\n', '3\n']
Note:
In the first example robot should increase both of its coordinates by one four times, so it will be in position (4, 4). After that robot should simply increase its *y* coordinate and get the finish position.
In the second example robot should simultaneously increase *x* coordinate and decrease *y* coordinate by one three times.
|
```python
c1 = list(map(int, input().split()))
c2 = list(map(int, input().split()))
print(max(abs(c1[0] - c2[0]), abs(c1[1] - c2[1])))
```
| 3
|
|
26
|
B
|
Regular Bracket Sequence
|
PROGRAMMING
| 1,400
|
[
"greedy"
] |
B. Regular Bracket Sequence
|
5
|
256
|
A bracket sequence is called regular if it is possible to obtain correct arithmetic expression by inserting characters «+» and «1» into this sequence. For example, sequences «(())()», «()» and «(()(()))» are regular, while «)(», «(()» and «(()))(» are not.
One day Johnny got bracket sequence. He decided to remove some of the brackets from it in order to obtain a regular bracket sequence. What is the maximum length of a regular bracket sequence which can be obtained?
|
Input consists of a single line with non-empty string of «(» and «)» characters. Its length does not exceed 106.
|
Output the maximum possible length of a regular bracket sequence.
|
[
"(()))(\n",
"((()())\n"
] |
[
"4\n",
"6\n"
] |
none
| 1,000
|
[
{
"input": "(()))(",
"output": "4"
},
{
"input": "((()())",
"output": "6"
},
{
"input": "(",
"output": "0"
},
{
"input": ")",
"output": "0"
},
{
"input": ")(()(",
"output": "2"
},
{
"input": "))))))(",
"output": "0"
},
{
"input": "()()(()(((",
"output": "6"
},
{
"input": "()))(()((((()(())",
"output": "10"
},
{
"input": "())))((()())())))))())",
"output": "14"
},
{
"input": ")))((((())(()((()((((()()())((",
"output": "16"
},
{
"input": "))()()((()()))())()(((((((())((((((((())()()((())(",
"output": "32"
},
{
"input": "))())))))))())))))()()))()()))))())))))()))))))))))))(()))())(()))))(()))))())))((((()()))))()))()))",
"output": "48"
}
] | 1,690,718,231
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 38
| 278
| 19,353,600
|
def max_regular_length(bracket_sequence):
stack = []
max_length = 0
for bracket in bracket_sequence:
if bracket == '(':
stack.append(bracket)
else: # Closing bracket ')'
if stack:
stack.pop()
max_length += 2
return max_length
def main():
bracket_sequence = input().strip()
result = max_regular_length(bracket_sequence)
print(result)
if __name__ == "__main__":
main()
|
Title: Regular Bracket Sequence
Time Limit: 5 seconds
Memory Limit: 256 megabytes
Problem Description:
A bracket sequence is called regular if it is possible to obtain correct arithmetic expression by inserting characters «+» and «1» into this sequence. For example, sequences «(())()», «()» and «(()(()))» are regular, while «)(», «(()» and «(()))(» are not.
One day Johnny got bracket sequence. He decided to remove some of the brackets from it in order to obtain a regular bracket sequence. What is the maximum length of a regular bracket sequence which can be obtained?
Input Specification:
Input consists of a single line with non-empty string of «(» and «)» characters. Its length does not exceed 106.
Output Specification:
Output the maximum possible length of a regular bracket sequence.
Demo Input:
['(()))(\n', '((()())\n']
Demo Output:
['4\n', '6\n']
Note:
none
|
```python
def max_regular_length(bracket_sequence):
stack = []
max_length = 0
for bracket in bracket_sequence:
if bracket == '(':
stack.append(bracket)
else: # Closing bracket ')'
if stack:
stack.pop()
max_length += 2
return max_length
def main():
bracket_sequence = input().strip()
result = max_regular_length(bracket_sequence)
print(result)
if __name__ == "__main__":
main()
```
| 3.936151
|
203
|
C
|
Photographer
|
PROGRAMMING
| 1,400
|
[
"greedy",
"sortings"
] | null | null |
Valera's lifelong ambition was to be a photographer, so he bought a new camera. Every day he got more and more clients asking for photos, and one day Valera needed a program that would determine the maximum number of people he can serve.
The camera's memory is *d* megabytes. Valera's camera can take photos of high and low quality. One low quality photo takes *a* megabytes of memory, one high quality photo take *b* megabytes of memory. For unknown reasons, each client asks him to make several low quality photos and several high quality photos. More formally, the *i*-th client asks to make *x**i* low quality photos and *y**i* high quality photos.
Valera wants to serve as many clients per day as possible, provided that they will be pleased with his work. To please the *i*-th client, Valera needs to give him everything he wants, that is, to make *x**i* low quality photos and *y**i* high quality photos. To make one low quality photo, the camera must have at least *a* megabytes of free memory space. Similarly, to make one high quality photo, the camera must have at least *b* megabytes of free memory space. Initially the camera's memory is empty. Valera also does not delete photos from the camera so that the camera's memory gradually fills up.
Calculate the maximum number of clients Valera can successfully serve and print the numbers of these clients.
|
The first line contains two integers *n* and *d* (1<=≤<=*n*<=≤<=105,<=1<=≤<=*d*<=≤<=109) — the number of clients and the camera memory size, correspondingly. The second line contains two integers *a* and *b* (1<=≤<=*a*<=≤<=*b*<=≤<=104) — the size of one low quality photo and of one high quality photo, correspondingly.
Next *n* lines describe the clients. The *i*-th line contains two integers *x**i* and *y**i* (0<=≤<=*x**i*,<=*y**i*<=≤<=105) — the number of low quality photos and high quality photos the *i*-th client wants, correspondingly.
All numbers on all lines are separated by single spaces.
|
On the first line print the answer to the problem — the maximum number of clients that Valera can successfully serve. Print on the second line the numbers of the client in any order. All numbers must be distinct. If there are multiple answers, print any of them. The clients are numbered starting with 1 in the order in which they are defined in the input data.
|
[
"3 10\n2 3\n1 4\n2 1\n1 0\n",
"3 6\n6 6\n1 1\n1 0\n1 0\n"
] |
[
"2\n3 2 ",
"1\n2 "
] |
none
| 1,500
|
[
{
"input": "3 10\n2 3\n1 4\n2 1\n1 0",
"output": "2\n3 2 "
},
{
"input": "3 6\n6 6\n1 1\n1 0\n1 0",
"output": "1\n2 "
},
{
"input": "4 5\n6 8\n1 2\n3 0\n10 2\n0 4",
"output": "0"
},
{
"input": "4 10\n6 6\n1 2\n2 2\n0 0\n0 0",
"output": "2\n3 4 "
},
{
"input": "10 10\n1 1\n0 3\n6 4\n3 3\n6 3\n5 2\n6 4\n1 3\n5 5\n2 6\n6 4",
"output": "2\n1 7 "
},
{
"input": "5 5\n1 1\n2 0\n3 2\n4 4\n10 0\n0 1",
"output": "2\n5 1 "
},
{
"input": "4 10\n1 2\n1 0\n0 0\n2 0\n1 3",
"output": "4\n2 1 3 4 "
},
{
"input": "1 22\n3 5\n1 3",
"output": "1\n1 "
},
{
"input": "10 20\n3 5\n3 0\n0 3\n1 2\n1 3\n1 1\n3 0\n0 3\n0 3\n3 1\n3 1",
"output": "2\n5 1 "
},
{
"input": "10 50\n1 1\n7 10\n6 6\n1 0\n2 5\n2 6\n9 7\n3 5\n7 6\n7 10\n7 7",
"output": "6\n3 4 5 7 2 8 "
},
{
"input": "15 30\n13 19\n10 20\n9 0\n11 15\n10 8\n18 3\n13 15\n2 14\n9 16\n8 4\n13 10\n19 2\n13 19\n6 17\n16 4\n15 6",
"output": "0"
},
{
"input": "30 50\n1 3\n2 2\n3 2\n3 3\n0 1\n0 2\n1 3\n1 3\n1 1\n0 1\n0 2\n1 3\n1 0\n1 0\n2 1\n0 1\n0 0\n0 3\n2 3\n2 2\n0 1\n2 3\n2 3\n0 3\n0 3\n3 3\n1 2\n2 1\n1 3\n3 1\n0 3",
"output": "13\n16 12 13 4 9 15 20 8 14 27 5 10 29 "
},
{
"input": "50 50\n6 10\n10 0\n1 9\n8 2\n4 9\n0 7\n2 0\n7 5\n4 8\n10 7\n2 4\n5 6\n6 8\n3 2\n4 6\n7 8\n6 9\n7 7\n7 3\n9 5\n3 10\n7 2\n4 3\n2 0\n6 5\n5 3\n1 7\n1 7\n9 1\n10 4\n10 5\n4 2\n10 10\n0 7\n1 2\n10 1\n1 7\n3 7\n8 7\n5 2\n6 1\n3 1\n4 7\n7 10\n1 5\n10 8\n5 5\n5 1\n3 3\n1 6\n2 1",
"output": "3\n6 23 50 "
},
{
"input": "1 100\n6 10\n14 19",
"output": "0"
},
{
"input": "2 160\n6 9\n11 9\n6 6",
"output": "1\n2 "
},
{
"input": "2 1000000000\n10000 10000\n50000 50000\n100000 100000",
"output": "1\n1 "
},
{
"input": "2 1000000000\n10000 10000\n100000 0\n100000 100000",
"output": "1\n1 "
},
{
"input": "1 1000000000\n1 1\n1 1",
"output": "1\n1 "
},
{
"input": "6 1000000000\n9999 10000\n10000 9998\n10000 10000\n10000 10000\n70000 70000\n10000 10000\n10000 10000",
"output": "5\n1 2 3 5 6 "
},
{
"input": "3 10\n1 10\n0 1\n3 0\n3 0",
"output": "2\n2 3 "
},
{
"input": "2 1000000000\n10000 10000\n0 100000\n100000 100000",
"output": "1\n1 "
},
{
"input": "3 3\n1 1\n3 0\n1 0\n1 0",
"output": "2\n2 3 "
},
{
"input": "2 1000000000\n10000 10000\n100000 100000\n50000 50000",
"output": "1\n2 "
},
{
"input": "2 1000000000\n10000 10000\n0 90000\n100000 100000",
"output": "1\n1 "
},
{
"input": "3 1000000000\n10000 10000\n100000 0\n100000 100000\n0 0",
"output": "2\n3 1 "
},
{
"input": "2 1000000000\n10000 10000\n10000 10000\n100000 100000",
"output": "1\n1 "
},
{
"input": "2 1000000000\n10000 10000\n100000 100000\n100000 0",
"output": "1\n2 "
},
{
"input": "3 1000000000\n10000 10000\n99999 0\n100000 100000\n100000 100000",
"output": "1\n1 "
}
] | 1,602,733,047
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 54
| 1,028
| 14,643,200
|
n,d=[int(x) for x in input().split()]
a,b=[int(x) for x in input().split()]
arr=[]
for _ in range(n):
arr.append([int(x) for x in input().split()]+[_+1])
arr.sort(key=lambda x:a*x[0]+b*x[1])
ans=[]
for i in arr:
d-=(a*i[0]+b*i[1])
if d>=0:
ans.append(i[2])
else:
d+=(a*i[0]+b*i[1])
print(len(ans))
for i in ans:
print(i,end=' ')
|
Title: Photographer
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Valera's lifelong ambition was to be a photographer, so he bought a new camera. Every day he got more and more clients asking for photos, and one day Valera needed a program that would determine the maximum number of people he can serve.
The camera's memory is *d* megabytes. Valera's camera can take photos of high and low quality. One low quality photo takes *a* megabytes of memory, one high quality photo take *b* megabytes of memory. For unknown reasons, each client asks him to make several low quality photos and several high quality photos. More formally, the *i*-th client asks to make *x**i* low quality photos and *y**i* high quality photos.
Valera wants to serve as many clients per day as possible, provided that they will be pleased with his work. To please the *i*-th client, Valera needs to give him everything he wants, that is, to make *x**i* low quality photos and *y**i* high quality photos. To make one low quality photo, the camera must have at least *a* megabytes of free memory space. Similarly, to make one high quality photo, the camera must have at least *b* megabytes of free memory space. Initially the camera's memory is empty. Valera also does not delete photos from the camera so that the camera's memory gradually fills up.
Calculate the maximum number of clients Valera can successfully serve and print the numbers of these clients.
Input Specification:
The first line contains two integers *n* and *d* (1<=≤<=*n*<=≤<=105,<=1<=≤<=*d*<=≤<=109) — the number of clients and the camera memory size, correspondingly. The second line contains two integers *a* and *b* (1<=≤<=*a*<=≤<=*b*<=≤<=104) — the size of one low quality photo and of one high quality photo, correspondingly.
Next *n* lines describe the clients. The *i*-th line contains two integers *x**i* and *y**i* (0<=≤<=*x**i*,<=*y**i*<=≤<=105) — the number of low quality photos and high quality photos the *i*-th client wants, correspondingly.
All numbers on all lines are separated by single spaces.
Output Specification:
On the first line print the answer to the problem — the maximum number of clients that Valera can successfully serve. Print on the second line the numbers of the client in any order. All numbers must be distinct. If there are multiple answers, print any of them. The clients are numbered starting with 1 in the order in which they are defined in the input data.
Demo Input:
['3 10\n2 3\n1 4\n2 1\n1 0\n', '3 6\n6 6\n1 1\n1 0\n1 0\n']
Demo Output:
['2\n3 2 ', '1\n2 ']
Note:
none
|
```python
n,d=[int(x) for x in input().split()]
a,b=[int(x) for x in input().split()]
arr=[]
for _ in range(n):
arr.append([int(x) for x in input().split()]+[_+1])
arr.sort(key=lambda x:a*x[0]+b*x[1])
ans=[]
for i in arr:
d-=(a*i[0]+b*i[1])
if d>=0:
ans.append(i[2])
else:
d+=(a*i[0]+b*i[1])
print(len(ans))
for i in ans:
print(i,end=' ')
```
| 3
|
|
133
|
A
|
HQ9+
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
HQ9+ is a joke programming language which has only four one-character instructions:
- "H" prints "Hello, World!",- "Q" prints the source code of the program itself,- "9" prints the lyrics of "99 Bottles of Beer" song, - "+" increments the value stored in the internal accumulator.
Instructions "H" and "Q" are case-sensitive and must be uppercase. The characters of the program which are not instructions are ignored.
You are given a program written in HQ9+. You have to figure out whether executing this program will produce any output.
|
The input will consist of a single line *p* which will give a program in HQ9+. String *p* will contain between 1 and 100 characters, inclusive. ASCII-code of each character of *p* will be between 33 (exclamation mark) and 126 (tilde), inclusive.
|
Output "YES", if executing the program will produce any output, and "NO" otherwise.
|
[
"Hi!\n",
"Codeforces\n"
] |
[
"YES\n",
"NO\n"
] |
In the first case the program contains only one instruction — "H", which prints "Hello, World!".
In the second case none of the program characters are language instructions.
| 500
|
[
{
"input": "Hi!",
"output": "YES"
},
{
"input": "Codeforces",
"output": "NO"
},
{
"input": "a+b=c",
"output": "NO"
},
{
"input": "hq-lowercase",
"output": "NO"
},
{
"input": "Q",
"output": "YES"
},
{
"input": "9",
"output": "YES"
},
{
"input": "H",
"output": "YES"
},
{
"input": "+",
"output": "NO"
},
{
"input": "~",
"output": "NO"
},
{
"input": "dEHsbM'gS[\\brZ_dpjXw8f?L[4E\"s4Zc9*(,j:>p$}m7HD[_9nOWQ\\uvq2mHWR",
"output": "YES"
},
{
"input": "tt6l=RHOfStm.;Qd$-}zDes*E,.F7qn5-b%HC",
"output": "YES"
},
{
"input": "@F%K2=%RyL/",
"output": "NO"
},
{
"input": "juq)k(FT.^G=G\\zcqnO\"uJIE1_]KFH9S=1c\"mJ;F9F)%>&.WOdp09+k`Yc6}\"6xw,Aos:M\\_^^:xBb[CcsHm?J",
"output": "YES"
},
{
"input": "6G_\"Fq#<AWyHG=Rci1t%#Jc#x<Fpg'N@t%F=``YO7\\Zd;6PkMe<#91YgzTC)",
"output": "YES"
},
{
"input": "Fvg_~wC>SO4lF}*c`Q;mII9E{4.QodbqN]C",
"output": "YES"
},
{
"input": "p-UXsbd&f",
"output": "NO"
},
{
"input": "<]D7NMA)yZe=`?RbP5lsa.l_Mg^V:\"-0x+$3c,q&L%18Ku<HcA\\s!^OQblk^x{35S'>yz8cKgVHWZ]kV0>_",
"output": "YES"
},
{
"input": "f.20)8b+.R}Gy!DbHU3v(.(=Q^`z[_BaQ}eO=C1IK;b2GkD\\{\\Bf\"!#qh]",
"output": "YES"
},
{
"input": "}do5RU<(w<q[\"-NR)IAH_HyiD{",
"output": "YES"
},
{
"input": "Iy^.,Aw*,5+f;l@Q;jLK'G5H-r1Pfmx?ei~`CjMmUe{K:lS9cu4ay8rqRh-W?Gqv!e-j*U)!Mzn{E8B6%~aSZ~iQ_QwlC9_cX(o8",
"output": "YES"
},
{
"input": "sKLje,:q>-D,;NvQ3,qN3-N&tPx0nL/,>Ca|z\"k2S{NF7btLa3_TyXG4XZ:`(t&\"'^M|@qObZxv",
"output": "YES"
},
{
"input": "%z:c@1ZsQ@\\6U/NQ+M9R>,$bwG`U1+C\\18^:S},;kw!&4r|z`",
"output": "YES"
},
{
"input": "OKBB5z7ud81[Tn@P\"nDUd,>@",
"output": "NO"
},
{
"input": "y{0;neX]w0IenPvPx0iXp+X|IzLZZaRzBJ>q~LhMhD$x-^GDwl;,a'<bAqH8QrFwbK@oi?I'W.bZ]MlIQ/x(0YzbTH^l.)]0Bv",
"output": "YES"
},
{
"input": "EL|xIP5_+Caon1hPpQ0[8+r@LX4;b?gMy>;/WH)pf@Ur*TiXu*e}b-*%acUA~A?>MDz#!\\Uh",
"output": "YES"
},
{
"input": "UbkW=UVb>;z6)p@Phr;^Dn.|5O{_i||:Rv|KJ_ay~V(S&Jp",
"output": "NO"
},
{
"input": "!3YPv@2JQ44@)R2O_4`GO",
"output": "YES"
},
{
"input": "Kba/Q,SL~FMd)3hOWU'Jum{9\"$Ld4:GW}D]%tr@G{hpG:PV5-c'VIZ~m/6|3I?_4*1luKnOp`%p|0H{[|Y1A~4-ZdX,Rw2[\\",
"output": "YES"
},
{
"input": "NRN*=v>;oU7[acMIJn*n^bWm!cm3#E7Efr>{g-8bl\"DN4~_=f?[T;~Fq#&)aXq%</GcTJD^e$@Extm[e\"C)q_L",
"output": "NO"
},
{
"input": "y#<fv{_=$MP!{D%I\\1OqjaqKh[pqE$KvYL<9@*V'j8uH0/gQdA'G;&y4Cv6&",
"output": "YES"
},
{
"input": "+SE_Pg<?7Fh,z&uITQut2a-mk8X8La`c2A}",
"output": "YES"
},
{
"input": "Uh3>ER](J",
"output": "NO"
},
{
"input": "!:!{~=9*\\P;Z6F?HC5GadFz)>k*=u|+\"Cm]ICTmB!`L{&oS/z6b~#Snbp/^\\Q>XWU-vY+/dP.7S=-#&whS@,",
"output": "YES"
},
{
"input": "KimtYBZp+ISeO(uH;UldoE6eAcp|9u?SzGZd6j-e}[}u#e[Cx8.qgY]$2!",
"output": "YES"
},
{
"input": "[:[SN-{r>[l+OggH3v3g{EPC*@YBATT@",
"output": "YES"
},
{
"input": "'jdL(vX",
"output": "NO"
},
{
"input": "Q;R+aay]cL?Zh*uG\"YcmO*@Dts*Gjp}D~M7Z96+<4?9I3aH~0qNdO(RmyRy=ci,s8qD_kwj;QHFzD|5,5",
"output": "YES"
},
{
"input": "{Q@#<LU_v^qdh%gGxz*pu)Y\"]k-l-N30WAxvp2IE3:jD0Wi4H/xWPH&s",
"output": "YES"
},
{
"input": "~@Gb(S&N$mBuBUMAky-z^{5VwLNTzYg|ZUZncL@ahS?K*As<$iNUARM3r43J'jJB)$ujfPAq\"G<S9flGyakZg!2Z.-NJ|2{F>]",
"output": "YES"
},
{
"input": "Jp5Aa>aP6fZ!\\6%A}<S}j{O4`C6y$8|i3IW,WHy&\"ioE&7zP\"'xHAY;:x%@SnS]Mr{R|})gU",
"output": "YES"
},
{
"input": "ZA#:U)$RI^sE\\vuAt]x\"2zipI!}YEu2<j$:H0_9/~eB?#->",
"output": "YES"
},
{
"input": "&ppw0._:\\p-PuWM@l}%%=",
"output": "NO"
},
{
"input": "P(^pix\"=oiEZu8?@d@J(I`Xp5TN^T3\\Z7P5\"ZrvZ{2Fwz3g-8`U!)(1$a<g+9Q|COhDoH;HwFY02Pa|ZGp$/WZBR=>6Jg!yr",
"output": "YES"
},
{
"input": "`WfODc\\?#ax~1xu@[ao+o_rN|L7%v,p,nDv>3+6cy.]q3)+A6b!q*Hc+#.t4f~vhUa~$^q",
"output": "YES"
},
{
"input": ",)TH9N}'6t2+0Yg?S#6/{_.,!)9d}h'wG|sY&'Ul4D0l0",
"output": "YES"
},
{
"input": "VXB&r9Z)IlKOJ:??KDA",
"output": "YES"
},
{
"input": "\")1cL>{o\\dcYJzu?CefyN^bGRviOH&P7rJS3PT4:0V3F)%\\}L=AJouYsj_>j2|7^1NWu*%NbOP>ngv-ls<;b-4Sd3Na0R",
"output": "YES"
},
{
"input": "2Y}\\A)>row{~c[g>:'.|ZC8%UTQ/jcdhK%6O)QRC.kd@%y}LJYk=V{G5pQK/yKJ%{G3C",
"output": "YES"
},
{
"input": "O.&=qt(`z(",
"output": "NO"
},
{
"input": "_^r6fyIc/~~;>l%9?aVEi7-{=,[<aMiB'-scSg$$|\"jAzY0N>QkHHGBZj2c\"=fhRlWd5;5K|GgU?7h]!;wl@",
"output": "YES"
},
{
"input": "+/`sAd&eB29E=Nu87${.u6GY@$^a$,}s^!p!F}B-z8<<wORb<S7;HM1a,gp",
"output": "YES"
},
{
"input": "U_ilyOGMT+QiW/M8/D(1=6a7)_FA,h4`8",
"output": "YES"
},
{
"input": "!0WKT:$O",
"output": "NO"
},
{
"input": "1EE*I%EQz6$~pPu7|(r7nyPQt4uGU@]~H'4uII?b1_Wn)K?ZRHrr0z&Kr;}aO3<mN=3:{}QgPxI|Ncm4#)",
"output": "YES"
},
{
"input": "[u3\"$+!:/.<Dp1M7tH}:zxjt],^kv}qP;y12\"`^'/u*h%AFmPJ>e1#Yly",
"output": "YES"
},
{
"input": "'F!_]tB<A&UO+p?7liE>(x&RFgG2~\\(",
"output": "NO"
},
{
"input": "Qv)X8",
"output": "YES"
},
{
"input": "aGv7,J@&g1(}E3g6[LuDZwZl2<v7IwQA%\"R(?ouBD>_=y\"3Kf%^>vON<a^T\\G^ootgE@whWmZo=[ex|F",
"output": "YES"
},
{
"input": "e{}2vQ+/r@p0}cLKNe4MCk",
"output": "YES"
},
{
"input": "mzbmweyydiadtlcouegmdbyfwurpwbpuvhifnuapwyndmhtqvkgkbhtytszotwflegsjzzszfwtzfpnscguemwrczqxycivdqnkH",
"output": "YES"
},
{
"input": "Qzbmweyydiadtlcouegmdbyfwurpwbpuvhifnuapwyndmhtqvkgkbhtytszotwflegsjzzszfwtzfpnscguemwrczqxycivdqnky",
"output": "YES"
},
{
"input": "mzbmweyydiadtlcouegmdbyfwurpwb9uvhifnuapwyndmhtqvkgkbhtytszotwflegsjzzszfwtzfpnscguemwrczqxycivdqnky",
"output": "YES"
},
{
"input": "1H1",
"output": "YES"
},
{
"input": "+Q",
"output": "YES"
},
{
"input": "1ab",
"output": "NO"
},
{
"input": "!",
"output": "NO"
},
{
"input": "0+",
"output": "NO"
},
{
"input": "+H",
"output": "YES"
},
{
"input": "cH",
"output": "YES"
},
{
"input": "+8",
"output": "NO"
},
{
"input": "8+",
"output": "NO"
},
{
"input": "++++++++++++++++++++++++++",
"output": "NO"
},
{
"input": "(+)",
"output": "NO"
},
{
"input": "H+",
"output": "YES"
},
{
"input": "a!",
"output": "NO"
},
{
"input": "++++++++++++++",
"output": "NO"
},
{
"input": "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++",
"output": "NO"
},
{
"input": "8",
"output": "NO"
},
{
"input": "3",
"output": "NO"
},
{
"input": "HQ9",
"output": "YES"
},
{
"input": "+++H",
"output": "YES"
},
{
"input": "++++++++++",
"output": "NO"
},
{
"input": "HHHHHHH",
"output": "YES"
},
{
"input": "abacabaH",
"output": "YES"
},
{
"input": "+G",
"output": "NO"
}
] | 1,690,304,138
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 85
| 186
| 0
|
m=list(input())
temp=0
for sv in m:
if sv=='H' or sv=='Q' or sv=='9':
temp=1
break
if temp==1:
print("YES")
else:
print("NO")
|
Title: HQ9+
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
HQ9+ is a joke programming language which has only four one-character instructions:
- "H" prints "Hello, World!",- "Q" prints the source code of the program itself,- "9" prints the lyrics of "99 Bottles of Beer" song, - "+" increments the value stored in the internal accumulator.
Instructions "H" and "Q" are case-sensitive and must be uppercase. The characters of the program which are not instructions are ignored.
You are given a program written in HQ9+. You have to figure out whether executing this program will produce any output.
Input Specification:
The input will consist of a single line *p* which will give a program in HQ9+. String *p* will contain between 1 and 100 characters, inclusive. ASCII-code of each character of *p* will be between 33 (exclamation mark) and 126 (tilde), inclusive.
Output Specification:
Output "YES", if executing the program will produce any output, and "NO" otherwise.
Demo Input:
['Hi!\n', 'Codeforces\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first case the program contains only one instruction — "H", which prints "Hello, World!".
In the second case none of the program characters are language instructions.
|
```python
m=list(input())
temp=0
for sv in m:
if sv=='H' or sv=='Q' or sv=='9':
temp=1
break
if temp==1:
print("YES")
else:
print("NO")
```
| 3
|
|
239
|
A
|
Two Bags of Potatoes
|
PROGRAMMING
| 1,200
|
[
"greedy",
"implementation",
"math"
] | null | null |
Valera had two bags of potatoes, the first of these bags contains *x* (*x*<=≥<=1) potatoes, and the second — *y* (*y*<=≥<=1) potatoes. Valera — very scattered boy, so the first bag of potatoes (it contains *x* potatoes) Valera lost. Valera remembers that the total amount of potatoes (*x*<=+<=*y*) in the two bags, firstly, was not gerater than *n*, and, secondly, was divisible by *k*.
Help Valera to determine how many potatoes could be in the first bag. Print all such possible numbers in ascending order.
|
The first line of input contains three integers *y*, *k*, *n* (1<=≤<=*y*,<=*k*,<=*n*<=≤<=109; <=≤<=105).
|
Print the list of whitespace-separated integers — all possible values of *x* in ascending order. You should print each possible value of *x* exactly once.
If there are no such values of *x* print a single integer -1.
|
[
"10 1 10\n",
"10 6 40\n"
] |
[
"-1\n",
"2 8 14 20 26 \n"
] |
none
| 500
|
[
{
"input": "10 1 10",
"output": "-1"
},
{
"input": "10 6 40",
"output": "2 8 14 20 26 "
},
{
"input": "10 1 20",
"output": "1 2 3 4 5 6 7 8 9 10 "
},
{
"input": "1 10000 1000000000",
"output": "9999 19999 29999 39999 49999 59999 69999 79999 89999 99999 109999 119999 129999 139999 149999 159999 169999 179999 189999 199999 209999 219999 229999 239999 249999 259999 269999 279999 289999 299999 309999 319999 329999 339999 349999 359999 369999 379999 389999 399999 409999 419999 429999 439999 449999 459999 469999 479999 489999 499999 509999 519999 529999 539999 549999 559999 569999 579999 589999 599999 609999 619999 629999 639999 649999 659999 669999 679999 689999 699999 709999 719999 729999 739999 7499..."
},
{
"input": "84817 1 33457",
"output": "-1"
},
{
"input": "21 37 99",
"output": "16 53 "
},
{
"input": "78 7 15",
"output": "-1"
},
{
"input": "74 17 27",
"output": "-1"
},
{
"input": "79 23 43",
"output": "-1"
},
{
"input": "32 33 3",
"output": "-1"
},
{
"input": "55 49 44",
"output": "-1"
},
{
"input": "64 59 404",
"output": "54 113 172 231 290 "
},
{
"input": "61 69 820",
"output": "8 77 146 215 284 353 422 491 560 629 698 "
},
{
"input": "17 28 532",
"output": "11 39 67 95 123 151 179 207 235 263 291 319 347 375 403 431 459 487 515 "
},
{
"input": "46592 52 232",
"output": "-1"
},
{
"input": "1541 58 648",
"output": "-1"
},
{
"input": "15946 76 360",
"output": "-1"
},
{
"input": "30351 86 424",
"output": "-1"
},
{
"input": "1 2 37493",
"output": "1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 143 145 147 149 151 153 155 157 159 161 163 165 167 169 171 173 175 177 179 181 183 185 187 189 191 193 195 197 199 201 203 205 207 209 211 213 215 217 219 221 223 225 227 229 231 233 235 237 239 241 243 245 247 249 251 253 255 257 259 261 263 265 267 269 271 273 275 277 279 281 28..."
},
{
"input": "1 3 27764",
"output": "2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83 86 89 92 95 98 101 104 107 110 113 116 119 122 125 128 131 134 137 140 143 146 149 152 155 158 161 164 167 170 173 176 179 182 185 188 191 194 197 200 203 206 209 212 215 218 221 224 227 230 233 236 239 242 245 248 251 254 257 260 263 266 269 272 275 278 281 284 287 290 293 296 299 302 305 308 311 314 317 320 323 326 329 332 335 338 341 344 347 350 353 356 359 362 365 368 371 374 377 380 383 386 389 392 395 398 401 404 407 410..."
},
{
"input": "10 4 9174",
"output": "2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102 106 110 114 118 122 126 130 134 138 142 146 150 154 158 162 166 170 174 178 182 186 190 194 198 202 206 210 214 218 222 226 230 234 238 242 246 250 254 258 262 266 270 274 278 282 286 290 294 298 302 306 310 314 318 322 326 330 334 338 342 346 350 354 358 362 366 370 374 378 382 386 390 394 398 402 406 410 414 418 422 426 430 434 438 442 446 450 454 458 462 466 470 474 478 482 486 490 494 498 502 506 510 514 518 522 526 530 534 53..."
},
{
"input": "33 7 4971",
"output": "2 9 16 23 30 37 44 51 58 65 72 79 86 93 100 107 114 121 128 135 142 149 156 163 170 177 184 191 198 205 212 219 226 233 240 247 254 261 268 275 282 289 296 303 310 317 324 331 338 345 352 359 366 373 380 387 394 401 408 415 422 429 436 443 450 457 464 471 478 485 492 499 506 513 520 527 534 541 548 555 562 569 576 583 590 597 604 611 618 625 632 639 646 653 660 667 674 681 688 695 702 709 716 723 730 737 744 751 758 765 772 779 786 793 800 807 814 821 828 835 842 849 856 863 870 877 884 891 898 905 912 919..."
},
{
"input": "981 1 3387",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155..."
},
{
"input": "386 1 2747",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155..."
},
{
"input": "123 2 50000",
"output": "1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 143 145 147 149 151 153 155 157 159 161 163 165 167 169 171 173 175 177 179 181 183 185 187 189 191 193 195 197 199 201 203 205 207 209 211 213 215 217 219 221 223 225 227 229 231 233 235 237 239 241 243 245 247 249 251 253 255 257 259 261 263 265 267 269 271 273 275 277 279 281 28..."
},
{
"input": "3123 100 10000000",
"output": "77 177 277 377 477 577 677 777 877 977 1077 1177 1277 1377 1477 1577 1677 1777 1877 1977 2077 2177 2277 2377 2477 2577 2677 2777 2877 2977 3077 3177 3277 3377 3477 3577 3677 3777 3877 3977 4077 4177 4277 4377 4477 4577 4677 4777 4877 4977 5077 5177 5277 5377 5477 5577 5677 5777 5877 5977 6077 6177 6277 6377 6477 6577 6677 6777 6877 6977 7077 7177 7277 7377 7477 7577 7677 7777 7877 7977 8077 8177 8277 8377 8477 8577 8677 8777 8877 8977 9077 9177 9277 9377 9477 9577 9677 9777 9877 9977 10077 10177 10277 1037..."
},
{
"input": "2 10000 1000000000",
"output": "9998 19998 29998 39998 49998 59998 69998 79998 89998 99998 109998 119998 129998 139998 149998 159998 169998 179998 189998 199998 209998 219998 229998 239998 249998 259998 269998 279998 289998 299998 309998 319998 329998 339998 349998 359998 369998 379998 389998 399998 409998 419998 429998 439998 449998 459998 469998 479998 489998 499998 509998 519998 529998 539998 549998 559998 569998 579998 589998 599998 609998 619998 629998 639998 649998 659998 669998 679998 689998 699998 709998 719998 729998 739998 7499..."
},
{
"input": "3 10000 1000000000",
"output": "9997 19997 29997 39997 49997 59997 69997 79997 89997 99997 109997 119997 129997 139997 149997 159997 169997 179997 189997 199997 209997 219997 229997 239997 249997 259997 269997 279997 289997 299997 309997 319997 329997 339997 349997 359997 369997 379997 389997 399997 409997 419997 429997 439997 449997 459997 469997 479997 489997 499997 509997 519997 529997 539997 549997 559997 569997 579997 589997 599997 609997 619997 629997 639997 649997 659997 669997 679997 689997 699997 709997 719997 729997 739997 7499..."
},
{
"input": "12312223 10000 1000000000",
"output": "7777 17777 27777 37777 47777 57777 67777 77777 87777 97777 107777 117777 127777 137777 147777 157777 167777 177777 187777 197777 207777 217777 227777 237777 247777 257777 267777 277777 287777 297777 307777 317777 327777 337777 347777 357777 367777 377777 387777 397777 407777 417777 427777 437777 447777 457777 467777 477777 487777 497777 507777 517777 527777 537777 547777 557777 567777 577777 587777 597777 607777 617777 627777 637777 647777 657777 667777 677777 687777 697777 707777 717777 727777 737777 7477..."
},
{
"input": "500000000 1000000000 1000000000",
"output": "500000000 "
},
{
"input": "1 1000000000 1000000000",
"output": "999999999 "
},
{
"input": "10 6 11",
"output": "-1"
},
{
"input": "2 100 10",
"output": "-1"
},
{
"input": "1 100000007 1000000000",
"output": "100000006 200000013 300000020 400000027 500000034 600000041 700000048 800000055 900000062 "
},
{
"input": "1 999999999 1000000000",
"output": "999999998 "
},
{
"input": "100000000 1000000000 1000000000",
"output": "900000000 "
},
{
"input": "11 2 12",
"output": "1 "
},
{
"input": "31 10 39",
"output": "-1"
},
{
"input": "48 6 50",
"output": "-1"
},
{
"input": "500000000 500000000 1000000000",
"output": "500000000 "
},
{
"input": "1 1000000000 999999999",
"output": "-1"
},
{
"input": "4 2 10",
"output": "2 4 6 "
},
{
"input": "1000000000 1 1",
"output": "-1"
},
{
"input": "1000000000 1 100000",
"output": "-1"
},
{
"input": "1000000000 1 10",
"output": "-1"
},
{
"input": "10 5 14",
"output": "-1"
},
{
"input": "500000000 499999999 1000000000",
"output": "499999998 "
},
{
"input": "1 999999997 1000000000",
"output": "999999996 "
}
] | 1,698,143,199
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 3
| 248
| 0
|
y,k,n=map(int,input().split())
if(n-y<k):print(-1)
else:
ans=k-(n%k)
for i in range(ans,n-y+1,k):
print(i,end=" ")
|
Title: Two Bags of Potatoes
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Valera had two bags of potatoes, the first of these bags contains *x* (*x*<=≥<=1) potatoes, and the second — *y* (*y*<=≥<=1) potatoes. Valera — very scattered boy, so the first bag of potatoes (it contains *x* potatoes) Valera lost. Valera remembers that the total amount of potatoes (*x*<=+<=*y*) in the two bags, firstly, was not gerater than *n*, and, secondly, was divisible by *k*.
Help Valera to determine how many potatoes could be in the first bag. Print all such possible numbers in ascending order.
Input Specification:
The first line of input contains three integers *y*, *k*, *n* (1<=≤<=*y*,<=*k*,<=*n*<=≤<=109; <=≤<=105).
Output Specification:
Print the list of whitespace-separated integers — all possible values of *x* in ascending order. You should print each possible value of *x* exactly once.
If there are no such values of *x* print a single integer -1.
Demo Input:
['10 1 10\n', '10 6 40\n']
Demo Output:
['-1\n', '2 8 14 20 26 \n']
Note:
none
|
```python
y,k,n=map(int,input().split())
if(n-y<k):print(-1)
else:
ans=k-(n%k)
for i in range(ans,n-y+1,k):
print(i,end=" ")
```
| 0
|
|
558
|
C
|
Amr and Chemistry
|
PROGRAMMING
| 1,900
|
[
"brute force",
"graphs",
"greedy",
"math",
"shortest paths"
] | null | null |
Amr loves Chemistry, and specially doing experiments. He is preparing for a new interesting experiment.
Amr has *n* different types of chemicals. Each chemical *i* has an initial volume of *a**i* liters. For this experiment, Amr has to mix all the chemicals together, but all the chemicals volumes must be equal first. So his task is to make all the chemicals volumes equal.
To do this, Amr can do two different kind of operations.
- Choose some chemical *i* and double its current volume so the new volume will be 2*a**i* - Choose some chemical *i* and divide its volume by two (integer division) so the new volume will be
Suppose that each chemical is contained in a vessel of infinite volume. Now Amr wonders what is the minimum number of operations required to make all the chemicals volumes equal?
|
The first line contains one number *n* (1<=≤<=*n*<=≤<=105), the number of chemicals.
The second line contains *n* space separated integers *a**i* (1<=≤<=*a**i*<=≤<=105), representing the initial volume of the *i*-th chemical in liters.
|
Output one integer the minimum number of operations required to make all the chemicals volumes equal.
|
[
"3\n4 8 2\n",
"3\n3 5 6\n"
] |
[
"2",
"5"
] |
In the first sample test, the optimal solution is to divide the second chemical volume by two, and multiply the third chemical volume by two to make all the volumes equal 4.
In the second sample test, the optimal solution is to divide the first chemical volume by two, and divide the second and the third chemical volumes by two twice to make all the volumes equal 1.
| 1,500
|
[
{
"input": "3\n4 8 2",
"output": "2"
},
{
"input": "3\n3 5 6",
"output": "5"
},
{
"input": "2\n50000 100000",
"output": "1"
},
{
"input": "2\n99999 99998",
"output": "2"
},
{
"input": "17\n1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536",
"output": "72"
},
{
"input": "19\n1 2 3 4 6 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536",
"output": "90"
},
{
"input": "20\n1 2 3 4 6 8 16 20 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536",
"output": "99"
},
{
"input": "20\n1 2 3 4 6 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 100000",
"output": "113"
},
{
"input": "7\n7 4096 8192 16384 32768 65536 100000",
"output": "51"
},
{
"input": "9\n7 4096 8192 16384 32768 65536 100000 100000 100000",
"output": "108"
},
{
"input": "10\n7 4096 8192 16384 32768 65536 100000 100000 100000 100000",
"output": "136"
},
{
"input": "7\n99994 99995 99996 99997 99998 99999 100000",
"output": "37"
},
{
"input": "16\n100000 50000 25000 12500 6250 3125 1562 781 390 195 97 48 24 12 6 3",
"output": "76"
},
{
"input": "17\n100000 99999 49999 24999 12499 6249 3124 1562 781 390 195 97 48 24 12 6 3",
"output": "87"
},
{
"input": "2\n99999 100000",
"output": "12"
},
{
"input": "1\n100000",
"output": "0"
}
] | 1,664,430,586
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 7
| 1,000
| 2,560,000
|
import os, sys
from io import BytesIO, IOBase
from types import GeneratorType
def bootstrap(f, stack=[]):
def wrappedfunc(*args, **kwargs):
if stack:
return f(*args, **kwargs)
else:
to = f(*args, **kwargs)
while True:
if type(to) is GeneratorType:
stack.append(to)
to = next(to)
else:
stack.pop()
if not stack:
break
to = stack[-1].send(to)
return to
return wrappedfunc
class TailRecurseException(BaseException):
def __init__(self, args, kwargs):
self.args = args
self.kwargs = kwargs
def tail_call_optimized(g):
"""
This function decorates a function with tail call
optimization. It does this by throwing an exception
if it is it's own grandparent, and catching such
exceptions to fake the tail call optimization.
This function fails if the decorated
function recurses in a non-tail context.
"""
def func(*args, **kwargs):
f = sys._getframe()
if f.f_back and f.f_back.f_back \
and f.f_back.f_back.f_code == f.f_code:
# 抛出异常
raise TailRecurseException(args, kwargs)
else:
while 1:
try:
return g(*args, **kwargs)
except TailRecurseException as e:
args = e.args
kwargs = e.kwargs
func.__doc__ = g.__doc__
return func
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, 8192))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, 8192))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
if sys.hexversion == 50858480:
sys.stdin = open('/Users/zhang-wangz/Desktop/algorithm/tea_0x3f/00_cfinput.txt')
def queryInteractive(a, b, c):
print('? {} {} {}'.format(a, b, c))
sys.stdout.flush()
return int(input())
def answerInteractive(x1, x2):
print('! {} {}'.format(x1, x2))
sys.stdout.flush()
input = lambda: sys.stdin.readline().strip()
ints = lambda: list(map(int, input().split()))
Int = lambda: int(input())
inf = float('inf')
# https://codeforces.com/problemset/problem/558/C
# 输入 n(≤1e5) 和一个长为 n 的数组 a (1≤a[i]≤1e5)。
# 每次操作你可以将某个 a[i] 乘二或除二(下取整)。
# 输出至少需要多少次操作,可以让 a 的所有数都相同。
def solve():
n = Int()
a = ints()
m = max(a) + 1
# 记录x已经存在多少个了
cnt = [0] * m
# 所有数变成x花了多少步
steps = [0] * m
# 是否和上次x时的i一致,作为退出条件
vis = [-1] * m
# 遍历
for i, v in enumerate(a):
q = [(v, 0)]
step = 0
while step < len(q):
v, s = q[step]
step += 1
if v >= m or vis[v] == i:
continue
vis[v] = i
steps[v] += s
cnt[v] += 1
q.append((v * 2, s + 1))
q.append((v // 2, s + 1))
ans = min(steps[x] for x in range(m) if cnt[x] == n)
print(ans)
solve()
|
Title: Amr and Chemistry
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Amr loves Chemistry, and specially doing experiments. He is preparing for a new interesting experiment.
Amr has *n* different types of chemicals. Each chemical *i* has an initial volume of *a**i* liters. For this experiment, Amr has to mix all the chemicals together, but all the chemicals volumes must be equal first. So his task is to make all the chemicals volumes equal.
To do this, Amr can do two different kind of operations.
- Choose some chemical *i* and double its current volume so the new volume will be 2*a**i* - Choose some chemical *i* and divide its volume by two (integer division) so the new volume will be
Suppose that each chemical is contained in a vessel of infinite volume. Now Amr wonders what is the minimum number of operations required to make all the chemicals volumes equal?
Input Specification:
The first line contains one number *n* (1<=≤<=*n*<=≤<=105), the number of chemicals.
The second line contains *n* space separated integers *a**i* (1<=≤<=*a**i*<=≤<=105), representing the initial volume of the *i*-th chemical in liters.
Output Specification:
Output one integer the minimum number of operations required to make all the chemicals volumes equal.
Demo Input:
['3\n4 8 2\n', '3\n3 5 6\n']
Demo Output:
['2', '5']
Note:
In the first sample test, the optimal solution is to divide the second chemical volume by two, and multiply the third chemical volume by two to make all the volumes equal 4.
In the second sample test, the optimal solution is to divide the first chemical volume by two, and divide the second and the third chemical volumes by two twice to make all the volumes equal 1.
|
```python
import os, sys
from io import BytesIO, IOBase
from types import GeneratorType
def bootstrap(f, stack=[]):
def wrappedfunc(*args, **kwargs):
if stack:
return f(*args, **kwargs)
else:
to = f(*args, **kwargs)
while True:
if type(to) is GeneratorType:
stack.append(to)
to = next(to)
else:
stack.pop()
if not stack:
break
to = stack[-1].send(to)
return to
return wrappedfunc
class TailRecurseException(BaseException):
def __init__(self, args, kwargs):
self.args = args
self.kwargs = kwargs
def tail_call_optimized(g):
"""
This function decorates a function with tail call
optimization. It does this by throwing an exception
if it is it's own grandparent, and catching such
exceptions to fake the tail call optimization.
This function fails if the decorated
function recurses in a non-tail context.
"""
def func(*args, **kwargs):
f = sys._getframe()
if f.f_back and f.f_back.f_back \
and f.f_back.f_back.f_code == f.f_code:
# 抛出异常
raise TailRecurseException(args, kwargs)
else:
while 1:
try:
return g(*args, **kwargs)
except TailRecurseException as e:
args = e.args
kwargs = e.kwargs
func.__doc__ = g.__doc__
return func
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, 8192))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, 8192))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
if sys.hexversion == 50858480:
sys.stdin = open('/Users/zhang-wangz/Desktop/algorithm/tea_0x3f/00_cfinput.txt')
def queryInteractive(a, b, c):
print('? {} {} {}'.format(a, b, c))
sys.stdout.flush()
return int(input())
def answerInteractive(x1, x2):
print('! {} {}'.format(x1, x2))
sys.stdout.flush()
input = lambda: sys.stdin.readline().strip()
ints = lambda: list(map(int, input().split()))
Int = lambda: int(input())
inf = float('inf')
# https://codeforces.com/problemset/problem/558/C
# 输入 n(≤1e5) 和一个长为 n 的数组 a (1≤a[i]≤1e5)。
# 每次操作你可以将某个 a[i] 乘二或除二(下取整)。
# 输出至少需要多少次操作,可以让 a 的所有数都相同。
def solve():
n = Int()
a = ints()
m = max(a) + 1
# 记录x已经存在多少个了
cnt = [0] * m
# 所有数变成x花了多少步
steps = [0] * m
# 是否和上次x时的i一致,作为退出条件
vis = [-1] * m
# 遍历
for i, v in enumerate(a):
q = [(v, 0)]
step = 0
while step < len(q):
v, s = q[step]
step += 1
if v >= m or vis[v] == i:
continue
vis[v] = i
steps[v] += s
cnt[v] += 1
q.append((v * 2, s + 1))
q.append((v // 2, s + 1))
ans = min(steps[x] for x in range(m) if cnt[x] == n)
print(ans)
solve()
```
| 0
|
|
45
|
A
|
Codecraft III
|
PROGRAMMING
| 900
|
[
"implementation"
] |
A. Codecraft III
|
2
|
256
|
Today Vasya visited a widely known site and learned that the continuation of his favourite game Codecraft II will appear after exactly *k* months. He looked at the calendar and learned that at the moment is the month number *s*. Vasya immediately got interested in what month Codecraft III will appear. Help him understand that.
All the twelve months in Vasya's calendar are named using their usual English names: January, February, March, April, May, June, July, August, September, October, November, December.
|
The first input line contains the name of the current month. It is guaranteed that it is a proper English name of one of twelve months. The first letter is uppercase, the rest are lowercase. The second line contains integer *k* (0<=≤<=*k*<=≤<=100) — the number of months left till the appearance of Codecraft III.
|
Print starting from an uppercase letter the name of the month in which the continuation of Codeforces II will appear. The printed name must be contained in the list January, February, March, April, May, June, July, August, September, October, November, December.
|
[
"November\n3\n",
"May\n24\n"
] |
[
"February\n",
"May\n"
] |
none
| 0
|
[
{
"input": "November\n3",
"output": "February"
},
{
"input": "May\n24",
"output": "May"
},
{
"input": "April\n0",
"output": "April"
},
{
"input": "September\n0",
"output": "September"
},
{
"input": "August\n0",
"output": "August"
},
{
"input": "June\n1",
"output": "July"
},
{
"input": "July\n2",
"output": "September"
},
{
"input": "September\n3",
"output": "December"
},
{
"input": "July\n4",
"output": "November"
},
{
"input": "August\n24",
"output": "August"
},
{
"input": "May\n48",
"output": "May"
},
{
"input": "November\n47",
"output": "October"
},
{
"input": "December\n49",
"output": "January"
},
{
"input": "June\n99",
"output": "September"
},
{
"input": "March\n100",
"output": "July"
},
{
"input": "December\n1",
"output": "January"
},
{
"input": "January\n11",
"output": "December"
},
{
"input": "December\n0",
"output": "December"
},
{
"input": "January\n0",
"output": "January"
},
{
"input": "July\n77",
"output": "December"
},
{
"input": "February\n11",
"output": "January"
},
{
"input": "February\n22",
"output": "December"
},
{
"input": "July\n33",
"output": "April"
},
{
"input": "May\n44",
"output": "January"
},
{
"input": "June\n97",
"output": "July"
}
] | 1,626,176,587
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 25
| 218
| 20,172,800
|
ar=['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December']
s=input()
k=int(input())
z=ar.index(s)
v=(z+k)%12
print(ar[v])
|
Title: Codecraft III
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Today Vasya visited a widely known site and learned that the continuation of his favourite game Codecraft II will appear after exactly *k* months. He looked at the calendar and learned that at the moment is the month number *s*. Vasya immediately got interested in what month Codecraft III will appear. Help him understand that.
All the twelve months in Vasya's calendar are named using their usual English names: January, February, March, April, May, June, July, August, September, October, November, December.
Input Specification:
The first input line contains the name of the current month. It is guaranteed that it is a proper English name of one of twelve months. The first letter is uppercase, the rest are lowercase. The second line contains integer *k* (0<=≤<=*k*<=≤<=100) — the number of months left till the appearance of Codecraft III.
Output Specification:
Print starting from an uppercase letter the name of the month in which the continuation of Codeforces II will appear. The printed name must be contained in the list January, February, March, April, May, June, July, August, September, October, November, December.
Demo Input:
['November\n3\n', 'May\n24\n']
Demo Output:
['February\n', 'May\n']
Note:
none
|
```python
ar=['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December']
s=input()
k=int(input())
z=ar.index(s)
v=(z+k)%12
print(ar[v])
```
| 3.907925
|
1,000
|
B
|
Light It Up
|
PROGRAMMING
| 1,500
|
[
"greedy"
] | null | null |
Recently, you bought a brand new smart lamp with programming features. At first, you set up a schedule to the lamp. Every day it will turn power on at moment $0$ and turn power off at moment $M$. Moreover, the lamp allows you to set a program of switching its state (states are "lights on" and "lights off"). Unfortunately, some program is already installed into the lamp.
The lamp allows only good programs. Good program can be represented as a non-empty array $a$, where $0 < a_1 < a_2 < \dots < a_{|a|} < M$. All $a_i$ must be integers. Of course, preinstalled program is a good program.
The lamp follows program $a$ in next manner: at moment $0$ turns power and light on. Then at moment $a_i$ the lamp flips its state to opposite (if it was lit, it turns off, and vice versa). The state of the lamp flips instantly: for example, if you turn the light off at moment $1$ and then do nothing, the total time when the lamp is lit will be $1$. Finally, at moment $M$ the lamp is turning its power off regardless of its state.
Since you are not among those people who read instructions, and you don't understand the language it's written in, you realize (after some testing) the only possible way to alter the preinstalled program. You can insert at most one element into the program $a$, so it still should be a good program after alteration. Insertion can be done between any pair of consecutive elements of $a$, or even at the begining or at the end of $a$.
Find such a way to alter the program that the total time when the lamp is lit is maximum possible. Maybe you should leave program untouched. If the lamp is lit from $x$ till moment $y$, then its lit for $y - x$ units of time. Segments of time when the lamp is lit are summed up.
|
First line contains two space separated integers $n$ and $M$ ($1 \le n \le 10^5$, $2 \le M \le 10^9$) — the length of program $a$ and the moment when power turns off.
Second line contains $n$ space separated integers $a_1, a_2, \dots, a_n$ ($0 < a_1 < a_2 < \dots < a_n < M$) — initially installed program $a$.
|
Print the only integer — maximum possible total time when the lamp is lit.
|
[
"3 10\n4 6 7\n",
"2 12\n1 10\n",
"2 7\n3 4\n"
] |
[
"8\n",
"9\n",
"6\n"
] |
In the first example, one of possible optimal solutions is to insert value $x = 3$ before $a_1$, so program will be $[3, 4, 6, 7]$ and time of lamp being lit equals $(3 - 0) + (6 - 4) + (10 - 7) = 8$. Other possible solution is to insert $x = 5$ in appropriate place.
In the second example, there is only one optimal solution: to insert $x = 2$ between $a_1$ and $a_2$. Program will become $[1, 2, 10]$, and answer will be $(1 - 0) + (10 - 2) = 9$.
In the third example, optimal answer is to leave program untouched, so answer will be $(3 - 0) + (7 - 4) = 6$.
| 0
|
[
{
"input": "3 10\n4 6 7",
"output": "8"
},
{
"input": "2 12\n1 10",
"output": "9"
},
{
"input": "2 7\n3 4",
"output": "6"
},
{
"input": "1 2\n1",
"output": "1"
},
{
"input": "5 10\n1 3 5 6 8",
"output": "6"
},
{
"input": "7 1000000000\n1 10001 10011 20011 20021 40021 40031",
"output": "999999969"
},
{
"input": "7 1000000000\n3 10001 10011 20011 20021 40021 40031",
"output": "999999969"
},
{
"input": "1 10\n1",
"output": "9"
},
{
"input": "1 10000000\n1",
"output": "9999999"
},
{
"input": "1 8\n1",
"output": "7"
},
{
"input": "7 17\n1 5 9 10 11 14 16",
"output": "9"
},
{
"input": "4 17\n1 5 9 10",
"output": "12"
},
{
"input": "5 12\n1 2 3 4 5",
"output": "9"
},
{
"input": "2 1000000000\n100 111",
"output": "999999989"
},
{
"input": "3 90591\n90579 90580 90581",
"output": "90589"
},
{
"input": "5 16\n1 2 3 4 5",
"output": "13"
},
{
"input": "6 981231233\n1 6 15 30 130 1875",
"output": "981229468"
},
{
"input": "1 3\n1",
"output": "2"
},
{
"input": "3 12\n4 7 11",
"output": "8"
},
{
"input": "1 100000\n1",
"output": "99999"
},
{
"input": "2 5\n1 3",
"output": "3"
},
{
"input": "1 1000000000\n1",
"output": "999999999"
},
{
"input": "1 1000000000\n999999999",
"output": "999999999"
},
{
"input": "3 4\n1 2 3",
"output": "2"
},
{
"input": "3 5\n1 2 3",
"output": "3"
},
{
"input": "1 4\n2",
"output": "3"
},
{
"input": "3 5\n1 3 4",
"output": "3"
},
{
"input": "9 20\n5 9 11 12 14 15 16 17 19",
"output": "12"
},
{
"input": "2 4\n1 2",
"output": "3"
},
{
"input": "1 10\n2",
"output": "9"
},
{
"input": "2 6\n2 4",
"output": "4"
},
{
"input": "2 4\n1 3",
"output": "2"
},
{
"input": "3 6\n1 2 4",
"output": "4"
},
{
"input": "7 9863\n65 96 97 98 101 112 1115",
"output": "9819"
}
] | 1,635,410,675
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 39
| 218
| 13,824,000
|
length, d = list(map(int, input().split(' ')))
l = [0] + list(map(int, input().split(' '))) + [d]
a, b, c = [0], [0], []
for i in range(1,len(l)):
if i % 2:
b.append(b[i-1]+l[i]-l[i-1])
else:
b.append(b[i-1])
a.append(l[i]-b[i])
for i in range(1,len(l)-1):
if l[i] - l[i-1] > 1 or l[i+1] - l[i] > 1:
d = a[-1] - a[i] + b[i] - 1
c.append(d)
c.append(b[-1])
print(max(c))
|
Title: Light It Up
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Recently, you bought a brand new smart lamp with programming features. At first, you set up a schedule to the lamp. Every day it will turn power on at moment $0$ and turn power off at moment $M$. Moreover, the lamp allows you to set a program of switching its state (states are "lights on" and "lights off"). Unfortunately, some program is already installed into the lamp.
The lamp allows only good programs. Good program can be represented as a non-empty array $a$, where $0 < a_1 < a_2 < \dots < a_{|a|} < M$. All $a_i$ must be integers. Of course, preinstalled program is a good program.
The lamp follows program $a$ in next manner: at moment $0$ turns power and light on. Then at moment $a_i$ the lamp flips its state to opposite (if it was lit, it turns off, and vice versa). The state of the lamp flips instantly: for example, if you turn the light off at moment $1$ and then do nothing, the total time when the lamp is lit will be $1$. Finally, at moment $M$ the lamp is turning its power off regardless of its state.
Since you are not among those people who read instructions, and you don't understand the language it's written in, you realize (after some testing) the only possible way to alter the preinstalled program. You can insert at most one element into the program $a$, so it still should be a good program after alteration. Insertion can be done between any pair of consecutive elements of $a$, or even at the begining or at the end of $a$.
Find such a way to alter the program that the total time when the lamp is lit is maximum possible. Maybe you should leave program untouched. If the lamp is lit from $x$ till moment $y$, then its lit for $y - x$ units of time. Segments of time when the lamp is lit are summed up.
Input Specification:
First line contains two space separated integers $n$ and $M$ ($1 \le n \le 10^5$, $2 \le M \le 10^9$) — the length of program $a$ and the moment when power turns off.
Second line contains $n$ space separated integers $a_1, a_2, \dots, a_n$ ($0 < a_1 < a_2 < \dots < a_n < M$) — initially installed program $a$.
Output Specification:
Print the only integer — maximum possible total time when the lamp is lit.
Demo Input:
['3 10\n4 6 7\n', '2 12\n1 10\n', '2 7\n3 4\n']
Demo Output:
['8\n', '9\n', '6\n']
Note:
In the first example, one of possible optimal solutions is to insert value $x = 3$ before $a_1$, so program will be $[3, 4, 6, 7]$ and time of lamp being lit equals $(3 - 0) + (6 - 4) + (10 - 7) = 8$. Other possible solution is to insert $x = 5$ in appropriate place.
In the second example, there is only one optimal solution: to insert $x = 2$ between $a_1$ and $a_2$. Program will become $[1, 2, 10]$, and answer will be $(1 - 0) + (10 - 2) = 9$.
In the third example, optimal answer is to leave program untouched, so answer will be $(3 - 0) + (7 - 4) = 6$.
|
```python
length, d = list(map(int, input().split(' ')))
l = [0] + list(map(int, input().split(' '))) + [d]
a, b, c = [0], [0], []
for i in range(1,len(l)):
if i % 2:
b.append(b[i-1]+l[i]-l[i-1])
else:
b.append(b[i-1])
a.append(l[i]-b[i])
for i in range(1,len(l)-1):
if l[i] - l[i-1] > 1 or l[i+1] - l[i] > 1:
d = a[-1] - a[i] + b[i] - 1
c.append(d)
c.append(b[-1])
print(max(c))
```
| 3
|
|
294
|
A
|
Shaass and Oskols
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
Shaass has decided to hunt some birds. There are *n* horizontal electricity wires aligned parallel to each other. Wires are numbered 1 to *n* from top to bottom. On each wire there are some oskols sitting next to each other. Oskol is the name of a delicious kind of birds in Shaass's territory. Supposed there are *a**i* oskols sitting on the *i*-th wire.
Sometimes Shaass shots one of the birds and the bird dies (suppose that this bird sat at the *i*-th wire). Consequently all the birds on the *i*-th wire to the left of the dead bird get scared and jump up on the wire number *i*<=-<=1, if there exists no upper wire they fly away. Also all the birds to the right of the dead bird jump down on wire number *i*<=+<=1, if there exists no such wire they fly away.
Shaass has shot *m* birds. You're given the initial number of birds on each wire, tell him how many birds are sitting on each wire after the shots.
|
The first line of the input contains an integer *n*, (1<=≤<=*n*<=≤<=100). The next line contains a list of space-separated integers *a*1,<=*a*2,<=...,<=*a**n*, (0<=≤<=*a**i*<=≤<=100).
The third line contains an integer *m*, (0<=≤<=*m*<=≤<=100). Each of the next *m* lines contains two integers *x**i* and *y**i*. The integers mean that for the *i*-th time Shaass shoot the *y**i*-th (from left) bird on the *x**i*-th wire, (1<=≤<=*x**i*<=≤<=*n*,<=1<=≤<=*y**i*). It's guaranteed there will be at least *y**i* birds on the *x**i*-th wire at that moment.
|
On the *i*-th line of the output print the number of birds on the *i*-th wire.
|
[
"5\n10 10 10 10 10\n5\n2 5\n3 13\n2 12\n1 13\n4 6\n",
"3\n2 4 1\n1\n2 2\n"
] |
[
"0\n12\n5\n0\n16\n",
"3\n0\n3\n"
] |
none
| 500
|
[
{
"input": "5\n10 10 10 10 10\n5\n2 5\n3 13\n2 12\n1 13\n4 6",
"output": "0\n12\n5\n0\n16"
},
{
"input": "3\n2 4 1\n1\n2 2",
"output": "3\n0\n3"
},
{
"input": "5\n58 51 45 27 48\n5\n4 9\n5 15\n4 5\n5 8\n1 43",
"output": "0\n66\n57\n7\n0"
},
{
"input": "10\n48 53 10 28 91 56 81 2 67 52\n2\n2 40\n6 51",
"output": "87\n0\n23\n28\n141\n0\n86\n2\n67\n52"
},
{
"input": "2\n72 45\n6\n1 69\n2 41\n1 19\n2 7\n1 5\n2 1",
"output": "0\n0"
},
{
"input": "10\n95 54 36 39 98 30 19 24 14 12\n3\n9 5\n8 15\n7 5",
"output": "95\n54\n36\n39\n98\n34\n0\n28\n13\n21"
},
{
"input": "100\n95 15 25 18 64 62 23 59 70 84 50 26 87 35 75 86 0 22 77 60 66 41 21 9 75 50 25 3 69 14 39 68 64 46 59 99 2 0 21 76 90 12 61 42 6 91 36 39 47 41 93 81 66 57 70 36 68 89 52 1 19 93 67 22 76 20 8 81 98 18 100 73 61 93 75 80 53 72 40 20 2 86 33 59 27 16 11 26 55 44 47 55 94 58 2 55 82 22 9 95\n0",
"output": "95\n15\n25\n18\n64\n62\n23\n59\n70\n84\n50\n26\n87\n35\n75\n86\n0\n22\n77\n60\n66\n41\n21\n9\n75\n50\n25\n3\n69\n14\n39\n68\n64\n46\n59\n99\n2\n0\n21\n76\n90\n12\n61\n42\n6\n91\n36\n39\n47\n41\n93\n81\n66\n57\n70\n36\n68\n89\n52\n1\n19\n93\n67\n22\n76\n20\n8\n81\n98\n18\n100\n73\n61\n93\n75\n80\n53\n72\n40\n20\n2\n86\n33\n59\n27\n16\n11\n26\n55\n44\n47\n55\n94\n58\n2\n55\n82\n22\n9\n95"
},
{
"input": "1\n100\n1\n1 100",
"output": "0"
},
{
"input": "1\n100\n1\n1 1",
"output": "0"
},
{
"input": "1\n50\n1\n1 25",
"output": "0"
},
{
"input": "2\n50 0\n1\n1 1",
"output": "0\n49"
},
{
"input": "1\n10\n0",
"output": "10"
}
] | 1,597,232,927
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 31
| 216
| 6,963,200
|
wires = int(input())
birds = [0] + list(map(int, input().split())) + [0]
shots = int(input())
for i in range(shots):
x, y = map(int, input().split())
birds[x - 1] += y - 1
birds[x + 1] += birds[x] - y
birds[x] = 0
for i in range(1, wires + 1):
print(birds[i])
|
Title: Shaass and Oskols
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Shaass has decided to hunt some birds. There are *n* horizontal electricity wires aligned parallel to each other. Wires are numbered 1 to *n* from top to bottom. On each wire there are some oskols sitting next to each other. Oskol is the name of a delicious kind of birds in Shaass's territory. Supposed there are *a**i* oskols sitting on the *i*-th wire.
Sometimes Shaass shots one of the birds and the bird dies (suppose that this bird sat at the *i*-th wire). Consequently all the birds on the *i*-th wire to the left of the dead bird get scared and jump up on the wire number *i*<=-<=1, if there exists no upper wire they fly away. Also all the birds to the right of the dead bird jump down on wire number *i*<=+<=1, if there exists no such wire they fly away.
Shaass has shot *m* birds. You're given the initial number of birds on each wire, tell him how many birds are sitting on each wire after the shots.
Input Specification:
The first line of the input contains an integer *n*, (1<=≤<=*n*<=≤<=100). The next line contains a list of space-separated integers *a*1,<=*a*2,<=...,<=*a**n*, (0<=≤<=*a**i*<=≤<=100).
The third line contains an integer *m*, (0<=≤<=*m*<=≤<=100). Each of the next *m* lines contains two integers *x**i* and *y**i*. The integers mean that for the *i*-th time Shaass shoot the *y**i*-th (from left) bird on the *x**i*-th wire, (1<=≤<=*x**i*<=≤<=*n*,<=1<=≤<=*y**i*). It's guaranteed there will be at least *y**i* birds on the *x**i*-th wire at that moment.
Output Specification:
On the *i*-th line of the output print the number of birds on the *i*-th wire.
Demo Input:
['5\n10 10 10 10 10\n5\n2 5\n3 13\n2 12\n1 13\n4 6\n', '3\n2 4 1\n1\n2 2\n']
Demo Output:
['0\n12\n5\n0\n16\n', '3\n0\n3\n']
Note:
none
|
```python
wires = int(input())
birds = [0] + list(map(int, input().split())) + [0]
shots = int(input())
for i in range(shots):
x, y = map(int, input().split())
birds[x - 1] += y - 1
birds[x + 1] += birds[x] - y
birds[x] = 0
for i in range(1, wires + 1):
print(birds[i])
```
| 3
|
|
2
|
B
|
The least round way
|
PROGRAMMING
| 2,000
|
[
"dp",
"math"
] |
B. The least round way
|
2
|
64
|
There is a square matrix *n*<=×<=*n*, consisting of non-negative integer numbers. You should find such a way on it that
- starts in the upper left cell of the matrix; - each following cell is to the right or down from the current cell; - the way ends in the bottom right cell.
Moreover, if we multiply together all the numbers along the way, the result should be the least "round". In other words, it should end in the least possible number of zeros.
|
The first line contains an integer number *n* (2<=≤<=*n*<=≤<=1000), *n* is the size of the matrix. Then follow *n* lines containing the matrix elements (non-negative integer numbers not exceeding 109).
|
In the first line print the least number of trailing zeros. In the second line print the correspondent way itself.
|
[
"3\n1 2 3\n4 5 6\n7 8 9\n"
] |
[
"0\nDDRR\n"
] |
none
| 0
|
[
{
"input": "3\n1 2 3\n4 5 6\n7 8 9",
"output": "0\nDDRR"
},
{
"input": "2\n7 6\n3 8",
"output": "0\nDR"
},
{
"input": "3\n4 10 5\n10 9 4\n6 5 3",
"output": "1\nDRRD"
},
{
"input": "4\n1 1 9 9\n3 4 7 3\n7 9 1 7\n1 7 1 5",
"output": "0\nDDDRRR"
},
{
"input": "5\n8 3 2 1 4\n3 7 2 4 8\n9 2 8 9 10\n2 3 6 10 1\n8 2 2 8 4",
"output": "0\nDDDDRRRR"
},
{
"input": "6\n5 5 4 10 5 5\n7 10 8 7 6 6\n7 1 7 9 7 8\n5 5 3 3 10 9\n5 8 10 6 3 8\n3 10 5 4 3 4",
"output": "1\nDDRRDRDDRR"
},
{
"input": "7\n2 9 8 2 7 4 8\n9 5 4 4 8 5 3\n5 7 2 10 8 1 8\n2 7 10 7 5 7 7\n9 2 7 6 4 8 4\n7 2 4 7 4 1 8\n9 5 3 10 1 6 2",
"output": "0\nRRDRRDRDDDDR"
},
{
"input": "8\n1 1 10 1 8 4 8 7\n9 3 3 2 2 6 2 4\n7 4 3 5 10 3 5 1\n8 4 4 10 4 5 9 4\n5 5 5 2 6 7 1 8\n4 10 1 3 2 4 8 3\n8 1 10 2 8 2 2 4\n2 10 6 8 10 2 8 4",
"output": "0\nDRRRRRRRDDDDDD"
},
{
"input": "9\n8 3 3 3 10 3 10 5 6\n2 1 6 1 8 1 9 1 6\n6 1 5 4 2 2 10 4 9\n1 9 1 3 10 6 10 5 5\n1 10 5 4 7 2 5 9 10\n6 6 1 3 1 9 4 9 9\n5 3 7 6 4 6 2 10 2\n9 3 3 10 5 6 7 6 4\n4 9 6 7 4 3 7 6 5",
"output": "1\nDDDDDRDDDRRRRRRR"
},
{
"input": "10\n10 8 6 5 9 8 2 5 3 2\n3 1 8 6 8 10 5 5 7 8\n5 9 7 7 4 9 7 2 5 2\n5 9 9 5 4 2 6 6 8 1\n10 6 9 9 10 5 6 3 5 9\n6 7 10 3 1 4 3 6 7 6\n10 10 4 7 4 4 8 6 7 4\n10 5 8 2 2 7 4 4 1 4\n8 4 6 10 10 6 1 3 3 1\n9 9 7 2 9 5 1 8 6 3",
"output": "1\nDRDDDRRDDDRRDRDRRR"
}
] | 1,560,619,049
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 77
| 204,800
|
def dcount(x, d):
if not x:
return 1
ans = 0
while x > 0:
if x % d != 0:
break
x //= d
ans += 1
return ans
def get(a, n, d):
s = ''
t = [None] * n
for i in range(n):
t[i] = [0] * n
t[0][0] = dcount(a[0][0], d)
for i in range(n):
i1 = i - 1
for j in range(n):
j1 = j - 1
c = ''
prev = None
if i1 >= 0:
c = 'D'
prev = t[i1][j]
if j1 >= 0:
if prev is None or t[i][j1] < prev:
c = 'R'
prev = t[i][j1]
if prev is not None:
t[i][j] = prev + dcount(a[i][j], d)
s += c
return t[n - 1][n - 1], s
n = int(input())
a = [None] * n
for i in range(n):
a[i] = list(map(int, input().split()))
ans2 = get(a, n, 2)
ans5 = get(a, n, 5)
ans = ans2 if ans2[0] < ans5[0] else ans5
print(ans[0])
print(ans[1])
|
Title: The least round way
Time Limit: 2 seconds
Memory Limit: 64 megabytes
Problem Description:
There is a square matrix *n*<=×<=*n*, consisting of non-negative integer numbers. You should find such a way on it that
- starts in the upper left cell of the matrix; - each following cell is to the right or down from the current cell; - the way ends in the bottom right cell.
Moreover, if we multiply together all the numbers along the way, the result should be the least "round". In other words, it should end in the least possible number of zeros.
Input Specification:
The first line contains an integer number *n* (2<=≤<=*n*<=≤<=1000), *n* is the size of the matrix. Then follow *n* lines containing the matrix elements (non-negative integer numbers not exceeding 109).
Output Specification:
In the first line print the least number of trailing zeros. In the second line print the correspondent way itself.
Demo Input:
['3\n1 2 3\n4 5 6\n7 8 9\n']
Demo Output:
['0\nDDRR\n']
Note:
none
|
```python
def dcount(x, d):
if not x:
return 1
ans = 0
while x > 0:
if x % d != 0:
break
x //= d
ans += 1
return ans
def get(a, n, d):
s = ''
t = [None] * n
for i in range(n):
t[i] = [0] * n
t[0][0] = dcount(a[0][0], d)
for i in range(n):
i1 = i - 1
for j in range(n):
j1 = j - 1
c = ''
prev = None
if i1 >= 0:
c = 'D'
prev = t[i1][j]
if j1 >= 0:
if prev is None or t[i][j1] < prev:
c = 'R'
prev = t[i][j1]
if prev is not None:
t[i][j] = prev + dcount(a[i][j], d)
s += c
return t[n - 1][n - 1], s
n = int(input())
a = [None] * n
for i in range(n):
a[i] = list(map(int, input().split()))
ans2 = get(a, n, 2)
ans5 = get(a, n, 5)
ans = ans2 if ans2[0] < ans5[0] else ans5
print(ans[0])
print(ans[1])
```
| 0
|
816
|
B
|
Karen and Coffee
|
PROGRAMMING
| 1,400
|
[
"binary search",
"data structures",
"implementation"
] | null | null |
To stay woke and attentive during classes, Karen needs some coffee!
Karen, a coffee aficionado, wants to know the optimal temperature for brewing the perfect cup of coffee. Indeed, she has spent some time reading several recipe books, including the universally acclaimed "The Art of the Covfefe".
She knows *n* coffee recipes. The *i*-th recipe suggests that coffee should be brewed between *l**i* and *r**i* degrees, inclusive, to achieve the optimal taste.
Karen thinks that a temperature is admissible if at least *k* recipes recommend it.
Karen has a rather fickle mind, and so she asks *q* questions. In each question, given that she only wants to prepare coffee with a temperature between *a* and *b*, inclusive, can you tell her how many admissible integer temperatures fall within the range?
|
The first line of input contains three integers, *n*, *k* (1<=≤<=*k*<=≤<=*n*<=≤<=200000), and *q* (1<=≤<=*q*<=≤<=200000), the number of recipes, the minimum number of recipes a certain temperature must be recommended by to be admissible, and the number of questions Karen has, respectively.
The next *n* lines describe the recipes. Specifically, the *i*-th line among these contains two integers *l**i* and *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=200000), describing that the *i*-th recipe suggests that the coffee be brewed between *l**i* and *r**i* degrees, inclusive.
The next *q* lines describe the questions. Each of these lines contains *a* and *b*, (1<=≤<=*a*<=≤<=*b*<=≤<=200000), describing that she wants to know the number of admissible integer temperatures between *a* and *b* degrees, inclusive.
|
For each question, output a single integer on a line by itself, the number of admissible integer temperatures between *a* and *b* degrees, inclusive.
|
[
"3 2 4\n91 94\n92 97\n97 99\n92 94\n93 97\n95 96\n90 100\n",
"2 1 1\n1 1\n200000 200000\n90 100\n"
] |
[
"3\n3\n0\n4\n",
"0\n"
] |
In the first test case, Karen knows 3 recipes.
1. The first one recommends brewing the coffee between 91 and 94 degrees, inclusive. 1. The second one recommends brewing the coffee between 92 and 97 degrees, inclusive. 1. The third one recommends brewing the coffee between 97 and 99 degrees, inclusive.
A temperature is admissible if at least 2 recipes recommend it.
She asks 4 questions.
In her first question, she wants to know the number of admissible integer temperatures between 92 and 94 degrees, inclusive. There are 3: 92, 93 and 94 degrees are all admissible.
In her second question, she wants to know the number of admissible integer temperatures between 93 and 97 degrees, inclusive. There are 3: 93, 94 and 97 degrees are all admissible.
In her third question, she wants to know the number of admissible integer temperatures between 95 and 96 degrees, inclusive. There are none.
In her final question, she wants to know the number of admissible integer temperatures between 90 and 100 degrees, inclusive. There are 4: 92, 93, 94 and 97 degrees are all admissible.
In the second test case, Karen knows 2 recipes.
1. The first one, "wikiHow to make Cold Brew Coffee", recommends brewing the coffee at exactly 1 degree. 1. The second one, "What good is coffee that isn't brewed at at least 36.3306 times the temperature of the surface of the sun?", recommends brewing the coffee at exactly 200000 degrees.
A temperature is admissible if at least 1 recipe recommends it.
In her first and only question, she wants to know the number of admissible integer temperatures that are actually reasonable. There are none.
| 1,000
|
[
{
"input": "3 2 4\n91 94\n92 97\n97 99\n92 94\n93 97\n95 96\n90 100",
"output": "3\n3\n0\n4"
},
{
"input": "2 1 1\n1 1\n200000 200000\n90 100",
"output": "0"
},
{
"input": "1 1 1\n1 1\n1 1",
"output": "1"
},
{
"input": "1 1 1\n200000 200000\n200000 200000",
"output": "1"
}
] | 1,548,502,731
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 5
| 2,500
| 6,553,600
|
n,k1,q=map(int,input().split())
N=[0 for i in range(200002)]
for i in range(n):
n1,n2=map(int,input().split())
N[n1]+=1
N[n2+1]-=1
P=[N[0]]
for i in range(1,200002):
P.append(P[i-1]+N[i])
for i in range(200002):
if(P[i]>=k1):
P[i]=1
else:
P[i]=0
for m in range(q):
i=list(map(int,input().split()))
print(sum(P[i[0]:i[1]+1]))
|
Title: Karen and Coffee
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
To stay woke and attentive during classes, Karen needs some coffee!
Karen, a coffee aficionado, wants to know the optimal temperature for brewing the perfect cup of coffee. Indeed, she has spent some time reading several recipe books, including the universally acclaimed "The Art of the Covfefe".
She knows *n* coffee recipes. The *i*-th recipe suggests that coffee should be brewed between *l**i* and *r**i* degrees, inclusive, to achieve the optimal taste.
Karen thinks that a temperature is admissible if at least *k* recipes recommend it.
Karen has a rather fickle mind, and so she asks *q* questions. In each question, given that she only wants to prepare coffee with a temperature between *a* and *b*, inclusive, can you tell her how many admissible integer temperatures fall within the range?
Input Specification:
The first line of input contains three integers, *n*, *k* (1<=≤<=*k*<=≤<=*n*<=≤<=200000), and *q* (1<=≤<=*q*<=≤<=200000), the number of recipes, the minimum number of recipes a certain temperature must be recommended by to be admissible, and the number of questions Karen has, respectively.
The next *n* lines describe the recipes. Specifically, the *i*-th line among these contains two integers *l**i* and *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=200000), describing that the *i*-th recipe suggests that the coffee be brewed between *l**i* and *r**i* degrees, inclusive.
The next *q* lines describe the questions. Each of these lines contains *a* and *b*, (1<=≤<=*a*<=≤<=*b*<=≤<=200000), describing that she wants to know the number of admissible integer temperatures between *a* and *b* degrees, inclusive.
Output Specification:
For each question, output a single integer on a line by itself, the number of admissible integer temperatures between *a* and *b* degrees, inclusive.
Demo Input:
['3 2 4\n91 94\n92 97\n97 99\n92 94\n93 97\n95 96\n90 100\n', '2 1 1\n1 1\n200000 200000\n90 100\n']
Demo Output:
['3\n3\n0\n4\n', '0\n']
Note:
In the first test case, Karen knows 3 recipes.
1. The first one recommends brewing the coffee between 91 and 94 degrees, inclusive. 1. The second one recommends brewing the coffee between 92 and 97 degrees, inclusive. 1. The third one recommends brewing the coffee between 97 and 99 degrees, inclusive.
A temperature is admissible if at least 2 recipes recommend it.
She asks 4 questions.
In her first question, she wants to know the number of admissible integer temperatures between 92 and 94 degrees, inclusive. There are 3: 92, 93 and 94 degrees are all admissible.
In her second question, she wants to know the number of admissible integer temperatures between 93 and 97 degrees, inclusive. There are 3: 93, 94 and 97 degrees are all admissible.
In her third question, she wants to know the number of admissible integer temperatures between 95 and 96 degrees, inclusive. There are none.
In her final question, she wants to know the number of admissible integer temperatures between 90 and 100 degrees, inclusive. There are 4: 92, 93, 94 and 97 degrees are all admissible.
In the second test case, Karen knows 2 recipes.
1. The first one, "wikiHow to make Cold Brew Coffee", recommends brewing the coffee at exactly 1 degree. 1. The second one, "What good is coffee that isn't brewed at at least 36.3306 times the temperature of the surface of the sun?", recommends brewing the coffee at exactly 200000 degrees.
A temperature is admissible if at least 1 recipe recommends it.
In her first and only question, she wants to know the number of admissible integer temperatures that are actually reasonable. There are none.
|
```python
n,k1,q=map(int,input().split())
N=[0 for i in range(200002)]
for i in range(n):
n1,n2=map(int,input().split())
N[n1]+=1
N[n2+1]-=1
P=[N[0]]
for i in range(1,200002):
P.append(P[i-1]+N[i])
for i in range(200002):
if(P[i]>=k1):
P[i]=1
else:
P[i]=0
for m in range(q):
i=list(map(int,input().split()))
print(sum(P[i[0]:i[1]+1]))
```
| 0
|
|
0
|
none
|
none
|
none
| 0
|
[
"none"
] | null | null |
Vlad likes to eat in cafes very much. During his life, he has visited cafes *n* times. Unfortunately, Vlad started to feel that his last visits are not any different from each other. To fix that Vlad had a small research.
First of all, Vlad assigned individual indices to all cafes. Then, he wrote down indices of cafes he visited in a row, in order of visiting them. Now, Vlad wants to find such a cafe that his last visit to that cafe was before his last visits to every other cafe. In other words, he wants to find such a cafe that he hasn't been there for as long as possible. Help Vlad to find that cafe.
|
In first line there is one integer *n* (1<=≤<=*n*<=≤<=2·105) — number of cafes indices written by Vlad.
In second line, *n* numbers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=2·105) are written — indices of cafes in order of being visited by Vlad. Vlad could visit some cafes more than once. Note that in numeration, some indices could be omitted.
|
Print one integer — index of the cafe that Vlad hasn't visited for as long as possible.
|
[
"5\n1 3 2 1 2\n",
"6\n2 1 2 2 4 1\n"
] |
[
"3\n",
"2\n"
] |
In first test, there are three cafes, and the last visits to cafes with indices 1 and 2 were after the last visit to cafe with index 3; so this cafe is the answer.
In second test case, there are also three cafes, but with indices 1, 2 and 4. Cafes with indices 1 and 4 were visited after the last visit of cafe with index 2, so the answer is 2. Note that Vlad could omit some numbers while numerating the cafes.
| 0
|
[
{
"input": "5\n1 3 2 1 2",
"output": "3"
},
{
"input": "6\n2 1 2 2 4 1",
"output": "2"
},
{
"input": "1\n0",
"output": "0"
},
{
"input": "1\n200000",
"output": "200000"
},
{
"input": "2\n2018 2017",
"output": "2018"
},
{
"input": "5\n100 1000 1000 1000 1000",
"output": "100"
},
{
"input": "8\n200000 1 200000 1 200000 1 200000 2",
"output": "1"
},
{
"input": "5\n20000 1 2 3 4",
"output": "20000"
},
{
"input": "2\n200000 1",
"output": "200000"
},
{
"input": "3\n2 100 2",
"output": "100"
},
{
"input": "2\n10 1",
"output": "10"
},
{
"input": "11\n1 1 1 1 1 1 1 1 1 1 1",
"output": "1"
},
{
"input": "3\n5 5 5",
"output": "5"
},
{
"input": "2\n5 1",
"output": "5"
}
] | 1,698,033,385
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 33
| 248
| 23,552,000
|
n = int(input())
a = list(map(int, input().split()))
d = {}
for i, b in enumerate(a): d[b] = i
M = min(d.values())
for k, v in d.items():
if v == M:
print(k)
break
|
Title: none
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vlad likes to eat in cafes very much. During his life, he has visited cafes *n* times. Unfortunately, Vlad started to feel that his last visits are not any different from each other. To fix that Vlad had a small research.
First of all, Vlad assigned individual indices to all cafes. Then, he wrote down indices of cafes he visited in a row, in order of visiting them. Now, Vlad wants to find such a cafe that his last visit to that cafe was before his last visits to every other cafe. In other words, he wants to find such a cafe that he hasn't been there for as long as possible. Help Vlad to find that cafe.
Input Specification:
In first line there is one integer *n* (1<=≤<=*n*<=≤<=2·105) — number of cafes indices written by Vlad.
In second line, *n* numbers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=2·105) are written — indices of cafes in order of being visited by Vlad. Vlad could visit some cafes more than once. Note that in numeration, some indices could be omitted.
Output Specification:
Print one integer — index of the cafe that Vlad hasn't visited for as long as possible.
Demo Input:
['5\n1 3 2 1 2\n', '6\n2 1 2 2 4 1\n']
Demo Output:
['3\n', '2\n']
Note:
In first test, there are three cafes, and the last visits to cafes with indices 1 and 2 were after the last visit to cafe with index 3; so this cafe is the answer.
In second test case, there are also three cafes, but with indices 1, 2 and 4. Cafes with indices 1 and 4 were visited after the last visit of cafe with index 2, so the answer is 2. Note that Vlad could omit some numbers while numerating the cafes.
|
```python
n = int(input())
a = list(map(int, input().split()))
d = {}
for i, b in enumerate(a): d[b] = i
M = min(d.values())
for k, v in d.items():
if v == M:
print(k)
break
```
| 3
|
|
0
|
none
|
none
|
none
| 0
|
[
"none"
] | null | null |
Slastyona and her loyal dog Pushok are playing a meaningless game that is indeed very interesting.
The game consists of multiple rounds. Its rules are very simple: in each round, a natural number *k* is chosen. Then, the one who says (or barks) it faster than the other wins the round. After that, the winner's score is multiplied by *k*2, and the loser's score is multiplied by *k*. In the beginning of the game, both Slastyona and Pushok have scores equal to one.
Unfortunately, Slastyona had lost her notepad where the history of all *n* games was recorded. She managed to recall the final results for each games, though, but all of her memories of them are vague. Help Slastyona verify their correctness, or, to put it another way, for each given pair of scores determine whether it was possible for a game to finish with such result or not.
|
In the first string, the number of games *n* (1<=≤<=*n*<=≤<=350000) is given.
Each game is represented by a pair of scores *a*, *b* (1<=≤<=*a*,<=*b*<=≤<=109) – the results of Slastyona and Pushok, correspondingly.
|
For each pair of scores, answer "Yes" if it's possible for a game to finish with given score, and "No" otherwise.
You can output each letter in arbitrary case (upper or lower).
|
[
"6\n2 4\n75 45\n8 8\n16 16\n247 994\n1000000000 1000000\n"
] |
[
"Yes\nYes\nYes\nNo\nNo\nYes\n"
] |
First game might have been consisted of one round, in which the number 2 would have been chosen and Pushok would have won.
The second game needs exactly two rounds to finish with such result: in the first one, Slastyona would have said the number 5, and in the second one, Pushok would have barked the number 3.
| 0
|
[
{
"input": "6\n2 4\n75 45\n8 8\n16 16\n247 994\n1000000000 1000000",
"output": "Yes\nYes\nYes\nNo\nNo\nYes"
},
{
"input": "3\n1 1\n8 27\n1000 1331",
"output": "Yes\nNo\nNo"
},
{
"input": "1\n12004 18012002",
"output": "Yes"
},
{
"input": "1\n3331 11095561",
"output": "Yes"
},
{
"input": "1\n2 3",
"output": "No"
},
{
"input": "1\n1062961 1031",
"output": "Yes"
},
{
"input": "1\n6 12",
"output": "No"
},
{
"input": "1\n3 1",
"output": "No"
},
{
"input": "1\n3 10",
"output": "No"
},
{
"input": "1\n31159 970883281",
"output": "Yes"
},
{
"input": "1\n9907 98148649",
"output": "Yes"
},
{
"input": "1\n16 8",
"output": "No"
},
{
"input": "1\n90 72",
"output": "No"
}
] | 1,503,775,240
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 46
| 0
|
from math import sqrt
n = int(input())
for j in range(n):
a,b = map(int,input().split())
c = a * b
cu = int(pow(c, float(1)/3))
if cu * cu * cu == c and a >1 and b > 1 :
print("YES")
else :
print("NO")
|
Title: none
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Slastyona and her loyal dog Pushok are playing a meaningless game that is indeed very interesting.
The game consists of multiple rounds. Its rules are very simple: in each round, a natural number *k* is chosen. Then, the one who says (or barks) it faster than the other wins the round. After that, the winner's score is multiplied by *k*2, and the loser's score is multiplied by *k*. In the beginning of the game, both Slastyona and Pushok have scores equal to one.
Unfortunately, Slastyona had lost her notepad where the history of all *n* games was recorded. She managed to recall the final results for each games, though, but all of her memories of them are vague. Help Slastyona verify their correctness, or, to put it another way, for each given pair of scores determine whether it was possible for a game to finish with such result or not.
Input Specification:
In the first string, the number of games *n* (1<=≤<=*n*<=≤<=350000) is given.
Each game is represented by a pair of scores *a*, *b* (1<=≤<=*a*,<=*b*<=≤<=109) – the results of Slastyona and Pushok, correspondingly.
Output Specification:
For each pair of scores, answer "Yes" if it's possible for a game to finish with given score, and "No" otherwise.
You can output each letter in arbitrary case (upper or lower).
Demo Input:
['6\n2 4\n75 45\n8 8\n16 16\n247 994\n1000000000 1000000\n']
Demo Output:
['Yes\nYes\nYes\nNo\nNo\nYes\n']
Note:
First game might have been consisted of one round, in which the number 2 would have been chosen and Pushok would have won.
The second game needs exactly two rounds to finish with such result: in the first one, Slastyona would have said the number 5, and in the second one, Pushok would have barked the number 3.
|
```python
from math import sqrt
n = int(input())
for j in range(n):
a,b = map(int,input().split())
c = a * b
cu = int(pow(c, float(1)/3))
if cu * cu * cu == c and a >1 and b > 1 :
print("YES")
else :
print("NO")
```
| 0
|
|
192
|
B
|
Walking in the Rain
|
PROGRAMMING
| 1,100
|
[
"brute force",
"implementation"
] | null | null |
In Berland the opposition is going to arrange mass walking on the boulevard. The boulevard consists of *n* tiles that are lain in a row and are numbered from 1 to *n* from right to left. The opposition should start walking on the tile number 1 and the finish on the tile number *n*. During the walk it is allowed to move from right to left between adjacent tiles in a row, and jump over a tile. More formally, if you are standing on the tile number *i* (*i*<=<<=*n*<=-<=1), you can reach the tiles number *i*<=+<=1 or the tile number *i*<=+<=2 from it (if you stand on the tile number *n*<=-<=1, you can only reach tile number *n*). We can assume that all the opposition movements occur instantaneously.
In order to thwart an opposition rally, the Berland bloody regime organized the rain. The tiles on the boulevard are of poor quality and they are rapidly destroyed in the rain. We know that the *i*-th tile is destroyed after *a**i* days of rain (on day *a**i* tile isn't destroyed yet, and on day *a**i*<=+<=1 it is already destroyed). Of course, no one is allowed to walk on the destroyed tiles! So the walk of the opposition is considered thwarted, if either the tile number 1 is broken, or the tile number *n* is broken, or it is impossible to reach the tile number *n* from the tile number 1 if we can walk on undestroyed tiles.
The opposition wants to gather more supporters for their walk. Therefore, the more time they have to pack, the better. Help the opposition to calculate how much time they still have and tell us for how many days the walk from the tile number 1 to the tile number *n* will be possible.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=103) — the boulevard's length in tiles.
The second line contains *n* space-separated integers *a**i* — the number of days after which the *i*-th tile gets destroyed (1<=≤<=*a**i*<=≤<=103).
|
Print a single number — the sought number of days.
|
[
"4\n10 3 5 10\n",
"5\n10 2 8 3 5\n"
] |
[
"5\n",
"5\n"
] |
In the first sample the second tile gets destroyed after day three, and the only path left is 1 → 3 → 4. After day five there is a two-tile gap between the first and the last tile, you can't jump over it.
In the second sample path 1 → 3 → 5 is available up to day five, inclusive. On day six the last tile is destroyed and the walk is thwarted.
| 1,000
|
[
{
"input": "4\n10 3 5 10",
"output": "5"
},
{
"input": "5\n10 2 8 3 5",
"output": "5"
},
{
"input": "10\n10 3 1 6 7 1 3 3 8 1",
"output": "1"
},
{
"input": "10\n26 72 10 52 2 5 61 2 39 64",
"output": "5"
},
{
"input": "100\n8 2 1 2 8 3 5 8 5 1 9 3 4 1 5 6 4 2 9 10 6 10 10 3 9 4 10 5 3 1 5 10 7 6 8 10 2 6 4 4 2 2 10 7 2 7 3 2 6 3 6 4 7 6 2 5 5 8 6 9 5 2 7 5 8 6 5 8 10 6 10 8 5 3 1 10 6 1 7 5 1 8 10 5 1 3 10 7 10 5 7 1 4 3 8 6 3 4 9 6",
"output": "2"
},
{
"input": "100\n10 2 8 7 5 1 5 4 9 2 7 9 3 5 6 2 3 6 10 1 2 7 1 4 8 8 6 1 7 8 8 1 5 8 1 2 7 4 10 7 3 1 2 5 8 1 1 4 9 7 7 4 7 3 8 8 7 1 5 1 6 9 8 8 1 10 4 4 7 7 10 9 5 1 1 3 6 2 6 3 6 4 9 8 2 9 6 2 7 8 10 9 9 6 3 5 3 1 4 8",
"output": "1"
},
{
"input": "100\n21 57 14 6 58 61 37 54 43 22 90 90 90 14 10 97 47 43 19 66 96 58 88 92 22 62 99 97 15 36 58 93 44 42 45 38 41 21 16 30 66 92 39 70 1 73 83 27 63 21 20 84 30 30 30 77 93 30 62 96 33 34 28 59 48 89 68 62 50 16 18 19 42 42 80 58 31 59 40 81 92 26 28 47 26 8 8 74 86 80 88 82 98 27 41 97 11 91 42 67",
"output": "8"
},
{
"input": "100\n37 75 11 81 60 33 17 80 37 77 26 86 31 78 59 23 92 38 8 15 30 91 99 75 79 34 78 80 19 51 48 48 61 74 59 30 26 2 71 74 48 42 42 81 20 55 49 69 60 10 53 2 21 44 10 18 45 64 21 18 5 62 3 34 52 72 16 28 70 31 93 5 21 69 21 90 31 90 91 79 54 94 77 27 97 4 74 9 29 29 81 5 33 81 75 37 61 73 57 75",
"output": "15"
},
{
"input": "100\n190 544 642 723 577 689 757 509 165 193 396 972 742 367 83 294 404 308 683 399 551 770 564 721 465 839 379 68 687 554 821 719 304 533 146 180 596 713 546 743 949 100 458 735 17 525 568 907 957 670 914 374 347 801 227 884 284 444 686 410 127 508 504 273 624 213 873 658 336 79 819 938 3 722 649 368 733 747 577 746 940 308 970 963 145 487 102 559 790 243 609 77 552 565 151 492 726 448 393 837",
"output": "180"
},
{
"input": "100\n606 358 399 589 724 454 741 183 571 244 984 867 828 232 189 821 642 855 220 839 585 203 135 305 970 503 362 658 491 562 706 62 721 465 560 880 833 646 365 23 679 549 317 834 583 947 134 253 250 768 343 996 541 163 355 925 336 874 997 632 498 529 932 487 415 391 766 224 364 790 486 512 183 458 343 751 633 126 688 536 845 380 423 447 904 779 520 843 977 392 406 147 888 520 886 179 176 129 8 750",
"output": "129"
},
{
"input": "5\n3 2 3 4 2",
"output": "2"
},
{
"input": "5\n4 8 9 10 6",
"output": "4"
},
{
"input": "5\n2 21 6 5 9",
"output": "2"
},
{
"input": "5\n34 39 30 37 35",
"output": "34"
},
{
"input": "5\n14 67 15 28 21",
"output": "14"
},
{
"input": "5\n243 238 138 146 140",
"output": "140"
},
{
"input": "5\n46 123 210 119 195",
"output": "46"
},
{
"input": "5\n725 444 477 661 761",
"output": "477"
},
{
"input": "10\n2 2 3 4 4 1 5 3 1 2",
"output": "2"
},
{
"input": "10\n1 10 1 10 1 1 7 8 6 7",
"output": "1"
},
{
"input": "10\n5 17 8 1 10 20 9 18 12 20",
"output": "5"
},
{
"input": "10\n18 11 23 7 9 10 28 29 46 21",
"output": "9"
},
{
"input": "10\n2 17 53 94 95 57 36 47 68 48",
"output": "2"
},
{
"input": "10\n93 231 176 168 177 222 22 137 110 4",
"output": "4"
},
{
"input": "10\n499 173 45 141 425 276 96 290 428 95",
"output": "95"
},
{
"input": "10\n201 186 897 279 703 376 238 93 253 316",
"output": "201"
},
{
"input": "25\n3 2 3 2 2 2 3 4 5 1 1 4 1 2 1 3 5 5 3 5 1 2 4 1 3",
"output": "1"
},
{
"input": "25\n9 9 1 9 10 5 6 4 6 1 5 2 2 1 2 8 4 6 5 7 1 10 5 4 9",
"output": "2"
},
{
"input": "25\n2 17 21 4 13 6 14 18 17 1 16 13 24 4 12 7 8 16 9 25 25 9 11 20 18",
"output": "2"
},
{
"input": "25\n38 30 9 35 33 48 8 4 49 2 39 19 34 35 47 49 33 4 23 5 42 35 49 11 30",
"output": "8"
},
{
"input": "25\n75 34 77 68 60 38 76 89 35 68 28 36 96 63 43 12 9 4 37 75 88 30 11 58 35",
"output": "9"
},
{
"input": "25\n108 3 144 140 239 105 59 126 224 181 147 102 94 201 68 121 167 94 60 130 64 162 45 95 235",
"output": "94"
},
{
"input": "25\n220 93 216 467 134 408 132 220 292 11 363 404 282 253 141 313 310 356 214 256 380 81 42 128 363",
"output": "81"
},
{
"input": "25\n371 884 75 465 891 510 471 52 382 829 514 610 660 642 179 108 41 818 346 106 738 993 706 574 623",
"output": "108"
},
{
"input": "50\n1 2 1 3 2 5 2 2 2 3 4 4 4 3 3 4 1 2 3 1 5 4 1 2 2 1 5 3 2 2 1 5 4 5 2 5 4 1 1 3 5 2 1 4 5 5 1 5 5 5",
"output": "1"
},
{
"input": "50\n2 4 9 8 1 3 7 1 2 3 8 9 8 8 5 2 10 5 8 1 3 1 8 2 3 7 9 10 2 9 9 7 3 8 6 10 6 5 4 8 1 1 5 6 8 9 5 9 5 3",
"output": "1"
},
{
"input": "50\n22 9 5 3 24 21 25 13 17 21 14 8 22 18 2 3 22 9 10 11 25 22 5 10 16 7 15 3 2 13 2 12 9 24 3 14 2 18 3 22 8 2 19 6 16 4 5 20 10 12",
"output": "3"
},
{
"input": "50\n14 4 20 37 50 46 19 20 25 47 10 6 34 12 41 47 9 22 28 41 34 47 40 12 42 9 4 15 15 27 8 38 9 4 17 8 13 47 7 9 38 30 48 50 7 41 34 23 11 16",
"output": "9"
},
{
"input": "50\n69 9 97 15 22 69 27 7 23 84 73 74 60 94 43 98 13 4 63 49 7 31 93 23 6 75 32 63 49 32 99 43 68 48 16 54 20 38 40 65 34 28 21 55 79 50 2 18 22 95",
"output": "13"
},
{
"input": "50\n50 122 117 195 42 178 153 194 7 89 142 40 158 230 213 104 179 56 244 196 85 159 167 19 157 20 230 201 152 98 250 242 10 52 96 242 139 181 90 107 178 52 196 79 23 61 212 47 97 97",
"output": "50"
},
{
"input": "50\n354 268 292 215 187 232 35 38 179 79 108 491 346 384 345 103 14 260 148 322 459 238 220 493 374 237 474 148 21 221 88 377 289 121 201 198 490 117 382 454 359 390 346 456 294 325 130 306 484 83",
"output": "38"
},
{
"input": "50\n94 634 27 328 629 967 728 177 379 908 801 715 787 192 427 48 559 923 841 6 759 335 251 172 193 593 456 780 647 638 750 881 206 129 278 744 91 49 523 248 286 549 593 451 216 753 471 325 870 16",
"output": "16"
},
{
"input": "100\n5 5 4 3 5 1 2 5 1 1 3 5 4 4 1 1 1 1 5 4 4 5 1 5 5 1 2 1 3 1 5 1 3 3 3 2 2 2 1 1 5 1 3 4 1 1 3 2 5 2 2 5 5 4 4 1 3 4 3 3 4 5 3 3 3 1 2 1 4 2 4 4 1 5 1 3 5 5 5 5 3 4 4 3 1 2 5 2 3 5 4 2 4 5 3 2 4 2 4 3",
"output": "1"
},
{
"input": "100\n3 4 8 10 8 6 4 3 7 7 6 2 3 1 3 10 1 7 9 3 5 5 2 6 2 9 1 7 4 2 4 1 6 1 7 10 2 5 3 7 6 4 6 2 8 8 8 6 6 10 3 7 4 3 4 1 7 9 3 6 3 6 1 4 9 3 8 1 10 1 4 10 7 7 9 5 3 8 10 2 1 10 8 7 10 8 5 3 1 2 1 10 6 1 5 3 3 5 7 2",
"output": "2"
},
{
"input": "100\n14 7 6 21 12 5 22 23 2 9 8 1 9 2 20 2 24 7 14 24 8 19 15 19 10 24 9 4 21 12 3 21 9 16 9 22 18 4 17 19 19 9 6 1 13 15 23 3 14 3 7 15 17 10 7 24 4 18 21 14 25 20 19 19 14 25 24 21 16 10 2 16 1 21 1 24 13 7 13 20 12 20 2 16 3 6 6 2 19 9 16 4 1 2 7 18 15 14 10 22",
"output": "2"
},
{
"input": "100\n2 46 4 6 38 19 15 34 10 35 37 30 3 25 5 45 40 45 33 31 6 20 10 44 11 9 2 14 35 5 9 23 20 2 48 22 25 35 38 31 24 33 35 16 4 30 27 10 12 22 6 24 12 30 23 21 14 12 32 21 7 12 25 43 18 34 34 28 47 13 28 43 18 39 44 42 35 26 35 14 8 29 32 20 29 3 20 6 20 9 9 27 8 42 10 37 42 27 8 1",
"output": "1"
},
{
"input": "100\n85 50 17 89 65 89 5 20 86 26 16 21 85 14 44 31 87 31 6 2 48 67 8 80 79 1 48 36 97 1 5 30 79 50 78 12 2 55 76 100 54 40 26 81 97 96 68 56 87 14 51 17 54 37 52 33 69 62 38 63 74 15 62 78 9 19 67 2 60 58 93 60 18 96 55 48 34 7 79 82 32 58 90 67 20 50 27 15 7 89 98 10 11 15 99 49 4 51 77 52",
"output": "5"
},
{
"input": "100\n26 171 37 63 189 202 180 210 179 131 43 33 227 5 211 130 105 23 229 48 174 48 182 68 174 146 200 166 246 116 106 86 72 206 216 207 70 148 83 149 94 64 142 8 241 211 27 190 58 116 113 96 210 237 73 240 180 110 34 115 167 4 42 30 162 114 74 131 34 206 174 168 216 101 216 149 212 172 180 220 123 201 25 116 42 143 105 40 30 123 174 220 57 238 145 222 105 184 131 162",
"output": "26"
},
{
"input": "100\n182 9 8 332 494 108 117 203 43 473 451 426 119 408 342 84 88 35 383 84 48 69 31 54 347 363 342 69 422 489 194 16 55 171 71 355 116 142 181 246 275 402 155 282 160 179 240 448 49 101 42 499 434 258 21 327 95 376 38 422 68 381 170 372 427 149 38 48 400 224 246 438 62 43 280 40 108 385 351 379 224 311 66 125 300 41 372 358 5 221 223 341 201 261 455 165 74 379 214 10",
"output": "9"
},
{
"input": "100\n836 969 196 706 812 64 743 262 667 27 227 730 50 510 374 915 124 527 778 528 175 151 439 994 835 87 197 91 121 243 534 634 4 410 936 6 979 227 745 734 492 792 209 95 602 446 299 533 376 595 971 879 36 126 528 759 116 499 571 664 787 820 870 838 604 240 334 872 477 415 57 689 870 690 304 122 487 191 253 610 301 348 358 806 828 911 8 320 414 172 268 867 978 205 812 60 845 395 406 155",
"output": "121"
},
{
"input": "250\n5 3 5 1 3 5 3 4 4 3 1 5 2 2 1 1 5 2 3 3 2 5 4 3 2 4 2 3 5 4 1 2 3 5 2 2 5 4 1 3 3 5 4 4 4 4 4 2 4 2 3 5 1 4 3 3 2 3 5 3 3 4 4 2 3 1 3 4 1 4 5 4 1 2 3 4 1 5 3 3 2 3 5 4 2 5 2 2 3 5 4 3 5 4 2 1 4 1 4 1 1 3 5 1 1 2 1 3 4 5 4 3 2 5 1 3 5 1 1 3 3 5 1 4 5 1 2 1 1 5 5 3 5 1 4 1 4 4 4 4 4 1 4 3 4 5 4 1 2 2 5 2 2 4 2 3 5 3 5 5 3 3 2 2 2 1 1 4 4 4 2 1 4 5 3 1 5 4 4 5 5 5 3 3 5 2 1 4 5 4 1 1 1 5 3 5 2 3 3 2 1 3 4 1 4 1 5 3 1 2 5 5 2 1 4 4 2 3 5 2 4 1 3 4 5 5 4 3 2 2 3 2 4 2 5 3 5 5 1 5 3 2 2 4 2 5 5 5 2 5",
"output": "1"
},
{
"input": "1\n987",
"output": "987"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "2\n1 2",
"output": "1"
},
{
"input": "5\n2 5 5 5 5",
"output": "2"
},
{
"input": "1\n500",
"output": "500"
}
] | 1,628,059,501
| 2,147,483,647
|
Python 3
|
COMPILATION_ERROR
|
TESTS
| 0
| 0
| 0
|
n=int(input())
a=map(int,input().split())
print min([a[0],a[-1]]+[max(a[i],a[i+1])for i in range(n-1)])
|
Title: Walking in the Rain
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In Berland the opposition is going to arrange mass walking on the boulevard. The boulevard consists of *n* tiles that are lain in a row and are numbered from 1 to *n* from right to left. The opposition should start walking on the tile number 1 and the finish on the tile number *n*. During the walk it is allowed to move from right to left between adjacent tiles in a row, and jump over a tile. More formally, if you are standing on the tile number *i* (*i*<=<<=*n*<=-<=1), you can reach the tiles number *i*<=+<=1 or the tile number *i*<=+<=2 from it (if you stand on the tile number *n*<=-<=1, you can only reach tile number *n*). We can assume that all the opposition movements occur instantaneously.
In order to thwart an opposition rally, the Berland bloody regime organized the rain. The tiles on the boulevard are of poor quality and they are rapidly destroyed in the rain. We know that the *i*-th tile is destroyed after *a**i* days of rain (on day *a**i* tile isn't destroyed yet, and on day *a**i*<=+<=1 it is already destroyed). Of course, no one is allowed to walk on the destroyed tiles! So the walk of the opposition is considered thwarted, if either the tile number 1 is broken, or the tile number *n* is broken, or it is impossible to reach the tile number *n* from the tile number 1 if we can walk on undestroyed tiles.
The opposition wants to gather more supporters for their walk. Therefore, the more time they have to pack, the better. Help the opposition to calculate how much time they still have and tell us for how many days the walk from the tile number 1 to the tile number *n* will be possible.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=103) — the boulevard's length in tiles.
The second line contains *n* space-separated integers *a**i* — the number of days after which the *i*-th tile gets destroyed (1<=≤<=*a**i*<=≤<=103).
Output Specification:
Print a single number — the sought number of days.
Demo Input:
['4\n10 3 5 10\n', '5\n10 2 8 3 5\n']
Demo Output:
['5\n', '5\n']
Note:
In the first sample the second tile gets destroyed after day three, and the only path left is 1 → 3 → 4. After day five there is a two-tile gap between the first and the last tile, you can't jump over it.
In the second sample path 1 → 3 → 5 is available up to day five, inclusive. On day six the last tile is destroyed and the walk is thwarted.
|
```python
n=int(input())
a=map(int,input().split())
print min([a[0],a[-1]]+[max(a[i],a[i+1])for i in range(n-1)])
```
| -1
|
|
58
|
A
|
Chat room
|
PROGRAMMING
| 1,000
|
[
"greedy",
"strings"
] |
A. Chat room
|
1
|
256
|
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
|
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
|
If Vasya managed to say hello, print "YES", otherwise print "NO".
|
[
"ahhellllloou\n",
"hlelo\n"
] |
[
"YES\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "ahhellllloou",
"output": "YES"
},
{
"input": "hlelo",
"output": "NO"
},
{
"input": "helhcludoo",
"output": "YES"
},
{
"input": "hehwelloho",
"output": "YES"
},
{
"input": "pnnepelqomhhheollvlo",
"output": "YES"
},
{
"input": "tymbzjyqhymedasloqbq",
"output": "NO"
},
{
"input": "yehluhlkwo",
"output": "NO"
},
{
"input": "hatlevhhalrohairnolsvocafgueelrqmlqlleello",
"output": "YES"
},
{
"input": "hhhtehdbllnhwmbyhvelqqyoulretpbfokflhlhreeflxeftelziclrwllrpflflbdtotvlqgoaoqldlroovbfsq",
"output": "YES"
},
{
"input": "rzlvihhghnelqtwlexmvdjjrliqllolhyewgozkuovaiezgcilelqapuoeglnwmnlftxxiigzczlouooi",
"output": "YES"
},
{
"input": "pfhhwctyqdlkrwhebfqfelhyebwllhemtrmeblgrynmvyhioesqklclocxmlffuormljszllpoo",
"output": "YES"
},
{
"input": "lqllcolohwflhfhlnaow",
"output": "NO"
},
{
"input": "heheeellollvoo",
"output": "YES"
},
{
"input": "hellooo",
"output": "YES"
},
{
"input": "o",
"output": "NO"
},
{
"input": "hhqhzeclohlehljlhtesllylrolmomvuhcxsobtsckogdv",
"output": "YES"
},
{
"input": "yoegfuzhqsihygnhpnukluutocvvwuldiighpogsifealtgkfzqbwtmgghmythcxflebrkctlldlkzlagovwlstsghbouk",
"output": "YES"
},
{
"input": "uatqtgbvrnywfacwursctpagasnhydvmlinrcnqrry",
"output": "NO"
},
{
"input": "tndtbldbllnrwmbyhvqaqqyoudrstpbfokfoclnraefuxtftmgzicorwisrpfnfpbdtatvwqgyalqtdtrjqvbfsq",
"output": "NO"
},
{
"input": "rzlvirhgemelnzdawzpaoqtxmqucnahvqnwldklrmjiiyageraijfivigvozgwngiulttxxgzczptusoi",
"output": "YES"
},
{
"input": "kgyelmchocojsnaqdsyeqgnllytbqietpdlgknwwumqkxrexgdcnwoldicwzwofpmuesjuxzrasscvyuqwspm",
"output": "YES"
},
{
"input": "pnyvrcotjvgynbeldnxieghfltmexttuxzyac",
"output": "NO"
},
{
"input": "dtwhbqoumejligbenxvzhjlhosqojetcqsynlzyhfaevbdpekgbtjrbhlltbceobcok",
"output": "YES"
},
{
"input": "crrfpfftjwhhikwzeedrlwzblckkteseofjuxjrktcjfsylmlsvogvrcxbxtffujqshslemnixoeezivksouefeqlhhokwbqjz",
"output": "YES"
},
{
"input": "jhfbndhyzdvhbvhmhmefqllujdflwdpjbehedlsqfdsqlyelwjtyloxwsvasrbqosblzbowlqjmyeilcvotdlaouxhdpoeloaovb",
"output": "YES"
},
{
"input": "hwlghueoemiqtjhhpashjsouyegdlvoyzeunlroypoprnhlyiwiuxrghekaylndhrhllllwhbebezoglydcvykllotrlaqtvmlla",
"output": "YES"
},
{
"input": "wshiaunnqnqxodholbipwhhjmyeblhgpeleblklpzwhdunmpqkbuzloetmwwxmeltkrcomulxauzlwmlklldjodozxryghsnwgcz",
"output": "YES"
},
{
"input": "shvksednttggehroewuiptvvxtrzgidravtnjwuqrlnnkxbplctzkckinpkgjopjfoxdbojtcvsuvablcbkrzajrlhgobkcxeqti",
"output": "YES"
},
{
"input": "hyyhddqhxhekehkwfhlnlsihzefwchzerevcjtokefplholrbvxlltdlafjxrfhleglrvlolojoqaolagtbeyogxlbgfolllslli",
"output": "YES"
},
{
"input": "iaagrdhhelxpdegueiulflquvlzidoprzkehthkldaytrjwhyhprwjxlltinxvuilxohqgjqcvkkdcuoliekcnlilwgqlnlzouoo",
"output": "YES"
},
{
"input": "wfluaeseldgxyvxpwuhkptdmlflnlhktwxiabsvkolsquymrmhzczzoybvlilhmvsuunggvgxzgyyffk",
"output": "NO"
},
{
"input": "loee",
"output": "NO"
},
{
"input": "izdipwylefqmjbuoznfglgcfvedeouflkeehxbasaqmiooppfsqlhprospqgxvzrcpwlfdddngoqvpwvggsnvvxhmjoslwjudjlo",
"output": "NO"
},
{
"input": "pplynflbjlseflaegzqpdxswgunhnlglqhycrbcwdfhclmcrwekkzsoosmfblljeenwfjyifcvxihhhbyhmhlkvtskeglaovjnsi",
"output": "YES"
},
{
"input": "xqjqmenkodmlhzyzmmvofdngktygbbxbzpluzcohohmalkoeuwfikblltaaigv",
"output": "NO"
},
{
"input": "hello",
"output": "YES"
},
{
"input": "oohell",
"output": "NO"
},
{
"input": "hell",
"output": "NO"
},
{
"input": "eloellohoelo",
"output": "NO"
},
{
"input": "helllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllo",
"output": "YES"
}
] | 1,666,981,010
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 2
| 31
| 0
|
s=input()
for i in range(len(s)-1):
if s[i] not in "hello":
s=s.replace(s[i],"")
n=""
for j in range(len(s)):
if s[j] not in n and s[j]!="l":
n+=s[j]
elif s[j]=="l" and n.count(s[j])<2:
n+=s[j]
if n=="hello":
print("YES")
else:
print("NO")
|
Title: Chat room
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
Input Specification:
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
Output Specification:
If Vasya managed to say hello, print "YES", otherwise print "NO".
Demo Input:
['ahhellllloou\n', 'hlelo\n']
Demo Output:
['YES\n', 'NO\n']
Note:
none
|
```python
s=input()
for i in range(len(s)-1):
if s[i] not in "hello":
s=s.replace(s[i],"")
n=""
for j in range(len(s)):
if s[j] not in n and s[j]!="l":
n+=s[j]
elif s[j]=="l" and n.count(s[j])<2:
n+=s[j]
if n=="hello":
print("YES")
else:
print("NO")
```
| -1
|
822
|
A
|
I'm bored with life
|
PROGRAMMING
| 800
|
[
"implementation",
"math",
"number theory"
] | null | null |
Holidays have finished. Thanks to the help of the hacker Leha, Noora managed to enter the university of her dreams which is located in a town Pavlopolis. It's well known that universities provide students with dormitory for the period of university studies. Consequently Noora had to leave Vičkopolis and move to Pavlopolis. Thus Leha was left completely alone in a quiet town Vičkopolis. He almost even fell into a depression from boredom!
Leha came up with a task for himself to relax a little. He chooses two integers *A* and *B* and then calculates the greatest common divisor of integers "*A* factorial" and "*B* factorial". Formally the hacker wants to find out GCD(*A*!,<=*B*!). It's well known that the factorial of an integer *x* is a product of all positive integers less than or equal to *x*. Thus *x*!<==<=1·2·3·...·(*x*<=-<=1)·*x*. For example 4!<==<=1·2·3·4<==<=24. Recall that GCD(*x*,<=*y*) is the largest positive integer *q* that divides (without a remainder) both *x* and *y*.
Leha has learned how to solve this task very effective. You are able to cope with it not worse, aren't you?
|
The first and single line contains two integers *A* and *B* (1<=≤<=*A*,<=*B*<=≤<=109,<=*min*(*A*,<=*B*)<=≤<=12).
|
Print a single integer denoting the greatest common divisor of integers *A*! and *B*!.
|
[
"4 3\n"
] |
[
"6\n"
] |
Consider the sample.
4! = 1·2·3·4 = 24. 3! = 1·2·3 = 6. The greatest common divisor of integers 24 and 6 is exactly 6.
| 500
|
[
{
"input": "4 3",
"output": "6"
},
{
"input": "10 399603090",
"output": "3628800"
},
{
"input": "6 973151934",
"output": "720"
},
{
"input": "2 841668075",
"output": "2"
},
{
"input": "7 415216919",
"output": "5040"
},
{
"input": "3 283733059",
"output": "6"
},
{
"input": "11 562314608",
"output": "39916800"
},
{
"input": "3 990639260",
"output": "6"
},
{
"input": "11 859155400",
"output": "39916800"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "5 3",
"output": "6"
},
{
"input": "1 4",
"output": "1"
},
{
"input": "5 4",
"output": "24"
},
{
"input": "1 12",
"output": "1"
},
{
"input": "9 7",
"output": "5040"
},
{
"input": "2 3",
"output": "2"
},
{
"input": "6 11",
"output": "720"
},
{
"input": "6 7",
"output": "720"
},
{
"input": "11 11",
"output": "39916800"
},
{
"input": "4 999832660",
"output": "24"
},
{
"input": "7 999228288",
"output": "5040"
},
{
"input": "11 999257105",
"output": "39916800"
},
{
"input": "11 999286606",
"output": "39916800"
},
{
"input": "3 999279109",
"output": "6"
},
{
"input": "999632727 11",
"output": "39916800"
},
{
"input": "999625230 7",
"output": "5040"
},
{
"input": "999617047 3",
"output": "6"
},
{
"input": "999646548 7",
"output": "5040"
},
{
"input": "999639051 3",
"output": "6"
},
{
"input": "12 12",
"output": "479001600"
},
{
"input": "12 1",
"output": "1"
},
{
"input": "1213 5",
"output": "120"
},
{
"input": "8 9",
"output": "40320"
},
{
"input": "12 9",
"output": "362880"
},
{
"input": "12 1000000000",
"output": "479001600"
},
{
"input": "1000000000 1",
"output": "1"
},
{
"input": "12 13",
"output": "479001600"
},
{
"input": "2 29845",
"output": "2"
},
{
"input": "10 21",
"output": "3628800"
},
{
"input": "12 20",
"output": "479001600"
},
{
"input": "15 12",
"output": "479001600"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "1000000000 12",
"output": "479001600"
},
{
"input": "11 30",
"output": "39916800"
},
{
"input": "17 12",
"output": "479001600"
},
{
"input": "4 19",
"output": "24"
},
{
"input": "12 15",
"output": "479001600"
},
{
"input": "20 6",
"output": "720"
},
{
"input": "10 20",
"output": "3628800"
},
{
"input": "10 10",
"output": "3628800"
},
{
"input": "22 12",
"output": "479001600"
},
{
"input": "20 12",
"output": "479001600"
},
{
"input": "12 23",
"output": "479001600"
},
{
"input": "12 22",
"output": "479001600"
},
{
"input": "18 3",
"output": "6"
},
{
"input": "14 10",
"output": "3628800"
},
{
"input": "14 12",
"output": "479001600"
},
{
"input": "8 3",
"output": "6"
},
{
"input": "5 5",
"output": "120"
}
] | 1,670,519,053
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 59
| 561
| 19,968,000
|
a=[0]*(1000001)
a[0]=1
for i in range(1,1000001):
a[i]=(i%(10**9+7)*a[i-1]%(10**9+7))%(10**9+7)
n1,n2=map(int,input().split())
if n1<n2:
print(a[n1])
elif n1>n2:
print(a[n2])
elif n1==n2:
print(a[n1])
|
Title: I'm bored with life
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Holidays have finished. Thanks to the help of the hacker Leha, Noora managed to enter the university of her dreams which is located in a town Pavlopolis. It's well known that universities provide students with dormitory for the period of university studies. Consequently Noora had to leave Vičkopolis and move to Pavlopolis. Thus Leha was left completely alone in a quiet town Vičkopolis. He almost even fell into a depression from boredom!
Leha came up with a task for himself to relax a little. He chooses two integers *A* and *B* and then calculates the greatest common divisor of integers "*A* factorial" and "*B* factorial". Formally the hacker wants to find out GCD(*A*!,<=*B*!). It's well known that the factorial of an integer *x* is a product of all positive integers less than or equal to *x*. Thus *x*!<==<=1·2·3·...·(*x*<=-<=1)·*x*. For example 4!<==<=1·2·3·4<==<=24. Recall that GCD(*x*,<=*y*) is the largest positive integer *q* that divides (without a remainder) both *x* and *y*.
Leha has learned how to solve this task very effective. You are able to cope with it not worse, aren't you?
Input Specification:
The first and single line contains two integers *A* and *B* (1<=≤<=*A*,<=*B*<=≤<=109,<=*min*(*A*,<=*B*)<=≤<=12).
Output Specification:
Print a single integer denoting the greatest common divisor of integers *A*! and *B*!.
Demo Input:
['4 3\n']
Demo Output:
['6\n']
Note:
Consider the sample.
4! = 1·2·3·4 = 24. 3! = 1·2·3 = 6. The greatest common divisor of integers 24 and 6 is exactly 6.
|
```python
a=[0]*(1000001)
a[0]=1
for i in range(1,1000001):
a[i]=(i%(10**9+7)*a[i-1]%(10**9+7))%(10**9+7)
n1,n2=map(int,input().split())
if n1<n2:
print(a[n1])
elif n1>n2:
print(a[n2])
elif n1==n2:
print(a[n1])
```
| 3
|
|
337
|
A
|
Puzzles
|
PROGRAMMING
| 900
|
[
"greedy"
] | null | null |
The end of the school year is near and Ms. Manana, the teacher, will soon have to say goodbye to a yet another class. She decided to prepare a goodbye present for her *n* students and give each of them a jigsaw puzzle (which, as wikipedia states, is a tiling puzzle that requires the assembly of numerous small, often oddly shaped, interlocking and tessellating pieces).
The shop assistant told the teacher that there are *m* puzzles in the shop, but they might differ in difficulty and size. Specifically, the first jigsaw puzzle consists of *f*1 pieces, the second one consists of *f*2 pieces and so on.
Ms. Manana doesn't want to upset the children, so she decided that the difference between the numbers of pieces in her presents must be as small as possible. Let *A* be the number of pieces in the largest puzzle that the teacher buys and *B* be the number of pieces in the smallest such puzzle. She wants to choose such *n* puzzles that *A*<=-<=*B* is minimum possible. Help the teacher and find the least possible value of *A*<=-<=*B*.
|
The first line contains space-separated integers *n* and *m* (2<=≤<=*n*<=≤<=*m*<=≤<=50). The second line contains *m* space-separated integers *f*1,<=*f*2,<=...,<=*f**m* (4<=≤<=*f**i*<=≤<=1000) — the quantities of pieces in the puzzles sold in the shop.
|
Print a single integer — the least possible difference the teacher can obtain.
|
[
"4 6\n10 12 10 7 5 22\n"
] |
[
"5\n"
] |
Sample 1. The class has 4 students. The shop sells 6 puzzles. If Ms. Manana buys the first four puzzles consisting of 10, 12, 10 and 7 pieces correspondingly, then the difference between the sizes of the largest and the smallest puzzle will be equal to 5. It is impossible to obtain a smaller difference. Note that the teacher can also buy puzzles 1, 3, 4 and 5 to obtain the difference 5.
| 500
|
[
{
"input": "4 6\n10 12 10 7 5 22",
"output": "5"
},
{
"input": "2 2\n4 4",
"output": "0"
},
{
"input": "2 10\n4 5 6 7 8 9 10 11 12 12",
"output": "0"
},
{
"input": "4 5\n818 136 713 59 946",
"output": "759"
},
{
"input": "3 20\n446 852 783 313 549 965 40 88 86 617 479 118 768 34 47 826 366 957 463 903",
"output": "13"
},
{
"input": "2 25\n782 633 152 416 432 825 115 97 386 357 836 310 530 413 354 373 847 882 913 682 729 582 671 674 94",
"output": "3"
},
{
"input": "4 25\n226 790 628 528 114 64 239 279 619 39 894 763 763 847 525 93 882 697 999 643 650 244 159 884 190",
"output": "31"
},
{
"input": "2 50\n971 889 628 39 253 157 925 694 129 516 660 272 738 319 611 816 142 717 514 392 41 105 132 676 958 118 306 768 600 685 103 857 704 346 857 309 23 718 618 161 176 379 846 834 640 468 952 878 164 997",
"output": "0"
},
{
"input": "25 50\n582 146 750 905 313 509 402 21 488 512 32 898 282 64 579 869 37 996 377 929 975 697 666 837 311 205 116 992 533 298 648 268 54 479 792 595 152 69 267 417 184 433 894 603 988 712 24 414 301 176",
"output": "412"
},
{
"input": "49 50\n58 820 826 960 271 294 473 102 925 318 729 672 244 914 796 646 868 6 893 882 726 203 528 498 271 195 355 459 721 680 547 147 631 116 169 804 145 996 133 559 110 257 771 476 576 251 607 314 427 886",
"output": "938"
},
{
"input": "50 50\n374 573 323 744 190 806 485 247 628 336 491 606 702 321 991 678 337 579 86 240 993 208 668 686 855 205 363 177 719 249 896 919 782 434 59 647 787 996 286 216 636 212 546 903 958 559 544 126 608 993",
"output": "937"
},
{
"input": "6 50\n6 8 7 8 5 4 4 5 7 8 6 5 7 4 7 7 7 8 6 4 6 6 8 8 7 7 8 7 5 8 5 4 4 7 8 4 4 6 6 6 8 7 4 7 6 6 5 8 4 7",
"output": "0"
},
{
"input": "37 50\n14 5 11 17 8 20 19 16 20 11 17 20 16 9 14 14 13 18 11 20 8 8 8 5 19 17 6 18 10 20 9 7 12 6 14 17 4 4 10 13 7 4 11 6 20 19 12 12 15 19",
"output": "12"
},
{
"input": "40 50\n4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4",
"output": "0"
},
{
"input": "40 50\n17 20 43 26 41 37 14 8 30 35 30 24 43 8 42 9 41 50 41 35 27 32 35 43 28 36 31 16 5 7 23 16 14 29 8 39 12 16 36 18 49 39 33 37 38 6 6 27 23 17",
"output": "31"
},
{
"input": "2 2\n1000 4",
"output": "996"
},
{
"input": "2 3\n4 502 1000",
"output": "498"
},
{
"input": "3 3\n4 1000 4",
"output": "996"
}
] | 1,684,385,795
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 18
| 124
| 0
|
n,m=[int(i) for i in input().split()]
f=[int(i) for i in input().split()]
f.sort()
l=[]
for j in range(m-n+1):
z=f[n+j-1]-f[j]
l.append(z)
print(min(l))
|
Title: Puzzles
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The end of the school year is near and Ms. Manana, the teacher, will soon have to say goodbye to a yet another class. She decided to prepare a goodbye present for her *n* students and give each of them a jigsaw puzzle (which, as wikipedia states, is a tiling puzzle that requires the assembly of numerous small, often oddly shaped, interlocking and tessellating pieces).
The shop assistant told the teacher that there are *m* puzzles in the shop, but they might differ in difficulty and size. Specifically, the first jigsaw puzzle consists of *f*1 pieces, the second one consists of *f*2 pieces and so on.
Ms. Manana doesn't want to upset the children, so she decided that the difference between the numbers of pieces in her presents must be as small as possible. Let *A* be the number of pieces in the largest puzzle that the teacher buys and *B* be the number of pieces in the smallest such puzzle. She wants to choose such *n* puzzles that *A*<=-<=*B* is minimum possible. Help the teacher and find the least possible value of *A*<=-<=*B*.
Input Specification:
The first line contains space-separated integers *n* and *m* (2<=≤<=*n*<=≤<=*m*<=≤<=50). The second line contains *m* space-separated integers *f*1,<=*f*2,<=...,<=*f**m* (4<=≤<=*f**i*<=≤<=1000) — the quantities of pieces in the puzzles sold in the shop.
Output Specification:
Print a single integer — the least possible difference the teacher can obtain.
Demo Input:
['4 6\n10 12 10 7 5 22\n']
Demo Output:
['5\n']
Note:
Sample 1. The class has 4 students. The shop sells 6 puzzles. If Ms. Manana buys the first four puzzles consisting of 10, 12, 10 and 7 pieces correspondingly, then the difference between the sizes of the largest and the smallest puzzle will be equal to 5. It is impossible to obtain a smaller difference. Note that the teacher can also buy puzzles 1, 3, 4 and 5 to obtain the difference 5.
|
```python
n,m=[int(i) for i in input().split()]
f=[int(i) for i in input().split()]
f.sort()
l=[]
for j in range(m-n+1):
z=f[n+j-1]-f[j]
l.append(z)
print(min(l))
```
| 3
|
|
913
|
A
|
Modular Exponentiation
|
PROGRAMMING
| 900
|
[
"implementation",
"math"
] | null | null |
The following problem is well-known: given integers *n* and *m*, calculate
where 2*n*<==<=2·2·...·2 (*n* factors), and denotes the remainder of division of *x* by *y*.
You are asked to solve the "reverse" problem. Given integers *n* and *m*, calculate
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=108).
The second line contains a single integer *m* (1<=≤<=*m*<=≤<=108).
|
Output a single integer — the value of .
|
[
"4\n42\n",
"1\n58\n",
"98765432\n23456789\n"
] |
[
"10\n",
"0\n",
"23456789\n"
] |
In the first example, the remainder of division of 42 by 2<sup class="upper-index">4</sup> = 16 is equal to 10.
In the second example, 58 is divisible by 2<sup class="upper-index">1</sup> = 2 without remainder, and the answer is 0.
| 500
|
[
{
"input": "4\n42",
"output": "10"
},
{
"input": "1\n58",
"output": "0"
},
{
"input": "98765432\n23456789",
"output": "23456789"
},
{
"input": "8\n88127381",
"output": "149"
},
{
"input": "32\n92831989",
"output": "92831989"
},
{
"input": "92831989\n25",
"output": "25"
},
{
"input": "100000000\n100000000",
"output": "100000000"
},
{
"input": "7\n1234",
"output": "82"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "1\n100000000",
"output": "0"
},
{
"input": "100000000\n1",
"output": "1"
},
{
"input": "1\n2",
"output": "0"
},
{
"input": "2\n1",
"output": "1"
},
{
"input": "2\n2",
"output": "2"
},
{
"input": "2\n3",
"output": "3"
},
{
"input": "2\n4",
"output": "0"
},
{
"input": "2\n5",
"output": "1"
},
{
"input": "25\n33554432",
"output": "0"
},
{
"input": "26\n33554432",
"output": "33554432"
},
{
"input": "25\n67108864",
"output": "0"
},
{
"input": "26\n67108864",
"output": "0"
},
{
"input": "25\n92831989",
"output": "25723125"
},
{
"input": "26\n92831989",
"output": "25723125"
},
{
"input": "27\n92831989",
"output": "92831989"
},
{
"input": "29\n92831989",
"output": "92831989"
},
{
"input": "30\n92831989",
"output": "92831989"
},
{
"input": "31\n92831989",
"output": "92831989"
},
{
"input": "99812399\n93172892",
"output": "93172892"
},
{
"input": "67108864\n12345678",
"output": "12345678"
},
{
"input": "3\n98391849",
"output": "1"
},
{
"input": "13\n1231232",
"output": "2432"
},
{
"input": "18\n9842194",
"output": "142866"
},
{
"input": "24\n71237177",
"output": "4128313"
},
{
"input": "11\n65535",
"output": "2047"
},
{
"input": "11\n65536",
"output": "0"
},
{
"input": "12\n123",
"output": "123"
},
{
"input": "123456\n12",
"output": "12"
},
{
"input": "88\n888",
"output": "888"
},
{
"input": "888\n88",
"output": "88"
},
{
"input": "8888\n8888",
"output": "8888"
},
{
"input": "64\n128",
"output": "128"
},
{
"input": "128\n64",
"output": "64"
},
{
"input": "60\n9999999",
"output": "9999999"
},
{
"input": "200\n100000",
"output": "100000"
},
{
"input": "3\n8",
"output": "0"
},
{
"input": "10000000\n25024886",
"output": "25024886"
},
{
"input": "100\n100000",
"output": "100000"
},
{
"input": "99999999\n100000000",
"output": "100000000"
},
{
"input": "70\n12345678",
"output": "12345678"
}
] | 1,699,505,018
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 49
| 546
| 47,001,600
|
# Read integers n and m from standard input
n = int(input())
m = int(input())
# Calculate 2^n
power_of_two = 2 ** n
# Calculate m mod 2^n
result = m % power_of_two
# Output the result
print(result)
|
Title: Modular Exponentiation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The following problem is well-known: given integers *n* and *m*, calculate
where 2*n*<==<=2·2·...·2 (*n* factors), and denotes the remainder of division of *x* by *y*.
You are asked to solve the "reverse" problem. Given integers *n* and *m*, calculate
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=108).
The second line contains a single integer *m* (1<=≤<=*m*<=≤<=108).
Output Specification:
Output a single integer — the value of .
Demo Input:
['4\n42\n', '1\n58\n', '98765432\n23456789\n']
Demo Output:
['10\n', '0\n', '23456789\n']
Note:
In the first example, the remainder of division of 42 by 2<sup class="upper-index">4</sup> = 16 is equal to 10.
In the second example, 58 is divisible by 2<sup class="upper-index">1</sup> = 2 without remainder, and the answer is 0.
|
```python
# Read integers n and m from standard input
n = int(input())
m = int(input())
# Calculate 2^n
power_of_two = 2 ** n
# Calculate m mod 2^n
result = m % power_of_two
# Output the result
print(result)
```
| 3
|
|
659
|
D
|
Bicycle Race
|
PROGRAMMING
| 1,500
|
[
"geometry",
"implementation",
"math"
] | null | null |
Maria participates in a bicycle race.
The speedway takes place on the shores of Lake Lucerne, just repeating its contour. As you know, the lake shore consists only of straight sections, directed to the north, south, east or west.
Let's introduce a system of coordinates, directing the *Ox* axis from west to east, and the *Oy* axis from south to north. As a starting position of the race the southernmost point of the track is selected (and if there are several such points, the most western among them). The participants start the race, moving to the north. At all straight sections of the track, the participants travel in one of the four directions (north, south, east or west) and change the direction of movement only in bends between the straight sections. The participants, of course, never turn back, that is, they do not change the direction of movement from north to south or from east to west (or vice versa).
Maria is still young, so she does not feel confident at some turns. Namely, Maria feels insecure if at a failed or untimely turn, she gets into the water. In other words, Maria considers the turn dangerous if she immediately gets into the water if it is ignored.
Help Maria get ready for the competition — determine the number of dangerous turns on the track.
|
The first line of the input contains an integer *n* (4<=≤<=*n*<=≤<=1000) — the number of straight sections of the track.
The following (*n*<=+<=1)-th line contains pairs of integers (*x**i*,<=*y**i*) (<=-<=10<=000<=≤<=*x**i*,<=*y**i*<=≤<=10<=000). The first of these points is the starting position. The *i*-th straight section of the track begins at the point (*x**i*,<=*y**i*) and ends at the point (*x**i*<=+<=1,<=*y**i*<=+<=1).
It is guaranteed that:
- the first straight section is directed to the north; - the southernmost (and if there are several, then the most western of among them) point of the track is the first point; - the last point coincides with the first one (i.e., the start position); - any pair of straight sections of the track has no shared points (except for the neighboring ones, they share exactly one point); - no pair of points (except for the first and last one) is the same; - no two adjacent straight sections are directed in the same direction or in opposite directions.
|
Print a single integer — the number of dangerous turns on the track.
|
[
"6\n0 0\n0 1\n1 1\n1 2\n2 2\n2 0\n0 0\n",
"16\n1 1\n1 5\n3 5\n3 7\n2 7\n2 9\n6 9\n6 7\n5 7\n5 3\n4 3\n4 4\n3 4\n3 2\n5 2\n5 1\n1 1\n"
] |
[
"1\n",
"6\n"
] |
The first sample corresponds to the picture:
The picture shows that you can get in the water under unfortunate circumstances only at turn at the point (1, 1). Thus, the answer is 1.
| 1,250
|
[
{
"input": "6\n0 0\n0 1\n1 1\n1 2\n2 2\n2 0\n0 0",
"output": "1"
},
{
"input": "16\n1 1\n1 5\n3 5\n3 7\n2 7\n2 9\n6 9\n6 7\n5 7\n5 3\n4 3\n4 4\n3 4\n3 2\n5 2\n5 1\n1 1",
"output": "6"
},
{
"input": "4\n-10000 -10000\n-10000 10000\n10000 10000\n10000 -10000\n-10000 -10000",
"output": "0"
},
{
"input": "4\n6 8\n6 9\n7 9\n7 8\n6 8",
"output": "0"
},
{
"input": "8\n-10000 -10000\n-10000 5000\n0 5000\n0 10000\n10000 10000\n10000 0\n0 0\n0 -10000\n-10000 -10000",
"output": "2"
},
{
"input": "20\n-4286 -10000\n-4286 -7778\n-7143 -7778\n-7143 -3334\n-10000 -3334\n-10000 1110\n-4286 1110\n-4286 -3334\n4285 -3334\n4285 -1112\n7142 -1112\n7142 3332\n4285 3332\n4285 9998\n9999 9998\n9999 -3334\n7142 -3334\n7142 -5556\n-1429 -5556\n-1429 -10000\n-4286 -10000",
"output": "8"
},
{
"input": "24\n-10000 -10000\n-10000 9998\n9998 9998\n9998 -10000\n-6364 -10000\n-6364 6362\n6362 6362\n6362 -6364\n-2728 -6364\n-2728 2726\n2726 2726\n2726 -910\n908 -910\n908 908\n-910 908\n-910 -4546\n4544 -4546\n4544 4544\n-4546 4544\n-4546 -8182\n8180 -8182\n8180 8180\n-8182 8180\n-8182 -10000\n-10000 -10000",
"output": "10"
},
{
"input": "12\n-10000 -10000\n-10000 10000\n10000 10000\n10000 6000\n-6000 6000\n-6000 2000\n10000 2000\n10000 -2000\n-6000 -2000\n-6000 -6000\n10000 -6000\n10000 -10000\n-10000 -10000",
"output": "4"
},
{
"input": "12\n-10000 -10000\n-10000 10000\n10000 10000\n10000 6000\n-9800 6000\n-9800 2000\n10000 2000\n10000 -2000\n-9800 -2000\n-9800 -6000\n10000 -6000\n10000 -10000\n-10000 -10000",
"output": "4"
},
{
"input": "4\n0 0\n0 10000\n10000 10000\n10000 0\n0 0",
"output": "0"
},
{
"input": "4\n-10000 -10000\n-10000 10000\n10000 10000\n10000 -10000\n-10000 -10000",
"output": "0"
}
] | 1,609,661,445
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 22
| 155
| 0
|
n = int(input())
print((n-4) // 2)
# source code nya kependekan jadi ditambahin comment apa aja deh
|
Title: Bicycle Race
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Maria participates in a bicycle race.
The speedway takes place on the shores of Lake Lucerne, just repeating its contour. As you know, the lake shore consists only of straight sections, directed to the north, south, east or west.
Let's introduce a system of coordinates, directing the *Ox* axis from west to east, and the *Oy* axis from south to north. As a starting position of the race the southernmost point of the track is selected (and if there are several such points, the most western among them). The participants start the race, moving to the north. At all straight sections of the track, the participants travel in one of the four directions (north, south, east or west) and change the direction of movement only in bends between the straight sections. The participants, of course, never turn back, that is, they do not change the direction of movement from north to south or from east to west (or vice versa).
Maria is still young, so she does not feel confident at some turns. Namely, Maria feels insecure if at a failed or untimely turn, she gets into the water. In other words, Maria considers the turn dangerous if she immediately gets into the water if it is ignored.
Help Maria get ready for the competition — determine the number of dangerous turns on the track.
Input Specification:
The first line of the input contains an integer *n* (4<=≤<=*n*<=≤<=1000) — the number of straight sections of the track.
The following (*n*<=+<=1)-th line contains pairs of integers (*x**i*,<=*y**i*) (<=-<=10<=000<=≤<=*x**i*,<=*y**i*<=≤<=10<=000). The first of these points is the starting position. The *i*-th straight section of the track begins at the point (*x**i*,<=*y**i*) and ends at the point (*x**i*<=+<=1,<=*y**i*<=+<=1).
It is guaranteed that:
- the first straight section is directed to the north; - the southernmost (and if there are several, then the most western of among them) point of the track is the first point; - the last point coincides with the first one (i.e., the start position); - any pair of straight sections of the track has no shared points (except for the neighboring ones, they share exactly one point); - no pair of points (except for the first and last one) is the same; - no two adjacent straight sections are directed in the same direction or in opposite directions.
Output Specification:
Print a single integer — the number of dangerous turns on the track.
Demo Input:
['6\n0 0\n0 1\n1 1\n1 2\n2 2\n2 0\n0 0\n', '16\n1 1\n1 5\n3 5\n3 7\n2 7\n2 9\n6 9\n6 7\n5 7\n5 3\n4 3\n4 4\n3 4\n3 2\n5 2\n5 1\n1 1\n']
Demo Output:
['1\n', '6\n']
Note:
The first sample corresponds to the picture:
The picture shows that you can get in the water under unfortunate circumstances only at turn at the point (1, 1). Thus, the answer is 1.
|
```python
n = int(input())
print((n-4) // 2)
# source code nya kependekan jadi ditambahin comment apa aja deh
```
| 3
|
|
430
|
B
|
Balls Game
|
PROGRAMMING
| 1,400
|
[
"brute force",
"two pointers"
] | null | null |
Iahub is training for the IOI. What is a better way to train than playing a Zuma-like game?
There are *n* balls put in a row. Each ball is colored in one of *k* colors. Initially the row doesn't contain three or more contiguous balls with the same color. Iahub has a single ball of color *x*. He can insert his ball at any position in the row (probably, between two other balls). If at any moment there are three or more contiguous balls of the same color in the row, they are destroyed immediately. This rule is applied multiple times, until there are no more sets of 3 or more contiguous balls of the same color.
For example, if Iahub has the row of balls [black, black, white, white, black, black] and a white ball, he can insert the ball between two white balls. Thus three white balls are destroyed, and then four black balls become contiguous, so all four balls are destroyed. The row will not contain any ball in the end, so Iahub can destroy all 6 balls.
Iahub wants to destroy as many balls as possible. You are given the description of the row of balls, and the color of Iahub's ball. Help Iahub train for the IOI by telling him the maximum number of balls from the row he can destroy.
|
The first line of input contains three integers: *n* (1<=≤<=*n*<=≤<=100), *k* (1<=≤<=*k*<=≤<=100) and *x* (1<=≤<=*x*<=≤<=*k*). The next line contains *n* space-separated integers *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=*k*). Number *c**i* means that the *i*-th ball in the row has color *c**i*.
It is guaranteed that the initial row of balls will never contain three or more contiguous balls of the same color.
|
Print a single integer — the maximum number of balls Iahub can destroy.
|
[
"6 2 2\n1 1 2 2 1 1\n",
"1 1 1\n1\n"
] |
[
"6\n",
"0\n"
] |
none
| 1,000
|
[
{
"input": "6 2 2\n1 1 2 2 1 1",
"output": "6"
},
{
"input": "1 1 1\n1",
"output": "0"
},
{
"input": "10 2 1\n2 1 2 2 1 2 2 1 1 2",
"output": "5"
},
{
"input": "50 2 1\n1 1 2 2 1 2 1 1 2 2 1 2 1 2 1 1 2 2 1 2 1 2 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 2 1 2 1 1 2 1 1 2 2 1 1 2",
"output": "15"
},
{
"input": "75 5 5\n1 1 5 5 3 5 2 3 3 2 2 1 1 5 4 4 3 4 5 4 3 3 1 2 2 1 2 1 2 5 5 2 1 3 2 2 3 1 2 1 1 5 5 1 1 2 1 1 2 2 5 2 2 1 1 2 1 2 1 1 3 3 5 4 4 3 3 4 4 5 5 1 1 2 2",
"output": "6"
},
{
"input": "100 3 2\n1 1 2 3 1 3 2 1 1 3 3 2 2 1 1 2 2 1 1 3 2 2 3 2 3 2 2 3 3 1 1 2 2 1 2 2 1 3 3 1 3 3 1 2 1 2 2 1 2 3 2 1 1 2 1 1 3 3 1 3 3 1 1 2 2 1 1 2 1 3 2 2 3 2 2 3 3 1 2 1 2 2 1 1 2 3 1 3 3 1 2 3 2 2 1 3 2 2 3 3",
"output": "6"
},
{
"input": "100 2 1\n2 2 1 2 1 2 1 2 2 1 1 2 1 1 2 1 1 2 2 1 1 2 1 1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 2 1 1 2 1 2 2 1 2 1 2 1 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 1 2 1 2 2 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 2 1 2 2 1 1 2 1",
"output": "15"
},
{
"input": "100 2 2\n1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 2 1 1 2 1 1 2 2 1 1 2 1 2 2 1 2 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 1 2 1 1 2 2 1 1 2 2 1 2 1 2 1 2 1 2 2 1 2 1 2 2 1 1 2 1 2 2 1 1 2 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 2 1 2 2",
"output": "14"
},
{
"input": "100 2 2\n1 2 1 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 1 2 1 1 2 1 1 2 1 2 2 1 1 2 2 1 1 2 1 2 2 1 1 2 1 2 1 2 2 1 2 2 1 1 2 1 2 2 1 2 2 1 2 1 1 2 1 2 2 1 2 2 1 2 1 2 1 2 1 1 2 2 1 1 2 2",
"output": "17"
},
{
"input": "100 2 2\n2 1 1 2 2 1 1 2 1 2 1 1 2 2 1 2 1 2 1 2 2 1 2 1 1 2 1 2 1 2 1 2 1 1 2 2 1 1 2 1 1 2 1 2 2 1 1 2 1 2 1 1 2 2 1 1 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 2 1 2 1 2 1 1 2 1 1 2 2 1 2 1 2 2 1 2 2 1 1 2 1 2 2 1 2 2",
"output": "17"
},
{
"input": "100 2 2\n1 2 2 1 2 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 2 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 2 2 1 1 2 2 1 1 2 1 1 2 2 1 2 1 2 1 2 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 2 1 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 1 2 2 1 2 1 2 1 2 1",
"output": "28"
},
{
"input": "100 2 2\n1 1 2 1 2 1 1 2 1 2 1 2 2 1 2 1 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 2 2 1 2 1 2 1 1 2 1 2 1 1 2 2 1 1 2 1 2 1 2 1 2 1 2 2 1 1 2 1 2 2 1 2 1 1 2 1 1 2 1 2 1 2 1 1 2 1 2 2 1 2 1 2 2 1 1 2 1 2 2 1 1 2 2",
"output": "8"
},
{
"input": "100 100 50\n15 44 5 7 75 40 52 82 78 90 48 32 16 53 69 2 21 84 7 21 21 87 29 8 42 54 10 21 38 55 54 88 48 63 3 17 45 82 82 91 7 11 11 24 24 79 1 32 32 38 41 41 4 4 74 17 26 26 96 96 3 3 50 50 96 26 26 17 17 74 74 4 41 38 38 32 1 1 79 79 24 11 11 7 7 91 91 82 45 45 97 9 74 60 32 91 61 64 100 26",
"output": "2"
},
{
"input": "100 50 22\n15 2 18 15 48 35 46 33 32 39 39 5 5 27 27 50 50 47 47 10 10 6 3 3 7 8 7 17 17 29 14 10 10 46 13 13 31 32 31 22 22 32 31 31 32 13 13 46 46 10 10 14 14 29 29 17 7 7 8 3 6 6 10 47 50 50 27 5 5 39 39 21 47 4 40 47 21 28 21 21 40 27 34 17 3 36 5 7 21 14 25 49 40 34 32 13 23 29 2 4",
"output": "2"
},
{
"input": "100 3 3\n3 1 1 2 1 1 3 1 3 3 1 3 3 1 2 1 1 2 2 3 3 2 3 2 2 3 1 3 3 2 2 1 3 3 2 2 1 2 3 3 1 3 1 3 1 2 2 1 2 1 2 3 1 3 1 3 2 1 3 2 3 3 2 3 2 3 1 3 2 2 1 2 1 2 1 1 3 1 3 1 2 1 2 1 2 3 2 2 3 3 2 2 3 2 2 3 1 1 2 3",
"output": "6"
},
{
"input": "100 100 100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100",
"output": "0"
},
{
"input": "100 2 2\n1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2",
"output": "98"
},
{
"input": "6 20 10\n10 2 10 10 2 2",
"output": "5"
}
] | 1,566,845,995
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 18
| 140
| 1,740,800
|
# @author Matheus Alves dos Santos
n_balls, n_colors, new_ball = map(int, input().split())
balls = list(map(int, input().split()))
answer = 0
for i in range(n_balls):
copy = balls[:]
copy.insert(i, new_ball)
while (len(copy) > 2):
size = len(copy)
for j in range(2, len(copy)):
if ((copy[j - 2] == copy[j - 1]) and (copy[j - 1] == copy[j])):
cut = j + 1
while (cut < len(copy)):
if (copy[j] != copy[cut]):
break
cut += 1
copy = (copy[:j - 2] + copy[cut:])
break
if (len(copy) == size):
break
answer = max(answer, n_balls - len(copy))
print(answer)
|
Title: Balls Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Iahub is training for the IOI. What is a better way to train than playing a Zuma-like game?
There are *n* balls put in a row. Each ball is colored in one of *k* colors. Initially the row doesn't contain three or more contiguous balls with the same color. Iahub has a single ball of color *x*. He can insert his ball at any position in the row (probably, between two other balls). If at any moment there are three or more contiguous balls of the same color in the row, they are destroyed immediately. This rule is applied multiple times, until there are no more sets of 3 or more contiguous balls of the same color.
For example, if Iahub has the row of balls [black, black, white, white, black, black] and a white ball, he can insert the ball between two white balls. Thus three white balls are destroyed, and then four black balls become contiguous, so all four balls are destroyed. The row will not contain any ball in the end, so Iahub can destroy all 6 balls.
Iahub wants to destroy as many balls as possible. You are given the description of the row of balls, and the color of Iahub's ball. Help Iahub train for the IOI by telling him the maximum number of balls from the row he can destroy.
Input Specification:
The first line of input contains three integers: *n* (1<=≤<=*n*<=≤<=100), *k* (1<=≤<=*k*<=≤<=100) and *x* (1<=≤<=*x*<=≤<=*k*). The next line contains *n* space-separated integers *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=*k*). Number *c**i* means that the *i*-th ball in the row has color *c**i*.
It is guaranteed that the initial row of balls will never contain three or more contiguous balls of the same color.
Output Specification:
Print a single integer — the maximum number of balls Iahub can destroy.
Demo Input:
['6 2 2\n1 1 2 2 1 1\n', '1 1 1\n1\n']
Demo Output:
['6\n', '0\n']
Note:
none
|
```python
# @author Matheus Alves dos Santos
n_balls, n_colors, new_ball = map(int, input().split())
balls = list(map(int, input().split()))
answer = 0
for i in range(n_balls):
copy = balls[:]
copy.insert(i, new_ball)
while (len(copy) > 2):
size = len(copy)
for j in range(2, len(copy)):
if ((copy[j - 2] == copy[j - 1]) and (copy[j - 1] == copy[j])):
cut = j + 1
while (cut < len(copy)):
if (copy[j] != copy[cut]):
break
cut += 1
copy = (copy[:j - 2] + copy[cut:])
break
if (len(copy) == size):
break
answer = max(answer, n_balls - len(copy))
print(answer)
```
| 3
|
|
918
|
B
|
Radio Station
|
PROGRAMMING
| 900
|
[
"implementation",
"strings"
] | null | null |
As the guys fried the radio station facilities, the school principal gave them tasks as a punishment. Dustin's task was to add comments to nginx configuration for school's website. The school has *n* servers. Each server has a name and an ip (names aren't necessarily unique, but ips are). Dustin knows the ip and name of each server. For simplicity, we'll assume that an nginx command is of form "command ip;" where command is a string consisting of English lowercase letter only, and ip is the ip of one of school servers.
Each ip is of form "a.b.c.d" where *a*, *b*, *c* and *d* are non-negative integers less than or equal to 255 (with no leading zeros). The nginx configuration file Dustin has to add comments to has *m* commands. Nobody ever memorizes the ips of servers, so to understand the configuration better, Dustin has to comment the name of server that the ip belongs to at the end of each line (after each command). More formally, if a line is "command ip;" Dustin has to replace it with "command ip; #name" where name is the name of the server with ip equal to ip.
Dustin doesn't know anything about nginx, so he panicked again and his friends asked you to do his task for him.
|
The first line of input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1000).
The next *n* lines contain the names and ips of the servers. Each line contains a string name, name of the server and a string ip, ip of the server, separated by space (1<=≤<=|*name*|<=≤<=10, *name* only consists of English lowercase letters). It is guaranteed that all ip are distinct.
The next *m* lines contain the commands in the configuration file. Each line is of form "command ip;" (1<=≤<=|*command*|<=≤<=10, command only consists of English lowercase letters). It is guaranteed that ip belongs to one of the *n* school servers.
|
Print *m* lines, the commands in the configuration file after Dustin did his task.
|
[
"2 2\nmain 192.168.0.2\nreplica 192.168.0.1\nblock 192.168.0.1;\nproxy 192.168.0.2;\n",
"3 5\ngoogle 8.8.8.8\ncodeforces 212.193.33.27\nserver 138.197.64.57\nredirect 138.197.64.57;\nblock 8.8.8.8;\ncf 212.193.33.27;\nunblock 8.8.8.8;\ncheck 138.197.64.57;\n"
] |
[
"block 192.168.0.1; #replica\nproxy 192.168.0.2; #main\n",
"redirect 138.197.64.57; #server\nblock 8.8.8.8; #google\ncf 212.193.33.27; #codeforces\nunblock 8.8.8.8; #google\ncheck 138.197.64.57; #server\n"
] |
none
| 1,000
|
[
{
"input": "2 2\nmain 192.168.0.2\nreplica 192.168.0.1\nblock 192.168.0.1;\nproxy 192.168.0.2;",
"output": "block 192.168.0.1; #replica\nproxy 192.168.0.2; #main"
},
{
"input": "3 5\ngoogle 8.8.8.8\ncodeforces 212.193.33.27\nserver 138.197.64.57\nredirect 138.197.64.57;\nblock 8.8.8.8;\ncf 212.193.33.27;\nunblock 8.8.8.8;\ncheck 138.197.64.57;",
"output": "redirect 138.197.64.57; #server\nblock 8.8.8.8; #google\ncf 212.193.33.27; #codeforces\nunblock 8.8.8.8; #google\ncheck 138.197.64.57; #server"
},
{
"input": "10 10\nittmcs 112.147.123.173\njkt 228.40.73.178\nfwckqtz 88.28.31.198\nkal 224.226.34.213\nnacuyokm 49.57.13.44\nfouynv 243.18.250.17\ns 45.248.83.247\ne 75.69.23.169\nauwoqlch 100.44.219.187\nlkldjq 46.123.169.140\ngjcylatwzi 46.123.169.140;\ndxfi 88.28.31.198;\ngv 46.123.169.140;\nety 88.28.31.198;\notbmgcrn 46.123.169.140;\nw 112.147.123.173;\np 75.69.23.169;\nvdsnigk 46.123.169.140;\nmmc 46.123.169.140;\ngtc 49.57.13.44;",
"output": "gjcylatwzi 46.123.169.140; #lkldjq\ndxfi 88.28.31.198; #fwckqtz\ngv 46.123.169.140; #lkldjq\nety 88.28.31.198; #fwckqtz\notbmgcrn 46.123.169.140; #lkldjq\nw 112.147.123.173; #ittmcs\np 75.69.23.169; #e\nvdsnigk 46.123.169.140; #lkldjq\nmmc 46.123.169.140; #lkldjq\ngtc 49.57.13.44; #nacuyokm"
},
{
"input": "1 1\nervbfot 185.32.99.2\nzygoumbmx 185.32.99.2;",
"output": "zygoumbmx 185.32.99.2; #ervbfot"
},
{
"input": "1 2\ny 245.182.246.189\nlllq 245.182.246.189;\nxds 245.182.246.189;",
"output": "lllq 245.182.246.189; #y\nxds 245.182.246.189; #y"
},
{
"input": "2 1\ntdwmshz 203.115.124.110\neksckjya 201.80.191.212\nzbtjzzue 203.115.124.110;",
"output": "zbtjzzue 203.115.124.110; #tdwmshz"
},
{
"input": "8 5\nfhgkq 5.19.189.178\nphftablcr 75.18.177.178\nxnpcg 158.231.167.176\ncfahrkq 26.165.124.191\nfkgtnqtfoh 230.13.13.129\nt 101.24.94.85\nvjoirslx 59.6.179.72\ntwktmskb 38.194.117.184\nrvzzlygosc 26.165.124.191;\ndcsgxrkgv 101.24.94.85;\nyvmyppn 59.6.179.72;\ngpdjjuq 75.18.177.178;\nvdviz 101.24.94.85;",
"output": "rvzzlygosc 26.165.124.191; #cfahrkq\ndcsgxrkgv 101.24.94.85; #t\nyvmyppn 59.6.179.72; #vjoirslx\ngpdjjuq 75.18.177.178; #phftablcr\nvdviz 101.24.94.85; #t"
},
{
"input": "2 1\nmain 1.1.1.1\nget 11.1.1.1\ncommand 11.1.1.1;",
"output": "command 11.1.1.1; #get"
},
{
"input": "2 2\nmain 0.0.0.255\nmainn 0.0.2.55\nblock 0.0.0.255;\nblock 0.0.2.55;",
"output": "block 0.0.0.255; #main\nblock 0.0.2.55; #mainn"
},
{
"input": "2 2\nmain 0.0.63.0\nreplica 0.38.0.56\nblock 0.0.63.0;\nproxy 0.38.0.56;",
"output": "block 0.0.63.0; #main\nproxy 0.38.0.56; #replica"
},
{
"input": "2 2\nmain 192.168.10.12\nreplica 192.167.10.12\nblock 192.168.10.12;\nproxy 192.167.10.12;",
"output": "block 192.168.10.12; #main\nproxy 192.167.10.12; #replica"
},
{
"input": "2 1\nneserver 185.218.47.91\nserver 255.255.255.255\nblock 255.255.255.255;",
"output": "block 255.255.255.255; #server"
},
{
"input": "2 1\nalp 22.222.30.10\nbet 222.22.30.10\nblock 22.222.30.10;",
"output": "block 22.222.30.10; #alp"
}
] | 1,665,577,565
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 28
| 77
| 4,096,000
|
import sys
input = sys.stdin.readline
N,M = map(int,input().split())
servers = {}
for n in range(N):
name, ip = input().split()
servers[ip] = name
for m in range(M):
name,ip = input().split()
print(name,ip, "#"+servers[ip[:-1]])
|
Title: Radio Station
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
As the guys fried the radio station facilities, the school principal gave them tasks as a punishment. Dustin's task was to add comments to nginx configuration for school's website. The school has *n* servers. Each server has a name and an ip (names aren't necessarily unique, but ips are). Dustin knows the ip and name of each server. For simplicity, we'll assume that an nginx command is of form "command ip;" where command is a string consisting of English lowercase letter only, and ip is the ip of one of school servers.
Each ip is of form "a.b.c.d" where *a*, *b*, *c* and *d* are non-negative integers less than or equal to 255 (with no leading zeros). The nginx configuration file Dustin has to add comments to has *m* commands. Nobody ever memorizes the ips of servers, so to understand the configuration better, Dustin has to comment the name of server that the ip belongs to at the end of each line (after each command). More formally, if a line is "command ip;" Dustin has to replace it with "command ip; #name" where name is the name of the server with ip equal to ip.
Dustin doesn't know anything about nginx, so he panicked again and his friends asked you to do his task for him.
Input Specification:
The first line of input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1000).
The next *n* lines contain the names and ips of the servers. Each line contains a string name, name of the server and a string ip, ip of the server, separated by space (1<=≤<=|*name*|<=≤<=10, *name* only consists of English lowercase letters). It is guaranteed that all ip are distinct.
The next *m* lines contain the commands in the configuration file. Each line is of form "command ip;" (1<=≤<=|*command*|<=≤<=10, command only consists of English lowercase letters). It is guaranteed that ip belongs to one of the *n* school servers.
Output Specification:
Print *m* lines, the commands in the configuration file after Dustin did his task.
Demo Input:
['2 2\nmain 192.168.0.2\nreplica 192.168.0.1\nblock 192.168.0.1;\nproxy 192.168.0.2;\n', '3 5\ngoogle 8.8.8.8\ncodeforces 212.193.33.27\nserver 138.197.64.57\nredirect 138.197.64.57;\nblock 8.8.8.8;\ncf 212.193.33.27;\nunblock 8.8.8.8;\ncheck 138.197.64.57;\n']
Demo Output:
['block 192.168.0.1; #replica\nproxy 192.168.0.2; #main\n', 'redirect 138.197.64.57; #server\nblock 8.8.8.8; #google\ncf 212.193.33.27; #codeforces\nunblock 8.8.8.8; #google\ncheck 138.197.64.57; #server\n']
Note:
none
|
```python
import sys
input = sys.stdin.readline
N,M = map(int,input().split())
servers = {}
for n in range(N):
name, ip = input().split()
servers[ip] = name
for m in range(M):
name,ip = input().split()
print(name,ip, "#"+servers[ip[:-1]])
```
| 3
|
|
50
|
A
|
Domino piling
|
PROGRAMMING
| 800
|
[
"greedy",
"math"
] |
A. Domino piling
|
2
|
256
|
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
|
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
|
Output one number — the maximal number of dominoes, which can be placed.
|
[
"2 4\n",
"3 3\n"
] |
[
"4\n",
"4\n"
] |
none
| 500
|
[
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,663,308,427
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 62
| 0
|
l,b = map(int,input().split())
ds = 2*1
no_of_do = (l*b)//ds
print(no_of_do)
|
Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output Specification:
Output one number — the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none
|
```python
l,b = map(int,input().split())
ds = 2*1
no_of_do = (l*b)//ds
print(no_of_do)
```
| 3.9845
|
0
|
none
|
none
|
none
| 0
|
[
"none"
] | null | null |
Today Sonya learned about long integers and invited all her friends to share the fun. Sonya has an initially empty multiset with integers. Friends give her *t* queries, each of one of the following type:
1. <=+<= *a**i* — add non-negative integer *a**i* to the multiset. Note, that she has a multiset, thus there may be many occurrences of the same integer. 1. <=-<= *a**i* — delete a single occurrence of non-negative integer *a**i* from the multiset. It's guaranteed, that there is at least one *a**i* in the multiset. 1. ? *s* — count the number of integers in the multiset (with repetitions) that match some pattern *s* consisting of 0 and 1. In the pattern, 0 stands for the even digits, while 1 stands for the odd. Integer *x* matches the pattern *s*, if the parity of the *i*-th from the right digit in decimal notation matches the *i*-th from the right digit of the pattern. If the pattern is shorter than this integer, it's supplemented with 0-s from the left. Similarly, if the integer is shorter than the pattern its decimal notation is supplemented with the 0-s from the left.
For example, if the pattern is *s*<==<=010, than integers 92, 2212, 50 and 414 match the pattern, while integers 3, 110, 25 and 1030 do not.
|
The first line of the input contains an integer *t* (1<=≤<=*t*<=≤<=100<=000) — the number of operation Sonya has to perform.
Next *t* lines provide the descriptions of the queries in order they appear in the input file. The *i*-th row starts with a character *c**i* — the type of the corresponding operation. If *c**i* is equal to '+' or '-' then it's followed by a space and an integer *a**i* (0<=≤<=*a**i*<=<<=1018) given without leading zeroes (unless it's 0). If *c**i* equals '?' then it's followed by a space and a sequence of zeroes and onse, giving the pattern of length no more than 18.
It's guaranteed that there will be at least one query of type '?'.
It's guaranteed that any time some integer is removed from the multiset, there will be at least one occurrence of this integer in it.
|
For each query of the third type print the number of integers matching the given pattern. Each integer is counted as many times, as it appears in the multiset at this moment of time.
|
[
"12\n+ 1\n+ 241\n? 1\n+ 361\n- 241\n? 0101\n+ 101\n? 101\n- 101\n? 101\n+ 4000\n? 0\n",
"4\n+ 200\n+ 200\n- 200\n? 0\n"
] |
[
"2\n1\n2\n1\n1\n",
"1\n"
] |
Consider the integers matching the patterns from the queries of the third type. Queries are numbered in the order they appear in the input.
1. 1 and 241. 1. 361. 1. 101 and 361. 1. 361. 1. 4000.
| 0
|
[
{
"input": "12\n+ 1\n+ 241\n? 1\n+ 361\n- 241\n? 0101\n+ 101\n? 101\n- 101\n? 101\n+ 4000\n? 0",
"output": "2\n1\n2\n1\n1"
},
{
"input": "4\n+ 200\n+ 200\n- 200\n? 0",
"output": "1"
},
{
"input": "20\n+ 61\n+ 99\n+ 51\n+ 70\n+ 7\n+ 34\n+ 71\n+ 86\n+ 68\n+ 39\n+ 78\n+ 81\n+ 89\n? 10\n? 00\n? 10\n? 01\n? 01\n? 00\n? 00",
"output": "3\n2\n3\n4\n4\n2\n2"
},
{
"input": "20\n+ 13\n+ 50\n+ 9\n? 0\n+ 24\n? 0\n- 24\n? 0\n+ 79\n? 11\n- 13\n? 11\n- 50\n? 10\n? 1\n- 9\n? 1\n? 11\n- 79\n? 11",
"output": "0\n1\n0\n2\n1\n0\n1\n0\n1\n0"
},
{
"input": "10\n+ 870566619432760298\n+ 869797178280285214\n+ 609920823721618090\n+ 221159591436767023\n+ 730599542279836538\n? 101001100111001011\n? 001111010101010011\n? 100010100011101110\n? 100110010110001100\n? 110000011101110011",
"output": "0\n0\n0\n0\n0"
},
{
"input": "10\n+ 96135\n? 10111\n+ 63322\n? 10111\n+ 44490\n? 10111\n+ 69312\n? 10111\n? 01100\n+ 59396",
"output": "1\n1\n1\n1\n1"
},
{
"input": "10\n+ 2\n- 2\n+ 778\n+ 3\n+ 4\n- 4\n+ 1\n+ 617\n? 011\n? 011",
"output": "1\n1"
},
{
"input": "20\n+ 8\n+ 39532\n+ 813\n- 39532\n? 00011\n? 00000\n? 00011\n+ 70424\n- 8\n? 00011\n- 70424\n? 00011\n+ 29\n? 00001\n+ 6632\n+ 3319\n? 00001\n+ 3172\n? 01111\n- 29",
"output": "1\n1\n1\n1\n1\n1\n1\n1"
}
] | 1,618,651,997
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 37
| 670
| 4,096,000
|
def get_pattern_from_number(number):
pattern = ""
for i in number:
if i in '02468':
pattern += '0'
else:
pattern += '1'
return int(pattern)
storage = {}
for _ in range(int(input())):
query, number = input().split()
if query == "+":
pattern = get_pattern_from_number(number)
storage[pattern] = storage.get(pattern, 0) + 1
if query == "-":
pattern = get_pattern_from_number(number)
storage[pattern] = storage.get(pattern, 0) - 1
if query == "?":
print(storage.get(int(number), 0))
|
Title: none
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Today Sonya learned about long integers and invited all her friends to share the fun. Sonya has an initially empty multiset with integers. Friends give her *t* queries, each of one of the following type:
1. <=+<= *a**i* — add non-negative integer *a**i* to the multiset. Note, that she has a multiset, thus there may be many occurrences of the same integer. 1. <=-<= *a**i* — delete a single occurrence of non-negative integer *a**i* from the multiset. It's guaranteed, that there is at least one *a**i* in the multiset. 1. ? *s* — count the number of integers in the multiset (with repetitions) that match some pattern *s* consisting of 0 and 1. In the pattern, 0 stands for the even digits, while 1 stands for the odd. Integer *x* matches the pattern *s*, if the parity of the *i*-th from the right digit in decimal notation matches the *i*-th from the right digit of the pattern. If the pattern is shorter than this integer, it's supplemented with 0-s from the left. Similarly, if the integer is shorter than the pattern its decimal notation is supplemented with the 0-s from the left.
For example, if the pattern is *s*<==<=010, than integers 92, 2212, 50 and 414 match the pattern, while integers 3, 110, 25 and 1030 do not.
Input Specification:
The first line of the input contains an integer *t* (1<=≤<=*t*<=≤<=100<=000) — the number of operation Sonya has to perform.
Next *t* lines provide the descriptions of the queries in order they appear in the input file. The *i*-th row starts with a character *c**i* — the type of the corresponding operation. If *c**i* is equal to '+' or '-' then it's followed by a space and an integer *a**i* (0<=≤<=*a**i*<=<<=1018) given without leading zeroes (unless it's 0). If *c**i* equals '?' then it's followed by a space and a sequence of zeroes and onse, giving the pattern of length no more than 18.
It's guaranteed that there will be at least one query of type '?'.
It's guaranteed that any time some integer is removed from the multiset, there will be at least one occurrence of this integer in it.
Output Specification:
For each query of the third type print the number of integers matching the given pattern. Each integer is counted as many times, as it appears in the multiset at this moment of time.
Demo Input:
['12\n+ 1\n+ 241\n? 1\n+ 361\n- 241\n? 0101\n+ 101\n? 101\n- 101\n? 101\n+ 4000\n? 0\n', '4\n+ 200\n+ 200\n- 200\n? 0\n']
Demo Output:
['2\n1\n2\n1\n1\n', '1\n']
Note:
Consider the integers matching the patterns from the queries of the third type. Queries are numbered in the order they appear in the input.
1. 1 and 241. 1. 361. 1. 101 and 361. 1. 361. 1. 4000.
|
```python
def get_pattern_from_number(number):
pattern = ""
for i in number:
if i in '02468':
pattern += '0'
else:
pattern += '1'
return int(pattern)
storage = {}
for _ in range(int(input())):
query, number = input().split()
if query == "+":
pattern = get_pattern_from_number(number)
storage[pattern] = storage.get(pattern, 0) + 1
if query == "-":
pattern = get_pattern_from_number(number)
storage[pattern] = storage.get(pattern, 0) - 1
if query == "?":
print(storage.get(int(number), 0))
```
| 3
|
|
0
|
none
|
none
|
none
| 0
|
[
"none"
] | null | null |
This is an interactive problem.
You are given a sorted in increasing order singly linked list. You should find the minimum integer in the list which is greater than or equal to *x*.
More formally, there is a singly liked list built on an array of *n* elements. Element with index *i* contains two integers: *value**i* is the integer value in this element, and *next**i* that is the index of the next element of the singly linked list (or -1, if the current element is the last). The list is sorted, i.e. if *next**i*<=≠<=<=-<=1, then *value**next**i*<=><=*value**i*.
You are given the number of elements in the list *n*, the index of the first element *start*, and the integer *x*.
You can make up to 2000 queries of the following two types:
- ? i (1<=≤<=*i*<=≤<=*n*) — ask the values *value**i* and *next**i*, - ! ans — give the answer for the problem: the minimum integer, greater than or equal to *x*, or ! -1, if there are no such integers. Your program should terminate after this query.
Write a program that solves this problem.
|
The first line contains three integers *n*, *start*, *x* (1<=≤<=*n*<=≤<=50000, 1<=≤<=*start*<=≤<=*n*, 0<=≤<=*x*<=≤<=109) — the number of elements in the list, the index of the first element and the integer *x*.
|
To print the answer for the problem, print ! ans, where ans is the minimum integer in the list greater than or equal to *x*, or -1, if there is no such integer.
|
[
"5 3 80\n97 -1\n58 5\n16 2\n81 1\n79 4\n"
] |
[
"? 1\n? 2\n? 3\n? 4\n? 5\n! 81"
] |
You can read more about singly linked list by the following link: [https://en.wikipedia.org/wiki/Linked_list#Singly_linked_list](https://en.wikipedia.org/wiki/Linked_list#Singly_linked_list)
The illustration for the first sample case. Start and finish elements are marked dark. <img class="tex-graphics" src="https://espresso.codeforces.com/5202ec3b5e896b7db692ff7b80457c26cf6adb32.png" style="max-width: 100.0%;max-height: 100.0%;"/>
| 0
|
[
{
"input": "5 3 80\n97 -1\n58 5\n16 2\n81 1\n79 4",
"output": "81\n1003"
},
{
"input": "5 1 6\n1 2\n2 3\n3 4\n4 5\n5 -1",
"output": "-1\n1002"
},
{
"input": "1 1 0\n0 -1",
"output": "0\n2"
},
{
"input": "1 1 2\n0 -1",
"output": "-1\n1002"
},
{
"input": "1 1 1000000000\n0 -1",
"output": "-1\n1002"
},
{
"input": "5 3 3\n3 5\n2 1\n0 4\n1 2\n4 -1",
"output": "3\n1003"
},
{
"input": "5 3 145337745\n619347297 5\n344132479 1\n122841322 4\n169280018 2\n740666615 -1",
"output": "169280018\n1003"
},
{
"input": "5 3 315433300\n411188472 5\n316581280 1\n200698791 4\n314885421 2\n759386148 -1",
"output": "316581280\n1003"
},
{
"input": "5 3 381735506\n469559901 5\n359493082 1\n137017061 4\n202768106 2\n955698260 -1",
"output": "469559901\n1003"
},
{
"input": "5 3 587634055\n563214082 5\n404100743 1\n179733654 4\n236438578 2\n673892808 -1",
"output": "673892808\n1003"
},
{
"input": "5 3 974128233\n547205043 5\n318213550 1\n122625404 4\n184874700 2\n669820978 -1",
"output": "-1\n1002"
},
{
"input": "10 3 2\n3 9\n9 -1\n0 7\n6 8\n5 4\n8 2\n1 10\n7 6\n4 5\n2 1",
"output": "2\n1003"
},
{
"input": "10 3 632584719\n378382911 9\n978367651 -1\n176599346 7\n557138623 8\n441019502 4\n823417558 2\n244832688 10\n702148024 6\n385598339 5\n357778234 1",
"output": "702148024\n1003"
},
{
"input": "1 1 50\n60 -1",
"output": "60\n2"
},
{
"input": "5 1 100\n200 2\n300 3\n400 4\n500 5\n600 -1",
"output": "200\n2"
}
] | 1,503,598,031
| 5,531
|
Python 3
|
OK
|
TESTS
| 171
| 171
| 3,686,400
|
from sys import stdout
from random import Random
n, s, x = list(map(int, input().split()))
ans = 3 * 10 ** 9
asked = [False for i in range(n + 1)]
cache = [[] for i in range(n + 1)]
max_ask = 1999
t = 1750
def ask(i):
if asked[i]:
return cache[i]
asked[i] = True
print('?', i)
stdout.flush()
res = list(map(int, input().split()))
cache[i] = res
return res
f = ask(s)
cs = f[0]
r = Random()
for i in range(t):
y = r.randint(1, n)
if not asked[y]:
q = ask(y)
if q[0] >= x:
ans = min(ans, q[0])
elif cs < q[0] < x:
s = y
cs = q[0]
else:
i -= 1
for i in range(max_ask - t):
q = ask(s)
if q[0] >= x:
ans = min(ans, q[0])
s = q[1]
if s == -1:
break
if ans == 3 * 10 ** 9:
print('! -1')
else:
print('!', ans)
|
Title: none
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
This is an interactive problem.
You are given a sorted in increasing order singly linked list. You should find the minimum integer in the list which is greater than or equal to *x*.
More formally, there is a singly liked list built on an array of *n* elements. Element with index *i* contains two integers: *value**i* is the integer value in this element, and *next**i* that is the index of the next element of the singly linked list (or -1, if the current element is the last). The list is sorted, i.e. if *next**i*<=≠<=<=-<=1, then *value**next**i*<=><=*value**i*.
You are given the number of elements in the list *n*, the index of the first element *start*, and the integer *x*.
You can make up to 2000 queries of the following two types:
- ? i (1<=≤<=*i*<=≤<=*n*) — ask the values *value**i* and *next**i*, - ! ans — give the answer for the problem: the minimum integer, greater than or equal to *x*, or ! -1, if there are no such integers. Your program should terminate after this query.
Write a program that solves this problem.
Input Specification:
The first line contains three integers *n*, *start*, *x* (1<=≤<=*n*<=≤<=50000, 1<=≤<=*start*<=≤<=*n*, 0<=≤<=*x*<=≤<=109) — the number of elements in the list, the index of the first element and the integer *x*.
Output Specification:
To print the answer for the problem, print ! ans, where ans is the minimum integer in the list greater than or equal to *x*, or -1, if there is no such integer.
Demo Input:
['5 3 80\n97 -1\n58 5\n16 2\n81 1\n79 4\n']
Demo Output:
['? 1\n? 2\n? 3\n? 4\n? 5\n! 81']
Note:
You can read more about singly linked list by the following link: [https://en.wikipedia.org/wiki/Linked_list#Singly_linked_list](https://en.wikipedia.org/wiki/Linked_list#Singly_linked_list)
The illustration for the first sample case. Start and finish elements are marked dark. <img class="tex-graphics" src="https://espresso.codeforces.com/5202ec3b5e896b7db692ff7b80457c26cf6adb32.png" style="max-width: 100.0%;max-height: 100.0%;"/>
|
```python
from sys import stdout
from random import Random
n, s, x = list(map(int, input().split()))
ans = 3 * 10 ** 9
asked = [False for i in range(n + 1)]
cache = [[] for i in range(n + 1)]
max_ask = 1999
t = 1750
def ask(i):
if asked[i]:
return cache[i]
asked[i] = True
print('?', i)
stdout.flush()
res = list(map(int, input().split()))
cache[i] = res
return res
f = ask(s)
cs = f[0]
r = Random()
for i in range(t):
y = r.randint(1, n)
if not asked[y]:
q = ask(y)
if q[0] >= x:
ans = min(ans, q[0])
elif cs < q[0] < x:
s = y
cs = q[0]
else:
i -= 1
for i in range(max_ask - t):
q = ask(s)
if q[0] >= x:
ans = min(ans, q[0])
s = q[1]
if s == -1:
break
if ans == 3 * 10 ** 9:
print('! -1')
else:
print('!', ans)
```
| 3
|
|
560
|
A
|
Currency System in Geraldion
|
PROGRAMMING
| 1,000
|
[
"implementation",
"sortings"
] | null | null |
A magic island Geraldion, where Gerald lives, has its own currency system. It uses banknotes of several values. But the problem is, the system is not perfect and sometimes it happens that Geraldionians cannot express a certain sum of money with any set of banknotes. Of course, they can use any number of banknotes of each value. Such sum is called unfortunate. Gerald wondered: what is the minimum unfortunate sum?
|
The first line contains number *n* (1<=≤<=*n*<=≤<=1000) — the number of values of the banknotes that used in Geraldion.
The second line contains *n* distinct space-separated numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=106) — the values of the banknotes.
|
Print a single line — the minimum unfortunate sum. If there are no unfortunate sums, print <=-<=1.
|
[
"5\n1 2 3 4 5\n"
] |
[
"-1\n"
] |
none
| 500
|
[
{
"input": "5\n1 2 3 4 5",
"output": "-1"
},
{
"input": "1\n2",
"output": "1"
},
{
"input": "10\n371054 506438 397130 1 766759 208409 769264 549213 641270 771837",
"output": "-1"
},
{
"input": "10\n635370 154890 909382 220996 276501 716105 538714 140162 171960 271264",
"output": "1"
},
{
"input": "50\n110876 835020 859879 999908 712969 788264 287153 921820 330355 499311 209594 484829 296329 940051 174081 931503 1 780512 390075 97866 124255 950067 697612 244256 782385 789882 37608 82153 399889 598867 416717 377988 535636 511221 792568 683271 131077 290194 496712 330720 587436 563481 645817 942562 654093 980561 382937 48293 582608 116156",
"output": "-1"
},
{
"input": "50\n474421 421097 217233 156339 27075 733996 281778 863492 184707 956857 288561 70997 393786 337382 663642 131184 637 273801 799870 295017 392338 842567 161819 297705 102013 930684 375703 838048 154915 138503 629056 256591 893619 19263 787927 684541 320265 841090 421423 490879 394582 493952 619247 633202 612928 50907 276653 407819 489945 153173",
"output": "1"
},
{
"input": "1\n1",
"output": "-1"
},
{
"input": "1\n1000000",
"output": "1"
},
{
"input": "2\n3 2",
"output": "1"
},
{
"input": "2\n2 3",
"output": "1"
}
] | 1,437,593,724
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 3
| 62
| 0
|
n = int(input())
data = sorted(map(int, input().split()))
if data[0] == 1:
print(-1)
else:
print(data[0] - 1)
|
Title: Currency System in Geraldion
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A magic island Geraldion, where Gerald lives, has its own currency system. It uses banknotes of several values. But the problem is, the system is not perfect and sometimes it happens that Geraldionians cannot express a certain sum of money with any set of banknotes. Of course, they can use any number of banknotes of each value. Such sum is called unfortunate. Gerald wondered: what is the minimum unfortunate sum?
Input Specification:
The first line contains number *n* (1<=≤<=*n*<=≤<=1000) — the number of values of the banknotes that used in Geraldion.
The second line contains *n* distinct space-separated numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=106) — the values of the banknotes.
Output Specification:
Print a single line — the minimum unfortunate sum. If there are no unfortunate sums, print <=-<=1.
Demo Input:
['5\n1 2 3 4 5\n']
Demo Output:
['-1\n']
Note:
none
|
```python
n = int(input())
data = sorted(map(int, input().split()))
if data[0] == 1:
print(-1)
else:
print(data[0] - 1)
```
| 0
|
|
791
|
A
|
Bear and Big Brother
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Bear Limak wants to become the largest of bears, or at least to become larger than his brother Bob.
Right now, Limak and Bob weigh *a* and *b* respectively. It's guaranteed that Limak's weight is smaller than or equal to his brother's weight.
Limak eats a lot and his weight is tripled after every year, while Bob's weight is doubled after every year.
After how many full years will Limak become strictly larger (strictly heavier) than Bob?
|
The only line of the input contains two integers *a* and *b* (1<=≤<=*a*<=≤<=*b*<=≤<=10) — the weight of Limak and the weight of Bob respectively.
|
Print one integer, denoting the integer number of years after which Limak will become strictly larger than Bob.
|
[
"4 7\n",
"4 9\n",
"1 1\n"
] |
[
"2\n",
"3\n",
"1\n"
] |
In the first sample, Limak weighs 4 and Bob weighs 7 initially. After one year their weights are 4·3 = 12 and 7·2 = 14 respectively (one weight is tripled while the other one is doubled). Limak isn't larger than Bob yet. After the second year weights are 36 and 28, so the first weight is greater than the second one. Limak became larger than Bob after two years so you should print 2.
In the second sample, Limak's and Bob's weights in next years are: 12 and 18, then 36 and 36, and finally 108 and 72 (after three years). The answer is 3. Remember that Limak wants to be larger than Bob and he won't be satisfied with equal weights.
In the third sample, Limak becomes larger than Bob after the first year. Their weights will be 3 and 2 then.
| 500
|
[
{
"input": "4 7",
"output": "2"
},
{
"input": "4 9",
"output": "3"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "4 6",
"output": "2"
},
{
"input": "1 10",
"output": "6"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "1 2",
"output": "2"
},
{
"input": "1 3",
"output": "3"
},
{
"input": "1 4",
"output": "4"
},
{
"input": "1 5",
"output": "4"
},
{
"input": "1 6",
"output": "5"
},
{
"input": "1 7",
"output": "5"
},
{
"input": "1 8",
"output": "6"
},
{
"input": "1 9",
"output": "6"
},
{
"input": "1 10",
"output": "6"
},
{
"input": "2 2",
"output": "1"
},
{
"input": "2 3",
"output": "2"
},
{
"input": "2 4",
"output": "2"
},
{
"input": "2 5",
"output": "3"
},
{
"input": "2 6",
"output": "3"
},
{
"input": "2 7",
"output": "4"
},
{
"input": "2 8",
"output": "4"
},
{
"input": "2 9",
"output": "4"
},
{
"input": "2 10",
"output": "4"
},
{
"input": "3 3",
"output": "1"
},
{
"input": "3 4",
"output": "1"
},
{
"input": "3 5",
"output": "2"
},
{
"input": "3 6",
"output": "2"
},
{
"input": "3 7",
"output": "3"
},
{
"input": "3 8",
"output": "3"
},
{
"input": "3 9",
"output": "3"
},
{
"input": "3 10",
"output": "3"
},
{
"input": "4 4",
"output": "1"
},
{
"input": "4 5",
"output": "1"
},
{
"input": "4 6",
"output": "2"
},
{
"input": "4 7",
"output": "2"
},
{
"input": "4 8",
"output": "2"
},
{
"input": "4 9",
"output": "3"
},
{
"input": "4 10",
"output": "3"
},
{
"input": "5 5",
"output": "1"
},
{
"input": "5 6",
"output": "1"
},
{
"input": "5 7",
"output": "1"
},
{
"input": "5 8",
"output": "2"
},
{
"input": "5 9",
"output": "2"
},
{
"input": "5 10",
"output": "2"
},
{
"input": "6 6",
"output": "1"
},
{
"input": "6 7",
"output": "1"
},
{
"input": "6 8",
"output": "1"
},
{
"input": "6 9",
"output": "2"
},
{
"input": "6 10",
"output": "2"
},
{
"input": "7 7",
"output": "1"
},
{
"input": "7 8",
"output": "1"
},
{
"input": "7 9",
"output": "1"
},
{
"input": "7 10",
"output": "1"
},
{
"input": "8 8",
"output": "1"
},
{
"input": "8 9",
"output": "1"
},
{
"input": "8 10",
"output": "1"
},
{
"input": "9 9",
"output": "1"
},
{
"input": "9 10",
"output": "1"
},
{
"input": "10 10",
"output": "1"
},
{
"input": "10 10",
"output": "1"
},
{
"input": "1 2",
"output": "2"
}
] | 1,694,620,595
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 4
| 31
| 0
|
a,b=map(int,input().split())
print((b-a)//2+1)
|
Title: Bear and Big Brother
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Bear Limak wants to become the largest of bears, or at least to become larger than his brother Bob.
Right now, Limak and Bob weigh *a* and *b* respectively. It's guaranteed that Limak's weight is smaller than or equal to his brother's weight.
Limak eats a lot and his weight is tripled after every year, while Bob's weight is doubled after every year.
After how many full years will Limak become strictly larger (strictly heavier) than Bob?
Input Specification:
The only line of the input contains two integers *a* and *b* (1<=≤<=*a*<=≤<=*b*<=≤<=10) — the weight of Limak and the weight of Bob respectively.
Output Specification:
Print one integer, denoting the integer number of years after which Limak will become strictly larger than Bob.
Demo Input:
['4 7\n', '4 9\n', '1 1\n']
Demo Output:
['2\n', '3\n', '1\n']
Note:
In the first sample, Limak weighs 4 and Bob weighs 7 initially. After one year their weights are 4·3 = 12 and 7·2 = 14 respectively (one weight is tripled while the other one is doubled). Limak isn't larger than Bob yet. After the second year weights are 36 and 28, so the first weight is greater than the second one. Limak became larger than Bob after two years so you should print 2.
In the second sample, Limak's and Bob's weights in next years are: 12 and 18, then 36 and 36, and finally 108 and 72 (after three years). The answer is 3. Remember that Limak wants to be larger than Bob and he won't be satisfied with equal weights.
In the third sample, Limak becomes larger than Bob after the first year. Their weights will be 3 and 2 then.
|
```python
a,b=map(int,input().split())
print((b-a)//2+1)
```
| 0
|
|
762
|
A
|
k-th divisor
|
PROGRAMMING
| 1,400
|
[
"math",
"number theory"
] | null | null |
You are given two integers *n* and *k*. Find *k*-th smallest divisor of *n*, or report that it doesn't exist.
Divisor of *n* is any such natural number, that *n* can be divided by it without remainder.
|
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=1015, 1<=≤<=*k*<=≤<=109).
|
If *n* has less than *k* divisors, output -1.
Otherwise, output the *k*-th smallest divisor of *n*.
|
[
"4 2\n",
"5 3\n",
"12 5\n"
] |
[
"2\n",
"-1\n",
"6\n"
] |
In the first example, number 4 has three divisors: 1, 2 and 4. The second one is 2.
In the second example, number 5 has only two divisors: 1 and 5. The third divisor doesn't exist, so the answer is -1.
| 0
|
[
{
"input": "4 2",
"output": "2"
},
{
"input": "5 3",
"output": "-1"
},
{
"input": "12 5",
"output": "6"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "866421317361600 26880",
"output": "866421317361600"
},
{
"input": "866421317361600 26881",
"output": "-1"
},
{
"input": "1000000000000000 1000000000",
"output": "-1"
},
{
"input": "1000000000000000 100",
"output": "1953125"
},
{
"input": "1 2",
"output": "-1"
},
{
"input": "4 3",
"output": "4"
},
{
"input": "4 4",
"output": "-1"
},
{
"input": "9 3",
"output": "9"
},
{
"input": "21 3",
"output": "7"
},
{
"input": "67280421310721 1",
"output": "1"
},
{
"input": "6 3",
"output": "3"
},
{
"input": "3 3",
"output": "-1"
},
{
"input": "16 3",
"output": "4"
},
{
"input": "1 1000",
"output": "-1"
},
{
"input": "16 4",
"output": "8"
},
{
"input": "36 8",
"output": "18"
},
{
"input": "49 4",
"output": "-1"
},
{
"input": "9 4",
"output": "-1"
},
{
"input": "16 1",
"output": "1"
},
{
"input": "16 6",
"output": "-1"
},
{
"input": "16 5",
"output": "16"
},
{
"input": "25 4",
"output": "-1"
},
{
"input": "4010815561 2",
"output": "63331"
},
{
"input": "49 3",
"output": "49"
},
{
"input": "36 6",
"output": "9"
},
{
"input": "36 10",
"output": "-1"
},
{
"input": "25 3",
"output": "25"
},
{
"input": "22876792454961 28",
"output": "7625597484987"
},
{
"input": "1234 2",
"output": "2"
},
{
"input": "179458711 2",
"output": "179458711"
},
{
"input": "900104343024121 100000",
"output": "-1"
},
{
"input": "8 3",
"output": "4"
},
{
"input": "100 6",
"output": "20"
},
{
"input": "15500 26",
"output": "-1"
},
{
"input": "111111 1",
"output": "1"
},
{
"input": "100000000000000 200",
"output": "160000000000"
},
{
"input": "1000000000000 100",
"output": "6400000"
},
{
"input": "100 10",
"output": "-1"
},
{
"input": "1000000000039 2",
"output": "1000000000039"
},
{
"input": "64 5",
"output": "16"
},
{
"input": "999999961946176 33",
"output": "63245552"
},
{
"input": "376219076689 3",
"output": "376219076689"
},
{
"input": "999999961946176 63",
"output": "999999961946176"
},
{
"input": "1048576 12",
"output": "2048"
},
{
"input": "745 21",
"output": "-1"
},
{
"input": "748 6",
"output": "22"
},
{
"input": "999999961946176 50",
"output": "161082468097"
},
{
"input": "10 3",
"output": "5"
},
{
"input": "1099511627776 22",
"output": "2097152"
},
{
"input": "1000000007 100010",
"output": "-1"
},
{
"input": "3 1",
"output": "1"
},
{
"input": "100 8",
"output": "50"
},
{
"input": "100 7",
"output": "25"
},
{
"input": "7 2",
"output": "7"
},
{
"input": "999999961946176 64",
"output": "-1"
},
{
"input": "20 5",
"output": "10"
},
{
"input": "999999999999989 2",
"output": "999999999999989"
},
{
"input": "100000000000000 114",
"output": "10240000"
},
{
"input": "99999640000243 3",
"output": "9999991"
},
{
"input": "999998000001 566",
"output": "333332666667"
},
{
"input": "99999820000081 2",
"output": "9999991"
},
{
"input": "49000042000009 3",
"output": "49000042000009"
},
{
"input": "151491429961 4",
"output": "-1"
},
{
"input": "32416190071 2",
"output": "32416190071"
},
{
"input": "1000 8",
"output": "25"
},
{
"input": "1999967841 15",
"output": "1999967841"
},
{
"input": "26880 26880",
"output": "-1"
},
{
"input": "151491429961 3",
"output": "151491429961"
},
{
"input": "90000000000 300",
"output": "100000000"
},
{
"input": "98765004361 10",
"output": "-1"
},
{
"input": "15 2",
"output": "3"
},
{
"input": "16 2",
"output": "2"
},
{
"input": "1996 2",
"output": "2"
},
{
"input": "1997 2",
"output": "1997"
},
{
"input": "1999 2",
"output": "1999"
},
{
"input": "1998 2",
"output": "2"
},
{
"input": "1998 1",
"output": "1"
},
{
"input": "1998 7",
"output": "27"
},
{
"input": "1998 8",
"output": "37"
},
{
"input": "100000380000361 2",
"output": "10000019"
},
{
"input": "15 1",
"output": "1"
},
{
"input": "100000000000000 226",
"output": "-1"
},
{
"input": "844030857550613 517",
"output": "-1"
},
{
"input": "4567890 14",
"output": "430"
},
{
"input": "123123123 123123123",
"output": "-1"
},
{
"input": "24 4",
"output": "4"
},
{
"input": "999999993568952 17",
"output": "31622777"
},
{
"input": "99999999994190 9",
"output": "241656799"
},
{
"input": "999997874844049 4",
"output": "-1"
},
{
"input": "99999999999931 2",
"output": "99999999999931"
},
{
"input": "2 3",
"output": "-1"
},
{
"input": "67280421310721 2",
"output": "67280421310721"
}
] | 1,685,122,602
| 2,147,483,647
|
Python 3
|
COMPILATION_ERROR
|
TESTS
| 0
| 0
| 0
|
#include<bits/stdc++.h>
using namespace std;
#define ll long long int
#define endl '\n'
#define all(a) (a).begin(),(a).end()
#define MOD 1000000007
#define Faster ios_base::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define fraction(a) cout.unsetf(ios::floatfield); cout.precision(a); cout.setf(ios::fixed,ios::floatfield);
//....................... Debugger.........................................................
template < typename F, typename S >
ostream& operator << ( ostream& os, const pair< F, S > & p ) {
return os << "(" << p.first << ", " << p.second << ")";
}
template < typename T >
ostream &operator << ( ostream & os, const vector< T > &v ) {
os << "{";
for(auto it = v.begin(); it != v.end(); ++it) {
if( it != v.begin() ) os << ", ";
os << *it;
}
return os << "}";
}
template < typename T >
ostream &operator << ( ostream & os, const set< T > &v ) {
os << "[";
for(auto it = v.begin(); it != v.end(); ++it) {
if( it != v.begin() ) os << ", ";
os << *it;
}
return os << "]";
}
template < typename T >
ostream &operator << ( ostream & os, const multiset< T > &v ) {
os << "[";
for(auto it = v.begin(); it != v.end(); ++it) {
if( it != v.begin() ) os << ", ";
os << *it;
}
return os << "]";
}
template < typename F, typename S >
ostream &operator << ( ostream & os, const map< F, S > &v ) {
os << "[";
for(auto it = v.begin(); it != v.end(); ++it) {
if( it != v.begin() ) os << ", ";
os << it -> first << " = " << it -> second ;
}
return os << "]";
}
#define debug(args...) do {cerr << #args << " : "; faltu(args); } while(0)
void faltu () {
cerr << endl;
}
template <typename T>
void faltu( T a[], int n ) {
for(int i = 0; i < n; ++i) cerr << a[i] << ' ';
cerr << endl;
}
template <typename T, typename ... hello>
void faltu( T arg, const hello &... rest) {
cerr << arg << ' ';
faltu(rest...);
}
//...................................................................
const double PI = acos(-1);
const double eps = 1e-9;
const int Max = 100005;
int main()
{
long long int n, k;
scanf("%lld%lld", &n, &k);
vector<long long int> divisors;
long long int lim = sqrt(n);
for (int i = 1; i <= lim; i++) {
if (n % i == 0) {
divisors.push_back(i);
if (n / i != i) {
divisors.push_back(n / i);
}
}
}
sort(divisors.begin(), divisors.end());
if (k > static_cast<int>(divisors.size())) {
puts("-1");
} else {
printf("%lld\n", divisors[k - 1]);
}
return 0;
}
|
Title: k-th divisor
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given two integers *n* and *k*. Find *k*-th smallest divisor of *n*, or report that it doesn't exist.
Divisor of *n* is any such natural number, that *n* can be divided by it without remainder.
Input Specification:
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=1015, 1<=≤<=*k*<=≤<=109).
Output Specification:
If *n* has less than *k* divisors, output -1.
Otherwise, output the *k*-th smallest divisor of *n*.
Demo Input:
['4 2\n', '5 3\n', '12 5\n']
Demo Output:
['2\n', '-1\n', '6\n']
Note:
In the first example, number 4 has three divisors: 1, 2 and 4. The second one is 2.
In the second example, number 5 has only two divisors: 1 and 5. The third divisor doesn't exist, so the answer is -1.
|
```python
#include<bits/stdc++.h>
using namespace std;
#define ll long long int
#define endl '\n'
#define all(a) (a).begin(),(a).end()
#define MOD 1000000007
#define Faster ios_base::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define fraction(a) cout.unsetf(ios::floatfield); cout.precision(a); cout.setf(ios::fixed,ios::floatfield);
//....................... Debugger.........................................................
template < typename F, typename S >
ostream& operator << ( ostream& os, const pair< F, S > & p ) {
return os << "(" << p.first << ", " << p.second << ")";
}
template < typename T >
ostream &operator << ( ostream & os, const vector< T > &v ) {
os << "{";
for(auto it = v.begin(); it != v.end(); ++it) {
if( it != v.begin() ) os << ", ";
os << *it;
}
return os << "}";
}
template < typename T >
ostream &operator << ( ostream & os, const set< T > &v ) {
os << "[";
for(auto it = v.begin(); it != v.end(); ++it) {
if( it != v.begin() ) os << ", ";
os << *it;
}
return os << "]";
}
template < typename T >
ostream &operator << ( ostream & os, const multiset< T > &v ) {
os << "[";
for(auto it = v.begin(); it != v.end(); ++it) {
if( it != v.begin() ) os << ", ";
os << *it;
}
return os << "]";
}
template < typename F, typename S >
ostream &operator << ( ostream & os, const map< F, S > &v ) {
os << "[";
for(auto it = v.begin(); it != v.end(); ++it) {
if( it != v.begin() ) os << ", ";
os << it -> first << " = " << it -> second ;
}
return os << "]";
}
#define debug(args...) do {cerr << #args << " : "; faltu(args); } while(0)
void faltu () {
cerr << endl;
}
template <typename T>
void faltu( T a[], int n ) {
for(int i = 0; i < n; ++i) cerr << a[i] << ' ';
cerr << endl;
}
template <typename T, typename ... hello>
void faltu( T arg, const hello &... rest) {
cerr << arg << ' ';
faltu(rest...);
}
//...................................................................
const double PI = acos(-1);
const double eps = 1e-9;
const int Max = 100005;
int main()
{
long long int n, k;
scanf("%lld%lld", &n, &k);
vector<long long int> divisors;
long long int lim = sqrt(n);
for (int i = 1; i <= lim; i++) {
if (n % i == 0) {
divisors.push_back(i);
if (n / i != i) {
divisors.push_back(n / i);
}
}
}
sort(divisors.begin(), divisors.end());
if (k > static_cast<int>(divisors.size())) {
puts("-1");
} else {
printf("%lld\n", divisors[k - 1]);
}
return 0;
}
```
| -1
|
|
999
|
C
|
Alphabetic Removals
|
PROGRAMMING
| 1,200
|
[
"implementation"
] | null | null |
You are given a string $s$ consisting of $n$ lowercase Latin letters. Polycarp wants to remove exactly $k$ characters ($k \le n$) from the string $s$. Polycarp uses the following algorithm $k$ times:
- if there is at least one letter 'a', remove the leftmost occurrence and stop the algorithm, otherwise go to next item; - if there is at least one letter 'b', remove the leftmost occurrence and stop the algorithm, otherwise go to next item; - ... - remove the leftmost occurrence of the letter 'z' and stop the algorithm.
This algorithm removes a single letter from the string. Polycarp performs this algorithm exactly $k$ times, thus removing exactly $k$ characters.
Help Polycarp find the resulting string.
|
The first line of input contains two integers $n$ and $k$ ($1 \le k \le n \le 4 \cdot 10^5$) — the length of the string and the number of letters Polycarp will remove.
The second line contains the string $s$ consisting of $n$ lowercase Latin letters.
|
Print the string that will be obtained from $s$ after Polycarp removes exactly $k$ letters using the above algorithm $k$ times.
If the resulting string is empty, print nothing. It is allowed to print nothing or an empty line (line break).
|
[
"15 3\ncccaabababaccbc\n",
"15 9\ncccaabababaccbc\n",
"1 1\nu\n"
] |
[
"cccbbabaccbc\n",
"cccccc\n",
""
] |
none
| 0
|
[
{
"input": "15 3\ncccaabababaccbc",
"output": "cccbbabaccbc"
},
{
"input": "15 9\ncccaabababaccbc",
"output": "cccccc"
},
{
"input": "5 2\nzyzyx",
"output": "zzy"
},
{
"input": "4 3\nhack",
"output": "k"
},
{
"input": "4 3\nzzzz",
"output": "z"
},
{
"input": "6 5\naaccdd",
"output": "d"
},
{
"input": "2 1\nzz",
"output": "z"
},
{
"input": "14 5\nhxehmvkybeklnj",
"output": "xmvkyklnj"
}
] | 1,621,683,433
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 44
| 452
| 4,608,000
|
number_of_testcases = 1 #int(input())
for _ in range(number_of_testcases):
len_of_given_str, num_of_letters_to_be_removed = map(int, input().split())
given_str = input()
freq_of_alpha = [0 for i in range(26)]
for char in given_str:
freq_of_alpha[ord(char)-97] += 1
#print(freq_of_alpha)
for i in range(26):
if freq_of_alpha[i] >= num_of_letters_to_be_removed:
freq_of_alpha[i] -= num_of_letters_to_be_removed
break
else:
num_of_letters_to_be_removed -= freq_of_alpha[i]
freq_of_alpha[i] = 0
#print(freq_of_alpha)
resulting_str = []
for char in range(len_of_given_str-1, -1, -1):
char = given_str[char]
if freq_of_alpha[ord(char) - 97]:
resulting_str.append(char)
freq_of_alpha[ord(char) - 97] -= 1
#print(freq_of_alpha)
# print(resulting_str)
resulting_str.reverse()
print("".join(resulting_str))
|
Title: Alphabetic Removals
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given a string $s$ consisting of $n$ lowercase Latin letters. Polycarp wants to remove exactly $k$ characters ($k \le n$) from the string $s$. Polycarp uses the following algorithm $k$ times:
- if there is at least one letter 'a', remove the leftmost occurrence and stop the algorithm, otherwise go to next item; - if there is at least one letter 'b', remove the leftmost occurrence and stop the algorithm, otherwise go to next item; - ... - remove the leftmost occurrence of the letter 'z' and stop the algorithm.
This algorithm removes a single letter from the string. Polycarp performs this algorithm exactly $k$ times, thus removing exactly $k$ characters.
Help Polycarp find the resulting string.
Input Specification:
The first line of input contains two integers $n$ and $k$ ($1 \le k \le n \le 4 \cdot 10^5$) — the length of the string and the number of letters Polycarp will remove.
The second line contains the string $s$ consisting of $n$ lowercase Latin letters.
Output Specification:
Print the string that will be obtained from $s$ after Polycarp removes exactly $k$ letters using the above algorithm $k$ times.
If the resulting string is empty, print nothing. It is allowed to print nothing or an empty line (line break).
Demo Input:
['15 3\ncccaabababaccbc\n', '15 9\ncccaabababaccbc\n', '1 1\nu\n']
Demo Output:
['cccbbabaccbc\n', 'cccccc\n', '']
Note:
none
|
```python
number_of_testcases = 1 #int(input())
for _ in range(number_of_testcases):
len_of_given_str, num_of_letters_to_be_removed = map(int, input().split())
given_str = input()
freq_of_alpha = [0 for i in range(26)]
for char in given_str:
freq_of_alpha[ord(char)-97] += 1
#print(freq_of_alpha)
for i in range(26):
if freq_of_alpha[i] >= num_of_letters_to_be_removed:
freq_of_alpha[i] -= num_of_letters_to_be_removed
break
else:
num_of_letters_to_be_removed -= freq_of_alpha[i]
freq_of_alpha[i] = 0
#print(freq_of_alpha)
resulting_str = []
for char in range(len_of_given_str-1, -1, -1):
char = given_str[char]
if freq_of_alpha[ord(char) - 97]:
resulting_str.append(char)
freq_of_alpha[ord(char) - 97] -= 1
#print(freq_of_alpha)
# print(resulting_str)
resulting_str.reverse()
print("".join(resulting_str))
```
| 3
|
|
610
|
A
|
Pasha and Stick
|
PROGRAMMING
| 1,000
|
[
"combinatorics",
"math"
] | null | null |
Pasha has a wooden stick of some positive integer length *n*. He wants to perform exactly three cuts to get four parts of the stick. Each part must have some positive integer length and the sum of these lengths will obviously be *n*.
Pasha likes rectangles but hates squares, so he wonders, how many ways are there to split a stick into four parts so that it's possible to form a rectangle using these parts, but is impossible to form a square.
Your task is to help Pasha and count the number of such ways. Two ways to cut the stick are considered distinct if there exists some integer *x*, such that the number of parts of length *x* in the first way differ from the number of parts of length *x* in the second way.
|
The first line of the input contains a positive integer *n* (1<=≤<=*n*<=≤<=2·109) — the length of Pasha's stick.
|
The output should contain a single integer — the number of ways to split Pasha's stick into four parts of positive integer length so that it's possible to make a rectangle by connecting the ends of these parts, but is impossible to form a square.
|
[
"6\n",
"20\n"
] |
[
"1\n",
"4\n"
] |
There is only one way to divide the stick in the first sample {1, 1, 2, 2}.
Four ways to divide the stick in the second sample are {1, 1, 9, 9}, {2, 2, 8, 8}, {3, 3, 7, 7} and {4, 4, 6, 6}. Note that {5, 5, 5, 5} doesn't work.
| 500
|
[
{
"input": "6",
"output": "1"
},
{
"input": "20",
"output": "4"
},
{
"input": "1",
"output": "0"
},
{
"input": "2",
"output": "0"
},
{
"input": "3",
"output": "0"
},
{
"input": "4",
"output": "0"
},
{
"input": "2000000000",
"output": "499999999"
},
{
"input": "1924704072",
"output": "481176017"
},
{
"input": "73740586",
"output": "18435146"
},
{
"input": "1925088820",
"output": "481272204"
},
{
"input": "593070992",
"output": "148267747"
},
{
"input": "1925473570",
"output": "481368392"
},
{
"input": "629490186",
"output": "157372546"
},
{
"input": "1980649112",
"output": "495162277"
},
{
"input": "36661322",
"output": "9165330"
},
{
"input": "1943590793",
"output": "0"
},
{
"input": "71207034",
"output": "17801758"
},
{
"input": "1757577394",
"output": "439394348"
},
{
"input": "168305294",
"output": "42076323"
},
{
"input": "1934896224",
"output": "483724055"
},
{
"input": "297149088",
"output": "74287271"
},
{
"input": "1898001634",
"output": "474500408"
},
{
"input": "176409698",
"output": "44102424"
},
{
"input": "1873025522",
"output": "468256380"
},
{
"input": "5714762",
"output": "1428690"
},
{
"input": "1829551192",
"output": "457387797"
},
{
"input": "16269438",
"output": "4067359"
},
{
"input": "1663283390",
"output": "415820847"
},
{
"input": "42549941",
"output": "0"
},
{
"input": "1967345604",
"output": "491836400"
},
{
"input": "854000",
"output": "213499"
},
{
"input": "1995886626",
"output": "498971656"
},
{
"input": "10330019",
"output": "0"
},
{
"input": "1996193634",
"output": "499048408"
},
{
"input": "9605180",
"output": "2401294"
},
{
"input": "1996459740",
"output": "499114934"
},
{
"input": "32691948",
"output": "8172986"
},
{
"input": "1975903308",
"output": "493975826"
},
{
"input": "1976637136",
"output": "494159283"
},
{
"input": "29803038",
"output": "7450759"
},
{
"input": "1977979692",
"output": "494494922"
},
{
"input": "1978595336",
"output": "494648833"
},
{
"input": "27379344",
"output": "6844835"
},
{
"input": "1979729912",
"output": "494932477"
},
{
"input": "1980253780",
"output": "495063444"
},
{
"input": "1980751584",
"output": "495187895"
},
{
"input": "53224878",
"output": "13306219"
},
{
"input": "5",
"output": "0"
},
{
"input": "7",
"output": "0"
},
{
"input": "8",
"output": "1"
},
{
"input": "9",
"output": "0"
},
{
"input": "10",
"output": "2"
},
{
"input": "11",
"output": "0"
},
{
"input": "12",
"output": "2"
},
{
"input": "13",
"output": "0"
},
{
"input": "14",
"output": "3"
},
{
"input": "15",
"output": "0"
},
{
"input": "16",
"output": "3"
},
{
"input": "17",
"output": "0"
},
{
"input": "18",
"output": "4"
},
{
"input": "19",
"output": "0"
},
{
"input": "21",
"output": "0"
},
{
"input": "22",
"output": "5"
},
{
"input": "23",
"output": "0"
},
{
"input": "24",
"output": "5"
},
{
"input": "25",
"output": "0"
},
{
"input": "26",
"output": "6"
},
{
"input": "27",
"output": "0"
},
{
"input": "28",
"output": "6"
},
{
"input": "29",
"output": "0"
},
{
"input": "30",
"output": "7"
},
{
"input": "111",
"output": "0"
},
{
"input": "55",
"output": "0"
},
{
"input": "105",
"output": "0"
},
{
"input": "199",
"output": "0"
},
{
"input": "151",
"output": "0"
}
] | 1,630,704,284
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 76
| 77
| 6,758,400
|
n = int(input())
if (n%2 != 0):
print("0")
elif(n%4 ==0):
print((n//4)-1)
else:
print((n//4))
|
Title: Pasha and Stick
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Pasha has a wooden stick of some positive integer length *n*. He wants to perform exactly three cuts to get four parts of the stick. Each part must have some positive integer length and the sum of these lengths will obviously be *n*.
Pasha likes rectangles but hates squares, so he wonders, how many ways are there to split a stick into four parts so that it's possible to form a rectangle using these parts, but is impossible to form a square.
Your task is to help Pasha and count the number of such ways. Two ways to cut the stick are considered distinct if there exists some integer *x*, such that the number of parts of length *x* in the first way differ from the number of parts of length *x* in the second way.
Input Specification:
The first line of the input contains a positive integer *n* (1<=≤<=*n*<=≤<=2·109) — the length of Pasha's stick.
Output Specification:
The output should contain a single integer — the number of ways to split Pasha's stick into four parts of positive integer length so that it's possible to make a rectangle by connecting the ends of these parts, but is impossible to form a square.
Demo Input:
['6\n', '20\n']
Demo Output:
['1\n', '4\n']
Note:
There is only one way to divide the stick in the first sample {1, 1, 2, 2}.
Four ways to divide the stick in the second sample are {1, 1, 9, 9}, {2, 2, 8, 8}, {3, 3, 7, 7} and {4, 4, 6, 6}. Note that {5, 5, 5, 5} doesn't work.
|
```python
n = int(input())
if (n%2 != 0):
print("0")
elif(n%4 ==0):
print((n//4)-1)
else:
print((n//4))
```
| 3
|
|
361
|
B
|
Levko and Permutation
|
PROGRAMMING
| 1,200
|
[
"constructive algorithms",
"math",
"number theory"
] | null | null |
Levko loves permutations very much. A permutation of length *n* is a sequence of distinct positive integers, each is at most *n*.
Let’s assume that value *gcd*(*a*,<=*b*) shows the greatest common divisor of numbers *a* and *b*. Levko assumes that element *p**i* of permutation *p*1,<=*p*2,<=... ,<=*p**n* is good if *gcd*(*i*,<=*p**i*)<=><=1. Levko considers a permutation beautiful, if it has exactly *k* good elements. Unfortunately, he doesn’t know any beautiful permutation. Your task is to help him to find at least one of them.
|
The single line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=105, 0<=≤<=*k*<=≤<=*n*).
|
In a single line print either any beautiful permutation or -1, if such permutation doesn’t exist.
If there are multiple suitable permutations, you are allowed to print any of them.
|
[
"4 2\n",
"1 1\n"
] |
[
"2 4 3 1",
"-1\n"
] |
In the first sample elements 4 and 3 are good because *gcd*(2, 4) = 2 > 1 and *gcd*(3, 3) = 3 > 1. Elements 2 and 1 are not good because *gcd*(1, 2) = 1 and *gcd*(4, 1) = 1. As there are exactly 2 good elements, the permutation is beautiful.
The second sample has no beautiful permutations.
| 1,000
|
[
{
"input": "4 2",
"output": "2 1 3 4 "
},
{
"input": "1 1",
"output": "-1"
},
{
"input": "7 4",
"output": "3 1 2 4 5 6 7 "
},
{
"input": "10 9",
"output": "1 2 3 4 5 6 7 8 9 10 "
},
{
"input": "10000 5000",
"output": "5000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 15..."
},
{
"input": "7 0",
"output": "7 1 2 3 4 5 6 "
},
{
"input": "1 0",
"output": "1 "
},
{
"input": "7 7",
"output": "-1"
},
{
"input": "100000 47",
"output": "99953 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..."
},
{
"input": "100000 100000",
"output": "-1"
},
{
"input": "100000 43425",
"output": "56575 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..."
},
{
"input": "7 6",
"output": "1 2 3 4 5 6 7 "
},
{
"input": "100000 99999",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155..."
},
{
"input": "47 46",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 "
},
{
"input": "5 0",
"output": "5 1 2 3 4 "
},
{
"input": "4 2",
"output": "2 1 3 4 "
},
{
"input": "1533 1052",
"output": "481 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "81314 52747",
"output": "28567 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..."
},
{
"input": "17767 145",
"output": "17622 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..."
},
{
"input": "18168 7942",
"output": "10226 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..."
},
{
"input": "26593 15915",
"output": "10678 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..."
},
{
"input": "26593 8877",
"output": "17716 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..."
},
{
"input": "13852 12727",
"output": "1125 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 15..."
},
{
"input": "4 1",
"output": "3 1 2 4 "
},
{
"input": "8834 8834",
"output": "-1"
},
{
"input": "8485 8484",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155..."
},
{
"input": "14564 14564",
"output": "-1"
},
{
"input": "8254 8253",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155..."
},
{
"input": "81314 81312",
"output": "2 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155..."
},
{
"input": "5795 5792",
"output": "3 1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155..."
},
{
"input": "6417 3",
"output": "6414 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 15..."
},
{
"input": "6896 0",
"output": "6896 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 15..."
},
{
"input": "6778 1",
"output": "6777 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 15..."
},
{
"input": "9448 1",
"output": "9447 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 15..."
},
{
"input": "5938 2",
"output": "5936 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 15..."
},
{
"input": "3072 0",
"output": "3072 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 15..."
},
{
"input": "8576 0",
"output": "8576 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 15..."
},
{
"input": "2 1",
"output": "1 2 "
},
{
"input": "4 4",
"output": "-1"
},
{
"input": "5 5",
"output": "-1"
},
{
"input": "2 2",
"output": "-1"
},
{
"input": "100000 1",
"output": "99999 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..."
},
{
"input": "100000 50000",
"output": "50000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..."
},
{
"input": "4 1",
"output": "3 1 2 4 "
},
{
"input": "100000 9999",
"output": "90001 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..."
},
{
"input": "100000 99000",
"output": "1000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 15..."
},
{
"input": "100000 12347",
"output": "87653 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..."
}
] | 1,642,119,356
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 2
| 31
| 0
|
s = input().split()
(n,k) = (int(i) for i in s)
s = [i+1 for i in range(n)]
if(k == n):
print(-1)
else:
if(k == n-1):
for i in range(n):
print(s[i],end = ' ')
else:
for i in range(0,n-1,2):
s[i],s[i+1] = s[i+1],s[i]
if(n%2 == 0):
j = 1
else:
k = k-1
for i in range(k):
s[j],s[j+1] = s[j+1],s[j]
j += 1
for i in range(n):
print(s[i],end = ' ')
|
Title: Levko and Permutation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Levko loves permutations very much. A permutation of length *n* is a sequence of distinct positive integers, each is at most *n*.
Let’s assume that value *gcd*(*a*,<=*b*) shows the greatest common divisor of numbers *a* and *b*. Levko assumes that element *p**i* of permutation *p*1,<=*p*2,<=... ,<=*p**n* is good if *gcd*(*i*,<=*p**i*)<=><=1. Levko considers a permutation beautiful, if it has exactly *k* good elements. Unfortunately, he doesn’t know any beautiful permutation. Your task is to help him to find at least one of them.
Input Specification:
The single line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=105, 0<=≤<=*k*<=≤<=*n*).
Output Specification:
In a single line print either any beautiful permutation or -1, if such permutation doesn’t exist.
If there are multiple suitable permutations, you are allowed to print any of them.
Demo Input:
['4 2\n', '1 1\n']
Demo Output:
['2 4 3 1', '-1\n']
Note:
In the first sample elements 4 and 3 are good because *gcd*(2, 4) = 2 > 1 and *gcd*(3, 3) = 3 > 1. Elements 2 and 1 are not good because *gcd*(1, 2) = 1 and *gcd*(4, 1) = 1. As there are exactly 2 good elements, the permutation is beautiful.
The second sample has no beautiful permutations.
|
```python
s = input().split()
(n,k) = (int(i) for i in s)
s = [i+1 for i in range(n)]
if(k == n):
print(-1)
else:
if(k == n-1):
for i in range(n):
print(s[i],end = ' ')
else:
for i in range(0,n-1,2):
s[i],s[i+1] = s[i+1],s[i]
if(n%2 == 0):
j = 1
else:
k = k-1
for i in range(k):
s[j],s[j+1] = s[j+1],s[j]
j += 1
for i in range(n):
print(s[i],end = ' ')
```
| -1
|
|
534
|
A
|
Exam
|
PROGRAMMING
| 1,100
|
[
"constructive algorithms",
"implementation",
"math"
] | null | null |
An exam for *n* students will take place in a long and narrow room, so the students will sit in a line in some order. The teacher suspects that students with adjacent numbers (*i* and *i*<=+<=1) always studied side by side and became friends and if they take an exam sitting next to each other, they will help each other for sure.
Your task is to choose the maximum number of students and make such an arrangement of students in the room that no two students with adjacent numbers sit side by side.
|
A single line contains integer *n* (1<=≤<=*n*<=≤<=5000) — the number of students at an exam.
|
In the first line print integer *k* — the maximum number of students who can be seated so that no two students with adjacent numbers sit next to each other.
In the second line print *k* distinct integers *a*1,<=*a*2,<=...,<=*a**k* (1<=≤<=*a**i*<=≤<=*n*), where *a**i* is the number of the student on the *i*-th position. The students on adjacent positions mustn't have adjacent numbers. Formally, the following should be true: |*a**i*<=-<=*a**i*<=+<=1|<=≠<=1 for all *i* from 1 to *k*<=-<=1.
If there are several possible answers, output any of them.
|
[
"6",
"3\n"
] |
[
"6\n1 5 3 6 2 4",
"2\n1 3"
] |
none
| 500
|
[
{
"input": "6",
"output": "6\n5 3 1 6 4 2 "
},
{
"input": "3",
"output": "2\n1 3"
},
{
"input": "1",
"output": "1\n1 "
},
{
"input": "2",
"output": "1\n1"
},
{
"input": "4",
"output": "4\n3 1 4 2 "
},
{
"input": "5",
"output": "5\n5 3 1 4 2 "
},
{
"input": "7",
"output": "7\n7 5 3 1 6 4 2 "
},
{
"input": "8",
"output": "8\n7 5 3 1 8 6 4 2 "
},
{
"input": "9",
"output": "9\n9 7 5 3 1 8 6 4 2 "
},
{
"input": "10",
"output": "10\n9 7 5 3 1 10 8 6 4 2 "
},
{
"input": "13",
"output": "13\n13 11 9 7 5 3 1 12 10 8 6 4 2 "
},
{
"input": "16",
"output": "16\n15 13 11 9 7 5 3 1 16 14 12 10 8 6 4 2 "
},
{
"input": "25",
"output": "25\n25 23 21 19 17 15 13 11 9 7 5 3 1 24 22 20 18 16 14 12 10 8 6 4 2 "
},
{
"input": "29",
"output": "29\n29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 28 26 24 22 20 18 16 14 12 10 8 6 4 2 "
},
{
"input": "120",
"output": "120\n119 117 115 113 111 109 107 105 103 101 99 97 95 93 91 89 87 85 83 81 79 77 75 73 71 69 67 65 63 61 59 57 55 53 51 49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 120 118 116 114 112 110 108 106 104 102 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 "
},
{
"input": "128",
"output": "128\n127 125 123 121 119 117 115 113 111 109 107 105 103 101 99 97 95 93 91 89 87 85 83 81 79 77 75 73 71 69 67 65 63 61 59 57 55 53 51 49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 128 126 124 122 120 118 116 114 112 110 108 106 104 102 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 "
},
{
"input": "216",
"output": "216\n215 213 211 209 207 205 203 201 199 197 195 193 191 189 187 185 183 181 179 177 175 173 171 169 167 165 163 161 159 157 155 153 151 149 147 145 143 141 139 137 135 133 131 129 127 125 123 121 119 117 115 113 111 109 107 105 103 101 99 97 95 93 91 89 87 85 83 81 79 77 75 73 71 69 67 65 63 61 59 57 55 53 51 49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 216 214 212 210 208 206 204 202 200 198 196 194 192 190 188 186 184 182 180 178 176 174 172 170 168 166 164 162 160 158 156 154 1..."
},
{
"input": "729",
"output": "729\n729 727 725 723 721 719 717 715 713 711 709 707 705 703 701 699 697 695 693 691 689 687 685 683 681 679 677 675 673 671 669 667 665 663 661 659 657 655 653 651 649 647 645 643 641 639 637 635 633 631 629 627 625 623 621 619 617 615 613 611 609 607 605 603 601 599 597 595 593 591 589 587 585 583 581 579 577 575 573 571 569 567 565 563 561 559 557 555 553 551 549 547 545 543 541 539 537 535 533 531 529 527 525 523 521 519 517 515 513 511 509 507 505 503 501 499 497 495 493 491 489 487 485 483 481 479 47..."
},
{
"input": "1111",
"output": "1111\n1111 1109 1107 1105 1103 1101 1099 1097 1095 1093 1091 1089 1087 1085 1083 1081 1079 1077 1075 1073 1071 1069 1067 1065 1063 1061 1059 1057 1055 1053 1051 1049 1047 1045 1043 1041 1039 1037 1035 1033 1031 1029 1027 1025 1023 1021 1019 1017 1015 1013 1011 1009 1007 1005 1003 1001 999 997 995 993 991 989 987 985 983 981 979 977 975 973 971 969 967 965 963 961 959 957 955 953 951 949 947 945 943 941 939 937 935 933 931 929 927 925 923 921 919 917 915 913 911 909 907 905 903 901 899 897 895 893 891 889 8..."
},
{
"input": "1597",
"output": "1597\n1597 1595 1593 1591 1589 1587 1585 1583 1581 1579 1577 1575 1573 1571 1569 1567 1565 1563 1561 1559 1557 1555 1553 1551 1549 1547 1545 1543 1541 1539 1537 1535 1533 1531 1529 1527 1525 1523 1521 1519 1517 1515 1513 1511 1509 1507 1505 1503 1501 1499 1497 1495 1493 1491 1489 1487 1485 1483 1481 1479 1477 1475 1473 1471 1469 1467 1465 1463 1461 1459 1457 1455 1453 1451 1449 1447 1445 1443 1441 1439 1437 1435 1433 1431 1429 1427 1425 1423 1421 1419 1417 1415 1413 1411 1409 1407 1405 1403 1401 1399 1397 ..."
},
{
"input": "1777",
"output": "1777\n1777 1775 1773 1771 1769 1767 1765 1763 1761 1759 1757 1755 1753 1751 1749 1747 1745 1743 1741 1739 1737 1735 1733 1731 1729 1727 1725 1723 1721 1719 1717 1715 1713 1711 1709 1707 1705 1703 1701 1699 1697 1695 1693 1691 1689 1687 1685 1683 1681 1679 1677 1675 1673 1671 1669 1667 1665 1663 1661 1659 1657 1655 1653 1651 1649 1647 1645 1643 1641 1639 1637 1635 1633 1631 1629 1627 1625 1623 1621 1619 1617 1615 1613 1611 1609 1607 1605 1603 1601 1599 1597 1595 1593 1591 1589 1587 1585 1583 1581 1579 1577 ..."
},
{
"input": "2048",
"output": "2048\n2047 2045 2043 2041 2039 2037 2035 2033 2031 2029 2027 2025 2023 2021 2019 2017 2015 2013 2011 2009 2007 2005 2003 2001 1999 1997 1995 1993 1991 1989 1987 1985 1983 1981 1979 1977 1975 1973 1971 1969 1967 1965 1963 1961 1959 1957 1955 1953 1951 1949 1947 1945 1943 1941 1939 1937 1935 1933 1931 1929 1927 1925 1923 1921 1919 1917 1915 1913 1911 1909 1907 1905 1903 1901 1899 1897 1895 1893 1891 1889 1887 1885 1883 1881 1879 1877 1875 1873 1871 1869 1867 1865 1863 1861 1859 1857 1855 1853 1851 1849 1847 ..."
},
{
"input": "2999",
"output": "2999\n2999 2997 2995 2993 2991 2989 2987 2985 2983 2981 2979 2977 2975 2973 2971 2969 2967 2965 2963 2961 2959 2957 2955 2953 2951 2949 2947 2945 2943 2941 2939 2937 2935 2933 2931 2929 2927 2925 2923 2921 2919 2917 2915 2913 2911 2909 2907 2905 2903 2901 2899 2897 2895 2893 2891 2889 2887 2885 2883 2881 2879 2877 2875 2873 2871 2869 2867 2865 2863 2861 2859 2857 2855 2853 2851 2849 2847 2845 2843 2841 2839 2837 2835 2833 2831 2829 2827 2825 2823 2821 2819 2817 2815 2813 2811 2809 2807 2805 2803 2801 2799 ..."
},
{
"input": "3001",
"output": "3001\n3001 2999 2997 2995 2993 2991 2989 2987 2985 2983 2981 2979 2977 2975 2973 2971 2969 2967 2965 2963 2961 2959 2957 2955 2953 2951 2949 2947 2945 2943 2941 2939 2937 2935 2933 2931 2929 2927 2925 2923 2921 2919 2917 2915 2913 2911 2909 2907 2905 2903 2901 2899 2897 2895 2893 2891 2889 2887 2885 2883 2881 2879 2877 2875 2873 2871 2869 2867 2865 2863 2861 2859 2857 2855 2853 2851 2849 2847 2845 2843 2841 2839 2837 2835 2833 2831 2829 2827 2825 2823 2821 2819 2817 2815 2813 2811 2809 2807 2805 2803 2801 ..."
},
{
"input": "4181",
"output": "4181\n4181 4179 4177 4175 4173 4171 4169 4167 4165 4163 4161 4159 4157 4155 4153 4151 4149 4147 4145 4143 4141 4139 4137 4135 4133 4131 4129 4127 4125 4123 4121 4119 4117 4115 4113 4111 4109 4107 4105 4103 4101 4099 4097 4095 4093 4091 4089 4087 4085 4083 4081 4079 4077 4075 4073 4071 4069 4067 4065 4063 4061 4059 4057 4055 4053 4051 4049 4047 4045 4043 4041 4039 4037 4035 4033 4031 4029 4027 4025 4023 4021 4019 4017 4015 4013 4011 4009 4007 4005 4003 4001 3999 3997 3995 3993 3991 3989 3987 3985 3983 3981 ..."
},
{
"input": "4990",
"output": "4990\n4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 4797 4795 4793 4791 4789 ..."
},
{
"input": "4991",
"output": "4991\n4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 4797 4795 4793 4791 ..."
},
{
"input": "4992",
"output": "4992\n4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 4797 4795 4793 4791 ..."
},
{
"input": "4993",
"output": "4993\n4993 4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 4797 4795 4793 ..."
},
{
"input": "4994",
"output": "4994\n4993 4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 4797 4795 4793 ..."
},
{
"input": "4995",
"output": "4995\n4995 4993 4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 4797 4795 ..."
},
{
"input": "4996",
"output": "4996\n4995 4993 4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 4797 4795 ..."
},
{
"input": "4997",
"output": "4997\n4997 4995 4993 4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 4797 ..."
},
{
"input": "4998",
"output": "4998\n4997 4995 4993 4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 4797 ..."
},
{
"input": "4999",
"output": "4999\n4999 4997 4995 4993 4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 ..."
},
{
"input": "5000",
"output": "5000\n4999 4997 4995 4993 4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 ..."
}
] | 1,439,236,254
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 62
| 0
|
a = int(input());
if(a==1 or a==2):
print(1);
elif(a==3):
print(a-1);
else:
print(a);
|
Title: Exam
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
An exam for *n* students will take place in a long and narrow room, so the students will sit in a line in some order. The teacher suspects that students with adjacent numbers (*i* and *i*<=+<=1) always studied side by side and became friends and if they take an exam sitting next to each other, they will help each other for sure.
Your task is to choose the maximum number of students and make such an arrangement of students in the room that no two students with adjacent numbers sit side by side.
Input Specification:
A single line contains integer *n* (1<=≤<=*n*<=≤<=5000) — the number of students at an exam.
Output Specification:
In the first line print integer *k* — the maximum number of students who can be seated so that no two students with adjacent numbers sit next to each other.
In the second line print *k* distinct integers *a*1,<=*a*2,<=...,<=*a**k* (1<=≤<=*a**i*<=≤<=*n*), where *a**i* is the number of the student on the *i*-th position. The students on adjacent positions mustn't have adjacent numbers. Formally, the following should be true: |*a**i*<=-<=*a**i*<=+<=1|<=≠<=1 for all *i* from 1 to *k*<=-<=1.
If there are several possible answers, output any of them.
Demo Input:
['6', '3\n']
Demo Output:
['6\n1 5 3 6 2 4', '2\n1 3']
Note:
none
|
```python
a = int(input());
if(a==1 or a==2):
print(1);
elif(a==3):
print(a-1);
else:
print(a);
```
| 0
|
|
84
|
C
|
Biathlon
|
PROGRAMMING
| 1,700
|
[
"binary search",
"implementation"
] |
C. Biathlon
|
1
|
256
|
Perhaps many have heard that the World Biathlon Championship has finished. Although our hero Valera was not present at this spectacular event himself and only watched it on TV, it excited him so much that he decided to enroll in a biathlon section.
Of course, biathlon as any sport, proved very difficult in practice. It takes much time and effort. Workouts, workouts, and workouts, — that's what awaited Valera on his way to great achievements in biathlon.
As for the workouts, you all probably know that every professional biathlete should ski fast and shoot precisely at the shooting range. Only in this case you can hope to be successful, because running and shooting are the two main components of biathlon. Valera has been diligent in his ski trainings, which is why he runs really fast, however, his shooting accuracy is nothing to write home about.
On a biathlon base where Valera is preparing for the competition, there is a huge rifle range with *n* targets. Each target have shape of a circle, and the center of each circle is located on the *Ox* axis. At the last training session Valera made the total of *m* shots. To make monitoring of his own results easier for him, one rather well-known programmer (of course it is you) was commissioned to write a program that would reveal how many and which targets Valera hit. More specifically, for each target the program must print the number of the first successful shot (in the target), or "-1" if this was not hit. The target is considered hit if the shot is inside the circle or on its boundary. Valera is counting on you and perhaps, thanks to you he will one day win international competitions.
|
The first line of the input file contains the integer *n* (1<=≤<=*n*<=≤<=104), which is the number of targets. The next *n* lines contain descriptions of the targets. Each target is a circle whose center is located on the *Ox* axis. Each circle is given by its coordinate of the center *x* (<=-<=2·104<=≤<=*x*<=≤<=2·104) and its radius *r* (1<=≤<=*r*<=≤<=1000). It is guaranteed that no two targets coincide, intersect or are nested into each other, but they can touch each other.
The next line contains integer *m* (1<=≤<=*m*<=≤<=2·105), which is the number of shots. Next *m* lines contain descriptions of the shots, which are points on the plane, given by their coordinates *x* and *y* (<=-<=2·104<=≤<=*x*,<=*y*<=≤<=2·104).
All the numbers in the input are integers.
Targets and shots are numbered starting from one in the order of the input.
|
Print on the first line a single number, the number of targets hit by Valera. Print on the second line for each of the targets the number of its first hit or "-1" (without quotes) if this number does not exist. Separate numbers with spaces.
|
[
"3\n2 1\n5 2\n10 1\n5\n0 1\n1 3\n3 0\n4 0\n4 0\n",
"3\n3 2\n7 1\n11 2\n4\n2 1\n6 0\n6 4\n11 2\n"
] |
[
"2\n3 3 -1 \n",
"3\n1 2 4 \n"
] |
none
| 1,500
|
[
{
"input": "3\n2 1\n5 2\n10 1\n5\n0 1\n1 3\n3 0\n4 0\n4 0",
"output": "2\n3 3 -1 "
},
{
"input": "3\n3 2\n7 1\n11 2\n4\n2 1\n6 0\n6 4\n11 2",
"output": "3\n1 2 4 "
},
{
"input": "2\n0 5\n10 5\n2\n7 2\n6 1",
"output": "1\n-1 1 "
},
{
"input": "3\n-3 3\n-10 2\n10 2\n4\n10 2\n2 -2\n-11 -1\n10 0",
"output": "2\n-1 3 1 "
},
{
"input": "5\n3 2\n-1 2\n6 1\n-6 1\n20 5\n6\n1 -2\n5 0\n5 1\n1 0\n-4 0\n3 2",
"output": "3\n2 4 2 -1 -1 "
},
{
"input": "4\n2 1\n5 1\n-6 1\n10 2\n3\n-6 0\n-6 1\n-5 0",
"output": "1\n-1 -1 1 -1 "
},
{
"input": "2\n10 10\n-20 20\n4\n-1 6\n-1 -2\n21 0\n0 0",
"output": "2\n4 1 "
},
{
"input": "3\n6 2\n-2 2\n2 1\n5\n2 0\n5 1\n2 0\n2 1\n2 -3",
"output": "2\n2 -1 1 "
},
{
"input": "3\n1 1\n3 1\n-4 2\n1\n-4 -3",
"output": "0\n-1 -1 -1 "
},
{
"input": "10\n67 5\n-69 5\n-58 3\n-5 6\n27 2\n95 3\n36 2\n-82 2\n-18 6\n-33 4\n20\n-41 3\n-47 -2\n37 3\n29 -6\n90 -8\n-40 -4\n-46 0\n70 -6\n93 -9\n84 -6\n-66 -1\n-44 6\n37 -8\n-29 3\n39 -4\n-77 -3\n-21 4\n-70 7\n97 -6\n-61 -5",
"output": "2\n-1 11 -1 -1 -1 -1 -1 -1 17 -1 "
},
{
"input": "10\n57 5\n-59 5\n-28 3\n27 2\n46 2\n-48 6\n-3 2\n-21 2\n8 8\n-9 1\n30\n-26 3\n-29 9\n-66 -1\n-1 -9\n56 2\n-18 -9\n3 4\n-24 -12\n-33 -11\n44 0\n37 12\n-46 -11\n-25 0\n-41 -5\n-1 -1\n-27 7\n57 3\n35 4\n-1 -2\n-66 -3\n-60 12\n50 9\n58 10\n32 -1\n-64 -6\n48 3\n-21 -8\n28 0\n-67 8\n8 2",
"output": "5\n5 -1 13 28 10 -1 -1 -1 7 -1 "
},
{
"input": "15\n17 5\n-19 5\n-8 3\n27 2\n45 3\n36 2\n-32 2\n49 1\n-3 2\n-41 2\n-35 1\n-46 1\n-29 1\n33 1\n0 1\n50\n24 -4\n41 3\n37 3\n9 2\n38 -4\n-30 2\n-41 -5\n-9 -5\n-33 3\n0 2\n-20 -3\n-49 -4\n34 1\n-38 -2\n17 -1\n-33 3\n-17 4\n16 3\n-49 2\n-3 -4\n-9 2\n35 3\n37 -5\n0 0\n-46 -5\n48 1\n-22 -4\n-29 -5\n-41 4\n-11 0\n-5 -2\n-36 5\n42 0\n48 -3\n49 0\n-39 2\n-10 1\n38 3\n23 -1\n-35 -4\n7 -2\n4 5\n-29 0\n5 -1\n12 0\n-3 3\n46 1\n37 -1\n45 4\n-5 -4",
"output": "8\n15 11 21 -1 33 48 -1 35 -1 -1 -1 -1 43 -1 24 "
},
{
"input": "10\n2467 35\n-3169 25\n-5358 63\n-5705 46\n827 62\n2995 43\n5436 92\n-3902 54\n-4382 22\n-3718 96\n1\n5726 38",
"output": "0\n-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 "
},
{
"input": "1\n467 335\n10\n-169 -478\n-962 -705\n281 961\n995 -827\n-391 -902\n292 -421\n-718 447\n-771 -869\n-667 35\n-703 322",
"output": "0\n-1 "
},
{
"input": "2\n15000 1000\n-5000 1000\n2\n15000 0\n-5000 0",
"output": "2\n1 2 "
}
] | 1,568,670,101
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 69
| 607
| 10,444,800
|
'''input
3
3 2
7 1
11 2
4
2 1
6 0
6 4
11 2
'''
from sys import stdin
from bisect import bisect_left
from collections import OrderedDict
def check(c, r, x, y):
if x**2 + y**2 - 2*x*c + c**2 <= r**2:
return True
else:
return False
# main starts
n = int(stdin.readline().strip())
rdict = OrderedDict()
center = []
for _ in range(n):
c, r = list(map(int, stdin.readline().split()))
rdict[c] = r
center.append(c)
center.sort()
ans = dict()
m = int(stdin.readline().strip())
for i in range(m):
x, y = list(map(int, stdin.readline().split()))
index = bisect_left(center, x)
if index > 0 and index < len(center):
if check(center[index], rdict[center[index]], x, y):
if center[index] not in ans:
ans[center[index]] = i + 1
if check(center[index - 1], rdict[center[index - 1]], x, y):
if center[index - 1] not in ans:
ans[center[index - 1]] = i + 1
elif index == 0:
if check(center[index], rdict[center[index]], x, y):
if center[index] not in ans:
ans[center[index]] = i + 1
elif index == len(center):
if check(center[index - 1], rdict[center[index - 1]], x, y):
if center[index - 1] not in ans:
ans[center[index - 1]] = i + 1
print(len(ans))
for i in rdict:
if i in ans:
print(ans[i], end = ' ')
else:
print(-1, end = ' ')
|
Title: Biathlon
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Perhaps many have heard that the World Biathlon Championship has finished. Although our hero Valera was not present at this spectacular event himself and only watched it on TV, it excited him so much that he decided to enroll in a biathlon section.
Of course, biathlon as any sport, proved very difficult in practice. It takes much time and effort. Workouts, workouts, and workouts, — that's what awaited Valera on his way to great achievements in biathlon.
As for the workouts, you all probably know that every professional biathlete should ski fast and shoot precisely at the shooting range. Only in this case you can hope to be successful, because running and shooting are the two main components of biathlon. Valera has been diligent in his ski trainings, which is why he runs really fast, however, his shooting accuracy is nothing to write home about.
On a biathlon base where Valera is preparing for the competition, there is a huge rifle range with *n* targets. Each target have shape of a circle, and the center of each circle is located on the *Ox* axis. At the last training session Valera made the total of *m* shots. To make monitoring of his own results easier for him, one rather well-known programmer (of course it is you) was commissioned to write a program that would reveal how many and which targets Valera hit. More specifically, for each target the program must print the number of the first successful shot (in the target), or "-1" if this was not hit. The target is considered hit if the shot is inside the circle or on its boundary. Valera is counting on you and perhaps, thanks to you he will one day win international competitions.
Input Specification:
The first line of the input file contains the integer *n* (1<=≤<=*n*<=≤<=104), which is the number of targets. The next *n* lines contain descriptions of the targets. Each target is a circle whose center is located on the *Ox* axis. Each circle is given by its coordinate of the center *x* (<=-<=2·104<=≤<=*x*<=≤<=2·104) and its radius *r* (1<=≤<=*r*<=≤<=1000). It is guaranteed that no two targets coincide, intersect or are nested into each other, but they can touch each other.
The next line contains integer *m* (1<=≤<=*m*<=≤<=2·105), which is the number of shots. Next *m* lines contain descriptions of the shots, which are points on the plane, given by their coordinates *x* and *y* (<=-<=2·104<=≤<=*x*,<=*y*<=≤<=2·104).
All the numbers in the input are integers.
Targets and shots are numbered starting from one in the order of the input.
Output Specification:
Print on the first line a single number, the number of targets hit by Valera. Print on the second line for each of the targets the number of its first hit or "-1" (without quotes) if this number does not exist. Separate numbers with spaces.
Demo Input:
['3\n2 1\n5 2\n10 1\n5\n0 1\n1 3\n3 0\n4 0\n4 0\n', '3\n3 2\n7 1\n11 2\n4\n2 1\n6 0\n6 4\n11 2\n']
Demo Output:
['2\n3 3 -1 \n', '3\n1 2 4 \n']
Note:
none
|
```python
'''input
3
3 2
7 1
11 2
4
2 1
6 0
6 4
11 2
'''
from sys import stdin
from bisect import bisect_left
from collections import OrderedDict
def check(c, r, x, y):
if x**2 + y**2 - 2*x*c + c**2 <= r**2:
return True
else:
return False
# main starts
n = int(stdin.readline().strip())
rdict = OrderedDict()
center = []
for _ in range(n):
c, r = list(map(int, stdin.readline().split()))
rdict[c] = r
center.append(c)
center.sort()
ans = dict()
m = int(stdin.readline().strip())
for i in range(m):
x, y = list(map(int, stdin.readline().split()))
index = bisect_left(center, x)
if index > 0 and index < len(center):
if check(center[index], rdict[center[index]], x, y):
if center[index] not in ans:
ans[center[index]] = i + 1
if check(center[index - 1], rdict[center[index - 1]], x, y):
if center[index - 1] not in ans:
ans[center[index - 1]] = i + 1
elif index == 0:
if check(center[index], rdict[center[index]], x, y):
if center[index] not in ans:
ans[center[index]] = i + 1
elif index == len(center):
if check(center[index - 1], rdict[center[index - 1]], x, y):
if center[index - 1] not in ans:
ans[center[index - 1]] = i + 1
print(len(ans))
for i in rdict:
if i in ans:
print(ans[i], end = ' ')
else:
print(-1, end = ' ')
```
| 3.677045
|
907
|
A
|
Masha and Bears
|
PROGRAMMING
| 1,300
|
[
"brute force",
"implementation"
] | null | null |
A family consisting of father bear, mother bear and son bear owns three cars. Father bear can climb into the largest car and he likes it. Also, mother bear can climb into the middle car and she likes it. Moreover, son bear can climb into the smallest car and he likes it. It's known that the largest car is strictly larger than the middle car, and the middle car is strictly larger than the smallest car.
Masha came to test these cars. She could climb into all cars, but she liked only the smallest car.
It's known that a character with size *a* can climb into some car with size *b* if and only if *a*<=≤<=*b*, he or she likes it if and only if he can climb into this car and 2*a*<=≥<=*b*.
You are given sizes of bears and Masha. Find out some possible integer non-negative sizes of cars.
|
You are given four integers *V*1, *V*2, *V*3, *V**m*(1<=≤<=*V**i*<=≤<=100) — sizes of father bear, mother bear, son bear and Masha, respectively. It's guaranteed that *V*1<=><=*V*2<=><=*V*3.
|
Output three integers — sizes of father bear's car, mother bear's car and son bear's car, respectively.
If there are multiple possible solutions, print any.
If there is no solution, print "-1" (without quotes).
|
[
"50 30 10 10\n",
"100 50 10 21\n"
] |
[
"50\n30\n10\n",
"-1\n"
] |
In first test case all conditions for cars' sizes are satisfied.
In second test case there is no answer, because Masha should be able to climb into smallest car (so size of smallest car in not less than 21), but son bear should like it, so maximum possible size of it is 20.
| 500
|
[
{
"input": "50 30 10 10",
"output": "50\n30\n10"
},
{
"input": "100 50 10 21",
"output": "-1"
},
{
"input": "100 50 19 10",
"output": "100\n50\n19"
},
{
"input": "99 50 25 49",
"output": "100\n99\n49"
},
{
"input": "3 2 1 1",
"output": "4\n3\n1"
},
{
"input": "100 99 98 100",
"output": "-1"
},
{
"input": "100 40 30 40",
"output": "-1"
},
{
"input": "100 50 19 25",
"output": "100\n51\n25"
},
{
"input": "100 50 19 30",
"output": "100\n61\n30"
},
{
"input": "49 48 25 49",
"output": "-1"
},
{
"input": "48 47 23 46",
"output": "94\n93\n46"
},
{
"input": "37 23 16 20",
"output": "42\n41\n20"
},
{
"input": "98 2 1 1",
"output": "98\n3\n1"
},
{
"input": "99 22 13 14",
"output": "99\n29\n14"
},
{
"input": "97 95 3 2",
"output": "97\n95\n3"
},
{
"input": "27 3 2 3",
"output": "-1"
},
{
"input": "13 7 6 2",
"output": "-1"
},
{
"input": "19 17 11 6",
"output": "19\n17\n11"
},
{
"input": "15 6 4 5",
"output": "15\n11\n5"
},
{
"input": "21 3 1 3",
"output": "-1"
},
{
"input": "100 99 98 97",
"output": "196\n195\n98"
},
{
"input": "99 32 13 5",
"output": "-1"
},
{
"input": "5 4 3 1",
"output": "-1"
},
{
"input": "50 20 4 8",
"output": "50\n20\n8"
},
{
"input": "60 30 10 1",
"output": "-1"
},
{
"input": "100 50 10 1",
"output": "-1"
},
{
"input": "40 30 20 10",
"output": "40\n30\n20"
},
{
"input": "50 49 5 10",
"output": "50\n49\n10"
},
{
"input": "99 98 50 97",
"output": "196\n195\n97"
},
{
"input": "50 30 10 5",
"output": "50\n30\n10"
},
{
"input": "4 3 2 1",
"output": "4\n3\n2"
},
{
"input": "100 50 3 1",
"output": "-1"
}
] | 1,514,039,076
| 1,176
|
Python 3
|
WRONG_ANSWER
|
PRETESTS
| 5
| 46
| 5,529,600
|
f, m, s, mm = map(int, input().split())
cf = 2*f
cm = 2*m
cs = 2*s
flag = True
while True:
if cs < s or cs < mm:
flag = False
break
if cs <= 2*mm:
break
else:
cs -= 1
if flag:
print(cf)
print(cm)
print(cs)
else:
print(-1)
|
Title: Masha and Bears
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A family consisting of father bear, mother bear and son bear owns three cars. Father bear can climb into the largest car and he likes it. Also, mother bear can climb into the middle car and she likes it. Moreover, son bear can climb into the smallest car and he likes it. It's known that the largest car is strictly larger than the middle car, and the middle car is strictly larger than the smallest car.
Masha came to test these cars. She could climb into all cars, but she liked only the smallest car.
It's known that a character with size *a* can climb into some car with size *b* if and only if *a*<=≤<=*b*, he or she likes it if and only if he can climb into this car and 2*a*<=≥<=*b*.
You are given sizes of bears and Masha. Find out some possible integer non-negative sizes of cars.
Input Specification:
You are given four integers *V*1, *V*2, *V*3, *V**m*(1<=≤<=*V**i*<=≤<=100) — sizes of father bear, mother bear, son bear and Masha, respectively. It's guaranteed that *V*1<=><=*V*2<=><=*V*3.
Output Specification:
Output three integers — sizes of father bear's car, mother bear's car and son bear's car, respectively.
If there are multiple possible solutions, print any.
If there is no solution, print "-1" (without quotes).
Demo Input:
['50 30 10 10\n', '100 50 10 21\n']
Demo Output:
['50\n30\n10\n', '-1\n']
Note:
In first test case all conditions for cars' sizes are satisfied.
In second test case there is no answer, because Masha should be able to climb into smallest car (so size of smallest car in not less than 21), but son bear should like it, so maximum possible size of it is 20.
|
```python
f, m, s, mm = map(int, input().split())
cf = 2*f
cm = 2*m
cs = 2*s
flag = True
while True:
if cs < s or cs < mm:
flag = False
break
if cs <= 2*mm:
break
else:
cs -= 1
if flag:
print(cf)
print(cm)
print(cs)
else:
print(-1)
```
| 0
|
|
246
|
B
|
Increase and Decrease
|
PROGRAMMING
| 1,300
|
[
"greedy",
"math"
] | null | null |
Polycarpus has an array, consisting of *n* integers *a*1,<=*a*2,<=...,<=*a**n*. Polycarpus likes it when numbers in an array match. That's why he wants the array to have as many equal numbers as possible. For that Polycarpus performs the following operation multiple times:
- he chooses two elements of the array *a**i*, *a**j* (*i*<=≠<=*j*); - he simultaneously increases number *a**i* by 1 and decreases number *a**j* by 1, that is, executes *a**i*<==<=*a**i*<=+<=1 and *a**j*<==<=*a**j*<=-<=1.
The given operation changes exactly two distinct array elements. Polycarpus can apply the described operation an infinite number of times.
Now he wants to know what maximum number of equal array elements he can get if he performs an arbitrary number of such operation. Help Polycarpus.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the array size. The second line contains space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (|*a**i*|<=≤<=104) — the original array.
|
Print a single integer — the maximum number of equal array elements he can get if he performs an arbitrary number of the given operation.
|
[
"2\n2 1\n",
"3\n1 4 1\n"
] |
[
"1\n",
"3\n"
] |
none
| 1,000
|
[
{
"input": "2\n2 1",
"output": "1"
},
{
"input": "3\n1 4 1",
"output": "3"
},
{
"input": "4\n2 -7 -2 -6",
"output": "3"
},
{
"input": "4\n2 0 -2 -1",
"output": "3"
},
{
"input": "6\n-1 1 0 0 -1 -1",
"output": "5"
},
{
"input": "5\n0 0 0 0 0",
"output": "5"
},
{
"input": "100\n968 793 -628 -416 942 -308 977 168 728 -879 952 781 -425 -475 -480 738 -740 142 -319 -116 -701 -183 41 324 -918 -391 -176 781 763 888 475 -617 134 -802 -133 -211 855 -869 -236 503 550 387 137 -221 -957 -800 -56 -673 440 -791 -217 -959 -892 886 -593 427 890 223 -425 -342 -262 693 -137 924 860 156 -110 444 -12 703 421 -638 725 -551 597 -206 -80 393 -441 -759 617 424 -506 209 579 -685 -861 507 312 597 -81 -491 424 222 -892 629 512 743 -452 -504",
"output": "99"
}
] | 1,448,521,522
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 2
| 122
| 0
|
# coding=utf-8
n = input()
a = list(map(int, input().split()))
a.sort()
ans = 1
l = 0
r = len(a) - 1
while l < r:
if a[l] < a[r]:
if a[l] <= a[l + 1]:
a[l] += 1
a[r] -= 1
else:
l += 1
else:
r -= 1
b = a[0]
for i in range(1, len(a)):
if b == a[i]:
ans += 1
print(ans)
|
Title: Increase and Decrease
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarpus has an array, consisting of *n* integers *a*1,<=*a*2,<=...,<=*a**n*. Polycarpus likes it when numbers in an array match. That's why he wants the array to have as many equal numbers as possible. For that Polycarpus performs the following operation multiple times:
- he chooses two elements of the array *a**i*, *a**j* (*i*<=≠<=*j*); - he simultaneously increases number *a**i* by 1 and decreases number *a**j* by 1, that is, executes *a**i*<==<=*a**i*<=+<=1 and *a**j*<==<=*a**j*<=-<=1.
The given operation changes exactly two distinct array elements. Polycarpus can apply the described operation an infinite number of times.
Now he wants to know what maximum number of equal array elements he can get if he performs an arbitrary number of such operation. Help Polycarpus.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the array size. The second line contains space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (|*a**i*|<=≤<=104) — the original array.
Output Specification:
Print a single integer — the maximum number of equal array elements he can get if he performs an arbitrary number of the given operation.
Demo Input:
['2\n2 1\n', '3\n1 4 1\n']
Demo Output:
['1\n', '3\n']
Note:
none
|
```python
# coding=utf-8
n = input()
a = list(map(int, input().split()))
a.sort()
ans = 1
l = 0
r = len(a) - 1
while l < r:
if a[l] < a[r]:
if a[l] <= a[l + 1]:
a[l] += 1
a[r] -= 1
else:
l += 1
else:
r -= 1
b = a[0]
for i in range(1, len(a)):
if b == a[i]:
ans += 1
print(ans)
```
| 0
|
|
349
|
A
|
Cinema Line
|
PROGRAMMING
| 1,100
|
[
"greedy",
"implementation"
] | null | null |
The new "Die Hard" movie has just been released! There are *n* people at the cinema box office standing in a huge line. Each of them has a single 100, 50 or 25 ruble bill. A "Die Hard" ticket costs 25 rubles. Can the booking clerk sell a ticket to each person and give the change if he initially has no money and sells the tickets strictly in the order people follow in the line?
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of people in the line. The next line contains *n* integers, each of them equals 25, 50 or 100 — the values of the bills the people have. The numbers are given in the order from the beginning of the line (at the box office) to the end of the line.
|
Print "YES" (without the quotes) if the booking clerk can sell a ticket to each person and give the change. Otherwise print "NO".
|
[
"4\n25 25 50 50\n",
"2\n25 100\n",
"4\n50 50 25 25\n"
] |
[
"YES\n",
"NO\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "4\n25 25 50 50",
"output": "YES"
},
{
"input": "2\n25 100",
"output": "NO"
},
{
"input": "4\n50 50 25 25",
"output": "NO"
},
{
"input": "3\n25 50 100",
"output": "NO"
},
{
"input": "10\n25 25 25 25 25 25 25 25 25 25",
"output": "YES"
},
{
"input": "10\n50 50 50 50 50 50 50 50 50 50",
"output": "NO"
},
{
"input": "10\n100 100 100 100 100 100 100 100 100 100",
"output": "NO"
},
{
"input": "7\n25 25 25 25 50 100 50",
"output": "YES"
},
{
"input": "2\n25 25",
"output": "YES"
},
{
"input": "3\n50 100 100",
"output": "NO"
},
{
"input": "3\n25 50 50",
"output": "NO"
},
{
"input": "2\n50 25",
"output": "NO"
},
{
"input": "14\n25 25 25 25 25 25 25 50 50 50 100 100 100 100",
"output": "NO"
},
{
"input": "5\n25 25 25 100 100",
"output": "NO"
},
{
"input": "7\n25 50 25 50 25 50 100",
"output": "NO"
},
{
"input": "5\n25 50 25 50 100",
"output": "NO"
},
{
"input": "5\n25 25 50 50 50",
"output": "NO"
},
{
"input": "5\n25 25 50 100 50",
"output": "NO"
},
{
"input": "5\n25 25 50 50 100",
"output": "NO"
},
{
"input": "1\n50",
"output": "NO"
}
] | 1,659,524,292
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 7
| 122
| 0
|
n = int(input())
a = [int(i) for i in input().split()]
s = {0}
ans = "YES"
for i in range(n):
if a[i] - 25 not in s : ans = "NO" ; break
s.add(a[i])
print(ans)
|
Title: Cinema Line
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The new "Die Hard" movie has just been released! There are *n* people at the cinema box office standing in a huge line. Each of them has a single 100, 50 or 25 ruble bill. A "Die Hard" ticket costs 25 rubles. Can the booking clerk sell a ticket to each person and give the change if he initially has no money and sells the tickets strictly in the order people follow in the line?
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of people in the line. The next line contains *n* integers, each of them equals 25, 50 or 100 — the values of the bills the people have. The numbers are given in the order from the beginning of the line (at the box office) to the end of the line.
Output Specification:
Print "YES" (without the quotes) if the booking clerk can sell a ticket to each person and give the change. Otherwise print "NO".
Demo Input:
['4\n25 25 50 50\n', '2\n25 100\n', '4\n50 50 25 25\n']
Demo Output:
['YES\n', 'NO\n', 'NO\n']
Note:
none
|
```python
n = int(input())
a = [int(i) for i in input().split()]
s = {0}
ans = "YES"
for i in range(n):
if a[i] - 25 not in s : ans = "NO" ; break
s.add(a[i])
print(ans)
```
| 0
|
|
600
|
B
|
Queries about less or equal elements
|
PROGRAMMING
| 1,300
|
[
"binary search",
"data structures",
"sortings",
"two pointers"
] | null | null |
You are given two arrays of integers *a* and *b*. For each element of the second array *b**j* you should find the number of elements in array *a* that are less than or equal to the value *b**j*.
|
The first line contains two integers *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=2·105) — the sizes of arrays *a* and *b*.
The second line contains *n* integers — the elements of array *a* (<=-<=109<=≤<=*a**i*<=≤<=109).
The third line contains *m* integers — the elements of array *b* (<=-<=109<=≤<=*b**j*<=≤<=109).
|
Print *m* integers, separated by spaces: the *j*-th of which is equal to the number of such elements in array *a* that are less than or equal to the value *b**j*.
|
[
"5 4\n1 3 5 7 9\n6 4 2 8\n",
"5 5\n1 2 1 2 5\n3 1 4 1 5\n"
] |
[
"3 2 1 4\n",
"4 2 4 2 5\n"
] |
none
| 0
|
[
{
"input": "5 4\n1 3 5 7 9\n6 4 2 8",
"output": "3 2 1 4"
},
{
"input": "5 5\n1 2 1 2 5\n3 1 4 1 5",
"output": "4 2 4 2 5"
},
{
"input": "1 1\n-1\n-2",
"output": "0"
},
{
"input": "1 1\n-80890826\n686519510",
"output": "1"
},
{
"input": "11 11\n237468511 -779187544 -174606592 193890085 404563196 -71722998 -617934776 170102710 -442808289 109833389 953091341\n994454001 322957429 216874735 -606986750 -455806318 -663190696 3793295 41395397 -929612742 -787653860 -684738874",
"output": "11 9 8 2 2 1 5 5 0 0 1"
},
{
"input": "20 22\n858276994 -568758442 -918490847 -983345984 -172435358 389604931 200224783 486556113 413281867 -258259500 -627945379 -584563643 444685477 -602481243 -370745158 965672503 630955806 -626138773 -997221880 633102929\n-61330638 -977252080 -212144219 385501731 669589742 954357160 563935906 584468977 -895883477 405774444 853372186 186056475 -964575261 -952431965 632332084 -388829939 -23011650 310957048 -770695392 977376693 321435214 199223897",
"output": "11 2 10 12 18 19 16 16 3 13 18 11 2 2 17 8 11 12 3 20 12 11"
},
{
"input": "5 9\n1 3 5 7 9\n1 2 3 4 5 6 7 8 9",
"output": "1 1 2 2 3 3 4 4 5"
},
{
"input": "22 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22\n1",
"output": "1"
},
{
"input": "5 1\n1 3 3 3 5\n3",
"output": "4"
},
{
"input": "4 5\n1 1 1 4\n1 5 5 4 3",
"output": "3 4 4 4 3"
},
{
"input": "5 4\n0 5 5 5 6\n5 1 6 3",
"output": "4 1 5 1"
},
{
"input": "1 3\n0\n-1 0 1",
"output": "0 1 1"
},
{
"input": "96 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1",
"output": "96"
},
{
"input": "7 1\n1 2 3 4 5 6 7\n1",
"output": "1"
},
{
"input": "13 13\n-1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000\n-1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000",
"output": "7 13 7 13 7 13 7 13 7 13 7 13 7"
},
{
"input": "9 5\n1 2 3 4 5 6 7 8 9\n1 2 3 4 5",
"output": "1 2 3 4 5"
},
{
"input": "3 8\n1 1 1\n1 1 1 1 1 1 1 1",
"output": "3 3 3 3 3 3 3 3"
},
{
"input": "1 1\n-11111\n-5938",
"output": "1"
},
{
"input": "1 1\n1\n400000009",
"output": "1"
},
{
"input": "1 1\n1\n300000009",
"output": "1"
},
{
"input": "1 1\n1\n200000009",
"output": "1"
},
{
"input": "1 1\n1\n200000003",
"output": "1"
}
] | 1,695,492,391
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 1
| 77
| 0
|
from sys import stdin ,stdout
input=stdin.readline
inp = lambda : map(int,input().split())
def print(*args, end='\n', sep=' ') -> None:
stdout.write(sep.join(map(str, args)) + end)
a,b=inp()
arr=list(inp())
arr1=list(inp())
arr.sort()
arr2=[]
for i in arr1:
l=0
r=a-1
ans=0
while l<r :
mid=(l+r)//2
if arr[mid] <= i:
l=mid+1
ans=mid+1
else:
r=mid
arr2.append(ans)
print(*arr2)
|
Title: Queries about less or equal elements
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given two arrays of integers *a* and *b*. For each element of the second array *b**j* you should find the number of elements in array *a* that are less than or equal to the value *b**j*.
Input Specification:
The first line contains two integers *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=2·105) — the sizes of arrays *a* and *b*.
The second line contains *n* integers — the elements of array *a* (<=-<=109<=≤<=*a**i*<=≤<=109).
The third line contains *m* integers — the elements of array *b* (<=-<=109<=≤<=*b**j*<=≤<=109).
Output Specification:
Print *m* integers, separated by spaces: the *j*-th of which is equal to the number of such elements in array *a* that are less than or equal to the value *b**j*.
Demo Input:
['5 4\n1 3 5 7 9\n6 4 2 8\n', '5 5\n1 2 1 2 5\n3 1 4 1 5\n']
Demo Output:
['3 2 1 4\n', '4 2 4 2 5\n']
Note:
none
|
```python
from sys import stdin ,stdout
input=stdin.readline
inp = lambda : map(int,input().split())
def print(*args, end='\n', sep=' ') -> None:
stdout.write(sep.join(map(str, args)) + end)
a,b=inp()
arr=list(inp())
arr1=list(inp())
arr.sort()
arr2=[]
for i in arr1:
l=0
r=a-1
ans=0
while l<r :
mid=(l+r)//2
if arr[mid] <= i:
l=mid+1
ans=mid+1
else:
r=mid
arr2.append(ans)
print(*arr2)
```
| 0
|
|
753
|
A
|
Santa Claus and Candies
|
PROGRAMMING
| 1,000
|
[
"dp",
"greedy",
"math"
] | null | null |
Santa Claus has *n* candies, he dreams to give them as gifts to children.
What is the maximal number of children for whose he can give candies if Santa Claus want each kid should get distinct positive integer number of candies. Santa Class wants to give all *n* candies he has.
|
The only line contains positive integer number *n* (1<=≤<=*n*<=≤<=1000) — number of candies Santa Claus has.
|
Print to the first line integer number *k* — maximal number of kids which can get candies.
Print to the second line *k* distinct integer numbers: number of candies for each of *k* kid. The sum of *k* printed numbers should be exactly *n*.
If there are many solutions, print any of them.
|
[
"5\n",
"9\n",
"2\n"
] |
[
"2\n2 3\n",
"3\n3 5 1\n",
"1\n2 \n"
] |
none
| 500
|
[
{
"input": "5",
"output": "2\n1 4 "
},
{
"input": "9",
"output": "3\n1 2 6 "
},
{
"input": "2",
"output": "1\n2 "
},
{
"input": "1",
"output": "1\n1 "
},
{
"input": "3",
"output": "2\n1 2 "
},
{
"input": "1000",
"output": "44\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 54 "
},
{
"input": "4",
"output": "2\n1 3 "
},
{
"input": "6",
"output": "3\n1 2 3 "
},
{
"input": "7",
"output": "3\n1 2 4 "
},
{
"input": "8",
"output": "3\n1 2 5 "
},
{
"input": "10",
"output": "4\n1 2 3 4 "
},
{
"input": "11",
"output": "4\n1 2 3 5 "
},
{
"input": "12",
"output": "4\n1 2 3 6 "
},
{
"input": "13",
"output": "4\n1 2 3 7 "
},
{
"input": "14",
"output": "4\n1 2 3 8 "
},
{
"input": "15",
"output": "5\n1 2 3 4 5 "
},
{
"input": "16",
"output": "5\n1 2 3 4 6 "
},
{
"input": "20",
"output": "5\n1 2 3 4 10 "
},
{
"input": "21",
"output": "6\n1 2 3 4 5 6 "
},
{
"input": "22",
"output": "6\n1 2 3 4 5 7 "
},
{
"input": "27",
"output": "6\n1 2 3 4 5 12 "
},
{
"input": "28",
"output": "7\n1 2 3 4 5 6 7 "
},
{
"input": "29",
"output": "7\n1 2 3 4 5 6 8 "
},
{
"input": "35",
"output": "7\n1 2 3 4 5 6 14 "
},
{
"input": "36",
"output": "8\n1 2 3 4 5 6 7 8 "
},
{
"input": "37",
"output": "8\n1 2 3 4 5 6 7 9 "
},
{
"input": "44",
"output": "8\n1 2 3 4 5 6 7 16 "
},
{
"input": "45",
"output": "9\n1 2 3 4 5 6 7 8 9 "
},
{
"input": "46",
"output": "9\n1 2 3 4 5 6 7 8 10 "
},
{
"input": "230",
"output": "20\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 40 "
},
{
"input": "231",
"output": "21\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 "
},
{
"input": "232",
"output": "21\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 "
},
{
"input": "239",
"output": "21\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 29 "
},
{
"input": "629",
"output": "34\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 68 "
},
{
"input": "630",
"output": "35\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 "
},
{
"input": "631",
"output": "35\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 "
},
{
"input": "945",
"output": "42\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 84 "
},
{
"input": "946",
"output": "43\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 "
},
{
"input": "947",
"output": "43\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 44 "
},
{
"input": "989",
"output": "43\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 86 "
},
{
"input": "990",
"output": "44\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 "
},
{
"input": "991",
"output": "44\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 45 "
},
{
"input": "956",
"output": "43\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 53 "
},
{
"input": "981",
"output": "43\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 78 "
},
{
"input": "867",
"output": "41\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 47 "
},
{
"input": "906",
"output": "42\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 45 "
},
{
"input": "999",
"output": "44\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 53 "
},
{
"input": "100",
"output": "13\n1 2 3 4 5 6 7 8 9 10 11 12 22 "
},
{
"input": "126",
"output": "15\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 21 "
}
] | 1,588,672,176
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 49
| 155
| 0
|
n= int(input())
sumv,i=0,1
s=[]
while sumv<n:
s.append(i)
sumv+=i
i+=1
if sumv>n:
x=s[-1]
sumv-=x
s.pop()
s[-1]+=(n-sumv)
print(len(s))
print(*s)
|
Title: Santa Claus and Candies
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Santa Claus has *n* candies, he dreams to give them as gifts to children.
What is the maximal number of children for whose he can give candies if Santa Claus want each kid should get distinct positive integer number of candies. Santa Class wants to give all *n* candies he has.
Input Specification:
The only line contains positive integer number *n* (1<=≤<=*n*<=≤<=1000) — number of candies Santa Claus has.
Output Specification:
Print to the first line integer number *k* — maximal number of kids which can get candies.
Print to the second line *k* distinct integer numbers: number of candies for each of *k* kid. The sum of *k* printed numbers should be exactly *n*.
If there are many solutions, print any of them.
Demo Input:
['5\n', '9\n', '2\n']
Demo Output:
['2\n2 3\n', '3\n3 5 1\n', '1\n2 \n']
Note:
none
|
```python
n= int(input())
sumv,i=0,1
s=[]
while sumv<n:
s.append(i)
sumv+=i
i+=1
if sumv>n:
x=s[-1]
sumv-=x
s.pop()
s[-1]+=(n-sumv)
print(len(s))
print(*s)
```
| 3
|
|
940
|
F
|
Machine Learning
|
PROGRAMMING
| 2,600
|
[
"brute force",
"data structures"
] | null | null |
You come home and fell some unpleasant smell. Where is it coming from?
You are given an array *a*. You have to answer the following queries:
1. You are given two integers *l* and *r*. Let *c**i* be the number of occurrences of *i* in *a**l*:<=*r*, where *a**l*:<=*r* is the subarray of *a* from *l*-th element to *r*-th inclusive. Find the Mex of {*c*0,<=*c*1,<=...,<=*c*109} 1. You are given two integers *p* to *x*. Change *a**p* to *x*.
The Mex of a multiset of numbers is the smallest non-negative integer not in the set.
Note that in this problem all elements of *a* are positive, which means that *c*0 = 0 and 0 is never the answer for the query of the second type.
|
The first line of input contains two integers *n* and *q* (1<=≤<=*n*,<=*q*<=≤<=100<=000) — the length of the array and the number of queries respectively.
The second line of input contains *n* integers — *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=109).
Each of the next *q* lines describes a single query.
The first type of query is described by three integers *t**i*<==<=1, *l**i*, *r**i*, where 1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n* — the bounds of the subarray.
The second type of query is described by three integers *t**i*<==<=2, *p**i*, *x**i*, where 1<=≤<=*p**i*<=≤<=*n* is the index of the element, which must be changed and 1<=≤<=*x**i*<=≤<=109 is the new value.
|
For each query of the first type output a single integer — the Mex of {*c*0,<=*c*1,<=...,<=*c*109}.
|
[
"10 4\n1 2 3 1 1 2 2 2 9 9\n1 1 1\n1 2 8\n2 7 1\n1 2 8\n"
] |
[
"2\n3\n2\n"
] |
The subarray of the first query consists of the single element — 1.
The subarray of the second query consists of four 2s, one 3 and two 1s.
The subarray of the fourth query consists of three 1s, three 2s and one 3.
| 2,750
|
[
{
"input": "10 4\n1 2 3 1 1 2 2 2 9 9\n1 1 1\n1 2 8\n2 7 1\n1 2 8",
"output": "2\n3\n2"
}
] | 1,519,484,560
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 2
| 4,000
| 135,168,000
|
from collections import defaultdict
n,q = map(int,input().split())
a=list(map(int,input().split()))
w = [defaultdict(int) for i in range(400)]
for i in range(len(a)):
w[i//300][a[i]]+=1
w=[defaultdict(int)]+w
for quey in range(q):
t,l,r = map(int,input().split())
l-=1
if t==1:
r-=1
if r-l>=300:
M=defaultdict(int)
r_ = r//300
l_=l//300
for e,cou in w[r_].items():
M[e]=cou-w[l_][e]
for i in range(l,l_*300+1):
M[a[i]]+=1
for i in range(r_*300,r+1):
M[a[i]]+=1
else:
M=defaultdict(int)
for i in range(l,r+1):
M[a[i]]+=1
M=set(list(M.values()))
u=1
while u in M:
u+=1
print(u)
else:
p_ = (l+299)//300
for i in range(p_,400):
w[i][a[l]]-=1
w[i][r]+=1
a[l]=r
|
Title: Machine Learning
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You come home and fell some unpleasant smell. Where is it coming from?
You are given an array *a*. You have to answer the following queries:
1. You are given two integers *l* and *r*. Let *c**i* be the number of occurrences of *i* in *a**l*:<=*r*, where *a**l*:<=*r* is the subarray of *a* from *l*-th element to *r*-th inclusive. Find the Mex of {*c*0,<=*c*1,<=...,<=*c*109} 1. You are given two integers *p* to *x*. Change *a**p* to *x*.
The Mex of a multiset of numbers is the smallest non-negative integer not in the set.
Note that in this problem all elements of *a* are positive, which means that *c*0 = 0 and 0 is never the answer for the query of the second type.
Input Specification:
The first line of input contains two integers *n* and *q* (1<=≤<=*n*,<=*q*<=≤<=100<=000) — the length of the array and the number of queries respectively.
The second line of input contains *n* integers — *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=109).
Each of the next *q* lines describes a single query.
The first type of query is described by three integers *t**i*<==<=1, *l**i*, *r**i*, where 1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n* — the bounds of the subarray.
The second type of query is described by three integers *t**i*<==<=2, *p**i*, *x**i*, where 1<=≤<=*p**i*<=≤<=*n* is the index of the element, which must be changed and 1<=≤<=*x**i*<=≤<=109 is the new value.
Output Specification:
For each query of the first type output a single integer — the Mex of {*c*0,<=*c*1,<=...,<=*c*109}.
Demo Input:
['10 4\n1 2 3 1 1 2 2 2 9 9\n1 1 1\n1 2 8\n2 7 1\n1 2 8\n']
Demo Output:
['2\n3\n2\n']
Note:
The subarray of the first query consists of the single element — 1.
The subarray of the second query consists of four 2s, one 3 and two 1s.
The subarray of the fourth query consists of three 1s, three 2s and one 3.
|
```python
from collections import defaultdict
n,q = map(int,input().split())
a=list(map(int,input().split()))
w = [defaultdict(int) for i in range(400)]
for i in range(len(a)):
w[i//300][a[i]]+=1
w=[defaultdict(int)]+w
for quey in range(q):
t,l,r = map(int,input().split())
l-=1
if t==1:
r-=1
if r-l>=300:
M=defaultdict(int)
r_ = r//300
l_=l//300
for e,cou in w[r_].items():
M[e]=cou-w[l_][e]
for i in range(l,l_*300+1):
M[a[i]]+=1
for i in range(r_*300,r+1):
M[a[i]]+=1
else:
M=defaultdict(int)
for i in range(l,r+1):
M[a[i]]+=1
M=set(list(M.values()))
u=1
while u in M:
u+=1
print(u)
else:
p_ = (l+299)//300
for i in range(p_,400):
w[i][a[l]]-=1
w[i][r]+=1
a[l]=r
```
| 0
|
|
69
|
A
|
Young Physicist
|
PROGRAMMING
| 1,000
|
[
"implementation",
"math"
] |
A. Young Physicist
|
2
|
256
|
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
|
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
|
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
|
[
"3\n4 1 7\n-2 4 -1\n1 -5 -3\n",
"3\n3 -1 7\n-5 2 -4\n2 -1 -3\n"
] |
[
"NO",
"YES"
] |
none
| 500
|
[
{
"input": "3\n4 1 7\n-2 4 -1\n1 -5 -3",
"output": "NO"
},
{
"input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3",
"output": "YES"
},
{
"input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41",
"output": "NO"
},
{
"input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33",
"output": "NO"
},
{
"input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7",
"output": "NO"
},
{
"input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38",
"output": "NO"
},
{
"input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6",
"output": "YES"
},
{
"input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0",
"output": "YES"
},
{
"input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0",
"output": "YES"
},
{
"input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0",
"output": "YES"
},
{
"input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0",
"output": "YES"
},
{
"input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0",
"output": "YES"
},
{
"input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87",
"output": "YES"
},
{
"input": "3\n1 2 3\n3 2 1\n0 0 0",
"output": "NO"
},
{
"input": "2\n5 -23 12\n0 0 0",
"output": "NO"
},
{
"input": "1\n0 0 0",
"output": "YES"
},
{
"input": "1\n1 -2 0",
"output": "NO"
},
{
"input": "2\n-23 77 -86\n23 -77 86",
"output": "YES"
},
{
"input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82",
"output": "YES"
},
{
"input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0",
"output": "YES"
},
{
"input": "3\n96 49 -12\n2 -66 28\n-98 17 -16",
"output": "YES"
},
{
"input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0",
"output": "YES"
},
{
"input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53",
"output": "YES"
},
{
"input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1",
"output": "YES"
},
{
"input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0",
"output": "YES"
},
{
"input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0",
"output": "YES"
},
{
"input": "3\n0 2 -2\n1 -1 3\n-3 0 0",
"output": "NO"
}
] | 1,634,023,274
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 80
| 124
| 6,758,400
|
sum = 0
for i in range(int(input())):
vx, vy, vz = map(int, input().split())
sum += vx + vy + vz
if(sum==0):
print("YES")
else:
print("NO")
|
Title: Young Physicist
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
Input Specification:
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
Output Specification:
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
Demo Input:
['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n']
Demo Output:
['NO', 'YES']
Note:
none
|
```python
sum = 0
for i in range(int(input())):
vx, vy, vz = map(int, input().split())
sum += vx + vy + vz
if(sum==0):
print("YES")
else:
print("NO")
```
| 0
|
975
|
A
|
Aramic script
|
PROGRAMMING
| 900
|
[
"implementation",
"strings"
] | null | null |
In Aramic language words can only represent objects.
Words in Aramic have special properties:
- A word is a root if it does not contain the same letter more than once. - A root and all its permutations represent the same object. - The root $x$ of a word $y$ is the word that contains all letters that appear in $y$ in a way that each letter appears once. For example, the root of "aaaa", "aa", "aaa" is "a", the root of "aabb", "bab", "baabb", "ab" is "ab". - Any word in Aramic represents the same object as its root.
You have an ancient script in Aramic. What is the number of different objects mentioned in the script?
|
The first line contains one integer $n$ ($1 \leq n \leq 10^3$) — the number of words in the script.
The second line contains $n$ words $s_1, s_2, \ldots, s_n$ — the script itself. The length of each string does not exceed $10^3$.
It is guaranteed that all characters of the strings are small latin letters.
|
Output one integer — the number of different objects mentioned in the given ancient Aramic script.
|
[
"5\na aa aaa ab abb\n",
"3\namer arem mrea\n"
] |
[
"2",
"1"
] |
In the first test, there are two objects mentioned. The roots that represent them are "a","ab".
In the second test, there is only one object, its root is "amer", the other strings are just permutations of "amer".
| 500
|
[
{
"input": "5\na aa aaa ab abb",
"output": "2"
},
{
"input": "3\namer arem mrea",
"output": "1"
},
{
"input": "10\nbda bbb cda dca dda dcb bcd dcb ada ddd",
"output": "6"
},
{
"input": "2\nfhjlqs aceginpr",
"output": "2"
},
{
"input": "2\nbcdfghimn efghijlmo",
"output": "2"
}
] | 1,660,837,363
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 187
| 2,867,200
|
input()
l = input().split()
a = set()
for i in l:
a.add(str(set(sorted(list(i)))))
print(len(a))
|
Title: Aramic script
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In Aramic language words can only represent objects.
Words in Aramic have special properties:
- A word is a root if it does not contain the same letter more than once. - A root and all its permutations represent the same object. - The root $x$ of a word $y$ is the word that contains all letters that appear in $y$ in a way that each letter appears once. For example, the root of "aaaa", "aa", "aaa" is "a", the root of "aabb", "bab", "baabb", "ab" is "ab". - Any word in Aramic represents the same object as its root.
You have an ancient script in Aramic. What is the number of different objects mentioned in the script?
Input Specification:
The first line contains one integer $n$ ($1 \leq n \leq 10^3$) — the number of words in the script.
The second line contains $n$ words $s_1, s_2, \ldots, s_n$ — the script itself. The length of each string does not exceed $10^3$.
It is guaranteed that all characters of the strings are small latin letters.
Output Specification:
Output one integer — the number of different objects mentioned in the given ancient Aramic script.
Demo Input:
['5\na aa aaa ab abb\n', '3\namer arem mrea\n']
Demo Output:
['2', '1']
Note:
In the first test, there are two objects mentioned. The roots that represent them are "a","ab".
In the second test, there is only one object, its root is "amer", the other strings are just permutations of "amer".
|
```python
input()
l = input().split()
a = set()
for i in l:
a.add(str(set(sorted(list(i)))))
print(len(a))
```
| 3
|
|
499
|
B
|
Lecture
|
PROGRAMMING
| 1,000
|
[
"implementation",
"strings"
] | null | null |
You have a new professor of graph theory and he speaks very quickly. You come up with the following plan to keep up with his lecture and make notes.
You know two languages, and the professor is giving the lecture in the first one. The words in both languages consist of lowercase English characters, each language consists of several words. For each language, all words are distinct, i.e. they are spelled differently. Moreover, the words of these languages have a one-to-one correspondence, that is, for each word in each language, there exists exactly one word in the other language having has the same meaning.
You can write down every word the professor says in either the first language or the second language. Of course, during the lecture you write down each word in the language in which the word is shorter. In case of equal lengths of the corresponding words you prefer the word of the first language.
You are given the text of the lecture the professor is going to read. Find out how the lecture will be recorded in your notes.
|
The first line contains two integers, *n* and *m* (1<=≤<=*n*<=≤<=3000, 1<=≤<=*m*<=≤<=3000) — the number of words in the professor's lecture and the number of words in each of these languages.
The following *m* lines contain the words. The *i*-th line contains two strings *a**i*, *b**i* meaning that the word *a**i* belongs to the first language, the word *b**i* belongs to the second language, and these two words have the same meaning. It is guaranteed that no word occurs in both languages, and each word occurs in its language exactly once.
The next line contains *n* space-separated strings *c*1,<=*c*2,<=...,<=*c**n* — the text of the lecture. It is guaranteed that each of the strings *c**i* belongs to the set of strings {*a*1,<=*a*2,<=... *a**m*}.
All the strings in the input are non-empty, each consisting of no more than 10 lowercase English letters.
|
Output exactly *n* words: how you will record the lecture in your notebook. Output the words of the lecture in the same order as in the input.
|
[
"4 3\ncodeforces codesecrof\ncontest round\nletter message\ncodeforces contest letter contest\n",
"5 3\njoll wuqrd\neuzf un\nhbnyiyc rsoqqveh\nhbnyiyc joll joll euzf joll\n"
] |
[
"codeforces round letter round\n",
"hbnyiyc joll joll un joll\n"
] |
none
| 500
|
[
{
"input": "4 3\ncodeforces codesecrof\ncontest round\nletter message\ncodeforces contest letter contest",
"output": "codeforces round letter round"
},
{
"input": "5 3\njoll wuqrd\neuzf un\nhbnyiyc rsoqqveh\nhbnyiyc joll joll euzf joll",
"output": "hbnyiyc joll joll un joll"
},
{
"input": "5 5\nqueyqj f\nb vn\ntabzvk qpfzoqx\nytnyonoc hnxsd\njpggvr lchinjmt\nqueyqj jpggvr b ytnyonoc b",
"output": "f jpggvr b hnxsd b"
},
{
"input": "10 22\nazbrll oen\ngh vdyayei\njphveblohx vfglv\nmfyxib jepnvhcuwo\nrpikazqj uam\nl rx\nokjenof qpnyi\nj tixqrno\nod itozmfct\nikkdxmirx ev\nqexftojc p\nkdazb zjs\nmbk ykvqjrxaxu\nhbcwhouzq pwt\nmirpsz zfaegpl\nuhkkvcj rlvwj\nef iqnnwtolrc\npjzfcpmeag ecdayth\nsa qcthz\ncbfhfxi qrnbvdryz\nwqel tj\natx smkbid\nef hbcwhouzq cbfhfxi hbcwhouzq mirpsz cbfhfxi cbfhfxi okjenof pjzfcpmeag kdazb",
"output": "ef pwt cbfhfxi pwt mirpsz cbfhfxi cbfhfxi qpnyi ecdayth zjs"
},
{
"input": "1 1\namit am\namit",
"output": "am"
},
{
"input": "1 1\na c\na",
"output": "a"
}
] | 1,699,745,325
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 37
| 264
| 6,144,000
|
n, m = list(map(int, input().split()))
w1 = []
w2 = []
for i in range(m):
a, b = input().split()
w1.append(a)
w2.append(b)
prof = input().split()
teacher = []
for i in prof:
if i in w1:
ne = w1.index(i)
ot = w2[ne]
if len(i) <= len(ot):
teacher.append(i)
else:
teacher.append(ot)
if i in w2:
ne = w2.index(i)
ot = w1[ne]
if len(i) <= len(ot):
teacher.append(i)
else:
teacher.append(ot)
print(" ".join(teacher))
|
Title: Lecture
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You have a new professor of graph theory and he speaks very quickly. You come up with the following plan to keep up with his lecture and make notes.
You know two languages, and the professor is giving the lecture in the first one. The words in both languages consist of lowercase English characters, each language consists of several words. For each language, all words are distinct, i.e. they are spelled differently. Moreover, the words of these languages have a one-to-one correspondence, that is, for each word in each language, there exists exactly one word in the other language having has the same meaning.
You can write down every word the professor says in either the first language or the second language. Of course, during the lecture you write down each word in the language in which the word is shorter. In case of equal lengths of the corresponding words you prefer the word of the first language.
You are given the text of the lecture the professor is going to read. Find out how the lecture will be recorded in your notes.
Input Specification:
The first line contains two integers, *n* and *m* (1<=≤<=*n*<=≤<=3000, 1<=≤<=*m*<=≤<=3000) — the number of words in the professor's lecture and the number of words in each of these languages.
The following *m* lines contain the words. The *i*-th line contains two strings *a**i*, *b**i* meaning that the word *a**i* belongs to the first language, the word *b**i* belongs to the second language, and these two words have the same meaning. It is guaranteed that no word occurs in both languages, and each word occurs in its language exactly once.
The next line contains *n* space-separated strings *c*1,<=*c*2,<=...,<=*c**n* — the text of the lecture. It is guaranteed that each of the strings *c**i* belongs to the set of strings {*a*1,<=*a*2,<=... *a**m*}.
All the strings in the input are non-empty, each consisting of no more than 10 lowercase English letters.
Output Specification:
Output exactly *n* words: how you will record the lecture in your notebook. Output the words of the lecture in the same order as in the input.
Demo Input:
['4 3\ncodeforces codesecrof\ncontest round\nletter message\ncodeforces contest letter contest\n', '5 3\njoll wuqrd\neuzf un\nhbnyiyc rsoqqveh\nhbnyiyc joll joll euzf joll\n']
Demo Output:
['codeforces round letter round\n', 'hbnyiyc joll joll un joll\n']
Note:
none
|
```python
n, m = list(map(int, input().split()))
w1 = []
w2 = []
for i in range(m):
a, b = input().split()
w1.append(a)
w2.append(b)
prof = input().split()
teacher = []
for i in prof:
if i in w1:
ne = w1.index(i)
ot = w2[ne]
if len(i) <= len(ot):
teacher.append(i)
else:
teacher.append(ot)
if i in w2:
ne = w2.index(i)
ot = w1[ne]
if len(i) <= len(ot):
teacher.append(i)
else:
teacher.append(ot)
print(" ".join(teacher))
```
| 3
|
|
61
|
A
|
Ultra-Fast Mathematician
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Ultra-Fast Mathematician
|
2
|
256
|
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
|
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
|
Write one line — the corresponding answer. Do not omit the leading 0s.
|
[
"1010100\n0100101\n",
"000\n111\n",
"1110\n1010\n",
"01110\n01100\n"
] |
[
"1110001\n",
"111\n",
"0100\n",
"00010\n"
] |
none
| 500
|
[
{
"input": "1010100\n0100101",
"output": "1110001"
},
{
"input": "000\n111",
"output": "111"
},
{
"input": "1110\n1010",
"output": "0100"
},
{
"input": "01110\n01100",
"output": "00010"
},
{
"input": "011101\n000001",
"output": "011100"
},
{
"input": "10\n01",
"output": "11"
},
{
"input": "00111111\n11011101",
"output": "11100010"
},
{
"input": "011001100\n101001010",
"output": "110000110"
},
{
"input": "1100100001\n0110101100",
"output": "1010001101"
},
{
"input": "00011101010\n10010100101",
"output": "10001001111"
},
{
"input": "100000101101\n111010100011",
"output": "011010001110"
},
{
"input": "1000001111010\n1101100110001",
"output": "0101101001011"
},
{
"input": "01011111010111\n10001110111010",
"output": "11010001101101"
},
{
"input": "110010000111100\n001100101011010",
"output": "111110101100110"
},
{
"input": "0010010111110000\n0000000011010110",
"output": "0010010100100110"
},
{
"input": "00111110111110000\n01111100001100000",
"output": "01000010110010000"
},
{
"input": "101010101111010001\n001001111101111101",
"output": "100011010010101100"
},
{
"input": "0110010101111100000\n0011000101000000110",
"output": "0101010000111100110"
},
{
"input": "11110100011101010111\n00001000011011000000",
"output": "11111100000110010111"
},
{
"input": "101010101111101101001\n111010010010000011111",
"output": "010000111101101110110"
},
{
"input": "0000111111100011000010\n1110110110110000001010",
"output": "1110001001010011001000"
},
{
"input": "10010010101000110111000\n00101110100110111000111",
"output": "10111100001110001111111"
},
{
"input": "010010010010111100000111\n100100111111100011001110",
"output": "110110101101011111001001"
},
{
"input": "0101110100100111011010010\n0101100011010111001010001",
"output": "0000010111110000010000011"
},
{
"input": "10010010100011110111111011\n10000110101100000001000100",
"output": "00010100001111110110111111"
},
{
"input": "000001111000000100001000000\n011100111101111001110110001",
"output": "011101000101111101111110001"
},
{
"input": "0011110010001001011001011100\n0000101101000011101011001010",
"output": "0011011111001010110010010110"
},
{
"input": "11111000000000010011001101111\n11101110011001010100010000000",
"output": "00010110011001000111011101111"
},
{
"input": "011001110000110100001100101100\n001010000011110000001000101001",
"output": "010011110011000100000100000101"
},
{
"input": "1011111010001100011010110101111\n1011001110010000000101100010101",
"output": "0000110100011100011111010111010"
},
{
"input": "10111000100001000001010110000001\n10111000001100101011011001011000",
"output": "00000000101101101010001111011001"
},
{
"input": "000001010000100001000000011011100\n111111111001010100100001100000111",
"output": "111110101001110101100001111011011"
},
{
"input": "1101000000000010011011101100000110\n1110000001100010011010000011011110",
"output": "0011000001100000000001101111011000"
},
{
"input": "01011011000010100001100100011110001\n01011010111000001010010100001110000",
"output": "00000001111010101011110000010000001"
},
{
"input": "000011111000011001000110111100000100\n011011000110000111101011100111000111",
"output": "011000111110011110101101011011000011"
},
{
"input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000",
"output": "1011001001111001001011101010101000010"
},
{
"input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011",
"output": "10001110000010101110000111000011111110"
},
{
"input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100",
"output": "000100001011110000011101110111010001110"
},
{
"input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001",
"output": "1101110101010110000011000000101011110011"
},
{
"input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100",
"output": "11001011110010010000010111001100001001110"
},
{
"input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110",
"output": "001100101000011111111101111011101010111001"
},
{
"input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001",
"output": "0111010010100110110101100010000100010100000"
},
{
"input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100",
"output": "11111110000000100101000100110111001100011001"
},
{
"input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011",
"output": "101011011100100010100011011001101010100100010"
},
{
"input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001",
"output": "1101001100111011010111110110101111001011110111"
},
{
"input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001",
"output": "10010101000101000000011010011110011110011110001"
},
{
"input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100",
"output": "011011011100000000010101110010000000101000111101"
},
{
"input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100",
"output": "0101010111101001011011110110011101010101010100011"
},
{
"input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011",
"output": "11001011010010111000010110011101100100001110111111"
},
{
"input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011",
"output": "111011101010011100001111101001101011110010010110001"
},
{
"input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001",
"output": "0100111110110011111110010010010000110111100101101101"
},
{
"input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100",
"output": "01011001110111010111001100010011010100010000111011000"
},
{
"input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111",
"output": "100011101001001000011011011001111000100000010100100100"
},
{
"input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110",
"output": "1100110010000101101010111111101001001001110101110010110"
},
{
"input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110",
"output": "01000111100111001011110010100011111111110010101100001101"
},
{
"input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010",
"output": "110001010001000011000101110101000100001011111001011001001"
},
{
"input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111",
"output": "1110100010111000101001001011101110011111100111000011011011"
},
{
"input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110",
"output": "01110110101110100100110011010000001000101100101111000111011"
},
{
"input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011",
"output": "111100101000000011101011011001110010101111000110010010000000"
},
{
"input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111",
"output": "0100100010111110010011101010000011111110001110010110010111001"
},
{
"input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111",
"output": "00110100000011001101101100100010110010001100000001100110011101"
},
{
"input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011",
"output": "000000011000111011110011101000010000010100101000000011010110010"
},
{
"input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010",
"output": "0010100110110100111100100100101101010100100111011010001001010101"
},
{
"input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111",
"output": "11010110111100101111101001100001110100010110010110110111100110100"
},
{
"input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111",
"output": "111111010011011100101110100110111111111001111110011010111111110000"
},
{
"input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110",
"output": "1010101010100010001001001001100000111000010010010100010011000100000"
},
{
"input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000",
"output": "00011111011111001000011100010011100011010100101011011000001001111110"
},
{
"input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111",
"output": "001111000011001110100111010101111111011100110011001010010010000111011"
},
{
"input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101",
"output": "0110001100110100010000110111000010011010011000011001010011010100010100"
},
{
"input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010",
"output": "00010000000110110101000011001000000100100110111010011111101010001010000"
},
{
"input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001",
"output": "000100100000000110011100100001010110101001100101110010010011111001110111"
},
{
"input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000",
"output": "1000111100010011010110011101000000101010101100011111100001101111001010010"
},
{
"input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011",
"output": "01000010011110111001011011110000001011000111101101101010010110001010100100"
},
{
"input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101",
"output": "101101110110110010011100001011111100100001110000101100110000100011011100110"
},
{
"input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001",
"output": "1110111111110010111000001100101010101011010100101010100101100011001001111111"
},
{
"input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111",
"output": "10111011000111000101110100101000100111011011100011110110000101010001111010111"
},
{
"input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110",
"output": "110100100110000101010010011010011001100110000111010000010100001011110111111101"
},
{
"input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111",
"output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111"
},
{
"input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001",
"output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001"
},
{
"input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110",
"output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011"
},
{
"input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111",
"output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101"
},
{
"input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010",
"output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101"
},
{
"input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000",
"output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001"
},
{
"input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011",
"output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110"
},
{
"input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011",
"output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011"
},
{
"input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011",
"output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011"
},
{
"input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010",
"output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011"
},
{
"input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001",
"output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110"
},
{
"input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111",
"output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010"
},
{
"input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011",
"output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011"
},
{
"input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100",
"output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000"
},
{
"input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001",
"output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101"
},
{
"input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110",
"output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101"
},
{
"input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011",
"output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110"
},
{
"input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111",
"output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110"
},
{
"input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000",
"output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001"
},
{
"input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010",
"output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101"
},
{
"input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101",
"output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011"
},
{
"input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011",
"output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010",
"output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011"
},
{
"input": "0\n0",
"output": "0"
},
{
"input": "0\n1",
"output": "1"
}
] | 1,679,154,290
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 102
| 62
| 0
|
n1 = input()
n2 = input()
for i, j in zip(n1, n2):
if i != j:
print(1, end="")
else:
print(0, end="")
|
Title: Ultra-Fast Mathematician
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
Input Specification:
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Output Specification:
Write one line — the corresponding answer. Do not omit the leading 0s.
Demo Input:
['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n']
Demo Output:
['1110001\n', '111\n', '0100\n', '00010\n']
Note:
none
|
```python
n1 = input()
n2 = input()
for i, j in zip(n1, n2):
if i != j:
print(1, end="")
else:
print(0, end="")
```
| 3.9845
|
254
|
A
|
Cards with Numbers
|
PROGRAMMING
| 1,200
|
[
"constructive algorithms",
"sortings"
] | null | null |
Petya has got 2*n* cards, each card contains some integer. The numbers on the cards can be the same. Let's index all cards by consecutive integers from 1 to 2*n*. We'll denote the number that is written on a card with number *i*, as *a**i*. In order to play one entertaining game with his friends, Petya needs to split the cards into pairs so that each pair had equal numbers on the cards. Help Petya do that.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=3·105). The second line contains the sequence of 2*n* positive integers *a*1,<=*a*2,<=...,<=*a*2*n* (1<=≤<=*a**i*<=≤<=5000) — the numbers that are written on the cards. The numbers on the line are separated by single spaces.
|
If it is impossible to divide the cards into pairs so that cards in each pair had the same numbers, print on a single line integer -1. But if the required partition exists, then print *n* pairs of integers, a pair per line — the indices of the cards that form the pairs.
Separate the numbers on the lines by spaces. You can print the pairs and the numbers in the pairs in any order. If there are multiple solutions, print any of them.
|
[
"3\n20 30 10 30 20 10\n",
"1\n1 2\n"
] |
[
"4 2\n1 5\n6 3\n",
"-1"
] |
none
| 500
|
[
{
"input": "3\n20 30 10 30 20 10",
"output": "4 2\n1 5\n6 3"
},
{
"input": "1\n1 2",
"output": "-1"
},
{
"input": "5\n2 2 2 2 2 1 2 2 1 2",
"output": "2 1\n3 4\n7 5\n6 9\n10 8"
},
{
"input": "5\n2 1 2 2 1 1 1 1 1 2",
"output": "3 1\n2 5\n7 6\n8 9\n10 4"
},
{
"input": "5\n1 2 2 2 1 2 2 1 2 1",
"output": "3 2\n1 5\n6 4\n7 9\n10 8"
},
{
"input": "5\n3 3 1 1 1 3 2 3 1 2",
"output": "2 1\n3 4\n8 6\n5 9\n10 7"
},
{
"input": "5\n1 1 3 1 3 3 3 1 1 1",
"output": "2 1\n3 5\n7 6\n4 8\n10 9"
},
{
"input": "5\n3 1 1 1 2 3 3 3 2 1",
"output": "3 2\n1 6\n8 7\n5 9\n10 4"
},
{
"input": "5\n3 3 2 2 3 3 1 3 1 3",
"output": "2 1\n3 4\n6 5\n7 9\n10 8"
},
{
"input": "5\n4 1 3 1 4 1 2 2 3 1",
"output": "4 2\n1 5\n8 7\n3 9\n10 6"
},
{
"input": "100\n8 6 7 8 7 9 1 7 3 3 5 8 7 8 5 4 8 4 8 1 2 8 3 7 8 7 6 5 7 9 6 10 7 6 7 8 6 8 9 5 1 5 6 1 4 8 4 8 7 2 6 2 6 6 2 8 2 8 7 1 5 4 4 6 4 9 7 5 1 8 1 3 9 2 3 2 4 7 6 10 5 3 4 10 8 9 6 7 2 7 10 1 8 10 4 1 1 1 2 7 5 4 9 10 6 8 3 1 10 9 9 6 1 5 8 6 6 3 3 4 10 10 8 9 7 10 9 3 7 6 3 2 10 8 5 8 5 5 5 10 8 5 7 6 10 7 7 9 10 10 9 9 3 6 5 6 8 1 9 8 2 4 8 8 6 8 10 2 3 5 2 6 8 4 8 6 4 5 10 8 1 10 5 2 5 6 8 2 6 8 1 3 4 5 7 5 6 9 2 8",
"output": "4 1\n3 5\n10 9\n8 13\n14 12\n11 15\n18 16\n17 19\n20 7\n22 25\n26 24\n2 27\n30 6\n29 33\n34 31\n36 38\n40 28\n37 43\n44 41\n45 47\n48 46\n35 49\n50 21\n51 53\n55 52\n56 58\n61 42\n62 63\n64 54\n39 66\n67 59\n60 69\n72 23\n57 74\n77 65\n32 80\n81 68\n75 82\n85 70\n73 86\n87 79\n78 88\n89 76\n84 91\n92 71\n83 95\n97 96\n90 100\n104 94\n93 106\n108 98\n103 110\n112 105\n101 114\n117 116\n107 118\n120 102\n109 121\n123 115\n111 124\n126 122\n119 128\n129 125\n99 132\n136 134\n135 137\n139 138\n133 140\n144 130..."
},
{
"input": "100\n7 3 8 8 1 9 6 6 3 3 8 2 7 9 9 10 2 10 4 4 9 3 6 5 2 6 3 6 3 5 2 3 8 2 5 10 3 9 7 2 1 6 7 4 8 3 9 10 9 4 3 3 7 1 4 2 2 5 6 6 1 7 9 1 8 1 2 2 5 9 7 7 6 4 6 10 1 1 8 1 5 6 4 9 5 4 4 10 6 4 5 1 9 1 7 8 6 10 3 2 4 7 10 4 8 10 6 7 8 4 1 3 8 3 2 1 9 4 2 4 3 1 6 8 6 2 2 5 6 8 6 10 1 6 4 2 7 3 6 10 6 5 6 6 3 9 4 6 4 1 5 4 4 2 8 4 10 3 7 6 6 10 2 5 5 6 1 6 1 9 9 1 10 5 10 1 1 5 7 5 2 1 4 2 3 3 3 5 1 8 10 3 3 5 9 6 3 6 8 1",
"output": "4 3\n7 8\n9 2\n1 13\n14 6\n12 17\n18 16\n19 20\n21 15\n10 22\n26 23\n27 29\n30 24\n25 31\n33 11\n32 37\n40 34\n5 41\n42 28\n39 43\n47 38\n36 48\n50 44\n46 51\n57 56\n35 58\n60 59\n54 61\n62 53\n49 63\n65 45\n64 66\n68 67\n71 72\n74 55\n73 75\n78 77\n69 81\n84 70\n83 86\n88 76\n82 89\n90 87\n85 91\n92 80\n79 96\n99 52\n95 102\n103 98\n101 104\n107 97\n105 109\n111 94\n112 114\n115 100\n93 117\n118 110\n116 122\n124 113\n123 125\n126 119\n129 131\n132 106\n120 135\n136 127\n108 137\n138 121\n134 139\n142 128..."
},
{
"input": "100\n6 3 6 8 8 4 3 7 10 3 1 3 9 5 10 10 6 7 6 6 2 3 8 8 7 6 4 9 6 7 4 4 10 4 7 3 2 7 10 8 6 7 9 1 3 5 3 7 9 1 1 7 1 1 7 7 8 3 2 7 4 8 7 8 10 3 1 7 2 7 9 8 8 8 5 2 8 1 2 7 8 7 8 8 5 10 10 4 9 10 8 7 8 8 7 7 3 6 4 3 4 8 10 8 6 3 7 1 8 6 3 3 7 10 3 9 3 5 10 9 9 2 8 7 2 3 2 1 10 9 6 2 8 7 2 2 5 3 10 6 7 2 1 1 5 10 7 5 4 9 7 7 8 1 1 3 3 7 10 5 9 8 6 8 2 2 1 7 8 9 6 2 2 6 2 9 10 2 10 9 6 3 3 10 6 5 3 6 6 3 6 10 8 7 4 8 6 3 4 7",
"output": "-1"
},
{
"input": "1\n2 2",
"output": "2 1"
},
{
"input": "2\n1 2 4 7",
"output": "-1"
}
] | 1,582,108,155
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 108
| 409,600
|
import collections
n = int(input())
a = list(map(int, input().split()))
b = collections.Counter(a)
#print (b.most_common()[::-1][0][1])
if b.most_common()[::-1][0][1] != 2:
print (-1)
exit()
values, counts = zip(*b.most_common())
for i in values:
c = [j for j, e in enumerate(a) if e == i]
print (c[0]+1, c[1]+1)
|
Title: Cards with Numbers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Petya has got 2*n* cards, each card contains some integer. The numbers on the cards can be the same. Let's index all cards by consecutive integers from 1 to 2*n*. We'll denote the number that is written on a card with number *i*, as *a**i*. In order to play one entertaining game with his friends, Petya needs to split the cards into pairs so that each pair had equal numbers on the cards. Help Petya do that.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=3·105). The second line contains the sequence of 2*n* positive integers *a*1,<=*a*2,<=...,<=*a*2*n* (1<=≤<=*a**i*<=≤<=5000) — the numbers that are written on the cards. The numbers on the line are separated by single spaces.
Output Specification:
If it is impossible to divide the cards into pairs so that cards in each pair had the same numbers, print on a single line integer -1. But if the required partition exists, then print *n* pairs of integers, a pair per line — the indices of the cards that form the pairs.
Separate the numbers on the lines by spaces. You can print the pairs and the numbers in the pairs in any order. If there are multiple solutions, print any of them.
Demo Input:
['3\n20 30 10 30 20 10\n', '1\n1 2\n']
Demo Output:
['4 2\n1 5\n6 3\n', '-1']
Note:
none
|
```python
import collections
n = int(input())
a = list(map(int, input().split()))
b = collections.Counter(a)
#print (b.most_common()[::-1][0][1])
if b.most_common()[::-1][0][1] != 2:
print (-1)
exit()
values, counts = zip(*b.most_common())
for i in values:
c = [j for j, e in enumerate(a) if e == i]
print (c[0]+1, c[1]+1)
```
| -1
|
|
633
|
A
|
Ebony and Ivory
|
PROGRAMMING
| 1,100
|
[
"brute force",
"math",
"number theory"
] | null | null |
Dante is engaged in a fight with "The Savior". Before he can fight it with his sword, he needs to break its shields. He has two guns, Ebony and Ivory, each of them is able to perform any non-negative number of shots.
For every bullet that hits the shield, Ebony deals *a* units of damage while Ivory deals *b* units of damage. In order to break the shield Dante has to deal exactly *c* units of damage. Find out if this is possible.
|
The first line of the input contains three integers *a*, *b*, *c* (1<=≤<=*a*,<=*b*<=≤<=100,<=1<=≤<=*c*<=≤<=10<=000) — the number of units of damage dealt by Ebony gun and Ivory gun, and the total number of damage required to break the shield, respectively.
|
Print "Yes" (without quotes) if Dante can deal exactly *c* damage to the shield and "No" (without quotes) otherwise.
|
[
"4 6 15\n",
"3 2 7\n",
"6 11 6\n"
] |
[
"No\n",
"Yes\n",
"Yes\n"
] |
In the second sample, Dante can fire 1 bullet from Ebony and 2 from Ivory to deal exactly 1·3 + 2·2 = 7 damage. In the third sample, Dante can fire 1 bullet from ebony and no bullets from ivory to do 1·6 + 0·11 = 6 damage.
| 250
|
[
{
"input": "4 6 15",
"output": "No"
},
{
"input": "3 2 7",
"output": "Yes"
},
{
"input": "6 11 6",
"output": "Yes"
},
{
"input": "3 12 15",
"output": "Yes"
},
{
"input": "5 5 10",
"output": "Yes"
},
{
"input": "6 6 7",
"output": "No"
},
{
"input": "1 1 20",
"output": "Yes"
},
{
"input": "12 14 19",
"output": "No"
},
{
"input": "15 12 26",
"output": "No"
},
{
"input": "2 4 8",
"output": "Yes"
},
{
"input": "4 5 30",
"output": "Yes"
},
{
"input": "4 5 48",
"output": "Yes"
},
{
"input": "2 17 105",
"output": "Yes"
},
{
"input": "10 25 282",
"output": "No"
},
{
"input": "6 34 323",
"output": "No"
},
{
"input": "2 47 464",
"output": "Yes"
},
{
"input": "4 53 113",
"output": "Yes"
},
{
"input": "6 64 546",
"output": "Yes"
},
{
"input": "1 78 725",
"output": "Yes"
},
{
"input": "1 84 811",
"output": "Yes"
},
{
"input": "3 100 441",
"output": "Yes"
},
{
"input": "20 5 57",
"output": "No"
},
{
"input": "14 19 143",
"output": "No"
},
{
"input": "17 23 248",
"output": "No"
},
{
"input": "11 34 383",
"output": "Yes"
},
{
"input": "20 47 568",
"output": "Yes"
},
{
"input": "16 58 410",
"output": "Yes"
},
{
"input": "11 70 1199",
"output": "Yes"
},
{
"input": "16 78 712",
"output": "Yes"
},
{
"input": "20 84 562",
"output": "No"
},
{
"input": "19 100 836",
"output": "Yes"
},
{
"input": "23 10 58",
"output": "No"
},
{
"input": "25 17 448",
"output": "Yes"
},
{
"input": "22 24 866",
"output": "Yes"
},
{
"input": "24 35 67",
"output": "No"
},
{
"input": "29 47 264",
"output": "Yes"
},
{
"input": "23 56 45",
"output": "No"
},
{
"input": "25 66 1183",
"output": "Yes"
},
{
"input": "21 71 657",
"output": "Yes"
},
{
"input": "29 81 629",
"output": "No"
},
{
"input": "23 95 2226",
"output": "Yes"
},
{
"input": "32 4 62",
"output": "No"
},
{
"input": "37 15 789",
"output": "Yes"
},
{
"input": "39 24 999",
"output": "Yes"
},
{
"input": "38 32 865",
"output": "No"
},
{
"input": "32 50 205",
"output": "No"
},
{
"input": "31 57 1362",
"output": "Yes"
},
{
"input": "38 68 1870",
"output": "Yes"
},
{
"input": "36 76 549",
"output": "No"
},
{
"input": "35 84 1257",
"output": "No"
},
{
"input": "39 92 2753",
"output": "Yes"
},
{
"input": "44 1 287",
"output": "Yes"
},
{
"input": "42 12 830",
"output": "No"
},
{
"input": "42 27 9",
"output": "No"
},
{
"input": "49 40 1422",
"output": "No"
},
{
"input": "44 42 2005",
"output": "No"
},
{
"input": "50 55 2479",
"output": "No"
},
{
"input": "48 65 917",
"output": "No"
},
{
"input": "45 78 152",
"output": "No"
},
{
"input": "43 90 4096",
"output": "Yes"
},
{
"input": "43 94 4316",
"output": "Yes"
},
{
"input": "60 7 526",
"output": "Yes"
},
{
"input": "53 11 735",
"output": "Yes"
},
{
"input": "52 27 609",
"output": "Yes"
},
{
"input": "57 32 992",
"output": "Yes"
},
{
"input": "52 49 421",
"output": "No"
},
{
"input": "57 52 2634",
"output": "Yes"
},
{
"input": "54 67 3181",
"output": "Yes"
},
{
"input": "52 73 638",
"output": "No"
},
{
"input": "57 84 3470",
"output": "No"
},
{
"input": "52 100 5582",
"output": "No"
},
{
"input": "62 1 501",
"output": "Yes"
},
{
"input": "63 17 858",
"output": "Yes"
},
{
"input": "70 24 1784",
"output": "Yes"
},
{
"input": "65 32 1391",
"output": "Yes"
},
{
"input": "62 50 2775",
"output": "No"
},
{
"input": "62 58 88",
"output": "No"
},
{
"input": "66 68 3112",
"output": "Yes"
},
{
"input": "61 71 1643",
"output": "No"
},
{
"input": "69 81 3880",
"output": "No"
},
{
"input": "63 100 1960",
"output": "Yes"
},
{
"input": "73 6 431",
"output": "Yes"
},
{
"input": "75 19 736",
"output": "Yes"
},
{
"input": "78 25 247",
"output": "No"
},
{
"input": "79 36 2854",
"output": "Yes"
},
{
"input": "80 43 1864",
"output": "Yes"
},
{
"input": "76 55 2196",
"output": "Yes"
},
{
"input": "76 69 4122",
"output": "Yes"
},
{
"input": "76 76 4905",
"output": "No"
},
{
"input": "75 89 3056",
"output": "Yes"
},
{
"input": "73 100 3111",
"output": "Yes"
},
{
"input": "84 9 530",
"output": "No"
},
{
"input": "82 18 633",
"output": "No"
},
{
"input": "85 29 2533",
"output": "Yes"
},
{
"input": "89 38 2879",
"output": "Yes"
},
{
"input": "89 49 2200",
"output": "Yes"
},
{
"input": "88 60 4140",
"output": "Yes"
},
{
"input": "82 68 1299",
"output": "No"
},
{
"input": "90 76 2207",
"output": "No"
},
{
"input": "83 84 4923",
"output": "Yes"
},
{
"input": "89 99 7969",
"output": "Yes"
},
{
"input": "94 9 168",
"output": "No"
},
{
"input": "91 20 1009",
"output": "No"
},
{
"input": "93 23 2872",
"output": "Yes"
},
{
"input": "97 31 3761",
"output": "Yes"
},
{
"input": "99 46 1341",
"output": "Yes"
},
{
"input": "98 51 2845",
"output": "No"
},
{
"input": "93 66 3412",
"output": "No"
},
{
"input": "95 76 3724",
"output": "Yes"
},
{
"input": "91 87 6237",
"output": "Yes"
},
{
"input": "98 97 7886",
"output": "Yes"
},
{
"input": "12 17 15",
"output": "No"
},
{
"input": "93 94 95",
"output": "No"
},
{
"input": "27 43 27",
"output": "Yes"
},
{
"input": "17 43 68",
"output": "Yes"
},
{
"input": "44 12 12",
"output": "Yes"
},
{
"input": "44 50 150",
"output": "Yes"
},
{
"input": "1 1 10000",
"output": "Yes"
},
{
"input": "2 3 10000",
"output": "Yes"
},
{
"input": "100 1 10",
"output": "Yes"
},
{
"input": "3 2 1",
"output": "No"
},
{
"input": "1 1 1",
"output": "Yes"
},
{
"input": "9 9 10000",
"output": "No"
},
{
"input": "2 3 9995",
"output": "Yes"
},
{
"input": "3 5 4",
"output": "No"
},
{
"input": "99 98 100",
"output": "No"
},
{
"input": "6 10 2",
"output": "No"
},
{
"input": "1 6 5",
"output": "Yes"
},
{
"input": "1 4 3",
"output": "Yes"
},
{
"input": "3 2 3",
"output": "Yes"
},
{
"input": "1 7 6",
"output": "Yes"
},
{
"input": "2 3 9871",
"output": "Yes"
},
{
"input": "10 5 5",
"output": "Yes"
},
{
"input": "10 8 2",
"output": "No"
}
] | 1,456,507,669
| 769
|
Python 3
|
COMPILATION_ERROR
|
PRETESTS
| 0
| 0
| 0
|
#include<iostream>
using namespace std;
int main()
{
int a,i,b,c;
cin>>a>>b>>c;
int table[c+1]={0};
table[0]=1;
for(i=a;i<=c;i++)
{
table[i]+=table[i-a];
}
for(i=b;i<=c;i++)
{
table[i]+=table[i-b];
}
if(table[c]>0)
cout<<"Yes";
else
cout<<"No";
return 0;}
|
Title: Ebony and Ivory
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Dante is engaged in a fight with "The Savior". Before he can fight it with his sword, he needs to break its shields. He has two guns, Ebony and Ivory, each of them is able to perform any non-negative number of shots.
For every bullet that hits the shield, Ebony deals *a* units of damage while Ivory deals *b* units of damage. In order to break the shield Dante has to deal exactly *c* units of damage. Find out if this is possible.
Input Specification:
The first line of the input contains three integers *a*, *b*, *c* (1<=≤<=*a*,<=*b*<=≤<=100,<=1<=≤<=*c*<=≤<=10<=000) — the number of units of damage dealt by Ebony gun and Ivory gun, and the total number of damage required to break the shield, respectively.
Output Specification:
Print "Yes" (without quotes) if Dante can deal exactly *c* damage to the shield and "No" (without quotes) otherwise.
Demo Input:
['4 6 15\n', '3 2 7\n', '6 11 6\n']
Demo Output:
['No\n', 'Yes\n', 'Yes\n']
Note:
In the second sample, Dante can fire 1 bullet from Ebony and 2 from Ivory to deal exactly 1·3 + 2·2 = 7 damage. In the third sample, Dante can fire 1 bullet from ebony and no bullets from ivory to do 1·6 + 0·11 = 6 damage.
|
```python
#include<iostream>
using namespace std;
int main()
{
int a,i,b,c;
cin>>a>>b>>c;
int table[c+1]={0};
table[0]=1;
for(i=a;i<=c;i++)
{
table[i]+=table[i-a];
}
for(i=b;i<=c;i++)
{
table[i]+=table[i-b];
}
if(table[c]>0)
cout<<"Yes";
else
cout<<"No";
return 0;}
```
| -1
|
|
764
|
B
|
Timofey and cubes
|
PROGRAMMING
| 900
|
[
"constructive algorithms",
"implementation"
] | null | null |
Young Timofey has a birthday today! He got kit of *n* cubes as a birthday present from his parents. Every cube has a number *a**i*, which is written on it. Timofey put all the cubes in a row and went to unpack other presents.
In this time, Timofey's elder brother, Dima reordered the cubes using the following rule. Suppose the cubes are numbered from 1 to *n* in their order. Dima performs several steps, on step *i* he reverses the segment of cubes from *i*-th to (*n*<=-<=*i*<=+<=1)-th. He does this while *i*<=≤<=*n*<=-<=*i*<=+<=1.
After performing the operations Dima went away, being very proud of himself. When Timofey returned to his cubes, he understood that their order was changed. Help Timofey as fast as you can and save the holiday — restore the initial order of the cubes using information of their current location.
|
The first line contains single integer *n* (1<=≤<=*n*<=≤<=2·105) — the number of cubes.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109), where *a**i* is the number written on the *i*-th cube after Dima has changed their order.
|
Print *n* integers, separated by spaces — the numbers written on the cubes in their initial order.
It can be shown that the answer is unique.
|
[
"7\n4 3 7 6 9 1 2\n",
"8\n6 1 4 2 5 6 9 2\n"
] |
[
"2 3 9 6 7 1 4",
"2 1 6 2 5 4 9 6"
] |
Consider the first sample.
1. At the begining row was [2, 3, 9, 6, 7, 1, 4]. 1. After first operation row was [4, 1, 7, 6, 9, 3, 2]. 1. After second operation row was [4, 3, 9, 6, 7, 1, 2]. 1. After third operation row was [4, 3, 7, 6, 9, 1, 2]. 1. At fourth operation we reverse just middle element, so nothing has changed. The final row is [4, 3, 7, 6, 9, 1, 2]. So the answer for this case is row [2, 3, 9, 6, 7, 1, 4].
| 1,000
|
[
{
"input": "7\n4 3 7 6 9 1 2",
"output": "2 3 9 6 7 1 4"
},
{
"input": "8\n6 1 4 2 5 6 9 2",
"output": "2 1 6 2 5 4 9 6"
},
{
"input": "1\n1424",
"output": "1424"
},
{
"input": "9\n-7 9 -4 9 -6 11 15 2 -10",
"output": "-10 9 15 9 -6 11 -4 2 -7"
},
{
"input": "2\n21968 5686",
"output": "5686 21968"
},
{
"input": "5\n241218936 -825949895 -84926813 491336344 -872198236",
"output": "-872198236 -825949895 -84926813 491336344 241218936"
},
{
"input": "42\n-557774624 828320986 -345782722 -62979938 -681259411 -945983652 -139095040 832293378 -82572118 432027535 88438103 568183540 961782904 73543295 615958219 -5050584 322982437 -146046730 759453379 129267920 -819827396 -348156048 805080102 390723009 -771277251 -79011872 -592313207 528489973 656201270 -127795621 17284747 145139617 -565641608 83452176 -223074608 545811186 -657981923 -204657836 154779765 -476867246 180386291 202782486",
"output": "202782486 828320986 -476867246 -62979938 -204657836 -945983652 545811186 832293378 83452176 432027535 145139617 568183540 -127795621 73543295 528489973 -5050584 -79011872 -146046730 390723009 129267920 -348156048 -819827396 805080102 759453379 -771277251 322982437 -592313207 615958219 656201270 961782904 17284747 88438103 -565641608 -82572118 -223074608 -139095040 -657981923 -681259411 154779765 -345782722 180386291 -557774624"
},
{
"input": "2\n1 2",
"output": "2 1"
},
{
"input": "6\n1 2 3 4 5 6",
"output": "6 2 4 3 5 1"
},
{
"input": "4\n0 1 2 3",
"output": "3 1 2 0"
},
{
"input": "10\n1 2 3 4 5 6 7 8 9 10",
"output": "10 2 8 4 6 5 7 3 9 1"
},
{
"input": "2\n4 5",
"output": "5 4"
},
{
"input": "2\n1 5",
"output": "5 1"
},
{
"input": "2\n2 5",
"output": "5 2"
},
{
"input": "2\n3 4",
"output": "4 3"
},
{
"input": "2\n10 0",
"output": "0 10"
},
{
"input": "66\n8229 5299 5562 1259 2258 1126 5026 8796 3497 7111 6680 1180 1426 4821 3322 3502 400 2951 4187 417 5234 1266 7525 7648 417 9297 174 670 1790 4121 9737 938 4616 3402 2009 2461 474 3728 327 3353 9773 6818 8781 874 2209 1260 1647 6126 9287 9638 5049 1256 4459 863 1835 4822 6809 348 5053 7784 6927 2140 9173 7817 5095 4184",
"output": "4184 5299 7817 1259 2140 1126 7784 8796 348 7111 4822 1180 863 4821 1256 3502 9638 2951 6126 417 1260 1266 874 7648 6818 9297 3353 670 3728 4121 2461 938 3402 4616 2009 9737 474 1790 327 174 9773 417 8781 7525 2209 5234 1647 4187 9287 400 5049 3322 4459 1426 1835 6680 6809 3497 5053 5026 6927 2258 9173 5562 5095 8229"
}
] | 1,691,621,633
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 34
| 140
| 25,497,600
|
n,i = int(input()) ,0
l = [int(x) for x in input().split()]
while i < n//2:l[i],l[-(i+1)] ,i= l[-(i+1)],l[i],i+2
print(*l)
|
Title: Timofey and cubes
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Young Timofey has a birthday today! He got kit of *n* cubes as a birthday present from his parents. Every cube has a number *a**i*, which is written on it. Timofey put all the cubes in a row and went to unpack other presents.
In this time, Timofey's elder brother, Dima reordered the cubes using the following rule. Suppose the cubes are numbered from 1 to *n* in their order. Dima performs several steps, on step *i* he reverses the segment of cubes from *i*-th to (*n*<=-<=*i*<=+<=1)-th. He does this while *i*<=≤<=*n*<=-<=*i*<=+<=1.
After performing the operations Dima went away, being very proud of himself. When Timofey returned to his cubes, he understood that their order was changed. Help Timofey as fast as you can and save the holiday — restore the initial order of the cubes using information of their current location.
Input Specification:
The first line contains single integer *n* (1<=≤<=*n*<=≤<=2·105) — the number of cubes.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109), where *a**i* is the number written on the *i*-th cube after Dima has changed their order.
Output Specification:
Print *n* integers, separated by spaces — the numbers written on the cubes in their initial order.
It can be shown that the answer is unique.
Demo Input:
['7\n4 3 7 6 9 1 2\n', '8\n6 1 4 2 5 6 9 2\n']
Demo Output:
['2 3 9 6 7 1 4', '2 1 6 2 5 4 9 6']
Note:
Consider the first sample.
1. At the begining row was [2, 3, 9, 6, 7, 1, 4]. 1. After first operation row was [4, 1, 7, 6, 9, 3, 2]. 1. After second operation row was [4, 3, 9, 6, 7, 1, 2]. 1. After third operation row was [4, 3, 7, 6, 9, 1, 2]. 1. At fourth operation we reverse just middle element, so nothing has changed. The final row is [4, 3, 7, 6, 9, 1, 2]. So the answer for this case is row [2, 3, 9, 6, 7, 1, 4].
|
```python
n,i = int(input()) ,0
l = [int(x) for x in input().split()]
while i < n//2:l[i],l[-(i+1)] ,i= l[-(i+1)],l[i],i+2
print(*l)
```
| 3
|
|
313
|
B
|
Ilya and Queries
|
PROGRAMMING
| 1,100
|
[
"dp",
"implementation"
] | null | null |
Ilya the Lion wants to help all his friends with passing exams. They need to solve the following problem to pass the IT exam.
You've got string *s*<==<=*s*1*s*2... *s**n* (*n* is the length of the string), consisting only of characters "." and "#" and *m* queries. Each query is described by a pair of integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=<<=*r**i*<=≤<=*n*). The answer to the query *l**i*,<=*r**i* is the number of such integers *i* (*l**i*<=≤<=*i*<=<<=*r**i*), that *s**i*<==<=*s**i*<=+<=1.
Ilya the Lion wants to help his friends but is there anyone to help him? Help Ilya, solve the problem.
|
The first line contains string *s* of length *n* (2<=≤<=*n*<=≤<=105). It is guaranteed that the given string only consists of characters "." and "#".
The next line contains integer *m* (1<=≤<=*m*<=≤<=105) — the number of queries. Each of the next *m* lines contains the description of the corresponding query. The *i*-th line contains integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=<<=*r**i*<=≤<=*n*).
|
Print *m* integers — the answers to the queries in the order in which they are given in the input.
|
[
"......\n4\n3 4\n2 3\n1 6\n2 6\n",
"#..###\n5\n1 3\n5 6\n1 5\n3 6\n3 4\n"
] |
[
"1\n1\n5\n4\n",
"1\n1\n2\n2\n0\n"
] |
none
| 1,000
|
[
{
"input": "......\n4\n3 4\n2 3\n1 6\n2 6",
"output": "1\n1\n5\n4"
},
{
"input": "#..###\n5\n1 3\n5 6\n1 5\n3 6\n3 4",
"output": "1\n1\n2\n2\n0"
},
{
"input": ".#...#..\n6\n1 5\n2 3\n6 7\n2 4\n2 5\n1 3",
"output": "2\n0\n0\n1\n2\n0"
},
{
"input": "#.#.#..\n5\n3 4\n4 5\n5 7\n5 7\n1 3",
"output": "0\n0\n1\n1\n0"
},
{
"input": "#.##.##.\n7\n1 8\n2 6\n2 6\n6 8\n3 5\n2 4\n2 5",
"output": "2\n1\n1\n1\n1\n1\n1"
},
{
"input": "#..#\n1\n1 4",
"output": "1"
},
{
"input": "#..##...#.\n7\n5 9\n6 10\n1 7\n5 8\n3 5\n2 10\n3 4",
"output": "2\n2\n3\n2\n1\n4\n0"
},
{
"input": "#.#.#\n7\n1 2\n3 4\n3 5\n2 3\n3 5\n1 5\n1 3",
"output": "0\n0\n0\n0\n0\n0\n0"
},
{
"input": "###..#...#\n2\n2 4\n1 2",
"output": "1\n1"
},
{
"input": "..\n1\n1 2",
"output": "1"
},
{
"input": "##\n1\n1 2",
"output": "1"
},
{
"input": ".#\n1\n1 2",
"output": "0"
},
{
"input": "#.\n1\n1 2",
"output": "0"
},
{
"input": "...\n2\n1 2\n1 2",
"output": "1\n1"
}
] | 1,688,958,664
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 9
| 2,000
| 11,264,000
|
def count_adjacent_chars(s, queries):
results = []
for li, ri in queries:
count = 0
for i in range(li, ri):
if s[i - 1] == s[i]:
count += 1
results.append(count)
return results
s = input()
m = int(input())
queries = []
for _ in range(m):
li, ri = map(int, input().split())
queries.append((li, ri))
results = count_adjacent_chars(s, queries)
for result in results:
print(result)
|
Title: Ilya and Queries
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Ilya the Lion wants to help all his friends with passing exams. They need to solve the following problem to pass the IT exam.
You've got string *s*<==<=*s*1*s*2... *s**n* (*n* is the length of the string), consisting only of characters "." and "#" and *m* queries. Each query is described by a pair of integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=<<=*r**i*<=≤<=*n*). The answer to the query *l**i*,<=*r**i* is the number of such integers *i* (*l**i*<=≤<=*i*<=<<=*r**i*), that *s**i*<==<=*s**i*<=+<=1.
Ilya the Lion wants to help his friends but is there anyone to help him? Help Ilya, solve the problem.
Input Specification:
The first line contains string *s* of length *n* (2<=≤<=*n*<=≤<=105). It is guaranteed that the given string only consists of characters "." and "#".
The next line contains integer *m* (1<=≤<=*m*<=≤<=105) — the number of queries. Each of the next *m* lines contains the description of the corresponding query. The *i*-th line contains integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=<<=*r**i*<=≤<=*n*).
Output Specification:
Print *m* integers — the answers to the queries in the order in which they are given in the input.
Demo Input:
['......\n4\n3 4\n2 3\n1 6\n2 6\n', '#..###\n5\n1 3\n5 6\n1 5\n3 6\n3 4\n']
Demo Output:
['1\n1\n5\n4\n', '1\n1\n2\n2\n0\n']
Note:
none
|
```python
def count_adjacent_chars(s, queries):
results = []
for li, ri in queries:
count = 0
for i in range(li, ri):
if s[i - 1] == s[i]:
count += 1
results.append(count)
return results
s = input()
m = int(input())
queries = []
for _ in range(m):
li, ri = map(int, input().split())
queries.append((li, ri))
results = count_adjacent_chars(s, queries)
for result in results:
print(result)
```
| 0
|
|
637
|
B
|
Chat Order
|
PROGRAMMING
| 1,200
|
[
"*special",
"binary search",
"constructive algorithms",
"data structures",
"sortings"
] | null | null |
Polycarp is a big lover of killing time in social networks. A page with a chatlist in his favourite network is made so that when a message is sent to some friend, his friend's chat rises to the very top of the page. The relative order of the other chats doesn't change. If there was no chat with this friend before, then a new chat is simply inserted to the top of the list.
Assuming that the chat list is initially empty, given the sequence of Polycaprus' messages make a list of chats after all of his messages are processed. Assume that no friend wrote any message to Polycarpus.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of Polycarpus' messages. Next *n* lines enlist the message recipients in the order in which the messages were sent. The name of each participant is a non-empty sequence of lowercase English letters of length at most 10.
|
Print all the recipients to who Polycarp talked to in the order of chats with them, from top to bottom.
|
[
"4\nalex\nivan\nroman\nivan\n",
"8\nalina\nmaria\nekaterina\ndarya\ndarya\nekaterina\nmaria\nalina\n"
] |
[
"ivan\nroman\nalex\n",
"alina\nmaria\nekaterina\ndarya\n"
] |
In the first test case Polycarpus first writes to friend by name "alex", and the list looks as follows:
1. alex
Then Polycarpus writes to friend by name "ivan" and the list looks as follows:
1. ivan 1. alex
Polycarpus writes the third message to friend by name "roman" and the list looks as follows:
1. roman 1. ivan 1. alex
Polycarpus writes the fourth message to friend by name "ivan", to who he has already sent a message, so the list of chats changes as follows:
1. ivan 1. roman 1. alex
| 1,000
|
[
{
"input": "4\nalex\nivan\nroman\nivan",
"output": "ivan\nroman\nalex"
},
{
"input": "8\nalina\nmaria\nekaterina\ndarya\ndarya\nekaterina\nmaria\nalina",
"output": "alina\nmaria\nekaterina\ndarya"
},
{
"input": "1\nwdi",
"output": "wdi"
},
{
"input": "2\nypg\nypg",
"output": "ypg"
},
{
"input": "3\nexhll\nexhll\narruapexj",
"output": "arruapexj\nexhll"
},
{
"input": "3\nfv\nle\nle",
"output": "le\nfv"
},
{
"input": "8\nm\nm\nm\nm\nm\nm\nm\nm",
"output": "m"
},
{
"input": "10\nr\nr\ni\nw\nk\nr\nb\nu\nu\nr",
"output": "r\nu\nb\nk\nw\ni"
},
{
"input": "7\ne\nfau\ncmk\nnzs\nby\nwx\ntjmok",
"output": "tjmok\nwx\nby\nnzs\ncmk\nfau\ne"
},
{
"input": "6\nklrj\nwe\nklrj\nwe\nwe\nwe",
"output": "we\nklrj"
},
{
"input": "8\nzncybqmh\naeebef\nzncybqmh\nn\naeebef\nzncybqmh\nzncybqmh\nzncybqmh",
"output": "zncybqmh\naeebef\nn"
},
{
"input": "30\nkqqcbs\nvap\nkymomn\nj\nkqqcbs\nfuzlzoum\nkymomn\ndbh\nfuzlzoum\nkymomn\nvap\nvlgzs\ndbh\nvlgzs\nbvy\ndbh\nkymomn\nkymomn\neoqql\nkymomn\nkymomn\nkqqcbs\nvlgzs\nkqqcbs\nkqqcbs\nfuzlzoum\nvlgzs\nrylgdoo\nvlgzs\nrylgdoo",
"output": "rylgdoo\nvlgzs\nfuzlzoum\nkqqcbs\nkymomn\neoqql\ndbh\nbvy\nvap\nj"
},
{
"input": "40\nji\nv\nv\nns\nji\nn\nji\nv\nfvy\nvje\nns\nvje\nv\nhas\nv\nusm\nhas\nfvy\nvje\nkdb\nn\nv\nji\nji\nn\nhas\nv\nji\nkdb\nr\nvje\nns\nv\nusm\nn\nvje\nhas\nns\nhas\nn",
"output": "n\nhas\nns\nvje\nusm\nv\nr\nkdb\nji\nfvy"
},
{
"input": "50\njcg\nvle\njopb\nepdb\nnkef\nfv\nxj\nufe\nfuy\noqta\ngbc\nyuz\nec\nyji\nkuux\ncwm\ntq\nnno\nhp\nzry\nxxpp\ntjvo\ngyz\nkwo\nvwqz\nyaqc\njnj\nwoav\nqcv\ndcu\ngc\nhovn\nop\nevy\ndc\ntrpu\nyb\nuzfa\npca\noq\nnhxy\nsiqu\nde\nhphy\nc\nwovu\nf\nbvv\ndsik\nlwyg",
"output": "lwyg\ndsik\nbvv\nf\nwovu\nc\nhphy\nde\nsiqu\nnhxy\noq\npca\nuzfa\nyb\ntrpu\ndc\nevy\nop\nhovn\ngc\ndcu\nqcv\nwoav\njnj\nyaqc\nvwqz\nkwo\ngyz\ntjvo\nxxpp\nzry\nhp\nnno\ntq\ncwm\nkuux\nyji\nec\nyuz\ngbc\noqta\nfuy\nufe\nxj\nfv\nnkef\nepdb\njopb\nvle\njcg"
},
{
"input": "100\nvhh\nvhh\nvhh\nfa\nfa\nvhh\nvhh\nvhh\nfa\nfa\nfa\nvhh\nfa\nvhh\nvhh\nvhh\nfa\nvhh\nvhh\nfa\nfa\nfa\nfa\nfa\nfa\nvhh\nfa\nfa\nvhh\nvhh\nvhh\nfa\nfa\nfa\nvhh\nfa\nvhh\nfa\nvhh\nvhh\nfa\nvhh\nfa\nvhh\nvhh\nvhh\nfa\nvhh\nfa\nfa\nvhh\nfa\nvhh\nvhh\nvhh\nvhh\nfa\nvhh\nvhh\nvhh\nvhh\nfa\nvhh\nvhh\nvhh\nvhh\nvhh\nfa\nvhh\nvhh\nfa\nfa\nfa\nvhh\nfa\nfa\nvhh\nfa\nvhh\nfa\nfa\nfa\nfa\nfa\nfa\nvhh\nvhh\nfa\nvhh\nfa\nfa\nvhh\nfa\nfa\nvhh\nfa\nvhh\nvhh\nfa\nvhh",
"output": "vhh\nfa"
},
{
"input": "2\naa\nbb",
"output": "bb\naa"
},
{
"input": "2\naa\na",
"output": "a\naa"
},
{
"input": "3\naa\naa\naa",
"output": "aa"
},
{
"input": "5\naa\na\naa\na\naa",
"output": "aa\na"
},
{
"input": "7\naaaa\naaaa\naaa\na\naa\naaaaaaa\naaa",
"output": "aaa\naaaaaaa\naa\na\naaaa"
},
{
"input": "5\na\naa\naaa\naaaa\na",
"output": "a\naaaa\naaa\naa"
},
{
"input": "12\naaaaa\naaaaaa\naaaa\naaaaaa\naa\naaaa\naaaa\naaaaaa\na\naaa\naaaaaaaa\naa",
"output": "aa\naaaaaaaa\naaa\na\naaaaaa\naaaa\naaaaa"
},
{
"input": "3\na\naa\naaa",
"output": "aaa\naa\na"
},
{
"input": "9\nzzz\nzzzzz\nzzz\nzzzz\nzz\nzzzz\nzzzzz\nzzzz\nzzzzzzz",
"output": "zzzzzzz\nzzzz\nzzzzz\nzz\nzzz"
}
] | 1,625,496,091
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 95
| 686
| 24,985,600
|
n_chats = int(input())
track = {}
for i in range(n_chats):
cur_person = input()
track[cur_person] = (i, cur_person)
results = list(track.values())
results.sort(reverse=True)
for tup in results:
print(tup[1])
|
Title: Chat Order
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarp is a big lover of killing time in social networks. A page with a chatlist in his favourite network is made so that when a message is sent to some friend, his friend's chat rises to the very top of the page. The relative order of the other chats doesn't change. If there was no chat with this friend before, then a new chat is simply inserted to the top of the list.
Assuming that the chat list is initially empty, given the sequence of Polycaprus' messages make a list of chats after all of his messages are processed. Assume that no friend wrote any message to Polycarpus.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of Polycarpus' messages. Next *n* lines enlist the message recipients in the order in which the messages were sent. The name of each participant is a non-empty sequence of lowercase English letters of length at most 10.
Output Specification:
Print all the recipients to who Polycarp talked to in the order of chats with them, from top to bottom.
Demo Input:
['4\nalex\nivan\nroman\nivan\n', '8\nalina\nmaria\nekaterina\ndarya\ndarya\nekaterina\nmaria\nalina\n']
Demo Output:
['ivan\nroman\nalex\n', 'alina\nmaria\nekaterina\ndarya\n']
Note:
In the first test case Polycarpus first writes to friend by name "alex", and the list looks as follows:
1. alex
Then Polycarpus writes to friend by name "ivan" and the list looks as follows:
1. ivan 1. alex
Polycarpus writes the third message to friend by name "roman" and the list looks as follows:
1. roman 1. ivan 1. alex
Polycarpus writes the fourth message to friend by name "ivan", to who he has already sent a message, so the list of chats changes as follows:
1. ivan 1. roman 1. alex
|
```python
n_chats = int(input())
track = {}
for i in range(n_chats):
cur_person = input()
track[cur_person] = (i, cur_person)
results = list(track.values())
results.sort(reverse=True)
for tup in results:
print(tup[1])
```
| 3
|
|
439
|
A
|
Devu, the Singer and Churu, the Joker
|
PROGRAMMING
| 900
|
[
"greedy",
"implementation"
] | null | null |
Devu is a renowned classical singer. He is invited to many big functions/festivals. Recently he was invited to "All World Classical Singing Festival". Other than Devu, comedian Churu was also invited.
Devu has provided organizers a list of the songs and required time for singing them. He will sing *n* songs, *i**th* song will take *t**i* minutes exactly.
The Comedian, Churu will crack jokes. All his jokes are of 5 minutes exactly.
People have mainly come to listen Devu. But you know that he needs rest of 10 minutes after each song. On the other hand, Churu being a very active person, doesn't need any rest.
You as one of the organizers should make an optimal sсhedule for the event. For some reasons you must follow the conditions:
- The duration of the event must be no more than *d* minutes; - Devu must complete all his songs; - With satisfying the two previous conditions the number of jokes cracked by Churu should be as many as possible.
If it is not possible to find a way to conduct all the songs of the Devu, output -1. Otherwise find out maximum number of jokes that Churu can crack in the grand event.
|
The first line contains two space separated integers *n*, *d* (1<=≤<=*n*<=≤<=100; 1<=≤<=*d*<=≤<=10000). The second line contains *n* space-separated integers: *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=100).
|
If there is no way to conduct all the songs of Devu, output -1. Otherwise output the maximum number of jokes that Churu can crack in the grand event.
|
[
"3 30\n2 2 1\n",
"3 20\n2 1 1\n"
] |
[
"5\n",
"-1\n"
] |
Consider the first example. The duration of the event is 30 minutes. There could be maximum 5 jokes in the following way:
- First Churu cracks a joke in 5 minutes. - Then Devu performs the first song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now Devu performs second song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now finally Devu will perform his last song in 1 minutes.
Total time spent is 5 + 2 + 10 + 2 + 10 + 1 = 30 minutes.
Consider the second example. There is no way of organizing Devu's all songs. Hence the answer is -1.
| 500
|
[
{
"input": "3 30\n2 2 1",
"output": "5"
},
{
"input": "3 20\n2 1 1",
"output": "-1"
},
{
"input": "50 10000\n5 4 10 9 9 6 7 7 7 3 3 7 7 4 7 4 10 10 1 7 10 3 1 4 5 7 2 10 10 10 2 3 4 7 6 1 8 4 7 3 8 8 4 10 1 1 9 2 6 1",
"output": "1943"
},
{
"input": "50 10000\n4 7 15 9 11 12 20 9 14 14 10 13 6 13 14 17 6 8 20 12 10 15 13 17 5 12 13 11 7 5 5 2 3 15 13 7 14 14 19 2 13 14 5 15 3 19 15 16 4 1",
"output": "1891"
},
{
"input": "100 9000\n5 2 3 1 1 3 4 9 9 6 7 10 10 10 2 10 6 8 8 6 7 9 9 5 6 2 1 10 10 9 4 5 9 2 4 3 8 5 6 1 1 5 3 6 2 6 6 6 5 8 3 6 7 3 1 10 9 1 8 3 10 9 5 6 3 4 1 1 10 10 2 3 4 8 10 10 5 1 5 3 6 8 10 6 10 2 1 8 10 1 7 6 9 10 5 2 3 5 3 2",
"output": "1688"
},
{
"input": "100 8007\n5 19 14 18 9 6 15 8 1 14 11 20 3 17 7 12 2 6 3 17 7 20 1 14 20 17 2 10 13 7 18 18 9 10 16 8 1 11 11 9 13 18 9 20 12 12 7 15 12 17 11 5 11 15 9 2 15 1 18 3 18 16 15 4 10 5 18 13 13 12 3 8 17 2 12 2 13 3 1 13 2 4 9 10 18 10 14 4 4 17 12 19 2 9 6 5 5 20 18 12",
"output": "1391"
},
{
"input": "39 2412\n1 1 1 1 1 1 26 1 1 1 99 1 1 1 1 1 1 1 1 1 1 88 7 1 1 1 1 76 1 1 1 93 40 1 13 1 68 1 32",
"output": "368"
},
{
"input": "39 2617\n47 1 1 1 63 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 70 1 99 63 1 1 1 1 1 1 1 1 64 1 1",
"output": "435"
},
{
"input": "39 3681\n83 77 1 94 85 47 1 98 29 16 1 1 1 71 96 85 31 97 96 93 40 50 98 1 60 51 1 96 100 72 1 1 1 89 1 93 1 92 100",
"output": "326"
},
{
"input": "45 894\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 28 28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 99 3 1 1",
"output": "139"
},
{
"input": "45 4534\n1 99 65 99 4 46 54 80 51 30 96 1 28 30 44 70 78 1 1 100 1 62 1 1 1 85 1 1 1 61 1 46 75 1 61 77 97 26 67 1 1 63 81 85 86",
"output": "514"
},
{
"input": "72 3538\n52 1 8 1 1 1 7 1 1 1 1 48 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 40 1 1 38 1 1 1 1 1 1 1 1 1 1 1 35 1 93 79 1 1 1 1 1 1 1 1 1 51 1 1 1 1 1 1 1 1 1 1 1 1 96 1",
"output": "586"
},
{
"input": "81 2200\n1 59 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 93 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 50 1 1 1 1 1 1 1 1 1 1 1",
"output": "384"
},
{
"input": "81 2577\n85 91 1 1 2 1 1 100 1 80 1 1 17 86 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 37 1 66 24 1 1 96 49 1 66 1 44 1 1 1 1 98 1 1 1 1 35 1 37 3 35 1 1 87 64 1 24 1 58 1 1 42 83 5 1 1 1 1 1 95 1 94 1 50 1 1",
"output": "174"
},
{
"input": "81 4131\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "807"
},
{
"input": "81 6315\n1 1 67 100 1 99 36 1 92 5 1 96 42 12 1 57 91 1 1 66 41 30 74 95 1 37 1 39 91 69 1 52 77 47 65 1 1 93 96 74 90 35 85 76 71 92 92 1 1 67 92 74 1 1 86 76 35 1 56 16 27 57 37 95 1 40 20 100 51 1 80 60 45 79 95 1 46 1 25 100 96",
"output": "490"
},
{
"input": "96 1688\n1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 71 1 1 1 30 1 1 1",
"output": "284"
},
{
"input": "96 8889\n1 1 18 1 1 1 1 1 1 1 1 1 99 1 1 1 1 88 1 45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 96 1 1 1 1 21 1 1 1 1 1 1 1 73 1 1 1 1 1 10 1 1 1 1 1 1 1 46 43 1 1 1 1 1 98 1 1 1 1 1 1 6 1 1 1 1 1 74 1 25 1 55 1 1 1 13 1 1 54 1 1 1",
"output": "1589"
},
{
"input": "10 100\n1 1 1 1 1 1 1 1 1 1",
"output": "18"
},
{
"input": "100 10000\n54 46 72 94 79 83 91 54 73 3 24 55 54 31 28 20 19 6 25 19 47 23 1 70 15 87 51 39 54 77 55 5 60 3 15 99 56 88 22 78 79 21 38 27 28 86 7 88 12 59 55 70 25 1 70 49 1 45 69 72 50 17 4 56 8 100 90 34 35 20 61 76 88 79 4 74 65 68 75 26 40 72 59 94 10 67 96 85 29 90 47 24 44 1 66 93 55 36 1 99",
"output": "1017"
},
{
"input": "100 6000\n41 31 23 17 24 78 26 96 93 48 46 2 49 33 35 9 73 100 34 48 83 36 33 69 43 24 3 74 8 81 27 33 94 38 77 9 76 90 62 90 21 67 22 22 12 2 17 27 61 18 72 85 59 65 71 38 90 75 74 66 60 47 58 50 90 95 75 10 5 100 97 29 83 88 65 26 93 90 22 98 36 55 70 38 50 92 88 72 99 96 25 14 74 16 25 92 67 94 77 96",
"output": "-1"
},
{
"input": "1 1\n1",
"output": "0"
},
{
"input": "1 6\n1",
"output": "1"
},
{
"input": "1 5\n1",
"output": "0"
},
{
"input": "1 3\n4",
"output": "-1"
},
{
"input": "3 24\n2 1 2",
"output": "-1"
}
] | 1,599,529,843
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 26
| 108
| 0
|
er=list(map(int,input().split()))
sd=list(map(int,input().split()))
wd=sum(sd)+10*((len(sd)-1))
if(wd>er[1]):
print(-1)
else:
print(abs(wd-er[1])//5+((len(sd)-1)*2))
|
Title: Devu, the Singer and Churu, the Joker
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Devu is a renowned classical singer. He is invited to many big functions/festivals. Recently he was invited to "All World Classical Singing Festival". Other than Devu, comedian Churu was also invited.
Devu has provided organizers a list of the songs and required time for singing them. He will sing *n* songs, *i**th* song will take *t**i* minutes exactly.
The Comedian, Churu will crack jokes. All his jokes are of 5 minutes exactly.
People have mainly come to listen Devu. But you know that he needs rest of 10 minutes after each song. On the other hand, Churu being a very active person, doesn't need any rest.
You as one of the organizers should make an optimal sсhedule for the event. For some reasons you must follow the conditions:
- The duration of the event must be no more than *d* minutes; - Devu must complete all his songs; - With satisfying the two previous conditions the number of jokes cracked by Churu should be as many as possible.
If it is not possible to find a way to conduct all the songs of the Devu, output -1. Otherwise find out maximum number of jokes that Churu can crack in the grand event.
Input Specification:
The first line contains two space separated integers *n*, *d* (1<=≤<=*n*<=≤<=100; 1<=≤<=*d*<=≤<=10000). The second line contains *n* space-separated integers: *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=100).
Output Specification:
If there is no way to conduct all the songs of Devu, output -1. Otherwise output the maximum number of jokes that Churu can crack in the grand event.
Demo Input:
['3 30\n2 2 1\n', '3 20\n2 1 1\n']
Demo Output:
['5\n', '-1\n']
Note:
Consider the first example. The duration of the event is 30 minutes. There could be maximum 5 jokes in the following way:
- First Churu cracks a joke in 5 minutes. - Then Devu performs the first song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now Devu performs second song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now finally Devu will perform his last song in 1 minutes.
Total time spent is 5 + 2 + 10 + 2 + 10 + 1 = 30 minutes.
Consider the second example. There is no way of organizing Devu's all songs. Hence the answer is -1.
|
```python
er=list(map(int,input().split()))
sd=list(map(int,input().split()))
wd=sum(sd)+10*((len(sd)-1))
if(wd>er[1]):
print(-1)
else:
print(abs(wd-er[1])//5+((len(sd)-1)*2))
```
| 3
|
|
41
|
A
|
Translation
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Translation
|
2
|
256
|
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
|
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
|
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
|
[
"code\nedoc\n",
"abb\naba\n",
"code\ncode\n"
] |
[
"YES\n",
"NO\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "code\nedoc",
"output": "YES"
},
{
"input": "abb\naba",
"output": "NO"
},
{
"input": "code\ncode",
"output": "NO"
},
{
"input": "abacaba\nabacaba",
"output": "YES"
},
{
"input": "q\nq",
"output": "YES"
},
{
"input": "asrgdfngfnmfgnhweratgjkk\nasrgdfngfnmfgnhweratgjkk",
"output": "NO"
},
{
"input": "z\na",
"output": "NO"
},
{
"input": "asd\ndsa",
"output": "YES"
},
{
"input": "abcdef\nfecdba",
"output": "NO"
},
{
"input": "ywjjbirapvskozubvxoemscfwl\ngnduubaogtfaiowjizlvjcu",
"output": "NO"
},
{
"input": "mfrmqxtzvgaeuleubcmcxcfqyruwzenguhgrmkuhdgnhgtgkdszwqyd\nmfxufheiperjnhyczclkmzyhcxntdfskzkzdwzzujdinf",
"output": "NO"
},
{
"input": "bnbnemvybqizywlnghlykniaxxxlkhftppbdeqpesrtgkcpoeqowjwhrylpsziiwcldodcoonpimudvrxejjo\ntiynnekmlalogyvrgptbinkoqdwzuiyjlrldxhzjmmp",
"output": "NO"
},
{
"input": "pwlpubwyhzqvcitemnhvvwkmwcaawjvdiwtoxyhbhbxerlypelevasmelpfqwjk\nstruuzebbcenziscuoecywugxncdwzyfozhljjyizpqcgkyonyetarcpwkqhuugsqjuixsxptmbnlfupdcfigacdhhrzb",
"output": "NO"
},
{
"input": "gdvqjoyxnkypfvdxssgrihnwxkeojmnpdeobpecytkbdwujqfjtxsqspxvxpqioyfagzjxupqqzpgnpnpxcuipweunqch\nkkqkiwwasbhezqcfeceyngcyuogrkhqecwsyerdniqiocjehrpkljiljophqhyaiefjpavoom",
"output": "NO"
},
{
"input": "umeszdawsvgkjhlqwzents\nhxqhdungbylhnikwviuh",
"output": "NO"
},
{
"input": "juotpscvyfmgntshcealgbsrwwksgrwnrrbyaqqsxdlzhkbugdyx\nibqvffmfktyipgiopznsqtrtxiijntdbgyy",
"output": "NO"
},
{
"input": "zbwueheveouatecaglziqmudxemhrsozmaujrwlqmppzoumxhamwugedikvkblvmxwuofmpafdprbcftew\nulczwrqhctbtbxrhhodwbcxwimncnexosksujlisgclllxokrsbnozthajnnlilyffmsyko",
"output": "NO"
},
{
"input": "nkgwuugukzcv\nqktnpxedwxpxkrxdvgmfgoxkdfpbzvwsduyiybynbkouonhvmzakeiruhfmvrktghadbfkmwxduoqv",
"output": "NO"
},
{
"input": "incenvizhqpcenhjhehvjvgbsnfixbatrrjstxjzhlmdmxijztphxbrldlqwdfimweepkggzcxsrwelodpnryntepioqpvk\ndhjbjjftlvnxibkklxquwmzhjfvnmwpapdrslioxisbyhhfymyiaqhlgecpxamqnocizwxniubrmpyubvpenoukhcobkdojlybxd",
"output": "NO"
},
{
"input": "w\nw",
"output": "YES"
},
{
"input": "vz\nzv",
"output": "YES"
},
{
"input": "ry\nyr",
"output": "YES"
},
{
"input": "xou\nuox",
"output": "YES"
},
{
"input": "axg\ngax",
"output": "NO"
},
{
"input": "zdsl\nlsdz",
"output": "YES"
},
{
"input": "kudl\nldku",
"output": "NO"
},
{
"input": "zzlzwnqlcl\nlclqnwzlzz",
"output": "YES"
},
{
"input": "vzzgicnzqooejpjzads\nsdazjpjeooqzncigzzv",
"output": "YES"
},
{
"input": "raqhmvmzuwaykjpyxsykr\nxkysrypjkyawuzmvmhqar",
"output": "NO"
},
{
"input": "ngedczubzdcqbxksnxuavdjaqtmdwncjnoaicvmodcqvhfezew\nwezefhvqcdomvciaonjcnwdmtqajdvauxnskxbqcdzbuzcdegn",
"output": "YES"
},
{
"input": "muooqttvrrljcxbroizkymuidvfmhhsjtumksdkcbwwpfqdyvxtrlymofendqvznzlmim\nmimlznzvqdnefomylrtxvydqfpwwbckdskmutjshhmfvdiumykziorbxcjlrrvttqooum",
"output": "YES"
},
{
"input": "vxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaivg\ngviayyikkitmuomcpiakhbxszgbnhvwyzkftwoagzixaearxpjacrnvpvbuzenvovehkmmxvblqyxvctroddksdsgebcmlluqpxv",
"output": "YES"
},
{
"input": "mnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfdc\ncdfmkdgrdptkpewbsqvszipgxvgvuiuzbkkwuowbafkikgvnqdkxnayzdjygvezmtsgywnupocdntipiyiorblqkrzjpzatxahnm",
"output": "NO"
},
{
"input": "dgxmzbqofstzcdgthbaewbwocowvhqpinehpjatnnbrijcolvsatbblsrxabzrpszoiecpwhfjmwuhqrapvtcgvikuxtzbftydkw\nwkdytfbztxukivgctvparqhuwmjfhwpceiozsprzbaxrslbbqasvlocjirbnntajphenipthvwocowbweabhtgdcztsfoqbzmxgd",
"output": "NO"
},
{
"input": "gxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwgeh\nhegwxvocotmzstqfbmpjvijgkcyodlxyjawrpkczpmdspsuhoiruavnnnuwvtwohglkdxjetshkboalvzqbgjgthoteceixioxg",
"output": "YES"
},
{
"input": "sihxuwvmaambplxvjfoskinghzicyfqebjtkysotattkahssumfcgrkheotdxwjckpvapbkaepqrxseyfrwtyaycmrzsrsngkh\nhkgnsrszrmcyaytwrfyesxrqpeakbpavpkcjwxdtoehkrgcfmusshakttatosyktjbeqfycizhgniksofjvxlpbmaamvwuxhis",
"output": "YES"
},
{
"input": "ycnahksbughnonldzrhkysujmylcgcfuludjvjiahtkyzqvkopzqcnwhltbzfugzojqkjjlggmvnultascmygelkiktmfieok\nkoeifmtkiklegkmcsatlunvmggkjjlqjozgufzbtlhwncqzpokvqzykthaijvjdulufcgclymjusyyhrzdlnonhgubskhancy",
"output": "NO"
},
{
"input": "wbqasaehtkfojruzyhrlgwmtyiovmzyfifslvlemhqheyaelzwnthrenjsbmntwaoryzwfbxmscmypvxlfmzpnkkjlvwvmtz\nztmvwvljkknpzmflxvpymcsmxbfwzyroawtnmbsjnerhtnwzleayehqhmelvlsfifyzmvoiytmwglrhyzurjofktheasaqbw",
"output": "YES"
},
{
"input": "imippqurprbhfugngtgifelytadegwrgaefnfhbjjnmzikvjaccotqzemufqieqldgnbmviisgkynzeldlhqxuqphjfmyij\njiymfjhpquxqhldleznykgsiivmbngdlqeiqfumezqtoccajvkizmnjjbhfnfeagrwgedatylefigtgngufhbrpruqppimi",
"output": "YES"
},
{
"input": "bikydffiuisckpvzqlteqfhegsagimodb\nbdomigasgehfqetlqzvpkcsiuiffdykib",
"output": "YES"
}
] | 1,663,446,724
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 60
| 0
|
x=input()
y=input()
counter = 0
if len(x) != len(y):
for i in range (len (x)):
if x[i]==y[-i-1]:
counter+=1
if counter == len(x):
print('YES')
else:print('NO')
else: print('NO')
|
Title: Translation
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
Input Specification:
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
Output Specification:
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
Demo Input:
['code\nedoc\n', 'abb\naba\n', 'code\ncode\n']
Demo Output:
['YES\n', 'NO\n', 'NO\n']
Note:
none
|
```python
x=input()
y=input()
counter = 0
if len(x) != len(y):
for i in range (len (x)):
if x[i]==y[-i-1]:
counter+=1
if counter == len(x):
print('YES')
else:print('NO')
else: print('NO')
```
| 0
|
137
|
B
|
Permutation
|
PROGRAMMING
| 1,000
|
[
"greedy"
] | null | null |
"Hey, it's homework time" — thought Polycarpus and of course he started with his favourite subject, IT. Polycarpus managed to solve all tasks but for the last one in 20 minutes. However, as he failed to solve the last task after some considerable time, the boy asked you to help him.
The sequence of *n* integers is called a permutation if it contains all integers from 1 to *n* exactly once.
You are given an arbitrary sequence *a*1,<=*a*2,<=...,<=*a**n* containing *n* integers. Each integer is not less than 1 and not greater than 5000. Determine what minimum number of elements Polycarpus needs to change to get a permutation (he should not delete or add numbers). In a single change he can modify any single sequence element (i. e. replace it with another integer).
|
The first line of the input data contains an integer *n* (1<=≤<=*n*<=≤<=5000) which represents how many numbers are in the sequence. The second line contains a sequence of integers *a**i* (1<=≤<=*a**i*<=≤<=5000,<=1<=≤<=*i*<=≤<=*n*).
|
Print the only number — the minimum number of changes needed to get the permutation.
|
[
"3\n3 1 2\n",
"2\n2 2\n",
"5\n5 3 3 3 1\n"
] |
[
"0\n",
"1\n",
"2\n"
] |
The first sample contains the permutation, which is why no replacements are required.
In the second sample it is enough to replace the first element with the number 1 and that will make the sequence the needed permutation.
In the third sample we can replace the second element with number 4 and the fourth element with number 2.
| 1,000
|
[
{
"input": "3\n3 1 2",
"output": "0"
},
{
"input": "2\n2 2",
"output": "1"
},
{
"input": "5\n5 3 3 3 1",
"output": "2"
},
{
"input": "5\n6 6 6 6 6",
"output": "5"
},
{
"input": "10\n1 1 2 2 8 8 7 7 9 9",
"output": "5"
},
{
"input": "8\n9 8 7 6 5 4 3 2",
"output": "1"
},
{
"input": "15\n1 2 3 4 5 5 4 3 2 1 1 2 3 4 5",
"output": "10"
},
{
"input": "1\n1",
"output": "0"
},
{
"input": "1\n5000",
"output": "1"
},
{
"input": "4\n5000 5000 5000 5000",
"output": "4"
},
{
"input": "5\n3366 3461 4 5 4370",
"output": "3"
},
{
"input": "10\n8 2 10 3 4 6 1 7 9 5",
"output": "0"
},
{
"input": "10\n551 3192 3213 2846 3068 1224 3447 1 10 9",
"output": "7"
},
{
"input": "15\n4 1459 12 4281 3241 2748 10 3590 14 845 3518 1721 2 2880 1974",
"output": "10"
},
{
"input": "15\n15 1 8 2 13 11 12 7 3 14 6 10 9 4 5",
"output": "0"
},
{
"input": "15\n2436 2354 4259 1210 2037 2665 700 3578 2880 973 1317 1024 24 3621 4142",
"output": "15"
},
{
"input": "30\n28 1 3449 9 3242 4735 26 3472 15 21 2698 7 4073 3190 10 3 29 1301 4526 22 345 3876 19 12 4562 2535 2 630 18 27",
"output": "14"
},
{
"input": "100\n50 39 95 30 66 78 2169 4326 81 31 74 34 80 40 19 48 97 63 82 6 88 16 21 57 92 77 10 1213 17 93 32 91 38 4375 29 75 44 22 4 45 14 2395 3254 59 3379 2 85 96 8 83 27 94 1512 2960 100 9 73 79 7 25 55 69 90 99 51 87 98 62 18 35 43 4376 4668 28 72 56 4070 61 65 36 54 4106 11 24 15 86 70 71 4087 23 13 76 20 4694 26 4962 4726 37 14 64",
"output": "18"
},
{
"input": "100\n340 14 3275 2283 2673 1107 817 2243 1226 32 2382 3638 4652 418 68 4962 387 764 4647 159 1846 225 2760 4904 3150 403 3 2439 91 4428 92 4705 75 348 1566 1465 69 6 49 4 62 4643 564 1090 3447 1871 2255 139 24 99 2669 969 86 61 4550 158 4537 3993 1589 872 2907 1888 401 80 1825 1483 63 1 2264 4068 4113 2548 41 885 4806 36 67 167 4447 34 1248 2593 82 202 81 1783 1284 4973 16 43 95 7 865 2091 3008 1793 20 947 4912 3604",
"output": "70"
},
{
"input": "1\n2",
"output": "1"
},
{
"input": "2\n5000 5000",
"output": "2"
},
{
"input": "2\n1 2",
"output": "0"
},
{
"input": "2\n1 1",
"output": "1"
},
{
"input": "2\n2 3",
"output": "1"
},
{
"input": "2\n3 4",
"output": "2"
},
{
"input": "10\n1 2 3 4 5 6 7 1000 10 10",
"output": "2"
}
] | 1,626,774,947
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 48
| 218
| 22,220,800
|
import math
def main_function():
n = int(input())
permutation = [int(i) for i in input().split(" ")]
counter = 0
hash = [0 for i in range(n + 1)]
for i in permutation:
if i <= n:
hash[i] += 1
else:
counter += 1
for i in range(len(hash)):
if i != 0:
if hash[i] > 0:
counter += hash[i] - 1
print(counter)
main_function()
|
Title: Permutation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
"Hey, it's homework time" — thought Polycarpus and of course he started with his favourite subject, IT. Polycarpus managed to solve all tasks but for the last one in 20 minutes. However, as he failed to solve the last task after some considerable time, the boy asked you to help him.
The sequence of *n* integers is called a permutation if it contains all integers from 1 to *n* exactly once.
You are given an arbitrary sequence *a*1,<=*a*2,<=...,<=*a**n* containing *n* integers. Each integer is not less than 1 and not greater than 5000. Determine what minimum number of elements Polycarpus needs to change to get a permutation (he should not delete or add numbers). In a single change he can modify any single sequence element (i. e. replace it with another integer).
Input Specification:
The first line of the input data contains an integer *n* (1<=≤<=*n*<=≤<=5000) which represents how many numbers are in the sequence. The second line contains a sequence of integers *a**i* (1<=≤<=*a**i*<=≤<=5000,<=1<=≤<=*i*<=≤<=*n*).
Output Specification:
Print the only number — the minimum number of changes needed to get the permutation.
Demo Input:
['3\n3 1 2\n', '2\n2 2\n', '5\n5 3 3 3 1\n']
Demo Output:
['0\n', '1\n', '2\n']
Note:
The first sample contains the permutation, which is why no replacements are required.
In the second sample it is enough to replace the first element with the number 1 and that will make the sequence the needed permutation.
In the third sample we can replace the second element with number 4 and the fourth element with number 2.
|
```python
import math
def main_function():
n = int(input())
permutation = [int(i) for i in input().split(" ")]
counter = 0
hash = [0 for i in range(n + 1)]
for i in permutation:
if i <= n:
hash[i] += 1
else:
counter += 1
for i in range(len(hash)):
if i != 0:
if hash[i] > 0:
counter += hash[i] - 1
print(counter)
main_function()
```
| 3
|
|
610
|
B
|
Vika and Squares
|
PROGRAMMING
| 1,300
|
[
"constructive algorithms",
"implementation"
] | null | null |
Vika has *n* jars with paints of distinct colors. All the jars are numbered from 1 to *n* and the *i*-th jar contains *a**i* liters of paint of color *i*.
Vika also has an infinitely long rectangular piece of paper of width 1, consisting of squares of size 1<=×<=1. Squares are numbered 1, 2, 3 and so on. Vika decided that she will start painting squares one by one from left to right, starting from the square number 1 and some arbitrary color. If the square was painted in color *x*, then the next square will be painted in color *x*<=+<=1. In case of *x*<==<=*n*, next square is painted in color 1. If there is no more paint of the color Vika wants to use now, then she stops.
Square is always painted in only one color, and it takes exactly 1 liter of paint. Your task is to calculate the maximum number of squares that might be painted, if Vika chooses right color to paint the first square.
|
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of jars with colors Vika has.
The second line of the input contains a sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109), where *a**i* is equal to the number of liters of paint in the *i*-th jar, i.e. the number of liters of color *i* that Vika has.
|
The only line of the output should contain a single integer — the maximum number of squares that Vika can paint if she follows the rules described above.
|
[
"5\n2 4 2 3 3\n",
"3\n5 5 5\n",
"6\n10 10 10 1 10 10\n"
] |
[
"12\n",
"15\n",
"11\n"
] |
In the first sample the best strategy is to start painting using color 4. Then the squares will be painted in the following colors (from left to right): 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5.
In the second sample Vika can start to paint using any color.
In the third sample Vika should start painting using color number 5.
| 1,000
|
[
{
"input": "5\n2 4 2 3 3",
"output": "12"
},
{
"input": "3\n5 5 5",
"output": "15"
},
{
"input": "6\n10 10 10 1 10 10",
"output": "11"
},
{
"input": "1\n167959139",
"output": "167959139"
},
{
"input": "10\n896619242 805194919 844752453 848347723 816995848 856813612 805194919 833406689 816255448 805194919",
"output": "8051949194"
},
{
"input": "2\n2 3",
"output": "5"
},
{
"input": "2\n10 10",
"output": "20"
},
{
"input": "2\n1111 1110",
"output": "2221"
},
{
"input": "3\n100 101 100",
"output": "301"
},
{
"input": "3\n100 100 101",
"output": "301"
},
{
"input": "3\n101 100 100",
"output": "301"
},
{
"input": "4\n2 3 2 2",
"output": "9"
},
{
"input": "4\n1 1 1 1",
"output": "4"
},
{
"input": "4\n100 100 100 101",
"output": "401"
},
{
"input": "4\n101 100 100 101",
"output": "402"
},
{
"input": "4\n100 101 101 100",
"output": "402"
},
{
"input": "4\n200 201 200 201",
"output": "801"
},
{
"input": "4\n201 200 201 200",
"output": "801"
},
{
"input": "4\n300 302 302 300",
"output": "1202"
},
{
"input": "8\n5 4 3 2 1 1 1 1",
"output": "12"
},
{
"input": "8\n2 2 1 2 2 1 2 2",
"output": "12"
},
{
"input": "10\n2 1 2 1 2 2 2 2 2 1",
"output": "15"
},
{
"input": "13\n2 2 2 1 1 1 1 1 1 1 2 2 2",
"output": "19"
}
] | 1,591,604,011
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 3
| 2,000
| 307,200
|
t = int(input())
s = input().split(' ')
l=[]
for elem in s:
l.append(int(elem))
mini = min(l)
for i in range(len(l)-1,-1,-1):
if l[i]==mini:
break
count=0
if i==len(l)-1:
index = 0
else:
index=i+1
while l[index]!=0:
l[index]-=1
count+=1
if index==len(l)-1:
index=0
else:
index+=1
print(count)
|
Title: Vika and Squares
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vika has *n* jars with paints of distinct colors. All the jars are numbered from 1 to *n* and the *i*-th jar contains *a**i* liters of paint of color *i*.
Vika also has an infinitely long rectangular piece of paper of width 1, consisting of squares of size 1<=×<=1. Squares are numbered 1, 2, 3 and so on. Vika decided that she will start painting squares one by one from left to right, starting from the square number 1 and some arbitrary color. If the square was painted in color *x*, then the next square will be painted in color *x*<=+<=1. In case of *x*<==<=*n*, next square is painted in color 1. If there is no more paint of the color Vika wants to use now, then she stops.
Square is always painted in only one color, and it takes exactly 1 liter of paint. Your task is to calculate the maximum number of squares that might be painted, if Vika chooses right color to paint the first square.
Input Specification:
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of jars with colors Vika has.
The second line of the input contains a sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109), where *a**i* is equal to the number of liters of paint in the *i*-th jar, i.e. the number of liters of color *i* that Vika has.
Output Specification:
The only line of the output should contain a single integer — the maximum number of squares that Vika can paint if she follows the rules described above.
Demo Input:
['5\n2 4 2 3 3\n', '3\n5 5 5\n', '6\n10 10 10 1 10 10\n']
Demo Output:
['12\n', '15\n', '11\n']
Note:
In the first sample the best strategy is to start painting using color 4. Then the squares will be painted in the following colors (from left to right): 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5.
In the second sample Vika can start to paint using any color.
In the third sample Vika should start painting using color number 5.
|
```python
t = int(input())
s = input().split(' ')
l=[]
for elem in s:
l.append(int(elem))
mini = min(l)
for i in range(len(l)-1,-1,-1):
if l[i]==mini:
break
count=0
if i==len(l)-1:
index = 0
else:
index=i+1
while l[index]!=0:
l[index]-=1
count+=1
if index==len(l)-1:
index=0
else:
index+=1
print(count)
```
| 0
|
|
112
|
A
|
Petya and Strings
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] |
A. Petya and Strings
|
2
|
256
|
Little Petya loves presents. His mum bought him two strings of the same size for his birthday. The strings consist of uppercase and lowercase Latin letters. Now Petya wants to compare those two strings lexicographically. The letters' case does not matter, that is an uppercase letter is considered equivalent to the corresponding lowercase letter. Help Petya perform the comparison.
|
Each of the first two lines contains a bought string. The strings' lengths range from 1 to 100 inclusive. It is guaranteed that the strings are of the same length and also consist of uppercase and lowercase Latin letters.
|
If the first string is less than the second one, print "-1". If the second string is less than the first one, print "1". If the strings are equal, print "0". Note that the letters' case is not taken into consideration when the strings are compared.
|
[
"aaaa\naaaA\n",
"abs\nAbz\n",
"abcdefg\nAbCdEfF\n"
] |
[
"0\n",
"-1\n",
"1\n"
] |
If you want more formal information about the lexicographical order (also known as the "dictionary order" or "alphabetical order"), you can visit the following site:
- http://en.wikipedia.org/wiki/Lexicographical_order
| 500
|
[
{
"input": "aaaa\naaaA",
"output": "0"
},
{
"input": "abs\nAbz",
"output": "-1"
},
{
"input": "abcdefg\nAbCdEfF",
"output": "1"
},
{
"input": "asadasdasd\nasdwasdawd",
"output": "-1"
},
{
"input": "aslkjlkasdd\nasdlkjdajwi",
"output": "1"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "0"
},
{
"input": "aAaaaAAaAaaAzZsssSsdDfeEaeqZlpP\nAaaaAaaAaaAaZzSSSSsDdFeeAeQZLpp",
"output": "0"
},
{
"input": "bwuEhEveouaTECagLZiqmUdxEmhRSOzMauJRWLQMppZOumxhAmwuGeDIkvkBLvMXwUoFmpAfDprBcFtEwOULcZWRQhcTbTbX\nHhoDWbcxwiMnCNexOsKsujLiSGcLllXOkRSbnOzThAjnnliLYFFmsYkOfpTxRNEfBsoUHfoLTiqAINRPxWRqrTJhgfkKcDOH",
"output": "-1"
},
{
"input": "kGWUuguKzcvxqKTNpxeDWXpXkrXDvGMFGoXKDfPBZvWSDUyIYBynbKOUonHvmZaKeirUhfmVRKtGhAdBfKMWXDUoqvbfpfHYcg\ncvOULleuIIiYVVxcLZmHVpNGXuEpzcWZZWyMOwIwbpkKPwCfkVbKkUuosvxYCKjqfVmHfJKbdrsAcatPYgrCABaFcoBuOmMfFt",
"output": "1"
},
{
"input": "nCeNVIzHqPceNhjHeHvJvgBsNFiXBATRrjSTXJzhLMDMxiJztphxBRlDlqwDFImWeEPkggZCXSRwelOdpNrYnTepiOqpvkr\nHJbjJFtlvNxIbkKlxQUwmZHJFVNMwPAPDRslIoXISBYHHfymyIaQHLgECPxAmqnOCizwXnIUBRmpYUBVPenoUKhCobKdOjL",
"output": "1"
},
{
"input": "ttXjenUAlfixytHEOrPkgXmkKTSGYuyVXGIHYmWWYGlBYpHkujueqBSgjLguSgiMGJWATIGEUjjAjKXdMiVbHozZUmqQtFrT\nJziDBFBDmDJCcGqFsQwDFBYdOidLxxhBCtScznnDgnsiStlWFnEXQrJxqTXKPxZyIGfLIToETKWZBPUIBmLeImrlSBWCkTNo",
"output": "1"
},
{
"input": "AjQhPqSVhwQQjcgCycjKorWBgFCRuQBwgdVuAPSMJAvTyxGVuFHjfJzkKfsmfhFbKqFrFIohSZBbpjgEHebezmVlGLTPSCTMf\nXhxWuSnMmKFrCUOwkTUmvKAfbTbHWzzOTzxJatLLCdlGnHVaBUnxDlsqpvjLHMThOPAFBggVKDyKBrZAmjnjrhHlrnSkyzBja",
"output": "-1"
},
{
"input": "HCIgYtnqcMyjVngziNflxKHtdTmcRJhzMAjFAsNdWXFJYEhiTzsQUtFNkAbdrFBRmvLirkuirqTDvIpEfyiIqkrwsjvpPWTEdI\nErqiiWKsmIjyZuzgTlTqxYZwlrpvRyaVhRTOYUqtPMVGGtWOkDCOOQRKrkkRzPftyQCkYkzKkzTPqqXmeZhvvEEiEhkdOmoMvy",
"output": "1"
},
{
"input": "mtBeJYILXcECGyEVSyzLFdQJbiVnnfkbsYYsdUJSIRmyzLfTTtFwIBmRLVnwcewIqcuydkcLpflHAFyDaToLiFMgeHvQorTVbI\nClLvyejznjbRfCDcrCzkLvqQaGzTjwmWONBdCctJAPJBcQrcYvHaSLQgPIJbmkFBhFzuQLBiRzAdNHulCjIAkBvZxxlkdzUWLR",
"output": "1"
},
{
"input": "tjucSbGESVmVridTBjTmpVBCwwdWKBPeBvmgdxgIVLwQxveETnSdxkTVJpXoperWSgdpPMKNmwDiGeHfxnuqaDissgXPlMuNZIr\nHfjOOJhomqNIKHvqSgfySjlsWJQBuWYwhLQhlZYlpZwboMpoLoluGsBmhhlYgeIouwdkPfiaAIrkYRlxtiFazOPOllPsNZHcIZd",
"output": "1"
},
{
"input": "AanbDfbZNlUodtBQlvPMyomStKNhgvSGhSbTdabxGFGGXCdpsJDimsAykKjfBDPMulkhBMsqLmVKLDoesHZsRAEEdEzqigueXInY\ncwfyjoppiJNrjrOLNZkqcGimrpTsiyFBVgMWEPXsMrxLJDDbtYzerXiFGuLBcQYitLdqhGHBpdjRnkUegmnwhGHAKXGyFtscWDSI",
"output": "-1"
},
{
"input": "HRfxniwuJCaHOcaOVgjOGHXKrwxrDQxJpppeGDXnTAowyKbCsCQPbchCKeTWOcKbySSYnoaTJDnmRcyGPbfXJyZoPcARHBu\nxkLXvwkvGIWSQaFTznLOctUXNuzzBBOlqvzmVfTSejekTAlwidRrsxkbZTsGGeEWxCXHzqWVuLGoCyrGjKkQoHqduXwYQKC",
"output": "-1"
},
{
"input": "OjYwwNuPESIazoyLFREpObIaMKhCaKAMWMfRGgucEuyNYRantwdwQkmflzfqbcFRaXBnZoIUGsFqXZHGKwlaBUXABBcQEWWPvkjW\nRxLqGcTTpBwHrHltCOllnTpRKLDofBUqqHxnOtVWPgvGaeHIevgUSOeeDOJubfqonFpVNGVbHFcAhjnyFvrrqnRgKhkYqQZmRfUl",
"output": "-1"
},
{
"input": "tatuhQPIzjptlzzJpCAPXSRTKZRlwgfoCIsFjJquRoIDyZZYRSPdFUTjjUPhLBBfeEIfLQpygKXRcyQFiQsEtRtLnZErBqW\ntkHUjllbafLUWhVCnvblKjgYIEoHhsjVmrDBmAWbvtkHxDbRFvsXAjHIrujaDbYwOZmacknhZPeCcorbRgHjjgAgoJdjvLo",
"output": "-1"
},
{
"input": "cymCPGqdXKUdADEWDdUaLEEMHiXHsdAZuDnJDMUvxvrLRBrPSDpXPAgMRoGplLtniFRTomDTAHXWAdgUveTxaqKVSvnOyhOwiRN\nuhmyEWzapiRNPFDisvHTbenXMfeZaHqOFlKjrfQjUBwdFktNpeiRoDWuBftZLcCZZAVfioOihZVNqiNCNDIsUdIhvbcaxpTRWoV",
"output": "-1"
},
{
"input": "sSvpcITJAwghVfJaLKBmyjOkhltTGjYJVLWCYMFUomiJaKQYhXTajvZVHIMHbyckYROGQZzjWyWCcnmDmrkvTKfHSSzCIhsXgEZa\nvhCXkCwAmErGVBPBAnkSYEYvseFKbWSktoqaHYXUmYkHfOkRwuEyBRoGoBrOXBKVxXycjZGStuvDarnXMbZLWrbjrisDoJBdSvWJ",
"output": "-1"
},
{
"input": "hJDANKUNBisOOINDsTixJmYgHNogtpwswwcvVMptfGwIjvqgwTYFcqTdyAqaqlnhOCMtsnWXQqtjFwQlEcBtMFAtSqnqthVb\nrNquIcjNWESjpPVWmzUJFrelpUZeGDmSvCurCqVmKHKVAAPkaHksniOlzjiKYIJtvbuQWZRufMebpTFPqyxIWWjfPaWYiNlK",
"output": "-1"
},
{
"input": "ycLoapxsfsDTHMSfAAPIUpiEhQKUIXUcXEiopMBuuZLHtfPpLmCHwNMNQUwsEXxCEmKHTBSnKhtQhGWUvppUFZUgSpbeChX\ndCZhgVXofkGousCzObxZSJwXcHIaqUDSCPKzXntcVmPxtNcXmVcjsetZYxedmgQzXTZHMvzjoaXCMKsncGciSDqQWIIRlys",
"output": "1"
},
{
"input": "nvUbnrywIePXcoukIhwTfUVcHUEgXcsMyNQhmMlTltZiCooyZiIKRIGVHMCnTKgzXXIuvoNDEZswKoACOBGSyVNqTNQqMhAG\nplxuGSsyyJjdvpddrSebOARSAYcZKEaKjqbCwvjhNykuaECoQVHTVFMKXwvrQXRaqXsHsBaGVhCxGRxNyGUbMlxOarMZNXxy",
"output": "-1"
},
{
"input": "EncmXtAblQzcVRzMQqdDqXfAhXbtJKQwZVWyHoWUckohnZqfoCmNJDzexFgFJYrwNHGgzCJTzQQFnxGlhmvQTpicTkEeVICKac\nNIUNZoMLFMyAjVgQLITELJSodIXcGSDWfhFypRoGYuogJpnqGTotWxVqpvBHjFOWcDRDtARsaHarHaOkeNWEHGTaGOFCOFEwvK",
"output": "-1"
},
{
"input": "UG\nak",
"output": "1"
},
{
"input": "JZR\nVae",
"output": "-1"
},
{
"input": "a\nZ",
"output": "-1"
},
{
"input": "rk\nkv",
"output": "1"
},
{
"input": "RvuT\nbJzE",
"output": "1"
},
{
"input": "PPS\nydq",
"output": "-1"
},
{
"input": "q\nq",
"output": "0"
},
{
"input": "peOw\nIgSJ",
"output": "1"
},
{
"input": "PyK\noKN",
"output": "1"
},
{
"input": "O\ni",
"output": "1"
},
{
"input": "NmGY\npDlP",
"output": "-1"
},
{
"input": "nG\nZf",
"output": "-1"
},
{
"input": "m\na",
"output": "1"
},
{
"input": "MWyB\nWZEV",
"output": "-1"
},
{
"input": "Gre\nfxc",
"output": "1"
},
{
"input": "Ooq\nwap",
"output": "-1"
},
{
"input": "XId\nlbB",
"output": "1"
},
{
"input": "lfFpECEqUMEOJhipvkZjDPcpDNJedOVXiSMgBvBZbtfzIKekcvpWPCazKAhJyHircRtgcBIJwwstpHaLAgxFOngAWUZRgCef\nLfFPEcequmeojHIpVkzjDPcpdNJEDOVXiSmGBVBZBtfZikEKcvPwpCAzKAHJyHIrCRTgCbIJWwSTphALagXfOnGAwUzRGcEF",
"output": "0"
},
{
"input": "DQBdtSEDtFGiNRUeJNbOIfDZnsryUlzJHGTXGFXnwsVyxNtLgmklmFvRCzYETBVdmkpJJIvIOkMDgCFHZOTODiYrkwXd\nDQbDtsEdTFginRUEJNBOIfdZnsryulZJHGtxGFxnwSvYxnTLgmKlmFVRCzyEtBVdmKpJjiVioKMDgCFhzoTODiYrKwXD",
"output": "0"
},
{
"input": "tYWRijFQSzHBpCjUzqBtNvBKyzZRnIdWEuyqnORBQTLyOQglIGfYJIRjuxnbLvkqZakNqPiGDvgpWYkfxYNXsdoKXZtRkSasfa\nTYwRiJfqsZHBPcJuZQBTnVbkyZZRnidwEuYQnorbQTLYOqGligFyjirJUxnblVKqZaknQpigDVGPwyKfxyNXSDoKxztRKSaSFA",
"output": "0"
},
{
"input": "KhScXYiErQIUtmVhNTCXSLAviefIeHIIdiGhsYnPkSBaDTvMkyanfMLBOvDWgRybLtDqvXVdVjccNunDyijhhZEAKBrdz\nkHsCXyiErqIuTMVHNTCxSLaViEFIEhIIDiGHsYNpKsBAdTvMKyANFMLBovdwGRYbLtdQVxvDVJCcNUndYiJHhzeakBrdZ",
"output": "0"
},
{
"input": "cpPQMpjRQJKQVXjWDYECXbagSmNcVfOuBWNZxihdERraVuiOpSVDCPgTGuSQALNoVjySceHcKXwOEpSzXrEqWwwrYeppNiWhDVg\nCPPqmPjRqJkQvxJwdyECXBAGsMNcVfOuBWNzxIhderRavUiOpSvDCpGTgusqAlNovjyScEhCKXwoePSZxrEQwWwryEPPniWHDvG",
"output": "0"
},
{
"input": "SajcCGMepaLjZIWLRBGFcrZRCRvvoCsIyKsQerbrwsIamxxpRmQSZSalasJLVFbCHCuXJlubciQAvLxXYBazLsMKLHLdDQ\nsaJcCgmEpaLJziWlrBgFcRzrCrVVOcSIykSQerBrwSIamxxPrMqSzSalASjLVFbChCUxjLUbCIQAVlxxybAZLsmkLhLDdQ",
"output": "0"
},
{
"input": "kigPrWNTOUNDBskAfefjhHYZNYdnfZWuXWzHiBxFQryBbAkPtenFwWvCSTYGpzOntUNzNUhxRWjKmicTwLwJAnbAxj\nkigpRWntOUNdBsKaFEFjhhYZnYDNfzWuXwZhibxFQRybbakPteNfwwvcStyGPzoNTunznuHXrWjKMIctWLWJANBAxJ",
"output": "0"
},
{
"input": "nTomZZuTTRTAAPoUsySVFGElrpQRNLjqvFmcYytiheQnjUhPLnqNBiYtQkljbcvmjuNAVKbvQOWpqqFlQhAhULIhquoCnjUI\nntOmzZuttrtAAPOUSySVFgeLRPQrNLjQvfmCyYTiHEQnjuHPlNQNbIYtqKLJBCVmjunavkbvQOWPQQFlqHaHULIHQuOcnJUi",
"output": "0"
},
{
"input": "abac\nadaa",
"output": "-1"
},
{
"input": "Bbc\nabc",
"output": "1"
},
{
"input": "aaaba\naaaab",
"output": "1"
}
] | 1,698,597,532
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 53
| 92
| 0
|
str1=(input()).lower()
str2=(input()).lower()
check=[str1,str2]
check.sort()
if check[0]==check[1]:
print(0)
elif check[0]==str1:
print(-1)
else:
print(1)
|
Title: Petya and Strings
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Little Petya loves presents. His mum bought him two strings of the same size for his birthday. The strings consist of uppercase and lowercase Latin letters. Now Petya wants to compare those two strings lexicographically. The letters' case does not matter, that is an uppercase letter is considered equivalent to the corresponding lowercase letter. Help Petya perform the comparison.
Input Specification:
Each of the first two lines contains a bought string. The strings' lengths range from 1 to 100 inclusive. It is guaranteed that the strings are of the same length and also consist of uppercase and lowercase Latin letters.
Output Specification:
If the first string is less than the second one, print "-1". If the second string is less than the first one, print "1". If the strings are equal, print "0". Note that the letters' case is not taken into consideration when the strings are compared.
Demo Input:
['aaaa\naaaA\n', 'abs\nAbz\n', 'abcdefg\nAbCdEfF\n']
Demo Output:
['0\n', '-1\n', '1\n']
Note:
If you want more formal information about the lexicographical order (also known as the "dictionary order" or "alphabetical order"), you can visit the following site:
- http://en.wikipedia.org/wiki/Lexicographical_order
|
```python
str1=(input()).lower()
str2=(input()).lower()
check=[str1,str2]
check.sort()
if check[0]==check[1]:
print(0)
elif check[0]==str1:
print(-1)
else:
print(1)
```
| 3.977
|
469
|
A
|
I Wanna Be the Guy
|
PROGRAMMING
| 800
|
[
"greedy",
"implementation"
] | null | null |
There is a game called "I Wanna Be the Guy", consisting of *n* levels. Little X and his friend Little Y are addicted to the game. Each of them wants to pass the whole game.
Little X can pass only *p* levels of the game. And Little Y can pass only *q* levels of the game. You are given the indices of levels Little X can pass and the indices of levels Little Y can pass. Will Little X and Little Y pass the whole game, if they cooperate each other?
|
The first line contains a single integer *n* (1<=≤<=<=*n*<=≤<=100).
The next line contains an integer *p* (0<=≤<=*p*<=≤<=*n*) at first, then follows *p* distinct integers *a*1,<=*a*2,<=...,<=*a**p* (1<=≤<=*a**i*<=≤<=*n*). These integers denote the indices of levels Little X can pass. The next line contains the levels Little Y can pass in the same format. It's assumed that levels are numbered from 1 to *n*.
|
If they can pass all the levels, print "I become the guy.". If it's impossible, print "Oh, my keyboard!" (without the quotes).
|
[
"4\n3 1 2 3\n2 2 4\n",
"4\n3 1 2 3\n2 2 3\n"
] |
[
"I become the guy.\n",
"Oh, my keyboard!\n"
] |
In the first sample, Little X can pass levels [1 2 3], and Little Y can pass level [2 4], so they can pass all the levels both.
In the second sample, no one can pass level 4.
| 500
|
[
{
"input": "4\n3 1 2 3\n2 2 4",
"output": "I become the guy."
},
{
"input": "4\n3 1 2 3\n2 2 3",
"output": "Oh, my keyboard!"
},
{
"input": "10\n5 8 6 1 5 4\n6 1 3 2 9 4 6",
"output": "Oh, my keyboard!"
},
{
"input": "10\n8 8 10 7 3 1 4 2 6\n8 9 5 10 3 7 2 4 8",
"output": "I become the guy."
},
{
"input": "10\n9 6 1 8 3 9 7 5 10 4\n7 1 3 2 7 6 9 5",
"output": "I become the guy."
},
{
"input": "100\n75 83 69 73 30 76 37 48 14 41 42 21 35 15 50 61 86 85 46 3 31 13 78 10 2 44 80 95 56 82 38 75 77 4 99 9 84 53 12 11 36 74 39 72 43 89 57 28 54 1 51 66 27 22 93 59 68 88 91 29 7 20 63 8 52 23 64 58 100 79 65 49 96 71 33 45\n83 50 89 73 34 28 99 67 77 44 19 60 68 42 8 27 94 85 14 39 17 78 24 21 29 63 92 32 86 22 71 81 31 82 65 48 80 59 98 3 70 55 37 12 15 72 47 9 11 33 16 7 91 74 13 64 38 84 6 61 93 90 45 69 1 54 52 100 57 10 35 49 53 75 76 43 62 5 4 18 36 96 79 23",
"output": "Oh, my keyboard!"
},
{
"input": "1\n1 1\n1 1",
"output": "I become the guy."
},
{
"input": "1\n0\n1 1",
"output": "I become the guy."
},
{
"input": "1\n1 1\n0",
"output": "I become the guy."
},
{
"input": "1\n0\n0",
"output": "Oh, my keyboard!"
},
{
"input": "100\n0\n0",
"output": "Oh, my keyboard!"
},
{
"input": "100\n44 71 70 55 49 43 16 53 7 95 58 56 38 76 67 94 20 73 29 90 25 30 8 84 5 14 77 52 99 91 66 24 39 37 22 44 78 12 63 59 32 51 15 82 34\n56 17 10 96 80 69 13 81 31 57 4 48 68 89 50 45 3 33 36 2 72 100 64 87 21 75 54 74 92 65 23 40 97 61 18 28 98 93 35 83 9 79 46 27 41 62 88 6 47 60 86 26 42 85 19 1 11",
"output": "I become the guy."
},
{
"input": "100\n78 63 59 39 11 58 4 2 80 69 22 95 90 26 65 16 30 100 66 99 67 79 54 12 23 28 45 56 70 74 60 82 73 91 68 43 92 75 51 21 17 97 86 44 62 47 85 78 72 64 50 81 71 5 57 13 31 76 87 9 49 96 25 42 19 35 88 53 7 83 38 27 29 41 89 93 10 84 18\n78 1 16 53 72 99 9 36 59 49 75 77 94 79 35 4 92 42 82 83 76 97 20 68 55 47 65 50 14 30 13 67 98 8 7 40 64 32 87 10 33 90 93 18 26 71 17 46 24 28 89 58 37 91 39 34 25 48 84 31 96 95 80 88 3 51 62 52 85 61 12 15 27 6 45 38 2 22 60",
"output": "I become the guy."
},
{
"input": "2\n2 2 1\n0",
"output": "I become the guy."
},
{
"input": "2\n1 2\n2 1 2",
"output": "I become the guy."
},
{
"input": "80\n57 40 1 47 36 69 24 76 5 72 26 4 29 62 6 60 3 70 8 64 18 37 16 14 13 21 25 7 66 68 44 74 61 39 38 33 15 63 34 65 10 23 56 51 80 58 49 75 71 12 50 57 2 30 54 27 17 52\n61 22 67 15 28 41 26 1 80 44 3 38 18 37 79 57 11 7 65 34 9 36 40 5 48 29 64 31 51 63 27 4 50 13 24 32 58 23 19 46 8 73 39 2 21 56 77 53 59 78 43 12 55 45 30 74 33 68 42 47 17 54",
"output": "Oh, my keyboard!"
},
{
"input": "100\n78 87 96 18 73 32 38 44 29 64 40 70 47 91 60 69 24 1 5 34 92 94 99 22 83 65 14 68 15 20 74 31 39 100 42 4 97 46 25 6 8 56 79 9 71 35 54 19 59 93 58 62 10 85 57 45 33 7 86 81 30 98 26 61 84 41 23 28 88 36 66 51 80 53 37 63 43 95 75\n76 81 53 15 26 37 31 62 24 87 41 39 75 86 46 76 34 4 51 5 45 65 67 48 68 23 71 27 94 47 16 17 9 96 84 89 88 100 18 52 69 42 6 92 7 64 49 12 98 28 21 99 25 55 44 40 82 19 36 30 77 90 14 43 50 3 13 95 78 35 20 54 58 11 2 1 33",
"output": "Oh, my keyboard!"
},
{
"input": "100\n77 55 26 98 13 91 78 60 23 76 12 11 36 62 84 80 18 1 68 92 81 67 19 4 2 10 17 77 96 63 15 69 46 97 82 42 83 59 50 72 14 40 89 9 52 29 56 31 74 39 45 85 22 99 44 65 95 6 90 38 54 32 49 34 3 70 75 33 94 53 21 71 5 66 73 41 100 24\n69 76 93 5 24 57 59 6 81 4 30 12 44 15 67 45 73 3 16 8 47 95 20 64 68 85 54 17 90 86 66 58 13 37 42 51 35 32 1 28 43 80 7 14 48 19 62 55 2 91 25 49 27 26 38 79 89 99 22 60 75 53 88 82 34 21 87 71 72 61",
"output": "I become the guy."
},
{
"input": "100\n74 96 32 63 12 69 72 99 15 22 1 41 79 77 71 31 20 28 75 73 85 37 38 59 42 100 86 89 55 87 68 4 24 57 52 8 92 27 56 98 95 58 34 9 45 14 11 36 66 76 61 19 25 23 78 49 90 26 80 43 70 13 65 10 5 74 81 21 44 60 97 3 47 93 6\n64 68 21 27 16 91 23 22 33 12 71 88 90 50 62 43 28 29 57 59 5 74 10 95 35 1 67 93 36 32 86 40 6 64 78 46 89 15 84 53 18 30 17 85 2 3 47 92 25 48 76 51 20 82 52 83 99 63 80 11 94 54 39 7 58",
"output": "I become the guy."
},
{
"input": "100\n75 11 98 44 47 88 94 23 78 59 70 2 43 39 34 63 71 19 42 61 30 74 14 77 97 53 92 60 67 36 37 13 6 86 62 46 41 3 25 93 7 12 27 48 55 49 31 35 51 10 57 54 95 82 28 90 73 26 17 50 81 56 20 87 40 85 72 64 99 29 91 5 80 18 24 52\n72 93 59 5 88 47 9 58 48 1 43 50 100 87 61 91 45 98 99 56 25 84 53 73 78 54 63 38 37 2 77 95 89 85 4 90 10 33 12 22 74 32 34 70 71 52 96 57 15 66 31 27 75 8 21 39 62 44 67 94 81 68 14 19 36 28 11 79 16 65 46 83 76",
"output": "Oh, my keyboard!"
},
{
"input": "3\n1 2\n2 2 3",
"output": "Oh, my keyboard!"
},
{
"input": "4\n1 2\n3 1 3 4",
"output": "I become the guy."
},
{
"input": "6\n2 1 2\n3 4 5 6",
"output": "Oh, my keyboard!"
}
] | 1,691,651,397
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 11
| 46
| 0
|
inputList = lambda: list(map(int, input().split()))
n = int(input())
passed = set()
x = inputList()
y = inputList()
for i in x: passed.add(i)
for i in y: passed.add(i)
print("I become the guy." if len(passed) == n else "Oh, my keyboard!")
|
Title: I Wanna Be the Guy
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There is a game called "I Wanna Be the Guy", consisting of *n* levels. Little X and his friend Little Y are addicted to the game. Each of them wants to pass the whole game.
Little X can pass only *p* levels of the game. And Little Y can pass only *q* levels of the game. You are given the indices of levels Little X can pass and the indices of levels Little Y can pass. Will Little X and Little Y pass the whole game, if they cooperate each other?
Input Specification:
The first line contains a single integer *n* (1<=≤<=<=*n*<=≤<=100).
The next line contains an integer *p* (0<=≤<=*p*<=≤<=*n*) at first, then follows *p* distinct integers *a*1,<=*a*2,<=...,<=*a**p* (1<=≤<=*a**i*<=≤<=*n*). These integers denote the indices of levels Little X can pass. The next line contains the levels Little Y can pass in the same format. It's assumed that levels are numbered from 1 to *n*.
Output Specification:
If they can pass all the levels, print "I become the guy.". If it's impossible, print "Oh, my keyboard!" (without the quotes).
Demo Input:
['4\n3 1 2 3\n2 2 4\n', '4\n3 1 2 3\n2 2 3\n']
Demo Output:
['I become the guy.\n', 'Oh, my keyboard!\n']
Note:
In the first sample, Little X can pass levels [1 2 3], and Little Y can pass level [2 4], so they can pass all the levels both.
In the second sample, no one can pass level 4.
|
```python
inputList = lambda: list(map(int, input().split()))
n = int(input())
passed = set()
x = inputList()
y = inputList()
for i in x: passed.add(i)
for i in y: passed.add(i)
print("I become the guy." if len(passed) == n else "Oh, my keyboard!")
```
| 0
|
|
617
|
A
|
Elephant
|
PROGRAMMING
| 800
|
[
"math"
] | null | null |
An elephant decided to visit his friend. It turned out that the elephant's house is located at point 0 and his friend's house is located at point *x*(*x*<=><=0) of the coordinate line. In one step the elephant can move 1, 2, 3, 4 or 5 positions forward. Determine, what is the minimum number of steps he need to make in order to get to his friend's house.
|
The first line of the input contains an integer *x* (1<=≤<=*x*<=≤<=1<=000<=000) — The coordinate of the friend's house.
|
Print the minimum number of steps that elephant needs to make to get from point 0 to point *x*.
|
[
"5\n",
"12\n"
] |
[
"1\n",
"3\n"
] |
In the first sample the elephant needs to make one step of length 5 to reach the point *x*.
In the second sample the elephant can get to point *x* if he moves by 3, 5 and 4. There are other ways to get the optimal answer but the elephant cannot reach *x* in less than three moves.
| 500
|
[
{
"input": "5",
"output": "1"
},
{
"input": "12",
"output": "3"
},
{
"input": "999999",
"output": "200000"
},
{
"input": "41",
"output": "9"
},
{
"input": "1000000",
"output": "200000"
},
{
"input": "1",
"output": "1"
},
{
"input": "2",
"output": "1"
},
{
"input": "3",
"output": "1"
},
{
"input": "4",
"output": "1"
},
{
"input": "534204",
"output": "106841"
},
{
"input": "469569",
"output": "93914"
},
{
"input": "502877",
"output": "100576"
},
{
"input": "942212",
"output": "188443"
},
{
"input": "97",
"output": "20"
},
{
"input": "53",
"output": "11"
},
{
"input": "89",
"output": "18"
},
{
"input": "574",
"output": "115"
},
{
"input": "716",
"output": "144"
},
{
"input": "729",
"output": "146"
},
{
"input": "8901",
"output": "1781"
},
{
"input": "3645",
"output": "729"
},
{
"input": "4426",
"output": "886"
},
{
"input": "46573",
"output": "9315"
},
{
"input": "86380",
"output": "17276"
},
{
"input": "94190",
"output": "18838"
},
{
"input": "999990",
"output": "199998"
},
{
"input": "999991",
"output": "199999"
},
{
"input": "999992",
"output": "199999"
},
{
"input": "999993",
"output": "199999"
},
{
"input": "999994",
"output": "199999"
},
{
"input": "999995",
"output": "199999"
},
{
"input": "999996",
"output": "200000"
},
{
"input": "999997",
"output": "200000"
},
{
"input": "999998",
"output": "200000"
}
] | 1,698,066,915
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 30
| 0
|
x=input()
x=int(x)
if x %5==0:
print("5")
else:
print("5+1")
|
Title: Elephant
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
An elephant decided to visit his friend. It turned out that the elephant's house is located at point 0 and his friend's house is located at point *x*(*x*<=><=0) of the coordinate line. In one step the elephant can move 1, 2, 3, 4 or 5 positions forward. Determine, what is the minimum number of steps he need to make in order to get to his friend's house.
Input Specification:
The first line of the input contains an integer *x* (1<=≤<=*x*<=≤<=1<=000<=000) — The coordinate of the friend's house.
Output Specification:
Print the minimum number of steps that elephant needs to make to get from point 0 to point *x*.
Demo Input:
['5\n', '12\n']
Demo Output:
['1\n', '3\n']
Note:
In the first sample the elephant needs to make one step of length 5 to reach the point *x*.
In the second sample the elephant can get to point *x* if he moves by 3, 5 and 4. There are other ways to get the optimal answer but the elephant cannot reach *x* in less than three moves.
|
```python
x=input()
x=int(x)
if x %5==0:
print("5")
else:
print("5+1")
```
| 0
|
|
979
|
A
|
Pizza, Pizza, Pizza!!!
|
PROGRAMMING
| 1,000
|
[
"math"
] | null | null |
Katie, Kuro and Shiro are best friends. They have known each other since kindergarten. That's why they often share everything with each other and work together on some very hard problems.
Today is Shiro's birthday. She really loves pizza so she wants to invite her friends to the pizza restaurant near her house to celebrate her birthday, including her best friends Katie and Kuro.
She has ordered a very big round pizza, in order to serve her many friends. Exactly $n$ of Shiro's friends are here. That's why she has to divide the pizza into $n + 1$ slices (Shiro also needs to eat). She wants the slices to be exactly the same size and shape. If not, some of her friends will get mad and go home early, and the party will be over.
Shiro is now hungry. She wants to cut the pizza with minimum of straight cuts. A cut is a straight segment, it might have ends inside or outside the pizza. But she is too lazy to pick up the calculator.
As usual, she will ask Katie and Kuro for help. But they haven't come yet. Could you help Shiro with this problem?
|
A single line contains one non-negative integer $n$ ($0 \le n \leq 10^{18}$) — the number of Shiro's friends. The circular pizza has to be sliced into $n + 1$ pieces.
|
A single integer — the number of straight cuts Shiro needs.
|
[
"3\n",
"4\n"
] |
[
"2",
"5"
] |
To cut the round pizza into quarters one has to make two cuts through the center with angle $90^{\circ}$ between them.
To cut the round pizza into five equal parts one has to make five cuts.
| 500
|
[
{
"input": "3",
"output": "2"
},
{
"input": "4",
"output": "5"
},
{
"input": "10",
"output": "11"
},
{
"input": "10000000000",
"output": "10000000001"
},
{
"input": "1234567891",
"output": "617283946"
},
{
"input": "7509213957",
"output": "3754606979"
},
{
"input": "99999999999999999",
"output": "50000000000000000"
},
{
"input": "21",
"output": "11"
},
{
"input": "712394453192",
"output": "712394453193"
},
{
"input": "172212168",
"output": "172212169"
},
{
"input": "822981260158260519",
"output": "411490630079130260"
},
{
"input": "28316250877914571",
"output": "14158125438957286"
},
{
"input": "779547116602436424",
"output": "779547116602436425"
},
{
"input": "578223540024979436",
"output": "578223540024979437"
},
{
"input": "335408917861648766",
"output": "335408917861648767"
},
{
"input": "74859962623690078",
"output": "74859962623690079"
},
{
"input": "252509054433933439",
"output": "126254527216966720"
},
{
"input": "760713016476190622",
"output": "760713016476190623"
},
{
"input": "919845426262703496",
"output": "919845426262703497"
},
{
"input": "585335723211047194",
"output": "585335723211047195"
},
{
"input": "522842184971407769",
"output": "261421092485703885"
},
{
"input": "148049062628894320",
"output": "148049062628894321"
},
{
"input": "84324828731963974",
"output": "84324828731963975"
},
{
"input": "354979173822804781",
"output": "177489586911402391"
},
{
"input": "1312150450968413",
"output": "656075225484207"
},
{
"input": "269587449430302150",
"output": "269587449430302151"
},
{
"input": "645762258982631926",
"output": "645762258982631927"
},
{
"input": "615812229161735895",
"output": "307906114580867948"
},
{
"input": "0",
"output": "0"
},
{
"input": "349993004923078531",
"output": "174996502461539266"
},
{
"input": "891351282707723851",
"output": "445675641353861926"
},
{
"input": "563324731189330734",
"output": "563324731189330735"
},
{
"input": "520974001910286909",
"output": "260487000955143455"
},
{
"input": "666729339802329204",
"output": "666729339802329205"
},
{
"input": "856674611404539671",
"output": "428337305702269836"
},
{
"input": "791809296303238499",
"output": "395904648151619250"
},
{
"input": "711066337317063338",
"output": "711066337317063339"
},
{
"input": "931356503492686566",
"output": "931356503492686567"
},
{
"input": "234122432773361866",
"output": "234122432773361867"
},
{
"input": "1000000000000000000",
"output": "1000000000000000001"
},
{
"input": "1",
"output": "1"
},
{
"input": "2",
"output": "3"
},
{
"input": "7",
"output": "4"
},
{
"input": "63",
"output": "32"
},
{
"input": "24",
"output": "25"
},
{
"input": "8",
"output": "9"
},
{
"input": "15",
"output": "8"
}
] | 1,609,939,177
| 2,147,483,647
|
Python 3
|
COMPILATION_ERROR
|
TESTS
| 0
| 0
| 0
|
n=int(input()))
n+=1
if(n==1):print(0)
elif n%2==0:print(n/2)
else print(n)
|
Title: Pizza, Pizza, Pizza!!!
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Katie, Kuro and Shiro are best friends. They have known each other since kindergarten. That's why they often share everything with each other and work together on some very hard problems.
Today is Shiro's birthday. She really loves pizza so she wants to invite her friends to the pizza restaurant near her house to celebrate her birthday, including her best friends Katie and Kuro.
She has ordered a very big round pizza, in order to serve her many friends. Exactly $n$ of Shiro's friends are here. That's why she has to divide the pizza into $n + 1$ slices (Shiro also needs to eat). She wants the slices to be exactly the same size and shape. If not, some of her friends will get mad and go home early, and the party will be over.
Shiro is now hungry. She wants to cut the pizza with minimum of straight cuts. A cut is a straight segment, it might have ends inside or outside the pizza. But she is too lazy to pick up the calculator.
As usual, she will ask Katie and Kuro for help. But they haven't come yet. Could you help Shiro with this problem?
Input Specification:
A single line contains one non-negative integer $n$ ($0 \le n \leq 10^{18}$) — the number of Shiro's friends. The circular pizza has to be sliced into $n + 1$ pieces.
Output Specification:
A single integer — the number of straight cuts Shiro needs.
Demo Input:
['3\n', '4\n']
Demo Output:
['2', '5']
Note:
To cut the round pizza into quarters one has to make two cuts through the center with angle $90^{\circ}$ between them.
To cut the round pizza into five equal parts one has to make five cuts.
|
```python
n=int(input()))
n+=1
if(n==1):print(0)
elif n%2==0:print(n/2)
else print(n)
```
| -1
|
|
178
|
A2
|
Educational Game
|
PROGRAMMING
| 1,000
|
[
"greedy"
] | null | null |
The Smart Beaver from ABBYY began to develop a new educational game for children. The rules of the game are fairly simple and are described below.
The playing field is a sequence of *n* non-negative integers *a**i* numbered from 1 to *n*. The goal of the game is to make numbers *a*1,<=*a*2,<=...,<=*a**k* (i.e. some prefix of the sequence) equal to zero for some fixed *k* (*k*<=<<=*n*), and this should be done in the smallest possible number of moves.
One move is choosing an integer *i* (1<=≤<=*i*<=≤<=*n*) such that *a**i*<=><=0 and an integer *t* (*t*<=≥<=0) such that *i*<=+<=2*t*<=≤<=*n*. After the values of *i* and *t* have been selected, the value of *a**i* is decreased by 1, and the value of *a**i*<=+<=2*t* is increased by 1. For example, let *n*<==<=4 and *a*<==<=(1,<=0,<=1,<=2), then it is possible to make move *i*<==<=3, *t*<==<=0 and get *a*<==<=(1,<=0,<=0,<=3) or to make move *i*<==<=1, *t*<==<=1 and get *a*<==<=(0,<=0,<=2,<=2) (the only possible other move is *i*<==<=1, *t*<==<=0).
You are given *n* and the initial sequence *a**i*. The task is to calculate the minimum number of moves needed to make the first *k* elements of the original sequence equal to zero for each possible *k* (1<=≤<=*k*<=<<=*n*).
|
The first input line contains a single integer *n*. The second line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=104), separated by single spaces.
The input limitations for getting 20 points are:
- 1<=≤<=*n*<=≤<=300
The input limitations for getting 50 points are:
- 1<=≤<=*n*<=≤<=2000
The input limitations for getting 100 points are:
- 1<=≤<=*n*<=≤<=105
|
Print exactly *n*<=-<=1 lines: the *k*-th output line must contain the minimum number of moves needed to make the first *k* elements of the original sequence *a**i* equal to zero.
Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams, or the %I64d specifier.
|
[
"4\n1 0 1 2\n",
"8\n1 2 3 4 5 6 7 8\n"
] |
[
"1\n1\n3\n",
"1\n3\n6\n10\n16\n24\n40\n"
] |
none
| 30
|
[
{
"input": "4\n1 0 1 2",
"output": "1\n1\n3"
},
{
"input": "8\n1 2 3 4 5 6 7 8",
"output": "1\n3\n6\n10\n16\n24\n40"
},
{
"input": "5\n4 1 4 7 6",
"output": "4\n5\n9\n17"
},
{
"input": "9\n13 13 7 11 3 9 3 5 5",
"output": "13\n26\n33\n44\n47\n69\n79\n117"
},
{
"input": "30\n8 17 20 15 18 15 20 10 5 13 5 4 15 9 11 14 18 15 7 16 18 9 17 7 10 9 5 13 17 16",
"output": "8\n25\n45\n60\n78\n93\n113\n123\n128\n141\n146\n150\n165\n174\n185\n199\n225\n257\n284\n315\n351\n375\n423\n454\n495\n549\n634\n713\n907"
},
{
"input": "80\n72 66 82 46 44 22 63 92 71 65 5 30 45 84 29 73 9 90 25 19 26 15 12 29 33 19 85 92 91 66 83 39 100 53 20 99 11 81 26 41 36 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 85 26 71 58 49 76 32 88 13 40 98 57 95 20 36 70 66 75 12 54 96",
"output": "72\n138\n220\n266\n310\n332\n395\n487\n558\n623\n628\n658\n703\n787\n816\n889\n898\n988\n1013\n1032\n1058\n1073\n1085\n1114\n1147\n1166\n1251\n1343\n1434\n1500\n1583\n1622\n1722\n1775\n1795\n1894\n1905\n1986\n2012\n2053\n2089\n2140\n2161\n2233\n2261\n2361\n2395\n2398\n2431\n2579\n2615\n2719\n2818\n2851\n2867\n2941\n3064\n3182\n3309\n3486\n3603\n3740\n3881\n3969\n4250\n4549\n4775\n5037\n5231\n5465\n5627\n5929\n6460\n7029\n7478\n8085\n9075\n10211\n12070"
},
{
"input": "120\n242 524 420 973 816 432 247 666 134 849 145 366 608 930 613 315 863 628 97 109 65 704 741 314 736 17 872 971 559 648 223 771 171 327 782 837 303 393 292 339 730 834 794 868 540 251 789 893 23 305 116 220 699 863 580 992 861 393 98 253 544 171 336 207 348 496 316 285 286 727 613 616 304 811 592 916 91 554 962 950 475 473 806 510 986 254 290 351 143 710 573 949 256 216 235 246 533 177 12 764 543 689 490 386 849 694 386 693 134 416 293 589 171 76 527 324 782 661 943 134",
"output": "242\n766\n1186\n2159\n2975\n3407\n3654\n4320\n4454\n5303\n5448\n5814\n6422\n7352\n7965\n8280\n9143\n9771\n9868\n9977\n10042\n10746\n11487\n11801\n12537\n12554\n13426\n14397\n14956\n15604\n15827\n16598\n16769\n17096\n17878\n18715\n19018\n19411\n19703\n20042\n20772\n21606\n22400\n23268\n23808\n24059\n24848\n25741\n25764\n26069\n26185\n26405\n27104\n27967\n28547\n29539\n30400\n30793\n30891\n31144\n31688\n31859\n32195\n32402\n32992\n34012\n34748\n36006\n37108\n38267\n39127\n40409\n40847\n42507\n43244\n44526\n4..."
}
] | 1,554,046,569
| 2,147,483,647
|
Python 3
|
OK
|
TESTS2
| 22
| 218
| 409,600
|
def tp2(n):
l = len(bin(n)) - 3
l = "1" + "0" * l
l = int(l, 2)
if l == n: l //= 2
return l
N = int(input())
L = list(map(int,input().split()))
last = 0
for i in range(N - 1):
t2 = tp2(N - i)
last += L[i]
L[i + t2] += L[i]
print(last)
|
Title: Educational Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The Smart Beaver from ABBYY began to develop a new educational game for children. The rules of the game are fairly simple and are described below.
The playing field is a sequence of *n* non-negative integers *a**i* numbered from 1 to *n*. The goal of the game is to make numbers *a*1,<=*a*2,<=...,<=*a**k* (i.e. some prefix of the sequence) equal to zero for some fixed *k* (*k*<=<<=*n*), and this should be done in the smallest possible number of moves.
One move is choosing an integer *i* (1<=≤<=*i*<=≤<=*n*) such that *a**i*<=><=0 and an integer *t* (*t*<=≥<=0) such that *i*<=+<=2*t*<=≤<=*n*. After the values of *i* and *t* have been selected, the value of *a**i* is decreased by 1, and the value of *a**i*<=+<=2*t* is increased by 1. For example, let *n*<==<=4 and *a*<==<=(1,<=0,<=1,<=2), then it is possible to make move *i*<==<=3, *t*<==<=0 and get *a*<==<=(1,<=0,<=0,<=3) or to make move *i*<==<=1, *t*<==<=1 and get *a*<==<=(0,<=0,<=2,<=2) (the only possible other move is *i*<==<=1, *t*<==<=0).
You are given *n* and the initial sequence *a**i*. The task is to calculate the minimum number of moves needed to make the first *k* elements of the original sequence equal to zero for each possible *k* (1<=≤<=*k*<=<<=*n*).
Input Specification:
The first input line contains a single integer *n*. The second line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=104), separated by single spaces.
The input limitations for getting 20 points are:
- 1<=≤<=*n*<=≤<=300
The input limitations for getting 50 points are:
- 1<=≤<=*n*<=≤<=2000
The input limitations for getting 100 points are:
- 1<=≤<=*n*<=≤<=105
Output Specification:
Print exactly *n*<=-<=1 lines: the *k*-th output line must contain the minimum number of moves needed to make the first *k* elements of the original sequence *a**i* equal to zero.
Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams, or the %I64d specifier.
Demo Input:
['4\n1 0 1 2\n', '8\n1 2 3 4 5 6 7 8\n']
Demo Output:
['1\n1\n3\n', '1\n3\n6\n10\n16\n24\n40\n']
Note:
none
|
```python
def tp2(n):
l = len(bin(n)) - 3
l = "1" + "0" * l
l = int(l, 2)
if l == n: l //= 2
return l
N = int(input())
L = list(map(int,input().split()))
last = 0
for i in range(N - 1):
t2 = tp2(N - i)
last += L[i]
L[i + t2] += L[i]
print(last)
```
| 3
|
|
946
|
B
|
Weird Subtraction Process
|
PROGRAMMING
| 1,100
|
[
"math",
"number theory"
] | null | null |
You have two variables *a* and *b*. Consider the following sequence of actions performed with these variables:
1. If *a*<==<=0 or *b*<==<=0, end the process. Otherwise, go to step 2;1. If *a*<=≥<=2·*b*, then set the value of *a* to *a*<=-<=2·*b*, and repeat step 1. Otherwise, go to step 3;1. If *b*<=≥<=2·*a*, then set the value of *b* to *b*<=-<=2·*a*, and repeat step 1. Otherwise, end the process.
Initially the values of *a* and *b* are positive integers, and so the process will be finite.
You have to determine the values of *a* and *b* after the process ends.
|
The only line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1018). *n* is the initial value of variable *a*, and *m* is the initial value of variable *b*.
|
Print two integers — the values of *a* and *b* after the end of the process.
|
[
"12 5\n",
"31 12\n"
] |
[
"0 1\n",
"7 12\n"
] |
Explanations to the samples:
1. *a* = 12, *b* = 5 <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> *a* = 2, *b* = 5 <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> *a* = 2, *b* = 1 <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> *a* = 0, *b* = 1;1. *a* = 31, *b* = 12 <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> *a* = 7, *b* = 12.
| 0
|
[
{
"input": "12 5",
"output": "0 1"
},
{
"input": "31 12",
"output": "7 12"
},
{
"input": "1000000000000000000 7",
"output": "8 7"
},
{
"input": "31960284556200 8515664064180",
"output": "14928956427840 8515664064180"
},
{
"input": "1000000000000000000 1000000000000000000",
"output": "1000000000000000000 1000000000000000000"
},
{
"input": "1 1000",
"output": "1 0"
},
{
"input": "1 1000000",
"output": "1 0"
},
{
"input": "1 1000000000000000",
"output": "1 0"
},
{
"input": "1 99999999999999999",
"output": "1 1"
},
{
"input": "1 4",
"output": "1 0"
},
{
"input": "1000000000000001 500000000000000",
"output": "1 0"
},
{
"input": "1 1000000000000000000",
"output": "1 0"
},
{
"input": "2 4",
"output": "2 0"
},
{
"input": "2 1",
"output": "0 1"
},
{
"input": "6 19",
"output": "6 7"
},
{
"input": "22 5",
"output": "0 1"
},
{
"input": "10000000000000000 100000000000000001",
"output": "0 1"
},
{
"input": "1 1000000000000",
"output": "1 0"
},
{
"input": "2 1000000000000000",
"output": "2 0"
},
{
"input": "2 10",
"output": "2 2"
},
{
"input": "51 100",
"output": "51 100"
},
{
"input": "3 1000000000000000000",
"output": "3 4"
},
{
"input": "1000000000000000000 3",
"output": "4 3"
},
{
"input": "1 10000000000000000",
"output": "1 0"
},
{
"input": "8796203 7556",
"output": "1019 1442"
},
{
"input": "5 22",
"output": "1 0"
},
{
"input": "1000000000000000000 1",
"output": "0 1"
},
{
"input": "1 100000000000",
"output": "1 0"
},
{
"input": "2 1000000000000",
"output": "2 0"
},
{
"input": "5 4567865432345678",
"output": "5 8"
},
{
"input": "576460752303423487 288230376151711743",
"output": "1 1"
},
{
"input": "499999999999999999 1000000000000000000",
"output": "3 2"
},
{
"input": "1 9999999999999",
"output": "1 1"
},
{
"input": "103 1000000000000000000",
"output": "103 196"
},
{
"input": "7 1",
"output": "1 1"
},
{
"input": "100000000000000001 10000000000000000",
"output": "1 0"
},
{
"input": "5 10",
"output": "5 0"
},
{
"input": "7 11",
"output": "7 11"
},
{
"input": "1 123456789123456",
"output": "1 0"
},
{
"input": "5000000000000 100000000000001",
"output": "0 1"
},
{
"input": "1000000000000000 1",
"output": "0 1"
},
{
"input": "1000000000000000000 499999999999999999",
"output": "2 3"
},
{
"input": "10 5",
"output": "0 5"
},
{
"input": "9 18917827189272",
"output": "9 0"
},
{
"input": "179 100000000000497000",
"output": "179 270"
},
{
"input": "5 100000000000001",
"output": "1 1"
},
{
"input": "5 20",
"output": "5 0"
},
{
"input": "100000001 50000000",
"output": "1 0"
},
{
"input": "345869461223138161 835002744095575440",
"output": "1 0"
},
{
"input": "8589934592 4294967296",
"output": "0 4294967296"
},
{
"input": "4 8",
"output": "4 0"
},
{
"input": "1 100000000000000000",
"output": "1 0"
},
{
"input": "1000000000000000000 333333333333333",
"output": "1000 1333"
},
{
"input": "25 12",
"output": "1 0"
},
{
"input": "24 54",
"output": "0 6"
},
{
"input": "6 12",
"output": "6 0"
},
{
"input": "129200000000305 547300000001292",
"output": "1 0"
},
{
"input": "1000000000000000000 49999999999999999",
"output": "20 39"
},
{
"input": "1 2",
"output": "1 0"
},
{
"input": "1 123456789876",
"output": "1 0"
},
{
"input": "2 3",
"output": "2 3"
},
{
"input": "1 3",
"output": "1 1"
},
{
"input": "1 1",
"output": "1 1"
},
{
"input": "19 46",
"output": "3 2"
},
{
"input": "3 6",
"output": "3 0"
},
{
"input": "129 1000000000000000000",
"output": "1 0"
},
{
"input": "12 29",
"output": "0 1"
},
{
"input": "8589934592 2147483648",
"output": "0 2147483648"
},
{
"input": "2147483648 8589934592",
"output": "2147483648 0"
},
{
"input": "5 6",
"output": "5 6"
},
{
"input": "1000000000000000000 2",
"output": "0 2"
},
{
"input": "2 7",
"output": "2 3"
},
{
"input": "17174219820754872 61797504734333370",
"output": "17174219820754872 27449065092823626"
},
{
"input": "49 100",
"output": "1 0"
},
{
"input": "7 17",
"output": "1 1"
},
{
"input": "1000000000000000000 10000001",
"output": "0 1"
},
{
"input": "49999999999999999 2",
"output": "3 2"
},
{
"input": "49999999999999999 1",
"output": "1 1"
},
{
"input": "576460752303423487 2",
"output": "3 2"
},
{
"input": "19395 19395",
"output": "19395 19395"
},
{
"input": "19394 19394",
"output": "19394 19394"
}
] | 1,537,848,216
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 81
| 124
| 0
|
def sub(a, b):
if(a==0 or b==0):
return(a, b)
if(a>=2*b):
return sub(a%(2*b), b)
if(b>=2*a):
return sub(a, b%(2*a))
return(a, b)
arr = list(map(int, input().split()))
a = arr[0]
b = arr[1]
print(*sub(a, b))
|
Title: Weird Subtraction Process
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You have two variables *a* and *b*. Consider the following sequence of actions performed with these variables:
1. If *a*<==<=0 or *b*<==<=0, end the process. Otherwise, go to step 2;1. If *a*<=≥<=2·*b*, then set the value of *a* to *a*<=-<=2·*b*, and repeat step 1. Otherwise, go to step 3;1. If *b*<=≥<=2·*a*, then set the value of *b* to *b*<=-<=2·*a*, and repeat step 1. Otherwise, end the process.
Initially the values of *a* and *b* are positive integers, and so the process will be finite.
You have to determine the values of *a* and *b* after the process ends.
Input Specification:
The only line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1018). *n* is the initial value of variable *a*, and *m* is the initial value of variable *b*.
Output Specification:
Print two integers — the values of *a* and *b* after the end of the process.
Demo Input:
['12 5\n', '31 12\n']
Demo Output:
['0 1\n', '7 12\n']
Note:
Explanations to the samples:
1. *a* = 12, *b* = 5 <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> *a* = 2, *b* = 5 <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> *a* = 2, *b* = 1 <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> *a* = 0, *b* = 1;1. *a* = 31, *b* = 12 <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> *a* = 7, *b* = 12.
|
```python
def sub(a, b):
if(a==0 or b==0):
return(a, b)
if(a>=2*b):
return sub(a%(2*b), b)
if(b>=2*a):
return sub(a, b%(2*a))
return(a, b)
arr = list(map(int, input().split()))
a = arr[0]
b = arr[1]
print(*sub(a, b))
```
| 3
|
|
149
|
A
|
Business trip
|
PROGRAMMING
| 900
|
[
"greedy",
"implementation",
"sortings"
] | null | null |
What joy! Petya's parents went on a business trip for the whole year and the playful kid is left all by himself. Petya got absolutely happy. He jumped on the bed and threw pillows all day long, until...
Today Petya opened the cupboard and found a scary note there. His parents had left him with duties: he should water their favourite flower all year, each day, in the morning, in the afternoon and in the evening. "Wait a second!" — thought Petya. He know for a fact that if he fulfills the parents' task in the *i*-th (1<=≤<=*i*<=≤<=12) month of the year, then the flower will grow by *a**i* centimeters, and if he doesn't water the flower in the *i*-th month, then the flower won't grow this month. Petya also knows that try as he might, his parents won't believe that he has been watering the flower if it grows strictly less than by *k* centimeters.
Help Petya choose the minimum number of months when he will water the flower, given that the flower should grow no less than by *k* centimeters.
|
The first line contains exactly one integer *k* (0<=≤<=*k*<=≤<=100). The next line contains twelve space-separated integers: the *i*-th (1<=≤<=*i*<=≤<=12) number in the line represents *a**i* (0<=≤<=*a**i*<=≤<=100).
|
Print the only integer — the minimum number of months when Petya has to water the flower so that the flower grows no less than by *k* centimeters. If the flower can't grow by *k* centimeters in a year, print -1.
|
[
"5\n1 1 1 1 2 2 3 2 2 1 1 1\n",
"0\n0 0 0 0 0 0 0 1 1 2 3 0\n",
"11\n1 1 4 1 1 5 1 1 4 1 1 1\n"
] |
[
"2\n",
"0\n",
"3\n"
] |
Let's consider the first sample test. There it is enough to water the flower during the seventh and the ninth month. Then the flower grows by exactly five centimeters.
In the second sample Petya's parents will believe him even if the flower doesn't grow at all (*k* = 0). So, it is possible for Petya not to water the flower at all.
| 500
|
[
{
"input": "5\n1 1 1 1 2 2 3 2 2 1 1 1",
"output": "2"
},
{
"input": "0\n0 0 0 0 0 0 0 1 1 2 3 0",
"output": "0"
},
{
"input": "11\n1 1 4 1 1 5 1 1 4 1 1 1",
"output": "3"
},
{
"input": "15\n20 1 1 1 1 2 2 1 2 2 1 1",
"output": "1"
},
{
"input": "7\n8 9 100 12 14 17 21 10 11 100 23 10",
"output": "1"
},
{
"input": "52\n1 12 3 11 4 5 10 6 9 7 8 2",
"output": "6"
},
{
"input": "50\n2 2 3 4 5 4 4 5 7 3 2 7",
"output": "-1"
},
{
"input": "0\n55 81 28 48 99 20 67 95 6 19 10 93",
"output": "0"
},
{
"input": "93\n85 40 93 66 92 43 61 3 64 51 90 21",
"output": "1"
},
{
"input": "99\n36 34 22 0 0 0 52 12 0 0 33 47",
"output": "2"
},
{
"input": "99\n28 32 31 0 10 35 11 18 0 0 32 28",
"output": "3"
},
{
"input": "99\n19 17 0 1 18 11 29 9 29 22 0 8",
"output": "4"
},
{
"input": "76\n2 16 11 10 12 0 20 4 4 14 11 14",
"output": "5"
},
{
"input": "41\n2 1 7 7 4 2 4 4 9 3 10 0",
"output": "6"
},
{
"input": "47\n8 2 2 4 3 1 9 4 2 7 7 8",
"output": "7"
},
{
"input": "58\n6 11 7 0 5 6 3 9 4 9 5 1",
"output": "8"
},
{
"input": "32\n5 2 4 1 5 0 5 1 4 3 0 3",
"output": "9"
},
{
"input": "31\n6 1 0 4 4 5 1 0 5 3 2 0",
"output": "9"
},
{
"input": "35\n2 3 0 0 6 3 3 4 3 5 0 6",
"output": "9"
},
{
"input": "41\n3 1 3 4 3 6 6 1 4 4 0 6",
"output": "11"
},
{
"input": "97\n0 5 3 12 10 16 22 8 21 17 21 10",
"output": "5"
},
{
"input": "100\n21 21 0 0 4 13 0 26 0 0 0 15",
"output": "6"
},
{
"input": "100\n0 0 16 5 22 0 5 0 25 0 14 13",
"output": "7"
},
{
"input": "97\n17 0 10 0 0 0 18 0 14 23 15 0",
"output": "6"
},
{
"input": "100\n0 9 0 18 7 0 0 14 33 3 0 16",
"output": "7"
},
{
"input": "95\n5 2 13 0 15 18 17 0 6 11 0 8",
"output": "9"
},
{
"input": "94\n11 13 0 9 15 8 8 16 3 7 1 3",
"output": "11"
},
{
"input": "96\n8 4 12 15 8 0 4 10 6 6 12 11",
"output": "11"
},
{
"input": "100\n5 5 3 8 6 5 0 3 3 8 1 3",
"output": "-1"
},
{
"input": "100\n1 0 0 1 1 0 1 1 1 1 2 1",
"output": "-1"
},
{
"input": "100\n6 3 2 0 4 1 2 2 2 2 1 1",
"output": "-1"
},
{
"input": "0\n0 0 0 0 0 0 0 0 0 0 0 0",
"output": "0"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0",
"output": "-1"
},
{
"input": "0\n100 100 100 100 100 100 100 100 100 100 100 100",
"output": "0"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100",
"output": "1"
},
{
"input": "12\n1 1 1 1 1 1 1 1 1 1 1 1",
"output": "12"
},
{
"input": "13\n1 1 1 1 1 1 1 1 1 1 1 2",
"output": "12"
},
{
"input": "15\n10 1 1 1 1 1 1 1 1 1 1 1",
"output": "6"
},
{
"input": "1\n0 0 0 0 0 0 0 0 0 0 0 0",
"output": "-1"
}
] | 1,680,143,426
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 35
| 92
| 0
|
k=int(input())
a=sorted(list(map(int,input().split())),reverse=True)
c=0
s=0
flag=False
while c<12:
if s>=k:
flag=True
break
s=s+a[c]
c=c+1
if flag:
print(c)
else :
print(-1)
|
Title: Business trip
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
What joy! Petya's parents went on a business trip for the whole year and the playful kid is left all by himself. Petya got absolutely happy. He jumped on the bed and threw pillows all day long, until...
Today Petya opened the cupboard and found a scary note there. His parents had left him with duties: he should water their favourite flower all year, each day, in the morning, in the afternoon and in the evening. "Wait a second!" — thought Petya. He know for a fact that if he fulfills the parents' task in the *i*-th (1<=≤<=*i*<=≤<=12) month of the year, then the flower will grow by *a**i* centimeters, and if he doesn't water the flower in the *i*-th month, then the flower won't grow this month. Petya also knows that try as he might, his parents won't believe that he has been watering the flower if it grows strictly less than by *k* centimeters.
Help Petya choose the minimum number of months when he will water the flower, given that the flower should grow no less than by *k* centimeters.
Input Specification:
The first line contains exactly one integer *k* (0<=≤<=*k*<=≤<=100). The next line contains twelve space-separated integers: the *i*-th (1<=≤<=*i*<=≤<=12) number in the line represents *a**i* (0<=≤<=*a**i*<=≤<=100).
Output Specification:
Print the only integer — the minimum number of months when Petya has to water the flower so that the flower grows no less than by *k* centimeters. If the flower can't grow by *k* centimeters in a year, print -1.
Demo Input:
['5\n1 1 1 1 2 2 3 2 2 1 1 1\n', '0\n0 0 0 0 0 0 0 1 1 2 3 0\n', '11\n1 1 4 1 1 5 1 1 4 1 1 1\n']
Demo Output:
['2\n', '0\n', '3\n']
Note:
Let's consider the first sample test. There it is enough to water the flower during the seventh and the ninth month. Then the flower grows by exactly five centimeters.
In the second sample Petya's parents will believe him even if the flower doesn't grow at all (*k* = 0). So, it is possible for Petya not to water the flower at all.
|
```python
k=int(input())
a=sorted(list(map(int,input().split())),reverse=True)
c=0
s=0
flag=False
while c<12:
if s>=k:
flag=True
break
s=s+a[c]
c=c+1
if flag:
print(c)
else :
print(-1)
```
| 0
|
|
476
|
B
|
Dreamoon and WiFi
|
PROGRAMMING
| 1,300
|
[
"bitmasks",
"brute force",
"combinatorics",
"dp",
"math",
"probabilities"
] | null | null |
Dreamoon is standing at the position 0 on a number line. Drazil is sending a list of commands through Wi-Fi to Dreamoon's smartphone and Dreamoon follows them.
Each command is one of the following two types:
1. Go 1 unit towards the positive direction, denoted as '+' 1. Go 1 unit towards the negative direction, denoted as '-'
But the Wi-Fi condition is so poor that Dreamoon's smartphone reports some of the commands can't be recognized and Dreamoon knows that some of them might even be wrong though successfully recognized. Dreamoon decides to follow every recognized command and toss a fair coin to decide those unrecognized ones (that means, he moves to the 1 unit to the negative or positive direction with the same probability 0.5).
You are given an original list of commands sent by Drazil and list received by Dreamoon. What is the probability that Dreamoon ends in the position originally supposed to be final by Drazil's commands?
|
The first line contains a string *s*1 — the commands Drazil sends to Dreamoon, this string consists of only the characters in the set {'+', '-'}.
The second line contains a string *s*2 — the commands Dreamoon's smartphone recognizes, this string consists of only the characters in the set {'+', '-', '?'}. '?' denotes an unrecognized command.
Lengths of two strings are equal and do not exceed 10.
|
Output a single real number corresponding to the probability. The answer will be considered correct if its relative or absolute error doesn't exceed 10<=-<=9.
|
[
"++-+-\n+-+-+\n",
"+-+-\n+-??\n",
"+++\n??-\n"
] |
[
"1.000000000000\n",
"0.500000000000\n",
"0.000000000000\n"
] |
For the first sample, both *s*<sub class="lower-index">1</sub> and *s*<sub class="lower-index">2</sub> will lead Dreamoon to finish at the same position + 1.
For the second sample, *s*<sub class="lower-index">1</sub> will lead Dreamoon to finish at position 0, while there are four possibilites for *s*<sub class="lower-index">2</sub>: {"+-++", "+-+-", "+--+", "+---"} with ending position {+2, 0, 0, -2} respectively. So there are 2 correct cases out of 4, so the probability of finishing at the correct position is 0.5.
For the third sample, *s*<sub class="lower-index">2</sub> could only lead us to finish at positions {+1, -1, -3}, so the probability to finish at the correct position + 3 is 0.
| 1,500
|
[
{
"input": "++-+-\n+-+-+",
"output": "1.000000000000"
},
{
"input": "+-+-\n+-??",
"output": "0.500000000000"
},
{
"input": "+++\n??-",
"output": "0.000000000000"
},
{
"input": "++++++++++\n+++??++?++",
"output": "0.125000000000"
},
{
"input": "--+++---+-\n??????????",
"output": "0.205078125000"
},
{
"input": "+--+++--+-\n??????????",
"output": "0.246093750000"
},
{
"input": "+\n+",
"output": "1.000000000000"
},
{
"input": "-\n?",
"output": "0.500000000000"
},
{
"input": "+\n-",
"output": "0.000000000000"
},
{
"input": "-\n-",
"output": "1.000000000000"
},
{
"input": "-\n+",
"output": "0.000000000000"
},
{
"input": "+\n?",
"output": "0.500000000000"
},
{
"input": "++++++++++\n++++++++++",
"output": "1.000000000000"
},
{
"input": "++++++++++\n++++-+++++",
"output": "0.000000000000"
},
{
"input": "----------\n++++++++++",
"output": "0.000000000000"
},
{
"input": "++++++++++\n++++??++++",
"output": "0.250000000000"
},
{
"input": "----------\n+++?++++-+",
"output": "0.000000000000"
},
{
"input": "++++++++++\n++++++++?+",
"output": "0.500000000000"
},
{
"input": "--++++--+\n?-+?-??+-",
"output": "0.250000000000"
},
{
"input": "----------\n??????????",
"output": "0.000976562500"
},
{
"input": "+--++\n+--+-",
"output": "0.000000000000"
},
{
"input": "-----++---\n????????+?",
"output": "0.017578125000"
},
{
"input": "------+--+\n??????????",
"output": "0.043945312500"
},
{
"input": "---++--\n???????",
"output": "0.164062500000"
},
{
"input": "-----++\n???????",
"output": "0.164062500000"
},
{
"input": "+---+--\n???????",
"output": "0.164062500000"
},
{
"input": "---+-+\n??????",
"output": "0.234375000000"
},
{
"input": "+++-+\n---++",
"output": "0.000000000000"
},
{
"input": "++-+--+\n?-?+??+",
"output": "0.375000000000"
},
{
"input": "----+++--\n-+?+++?--",
"output": "0.000000000000"
},
{
"input": "+-----\n+?----",
"output": "0.500000000000"
}
] | 1,691,178,392
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 4
| 31
| 0
|
from math import factorial
drazil = input()
dreamoon = input()
drazil_p = drazil.count('+')
drazil_m = drazil.count('-')
dreamoon_p = dreamoon.count('+')
dreamoon_m = dreamoon.count('-')
dreamoon_q = dreamoon.count('?')
if (dreamoon_q == 0):
if (dreamoon_p == drazil_p) and (dreamoon_m == drazil_m):
print(float(1))
else: print(float(0))
else:
positives = drazil_p - dreamoon_p
negatives = drazil_m - dreamoon_m
sum = positives + negatives
if (positives < 0) or (negatives < 0):
print(float(0))
elif (positives == 1) and (negatives == 1):
print(factorial(sum) / 2 ** dreamoon_q)
elif (positives >= 1) or (negatives >= 1):
factorial_p = 0
factorial_n = 0
if (positives > 1):
factorial_p = factorial(positives)
if (negatives > 1):
factorial_n = factorial(negatives)
numerator = factorial(sum) / (factorial_p + factorial_n)
print(numerator / 2 ** dreamoon_q)
|
Title: Dreamoon and WiFi
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Dreamoon is standing at the position 0 on a number line. Drazil is sending a list of commands through Wi-Fi to Dreamoon's smartphone and Dreamoon follows them.
Each command is one of the following two types:
1. Go 1 unit towards the positive direction, denoted as '+' 1. Go 1 unit towards the negative direction, denoted as '-'
But the Wi-Fi condition is so poor that Dreamoon's smartphone reports some of the commands can't be recognized and Dreamoon knows that some of them might even be wrong though successfully recognized. Dreamoon decides to follow every recognized command and toss a fair coin to decide those unrecognized ones (that means, he moves to the 1 unit to the negative or positive direction with the same probability 0.5).
You are given an original list of commands sent by Drazil and list received by Dreamoon. What is the probability that Dreamoon ends in the position originally supposed to be final by Drazil's commands?
Input Specification:
The first line contains a string *s*1 — the commands Drazil sends to Dreamoon, this string consists of only the characters in the set {'+', '-'}.
The second line contains a string *s*2 — the commands Dreamoon's smartphone recognizes, this string consists of only the characters in the set {'+', '-', '?'}. '?' denotes an unrecognized command.
Lengths of two strings are equal and do not exceed 10.
Output Specification:
Output a single real number corresponding to the probability. The answer will be considered correct if its relative or absolute error doesn't exceed 10<=-<=9.
Demo Input:
['++-+-\n+-+-+\n', '+-+-\n+-??\n', '+++\n??-\n']
Demo Output:
['1.000000000000\n', '0.500000000000\n', '0.000000000000\n']
Note:
For the first sample, both *s*<sub class="lower-index">1</sub> and *s*<sub class="lower-index">2</sub> will lead Dreamoon to finish at the same position + 1.
For the second sample, *s*<sub class="lower-index">1</sub> will lead Dreamoon to finish at position 0, while there are four possibilites for *s*<sub class="lower-index">2</sub>: {"+-++", "+-+-", "+--+", "+---"} with ending position {+2, 0, 0, -2} respectively. So there are 2 correct cases out of 4, so the probability of finishing at the correct position is 0.5.
For the third sample, *s*<sub class="lower-index">2</sub> could only lead us to finish at positions {+1, -1, -3}, so the probability to finish at the correct position + 3 is 0.
|
```python
from math import factorial
drazil = input()
dreamoon = input()
drazil_p = drazil.count('+')
drazil_m = drazil.count('-')
dreamoon_p = dreamoon.count('+')
dreamoon_m = dreamoon.count('-')
dreamoon_q = dreamoon.count('?')
if (dreamoon_q == 0):
if (dreamoon_p == drazil_p) and (dreamoon_m == drazil_m):
print(float(1))
else: print(float(0))
else:
positives = drazil_p - dreamoon_p
negatives = drazil_m - dreamoon_m
sum = positives + negatives
if (positives < 0) or (negatives < 0):
print(float(0))
elif (positives == 1) and (negatives == 1):
print(factorial(sum) / 2 ** dreamoon_q)
elif (positives >= 1) or (negatives >= 1):
factorial_p = 0
factorial_n = 0
if (positives > 1):
factorial_p = factorial(positives)
if (negatives > 1):
factorial_n = factorial(negatives)
numerator = factorial(sum) / (factorial_p + factorial_n)
print(numerator / 2 ** dreamoon_q)
```
| 0
|
|
689
|
B
|
Mike and Shortcuts
|
PROGRAMMING
| 1,600
|
[
"dfs and similar",
"graphs",
"greedy",
"shortest paths"
] | null | null |
Recently, Mike was very busy with studying for exams and contests. Now he is going to chill a bit by doing some sight seeing in the city.
City consists of *n* intersections numbered from 1 to *n*. Mike starts walking from his house located at the intersection number 1 and goes along some sequence of intersections. Walking from intersection number *i* to intersection *j* requires |*i*<=-<=*j*| units of energy. The total energy spent by Mike to visit a sequence of intersections *p*1<==<=1,<=*p*2,<=...,<=*p**k* is equal to units of energy.
Of course, walking would be boring if there were no shortcuts. A shortcut is a special path that allows Mike walking from one intersection to another requiring only 1 unit of energy. There are exactly *n* shortcuts in Mike's city, the *i**th* of them allows walking from intersection *i* to intersection *a**i* (*i*<=≤<=*a**i*<=≤<=*a**i*<=+<=1) (but not in the opposite direction), thus there is exactly one shortcut starting at each intersection. Formally, if Mike chooses a sequence *p*1<==<=1,<=*p*2,<=...,<=*p**k* then for each 1<=≤<=*i*<=<<=*k* satisfying *p**i*<=+<=1<==<=*a**p**i* and *a**p**i*<=≠<=*p**i* Mike will spend only 1 unit of energy instead of |*p**i*<=-<=*p**i*<=+<=1| walking from the intersection *p**i* to intersection *p**i*<=+<=1. For example, if Mike chooses a sequence *p*1<==<=1,<=*p*2<==<=*a**p*1,<=*p*3<==<=*a**p*2,<=...,<=*p**k*<==<=*a**p**k*<=-<=1, he spends exactly *k*<=-<=1 units of total energy walking around them.
Before going on his adventure, Mike asks you to find the minimum amount of energy required to reach each of the intersections from his home. Formally, for each 1<=≤<=*i*<=≤<=*n* Mike is interested in finding minimum possible total energy of some sequence *p*1<==<=1,<=*p*2,<=...,<=*p**k*<==<=*i*.
|
The first line contains an integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of Mike's city intersection.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (*i*<=≤<=*a**i*<=≤<=*n* , , describing shortcuts of Mike's city, allowing to walk from intersection *i* to intersection *a**i* using only 1 unit of energy. Please note that the shortcuts don't allow walking in opposite directions (from *a**i* to *i*).
|
In the only line print *n* integers *m*1,<=*m*2,<=...,<=*m**n*, where *m**i* denotes the least amount of total energy required to walk from intersection 1 to intersection *i*.
|
[
"3\n2 2 3\n",
"5\n1 2 3 4 5\n",
"7\n4 4 4 4 7 7 7\n"
] |
[
"0 1 2 \n",
"0 1 2 3 4 \n",
"0 1 2 1 2 3 3 \n"
] |
In the first sample case desired sequences are:
1: 1; *m*<sub class="lower-index">1</sub> = 0;
2: 1, 2; *m*<sub class="lower-index">2</sub> = 1;
3: 1, 3; *m*<sub class="lower-index">3</sub> = |3 - 1| = 2.
In the second sample case the sequence for any intersection 1 < *i* is always 1, *i* and *m*<sub class="lower-index">*i*</sub> = |1 - *i*|.
In the third sample case — consider the following intersection sequences:
1: 1; *m*<sub class="lower-index">1</sub> = 0;
2: 1, 2; *m*<sub class="lower-index">2</sub> = |2 - 1| = 1;
3: 1, 4, 3; *m*<sub class="lower-index">3</sub> = 1 + |4 - 3| = 2;
4: 1, 4; *m*<sub class="lower-index">4</sub> = 1;
5: 1, 4, 5; *m*<sub class="lower-index">5</sub> = 1 + |4 - 5| = 2;
6: 1, 4, 6; *m*<sub class="lower-index">6</sub> = 1 + |4 - 6| = 3;
7: 1, 4, 5, 7; *m*<sub class="lower-index">7</sub> = 1 + |4 - 5| + 1 = 3.
| 1,000
|
[
{
"input": "3\n2 2 3",
"output": "0 1 2 "
},
{
"input": "5\n1 2 3 4 5",
"output": "0 1 2 3 4 "
},
{
"input": "7\n4 4 4 4 7 7 7",
"output": "0 1 2 1 2 3 3 "
},
{
"input": "98\n17 17 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 90 90 90 90 90 90 90 90 90 90 90 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 95 95 95 95 95 97 98 98",
"output": "0 1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 4 4 5 6 5 6 7 8 "
},
{
"input": "91\n4 6 23 23 23 23 23 28 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 47 47 47 54 54 54 54 54 54 54 58 58 58 58 58 58 69 69 69 69 69 69 69 69 69 69 69 69 70 70 70 70 70 70 70 70 70 70 71 72 72 72 73 75 77 77 77 82 82 84 84 84 84 84 85 86 87 89 89 90 91",
"output": "0 1 2 1 2 2 3 4 5 6 7 8 9 10 10 9 8 7 6 5 4 3 2 3 4 5 6 5 6 7 8 9 9 8 7 6 5 4 3 4 5 6 7 8 9 10 9 10 9 8 7 6 5 4 5 6 7 6 7 8 9 10 11 10 9 8 7 6 5 6 6 7 8 9 10 11 11 12 13 14 14 13 14 14 15 16 17 18 19 20 21 "
},
{
"input": "82\n1 5 11 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 39 39 39 39 39 45 45 45 45 45 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 71 71 71 71 71 71 71 73 73 75 75 76 77 79 81 81 81 82",
"output": "0 1 2 3 2 3 4 5 5 4 3 4 5 6 7 8 9 10 11 12 13 12 11 10 9 8 7 6 5 4 3 4 5 6 7 8 9 10 9 9 8 7 6 5 4 5 6 7 8 9 10 11 12 13 14 15 16 16 15 14 13 12 11 10 9 8 7 6 5 6 6 7 8 9 10 11 12 13 14 15 15 16 "
},
{
"input": "4\n2 3 3 4",
"output": "0 1 2 3 "
}
] | 1,633,206,818
| 2,147,483,647
|
Python 3
|
COMPILATION_ERROR
|
TESTS
| 0
| 0
| 0
|
import queue
n = int(input())
values = [ (int(value) - 1) for value in input().split() ]
start = 0
points = queue.Queue()
points.put(start)
d = [n*10] * n
d[start] = 0
while not points.empty():
value = points.get()
for destanation in [value - 1, value + 1, values[value]]:
distance = d[value] + 1
if destanation < 0 or destanation >= n:
continue
elif d[destanation] > distance:
d[destanation] = distance
points.put(destanation)
for value in d:
print(value, end = ' ')
print('')
|
Title: Mike and Shortcuts
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Recently, Mike was very busy with studying for exams and contests. Now he is going to chill a bit by doing some sight seeing in the city.
City consists of *n* intersections numbered from 1 to *n*. Mike starts walking from his house located at the intersection number 1 and goes along some sequence of intersections. Walking from intersection number *i* to intersection *j* requires |*i*<=-<=*j*| units of energy. The total energy spent by Mike to visit a sequence of intersections *p*1<==<=1,<=*p*2,<=...,<=*p**k* is equal to units of energy.
Of course, walking would be boring if there were no shortcuts. A shortcut is a special path that allows Mike walking from one intersection to another requiring only 1 unit of energy. There are exactly *n* shortcuts in Mike's city, the *i**th* of them allows walking from intersection *i* to intersection *a**i* (*i*<=≤<=*a**i*<=≤<=*a**i*<=+<=1) (but not in the opposite direction), thus there is exactly one shortcut starting at each intersection. Formally, if Mike chooses a sequence *p*1<==<=1,<=*p*2,<=...,<=*p**k* then for each 1<=≤<=*i*<=<<=*k* satisfying *p**i*<=+<=1<==<=*a**p**i* and *a**p**i*<=≠<=*p**i* Mike will spend only 1 unit of energy instead of |*p**i*<=-<=*p**i*<=+<=1| walking from the intersection *p**i* to intersection *p**i*<=+<=1. For example, if Mike chooses a sequence *p*1<==<=1,<=*p*2<==<=*a**p*1,<=*p*3<==<=*a**p*2,<=...,<=*p**k*<==<=*a**p**k*<=-<=1, he spends exactly *k*<=-<=1 units of total energy walking around them.
Before going on his adventure, Mike asks you to find the minimum amount of energy required to reach each of the intersections from his home. Formally, for each 1<=≤<=*i*<=≤<=*n* Mike is interested in finding minimum possible total energy of some sequence *p*1<==<=1,<=*p*2,<=...,<=*p**k*<==<=*i*.
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of Mike's city intersection.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (*i*<=≤<=*a**i*<=≤<=*n* , , describing shortcuts of Mike's city, allowing to walk from intersection *i* to intersection *a**i* using only 1 unit of energy. Please note that the shortcuts don't allow walking in opposite directions (from *a**i* to *i*).
Output Specification:
In the only line print *n* integers *m*1,<=*m*2,<=...,<=*m**n*, where *m**i* denotes the least amount of total energy required to walk from intersection 1 to intersection *i*.
Demo Input:
['3\n2 2 3\n', '5\n1 2 3 4 5\n', '7\n4 4 4 4 7 7 7\n']
Demo Output:
['0 1 2 \n', '0 1 2 3 4 \n', '0 1 2 1 2 3 3 \n']
Note:
In the first sample case desired sequences are:
1: 1; *m*<sub class="lower-index">1</sub> = 0;
2: 1, 2; *m*<sub class="lower-index">2</sub> = 1;
3: 1, 3; *m*<sub class="lower-index">3</sub> = |3 - 1| = 2.
In the second sample case the sequence for any intersection 1 < *i* is always 1, *i* and *m*<sub class="lower-index">*i*</sub> = |1 - *i*|.
In the third sample case — consider the following intersection sequences:
1: 1; *m*<sub class="lower-index">1</sub> = 0;
2: 1, 2; *m*<sub class="lower-index">2</sub> = |2 - 1| = 1;
3: 1, 4, 3; *m*<sub class="lower-index">3</sub> = 1 + |4 - 3| = 2;
4: 1, 4; *m*<sub class="lower-index">4</sub> = 1;
5: 1, 4, 5; *m*<sub class="lower-index">5</sub> = 1 + |4 - 5| = 2;
6: 1, 4, 6; *m*<sub class="lower-index">6</sub> = 1 + |4 - 6| = 3;
7: 1, 4, 5, 7; *m*<sub class="lower-index">7</sub> = 1 + |4 - 5| + 1 = 3.
|
```python
import queue
n = int(input())
values = [ (int(value) - 1) for value in input().split() ]
start = 0
points = queue.Queue()
points.put(start)
d = [n*10] * n
d[start] = 0
while not points.empty():
value = points.get()
for destanation in [value - 1, value + 1, values[value]]:
distance = d[value] + 1
if destanation < 0 or destanation >= n:
continue
elif d[destanation] > distance:
d[destanation] = distance
points.put(destanation)
for value in d:
print(value, end = ' ')
print('')
```
| -1
|
|
106
|
B
|
Choosing Laptop
|
PROGRAMMING
| 1,000
|
[
"brute force",
"implementation"
] |
B. Choosing Laptop
|
2
|
256
|
Vasya is choosing a laptop. The shop has *n* laptops to all tastes.
Vasya is interested in the following properties: processor speed, ram and hdd. Vasya is a programmer and not a gamer which is why he is not interested in all other properties.
If all three properties of a laptop are strictly less than those properties of some other laptop, then the first laptop is considered outdated by Vasya. Among all laptops Vasya does not consider outdated, he chooses the cheapest one.
There are very many laptops, which is why Vasya decided to write a program that chooses the suitable laptop. However, Vasya doesn't have his own laptop yet and he asks you to help him.
|
The first line contains number *n* (1<=≤<=*n*<=≤<=100).
Then follow *n* lines. Each describes a laptop as *speed* *ram* *hdd* *cost*. Besides,
- *speed*, *ram*, *hdd* and *cost* are integers - 1000<=≤<=*speed*<=≤<=4200 is the processor's speed in megahertz - 256<=≤<=*ram*<=≤<=4096 the RAM volume in megabytes - 1<=≤<=*hdd*<=≤<=500 is the HDD in gigabytes - 100<=≤<=*cost*<=≤<=1000 is price in tugriks
All laptops have different prices.
|
Print a single number — the number of a laptop Vasya will choose. The laptops are numbered with positive integers from 1 to *n* in the order in which they are given in the input data.
|
[
"5\n2100 512 150 200\n2000 2048 240 350\n2300 1024 200 320\n2500 2048 80 300\n2000 512 180 150\n"
] |
[
"4"
] |
In the third sample Vasya considers the first and fifth laptops outdated as all of their properties cannot match those of the third laptop. The fourth one is the cheapest among the laptops that are left. Thus, Vasya chooses the fourth laptop.
| 1,000
|
[
{
"input": "5\n2100 512 150 200\n2000 2048 240 350\n2300 1024 200 320\n2500 2048 80 300\n2000 512 180 150",
"output": "4"
},
{
"input": "2\n1500 500 50 755\n1600 600 80 700",
"output": "2"
},
{
"input": "2\n1500 512 50 567\n1600 400 70 789",
"output": "1"
},
{
"input": "4\n1000 300 5 700\n1100 400 10 600\n1200 500 15 500\n1300 600 20 400",
"output": "4"
},
{
"input": "10\n2123 389 397 747\n2705 3497 413 241\n3640 984 470 250\n3013 2004 276 905\n3658 3213 353 602\n1428 626 188 523\n2435 1140 459 824\n2927 2586 237 860\n2361 4004 386 719\n2863 2429 476 310",
"output": "2"
},
{
"input": "25\n2123 389 397 747\n2705 3497 413 241\n3640 984 470 250\n3013 2004 276 905\n3658 3213 353 602\n1428 626 188 523\n2435 1140 459 824\n2927 2586 237 860\n2361 4004 386 719\n2863 2429 476 310\n3447 3875 1 306\n3950 1901 31 526\n4130 1886 152 535\n1951 1840 122 814\n1798 3722 474 106\n2305 3979 82 971\n3656 3148 349 992\n1062 1648 320 491\n3113 3706 302 542\n3545 1317 184 853\n1277 2153 95 492\n2189 3495 427 655\n4014 3030 22 963\n1455 3840 155 485\n2760 717 309 891",
"output": "15"
},
{
"input": "1\n1200 512 300 700",
"output": "1"
},
{
"input": "1\n4200 4096 500 1000",
"output": "1"
},
{
"input": "1\n1000 256 1 100",
"output": "1"
},
{
"input": "2\n2000 500 200 100\n3000 600 100 200",
"output": "1"
},
{
"input": "2\n2000 500 200 200\n3000 600 100 100",
"output": "2"
},
{
"input": "2\n2000 600 100 100\n3000 500 200 200",
"output": "1"
},
{
"input": "2\n2000 700 100 200\n3000 500 200 100",
"output": "2"
},
{
"input": "2\n3000 500 100 100\n1500 600 200 200",
"output": "1"
},
{
"input": "2\n3000 500 100 300\n1500 600 200 200",
"output": "2"
},
{
"input": "3\n3467 1566 191 888\n3047 3917 3 849\n1795 1251 97 281",
"output": "2"
},
{
"input": "4\n3835 1035 5 848\n2222 3172 190 370\n2634 2698 437 742\n1748 3112 159 546",
"output": "2"
},
{
"input": "5\n3511 981 276 808\n3317 2320 354 878\n3089 702 20 732\n1088 2913 327 756\n3837 691 173 933",
"output": "4"
},
{
"input": "6\n1185 894 287 455\n2465 3317 102 240\n2390 2353 81 615\n2884 603 170 826\n3202 2070 320 184\n3074 3776 497 466",
"output": "5"
},
{
"input": "7\n3987 1611 470 720\n1254 4048 226 626\n1747 630 25 996\n2336 2170 402 123\n1902 3952 337 663\n1416 271 77 499\n1802 1399 419 929",
"output": "4"
},
{
"input": "10\n3888 1084 420 278\n2033 277 304 447\n1774 514 61 663\n2055 3437 67 144\n1237 1590 145 599\n3648 663 244 525\n3691 2276 332 504\n1496 2655 324 313\n2462 1930 13 644\n1811 331 390 284",
"output": "4"
},
{
"input": "13\n3684 543 70 227\n3953 1650 151 681\n2452 655 102 946\n3003 990 121 411\n2896 1936 158 155\n1972 717 366 754\n3989 2237 32 521\n2738 2140 445 965\n2884 1772 251 369\n2240 741 465 209\n4073 2812 494 414\n3392 955 425 133\n4028 717 90 123",
"output": "11"
},
{
"input": "17\n3868 2323 290 182\n1253 3599 38 217\n2372 354 332 897\n1286 649 332 495\n1642 1643 301 216\n1578 792 140 299\n3329 3039 359 525\n1362 2006 172 183\n1058 3961 423 591\n3196 914 484 675\n3032 3752 217 954\n2391 2853 171 579\n4102 3170 349 516\n1218 1661 451 354\n3375 1997 196 404\n1030 918 198 893\n2546 2029 399 647",
"output": "14"
},
{
"input": "22\n1601 1091 249 107\n2918 3830 312 767\n4140 409 393 202\n3485 2409 446 291\n2787 530 272 147\n2303 3400 265 206\n2164 1088 143 667\n1575 2439 278 863\n2874 699 369 568\n4017 1625 368 641\n3446 916 53 509\n3627 3229 328 256\n1004 2525 109 670\n2369 3299 57 351\n4147 3038 73 309\n3510 3391 390 470\n3308 3139 268 736\n3733 1054 98 809\n3967 2992 408 873\n2104 3191 83 687\n2223 2910 209 563\n1406 2428 147 673",
"output": "3"
},
{
"input": "27\n1689 1927 40 270\n3833 2570 167 134\n2580 3589 390 300\n1898 2587 407 316\n1841 2772 411 187\n1296 288 407 506\n1215 263 236 307\n2737 1427 84 992\n1107 1879 284 866\n3311 2507 475 147\n2951 2214 209 375\n1352 2582 110 324\n2082 747 289 521\n2226 1617 209 108\n2253 1993 109 835\n2866 2360 29 206\n1431 3581 185 918\n3800 1167 463 943\n4136 1156 266 490\n3511 1396 478 169\n3498 1419 493 792\n2660 2165 204 172\n3509 2358 178 469\n1568 3564 276 319\n3871 2660 472 366\n3569 2829 146 761\n1365 2943 460 611",
"output": "10"
},
{
"input": "2\n1000 2000 300 120\n1000 2000 300 130",
"output": "1"
},
{
"input": "10\n2883 1110 230 501\n2662 821 163 215\n2776 1131 276 870\n2776 1131 276 596\n2776 1131 276 981\n2662 821 163 892\n2662 821 163 997\n2883 1110 230 132\n2776 1131 276 317\n2883 1110 230 481",
"output": "8"
},
{
"input": "23\n1578 3681 380 163\n2640 3990 180 576\n3278 2311 131 386\n3900 513 443 873\n1230 1143 267 313\n2640 3990 180 501\n1230 1143 267 428\n1578 3681 380 199\n1578 3681 380 490\n3900 513 443 980\n3900 513 443 882\n3278 2311 131 951\n3278 2311 131 863\n2640 3990 180 916\n3278 2311 131 406\n3278 2311 131 455\n3278 2311 131 239\n1230 1143 267 439\n3900 513 443 438\n3900 513 443 514\n3278 2311 131 526\n1578 3681 380 123\n1578 3681 380 263",
"output": "22"
},
{
"input": "6\n2100 512 150 200\n2000 2048 240 350\n2300 1024 200 320\n2500 2048 80 300\n2000 512 180 150\n1000 256 1 100",
"output": "4"
},
{
"input": "2\n1000 256 1 100\n1000 256 1 101",
"output": "1"
},
{
"input": "2\n1500 500 300 1000\n1500 500 300 900",
"output": "2"
},
{
"input": "4\n1000 256 1 500\n1000 256 1 400\n1000 256 1 300\n1000 256 1 200",
"output": "4"
},
{
"input": "3\n1500 1024 300 150\n1200 512 150 100\n1000 256 50 200",
"output": "1"
}
] | 1,637,821,774
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 3
| 60
| 0
|
cases = int(input())
full_list = [[*map(lambda x: int(x), input().split())] for i in range(cases)]
def laptop_finder(full_list):
a = list(full_list)
for i in a:
for n in a:
if i[0] < n[0] and i[1] < n[1] and i[2] < n[2]:
a.remove(i)
final_list = sorted(a, key=lambda x:x[3])
print(full_list.index(final_list[0]) + 1)
laptop_finder(full_list)
|
Title: Choosing Laptop
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya is choosing a laptop. The shop has *n* laptops to all tastes.
Vasya is interested in the following properties: processor speed, ram and hdd. Vasya is a programmer and not a gamer which is why he is not interested in all other properties.
If all three properties of a laptop are strictly less than those properties of some other laptop, then the first laptop is considered outdated by Vasya. Among all laptops Vasya does not consider outdated, he chooses the cheapest one.
There are very many laptops, which is why Vasya decided to write a program that chooses the suitable laptop. However, Vasya doesn't have his own laptop yet and he asks you to help him.
Input Specification:
The first line contains number *n* (1<=≤<=*n*<=≤<=100).
Then follow *n* lines. Each describes a laptop as *speed* *ram* *hdd* *cost*. Besides,
- *speed*, *ram*, *hdd* and *cost* are integers - 1000<=≤<=*speed*<=≤<=4200 is the processor's speed in megahertz - 256<=≤<=*ram*<=≤<=4096 the RAM volume in megabytes - 1<=≤<=*hdd*<=≤<=500 is the HDD in gigabytes - 100<=≤<=*cost*<=≤<=1000 is price in tugriks
All laptops have different prices.
Output Specification:
Print a single number — the number of a laptop Vasya will choose. The laptops are numbered with positive integers from 1 to *n* in the order in which they are given in the input data.
Demo Input:
['5\n2100 512 150 200\n2000 2048 240 350\n2300 1024 200 320\n2500 2048 80 300\n2000 512 180 150\n']
Demo Output:
['4']
Note:
In the third sample Vasya considers the first and fifth laptops outdated as all of their properties cannot match those of the third laptop. The fourth one is the cheapest among the laptops that are left. Thus, Vasya chooses the fourth laptop.
|
```python
cases = int(input())
full_list = [[*map(lambda x: int(x), input().split())] for i in range(cases)]
def laptop_finder(full_list):
a = list(full_list)
for i in a:
for n in a:
if i[0] < n[0] and i[1] < n[1] and i[2] < n[2]:
a.remove(i)
final_list = sorted(a, key=lambda x:x[3])
print(full_list.index(final_list[0]) + 1)
laptop_finder(full_list)
```
| -1
|
110
|
A
|
Nearly Lucky Number
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Nearly Lucky Number
|
2
|
256
|
Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
Unfortunately, not all numbers are lucky. Petya calls a number nearly lucky if the number of lucky digits in it is a lucky number. He wonders whether number *n* is a nearly lucky number.
|
The only line contains an integer *n* (1<=≤<=*n*<=≤<=1018).
Please do not use the %lld specificator to read or write 64-bit numbers in С++. It is preferred to use the cin, cout streams or the %I64d specificator.
|
Print on the single line "YES" if *n* is a nearly lucky number. Otherwise, print "NO" (without the quotes).
|
[
"40047\n",
"7747774\n",
"1000000000000000000\n"
] |
[
"NO\n",
"YES\n",
"NO\n"
] |
In the first sample there are 3 lucky digits (first one and last two), so the answer is "NO".
In the second sample there are 7 lucky digits, 7 is lucky number, so the answer is "YES".
In the third sample there are no lucky digits, so the answer is "NO".
| 500
|
[
{
"input": "40047",
"output": "NO"
},
{
"input": "7747774",
"output": "YES"
},
{
"input": "1000000000000000000",
"output": "NO"
},
{
"input": "7",
"output": "NO"
},
{
"input": "4",
"output": "NO"
},
{
"input": "474404774",
"output": "NO"
},
{
"input": "4744000695826",
"output": "YES"
},
{
"input": "10000000004744744",
"output": "YES"
},
{
"input": "446486416781684178",
"output": "YES"
},
{
"input": "999999999",
"output": "NO"
},
{
"input": "7777",
"output": "YES"
},
{
"input": "87414417444",
"output": "NO"
},
{
"input": "111222333444555667",
"output": "YES"
},
{
"input": "1",
"output": "NO"
},
{
"input": "4700",
"output": "NO"
},
{
"input": "3794555488744477",
"output": "NO"
},
{
"input": "444444444444444444",
"output": "NO"
},
{
"input": "474447447774444774",
"output": "NO"
},
{
"input": "777777777777777",
"output": "NO"
},
{
"input": "34777745021000000",
"output": "NO"
},
{
"input": "963",
"output": "NO"
},
{
"input": "855474448854788540",
"output": "NO"
},
{
"input": "999999999999994744",
"output": "YES"
},
{
"input": "400000000474",
"output": "YES"
},
{
"input": "123456789123456789",
"output": "YES"
},
{
"input": "740577777584945874",
"output": "NO"
},
{
"input": "7777777",
"output": "YES"
},
{
"input": "4444000111222333",
"output": "YES"
},
{
"input": "9847745885202111",
"output": "YES"
},
{
"input": "123456000000",
"output": "NO"
},
{
"input": "4744447444444",
"output": "NO"
},
{
"input": "7477",
"output": "YES"
},
{
"input": "4747477",
"output": "YES"
},
{
"input": "777777777444444444",
"output": "NO"
}
] | 1,699,189,705
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 34
| 92
| 0
|
s = input()
fourCnt = s.count("4")
sevenCnt = s.count("7")
if fourCnt + sevenCnt in [4,7]: print("YES")
else: print("NO")
|
Title: Nearly Lucky Number
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
Unfortunately, not all numbers are lucky. Petya calls a number nearly lucky if the number of lucky digits in it is a lucky number. He wonders whether number *n* is a nearly lucky number.
Input Specification:
The only line contains an integer *n* (1<=≤<=*n*<=≤<=1018).
Please do not use the %lld specificator to read or write 64-bit numbers in С++. It is preferred to use the cin, cout streams or the %I64d specificator.
Output Specification:
Print on the single line "YES" if *n* is a nearly lucky number. Otherwise, print "NO" (without the quotes).
Demo Input:
['40047\n', '7747774\n', '1000000000000000000\n']
Demo Output:
['NO\n', 'YES\n', 'NO\n']
Note:
In the first sample there are 3 lucky digits (first one and last two), so the answer is "NO".
In the second sample there are 7 lucky digits, 7 is lucky number, so the answer is "YES".
In the third sample there are no lucky digits, so the answer is "NO".
|
```python
s = input()
fourCnt = s.count("4")
sevenCnt = s.count("7")
if fourCnt + sevenCnt in [4,7]: print("YES")
else: print("NO")
```
| 3.977
|
659
|
C
|
Tanya and Toys
|
PROGRAMMING
| 1,200
|
[
"greedy",
"implementation"
] | null | null |
In Berland recently a new collection of toys went on sale. This collection consists of 109 types of toys, numbered with integers from 1 to 109. A toy from the new collection of the *i*-th type costs *i* bourles.
Tania has managed to collect *n* different types of toys *a*1,<=*a*2,<=...,<=*a**n* from the new collection. Today is Tanya's birthday, and her mother decided to spend no more than *m* bourles on the gift to the daughter. Tanya will choose several different types of toys from the new collection as a gift. Of course, she does not want to get a type of toy which she already has.
Tanya wants to have as many distinct types of toys in her collection as possible as the result. The new collection is too diverse, and Tanya is too little, so she asks you to help her in this.
|
The first line contains two integers *n* (1<=≤<=*n*<=≤<=100<=000) and *m* (1<=≤<=*m*<=≤<=109) — the number of types of toys that Tanya already has and the number of bourles that her mom is willing to spend on buying new toys.
The next line contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the types of toys that Tanya already has.
|
In the first line print a single integer *k* — the number of different types of toys that Tanya should choose so that the number of different types of toys in her collection is maximum possible. Of course, the total cost of the selected toys should not exceed *m*.
In the second line print *k* distinct space-separated integers *t*1,<=*t*2,<=...,<=*t**k* (1<=≤<=*t**i*<=≤<=109) — the types of toys that Tanya should choose.
If there are multiple answers, you may print any of them. Values of *t**i* can be printed in any order.
|
[
"3 7\n1 3 4\n",
"4 14\n4 6 12 8\n"
] |
[
"2\n2 5 \n",
"4\n7 2 3 1\n"
] |
In the first sample mom should buy two toys: one toy of the 2-nd type and one toy of the 5-th type. At any other purchase for 7 bourles (assuming that the toys of types 1, 3 and 4 have already been bought), it is impossible to buy two and more toys.
| 1,000
|
[
{
"input": "3 7\n1 3 4",
"output": "2\n2 5 "
},
{
"input": "4 14\n4 6 12 8",
"output": "4\n1 2 3 5 "
},
{
"input": "5 6\n97746 64770 31551 96547 65684",
"output": "3\n1 2 3 "
},
{
"input": "10 10\n94125 56116 29758 94024 29289 31663 99794 35076 25328 58656",
"output": "4\n1 2 3 4 "
},
{
"input": "30 38\n9560 64176 75619 53112 54160 68775 12655 13118 99502 89757 78434 42521 19210 1927 34097 5416 56110 44786 59126 44266 79240 65567 54602 25325 37171 2879 89291 89121 39568 28162",
"output": "8\n1 2 3 4 5 6 7 8 "
},
{
"input": "1 999999298\n85187",
"output": "44720\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 ..."
},
{
"input": "1 999999119\n34421",
"output": "44720\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 ..."
},
{
"input": "1 1000000000\n1",
"output": "44719\n2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 15..."
},
{
"input": "1 1000000000\n44720",
"output": "44720\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 ..."
},
{
"input": "1 1000000000\n44719",
"output": "44720\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 ..."
},
{
"input": "1 1000000000\n44721",
"output": "44720\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 ..."
},
{
"input": "3 1000000000\n123456789 234567891 345678912",
"output": "44720\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 ..."
},
{
"input": "2 5\n999999999 1000000000",
"output": "2\n1 2 "
},
{
"input": "2 1000000000\n1 1000000000",
"output": "44719\n2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 15..."
},
{
"input": "3 100000\n1000000000 100000000 1",
"output": "445\n2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 ..."
},
{
"input": "5 5\n100000000 200000000 300000000 400000000 1000000000",
"output": "2\n1 2 "
},
{
"input": "6 3\n1 2 3 4 5 6",
"output": "0"
},
{
"input": "2 1\n1 2",
"output": "0"
},
{
"input": "1 1000000000\n1000000000",
"output": "44720\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 ..."
},
{
"input": "5 1000000\n1000000000 100000000 10000000 99999999 123456789",
"output": "1413\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..."
},
{
"input": "2 10000000\n1234567 123456",
"output": "4471\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..."
},
{
"input": "1 1\n1000000000",
"output": "1\n1 "
},
{
"input": "1 1000000000\n9999999",
"output": "44720\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 ..."
},
{
"input": "5 10000\n1000000000 888888888 777777777 666666666 959595959",
"output": "140\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 "
},
{
"input": "3 1\n1000000000 999999999 999999998",
"output": "1\n1 "
},
{
"input": "5 100000000\n100000000 999999999 1 2 3",
"output": "14138\n4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 15..."
},
{
"input": "3 55\n100000000 1000000000 999999999",
"output": "10\n1 2 3 4 5 6 7 8 9 10 "
},
{
"input": "2 10\n5 10000009",
"output": "4\n1 2 3 4 "
},
{
"input": "3 10000000\n999999999 999999998 999999997",
"output": "4471\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..."
},
{
"input": "1 1100\n1000000000",
"output": "46\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 "
},
{
"input": "1 40\n1000000000",
"output": "8\n1 2 3 4 5 6 7 8 "
}
] | 1,622,933,497
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 8
| 1,000
| 1,843,200
|
#Tanya and Toys 2
nm=list(map(int,input().split()))
n=nm[0]
m=nm[1]
t_collection=list(map(int,input().split()))
buy_collection=[]
i=1
while i<=m:
if i not in t_collection:
buy_collection.append(i)
m-=i
i+=1
print(len(buy_collection))
buy_collection_str=""
for i in buy_collection:
buy_collection_str+=str(i)+" "
buy_collection_str=buy_collection_str[:-1]
print(buy_collection_str)
|
Title: Tanya and Toys
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In Berland recently a new collection of toys went on sale. This collection consists of 109 types of toys, numbered with integers from 1 to 109. A toy from the new collection of the *i*-th type costs *i* bourles.
Tania has managed to collect *n* different types of toys *a*1,<=*a*2,<=...,<=*a**n* from the new collection. Today is Tanya's birthday, and her mother decided to spend no more than *m* bourles on the gift to the daughter. Tanya will choose several different types of toys from the new collection as a gift. Of course, she does not want to get a type of toy which she already has.
Tanya wants to have as many distinct types of toys in her collection as possible as the result. The new collection is too diverse, and Tanya is too little, so she asks you to help her in this.
Input Specification:
The first line contains two integers *n* (1<=≤<=*n*<=≤<=100<=000) and *m* (1<=≤<=*m*<=≤<=109) — the number of types of toys that Tanya already has and the number of bourles that her mom is willing to spend on buying new toys.
The next line contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the types of toys that Tanya already has.
Output Specification:
In the first line print a single integer *k* — the number of different types of toys that Tanya should choose so that the number of different types of toys in her collection is maximum possible. Of course, the total cost of the selected toys should not exceed *m*.
In the second line print *k* distinct space-separated integers *t*1,<=*t*2,<=...,<=*t**k* (1<=≤<=*t**i*<=≤<=109) — the types of toys that Tanya should choose.
If there are multiple answers, you may print any of them. Values of *t**i* can be printed in any order.
Demo Input:
['3 7\n1 3 4\n', '4 14\n4 6 12 8\n']
Demo Output:
['2\n2 5 \n', '4\n7 2 3 1\n']
Note:
In the first sample mom should buy two toys: one toy of the 2-nd type and one toy of the 5-th type. At any other purchase for 7 bourles (assuming that the toys of types 1, 3 and 4 have already been bought), it is impossible to buy two and more toys.
|
```python
#Tanya and Toys 2
nm=list(map(int,input().split()))
n=nm[0]
m=nm[1]
t_collection=list(map(int,input().split()))
buy_collection=[]
i=1
while i<=m:
if i not in t_collection:
buy_collection.append(i)
m-=i
i+=1
print(len(buy_collection))
buy_collection_str=""
for i in buy_collection:
buy_collection_str+=str(i)+" "
buy_collection_str=buy_collection_str[:-1]
print(buy_collection_str)
```
| 0
|
|
538
|
B
|
Quasi Binary
|
PROGRAMMING
| 1,400
|
[
"constructive algorithms",
"dp",
"greedy",
"implementation"
] | null | null |
A number is called quasibinary if its decimal representation contains only digits 0 or 1. For example, numbers 0, 1, 101, 110011 — are quasibinary and numbers 2, 12, 900 are not.
You are given a positive integer *n*. Represent it as a sum of minimum number of quasibinary numbers.
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=106).
|
In the first line print a single integer *k* — the minimum number of numbers in the representation of number *n* as a sum of quasibinary numbers.
In the second line print *k* numbers — the elements of the sum. All these numbers should be quasibinary according to the definition above, their sum should equal *n*. Do not have to print the leading zeroes in the numbers. The order of numbers doesn't matter. If there are multiple possible representations, you are allowed to print any of them.
|
[
"9\n",
"32\n"
] |
[
"9\n1 1 1 1 1 1 1 1 1 \n",
"3\n10 11 11 \n"
] |
none
| 1,000
|
[
{
"input": "9",
"output": "9\n1 1 1 1 1 1 1 1 1 "
},
{
"input": "32",
"output": "3\n10 11 11 "
},
{
"input": "1",
"output": "1\n1 "
},
{
"input": "415",
"output": "5\n1 101 101 101 111 "
},
{
"input": "10011",
"output": "1\n10011 "
},
{
"input": "10201",
"output": "2\n100 10101 "
},
{
"input": "314159",
"output": "9\n1 1 1 1 11 1011 101011 101011 111111 "
},
{
"input": "999999",
"output": "9\n111111 111111 111111 111111 111111 111111 111111 111111 111111 "
},
{
"input": "2",
"output": "2\n1 1 "
},
{
"input": "10",
"output": "1\n10 "
},
{
"input": "21",
"output": "2\n10 11 "
},
{
"input": "98",
"output": "9\n10 11 11 11 11 11 11 11 11 "
},
{
"input": "102030",
"output": "3\n10 1010 101010 "
},
{
"input": "909090",
"output": "9\n101010 101010 101010 101010 101010 101010 101010 101010 101010 "
},
{
"input": "909823",
"output": "9\n101000 101100 101100 101100 101100 101100 101101 101111 101111 "
},
{
"input": "1000000",
"output": "1\n1000000 "
},
{
"input": "111111",
"output": "1\n111111 "
},
{
"input": "123456",
"output": "6\n1 11 111 1111 11111 111111 "
},
{
"input": "987654",
"output": "9\n100000 110000 111000 111100 111110 111111 111111 111111 111111 "
},
{
"input": "908172",
"output": "9\n100000 101000 101010 101010 101010 101010 101010 101011 101111 "
},
{
"input": "8",
"output": "8\n1 1 1 1 1 1 1 1 "
},
{
"input": "100009",
"output": "9\n1 1 1 1 1 1 1 1 100001 "
},
{
"input": "900000",
"output": "9\n100000 100000 100000 100000 100000 100000 100000 100000 100000 "
},
{
"input": "1435",
"output": "5\n1 101 111 111 1111 "
},
{
"input": "1453",
"output": "5\n10 110 111 111 1111 "
}
] | 1,622,866,005
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 3
| 93
| 0
|
a=int(input())
b=[0,1]
d={}
d[0]=[0,1]
for i in range(1,6):
h=[]
for j in range(0,len(b)):
c=10**i+b[j]
b.append(c)
h.append(c)
d[i]=h
k=0
h=[]
while(a!=0):
s=len(str(a))
j=len(d[s-1])-1
while(d[s-1][j]>a):
j=j-1
a=a-d[s-1][j]
k=k+1
h.append(d[s-1][j])
print(k)
for i in range(0,len(h)):
print(h[i],end=" ")
|
Title: Quasi Binary
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A number is called quasibinary if its decimal representation contains only digits 0 or 1. For example, numbers 0, 1, 101, 110011 — are quasibinary and numbers 2, 12, 900 are not.
You are given a positive integer *n*. Represent it as a sum of minimum number of quasibinary numbers.
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=106).
Output Specification:
In the first line print a single integer *k* — the minimum number of numbers in the representation of number *n* as a sum of quasibinary numbers.
In the second line print *k* numbers — the elements of the sum. All these numbers should be quasibinary according to the definition above, their sum should equal *n*. Do not have to print the leading zeroes in the numbers. The order of numbers doesn't matter. If there are multiple possible representations, you are allowed to print any of them.
Demo Input:
['9\n', '32\n']
Demo Output:
['9\n1 1 1 1 1 1 1 1 1 \n', '3\n10 11 11 \n']
Note:
none
|
```python
a=int(input())
b=[0,1]
d={}
d[0]=[0,1]
for i in range(1,6):
h=[]
for j in range(0,len(b)):
c=10**i+b[j]
b.append(c)
h.append(c)
d[i]=h
k=0
h=[]
while(a!=0):
s=len(str(a))
j=len(d[s-1])-1
while(d[s-1][j]>a):
j=j-1
a=a-d[s-1][j]
k=k+1
h.append(d[s-1][j])
print(k)
for i in range(0,len(h)):
print(h[i],end=" ")
```
| 0
|
|
200
|
B
|
Drinks
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
Little Vasya loves orange juice very much. That's why any food and drink in his kitchen necessarily contains orange juice. There are *n* drinks in his fridge, the volume fraction of orange juice in the *i*-th drink equals *p**i* percent.
One day Vasya decided to make himself an orange cocktail. He took equal proportions of each of the *n* drinks and mixed them. Then he wondered, how much orange juice the cocktail has.
Find the volume fraction of orange juice in the final drink.
|
The first input line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of orange-containing drinks in Vasya's fridge. The second line contains *n* integers *p**i* (0<=≤<=*p**i*<=≤<=100) — the volume fraction of orange juice in the *i*-th drink, in percent. The numbers are separated by a space.
|
Print the volume fraction in percent of orange juice in Vasya's cocktail. The answer will be considered correct if the absolute or relative error does not exceed 10<=<=-<=4.
|
[
"3\n50 50 100\n",
"4\n0 25 50 75\n"
] |
[
"66.666666666667\n",
"37.500000000000\n"
] |
Note to the first sample: let's assume that Vasya takes *x* milliliters of each drink from the fridge. Then the volume of pure juice in the cocktail will equal <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c1fac6e64d3a8ee6a5ac138cbe51e60039b22473.png" style="max-width: 100.0%;max-height: 100.0%;"/> milliliters. The total cocktail's volume equals 3·*x* milliliters, so the volume fraction of the juice in the cocktail equals <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ceb0664e55a1f9f5fa1243ec74680a4665a4d58d.png" style="max-width: 100.0%;max-height: 100.0%;"/>, that is, 66.(6) percent.
| 500
|
[
{
"input": "3\n50 50 100",
"output": "66.666666666667"
},
{
"input": "4\n0 25 50 75",
"output": "37.500000000000"
},
{
"input": "3\n0 1 8",
"output": "3.000000000000"
},
{
"input": "5\n96 89 93 95 70",
"output": "88.600000000000"
},
{
"input": "7\n62 41 78 4 38 39 75",
"output": "48.142857142857"
},
{
"input": "13\n2 22 7 0 1 17 3 17 11 2 21 26 22",
"output": "11.615384615385"
},
{
"input": "21\n5 4 11 7 0 5 45 21 0 14 51 6 0 16 10 19 8 9 7 12 18",
"output": "12.761904761905"
},
{
"input": "26\n95 70 93 74 94 70 91 70 39 79 80 57 87 75 37 93 48 67 51 90 85 26 23 64 66 84",
"output": "69.538461538462"
},
{
"input": "29\n84 99 72 96 83 92 95 98 97 93 76 84 99 93 81 76 93 99 99 100 95 100 96 95 97 100 71 98 94",
"output": "91.551724137931"
},
{
"input": "33\n100 99 100 100 99 99 99 100 100 100 99 99 99 100 100 100 100 99 100 99 100 100 97 100 100 100 100 100 100 100 98 98 100",
"output": "99.515151515152"
},
{
"input": "34\n14 9 10 5 4 26 18 23 0 1 0 20 18 15 2 2 3 5 14 1 9 4 2 15 7 1 7 19 10 0 0 11 0 2",
"output": "8.147058823529"
},
{
"input": "38\n99 98 100 100 99 92 99 99 98 84 88 94 86 99 93 100 98 99 65 98 85 84 64 97 96 89 79 96 91 84 99 93 72 96 94 97 96 93",
"output": "91.921052631579"
},
{
"input": "52\n100 94 99 98 99 99 99 95 97 97 98 100 100 98 97 100 98 90 100 99 97 94 90 98 100 100 90 99 100 95 98 95 94 85 97 94 96 94 99 99 99 98 100 100 94 99 99 100 98 87 100 100",
"output": "97.019230769231"
},
{
"input": "58\n10 70 12 89 1 82 100 53 40 100 21 69 92 91 67 66 99 77 25 48 8 63 93 39 46 79 82 14 44 42 1 79 0 69 56 73 67 17 59 4 65 80 20 60 77 52 3 61 16 76 33 18 46 100 28 59 9 6",
"output": "50.965517241379"
},
{
"input": "85\n7 8 1 16 0 15 1 7 0 11 15 6 2 12 2 8 9 8 2 0 3 7 15 7 1 8 5 7 2 26 0 3 11 1 8 10 31 0 7 6 1 8 1 0 9 14 4 8 7 16 9 1 0 16 10 9 6 1 1 4 2 7 4 5 4 1 20 6 16 16 1 1 10 17 8 12 14 19 3 8 1 7 10 23 10",
"output": "7.505882352941"
},
{
"input": "74\n5 3 0 7 13 10 12 10 18 5 0 18 2 13 7 17 2 7 5 2 40 19 0 2 2 3 0 45 4 20 0 4 2 8 1 19 3 9 17 1 15 0 16 1 9 4 0 9 32 2 6 18 11 18 1 15 16 12 7 19 5 3 9 28 26 8 3 10 33 29 4 13 28 6",
"output": "10.418918918919"
},
{
"input": "98\n42 9 21 11 9 11 22 12 52 20 10 6 56 9 26 27 1 29 29 14 38 17 41 21 7 45 15 5 29 4 51 20 6 8 34 17 13 53 30 45 0 10 16 41 4 5 6 4 14 2 31 6 0 11 13 3 3 43 13 36 51 0 7 16 28 23 8 36 30 22 8 54 21 45 39 4 50 15 1 30 17 8 18 10 2 20 16 50 6 68 15 6 38 7 28 8 29 41",
"output": "20.928571428571"
},
{
"input": "99\n60 65 40 63 57 44 30 84 3 10 39 53 40 45 72 20 76 11 61 32 4 26 97 55 14 57 86 96 34 69 52 22 26 79 31 4 21 35 82 47 81 28 72 70 93 84 40 4 69 39 83 58 30 7 32 73 74 12 92 23 61 88 9 58 70 32 75 40 63 71 46 55 39 36 14 97 32 16 95 41 28 20 85 40 5 50 50 50 75 6 10 64 38 19 77 91 50 72 96",
"output": "49.191919191919"
},
{
"input": "99\n100 88 40 30 81 80 91 98 69 73 88 96 79 58 14 100 87 84 52 91 83 88 72 83 99 35 54 80 46 79 52 72 85 32 99 39 79 79 45 83 88 50 75 75 50 59 65 75 97 63 92 58 89 46 93 80 89 33 69 86 99 99 66 85 72 74 79 98 85 95 46 63 77 97 49 81 89 39 70 76 68 91 90 56 31 93 51 87 73 95 74 69 87 95 57 68 49 95 92",
"output": "73.484848484848"
},
{
"input": "100\n18 15 17 0 3 3 0 4 1 8 2 22 7 21 5 0 0 8 3 16 1 0 2 9 9 3 10 8 17 20 5 4 8 12 2 3 1 1 3 2 23 0 1 0 5 7 4 0 1 3 3 4 25 2 2 14 8 4 9 3 0 11 0 3 12 3 14 16 7 7 14 1 17 9 0 35 42 12 3 1 25 9 3 8 5 3 2 8 22 14 11 6 3 9 6 8 7 7 4 6",
"output": "7.640000000000"
},
{
"input": "100\n88 77 65 87 100 63 91 96 92 89 77 95 76 80 84 83 100 71 85 98 26 54 74 78 69 59 96 86 88 91 95 26 52 88 64 70 84 81 76 84 94 82 100 66 97 98 43 94 59 94 100 80 98 73 69 83 94 70 74 79 91 31 62 88 69 55 62 97 40 64 62 83 87 85 50 90 69 72 67 49 100 51 69 96 81 90 83 91 86 34 79 69 100 66 97 98 47 97 74 100",
"output": "77.660000000000"
},
{
"input": "100\n91 92 90 91 98 84 85 96 83 98 99 87 94 70 87 75 86 90 89 88 82 83 91 94 88 86 90 99 100 98 97 75 95 99 95 100 91 92 76 93 95 97 88 93 95 81 96 89 88 100 98 87 90 96 100 99 58 90 96 77 92 82 100 100 93 93 98 99 79 88 97 95 98 66 96 83 96 100 99 92 98 98 92 93 100 97 98 100 98 97 100 100 94 90 99 100 98 79 80 81",
"output": "91.480000000000"
},
{
"input": "1\n0",
"output": "0.000000000000"
},
{
"input": "1\n100",
"output": "100.000000000000"
},
{
"input": "1\n78",
"output": "78.000000000000"
},
{
"input": "2\n0 100",
"output": "50.000000000000"
},
{
"input": "2\n100 100",
"output": "100.000000000000"
},
{
"input": "5\n0 0 0 0 1",
"output": "0.200000000000"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99",
"output": "99.990000000000"
},
{
"input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1",
"output": "0.010000000000"
},
{
"input": "5\n100 100 100 100 100",
"output": "100.000000000000"
}
] | 1,693,303,936
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 31
| 62
| 0
|
i=int(input())
p = list(map(int, input().split()))
s=0
for k in range(i):
s=s+p[k]
s=s/i
print(s)
|
Title: Drinks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Vasya loves orange juice very much. That's why any food and drink in his kitchen necessarily contains orange juice. There are *n* drinks in his fridge, the volume fraction of orange juice in the *i*-th drink equals *p**i* percent.
One day Vasya decided to make himself an orange cocktail. He took equal proportions of each of the *n* drinks and mixed them. Then he wondered, how much orange juice the cocktail has.
Find the volume fraction of orange juice in the final drink.
Input Specification:
The first input line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of orange-containing drinks in Vasya's fridge. The second line contains *n* integers *p**i* (0<=≤<=*p**i*<=≤<=100) — the volume fraction of orange juice in the *i*-th drink, in percent. The numbers are separated by a space.
Output Specification:
Print the volume fraction in percent of orange juice in Vasya's cocktail. The answer will be considered correct if the absolute or relative error does not exceed 10<=<=-<=4.
Demo Input:
['3\n50 50 100\n', '4\n0 25 50 75\n']
Demo Output:
['66.666666666667\n', '37.500000000000\n']
Note:
Note to the first sample: let's assume that Vasya takes *x* milliliters of each drink from the fridge. Then the volume of pure juice in the cocktail will equal <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c1fac6e64d3a8ee6a5ac138cbe51e60039b22473.png" style="max-width: 100.0%;max-height: 100.0%;"/> milliliters. The total cocktail's volume equals 3·*x* milliliters, so the volume fraction of the juice in the cocktail equals <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ceb0664e55a1f9f5fa1243ec74680a4665a4d58d.png" style="max-width: 100.0%;max-height: 100.0%;"/>, that is, 66.(6) percent.
|
```python
i=int(input())
p = list(map(int, input().split()))
s=0
for k in range(i):
s=s+p[k]
s=s/i
print(s)
```
| 3
|
|
733
|
B
|
Parade
|
PROGRAMMING
| 1,100
|
[
"math"
] | null | null |
Very soon there will be a parade of victory over alien invaders in Berland. Unfortunately, all soldiers died in the war and now the army consists of entirely new recruits, many of whom do not even know from which leg they should begin to march. The civilian population also poorly understands from which leg recruits begin to march, so it is only important how many soldiers march in step.
There will be *n* columns participating in the parade, the *i*-th column consists of *l**i* soldiers, who start to march from left leg, and *r**i* soldiers, who start to march from right leg.
The beauty of the parade is calculated by the following formula: if *L* is the total number of soldiers on the parade who start to march from the left leg, and *R* is the total number of soldiers on the parade who start to march from the right leg, so the beauty will equal |*L*<=-<=*R*|.
No more than once you can choose one column and tell all the soldiers in this column to switch starting leg, i.e. everyone in this columns who starts the march from left leg will now start it from right leg, and vice versa. Formally, you can pick no more than one index *i* and swap values *l**i* and *r**i*.
Find the index of the column, such that switching the starting leg for soldiers in it will maximize the the beauty of the parade, or determine, that no such operation can increase the current beauty.
|
The first line contains single integer *n* (1<=≤<=*n*<=≤<=105) — the number of columns.
The next *n* lines contain the pairs of integers *l**i* and *r**i* (1<=≤<=*l**i*,<=*r**i*<=≤<=500) — the number of soldiers in the *i*-th column which start to march from the left or the right leg respectively.
|
Print single integer *k* — the number of the column in which soldiers need to change the leg from which they start to march, or 0 if the maximum beauty is already reached.
Consider that columns are numbered from 1 to *n* in the order they are given in the input data.
If there are several answers, print any of them.
|
[
"3\n5 6\n8 9\n10 3\n",
"2\n6 5\n5 6\n",
"6\n5 9\n1 3\n4 8\n4 5\n23 54\n12 32\n"
] |
[
"3\n",
"1\n",
"0\n"
] |
In the first example if you don't give the order to change the leg, the number of soldiers, who start to march from the left leg, would equal 5 + 8 + 10 = 23, and from the right leg — 6 + 9 + 3 = 18. In this case the beauty of the parade will equal |23 - 18| = 5.
If you give the order to change the leg to the third column, so the number of soldiers, who march from the left leg, will equal 5 + 8 + 3 = 16, and who march from the right leg — 6 + 9 + 10 = 25. In this case the beauty equals |16 - 25| = 9.
It is impossible to reach greater beauty by giving another orders. Thus, the maximum beauty that can be achieved is 9.
| 1,000
|
[
{
"input": "3\n5 6\n8 9\n10 3",
"output": "3"
},
{
"input": "2\n6 5\n5 6",
"output": "1"
},
{
"input": "6\n5 9\n1 3\n4 8\n4 5\n23 54\n12 32",
"output": "0"
},
{
"input": "2\n500 499\n500 500",
"output": "0"
},
{
"input": "1\n139 252",
"output": "0"
},
{
"input": "10\n18 18\n71 471\n121 362\n467 107\n138 254\n13 337\n499 373\n337 387\n147 417\n76 417",
"output": "4"
},
{
"input": "4\n4 1\n5 3\n7 6\n3 5",
"output": "4"
},
{
"input": "3\n6 5\n9 8\n3 10",
"output": "3"
},
{
"input": "3\n100 9\n1 3\n1 5",
"output": "1"
},
{
"input": "4\n10 1\n10 2\n10 3\n1 10",
"output": "4"
},
{
"input": "5\n25 1\n24 1\n2 3\n2 3\n2 3",
"output": "3"
},
{
"input": "3\n90 1\n1 90\n100 1",
"output": "2"
},
{
"input": "3\n1 123\n22 1\n12 1",
"output": "1"
},
{
"input": "3\n4 5\n7 6\n10 9",
"output": "1"
},
{
"input": "4\n50 1\n50 1\n50 1\n1 49",
"output": "4"
},
{
"input": "7\n2 1\n2 1\n2 1\n2 1\n1 200\n1 200\n1 200",
"output": "1"
},
{
"input": "5\n10 8\n7 6\n2 8\n9 1\n7 1",
"output": "3"
},
{
"input": "3\n22 1\n12 1\n1 123",
"output": "3"
},
{
"input": "3\n10 8\n9 7\n4 5",
"output": "3"
},
{
"input": "5\n1 2\n4 8\n4 8\n32 16\n128 64",
"output": "2"
},
{
"input": "5\n10 1\n10 1\n10 1\n100 1\n1 5",
"output": "5"
}
] | 1,555,005,450
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 77
| 0
|
def parade(lst1, lst2):
u = 0
s1, s2 = sum(lst1), sum(lst2)
m = abs(s1 - s2)
for i in range(len(lst1)):
temp = abs((s1 - lst1[i] + lst2[i]) - (s2 + lst1[i] - lst2[i]))
if temp > m:
m = temp
u = i
return u
n = int(input())
a, b = list(), list()
for j in range(n):
l, r = [int(x) for x in input().split()]
a.append(l)
b.append(r)
print(parade(a, b))
|
Title: Parade
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Very soon there will be a parade of victory over alien invaders in Berland. Unfortunately, all soldiers died in the war and now the army consists of entirely new recruits, many of whom do not even know from which leg they should begin to march. The civilian population also poorly understands from which leg recruits begin to march, so it is only important how many soldiers march in step.
There will be *n* columns participating in the parade, the *i*-th column consists of *l**i* soldiers, who start to march from left leg, and *r**i* soldiers, who start to march from right leg.
The beauty of the parade is calculated by the following formula: if *L* is the total number of soldiers on the parade who start to march from the left leg, and *R* is the total number of soldiers on the parade who start to march from the right leg, so the beauty will equal |*L*<=-<=*R*|.
No more than once you can choose one column and tell all the soldiers in this column to switch starting leg, i.e. everyone in this columns who starts the march from left leg will now start it from right leg, and vice versa. Formally, you can pick no more than one index *i* and swap values *l**i* and *r**i*.
Find the index of the column, such that switching the starting leg for soldiers in it will maximize the the beauty of the parade, or determine, that no such operation can increase the current beauty.
Input Specification:
The first line contains single integer *n* (1<=≤<=*n*<=≤<=105) — the number of columns.
The next *n* lines contain the pairs of integers *l**i* and *r**i* (1<=≤<=*l**i*,<=*r**i*<=≤<=500) — the number of soldiers in the *i*-th column which start to march from the left or the right leg respectively.
Output Specification:
Print single integer *k* — the number of the column in which soldiers need to change the leg from which they start to march, or 0 if the maximum beauty is already reached.
Consider that columns are numbered from 1 to *n* in the order they are given in the input data.
If there are several answers, print any of them.
Demo Input:
['3\n5 6\n8 9\n10 3\n', '2\n6 5\n5 6\n', '6\n5 9\n1 3\n4 8\n4 5\n23 54\n12 32\n']
Demo Output:
['3\n', '1\n', '0\n']
Note:
In the first example if you don't give the order to change the leg, the number of soldiers, who start to march from the left leg, would equal 5 + 8 + 10 = 23, and from the right leg — 6 + 9 + 3 = 18. In this case the beauty of the parade will equal |23 - 18| = 5.
If you give the order to change the leg to the third column, so the number of soldiers, who march from the left leg, will equal 5 + 8 + 3 = 16, and who march from the right leg — 6 + 9 + 10 = 25. In this case the beauty equals |16 - 25| = 9.
It is impossible to reach greater beauty by giving another orders. Thus, the maximum beauty that can be achieved is 9.
|
```python
def parade(lst1, lst2):
u = 0
s1, s2 = sum(lst1), sum(lst2)
m = abs(s1 - s2)
for i in range(len(lst1)):
temp = abs((s1 - lst1[i] + lst2[i]) - (s2 + lst1[i] - lst2[i]))
if temp > m:
m = temp
u = i
return u
n = int(input())
a, b = list(), list()
for j in range(n):
l, r = [int(x) for x in input().split()]
a.append(l)
b.append(r)
print(parade(a, b))
```
| 0
|
|
144
|
A
|
Arrival of the General
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
A Ministry for Defense sent a general to inspect the Super Secret Military Squad under the command of the Colonel SuperDuper. Having learned the news, the colonel ordered to all *n* squad soldiers to line up on the parade ground.
By the military charter the soldiers should stand in the order of non-increasing of their height. But as there's virtually no time to do that, the soldiers lined up in the arbitrary order. However, the general is rather short-sighted and he thinks that the soldiers lined up correctly if the first soldier in the line has the maximum height and the last soldier has the minimum height. Please note that the way other solders are positioned does not matter, including the case when there are several soldiers whose height is maximum or minimum. Only the heights of the first and the last soldier are important.
For example, the general considers the sequence of heights (4, 3, 4, 2, 1, 1) correct and the sequence (4, 3, 1, 2, 2) wrong.
Within one second the colonel can swap any two neighboring soldiers. Help him count the minimum time needed to form a line-up which the general will consider correct.
|
The first input line contains the only integer *n* (2<=≤<=*n*<=≤<=100) which represents the number of soldiers in the line. The second line contains integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100) the values of the soldiers' heights in the order of soldiers' heights' increasing in the order from the beginning of the line to its end. The numbers are space-separated. Numbers *a*1,<=*a*2,<=...,<=*a**n* are not necessarily different.
|
Print the only integer — the minimum number of seconds the colonel will need to form a line-up the general will like.
|
[
"4\n33 44 11 22\n",
"7\n10 10 58 31 63 40 76\n"
] |
[
"2\n",
"10\n"
] |
In the first sample the colonel will need to swap the first and second soldier and then the third and fourth soldier. That will take 2 seconds. The resulting position of the soldiers is (44, 33, 22, 11).
In the second sample the colonel may swap the soldiers in the following sequence:
1. (10, 10, 58, 31, 63, 40, 76) 1. (10, 58, 10, 31, 63, 40, 76) 1. (10, 58, 10, 31, 63, 76, 40) 1. (10, 58, 10, 31, 76, 63, 40) 1. (10, 58, 31, 10, 76, 63, 40) 1. (10, 58, 31, 76, 10, 63, 40) 1. (10, 58, 31, 76, 63, 10, 40) 1. (10, 58, 76, 31, 63, 10, 40) 1. (10, 76, 58, 31, 63, 10, 40) 1. (76, 10, 58, 31, 63, 10, 40) 1. (76, 10, 58, 31, 63, 40, 10)
| 500
|
[
{
"input": "4\n33 44 11 22",
"output": "2"
},
{
"input": "7\n10 10 58 31 63 40 76",
"output": "10"
},
{
"input": "2\n88 89",
"output": "1"
},
{
"input": "5\n100 95 100 100 88",
"output": "0"
},
{
"input": "7\n48 48 48 48 45 45 45",
"output": "0"
},
{
"input": "10\n68 47 67 29 63 71 71 65 54 56",
"output": "10"
},
{
"input": "15\n77 68 96 60 92 75 61 60 66 79 80 65 60 95 92",
"output": "4"
},
{
"input": "3\n1 2 1",
"output": "1"
},
{
"input": "20\n30 30 30 14 30 14 30 30 30 14 30 14 14 30 14 14 30 14 14 14",
"output": "0"
},
{
"input": "35\n37 41 46 39 47 39 44 47 44 42 44 43 47 39 46 39 38 42 39 37 40 44 41 42 41 42 39 42 36 36 42 36 42 42 42",
"output": "7"
},
{
"input": "40\n99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 98 99 99 99 99 99 99 99 99 100 99 99 99 99 99 99",
"output": "47"
},
{
"input": "50\n48 52 44 54 53 56 62 49 39 41 53 39 40 64 53 50 62 48 40 52 51 48 40 52 61 62 62 61 48 64 55 57 56 40 48 58 41 60 60 56 64 50 64 45 48 45 46 63 59 57",
"output": "50"
},
{
"input": "57\n7 24 17 19 6 19 10 11 12 22 14 5 5 11 13 10 24 19 24 24 24 11 21 20 4 14 24 24 18 13 24 3 20 3 3 3 3 9 3 9 22 22 16 3 3 3 15 11 3 3 8 17 10 13 3 14 13",
"output": "3"
},
{
"input": "65\n58 50 35 44 35 37 36 58 38 36 58 56 56 49 48 56 58 43 40 44 52 44 58 58 57 50 43 35 55 39 38 49 53 56 50 42 41 56 34 57 49 38 34 51 56 38 58 40 53 46 48 34 38 43 49 49 58 56 41 43 44 34 38 48 36",
"output": "3"
},
{
"input": "69\n70 48 49 48 49 71 48 53 55 69 48 53 54 58 53 63 48 48 69 67 72 75 71 75 74 74 57 63 65 60 48 48 65 48 48 51 50 49 62 53 76 68 76 56 76 76 64 76 76 57 61 76 73 51 59 76 65 50 69 50 76 67 76 63 62 74 74 58 73",
"output": "73"
},
{
"input": "75\n70 65 64 71 71 64 71 64 68 71 65 64 65 68 71 66 66 69 68 63 69 65 71 69 68 68 71 67 71 65 65 65 71 71 65 69 63 66 62 67 64 63 62 64 67 65 62 69 62 64 69 62 67 64 67 70 64 63 64 64 69 62 62 64 70 62 62 68 67 69 62 64 66 70 68",
"output": "7"
},
{
"input": "84\n92 95 84 85 94 80 90 86 80 92 95 84 86 83 86 83 93 91 95 92 84 88 82 84 84 84 80 94 93 80 94 80 95 83 85 80 95 95 80 84 86 92 83 81 90 87 81 89 92 93 80 87 90 85 93 85 93 94 93 89 94 83 93 91 80 83 90 94 95 80 95 92 85 84 93 94 94 82 91 95 95 89 85 94",
"output": "15"
},
{
"input": "90\n86 87 72 77 82 71 75 78 61 67 79 90 64 94 94 74 85 87 73 76 71 71 60 69 77 73 76 80 82 57 62 57 57 83 76 72 75 87 72 94 77 85 59 82 86 69 62 80 95 73 83 94 79 85 91 68 85 74 93 95 68 75 89 93 83 78 95 78 83 77 81 85 66 92 63 65 75 78 67 91 77 74 59 86 77 76 90 67 70 64",
"output": "104"
},
{
"input": "91\n94 98 96 94 95 98 98 95 98 94 94 98 95 95 99 97 97 94 95 98 94 98 96 98 96 98 97 95 94 94 94 97 94 96 98 98 98 94 96 95 94 95 97 97 97 98 94 98 96 95 98 96 96 98 94 97 96 98 97 95 97 98 94 95 94 94 97 94 96 97 97 93 94 95 95 94 96 98 97 96 94 98 98 96 96 96 96 96 94 96 97",
"output": "33"
},
{
"input": "92\n44 28 32 29 41 41 36 39 40 39 41 35 41 28 35 27 41 34 28 38 43 43 41 38 27 26 28 36 30 29 39 32 35 35 32 30 39 30 37 27 41 41 28 30 43 31 35 33 36 28 44 40 41 35 31 42 37 38 37 34 39 40 27 40 33 33 44 43 34 33 34 34 35 38 38 37 30 39 35 41 45 42 41 32 33 33 31 30 43 41 43 43",
"output": "145"
},
{
"input": "93\n46 32 52 36 39 30 57 63 63 30 32 44 27 59 46 38 40 45 44 62 35 36 51 48 39 58 36 51 51 51 48 58 59 36 29 35 31 49 64 60 34 38 42 56 33 42 52 31 63 34 45 51 35 45 33 53 33 62 31 38 66 29 51 54 28 61 32 45 57 41 36 34 47 36 31 28 67 48 52 46 32 40 64 58 27 53 43 57 34 66 43 39 26",
"output": "76"
},
{
"input": "94\n56 55 54 31 32 42 46 29 24 54 40 40 20 45 35 56 32 33 51 39 26 56 21 56 51 27 29 39 56 52 54 43 43 55 48 51 44 49 52 49 23 19 19 28 20 26 45 33 35 51 42 36 25 25 38 23 21 35 54 50 41 20 37 28 42 20 22 43 37 34 55 21 24 38 19 41 45 34 19 33 44 54 38 31 23 53 35 32 47 40 39 31 20 34",
"output": "15"
},
{
"input": "95\n57 71 70 77 64 64 76 81 81 58 63 75 81 77 71 71 71 60 70 70 69 67 62 64 78 64 69 62 76 76 57 70 68 77 70 68 73 77 79 73 60 57 69 60 74 65 58 75 75 74 73 73 65 75 72 57 81 62 62 70 67 58 76 57 79 81 68 64 58 77 70 59 79 64 80 58 71 59 81 71 80 64 78 80 78 65 70 68 78 80 57 63 64 76 81",
"output": "11"
},
{
"input": "96\n96 95 95 95 96 97 95 97 96 95 98 96 97 95 98 96 98 96 98 96 98 95 96 95 95 95 97 97 95 95 98 98 95 96 96 95 97 96 98 96 95 97 97 95 97 97 95 94 96 96 97 96 97 97 96 94 94 97 95 95 95 96 95 96 95 97 97 95 97 96 95 94 97 97 97 96 97 95 96 94 94 95 97 94 94 97 97 97 95 97 97 95 94 96 95 95",
"output": "13"
},
{
"input": "97\n14 15 12 12 13 15 12 15 12 12 12 12 12 14 15 15 13 12 15 15 12 12 12 13 14 15 15 13 14 15 14 14 14 14 12 13 12 13 13 12 15 12 13 13 15 12 15 13 12 13 13 13 14 13 12 15 14 13 14 15 13 14 14 13 14 12 15 12 14 12 13 14 15 14 13 15 13 12 15 15 15 13 15 15 13 14 16 16 16 13 15 13 15 14 15 15 15",
"output": "104"
},
{
"input": "98\n37 69 35 70 58 69 36 47 41 63 60 54 49 35 55 50 35 53 52 43 35 41 40 49 38 35 48 70 42 35 35 65 56 54 44 59 59 48 51 49 59 67 35 60 69 35 58 50 35 44 48 69 41 58 44 45 35 47 70 61 49 47 37 39 35 51 44 70 72 65 36 41 63 63 48 66 45 50 50 71 37 52 72 67 72 39 72 39 36 64 48 72 69 49 45 72 72 67",
"output": "100"
},
{
"input": "99\n31 31 16 15 19 31 19 22 29 27 12 22 28 30 25 33 26 25 19 22 34 21 17 33 31 22 16 26 22 30 31 17 13 33 13 17 28 25 18 33 27 22 31 22 13 27 20 22 23 15 24 32 29 13 16 20 32 33 14 33 19 27 16 28 25 17 17 28 18 26 32 33 19 23 30 13 14 23 24 28 14 28 22 20 30 14 24 23 17 29 18 28 29 21 28 18 16 24 32",
"output": "107"
},
{
"input": "100\n37 54 39 29 32 49 21 13 34 21 16 42 34 27 16 26 7 34 51 9 11 27 16 40 36 7 48 52 30 42 42 52 51 11 32 26 6 7 28 54 48 51 6 54 42 20 51 48 46 4 4 31 47 6 9 16 8 23 36 50 49 30 47 37 45 24 48 26 8 50 18 24 27 13 39 7 37 34 5 43 42 19 34 23 52 38 35 6 29 11 53 49 21 29 36 22 45 33 51 22",
"output": "50"
},
{
"input": "100\n41 5 20 23 5 47 28 28 64 5 12 14 34 56 22 48 6 52 39 55 62 40 24 54 39 28 56 27 35 51 14 24 38 10 55 20 39 62 52 2 30 55 49 48 15 23 59 44 31 28 66 29 62 59 31 13 28 12 50 45 41 47 29 27 64 66 14 39 62 22 44 63 24 5 63 17 42 7 25 41 49 33 31 51 63 3 37 66 19 9 2 40 16 45 56 21 34 29 39 61",
"output": "59"
},
{
"input": "100\n66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95",
"output": "99"
},
{
"input": "100\n81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10",
"output": "0"
},
{
"input": "3\n2 1 2",
"output": "1"
},
{
"input": "2\n100 99",
"output": "0"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100",
"output": "197"
},
{
"input": "100\n87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87",
"output": "0"
},
{
"input": "100\n100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "0"
},
{
"input": "2\n1 1",
"output": "0"
},
{
"input": "3\n2 2 2",
"output": "0"
},
{
"input": "3\n1 3 2",
"output": "2"
}
] | 1,696,301,618
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 39
| 92
| 0
|
n = int(input())
a = list(map(int, input().split(' ')))
n_gaps = len(a) - 1
a_max, a_min = max(a), min(a)
max2first_gaps = a.index(a_max)
rightmost_min_idx = len(a) - a[::-1].index(a_min) - 1
min2end_gaps = n_gaps - rightmost_min_idx
min_steps = max2first_gaps + min2end_gaps
if min_steps > n_gaps:
min_steps -= 1
print(min_steps)
|
Title: Arrival of the General
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A Ministry for Defense sent a general to inspect the Super Secret Military Squad under the command of the Colonel SuperDuper. Having learned the news, the colonel ordered to all *n* squad soldiers to line up on the parade ground.
By the military charter the soldiers should stand in the order of non-increasing of their height. But as there's virtually no time to do that, the soldiers lined up in the arbitrary order. However, the general is rather short-sighted and he thinks that the soldiers lined up correctly if the first soldier in the line has the maximum height and the last soldier has the minimum height. Please note that the way other solders are positioned does not matter, including the case when there are several soldiers whose height is maximum or minimum. Only the heights of the first and the last soldier are important.
For example, the general considers the sequence of heights (4, 3, 4, 2, 1, 1) correct and the sequence (4, 3, 1, 2, 2) wrong.
Within one second the colonel can swap any two neighboring soldiers. Help him count the minimum time needed to form a line-up which the general will consider correct.
Input Specification:
The first input line contains the only integer *n* (2<=≤<=*n*<=≤<=100) which represents the number of soldiers in the line. The second line contains integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100) the values of the soldiers' heights in the order of soldiers' heights' increasing in the order from the beginning of the line to its end. The numbers are space-separated. Numbers *a*1,<=*a*2,<=...,<=*a**n* are not necessarily different.
Output Specification:
Print the only integer — the minimum number of seconds the colonel will need to form a line-up the general will like.
Demo Input:
['4\n33 44 11 22\n', '7\n10 10 58 31 63 40 76\n']
Demo Output:
['2\n', '10\n']
Note:
In the first sample the colonel will need to swap the first and second soldier and then the third and fourth soldier. That will take 2 seconds. The resulting position of the soldiers is (44, 33, 22, 11).
In the second sample the colonel may swap the soldiers in the following sequence:
1. (10, 10, 58, 31, 63, 40, 76) 1. (10, 58, 10, 31, 63, 40, 76) 1. (10, 58, 10, 31, 63, 76, 40) 1. (10, 58, 10, 31, 76, 63, 40) 1. (10, 58, 31, 10, 76, 63, 40) 1. (10, 58, 31, 76, 10, 63, 40) 1. (10, 58, 31, 76, 63, 10, 40) 1. (10, 58, 76, 31, 63, 10, 40) 1. (10, 76, 58, 31, 63, 10, 40) 1. (76, 10, 58, 31, 63, 10, 40) 1. (76, 10, 58, 31, 63, 40, 10)
|
```python
n = int(input())
a = list(map(int, input().split(' ')))
n_gaps = len(a) - 1
a_max, a_min = max(a), min(a)
max2first_gaps = a.index(a_max)
rightmost_min_idx = len(a) - a[::-1].index(a_min) - 1
min2end_gaps = n_gaps - rightmost_min_idx
min_steps = max2first_gaps + min2end_gaps
if min_steps > n_gaps:
min_steps -= 1
print(min_steps)
```
| 3
|
|
235
|
A
|
LCM Challenge
|
PROGRAMMING
| 1,600
|
[
"number theory"
] | null | null |
Some days ago, I learned the concept of LCM (least common multiple). I've played with it for several times and I want to make a big number with it.
But I also don't want to use many numbers, so I'll choose three positive integers (they don't have to be distinct) which are not greater than *n*. Can you help me to find the maximum possible least common multiple of these three integers?
|
The first line contains an integer *n* (1<=≤<=*n*<=≤<=106) — the *n* mentioned in the statement.
|
Print a single integer — the maximum possible LCM of three not necessarily distinct positive integers that are not greater than *n*.
|
[
"9\n",
"7\n"
] |
[
"504\n",
"210\n"
] |
The least common multiple of some positive integers is the least positive integer which is multiple for each of them.
The result may become very large, 32-bit integer won't be enough. So using 64-bit integers is recommended.
For the last example, we can chose numbers 7, 6, 5 and the LCM of them is 7·6·5 = 210. It is the maximum value we can get.
| 500
|
[
{
"input": "9",
"output": "504"
},
{
"input": "7",
"output": "210"
},
{
"input": "1",
"output": "1"
},
{
"input": "5",
"output": "60"
},
{
"input": "6",
"output": "60"
},
{
"input": "33",
"output": "32736"
},
{
"input": "21",
"output": "7980"
},
{
"input": "2",
"output": "2"
},
{
"input": "41",
"output": "63960"
},
{
"input": "29",
"output": "21924"
},
{
"input": "117",
"output": "1560780"
},
{
"input": "149",
"output": "3241644"
},
{
"input": "733",
"output": "392222436"
},
{
"input": "925",
"output": "788888100"
},
{
"input": "509",
"output": "131096004"
},
{
"input": "829",
"output": "567662724"
},
{
"input": "117",
"output": "1560780"
},
{
"input": "605",
"output": "220348260"
},
{
"input": "245",
"output": "14526540"
},
{
"input": "925",
"output": "788888100"
},
{
"input": "213",
"output": "9527916"
},
{
"input": "53",
"output": "140556"
},
{
"input": "341",
"output": "39303660"
},
{
"input": "21",
"output": "7980"
},
{
"input": "605",
"output": "220348260"
},
{
"input": "149",
"output": "3241644"
},
{
"input": "733",
"output": "392222436"
},
{
"input": "117",
"output": "1560780"
},
{
"input": "53",
"output": "140556"
},
{
"input": "245",
"output": "14526540"
},
{
"input": "829",
"output": "567662724"
},
{
"input": "924",
"output": "783776526"
},
{
"input": "508",
"output": "130065780"
},
{
"input": "700",
"output": "341042100"
},
{
"input": "636",
"output": "254839470"
},
{
"input": "20",
"output": "6460"
},
{
"input": "604",
"output": "218891412"
},
{
"input": "796",
"output": "501826260"
},
{
"input": "732",
"output": "389016270"
},
{
"input": "412",
"output": "69256788"
},
{
"input": "700",
"output": "341042100"
},
{
"input": "244",
"output": "14289372"
},
{
"input": "828",
"output": "563559150"
},
{
"input": "508",
"output": "130065780"
},
{
"input": "796",
"output": "501826260"
},
{
"input": "636",
"output": "254839470"
},
{
"input": "924",
"output": "783776526"
},
{
"input": "245",
"output": "14526540"
},
{
"input": "828",
"output": "563559150"
},
{
"input": "21",
"output": "7980"
},
{
"input": "605",
"output": "220348260"
},
{
"input": "636",
"output": "254839470"
},
{
"input": "924",
"output": "783776526"
},
{
"input": "116",
"output": "1507420"
},
{
"input": "700",
"output": "341042100"
},
{
"input": "732",
"output": "389016270"
},
{
"input": "20",
"output": "6460"
},
{
"input": "508",
"output": "130065780"
},
{
"input": "148",
"output": "3154620"
},
{
"input": "828",
"output": "563559150"
},
{
"input": "763116",
"output": "444394078546562430"
},
{
"input": "756604",
"output": "433115377058855412"
},
{
"input": "447244",
"output": "89460162932862372"
},
{
"input": "372636",
"output": "51742503205363470"
},
{
"input": "546924",
"output": "163597318076822526"
},
{
"input": "540412",
"output": "157823524476316788"
},
{
"input": "714700",
"output": "365063922340784100"
},
{
"input": "520731",
"output": "141201007712496270"
},
{
"input": "695019",
"output": "335728459024850814"
},
{
"input": "688507",
"output": "326379736779169710"
},
{
"input": "862795",
"output": "642275489615199390"
},
{
"input": "668827",
"output": "299184742915995150"
},
{
"input": "810411",
"output": "532248411551110590"
},
{
"input": "836603",
"output": "585540171302562606"
},
{
"input": "978187",
"output": "935975171582120670"
},
{
"input": "816923",
"output": "545182335484592526"
},
{
"input": "958507",
"output": "880611813728059710"
},
{
"input": "984699",
"output": "954792870629291694"
},
{
"input": "642635",
"output": "265393998349453470"
},
{
"input": "296604",
"output": "26092892528622606"
},
{
"input": "1000000",
"output": "999996000003000000"
},
{
"input": "8",
"output": "280"
},
{
"input": "3",
"output": "6"
},
{
"input": "4",
"output": "12"
},
{
"input": "30",
"output": "21924"
},
{
"input": "18",
"output": "4080"
},
{
"input": "12",
"output": "990"
}
] | 1,425,333,835
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 4
| 186
| 0
|
def gcd(a, b):
while a:
b %= a
a, b = b, a
return b
n = int(input())
res = n * max(1, n - 1)
i = n
while i > 1 and (gcd(i, n) != 1 or gcd(i, n - 1) != 1):
i -= 1
print(res * i)
|
Title: LCM Challenge
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Some days ago, I learned the concept of LCM (least common multiple). I've played with it for several times and I want to make a big number with it.
But I also don't want to use many numbers, so I'll choose three positive integers (they don't have to be distinct) which are not greater than *n*. Can you help me to find the maximum possible least common multiple of these three integers?
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=106) — the *n* mentioned in the statement.
Output Specification:
Print a single integer — the maximum possible LCM of three not necessarily distinct positive integers that are not greater than *n*.
Demo Input:
['9\n', '7\n']
Demo Output:
['504\n', '210\n']
Note:
The least common multiple of some positive integers is the least positive integer which is multiple for each of them.
The result may become very large, 32-bit integer won't be enough. So using 64-bit integers is recommended.
For the last example, we can chose numbers 7, 6, 5 and the LCM of them is 7·6·5 = 210. It is the maximum value we can get.
|
```python
def gcd(a, b):
while a:
b %= a
a, b = b, a
return b
n = int(input())
res = n * max(1, n - 1)
i = n
while i > 1 and (gcd(i, n) != 1 or gcd(i, n - 1) != 1):
i -= 1
print(res * i)
```
| 0
|
|
224
|
A
|
Parallelepiped
|
PROGRAMMING
| 1,100
|
[
"brute force",
"geometry",
"math"
] | null | null |
You've got a rectangular parallelepiped with integer edge lengths. You know the areas of its three faces that have a common vertex. Your task is to find the sum of lengths of all 12 edges of this parallelepiped.
|
The first and the single line contains three space-separated integers — the areas of the parallelepiped's faces. The area's values are positive (<=><=0) and do not exceed 104. It is guaranteed that there exists at least one parallelepiped that satisfies the problem statement.
|
Print a single number — the sum of all edges of the parallelepiped.
|
[
"1 1 1\n",
"4 6 6\n"
] |
[
"12\n",
"28\n"
] |
In the first sample the parallelepiped has sizes 1 × 1 × 1, in the second one — 2 × 2 × 3.
| 500
|
[
{
"input": "1 1 1",
"output": "12"
},
{
"input": "4 6 6",
"output": "28"
},
{
"input": "20 10 50",
"output": "68"
},
{
"input": "9 4 36",
"output": "56"
},
{
"input": "324 9 36",
"output": "184"
},
{
"input": "1333 93 129",
"output": "308"
},
{
"input": "1022 584 112",
"output": "380"
},
{
"input": "66 174 319",
"output": "184"
},
{
"input": "912 276 1748",
"output": "444"
},
{
"input": "65 156 60",
"output": "120"
},
{
"input": "1 10000 10000",
"output": "40008"
},
{
"input": "1485 55 27",
"output": "332"
},
{
"input": "152 108 4104",
"output": "528"
},
{
"input": "1656 6900 1350",
"output": "740"
},
{
"input": "12 14 42",
"output": "60"
},
{
"input": "615 18 1230",
"output": "856"
},
{
"input": "680 60 408",
"output": "336"
},
{
"input": "644 966 6",
"output": "1308"
},
{
"input": "1 432 432",
"output": "1736"
},
{
"input": "2239 2239 1",
"output": "8964"
},
{
"input": "4106 8212 2",
"output": "16436"
},
{
"input": "10000 10000 10000",
"output": "1200"
},
{
"input": "3623 3623 1",
"output": "14500"
},
{
"input": "9801 9801 9801",
"output": "1188"
},
{
"input": "10000 1 10000",
"output": "40008"
},
{
"input": "9 9 9",
"output": "36"
},
{
"input": "9801 9702 9702",
"output": "1184"
}
] | 1,567,438,662
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 27
| 248
| 0
|
import math
A1, A2, A3 = map(int, input().split())
a2 = math.sqrt((A1*A2)//A3)
a1 = A1//a2
a3 = A2//a2
print(int(4*(a1+a2+a3)))
|
Title: Parallelepiped
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You've got a rectangular parallelepiped with integer edge lengths. You know the areas of its three faces that have a common vertex. Your task is to find the sum of lengths of all 12 edges of this parallelepiped.
Input Specification:
The first and the single line contains three space-separated integers — the areas of the parallelepiped's faces. The area's values are positive (<=><=0) and do not exceed 104. It is guaranteed that there exists at least one parallelepiped that satisfies the problem statement.
Output Specification:
Print a single number — the sum of all edges of the parallelepiped.
Demo Input:
['1 1 1\n', '4 6 6\n']
Demo Output:
['12\n', '28\n']
Note:
In the first sample the parallelepiped has sizes 1 × 1 × 1, in the second one — 2 × 2 × 3.
|
```python
import math
A1, A2, A3 = map(int, input().split())
a2 = math.sqrt((A1*A2)//A3)
a1 = A1//a2
a3 = A2//a2
print(int(4*(a1+a2+a3)))
```
| 3
|
|
5
|
C
|
Longest Regular Bracket Sequence
|
PROGRAMMING
| 1,900
|
[
"constructive algorithms",
"data structures",
"dp",
"greedy",
"sortings",
"strings"
] |
C. Longest Regular Bracket Sequence
|
2
|
256
|
This is yet another problem dealing with regular bracket sequences.
We should remind you that a bracket sequence is called regular, if by inserting «+» and «1» into it we can get a correct mathematical expression. For example, sequences «(())()», «()» and «(()(()))» are regular, while «)(», «(()» and «(()))(» are not.
You are given a string of «(» and «)» characters. You are to find its longest substring that is a regular bracket sequence. You are to find the number of such substrings as well.
|
The first line of the input file contains a non-empty string, consisting of «(» and «)» characters. Its length does not exceed 106.
|
Print the length of the longest substring that is a regular bracket sequence, and the number of such substrings. If there are no such substrings, write the only line containing "0 1".
|
[
")((())))(()())\n",
"))(\n"
] |
[
"6 2\n",
"0 1\n"
] |
none
| 0
|
[
{
"input": ")((())))(()())",
"output": "6 2"
},
{
"input": "))(",
"output": "0 1"
},
{
"input": "()(())()",
"output": "8 1"
},
{
"input": "((((()(((",
"output": "2 1"
},
{
"input": "))))()())))",
"output": "4 1"
},
{
"input": "(()())()(())()()())())()((()(()(())()()())((()(())()(()()()()))()(())()(((()())()(()((())()(())(()))",
"output": "28 1"
},
{
"input": ")(()(((((())))))(((()))))))((()(((((((())())()))))((((((((())))((((((())))))(()((((()))))(()))))))))",
"output": "68 1"
},
{
"input": "())(((((())())((((()))(())))())())(((()(()()()())(())()))((()(())())()()))()(()())))))(()))((())((((",
"output": "80 1"
},
{
"input": "))(((((((()((((())(((((((((()()))))(()())()((())())))((((()))(()()()))))(()()))())))))((())())()))((",
"output": "92 1"
}
] | 1,677,036,514
| 2,147,483,647
|
PyPy 3-64
|
COMPILATION_ERROR
|
TESTS
| 0
| 0
| 0
|
def solve():
s = raw_input()
max_l, cnt = 0, 1
print("{} {}".format(max_l, cnt)
if __name__ == "__main__":
solve()
|
Title: Longest Regular Bracket Sequence
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
This is yet another problem dealing with regular bracket sequences.
We should remind you that a bracket sequence is called regular, if by inserting «+» and «1» into it we can get a correct mathematical expression. For example, sequences «(())()», «()» and «(()(()))» are regular, while «)(», «(()» and «(()))(» are not.
You are given a string of «(» and «)» characters. You are to find its longest substring that is a regular bracket sequence. You are to find the number of such substrings as well.
Input Specification:
The first line of the input file contains a non-empty string, consisting of «(» and «)» characters. Its length does not exceed 106.
Output Specification:
Print the length of the longest substring that is a regular bracket sequence, and the number of such substrings. If there are no such substrings, write the only line containing "0 1".
Demo Input:
[')((())))(()())\n', '))(\n']
Demo Output:
['6 2\n', '0 1\n']
Note:
none
|
```python
def solve():
s = raw_input()
max_l, cnt = 0, 1
print("{} {}".format(max_l, cnt)
if __name__ == "__main__":
solve()
```
| -1
|
910
|
C
|
Minimum Sum
|
PROGRAMMING
| 1,700
|
[
"constructive algorithms",
"greedy",
"math"
] | null | null |
Petya has *n* positive integers *a*1,<=*a*2,<=...,<=*a**n*.
His friend Vasya decided to joke and replaced all digits in Petya's numbers with a letters. He used the lowercase letters of the Latin alphabet from 'a' to 'j' and replaced all digits 0 with one letter, all digits 1 with another letter and so on. For any two different digits Vasya used distinct letters from 'a' to 'j'.
Your task is to restore Petya's numbers. The restored numbers should be positive integers without leading zeros. Since there can be multiple ways to do it, determine the minimum possible sum of all Petya's numbers after the restoration. It is guaranteed that before Vasya's joke all Petya's numbers did not have leading zeros.
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1<=000) — the number of Petya's numbers.
Each of the following lines contains non-empty string *s**i* consisting of lowercase Latin letters from 'a' to 'j' — the Petya's numbers after Vasya's joke. The length of each string does not exceed six characters.
|
Determine the minimum sum of all Petya's numbers after the restoration. The restored numbers should be positive integers without leading zeros. It is guaranteed that the correct restore (without leading zeros) exists for all given tests.
|
[
"3\nab\nde\naj\n",
"5\nabcdef\nghij\nbdef\naccbd\ng\n",
"3\naa\njj\naa\n"
] |
[
"47\n",
"136542\n",
"44\n"
] |
In the first example, you need to replace the letter 'a' with the digit 1, the letter 'b' with the digit 0, the letter 'd' with the digit 2, the letter 'e' with the digit 3, and the letter 'j' with the digit 4. So after the restoration numbers will look like [10, 23, 14]. The sum of them is equal to 47, which is the minimum possible sum of the numbers after the correct restoration.
In the second example the numbers after the restoration can look like: [120468, 3579, 2468, 10024, 3].
In the second example the numbers after the restoration can look like: [11, 22, 11].
| 1,500
|
[
{
"input": "3\nab\nde\naj",
"output": "47"
},
{
"input": "5\nabcdef\nghij\nbdef\naccbd\ng",
"output": "136542"
},
{
"input": "3\naa\njj\naa",
"output": "44"
},
{
"input": "9\na\nb\nc\nd\nf\ng\nh\ni\nj",
"output": "45"
},
{
"input": "5\nbdgbh\nadi\naa\ngjh\ngh",
"output": "10824"
},
{
"input": "6\nchafj\nabhj\nfhe\nhfbd\njifgg\ng",
"output": "42773"
},
{
"input": "1\nh",
"output": "1"
},
{
"input": "7\nffh\nfhec\nfbchc\ng\ndfbhi\ncdbdi\ni",
"output": "64995"
},
{
"input": "8\ne\nbhbib\nj\ndgb\njjbgb\nei\ndggbdh\nhfbbfj",
"output": "429631"
},
{
"input": "10\ncf\ncha\nceiab\ng\naajac\ndj\nhe\ni\nhjfg\nhdcgcb",
"output": "198795"
},
{
"input": "50\ng\nha\nhd\ndi\nac\nfdhhb\ng\nhgeag\nafafb\nb\nb\najjj\ncaiadi\nhciifa\nhb\ncaih\ncdbbi\ngjff\nbfe\neddci\ndijfie\nacjj\nef\ng\njdc\nahg\ne\nhbbh\ncdc\njifdc\ne\nffaehj\nhjhi\ng\neag\nfbbc\nchg\njhahfg\nbb\njd\njchh\nbefifj\nejac\ne\nh\njfhb\nedhe\nf\nag\nca",
"output": "2673136"
},
{
"input": "31\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\nbc",
"output": "50"
},
{
"input": "9\nb\nc\nd\ne\nf\ng\nh\ni\nj",
"output": "45"
},
{
"input": "8\nb\nc\nd\nf\ng\nh\ni\nj",
"output": "36"
},
{
"input": "8\nb\nce\necc\nf\ng\nh\ni\nj",
"output": "176"
},
{
"input": "2\nababa\nbabaa",
"output": "33332"
},
{
"input": "3\nabcbbc\nababab\nbcbbaa",
"output": "443643"
},
{
"input": "3\nbb\nj\nc",
"output": "16"
},
{
"input": "3\nj\ng\ng",
"output": "4"
},
{
"input": "3\nbef\ncjff\nhi",
"output": "1332"
},
{
"input": "3\nfi\nfej\nei",
"output": "153"
},
{
"input": "4\nc\nb\nhh\ng",
"output": "20"
},
{
"input": "4\nfjj\nba\nbc\neie",
"output": "412"
},
{
"input": "4\nh\nchf\ngj\ndifd",
"output": "1334"
},
{
"input": "4\ng\njicdh\nj\nfh",
"output": "10287"
},
{
"input": "5\nfj\nbj\nja\nfd\ni",
"output": "83"
},
{
"input": "5\ngij\nf\nj\nfd\niij",
"output": "365"
},
{
"input": "5\nfhdh\ndaih\nff\nca\ncc",
"output": "3468"
},
{
"input": "5\ni\ncghf\nh\ng\nbc",
"output": "1281"
},
{
"input": "6\nb\ngc\na\nhj\nfg\nb",
"output": "80"
},
{
"input": "6\nfj\ngd\nch\ni\ng\nh",
"output": "80"
},
{
"input": "6\nedi\nfa\nad\nh\ngjf\njaa",
"output": "766"
},
{
"input": "6\njafef\nihbb\njc\njc\ng\nfihji",
"output": "37101"
},
{
"input": "7\nhg\ng\nag\nj\ng\na\nfe",
"output": "82"
},
{
"input": "7\ncb\nfi\ndia\nada\nag\ng\nba",
"output": "468"
},
{
"input": "7\nba\nac\nag\nfcj\ng\naa\ncgb",
"output": "510"
},
{
"input": "7\niaiac\nc\naicic\nhfbfc\nggje\necgg\nhd",
"output": "74622"
},
{
"input": "8\ngc\nf\nca\neh\nc\ni\nae\ng",
"output": "122"
},
{
"input": "8\nc\nc\nh\nefe\nd\ne\nhjc\ngae",
"output": "720"
},
{
"input": "8\nfhij\nbc\na\ngeh\nee\naeac\najb\njj",
"output": "4136"
},
{
"input": "8\njaei\naidd\nciai\nfefdf\ngfahh\nh\nh\njagjg",
"output": "78727"
},
{
"input": "9\ni\nh\ne\na\nb\nh\ni\nea\ni",
"output": "36"
},
{
"input": "9\nhd\nca\nc\ncii\nii\nd\ne\nf\ngde",
"output": "494"
},
{
"input": "9\njbc\nc\nfae\nce\nfgi\nigfg\nfeh\nied\nfe",
"output": "2340"
},
{
"input": "9\nehdc\ng\ngdgj\naacg\nfgg\njhb\ng\nie\ndabfa",
"output": "23429"
},
{
"input": "10\nc\naj\neh\nhc\nib\nd\nfc\nf\nfh\nc",
"output": "204"
},
{
"input": "10\nji\nid\ni\na\nhhb\ndi\njd\ngdi\na\na",
"output": "544"
},
{
"input": "10\necj\ni\nbadj\neai\naie\nfgj\nah\ngdaj\nai\nhdhd",
"output": "8803"
},
{
"input": "10\nad\ngbha\nabh\ngbgc\nfa\njfde\neb\na\nfg\ndd",
"output": "5084"
},
{
"input": "3\na\nb\nc",
"output": "6"
},
{
"input": "1\na",
"output": "1"
},
{
"input": "2\na\na",
"output": "2"
}
] | 1,638,521,908
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 107
| 108
| 1,945,600
|
n = int(input())
s = []
for i in range(n):
s.append(input())
A_to_J = [0 for i in range(10)]
not_z = [-1 for i in range(10)]
for i in range(n):
not_z[ord(s[i][0])-97] = 1
for j in range(len(s[i])):
A_to_J[ord(s[i][-(j+1)])-97] += 10 ** j
ans_A_to_J = [-1 for i in range(10)]
judge = []
for i in range(10):
judge.append([-A_to_J[i],not_z[i]])
judge.sort()
#print("judge",judge)
#print("not_z",not_z)
now = 1
not_c = 0
#print(judge)
#not_z[i] =i 番目のアルファベットが先頭にくるかどうか
ans = 0
for i,j in judge:
if j != 1:
if not_c == 0:
not_c = 1
else:
ans += -i * now
now += 1
else:
ans += -i * now
now += 1
print(ans)
|
Title: Minimum Sum
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Petya has *n* positive integers *a*1,<=*a*2,<=...,<=*a**n*.
His friend Vasya decided to joke and replaced all digits in Petya's numbers with a letters. He used the lowercase letters of the Latin alphabet from 'a' to 'j' and replaced all digits 0 with one letter, all digits 1 with another letter and so on. For any two different digits Vasya used distinct letters from 'a' to 'j'.
Your task is to restore Petya's numbers. The restored numbers should be positive integers without leading zeros. Since there can be multiple ways to do it, determine the minimum possible sum of all Petya's numbers after the restoration. It is guaranteed that before Vasya's joke all Petya's numbers did not have leading zeros.
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1<=000) — the number of Petya's numbers.
Each of the following lines contains non-empty string *s**i* consisting of lowercase Latin letters from 'a' to 'j' — the Petya's numbers after Vasya's joke. The length of each string does not exceed six characters.
Output Specification:
Determine the minimum sum of all Petya's numbers after the restoration. The restored numbers should be positive integers without leading zeros. It is guaranteed that the correct restore (without leading zeros) exists for all given tests.
Demo Input:
['3\nab\nde\naj\n', '5\nabcdef\nghij\nbdef\naccbd\ng\n', '3\naa\njj\naa\n']
Demo Output:
['47\n', '136542\n', '44\n']
Note:
In the first example, you need to replace the letter 'a' with the digit 1, the letter 'b' with the digit 0, the letter 'd' with the digit 2, the letter 'e' with the digit 3, and the letter 'j' with the digit 4. So after the restoration numbers will look like [10, 23, 14]. The sum of them is equal to 47, which is the minimum possible sum of the numbers after the correct restoration.
In the second example the numbers after the restoration can look like: [120468, 3579, 2468, 10024, 3].
In the second example the numbers after the restoration can look like: [11, 22, 11].
|
```python
n = int(input())
s = []
for i in range(n):
s.append(input())
A_to_J = [0 for i in range(10)]
not_z = [-1 for i in range(10)]
for i in range(n):
not_z[ord(s[i][0])-97] = 1
for j in range(len(s[i])):
A_to_J[ord(s[i][-(j+1)])-97] += 10 ** j
ans_A_to_J = [-1 for i in range(10)]
judge = []
for i in range(10):
judge.append([-A_to_J[i],not_z[i]])
judge.sort()
#print("judge",judge)
#print("not_z",not_z)
now = 1
not_c = 0
#print(judge)
#not_z[i] =i 番目のアルファベットが先頭にくるかどうか
ans = 0
for i,j in judge:
if j != 1:
if not_c == 0:
not_c = 1
else:
ans += -i * now
now += 1
else:
ans += -i * now
now += 1
print(ans)
```
| 3
|
|
851
|
B
|
Arpa and an exam about geometry
|
PROGRAMMING
| 1,400
|
[
"geometry",
"math"
] | null | null |
Arpa is taking a geometry exam. Here is the last problem of the exam.
You are given three points *a*,<=*b*,<=*c*.
Find a point and an angle such that if we rotate the page around the point by the angle, the new position of *a* is the same as the old position of *b*, and the new position of *b* is the same as the old position of *c*.
Arpa is doubting if the problem has a solution or not (i.e. if there exists a point and an angle satisfying the condition). Help Arpa determine if the question has a solution or not.
|
The only line contains six integers *a**x*,<=*a**y*,<=*b**x*,<=*b**y*,<=*c**x*,<=*c**y* (|*a**x*|,<=|*a**y*|,<=|*b**x*|,<=|*b**y*|,<=|*c**x*|,<=|*c**y*|<=≤<=109). It's guaranteed that the points are distinct.
|
Print "Yes" if the problem has a solution, "No" otherwise.
You can print each letter in any case (upper or lower).
|
[
"0 1 1 1 1 0\n",
"1 1 0 0 1000 1000\n"
] |
[
"Yes\n",
"No\n"
] |
In the first sample test, rotate the page around (0.5, 0.5) by <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9d845923f4d356a48d8ede337db0303821311f0c.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second sample test, you can't find any solution.
| 1,000
|
[
{
"input": "0 1 1 1 1 0",
"output": "Yes"
},
{
"input": "1 1 0 0 1000 1000",
"output": "No"
},
{
"input": "1 0 2 0 3 0",
"output": "No"
},
{
"input": "3 4 0 0 4 3",
"output": "Yes"
},
{
"input": "-1000000000 1 0 0 1000000000 1",
"output": "Yes"
},
{
"input": "49152 0 0 0 0 81920",
"output": "No"
},
{
"input": "1 -1 4 4 2 -3",
"output": "No"
},
{
"input": "-2 -2 1 4 -2 0",
"output": "No"
},
{
"input": "5 0 4 -2 0 1",
"output": "No"
},
{
"input": "-4 -3 2 -1 -3 4",
"output": "No"
},
{
"input": "-3 -3 5 2 3 -1",
"output": "No"
},
{
"input": "-1000000000 -1000000000 0 0 1000000000 999999999",
"output": "No"
},
{
"input": "-1000000000 -1000000000 0 0 1000000000 1000000000",
"output": "No"
},
{
"input": "-357531221 381512519 -761132895 -224448284 328888775 -237692564",
"output": "No"
},
{
"input": "264193194 -448876521 736684426 -633906160 -328597212 -47935734",
"output": "No"
},
{
"input": "419578772 -125025887 169314071 89851312 961404059 21419450",
"output": "No"
},
{
"input": "-607353321 -620687860 248029390 477864359 728255275 -264646027",
"output": "No"
},
{
"input": "299948862 -648908808 338174789 841279400 -850322448 350263551",
"output": "No"
},
{
"input": "48517753 416240699 7672672 272460100 -917845051 199790781",
"output": "No"
},
{
"input": "-947393823 -495674431 211535284 -877153626 -522763219 -778236665",
"output": "No"
},
{
"input": "-685673792 -488079395 909733355 385950193 -705890324 256550506",
"output": "No"
},
{
"input": "-326038504 547872194 49630307 713863100 303770000 -556852524",
"output": "No"
},
{
"input": "-706921242 -758563024 -588592101 -443440080 858751713 238854303",
"output": "No"
},
{
"input": "-1000000000 -1000000000 0 1000000000 1000000000 -1000000000",
"output": "Yes"
},
{
"input": "1000000000 1000000000 0 -1000000000 -1000000000 1000000000",
"output": "Yes"
},
{
"input": "-999999999 -1000000000 0 0 1000000000 999999999",
"output": "Yes"
},
{
"input": "-1000000000 -999999999 0 0 1000000000 999999999",
"output": "No"
},
{
"input": "-1 -1000000000 0 1000000000 1 -1000000000",
"output": "Yes"
},
{
"input": "0 1000000000 1 0 0 -1000000000",
"output": "Yes"
},
{
"input": "0 1000000000 0 0 0 -1000000000",
"output": "No"
},
{
"input": "0 1 1 2 2 3",
"output": "No"
},
{
"input": "999999999 1000000000 0 0 -1000000000 -999999999",
"output": "Yes"
},
{
"input": "0 0 1 1 2 0",
"output": "Yes"
},
{
"input": "0 0 1 1 2 2",
"output": "No"
},
{
"input": "1 1 2 2 3 3",
"output": "No"
},
{
"input": "0 2 0 3 0 4",
"output": "No"
},
{
"input": "1 1 1 2 1 3",
"output": "No"
},
{
"input": "0 0 3 4 3 9",
"output": "Yes"
},
{
"input": "589824 196608 262144 196608 0 0",
"output": "Yes"
},
{
"input": "0 0 1000000000 1 1000000000 -999999999",
"output": "No"
},
{
"input": "0 0 2 45 0 90",
"output": "Yes"
},
{
"input": "0 0 0 2 0 1",
"output": "No"
},
{
"input": "0 2 4 5 4 0",
"output": "Yes"
},
{
"input": "0 0 2 0 4 0",
"output": "No"
},
{
"input": "1 1 3 3 5 5",
"output": "No"
},
{
"input": "1 1 2 2 3 1",
"output": "Yes"
}
] | 1,504,536,351
| 651
|
Python 3
|
WRONG_ANSWER
|
PRETESTS
| 2
| 46
| 0
|
from sys import stdin, stdout
from math import hypot
ax,ay,bx,by,cx,cy = map(int,stdin.readline().rstrip().split())
if hypot(ax-bx,ay-by)==hypot(bx-cx,by-cy):
print('Yes')
else:
print('No')
|
Title: Arpa and an exam about geometry
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Arpa is taking a geometry exam. Here is the last problem of the exam.
You are given three points *a*,<=*b*,<=*c*.
Find a point and an angle such that if we rotate the page around the point by the angle, the new position of *a* is the same as the old position of *b*, and the new position of *b* is the same as the old position of *c*.
Arpa is doubting if the problem has a solution or not (i.e. if there exists a point and an angle satisfying the condition). Help Arpa determine if the question has a solution or not.
Input Specification:
The only line contains six integers *a**x*,<=*a**y*,<=*b**x*,<=*b**y*,<=*c**x*,<=*c**y* (|*a**x*|,<=|*a**y*|,<=|*b**x*|,<=|*b**y*|,<=|*c**x*|,<=|*c**y*|<=≤<=109). It's guaranteed that the points are distinct.
Output Specification:
Print "Yes" if the problem has a solution, "No" otherwise.
You can print each letter in any case (upper or lower).
Demo Input:
['0 1 1 1 1 0\n', '1 1 0 0 1000 1000\n']
Demo Output:
['Yes\n', 'No\n']
Note:
In the first sample test, rotate the page around (0.5, 0.5) by <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9d845923f4d356a48d8ede337db0303821311f0c.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second sample test, you can't find any solution.
|
```python
from sys import stdin, stdout
from math import hypot
ax,ay,bx,by,cx,cy = map(int,stdin.readline().rstrip().split())
if hypot(ax-bx,ay-by)==hypot(bx-cx,by-cy):
print('Yes')
else:
print('No')
```
| 0
|
|
379
|
A
|
New Year Candles
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
Vasily the Programmer loves romance, so this year he decided to illuminate his room with candles.
Vasily has *a* candles.When Vasily lights up a new candle, it first burns for an hour and then it goes out. Vasily is smart, so he can make *b* went out candles into a new candle. As a result, this new candle can be used like any other new candle.
Now Vasily wonders: for how many hours can his candles light up the room if he acts optimally well? Help him find this number.
|
The single line contains two integers, *a* and *b* (1<=≤<=*a*<=≤<=1000; 2<=≤<=*b*<=≤<=1000).
|
Print a single integer — the number of hours Vasily can light up the room for.
|
[
"4 2\n",
"6 3\n"
] |
[
"7\n",
"8\n"
] |
Consider the first sample. For the first four hours Vasily lights up new candles, then he uses four burned out candles to make two new ones and lights them up. When these candles go out (stop burning), Vasily can make another candle. Overall, Vasily can light up the room for 7 hours.
| 500
|
[
{
"input": "4 2",
"output": "7"
},
{
"input": "6 3",
"output": "8"
},
{
"input": "1000 1000",
"output": "1001"
},
{
"input": "123 5",
"output": "153"
},
{
"input": "1000 2",
"output": "1999"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "1 4",
"output": "1"
},
{
"input": "2 2",
"output": "3"
},
{
"input": "3 2",
"output": "5"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "999 2",
"output": "1997"
},
{
"input": "1000 3",
"output": "1499"
},
{
"input": "1000 4",
"output": "1333"
},
{
"input": "1 1000",
"output": "1"
},
{
"input": "80 970",
"output": "80"
},
{
"input": "80 970",
"output": "80"
},
{
"input": "80 970",
"output": "80"
},
{
"input": "80 970",
"output": "80"
},
{
"input": "80 970",
"output": "80"
},
{
"input": "80 970",
"output": "80"
},
{
"input": "10 4",
"output": "13"
},
{
"input": "4 3",
"output": "5"
},
{
"input": "91 5",
"output": "113"
},
{
"input": "777 17",
"output": "825"
},
{
"input": "100 4",
"output": "133"
},
{
"input": "5 3",
"output": "7"
},
{
"input": "6 4",
"output": "7"
},
{
"input": "26 8",
"output": "29"
},
{
"input": "9 4",
"output": "11"
},
{
"input": "20 3",
"output": "29"
},
{
"input": "17 3",
"output": "25"
}
] | 1,693,727,257
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 3
| 46
| 0
|
l = input("")
h = l.split(" ")
a = int(h[0])
b = int(h[1])
l = 0
q = a
while a > 1:
a = a // b
l += a
print(l + q)
|
Title: New Year Candles
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasily the Programmer loves romance, so this year he decided to illuminate his room with candles.
Vasily has *a* candles.When Vasily lights up a new candle, it first burns for an hour and then it goes out. Vasily is smart, so he can make *b* went out candles into a new candle. As a result, this new candle can be used like any other new candle.
Now Vasily wonders: for how many hours can his candles light up the room if he acts optimally well? Help him find this number.
Input Specification:
The single line contains two integers, *a* and *b* (1<=≤<=*a*<=≤<=1000; 2<=≤<=*b*<=≤<=1000).
Output Specification:
Print a single integer — the number of hours Vasily can light up the room for.
Demo Input:
['4 2\n', '6 3\n']
Demo Output:
['7\n', '8\n']
Note:
Consider the first sample. For the first four hours Vasily lights up new candles, then he uses four burned out candles to make two new ones and lights them up. When these candles go out (stop burning), Vasily can make another candle. Overall, Vasily can light up the room for 7 hours.
|
```python
l = input("")
h = l.split(" ")
a = int(h[0])
b = int(h[1])
l = 0
q = a
while a > 1:
a = a // b
l += a
print(l + q)
```
| 0
|
|
151
|
A
|
Soft Drinking
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
This winter is so cold in Nvodsk! A group of *n* friends decided to buy *k* bottles of a soft drink called "Take-It-Light" to warm up a bit. Each bottle has *l* milliliters of the drink. Also they bought *c* limes and cut each of them into *d* slices. After that they found *p* grams of salt.
To make a toast, each friend needs *nl* milliliters of the drink, a slice of lime and *np* grams of salt. The friends want to make as many toasts as they can, provided they all drink the same amount. How many toasts can each friend make?
|
The first and only line contains positive integers *n*, *k*, *l*, *c*, *d*, *p*, *nl*, *np*, not exceeding 1000 and no less than 1. The numbers are separated by exactly one space.
|
Print a single integer — the number of toasts each friend can make.
|
[
"3 4 5 10 8 100 3 1\n",
"5 100 10 1 19 90 4 3\n",
"10 1000 1000 25 23 1 50 1\n"
] |
[
"2\n",
"3\n",
"0\n"
] |
A comment to the first sample:
Overall the friends have 4 * 5 = 20 milliliters of the drink, it is enough to make 20 / 3 = 6 toasts. The limes are enough for 10 * 8 = 80 toasts and the salt is enough for 100 / 1 = 100 toasts. However, there are 3 friends in the group, so the answer is *min*(6, 80, 100) / 3 = 2.
| 500
|
[
{
"input": "3 4 5 10 8 100 3 1",
"output": "2"
},
{
"input": "5 100 10 1 19 90 4 3",
"output": "3"
},
{
"input": "10 1000 1000 25 23 1 50 1",
"output": "0"
},
{
"input": "1 7 4 5 5 8 3 2",
"output": "4"
},
{
"input": "2 3 3 5 5 10 1 3",
"output": "1"
},
{
"input": "2 6 4 5 6 5 1 3",
"output": "0"
},
{
"input": "1 7 3 5 3 6 2 1",
"output": "6"
},
{
"input": "2 4 5 4 5 7 3 2",
"output": "1"
},
{
"input": "2 3 6 5 7 8 2 1",
"output": "4"
},
{
"input": "1 4 5 5 3 10 3 1",
"output": "6"
},
{
"input": "1 4 6 7 3 5 1 3",
"output": "1"
},
{
"input": "1 6 5 5 5 8 3 1",
"output": "8"
},
{
"input": "1 7 5 3 3 9 2 1",
"output": "9"
},
{
"input": "3 5 3 7 6 10 3 1",
"output": "1"
},
{
"input": "3 6 3 5 3 6 3 1",
"output": "2"
},
{
"input": "1 7 5 5 5 5 2 2",
"output": "2"
},
{
"input": "2 5 3 5 6 9 2 1",
"output": "3"
},
{
"input": "3 4 3 5 3 6 2 1",
"output": "2"
},
{
"input": "1 5 5 4 7 6 3 1",
"output": "6"
},
{
"input": "2 3 7 6 5 9 3 1",
"output": "3"
},
{
"input": "2 6 5 3 3 8 1 1",
"output": "4"
},
{
"input": "2 4 7 3 4 10 2 1",
"output": "5"
},
{
"input": "1 1000 1000 1000 1000 1000 1 1",
"output": "1000"
},
{
"input": "17 1000 1000 1000 1000 1000 3 7",
"output": "8"
},
{
"input": "115 1000 1000 1000 1000 1000 17 15",
"output": "0"
},
{
"input": "1 587 981 1 2 1 1 1",
"output": "1"
},
{
"input": "1 1 2 1 2 2 1 1",
"output": "2"
}
] | 1,679,996,646
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 27
| 92
| 0
|
n, k, l, c, d, p, nl, np=map(int,input().split())
res=min(k*l//nl,c*d,p//np)
print(res//n)
|
Title: Soft Drinking
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
This winter is so cold in Nvodsk! A group of *n* friends decided to buy *k* bottles of a soft drink called "Take-It-Light" to warm up a bit. Each bottle has *l* milliliters of the drink. Also they bought *c* limes and cut each of them into *d* slices. After that they found *p* grams of salt.
To make a toast, each friend needs *nl* milliliters of the drink, a slice of lime and *np* grams of salt. The friends want to make as many toasts as they can, provided they all drink the same amount. How many toasts can each friend make?
Input Specification:
The first and only line contains positive integers *n*, *k*, *l*, *c*, *d*, *p*, *nl*, *np*, not exceeding 1000 and no less than 1. The numbers are separated by exactly one space.
Output Specification:
Print a single integer — the number of toasts each friend can make.
Demo Input:
['3 4 5 10 8 100 3 1\n', '5 100 10 1 19 90 4 3\n', '10 1000 1000 25 23 1 50 1\n']
Demo Output:
['2\n', '3\n', '0\n']
Note:
A comment to the first sample:
Overall the friends have 4 * 5 = 20 milliliters of the drink, it is enough to make 20 / 3 = 6 toasts. The limes are enough for 10 * 8 = 80 toasts and the salt is enough for 100 / 1 = 100 toasts. However, there are 3 friends in the group, so the answer is *min*(6, 80, 100) / 3 = 2.
|
```python
n, k, l, c, d, p, nl, np=map(int,input().split())
res=min(k*l//nl,c*d,p//np)
print(res//n)
```
| 3
|
|
817
|
A
|
Treasure Hunt
|
PROGRAMMING
| 1,200
|
[
"implementation",
"math",
"number theory"
] | null | null |
Captain Bill the Hummingbird and his crew recieved an interesting challenge offer. Some stranger gave them a map, potion of teleportation and said that only this potion might help them to reach the treasure.
Bottle with potion has two values *x* and *y* written on it. These values define four moves which can be performed using the potion:
- - - -
Map shows that the position of Captain Bill the Hummingbird is (*x*1,<=*y*1) and the position of the treasure is (*x*2,<=*y*2).
You task is to tell Captain Bill the Hummingbird whether he should accept this challenge or decline. If it is possible for Captain to reach the treasure using the potion then output "YES", otherwise "NO" (without quotes).
The potion can be used infinite amount of times.
|
The first line contains four integer numbers *x*1,<=*y*1,<=*x*2,<=*y*2 (<=-<=105<=≤<=*x*1,<=*y*1,<=*x*2,<=*y*2<=≤<=105) — positions of Captain Bill the Hummingbird and treasure respectively.
The second line contains two integer numbers *x*,<=*y* (1<=≤<=*x*,<=*y*<=≤<=105) — values on the potion bottle.
|
Print "YES" if it is possible for Captain to reach the treasure using the potion, otherwise print "NO" (without quotes).
|
[
"0 0 0 6\n2 3\n",
"1 1 3 6\n1 5\n"
] |
[
"YES\n",
"NO\n"
] |
In the first example there exists such sequence of moves:
1. <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7c939890fb4ed35688177327dac981bfa9216c00.png" style="max-width: 100.0%;max-height: 100.0%;"/> — the first type of move 1. <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/afbfa42fbac4e0641e7466e3aac74cbbb08ed597.png" style="max-width: 100.0%;max-height: 100.0%;"/> — the third type of move
| 0
|
[
{
"input": "0 0 0 6\n2 3",
"output": "YES"
},
{
"input": "1 1 3 6\n1 5",
"output": "NO"
},
{
"input": "5 4 6 -10\n1 1",
"output": "NO"
},
{
"input": "6 -3 -7 -7\n1 2",
"output": "NO"
},
{
"input": "2 -5 -8 8\n2 1",
"output": "YES"
},
{
"input": "70 -81 -17 80\n87 23",
"output": "YES"
},
{
"input": "41 366 218 -240\n3456 1234",
"output": "NO"
},
{
"input": "-61972 -39646 -42371 -24854\n573 238",
"output": "NO"
},
{
"input": "-84870 -42042 94570 98028\n8972 23345",
"output": "YES"
},
{
"input": "-58533 -50999 -1007 -59169\n8972 23345",
"output": "NO"
},
{
"input": "-100000 -100000 100000 100000\n100000 100000",
"output": "YES"
},
{
"input": "-100000 -100000 100000 100000\n1 1",
"output": "YES"
},
{
"input": "5 2 5 3\n1 1",
"output": "NO"
},
{
"input": "5 5 5 5\n5 5",
"output": "YES"
},
{
"input": "0 0 1000 1000\n1 1",
"output": "YES"
},
{
"input": "0 0 0 1\n1 1",
"output": "NO"
},
{
"input": "1 1 4 4\n2 2",
"output": "NO"
},
{
"input": "100000 100000 99999 99999\n100000 100000",
"output": "NO"
},
{
"input": "1 1 1 6\n1 5",
"output": "NO"
},
{
"input": "2 9 4 0\n2 3",
"output": "YES"
},
{
"input": "0 0 0 9\n2 3",
"output": "NO"
},
{
"input": "14 88 14 88\n100 500",
"output": "YES"
},
{
"input": "-1 0 3 0\n4 4",
"output": "NO"
},
{
"input": "0 0 8 9\n2 3",
"output": "NO"
},
{
"input": "-2 5 7 -6\n1 1",
"output": "YES"
},
{
"input": "3 7 -8 8\n2 2",
"output": "NO"
},
{
"input": "-4 -8 -6 -1\n1 3",
"output": "NO"
},
{
"input": "0 8 6 2\n1 1",
"output": "YES"
},
{
"input": "-5 -2 -8 -2\n1 1",
"output": "NO"
},
{
"input": "1 4 -5 0\n1 1",
"output": "YES"
},
{
"input": "8 -4 4 -7\n1 2",
"output": "NO"
},
{
"input": "5 2 2 4\n2 2",
"output": "NO"
},
{
"input": "2 0 -4 6\n1 2",
"output": "NO"
},
{
"input": "-2 6 -5 -4\n1 2",
"output": "YES"
},
{
"input": "-6 5 10 6\n2 4",
"output": "NO"
},
{
"input": "3 -7 1 -8\n1 2",
"output": "NO"
},
{
"input": "4 1 4 -4\n9 4",
"output": "NO"
},
{
"input": "9 -3 -9 -3\n2 2",
"output": "NO"
},
{
"input": "-6 -6 -10 -5\n6 7",
"output": "NO"
},
{
"input": "-5 -2 2 2\n1 7",
"output": "NO"
},
{
"input": "9 0 8 1\n7 10",
"output": "NO"
},
{
"input": "-1 6 -7 -6\n6 4",
"output": "YES"
},
{
"input": "2 2 -3 -3\n3 1",
"output": "NO"
},
{
"input": "2 -6 7 2\n2 1",
"output": "NO"
},
{
"input": "-6 2 -7 -7\n1 2",
"output": "NO"
},
{
"input": "-5 -5 -1 -5\n2 2",
"output": "YES"
},
{
"input": "0 5 3 -6\n2 2",
"output": "NO"
},
{
"input": "0 -6 2 -1\n1 1",
"output": "NO"
},
{
"input": "-6 6 -5 -4\n1 2",
"output": "YES"
},
{
"input": "7 -7 1 -7\n2 2",
"output": "NO"
},
{
"input": "99966 -99952 -99966 99923\n1 1",
"output": "NO"
},
{
"input": "99921 99980 -99956 -99907\n3 4",
"output": "NO"
},
{
"input": "100000 100000 -100000 -100000\n1 1",
"output": "YES"
},
{
"input": "1 0 2 0\n5 1",
"output": "NO"
},
{
"input": "-3 0 -8 0\n7 2",
"output": "NO"
},
{
"input": "-9 4 -5 -1\n8 2",
"output": "NO"
},
{
"input": "-99999 -100000 100000 100000\n1 1",
"output": "NO"
},
{
"input": "0 0 -100 -100\n2 2",
"output": "YES"
},
{
"input": "9 -5 -3 -2\n1 4",
"output": "NO"
},
{
"input": "1 -10 -10 5\n7 5",
"output": "NO"
},
{
"input": "6 -9 -1 -9\n1 9",
"output": "NO"
}
] | 1,612,941,528
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 1
| 46
| 0
|
li=list(map(int,input().split(" ")))
li1=list(map(int,input().split(" ")))
if(li[3]-li[1])%li1[1]==0 and (li[2]-li[0])%li1[0]==0:
print("Yes")
else:
print("No")
|
Title: Treasure Hunt
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Captain Bill the Hummingbird and his crew recieved an interesting challenge offer. Some stranger gave them a map, potion of teleportation and said that only this potion might help them to reach the treasure.
Bottle with potion has two values *x* and *y* written on it. These values define four moves which can be performed using the potion:
- - - -
Map shows that the position of Captain Bill the Hummingbird is (*x*1,<=*y*1) and the position of the treasure is (*x*2,<=*y*2).
You task is to tell Captain Bill the Hummingbird whether he should accept this challenge or decline. If it is possible for Captain to reach the treasure using the potion then output "YES", otherwise "NO" (without quotes).
The potion can be used infinite amount of times.
Input Specification:
The first line contains four integer numbers *x*1,<=*y*1,<=*x*2,<=*y*2 (<=-<=105<=≤<=*x*1,<=*y*1,<=*x*2,<=*y*2<=≤<=105) — positions of Captain Bill the Hummingbird and treasure respectively.
The second line contains two integer numbers *x*,<=*y* (1<=≤<=*x*,<=*y*<=≤<=105) — values on the potion bottle.
Output Specification:
Print "YES" if it is possible for Captain to reach the treasure using the potion, otherwise print "NO" (without quotes).
Demo Input:
['0 0 0 6\n2 3\n', '1 1 3 6\n1 5\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first example there exists such sequence of moves:
1. <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7c939890fb4ed35688177327dac981bfa9216c00.png" style="max-width: 100.0%;max-height: 100.0%;"/> — the first type of move 1. <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/afbfa42fbac4e0641e7466e3aac74cbbb08ed597.png" style="max-width: 100.0%;max-height: 100.0%;"/> — the third type of move
|
```python
li=list(map(int,input().split(" ")))
li1=list(map(int,input().split(" ")))
if(li[3]-li[1])%li1[1]==0 and (li[2]-li[0])%li1[0]==0:
print("Yes")
else:
print("No")
```
| 0
|
|
148
|
A
|
Insomnia cure
|
PROGRAMMING
| 800
|
[
"constructive algorithms",
"implementation",
"math"
] | null | null |
«One dragon. Two dragon. Three dragon», — the princess was counting. She had trouble falling asleep, and she got bored of counting lambs when she was nine.
However, just counting dragons was boring as well, so she entertained herself at best she could. Tonight she imagined that all dragons were here to steal her, and she was fighting them off. Every *k*-th dragon got punched in the face with a frying pan. Every *l*-th dragon got his tail shut into the balcony door. Every *m*-th dragon got his paws trampled with sharp heels. Finally, she threatened every *n*-th dragon to call her mom, and he withdrew in panic.
How many imaginary dragons suffered moral or physical damage tonight, if the princess counted a total of *d* dragons?
|
Input data contains integer numbers *k*,<=*l*,<=*m*,<=*n* and *d*, each number in a separate line (1<=≤<=*k*,<=*l*,<=*m*,<=*n*<=≤<=10, 1<=≤<=*d*<=≤<=105).
|
Output the number of damaged dragons.
|
[
"1\n2\n3\n4\n12\n",
"2\n3\n4\n5\n24\n"
] |
[
"12\n",
"17\n"
] |
In the first case every first dragon got punched with a frying pan. Some of the dragons suffered from other reasons as well, but the pan alone would be enough.
In the second case dragons 1, 7, 11, 13, 17, 19 and 23 escaped unharmed.
| 1,000
|
[
{
"input": "1\n2\n3\n4\n12",
"output": "12"
},
{
"input": "2\n3\n4\n5\n24",
"output": "17"
},
{
"input": "1\n1\n1\n1\n100000",
"output": "100000"
},
{
"input": "10\n9\n8\n7\n6",
"output": "0"
},
{
"input": "8\n4\n4\n3\n65437",
"output": "32718"
},
{
"input": "8\n4\n1\n10\n59392",
"output": "59392"
},
{
"input": "4\n1\n8\n7\n44835",
"output": "44835"
},
{
"input": "6\n1\n7\n2\n62982",
"output": "62982"
},
{
"input": "2\n7\n4\n9\n56937",
"output": "35246"
},
{
"input": "2\n9\n8\n1\n75083",
"output": "75083"
},
{
"input": "8\n7\n7\n6\n69038",
"output": "24656"
},
{
"input": "4\n4\n2\n3\n54481",
"output": "36320"
},
{
"input": "6\n4\n9\n8\n72628",
"output": "28244"
},
{
"input": "9\n7\n8\n10\n42357",
"output": "16540"
},
{
"input": "5\n6\n4\n3\n60504",
"output": "36302"
},
{
"input": "7\n2\n3\n8\n21754",
"output": "15539"
},
{
"input": "1\n2\n10\n4\n39901",
"output": "39901"
},
{
"input": "3\n4\n7\n1\n58048",
"output": "58048"
},
{
"input": "9\n10\n4\n6\n52003",
"output": "21956"
},
{
"input": "5\n10\n9\n3\n70149",
"output": "32736"
},
{
"input": "5\n5\n5\n10\n55592",
"output": "11118"
},
{
"input": "1\n5\n2\n6\n49547",
"output": "49547"
},
{
"input": "3\n7\n7\n7\n84046",
"output": "36019"
},
{
"input": "10\n2\n1\n8\n63537",
"output": "63537"
},
{
"input": "7\n2\n10\n5\n81684",
"output": "53678"
},
{
"input": "7\n1\n6\n8\n99831",
"output": "99831"
},
{
"input": "3\n9\n3\n3\n61082",
"output": "20360"
},
{
"input": "5\n5\n8\n9\n79228",
"output": "29931"
},
{
"input": "1\n5\n5\n6\n89535",
"output": "89535"
},
{
"input": "5\n5\n2\n1\n7682",
"output": "7682"
},
{
"input": "7\n4\n8\n8\n25829",
"output": "9224"
},
{
"input": "3\n4\n3\n3\n87079",
"output": "43539"
},
{
"input": "5\n8\n4\n9\n5226",
"output": "2438"
},
{
"input": "4\n9\n6\n6\n1070",
"output": "415"
},
{
"input": "10\n10\n10\n10\n100000",
"output": "10000"
},
{
"input": "1\n1\n1\n1\n1",
"output": "1"
},
{
"input": "10\n10\n10\n10\n1",
"output": "0"
},
{
"input": "10\n10\n1\n10\n10",
"output": "10"
},
{
"input": "10\n10\n1\n10\n100",
"output": "100"
},
{
"input": "2\n2\n2\n2\n1",
"output": "0"
}
] | 1,692,825,001
| 2,147,483,647
|
PyPy 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 2
| 2,000
| 3,993,600
|
k=int(input())
l=int(input())
m=int(input())
n=int(input())
d=int(input())
l1=[]
for i in range (1,d+1):
if ((i%k==0) or (i%l==0) or (i%m==0) or (i%n==0)) and (i not in l1):
l1.append(i)
#print(l1)
print(len(l1))
|
Title: Insomnia cure
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
«One dragon. Two dragon. Three dragon», — the princess was counting. She had trouble falling asleep, and she got bored of counting lambs when she was nine.
However, just counting dragons was boring as well, so she entertained herself at best she could. Tonight she imagined that all dragons were here to steal her, and she was fighting them off. Every *k*-th dragon got punched in the face with a frying pan. Every *l*-th dragon got his tail shut into the balcony door. Every *m*-th dragon got his paws trampled with sharp heels. Finally, she threatened every *n*-th dragon to call her mom, and he withdrew in panic.
How many imaginary dragons suffered moral or physical damage tonight, if the princess counted a total of *d* dragons?
Input Specification:
Input data contains integer numbers *k*,<=*l*,<=*m*,<=*n* and *d*, each number in a separate line (1<=≤<=*k*,<=*l*,<=*m*,<=*n*<=≤<=10, 1<=≤<=*d*<=≤<=105).
Output Specification:
Output the number of damaged dragons.
Demo Input:
['1\n2\n3\n4\n12\n', '2\n3\n4\n5\n24\n']
Demo Output:
['12\n', '17\n']
Note:
In the first case every first dragon got punched with a frying pan. Some of the dragons suffered from other reasons as well, but the pan alone would be enough.
In the second case dragons 1, 7, 11, 13, 17, 19 and 23 escaped unharmed.
|
```python
k=int(input())
l=int(input())
m=int(input())
n=int(input())
d=int(input())
l1=[]
for i in range (1,d+1):
if ((i%k==0) or (i%l==0) or (i%m==0) or (i%n==0)) and (i not in l1):
l1.append(i)
#print(l1)
print(len(l1))
```
| 0
|
|
930
|
A
|
Peculiar apple-tree
|
PROGRAMMING
| 1,500
|
[
"dfs and similar",
"graphs",
"trees"
] | null | null |
In Arcady's garden there grows a peculiar apple-tree that fruits one time per year. Its peculiarity can be explained in following way: there are *n* inflorescences, numbered from 1 to *n*. Inflorescence number 1 is situated near base of tree and any other inflorescence with number *i* (*i*<=><=1) is situated at the top of branch, which bottom is *p**i*-th inflorescence and *p**i*<=<<=*i*.
Once tree starts fruiting, there appears exactly one apple in each inflorescence. The same moment as apples appear, they start to roll down along branches to the very base of tree. Each second all apples, except ones in first inflorescence simultaneously roll down one branch closer to tree base, e.g. apple in *a*-th inflorescence gets to *p**a*-th inflorescence. Apples that end up in first inflorescence are gathered by Arcady in exactly the same moment. Second peculiarity of this tree is that once two apples are in same inflorescence they annihilate. This happens with each pair of apples, e.g. if there are 5 apples in same inflorescence in same time, only one will not be annihilated and if there are 8 apples, all apples will be annihilated. Thus, there can be no more than one apple in each inflorescence in each moment of time.
Help Arcady with counting number of apples he will be able to collect from first inflorescence during one harvest.
|
First line of input contains single integer number *n* (2<=≤<=*n*<=≤<=100<=000) — number of inflorescences.
Second line of input contains sequence of *n*<=-<=1 integer numbers *p*2,<=*p*3,<=...,<=*p**n* (1<=≤<=*p**i*<=<<=*i*), where *p**i* is number of inflorescence into which the apple from *i*-th inflorescence rolls down.
|
Single line of output should contain one integer number: amount of apples that Arcady will be able to collect from first inflorescence during one harvest.
|
[
"3\n1 1\n",
"5\n1 2 2 2\n",
"18\n1 1 1 4 4 3 2 2 2 10 8 9 9 9 10 10 4\n"
] |
[
"1\n",
"3\n",
"4\n"
] |
In first example Arcady will be able to collect only one apple, initially situated in 1st inflorescence. In next second apples from 2nd and 3rd inflorescences will roll down and annihilate, and Arcady won't be able to collect them.
In the second example Arcady will be able to collect 3 apples. First one is one initially situated in first inflorescence. In a second apple from 2nd inflorescence will roll down to 1st (Arcady will collect it) and apples from 3rd, 4th, 5th inflorescences will roll down to 2nd. Two of them will annihilate and one not annihilated will roll down from 2-nd inflorescence to 1st one in the next second and Arcady will collect it.
| 500
|
[
{
"input": "3\n1 1",
"output": "1"
},
{
"input": "5\n1 2 2 2",
"output": "3"
},
{
"input": "18\n1 1 1 4 4 3 2 2 2 10 8 9 9 9 10 10 4",
"output": "4"
},
{
"input": "2\n1",
"output": "2"
},
{
"input": "3\n1 2",
"output": "3"
},
{
"input": "20\n1 1 1 1 1 4 1 2 4 1 2 1 7 1 2 2 9 7 1",
"output": "2"
},
{
"input": "20\n1 2 1 2 2 1 2 4 1 6 2 2 4 3 2 6 2 5 9",
"output": "2"
},
{
"input": "20\n1 1 1 4 2 4 3 1 2 8 3 2 11 13 15 1 12 13 12",
"output": "4"
},
{
"input": "20\n1 2 2 4 3 5 5 6 6 9 11 9 9 12 13 10 15 13 15",
"output": "4"
},
{
"input": "20\n1 2 3 4 5 6 7 8 9 6 11 12 12 7 13 15 16 11 13",
"output": "8"
},
{
"input": "10\n1 1 1 2 1 3 4 2 1",
"output": "2"
},
{
"input": "30\n1 1 1 2 1 2 1 1 2 1 1 1 2 2 4 3 6 2 3 5 3 4 11 5 3 3 4 7 6",
"output": "4"
},
{
"input": "40\n1 1 1 1 1 1 1 1 1 3 4 3 3 1 3 6 7 4 5 2 4 3 9 1 4 2 5 3 5 9 5 9 10 12 3 7 2 11 1",
"output": "2"
},
{
"input": "50\n1 1 1 1 1 2 3 3 2 1 1 2 3 1 3 1 5 6 4 1 1 2 1 2 1 10 17 2 2 4 12 9 6 6 5 13 1 3 2 8 25 3 22 1 10 13 6 3 2",
"output": "4"
},
{
"input": "10\n1 1 1 1 2 1 3 4 3",
"output": "2"
},
{
"input": "30\n1 2 1 1 1 2 1 4 2 3 9 2 3 2 1 1 4 3 12 4 8 8 3 7 9 1 9 19 1",
"output": "2"
},
{
"input": "40\n1 1 1 2 3 1 2 1 3 7 1 3 4 3 2 3 4 1 2 2 4 1 7 4 1 3 2 1 4 5 3 10 14 11 10 13 8 7 4",
"output": "2"
},
{
"input": "50\n1 2 1 1 1 3 1 3 1 5 3 2 7 3 6 6 3 1 4 2 3 10 8 9 1 4 5 2 8 6 12 9 7 5 7 19 3 15 10 4 12 4 19 5 16 5 3 13 5",
"output": "2"
},
{
"input": "10\n1 1 1 2 3 2 1 2 3",
"output": "2"
},
{
"input": "30\n1 1 1 1 2 1 4 4 2 3 2 1 1 1 1 3 1 1 3 2 3 5 1 2 9 16 2 4 3",
"output": "2"
},
{
"input": "40\n1 1 1 2 1 2 1 2 4 8 1 7 1 6 2 8 2 12 4 11 5 5 15 3 12 11 22 11 13 13 24 6 10 15 3 6 7 1 2",
"output": "2"
},
{
"input": "50\n1 1 1 1 3 4 1 2 3 5 1 2 1 5 1 10 4 11 1 8 8 4 4 12 5 3 4 1 1 2 5 13 13 2 2 10 12 3 19 14 1 1 15 3 23 21 12 3 14",
"output": "4"
},
{
"input": "10\n1 1 1 1 2 4 1 1 3",
"output": "2"
},
{
"input": "30\n1 1 1 1 3 3 2 3 7 4 1 2 4 6 2 8 1 2 13 7 5 15 3 3 8 4 4 18 3",
"output": "2"
},
{
"input": "40\n1 1 1 2 2 1 1 4 6 4 7 7 7 4 4 8 10 7 5 1 5 13 7 8 2 11 18 2 1 20 7 3 12 16 2 22 4 22 14",
"output": "4"
},
{
"input": "50\n1 1 1 2 2 1 3 5 3 1 9 4 4 2 12 15 3 13 8 8 4 13 20 17 19 2 4 3 9 5 17 9 17 1 5 7 6 5 20 11 31 33 32 20 6 25 1 2 6",
"output": "4"
},
{
"input": "10\n1 1 1 3 3 5 6 8 3",
"output": "4"
},
{
"input": "30\n1 2 2 1 5 5 5 1 7 4 10 2 4 11 2 3 10 10 7 13 12 4 10 3 22 25 8 1 1",
"output": "6"
},
{
"input": "40\n1 2 2 2 2 4 2 2 6 9 3 9 9 9 3 5 7 7 2 17 4 4 8 8 25 18 12 27 8 19 26 15 33 26 33 9 24 4 27",
"output": "4"
},
{
"input": "50\n1 1 3 3 4 5 5 2 4 3 9 9 1 5 5 7 5 5 16 1 18 3 6 5 6 13 26 12 23 20 17 21 9 17 19 34 12 24 11 9 32 10 40 42 7 40 11 25 3",
"output": "6"
},
{
"input": "10\n1 2 1 2 5 5 6 6 6",
"output": "2"
},
{
"input": "30\n1 1 3 3 5 6 7 5 7 6 5 4 8 6 10 12 14 9 15 20 6 21 14 24 17 23 23 18 8",
"output": "2"
},
{
"input": "40\n1 2 2 3 1 2 5 6 4 8 11 12 9 5 12 7 4 16 16 15 6 22 17 24 10 8 22 4 27 9 19 23 16 18 28 22 5 35 19",
"output": "4"
},
{
"input": "50\n1 2 3 4 5 5 5 7 1 2 11 5 7 11 11 11 15 3 17 10 6 18 14 14 24 11 10 7 17 18 8 7 19 18 31 27 21 30 34 32 27 39 38 22 32 23 31 48 25",
"output": "2"
},
{
"input": "10\n1 2 2 4 5 5 6 4 7",
"output": "2"
},
{
"input": "30\n1 2 3 3 5 6 3 8 9 10 10 10 11 7 8 8 15 16 13 13 19 12 15 18 18 24 27 25 10",
"output": "6"
},
{
"input": "40\n1 2 3 4 5 6 6 8 7 10 11 3 12 11 15 12 17 15 10 20 16 20 12 20 15 21 20 26 29 23 29 30 23 24 35 33 25 32 36",
"output": "8"
},
{
"input": "50\n1 2 2 2 5 6 7 7 9 10 7 4 5 4 15 15 16 17 10 19 18 16 15 24 20 8 27 16 19 24 23 32 17 23 29 18 35 35 38 35 39 41 42 38 19 46 38 28 29",
"output": "6"
},
{
"input": "10\n1 2 3 4 5 5 5 7 9",
"output": "8"
},
{
"input": "30\n1 2 3 4 5 6 5 3 6 7 8 11 12 13 15 15 13 13 19 10 14 10 15 23 21 9 27 22 28",
"output": "4"
},
{
"input": "40\n1 2 2 3 3 6 5 5 9 7 8 11 13 7 10 10 16 14 18 20 11 19 23 18 20 21 25 16 29 25 27 31 26 34 33 23 36 33 32",
"output": "6"
},
{
"input": "50\n1 2 2 4 5 5 7 6 9 10 11 12 13 7 14 15 14 17 10 14 9 21 23 23 19 26 19 25 11 24 22 27 26 34 35 30 37 31 38 32 40 32 42 44 37 21 40 40 48",
"output": "10"
},
{
"input": "10\n1 2 3 4 3 6 6 6 7",
"output": "4"
},
{
"input": "30\n1 2 2 4 5 6 5 7 9 6 4 12 7 14 12 12 15 17 13 12 8 20 21 15 17 24 21 19 16",
"output": "4"
},
{
"input": "40\n1 2 3 4 4 6 6 4 9 9 10 12 10 12 12 16 8 13 18 14 17 20 21 23 25 22 25 26 29 26 27 27 33 31 33 34 36 29 34",
"output": "10"
},
{
"input": "50\n1 2 3 3 4 3 6 7 8 10 11 10 12 11 11 14 13 8 17 20 21 19 15 18 21 18 17 23 25 28 25 27 29 32 32 34 37 29 30 39 41 35 24 41 37 36 41 35 43",
"output": "10"
},
{
"input": "99\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "1"
},
{
"input": "99\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98",
"output": "99"
},
{
"input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "2"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99",
"output": "100"
}
] | 1,590,233,311
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 108
| 409,600
|
import sys
import math
from collections import defaultdict
# sys.stdin = open('input.txt', 'r')
# sys.stdout = open('output.txt', 'w')
def solve(test):
n = int(input())
p = [1] + list(map(int, input().split()))
q = [1] * n
ans = 1
q[0] = 0
while True:
flag = 0
for i in range(1, n):
if q[i]:
flag = 1
q[p[i] - 1] += 1 if q[p[i] - 1] & 1 == 0 else 0
q[i] -= 1
if not flag:
break
ans += q[0] & 1
q[0] = 0
print(ans)
if __name__ == "__main__":
test_cases = 1
for t in range(1, test_cases + 1):
solve(t)
|
Title: Peculiar apple-tree
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In Arcady's garden there grows a peculiar apple-tree that fruits one time per year. Its peculiarity can be explained in following way: there are *n* inflorescences, numbered from 1 to *n*. Inflorescence number 1 is situated near base of tree and any other inflorescence with number *i* (*i*<=><=1) is situated at the top of branch, which bottom is *p**i*-th inflorescence and *p**i*<=<<=*i*.
Once tree starts fruiting, there appears exactly one apple in each inflorescence. The same moment as apples appear, they start to roll down along branches to the very base of tree. Each second all apples, except ones in first inflorescence simultaneously roll down one branch closer to tree base, e.g. apple in *a*-th inflorescence gets to *p**a*-th inflorescence. Apples that end up in first inflorescence are gathered by Arcady in exactly the same moment. Second peculiarity of this tree is that once two apples are in same inflorescence they annihilate. This happens with each pair of apples, e.g. if there are 5 apples in same inflorescence in same time, only one will not be annihilated and if there are 8 apples, all apples will be annihilated. Thus, there can be no more than one apple in each inflorescence in each moment of time.
Help Arcady with counting number of apples he will be able to collect from first inflorescence during one harvest.
Input Specification:
First line of input contains single integer number *n* (2<=≤<=*n*<=≤<=100<=000) — number of inflorescences.
Second line of input contains sequence of *n*<=-<=1 integer numbers *p*2,<=*p*3,<=...,<=*p**n* (1<=≤<=*p**i*<=<<=*i*), where *p**i* is number of inflorescence into which the apple from *i*-th inflorescence rolls down.
Output Specification:
Single line of output should contain one integer number: amount of apples that Arcady will be able to collect from first inflorescence during one harvest.
Demo Input:
['3\n1 1\n', '5\n1 2 2 2\n', '18\n1 1 1 4 4 3 2 2 2 10 8 9 9 9 10 10 4\n']
Demo Output:
['1\n', '3\n', '4\n']
Note:
In first example Arcady will be able to collect only one apple, initially situated in 1st inflorescence. In next second apples from 2nd and 3rd inflorescences will roll down and annihilate, and Arcady won't be able to collect them.
In the second example Arcady will be able to collect 3 apples. First one is one initially situated in first inflorescence. In a second apple from 2nd inflorescence will roll down to 1st (Arcady will collect it) and apples from 3rd, 4th, 5th inflorescences will roll down to 2nd. Two of them will annihilate and one not annihilated will roll down from 2-nd inflorescence to 1st one in the next second and Arcady will collect it.
|
```python
import sys
import math
from collections import defaultdict
# sys.stdin = open('input.txt', 'r')
# sys.stdout = open('output.txt', 'w')
def solve(test):
n = int(input())
p = [1] + list(map(int, input().split()))
q = [1] * n
ans = 1
q[0] = 0
while True:
flag = 0
for i in range(1, n):
if q[i]:
flag = 1
q[p[i] - 1] += 1 if q[p[i] - 1] & 1 == 0 else 0
q[i] -= 1
if not flag:
break
ans += q[0] & 1
q[0] = 0
print(ans)
if __name__ == "__main__":
test_cases = 1
for t in range(1, test_cases + 1):
solve(t)
```
| 0
|
|
837
|
A
|
Text Volume
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
You are given a text of single-space separated words, consisting of small and capital Latin letters.
Volume of the word is number of capital letters in the word. Volume of the text is maximum volume of all words in the text.
Calculate the volume of the given text.
|
The first line contains one integer number *n* (1<=≤<=*n*<=≤<=200) — length of the text.
The second line contains text of single-space separated words *s*1,<=*s*2,<=...,<=*s**i*, consisting only of small and capital Latin letters.
|
Print one integer number — volume of text.
|
[
"7\nNonZERO\n",
"24\nthis is zero answer text\n",
"24\nHarbour Space University\n"
] |
[
"5\n",
"0\n",
"1\n"
] |
In the first example there is only one word, there are 5 capital letters in it.
In the second example all of the words contain 0 capital letters.
| 0
|
[
{
"input": "7\nNonZERO",
"output": "5"
},
{
"input": "24\nthis is zero answer text",
"output": "0"
},
{
"input": "24\nHarbour Space University",
"output": "1"
},
{
"input": "2\nWM",
"output": "2"
},
{
"input": "200\nLBmJKQLCKUgtTxMoDsEerwvLOXsxASSydOqWyULsRcjMYDWdDCgaDvBfATIWPVSXlbcCLHPYahhxMEYUiaxoCebghJqvmRnaNHYTKLeOiaLDnATPZAOgSNfBzaxLymTGjfzvTegbXsAthTxyDTcmBUkqyGlVGZhoazQzVSoKbTFcCRvYsgSCwjGMxBfWEwMHuagTBxkz",
"output": "105"
},
{
"input": "199\no A r v H e J q k J k v w Q F p O R y R Z o a K R L Z E H t X y X N y y p b x B m r R S q i A x V S u i c L y M n N X c C W Z m S j e w C w T r I S X T D F l w o k f t X u n W w p Z r A k I Y E h s g",
"output": "1"
},
{
"input": "200\nhCyIdivIiISmmYIsCLbpKcTyHaOgTUQEwnQACXnrLdHAVFLtvliTEMlzBVzTesQbhXmcqvwPDeojglBMIjOXANfyQxCSjOJyO SIqOTnRzVzseGIDDYNtrwIusScWSuEhPyEmgQIVEzXofRptjeMzzhtUQxJgcUWILUhEaaRmYRBVsjoqgmyPIKwSajdlNPccOOtWrez",
"output": "50"
},
{
"input": "1\ne",
"output": "0"
},
{
"input": "1\nA",
"output": "1"
},
{
"input": "200\nABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ KLMNOPRSTU KLMNOPRSTU KLMNOPRSTU VWXYZABCDE KLMNOPRSTU KLMNOPRSTU KLMNOPRSTU KLMNOPRSTU KZ",
"output": "10"
},
{
"input": "200\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
"output": "200"
},
{
"input": "200\nffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
"output": "0"
},
{
"input": "24\nHarbour Space UniversitY",
"output": "2"
},
{
"input": "5\naA AA",
"output": "2"
},
{
"input": "10\nas AS ASDA",
"output": "4"
},
{
"input": "10\nas AS ASDZ",
"output": "4"
},
{
"input": "3\na A",
"output": "1"
},
{
"input": "24\nHarbour space UniversitY",
"output": "2"
},
{
"input": "10\nas AS ASAa",
"output": "3"
},
{
"input": "15\naAb ABCDFGRHTJS",
"output": "11"
},
{
"input": "53\nsdfAZEZR AZE dfdf dsdRFGSDF ZZDZSD dfsd ERBGF dsfsdfR",
"output": "6"
},
{
"input": "10\nABC ABc AB",
"output": "3"
},
{
"input": "10\nA c de CDE",
"output": "3"
},
{
"input": "4\nA AB",
"output": "2"
},
{
"input": "18\nHARbour Space UNIV",
"output": "4"
},
{
"input": "13\na b c d e f A",
"output": "1"
},
{
"input": "6\nA B CA",
"output": "2"
},
{
"input": "4\naa A",
"output": "1"
},
{
"input": "3\nA a",
"output": "1"
}
] | 1,508,514,605
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 29
| 61
| 5,529,600
|
volumes = []
n = int(input())
s = input()
sk = 0
spaces = 1
temp = 0
for i in range(n):
if s[i] == s[i].upper() and s[i] != " ":
temp += 1
if s[i] == " ":
volumes.append(temp)
temp = 0
elif i == len(s)-1:
volumes.append(temp)
temp = 0
print(max(volumes))
|
Title: Text Volume
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given a text of single-space separated words, consisting of small and capital Latin letters.
Volume of the word is number of capital letters in the word. Volume of the text is maximum volume of all words in the text.
Calculate the volume of the given text.
Input Specification:
The first line contains one integer number *n* (1<=≤<=*n*<=≤<=200) — length of the text.
The second line contains text of single-space separated words *s*1,<=*s*2,<=...,<=*s**i*, consisting only of small and capital Latin letters.
Output Specification:
Print one integer number — volume of text.
Demo Input:
['7\nNonZERO\n', '24\nthis is zero answer text\n', '24\nHarbour Space University\n']
Demo Output:
['5\n', '0\n', '1\n']
Note:
In the first example there is only one word, there are 5 capital letters in it.
In the second example all of the words contain 0 capital letters.
|
```python
volumes = []
n = int(input())
s = input()
sk = 0
spaces = 1
temp = 0
for i in range(n):
if s[i] == s[i].upper() and s[i] != " ":
temp += 1
if s[i] == " ":
volumes.append(temp)
temp = 0
elif i == len(s)-1:
volumes.append(temp)
temp = 0
print(max(volumes))
```
| 3
|
|
920
|
C
|
Swap Adjacent Elements
|
PROGRAMMING
| 1,400
|
[
"dfs and similar",
"greedy",
"math",
"sortings",
"two pointers"
] | null | null |
You have an array *a* consisting of *n* integers. Each integer from 1 to *n* appears exactly once in this array.
For some indices *i* (1<=≤<=*i*<=≤<=*n*<=-<=1) it is possible to swap *i*-th element with (*i*<=+<=1)-th, for other indices it is not possible. You may perform any number of swapping operations any order. There is no limit on the number of times you swap *i*-th element with (*i*<=+<=1)-th (if the position is not forbidden).
Can you make this array sorted in ascending order performing some sequence of swapping operations?
|
The first line contains one integer *n* (2<=≤<=*n*<=≤<=200000) — the number of elements in the array.
The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=200000) — the elements of the array. Each integer from 1 to *n* appears exactly once.
The third line contains a string of *n*<=-<=1 characters, each character is either 0 or 1. If *i*-th character is 1, then you can swap *i*-th element with (*i*<=+<=1)-th any number of times, otherwise it is forbidden to swap *i*-th element with (*i*<=+<=1)-th.
|
If it is possible to sort the array in ascending order using any sequence of swaps you are allowed to make, print YES. Otherwise, print NO.
|
[
"6\n1 2 5 3 4 6\n01110\n",
"6\n1 2 5 3 4 6\n01010\n"
] |
[
"YES\n",
"NO\n"
] |
In the first example you may swap *a*<sub class="lower-index">3</sub> and *a*<sub class="lower-index">4</sub>, and then swap *a*<sub class="lower-index">4</sub> and *a*<sub class="lower-index">5</sub>.
| 0
|
[
{
"input": "6\n1 2 5 3 4 6\n01110",
"output": "YES"
},
{
"input": "6\n1 2 5 3 4 6\n01010",
"output": "NO"
},
{
"input": "6\n1 6 3 4 5 2\n01101",
"output": "NO"
},
{
"input": "6\n2 3 1 4 5 6\n01111",
"output": "NO"
},
{
"input": "4\n2 3 1 4\n011",
"output": "NO"
},
{
"input": "2\n2 1\n0",
"output": "NO"
},
{
"input": "5\n1 2 4 5 3\n0101",
"output": "NO"
},
{
"input": "5\n1 2 4 5 3\n0001",
"output": "NO"
},
{
"input": "5\n1 4 5 2 3\n0110",
"output": "NO"
},
{
"input": "5\n4 5 1 2 3\n0111",
"output": "NO"
},
{
"input": "3\n3 1 2\n10",
"output": "NO"
},
{
"input": "5\n2 3 4 5 1\n0011",
"output": "NO"
},
{
"input": "16\n3 4 14 16 11 7 13 9 10 8 6 5 15 12 1 2\n111111101111111",
"output": "NO"
},
{
"input": "5\n1 5 3 4 2\n1101",
"output": "NO"
},
{
"input": "6\n6 1 2 3 4 5\n11101",
"output": "NO"
},
{
"input": "3\n2 3 1\n01",
"output": "NO"
},
{
"input": "6\n1 6 3 4 5 2\n01110",
"output": "NO"
},
{
"input": "7\n1 7 3 4 5 6 2\n010001",
"output": "NO"
},
{
"input": "5\n5 2 3 4 1\n1001",
"output": "NO"
},
{
"input": "4\n1 3 4 2\n001",
"output": "NO"
},
{
"input": "5\n4 5 1 2 3\n1011",
"output": "NO"
},
{
"input": "6\n1 5 3 4 2 6\n11011",
"output": "NO"
},
{
"input": "5\n1 4 2 5 3\n1101",
"output": "NO"
},
{
"input": "5\n3 2 4 1 5\n1010",
"output": "NO"
},
{
"input": "6\n1 4 3 5 6 2\n01101",
"output": "NO"
},
{
"input": "6\n2 3 4 5 1 6\n00010",
"output": "NO"
},
{
"input": "10\n5 2 7 9 1 10 3 4 6 8\n111101000",
"output": "NO"
},
{
"input": "5\n2 4 3 1 5\n0110",
"output": "NO"
},
{
"input": "4\n3 1 2 4\n100",
"output": "NO"
},
{
"input": "6\n1 5 3 4 2 6\n01010",
"output": "NO"
},
{
"input": "4\n3 1 2 4\n101",
"output": "NO"
},
{
"input": "4\n2 4 3 1\n011",
"output": "NO"
},
{
"input": "4\n2 3 4 1\n001",
"output": "NO"
},
{
"input": "4\n3 4 1 2\n011",
"output": "NO"
},
{
"input": "5\n2 4 1 3 5\n0110",
"output": "NO"
},
{
"input": "4\n1 3 4 2\n101",
"output": "NO"
},
{
"input": "20\n20 19 18 17 16 15 1 2 3 4 5 14 13 12 11 10 9 8 7 6\n1111111011111111111",
"output": "NO"
},
{
"input": "6\n6 5 4 1 2 3\n11100",
"output": "NO"
},
{
"input": "5\n2 3 5 1 4\n0011",
"output": "NO"
},
{
"input": "4\n1 4 2 3\n010",
"output": "NO"
},
{
"input": "6\n1 6 3 4 5 2\n01001",
"output": "NO"
},
{
"input": "7\n1 7 2 4 3 5 6\n011110",
"output": "NO"
},
{
"input": "5\n1 3 4 2 5\n0010",
"output": "NO"
},
{
"input": "5\n5 4 3 1 2\n1110",
"output": "NO"
},
{
"input": "5\n2 5 4 3 1\n0111",
"output": "NO"
},
{
"input": "4\n2 3 4 1\n101",
"output": "NO"
},
{
"input": "5\n1 4 5 2 3\n1011",
"output": "NO"
},
{
"input": "5\n1 3 2 5 4\n1110",
"output": "NO"
},
{
"input": "6\n3 2 4 1 5 6\n10111",
"output": "NO"
},
{
"input": "7\n3 1 7 4 5 2 6\n101110",
"output": "NO"
},
{
"input": "10\n5 4 10 9 2 1 6 7 3 8\n011111111",
"output": "NO"
},
{
"input": "5\n1 5 3 2 4\n1110",
"output": "NO"
},
{
"input": "4\n2 3 4 1\n011",
"output": "NO"
},
{
"input": "5\n5 4 3 2 1\n0000",
"output": "NO"
},
{
"input": "12\n6 9 11 1 12 7 5 8 10 4 3 2\n11111111110",
"output": "NO"
},
{
"input": "5\n3 1 5 2 4\n1011",
"output": "NO"
},
{
"input": "5\n4 5 1 2 3\n1110",
"output": "NO"
},
{
"input": "10\n1 2 3 4 5 6 8 9 7 10\n000000000",
"output": "NO"
},
{
"input": "6\n5 6 3 2 4 1\n01111",
"output": "NO"
},
{
"input": "5\n1 3 4 2 5\n0100",
"output": "NO"
},
{
"input": "4\n2 1 4 3\n100",
"output": "NO"
},
{
"input": "6\n1 2 3 4 6 5\n00000",
"output": "NO"
},
{
"input": "6\n4 6 5 3 2 1\n01111",
"output": "NO"
},
{
"input": "5\n3 1 4 5 2\n1001",
"output": "NO"
},
{
"input": "5\n5 2 3 1 4\n1011",
"output": "NO"
},
{
"input": "3\n2 3 1\n10",
"output": "NO"
},
{
"input": "10\n6 5 9 4 3 2 8 10 7 1\n111111110",
"output": "NO"
},
{
"input": "7\n1 2 7 3 4 5 6\n111101",
"output": "NO"
},
{
"input": "6\n5 6 1 2 4 3\n11101",
"output": "NO"
},
{
"input": "6\n4 6 3 5 2 1\n11110",
"output": "NO"
},
{
"input": "5\n5 4 2 3 1\n1110",
"output": "NO"
},
{
"input": "2\n2 1\n1",
"output": "YES"
},
{
"input": "3\n1 3 2\n10",
"output": "NO"
},
{
"input": "5\n3 4 5 1 2\n1110",
"output": "NO"
},
{
"input": "5\n3 4 2 1 5\n0110",
"output": "NO"
},
{
"input": "6\n6 1 2 3 4 5\n10001",
"output": "NO"
},
{
"input": "10\n1 2 3 4 5 6 7 8 9 10\n000000000",
"output": "YES"
},
{
"input": "3\n3 2 1\n00",
"output": "NO"
},
{
"input": "5\n5 4 3 2 1\n1110",
"output": "NO"
},
{
"input": "6\n3 1 2 5 6 4\n10011",
"output": "NO"
},
{
"input": "6\n3 2 1 6 5 4\n11000",
"output": "NO"
},
{
"input": "2\n1 2\n0",
"output": "YES"
},
{
"input": "2\n1 2\n1",
"output": "YES"
},
{
"input": "11\n1 2 3 4 5 6 7 8 9 10 11\n0000000000",
"output": "YES"
},
{
"input": "4\n2 4 3 1\n101",
"output": "NO"
},
{
"input": "4\n3 4 1 2\n101",
"output": "NO"
},
{
"input": "3\n1 3 2\n01",
"output": "YES"
},
{
"input": "6\n6 2 3 1 4 5\n11110",
"output": "NO"
},
{
"input": "3\n2 1 3\n01",
"output": "NO"
},
{
"input": "5\n1 5 4 3 2\n0111",
"output": "YES"
},
{
"input": "6\n1 2 6 3 4 5\n11110",
"output": "NO"
},
{
"input": "7\n2 3 1 7 6 5 4\n011111",
"output": "NO"
},
{
"input": "6\n5 6 1 2 3 4\n01111",
"output": "NO"
},
{
"input": "4\n1 2 4 3\n001",
"output": "YES"
},
{
"input": "6\n1 2 3 6 4 5\n11001",
"output": "NO"
},
{
"input": "11\n9 8 10 11 1 2 3 4 5 6 7\n1101111111",
"output": "NO"
},
{
"input": "5\n1 5 3 4 2\n0101",
"output": "NO"
},
{
"input": "10\n9 1 2 3 7 8 5 6 4 10\n110111100",
"output": "NO"
},
{
"input": "7\n1 2 7 3 4 5 6\n111011",
"output": "NO"
},
{
"input": "10\n3 10 1 2 6 4 5 7 8 9\n111111001",
"output": "NO"
},
{
"input": "10\n1 3 6 5 2 9 7 8 4 10\n001101111",
"output": "NO"
},
{
"input": "10\n1 8 9 7 6 10 4 2 3 5\n111111101",
"output": "NO"
},
{
"input": "7\n1 2 5 3 6 4 7\n111011",
"output": "NO"
},
{
"input": "4\n2 4 3 1\n100",
"output": "NO"
},
{
"input": "6\n1 2 3 4 6 5\n00001",
"output": "YES"
},
{
"input": "6\n2 1 3 4 5 6\n10000",
"output": "YES"
},
{
"input": "5\n3 2 1 5 4\n1100",
"output": "NO"
},
{
"input": "9\n2 1 3 6 5 4 7 9 8\n10011001",
"output": "YES"
},
{
"input": "8\n2 6 4 1 5 7 3 8\n1010010",
"output": "NO"
},
{
"input": "5\n1 2 4 5 3\n1101",
"output": "NO"
},
{
"input": "6\n1 3 5 2 4 6\n00110",
"output": "NO"
},
{
"input": "6\n1 3 6 2 4 5\n10111",
"output": "NO"
},
{
"input": "9\n9 8 7 6 5 4 3 1 2\n11111110",
"output": "NO"
},
{
"input": "10\n6 7 8 9 10 1 2 3 4 5\n111111110",
"output": "NO"
},
{
"input": "8\n6 1 7 8 3 2 5 4\n1011111",
"output": "NO"
},
{
"input": "70\n4 65 66 30 67 16 39 35 57 14 42 51 5 21 61 53 63 13 60 29 68 70 69 46 20 2 43 47 49 52 26 44 54 62 25 19 12 28 27 24 18 36 6 33 7 8 11 1 45 32 64 38 23 22 56 59 15 9 41 37 40 55 3 31 34 48 50 10 17 58\n111111101101111111111110101111111111111101101111010010110011011110010",
"output": "NO"
},
{
"input": "5\n5 3 2 4 1\n0100",
"output": "NO"
},
{
"input": "6\n3 2 6 5 1 4\n11011",
"output": "NO"
},
{
"input": "6\n1 2 4 5 6 3\n10011",
"output": "NO"
},
{
"input": "7\n1 7 3 2 5 6 4\n111001",
"output": "NO"
}
] | 1,521,031,005
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 3
| 701
| 20,275,200
|
n=int(input())
sp=input().split()
allow=list(input())
sp=list(map(lambda x: int(x),sp))
copy=sp[:]
newsp=sp[:]
allow=list(map(lambda x: int(x), allow))
while True:
for i in range(len(allow)-1):
if allow[i]==1:
if sp[i]>sp[i+1]:
sp[i+1],sp[i]=sp[i],sp[i+1]
else:
continue
if newsp==sp:
break
newsp=sp[:]
if sp==sorted(copy):
print('YES')
else:
print('NO')
|
Title: Swap Adjacent Elements
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You have an array *a* consisting of *n* integers. Each integer from 1 to *n* appears exactly once in this array.
For some indices *i* (1<=≤<=*i*<=≤<=*n*<=-<=1) it is possible to swap *i*-th element with (*i*<=+<=1)-th, for other indices it is not possible. You may perform any number of swapping operations any order. There is no limit on the number of times you swap *i*-th element with (*i*<=+<=1)-th (if the position is not forbidden).
Can you make this array sorted in ascending order performing some sequence of swapping operations?
Input Specification:
The first line contains one integer *n* (2<=≤<=*n*<=≤<=200000) — the number of elements in the array.
The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=200000) — the elements of the array. Each integer from 1 to *n* appears exactly once.
The third line contains a string of *n*<=-<=1 characters, each character is either 0 or 1. If *i*-th character is 1, then you can swap *i*-th element with (*i*<=+<=1)-th any number of times, otherwise it is forbidden to swap *i*-th element with (*i*<=+<=1)-th.
Output Specification:
If it is possible to sort the array in ascending order using any sequence of swaps you are allowed to make, print YES. Otherwise, print NO.
Demo Input:
['6\n1 2 5 3 4 6\n01110\n', '6\n1 2 5 3 4 6\n01010\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first example you may swap *a*<sub class="lower-index">3</sub> and *a*<sub class="lower-index">4</sub>, and then swap *a*<sub class="lower-index">4</sub> and *a*<sub class="lower-index">5</sub>.
|
```python
n=int(input())
sp=input().split()
allow=list(input())
sp=list(map(lambda x: int(x),sp))
copy=sp[:]
newsp=sp[:]
allow=list(map(lambda x: int(x), allow))
while True:
for i in range(len(allow)-1):
if allow[i]==1:
if sp[i]>sp[i+1]:
sp[i+1],sp[i]=sp[i],sp[i+1]
else:
continue
if newsp==sp:
break
newsp=sp[:]
if sp==sorted(copy):
print('YES')
else:
print('NO')
```
| 0
|
|
919
|
E
|
Congruence Equation
|
PROGRAMMING
| 2,100
|
[
"chinese remainder theorem",
"math",
"number theory"
] | null | null |
Given an integer $x$. Your task is to find out how many positive integers $n$ ($1 \leq n \leq x$) satisfy $$n \cdot a^n \equiv b \quad (\textrm{mod}\;p),$$ where $a, b, p$ are all known constants.
|
The only line contains four integers $a,b,p,x$ ($2 \leq p \leq 10^6+3$, $1 \leq a,b < p$, $1 \leq x \leq 10^{12}$). It is guaranteed that $p$ is a prime.
|
Print a single integer: the number of possible answers $n$.
|
[
"2 3 5 8\n",
"4 6 7 13\n",
"233 233 10007 1\n"
] |
[
"2\n",
"1\n",
"1\n"
] |
In the first sample, we can see that $n=2$ and $n=8$ are possible answers.
| 2,000
|
[
{
"input": "2 3 5 8",
"output": "2"
},
{
"input": "4 6 7 13",
"output": "1"
},
{
"input": "233 233 10007 1",
"output": "1"
},
{
"input": "338792 190248 339821 152634074578",
"output": "449263"
},
{
"input": "629260 663548 739463 321804928248",
"output": "434818"
},
{
"input": "656229 20757 818339 523535590429",
"output": "639482"
},
{
"input": "1000002 1000002 1000003 1000000000000",
"output": "999998"
},
{
"input": "345 2746 1000003 5000000",
"output": "4"
},
{
"input": "802942 824238 836833 605503824329",
"output": "723664"
},
{
"input": "1 1 2 880336470888",
"output": "440168235444"
},
{
"input": "2 2 3 291982585081",
"output": "97327528361"
},
{
"input": "699601 39672 1000003 391631540387",
"output": "391905"
},
{
"input": "9 1 11 792412106895",
"output": "72037464262"
},
{
"input": "85 535 541 680776274925",
"output": "1258366493"
},
{
"input": "3153 4504 7919 903755230811",
"output": "114124839"
},
{
"input": "10021 18448 20719 509684975746",
"output": "24599907"
},
{
"input": "66634 64950 66889 215112576953",
"output": "3215965"
},
{
"input": "585128 179390 836839 556227387547",
"output": "664796"
},
{
"input": "299973 381004 1000003 140225320941",
"output": "140481"
},
{
"input": "941641 359143 1000003 851964325687",
"output": "851984"
},
{
"input": "500719 741769 1000003 596263138944",
"output": "596056"
},
{
"input": "142385 83099 1000003 308002143690",
"output": "307937"
},
{
"input": "891986 300056 999983 445202944465",
"output": "445451"
},
{
"input": "620328 378284 999983 189501757723",
"output": "189574"
},
{
"input": "524578 993938 999979 535629124351",
"output": "535377"
},
{
"input": "419620 683571 999979 243073161801",
"output": "243611"
},
{
"input": "339138 549930 999883 962863668031",
"output": "962803"
},
{
"input": "981603 635385 999233 143056117417",
"output": "143126"
},
{
"input": "416133 340425 998561 195227456237",
"output": "195090"
},
{
"input": "603835 578057 996323 932597132292",
"output": "936103"
},
{
"input": "997998 999323 1000003 999968459613",
"output": "999964"
},
{
"input": "997642 996418 999983 999997055535",
"output": "1000007"
},
{
"input": "812415 818711 820231 999990437063",
"output": "1219017"
},
{
"input": "994574 993183 1000003 999974679059",
"output": "999965"
},
{
"input": "999183 998981 999979 999970875649",
"output": "999996"
},
{
"input": "1 1 2 1",
"output": "1"
},
{
"input": "699601 39672 1000003 1",
"output": "0"
},
{
"input": "4 1 5 15",
"output": "2"
},
{
"input": "912896 91931 999983 236754",
"output": "1"
},
{
"input": "154814 35966 269041 1234567",
"output": "4"
},
{
"input": "1 2 5 470854713201",
"output": "94170942640"
},
{
"input": "3 27 29 968042258975",
"output": "33380767549"
},
{
"input": "473 392 541 108827666667",
"output": "201160200"
},
{
"input": "8 27 29 193012366642",
"output": "6655598851"
},
{
"input": "1302 504 1987 842777827450",
"output": "424145863"
},
{
"input": "693528 398514 1000003 1000000000000",
"output": "999995"
},
{
"input": "533806 514846 1000003 999999999999",
"output": "999997"
},
{
"input": "812509 699256 1000003 999999999999",
"output": "999997"
},
{
"input": "28361 465012 1000003 1000000000000",
"output": "999996"
},
{
"input": "28361 465012 1000003 12693229",
"output": "1"
},
{
"input": "28361 465012 1000003 13271836",
"output": "2"
},
{
"input": "28361 465012 1000003 13271835",
"output": "1"
},
{
"input": "28361 465012 1000003 13421000",
"output": "4"
},
{
"input": "28361 465012 1000003 19609900",
"output": "9"
},
{
"input": "28361 465012 1000003 12693228",
"output": "0"
},
{
"input": "1 1 2 1000000000000",
"output": "500000000000"
},
{
"input": "1 1000002 1000003 1000000000000",
"output": "999997"
},
{
"input": "1 44444 1000003 999999999998",
"output": "999997"
},
{
"input": "2 1000002 1000003 1000000000000",
"output": "1000001"
},
{
"input": "2 23333 1000003 1000000000000",
"output": "999999"
}
] | 1,648,638,110
| 2,147,483,647
|
PyPy 3-64
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 4
| 3,000
| 22,425,600
|
def pow_mod(a, n, mod):
if n == 0:
return 1
if n % 2 == 0:
return (pow_mod(a, n // 2, mod) ** 2) % mod
return (pow_mod(a, n - 1, mod) * a) % mod
def phi(n):
res = n
p = 2
while p * p <= n:
if n % p == 0:
res -= res // p
while n % p == 0:
n //= p
p += 1
if n > 1:
res -= res // n
return res
def crt2(a, r):
x = r[0] * a[1] * pow_mod(a[1], phi(a[0]) - 1, a[0])
x += r[1] * a[0] * pow_mod(a[0], phi(a[1]) - 1, a[1])
return x % (a[0] * a[1])
def main():
a, b, p, y = map(int, input().split())
powers = [1, a]
while powers[-1] % p != 1:
powers.append((powers[-1] * a) % p)
if len(powers) > 1:
powers.pop()
d = len(powers)
q = 0
t = [pow_mod(i, p - 2, p) for i in range(1, p)]
ans = 0
for i in range(p - 1):
if t[i] == b:
q = i
for i in range(d):
x = crt2([p, d], [(t[powers[i] - 1] * b) % p, i])
if y % (d * p) >= x:
ans += y // (d * p) + 1
else:
ans += y // (d * p)
print(ans)
main()
|
Title: Congruence Equation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Given an integer $x$. Your task is to find out how many positive integers $n$ ($1 \leq n \leq x$) satisfy $$n \cdot a^n \equiv b \quad (\textrm{mod}\;p),$$ where $a, b, p$ are all known constants.
Input Specification:
The only line contains four integers $a,b,p,x$ ($2 \leq p \leq 10^6+3$, $1 \leq a,b < p$, $1 \leq x \leq 10^{12}$). It is guaranteed that $p$ is a prime.
Output Specification:
Print a single integer: the number of possible answers $n$.
Demo Input:
['2 3 5 8\n', '4 6 7 13\n', '233 233 10007 1\n']
Demo Output:
['2\n', '1\n', '1\n']
Note:
In the first sample, we can see that $n=2$ and $n=8$ are possible answers.
|
```python
def pow_mod(a, n, mod):
if n == 0:
return 1
if n % 2 == 0:
return (pow_mod(a, n // 2, mod) ** 2) % mod
return (pow_mod(a, n - 1, mod) * a) % mod
def phi(n):
res = n
p = 2
while p * p <= n:
if n % p == 0:
res -= res // p
while n % p == 0:
n //= p
p += 1
if n > 1:
res -= res // n
return res
def crt2(a, r):
x = r[0] * a[1] * pow_mod(a[1], phi(a[0]) - 1, a[0])
x += r[1] * a[0] * pow_mod(a[0], phi(a[1]) - 1, a[1])
return x % (a[0] * a[1])
def main():
a, b, p, y = map(int, input().split())
powers = [1, a]
while powers[-1] % p != 1:
powers.append((powers[-1] * a) % p)
if len(powers) > 1:
powers.pop()
d = len(powers)
q = 0
t = [pow_mod(i, p - 2, p) for i in range(1, p)]
ans = 0
for i in range(p - 1):
if t[i] == b:
q = i
for i in range(d):
x = crt2([p, d], [(t[powers[i] - 1] * b) % p, i])
if y % (d * p) >= x:
ans += y // (d * p) + 1
else:
ans += y // (d * p)
print(ans)
main()
```
| 0
|
|
862
|
A
|
Mahmoud and Ehab and the MEX
|
PROGRAMMING
| 1,000
|
[
"greedy",
"implementation"
] | null | null |
Dr. Evil kidnapped Mahmoud and Ehab in the evil land because of their performance in the Evil Olympiad in Informatics (EOI). He decided to give them some problems to let them go.
Dr. Evil is interested in sets, He has a set of *n* integers. Dr. Evil calls a set of integers evil if the MEX of it is exactly *x*. the MEX of a set of integers is the minimum non-negative integer that doesn't exist in it. For example, the MEX of the set {0,<=2,<=4} is 1 and the MEX of the set {1,<=2,<=3} is 0 .
Dr. Evil is going to make his set evil. To do this he can perform some operations. During each operation he can add some non-negative integer to his set or erase some element from it. What is the minimal number of operations Dr. Evil has to perform to make his set evil?
|
The first line contains two integers *n* and *x* (1<=≤<=*n*<=≤<=100, 0<=≤<=*x*<=≤<=100) — the size of the set Dr. Evil owns, and the desired MEX.
The second line contains *n* distinct non-negative integers not exceeding 100 that represent the set.
|
The only line should contain one integer — the minimal number of operations Dr. Evil should perform.
|
[
"5 3\n0 4 5 6 7\n",
"1 0\n0\n",
"5 0\n1 2 3 4 5\n"
] |
[
"2\n",
"1\n",
"0\n"
] |
For the first test case Dr. Evil should add 1 and 2 to the set performing 2 operations.
For the second test case Dr. Evil should erase 0 from the set. After that, the set becomes empty, so the MEX of it is 0.
In the third test case the set is already evil.
| 500
|
[
{
"input": "5 3\n0 4 5 6 7",
"output": "2"
},
{
"input": "1 0\n0",
"output": "1"
},
{
"input": "5 0\n1 2 3 4 5",
"output": "0"
},
{
"input": "10 5\n57 1 47 9 93 37 76 70 78 15",
"output": "4"
},
{
"input": "10 5\n99 98 93 97 95 100 92 94 91 96",
"output": "5"
},
{
"input": "10 5\n1 2 3 4 59 45 0 58 51 91",
"output": "0"
},
{
"input": "100 100\n79 13 21 11 3 87 28 40 29 4 96 34 8 78 61 46 33 45 99 30 92 67 22 97 39 86 73 31 74 44 62 55 57 2 54 63 80 69 25 48 77 98 17 93 15 16 89 12 43 23 37 95 14 38 83 90 49 56 72 10 20 0 50 71 70 88 19 1 76 81 52 41 82 68 85 47 6 7 35 60 18 64 75 84 27 9 65 91 94 42 53 24 66 26 59 36 51 32 5 58",
"output": "0"
},
{
"input": "100 50\n95 78 46 92 80 18 79 58 30 72 19 89 39 29 44 65 15 100 59 8 96 9 62 67 41 42 82 14 57 32 71 77 40 5 7 51 28 53 85 23 16 35 3 91 6 11 75 61 17 66 13 47 36 56 10 22 83 60 48 24 26 97 4 33 76 86 70 0 34 64 52 43 21 49 55 74 1 73 81 25 54 63 94 84 20 68 87 12 31 88 38 93 37 90 98 69 99 45 27 2",
"output": "0"
},
{
"input": "100 33\n28 11 79 92 88 62 77 72 7 41 96 97 67 84 44 8 81 35 38 1 64 68 46 17 98 83 31 12 74 21 2 22 47 6 36 75 65 61 37 26 25 45 59 48 100 51 93 76 78 49 3 57 16 4 87 29 55 82 70 39 53 0 60 15 24 71 58 20 66 89 95 42 13 43 63 90 85 52 50 30 54 40 56 23 27 34 32 18 10 19 69 9 99 73 91 14 5 80 94 86",
"output": "0"
},
{
"input": "99 33\n25 76 41 95 55 20 47 59 58 84 87 92 16 27 35 65 72 63 93 54 36 96 15 86 5 69 24 46 67 73 48 60 40 6 61 74 97 10 100 8 52 26 77 18 7 62 37 2 14 66 11 56 68 91 0 64 75 99 30 21 53 1 89 81 3 98 12 88 39 38 29 83 22 90 9 28 45 43 78 44 32 57 4 50 70 17 13 51 80 85 71 94 82 19 34 42 23 79 49",
"output": "1"
},
{
"input": "100 100\n65 56 84 46 44 33 99 74 62 72 93 67 43 92 75 88 38 34 66 12 55 76 58 90 78 8 14 45 97 59 48 32 64 18 39 89 31 51 54 81 29 36 70 77 40 22 49 27 3 1 73 13 98 42 87 37 2 57 4 6 50 25 23 79 28 86 68 61 80 17 19 10 15 63 52 11 35 60 21 16 24 85 30 91 7 5 69 20 71 82 53 94 41 95 96 9 26 83 0 47",
"output": "0"
},
{
"input": "100 100\n58 88 12 71 22 1 40 19 73 20 67 48 57 17 69 36 100 35 33 37 72 55 52 8 89 85 47 42 78 70 81 86 11 9 68 99 6 16 21 61 53 98 23 62 32 59 51 0 87 24 50 30 65 10 80 95 7 92 25 74 60 79 91 5 13 31 75 38 90 94 46 66 93 34 14 41 28 2 76 84 43 96 3 56 49 82 27 77 64 63 4 45 18 29 54 39 15 26 83 44",
"output": "2"
},
{
"input": "89 100\n58 96 17 41 86 34 28 84 18 40 8 77 87 89 68 79 33 35 53 49 0 6 22 12 72 90 48 55 21 50 56 62 75 2 37 95 69 74 14 20 44 46 27 32 31 59 63 60 10 85 71 70 38 52 94 30 61 51 80 26 36 23 39 47 76 45 100 57 15 78 97 66 54 13 99 16 93 73 24 4 83 5 98 81 92 25 29 88 65",
"output": "13"
},
{
"input": "100 50\n7 95 24 76 81 78 60 69 83 84 100 1 65 31 48 92 73 39 18 89 38 97 10 42 8 55 98 51 21 90 62 77 16 91 0 94 4 37 19 17 67 35 45 41 56 20 15 85 75 28 59 27 12 54 61 68 36 5 79 93 66 11 70 49 50 34 30 25 96 46 64 14 32 22 47 40 58 23 43 9 87 82 26 53 80 52 3 86 13 99 33 71 6 88 57 74 2 44 72 63",
"output": "2"
},
{
"input": "77 0\n27 8 20 92 21 41 53 98 17 65 67 35 81 11 55 49 61 44 2 66 51 89 40 28 52 62 86 91 64 24 18 5 94 82 96 99 71 6 39 83 26 29 16 30 45 97 80 90 69 12 13 33 76 73 46 19 78 56 88 38 42 34 57 77 47 4 59 58 7 100 95 72 9 74 15 43 54",
"output": "0"
},
{
"input": "100 50\n55 36 0 32 81 6 17 43 24 13 30 19 8 59 71 45 15 74 3 41 99 42 86 47 2 94 35 1 66 95 38 49 4 27 96 89 34 44 92 25 51 39 54 28 80 77 20 14 48 40 68 56 31 63 33 78 69 37 18 26 83 70 23 82 91 65 67 52 61 53 7 22 60 21 12 73 72 87 75 100 90 29 64 79 98 85 5 62 93 84 50 46 97 58 57 16 9 10 76 11",
"output": "1"
},
{
"input": "77 0\n12 8 19 87 9 54 55 86 97 7 27 85 25 48 94 73 26 1 13 57 72 69 76 39 38 91 75 40 42 28 93 21 70 84 65 11 60 90 20 95 66 89 59 47 34 99 6 61 52 100 50 3 77 81 82 53 15 24 0 45 44 14 68 96 58 5 18 35 10 98 29 74 92 49 83 71 17",
"output": "1"
},
{
"input": "100 70\n25 94 66 65 10 99 89 6 70 31 7 40 20 92 64 27 21 72 77 98 17 43 47 44 48 81 38 56 100 39 90 22 88 76 3 83 86 29 33 55 82 79 49 11 2 16 12 78 85 69 32 97 26 15 53 24 23 91 51 67 34 35 52 5 62 50 95 18 71 13 75 8 30 42 93 36 45 60 63 46 57 41 87 0 84 54 74 37 4 58 28 19 96 61 80 9 1 14 73 68",
"output": "2"
},
{
"input": "89 19\n14 77 85 81 79 38 91 45 55 51 50 11 62 67 73 76 2 27 16 23 3 29 65 98 78 17 4 58 22 20 34 66 64 31 72 5 32 44 12 75 80 47 18 25 99 0 61 56 71 84 48 88 10 7 86 8 49 24 43 21 37 28 33 54 46 57 40 89 36 97 6 96 39 95 26 74 1 69 9 100 52 30 83 87 68 60 92 90 35",
"output": "2"
},
{
"input": "89 100\n69 61 56 45 11 41 42 32 28 29 0 76 7 65 13 35 36 82 10 39 26 34 38 40 92 12 17 54 24 46 88 70 66 27 100 52 85 62 22 48 86 68 21 49 53 94 67 20 1 90 77 84 31 87 58 47 95 33 4 72 93 83 8 51 91 80 99 43 71 19 44 59 98 97 64 9 81 16 79 63 25 37 3 75 2 55 50 6 18",
"output": "13"
},
{
"input": "77 0\n38 76 24 74 42 88 29 75 96 46 90 32 59 97 98 60 41 57 80 37 100 49 25 63 95 31 61 68 53 78 27 66 84 48 94 83 30 26 36 99 71 62 45 47 70 28 35 54 34 85 79 43 91 72 86 33 67 92 77 65 69 52 82 55 87 64 56 40 50 44 51 73 89 81 58 93 39",
"output": "0"
},
{
"input": "89 100\n38 90 80 64 35 44 56 11 15 89 23 12 49 70 72 60 63 85 92 10 45 83 8 88 41 33 16 6 61 76 62 71 87 13 25 77 74 0 1 37 96 93 7 94 21 82 34 78 4 73 65 20 81 95 50 32 48 17 69 55 68 5 51 27 53 43 91 67 59 46 86 84 99 24 22 3 97 98 40 36 26 58 57 9 42 30 52 2 47",
"output": "11"
},
{
"input": "77 0\n55 71 78 86 68 35 53 10 59 32 81 19 74 97 62 61 93 87 96 44 25 18 43 82 84 16 34 48 92 39 64 36 49 91 45 76 95 31 57 29 75 79 13 2 14 24 52 23 33 20 47 99 63 15 5 80 58 67 12 3 85 6 1 27 73 90 4 42 37 70 8 11 89 77 9 22 94",
"output": "0"
},
{
"input": "77 0\n12 75 31 71 44 8 3 82 21 77 50 29 57 74 40 10 15 42 84 2 100 9 28 72 92 0 49 11 90 55 17 36 19 54 68 52 4 69 97 91 5 39 59 45 89 62 53 83 16 94 76 60 95 47 30 51 7 48 20 70 67 32 58 78 63 34 56 93 99 88 24 1 66 22 25 14 13",
"output": "1"
},
{
"input": "100 70\n91 82 8 85 26 25 95 97 40 87 81 93 7 73 38 94 64 96 74 18 90 19 65 68 72 61 23 43 36 41 60 88 30 33 71 24 52 39 15 3 16 89 86 79 55 4 9 58 67 44 46 29 6 48 84 69 27 21 78 54 51 57 80 53 76 50 47 77 45 12 34 10 100 0 17 31 56 99 98 11 92 5 2 42 32 59 66 62 37 63 28 75 35 1 22 13 83 49 20 14",
"output": "0"
},
{
"input": "77 0\n51 5 81 62 30 22 11 0 83 16 79 85 52 70 69 10 8 47 58 3 24 34 44 14 82 66 99 17 28 31 64 67 23 49 94 45 4 12 27 15 21 6 43 72 87 2 63 92 35 39 59 9 90 78 93 20 65 36 60 89 50 41 61 84 77 86 76 100 38 68 53 97 96 95 7 19 88",
"output": "1"
},
{
"input": "1 100\n0",
"output": "99"
},
{
"input": "1 0\n100",
"output": "0"
},
{
"input": "1 100\n100",
"output": "101"
},
{
"input": "2 100\n0 100",
"output": "100"
},
{
"input": "5 5\n1 2 3 4 5",
"output": "2"
},
{
"input": "5 3\n0 3 4 5 6",
"output": "3"
},
{
"input": "7 10\n0 1 2 3 4 5 10",
"output": "5"
},
{
"input": "2 2\n0 2",
"output": "2"
},
{
"input": "2 1\n1 2",
"output": "2"
},
{
"input": "5 1\n1 2 3 4 5",
"output": "2"
},
{
"input": "5 2\n1 2 3 4 5",
"output": "2"
},
{
"input": "5 6\n0 1 2 3 4",
"output": "1"
},
{
"input": "3 2\n3 4 5",
"output": "2"
}
] | 1,597,928,278
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 39
| 108
| 307,200
|
import sys
str1 = sys.stdin.readline()
num1, num2 = int(str1.split(" ")[0]), int(str1.split(" ")[1])
str2 = sys.stdin.readline()
lst = []
for i in range(num1):
lst.append(int(str2.split(" ")[i]))
result = 0
com = list(range(num2))
for i in range(num2):
if i not in lst:
result += 1
for i in range(num1):
if lst[i] > num2:
continue
if lst[i] == num2:
result += 1
print(result)
|
Title: Mahmoud and Ehab and the MEX
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Dr. Evil kidnapped Mahmoud and Ehab in the evil land because of their performance in the Evil Olympiad in Informatics (EOI). He decided to give them some problems to let them go.
Dr. Evil is interested in sets, He has a set of *n* integers. Dr. Evil calls a set of integers evil if the MEX of it is exactly *x*. the MEX of a set of integers is the minimum non-negative integer that doesn't exist in it. For example, the MEX of the set {0,<=2,<=4} is 1 and the MEX of the set {1,<=2,<=3} is 0 .
Dr. Evil is going to make his set evil. To do this he can perform some operations. During each operation he can add some non-negative integer to his set or erase some element from it. What is the minimal number of operations Dr. Evil has to perform to make his set evil?
Input Specification:
The first line contains two integers *n* and *x* (1<=≤<=*n*<=≤<=100, 0<=≤<=*x*<=≤<=100) — the size of the set Dr. Evil owns, and the desired MEX.
The second line contains *n* distinct non-negative integers not exceeding 100 that represent the set.
Output Specification:
The only line should contain one integer — the minimal number of operations Dr. Evil should perform.
Demo Input:
['5 3\n0 4 5 6 7\n', '1 0\n0\n', '5 0\n1 2 3 4 5\n']
Demo Output:
['2\n', '1\n', '0\n']
Note:
For the first test case Dr. Evil should add 1 and 2 to the set performing 2 operations.
For the second test case Dr. Evil should erase 0 from the set. After that, the set becomes empty, so the MEX of it is 0.
In the third test case the set is already evil.
|
```python
import sys
str1 = sys.stdin.readline()
num1, num2 = int(str1.split(" ")[0]), int(str1.split(" ")[1])
str2 = sys.stdin.readline()
lst = []
for i in range(num1):
lst.append(int(str2.split(" ")[i]))
result = 0
com = list(range(num2))
for i in range(num2):
if i not in lst:
result += 1
for i in range(num1):
if lst[i] > num2:
continue
if lst[i] == num2:
result += 1
print(result)
```
| 3
|
|
208
|
A
|
Dubstep
|
PROGRAMMING
| 900
|
[
"strings"
] | null | null |
Vasya works as a DJ in the best Berland nightclub, and he often uses dubstep music in his performance. Recently, he has decided to take a couple of old songs and make dubstep remixes from them.
Let's assume that a song consists of some number of words. To make the dubstep remix of this song, Vasya inserts a certain number of words "WUB" before the first word of the song (the number may be zero), after the last word (the number may be zero), and between words (at least one between any pair of neighbouring words), and then the boy glues together all the words, including "WUB", in one string and plays the song at the club.
For example, a song with words "I AM X" can transform into a dubstep remix as "WUBWUBIWUBAMWUBWUBX" and cannot transform into "WUBWUBIAMWUBX".
Recently, Petya has heard Vasya's new dubstep track, but since he isn't into modern music, he decided to find out what was the initial song that Vasya remixed. Help Petya restore the original song.
|
The input consists of a single non-empty string, consisting only of uppercase English letters, the string's length doesn't exceed 200 characters. It is guaranteed that before Vasya remixed the song, no word contained substring "WUB" in it; Vasya didn't change the word order. It is also guaranteed that initially the song had at least one word.
|
Print the words of the initial song that Vasya used to make a dubsteb remix. Separate the words with a space.
|
[
"WUBWUBABCWUB\n",
"WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB\n"
] |
[
"ABC ",
"WE ARE THE CHAMPIONS MY FRIEND "
] |
In the first sample: "WUBWUBABCWUB" = "WUB" + "WUB" + "ABC" + "WUB". That means that the song originally consisted of a single word "ABC", and all words "WUB" were added by Vasya.
In the second sample Vasya added a single word "WUB" between all neighbouring words, in the beginning and in the end, except for words "ARE" and "THE" — between them Vasya added two "WUB".
| 500
|
[
{
"input": "WUBWUBABCWUB",
"output": "ABC "
},
{
"input": "WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB",
"output": "WE ARE THE CHAMPIONS MY FRIEND "
},
{
"input": "WUBWUBWUBSR",
"output": "SR "
},
{
"input": "RWUBWUBWUBLWUB",
"output": "R L "
},
{
"input": "ZJWUBWUBWUBJWUBWUBWUBL",
"output": "ZJ J L "
},
{
"input": "CWUBBWUBWUBWUBEWUBWUBWUBQWUBWUBWUB",
"output": "C B E Q "
},
{
"input": "WUBJKDWUBWUBWBIRAQKFWUBWUBYEWUBWUBWUBWVWUBWUB",
"output": "JKD WBIRAQKF YE WV "
},
{
"input": "WUBKSDHEMIXUJWUBWUBRWUBWUBWUBSWUBWUBWUBHWUBWUBWUB",
"output": "KSDHEMIXUJ R S H "
},
{
"input": "OGWUBWUBWUBXWUBWUBWUBIWUBWUBWUBKOWUBWUB",
"output": "OG X I KO "
},
{
"input": "QWUBQQWUBWUBWUBIWUBWUBWWWUBWUBWUBJOPJPBRH",
"output": "Q QQ I WW JOPJPBRH "
},
{
"input": "VSRNVEATZTLGQRFEGBFPWUBWUBWUBAJWUBWUBWUBPQCHNWUBCWUB",
"output": "VSRNVEATZTLGQRFEGBFP AJ PQCHN C "
},
{
"input": "WUBWUBEWUBWUBWUBIQMJNIQWUBWUBWUBGZZBQZAUHYPWUBWUBWUBPMRWUBWUBWUBDCV",
"output": "E IQMJNIQ GZZBQZAUHYP PMR DCV "
},
{
"input": "WUBWUBWUBFVWUBWUBWUBBPSWUBWUBWUBRXNETCJWUBWUBWUBJDMBHWUBWUBWUBBWUBWUBVWUBWUBB",
"output": "FV BPS RXNETCJ JDMBH B V B "
},
{
"input": "WUBWUBWUBFBQWUBWUBWUBIDFSYWUBWUBWUBCTWDMWUBWUBWUBSXOWUBWUBWUBQIWUBWUBWUBL",
"output": "FBQ IDFSY CTWDM SXO QI L "
},
{
"input": "IWUBWUBQLHDWUBYIIKZDFQWUBWUBWUBCXWUBWUBUWUBWUBWUBKWUBWUBWUBNL",
"output": "I QLHD YIIKZDFQ CX U K NL "
},
{
"input": "KWUBUPDYXGOKUWUBWUBWUBAGOAHWUBIZDWUBWUBWUBIYWUBWUBWUBVWUBWUBWUBPWUBWUBWUBE",
"output": "K UPDYXGOKU AGOAH IZD IY V P E "
},
{
"input": "WUBWUBOWUBWUBWUBIPVCQAFWYWUBWUBWUBQWUBWUBWUBXHDKCPYKCTWWYWUBWUBWUBVWUBWUBWUBFZWUBWUB",
"output": "O IPVCQAFWY Q XHDKCPYKCTWWY V FZ "
},
{
"input": "PAMJGYWUBWUBWUBXGPQMWUBWUBWUBTKGSXUYWUBWUBWUBEWUBWUBWUBNWUBWUBWUBHWUBWUBWUBEWUBWUB",
"output": "PAMJGY XGPQM TKGSXUY E N H E "
},
{
"input": "WUBYYRTSMNWUWUBWUBWUBCWUBWUBWUBCWUBWUBWUBFSYUINDWOBVWUBWUBWUBFWUBWUBWUBAUWUBWUBWUBVWUBWUBWUBJB",
"output": "YYRTSMNWU C C FSYUINDWOBV F AU V JB "
},
{
"input": "WUBWUBYGPYEYBNRTFKOQCWUBWUBWUBUYGRTQEGWLFYWUBWUBWUBFVWUBHPWUBWUBWUBXZQWUBWUBWUBZDWUBWUBWUBM",
"output": "YGPYEYBNRTFKOQC UYGRTQEGWLFY FV HP XZQ ZD M "
},
{
"input": "WUBZVMJWUBWUBWUBFOIMJQWKNZUBOFOFYCCWUBWUBWUBAUWWUBRDRADWUBWUBWUBCHQVWUBWUBWUBKFTWUBWUBWUBW",
"output": "ZVMJ FOIMJQWKNZUBOFOFYCC AUW RDRAD CHQV KFT W "
},
{
"input": "WUBWUBZBKOKHQLGKRVIMZQMQNRWUBWUBWUBDACWUBWUBNZHFJMPEYKRVSWUBWUBWUBPPHGAVVPRZWUBWUBWUBQWUBWUBAWUBG",
"output": "ZBKOKHQLGKRVIMZQMQNR DAC NZHFJMPEYKRVS PPHGAVVPRZ Q A G "
},
{
"input": "WUBWUBJWUBWUBWUBNFLWUBWUBWUBGECAWUBYFKBYJWTGBYHVSSNTINKWSINWSMAWUBWUBWUBFWUBWUBWUBOVWUBWUBLPWUBWUBWUBN",
"output": "J NFL GECA YFKBYJWTGBYHVSSNTINKWSINWSMA F OV LP N "
},
{
"input": "WUBWUBLCWUBWUBWUBZGEQUEATJVIXETVTWUBWUBWUBEXMGWUBWUBWUBRSWUBWUBWUBVWUBWUBWUBTAWUBWUBWUBCWUBWUBWUBQG",
"output": "LC ZGEQUEATJVIXETVT EXMG RS V TA C QG "
},
{
"input": "WUBMPWUBWUBWUBORWUBWUBDLGKWUBWUBWUBVVZQCAAKVJTIKWUBWUBWUBTJLUBZJCILQDIFVZWUBWUBYXWUBWUBWUBQWUBWUBWUBLWUB",
"output": "MP OR DLGK VVZQCAAKVJTIK TJLUBZJCILQDIFVZ YX Q L "
},
{
"input": "WUBNXOLIBKEGXNWUBWUBWUBUWUBGITCNMDQFUAOVLWUBWUBWUBAIJDJZJHFMPVTPOXHPWUBWUBWUBISCIOWUBWUBWUBGWUBWUBWUBUWUB",
"output": "NXOLIBKEGXN U GITCNMDQFUAOVL AIJDJZJHFMPVTPOXHP ISCIO G U "
},
{
"input": "WUBWUBNMMWCZOLYPNBELIYVDNHJUNINWUBWUBWUBDXLHYOWUBWUBWUBOJXUWUBWUBWUBRFHTGJCEFHCGWARGWUBWUBWUBJKWUBWUBSJWUBWUB",
"output": "NMMWCZOLYPNBELIYVDNHJUNIN DXLHYO OJXU RFHTGJCEFHCGWARG JK SJ "
},
{
"input": "SGWLYSAUJOJBNOXNWUBWUBWUBBOSSFWKXPDPDCQEWUBWUBWUBDIRZINODWUBWUBWUBWWUBWUBWUBPPHWUBWUBWUBRWUBWUBWUBQWUBWUBWUBJWUB",
"output": "SGWLYSAUJOJBNOXN BOSSFWKXPDPDCQE DIRZINOD W PPH R Q J "
},
{
"input": "TOWUBWUBWUBGBTBNWUBWUBWUBJVIOJBIZFUUYHUAIEBQLQXPQKZJMPTCWBKPOSAWUBWUBWUBSWUBWUBWUBTOLVXWUBWUBWUBNHWUBWUBWUBO",
"output": "TO GBTBN JVIOJBIZFUUYHUAIEBQLQXPQKZJMPTCWBKPOSA S TOLVX NH O "
},
{
"input": "WUBWUBWSPLAYSZSAUDSWUBWUBWUBUWUBWUBWUBKRWUBWUBWUBRSOKQMZFIYZQUWUBWUBWUBELSHUWUBWUBWUBUKHWUBWUBWUBQXEUHQWUBWUBWUBBWUBWUBWUBR",
"output": "WSPLAYSZSAUDS U KR RSOKQMZFIYZQU ELSHU UKH QXEUHQ B R "
},
{
"input": "WUBXEMWWVUHLSUUGRWUBWUBWUBAWUBXEGILZUNKWUBWUBWUBJDHHKSWUBWUBWUBDTSUYSJHWUBWUBWUBPXFWUBMOHNJWUBWUBWUBZFXVMDWUBWUBWUBZMWUBWUB",
"output": "XEMWWVUHLSUUGR A XEGILZUNK JDHHKS DTSUYSJH PXF MOHNJ ZFXVMD ZM "
},
{
"input": "BMBWUBWUBWUBOQKWUBWUBWUBPITCIHXHCKLRQRUGXJWUBWUBWUBVWUBWUBWUBJCWUBWUBWUBQJPWUBWUBWUBBWUBWUBWUBBMYGIZOOXWUBWUBWUBTAGWUBWUBHWUB",
"output": "BMB OQK PITCIHXHCKLRQRUGXJ V JC QJP B BMYGIZOOX TAG H "
},
{
"input": "CBZNWUBWUBWUBNHWUBWUBWUBYQSYWUBWUBWUBMWUBWUBWUBXRHBTMWUBWUBWUBPCRCWUBWUBWUBTZUYLYOWUBWUBWUBCYGCWUBWUBWUBCLJWUBWUBWUBSWUBWUBWUB",
"output": "CBZN NH YQSY M XRHBTM PCRC TZUYLYO CYGC CLJ S "
},
{
"input": "DPDWUBWUBWUBEUQKWPUHLTLNXHAEKGWUBRRFYCAYZFJDCJLXBAWUBWUBWUBHJWUBOJWUBWUBWUBNHBJEYFWUBWUBWUBRWUBWUBWUBSWUBWWUBWUBWUBXDWUBWUBWUBJWUB",
"output": "DPD EUQKWPUHLTLNXHAEKG RRFYCAYZFJDCJLXBA HJ OJ NHBJEYF R S W XD J "
},
{
"input": "WUBWUBWUBISERPQITVIYERSCNWUBWUBWUBQWUBWUBWUBDGSDIPWUBWUBWUBCAHKDZWEXBIBJVVSKKVQJWUBWUBWUBKIWUBWUBWUBCWUBWUBWUBAWUBWUBWUBPWUBWUBWUBHWUBWUBWUBF",
"output": "ISERPQITVIYERSCN Q DGSDIP CAHKDZWEXBIBJVVSKKVQJ KI C A P H F "
},
{
"input": "WUBWUBWUBIWUBWUBLIKNQVWUBWUBWUBPWUBWUBWUBHWUBWUBWUBMWUBWUBWUBDPRSWUBWUBWUBBSAGYLQEENWXXVWUBWUBWUBXMHOWUBWUBWUBUWUBWUBWUBYRYWUBWUBWUBCWUBWUBWUBY",
"output": "I LIKNQV P H M DPRS BSAGYLQEENWXXV XMHO U YRY C Y "
},
{
"input": "WUBWUBWUBMWUBWUBWUBQWUBWUBWUBITCFEYEWUBWUBWUBHEUWGNDFNZGWKLJWUBWUBWUBMZPWUBWUBWUBUWUBWUBWUBBWUBWUBWUBDTJWUBHZVIWUBWUBWUBPWUBFNHHWUBWUBWUBVTOWUB",
"output": "M Q ITCFEYE HEUWGNDFNZGWKLJ MZP U B DTJ HZVI P FNHH VTO "
},
{
"input": "WUBWUBNDNRFHYJAAUULLHRRDEDHYFSRXJWUBWUBWUBMUJVDTIRSGYZAVWKRGIFWUBWUBWUBHMZWUBWUBWUBVAIWUBWUBWUBDDKJXPZRGWUBWUBWUBSGXWUBWUBWUBIFKWUBWUBWUBUWUBWUBWUBW",
"output": "NDNRFHYJAAUULLHRRDEDHYFSRXJ MUJVDTIRSGYZAVWKRGIF HMZ VAI DDKJXPZRG SGX IFK U W "
},
{
"input": "WUBOJMWRSLAXXHQRTPMJNCMPGWUBWUBWUBNYGMZIXNLAKSQYWDWUBWUBWUBXNIWUBWUBWUBFWUBWUBWUBXMBWUBWUBWUBIWUBWUBWUBINWUBWUBWUBWDWUBWUBWUBDDWUBWUBWUBD",
"output": "OJMWRSLAXXHQRTPMJNCMPG NYGMZIXNLAKSQYWD XNI F XMB I IN WD DD D "
},
{
"input": "WUBWUBWUBREHMWUBWUBWUBXWUBWUBWUBQASNWUBWUBWUBNLSMHLCMTICWUBWUBWUBVAWUBWUBWUBHNWUBWUBWUBNWUBWUBWUBUEXLSFOEULBWUBWUBWUBXWUBWUBWUBJWUBWUBWUBQWUBWUBWUBAWUBWUB",
"output": "REHM X QASN NLSMHLCMTIC VA HN N UEXLSFOEULB X J Q A "
},
{
"input": "WUBWUBWUBSTEZTZEFFIWUBWUBWUBSWUBWUBWUBCWUBFWUBHRJPVWUBWUBWUBDYJUWUBWUBWUBPWYDKCWUBWUBWUBCWUBWUBWUBUUEOGCVHHBWUBWUBWUBEXLWUBWUBWUBVCYWUBWUBWUBMWUBWUBWUBYWUB",
"output": "STEZTZEFFI S C F HRJPV DYJU PWYDKC C UUEOGCVHHB EXL VCY M Y "
},
{
"input": "WPPNMSQOQIWUBWUBWUBPNQXWUBWUBWUBHWUBWUBWUBNFLWUBWUBWUBGWSGAHVJFNUWUBWUBWUBFWUBWUBWUBWCMLRICFSCQQQTNBWUBWUBWUBSWUBWUBWUBKGWUBWUBWUBCWUBWUBWUBBMWUBWUBWUBRWUBWUB",
"output": "WPPNMSQOQI PNQX H NFL GWSGAHVJFNU F WCMLRICFSCQQQTNB S KG C BM R "
},
{
"input": "YZJOOYITZRARKVFYWUBWUBRZQGWUBWUBWUBUOQWUBWUBWUBIWUBWUBWUBNKVDTBOLETKZISTWUBWUBWUBWLWUBQQFMMGSONZMAWUBZWUBWUBWUBQZUXGCWUBWUBWUBIRZWUBWUBWUBLTTVTLCWUBWUBWUBY",
"output": "YZJOOYITZRARKVFY RZQG UOQ I NKVDTBOLETKZIST WL QQFMMGSONZMA Z QZUXGC IRZ LTTVTLC Y "
},
{
"input": "WUBCAXNCKFBVZLGCBWCOAWVWOFKZVQYLVTWUBWUBWUBNLGWUBWUBWUBAMGDZBDHZMRMQMDLIRMIWUBWUBWUBGAJSHTBSWUBWUBWUBCXWUBWUBWUBYWUBZLXAWWUBWUBWUBOHWUBWUBWUBZWUBWUBWUBGBWUBWUBWUBE",
"output": "CAXNCKFBVZLGCBWCOAWVWOFKZVQYLVT NLG AMGDZBDHZMRMQMDLIRMI GAJSHTBS CX Y ZLXAW OH Z GB E "
},
{
"input": "WUBWUBCHXSOWTSQWUBWUBWUBCYUZBPBWUBWUBWUBSGWUBWUBWKWORLRRLQYUUFDNWUBWUBWUBYYGOJNEVEMWUBWUBWUBRWUBWUBWUBQWUBWUBWUBIHCKWUBWUBWUBKTWUBWUBWUBRGSNTGGWUBWUBWUBXCXWUBWUBWUBS",
"output": "CHXSOWTSQ CYUZBPB SG WKWORLRRLQYUUFDN YYGOJNEVEM R Q IHCK KT RGSNTGG XCX S "
},
{
"input": "WUBWUBWUBHJHMSBURXTHXWSCHNAIJOWBHLZGJZDHEDSPWBWACCGQWUBWUBWUBXTZKGIITWUBWUBWUBAWUBWUBWUBVNCXPUBCQWUBWUBWUBIDPNAWUBWUBWUBOWUBWUBWUBYGFWUBWUBWUBMQOWUBWUBWUBKWUBWUBWUBAZVWUBWUBWUBEP",
"output": "HJHMSBURXTHXWSCHNAIJOWBHLZGJZDHEDSPWBWACCGQ XTZKGIIT A VNCXPUBCQ IDPNA O YGF MQO K AZV EP "
},
{
"input": "WUBKYDZOYWZSNGMKJSWAXFDFLTHDHEOGTDBNZMSMKZTVWUBWUBWUBLRMIIWUBWUBWUBGWUBWUBWUBADPSWUBWUBWUBANBWUBWUBPCWUBWUBWUBPWUBWUBWUBGPVNLSWIRFORYGAABUXMWUBWUBWUBOWUBWUBWUBNWUBWUBWUBYWUBWUB",
"output": "KYDZOYWZSNGMKJSWAXFDFLTHDHEOGTDBNZMSMKZTV LRMII G ADPS ANB PC P GPVNLSWIRFORYGAABUXM O N Y "
},
{
"input": "REWUBWUBWUBJDWUBWUBWUBNWUBWUBWUBTWWUBWUBWUBWZDOCKKWUBWUBWUBLDPOVBFRCFWUBWUBAKZIBQKEUAZEEWUBWUBWUBLQYPNPFWUBYEWUBWUBWUBFWUBWUBWUBBPWUBWUBWUBAWWUBWUBWUBQWUBWUBWUBBRWUBWUBWUBXJL",
"output": "RE JD N TW WZDOCKK LDPOVBFRCF AKZIBQKEUAZEE LQYPNPF YE F BP AW Q BR XJL "
},
{
"input": "CUFGJDXGMWUBWUBWUBOMWUBWUBWUBSIEWUBWUBWUBJJWKNOWUBWUBWUBYBHVNRNORGYWUBWUBWUBOAGCAWUBWUBWUBSBLBKTPFKPBIWUBWUBWUBJBWUBWUBWUBRMFCJPGWUBWUBWUBDWUBWUBWUBOJOWUBWUBWUBZPWUBWUBWUBMWUBRWUBWUBWUBFXWWUBWUBWUBO",
"output": "CUFGJDXGM OM SIE JJWKNO YBHVNRNORGY OAGCA SBLBKTPFKPBI JB RMFCJPG D OJO ZP M R FXW O "
},
{
"input": "WUBJZGAEXFMFEWMAKGQLUWUBWUBWUBICYTPQWGENELVYWANKUOJYWUBWUBWUBGWUBWUBWUBHYCJVLPHTUPNEGKCDGQWUBWUBWUBOFWUBWUBWUBCPGSOGZBRPRPVJJEWUBWUBWUBDQBCWUBWUBWUBHWUBWUBWUBMHOHYBMATWUBWUBWUBVWUBWUBWUBSWUBWUBWUBKOWU",
"output": "JZGAEXFMFEWMAKGQLU ICYTPQWGENELVYWANKUOJY G HYCJVLPHTUPNEGKCDGQ OF CPGSOGZBRPRPVJJE DQBC H MHOHYBMAT V S KOWU "
},
{
"input": "A",
"output": "A "
},
{
"input": "WUBA",
"output": "A "
},
{
"input": "WUBWUBA",
"output": "A "
},
{
"input": "AWUBWUBWUB",
"output": "A "
},
{
"input": "AWUBBWUBCWUBD",
"output": "A B C D "
},
{
"input": "WUBWWUBWUBWUBUWUBWUBBWUB",
"output": "W U B "
},
{
"input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
"output": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA "
},
{
"input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
"output": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA "
},
{
"input": "WUWUBBWWUBUB",
"output": "WU BW UB "
},
{
"input": "WUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUABWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUB",
"output": "WUAB "
},
{
"input": "ZWUB",
"output": "Z "
},
{
"input": "WU",
"output": "WU "
},
{
"input": "UB",
"output": "UB "
},
{
"input": "U",
"output": "U "
},
{
"input": "WUBW",
"output": "W "
},
{
"input": "WUBWU",
"output": "WU "
},
{
"input": "WUWUB",
"output": "WU "
},
{
"input": "UBWUB",
"output": "UB "
},
{
"input": "WUWUBUBWUBUWUB",
"output": "WU UB U "
},
{
"input": "WUBWWUBAWUB",
"output": "W A "
},
{
"input": "WUUUUU",
"output": "WUUUUU "
}
] | 1,693,574,728
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 71
| 124
| 0
|
s = input().split("WUB")
s_s = [v for v in s if v!='']
print(' '.join(s_s))
|
Title: Dubstep
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya works as a DJ in the best Berland nightclub, and he often uses dubstep music in his performance. Recently, he has decided to take a couple of old songs and make dubstep remixes from them.
Let's assume that a song consists of some number of words. To make the dubstep remix of this song, Vasya inserts a certain number of words "WUB" before the first word of the song (the number may be zero), after the last word (the number may be zero), and between words (at least one between any pair of neighbouring words), and then the boy glues together all the words, including "WUB", in one string and plays the song at the club.
For example, a song with words "I AM X" can transform into a dubstep remix as "WUBWUBIWUBAMWUBWUBX" and cannot transform into "WUBWUBIAMWUBX".
Recently, Petya has heard Vasya's new dubstep track, but since he isn't into modern music, he decided to find out what was the initial song that Vasya remixed. Help Petya restore the original song.
Input Specification:
The input consists of a single non-empty string, consisting only of uppercase English letters, the string's length doesn't exceed 200 characters. It is guaranteed that before Vasya remixed the song, no word contained substring "WUB" in it; Vasya didn't change the word order. It is also guaranteed that initially the song had at least one word.
Output Specification:
Print the words of the initial song that Vasya used to make a dubsteb remix. Separate the words with a space.
Demo Input:
['WUBWUBABCWUB\n', 'WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB\n']
Demo Output:
['ABC ', 'WE ARE THE CHAMPIONS MY FRIEND ']
Note:
In the first sample: "WUBWUBABCWUB" = "WUB" + "WUB" + "ABC" + "WUB". That means that the song originally consisted of a single word "ABC", and all words "WUB" were added by Vasya.
In the second sample Vasya added a single word "WUB" between all neighbouring words, in the beginning and in the end, except for words "ARE" and "THE" — between them Vasya added two "WUB".
|
```python
s = input().split("WUB")
s_s = [v for v in s if v!='']
print(' '.join(s_s))
```
| 3
|
|
12
|
A
|
Super Agent
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Super Agent
|
2
|
256
|
There is a very secret base in Potatoland where potato mash is made according to a special recipe. The neighbours from Porridgia decided to seize this recipe and to sell it to Pilauland. For this mission they have been preparing special agent Pearlo for many years. When, finally, Pearlo learned all secrets of espionage, he penetrated into the Potatoland territory and reached the secret base.
Now he is standing at the entrance, but to get inside he need to pass combination lock. Minute ago one of the workers entered the password on the terminal and opened the door. The terminal is a square digital keyboard 3<=×<=3 with digits from 1 to 9.
Pearlo knows that the password consists from distinct digits and is probably symmetric with respect to the central button of the terminal. He has heat sensor which allowed him to detect the digits which the worker pressed. Now he wants to check whether the password entered by the worker is symmetric with respect to the central button of the terminal. This fact can Help Pearlo to reduce the number of different possible password combinations.
|
Input contains the matrix of three rows of three symbols each. Symbol «X» means that the corresponding button was pressed, and «.» means that is was not pressed. The matrix may contain no «X», also it may contain no «.».
|
Print YES if the password is symmetric with respect to the central button of the terminal and NO otherwise.
|
[
"XX.\n...\n.XX\n",
"X.X\nX..\n...\n"
] |
[
"YES\n",
"NO\n"
] |
If you are not familiar with the term «central symmetry», you may look into http://en.wikipedia.org/wiki/Central_symmetry
| 0
|
[
{
"input": "XX.\n...\n.XX",
"output": "YES"
},
{
"input": ".X.\n.X.\n.X.",
"output": "YES"
},
{
"input": "XXX\nXXX\nXXX",
"output": "YES"
},
{
"input": "XXX\nX.X\nXXX",
"output": "YES"
},
{
"input": "X..\n.X.\n..X",
"output": "YES"
},
{
"input": "...\nX.X\nX..",
"output": "NO"
},
{
"input": ".X.\nX.X\n.X.",
"output": "YES"
},
{
"input": "X.X\n.X.\nX.X",
"output": "YES"
},
{
"input": "...\n...\n..X",
"output": "NO"
},
{
"input": "XXX\n...\nXXX",
"output": "YES"
},
{
"input": "..X\nX..\n..X",
"output": "NO"
},
{
"input": ".X.\n...\nX.X",
"output": "NO"
},
{
"input": "X.X\nX.X\nX.X",
"output": "YES"
},
{
"input": ".X.\nX.X\nXX.",
"output": "NO"
},
{
"input": "...\nXXX\nXXX",
"output": "NO"
},
{
"input": "XXX\n..X\nXXX",
"output": "NO"
},
{
"input": "X..\nX.X\n.X.",
"output": "NO"
},
{
"input": "...\n..X\nXXX",
"output": "NO"
},
{
"input": "..X\nX.X\nX..",
"output": "YES"
},
{
"input": "..X\n..X\nXXX",
"output": "NO"
},
{
"input": "X..\nX..\nX..",
"output": "NO"
},
{
"input": "XXX\n.X.\nXXX",
"output": "YES"
},
{
"input": "..X\n...\nX..",
"output": "YES"
},
{
"input": "...\n...\nX..",
"output": "NO"
},
{
"input": "...\n...\n.X.",
"output": "NO"
},
{
"input": "...\n...\n..X",
"output": "NO"
},
{
"input": "...\n.X.\nX..",
"output": "NO"
}
] | 1,610,098,582
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 40
| 280
| 0
|
s = "0"
for _ in range(3):
s+= input()
if all(s[i]==s[10-i] for i in range(1,5)):
print("YES")
else:
print("NO")
|
Title: Super Agent
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
There is a very secret base in Potatoland where potato mash is made according to a special recipe. The neighbours from Porridgia decided to seize this recipe and to sell it to Pilauland. For this mission they have been preparing special agent Pearlo for many years. When, finally, Pearlo learned all secrets of espionage, he penetrated into the Potatoland territory and reached the secret base.
Now he is standing at the entrance, but to get inside he need to pass combination lock. Minute ago one of the workers entered the password on the terminal and opened the door. The terminal is a square digital keyboard 3<=×<=3 with digits from 1 to 9.
Pearlo knows that the password consists from distinct digits and is probably symmetric with respect to the central button of the terminal. He has heat sensor which allowed him to detect the digits which the worker pressed. Now he wants to check whether the password entered by the worker is symmetric with respect to the central button of the terminal. This fact can Help Pearlo to reduce the number of different possible password combinations.
Input Specification:
Input contains the matrix of three rows of three symbols each. Symbol «X» means that the corresponding button was pressed, and «.» means that is was not pressed. The matrix may contain no «X», also it may contain no «.».
Output Specification:
Print YES if the password is symmetric with respect to the central button of the terminal and NO otherwise.
Demo Input:
['XX.\n...\n.XX\n', 'X.X\nX..\n...\n']
Demo Output:
['YES\n', 'NO\n']
Note:
If you are not familiar with the term «central symmetry», you may look into http://en.wikipedia.org/wiki/Central_symmetry
|
```python
s = "0"
for _ in range(3):
s+= input()
if all(s[i]==s[10-i] for i in range(1,5)):
print("YES")
else:
print("NO")
```
| 3.93
|
14
|
A
|
Letter
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Letter
|
1
|
64
|
A boy Bob likes to draw. Not long ago he bought a rectangular graph (checked) sheet with *n* rows and *m* columns. Bob shaded some of the squares on the sheet. Having seen his masterpiece, he decided to share it with his elder brother, who lives in Flatland. Now Bob has to send his picture by post, but because of the world economic crisis and high oil prices, he wants to send his creation, but to spend as little money as possible. For each sent square of paper (no matter whether it is shaded or not) Bob has to pay 3.14 burles. Please, help Bob cut out of his masterpiece a rectangle of the minimum cost, that will contain all the shaded squares. The rectangle's sides should be parallel to the sheet's sides.
|
The first line of the input data contains numbers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=50), *n* — amount of lines, and *m* — amount of columns on Bob's sheet. The following *n* lines contain *m* characters each. Character «.» stands for a non-shaded square on the sheet, and «*» — for a shaded square. It is guaranteed that Bob has shaded at least one square.
|
Output the required rectangle of the minimum cost. Study the output data in the sample tests to understand the output format better.
|
[
"6 7\n.......\n..***..\n..*....\n..***..\n..*....\n..***..\n",
"3 3\n***\n*.*\n***\n"
] |
[
"***\n*..\n***\n*..\n***\n",
"***\n*.*\n***\n"
] |
none
| 0
|
[
{
"input": "6 7\n.......\n..***..\n..*....\n..***..\n..*....\n..***..",
"output": "***\n*..\n***\n*..\n***"
},
{
"input": "3 3\n***\n*.*\n***",
"output": "***\n*.*\n***"
},
{
"input": "1 1\n*",
"output": "*"
},
{
"input": "2 1\n*\n*",
"output": "*\n*"
},
{
"input": "5 1\n.\n*\n.\n.\n.",
"output": "*"
},
{
"input": "1 6\n*****.",
"output": "*****"
},
{
"input": "2 2\n..\n*.",
"output": "*"
},
{
"input": "8 2\n..\n..\n..\n..\n..\n*.\n..\n..",
"output": "*"
},
{
"input": "50 1\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n*\n.\n*\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n*\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.",
"output": "*\n.\n*\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n*"
},
{
"input": "2 1\n*\n.",
"output": "*"
},
{
"input": "5 1\n*\n*\n*\n*\n*",
"output": "*\n*\n*\n*\n*"
},
{
"input": "2 2\n*.\n..",
"output": "*"
},
{
"input": "3 4\n...*\n*...\n..*.",
"output": "...*\n*...\n..*."
},
{
"input": "8 2\n**\n**\n**\n**\n**\n**\n**\n**",
"output": "**\n**\n**\n**\n**\n**\n**\n**"
},
{
"input": "50 1\n.\n*\n*\n*\n.\n.\n*\n.\n*\n*\n*\n*\n*\n*\n*\n.\n*\n*\n*\n*\n*\n*\n*\n*\n*\n*\n*\n*\n*\n.\n.\n.\n.\n*\n*\n.\n*\n*\n.\n.\n.\n.\n*\n*\n.\n.\n.\n.\n.\n.",
"output": "*\n*\n*\n.\n.\n*\n.\n*\n*\n*\n*\n*\n*\n*\n.\n*\n*\n*\n*\n*\n*\n*\n*\n*\n*\n*\n*\n*\n.\n.\n.\n.\n*\n*\n.\n*\n*\n.\n.\n.\n.\n*\n*"
}
] | 1,695,705,924
| 4,764
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 0
| 92
| 0
|
n, m = list(map(int, input().split()))
rows = []
for _ in range(n):
rows.append(input())
for (i, r) in enumerate(rows):
if not ('*' in r):
rows.pop(i)
n-=1
left_i = m+1
right_i = -1
for c in range(m):
for r in rows:
if r[c] == '*':
left_i = min(c, left_i)
for c in range(m-1, -1, -1):
for r in rows:
if r[c] == '*':
right_i = max(c, right_i)
print(left_i, right_i)
for _ in rows:
print(_[left_i:right_i+1])
|
Title: Letter
Time Limit: 1 seconds
Memory Limit: 64 megabytes
Problem Description:
A boy Bob likes to draw. Not long ago he bought a rectangular graph (checked) sheet with *n* rows and *m* columns. Bob shaded some of the squares on the sheet. Having seen his masterpiece, he decided to share it with his elder brother, who lives in Flatland. Now Bob has to send his picture by post, but because of the world economic crisis and high oil prices, he wants to send his creation, but to spend as little money as possible. For each sent square of paper (no matter whether it is shaded or not) Bob has to pay 3.14 burles. Please, help Bob cut out of his masterpiece a rectangle of the minimum cost, that will contain all the shaded squares. The rectangle's sides should be parallel to the sheet's sides.
Input Specification:
The first line of the input data contains numbers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=50), *n* — amount of lines, and *m* — amount of columns on Bob's sheet. The following *n* lines contain *m* characters each. Character «.» stands for a non-shaded square on the sheet, and «*» — for a shaded square. It is guaranteed that Bob has shaded at least one square.
Output Specification:
Output the required rectangle of the minimum cost. Study the output data in the sample tests to understand the output format better.
Demo Input:
['6 7\n.......\n..***..\n..*....\n..***..\n..*....\n..***..\n', '3 3\n***\n*.*\n***\n']
Demo Output:
['***\n*..\n***\n*..\n***\n', '***\n*.*\n***\n']
Note:
none
|
```python
n, m = list(map(int, input().split()))
rows = []
for _ in range(n):
rows.append(input())
for (i, r) in enumerate(rows):
if not ('*' in r):
rows.pop(i)
n-=1
left_i = m+1
right_i = -1
for c in range(m):
for r in rows:
if r[c] == '*':
left_i = min(c, left_i)
for c in range(m-1, -1, -1):
for r in rows:
if r[c] == '*':
right_i = max(c, right_i)
print(left_i, right_i)
for _ in rows:
print(_[left_i:right_i+1])
```
| 0
|
258
|
A
|
Little Elephant and Bits
|
PROGRAMMING
| 1,100
|
[
"greedy",
"math"
] | null | null |
The Little Elephant has an integer *a*, written in the binary notation. He wants to write this number on a piece of paper.
To make sure that the number *a* fits on the piece of paper, the Little Elephant ought to delete exactly one any digit from number *a* in the binary record. At that a new number appears. It consists of the remaining binary digits, written in the corresponding order (possible, with leading zeroes).
The Little Elephant wants the number he is going to write on the paper to be as large as possible. Help him find the maximum number that he can obtain after deleting exactly one binary digit and print it in the binary notation.
|
The single line contains integer *a*, written in the binary notation without leading zeroes. This number contains more than 1 and at most 105 digits.
|
In the single line print the number that is written without leading zeroes in the binary notation — the answer to the problem.
|
[
"101\n",
"110010\n"
] |
[
"11\n",
"11010\n"
] |
In the first sample the best strategy is to delete the second digit. That results in number 11<sub class="lower-index">2</sub> = 3<sub class="lower-index">10</sub>.
In the second sample the best strategy is to delete the third or fourth digits — that results in number 11010<sub class="lower-index">2</sub> = 26<sub class="lower-index">10</sub>.
| 500
|
[
{
"input": "101",
"output": "11"
},
{
"input": "110010",
"output": "11010"
},
{
"input": "10000",
"output": "1000"
},
{
"input": "1111111110",
"output": "111111111"
},
{
"input": "10100101011110101",
"output": "1100101011110101"
},
{
"input": "111010010111",
"output": "11110010111"
},
{
"input": "11110111011100000000",
"output": "1111111011100000000"
},
{
"input": "11110010010100001110110101110011110110100111101",
"output": "1111010010100001110110101110011110110100111101"
},
{
"input": "1001011111010010100111111",
"output": "101011111010010100111111"
},
{
"input": "1111111111",
"output": "111111111"
},
{
"input": "1111111111111111111100111101001110110111111000001111110101001101001110011000001011001111111000110101",
"output": "111111111111111111110111101001110110111111000001111110101001101001110011000001011001111111000110101"
},
{
"input": "11010110000100100101111110111001001010011000011011000010010100111010101000111010011101101111110001111000101000001100011101110100",
"output": "1110110000100100101111110111001001010011000011011000010010100111010101000111010011101101111110001111000101000001100011101110100"
},
{
"input": "11111111111111111111111110110111001101100111010010101101101001011100011011000111010011110010101100010001011101011010010100001000011100001101101001100010100001001010010100100001111110100110011000101100001111111011010111001011111110111101000100101001001011",
"output": "1111111111111111111111111110111001101100111010010101101101001011100011011000111010011110010101100010001011101011010010100001000011100001101101001100010100001001010010100100001111110100110011000101100001111111011010111001011111110111101000100101001001011"
},
{
"input": "11100010010010000110101101101100111111001010001101101001001111010110010111001011010000001100110101000101111000001111101111110010000010101110011110101101010110001100011101111011100010011101100111110010111111100110101000000111101000000000110100100101111101000110101010101101001110001110000101011010101100011100100111100010001011010010001100011111110010011010011000111000100111100010110100011010010101011011011111110100001110000011011",
"output": "1110010010010000110101101101100111111001010001101101001001111010110010111001011010000001100110101000101111000001111101111110010000010101110011110101101010110001100011101111011100010011101100111110010111111100110101000000111101000000000110100100101111101000110101010101101001110001110000101011010101100011100100111100010001011010010001100011111110010011010011000111000100111100010110100011010010101011011011111110100001110000011011"
},
{
"input": "11",
"output": "1"
},
{
"input": "111",
"output": "11"
},
{
"input": "111111",
"output": "11111"
},
{
"input": "11111",
"output": "1111"
},
{
"input": "1111",
"output": "111"
}
] | 1,610,146,603
| 2,147,483,647
|
PyPy 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 16
| 2,000
| 9,113,600
|
num = input()
n = int(num, 2)
dig = list(num)
maxi = 0
ans = ""
for i in range(len(num)):
check = num[0:i] + num[i+1:]
if int((check),2) > maxi:
ans = check
maxi = int(check, 2)
print(ans)
|
Title: Little Elephant and Bits
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The Little Elephant has an integer *a*, written in the binary notation. He wants to write this number on a piece of paper.
To make sure that the number *a* fits on the piece of paper, the Little Elephant ought to delete exactly one any digit from number *a* in the binary record. At that a new number appears. It consists of the remaining binary digits, written in the corresponding order (possible, with leading zeroes).
The Little Elephant wants the number he is going to write on the paper to be as large as possible. Help him find the maximum number that he can obtain after deleting exactly one binary digit and print it in the binary notation.
Input Specification:
The single line contains integer *a*, written in the binary notation without leading zeroes. This number contains more than 1 and at most 105 digits.
Output Specification:
In the single line print the number that is written without leading zeroes in the binary notation — the answer to the problem.
Demo Input:
['101\n', '110010\n']
Demo Output:
['11\n', '11010\n']
Note:
In the first sample the best strategy is to delete the second digit. That results in number 11<sub class="lower-index">2</sub> = 3<sub class="lower-index">10</sub>.
In the second sample the best strategy is to delete the third or fourth digits — that results in number 11010<sub class="lower-index">2</sub> = 26<sub class="lower-index">10</sub>.
|
```python
num = input()
n = int(num, 2)
dig = list(num)
maxi = 0
ans = ""
for i in range(len(num)):
check = num[0:i] + num[i+1:]
if int((check),2) > maxi:
ans = check
maxi = int(check, 2)
print(ans)
```
| 0
|
|
34
|
B
|
Sale
|
PROGRAMMING
| 900
|
[
"greedy",
"sortings"
] |
B. Sale
|
2
|
256
|
Once Bob got to a sale of old TV sets. There were *n* TV sets at that sale. TV set with index *i* costs *a**i* bellars. Some TV sets have a negative price — their owners are ready to pay Bob if he buys their useless apparatus. Bob can «buy» any TV sets he wants. Though he's very strong, Bob can carry at most *m* TV sets, and he has no desire to go to the sale for the second time. Please, help Bob find out the maximum sum of money that he can earn.
|
The first line contains two space-separated integers *n* and *m* (1<=≤<=*m*<=≤<=*n*<=≤<=100) — amount of TV sets at the sale, and amount of TV sets that Bob can carry. The following line contains *n* space-separated integers *a**i* (<=-<=1000<=≤<=*a**i*<=≤<=1000) — prices of the TV sets.
|
Output the only number — the maximum sum of money that Bob can earn, given that he can carry at most *m* TV sets.
|
[
"5 3\n-6 0 35 -2 4\n",
"4 2\n7 0 0 -7\n"
] |
[
"8\n",
"7\n"
] |
none
| 1,000
|
[
{
"input": "5 3\n-6 0 35 -2 4",
"output": "8"
},
{
"input": "4 2\n7 0 0 -7",
"output": "7"
},
{
"input": "6 6\n756 -611 251 -66 572 -818",
"output": "1495"
},
{
"input": "5 5\n976 437 937 788 518",
"output": "0"
},
{
"input": "5 3\n-2 -2 -2 -2 -2",
"output": "6"
},
{
"input": "5 1\n998 997 985 937 998",
"output": "0"
},
{
"input": "2 2\n-742 -187",
"output": "929"
},
{
"input": "3 3\n522 597 384",
"output": "0"
},
{
"input": "4 2\n-215 -620 192 647",
"output": "835"
},
{
"input": "10 6\n557 605 685 231 910 633 130 838 -564 -85",
"output": "649"
},
{
"input": "20 14\n932 442 960 943 624 624 955 998 631 910 850 517 715 123 1000 155 -10 961 966 59",
"output": "10"
},
{
"input": "30 5\n991 997 996 967 977 999 991 986 1000 965 984 997 998 1000 958 983 974 1000 991 999 1000 978 961 992 990 998 998 978 998 1000",
"output": "0"
},
{
"input": "50 20\n-815 -947 -946 -993 -992 -846 -884 -954 -963 -733 -940 -746 -766 -930 -821 -937 -937 -999 -914 -938 -936 -975 -939 -981 -977 -952 -925 -901 -952 -978 -994 -957 -946 -896 -905 -836 -994 -951 -887 -939 -859 -953 -985 -988 -946 -829 -956 -842 -799 -886",
"output": "19441"
},
{
"input": "88 64\n999 999 1000 1000 999 996 995 1000 1000 999 1000 997 998 1000 999 1000 997 1000 993 998 994 999 998 996 1000 997 1000 1000 1000 997 1000 998 997 1000 1000 998 1000 998 999 1000 996 999 999 999 996 995 999 1000 998 999 1000 999 999 1000 1000 1000 996 1000 1000 1000 997 1000 1000 997 999 1000 1000 1000 1000 1000 999 999 1000 1000 996 999 1000 1000 995 999 1000 996 1000 998 999 999 1000 999",
"output": "0"
},
{
"input": "99 17\n-993 -994 -959 -989 -991 -995 -976 -997 -990 -1000 -996 -994 -999 -995 -1000 -983 -979 -1000 -989 -968 -994 -992 -962 -993 -999 -983 -991 -979 -995 -993 -973 -999 -995 -995 -999 -993 -995 -992 -947 -1000 -999 -998 -982 -988 -979 -993 -963 -988 -980 -990 -979 -976 -995 -999 -981 -988 -998 -999 -970 -1000 -983 -994 -943 -975 -998 -977 -973 -997 -959 -999 -983 -985 -950 -977 -977 -991 -998 -973 -987 -985 -985 -986 -984 -994 -978 -998 -989 -989 -988 -970 -985 -974 -997 -981 -962 -972 -995 -988 -993",
"output": "16984"
},
{
"input": "100 37\n205 19 -501 404 912 -435 -322 -469 -655 880 -804 -470 793 312 -108 586 -642 -928 906 605 -353 -800 745 -440 -207 752 -50 -28 498 -800 -62 -195 602 -833 489 352 536 404 -775 23 145 -512 524 759 651 -461 -427 -557 684 -366 62 592 -563 -811 64 418 -881 -308 591 -318 -145 -261 -321 -216 -18 595 -202 960 -4 219 226 -238 -882 -963 425 970 -434 -160 243 -672 -4 873 8 -633 904 -298 -151 -377 -61 -72 -677 -66 197 -716 3 -870 -30 152 -469 981",
"output": "21743"
},
{
"input": "100 99\n-931 -806 -830 -828 -916 -962 -660 -867 -952 -966 -820 -906 -724 -982 -680 -717 -488 -741 -897 -613 -986 -797 -964 -939 -808 -932 -810 -860 -641 -916 -858 -628 -821 -929 -917 -976 -664 -985 -778 -665 -624 -928 -940 -958 -884 -757 -878 -896 -634 -526 -514 -873 -990 -919 -988 -878 -650 -973 -774 -783 -733 -648 -756 -895 -833 -974 -832 -725 -841 -748 -806 -613 -924 -867 -881 -943 -864 -991 -809 -926 -777 -817 -998 -682 -910 -996 -241 -722 -964 -904 -821 -920 -835 -699 -805 -632 -779 -317 -915 -654",
"output": "81283"
},
{
"input": "100 14\n995 994 745 684 510 737 984 690 979 977 542 933 871 603 758 653 962 997 747 974 773 766 975 770 527 960 841 989 963 865 974 967 950 984 757 685 986 809 982 959 931 880 978 867 805 562 970 900 834 782 616 885 910 608 974 918 576 700 871 980 656 941 978 759 767 840 573 859 841 928 693 853 716 927 976 851 962 962 627 797 707 873 869 988 993 533 665 887 962 880 929 980 877 887 572 790 721 883 848 782",
"output": "0"
},
{
"input": "100 84\n768 946 998 752 931 912 826 1000 991 910 875 962 901 952 958 733 959 908 872 840 923 826 952 980 974 980 947 955 959 822 997 963 966 933 829 923 971 999 926 932 865 984 974 858 994 855 949 941 992 861 951 949 991 711 763 728 935 485 716 907 869 952 960 859 909 963 978 942 968 933 923 909 997 962 687 764 924 774 875 1000 961 951 987 974 848 921 966 859 995 997 974 931 886 941 974 986 906 978 998 823",
"output": "0"
},
{
"input": "100 80\n-795 -994 -833 -930 -974 -980 -950 -940 -788 -927 -583 -956 -945 -949 -809 -974 -957 -736 -967 -908 -975 -961 -986 -983 -963 -771 -952 -847 -751 -741 -982 -959 -925 -931 -839 -937 -880 -914 -858 -998 -812 -911 -862 -965 -943 -984 -738 -920 -950 -998 -909 -998 -781 -901 -677 -940 -985 -951 -675 -952 -967 -949 -882 -641 -969 -937 -975 -993 -913 -941 -807 -851 -832 -960 -939 -943 -895 -929 -528 -880 -823 -930 -888 -862 -948 -966 -962 -857 -799 -969 -833 -998 -952 -878 -946 -971 -976 -974 -723 -992",
"output": "75068"
},
{
"input": "1 1\n0",
"output": "0"
},
{
"input": "1 1\n1",
"output": "0"
},
{
"input": "1 1\n555",
"output": "0"
},
{
"input": "1 1\n-1",
"output": "1"
},
{
"input": "1 1\n-24",
"output": "24"
}
] | 1,645,596,664
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 25
| 92
| 0
|
def sale():
number_of_tvs_for_sale,amount_bob_can_carry = map(int,input().split())
prices = list(map(int,input().split()))
prices.sort()
count = i = money_earned = 0
while i < len(prices) and prices[i] < 0 and count < amount_bob_can_carry:
money_earned += abs(prices[i])
count += 1
i += 1
print(money_earned)
sale()
|
Title: Sale
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Once Bob got to a sale of old TV sets. There were *n* TV sets at that sale. TV set with index *i* costs *a**i* bellars. Some TV sets have a negative price — their owners are ready to pay Bob if he buys their useless apparatus. Bob can «buy» any TV sets he wants. Though he's very strong, Bob can carry at most *m* TV sets, and he has no desire to go to the sale for the second time. Please, help Bob find out the maximum sum of money that he can earn.
Input Specification:
The first line contains two space-separated integers *n* and *m* (1<=≤<=*m*<=≤<=*n*<=≤<=100) — amount of TV sets at the sale, and amount of TV sets that Bob can carry. The following line contains *n* space-separated integers *a**i* (<=-<=1000<=≤<=*a**i*<=≤<=1000) — prices of the TV sets.
Output Specification:
Output the only number — the maximum sum of money that Bob can earn, given that he can carry at most *m* TV sets.
Demo Input:
['5 3\n-6 0 35 -2 4\n', '4 2\n7 0 0 -7\n']
Demo Output:
['8\n', '7\n']
Note:
none
|
```python
def sale():
number_of_tvs_for_sale,amount_bob_can_carry = map(int,input().split())
prices = list(map(int,input().split()))
prices.sort()
count = i = money_earned = 0
while i < len(prices) and prices[i] < 0 and count < amount_bob_can_carry:
money_earned += abs(prices[i])
count += 1
i += 1
print(money_earned)
sale()
```
| 3.977
|
534
|
A
|
Exam
|
PROGRAMMING
| 1,100
|
[
"constructive algorithms",
"implementation",
"math"
] | null | null |
An exam for *n* students will take place in a long and narrow room, so the students will sit in a line in some order. The teacher suspects that students with adjacent numbers (*i* and *i*<=+<=1) always studied side by side and became friends and if they take an exam sitting next to each other, they will help each other for sure.
Your task is to choose the maximum number of students and make such an arrangement of students in the room that no two students with adjacent numbers sit side by side.
|
A single line contains integer *n* (1<=≤<=*n*<=≤<=5000) — the number of students at an exam.
|
In the first line print integer *k* — the maximum number of students who can be seated so that no two students with adjacent numbers sit next to each other.
In the second line print *k* distinct integers *a*1,<=*a*2,<=...,<=*a**k* (1<=≤<=*a**i*<=≤<=*n*), where *a**i* is the number of the student on the *i*-th position. The students on adjacent positions mustn't have adjacent numbers. Formally, the following should be true: |*a**i*<=-<=*a**i*<=+<=1|<=≠<=1 for all *i* from 1 to *k*<=-<=1.
If there are several possible answers, output any of them.
|
[
"6",
"3\n"
] |
[
"6\n1 5 3 6 2 4",
"2\n1 3"
] |
none
| 500
|
[
{
"input": "6",
"output": "6\n5 3 1 6 4 2 "
},
{
"input": "3",
"output": "2\n1 3"
},
{
"input": "1",
"output": "1\n1 "
},
{
"input": "2",
"output": "1\n1"
},
{
"input": "4",
"output": "4\n3 1 4 2 "
},
{
"input": "5",
"output": "5\n5 3 1 4 2 "
},
{
"input": "7",
"output": "7\n7 5 3 1 6 4 2 "
},
{
"input": "8",
"output": "8\n7 5 3 1 8 6 4 2 "
},
{
"input": "9",
"output": "9\n9 7 5 3 1 8 6 4 2 "
},
{
"input": "10",
"output": "10\n9 7 5 3 1 10 8 6 4 2 "
},
{
"input": "13",
"output": "13\n13 11 9 7 5 3 1 12 10 8 6 4 2 "
},
{
"input": "16",
"output": "16\n15 13 11 9 7 5 3 1 16 14 12 10 8 6 4 2 "
},
{
"input": "25",
"output": "25\n25 23 21 19 17 15 13 11 9 7 5 3 1 24 22 20 18 16 14 12 10 8 6 4 2 "
},
{
"input": "29",
"output": "29\n29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 28 26 24 22 20 18 16 14 12 10 8 6 4 2 "
},
{
"input": "120",
"output": "120\n119 117 115 113 111 109 107 105 103 101 99 97 95 93 91 89 87 85 83 81 79 77 75 73 71 69 67 65 63 61 59 57 55 53 51 49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 120 118 116 114 112 110 108 106 104 102 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 "
},
{
"input": "128",
"output": "128\n127 125 123 121 119 117 115 113 111 109 107 105 103 101 99 97 95 93 91 89 87 85 83 81 79 77 75 73 71 69 67 65 63 61 59 57 55 53 51 49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 128 126 124 122 120 118 116 114 112 110 108 106 104 102 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 "
},
{
"input": "216",
"output": "216\n215 213 211 209 207 205 203 201 199 197 195 193 191 189 187 185 183 181 179 177 175 173 171 169 167 165 163 161 159 157 155 153 151 149 147 145 143 141 139 137 135 133 131 129 127 125 123 121 119 117 115 113 111 109 107 105 103 101 99 97 95 93 91 89 87 85 83 81 79 77 75 73 71 69 67 65 63 61 59 57 55 53 51 49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 216 214 212 210 208 206 204 202 200 198 196 194 192 190 188 186 184 182 180 178 176 174 172 170 168 166 164 162 160 158 156 154 1..."
},
{
"input": "729",
"output": "729\n729 727 725 723 721 719 717 715 713 711 709 707 705 703 701 699 697 695 693 691 689 687 685 683 681 679 677 675 673 671 669 667 665 663 661 659 657 655 653 651 649 647 645 643 641 639 637 635 633 631 629 627 625 623 621 619 617 615 613 611 609 607 605 603 601 599 597 595 593 591 589 587 585 583 581 579 577 575 573 571 569 567 565 563 561 559 557 555 553 551 549 547 545 543 541 539 537 535 533 531 529 527 525 523 521 519 517 515 513 511 509 507 505 503 501 499 497 495 493 491 489 487 485 483 481 479 47..."
},
{
"input": "1111",
"output": "1111\n1111 1109 1107 1105 1103 1101 1099 1097 1095 1093 1091 1089 1087 1085 1083 1081 1079 1077 1075 1073 1071 1069 1067 1065 1063 1061 1059 1057 1055 1053 1051 1049 1047 1045 1043 1041 1039 1037 1035 1033 1031 1029 1027 1025 1023 1021 1019 1017 1015 1013 1011 1009 1007 1005 1003 1001 999 997 995 993 991 989 987 985 983 981 979 977 975 973 971 969 967 965 963 961 959 957 955 953 951 949 947 945 943 941 939 937 935 933 931 929 927 925 923 921 919 917 915 913 911 909 907 905 903 901 899 897 895 893 891 889 8..."
},
{
"input": "1597",
"output": "1597\n1597 1595 1593 1591 1589 1587 1585 1583 1581 1579 1577 1575 1573 1571 1569 1567 1565 1563 1561 1559 1557 1555 1553 1551 1549 1547 1545 1543 1541 1539 1537 1535 1533 1531 1529 1527 1525 1523 1521 1519 1517 1515 1513 1511 1509 1507 1505 1503 1501 1499 1497 1495 1493 1491 1489 1487 1485 1483 1481 1479 1477 1475 1473 1471 1469 1467 1465 1463 1461 1459 1457 1455 1453 1451 1449 1447 1445 1443 1441 1439 1437 1435 1433 1431 1429 1427 1425 1423 1421 1419 1417 1415 1413 1411 1409 1407 1405 1403 1401 1399 1397 ..."
},
{
"input": "1777",
"output": "1777\n1777 1775 1773 1771 1769 1767 1765 1763 1761 1759 1757 1755 1753 1751 1749 1747 1745 1743 1741 1739 1737 1735 1733 1731 1729 1727 1725 1723 1721 1719 1717 1715 1713 1711 1709 1707 1705 1703 1701 1699 1697 1695 1693 1691 1689 1687 1685 1683 1681 1679 1677 1675 1673 1671 1669 1667 1665 1663 1661 1659 1657 1655 1653 1651 1649 1647 1645 1643 1641 1639 1637 1635 1633 1631 1629 1627 1625 1623 1621 1619 1617 1615 1613 1611 1609 1607 1605 1603 1601 1599 1597 1595 1593 1591 1589 1587 1585 1583 1581 1579 1577 ..."
},
{
"input": "2048",
"output": "2048\n2047 2045 2043 2041 2039 2037 2035 2033 2031 2029 2027 2025 2023 2021 2019 2017 2015 2013 2011 2009 2007 2005 2003 2001 1999 1997 1995 1993 1991 1989 1987 1985 1983 1981 1979 1977 1975 1973 1971 1969 1967 1965 1963 1961 1959 1957 1955 1953 1951 1949 1947 1945 1943 1941 1939 1937 1935 1933 1931 1929 1927 1925 1923 1921 1919 1917 1915 1913 1911 1909 1907 1905 1903 1901 1899 1897 1895 1893 1891 1889 1887 1885 1883 1881 1879 1877 1875 1873 1871 1869 1867 1865 1863 1861 1859 1857 1855 1853 1851 1849 1847 ..."
},
{
"input": "2999",
"output": "2999\n2999 2997 2995 2993 2991 2989 2987 2985 2983 2981 2979 2977 2975 2973 2971 2969 2967 2965 2963 2961 2959 2957 2955 2953 2951 2949 2947 2945 2943 2941 2939 2937 2935 2933 2931 2929 2927 2925 2923 2921 2919 2917 2915 2913 2911 2909 2907 2905 2903 2901 2899 2897 2895 2893 2891 2889 2887 2885 2883 2881 2879 2877 2875 2873 2871 2869 2867 2865 2863 2861 2859 2857 2855 2853 2851 2849 2847 2845 2843 2841 2839 2837 2835 2833 2831 2829 2827 2825 2823 2821 2819 2817 2815 2813 2811 2809 2807 2805 2803 2801 2799 ..."
},
{
"input": "3001",
"output": "3001\n3001 2999 2997 2995 2993 2991 2989 2987 2985 2983 2981 2979 2977 2975 2973 2971 2969 2967 2965 2963 2961 2959 2957 2955 2953 2951 2949 2947 2945 2943 2941 2939 2937 2935 2933 2931 2929 2927 2925 2923 2921 2919 2917 2915 2913 2911 2909 2907 2905 2903 2901 2899 2897 2895 2893 2891 2889 2887 2885 2883 2881 2879 2877 2875 2873 2871 2869 2867 2865 2863 2861 2859 2857 2855 2853 2851 2849 2847 2845 2843 2841 2839 2837 2835 2833 2831 2829 2827 2825 2823 2821 2819 2817 2815 2813 2811 2809 2807 2805 2803 2801 ..."
},
{
"input": "4181",
"output": "4181\n4181 4179 4177 4175 4173 4171 4169 4167 4165 4163 4161 4159 4157 4155 4153 4151 4149 4147 4145 4143 4141 4139 4137 4135 4133 4131 4129 4127 4125 4123 4121 4119 4117 4115 4113 4111 4109 4107 4105 4103 4101 4099 4097 4095 4093 4091 4089 4087 4085 4083 4081 4079 4077 4075 4073 4071 4069 4067 4065 4063 4061 4059 4057 4055 4053 4051 4049 4047 4045 4043 4041 4039 4037 4035 4033 4031 4029 4027 4025 4023 4021 4019 4017 4015 4013 4011 4009 4007 4005 4003 4001 3999 3997 3995 3993 3991 3989 3987 3985 3983 3981 ..."
},
{
"input": "4990",
"output": "4990\n4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 4797 4795 4793 4791 4789 ..."
},
{
"input": "4991",
"output": "4991\n4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 4797 4795 4793 4791 ..."
},
{
"input": "4992",
"output": "4992\n4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 4797 4795 4793 4791 ..."
},
{
"input": "4993",
"output": "4993\n4993 4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 4797 4795 4793 ..."
},
{
"input": "4994",
"output": "4994\n4993 4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 4797 4795 4793 ..."
},
{
"input": "4995",
"output": "4995\n4995 4993 4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 4797 4795 ..."
},
{
"input": "4996",
"output": "4996\n4995 4993 4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 4797 4795 ..."
},
{
"input": "4997",
"output": "4997\n4997 4995 4993 4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 4797 ..."
},
{
"input": "4998",
"output": "4998\n4997 4995 4993 4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 4797 ..."
},
{
"input": "4999",
"output": "4999\n4999 4997 4995 4993 4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 ..."
},
{
"input": "5000",
"output": "5000\n4999 4997 4995 4993 4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 ..."
}
] | 1,428,856,043
| 1,643
|
Python 3
|
OK
|
TESTS
| 36
| 62
| 307,200
|
n = int(input())
if n == 1:
res = [1]
else:
even, odd = list(range(2, n + 1, 2)), list(range(1, n + 1, 2))
l, r = sorted((even, odd), key=lambda c: c[-1], reverse=True)
while r and abs(l[-1] - r[0]) == 1:
r.pop(0)
res = l + r
print(len(res))
print(str.join(" ", map(str, res)))
|
Title: Exam
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
An exam for *n* students will take place in a long and narrow room, so the students will sit in a line in some order. The teacher suspects that students with adjacent numbers (*i* and *i*<=+<=1) always studied side by side and became friends and if they take an exam sitting next to each other, they will help each other for sure.
Your task is to choose the maximum number of students and make such an arrangement of students in the room that no two students with adjacent numbers sit side by side.
Input Specification:
A single line contains integer *n* (1<=≤<=*n*<=≤<=5000) — the number of students at an exam.
Output Specification:
In the first line print integer *k* — the maximum number of students who can be seated so that no two students with adjacent numbers sit next to each other.
In the second line print *k* distinct integers *a*1,<=*a*2,<=...,<=*a**k* (1<=≤<=*a**i*<=≤<=*n*), where *a**i* is the number of the student on the *i*-th position. The students on adjacent positions mustn't have adjacent numbers. Formally, the following should be true: |*a**i*<=-<=*a**i*<=+<=1|<=≠<=1 for all *i* from 1 to *k*<=-<=1.
If there are several possible answers, output any of them.
Demo Input:
['6', '3\n']
Demo Output:
['6\n1 5 3 6 2 4', '2\n1 3']
Note:
none
|
```python
n = int(input())
if n == 1:
res = [1]
else:
even, odd = list(range(2, n + 1, 2)), list(range(1, n + 1, 2))
l, r = sorted((even, odd), key=lambda c: c[-1], reverse=True)
while r and abs(l[-1] - r[0]) == 1:
r.pop(0)
res = l + r
print(len(res))
print(str.join(" ", map(str, res)))
```
| 3
|
|
550
|
A
|
Two Substrings
|
PROGRAMMING
| 1,500
|
[
"brute force",
"dp",
"greedy",
"implementation",
"strings"
] | null | null |
You are given string *s*. Your task is to determine if the given string *s* contains two non-overlapping substrings "AB" and "BA" (the substrings can go in any order).
|
The only line of input contains a string *s* of length between 1 and 105 consisting of uppercase Latin letters.
|
Print "YES" (without the quotes), if string *s* contains two non-overlapping substrings "AB" and "BA", and "NO" otherwise.
|
[
"ABA\n",
"BACFAB\n",
"AXBYBXA\n"
] |
[
"NO\n",
"YES\n",
"NO\n"
] |
In the first sample test, despite the fact that there are substrings "AB" and "BA", their occurrences overlap, so the answer is "NO".
In the second sample test there are the following occurrences of the substrings: BACFAB.
In the third sample test there is no substring "AB" nor substring "BA".
| 1,000
|
[
{
"input": "ABA",
"output": "NO"
},
{
"input": "BACFAB",
"output": "YES"
},
{
"input": "AXBYBXA",
"output": "NO"
},
{
"input": "ABABAB",
"output": "YES"
},
{
"input": "BBBBBBBBBB",
"output": "NO"
},
{
"input": "ABBA",
"output": "YES"
},
{
"input": "ABAXXXAB",
"output": "YES"
},
{
"input": "TESTABAXXABTEST",
"output": "YES"
},
{
"input": "A",
"output": "NO"
},
{
"input": "B",
"output": "NO"
},
{
"input": "X",
"output": "NO"
},
{
"input": "BA",
"output": "NO"
},
{
"input": "AB",
"output": "NO"
},
{
"input": "AA",
"output": "NO"
},
{
"input": "BB",
"output": "NO"
},
{
"input": "BAB",
"output": "NO"
},
{
"input": "AAB",
"output": "NO"
},
{
"input": "BAA",
"output": "NO"
},
{
"input": "ABB",
"output": "NO"
},
{
"input": "BBA",
"output": "NO"
},
{
"input": "AAA",
"output": "NO"
},
{
"input": "BBB",
"output": "NO"
},
{
"input": "AXBXBXA",
"output": "NO"
},
{
"input": "SKDSKDJABSDBADKFJDK",
"output": "YES"
},
{
"input": "ABAXXBBXXAA",
"output": "NO"
},
{
"input": "ABAB",
"output": "NO"
},
{
"input": "BABA",
"output": "NO"
},
{
"input": "AAAB",
"output": "NO"
},
{
"input": "AAAA",
"output": "NO"
},
{
"input": "AABA",
"output": "NO"
},
{
"input": "ABAA",
"output": "NO"
},
{
"input": "BAAA",
"output": "NO"
},
{
"input": "AABB",
"output": "NO"
},
{
"input": "BAAB",
"output": "YES"
},
{
"input": "BBAA",
"output": "NO"
},
{
"input": "BBBA",
"output": "NO"
},
{
"input": "BBAB",
"output": "NO"
},
{
"input": "BABB",
"output": "NO"
},
{
"input": "ABBB",
"output": "NO"
},
{
"input": "BBBB",
"output": "NO"
},
{
"input": "BABAB",
"output": "YES"
},
{
"input": "ABABA",
"output": "YES"
},
{
"input": "AAABAAACBBBC",
"output": "NO"
},
{
"input": "AABBBACBBBBBBAACBCCACBBAABBBBBCAACABAACABCACCBCBCCCBCBCABCBBCCBCBBAACBACAABACBBCACCBCCACCABBCBABBAAC",
"output": "YES"
},
{
"input": "CBBABDDBBADAC",
"output": "YES"
},
{
"input": "ABYFAB",
"output": "NO"
},
{
"input": "BABXXAB",
"output": "YES"
},
{
"input": "ABAXAB",
"output": "YES"
},
{
"input": "ABABXAB",
"output": "YES"
},
{
"input": "ABXABXABXABXABXBAXBAXBAXBA",
"output": "YES"
},
{
"input": "QQQQQQQQQABABQQQQQQQQ",
"output": "NO"
}
] | 1,680,369,262
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 85
| 93
| 1,843,200
|
s = input()
n = len(s)
def check(s, n):
prev = None
for i in range(n):
if prev == None and i > 0 and s[i] == 'B' and s[i - 1] == 'A':
prev = i
if i < n - 1 and s[i] == 'B' and s[i + 1] == 'A' and prev != None and prev < i:
return "YES"
prev = None
for i in range(n):
if prev == None and i > 0 and s[i] == 'A' and s[i - 1] == 'B':
prev = i
if i < n - 1 and s[i] == 'A' and s[i + 1] == 'B' and prev != None and prev < i:
return "YES"
return "NO"
print(check(s, n))
|
Title: Two Substrings
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given string *s*. Your task is to determine if the given string *s* contains two non-overlapping substrings "AB" and "BA" (the substrings can go in any order).
Input Specification:
The only line of input contains a string *s* of length between 1 and 105 consisting of uppercase Latin letters.
Output Specification:
Print "YES" (without the quotes), if string *s* contains two non-overlapping substrings "AB" and "BA", and "NO" otherwise.
Demo Input:
['ABA\n', 'BACFAB\n', 'AXBYBXA\n']
Demo Output:
['NO\n', 'YES\n', 'NO\n']
Note:
In the first sample test, despite the fact that there are substrings "AB" and "BA", their occurrences overlap, so the answer is "NO".
In the second sample test there are the following occurrences of the substrings: BACFAB.
In the third sample test there is no substring "AB" nor substring "BA".
|
```python
s = input()
n = len(s)
def check(s, n):
prev = None
for i in range(n):
if prev == None and i > 0 and s[i] == 'B' and s[i - 1] == 'A':
prev = i
if i < n - 1 and s[i] == 'B' and s[i + 1] == 'A' and prev != None and prev < i:
return "YES"
prev = None
for i in range(n):
if prev == None and i > 0 and s[i] == 'A' and s[i - 1] == 'B':
prev = i
if i < n - 1 and s[i] == 'A' and s[i + 1] == 'B' and prev != None and prev < i:
return "YES"
return "NO"
print(check(s, n))
```
| 3
|
|
298
|
B
|
Sail
|
PROGRAMMING
| 1,200
|
[
"brute force",
"greedy",
"implementation"
] | null | null |
The polar bears are going fishing. They plan to sail from (*s**x*,<=*s**y*) to (*e**x*,<=*e**y*). However, the boat can only sail by wind. At each second, the wind blows in one of these directions: east, south, west or north. Assume the boat is currently at (*x*,<=*y*).
- If the wind blows to the east, the boat will move to (*x*<=+<=1,<=*y*). - If the wind blows to the south, the boat will move to (*x*,<=*y*<=-<=1). - If the wind blows to the west, the boat will move to (*x*<=-<=1,<=*y*). - If the wind blows to the north, the boat will move to (*x*,<=*y*<=+<=1).
Alternatively, they can hold the boat by the anchor. In this case, the boat stays at (*x*,<=*y*). Given the wind direction for *t* seconds, what is the earliest time they sail to (*e**x*,<=*e**y*)?
|
The first line contains five integers *t*,<=*s**x*,<=*s**y*,<=*e**x*,<=*e**y* (1<=≤<=*t*<=≤<=105,<=<=-<=109<=≤<=*s**x*,<=*s**y*,<=*e**x*,<=*e**y*<=≤<=109). The starting location and the ending location will be different.
The second line contains *t* characters, the *i*-th character is the wind blowing direction at the *i*-th second. It will be one of the four possibilities: "E" (east), "S" (south), "W" (west) and "N" (north).
|
If they can reach (*e**x*,<=*e**y*) within *t* seconds, print the earliest time they can achieve it. Otherwise, print "-1" (without quotes).
|
[
"5 0 0 1 1\nSESNW\n",
"10 5 3 3 6\nNENSWESNEE\n"
] |
[
"4\n",
"-1\n"
] |
In the first sample, they can stay at seconds 1, 3, and move at seconds 2, 4.
In the second sample, they cannot sail to the destination.
| 500
|
[
{
"input": "5 0 0 1 1\nSESNW",
"output": "4"
},
{
"input": "10 5 3 3 6\nNENSWESNEE",
"output": "-1"
},
{
"input": "19 -172106364 -468680119 -172106365 -468680119\nSSEEESSSESESWSEESSS",
"output": "13"
},
{
"input": "39 -1000000000 -1000000000 -999999997 -1000000000\nENEENWSWSSWESNSSEESNSESWSWNSWESNENWNWEE",
"output": "4"
},
{
"input": "41 -264908123 -86993764 -264908123 -86993723\nNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN",
"output": "41"
},
{
"input": "34 -1000000000 -1000000000 -999999983 -1000000000\nEEEEESSEWNSSSESWEWSWESEWSEESNEWEEE",
"output": "-1"
},
{
"input": "1 0 0 0 -1\nS",
"output": "1"
},
{
"input": "1 5 5 5 6\nE",
"output": "-1"
},
{
"input": "15 1 1 1 2\nNNNNNNNNNNNNNNN",
"output": "1"
},
{
"input": "11 1 1 1 2\nNNNNNNNNNNN",
"output": "1"
}
] | 1,502,125,945
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 60
| 5,120,000
|
from collections import defaultdict
n = input()
t = list(map(int, input().split()))
p, d = defaultdict(int), defaultdict(int)
for i, x in enumerate(t, 1):
if d[x] < 0: continue
if p[x]:
if d[x] and i != p[x] + d[x]: d[x] = -1
else: d[x] = i - p[x]
p[x] = i
y = list(d.keys())
y.sort()
t = list('{0} {1}'.format(x, d[x]) for x in y if d[x] >= 0)
print(len(t))
print('\n'.join(t))
|
Title: Sail
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The polar bears are going fishing. They plan to sail from (*s**x*,<=*s**y*) to (*e**x*,<=*e**y*). However, the boat can only sail by wind. At each second, the wind blows in one of these directions: east, south, west or north. Assume the boat is currently at (*x*,<=*y*).
- If the wind blows to the east, the boat will move to (*x*<=+<=1,<=*y*). - If the wind blows to the south, the boat will move to (*x*,<=*y*<=-<=1). - If the wind blows to the west, the boat will move to (*x*<=-<=1,<=*y*). - If the wind blows to the north, the boat will move to (*x*,<=*y*<=+<=1).
Alternatively, they can hold the boat by the anchor. In this case, the boat stays at (*x*,<=*y*). Given the wind direction for *t* seconds, what is the earliest time they sail to (*e**x*,<=*e**y*)?
Input Specification:
The first line contains five integers *t*,<=*s**x*,<=*s**y*,<=*e**x*,<=*e**y* (1<=≤<=*t*<=≤<=105,<=<=-<=109<=≤<=*s**x*,<=*s**y*,<=*e**x*,<=*e**y*<=≤<=109). The starting location and the ending location will be different.
The second line contains *t* characters, the *i*-th character is the wind blowing direction at the *i*-th second. It will be one of the four possibilities: "E" (east), "S" (south), "W" (west) and "N" (north).
Output Specification:
If they can reach (*e**x*,<=*e**y*) within *t* seconds, print the earliest time they can achieve it. Otherwise, print "-1" (without quotes).
Demo Input:
['5 0 0 1 1\nSESNW\n', '10 5 3 3 6\nNENSWESNEE\n']
Demo Output:
['4\n', '-1\n']
Note:
In the first sample, they can stay at seconds 1, 3, and move at seconds 2, 4.
In the second sample, they cannot sail to the destination.
|
```python
from collections import defaultdict
n = input()
t = list(map(int, input().split()))
p, d = defaultdict(int), defaultdict(int)
for i, x in enumerate(t, 1):
if d[x] < 0: continue
if p[x]:
if d[x] and i != p[x] + d[x]: d[x] = -1
else: d[x] = i - p[x]
p[x] = i
y = list(d.keys())
y.sort()
t = list('{0} {1}'.format(x, d[x]) for x in y if d[x] >= 0)
print(len(t))
print('\n'.join(t))
```
| -1
|
|
887
|
A
|
Div. 64
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
Top-model Izabella participates in the competition. She wants to impress judges and show her mathematical skills.
Her problem is following: for given string, consisting of only 0 and 1, tell if it's possible to remove some digits in such a way, that remaining number is a representation of some positive integer, divisible by 64, in the binary numerical system.
|
In the only line given a non-empty binary string *s* with length up to 100.
|
Print «yes» (without quotes) if it's possible to remove digits required way and «no» otherwise.
|
[
"100010001\n",
"100\n"
] |
[
"yes",
"no"
] |
In the first test case, you can get string 1 000 000 after removing two ones which is a representation of number 64 in the binary numerical system.
You can read more about binary numeral system representation here: [https://en.wikipedia.org/wiki/Binary_system](https://en.wikipedia.org/wiki/Binary_system)
| 500
|
[
{
"input": "100010001",
"output": "yes"
},
{
"input": "100",
"output": "no"
},
{
"input": "0000001000000",
"output": "yes"
},
{
"input": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111",
"output": "no"
},
{
"input": "1111111111111111111111111111111111111111111111111111111111111111111111110111111111111111111111111111",
"output": "no"
},
{
"input": "0111111101111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111",
"output": "no"
},
{
"input": "1111011111111111111111111111110111110111111111111111111111011111111111111110111111111111111111111111",
"output": "no"
},
{
"input": "1111111111101111111111111111111111111011111111111111111111111101111011111101111111111101111111111111",
"output": "yes"
},
{
"input": "0110111111111111111111011111111110110111110111111111111111111111111111111111111110111111111111111111",
"output": "yes"
},
{
"input": "1100110001111011001101101000001110111110011110111110010100011000100101000010010111100000010001001101",
"output": "yes"
},
{
"input": "000000",
"output": "no"
},
{
"input": "0001000",
"output": "no"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"output": "no"
},
{
"input": "1000000",
"output": "yes"
},
{
"input": "0",
"output": "no"
},
{
"input": "1",
"output": "no"
},
{
"input": "10000000000",
"output": "yes"
},
{
"input": "0000000000",
"output": "no"
},
{
"input": "0010000",
"output": "no"
},
{
"input": "000000011",
"output": "no"
},
{
"input": "000000000",
"output": "no"
},
{
"input": "00000000",
"output": "no"
},
{
"input": "000000000011",
"output": "no"
},
{
"input": "0000000",
"output": "no"
},
{
"input": "00000000011",
"output": "no"
},
{
"input": "000000001",
"output": "no"
},
{
"input": "000000000000000000000000000",
"output": "no"
},
{
"input": "0000001",
"output": "no"
},
{
"input": "00000001",
"output": "no"
},
{
"input": "00000000100",
"output": "no"
},
{
"input": "00000000000000000000",
"output": "no"
},
{
"input": "0000000000000000000",
"output": "no"
},
{
"input": "00001000",
"output": "no"
},
{
"input": "0000000000010",
"output": "no"
},
{
"input": "000000000010",
"output": "no"
},
{
"input": "000000000000010",
"output": "no"
},
{
"input": "0100000",
"output": "no"
},
{
"input": "00010000",
"output": "no"
},
{
"input": "00000000000000000",
"output": "no"
},
{
"input": "00000000000",
"output": "no"
},
{
"input": "000001000",
"output": "no"
},
{
"input": "000000000000",
"output": "no"
},
{
"input": "100000000000000",
"output": "yes"
},
{
"input": "000010000",
"output": "no"
},
{
"input": "00000100",
"output": "no"
},
{
"input": "0001100000",
"output": "no"
},
{
"input": "000000000000000000000000001",
"output": "no"
},
{
"input": "000000100",
"output": "no"
},
{
"input": "0000000000001111111111",
"output": "no"
},
{
"input": "00000010",
"output": "no"
},
{
"input": "0001110000",
"output": "no"
},
{
"input": "0000000000000000000000",
"output": "no"
},
{
"input": "000000010010",
"output": "no"
},
{
"input": "0000100",
"output": "no"
},
{
"input": "0000000001",
"output": "no"
},
{
"input": "000000111",
"output": "no"
},
{
"input": "0000000000000",
"output": "no"
},
{
"input": "000000000000000000",
"output": "no"
},
{
"input": "0000000000000000000000000",
"output": "no"
},
{
"input": "000000000000000",
"output": "no"
},
{
"input": "0010000000000100",
"output": "yes"
},
{
"input": "0000001000",
"output": "no"
},
{
"input": "00000000000000000001",
"output": "no"
},
{
"input": "100000000",
"output": "yes"
},
{
"input": "000000000001",
"output": "no"
},
{
"input": "0000011001",
"output": "no"
},
{
"input": "000",
"output": "no"
},
{
"input": "000000000000000000000",
"output": "no"
},
{
"input": "0000000000011",
"output": "no"
},
{
"input": "0000000000000000",
"output": "no"
},
{
"input": "00000000000000001",
"output": "no"
},
{
"input": "00000000000000",
"output": "no"
},
{
"input": "0000000000000000010",
"output": "no"
},
{
"input": "00000000000000000000000000000000000000000000000000000000",
"output": "no"
},
{
"input": "000011000",
"output": "no"
},
{
"input": "00000011",
"output": "no"
},
{
"input": "0000000000001100",
"output": "no"
},
{
"input": "00000",
"output": "no"
},
{
"input": "000000000000000000000000000111111111111111",
"output": "no"
},
{
"input": "000000010",
"output": "no"
},
{
"input": "00000000111",
"output": "no"
},
{
"input": "000000000000001",
"output": "no"
},
{
"input": "0000000000000011111111111111111",
"output": "no"
},
{
"input": "0000000010",
"output": "no"
},
{
"input": "0000000000000000000000000000000000000000000000000",
"output": "no"
},
{
"input": "00000000010",
"output": "no"
},
{
"input": "101000000000",
"output": "yes"
},
{
"input": "00100000",
"output": "no"
},
{
"input": "00000000000001",
"output": "no"
},
{
"input": "0000000000100",
"output": "no"
},
{
"input": "0000",
"output": "no"
},
{
"input": "00000000000111",
"output": "no"
},
{
"input": "0000000000000011",
"output": "no"
},
{
"input": "0000000000000000000000000000000000000000",
"output": "no"
},
{
"input": "0000000000000010",
"output": "no"
},
{
"input": "0010101010",
"output": "no"
},
{
"input": "0000000000000001",
"output": "no"
},
{
"input": "1010101",
"output": "no"
}
] | 1,510,216,621
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 98
| 77
| 819,200
|
a=input()
array=list(a)
birBulundu=False
sifirSayisi=0
for i in array:
if(i=='1'):
birBulundu=True
else:
if(birBulundu==True):
sifirSayisi=sifirSayisi+1
if (sifirSayisi>5):
print("yes")
else:
print("no")
|
Title: Div. 64
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Top-model Izabella participates in the competition. She wants to impress judges and show her mathematical skills.
Her problem is following: for given string, consisting of only 0 and 1, tell if it's possible to remove some digits in such a way, that remaining number is a representation of some positive integer, divisible by 64, in the binary numerical system.
Input Specification:
In the only line given a non-empty binary string *s* with length up to 100.
Output Specification:
Print «yes» (without quotes) if it's possible to remove digits required way and «no» otherwise.
Demo Input:
['100010001\n', '100\n']
Demo Output:
['yes', 'no']
Note:
In the first test case, you can get string 1 000 000 after removing two ones which is a representation of number 64 in the binary numerical system.
You can read more about binary numeral system representation here: [https://en.wikipedia.org/wiki/Binary_system](https://en.wikipedia.org/wiki/Binary_system)
|
```python
a=input()
array=list(a)
birBulundu=False
sifirSayisi=0
for i in array:
if(i=='1'):
birBulundu=True
else:
if(birBulundu==True):
sifirSayisi=sifirSayisi+1
if (sifirSayisi>5):
print("yes")
else:
print("no")
```
| 3
|
|
228
|
A
|
Is your horseshoe on the other hoof?
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Valera the Horse is going to the party with friends. He has been following the fashion trends for a while, and he knows that it is very popular to wear all horseshoes of different color. Valera has got four horseshoes left from the last year, but maybe some of them have the same color. In this case he needs to go to the store and buy some few more horseshoes, not to lose face in front of his stylish comrades.
Fortunately, the store sells horseshoes of all colors under the sun and Valera has enough money to buy any four of them. However, in order to save the money, he would like to spend as little money as possible, so you need to help Valera and determine what is the minimum number of horseshoes he needs to buy to wear four horseshoes of different colors to a party.
|
The first line contains four space-separated integers *s*1,<=*s*2,<=*s*3,<=*s*4 (1<=≤<=*s*1,<=*s*2,<=*s*3,<=*s*4<=≤<=109) — the colors of horseshoes Valera has.
Consider all possible colors indexed with integers.
|
Print a single integer — the minimum number of horseshoes Valera needs to buy.
|
[
"1 7 3 3\n",
"7 7 7 7\n"
] |
[
"1\n",
"3\n"
] |
none
| 500
|
[
{
"input": "1 7 3 3",
"output": "1"
},
{
"input": "7 7 7 7",
"output": "3"
},
{
"input": "81170865 673572653 756938629 995577259",
"output": "0"
},
{
"input": "3491663 217797045 522540872 715355328",
"output": "0"
},
{
"input": "251590420 586975278 916631563 586975278",
"output": "1"
},
{
"input": "259504825 377489979 588153796 377489979",
"output": "1"
},
{
"input": "652588203 931100304 931100304 652588203",
"output": "2"
},
{
"input": "391958720 651507265 391958720 651507265",
"output": "2"
},
{
"input": "90793237 90793237 90793237 90793237",
"output": "3"
},
{
"input": "551651653 551651653 551651653 551651653",
"output": "3"
},
{
"input": "156630260 609654355 668943582 973622757",
"output": "0"
},
{
"input": "17061017 110313588 434481173 796661222",
"output": "0"
},
{
"input": "24975422 256716298 337790533 690960249",
"output": "0"
},
{
"input": "255635360 732742923 798648949 883146723",
"output": "0"
},
{
"input": "133315691 265159773 734556507 265159773",
"output": "1"
},
{
"input": "28442865 741657755 978106882 978106882",
"output": "1"
},
{
"input": "131245479 174845575 497483467 131245479",
"output": "1"
},
{
"input": "139159884 616215581 958341883 616215581",
"output": "1"
},
{
"input": "147784432 947653080 947653080 947653080",
"output": "2"
},
{
"input": "94055790 756126496 756126496 94055790",
"output": "2"
},
{
"input": "240458500 511952208 240458500 511952208",
"output": "2"
},
{
"input": "681828506 972810624 972810624 681828506",
"output": "2"
},
{
"input": "454961014 454961014 454961014 454961014",
"output": "3"
},
{
"input": "915819430 915819430 915819430 915819430",
"output": "3"
},
{
"input": "671645142 671645142 671645142 671645142",
"output": "3"
},
{
"input": "132503558 132503558 132503558 132503558",
"output": "3"
},
{
"input": "5 5 999999 6",
"output": "1"
},
{
"input": "1 1 2 5",
"output": "1"
},
{
"input": "2 1 2 3",
"output": "1"
},
{
"input": "1 1 3 5",
"output": "1"
},
{
"input": "1 1 3 3",
"output": "2"
},
{
"input": "2 2 2 1",
"output": "2"
},
{
"input": "3 1 1 1",
"output": "2"
},
{
"input": "1 2 2 2",
"output": "2"
}
] | 1,696,574,851
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 92
| 0
|
s1, s2, s3, s4 = map(int, input().split())
uni = set([s1, s2, s3, s4])
num = len(uni)
min= max(0, 4 - num)
print(min)
|
Title: Is your horseshoe on the other hoof?
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Valera the Horse is going to the party with friends. He has been following the fashion trends for a while, and he knows that it is very popular to wear all horseshoes of different color. Valera has got four horseshoes left from the last year, but maybe some of them have the same color. In this case he needs to go to the store and buy some few more horseshoes, not to lose face in front of his stylish comrades.
Fortunately, the store sells horseshoes of all colors under the sun and Valera has enough money to buy any four of them. However, in order to save the money, he would like to spend as little money as possible, so you need to help Valera and determine what is the minimum number of horseshoes he needs to buy to wear four horseshoes of different colors to a party.
Input Specification:
The first line contains four space-separated integers *s*1,<=*s*2,<=*s*3,<=*s*4 (1<=≤<=*s*1,<=*s*2,<=*s*3,<=*s*4<=≤<=109) — the colors of horseshoes Valera has.
Consider all possible colors indexed with integers.
Output Specification:
Print a single integer — the minimum number of horseshoes Valera needs to buy.
Demo Input:
['1 7 3 3\n', '7 7 7 7\n']
Demo Output:
['1\n', '3\n']
Note:
none
|
```python
s1, s2, s3, s4 = map(int, input().split())
uni = set([s1, s2, s3, s4])
num = len(uni)
min= max(0, 4 - num)
print(min)
```
| 3
|
|
484
|
A
|
Bits
|
PROGRAMMING
| 1,700
|
[
"bitmasks",
"constructive algorithms"
] | null | null |
Let's denote as the number of bits set ('1' bits) in the binary representation of the non-negative integer *x*.
You are given multiple queries consisting of pairs of integers *l* and *r*. For each query, find the *x*, such that *l*<=≤<=*x*<=≤<=*r*, and is maximum possible. If there are multiple such numbers find the smallest of them.
|
The first line contains integer *n* — the number of queries (1<=≤<=*n*<=≤<=10000).
Each of the following *n* lines contain two integers *l**i*,<=*r**i* — the arguments for the corresponding query (0<=≤<=*l**i*<=≤<=*r**i*<=≤<=1018).
|
For each query print the answer in a separate line.
|
[
"3\n1 2\n2 4\n1 10\n"
] |
[
"1\n3\n7\n"
] |
The binary representations of numbers from 1 to 10 are listed below:
1<sub class="lower-index">10</sub> = 1<sub class="lower-index">2</sub>
2<sub class="lower-index">10</sub> = 10<sub class="lower-index">2</sub>
3<sub class="lower-index">10</sub> = 11<sub class="lower-index">2</sub>
4<sub class="lower-index">10</sub> = 100<sub class="lower-index">2</sub>
5<sub class="lower-index">10</sub> = 101<sub class="lower-index">2</sub>
6<sub class="lower-index">10</sub> = 110<sub class="lower-index">2</sub>
7<sub class="lower-index">10</sub> = 111<sub class="lower-index">2</sub>
8<sub class="lower-index">10</sub> = 1000<sub class="lower-index">2</sub>
9<sub class="lower-index">10</sub> = 1001<sub class="lower-index">2</sub>
10<sub class="lower-index">10</sub> = 1010<sub class="lower-index">2</sub>
| 500
|
[
{
"input": "3\n1 2\n2 4\n1 10",
"output": "1\n3\n7"
},
{
"input": "55\n1 1\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n2 2\n2 3\n2 4\n2 5\n2 6\n2 7\n2 8\n2 9\n2 10\n3 3\n3 4\n3 5\n3 6\n3 7\n3 8\n3 9\n3 10\n4 4\n4 5\n4 6\n4 7\n4 8\n4 9\n4 10\n5 5\n5 6\n5 7\n5 8\n5 9\n5 10\n6 6\n6 7\n6 8\n6 9\n6 10\n7 7\n7 8\n7 9\n7 10\n8 8\n8 9\n8 10\n9 9\n9 10\n10 10",
"output": "1\n1\n3\n3\n3\n3\n7\n7\n7\n7\n2\n3\n3\n3\n3\n7\n7\n7\n7\n3\n3\n3\n3\n7\n7\n7\n7\n4\n5\n5\n7\n7\n7\n7\n5\n5\n7\n7\n7\n7\n6\n7\n7\n7\n7\n7\n7\n7\n7\n8\n9\n9\n9\n9\n10"
},
{
"input": "18\n1 10\n1 100\n1 1000\n1 10000\n1 100000\n1 1000000\n1 10000000\n1 100000000\n1 1000000000\n1 10000000000\n1 100000000000\n1 1000000000000\n1 10000000000000\n1 100000000000000\n1 1000000000000000\n1 10000000000000000\n1 100000000000000000\n1 1000000000000000000",
"output": "7\n63\n511\n8191\n65535\n524287\n8388607\n67108863\n536870911\n8589934591\n68719476735\n549755813887\n8796093022207\n70368744177663\n562949953421311\n9007199254740991\n72057594037927935\n576460752303423487"
},
{
"input": "3\n0 0\n1 3\n2 4",
"output": "0\n3\n3"
},
{
"input": "17\n0 0\n0 8\n1 8\n36 39\n3 4\n3 7\n2 17\n8 12\n9 12\n10 12\n10 15\n6 14\n8 15\n9 15\n15 15\n100000000000000000 1000000000000000000\n99999999999999999 1000000000000000000",
"output": "0\n7\n7\n39\n3\n7\n15\n11\n11\n11\n15\n7\n15\n15\n15\n576460752303423487\n576460752303423487"
}
] | 1,681,826,172
| 2,147,483,647
|
PyPy 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 15
| 1,000
| 7,475,200
|
def check(num):
ans = ''.join(num)
if int(ans, 2) > r:
return False
return True
for _ in range(int(input())):
l, r = map(int, input().split())
s1 = ['0']*100 + list(bin(l)[2:])
ss = ['0']*100 + list(bin(l)[2:])
for i in range(len(s1) - 1, -1, -1):
if s1[i] != '1':
ss[i] = '1'
if check(ss):
s1[i] = '1'
else:
break
res = ''.join(s1)
print(int(res, 2))
|
Title: Bits
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Let's denote as the number of bits set ('1' bits) in the binary representation of the non-negative integer *x*.
You are given multiple queries consisting of pairs of integers *l* and *r*. For each query, find the *x*, such that *l*<=≤<=*x*<=≤<=*r*, and is maximum possible. If there are multiple such numbers find the smallest of them.
Input Specification:
The first line contains integer *n* — the number of queries (1<=≤<=*n*<=≤<=10000).
Each of the following *n* lines contain two integers *l**i*,<=*r**i* — the arguments for the corresponding query (0<=≤<=*l**i*<=≤<=*r**i*<=≤<=1018).
Output Specification:
For each query print the answer in a separate line.
Demo Input:
['3\n1 2\n2 4\n1 10\n']
Demo Output:
['1\n3\n7\n']
Note:
The binary representations of numbers from 1 to 10 are listed below:
1<sub class="lower-index">10</sub> = 1<sub class="lower-index">2</sub>
2<sub class="lower-index">10</sub> = 10<sub class="lower-index">2</sub>
3<sub class="lower-index">10</sub> = 11<sub class="lower-index">2</sub>
4<sub class="lower-index">10</sub> = 100<sub class="lower-index">2</sub>
5<sub class="lower-index">10</sub> = 101<sub class="lower-index">2</sub>
6<sub class="lower-index">10</sub> = 110<sub class="lower-index">2</sub>
7<sub class="lower-index">10</sub> = 111<sub class="lower-index">2</sub>
8<sub class="lower-index">10</sub> = 1000<sub class="lower-index">2</sub>
9<sub class="lower-index">10</sub> = 1001<sub class="lower-index">2</sub>
10<sub class="lower-index">10</sub> = 1010<sub class="lower-index">2</sub>
|
```python
def check(num):
ans = ''.join(num)
if int(ans, 2) > r:
return False
return True
for _ in range(int(input())):
l, r = map(int, input().split())
s1 = ['0']*100 + list(bin(l)[2:])
ss = ['0']*100 + list(bin(l)[2:])
for i in range(len(s1) - 1, -1, -1):
if s1[i] != '1':
ss[i] = '1'
if check(ss):
s1[i] = '1'
else:
break
res = ''.join(s1)
print(int(res, 2))
```
| 0
|
|
796
|
B
|
Find The Bone
|
PROGRAMMING
| 1,300
|
[
"implementation"
] | null | null |
Zane the wizard is going to perform a magic show shuffling the cups.
There are *n* cups, numbered from 1 to *n*, placed along the *x*-axis on a table that has *m* holes on it. More precisely, cup *i* is on the table at the position *x*<==<=*i*.
The problematic bone is initially at the position *x*<==<=1. Zane will confuse the audience by swapping the cups *k* times, the *i*-th time of which involves the cups at the positions *x*<==<=*u**i* and *x*<==<=*v**i*. If the bone happens to be at the position where there is a hole at any time, it will fall into the hole onto the ground and will not be affected by future swapping operations.
Do not forget that Zane is a wizard. When he swaps the cups, he does not move them ordinarily. Instead, he teleports the cups (along with the bone, if it is inside) to the intended positions. Therefore, for example, when he swaps the cup at *x*<==<=4 and the one at *x*<==<=6, they will not be at the position *x*<==<=5 at any moment during the operation.
Zane’s puppy, Inzane, is in trouble. Zane is away on his vacation, and Inzane cannot find his beloved bone, as it would be too exhausting to try opening all the cups. Inzane knows that the Codeforces community has successfully helped Zane, so he wants to see if it could help him solve his problem too. Help Inzane determine the final position of the bone.
|
The first line contains three integers *n*, *m*, and *k* (2<=≤<=*n*<=≤<=106, 1<=≤<=*m*<=≤<=*n*, 1<=≤<=*k*<=≤<=3·105) — the number of cups, the number of holes on the table, and the number of swapping operations, respectively.
The second line contains *m* distinct integers *h*1,<=*h*2,<=...,<=*h**m* (1<=≤<=*h**i*<=≤<=*n*) — the positions along the *x*-axis where there is a hole on the table.
Each of the next *k* lines contains two integers *u**i* and *v**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*, *u**i*<=≠<=*v**i*) — the positions of the cups to be swapped.
|
Print one integer — the final position along the *x*-axis of the bone.
|
[
"7 3 4\n3 4 6\n1 2\n2 5\n5 7\n7 1\n",
"5 1 2\n2\n1 2\n2 4\n"
] |
[
"1",
"2"
] |
In the first sample, after the operations, the bone becomes at *x* = 2, *x* = 5, *x* = 7, and *x* = 1, respectively.
In the second sample, after the first operation, the bone becomes at *x* = 2, and falls into the hole onto the ground.
| 750
|
[
{
"input": "7 3 4\n3 4 6\n1 2\n2 5\n5 7\n7 1",
"output": "1"
},
{
"input": "5 1 2\n2\n1 2\n2 4",
"output": "2"
},
{
"input": "10000 1 9\n55\n44 1\n2929 9292\n9999 9998\n44 55\n49 94\n55 53\n100 199\n55 50\n53 11",
"output": "55"
},
{
"input": "100000 3 7\n2 3 4\n1 5\n5 1\n1 5\n5 1\n1 4\n4 3\n3 2",
"output": "4"
},
{
"input": "1000000 9 11\n38 59 999999 199 283 4849 1000000 2 554\n39 94\n3 9\n1 39\n39 40\n40 292\n5399 5858\n292 49949\n49949 222\n222 38\n202 9494\n38 59",
"output": "38"
},
{
"input": "1000000 11 9\n19 28 39 82 99 929384 8298 892849 202020 777777 123123\n19 28\n28 39\n1 123124\n39 28\n28 99\n99 8298\n123124 123122\n2300 3200\n8298 1000000",
"output": "123122"
},
{
"input": "2 1 1\n1\n1 2",
"output": "1"
},
{
"input": "7 3 6\n1 4 5\n1 2\n2 3\n3 5\n4 5\n4 5\n4 5",
"output": "1"
},
{
"input": "10 3 8\n1 5 10\n1 2\n2 3\n3 4\n3 4\n3 4\n4 5\n5 6\n6 5",
"output": "1"
},
{
"input": "5 2 9\n2 4\n1 3\n3 5\n3 5\n3 4\n4 2\n2 4\n1 4\n1 2\n1 4",
"output": "4"
},
{
"input": "10 10 13\n1 2 3 4 5 6 7 8 9 10\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n6 7\n6 10\n10 9\n9 1\n1 10\n1 10\n1 10",
"output": "1"
},
{
"input": "3 3 3\n1 2 3\n1 2\n2 3\n3 2",
"output": "1"
},
{
"input": "100 7 7\n17 27 37 47 57 67 77\n49 39\n55 1\n50 3\n89 1\n1 99\n100 55\n98 55",
"output": "100"
},
{
"input": "9 1 9\n9\n1 2\n3 2\n4 3\n8 9\n4 5\n7 4\n8 5\n1 3\n3 2",
"output": "8"
},
{
"input": "300000 1 1\n200000\n300000 1",
"output": "300000"
},
{
"input": "203948 2 14\n203948 203946\n39 38\n4959 3030\n1 203947\n2929 9292\n203944 203948\n203947 203944\n203944 203922\n203922 203948\n2495 20495\n29419 5959\n12949 12\n49 29292\n1 94\n1 203",
"output": "203948"
},
{
"input": "203948 2 14\n203948 203947\n39 38\n4959 3030\n1 203947\n2929 9292\n203944 203948\n203947 203944\n203944 203922\n203922 203948\n2495 20495\n29419 5959\n12949 12\n49 29292\n1 94\n1 203",
"output": "203947"
},
{
"input": "100 2 5\n1 2\n2 39\n39 29\n99 100\n1 2\n2 39",
"output": "1"
},
{
"input": "3 1 1\n1\n1 2",
"output": "1"
},
{
"input": "5 2 2\n1 2\n1 2\n2 3",
"output": "1"
},
{
"input": "2 2 1\n1 2\n2 1",
"output": "1"
},
{
"input": "5 2 1\n1 2\n2 1",
"output": "1"
},
{
"input": "5 1 1\n5\n3 4",
"output": "1"
},
{
"input": "3 2 1\n1 2\n2 1",
"output": "1"
},
{
"input": "5 1 2\n2\n2 1\n2 3",
"output": "2"
},
{
"input": "3 1 2\n2\n2 1\n2 3",
"output": "2"
},
{
"input": "3 2 2\n2 3\n2 1\n2 3",
"output": "2"
},
{
"input": "4 2 1\n1 2\n2 1",
"output": "1"
},
{
"input": "4 1 1\n2\n2 3",
"output": "1"
},
{
"input": "3 2 1\n1 3\n3 1",
"output": "1"
},
{
"input": "10 1 3\n2\n2 1\n2 4\n9 10",
"output": "2"
},
{
"input": "5 2 4\n3 5\n1 2\n4 2\n3 4\n3 5",
"output": "3"
},
{
"input": "4 3 1\n1 2 3\n2 1",
"output": "1"
}
] | 1,609,067,324
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 5
| 108
| 307,200
|
t = list(map(int,input().split()))
h = list(map(int,input().split()))
final = 0
flag = 0
for i in range(t[2]):
n = list(map(int,input().split()))
if flag!=1:
if (n[0] in h):
final = n[0]
flag=1
if flag!=1:
if n[1] in h:
final = n[1]
flag=1
else:
final = n[1]
print(final)
|
Title: Find The Bone
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Zane the wizard is going to perform a magic show shuffling the cups.
There are *n* cups, numbered from 1 to *n*, placed along the *x*-axis on a table that has *m* holes on it. More precisely, cup *i* is on the table at the position *x*<==<=*i*.
The problematic bone is initially at the position *x*<==<=1. Zane will confuse the audience by swapping the cups *k* times, the *i*-th time of which involves the cups at the positions *x*<==<=*u**i* and *x*<==<=*v**i*. If the bone happens to be at the position where there is a hole at any time, it will fall into the hole onto the ground and will not be affected by future swapping operations.
Do not forget that Zane is a wizard. When he swaps the cups, he does not move them ordinarily. Instead, he teleports the cups (along with the bone, if it is inside) to the intended positions. Therefore, for example, when he swaps the cup at *x*<==<=4 and the one at *x*<==<=6, they will not be at the position *x*<==<=5 at any moment during the operation.
Zane’s puppy, Inzane, is in trouble. Zane is away on his vacation, and Inzane cannot find his beloved bone, as it would be too exhausting to try opening all the cups. Inzane knows that the Codeforces community has successfully helped Zane, so he wants to see if it could help him solve his problem too. Help Inzane determine the final position of the bone.
Input Specification:
The first line contains three integers *n*, *m*, and *k* (2<=≤<=*n*<=≤<=106, 1<=≤<=*m*<=≤<=*n*, 1<=≤<=*k*<=≤<=3·105) — the number of cups, the number of holes on the table, and the number of swapping operations, respectively.
The second line contains *m* distinct integers *h*1,<=*h*2,<=...,<=*h**m* (1<=≤<=*h**i*<=≤<=*n*) — the positions along the *x*-axis where there is a hole on the table.
Each of the next *k* lines contains two integers *u**i* and *v**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*, *u**i*<=≠<=*v**i*) — the positions of the cups to be swapped.
Output Specification:
Print one integer — the final position along the *x*-axis of the bone.
Demo Input:
['7 3 4\n3 4 6\n1 2\n2 5\n5 7\n7 1\n', '5 1 2\n2\n1 2\n2 4\n']
Demo Output:
['1', '2']
Note:
In the first sample, after the operations, the bone becomes at *x* = 2, *x* = 5, *x* = 7, and *x* = 1, respectively.
In the second sample, after the first operation, the bone becomes at *x* = 2, and falls into the hole onto the ground.
|
```python
t = list(map(int,input().split()))
h = list(map(int,input().split()))
final = 0
flag = 0
for i in range(t[2]):
n = list(map(int,input().split()))
if flag!=1:
if (n[0] in h):
final = n[0]
flag=1
if flag!=1:
if n[1] in h:
final = n[1]
flag=1
else:
final = n[1]
print(final)
```
| 0
|
|
883
|
E
|
Field of Wonders
|
PROGRAMMING
| 1,500
|
[
"implementation",
"strings"
] | null | null |
Polycarpus takes part in the "Field of Wonders" TV show. The participants of the show have to guess a hidden word as fast as possible. Initially all the letters of the word are hidden.
The game consists of several turns. At each turn the participant tells a letter and the TV show host responds if there is such letter in the word or not. If there is such letter then the host reveals all such letters. For example, if the hidden word is "abacaba" and the player tells the letter "a", the host will reveal letters at all positions, occupied by "a": 1, 3, 5 and 7 (positions are numbered from left to right starting from 1).
Polycarpus knows *m* words of exactly the same length as the hidden word. The hidden word is also known to him and appears as one of these *m* words.
At current moment a number of turns have already been made and some letters (possibly zero) of the hidden word are already revealed. Previously Polycarp has told exactly the letters which are currently revealed.
It is Polycarpus' turn. He wants to tell a letter in such a way, that the TV show host will assuredly reveal at least one more letter. Polycarpus cannot tell the letters, which are already revealed.
Your task is to help Polycarpus and find out the number of letters he can tell so that the show host will assuredly reveal at least one of the remaining letters.
|
The first line contains one integer *n* (1<=≤<=*n*<=≤<=50) — the length of the hidden word.
The following line describes already revealed letters. It contains the string of length *n*, which consists of lowercase Latin letters and symbols "*". If there is a letter at some position, then this letter was already revealed. If the position contains symbol "*", then the letter at this position has not been revealed yet. It is guaranteed, that at least one letter is still closed.
The third line contains an integer *m* (1<=≤<=*m*<=≤<=1000) — the number of words of length *n*, which Polycarpus knows. The following *m* lines contain the words themselves — *n*-letter strings of lowercase Latin letters. All words are distinct.
It is guaranteed that the hidden word appears as one of the given *m* words. Before the current move Polycarp has told exactly the letters which are currently revealed.
|
Output the single integer — the number of letters Polycarpus can tell so that the TV show host definitely reveals at least one more letter. It is possible that this number is zero.
|
[
"4\na**d\n2\nabcd\nacbd\n",
"5\nlo*er\n2\nlover\nloser\n",
"3\na*a\n2\naaa\naba\n"
] |
[
"2\n",
"0\n",
"1\n"
] |
In the first example Polycarpus can tell letters "b" and "c", which assuredly will be revealed.
The second example contains no letters which can be told as it is not clear, which of the letters "v" or "s" is located at the third position of the hidden word.
In the third example Polycarpus exactly knows that the hidden word is "aba", because in case it was "aaa", then the second letter "a" would have already been revealed in one of previous turns.
| 0
|
[
{
"input": "4\na**d\n2\nabcd\nacbd",
"output": "2"
},
{
"input": "5\nlo*er\n2\nlover\nloser",
"output": "0"
},
{
"input": "3\na*a\n2\naaa\naba",
"output": "1"
},
{
"input": "1\n*\n1\na",
"output": "1"
},
{
"input": "1\n*\n1\nz",
"output": "1"
},
{
"input": "1\n*\n2\na\nz",
"output": "0"
},
{
"input": "2\n**\n1\naa",
"output": "1"
},
{
"input": "2\n**\n1\nfx",
"output": "2"
},
{
"input": "2\n**\n2\nfx\nab",
"output": "0"
},
{
"input": "2\n**\n2\nfx\naf",
"output": "1"
},
{
"input": "2\na*\n2\naa\nab",
"output": "1"
},
{
"input": "4\na*b*\n2\nabbc\nadbd",
"output": "1"
},
{
"input": "4\na*b*\n3\nabbc\nadbd\nacbe",
"output": "0"
},
{
"input": "4\na*b*\n3\nabbc\nadbd\nacbd",
"output": "1"
},
{
"input": "3\n***\n2\naaa\nbbb",
"output": "0"
},
{
"input": "3\n***\n2\naab\nabb",
"output": "2"
},
{
"input": "3\n*a*\n4\naaa\ncac\naab\nbaa",
"output": "1"
},
{
"input": "42\n*****o*******t********************oo******\n10\nvcrccobltkeidtxhsxhccaslkjhfyeqsetoowaemso\nuimjsoxifamvctkgqmrwhyjrgmlydczzqjoobnnwch\nuvmjsoqizfavctkxemrpaycngmlyemzzqjoobszwbh\nusmjsoviskzvctkljmrlmylugmlydfzzqvoobzawgh\nfeqweodinkhiatqmfokaxwcmlmbmvskssyookgcrax\ntackfosjhxeqftkgjynbbedrczegtimuvooosypczy\nxanuvoeismzmctruyplxgmfcpyrpqopyctoozlquvg\nurmjsouirdrvctkepmrwjyaxgmlyzvzzqcoobjgwih\nuymjsogivzivctkydmrgwyavgmlyphzzquoobclwhh\nkodyeoyihylgrtrdwudrsyonmuhtxaqklcoolsaclu",
"output": "18"
},
{
"input": "50\n***********************************o**************\n5\nwrubnrgpqmduhgxtlxymsmcaiimivvypkkeouspglhzkfbpzcu\nfrubkrgplrduhgjuuxdmsgeaiimavvypkkeousulbhnkebpzcu\nwrubkrgpdrduhgfanxdmsufaiimgvvypkkeouwvsshikhbpzcu\nvhyfvnnobcguishyvuswkaxhkesgatuvbkyodxdrvlwwifiimd\nwrubwrgpvaduhgfnqxtmsjqaiimcvvypkkeouiqpyhckkbpzcu",
"output": "20"
},
{
"input": "10\n**********\n10\nmvsthotcmi\nhmivtctsmo\nmmcostthiv\ntmomihtsvc\nmottsivmch\nhtomvcsmit\nsvhmotmcti\nmitotmvhcs\nvomcttmish\ncmostitvmh",
"output": "8"
},
{
"input": "20\n********************\n1\nlaizpfbafxrugjcytfbs",
"output": "16"
},
{
"input": "50\n**************************************************\n1\nqgaeytghzvvtgeitpovqozyclectzcohivbggudhiylaecbdzq",
"output": "17"
},
{
"input": "50\n**************************************************\n2\nhvjbrfkhdaobruoptrrachzuvkxvvsckycfiroipqicoqvcqpr\nuirvabciccxdvpryroisvpoqvthrpurkzhoovcfqcjbhkarkqf",
"output": "20"
},
{
"input": "26\n**************************\n10\nevfsnczuiodgbhqmlypkjatxrw\nuapqfdtoxkzynlbrehgwismvjc\nwjuyacngtzmvhqelikxoprdfbs\nyjgstlkvrhoqadxwfbiucpznem\nvebnxtrlocgkajqmwfuiszhypd\nroaqchwlpvtzxymnbkjigfedsu\noxmwaqpcendihzkutsybrjgfvl\nbnfzlwcsagxojdiyktqvruemhp\npdjahwnvmouxgqlciktzrfeysb\nbznurcyefxiapgktmqwjvsdloh",
"output": "26"
},
{
"input": "26\n**************************\n1\nayvguplhjsoiencbkxdrfwmqtz",
"output": "26"
},
{
"input": "26\n*lmnotuvwxyzjkabcdehiqfgrs\n2\nblmnotuvwxyzjkabcdehiqfgrs\nplmnotuvwxyzjkabcdehiqfgrs",
"output": "1"
},
{
"input": "16\nx*d**s******xd*u\n22\nxfdeoshogyqjxdmu\nxvdvdsnwfwakxdyu\nxfdjoshftykjxdmu\nxfdcoshfwyajxdmu\nxfdfoshkmyajxdmu\nxfdyoshpoycjxdmu\nxmdhcswqnhxjxdtu\nxxdxwsoogqzwxdcu\nxxdhhsxqzciuxdfu\nxddcmswqzksqxdhu\nxfdtoshioyvjxdmu\nxsdxmsfmgjbyxdgu\nxadfssplfnlbxdru\nxndcasykmqmbxdru\nxrdxgszaisicxdlu\nxfdfoshhmypjxdmu\nxfdioshfiyhjxdmu\nxvdzysydlmyuxdnu\nxjdbqszgkuwhxdmu\nxfdfoshjyymjxdmu\nxgdjksubrmrfxdpu\nxkdshsfszixmxdcu",
"output": "2"
},
{
"input": "3\n*vt\n2\ncvt\nqvb",
"output": "1"
},
{
"input": "3\ntv*\n2\ntvc\nbvq",
"output": "1"
},
{
"input": "41\n*z*hjcxxdgkny*tc*rmaov***fra**efs*lbi*puw\n1\nqzqhjcxxdgknyqtcqrmaovqqqfraqqefsqlbiqpuw",
"output": "1"
},
{
"input": "48\n*h*i**ag**um**fuxvmxlj*dsyt*gb*dxkzp*brnelctkq*w\n1\nohoiooagooumoofuxvmxljodsytogbodxkzpobrnelctkqow",
"output": "1"
}
] | 1,508,751,640
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 95
| 77
| 5,529,600
|
n = int(input())
s = input()
already = set()
for i in s:
if i != '*':
already.add(i)
ans = [chr(ord('a') + i) for i in range(26)]
ans = set(ans)
for i in range(int(input())):
cur = input()
can = True
clos = set() #should be closed
for j in range(n):
if s[j] == '*':
clos.add(cur[j])
elif s[j] != cur[j]:
can = False
break
if can:
if (already & clos) != set():
can = False
if can:
ans = (ans & clos)
print(len(ans))
|
Title: Field of Wonders
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarpus takes part in the "Field of Wonders" TV show. The participants of the show have to guess a hidden word as fast as possible. Initially all the letters of the word are hidden.
The game consists of several turns. At each turn the participant tells a letter and the TV show host responds if there is such letter in the word or not. If there is such letter then the host reveals all such letters. For example, if the hidden word is "abacaba" and the player tells the letter "a", the host will reveal letters at all positions, occupied by "a": 1, 3, 5 and 7 (positions are numbered from left to right starting from 1).
Polycarpus knows *m* words of exactly the same length as the hidden word. The hidden word is also known to him and appears as one of these *m* words.
At current moment a number of turns have already been made and some letters (possibly zero) of the hidden word are already revealed. Previously Polycarp has told exactly the letters which are currently revealed.
It is Polycarpus' turn. He wants to tell a letter in such a way, that the TV show host will assuredly reveal at least one more letter. Polycarpus cannot tell the letters, which are already revealed.
Your task is to help Polycarpus and find out the number of letters he can tell so that the show host will assuredly reveal at least one of the remaining letters.
Input Specification:
The first line contains one integer *n* (1<=≤<=*n*<=≤<=50) — the length of the hidden word.
The following line describes already revealed letters. It contains the string of length *n*, which consists of lowercase Latin letters and symbols "*". If there is a letter at some position, then this letter was already revealed. If the position contains symbol "*", then the letter at this position has not been revealed yet. It is guaranteed, that at least one letter is still closed.
The third line contains an integer *m* (1<=≤<=*m*<=≤<=1000) — the number of words of length *n*, which Polycarpus knows. The following *m* lines contain the words themselves — *n*-letter strings of lowercase Latin letters. All words are distinct.
It is guaranteed that the hidden word appears as one of the given *m* words. Before the current move Polycarp has told exactly the letters which are currently revealed.
Output Specification:
Output the single integer — the number of letters Polycarpus can tell so that the TV show host definitely reveals at least one more letter. It is possible that this number is zero.
Demo Input:
['4\na**d\n2\nabcd\nacbd\n', '5\nlo*er\n2\nlover\nloser\n', '3\na*a\n2\naaa\naba\n']
Demo Output:
['2\n', '0\n', '1\n']
Note:
In the first example Polycarpus can tell letters "b" and "c", which assuredly will be revealed.
The second example contains no letters which can be told as it is not clear, which of the letters "v" or "s" is located at the third position of the hidden word.
In the third example Polycarpus exactly knows that the hidden word is "aba", because in case it was "aaa", then the second letter "a" would have already been revealed in one of previous turns.
|
```python
n = int(input())
s = input()
already = set()
for i in s:
if i != '*':
already.add(i)
ans = [chr(ord('a') + i) for i in range(26)]
ans = set(ans)
for i in range(int(input())):
cur = input()
can = True
clos = set() #should be closed
for j in range(n):
if s[j] == '*':
clos.add(cur[j])
elif s[j] != cur[j]:
can = False
break
if can:
if (already & clos) != set():
can = False
if can:
ans = (ans & clos)
print(len(ans))
```
| 3
|
|
141
|
A
|
Amusing Joke
|
PROGRAMMING
| 800
|
[
"implementation",
"sortings",
"strings"
] | null | null |
So, the New Year holidays are over. Santa Claus and his colleagues can take a rest and have guests at last. When two "New Year and Christmas Men" meet, thear assistants cut out of cardboard the letters from the guest's name and the host's name in honor of this event. Then the hung the letters above the main entrance. One night, when everyone went to bed, someone took all the letters of our characters' names. Then he may have shuffled the letters and put them in one pile in front of the door.
The next morning it was impossible to find the culprit who had made the disorder. But everybody wondered whether it is possible to restore the names of the host and his guests from the letters lying at the door? That is, we need to verify that there are no extra letters, and that nobody will need to cut more letters.
Help the "New Year and Christmas Men" and their friends to cope with this problem. You are given both inscriptions that hung over the front door the previous night, and a pile of letters that were found at the front door next morning.
|
The input file consists of three lines: the first line contains the guest's name, the second line contains the name of the residence host and the third line contains letters in a pile that were found at the door in the morning. All lines are not empty and contain only uppercase Latin letters. The length of each line does not exceed 100.
|
Print "YES" without the quotes, if the letters in the pile could be permuted to make the names of the "New Year and Christmas Men". Otherwise, print "NO" without the quotes.
|
[
"SANTACLAUS\nDEDMOROZ\nSANTAMOROZDEDCLAUS\n",
"PAPAINOEL\nJOULUPUKKI\nJOULNAPAOILELUPUKKI\n",
"BABBONATALE\nFATHERCHRISTMAS\nBABCHRISTMASBONATALLEFATHER\n"
] |
[
"YES\n",
"NO\n",
"NO\n"
] |
In the first sample the letters written in the last line can be used to write the names and there won't be any extra letters left.
In the second sample letter "P" is missing from the pile and there's an extra letter "L".
In the third sample there's an extra letter "L".
| 500
|
[
{
"input": "SANTACLAUS\nDEDMOROZ\nSANTAMOROZDEDCLAUS",
"output": "YES"
},
{
"input": "PAPAINOEL\nJOULUPUKKI\nJOULNAPAOILELUPUKKI",
"output": "NO"
},
{
"input": "BABBONATALE\nFATHERCHRISTMAS\nBABCHRISTMASBONATALLEFATHER",
"output": "NO"
},
{
"input": "B\nA\nAB",
"output": "YES"
},
{
"input": "ONDOL\nJNPB\nONLNJBODP",
"output": "YES"
},
{
"input": "Y\nW\nYW",
"output": "YES"
},
{
"input": "OI\nM\nIMO",
"output": "YES"
},
{
"input": "VFQRWWWACX\nGHZJPOQUSXRAQDGOGMR\nOPAWDOUSGWWCGQXXQAZJRQRGHRMVF",
"output": "YES"
},
{
"input": "JUTCN\nPIGMZOPMEUFADQBW\nNWQGZMAIPUPOMCDUB",
"output": "NO"
},
{
"input": "Z\nO\nZOCNDOLTBZKQLTBOLDEGXRHZGTTPBJBLSJCVSVXISQZCSFDEBXRCSGBGTHWOVIXYHACAGBRYBKBJAEPIQZHVEGLYH",
"output": "NO"
},
{
"input": "IQ\nOQ\nQOQIGGKFNHJSGCGM",
"output": "NO"
},
{
"input": "ROUWANOPNIGTVMIITVMZ\nOQTUPZMTKUGY\nVTVNGZITGPUNPMQOOATUUIYIWMMKZOTR",
"output": "YES"
},
{
"input": "OVQELLOGFIOLEHXMEMBJDIGBPGEYFG\nJNKFPFFIJOFHRIFHXEWYZOPDJBZTJZKBWQTECNHRFSJPJOAPQT\nYAIPFFFEXJJNEJPLREIGODEGQZVMCOBDFKWTMWJSBEBTOFFQOHIQJLHFNXIGOHEZRZLFOKJBJPTPHPGY",
"output": "YES"
},
{
"input": "NBJGVNGUISUXQTBOBKYHQCOOVQWUXWPXBUDLXPKX\nNSFQDFUMQDQWQ\nWXKKVNTDQQFXCUQBIMQGQHSLVGWSBFYBUPOWPBDUUJUXQNOQDNXOX",
"output": "YES"
},
{
"input": "IJHHGKCXWDBRWJUPRDBZJLNTTNWKXLUGJSBWBOAUKWRAQWGFNL\nNJMWRMBCNPHXTDQQNZ\nWDNJRCLILNQRHWBANLTXWMJBPKUPGKJDJZAQWKTZFBRCTXHHBNXRGUQUNBNMWODGSJWW",
"output": "YES"
},
{
"input": "SRROWANGUGZHCIEFYMQVTWVOMDWPUZJFRDUMVFHYNHNTTGNXCJ\nDJYWGLBFCCECXFHOLORDGDCNRHPWXNHXFCXQCEZUHRRNAEKUIX\nWCUJDNYHNHYOPWMHLDCDYRWBVOGHFFUKOZTXJRXJHRGWICCMRNEVNEGQWTZPNFCSHDRFCFQDCXMHTLUGZAXOFNXNVGUEXIACRERU",
"output": "YES"
},
{
"input": "H\nJKFGHMIAHNDBMFXWYQLZRSVNOTEGCQSVUBYUOZBTNKTXPFQDCMKAGFITEUGOYDFIYQIORMFJEOJDNTFVIQEBICSNGKOSNLNXJWC\nBQSVDOGIHCHXSYNYTQFCHNJGYFIXTSOQINZOKSVQJMTKNTGFNXAVTUYEONMBQMGJLEWJOFGEARIOPKFUFCEMUBRBDNIIDFZDCLWK",
"output": "YES"
},
{
"input": "DSWNZRFVXQ\nPVULCZGOOU\nUOLVZXNUPOQRZGWFVDSCANQTCLEIE",
"output": "NO"
},
{
"input": "EUHTSCENIPXLTSBMLFHD\nIZAVSZPDLXOAGESUSE\nLXAELAZ",
"output": "NO"
},
{
"input": "WYSJFEREGELSKRQRXDXCGBODEFZVSI\nPEJKMGFLBFFDWRCRFSHVEFLEBTJCVCHRJTLDTISHPOGFWPLEWNYJLMXWIAOTYOXMV\nHXERTZWLEXTPIOTFRVMEJVYFFJLRPFMXDEBNSGCEOFFCWTKIDDGCFYSJKGLHBORWEPLDRXRSJYBGASSVCMHEEJFLVI",
"output": "NO"
},
{
"input": "EPBMDIUQAAUGLBIETKOKFLMTCVEPETWJRHHYKCKU\nHGMAETVPCFZYNNKDQXVXUALHYLOTCHM\nECGXACVKEYMCEDOTMKAUFHLHOMT",
"output": "NO"
},
{
"input": "NUBKQEJHALANSHEIFUZHYEZKKDRFHQKAJHLAOWTZIMOCWOVVDW\nEFVOBIGAUAUSQGVSNBKNOBDMINODMFSHDL\nKLAMKNTHBFFOHVKWICHBKNDDQNEISODUSDNLUSIOAVWY",
"output": "NO"
},
{
"input": "VXINHOMEQCATZUGAJEIUIZZLPYFGUTVLNBNWCUVMEENUXKBWBGZTMRJJVJDLVSLBABVCEUDDSQFHOYPYQTWVAGTWOLKYISAGHBMC\nZMRGXPZSHOGCSAECAPGVOIGCWEOWWOJXLGYRDMPXBLOKZVRACPYQLEQGFQCVYXAGBEBELUTDAYEAGPFKXRULZCKFHZCHVCWIRGPK\nRCVUXGQVNWFGRUDLLENNDQEJHYYVWMKTLOVIPELKPWCLSQPTAXAYEMGWCBXEVAIZGGDDRBRT",
"output": "NO"
},
{
"input": "PHBDHHWUUTZAHELGSGGOPOQXSXEZIXHZTOKYFBQLBDYWPVCNQSXHEAXRRPVHFJBVBYCJIFOTQTWSUOWXLKMVJJBNLGTVITWTCZZ\nFUPDLNVIHRWTEEEHOOEC\nLOUSUUSZCHJBPEWIILUOXEXRQNCJEGTOBRVZLTTZAHTKVEJSNGHFTAYGY",
"output": "NO"
},
{
"input": "GDSLNIIKTO\nJF\nPDQYFKDTNOLI",
"output": "NO"
},
{
"input": "AHOKHEKKPJLJIIWJRCGY\nORELJCSIX\nZVWPXVFWFSWOXXLIHJKPXIOKRELYE",
"output": "NO"
},
{
"input": "ZWCOJFORBPHXCOVJIDPKVECMHVHCOC\nTEV\nJVGTBFTLFVIEPCCHODOFOMCVZHWXVCPEH",
"output": "NO"
},
{
"input": "AGFIGYWJLVMYZGNQHEHWKJIAWBPUAQFERMCDROFN\nPMJNHMVNRGCYZAVRWNDSMLSZHFNYIUWFPUSKKIGU\nMCDVPPRXGUAYLSDRHRURZASXUWZSIIEZCPXUVEONKNGNWRYGOSFMCKESMVJZHWWUCHWDQMLASLNNMHAU",
"output": "NO"
},
{
"input": "XLOWVFCZSSXCSYQTIIDKHNTKNKEEDFMDZKXSPVLBIDIREDUAIN\nZKIWNDGBISDB\nSLPKLYFYSRNRMOSWYLJJDGFFENPOXYLPZFTQDANKBDNZDIIEWSUTTKYBKVICLG",
"output": "NO"
},
{
"input": "PMUKBTRKFIAYVGBKHZHUSJYSSEPEOEWPOSPJLWLOCTUYZODLTUAFCMVKGQKRRUSOMPAYOTBTFPXYAZXLOADDEJBDLYOTXJCJYTHA\nTWRRAJLCQJTKOKWCGUH\nEWDPNXVCXWCDQCOYKKSOYTFSZTOOPKPRDKFJDETKSRAJRVCPDOBWUGPYRJPUWJYWCBLKOOTUPBESTOFXZHTYLLMCAXDYAEBUTAHM",
"output": "NO"
},
{
"input": "QMIMGQRQDMJDPNFEFXSXQMCHEJKTWCTCVZPUAYICOIRYOWKUSIWXJLHDYWSBOITHTMINXFKBKAWZTXXBJIVYCRWKXNKIYKLDDXL\nV\nFWACCXBVDOJFIUAVYRALBYJKXXWIIFORRUHKHCXLDBZMXIYJWISFEAWTIQFIZSBXMKNOCQKVKRWDNDAMQSTKYLDNYVTUCGOJXJTW",
"output": "NO"
},
{
"input": "XJXPVOOQODELPPWUISSYVVXRJTYBPDHJNENQEVQNVFIXSESKXVYPVVHPMOSX\nLEXOPFPVPSZK\nZVXVPYEYOYXVOISVLXPOVHEQVXPNQJIOPFDTXEUNMPEPPHELNXKKWSVSOXSBPSJDPVJVSRFQ",
"output": "YES"
},
{
"input": "OSKFHGYNQLSRFSAHPXKGPXUHXTRBJNAQRBSSWJVEENLJCDDHFXVCUNPZAIVVO\nFNUOCXAGRRHNDJAHVVLGGEZQHWARYHENBKHP\nUOEFNWVXCUNERLKVTHAGPSHKHDYFPYWZHJKHQLSNFBJHVJANRXCNSDUGVDABGHVAOVHBJZXGRACHRXEGNRPQEAPORQSILNXFS",
"output": "YES"
},
{
"input": "VYXYVVACMLPDHONBUTQFZTRREERBLKUJYKAHZRCTRLRCLOZYWVPBRGDQPFPQIF\nFE\nRNRPEVDRLYUQFYRZBCQLCYZEABKLRXCJLKVZBVFUEYRATOMDRTHFPGOWQVTIFPPH",
"output": "YES"
},
{
"input": "WYXUZQJQNLASEGLHPMSARWMTTQMQLVAZLGHPIZTRVTCXDXBOLNXZPOFCTEHCXBZ\nBLQZRRWP\nGIQZXPLTTMNHQVWPPEAPLOCDMBSTHRCFLCQRRZXLVAOQEGZBRUZJXXZTMAWLZHSLWNQTYXB",
"output": "YES"
},
{
"input": "MKVJTSSTDGKPVVDPYSRJJYEVGKBMSIOKHLZQAEWLRIBINVRDAJIBCEITKDHUCCVY\nPUJJQFHOGZKTAVNUGKQUHMKTNHCCTI\nQVJKUSIGTSVYUMOMLEGHWYKSKQTGATTKBNTKCJKJPCAIRJIRMHKBIZISEGFHVUVQZBDERJCVAKDLNTHUDCHONDCVVJIYPP",
"output": "YES"
},
{
"input": "OKNJOEYVMZXJMLVJHCSPLUCNYGTDASKSGKKCRVIDGEIBEWRVBVRVZZTLMCJLXHJIA\nDJBFVRTARTFZOWN\nAGHNVUNJVCPLWSVYBJKZSVTFGLELZASLWTIXDDJXCZDICTVIJOTMVEYOVRNMJGRKKHRMEBORAKFCZJBR",
"output": "YES"
},
{
"input": "OQZACLPSAGYDWHFXDFYFRRXWGIEJGSXWUONAFWNFXDTGVNDEWNQPHUXUJNZWWLBPYL\nOHBKWRFDRQUAFRCMT\nWIQRYXRJQWWRUWCYXNXALKFZGXFTLOODWRDPGURFUFUQOHPWBASZNVWXNCAGHWEHFYESJNFBMNFDDAPLDGT",
"output": "YES"
},
{
"input": "OVIRQRFQOOWVDEPLCJETWQSINIOPLTLXHSQWUYUJNFBMKDNOSHNJQQCDHZOJVPRYVSV\nMYYDQKOOYPOOUELCRIT\nNZSOTVLJTTVQLFHDQEJONEOUOFOLYVSOIYUDNOSIQVIRMVOERCLMYSHPCQKIDRDOQPCUPQBWWRYYOXJWJQPNKH",
"output": "YES"
},
{
"input": "WGMBZWNMSJXNGDUQUJTCNXDSJJLYRDOPEGPQXYUGBESDLFTJRZDDCAAFGCOCYCQMDBWK\nYOBMOVYTUATTFGJLYUQD\nDYXVTLQCYFJUNJTUXPUYOPCBCLBWNSDUJRJGWDOJDSQAAMUOJWSYERDYDXYTMTOTMQCGQZDCGNFBALGGDFKZMEBG",
"output": "YES"
},
{
"input": "CWLRBPMEZCXAPUUQFXCUHAQTLPBTXUUKWVXKBHKNSSJFEXLZMXGVFHHVTPYAQYTIKXJJE\nMUFOSEUEXEQTOVLGDSCWM\nJUKEQCXOXWEHCGKFPBIGMWVJLXUONFXBYTUAXERYTXKCESKLXAEHVPZMMUFTHLXTTZSDMBJLQPEUWCVUHSQQVUASPF",
"output": "YES"
},
{
"input": "IDQRX\nWETHO\nODPDGBHVUVSSISROHQJTUKPUCLXABIZQQPPBPKOSEWGEHRSRRNBAVLYEMZISMWWGKHVTXKUGUXEFBSWOIWUHRJGMWBMHQLDZHBWA",
"output": "NO"
},
{
"input": "IXFDY\nJRMOU\nDF",
"output": "NO"
},
{
"input": "JPSPZ\nUGCUB\nJMZZZZZZZZ",
"output": "NO"
},
{
"input": "AC\nA\nBBA",
"output": "NO"
},
{
"input": "UIKWWKXLSHTOOZOVGXKYSOJEHAUEEG\nKZXQDWJJWRXFHKJDQHJK\nXMZHTFOGEXAUJXXJUYVJIFOTKLZHDKELJWERHMGAWGKWAQKEKHIDWGGZVYOHKXRPWSJDPESFJUMKQYWBYUTHQYEFZUGKQOBHYDWB",
"output": "NO"
},
{
"input": "PXWRXRPFLR\nPJRWWXIVHODV\nXW",
"output": "NO"
},
{
"input": "CHTAZVHGSHCVIBK\nEQINEBKXEPYJSAZIMLDF\nZCZZZZDZMCZZEZDZZEZZZZQZZBZZZOZZCZE",
"output": "NO"
},
{
"input": "GXPZFSELJJNDAXYRV\nUYBKPMVBSOVOJWMONLTJOJCNQKMTAHEWLHOWIIBH\nHCWNFWJPEJIWOVPTBMVCRJLSISSVNOHCKLBFMIUAIMASQWPXEYXBOXQGFEMYJLBKDCZIMJNHOJEDGGANIVYKQTUOSOVOPWHVJGXH",
"output": "NO"
},
{
"input": "LFGJCJJDUTUP\nOVSBILTIYCJCRHKCIXCETJQJJ\nGIJJTJCLTJJJ",
"output": "NO"
},
{
"input": "GIO\nPRL\nPRL",
"output": "NO"
},
{
"input": "A\nB\nABC",
"output": "NO"
},
{
"input": "KKK\nKKK\nZZZZZ",
"output": "NO"
},
{
"input": "ZMYGQLDBLAPN\nZFJBKWHROVNPSJQUDFTHOCGREUFLYIWYICD\nZMJZZEDAZANKZZZZZZEZZBZDZZZZZZKHZZFZZZDZNZMDZZA",
"output": "NO"
}
] | 1,697,700,054
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 0
| 154
| 0
|
print("Hello............................." )
|
Title: Amusing Joke
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
So, the New Year holidays are over. Santa Claus and his colleagues can take a rest and have guests at last. When two "New Year and Christmas Men" meet, thear assistants cut out of cardboard the letters from the guest's name and the host's name in honor of this event. Then the hung the letters above the main entrance. One night, when everyone went to bed, someone took all the letters of our characters' names. Then he may have shuffled the letters and put them in one pile in front of the door.
The next morning it was impossible to find the culprit who had made the disorder. But everybody wondered whether it is possible to restore the names of the host and his guests from the letters lying at the door? That is, we need to verify that there are no extra letters, and that nobody will need to cut more letters.
Help the "New Year and Christmas Men" and their friends to cope with this problem. You are given both inscriptions that hung over the front door the previous night, and a pile of letters that were found at the front door next morning.
Input Specification:
The input file consists of three lines: the first line contains the guest's name, the second line contains the name of the residence host and the third line contains letters in a pile that were found at the door in the morning. All lines are not empty and contain only uppercase Latin letters. The length of each line does not exceed 100.
Output Specification:
Print "YES" without the quotes, if the letters in the pile could be permuted to make the names of the "New Year and Christmas Men". Otherwise, print "NO" without the quotes.
Demo Input:
['SANTACLAUS\nDEDMOROZ\nSANTAMOROZDEDCLAUS\n', 'PAPAINOEL\nJOULUPUKKI\nJOULNAPAOILELUPUKKI\n', 'BABBONATALE\nFATHERCHRISTMAS\nBABCHRISTMASBONATALLEFATHER\n']
Demo Output:
['YES\n', 'NO\n', 'NO\n']
Note:
In the first sample the letters written in the last line can be used to write the names and there won't be any extra letters left.
In the second sample letter "P" is missing from the pile and there's an extra letter "L".
In the third sample there's an extra letter "L".
|
```python
print("Hello............................." )
```
| 0
|
|
186
|
A
|
Comparing Strings
|
PROGRAMMING
| 1,100
|
[
"implementation",
"strings"
] | null | null |
Some dwarves that are finishing the StUDY (State University for Dwarven Youngsters) Bachelor courses, have been told "no genome, no degree". That means that all dwarves should write a thesis on genome. Dwarven genome is far from simple. It is represented by a string that consists of lowercase Latin letters.
Dwarf Misha has already chosen the subject for his thesis: determining by two dwarven genomes, whether they belong to the same race. Two dwarves belong to the same race if we can swap two characters in the first dwarf's genome and get the second dwarf's genome as a result. Help Dwarf Misha and find out whether two gnomes belong to the same race or not.
|
The first line contains the first dwarf's genome: a non-empty string, consisting of lowercase Latin letters.
The second line contains the second dwarf's genome: a non-empty string, consisting of lowercase Latin letters.
The number of letters in each genome doesn't exceed 105. It is guaranteed that the strings that correspond to the genomes are different. The given genomes may have different length.
|
Print "YES", if the dwarves belong to the same race. Otherwise, print "NO".
|
[
"ab\nba\n",
"aa\nab\n"
] |
[
"YES\n",
"NO\n"
] |
- First example: you can simply swap two letters in string "ab". So we get "ba". - Second example: we can't change string "aa" into string "ab", because "aa" does not contain letter "b".
| 500
|
[
{
"input": "ab\nba",
"output": "YES"
},
{
"input": "aa\nab",
"output": "NO"
},
{
"input": "a\nza",
"output": "NO"
},
{
"input": "vvea\nvvae",
"output": "YES"
},
{
"input": "rtfabanpc\natfabrnpc",
"output": "YES"
},
{
"input": "mt\ntm",
"output": "YES"
},
{
"input": "qxolmbkkt\naovlajmlf",
"output": "NO"
},
{
"input": "b\ng",
"output": "NO"
},
{
"input": "ab\naba",
"output": "NO"
},
{
"input": "ba\na",
"output": "NO"
},
{
"input": "a\nab",
"output": "NO"
},
{
"input": "a\naa",
"output": "NO"
},
{
"input": "a\nz",
"output": "NO"
},
{
"input": "aabb\nbbaa",
"output": "NO"
},
{
"input": "ab\nbd",
"output": "NO"
},
{
"input": "bac\ndae",
"output": "NO"
},
{
"input": "abc\nakl",
"output": "NO"
},
{
"input": "cb\naa",
"output": "NO"
},
{
"input": "abaab\naabba",
"output": "NO"
},
{
"input": "aab\naaa",
"output": "NO"
},
{
"input": "abcde\nedcba",
"output": "NO"
},
{
"input": "abab\nbaba",
"output": "NO"
},
{
"input": "ab\nbac",
"output": "NO"
},
{
"input": "abcd\naqcb",
"output": "NO"
},
{
"input": "abc\nbad",
"output": "NO"
},
{
"input": "ab\nca",
"output": "NO"
},
{
"input": "abc\nab",
"output": "NO"
},
{
"input": "ab\nbae",
"output": "NO"
},
{
"input": "aaaabcccca\naaaadccccb",
"output": "NO"
},
{
"input": "acaa\nabca",
"output": "NO"
},
{
"input": "aba\naab",
"output": "YES"
},
{
"input": "ah\nla",
"output": "NO"
},
{
"input": "aab\naa",
"output": "NO"
},
{
"input": "abab\nabcd",
"output": "NO"
},
{
"input": "ed\nab",
"output": "NO"
}
] | 1,619,829,249
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 4
| 154
| 0
|
g1 = '1'*5+input()+'1'*5
g2 = '1'*5+input()+'1'*5
flg = False
skip = False
ans = 'YES'
for i in range(min(len(g1),len(g2))):
if skip:
skip = False
continue
if g1[i]!=g2[i]:
if flg:
ans = 'NO'
break
if g1[i+1]==g2[i] and g1[i]==g2[i+1]:
flg = True
skip = True
else:
ans = 'NO'
break
print(ans)
|
Title: Comparing Strings
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Some dwarves that are finishing the StUDY (State University for Dwarven Youngsters) Bachelor courses, have been told "no genome, no degree". That means that all dwarves should write a thesis on genome. Dwarven genome is far from simple. It is represented by a string that consists of lowercase Latin letters.
Dwarf Misha has already chosen the subject for his thesis: determining by two dwarven genomes, whether they belong to the same race. Two dwarves belong to the same race if we can swap two characters in the first dwarf's genome and get the second dwarf's genome as a result. Help Dwarf Misha and find out whether two gnomes belong to the same race or not.
Input Specification:
The first line contains the first dwarf's genome: a non-empty string, consisting of lowercase Latin letters.
The second line contains the second dwarf's genome: a non-empty string, consisting of lowercase Latin letters.
The number of letters in each genome doesn't exceed 105. It is guaranteed that the strings that correspond to the genomes are different. The given genomes may have different length.
Output Specification:
Print "YES", if the dwarves belong to the same race. Otherwise, print "NO".
Demo Input:
['ab\nba\n', 'aa\nab\n']
Demo Output:
['YES\n', 'NO\n']
Note:
- First example: you can simply swap two letters in string "ab". So we get "ba". - Second example: we can't change string "aa" into string "ab", because "aa" does not contain letter "b".
|
```python
g1 = '1'*5+input()+'1'*5
g2 = '1'*5+input()+'1'*5
flg = False
skip = False
ans = 'YES'
for i in range(min(len(g1),len(g2))):
if skip:
skip = False
continue
if g1[i]!=g2[i]:
if flg:
ans = 'NO'
break
if g1[i+1]==g2[i] and g1[i]==g2[i+1]:
flg = True
skip = True
else:
ans = 'NO'
break
print(ans)
```
| 0
|
|
893
|
C
|
Rumor
|
PROGRAMMING
| 1,300
|
[
"dfs and similar",
"graphs",
"greedy"
] | null | null |
Vova promised himself that he would never play computer games... But recently Firestorm — a well-known game developing company — published their newest game, World of Farcraft, and it became really popular. Of course, Vova started playing it.
Now he tries to solve a quest. The task is to come to a settlement named Overcity and spread a rumor in it.
Vova knows that there are *n* characters in Overcity. Some characters are friends to each other, and they share information they got. Also Vova knows that he can bribe each character so he or she starts spreading the rumor; *i*-th character wants *c**i* gold in exchange for spreading the rumor. When a character hears the rumor, he tells it to all his friends, and they start spreading the rumor to their friends (for free), and so on.
The quest is finished when all *n* characters know the rumor. What is the minimum amount of gold Vova needs to spend in order to finish the quest?
Take a look at the notes if you think you haven't understood the problem completely.
|
The first line contains two integer numbers *n* and *m* (1<=≤<=*n*<=≤<=105,<=0<=≤<=*m*<=≤<=105) — the number of characters in Overcity and the number of pairs of friends.
The second line contains *n* integer numbers *c**i* (0<=≤<=*c**i*<=≤<=109) — the amount of gold *i*-th character asks to start spreading the rumor.
Then *m* lines follow, each containing a pair of numbers (*x**i*,<=*y**i*) which represent that characters *x**i* and *y**i* are friends (1<=≤<=*x**i*,<=*y**i*<=≤<=*n*, *x**i*<=≠<=*y**i*). It is guaranteed that each pair is listed at most once.
|
Print one number — the minimum amount of gold Vova has to spend in order to finish the quest.
|
[
"5 2\n2 5 3 4 8\n1 4\n4 5\n",
"10 0\n1 2 3 4 5 6 7 8 9 10\n",
"10 5\n1 6 2 7 3 8 4 9 5 10\n1 2\n3 4\n5 6\n7 8\n9 10\n"
] |
[
"10\n",
"55\n",
"15\n"
] |
In the first example the best decision is to bribe the first character (he will spread the rumor to fourth character, and the fourth one will spread it to fifth). Also Vova has to bribe the second and the third characters, so they know the rumor.
In the second example Vova has to bribe everyone.
In the third example the optimal decision is to bribe the first, the third, the fifth, the seventh and the ninth characters.
| 0
|
[
{
"input": "5 2\n2 5 3 4 8\n1 4\n4 5",
"output": "10"
},
{
"input": "10 0\n1 2 3 4 5 6 7 8 9 10",
"output": "55"
},
{
"input": "10 5\n1 6 2 7 3 8 4 9 5 10\n1 2\n3 4\n5 6\n7 8\n9 10",
"output": "15"
},
{
"input": "1 0\n0",
"output": "0"
},
{
"input": "1 0\n1000000000",
"output": "1000000000"
},
{
"input": "2 0\n0 0",
"output": "0"
},
{
"input": "2 0\n1000000000 0",
"output": "1000000000"
},
{
"input": "2 0\n0 1000000000",
"output": "1000000000"
},
{
"input": "2 0\n1000000000 1000000000",
"output": "2000000000"
},
{
"input": "2 1\n0 0\n1 2",
"output": "0"
}
] | 1,652,093,902
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 3
| 2,000
| 11,673,600
|
n, m = map(int, input().split())
mas = list(map(int, input().split()))
dict1 = {}
ans = 0
sum1 = sum(mas)
for i in range(m):
a = list(map(int, input().split()))
if a[0] in dict1:
dict1[a[0]].append(a[1])
else:
dict1[a[0]]=[a[1]]
mx = max(mas)
#peoples = []
while dict1 != {}:
helper = []
b = [list(dict1.keys())[0]]
for i in dict1:
if i in b:
b += dict1[i]
helper.append(i)
#peoples += b
for i in helper:
dict1.pop(i)
mins = mx
for i in b:
sum1 -= mas[i-1]
mins = min(mas[i-1], mins)
ans += mins
# peoples = set(peoples)
# if len(peoples) != n:
print(ans+sum1)
|
Title: Rumor
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vova promised himself that he would never play computer games... But recently Firestorm — a well-known game developing company — published their newest game, World of Farcraft, and it became really popular. Of course, Vova started playing it.
Now he tries to solve a quest. The task is to come to a settlement named Overcity and spread a rumor in it.
Vova knows that there are *n* characters in Overcity. Some characters are friends to each other, and they share information they got. Also Vova knows that he can bribe each character so he or she starts spreading the rumor; *i*-th character wants *c**i* gold in exchange for spreading the rumor. When a character hears the rumor, he tells it to all his friends, and they start spreading the rumor to their friends (for free), and so on.
The quest is finished when all *n* characters know the rumor. What is the minimum amount of gold Vova needs to spend in order to finish the quest?
Take a look at the notes if you think you haven't understood the problem completely.
Input Specification:
The first line contains two integer numbers *n* and *m* (1<=≤<=*n*<=≤<=105,<=0<=≤<=*m*<=≤<=105) — the number of characters in Overcity and the number of pairs of friends.
The second line contains *n* integer numbers *c**i* (0<=≤<=*c**i*<=≤<=109) — the amount of gold *i*-th character asks to start spreading the rumor.
Then *m* lines follow, each containing a pair of numbers (*x**i*,<=*y**i*) which represent that characters *x**i* and *y**i* are friends (1<=≤<=*x**i*,<=*y**i*<=≤<=*n*, *x**i*<=≠<=*y**i*). It is guaranteed that each pair is listed at most once.
Output Specification:
Print one number — the minimum amount of gold Vova has to spend in order to finish the quest.
Demo Input:
['5 2\n2 5 3 4 8\n1 4\n4 5\n', '10 0\n1 2 3 4 5 6 7 8 9 10\n', '10 5\n1 6 2 7 3 8 4 9 5 10\n1 2\n3 4\n5 6\n7 8\n9 10\n']
Demo Output:
['10\n', '55\n', '15\n']
Note:
In the first example the best decision is to bribe the first character (he will spread the rumor to fourth character, and the fourth one will spread it to fifth). Also Vova has to bribe the second and the third characters, so they know the rumor.
In the second example Vova has to bribe everyone.
In the third example the optimal decision is to bribe the first, the third, the fifth, the seventh and the ninth characters.
|
```python
n, m = map(int, input().split())
mas = list(map(int, input().split()))
dict1 = {}
ans = 0
sum1 = sum(mas)
for i in range(m):
a = list(map(int, input().split()))
if a[0] in dict1:
dict1[a[0]].append(a[1])
else:
dict1[a[0]]=[a[1]]
mx = max(mas)
#peoples = []
while dict1 != {}:
helper = []
b = [list(dict1.keys())[0]]
for i in dict1:
if i in b:
b += dict1[i]
helper.append(i)
#peoples += b
for i in helper:
dict1.pop(i)
mins = mx
for i in b:
sum1 -= mas[i-1]
mins = min(mas[i-1], mins)
ans += mins
# peoples = set(peoples)
# if len(peoples) != n:
print(ans+sum1)
```
| 0
|
|
34
|
B
|
Sale
|
PROGRAMMING
| 900
|
[
"greedy",
"sortings"
] |
B. Sale
|
2
|
256
|
Once Bob got to a sale of old TV sets. There were *n* TV sets at that sale. TV set with index *i* costs *a**i* bellars. Some TV sets have a negative price — their owners are ready to pay Bob if he buys their useless apparatus. Bob can «buy» any TV sets he wants. Though he's very strong, Bob can carry at most *m* TV sets, and he has no desire to go to the sale for the second time. Please, help Bob find out the maximum sum of money that he can earn.
|
The first line contains two space-separated integers *n* and *m* (1<=≤<=*m*<=≤<=*n*<=≤<=100) — amount of TV sets at the sale, and amount of TV sets that Bob can carry. The following line contains *n* space-separated integers *a**i* (<=-<=1000<=≤<=*a**i*<=≤<=1000) — prices of the TV sets.
|
Output the only number — the maximum sum of money that Bob can earn, given that he can carry at most *m* TV sets.
|
[
"5 3\n-6 0 35 -2 4\n",
"4 2\n7 0 0 -7\n"
] |
[
"8\n",
"7\n"
] |
none
| 1,000
|
[
{
"input": "5 3\n-6 0 35 -2 4",
"output": "8"
},
{
"input": "4 2\n7 0 0 -7",
"output": "7"
},
{
"input": "6 6\n756 -611 251 -66 572 -818",
"output": "1495"
},
{
"input": "5 5\n976 437 937 788 518",
"output": "0"
},
{
"input": "5 3\n-2 -2 -2 -2 -2",
"output": "6"
},
{
"input": "5 1\n998 997 985 937 998",
"output": "0"
},
{
"input": "2 2\n-742 -187",
"output": "929"
},
{
"input": "3 3\n522 597 384",
"output": "0"
},
{
"input": "4 2\n-215 -620 192 647",
"output": "835"
},
{
"input": "10 6\n557 605 685 231 910 633 130 838 -564 -85",
"output": "649"
},
{
"input": "20 14\n932 442 960 943 624 624 955 998 631 910 850 517 715 123 1000 155 -10 961 966 59",
"output": "10"
},
{
"input": "30 5\n991 997 996 967 977 999 991 986 1000 965 984 997 998 1000 958 983 974 1000 991 999 1000 978 961 992 990 998 998 978 998 1000",
"output": "0"
},
{
"input": "50 20\n-815 -947 -946 -993 -992 -846 -884 -954 -963 -733 -940 -746 -766 -930 -821 -937 -937 -999 -914 -938 -936 -975 -939 -981 -977 -952 -925 -901 -952 -978 -994 -957 -946 -896 -905 -836 -994 -951 -887 -939 -859 -953 -985 -988 -946 -829 -956 -842 -799 -886",
"output": "19441"
},
{
"input": "88 64\n999 999 1000 1000 999 996 995 1000 1000 999 1000 997 998 1000 999 1000 997 1000 993 998 994 999 998 996 1000 997 1000 1000 1000 997 1000 998 997 1000 1000 998 1000 998 999 1000 996 999 999 999 996 995 999 1000 998 999 1000 999 999 1000 1000 1000 996 1000 1000 1000 997 1000 1000 997 999 1000 1000 1000 1000 1000 999 999 1000 1000 996 999 1000 1000 995 999 1000 996 1000 998 999 999 1000 999",
"output": "0"
},
{
"input": "99 17\n-993 -994 -959 -989 -991 -995 -976 -997 -990 -1000 -996 -994 -999 -995 -1000 -983 -979 -1000 -989 -968 -994 -992 -962 -993 -999 -983 -991 -979 -995 -993 -973 -999 -995 -995 -999 -993 -995 -992 -947 -1000 -999 -998 -982 -988 -979 -993 -963 -988 -980 -990 -979 -976 -995 -999 -981 -988 -998 -999 -970 -1000 -983 -994 -943 -975 -998 -977 -973 -997 -959 -999 -983 -985 -950 -977 -977 -991 -998 -973 -987 -985 -985 -986 -984 -994 -978 -998 -989 -989 -988 -970 -985 -974 -997 -981 -962 -972 -995 -988 -993",
"output": "16984"
},
{
"input": "100 37\n205 19 -501 404 912 -435 -322 -469 -655 880 -804 -470 793 312 -108 586 -642 -928 906 605 -353 -800 745 -440 -207 752 -50 -28 498 -800 -62 -195 602 -833 489 352 536 404 -775 23 145 -512 524 759 651 -461 -427 -557 684 -366 62 592 -563 -811 64 418 -881 -308 591 -318 -145 -261 -321 -216 -18 595 -202 960 -4 219 226 -238 -882 -963 425 970 -434 -160 243 -672 -4 873 8 -633 904 -298 -151 -377 -61 -72 -677 -66 197 -716 3 -870 -30 152 -469 981",
"output": "21743"
},
{
"input": "100 99\n-931 -806 -830 -828 -916 -962 -660 -867 -952 -966 -820 -906 -724 -982 -680 -717 -488 -741 -897 -613 -986 -797 -964 -939 -808 -932 -810 -860 -641 -916 -858 -628 -821 -929 -917 -976 -664 -985 -778 -665 -624 -928 -940 -958 -884 -757 -878 -896 -634 -526 -514 -873 -990 -919 -988 -878 -650 -973 -774 -783 -733 -648 -756 -895 -833 -974 -832 -725 -841 -748 -806 -613 -924 -867 -881 -943 -864 -991 -809 -926 -777 -817 -998 -682 -910 -996 -241 -722 -964 -904 -821 -920 -835 -699 -805 -632 -779 -317 -915 -654",
"output": "81283"
},
{
"input": "100 14\n995 994 745 684 510 737 984 690 979 977 542 933 871 603 758 653 962 997 747 974 773 766 975 770 527 960 841 989 963 865 974 967 950 984 757 685 986 809 982 959 931 880 978 867 805 562 970 900 834 782 616 885 910 608 974 918 576 700 871 980 656 941 978 759 767 840 573 859 841 928 693 853 716 927 976 851 962 962 627 797 707 873 869 988 993 533 665 887 962 880 929 980 877 887 572 790 721 883 848 782",
"output": "0"
},
{
"input": "100 84\n768 946 998 752 931 912 826 1000 991 910 875 962 901 952 958 733 959 908 872 840 923 826 952 980 974 980 947 955 959 822 997 963 966 933 829 923 971 999 926 932 865 984 974 858 994 855 949 941 992 861 951 949 991 711 763 728 935 485 716 907 869 952 960 859 909 963 978 942 968 933 923 909 997 962 687 764 924 774 875 1000 961 951 987 974 848 921 966 859 995 997 974 931 886 941 974 986 906 978 998 823",
"output": "0"
},
{
"input": "100 80\n-795 -994 -833 -930 -974 -980 -950 -940 -788 -927 -583 -956 -945 -949 -809 -974 -957 -736 -967 -908 -975 -961 -986 -983 -963 -771 -952 -847 -751 -741 -982 -959 -925 -931 -839 -937 -880 -914 -858 -998 -812 -911 -862 -965 -943 -984 -738 -920 -950 -998 -909 -998 -781 -901 -677 -940 -985 -951 -675 -952 -967 -949 -882 -641 -969 -937 -975 -993 -913 -941 -807 -851 -832 -960 -939 -943 -895 -929 -528 -880 -823 -930 -888 -862 -948 -966 -962 -857 -799 -969 -833 -998 -952 -878 -946 -971 -976 -974 -723 -992",
"output": "75068"
},
{
"input": "1 1\n0",
"output": "0"
},
{
"input": "1 1\n1",
"output": "0"
},
{
"input": "1 1\n555",
"output": "0"
},
{
"input": "1 1\n-1",
"output": "1"
},
{
"input": "1 1\n-24",
"output": "24"
}
] | 1,687,780,642
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 2
| 154
| 0
|
a=input()
a=a.split()
for i in range(2):
a[i]=int(a[i])
n=a[0]
m=a[1]
a=input()
a=a.split()
for i in range(len(a)):
a[i]=int(a[i])
a.sort()
i=0
s=0
while i<m:
s+=a[i]
i+=1
print(abs(s))
|
Title: Sale
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Once Bob got to a sale of old TV sets. There were *n* TV sets at that sale. TV set with index *i* costs *a**i* bellars. Some TV sets have a negative price — their owners are ready to pay Bob if he buys their useless apparatus. Bob can «buy» any TV sets he wants. Though he's very strong, Bob can carry at most *m* TV sets, and he has no desire to go to the sale for the second time. Please, help Bob find out the maximum sum of money that he can earn.
Input Specification:
The first line contains two space-separated integers *n* and *m* (1<=≤<=*m*<=≤<=*n*<=≤<=100) — amount of TV sets at the sale, and amount of TV sets that Bob can carry. The following line contains *n* space-separated integers *a**i* (<=-<=1000<=≤<=*a**i*<=≤<=1000) — prices of the TV sets.
Output Specification:
Output the only number — the maximum sum of money that Bob can earn, given that he can carry at most *m* TV sets.
Demo Input:
['5 3\n-6 0 35 -2 4\n', '4 2\n7 0 0 -7\n']
Demo Output:
['8\n', '7\n']
Note:
none
|
```python
a=input()
a=a.split()
for i in range(2):
a[i]=int(a[i])
n=a[0]
m=a[1]
a=input()
a=a.split()
for i in range(len(a)):
a[i]=int(a[i])
a.sort()
i=0
s=0
while i<m:
s+=a[i]
i+=1
print(abs(s))
```
| 0
|
Subsets and Splits
Successful Python Submissions
Retrieves all records from the train dataset where the verdict is 'OK', providing basic filtering but limited analytical value.
SQL Console for MatrixStudio/Codeforces-Python-Submissions
Retrieves records of users with a rating of 1600 or higher and a verdict of 'OK', providing basic filtering but limited analytical value.
SQL Console for MatrixStudio/Codeforces-Python-Submissions
Counts the number of entries with a rating above 2000 and a verdict of 'OK', providing basic filtering but limited analytical value.
SQL Console for MatrixStudio/Codeforces-Python-Submissions
Counts the number of entries with a 'OK' verdict, providing a basic overview of a specific category within the dataset.