contestId
int64
0
1.01k
index
stringclasses
57 values
name
stringlengths
2
58
type
stringclasses
2 values
rating
int64
0
3.5k
tags
listlengths
0
11
title
stringclasses
522 values
time-limit
stringclasses
8 values
memory-limit
stringclasses
8 values
problem-description
stringlengths
0
7.15k
input-specification
stringlengths
0
2.05k
output-specification
stringlengths
0
1.5k
demo-input
listlengths
0
7
demo-output
listlengths
0
7
note
stringlengths
0
5.24k
points
float64
0
425k
test_cases
listlengths
0
402
creationTimeSeconds
int64
1.37B
1.7B
relativeTimeSeconds
int64
8
2.15B
programmingLanguage
stringclasses
3 values
verdict
stringclasses
14 values
testset
stringclasses
12 values
passedTestCount
int64
0
1k
timeConsumedMillis
int64
0
15k
memoryConsumedBytes
int64
0
805M
code
stringlengths
3
65.5k
prompt
stringlengths
262
8.2k
response
stringlengths
17
65.5k
score
float64
-1
3.99
155
A
I_love_\%username\%
PROGRAMMING
800
[ "brute force" ]
null
null
Vasya adores sport programming. He can't write programs but he loves to watch the contests' progress. Vasya even has a favorite coder and Vasya pays special attention to him. One day Vasya decided to collect the results of all contests where his favorite coder participated and track the progress of his coolness. For each contest where this coder participated, he wrote out a single non-negative number — the number of points his favorite coder earned in the contest. Vasya wrote out the points for the contest in the order, in which the contests run (naturally, no two contests ran simultaneously). Vasya considers a coder's performance in a contest amazing in two situations: he can break either his best or his worst performance record. First, it is amazing if during the contest the coder earns strictly more points that he earned on each past contest. Second, it is amazing if during the contest the coder earns strictly less points that he earned on each past contest. A coder's first contest isn't considered amazing. Now he wants to count the number of amazing performances the coder had throughout his whole history of participating in contests. But the list of earned points turned out long and Vasya can't code... That's why he asks you to help him.
The first line contains the single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of contests where the coder participated. The next line contains *n* space-separated non-negative integer numbers — they are the points which the coder has earned. The points are given in the chronological order. All points do not exceed 10000.
Print the single number — the number of amazing performances the coder has had during his whole history of participating in the contests.
[ "5\n100 50 200 150 200\n", "10\n4664 6496 5814 7010 5762 5736 6944 4850 3698 7242\n" ]
[ "2\n", "4\n" ]
In the first sample the performances number 2 and 3 are amazing. In the second sample the performances number 2, 4, 9 and 10 are amazing.
500
[ { "input": "5\n100 50 200 150 200", "output": "2" }, { "input": "10\n4664 6496 5814 7010 5762 5736 6944 4850 3698 7242", "output": "4" }, { "input": "1\n6", "output": "0" }, { "input": "2\n2 1", "output": "1" }, { "input": "5\n100 36 53 7 81", "output": "2" }, { "input": "5\n7 36 53 81 100", "output": "4" }, { "input": "5\n100 81 53 36 7", "output": "4" }, { "input": "10\n8 6 3 4 9 10 7 7 1 3", "output": "5" }, { "input": "10\n1627 1675 1488 1390 1812 1137 1746 1324 1952 1862", "output": "6" }, { "input": "10\n1 3 3 4 6 7 7 8 9 10", "output": "7" }, { "input": "10\n1952 1862 1812 1746 1675 1627 1488 1390 1324 1137", "output": "9" }, { "input": "25\n1448 4549 2310 2725 2091 3509 1565 2475 2232 3989 4231 779 2967 2702 608 3739 721 1552 2767 530 3114 665 1940 48 4198", "output": "5" }, { "input": "33\n1097 1132 1091 1104 1049 1038 1023 1080 1104 1029 1035 1061 1049 1060 1088 1106 1105 1087 1063 1076 1054 1103 1047 1041 1028 1120 1126 1063 1117 1110 1044 1093 1101", "output": "5" }, { "input": "34\n821 5536 2491 6074 7216 9885 764 1603 778 8736 8987 771 617 1587 8943 7922 439 7367 4115 8886 7878 6899 8811 5752 3184 3401 9760 9400 8995 4681 1323 6637 6554 6498", "output": "7" }, { "input": "68\n6764 6877 6950 6768 6839 6755 6726 6778 6699 6805 6777 6985 6821 6801 6791 6805 6940 6761 6677 6999 6911 6699 6959 6933 6903 6843 6972 6717 6997 6756 6789 6668 6735 6852 6735 6880 6723 6834 6810 6694 6780 6679 6698 6857 6826 6896 6979 6968 6957 6988 6960 6700 6919 6892 6984 6685 6813 6678 6715 6857 6976 6902 6780 6686 6777 6686 6842 6679", "output": "9" }, { "input": "60\n9000 9014 9034 9081 9131 9162 9174 9199 9202 9220 9221 9223 9229 9235 9251 9260 9268 9269 9270 9298 9307 9309 9313 9323 9386 9399 9407 9495 9497 9529 9531 9544 9614 9615 9627 9627 9643 9654 9656 9657 9685 9699 9701 9736 9745 9758 9799 9827 9843 9845 9854 9854 9885 9891 9896 9913 9942 9963 9986 9992", "output": "57" }, { "input": "100\n7 61 12 52 41 16 34 99 30 44 48 89 31 54 21 1 48 52 61 15 35 87 21 76 64 92 44 81 16 93 84 92 32 15 68 76 53 39 26 4 11 26 7 4 99 99 61 65 55 85 65 67 47 39 2 74 63 49 98 87 5 94 22 30 25 42 31 84 49 23 89 60 16 26 92 27 9 57 75 61 94 35 83 47 99 100 63 24 91 88 79 10 15 45 22 64 3 11 89 83", "output": "4" }, { "input": "100\n9999 9999 9999 9998 9998 9998 9997 9996 9996 9995 9993 9993 9991 9990 9989 9986 9984 9984 9983 9981 9981 9980 9980 9980 9979 9977 9977 9977 9977 9977 9976 9976 9975 9975 9973 9972 9972 9972 9972 9971 9969 9969 9969 9968 9967 9965 9962 9962 9962 9962 9960 9958 9958 9955 9954 9954 9954 9954 9950 9949 9949 9947 9943 9943 9940 9940 9939 9937 9937 9937 9936 9935 9932 9932 9931 9929 9927 9927 9926 9923 9919 9919 9918 9918 9918 9917 9917 9916 9916 9915 9914 9911 9910 9907 9907 9906 9905 9905 9904 9901", "output": "57" }, { "input": "100\n158 159 157 156 155 154 160 153 161 152 162 163 151 164 150 165 149 148 147 166 146 167 145 144 143 142 168 141 169 170 140 139 138 137 171 136 135 134 172 173 174 133 175 132 177 178 131 179 180 130 129 181 128 127 182 126 183 125 124 184 123 122 121 120 119 118 117 185 186 187 188 189 116 190 115 191 192 193 114 113 112 111 110 109 108 194 195 107 106 105 196 197 104 198 199 103 102 200 101 100", "output": "99" }, { "input": "2\n0 10000", "output": "1" }, { "input": "2\n5 5", "output": "0" }, { "input": "2\n1 1", "output": "0" }, { "input": "2\n10 10", "output": "0" }, { "input": "1\n0", "output": "0" } ]
1,674,037,608
2,147,483,647
Python 3
OK
TESTS
37
154
0
n= int(input()) points = input().split() maxpoint = int(points[0]) minpoint = int(points[0]) count = 0 for i in points: if int(i) > maxpoint: count +=1 maxpoint = int(i) elif int(i) < minpoint: count +=1 minpoint = int(i) print(count)
Title: I_love_\%username\% Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya adores sport programming. He can't write programs but he loves to watch the contests' progress. Vasya even has a favorite coder and Vasya pays special attention to him. One day Vasya decided to collect the results of all contests where his favorite coder participated and track the progress of his coolness. For each contest where this coder participated, he wrote out a single non-negative number — the number of points his favorite coder earned in the contest. Vasya wrote out the points for the contest in the order, in which the contests run (naturally, no two contests ran simultaneously). Vasya considers a coder's performance in a contest amazing in two situations: he can break either his best or his worst performance record. First, it is amazing if during the contest the coder earns strictly more points that he earned on each past contest. Second, it is amazing if during the contest the coder earns strictly less points that he earned on each past contest. A coder's first contest isn't considered amazing. Now he wants to count the number of amazing performances the coder had throughout his whole history of participating in contests. But the list of earned points turned out long and Vasya can't code... That's why he asks you to help him. Input Specification: The first line contains the single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of contests where the coder participated. The next line contains *n* space-separated non-negative integer numbers — they are the points which the coder has earned. The points are given in the chronological order. All points do not exceed 10000. Output Specification: Print the single number — the number of amazing performances the coder has had during his whole history of participating in the contests. Demo Input: ['5\n100 50 200 150 200\n', '10\n4664 6496 5814 7010 5762 5736 6944 4850 3698 7242\n'] Demo Output: ['2\n', '4\n'] Note: In the first sample the performances number 2 and 3 are amazing. In the second sample the performances number 2, 4, 9 and 10 are amazing.
```python n= int(input()) points = input().split() maxpoint = int(points[0]) minpoint = int(points[0]) count = 0 for i in points: if int(i) > maxpoint: count +=1 maxpoint = int(i) elif int(i) < minpoint: count +=1 minpoint = int(i) print(count) ```
3
515
A
Drazil and Date
PROGRAMMING
1,000
[ "math" ]
null
null
Someday, Drazil wanted to go on date with Varda. Drazil and Varda live on Cartesian plane. Drazil's home is located in point (0,<=0) and Varda's home is located in point (*a*,<=*b*). In each step, he can move in a unit distance in horizontal or vertical direction. In other words, from position (*x*,<=*y*) he can go to positions (*x*<=+<=1,<=*y*), (*x*<=-<=1,<=*y*), (*x*,<=*y*<=+<=1) or (*x*,<=*y*<=-<=1). Unfortunately, Drazil doesn't have sense of direction. So he randomly chooses the direction he will go to in each step. He may accidentally return back to his house during his travel. Drazil may even not notice that he has arrived to (*a*,<=*b*) and continue travelling. Luckily, Drazil arrived to the position (*a*,<=*b*) successfully. Drazil said to Varda: "It took me exactly *s* steps to travel from my house to yours". But Varda is confused about his words, she is not sure that it is possible to get from (0,<=0) to (*a*,<=*b*) in exactly *s* steps. Can you find out if it is possible for Varda?
You are given three integers *a*, *b*, and *s* (<=-<=109<=≤<=*a*,<=*b*<=≤<=109, 1<=≤<=*s*<=≤<=2·109) in a single line.
If you think Drazil made a mistake and it is impossible to take exactly *s* steps and get from his home to Varda's home, print "No" (without quotes). Otherwise, print "Yes".
[ "5 5 11\n", "10 15 25\n", "0 5 1\n", "0 0 2\n" ]
[ "No\n", "Yes\n", "No\n", "Yes\n" ]
In fourth sample case one possible route is: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/0d30660ddf6eb6c64ffd071055a4e8ddd016cde5.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
500
[ { "input": "5 5 11", "output": "No" }, { "input": "10 15 25", "output": "Yes" }, { "input": "0 5 1", "output": "No" }, { "input": "0 0 2", "output": "Yes" }, { "input": "999999999 999999999 2000000000", "output": "Yes" }, { "input": "-606037695 998320124 820674098", "output": "No" }, { "input": "948253616 -83299062 1031552680", "output": "Yes" }, { "input": "711980199 216568284 928548487", "output": "Yes" }, { "input": "-453961301 271150176 725111473", "output": "No" }, { "input": "0 0 2000000000", "output": "Yes" }, { "input": "0 0 1999999999", "output": "No" }, { "input": "1000000000 1000000000 2000000000", "output": "Yes" }, { "input": "-1000000000 1000000000 2000000000", "output": "Yes" }, { "input": "-1000000000 -1000000000 2000000000", "output": "Yes" }, { "input": "-1000000000 -1000000000 1000000000", "output": "No" }, { "input": "-1 -1 3", "output": "No" }, { "input": "919785634 216774719 129321944", "output": "No" }, { "input": "-467780354 -721273539 1369030008", "output": "No" }, { "input": "-232833910 -880680184 1774549792", "output": "Yes" }, { "input": "45535578 402686155 1011249824", "output": "No" }, { "input": "-203250176 -30379840 233630015", "output": "No" }, { "input": "-814516648 -75830576 890347222", "output": "No" }, { "input": "869184175 -511854751 1381038923", "output": "No" }, { "input": "552884998 -262338193 815223187", "output": "No" }, { "input": "-133874494 857573117 991447611", "output": "Yes" }, { "input": "169406792 786701289 956108082", "output": "No" }, { "input": "30237137 -989203246 1019440385", "output": "Yes" }, { "input": "576608216 -617624133 1194232352", "output": "No" }, { "input": "-662360368 97618995 759979367", "output": "Yes" }, { "input": "-115989290 321714461 437703756", "output": "No" }, { "input": "-1 -3 2", "output": "No" }, { "input": "-2 -2 2", "output": "No" }, { "input": "0 0 1", "output": "No" }, { "input": "0 -1 7", "output": "Yes" }, { "input": "1 2 7", "output": "Yes" }, { "input": "0 5 6", "output": "No" }, { "input": "0 -4 2", "output": "No" }, { "input": "-5 5 2", "output": "No" }, { "input": "-5 -2 7", "output": "Yes" }, { "input": "5 -5 2", "output": "No" } ]
1,629,017,631
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
8
77
20,172,800
n,m,c = map(int,input().split()) if c&1==(n+m)&1 and c>=(n+m): print("YES") else: print("NO")
Title: Drazil and Date Time Limit: None seconds Memory Limit: None megabytes Problem Description: Someday, Drazil wanted to go on date with Varda. Drazil and Varda live on Cartesian plane. Drazil's home is located in point (0,<=0) and Varda's home is located in point (*a*,<=*b*). In each step, he can move in a unit distance in horizontal or vertical direction. In other words, from position (*x*,<=*y*) he can go to positions (*x*<=+<=1,<=*y*), (*x*<=-<=1,<=*y*), (*x*,<=*y*<=+<=1) or (*x*,<=*y*<=-<=1). Unfortunately, Drazil doesn't have sense of direction. So he randomly chooses the direction he will go to in each step. He may accidentally return back to his house during his travel. Drazil may even not notice that he has arrived to (*a*,<=*b*) and continue travelling. Luckily, Drazil arrived to the position (*a*,<=*b*) successfully. Drazil said to Varda: "It took me exactly *s* steps to travel from my house to yours". But Varda is confused about his words, she is not sure that it is possible to get from (0,<=0) to (*a*,<=*b*) in exactly *s* steps. Can you find out if it is possible for Varda? Input Specification: You are given three integers *a*, *b*, and *s* (<=-<=109<=≤<=*a*,<=*b*<=≤<=109, 1<=≤<=*s*<=≤<=2·109) in a single line. Output Specification: If you think Drazil made a mistake and it is impossible to take exactly *s* steps and get from his home to Varda's home, print "No" (without quotes). Otherwise, print "Yes". Demo Input: ['5 5 11\n', '10 15 25\n', '0 5 1\n', '0 0 2\n'] Demo Output: ['No\n', 'Yes\n', 'No\n', 'Yes\n'] Note: In fourth sample case one possible route is: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/0d30660ddf6eb6c64ffd071055a4e8ddd016cde5.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
```python n,m,c = map(int,input().split()) if c&1==(n+m)&1 and c>=(n+m): print("YES") else: print("NO") ```
0
597
A
Divisibility
PROGRAMMING
1,600
[ "math" ]
null
null
Find the number of *k*-divisible numbers on the segment [*a*,<=*b*]. In other words you need to find the number of such integer values *x* that *a*<=≤<=*x*<=≤<=*b* and *x* is divisible by *k*.
The only line contains three space-separated integers *k*, *a* and *b* (1<=≤<=*k*<=≤<=1018;<=-<=1018<=≤<=*a*<=≤<=*b*<=≤<=1018).
Print the required number.
[ "1 1 10\n", "2 -4 4\n" ]
[ "10\n", "5\n" ]
none
500
[ { "input": "1 1 10", "output": "10" }, { "input": "2 -4 4", "output": "5" }, { "input": "1 1 1", "output": "1" }, { "input": "1 0 0", "output": "1" }, { "input": "1 0 1", "output": "2" }, { "input": "1 10181 10182", "output": "2" }, { "input": "1 10182 10183", "output": "2" }, { "input": "1 -191 1011", "output": "1203" }, { "input": "2 0 0", "output": "1" }, { "input": "2 0 1", "output": "1" }, { "input": "2 1 2", "output": "1" }, { "input": "2 2 3", "output": "1" }, { "input": "2 -1 0", "output": "1" }, { "input": "2 -1 1", "output": "1" }, { "input": "2 -7 -6", "output": "1" }, { "input": "2 -7 -5", "output": "1" }, { "input": "2 -6 -6", "output": "1" }, { "input": "2 -6 -4", "output": "2" }, { "input": "2 -6 13", "output": "10" }, { "input": "2 -19171 1911", "output": "10541" }, { "input": "3 123 456", "output": "112" }, { "input": "3 124 456", "output": "111" }, { "input": "3 125 456", "output": "111" }, { "input": "3 381 281911", "output": "93844" }, { "input": "3 381 281912", "output": "93844" }, { "input": "3 381 281913", "output": "93845" }, { "input": "3 382 281911", "output": "93843" }, { "input": "3 382 281912", "output": "93843" }, { "input": "3 382 281913", "output": "93844" }, { "input": "3 383 281911", "output": "93843" }, { "input": "3 383 281912", "output": "93843" }, { "input": "3 383 281913", "output": "93844" }, { "input": "3 -381 281911", "output": "94098" }, { "input": "3 -381 281912", "output": "94098" }, { "input": "3 -381 281913", "output": "94099" }, { "input": "3 -380 281911", "output": "94097" }, { "input": "3 -380 281912", "output": "94097" }, { "input": "3 -380 281913", "output": "94098" }, { "input": "3 -379 281911", "output": "94097" }, { "input": "3 -379 281912", "output": "94097" }, { "input": "3 -379 281913", "output": "94098" }, { "input": "3 -191381 -1911", "output": "63157" }, { "input": "3 -191381 -1910", "output": "63157" }, { "input": "3 -191381 -1909", "output": "63157" }, { "input": "3 -191380 -1911", "output": "63157" }, { "input": "3 -191380 -1910", "output": "63157" }, { "input": "3 -191380 -1909", "output": "63157" }, { "input": "3 -191379 -1911", "output": "63157" }, { "input": "3 -191379 -1910", "output": "63157" }, { "input": "3 -191379 -1909", "output": "63157" }, { "input": "3 -2810171 0", "output": "936724" }, { "input": "3 0 29101", "output": "9701" }, { "input": "3 -2810170 0", "output": "936724" }, { "input": "3 0 29102", "output": "9701" }, { "input": "3 -2810169 0", "output": "936724" }, { "input": "3 0 29103", "output": "9702" }, { "input": "1 -1000000000000000000 1000000000000000000", "output": "2000000000000000001" }, { "input": "2 -1000000000000000000 1000000000000000000", "output": "1000000000000000001" }, { "input": "3 -1000000000000000000 1000000000000000000", "output": "666666666666666667" }, { "input": "4 -1000000000000000000 1000000000000000000", "output": "500000000000000001" }, { "input": "5 -1000000000000000000 1000000000000000000", "output": "400000000000000001" }, { "input": "6 -1000000000000000000 1000000000000000000", "output": "333333333333333333" }, { "input": "7 -1000000000000000000 1000000000000000000", "output": "285714285714285715" }, { "input": "1 -1000000000000000000 -100000000000000000", "output": "900000000000000001" }, { "input": "2 -1000000000000000000 -10000000000000000", "output": "495000000000000001" }, { "input": "3 -1000000000000000000 -10218000000000000", "output": "329927333333333334" }, { "input": "4 -1000000000000000000 -320110181919100", "output": "249919972454520226" }, { "input": "5 -1000000000000000000 -402710171917", "output": "199999919457965617" }, { "input": "6 -1000000000000000000 -6666666666", "output": "166666665555555556" }, { "input": "7 -1000000000000000000 -77777777777778", "output": "142846031746031746" }, { "input": "1000000000000000000 -1000000000000000000 1000000000000000000", "output": "3" }, { "input": "1000000000000000000 0 1000000000000000000", "output": "2" }, { "input": "1000000000000000000 1000000000000000000 1000000000000000000", "output": "1" }, { "input": "100000000000000321 1000000000000000000 1000000000000000000", "output": "0" }, { "input": "100000000000000321 -1000000000000000000 1000000000000000000", "output": "19" }, { "input": "1000000000000000000 0 0", "output": "1" }, { "input": "1000000000000000000 1 1", "output": "0" }, { "input": "1000000000000000000 -1 -1", "output": "0" }, { "input": "1000000000000000000 -2 -1", "output": "0" }, { "input": "142000000000000271 -228118171 -1382811", "output": "0" }, { "input": "1 1 1000000000000000000", "output": "1000000000000000000" } ]
1,447,264,948
148
Python 3
WRONG_ANSWER
PRETESTS
2
62
0
def up(a, b): return ((a + b - 1) // b) def NumDivAFromXtoY(a, x, y): if(up(x, a) * a >= y): return 0 else: return ((y // a) - up(x, a) + 1) a, b, c = map(int, input().split()) print(NumDivAFromXtoY(a, b, c))
Title: Divisibility Time Limit: None seconds Memory Limit: None megabytes Problem Description: Find the number of *k*-divisible numbers on the segment [*a*,<=*b*]. In other words you need to find the number of such integer values *x* that *a*<=≤<=*x*<=≤<=*b* and *x* is divisible by *k*. Input Specification: The only line contains three space-separated integers *k*, *a* and *b* (1<=≤<=*k*<=≤<=1018;<=-<=1018<=≤<=*a*<=≤<=*b*<=≤<=1018). Output Specification: Print the required number. Demo Input: ['1 1 10\n', '2 -4 4\n'] Demo Output: ['10\n', '5\n'] Note: none
```python def up(a, b): return ((a + b - 1) // b) def NumDivAFromXtoY(a, x, y): if(up(x, a) * a >= y): return 0 else: return ((y // a) - up(x, a) + 1) a, b, c = map(int, input().split()) print(NumDivAFromXtoY(a, b, c)) ```
0
758
A
Holiday Of Equality
PROGRAMMING
800
[ "implementation", "math" ]
null
null
In Berland it is the holiday of equality. In honor of the holiday the king decided to equalize the welfare of all citizens in Berland by the expense of the state treasury. Totally in Berland there are *n* citizens, the welfare of each of them is estimated as the integer in *a**i* burles (burle is the currency in Berland). You are the royal treasurer, which needs to count the minimum charges of the kingdom on the king's present. The king can only give money, he hasn't a power to take away them.
The first line contains the integer *n* (1<=≤<=*n*<=≤<=100) — the number of citizens in the kingdom. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* (0<=≤<=*a**i*<=≤<=106) — the welfare of the *i*-th citizen.
In the only line print the integer *S* — the minimum number of burles which are had to spend.
[ "5\n0 1 2 3 4\n", "5\n1 1 0 1 1\n", "3\n1 3 1\n", "1\n12\n" ]
[ "10", "1", "4", "0" ]
In the first example if we add to the first citizen 4 burles, to the second 3, to the third 2 and to the fourth 1, then the welfare of all citizens will equal 4. In the second example it is enough to give one burle to the third citizen. In the third example it is necessary to give two burles to the first and the third citizens to make the welfare of citizens equal 3. In the fourth example it is possible to give nothing to everyone because all citizens have 12 burles.
500
[ { "input": "5\n0 1 2 3 4", "output": "10" }, { "input": "5\n1 1 0 1 1", "output": "1" }, { "input": "3\n1 3 1", "output": "4" }, { "input": "1\n12", "output": "0" }, { "input": "3\n1 2 3", "output": "3" }, { "input": "14\n52518 718438 358883 462189 853171 592966 225788 46977 814826 295697 676256 561479 56545 764281", "output": "5464380" }, { "input": "21\n842556 216391 427181 626688 775504 168309 851038 448402 880826 73697 593338 519033 135115 20128 424606 939484 846242 756907 377058 241543 29353", "output": "9535765" }, { "input": "3\n1 3 2", "output": "3" }, { "input": "3\n2 1 3", "output": "3" }, { "input": "3\n2 3 1", "output": "3" }, { "input": "3\n3 1 2", "output": "3" }, { "input": "3\n3 2 1", "output": "3" }, { "input": "1\n228503", "output": "0" }, { "input": "2\n32576 550340", "output": "517764" }, { "input": "3\n910648 542843 537125", "output": "741328" }, { "input": "4\n751720 572344 569387 893618", "output": "787403" }, { "input": "6\n433864 631347 597596 794426 713555 231193", "output": "1364575" }, { "input": "9\n31078 645168 695751 126111 375934 150495 838412 434477 993107", "output": "4647430" }, { "input": "30\n315421 772664 560686 654312 151528 356749 351486 707462 820089 226682 546700 136028 824236 842130 578079 337807 665903 764100 617900 822937 992759 591749 651310 742085 767695 695442 17967 515106 81059 186025", "output": "13488674" }, { "input": "45\n908719 394261 815134 419990 926993 383792 772842 277695 527137 655356 684956 695716 273062 550324 106247 399133 442382 33076 462920 294674 846052 817752 421365 474141 290471 358990 109812 74492 543281 169434 919692 786809 24028 197184 310029 801476 699355 429672 51343 374128 776726 850380 293868 981569 550763", "output": "21993384" }, { "input": "56\n100728 972537 13846 385421 756708 184642 259487 319707 376662 221694 675284 972837 499419 13846 38267 289898 901299 831197 954715 197515 514102 910423 127555 883934 362472 870788 538802 741008 973434 448124 391526 363321 947321 544618 68006 782313 955075 741981 815027 723297 585059 718114 700739 413489 454091 736144 308999 98065 3716 347323 9635 289003 986510 607065 60236 273351", "output": "26984185" }, { "input": "70\n644488 5444 150441 714420 602059 335330 510670 196555 546346 740011 509449 850947 692874 524857 750434 952985 223744 374727 896124 753037 367352 679050 560202 172728 569291 778616 332116 286927 843598 372698 244906 498046 900681 709791 420904 724593 864493 813094 791377 39998 296710 625656 403891 579231 706693 984045 16901 574259 562265 761104 930361 256045 124461 538980 573508 372148 988722 108592 784354 55302 232524 277205 782251 299943 436488 743389 324618 742543 266915 99642", "output": "32816391" }, { "input": "1\n0", "output": "0" }, { "input": "1\n1000000", "output": "0" }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "100\n1000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "99000000" }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000000", "output": "99000000" }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "99000000" }, { "input": "3\n0 0 0", "output": "0" }, { "input": "50\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "0" }, { "input": "3\n5 0 0", "output": "10" }, { "input": "5\n2 10 0 0 0", "output": "38" } ]
1,662,743,551
2,147,483,647
PyPy 3
OK
TESTS
41
77
0
n = int(input()) a = list(map(int, input().split())) s=0 m=max(a) i=0 while i<n: s += m - a[i] i+=1 print(s)
Title: Holiday Of Equality Time Limit: None seconds Memory Limit: None megabytes Problem Description: In Berland it is the holiday of equality. In honor of the holiday the king decided to equalize the welfare of all citizens in Berland by the expense of the state treasury. Totally in Berland there are *n* citizens, the welfare of each of them is estimated as the integer in *a**i* burles (burle is the currency in Berland). You are the royal treasurer, which needs to count the minimum charges of the kingdom on the king's present. The king can only give money, he hasn't a power to take away them. Input Specification: The first line contains the integer *n* (1<=≤<=*n*<=≤<=100) — the number of citizens in the kingdom. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* (0<=≤<=*a**i*<=≤<=106) — the welfare of the *i*-th citizen. Output Specification: In the only line print the integer *S* — the minimum number of burles which are had to spend. Demo Input: ['5\n0 1 2 3 4\n', '5\n1 1 0 1 1\n', '3\n1 3 1\n', '1\n12\n'] Demo Output: ['10', '1', '4', '0'] Note: In the first example if we add to the first citizen 4 burles, to the second 3, to the third 2 and to the fourth 1, then the welfare of all citizens will equal 4. In the second example it is enough to give one burle to the third citizen. In the third example it is necessary to give two burles to the first and the third citizens to make the welfare of citizens equal 3. In the fourth example it is possible to give nothing to everyone because all citizens have 12 burles.
```python n = int(input()) a = list(map(int, input().split())) s=0 m=max(a) i=0 while i<n: s += m - a[i] i+=1 print(s) ```
3
18
C
Stripe
PROGRAMMING
1,200
[ "data structures", "implementation" ]
C. Stripe
2
64
Once Bob took a paper stripe of *n* squares (the height of the stripe is 1 square). In each square he wrote an integer number, possibly negative. He became interested in how many ways exist to cut this stripe into two pieces so that the sum of numbers from one piece is equal to the sum of numbers from the other piece, and each piece contains positive integer amount of squares. Would you help Bob solve this problem?
The first input line contains integer *n* (1<=≤<=*n*<=≤<=105) — amount of squares in the stripe. The second line contains *n* space-separated numbers — they are the numbers written in the squares of the stripe. These numbers are integer and do not exceed 10000 in absolute value.
Output the amount of ways to cut the stripe into two non-empty pieces so that the sum of numbers from one piece is equal to the sum of numbers from the other piece. Don't forget that it's allowed to cut the stripe along the squares' borders only.
[ "9\n1 5 -6 7 9 -16 0 -2 2\n", "3\n1 1 1\n", "2\n0 0\n" ]
[ "3\n", "0\n", "1\n" ]
none
0
[ { "input": "9\n1 5 -6 7 9 -16 0 -2 2", "output": "3" }, { "input": "3\n1 1 1", "output": "0" }, { "input": "2\n0 0", "output": "1" }, { "input": "4\n100 1 10 111", "output": "1" }, { "input": "10\n0 4 -3 0 -2 2 -3 -3 2 5", "output": "3" }, { "input": "10\n0 -1 2 2 -1 1 0 0 0 2", "output": "0" }, { "input": "10\n-1 -1 1 -1 0 1 0 1 1 1", "output": "1" }, { "input": "10\n0 0 0 0 0 0 0 0 0 0", "output": "9" }, { "input": "50\n-4 -3 3 4 -1 0 2 -4 -3 -4 1 4 3 0 4 1 0 -3 4 -3 -2 2 2 1 0 -4 -4 -5 3 2 -1 4 5 -3 -3 4 4 -5 2 -3 4 -5 2 5 -4 4 1 -2 -4 3", "output": "3" }, { "input": "15\n0 4 0 3 -1 4 -2 -2 -4 -4 3 2 4 -1 -3", "output": "0" }, { "input": "10\n3 -1 -3 -1 3 -2 0 3 1 -2", "output": "0" }, { "input": "100\n-4 2 4 4 1 3 -3 -3 2 1 -4 0 0 2 3 -1 -4 -3 4 -2 -3 -3 -3 -1 -2 -3 -1 -4 0 4 0 -1 4 0 -4 -4 4 -4 -2 1 -4 1 -3 -2 3 -4 4 0 -1 3 -1 4 -1 4 -1 3 -3 -3 -2 -2 4 -3 -3 4 -3 -2 -1 0 -2 4 0 -3 -1 -2 -3 1 -4 1 -3 -3 -3 -2 -3 0 1 -2 -2 -4 -3 -1 2 3 -1 1 1 0 3 -3 -1 -2", "output": "1" }, { "input": "100\n-2 -1 1 0 -2 -1 2 2 0 0 2 1 0 2 0 2 1 0 -1 -1 -1 0 -2 -1 2 -1 -2 2 -2 2 -2 -2 2 1 1 1 -2 2 0 0 2 -1 2 2 2 0 -1 -1 -1 1 -2 2 2 2 -2 0 0 -2 0 -2 -2 0 -1 -1 -2 -1 1 2 -2 -1 1 -2 -1 0 -2 2 2 -1 -2 2 0 0 0 1 0 1 2 1 -2 -2 -1 -1 -2 -2 -2 -1 2 2 2 -2", "output": "6" }, { "input": "100\n2 7 6 0 8 -2 0 1 8 -1 7 -4 -1 1 0 3 4 -4 3 7 8 -4 -6 6 4 -2 -5 7 4 6 1 6 3 8 -2 6 -6 -3 0 -1 -7 -8 -2 5 8 6 -2 -2 -5 -4 -7 -3 -5 -3 -3 -1 5 8 4 0 -7 -6 8 -4 -1 7 2 6 6 4 -5 -4 -5 -2 2 -2 -7 -1 5 -8 -6 -2 -5 4 2 8 -6 7 -8 -1 -5 8 6 -3 -1 7 -1 2 -8 -8", "output": "0" }, { "input": "1\n0", "output": "0" }, { "input": "1\n10000", "output": "0" }, { "input": "1\n-10000", "output": "0" } ]
1,680,043,786
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
60
0
a=int(input()) arr=list(map(int,input().split())) for i in range(1,len(arr)): arr[i]+=arr[i-1] m=0 for i in range(0,len(arr)-1): if arr[-1]%2!=0: m=0 break elif arr[-1]//2==arr[i]: m+=1 print(m) print(arr)
Title: Stripe Time Limit: 2 seconds Memory Limit: 64 megabytes Problem Description: Once Bob took a paper stripe of *n* squares (the height of the stripe is 1 square). In each square he wrote an integer number, possibly negative. He became interested in how many ways exist to cut this stripe into two pieces so that the sum of numbers from one piece is equal to the sum of numbers from the other piece, and each piece contains positive integer amount of squares. Would you help Bob solve this problem? Input Specification: The first input line contains integer *n* (1<=≤<=*n*<=≤<=105) — amount of squares in the stripe. The second line contains *n* space-separated numbers — they are the numbers written in the squares of the stripe. These numbers are integer and do not exceed 10000 in absolute value. Output Specification: Output the amount of ways to cut the stripe into two non-empty pieces so that the sum of numbers from one piece is equal to the sum of numbers from the other piece. Don't forget that it's allowed to cut the stripe along the squares' borders only. Demo Input: ['9\n1 5 -6 7 9 -16 0 -2 2\n', '3\n1 1 1\n', '2\n0 0\n'] Demo Output: ['3\n', '0\n', '1\n'] Note: none
```python a=int(input()) arr=list(map(int,input().split())) for i in range(1,len(arr)): arr[i]+=arr[i-1] m=0 for i in range(0,len(arr)-1): if arr[-1]%2!=0: m=0 break elif arr[-1]//2==arr[i]: m+=1 print(m) print(arr) ```
0
907
A
Masha and Bears
PROGRAMMING
1,300
[ "brute force", "implementation" ]
null
null
A family consisting of father bear, mother bear and son bear owns three cars. Father bear can climb into the largest car and he likes it. Also, mother bear can climb into the middle car and she likes it. Moreover, son bear can climb into the smallest car and he likes it. It's known that the largest car is strictly larger than the middle car, and the middle car is strictly larger than the smallest car. Masha came to test these cars. She could climb into all cars, but she liked only the smallest car. It's known that a character with size *a* can climb into some car with size *b* if and only if *a*<=≤<=*b*, he or she likes it if and only if he can climb into this car and 2*a*<=≥<=*b*. You are given sizes of bears and Masha. Find out some possible integer non-negative sizes of cars.
You are given four integers *V*1, *V*2, *V*3, *V**m*(1<=≤<=*V**i*<=≤<=100) — sizes of father bear, mother bear, son bear and Masha, respectively. It's guaranteed that *V*1<=&gt;<=*V*2<=&gt;<=*V*3.
Output three integers — sizes of father bear's car, mother bear's car and son bear's car, respectively. If there are multiple possible solutions, print any. If there is no solution, print "-1" (without quotes).
[ "50 30 10 10\n", "100 50 10 21\n" ]
[ "50\n30\n10\n", "-1\n" ]
In first test case all conditions for cars' sizes are satisfied. In second test case there is no answer, because Masha should be able to climb into smallest car (so size of smallest car in not less than 21), but son bear should like it, so maximum possible size of it is 20.
500
[ { "input": "50 30 10 10", "output": "50\n30\n10" }, { "input": "100 50 10 21", "output": "-1" }, { "input": "100 50 19 10", "output": "100\n50\n19" }, { "input": "99 50 25 49", "output": "100\n99\n49" }, { "input": "3 2 1 1", "output": "4\n3\n1" }, { "input": "100 99 98 100", "output": "-1" }, { "input": "100 40 30 40", "output": "-1" }, { "input": "100 50 19 25", "output": "100\n51\n25" }, { "input": "100 50 19 30", "output": "100\n61\n30" }, { "input": "49 48 25 49", "output": "-1" }, { "input": "48 47 23 46", "output": "94\n93\n46" }, { "input": "37 23 16 20", "output": "42\n41\n20" }, { "input": "98 2 1 1", "output": "98\n3\n1" }, { "input": "99 22 13 14", "output": "99\n29\n14" }, { "input": "97 95 3 2", "output": "97\n95\n3" }, { "input": "27 3 2 3", "output": "-1" }, { "input": "13 7 6 2", "output": "-1" }, { "input": "19 17 11 6", "output": "19\n17\n11" }, { "input": "15 6 4 5", "output": "15\n11\n5" }, { "input": "21 3 1 3", "output": "-1" }, { "input": "100 99 98 97", "output": "196\n195\n98" }, { "input": "99 32 13 5", "output": "-1" }, { "input": "5 4 3 1", "output": "-1" }, { "input": "50 20 4 8", "output": "50\n20\n8" }, { "input": "60 30 10 1", "output": "-1" }, { "input": "100 50 10 1", "output": "-1" }, { "input": "40 30 20 10", "output": "40\n30\n20" }, { "input": "50 49 5 10", "output": "50\n49\n10" }, { "input": "99 98 50 97", "output": "196\n195\n97" }, { "input": "50 30 10 5", "output": "50\n30\n10" }, { "input": "4 3 2 1", "output": "4\n3\n2" }, { "input": "100 50 3 1", "output": "-1" } ]
1,514,038,469
569
Python 3
WRONG_ANSWER
PRETESTS
2
46
5,529,600
v1, v2, v3, vm = map(int, input().split()) a, b, c = 2 * v1, 2 * v2, max(2 * vm, 2 *v3) if not(2 * v3 >= c >= v3) or not(2 * vm >= c >= vm): print(-1) else: print(a) print(b) print(c)
Title: Masha and Bears Time Limit: None seconds Memory Limit: None megabytes Problem Description: A family consisting of father bear, mother bear and son bear owns three cars. Father bear can climb into the largest car and he likes it. Also, mother bear can climb into the middle car and she likes it. Moreover, son bear can climb into the smallest car and he likes it. It's known that the largest car is strictly larger than the middle car, and the middle car is strictly larger than the smallest car. Masha came to test these cars. She could climb into all cars, but she liked only the smallest car. It's known that a character with size *a* can climb into some car with size *b* if and only if *a*<=≤<=*b*, he or she likes it if and only if he can climb into this car and 2*a*<=≥<=*b*. You are given sizes of bears and Masha. Find out some possible integer non-negative sizes of cars. Input Specification: You are given four integers *V*1, *V*2, *V*3, *V**m*(1<=≤<=*V**i*<=≤<=100) — sizes of father bear, mother bear, son bear and Masha, respectively. It's guaranteed that *V*1<=&gt;<=*V*2<=&gt;<=*V*3. Output Specification: Output three integers — sizes of father bear's car, mother bear's car and son bear's car, respectively. If there are multiple possible solutions, print any. If there is no solution, print "-1" (without quotes). Demo Input: ['50 30 10 10\n', '100 50 10 21\n'] Demo Output: ['50\n30\n10\n', '-1\n'] Note: In first test case all conditions for cars' sizes are satisfied. In second test case there is no answer, because Masha should be able to climb into smallest car (so size of smallest car in not less than 21), but son bear should like it, so maximum possible size of it is 20.
```python v1, v2, v3, vm = map(int, input().split()) a, b, c = 2 * v1, 2 * v2, max(2 * vm, 2 *v3) if not(2 * v3 >= c >= v3) or not(2 * vm >= c >= vm): print(-1) else: print(a) print(b) print(c) ```
0
39
D
Cubical Planet
PROGRAMMING
1,100
[ "math" ]
D. Cubical Planet
2
64
You can find anything whatsoever in our Galaxy! A cubical planet goes round an icosahedral star. Let us introduce a system of axes so that the edges of the cubical planet are parallel to the coordinate axes and two opposite vertices lay in the points (0,<=0,<=0) and (1,<=1,<=1). Two flies live on the planet. At the moment they are sitting on two different vertices of the cubical planet. Your task is to determine whether they see each other or not. The flies see each other when the vertices they occupy lie on the same face of the cube.
The first line contains three space-separated integers (0 or 1) — the coordinates of the first fly, the second line analogously contains the coordinates of the second fly.
Output "YES" (without quotes) if the flies see each other. Otherwise, output "NO".
[ "0 0 0\n0 1 0\n", "1 1 0\n0 1 0\n", "0 0 0\n1 1 1\n" ]
[ "YES\n", "YES\n", "NO\n" ]
none
0
[ { "input": "0 0 0\n0 1 0", "output": "YES" }, { "input": "1 1 0\n0 1 0", "output": "YES" }, { "input": "0 0 0\n1 1 1", "output": "NO" }, { "input": "0 0 0\n1 0 0", "output": "YES" }, { "input": "0 0 0\n0 1 0", "output": "YES" }, { "input": "0 0 0\n1 1 0", "output": "YES" }, { "input": "0 0 0\n0 0 1", "output": "YES" }, { "input": "0 0 0\n1 0 1", "output": "YES" }, { "input": "0 0 0\n0 1 1", "output": "YES" }, { "input": "0 0 0\n1 1 1", "output": "NO" }, { "input": "1 0 0\n0 0 0", "output": "YES" }, { "input": "1 0 0\n0 1 0", "output": "YES" }, { "input": "1 0 0\n1 1 0", "output": "YES" }, { "input": "1 0 0\n0 0 1", "output": "YES" }, { "input": "1 0 0\n1 0 1", "output": "YES" }, { "input": "1 0 0\n0 1 1", "output": "NO" }, { "input": "1 0 0\n1 1 1", "output": "YES" }, { "input": "0 1 0\n0 0 0", "output": "YES" }, { "input": "0 1 0\n1 0 0", "output": "YES" }, { "input": "0 1 0\n1 1 0", "output": "YES" }, { "input": "0 1 0\n0 0 1", "output": "YES" }, { "input": "0 1 0\n1 0 1", "output": "NO" }, { "input": "0 1 0\n0 1 1", "output": "YES" }, { "input": "0 1 0\n1 1 1", "output": "YES" }, { "input": "1 1 0\n0 0 0", "output": "YES" }, { "input": "1 1 0\n1 0 0", "output": "YES" }, { "input": "1 1 0\n0 1 0", "output": "YES" }, { "input": "1 1 0\n0 0 1", "output": "NO" }, { "input": "1 1 0\n1 0 1", "output": "YES" }, { "input": "1 1 0\n0 1 1", "output": "YES" }, { "input": "1 1 0\n1 1 1", "output": "YES" }, { "input": "0 0 1\n0 0 0", "output": "YES" }, { "input": "0 0 1\n1 0 0", "output": "YES" }, { "input": "0 0 1\n0 1 0", "output": "YES" }, { "input": "0 0 1\n1 1 0", "output": "NO" }, { "input": "0 0 1\n1 0 1", "output": "YES" }, { "input": "0 0 1\n0 1 1", "output": "YES" }, { "input": "0 0 1\n1 1 1", "output": "YES" }, { "input": "1 0 1\n0 0 0", "output": "YES" }, { "input": "1 0 1\n1 0 0", "output": "YES" }, { "input": "1 0 1\n0 1 0", "output": "NO" }, { "input": "1 0 1\n1 1 0", "output": "YES" }, { "input": "1 0 1\n0 0 1", "output": "YES" }, { "input": "1 0 1\n0 1 1", "output": "YES" }, { "input": "1 0 1\n1 1 1", "output": "YES" }, { "input": "0 1 1\n0 0 0", "output": "YES" }, { "input": "0 1 1\n1 0 0", "output": "NO" }, { "input": "0 1 1\n0 1 0", "output": "YES" }, { "input": "0 1 1\n1 1 0", "output": "YES" }, { "input": "0 1 1\n0 0 1", "output": "YES" }, { "input": "0 1 1\n1 0 1", "output": "YES" }, { "input": "0 1 1\n1 1 1", "output": "YES" }, { "input": "1 1 1\n0 0 0", "output": "NO" }, { "input": "1 1 1\n1 0 0", "output": "YES" }, { "input": "1 1 1\n0 1 0", "output": "YES" }, { "input": "1 1 1\n1 1 0", "output": "YES" }, { "input": "1 1 1\n0 0 1", "output": "YES" }, { "input": "1 1 1\n1 0 1", "output": "YES" }, { "input": "1 1 1\n0 1 1", "output": "YES" } ]
1,589,833,430
2,147,483,647
Python 3
OK
TESTS
59
218
0
I=lambda:map(int,input().split()) print('YNEOS'[all(x!=y for x,y in zip(I(),I()))::2])
Title: Cubical Planet Time Limit: 2 seconds Memory Limit: 64 megabytes Problem Description: You can find anything whatsoever in our Galaxy! A cubical planet goes round an icosahedral star. Let us introduce a system of axes so that the edges of the cubical planet are parallel to the coordinate axes and two opposite vertices lay in the points (0,<=0,<=0) and (1,<=1,<=1). Two flies live on the planet. At the moment they are sitting on two different vertices of the cubical planet. Your task is to determine whether they see each other or not. The flies see each other when the vertices they occupy lie on the same face of the cube. Input Specification: The first line contains three space-separated integers (0 or 1) — the coordinates of the first fly, the second line analogously contains the coordinates of the second fly. Output Specification: Output "YES" (without quotes) if the flies see each other. Otherwise, output "NO". Demo Input: ['0 0 0\n0 1 0\n', '1 1 0\n0 1 0\n', '0 0 0\n1 1 1\n'] Demo Output: ['YES\n', 'YES\n', 'NO\n'] Note: none
```python I=lambda:map(int,input().split()) print('YNEOS'[all(x!=y for x,y in zip(I(),I()))::2]) ```
3.9455
793
C
Mice problem
PROGRAMMING
2,300
[ "geometry", "implementation", "math", "sortings" ]
null
null
Igor the analyst fell asleep on the work and had a strange dream. In the dream his desk was crowded with computer mice, so he bought a mousetrap to catch them. The desk can be considered as an infinite plane, then the mousetrap is a rectangle which sides are parallel to the axes, and which opposite sides are located in points (*x*1,<=*y*1) and (*x*2,<=*y*2). Igor wants to catch all mice. Igor has analysed their behavior and discovered that each mouse is moving along a straight line with constant speed, the speed of the *i*-th mouse is equal to (*v**i**x*,<=*v**i**y*), that means that the *x* coordinate of the mouse increases by *v**i**x* units per second, while the *y* coordinates increases by *v**i**y* units. The mousetrap is open initially so that the mice are able to move freely on the desk. Igor can close the mousetrap at any moment catching all the mice that are strictly inside the mousetrap. Igor works a lot, so he is busy in the dream as well, and he asks you to write a program that by given mousetrap's coordinates, the initial coordinates of the mice and their speeds determines the earliest time moment in which he is able to catch all the mice. Please note that Igor can close the mousetrap only once.
The first line contains single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of computer mice on the desk. The second line contains four integers *x*1, *y*1, *x*2 and *y*2 (0<=≤<=*x*1<=≤<=*x*2<=≤<=100<=000), (0<=≤<=*y*1<=≤<=*y*2<=≤<=100<=000) — the coordinates of the opposite corners of the mousetrap. The next *n* lines contain the information about mice. The *i*-th of these lines contains four integers *r**i**x*, *r**i**y*, *v**i**x* and *v**i**y*, (0<=≤<=*r**i**x*,<=*r**i**y*<=≤<=100<=000, <=-<=100<=000<=≤<=*v**i**x*,<=*v**i**y*<=≤<=100<=000), where (*r**i**x*,<=*r**i**y*) is the initial position of the mouse, and (*v**i**x*,<=*v**i**y*) is its speed.
In the only line print minimum possible non-negative number *t* such that if Igor closes the mousetrap at *t* seconds from the beginning, then all the mice are strictly inside the mousetrap. If there is no such *t*, print -1. Your answer is considered correct if its absolute or relative error doesn't exceed 10<=-<=6. Formally, let your answer be *a*, and the jury's answer be *b*. Your answer is considered correct if .
[ "4\n7 7 9 8\n3 5 7 5\n7 5 2 4\n3 3 7 8\n6 6 3 2\n", "4\n7 7 9 8\n0 3 -5 4\n5 0 5 4\n9 9 -1 -6\n10 5 -7 -10\n" ]
[ "0.57142857142857139685\n", "-1\n" ]
Here is a picture of the first sample Points A, B, C, D - start mice positions, segments are their paths. <img class="tex-graphics" src="https://espresso.codeforces.com/9b2a39ff850b63eb3f41de7ce9efc61a192e99b5.png" style="max-width: 100.0%;max-height: 100.0%;"/> Then, at first time when all mice will be in rectangle it will be looks like this: <img class="tex-graphics" src="https://espresso.codeforces.com/bfdaed392636d2b1790e7986ca711c1c3ebe298c.png" style="max-width: 100.0%;max-height: 100.0%;"/> Here is a picture of the second sample <img class="tex-graphics" src="https://espresso.codeforces.com/a49c381e9f3e453fe5be91a972128def69042e45.png" style="max-width: 100.0%;max-height: 100.0%;"/> Points A, D, B will never enter rectangle.
1,500
[ { "input": "4\n7 7 9 8\n3 5 7 5\n7 5 2 4\n3 3 7 8\n6 6 3 2", "output": "0.57142857142857139685" }, { "input": "4\n7 7 9 8\n0 3 -5 4\n5 0 5 4\n9 9 -1 -6\n10 5 -7 -10", "output": "-1" }, { "input": "4\n8 42 60 54\n9 54 -58 -62\n46 47 52 -76\n15 50 -37 -40\n54 51 78 64", "output": "0.00000000000000000000" }, { "input": "4\n17501 63318 51967 74514\n1305 84026 79493 -78504\n41159 81000 -44104 -42722\n31063 65435 25578 33487\n18330 79949 83467 -74531", "output": "0.20374120991785441004" }, { "input": "7\n24 38 44 47\n44 45 -50 -36\n33 48 -11 -39\n43 44 13 15\n42 47 24 -21\n40 41 19 7\n26 41 -20 -15\n42 40 43 19", "output": "0.02564102564102564014" }, { "input": "1\n0 0 100000 100000\n0 0 1 0", "output": "-1" }, { "input": "1\n0 0 100000 100000\n0 0 0 1", "output": "-1" }, { "input": "1\n0 0 100000 100000\n0 0 -1 -1", "output": "-1" }, { "input": "1\n0 0 100000 100000\n1 1 1 1", "output": "0.00000000000000000000" }, { "input": "1\n0 0 10000 10000\n20000 2 -1 0", "output": "10000.00000000000000000000" }, { "input": "1\n0 0 10000 10000\n20000 2 1 0", "output": "-1" }, { "input": "1\n0 0 10000 10000\n10001 10001 -1 -1", "output": "1.00000000000000000000" }, { "input": "1\n0 0 10000 10000\n10001 9999 -1 1", "output": "-1" }, { "input": "1\n1 1 1 1\n1 1 1 1", "output": "-1" }, { "input": "1\n0 0 10 10\n5 5 0 0", "output": "0.00000000000000000000" }, { "input": "1\n0 0 10 10\n5 5 5 5", "output": "0.00000000000000000000" }, { "input": "1\n0 1 2 1\n0 0 1 1", "output": "-1" }, { "input": "1\n1 1 5 5\n1 0 0 1", "output": "-1" }, { "input": "1\n1 1 2 2\n1 1 1 0", "output": "-1" }, { "input": "2\n2 2 5 5\n3 3 1 1\n10 3 -1 0", "output": "-1" }, { "input": "1\n99998 99998 99999 99999\n0 0 99999 100000", "output": "0.99998999989999903804" }, { "input": "1\n1 1 3 3\n2 2 0 0", "output": "0.00000000000000000000" }, { "input": "2\n99999 99999 100000 100000\n1 1 100000 100000\n1 1 99999 99999", "output": "0.99998999989999903804" }, { "input": "1\n0 0 2 2\n1 1 0 0", "output": "0.00000000000000000000" }, { "input": "1\n0 0 1 1\n0 0 0 0", "output": "-1" }, { "input": "1\n0 0 1 1\n0 0 1 0", "output": "-1" }, { "input": "1\n7 7 8 8\n7 7 0 0", "output": "-1" }, { "input": "1\n1 1 3 3\n4 4 0 0", "output": "-1" }, { "input": "1\n0 0 2 2\n1 0 0 0", "output": "-1" }, { "input": "1\n0 0 99999 1\n0 99999 100000 -99999", "output": "0.99998999989999903804" }, { "input": "1\n1 0 2 0\n0 0 1 0", "output": "-1" }, { "input": "1\n1 1 11 11\n5 5 0 0", "output": "0.00000000000000000000" }, { "input": "1\n1 1 1 1\n1 1 0 0", "output": "-1" }, { "input": "4\n0 49998 2 50002\n1 50000 0 0\n1 50000 0 0\n1 0 0 1\n1 100000 0 -1", "output": "49998.00000000000000000000" }, { "input": "1\n0 0 10 10\n0 0 0 0", "output": "-1" }, { "input": "1\n1 1 11 11\n1 2 0 1", "output": "-1" }, { "input": "1\n0 0 100 100\n0 0 1 0", "output": "-1" }, { "input": "1\n1 0 1 2\n0 0 1 1", "output": "-1" }, { "input": "1\n1 1 3 3\n1 1 0 0", "output": "-1" }, { "input": "2\n0 0 5 5\n5 3 0 1\n3 3 1 1", "output": "-1" }, { "input": "1\n1 1 3 3\n1 1 1 0", "output": "-1" }, { "input": "1\n10 10 20 20\n0 10 1 1", "output": "-1" }, { "input": "1\n5 5 10 10\n4 6 1 0", "output": "1.00000000000000000000" }, { "input": "1\n0 0 5 5\n2 5 0 0", "output": "-1" }, { "input": "1\n1 1 2 2\n0 2 1 0", "output": "-1" }, { "input": "1\n1 1 3 3\n0 1 1 0", "output": "-1" }, { "input": "1\n1 1 2 2\n1 1 0 0", "output": "-1" }, { "input": "2\n10 0 12 2\n9 1 1 0\n7 1 1 0", "output": "-1" }, { "input": "1\n2 2 4 4\n3 1 1 1", "output": "-1" }, { "input": "2\n1 1 3 3\n2 10 0 -1\n10000 2 -1 0", "output": "-1" }, { "input": "1\n1 1 3 3\n2 0 1 1", "output": "-1" }, { "input": "2\n0 0 2 100000\n1 1 0 100000\n100000 1 -99999 0", "output": "0.99998999989999903804" }, { "input": "2\n1 1 2 2\n0 0 1 1\n1 1 1 1", "output": "-1" }, { "input": "1\n0 0 2 2\n0 1 0 0", "output": "-1" }, { "input": "1\n1 1 2 2\n0 0 0 0", "output": "-1" }, { "input": "1\n0 0 10 10\n0 0 0 1337", "output": "-1" }, { "input": "1\n1 1 3 3\n1 1 0 1", "output": "-1" }, { "input": "1\n0 0 2 2\n0 1 0 1", "output": "-1" }, { "input": "1\n1 1 3 3\n2 1 0 0", "output": "-1" }, { "input": "1\n0 0 3 3\n1 3 1 0", "output": "-1" }, { "input": "1\n0 0 100 100\n0 0 100 0", "output": "-1" } ]
1,531,556,167
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
6
124
0
rd = lambda: map(int, input().split()) n = int(input()) x1, y1, x2, y2 = rd() l = [] r = [] for i in range(n): t = [] rx, ry, vx, vy = rd() if x1 <= rx <= x2 and y1 <= ry <= y2: t.append(0) if vx: t1 = (x1 - rx) / vx if t1 >= 0: if y1 <= ry + t1 * vy <= y2: t.append(t1) t1 = (x2 - rx) / vx if t1 >= 0: if y1 <= ry + t1 * vy <= y2: t.append(t1) if vy: t1 = (y1 - ry) / vy if t1 >= 0: if x1 <= rx + t1 * vx <= x2: t.append(t1) t1 = (y2 - ry) / vy if t1 >= 0: if x1 <= rx + t1 * vx <= x2: t.append(t1) if vx == 0 and vy == 0: t.append(0x3f3f3f3f3f3f3f3f) if len(t) < 1: print(-1) exit() t.sort() l.append(t[0]) r.append(t[-1]) l.sort() r.sort() if l[-1] > r[0]: print(-1) else: print(l[-1])
Title: Mice problem Time Limit: None seconds Memory Limit: None megabytes Problem Description: Igor the analyst fell asleep on the work and had a strange dream. In the dream his desk was crowded with computer mice, so he bought a mousetrap to catch them. The desk can be considered as an infinite plane, then the mousetrap is a rectangle which sides are parallel to the axes, and which opposite sides are located in points (*x*1,<=*y*1) and (*x*2,<=*y*2). Igor wants to catch all mice. Igor has analysed their behavior and discovered that each mouse is moving along a straight line with constant speed, the speed of the *i*-th mouse is equal to (*v**i**x*,<=*v**i**y*), that means that the *x* coordinate of the mouse increases by *v**i**x* units per second, while the *y* coordinates increases by *v**i**y* units. The mousetrap is open initially so that the mice are able to move freely on the desk. Igor can close the mousetrap at any moment catching all the mice that are strictly inside the mousetrap. Igor works a lot, so he is busy in the dream as well, and he asks you to write a program that by given mousetrap's coordinates, the initial coordinates of the mice and their speeds determines the earliest time moment in which he is able to catch all the mice. Please note that Igor can close the mousetrap only once. Input Specification: The first line contains single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of computer mice on the desk. The second line contains four integers *x*1, *y*1, *x*2 and *y*2 (0<=≤<=*x*1<=≤<=*x*2<=≤<=100<=000), (0<=≤<=*y*1<=≤<=*y*2<=≤<=100<=000) — the coordinates of the opposite corners of the mousetrap. The next *n* lines contain the information about mice. The *i*-th of these lines contains four integers *r**i**x*, *r**i**y*, *v**i**x* and *v**i**y*, (0<=≤<=*r**i**x*,<=*r**i**y*<=≤<=100<=000, <=-<=100<=000<=≤<=*v**i**x*,<=*v**i**y*<=≤<=100<=000), where (*r**i**x*,<=*r**i**y*) is the initial position of the mouse, and (*v**i**x*,<=*v**i**y*) is its speed. Output Specification: In the only line print minimum possible non-negative number *t* such that if Igor closes the mousetrap at *t* seconds from the beginning, then all the mice are strictly inside the mousetrap. If there is no such *t*, print -1. Your answer is considered correct if its absolute or relative error doesn't exceed 10<=-<=6. Formally, let your answer be *a*, and the jury's answer be *b*. Your answer is considered correct if . Demo Input: ['4\n7 7 9 8\n3 5 7 5\n7 5 2 4\n3 3 7 8\n6 6 3 2\n', '4\n7 7 9 8\n0 3 -5 4\n5 0 5 4\n9 9 -1 -6\n10 5 -7 -10\n'] Demo Output: ['0.57142857142857139685\n', '-1\n'] Note: Here is a picture of the first sample Points A, B, C, D - start mice positions, segments are their paths. <img class="tex-graphics" src="https://espresso.codeforces.com/9b2a39ff850b63eb3f41de7ce9efc61a192e99b5.png" style="max-width: 100.0%;max-height: 100.0%;"/> Then, at first time when all mice will be in rectangle it will be looks like this: <img class="tex-graphics" src="https://espresso.codeforces.com/bfdaed392636d2b1790e7986ca711c1c3ebe298c.png" style="max-width: 100.0%;max-height: 100.0%;"/> Here is a picture of the second sample <img class="tex-graphics" src="https://espresso.codeforces.com/a49c381e9f3e453fe5be91a972128def69042e45.png" style="max-width: 100.0%;max-height: 100.0%;"/> Points A, D, B will never enter rectangle.
```python rd = lambda: map(int, input().split()) n = int(input()) x1, y1, x2, y2 = rd() l = [] r = [] for i in range(n): t = [] rx, ry, vx, vy = rd() if x1 <= rx <= x2 and y1 <= ry <= y2: t.append(0) if vx: t1 = (x1 - rx) / vx if t1 >= 0: if y1 <= ry + t1 * vy <= y2: t.append(t1) t1 = (x2 - rx) / vx if t1 >= 0: if y1 <= ry + t1 * vy <= y2: t.append(t1) if vy: t1 = (y1 - ry) / vy if t1 >= 0: if x1 <= rx + t1 * vx <= x2: t.append(t1) t1 = (y2 - ry) / vy if t1 >= 0: if x1 <= rx + t1 * vx <= x2: t.append(t1) if vx == 0 and vy == 0: t.append(0x3f3f3f3f3f3f3f3f) if len(t) < 1: print(-1) exit() t.sort() l.append(t[0]) r.append(t[-1]) l.sort() r.sort() if l[-1] > r[0]: print(-1) else: print(l[-1]) ```
0
764
A
Taymyr is calling you
PROGRAMMING
800
[ "brute force", "implementation", "math" ]
null
null
Comrade Dujikov is busy choosing artists for Timofey's birthday and is recieving calls from Taymyr from Ilia-alpinist. Ilia-alpinist calls every *n* minutes, i.e. in minutes *n*, 2*n*, 3*n* and so on. Artists come to the comrade every *m* minutes, i.e. in minutes *m*, 2*m*, 3*m* and so on. The day is *z* minutes long, i.e. the day consists of minutes 1,<=2,<=...,<=*z*. How many artists should be killed so that there are no artists in the room when Ilia calls? Consider that a call and a talk with an artist take exactly one minute.
The only string contains three integers — *n*, *m* and *z* (1<=≤<=*n*,<=*m*,<=*z*<=≤<=104).
Print single integer — the minimum number of artists that should be killed so that there are no artists in the room when Ilia calls.
[ "1 1 10\n", "1 2 5\n", "2 3 9\n" ]
[ "10\n", "2\n", "1\n" ]
Taymyr is a place in the north of Russia. In the first test the artists come each minute, as well as the calls, so we need to kill all of them. In the second test we need to kill artists which come on the second and the fourth minutes. In the third test — only the artist which comes on the sixth minute.
500
[ { "input": "1 1 10", "output": "10" }, { "input": "1 2 5", "output": "2" }, { "input": "2 3 9", "output": "1" }, { "input": "4 8 9", "output": "1" }, { "input": "7 9 2", "output": "0" }, { "input": "10000 10000 10000", "output": "1" }, { "input": "24 22 9235", "output": "34" }, { "input": "74 8 417", "output": "1" }, { "input": "972 1 203", "output": "0" }, { "input": "550 1 754", "output": "1" }, { "input": "860 1 884", "output": "1" }, { "input": "358 2 809", "output": "2" }, { "input": "33 27 216", "output": "0" }, { "input": "2940 1 9311", "output": "3" }, { "input": "4624 1 1953", "output": "0" }, { "input": "2696 2 7345", "output": "2" }, { "input": "3443 2 6701", "output": "0" }, { "input": "3 613 2275", "output": "1" }, { "input": "1 10000 10000", "output": "1" }, { "input": "10000 1 10000", "output": "1" }, { "input": "1 1 1", "output": "1" }, { "input": "1 1 10000", "output": "10000" }, { "input": "34 27 10000", "output": "10" }, { "input": "2 2 9999", "output": "4999" }, { "input": "2 2 1", "output": "0" }, { "input": "6 4 36", "output": "3" }, { "input": "33 6 3005", "output": "45" }, { "input": "5 1 20", "output": "4" }, { "input": "1 2 10", "output": "5" }, { "input": "2 1 100", "output": "50" }, { "input": "10 20 10000", "output": "500" }, { "input": "8 12 12", "output": "0" } ]
1,596,887,730
2,147,483,647
Python 3
OK
TESTS
32
109
6,656,000
nmz = list(map(int, input().split())) counter = 0 for i in range(min(nmz[0], nmz[1]), nmz[2] + 1): if i % nmz[0] == 0 and i % nmz[1] == 0: counter += 1 print(counter)
Title: Taymyr is calling you Time Limit: None seconds Memory Limit: None megabytes Problem Description: Comrade Dujikov is busy choosing artists for Timofey's birthday and is recieving calls from Taymyr from Ilia-alpinist. Ilia-alpinist calls every *n* minutes, i.e. in minutes *n*, 2*n*, 3*n* and so on. Artists come to the comrade every *m* minutes, i.e. in minutes *m*, 2*m*, 3*m* and so on. The day is *z* minutes long, i.e. the day consists of minutes 1,<=2,<=...,<=*z*. How many artists should be killed so that there are no artists in the room when Ilia calls? Consider that a call and a talk with an artist take exactly one minute. Input Specification: The only string contains three integers — *n*, *m* and *z* (1<=≤<=*n*,<=*m*,<=*z*<=≤<=104). Output Specification: Print single integer — the minimum number of artists that should be killed so that there are no artists in the room when Ilia calls. Demo Input: ['1 1 10\n', '1 2 5\n', '2 3 9\n'] Demo Output: ['10\n', '2\n', '1\n'] Note: Taymyr is a place in the north of Russia. In the first test the artists come each minute, as well as the calls, so we need to kill all of them. In the second test we need to kill artists which come on the second and the fourth minutes. In the third test — only the artist which comes on the sixth minute.
```python nmz = list(map(int, input().split())) counter = 0 for i in range(min(nmz[0], nmz[1]), nmz[2] + 1): if i % nmz[0] == 0 and i % nmz[1] == 0: counter += 1 print(counter) ```
3
682
C
Alyona and the Tree
PROGRAMMING
1,600
[ "dfs and similar", "dp", "graphs", "trees" ]
null
null
Alyona decided to go on a diet and went to the forest to get some apples. There she unexpectedly found a magic rooted tree with root in the vertex 1, every vertex and every edge of which has a number written on. The girl noticed that some of the tree's vertices are sad, so she decided to play with them. Let's call vertex *v* sad if there is a vertex *u* in subtree of vertex *v* such that *dist*(*v*,<=*u*)<=&gt;<=*a**u*, where *a**u* is the number written on vertex *u*, *dist*(*v*,<=*u*) is the sum of the numbers written on the edges on the path from *v* to *u*. Leaves of a tree are vertices connected to a single vertex by a single edge, but the root of a tree is a leaf if and only if the tree consists of a single vertex — root. Thus Alyona decided to remove some of tree leaves until there will be no any sad vertex left in the tree. What is the minimum number of leaves Alyona needs to remove?
In the first line of the input integer *n* (1<=≤<=*n*<=≤<=105) is given — the number of vertices in the tree. In the second line the sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) is given, where *a**i* is the number written on vertex *i*. The next *n*<=-<=1 lines describe tree edges: *i**th* of them consists of two integers *p**i* and *c**i* (1<=≤<=*p**i*<=≤<=*n*, <=-<=109<=≤<=*c**i*<=≤<=109), meaning that there is an edge connecting vertices *i*<=+<=1 and *p**i* with number *c**i* written on it.
Print the only integer — the minimum number of leaves Alyona needs to remove such that there will be no any sad vertex left in the tree.
[ "9\n88 22 83 14 95 91 98 53 11\n3 24\n7 -8\n1 67\n1 64\n9 65\n5 12\n6 -80\n3 8\n" ]
[ "5\n" ]
The following image represents possible process of removing leaves from the tree:
1,500
[ { "input": "9\n88 22 83 14 95 91 98 53 11\n3 24\n7 -8\n1 67\n1 64\n9 65\n5 12\n6 -80\n3 8", "output": "5" }, { "input": "6\n53 82 15 77 71 23\n5 -77\n6 -73\n2 0\n1 26\n4 -92", "output": "0" }, { "input": "10\n99 60 68 46 51 11 96 41 48 99\n4 50\n6 -97\n3 -92\n7 1\n9 99\n2 79\n1 -15\n8 -68\n5 -84", "output": "7" }, { "input": "8\n53 41 22 22 34 95 56 24\n3 -20\n7 -56\n5 -3\n3 22\n1 37\n6 -34\n2 32", "output": "1" }, { "input": "8\n2 19 83 95 9 87 15 6\n6 16\n7 98\n5 32\n7 90\n8 37\n2 -34\n1 -83", "output": "5" }, { "input": "6\n60 89 33 64 92 75\n4 50\n1 32\n5 21\n3 77\n1 86", "output": "4" }, { "input": "4\n14 66 86 37\n3 -9\n1 93\n2 -57", "output": "3" }, { "input": "9\n59 48 48 14 51 51 86 53 58\n1 -47\n5 10\n8 -6\n9 46\n2 -69\n8 -79\n9 92\n6 12", "output": "5" }, { "input": "3\n17 26 6\n1 -41\n2 -66", "output": "0" }, { "input": "7\n63 3 67 55 14 19 96\n4 35\n1 -23\n3 -66\n2 80\n3 80\n2 -42", "output": "4" }, { "input": "5\n91 61 4 61 35\n5 75\n2 13\n2 -15\n1 90", "output": "4" }, { "input": "19\n40 99 20 54 5 31 67 73 10 46 70 68 80 74 7 58 75 25 13\n13 -28\n12 -33\n9 -62\n12 34\n15 70\n5 -22\n7 83\n2 -24\n6 -64\n17 62\n14 -28\n1 -83\n4 34\n8 -24\n11 19\n6 31\n7 -8\n16 90", "output": "11" }, { "input": "39\n98 80 74 31 81 15 23 52 54 86 56 9 95 91 29 20 97 78 62 65 17 95 12 39 77 17 60 78 76 51 36 56 74 66 43 23 17 9 13\n15 21\n34 -35\n28 80\n13 -15\n29 -34\n38 -8\n18 10\n18 19\n27 54\n7 42\n16 49\n12 90\n39 33\n20 53\n2 91\n33 59\n29 -93\n36 29\n26 50\n5 -12\n33 -6\n17 -60\n27 7\n17 85\n31 63\n26 80\n1 -99\n4 -40\n10 -39\n11 36\n21 22\n16 -15\n14 -25\n25 30\n33 97\n38 26\n8 -78\n10 -7", "output": "37" }, { "input": "19\n51 5 39 54 26 71 97 99 73 16 31 9 52 38 89 87 55 12 3\n18 -94\n19 -48\n2 -61\n10 72\n1 -82\n13 4\n19 -40\n16 -96\n6 -16\n19 -40\n13 44\n11 38\n15 -7\n6 8\n18 -32\n8 -75\n3 58\n10 -15", "output": "7" }, { "input": "39\n100 83 92 26 10 63 56 85 12 64 25 50 75 51 11 41 78 53 52 96 63 12 48 88 57 57 25 52 69 45 4 97 5 87 58 15 72 59 100\n35 -60\n33 -39\n1 65\n11 -65\n34 -63\n38 84\n4 76\n22 -9\n6 -91\n23 -65\n18 7\n2 -17\n29 -15\n19 26\n29 23\n14 -12\n30 -72\n9 14\n12 -1\n27 -21\n32 -67\n7 -3\n26 -18\n12 -45\n33 75\n14 -86\n34 -46\n24 -44\n27 -29\n22 -39\n17 -73\n36 -72\n18 -76\n27 -65\n8 65\n24 -15\n35 79\n27 61", "output": "38" }, { "input": "2\n83 33\n1 67", "output": "1" }, { "input": "6\n538779323 241071283 506741761 673531032 208769045 334127496\n1 -532301622\n5 -912729787\n6 -854756762\n4 -627791911\n2 -289935846", "output": "0" }, { "input": "10\n909382626 193846090 573881879 291637627 123338066 411896152 123287948 171497812 135534629 568762298\n9 -257478179\n4 -502075958\n2 -243790121\n2 -927464462\n8 -89981403\n1 -792322781\n10 -326468006\n7 -261940740\n4 -565652087", "output": "0" } ]
1,628,472,177
2,147,483,647
Python 3
OK
TESTS
106
561
26,419,200
n = int(input()) a = list(map(int, input().split())) tree = [[] for _ in range(n)] for i in range(n - 1): p, c = map(int, input().split()) tree[p - 1].append((i + 1, c)) stack = [0] maxDist = [0 for _ in range(n)] while len(stack) != 0: current = stack.pop() for child, edge in tree[current]: maxDist[child] = max(maxDist[current] + edge, 0) stack.append(child) stack = [(0, False)] nodesToRemove = 0 while len(stack) != 0: current, remove = stack.pop() if remove: nodesToRemove += 1 for child, edge in tree[current]: if maxDist[child] > a[child]: stack.append((child, True)) else: stack.append((child, remove)) print(nodesToRemove)
Title: Alyona and the Tree Time Limit: None seconds Memory Limit: None megabytes Problem Description: Alyona decided to go on a diet and went to the forest to get some apples. There she unexpectedly found a magic rooted tree with root in the vertex 1, every vertex and every edge of which has a number written on. The girl noticed that some of the tree's vertices are sad, so she decided to play with them. Let's call vertex *v* sad if there is a vertex *u* in subtree of vertex *v* such that *dist*(*v*,<=*u*)<=&gt;<=*a**u*, where *a**u* is the number written on vertex *u*, *dist*(*v*,<=*u*) is the sum of the numbers written on the edges on the path from *v* to *u*. Leaves of a tree are vertices connected to a single vertex by a single edge, but the root of a tree is a leaf if and only if the tree consists of a single vertex — root. Thus Alyona decided to remove some of tree leaves until there will be no any sad vertex left in the tree. What is the minimum number of leaves Alyona needs to remove? Input Specification: In the first line of the input integer *n* (1<=≤<=*n*<=≤<=105) is given — the number of vertices in the tree. In the second line the sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) is given, where *a**i* is the number written on vertex *i*. The next *n*<=-<=1 lines describe tree edges: *i**th* of them consists of two integers *p**i* and *c**i* (1<=≤<=*p**i*<=≤<=*n*, <=-<=109<=≤<=*c**i*<=≤<=109), meaning that there is an edge connecting vertices *i*<=+<=1 and *p**i* with number *c**i* written on it. Output Specification: Print the only integer — the minimum number of leaves Alyona needs to remove such that there will be no any sad vertex left in the tree. Demo Input: ['9\n88 22 83 14 95 91 98 53 11\n3 24\n7 -8\n1 67\n1 64\n9 65\n5 12\n6 -80\n3 8\n'] Demo Output: ['5\n'] Note: The following image represents possible process of removing leaves from the tree:
```python n = int(input()) a = list(map(int, input().split())) tree = [[] for _ in range(n)] for i in range(n - 1): p, c = map(int, input().split()) tree[p - 1].append((i + 1, c)) stack = [0] maxDist = [0 for _ in range(n)] while len(stack) != 0: current = stack.pop() for child, edge in tree[current]: maxDist[child] = max(maxDist[current] + edge, 0) stack.append(child) stack = [(0, False)] nodesToRemove = 0 while len(stack) != 0: current, remove = stack.pop() if remove: nodesToRemove += 1 for child, edge in tree[current]: if maxDist[child] > a[child]: stack.append((child, True)) else: stack.append((child, remove)) print(nodesToRemove) ```
3
670
A
Holidays
PROGRAMMING
900
[ "brute force", "constructive algorithms", "greedy", "math" ]
null
null
On the planet Mars a year lasts exactly *n* days (there are no leap years on Mars). But Martians have the same weeks as earthlings — 5 work days and then 2 days off. Your task is to determine the minimum possible and the maximum possible number of days off per year on Mars.
The first line of the input contains a positive integer *n* (1<=≤<=*n*<=≤<=1<=000<=000) — the number of days in a year on Mars.
Print two integers — the minimum possible and the maximum possible number of days off per year on Mars.
[ "14\n", "2\n" ]
[ "4 4\n", "0 2\n" ]
In the first sample there are 14 days in a year on Mars, and therefore independently of the day a year starts with there will be exactly 4 days off . In the second sample there are only 2 days in a year on Mars, and they can both be either work days or days off.
500
[ { "input": "14", "output": "4 4" }, { "input": "2", "output": "0 2" }, { "input": "1", "output": "0 1" }, { "input": "3", "output": "0 2" }, { "input": "4", "output": "0 2" }, { "input": "5", "output": "0 2" }, { "input": "6", "output": "1 2" }, { "input": "7", "output": "2 2" }, { "input": "8", "output": "2 3" }, { "input": "9", "output": "2 4" }, { "input": "10", "output": "2 4" }, { "input": "11", "output": "2 4" }, { "input": "12", "output": "2 4" }, { "input": "13", "output": "3 4" }, { "input": "1000000", "output": "285714 285715" }, { "input": "16", "output": "4 6" }, { "input": "17", "output": "4 6" }, { "input": "18", "output": "4 6" }, { "input": "19", "output": "4 6" }, { "input": "20", "output": "5 6" }, { "input": "21", "output": "6 6" }, { "input": "22", "output": "6 7" }, { "input": "23", "output": "6 8" }, { "input": "24", "output": "6 8" }, { "input": "25", "output": "6 8" }, { "input": "26", "output": "6 8" }, { "input": "27", "output": "7 8" }, { "input": "28", "output": "8 8" }, { "input": "29", "output": "8 9" }, { "input": "30", "output": "8 10" }, { "input": "100", "output": "28 30" }, { "input": "99", "output": "28 29" }, { "input": "98", "output": "28 28" }, { "input": "97", "output": "27 28" }, { "input": "96", "output": "26 28" }, { "input": "95", "output": "26 28" }, { "input": "94", "output": "26 28" }, { "input": "93", "output": "26 28" }, { "input": "92", "output": "26 27" }, { "input": "91", "output": "26 26" }, { "input": "90", "output": "25 26" }, { "input": "89", "output": "24 26" }, { "input": "88", "output": "24 26" }, { "input": "87", "output": "24 26" }, { "input": "86", "output": "24 26" }, { "input": "85", "output": "24 25" }, { "input": "84", "output": "24 24" }, { "input": "83", "output": "23 24" }, { "input": "82", "output": "22 24" }, { "input": "81", "output": "22 24" }, { "input": "80", "output": "22 24" }, { "input": "1000", "output": "285 286" }, { "input": "999", "output": "284 286" }, { "input": "998", "output": "284 286" }, { "input": "997", "output": "284 286" }, { "input": "996", "output": "284 286" }, { "input": "995", "output": "284 285" }, { "input": "994", "output": "284 284" }, { "input": "993", "output": "283 284" }, { "input": "992", "output": "282 284" }, { "input": "991", "output": "282 284" }, { "input": "990", "output": "282 284" }, { "input": "989", "output": "282 284" }, { "input": "988", "output": "282 283" }, { "input": "987", "output": "282 282" }, { "input": "986", "output": "281 282" }, { "input": "985", "output": "280 282" }, { "input": "984", "output": "280 282" }, { "input": "983", "output": "280 282" }, { "input": "982", "output": "280 282" }, { "input": "981", "output": "280 281" }, { "input": "980", "output": "280 280" }, { "input": "10000", "output": "2856 2858" }, { "input": "9999", "output": "2856 2858" }, { "input": "9998", "output": "2856 2858" }, { "input": "9997", "output": "2856 2857" }, { "input": "9996", "output": "2856 2856" }, { "input": "9995", "output": "2855 2856" }, { "input": "9994", "output": "2854 2856" }, { "input": "9993", "output": "2854 2856" }, { "input": "9992", "output": "2854 2856" }, { "input": "9991", "output": "2854 2856" }, { "input": "9990", "output": "2854 2855" }, { "input": "9989", "output": "2854 2854" }, { "input": "9988", "output": "2853 2854" }, { "input": "9987", "output": "2852 2854" }, { "input": "9986", "output": "2852 2854" }, { "input": "9985", "output": "2852 2854" }, { "input": "9984", "output": "2852 2854" }, { "input": "9983", "output": "2852 2853" }, { "input": "9982", "output": "2852 2852" }, { "input": "9981", "output": "2851 2852" }, { "input": "9980", "output": "2850 2852" }, { "input": "100000", "output": "28570 28572" }, { "input": "99999", "output": "28570 28572" }, { "input": "99998", "output": "28570 28572" }, { "input": "99997", "output": "28570 28572" }, { "input": "99996", "output": "28570 28571" }, { "input": "99995", "output": "28570 28570" }, { "input": "99994", "output": "28569 28570" }, { "input": "99993", "output": "28568 28570" }, { "input": "99992", "output": "28568 28570" }, { "input": "99991", "output": "28568 28570" }, { "input": "99990", "output": "28568 28570" }, { "input": "99989", "output": "28568 28569" }, { "input": "99988", "output": "28568 28568" }, { "input": "99987", "output": "28567 28568" }, { "input": "99986", "output": "28566 28568" }, { "input": "99985", "output": "28566 28568" }, { "input": "99984", "output": "28566 28568" }, { "input": "99983", "output": "28566 28568" }, { "input": "99982", "output": "28566 28567" }, { "input": "99981", "output": "28566 28566" }, { "input": "99980", "output": "28565 28566" }, { "input": "999999", "output": "285714 285714" }, { "input": "999998", "output": "285713 285714" }, { "input": "999997", "output": "285712 285714" }, { "input": "999996", "output": "285712 285714" }, { "input": "999995", "output": "285712 285714" }, { "input": "999994", "output": "285712 285714" }, { "input": "999993", "output": "285712 285713" }, { "input": "999992", "output": "285712 285712" }, { "input": "999991", "output": "285711 285712" }, { "input": "999990", "output": "285710 285712" }, { "input": "999989", "output": "285710 285712" }, { "input": "999988", "output": "285710 285712" }, { "input": "999987", "output": "285710 285712" }, { "input": "999986", "output": "285710 285711" }, { "input": "999985", "output": "285710 285710" }, { "input": "999984", "output": "285709 285710" }, { "input": "999983", "output": "285708 285710" }, { "input": "999982", "output": "285708 285710" }, { "input": "999981", "output": "285708 285710" }, { "input": "999980", "output": "285708 285710" }, { "input": "234123", "output": "66892 66893" }, { "input": "234122", "output": "66892 66892" }, { "input": "234121", "output": "66891 66892" }, { "input": "234120", "output": "66890 66892" }, { "input": "234119", "output": "66890 66892" }, { "input": "234118", "output": "66890 66892" }, { "input": "234117", "output": "66890 66892" }, { "input": "234116", "output": "66890 66891" }, { "input": "234115", "output": "66890 66890" }, { "input": "234114", "output": "66889 66890" }, { "input": "234113", "output": "66888 66890" }, { "input": "234112", "output": "66888 66890" }, { "input": "234111", "output": "66888 66890" }, { "input": "234110", "output": "66888 66890" }, { "input": "234109", "output": "66888 66889" }, { "input": "234108", "output": "66888 66888" }, { "input": "234107", "output": "66887 66888" }, { "input": "234106", "output": "66886 66888" }, { "input": "234105", "output": "66886 66888" }, { "input": "234104", "output": "66886 66888" }, { "input": "234103", "output": "66886 66888" }, { "input": "868531", "output": "248151 248152" }, { "input": "868530", "output": "248150 248152" }, { "input": "868529", "output": "248150 248152" }, { "input": "868528", "output": "248150 248152" }, { "input": "868527", "output": "248150 248152" }, { "input": "868526", "output": "248150 248151" }, { "input": "868525", "output": "248150 248150" }, { "input": "868524", "output": "248149 248150" }, { "input": "868523", "output": "248148 248150" }, { "input": "868522", "output": "248148 248150" }, { "input": "868521", "output": "248148 248150" }, { "input": "868520", "output": "248148 248150" }, { "input": "868519", "output": "248148 248149" }, { "input": "868518", "output": "248148 248148" }, { "input": "868517", "output": "248147 248148" }, { "input": "868516", "output": "248146 248148" }, { "input": "868515", "output": "248146 248148" }, { "input": "868514", "output": "248146 248148" }, { "input": "868513", "output": "248146 248148" }, { "input": "868512", "output": "248146 248147" }, { "input": "868511", "output": "248146 248146" }, { "input": "123413", "output": "35260 35262" }, { "input": "123412", "output": "35260 35262" }, { "input": "123411", "output": "35260 35261" }, { "input": "123410", "output": "35260 35260" }, { "input": "123409", "output": "35259 35260" }, { "input": "123408", "output": "35258 35260" }, { "input": "123407", "output": "35258 35260" }, { "input": "123406", "output": "35258 35260" }, { "input": "123405", "output": "35258 35260" }, { "input": "123404", "output": "35258 35259" }, { "input": "123403", "output": "35258 35258" }, { "input": "123402", "output": "35257 35258" }, { "input": "123401", "output": "35256 35258" }, { "input": "123400", "output": "35256 35258" }, { "input": "123399", "output": "35256 35258" }, { "input": "123398", "output": "35256 35258" }, { "input": "123397", "output": "35256 35257" }, { "input": "123396", "output": "35256 35256" }, { "input": "123395", "output": "35255 35256" }, { "input": "123394", "output": "35254 35256" }, { "input": "123393", "output": "35254 35256" }, { "input": "15", "output": "4 5" } ]
1,688,132,800
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
3
46
0
# n,k = map(int,input().split()) # arr = list(map(int,input().split())) n = int(input()) if n % 7 == 0: weeks = n // 7 print(2*weeks,end=" ") print(2*weeks) else: temp = n % 7 print(0,end=" ") print(temp)
Title: Holidays Time Limit: None seconds Memory Limit: None megabytes Problem Description: On the planet Mars a year lasts exactly *n* days (there are no leap years on Mars). But Martians have the same weeks as earthlings — 5 work days and then 2 days off. Your task is to determine the minimum possible and the maximum possible number of days off per year on Mars. Input Specification: The first line of the input contains a positive integer *n* (1<=≤<=*n*<=≤<=1<=000<=000) — the number of days in a year on Mars. Output Specification: Print two integers — the minimum possible and the maximum possible number of days off per year on Mars. Demo Input: ['14\n', '2\n'] Demo Output: ['4 4\n', '0 2\n'] Note: In the first sample there are 14 days in a year on Mars, and therefore independently of the day a year starts with there will be exactly 4 days off . In the second sample there are only 2 days in a year on Mars, and they can both be either work days or days off.
```python # n,k = map(int,input().split()) # arr = list(map(int,input().split())) n = int(input()) if n % 7 == 0: weeks = n // 7 print(2*weeks,end=" ") print(2*weeks) else: temp = n % 7 print(0,end=" ") print(temp) ```
0
772
A
Voltage Keepsake
PROGRAMMING
1,800
[ "binary search", "math" ]
null
null
You have *n* devices that you want to use simultaneously. The *i*-th device uses *a**i* units of power per second. This usage is continuous. That is, in λ seconds, the device will use λ·*a**i* units of power. The *i*-th device currently has *b**i* units of power stored. All devices can store an arbitrary amount of power. You have a single charger that can plug to any single device. The charger will add *p* units of power per second to a device. This charging is continuous. That is, if you plug in a device for λ seconds, it will gain λ·*p* units of power. You can switch which device is charging at any arbitrary unit of time (including real numbers), and the time it takes to switch is negligible. You are wondering, what is the maximum amount of time you can use the devices until one of them hits 0 units of power. If you can use the devices indefinitely, print -1. Otherwise, print the maximum amount of time before any one device hits 0 power.
The first line contains two integers, *n* and *p* (1<=≤<=*n*<=≤<=100<=000, 1<=≤<=*p*<=≤<=109) — the number of devices and the power of the charger. This is followed by *n* lines which contain two integers each. Line *i* contains the integers *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=100<=000) — the power of the device and the amount of power stored in the device in the beginning.
If you can use the devices indefinitely, print -1. Otherwise, print the maximum amount of time before any one device hits 0 power. Your answer will be considered correct if its absolute or relative error does not exceed 10<=-<=4. Namely, let's assume that your answer is *a* and the answer of the jury is *b*. The checker program will consider your answer correct if .
[ "2 1\n2 2\n2 1000\n", "1 100\n1 1\n", "3 5\n4 3\n5 2\n6 1\n" ]
[ "2.0000000000", "-1\n", "0.5000000000" ]
In sample test 1, you can charge the first device for the entire time until it hits zero power. The second device has enough power to last this time without being charged. In sample test 2, you can use the device indefinitely. In sample test 3, we can charge the third device for 2 / 5 of a second, then switch to charge the second device for a 1 / 10 of a second.
500
[ { "input": "2 1\n2 2\n2 1000", "output": "2.0000000000" }, { "input": "1 100\n1 1", "output": "-1" }, { "input": "3 5\n4 3\n5 2\n6 1", "output": "0.5000000000" }, { "input": "1 1\n1 87", "output": "-1" }, { "input": "1 1\n100 77", "output": "0.7777777778" }, { "input": "5 10\n3 81\n3 49\n1 20\n1 12\n1 30", "output": "-1" }, { "input": "5 10\n4 3\n1 54\n2 57\n2 31\n1 99", "output": "-1" }, { "input": "5 10\n2 81\n3 31\n4 49\n1 35\n1 67", "output": "263.0000000000" }, { "input": "10 1\n1 92\n1 92\n1 92\n1 92\n1 92\n1 92\n1 92\n1 92\n1 92\n1 92", "output": "102.2222222222" }, { "input": "10 1\n1 16\n1 16\n1 16\n1 16\n1 16\n1 16\n1 16\n1 16\n1 16\n1 16", "output": "17.7777777778" }, { "input": "10 1\n1 40\n1 40\n1 40\n1 40\n1 40\n1 40\n1 40\n1 40\n1 40\n1 40", "output": "44.4444444444" }, { "input": "2 1\n1 10\n1 10", "output": "20.0000000000" }, { "input": "20 16807\n75250 50074\n43659 8931\n11273 27545\n50879 77924\n37710 64441\n38166 84493\n43043 7988\n22504 82328\n31730 78841\n42613 44304\n33170 17710\n97158 29561\n70934 93100\n80279 51817\n95336 99098\n7827 13513\n29268 23811\n77634 80980\n79150 36580\n58822 11968", "output": "0.2244225704" } ]
1,654,456,082
2,147,483,647
PyPy 3-64
COMPILATION_ERROR
TESTS
0
0
0
//***بسم الله الرحمن الرحيم*** #pragma GCC optimize ("O3") #include <bits/stdc++.h> #define mod 1000000007 #define pi 3.14159265358979323846 #define ll long long using namespace std; bool prime(ll n) { for(int i=2;i*i<=n;i++)if(n%i==0)return 0; return 1; } ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; } ll lcm(ll a, ll b) { return a / gcd(a, b) * b; } ll po(ll x,ll y) { if(y==0) return 1; ll ret=po(x,y/2); ret=(ret*ret)%mod; if(y&1) return (x*ret)%mod; return ret; } ll sigma(ll s,ll e,ll num_elements) { ll res1=s+e; ll res=(((s+e)/2)*(num_elements)); if(res1%2)res+=num_elements/2; return res; } ll mod_inverse(ll x) { return po(x,mod-2); } string bin(ll x) { string str=""; while(x) { if(x%2) { str+='1'; } else { str+='0'; } x/=2; } return str; } int main() { //ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0); //freopen("math.in", "r", stdin); ll n,p,a,b;cin>>n>>p; ll num=0; ll arr[n][2]; for(int i=0;i<n;i++) { cin>>a>>b; arr[i][0]=a; arr[i][1]=b; num+=a; } if(num>p) { cout<<setprecision(10)<<fixed; double s=0,e=1e18,ans; while(s<=e) { double mid=(s+e)/2,sum=0; for(int i=0;i<n;i++) { sum+=max(arr[i][0]*mid-arr[i][1],0.0); } if(sum==mid*p||e-mid<=0.0001) { ans=mid; break; } else if(sum<mid*p) { s=mid; } else e=mid; } cout<<ans; } else cout<<-1; }
Title: Voltage Keepsake Time Limit: None seconds Memory Limit: None megabytes Problem Description: You have *n* devices that you want to use simultaneously. The *i*-th device uses *a**i* units of power per second. This usage is continuous. That is, in λ seconds, the device will use λ·*a**i* units of power. The *i*-th device currently has *b**i* units of power stored. All devices can store an arbitrary amount of power. You have a single charger that can plug to any single device. The charger will add *p* units of power per second to a device. This charging is continuous. That is, if you plug in a device for λ seconds, it will gain λ·*p* units of power. You can switch which device is charging at any arbitrary unit of time (including real numbers), and the time it takes to switch is negligible. You are wondering, what is the maximum amount of time you can use the devices until one of them hits 0 units of power. If you can use the devices indefinitely, print -1. Otherwise, print the maximum amount of time before any one device hits 0 power. Input Specification: The first line contains two integers, *n* and *p* (1<=≤<=*n*<=≤<=100<=000, 1<=≤<=*p*<=≤<=109) — the number of devices and the power of the charger. This is followed by *n* lines which contain two integers each. Line *i* contains the integers *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=100<=000) — the power of the device and the amount of power stored in the device in the beginning. Output Specification: If you can use the devices indefinitely, print -1. Otherwise, print the maximum amount of time before any one device hits 0 power. Your answer will be considered correct if its absolute or relative error does not exceed 10<=-<=4. Namely, let's assume that your answer is *a* and the answer of the jury is *b*. The checker program will consider your answer correct if . Demo Input: ['2 1\n2 2\n2 1000\n', '1 100\n1 1\n', '3 5\n4 3\n5 2\n6 1\n'] Demo Output: ['2.0000000000', '-1\n', '0.5000000000'] Note: In sample test 1, you can charge the first device for the entire time until it hits zero power. The second device has enough power to last this time without being charged. In sample test 2, you can use the device indefinitely. In sample test 3, we can charge the third device for 2 / 5 of a second, then switch to charge the second device for a 1 / 10 of a second.
```python //***بسم الله الرحمن الرحيم*** #pragma GCC optimize ("O3") #include <bits/stdc++.h> #define mod 1000000007 #define pi 3.14159265358979323846 #define ll long long using namespace std; bool prime(ll n) { for(int i=2;i*i<=n;i++)if(n%i==0)return 0; return 1; } ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; } ll lcm(ll a, ll b) { return a / gcd(a, b) * b; } ll po(ll x,ll y) { if(y==0) return 1; ll ret=po(x,y/2); ret=(ret*ret)%mod; if(y&1) return (x*ret)%mod; return ret; } ll sigma(ll s,ll e,ll num_elements) { ll res1=s+e; ll res=(((s+e)/2)*(num_elements)); if(res1%2)res+=num_elements/2; return res; } ll mod_inverse(ll x) { return po(x,mod-2); } string bin(ll x) { string str=""; while(x) { if(x%2) { str+='1'; } else { str+='0'; } x/=2; } return str; } int main() { //ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0); //freopen("math.in", "r", stdin); ll n,p,a,b;cin>>n>>p; ll num=0; ll arr[n][2]; for(int i=0;i<n;i++) { cin>>a>>b; arr[i][0]=a; arr[i][1]=b; num+=a; } if(num>p) { cout<<setprecision(10)<<fixed; double s=0,e=1e18,ans; while(s<=e) { double mid=(s+e)/2,sum=0; for(int i=0;i<n;i++) { sum+=max(arr[i][0]*mid-arr[i][1],0.0); } if(sum==mid*p||e-mid<=0.0001) { ans=mid; break; } else if(sum<mid*p) { s=mid; } else e=mid; } cout<<ans; } else cout<<-1; } ```
-1
127
A
Wasted Time
PROGRAMMING
900
[ "geometry" ]
null
null
Mr. Scrooge, a very busy man, decided to count the time he wastes on all sorts of useless stuff to evaluate the lost profit. He has already counted the time he wastes sleeping and eating. And now Mr. Scrooge wants to count the time he has wasted signing papers. Mr. Scrooge's signature can be represented as a polyline *A*1*A*2... *A**n*. Scrooge signs like that: first it places a pen at the point *A*1, then draws a segment from point *A*1 to point *A*2, then he draws a segment from point *A*2 to point *A*3 and so on to point *A**n*, where he stops signing and takes the pen off the paper. At that the resulting line can intersect with itself and partially repeat itself but Scrooge pays no attention to it and never changes his signing style. As Scrooge makes the signature, he never takes the pen off the paper and his writing speed is constant — 50 millimeters per second. Scrooge signed exactly *k* papers throughout his life and all those signatures look the same. Find the total time Scrooge wasted signing the papers.
The first line contains two integers *n* and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=1000). Each of the following *n* lines contains the coordinates of the polyline's endpoints. The *i*-th one contains coordinates of the point *A**i* — integers *x**i* and *y**i*, separated by a space. All points *A**i* are different. The absolute value of all coordinates does not exceed 20. The coordinates are measured in millimeters.
Print one real number — the total time Scrooges wastes on signing the papers in seconds. The absolute or relative error should not exceed 10<=-<=6.
[ "2 1\n0 0\n10 0\n", "5 10\n3 1\n-5 6\n-2 -1\n3 2\n10 0\n", "6 10\n5 0\n4 0\n6 0\n3 0\n7 0\n2 0\n" ]
[ "0.200000000", "6.032163204", "3.000000000" ]
none
500
[ { "input": "2 1\n0 0\n10 0", "output": "0.200000000" }, { "input": "5 10\n3 1\n-5 6\n-2 -1\n3 2\n10 0", "output": "6.032163204" }, { "input": "6 10\n5 0\n4 0\n6 0\n3 0\n7 0\n2 0", "output": "3.000000000" }, { "input": "10 95\n-20 -5\n2 -8\n14 13\n10 3\n17 11\n13 -12\n-6 11\n14 -15\n-13 14\n19 8", "output": "429.309294877" }, { "input": "30 1000\n4 -13\n14 13\n-14 -16\n-9 18\n17 11\n2 -8\n2 15\n8 -1\n-9 13\n8 -12\n-2 20\n11 -12\n19 8\n9 -15\n-20 -5\n-18 20\n-13 14\n-12 -17\n-4 3\n13 -12\n11 -10\n18 7\n-6 11\n10 13\n10 3\n6 -14\n-1 10\n14 -15\n2 11\n-8 10", "output": "13629.282573522" }, { "input": "2 1\n-20 -10\n-10 -6", "output": "0.215406592" }, { "input": "2 13\n13 -10\n-3 -2", "output": "4.651021393" }, { "input": "2 21\n13 8\n14 10", "output": "0.939148551" }, { "input": "2 75\n-3 12\n1 12", "output": "6.000000000" }, { "input": "2 466\n10 16\n-6 -3", "output": "231.503997374" }, { "input": "2 999\n6 16\n-17 -14", "output": "755.286284531" }, { "input": "2 1000\n-17 -14\n-14 -8", "output": "134.164078650" }, { "input": "3 384\n-4 -19\n-17 -2\n3 4", "output": "324.722285390" }, { "input": "5 566\n-11 8\n2 -7\n7 0\n-7 -9\n-7 5", "output": "668.956254495" }, { "input": "7 495\n-10 -13\n-9 -5\n4 9\n8 13\n-4 2\n2 10\n-18 15", "output": "789.212495576" }, { "input": "10 958\n7 13\n20 19\n12 -7\n10 -10\n-13 -15\n-10 -7\n20 -5\n-11 19\n-7 3\n-4 18", "output": "3415.618464093" }, { "input": "13 445\n-15 16\n-8 -14\n8 7\n4 15\n8 -13\n15 -11\n-12 -4\n2 -13\n-5 0\n-20 -14\n-8 -7\n-10 -18\n18 -5", "output": "2113.552527680" }, { "input": "18 388\n11 -8\n13 10\n18 -17\n-15 3\n-13 -15\n20 -7\n1 -10\n-13 -12\n-12 -15\n-17 -8\n1 -2\n3 -20\n-8 -9\n15 -13\n-19 -6\n17 3\n-17 2\n6 6", "output": "2999.497312668" }, { "input": "25 258\n-5 -3\n-18 -14\n12 3\n6 11\n4 2\n-19 -3\n19 -7\n-15 19\n-19 -12\n-11 -10\n-5 17\n10 15\n-4 1\n-3 -20\n6 16\n18 -19\n11 -19\n-17 10\n-17 17\n-2 -17\n-3 -9\n18 13\n14 8\n-2 -5\n-11 4", "output": "2797.756635934" }, { "input": "29 848\n11 -10\n-19 1\n18 18\n19 -19\n0 -5\n16 10\n-20 -14\n7 15\n6 8\n-15 -16\n9 3\n16 -20\n-12 12\n18 -1\n-11 14\n18 10\n11 -20\n-20 -16\n-1 11\n13 10\n-6 13\n-7 -10\n-11 -10\n-10 3\n15 -13\n-4 11\n-13 -11\n-11 -17\n11 -5", "output": "12766.080247922" }, { "input": "36 3\n-11 20\n-11 13\n-17 9\n15 9\n-6 9\n-1 11\n12 -11\n16 -10\n-20 7\n-18 6\n-15 -2\n20 -20\n16 4\n-20 -8\n-12 -15\n-13 -6\n-9 -4\n0 -10\n8 -1\n1 4\n5 8\n8 -15\n16 -12\n19 1\n0 -4\n13 -4\n17 -13\n-7 11\n14 9\n-14 -9\n5 -8\n11 -8\n-17 -5\n1 -3\n-16 -17\n2 -3", "output": "36.467924851" }, { "input": "48 447\n14 9\n9 -17\n-17 11\n-14 14\n19 -8\n-14 -17\n-7 10\n-6 -11\n-9 -19\n19 10\n-4 2\n-5 16\n20 9\n-10 20\n-7 -17\n14 -16\n-2 -10\n-18 -17\n14 12\n-6 -19\n5 -18\n-3 2\n-3 10\n-5 5\n13 -12\n10 -18\n10 -12\n-2 4\n7 -15\n-5 -5\n11 14\n11 10\n-6 -9\n13 -4\n13 9\n6 12\n-13 17\n-9 -12\n14 -19\n10 12\n-15 8\n-1 -11\n19 8\n11 20\n-9 -3\n16 1\n-14 19\n8 -4", "output": "9495.010556306" }, { "input": "50 284\n-17 -13\n7 12\n-13 0\n13 1\n14 6\n14 -9\n-5 -1\n0 -10\n12 -3\n-14 6\n-8 10\n-16 17\n0 -1\n4 -9\n2 6\n1 8\n-8 -14\n3 9\n1 -15\n-4 -19\n-7 -20\n18 10\n3 -11\n10 16\n2 -6\n-9 19\n-3 -1\n20 9\n-12 -5\n-10 -2\n16 -7\n-16 -18\n-2 17\n2 8\n7 -15\n4 1\n6 -17\n19 9\n-10 -20\n5 2\n10 -2\n3 7\n20 0\n8 -14\n-16 -1\n-20 7\n20 -19\n17 18\n-11 -18\n-16 14", "output": "6087.366930474" }, { "input": "57 373\n18 3\n-4 -1\n18 5\n-7 -15\n-6 -10\n-19 1\n20 15\n15 4\n-1 -2\n13 -14\n0 12\n10 3\n-16 -17\n-14 -9\n-11 -10\n17 19\n-2 6\n-12 -15\n10 20\n16 7\n9 -1\n4 13\n8 -2\n-1 -16\n-3 8\n14 11\n-12 3\n-5 -6\n3 4\n5 7\n-9 9\n11 4\n-19 10\n-7 4\n-20 -12\n10 16\n13 11\n13 -11\n7 -1\n17 18\n-19 7\n14 13\n5 -1\n-7 6\n-1 -6\n6 20\n-16 2\n4 17\n16 -11\n-4 -20\n19 -18\n17 16\n-14 -8\n3 2\n-6 -16\n10 -10\n-13 -11", "output": "8929.162822862" }, { "input": "60 662\n15 17\n-2 -19\n-4 -17\n10 0\n15 10\n-8 -14\n14 9\n-15 20\n6 5\n-9 0\n-13 20\n13 -2\n10 9\n7 5\n4 18\n-10 1\n6 -15\n15 -16\n6 13\n4 -6\n2 5\n18 19\n8 3\n-7 14\n-12 -20\n14 19\n-15 0\n-2 -12\n9 18\n14 4\n2 -20\n3 0\n20 9\n-5 11\n-11 1\n2 -19\n-14 -4\n18 6\n16 16\n15 3\n-1 -5\n9 20\n12 -8\n-1 10\n-4 -9\n3 6\n3 -12\n14 -10\n-8 10\n-18 6\n14 -2\n-14 -12\n-10 -7\n10 -6\n14 1\n6 14\n15 19\n4 14\n3 -14\n-9 -13", "output": "16314.207721932" }, { "input": "61 764\n-9 15\n11 -8\n-6 -7\n-13 -19\n16 -16\n-5 -1\n20 -19\n-14 -1\n-11 4\n7 -2\n-3 2\n-14 -17\n15 18\n20 15\n-13 -2\n15 8\n3 13\n19 -10\n2 -6\n15 -3\n-12 11\n4 -16\n-14 20\n0 2\n11 -7\n-6 -11\n16 7\n8 -3\n16 -10\n-3 9\n9 5\n4 -1\n-17 9\n14 -4\n8 6\n-19 12\n10 -17\n-5 7\n7 -3\n5 3\n6 -14\n9 9\n-16 -19\n11 -16\n-17 15\n8 5\n16 -19\n-7 10\n14 -15\n15 19\n-20 -16\n6 -2\n-4 6\n7 -15\n1 -8\n20 -17\n3 7\n10 12\n10 -11\n-19 10\n0 -11", "output": "22153.369189802" } ]
1,684,870,486
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
#include <iostream> #include <string> #include<bits/stdc++.h> #include <queue> #include <vector> #include <algorithm> #include <numeric> #define ll long long using namespace std; void Asad(){ ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr); #ifndef ONLINE_JUDGE freopen("input.txt", "r", stdin), freopen("output.txt", "w", stdout); #endif } // (وأن ليس للانسان الا ما سعي ) void solve() { double n , k; cin >> n >> k; double speed = 50; double distance = 0 , sum = 0; double x ,y; cin >> x >> y; for (int i = 0; i < n-1; ++i) { double x1 , y1; cin >> x1 >> y1; distance = sqrt((x1-x)*(x1-x) + (y1-y)*(y1-y)); sum += distance; x = x1; y = y1; } cout << fixed << setprecision(9) << sum*k/speed << endl; } int main() { Asad(); ll t=1; //cin >>t; while (t --) { solve(); } return 0; }
Title: Wasted Time Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mr. Scrooge, a very busy man, decided to count the time he wastes on all sorts of useless stuff to evaluate the lost profit. He has already counted the time he wastes sleeping and eating. And now Mr. Scrooge wants to count the time he has wasted signing papers. Mr. Scrooge's signature can be represented as a polyline *A*1*A*2... *A**n*. Scrooge signs like that: first it places a pen at the point *A*1, then draws a segment from point *A*1 to point *A*2, then he draws a segment from point *A*2 to point *A*3 and so on to point *A**n*, where he stops signing and takes the pen off the paper. At that the resulting line can intersect with itself and partially repeat itself but Scrooge pays no attention to it and never changes his signing style. As Scrooge makes the signature, he never takes the pen off the paper and his writing speed is constant — 50 millimeters per second. Scrooge signed exactly *k* papers throughout his life and all those signatures look the same. Find the total time Scrooge wasted signing the papers. Input Specification: The first line contains two integers *n* and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=1000). Each of the following *n* lines contains the coordinates of the polyline's endpoints. The *i*-th one contains coordinates of the point *A**i* — integers *x**i* and *y**i*, separated by a space. All points *A**i* are different. The absolute value of all coordinates does not exceed 20. The coordinates are measured in millimeters. Output Specification: Print one real number — the total time Scrooges wastes on signing the papers in seconds. The absolute or relative error should not exceed 10<=-<=6. Demo Input: ['2 1\n0 0\n10 0\n', '5 10\n3 1\n-5 6\n-2 -1\n3 2\n10 0\n', '6 10\n5 0\n4 0\n6 0\n3 0\n7 0\n2 0\n'] Demo Output: ['0.200000000', '6.032163204', '3.000000000'] Note: none
```python #include <iostream> #include <string> #include<bits/stdc++.h> #include <queue> #include <vector> #include <algorithm> #include <numeric> #define ll long long using namespace std; void Asad(){ ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr); #ifndef ONLINE_JUDGE freopen("input.txt", "r", stdin), freopen("output.txt", "w", stdout); #endif } // (وأن ليس للانسان الا ما سعي ) void solve() { double n , k; cin >> n >> k; double speed = 50; double distance = 0 , sum = 0; double x ,y; cin >> x >> y; for (int i = 0; i < n-1; ++i) { double x1 , y1; cin >> x1 >> y1; distance = sqrt((x1-x)*(x1-x) + (y1-y)*(y1-y)); sum += distance; x = x1; y = y1; } cout << fixed << setprecision(9) << sum*k/speed << endl; } int main() { Asad(); ll t=1; //cin >>t; while (t --) { solve(); } return 0; } ```
-1
808
C
Tea Party
PROGRAMMING
1,400
[ "constructive algorithms", "greedy", "sortings" ]
null
null
Polycarp invited all his friends to the tea party to celebrate the holiday. He has *n* cups, one for each of his *n* friends, with volumes *a*1,<=*a*2,<=...,<=*a**n*. His teapot stores *w* milliliters of tea (*w*<=≤<=*a*1<=+<=*a*2<=+<=...<=+<=*a**n*). Polycarp wants to pour tea in cups in such a way that: - Every cup will contain tea for at least half of its volume - Every cup will contain integer number of milliliters of tea - All the tea from the teapot will be poured into cups - All friends will be satisfied. Friend with cup *i* won't be satisfied, if there exists such cup *j* that cup *i* contains less tea than cup *j* but *a**i*<=&gt;<=*a**j*. For each cup output how many milliliters of tea should be poured in it. If it's impossible to pour all the tea and satisfy all conditions then output -1.
The first line contains two integer numbers *n* and *w* (1<=≤<=*n*<=≤<=100, ). The second line contains *n* numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100).
Output how many milliliters of tea every cup should contain. If there are multiple answers, print any of them. If it's impossible to pour all the tea and satisfy all conditions then output -1.
[ "2 10\n8 7\n", "4 4\n1 1 1 1\n", "3 10\n9 8 10\n" ]
[ "6 4 \n", "1 1 1 1 \n", "-1\n" ]
In the third example you should pour to the first cup at least 5 milliliters, to the second one at least 4, to the third one at least 5. It sums up to 14, which is greater than 10 milliliters available.
0
[ { "input": "2 10\n8 7", "output": "6 4 " }, { "input": "4 4\n1 1 1 1", "output": "1 1 1 1 " }, { "input": "3 10\n9 8 10", "output": "-1" }, { "input": "1 1\n1", "output": "1 " }, { "input": "1 1\n2", "output": "1 " }, { "input": "1 10\n20", "output": "10 " }, { "input": "3 10\n8 4 8", "output": "4 2 4 " }, { "input": "3 100\n37 26 37", "output": "37 26 37 " }, { "input": "3 60\n43 23 24", "output": "36 12 12 " }, { "input": "20 14\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "-1" }, { "input": "20 8\n1 2 1 2 1 1 1 2 1 1 1 2 1 1 2 1 1 1 2 2", "output": "-1" }, { "input": "50 1113\n25 21 23 37 28 23 19 25 5 12 3 11 46 50 13 50 7 1 8 40 4 6 34 27 11 39 45 31 10 12 48 2 19 37 47 45 30 24 21 42 36 14 31 30 31 50 6 3 33 49", "output": "13 11 12 37 28 12 10 18 3 6 2 6 46 50 7 50 4 1 4 40 2 3 34 27 6 39 45 31 5 6 48 1 10 37 47 45 30 12 11 42 36 7 31 30 31 50 3 2 33 49 " }, { "input": "50 440\n14 69 33 38 83 65 21 66 89 3 93 60 31 16 61 20 42 64 13 1 50 50 74 58 67 61 52 22 69 68 18 33 28 59 4 8 96 32 84 85 87 87 61 89 2 47 15 64 88 18", "output": "-1" }, { "input": "100 640\n82 51 81 14 37 17 78 92 64 15 8 86 89 8 87 77 66 10 15 12 100 25 92 47 21 78 20 63 13 49 41 36 41 79 16 87 87 69 3 76 80 60 100 49 70 59 72 8 38 71 45 97 71 14 76 54 81 4 59 46 39 29 92 3 49 22 53 99 59 52 74 31 92 43 42 23 44 9 82 47 7 40 12 9 3 55 37 85 46 22 84 52 98 41 21 77 63 17 62 91", "output": "-1" }, { "input": "100 82\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "-1" }, { "input": "100 55\n1 1 1 1 2 1 1 1 1 1 2 2 1 1 2 1 2 1 1 1 2 1 1 2 1 2 1 1 2 2 2 1 1 2 1 1 1 2 2 2 1 1 1 2 1 2 2 1 2 1 1 2 2 1 2 1 2 1 2 2 1 1 1 2 1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 1 1 1 1 2 2 2 2 2 2 2 1 1 1 2 1 2 1", "output": "-1" }, { "input": "30 50\n3 1 2 4 1 2 2 4 3 4 4 3 3 3 3 5 3 2 5 4 3 3 5 3 3 5 4 5 3 5", "output": "-1" }, { "input": "40 100\n3 3 3 3 4 1 1 1 1 1 2 2 1 3 1 2 3 2 1 2 2 2 1 4 2 2 3 3 3 2 4 6 4 4 3 2 2 2 4 5", "output": "3 3 3 3 4 1 1 1 1 1 2 2 1 3 1 2 3 2 1 2 2 2 1 4 2 2 3 3 3 2 4 6 4 4 3 2 2 2 4 5 " }, { "input": "100 10000\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 " }, { "input": "2 5\n3 4", "output": "2 3 " }, { "input": "2 6\n2 6", "output": "1 5 " }, { "input": "23 855\n5 63 94 57 38 84 77 79 83 36 47 31 60 79 75 48 88 17 46 33 23 15 27", "output": "3 32 94 29 19 84 39 72 83 18 24 16 30 79 38 24 88 9 23 17 12 8 14 " }, { "input": "52 2615\n73 78 70 92 94 74 46 19 55 20 70 3 1 42 68 10 66 80 1 31 65 19 73 74 56 35 53 38 92 35 65 81 6 98 74 51 27 49 76 19 86 76 5 60 14 75 64 99 43 7 36 79", "output": "73 78 70 92 94 74 46 10 55 10 70 2 1 42 68 5 66 80 1 16 65 10 73 74 56 18 53 38 92 30 65 81 3 98 74 51 14 49 76 10 86 76 3 60 7 75 64 99 43 4 36 79 " }, { "input": "11 287\n34 30 69 86 22 53 11 91 62 44 5", "output": "17 15 35 43 11 27 6 77 31 22 3 " }, { "input": "55 1645\n60 53 21 20 87 48 10 21 76 35 52 41 82 86 93 11 93 86 34 15 37 63 57 3 57 57 32 8 55 25 29 38 46 22 13 87 27 35 40 83 5 7 6 18 88 25 4 59 95 62 31 93 98 50 62", "output": "30 27 11 10 82 24 5 11 38 18 26 21 41 43 93 6 93 43 17 8 19 32 29 2 29 29 16 4 28 13 15 19 23 11 7 87 14 18 20 42 3 4 3 9 88 13 2 30 95 31 16 93 98 25 31 " }, { "input": "71 3512\n97 46 76 95 81 96 99 83 10 50 19 18 73 5 41 60 12 73 60 31 21 64 88 61 43 57 61 19 75 35 41 85 12 59 32 47 37 43 35 92 90 47 3 98 21 18 61 79 39 86 74 8 52 33 39 27 93 54 35 38 96 36 83 51 97 10 8 66 75 87 68", "output": "97 46 76 95 81 96 99 83 5 50 10 9 73 3 41 60 6 73 60 16 11 64 88 61 43 57 61 10 75 18 41 85 6 59 16 47 19 43 18 92 90 47 2 98 11 9 61 79 20 86 74 4 52 17 21 14 93 54 18 19 96 18 83 51 97 5 4 66 75 87 68 " }, { "input": "100 2633\n99 50 64 81 75 73 26 31 31 36 95 12 100 2 70 72 78 56 76 23 94 8 91 1 39 82 97 67 64 25 71 90 48 34 31 46 64 37 46 50 99 93 14 56 1 89 95 89 50 52 12 58 43 65 45 88 90 14 38 19 6 15 91 67 43 48 82 20 11 48 33 20 39 52 73 5 25 84 26 54 42 56 10 28 9 63 60 98 30 1 25 74 86 56 85 9 12 94 80 95", "output": "50 25 32 41 38 37 13 16 16 18 48 6 61 1 35 36 39 28 38 12 47 4 46 1 20 41 49 34 32 13 36 45 24 17 16 23 32 19 23 25 50 47 7 28 1 45 48 45 25 26 6 29 22 33 23 44 45 7 19 10 3 8 46 34 22 24 41 10 6 24 17 10 20 26 37 3 13 42 13 27 21 28 5 14 5 32 30 49 15 1 13 37 43 28 43 5 6 47 40 48 " }, { "input": "71 1899\n23 55 58 87 69 85 100 21 19 72 81 68 20 25 29 92 18 74 89 70 53 7 78 57 41 79 64 87 63 76 95 84 1 28 32 1 79 34 77 17 71 61 35 31 62 92 69 99 60 26 2 18 61 9 27 77 82 6 30 65 52 3 51 43 13 77 41 59 19 29 86", "output": "12 28 29 44 35 43 95 11 10 36 41 34 10 13 15 46 9 37 45 35 27 4 39 29 21 40 32 44 32 38 48 42 1 14 16 1 40 17 39 9 36 31 18 16 31 46 35 50 30 13 1 9 31 5 14 39 41 3 15 33 26 2 26 22 7 39 21 30 10 15 43 " }, { "input": "10 21\n3 3 3 3 4 3 3 3 3 3", "output": "2 2 2 2 3 2 2 2 2 2 " } ]
1,500,194,732
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
30
4,608,000
import numpy as np def pourTea(a,b,w,n): last=a-b w-=sum(b) ranked=np.argsort(-a) for i in range(n): if w>0: if w>last[ranked[i]]: w-=last[ranked[i]] b[ranked[i]]=a[ranked[i]] last[ranked[i]]=0 else: b[ranked[i]]+=w last[ranked[i]]-=w return return if __name__ == "__main__": n, w = list(map(int, input().split())) a = np.array(list(map(int, input().split()))) b=np.array(list(map(lambda x: np.math.ceil(float(x) / 2.0), a))) if sum(b)>w : print(-1) else : pourTea(a,b,w,n) for i in b: print(i,end=' ')
Title: Tea Party Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarp invited all his friends to the tea party to celebrate the holiday. He has *n* cups, one for each of his *n* friends, with volumes *a*1,<=*a*2,<=...,<=*a**n*. His teapot stores *w* milliliters of tea (*w*<=≤<=*a*1<=+<=*a*2<=+<=...<=+<=*a**n*). Polycarp wants to pour tea in cups in such a way that: - Every cup will contain tea for at least half of its volume - Every cup will contain integer number of milliliters of tea - All the tea from the teapot will be poured into cups - All friends will be satisfied. Friend with cup *i* won't be satisfied, if there exists such cup *j* that cup *i* contains less tea than cup *j* but *a**i*<=&gt;<=*a**j*. For each cup output how many milliliters of tea should be poured in it. If it's impossible to pour all the tea and satisfy all conditions then output -1. Input Specification: The first line contains two integer numbers *n* and *w* (1<=≤<=*n*<=≤<=100, ). The second line contains *n* numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100). Output Specification: Output how many milliliters of tea every cup should contain. If there are multiple answers, print any of them. If it's impossible to pour all the tea and satisfy all conditions then output -1. Demo Input: ['2 10\n8 7\n', '4 4\n1 1 1 1\n', '3 10\n9 8 10\n'] Demo Output: ['6 4 \n', '1 1 1 1 \n', '-1\n'] Note: In the third example you should pour to the first cup at least 5 milliliters, to the second one at least 4, to the third one at least 5. It sums up to 14, which is greater than 10 milliliters available.
```python import numpy as np def pourTea(a,b,w,n): last=a-b w-=sum(b) ranked=np.argsort(-a) for i in range(n): if w>0: if w>last[ranked[i]]: w-=last[ranked[i]] b[ranked[i]]=a[ranked[i]] last[ranked[i]]=0 else: b[ranked[i]]+=w last[ranked[i]]-=w return return if __name__ == "__main__": n, w = list(map(int, input().split())) a = np.array(list(map(int, input().split()))) b=np.array(list(map(lambda x: np.math.ceil(float(x) / 2.0), a))) if sum(b)>w : print(-1) else : pourTea(a,b,w,n) for i in b: print(i,end=' ') ```
-1
879
B
Table Tennis
PROGRAMMING
1,200
[ "data structures", "implementation" ]
null
null
*n* people are standing in a line to play table tennis. At first, the first two players in the line play a game. Then the loser goes to the end of the line, and the winner plays with the next person from the line, and so on. They play until someone wins *k* games in a row. This player becomes the winner. For each of the participants, you know the power to play table tennis, and for all players these values are different. In a game the player with greater power always wins. Determine who will be the winner.
The first line contains two integers: *n* and *k* (2<=≤<=*n*<=≤<=500, 2<=≤<=*k*<=≤<=1012) — the number of people and the number of wins. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — powers of the player. It's guaranteed that this line contains a valid permutation, i.e. all *a**i* are distinct.
Output a single integer — power of the winner.
[ "2 2\n1 2\n", "4 2\n3 1 2 4\n", "6 2\n6 5 3 1 2 4\n", "2 10000000000\n2 1\n" ]
[ "2 ", "3 ", "6 ", "2\n" ]
Games in the second sample: 3 plays with 1. 3 wins. 1 goes to the end of the line. 3 plays with 2. 3 wins. He wins twice in a row. He becomes the winner.
1,000
[ { "input": "2 2\n1 2", "output": "2 " }, { "input": "4 2\n3 1 2 4", "output": "3 " }, { "input": "6 2\n6 5 3 1 2 4", "output": "6 " }, { "input": "2 10000000000\n2 1", "output": "2" }, { "input": "4 4\n1 3 4 2", "output": "4 " }, { "input": "2 2147483648\n2 1", "output": "2" }, { "input": "3 2\n1 3 2", "output": "3 " }, { "input": "3 3\n1 2 3", "output": "3 " }, { "input": "5 2\n2 1 3 4 5", "output": "5 " }, { "input": "10 2\n7 10 5 8 9 3 4 6 1 2", "output": "10 " }, { "input": "100 2\n62 70 29 14 12 87 94 78 39 92 84 91 61 49 60 33 69 37 19 82 42 8 45 97 81 43 54 67 1 22 77 58 65 17 18 28 25 57 16 90 40 13 4 21 68 35 15 76 73 93 56 95 79 47 74 75 30 71 66 99 41 24 88 83 5 6 31 96 38 80 27 46 51 53 2 86 32 9 20 100 26 36 63 7 52 55 23 3 50 59 48 89 85 44 34 64 10 72 11 98", "output": "70 " }, { "input": "4 10\n2 1 3 4", "output": "4" }, { "input": "10 2\n1 2 3 4 5 6 7 8 9 10", "output": "10 " }, { "input": "10 2\n10 9 8 7 6 5 4 3 2 1", "output": "10 " }, { "input": "4 1000000000000\n3 4 1 2", "output": "4" }, { "input": "100 10\n19 55 91 50 31 23 60 84 38 1 22 51 27 76 28 98 11 44 61 63 15 93 52 3 66 16 53 36 18 62 35 85 78 37 73 64 87 74 46 26 82 69 49 33 83 89 56 67 71 25 39 94 96 17 21 6 47 68 34 42 57 81 13 10 54 2 48 80 20 77 4 5 59 30 90 95 45 75 8 88 24 41 40 14 97 32 7 9 65 70 100 99 72 58 92 29 79 12 86 43", "output": "91 " }, { "input": "100 50\n2 4 82 12 47 63 52 91 87 45 53 1 17 25 64 50 9 13 22 54 21 30 43 24 38 33 68 11 41 78 99 23 28 18 58 67 79 10 71 56 49 61 26 29 59 20 90 74 5 75 89 8 39 95 72 42 66 98 44 32 88 35 92 3 97 55 65 51 77 27 81 76 84 69 73 85 19 46 62 100 60 37 7 36 57 6 14 83 40 48 16 70 96 15 31 93 80 86 94 34", "output": "100 " }, { "input": "2 1000000000000\n1 2", "output": "2" }, { "input": "5 2\n1 4 3 5 2", "output": "4 " }, { "input": "5 2\n1 3 2 4 5", "output": "3 " }, { "input": "4 1000000000000\n3 1 2 4", "output": "4" }, { "input": "4 2\n1 3 2 4", "output": "3 " }, { "input": "10 3\n8 1 9 2 3 10 4 5 6 7", "output": "9 " }, { "input": "5 2\n2 1 4 3 5", "output": "4 " }, { "input": "3 4294967297\n2 1 3", "output": "3" }, { "input": "4 4294967297\n3 2 1 4", "output": "4" }, { "input": "5 4294967298\n3 2 1 4 5", "output": "5" }, { "input": "10 4\n5 4 7 1 2 9 3 6 8 10", "output": "9 " }, { "input": "11 21474836489\n10 1 2 3 4 5 6 7 8 9 11", "output": "11" } ]
1,662,236,084
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
8
46
0
arr = input() arr1 = input() firstRow = list(map(int,arr.split(' '))) secondRow = list(map(int,arr1.split(' '))) m = 0 ab = 0 for a in secondRow: if m == firstRow[1]: break if ab > a: m = m + 1 else: ab = a m = 1 print(ab)
Title: Table Tennis Time Limit: None seconds Memory Limit: None megabytes Problem Description: *n* people are standing in a line to play table tennis. At first, the first two players in the line play a game. Then the loser goes to the end of the line, and the winner plays with the next person from the line, and so on. They play until someone wins *k* games in a row. This player becomes the winner. For each of the participants, you know the power to play table tennis, and for all players these values are different. In a game the player with greater power always wins. Determine who will be the winner. Input Specification: The first line contains two integers: *n* and *k* (2<=≤<=*n*<=≤<=500, 2<=≤<=*k*<=≤<=1012) — the number of people and the number of wins. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — powers of the player. It's guaranteed that this line contains a valid permutation, i.e. all *a**i* are distinct. Output Specification: Output a single integer — power of the winner. Demo Input: ['2 2\n1 2\n', '4 2\n3 1 2 4\n', '6 2\n6 5 3 1 2 4\n', '2 10000000000\n2 1\n'] Demo Output: ['2 ', '3 ', '6 ', '2\n'] Note: Games in the second sample: 3 plays with 1. 3 wins. 1 goes to the end of the line. 3 plays with 2. 3 wins. He wins twice in a row. He becomes the winner.
```python arr = input() arr1 = input() firstRow = list(map(int,arr.split(' '))) secondRow = list(map(int,arr1.split(' '))) m = 0 ab = 0 for a in secondRow: if m == firstRow[1]: break if ab > a: m = m + 1 else: ab = a m = 1 print(ab) ```
0
381
A
Sereja and Dima
PROGRAMMING
800
[ "greedy", "implementation", "two pointers" ]
null
null
Sereja and Dima play a game. The rules of the game are very simple. The players have *n* cards in a row. Each card contains a number, all numbers on the cards are distinct. The players take turns, Sereja moves first. During his turn a player can take one card: either the leftmost card in a row, or the rightmost one. The game ends when there is no more cards. The player who has the maximum sum of numbers on his cards by the end of the game, wins. Sereja and Dima are being greedy. Each of them chooses the card with the larger number during his move. Inna is a friend of Sereja and Dima. She knows which strategy the guys are using, so she wants to determine the final score, given the initial state of the game. Help her.
The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of cards on the table. The second line contains space-separated numbers on the cards from left to right. The numbers on the cards are distinct integers from 1 to 1000.
On a single line, print two integers. The first number is the number of Sereja's points at the end of the game, the second number is the number of Dima's points at the end of the game.
[ "4\n4 1 2 10\n", "7\n1 2 3 4 5 6 7\n" ]
[ "12 5\n", "16 12\n" ]
In the first sample Sereja will take cards with numbers 10 and 2, so Sereja's sum is 12. Dima will take cards with numbers 4 and 1, so Dima's sum is 5.
500
[ { "input": "4\n4 1 2 10", "output": "12 5" }, { "input": "7\n1 2 3 4 5 6 7", "output": "16 12" }, { "input": "42\n15 29 37 22 16 5 26 31 6 32 19 3 45 36 33 14 25 20 48 7 42 11 24 28 9 18 8 21 47 17 38 40 44 4 35 1 43 39 41 27 12 13", "output": "613 418" }, { "input": "43\n32 1 15 48 38 26 25 14 20 44 11 30 3 42 49 19 18 46 5 45 10 23 34 9 29 41 2 52 6 17 35 4 50 22 33 51 7 28 47 13 39 37 24", "output": "644 500" }, { "input": "1\n3", "output": "3 0" }, { "input": "45\n553 40 94 225 415 471 126 190 647 394 515 303 189 159 308 6 139 132 326 78 455 75 85 295 135 613 360 614 351 228 578 259 258 591 444 29 33 463 561 174 368 183 140 168 646", "output": "6848 6568" }, { "input": "44\n849 373 112 307 479 608 856 769 526 82 168 143 573 762 115 501 688 36 214 450 396 496 236 309 287 786 397 43 811 141 745 846 350 270 276 677 420 459 403 722 267 54 394 727", "output": "9562 9561" }, { "input": "35\n10 15 18 1 28 16 2 33 6 22 23 4 9 25 35 8 7 26 3 20 30 14 31 19 27 32 11 5 29 24 21 34 13 17 12", "output": "315 315" }, { "input": "17\n580 376 191 496 73 44 520 357 483 149 81 178 514 300 216 598 304", "output": "3238 2222" }, { "input": "30\n334 443 223 424 168 549 189 303 429 559 516 220 459 134 344 346 316 446 209 148 487 526 69 286 102 366 518 280 392 325", "output": "5246 4864" }, { "input": "95\n122 29 188 265 292 287 183 225 222 187 155 256 64 148 173 278 218 136 290 17 31 130 2 87 57 283 255 280 68 166 174 142 102 39 116 206 288 154 26 78 296 172 184 232 77 91 277 8 249 186 94 93 207 251 257 195 101 299 193 124 293 65 58 35 24 302 220 189 252 125 27 284 247 182 141 103 198 97 234 83 281 216 85 180 267 236 109 143 149 239 79 300 191 244 71", "output": "8147 7807" }, { "input": "1\n1", "output": "1 0" } ]
1,682,163,418
2,147,483,647
Python 3
OK
TESTS
34
46
0
n = input() game = [int(x) for x in input().split()] serg, dema = 0, 0 serg_flag, dema_flag = True, False for i in range (len(game)): if game[0] > game[len(game)-1]: if serg_flag : serg += game[0] serg_flag = False dema_flag = True else : dema += game[0] dema_flag = False serg_flag = True game.pop(0) else : if serg_flag : serg += game[len(game)-1] serg_flag = False dema_flag = True else : dema += game[len(game)-1] dema_flag = False serg_flag = True game.pop(len(game)-1) print(f"{serg} {dema}")
Title: Sereja and Dima Time Limit: None seconds Memory Limit: None megabytes Problem Description: Sereja and Dima play a game. The rules of the game are very simple. The players have *n* cards in a row. Each card contains a number, all numbers on the cards are distinct. The players take turns, Sereja moves first. During his turn a player can take one card: either the leftmost card in a row, or the rightmost one. The game ends when there is no more cards. The player who has the maximum sum of numbers on his cards by the end of the game, wins. Sereja and Dima are being greedy. Each of them chooses the card with the larger number during his move. Inna is a friend of Sereja and Dima. She knows which strategy the guys are using, so she wants to determine the final score, given the initial state of the game. Help her. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of cards on the table. The second line contains space-separated numbers on the cards from left to right. The numbers on the cards are distinct integers from 1 to 1000. Output Specification: On a single line, print two integers. The first number is the number of Sereja's points at the end of the game, the second number is the number of Dima's points at the end of the game. Demo Input: ['4\n4 1 2 10\n', '7\n1 2 3 4 5 6 7\n'] Demo Output: ['12 5\n', '16 12\n'] Note: In the first sample Sereja will take cards with numbers 10 and 2, so Sereja's sum is 12. Dima will take cards with numbers 4 and 1, so Dima's sum is 5.
```python n = input() game = [int(x) for x in input().split()] serg, dema = 0, 0 serg_flag, dema_flag = True, False for i in range (len(game)): if game[0] > game[len(game)-1]: if serg_flag : serg += game[0] serg_flag = False dema_flag = True else : dema += game[0] dema_flag = False serg_flag = True game.pop(0) else : if serg_flag : serg += game[len(game)-1] serg_flag = False dema_flag = True else : dema += game[len(game)-1] dema_flag = False serg_flag = True game.pop(len(game)-1) print(f"{serg} {dema}") ```
3
967
B
Watering System
PROGRAMMING
1,000
[ "math", "sortings" ]
null
null
Arkady wants to water his only flower. Unfortunately, he has a very poor watering system that was designed for $n$ flowers and so it looks like a pipe with $n$ holes. Arkady can only use the water that flows from the first hole. Arkady can block some of the holes, and then pour $A$ liters of water into the pipe. After that, the water will flow out from the non-blocked holes proportionally to their sizes $s_1, s_2, \ldots, s_n$. In other words, if the sum of sizes of non-blocked holes is $S$, and the $i$-th hole is not blocked, $\frac{s_i \cdot A}{S}$ liters of water will flow out of it. What is the minimum number of holes Arkady should block to make at least $B$ liters of water flow out of the first hole?
The first line contains three integers $n$, $A$, $B$ ($1 \le n \le 100\,000$, $1 \le B \le A \le 10^4$) — the number of holes, the volume of water Arkady will pour into the system, and the volume he wants to get out of the first hole. The second line contains $n$ integers $s_1, s_2, \ldots, s_n$ ($1 \le s_i \le 10^4$) — the sizes of the holes.
Print a single integer — the number of holes Arkady should block.
[ "4 10 3\n2 2 2 2\n", "4 80 20\n3 2 1 4\n", "5 10 10\n1000 1 1 1 1\n" ]
[ "1\n", "0\n", "4\n" ]
In the first example Arkady should block at least one hole. After that, $\frac{10 \cdot 2}{6} \approx 3.333$ liters of water will flow out of the first hole, and that suits Arkady. In the second example even without blocking any hole, $\frac{80 \cdot 3}{10} = 24$ liters will flow out of the first hole, that is not less than $20$. In the third example Arkady has to block all holes except the first to make all water flow out of the first hole.
1,000
[ { "input": "4 10 3\n2 2 2 2", "output": "1" }, { "input": "4 80 20\n3 2 1 4", "output": "0" }, { "input": "5 10 10\n1000 1 1 1 1", "output": "4" }, { "input": "10 300 100\n20 1 3 10 8 5 3 6 4 3", "output": "1" }, { "input": "10 300 100\n20 25 68 40 60 37 44 85 23 96", "output": "8" }, { "input": "1 1 1\n1", "output": "0" }, { "input": "1 2 1\n1", "output": "0" }, { "input": "2 2 2\n1 10000", "output": "1" }, { "input": "2 10000 1\n1 9999", "output": "0" } ]
1,525,180,239
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
77
7,065,600
import sys import math n,A,B=map(int,input().split()) s=[int(x) for x in input().strip().split()] sorta=sorted(s, reverse=True) cota=0 #print(sorta) #print(s) suma=sum(sorta) if(math.floor((s[0]*A)/sum(s))>=B): print(cota) else: for i in range(1,n): suma-=sorta[i] cota+=1 if(math.floor(s[0]*A/suma)>=B): print(cota) break
Title: Watering System Time Limit: None seconds Memory Limit: None megabytes Problem Description: Arkady wants to water his only flower. Unfortunately, he has a very poor watering system that was designed for $n$ flowers and so it looks like a pipe with $n$ holes. Arkady can only use the water that flows from the first hole. Arkady can block some of the holes, and then pour $A$ liters of water into the pipe. After that, the water will flow out from the non-blocked holes proportionally to their sizes $s_1, s_2, \ldots, s_n$. In other words, if the sum of sizes of non-blocked holes is $S$, and the $i$-th hole is not blocked, $\frac{s_i \cdot A}{S}$ liters of water will flow out of it. What is the minimum number of holes Arkady should block to make at least $B$ liters of water flow out of the first hole? Input Specification: The first line contains three integers $n$, $A$, $B$ ($1 \le n \le 100\,000$, $1 \le B \le A \le 10^4$) — the number of holes, the volume of water Arkady will pour into the system, and the volume he wants to get out of the first hole. The second line contains $n$ integers $s_1, s_2, \ldots, s_n$ ($1 \le s_i \le 10^4$) — the sizes of the holes. Output Specification: Print a single integer — the number of holes Arkady should block. Demo Input: ['4 10 3\n2 2 2 2\n', '4 80 20\n3 2 1 4\n', '5 10 10\n1000 1 1 1 1\n'] Demo Output: ['1\n', '0\n', '4\n'] Note: In the first example Arkady should block at least one hole. After that, $\frac{10 \cdot 2}{6} \approx 3.333$ liters of water will flow out of the first hole, and that suits Arkady. In the second example even without blocking any hole, $\frac{80 \cdot 3}{10} = 24$ liters will flow out of the first hole, that is not less than $20$. In the third example Arkady has to block all holes except the first to make all water flow out of the first hole.
```python import sys import math n,A,B=map(int,input().split()) s=[int(x) for x in input().strip().split()] sorta=sorted(s, reverse=True) cota=0 #print(sorta) #print(s) suma=sum(sorta) if(math.floor((s[0]*A)/sum(s))>=B): print(cota) else: for i in range(1,n): suma-=sorta[i] cota+=1 if(math.floor(s[0]*A/suma)>=B): print(cota) break ```
0
281
A
Word Capitalization
PROGRAMMING
800
[ "implementation", "strings" ]
null
null
Capitalization is writing a word with its first letter as a capital letter. Your task is to capitalize the given word. Note, that during capitalization all the letters except the first one remains unchanged.
A single line contains a non-empty word. This word consists of lowercase and uppercase English letters. The length of the word will not exceed 103.
Output the given word after capitalization.
[ "ApPLe\n", "konjac\n" ]
[ "ApPLe\n", "Konjac\n" ]
none
500
[ { "input": "ApPLe", "output": "ApPLe" }, { "input": "konjac", "output": "Konjac" }, { "input": "a", "output": "A" }, { "input": "A", "output": "A" }, { "input": "z", "output": "Z" }, { "input": "ABACABA", "output": "ABACABA" }, { "input": "xYaPxPxHxGePfGtQySlNrLxSjDtNnTaRaEpAhPaQpWnDzMqGgRgEwJxGiBdZnMtHxFbObCaGiCeZkUqIgBhHtNvAqAlHpMnQhNeQbMyZrCdElVwHtKrPpJjIaHuIlYwHaRkAkUpPlOhNlBtXwDsKzPyHrPiUwNlXtTaPuMwTqYtJySgFoXvLiHbQwMjSvXsQfKhVlOxGdQkWjBhEyQvBjPoFkThNeRhTuIzFjInJtEfPjOlOsJpJuLgLzFnZmKvFgFrNsOnVqFcNiMfCqTpKnVyLwNqFiTySpWeTdFnWuTwDkRjVxNyQvTrOoEiExYiFaIrLoFmJfZcDkHuWjYfCeEqCvEsZiWnJaEmFbMjDvYwEeJeGcKbVbChGsIzNlExHzHiTlHcSaKxLuZxX", "output": "XYaPxPxHxGePfGtQySlNrLxSjDtNnTaRaEpAhPaQpWnDzMqGgRgEwJxGiBdZnMtHxFbObCaGiCeZkUqIgBhHtNvAqAlHpMnQhNeQbMyZrCdElVwHtKrPpJjIaHuIlYwHaRkAkUpPlOhNlBtXwDsKzPyHrPiUwNlXtTaPuMwTqYtJySgFoXvLiHbQwMjSvXsQfKhVlOxGdQkWjBhEyQvBjPoFkThNeRhTuIzFjInJtEfPjOlOsJpJuLgLzFnZmKvFgFrNsOnVqFcNiMfCqTpKnVyLwNqFiTySpWeTdFnWuTwDkRjVxNyQvTrOoEiExYiFaIrLoFmJfZcDkHuWjYfCeEqCvEsZiWnJaEmFbMjDvYwEeJeGcKbVbChGsIzNlExHzHiTlHcSaKxLuZxX" }, { "input": "rZhIcQlXpNcPgXrOjTiOlMoTgXgIhCfMwZfWoFzGhEkQlOoMjIuShPlZfWkNnMyQfYdUhVgQuSmYoElEtZpDyHtOxXgCpWbZqSbYnPqBcNqRtPgCnJnAyIvNsAhRbNeVlMwZyRyJnFgIsCnSbOdLvUyIeOzQvRpMoMoHfNhHwKvTcHuYnYySfPmAiNwAiWdZnWlLvGfBbRbRrCrBqIgIdWkWiBsNyYkKdNxZdGaToSsDnXpRaGrKxBpQsCzBdQgZzBkGeHgGxNrIyQlSzWsTmSnZwOcHqQpNcQvJlPvKaPiQaMaYsQjUeCqQdCjPgUbDmWiJmNiXgExLqOcCtSwSePnUxIuZfIfBeWbEiVbXnUsPwWyAiXyRbZgKwOqFfCtQuKxEmVeRlAkOeXkO", "output": "RZhIcQlXpNcPgXrOjTiOlMoTgXgIhCfMwZfWoFzGhEkQlOoMjIuShPlZfWkNnMyQfYdUhVgQuSmYoElEtZpDyHtOxXgCpWbZqSbYnPqBcNqRtPgCnJnAyIvNsAhRbNeVlMwZyRyJnFgIsCnSbOdLvUyIeOzQvRpMoMoHfNhHwKvTcHuYnYySfPmAiNwAiWdZnWlLvGfBbRbRrCrBqIgIdWkWiBsNyYkKdNxZdGaToSsDnXpRaGrKxBpQsCzBdQgZzBkGeHgGxNrIyQlSzWsTmSnZwOcHqQpNcQvJlPvKaPiQaMaYsQjUeCqQdCjPgUbDmWiJmNiXgExLqOcCtSwSePnUxIuZfIfBeWbEiVbXnUsPwWyAiXyRbZgKwOqFfCtQuKxEmVeRlAkOeXkO" }, { "input": "hDgZlUmLhYbLkLcNcKeOwJwTePbOvLaRvNzQbSbLsPeHqLhUqWtUbNdQfQqFfXeJqJwWuOrFnDdZiPxIkDyVmHbHvXfIlFqSgAcSyWbOlSlRuPhWdEpEzEeLnXwCtWuVcHaUeRgCiYsIvOaIgDnFuDbRnMoCmPrZfLeFpSjQaTfHgZwZvAzDuSeNwSoWuJvLqKqAuUxFaCxFfRcEjEsJpOfCtDiVrBqNsNwPuGoRgPzRpLpYnNyQxKaNnDnYiJrCrVcHlOxPiPcDbEgKfLwBjLhKcNeMgJhJmOiJvPfOaPaEuGqWvRbErKrIpDkEoQnKwJnTlStLyNsHyOjZfKoIjXwUvRrWpSyYhRpQdLqGmErAiNcGqAqIrTeTiMuPmCrEkHdBrLyCxPtYpRqD", "output": "HDgZlUmLhYbLkLcNcKeOwJwTePbOvLaRvNzQbSbLsPeHqLhUqWtUbNdQfQqFfXeJqJwWuOrFnDdZiPxIkDyVmHbHvXfIlFqSgAcSyWbOlSlRuPhWdEpEzEeLnXwCtWuVcHaUeRgCiYsIvOaIgDnFuDbRnMoCmPrZfLeFpSjQaTfHgZwZvAzDuSeNwSoWuJvLqKqAuUxFaCxFfRcEjEsJpOfCtDiVrBqNsNwPuGoRgPzRpLpYnNyQxKaNnDnYiJrCrVcHlOxPiPcDbEgKfLwBjLhKcNeMgJhJmOiJvPfOaPaEuGqWvRbErKrIpDkEoQnKwJnTlStLyNsHyOjZfKoIjXwUvRrWpSyYhRpQdLqGmErAiNcGqAqIrTeTiMuPmCrEkHdBrLyCxPtYpRqD" }, { "input": "qUdLgGrJeGmIzIeZrCjUtBpYfRvNdXdRpGsThIsEmJjTiMqEwRxBeBaSxEuWrNvExKePjPnXhPzBpWnHiDhTvZhBuIjDnZpTcEkCvRkAcTmMuXhGgErWgFyGyToOyVwYlCuQpTfJkVdWmFyBqQhJjYtXrBbFdHzDlGsFbHmHbFgXgFhIyDhZyEqEiEwNxSeByBwLiVeSnCxIdHbGjOjJrZeVkOzGeMmQrJkVyGhDtCzOlPeAzGrBlWwEnAdUfVaIjNrRyJjCnHkUvFuKuKeKbLzSbEmUcXtVkZzXzKlOrPgQiDmCcCvIyAdBwOeUuLbRmScNcWxIkOkJuIsBxTrIqXhDzLcYdVtPgZdZfAxTmUtByGiTsJkSySjXdJvEwNmSmNoWsChPdAzJrBoW", "output": "QUdLgGrJeGmIzIeZrCjUtBpYfRvNdXdRpGsThIsEmJjTiMqEwRxBeBaSxEuWrNvExKePjPnXhPzBpWnHiDhTvZhBuIjDnZpTcEkCvRkAcTmMuXhGgErWgFyGyToOyVwYlCuQpTfJkVdWmFyBqQhJjYtXrBbFdHzDlGsFbHmHbFgXgFhIyDhZyEqEiEwNxSeByBwLiVeSnCxIdHbGjOjJrZeVkOzGeMmQrJkVyGhDtCzOlPeAzGrBlWwEnAdUfVaIjNrRyJjCnHkUvFuKuKeKbLzSbEmUcXtVkZzXzKlOrPgQiDmCcCvIyAdBwOeUuLbRmScNcWxIkOkJuIsBxTrIqXhDzLcYdVtPgZdZfAxTmUtByGiTsJkSySjXdJvEwNmSmNoWsChPdAzJrBoW" }, { "input": "kHbApGoBcLmIwUlXkVgUmWzYeLoDbGaOkWbIuXoRwMfKuOoMzAoXrBoTvYxGrMbRjDuRxAbGsTnErIiHnHoLeRnTbFiRfDdOkNlWiAcOsChLdLqFqXlDpDoDtPxXqAmSvYgPvOcCpOlWtOjYwFkGkHuCaHwZcFdOfHjBmIxTeSiHkWjXyFcCtOlSuJsZkDxUgPeZkJwMmNpErUlBcGuMlJwKkWnOzFeFiSiPsEvMmQiCsYeHlLuHoMgBjFoZkXlObDkSoQcVyReTmRsFzRhTuIvCeBqVsQdQyTyZjStGrTyDcEcAgTgMiIcVkLbZbGvWeHtXwEqWkXfTcPyHhHjYwIeVxLyVmHmMkUsGiHmNnQuMsXaFyPpVqNrBhOiWmNkBbQuHvQdOjPjKiZcL", "output": "KHbApGoBcLmIwUlXkVgUmWzYeLoDbGaOkWbIuXoRwMfKuOoMzAoXrBoTvYxGrMbRjDuRxAbGsTnErIiHnHoLeRnTbFiRfDdOkNlWiAcOsChLdLqFqXlDpDoDtPxXqAmSvYgPvOcCpOlWtOjYwFkGkHuCaHwZcFdOfHjBmIxTeSiHkWjXyFcCtOlSuJsZkDxUgPeZkJwMmNpErUlBcGuMlJwKkWnOzFeFiSiPsEvMmQiCsYeHlLuHoMgBjFoZkXlObDkSoQcVyReTmRsFzRhTuIvCeBqVsQdQyTyZjStGrTyDcEcAgTgMiIcVkLbZbGvWeHtXwEqWkXfTcPyHhHjYwIeVxLyVmHmMkUsGiHmNnQuMsXaFyPpVqNrBhOiWmNkBbQuHvQdOjPjKiZcL" }, { "input": "aHmRbLgNuWkLxLnWvUbYwTeZeYiOlLhTuOvKfLnVmCiPcMkSgVrYjZiLuRjCiXhAnVzVcTlVeJdBvPdDfFvHkTuIhCdBjEsXbVmGcLrPfNvRdFsZkSdNpYsJeIhIcNqSoLkOjUlYlDmXsOxPbQtIoUxFjGnRtBhFaJvBeEzHsAtVoQbAfYjJqReBiKeUwRqYrUjPjBoHkOkPzDwEwUgTxQxAvKzUpMhKyOhPmEhYhItQwPeKsKaKlUhGuMcTtSwFtXfJsDsFlTtOjVvVfGtBtFlQyIcBaMsPaJlPqUcUvLmReZiFbXxVtRhTzJkLkAjVqTyVuFeKlTyQgUzMsXjOxQnVfTaWmThEnEoIhZeZdStBkKeLpAhJnFoJvQyGwDiStLjEwGfZwBuWsEfC", "output": "AHmRbLgNuWkLxLnWvUbYwTeZeYiOlLhTuOvKfLnVmCiPcMkSgVrYjZiLuRjCiXhAnVzVcTlVeJdBvPdDfFvHkTuIhCdBjEsXbVmGcLrPfNvRdFsZkSdNpYsJeIhIcNqSoLkOjUlYlDmXsOxPbQtIoUxFjGnRtBhFaJvBeEzHsAtVoQbAfYjJqReBiKeUwRqYrUjPjBoHkOkPzDwEwUgTxQxAvKzUpMhKyOhPmEhYhItQwPeKsKaKlUhGuMcTtSwFtXfJsDsFlTtOjVvVfGtBtFlQyIcBaMsPaJlPqUcUvLmReZiFbXxVtRhTzJkLkAjVqTyVuFeKlTyQgUzMsXjOxQnVfTaWmThEnEoIhZeZdStBkKeLpAhJnFoJvQyGwDiStLjEwGfZwBuWsEfC" }, { "input": "sLlZkDiDmEdNaXuUuJwHqYvRtOdGfTiTpEpAoSqAbJaChOiCvHgSwZwEuPkMmXiLcKdXqSsEyViEbZpZsHeZpTuXoGcRmOiQfBfApPjDqSqElWeSeOhUyWjLyNoRuYeGfGwNqUsQoTyVvWeNgNdZfDxGwGfLsDjIdInSqDlMuNvFaHbScZkTlVwNcJpEjMaPaOtFgJjBjOcLlLmDnQrShIrJhOcUmPnZhTxNeClQsZaEaVaReLyQpLwEqJpUwYhLiRzCzKfOoFeTiXzPiNbOsZaZaLgCiNnMkBcFwGgAwPeNyTxJcCtBgXcToKlWaWcBaIvBpNxPeClQlWeQqRyEtAkJdBtSrFdDvAbUlKyLdCuTtXxFvRcKnYnWzVdYqDeCmOqPxUaFjQdTdCtN", "output": "SLlZkDiDmEdNaXuUuJwHqYvRtOdGfTiTpEpAoSqAbJaChOiCvHgSwZwEuPkMmXiLcKdXqSsEyViEbZpZsHeZpTuXoGcRmOiQfBfApPjDqSqElWeSeOhUyWjLyNoRuYeGfGwNqUsQoTyVvWeNgNdZfDxGwGfLsDjIdInSqDlMuNvFaHbScZkTlVwNcJpEjMaPaOtFgJjBjOcLlLmDnQrShIrJhOcUmPnZhTxNeClQsZaEaVaReLyQpLwEqJpUwYhLiRzCzKfOoFeTiXzPiNbOsZaZaLgCiNnMkBcFwGgAwPeNyTxJcCtBgXcToKlWaWcBaIvBpNxPeClQlWeQqRyEtAkJdBtSrFdDvAbUlKyLdCuTtXxFvRcKnYnWzVdYqDeCmOqPxUaFjQdTdCtN" }, { "input": "iRuStKvVhJdJbQwRoIuLiVdTpKaOqKfYlYwAzIpPtUwUtMeKyCaOlXmVrKwWeImYmVuXdLkRlHwFxKqZbZtTzNgOzDbGqTfZnKmUzAcIjDcEmQgYyFbEfWzRpKvCkDmAqDiIiRcLvMxWaJqCgYqXgIcLdNaZlBnXtJyKaMnEaWfXfXwTbDnAiYnWqKbAtDpYdUbZrCzWgRnHzYxFgCdDbOkAgTqBuLqMeStHcDxGnVhSgMzVeTaZoTfLjMxQfRuPcFqVlRyYdHyOdJsDoCeWrUuJyIiAqHwHyVpEeEoMaJwAoUfPtBeJqGhMaHiBjKwAlXoZpUsDhHgMxBkVbLcEvNtJbGnPsUwAvXrAkTlXwYvEnOpNeWyIkRnEnTrIyAcLkRgMyYcKrGiDaAyE", "output": "IRuStKvVhJdJbQwRoIuLiVdTpKaOqKfYlYwAzIpPtUwUtMeKyCaOlXmVrKwWeImYmVuXdLkRlHwFxKqZbZtTzNgOzDbGqTfZnKmUzAcIjDcEmQgYyFbEfWzRpKvCkDmAqDiIiRcLvMxWaJqCgYqXgIcLdNaZlBnXtJyKaMnEaWfXfXwTbDnAiYnWqKbAtDpYdUbZrCzWgRnHzYxFgCdDbOkAgTqBuLqMeStHcDxGnVhSgMzVeTaZoTfLjMxQfRuPcFqVlRyYdHyOdJsDoCeWrUuJyIiAqHwHyVpEeEoMaJwAoUfPtBeJqGhMaHiBjKwAlXoZpUsDhHgMxBkVbLcEvNtJbGnPsUwAvXrAkTlXwYvEnOpNeWyIkRnEnTrIyAcLkRgMyYcKrGiDaAyE" }, { "input": "cRtJkOxHzUbJcDdHzJtLbVmSoWuHoTkVrPqQaVmXeBrHxJbQfNrQbAaMrEhVdQnPxNyCjErKxPoEdWkVrBbDeNmEgBxYiBtWdAfHiLuSwIxJuHpSkAxPoYdNkGoLySsNhUmGoZhDzAfWhJdPlJzQkZbOnMtTkClIoCqOlIcJcMlGjUyOiEmHdYfIcPtTgQhLlLcPqQjAnQnUzHpCaQsCnYgQsBcJrQwBnWsIwFfSfGuYgTzQmShFpKqEeRlRkVfMuZbUsDoFoPrNuNwTtJqFkRiXxPvKyElDzLoUnIwAaBaOiNxMpEvPzSpGpFhMtGhGdJrFnZmNiMcUfMtBnDuUnXqDcMsNyGoLwLeNnLfRsIwRfBtXkHrFcPsLdXaAoYaDzYnZuQeVcZrElWmP", "output": "CRtJkOxHzUbJcDdHzJtLbVmSoWuHoTkVrPqQaVmXeBrHxJbQfNrQbAaMrEhVdQnPxNyCjErKxPoEdWkVrBbDeNmEgBxYiBtWdAfHiLuSwIxJuHpSkAxPoYdNkGoLySsNhUmGoZhDzAfWhJdPlJzQkZbOnMtTkClIoCqOlIcJcMlGjUyOiEmHdYfIcPtTgQhLlLcPqQjAnQnUzHpCaQsCnYgQsBcJrQwBnWsIwFfSfGuYgTzQmShFpKqEeRlRkVfMuZbUsDoFoPrNuNwTtJqFkRiXxPvKyElDzLoUnIwAaBaOiNxMpEvPzSpGpFhMtGhGdJrFnZmNiMcUfMtBnDuUnXqDcMsNyGoLwLeNnLfRsIwRfBtXkHrFcPsLdXaAoYaDzYnZuQeVcZrElWmP" }, { "input": "wVaCsGxZrBbFnTbKsCoYlAvUkIpBaYpYmJkMlPwCaFvUkDxAiJgIqWsFqZlFvTtAnGzEwXbYiBdFfFxRiDoUkLmRfAwOlKeOlKgXdUnVqLkTuXtNdQpBpXtLvZxWoBeNePyHcWmZyRiUkPlRqYiQdGeXwOhHbCqVjDcEvJmBkRwWnMqPjXpUsIyXqGjHsEsDwZiFpIbTkQaUlUeFxMwJzSaHdHnDhLaLdTuYgFuJsEcMmDvXyPjKsSeBaRwNtPuOuBtNeOhQdVgKzPzOdYtPjPfDzQzHoWcYjFbSvRgGdGsCmGnQsErToBkCwGeQaCbBpYkLhHxTbUvRnJpZtXjKrHdRiUmUbSlJyGaLnWsCrJbBnSjFaZrIzIrThCmGhQcMsTtOxCuUcRaEyPaG", "output": "WVaCsGxZrBbFnTbKsCoYlAvUkIpBaYpYmJkMlPwCaFvUkDxAiJgIqWsFqZlFvTtAnGzEwXbYiBdFfFxRiDoUkLmRfAwOlKeOlKgXdUnVqLkTuXtNdQpBpXtLvZxWoBeNePyHcWmZyRiUkPlRqYiQdGeXwOhHbCqVjDcEvJmBkRwWnMqPjXpUsIyXqGjHsEsDwZiFpIbTkQaUlUeFxMwJzSaHdHnDhLaLdTuYgFuJsEcMmDvXyPjKsSeBaRwNtPuOuBtNeOhQdVgKzPzOdYtPjPfDzQzHoWcYjFbSvRgGdGsCmGnQsErToBkCwGeQaCbBpYkLhHxTbUvRnJpZtXjKrHdRiUmUbSlJyGaLnWsCrJbBnSjFaZrIzIrThCmGhQcMsTtOxCuUcRaEyPaG" }, { "input": "kEiLxLmPjGzNoGkJdBlAfXhThYhMsHmZoZbGyCvNiUoLoZdAxUbGyQiEfXvPzZzJrPbEcMpHsMjIkRrVvDvQtHuKmXvGpQtXbPzJpFjJdUgWcPdFxLjLtXgVpEiFhImHnKkGiWnZbJqRjCyEwHsNbYfYfTyBaEuKlCtWnOqHmIgGrFmQiYrBnLiFcGuZxXlMfEuVoCxPkVrQvZoIpEhKsYtXrPxLcSfQqXsWaDgVlOnAzUvAhOhMrJfGtWcOwQfRjPmGhDyAeXrNqBvEiDfCiIvWxPjTwPlXpVsMjVjUnCkXgBuWnZaDyJpWkCfBrWnHxMhJgItHdRqNrQaEeRjAuUwRkUdRhEeGlSqVqGmOjNcUhFfXjCmWzBrGvIuZpRyWkWiLyUwFpYjNmNfV", "output": "KEiLxLmPjGzNoGkJdBlAfXhThYhMsHmZoZbGyCvNiUoLoZdAxUbGyQiEfXvPzZzJrPbEcMpHsMjIkRrVvDvQtHuKmXvGpQtXbPzJpFjJdUgWcPdFxLjLtXgVpEiFhImHnKkGiWnZbJqRjCyEwHsNbYfYfTyBaEuKlCtWnOqHmIgGrFmQiYrBnLiFcGuZxXlMfEuVoCxPkVrQvZoIpEhKsYtXrPxLcSfQqXsWaDgVlOnAzUvAhOhMrJfGtWcOwQfRjPmGhDyAeXrNqBvEiDfCiIvWxPjTwPlXpVsMjVjUnCkXgBuWnZaDyJpWkCfBrWnHxMhJgItHdRqNrQaEeRjAuUwRkUdRhEeGlSqVqGmOjNcUhFfXjCmWzBrGvIuZpRyWkWiLyUwFpYjNmNfV" }, { "input": "eIhDoLmDeReKqXsHcVgFxUqNfScAiQnFrTlCgSuTtXiYvBxKaPaGvUeYfSgHqEaWcHxKpFaSlCxGqAmNeFcIzFcZsBiVoZhUjXaDaIcKoBzYdIlEnKfScRqSkYpPtVsVhXsBwUsUfAqRoCkBxWbHgDiCkRtPvUwVgDjOzObYwNiQwXlGnAqEkHdSqLgUkOdZiWaHqQnOhUnDhIzCiQtVcJlGoRfLuVlFjWqSuMsLgLwOdZvKtWdRuRqDoBoInKqPbJdXpIqLtFlMlDaWgSiKbFpCxOnQeNeQzXeKsBzIjCyPxCmBnYuHzQoYxZgGzSgGtZiTeQmUeWlNzZeKiJbQmEjIiDhPeSyZlNdHpZnIkPdJzSeJpPiXxToKyBjJfPwNzZpWzIzGySqPxLtI", "output": "EIhDoLmDeReKqXsHcVgFxUqNfScAiQnFrTlCgSuTtXiYvBxKaPaGvUeYfSgHqEaWcHxKpFaSlCxGqAmNeFcIzFcZsBiVoZhUjXaDaIcKoBzYdIlEnKfScRqSkYpPtVsVhXsBwUsUfAqRoCkBxWbHgDiCkRtPvUwVgDjOzObYwNiQwXlGnAqEkHdSqLgUkOdZiWaHqQnOhUnDhIzCiQtVcJlGoRfLuVlFjWqSuMsLgLwOdZvKtWdRuRqDoBoInKqPbJdXpIqLtFlMlDaWgSiKbFpCxOnQeNeQzXeKsBzIjCyPxCmBnYuHzQoYxZgGzSgGtZiTeQmUeWlNzZeKiJbQmEjIiDhPeSyZlNdHpZnIkPdJzSeJpPiXxToKyBjJfPwNzZpWzIzGySqPxLtI" }, { "input": "uOoQzIeTwYeKpJtGoUdNiXbPgEwVsZkAnJcArHxIpEnEhZwQhZvAiOuLeMkVqLeDsAyKeYgFxGmRoLaRsZjAeXgNfYhBkHeDrHdPuTuYhKmDlAvYzYxCdYgYfVaYlGeVqTeSfBxQePbQrKsTaIkGzMjFrQlJuYaMxWpQkLdEcDsIiMnHnDtThRvAcKyGwBsHqKdXpJfIeTeZtYjFbMeUoXoXzGrShTwSwBpQlKeDrZdCjRqNtXoTsIzBkWbMsObTtDvYaPhUeLeHqHeMpZmTaCcIqXzAmGnPfNdDaFhOqWqDrWuFiBpRjZrQmAdViOuMbFfRyXyWfHgRkGpPnDrEqQcEmHcKpEvWlBrOtJbUaXbThJaSxCbVoGvTmHvZrHvXpCvLaYbRiHzYuQyX", "output": "UOoQzIeTwYeKpJtGoUdNiXbPgEwVsZkAnJcArHxIpEnEhZwQhZvAiOuLeMkVqLeDsAyKeYgFxGmRoLaRsZjAeXgNfYhBkHeDrHdPuTuYhKmDlAvYzYxCdYgYfVaYlGeVqTeSfBxQePbQrKsTaIkGzMjFrQlJuYaMxWpQkLdEcDsIiMnHnDtThRvAcKyGwBsHqKdXpJfIeTeZtYjFbMeUoXoXzGrShTwSwBpQlKeDrZdCjRqNtXoTsIzBkWbMsObTtDvYaPhUeLeHqHeMpZmTaCcIqXzAmGnPfNdDaFhOqWqDrWuFiBpRjZrQmAdViOuMbFfRyXyWfHgRkGpPnDrEqQcEmHcKpEvWlBrOtJbUaXbThJaSxCbVoGvTmHvZrHvXpCvLaYbRiHzYuQyX" }, { "input": "lZqBqKeGvNdSeYuWxRiVnFtYbKuJwQtUcKnVtQhAlOeUzMaAuTaEnDdPfDcNyHgEoBmYjZyFePeJrRiKyAzFnBfAuGiUyLrIeLrNhBeBdVcEeKgCcBrQzDsPwGcNnZvTsEaYmFfMeOmMdNuZbUtDoQoNcGwDqEkEjIdQaPwAxJbXeNxOgKgXoEbZiIsVkRrNpNyAkLeHkNfEpLuQvEcMbIoGaDzXbEtNsLgGfOkZaFiUsOvEjVeCaMcZqMzKeAdXxJsVeCrZaFpJtZxInQxFaSmGgSsVyGeLlFgFqTpIbAvPkIfJrVcJeBxSdEvPyVwIjHpYrLrKqLnAmCuGmPoZrSbOtGaLaTmBmSuUyAmAsRiMqOtRjJhPhAfXaJnTpLbFqPmJgFcBxImTqIiJ", "output": "LZqBqKeGvNdSeYuWxRiVnFtYbKuJwQtUcKnVtQhAlOeUzMaAuTaEnDdPfDcNyHgEoBmYjZyFePeJrRiKyAzFnBfAuGiUyLrIeLrNhBeBdVcEeKgCcBrQzDsPwGcNnZvTsEaYmFfMeOmMdNuZbUtDoQoNcGwDqEkEjIdQaPwAxJbXeNxOgKgXoEbZiIsVkRrNpNyAkLeHkNfEpLuQvEcMbIoGaDzXbEtNsLgGfOkZaFiUsOvEjVeCaMcZqMzKeAdXxJsVeCrZaFpJtZxInQxFaSmGgSsVyGeLlFgFqTpIbAvPkIfJrVcJeBxSdEvPyVwIjHpYrLrKqLnAmCuGmPoZrSbOtGaLaTmBmSuUyAmAsRiMqOtRjJhPhAfXaJnTpLbFqPmJgFcBxImTqIiJ" }, { "input": "P", "output": "P" }, { "input": "Xyzzy", "output": "Xyzzy" }, { "input": "Zzz", "output": "Zzz" }, { "input": "Zp", "output": "Zp" } ]
1,697,012,098
2,147,483,647
Python 3
OK
TESTS
25
92
0
# Read the input word word = input() # Capitalize the first letter and keep the rest unchanged capitalized_word = word[0].upper() + word[1:] # Print the capitalized word print(capitalized_word)
Title: Word Capitalization Time Limit: None seconds Memory Limit: None megabytes Problem Description: Capitalization is writing a word with its first letter as a capital letter. Your task is to capitalize the given word. Note, that during capitalization all the letters except the first one remains unchanged. Input Specification: A single line contains a non-empty word. This word consists of lowercase and uppercase English letters. The length of the word will not exceed 103. Output Specification: Output the given word after capitalization. Demo Input: ['ApPLe\n', 'konjac\n'] Demo Output: ['ApPLe\n', 'Konjac\n'] Note: none
```python # Read the input word word = input() # Capitalize the first letter and keep the rest unchanged capitalized_word = word[0].upper() + word[1:] # Print the capitalized word print(capitalized_word) ```
3
58
A
Chat room
PROGRAMMING
1,000
[ "greedy", "strings" ]
A. Chat room
1
256
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
If Vasya managed to say hello, print "YES", otherwise print "NO".
[ "ahhellllloou\n", "hlelo\n" ]
[ "YES\n", "NO\n" ]
none
500
[ { "input": "ahhellllloou", "output": "YES" }, { "input": "hlelo", "output": "NO" }, { "input": "helhcludoo", "output": "YES" }, { "input": "hehwelloho", "output": "YES" }, { "input": "pnnepelqomhhheollvlo", "output": "YES" }, { "input": "tymbzjyqhymedasloqbq", "output": "NO" }, { "input": "yehluhlkwo", "output": "NO" }, { "input": "hatlevhhalrohairnolsvocafgueelrqmlqlleello", "output": "YES" }, { "input": "hhhtehdbllnhwmbyhvelqqyoulretpbfokflhlhreeflxeftelziclrwllrpflflbdtotvlqgoaoqldlroovbfsq", "output": "YES" }, { "input": "rzlvihhghnelqtwlexmvdjjrliqllolhyewgozkuovaiezgcilelqapuoeglnwmnlftxxiigzczlouooi", "output": "YES" }, { "input": "pfhhwctyqdlkrwhebfqfelhyebwllhemtrmeblgrynmvyhioesqklclocxmlffuormljszllpoo", "output": "YES" }, { "input": "lqllcolohwflhfhlnaow", "output": "NO" }, { "input": "heheeellollvoo", "output": "YES" }, { "input": "hellooo", "output": "YES" }, { "input": "o", "output": "NO" }, { "input": "hhqhzeclohlehljlhtesllylrolmomvuhcxsobtsckogdv", "output": "YES" }, { "input": "yoegfuzhqsihygnhpnukluutocvvwuldiighpogsifealtgkfzqbwtmgghmythcxflebrkctlldlkzlagovwlstsghbouk", "output": "YES" }, { "input": "uatqtgbvrnywfacwursctpagasnhydvmlinrcnqrry", "output": "NO" }, { "input": "tndtbldbllnrwmbyhvqaqqyoudrstpbfokfoclnraefuxtftmgzicorwisrpfnfpbdtatvwqgyalqtdtrjqvbfsq", "output": "NO" }, { "input": "rzlvirhgemelnzdawzpaoqtxmqucnahvqnwldklrmjiiyageraijfivigvozgwngiulttxxgzczptusoi", "output": "YES" }, { "input": "kgyelmchocojsnaqdsyeqgnllytbqietpdlgknwwumqkxrexgdcnwoldicwzwofpmuesjuxzrasscvyuqwspm", "output": "YES" }, { "input": "pnyvrcotjvgynbeldnxieghfltmexttuxzyac", "output": "NO" }, { "input": "dtwhbqoumejligbenxvzhjlhosqojetcqsynlzyhfaevbdpekgbtjrbhlltbceobcok", "output": "YES" }, { "input": "crrfpfftjwhhikwzeedrlwzblckkteseofjuxjrktcjfsylmlsvogvrcxbxtffujqshslemnixoeezivksouefeqlhhokwbqjz", "output": "YES" }, { "input": "jhfbndhyzdvhbvhmhmefqllujdflwdpjbehedlsqfdsqlyelwjtyloxwsvasrbqosblzbowlqjmyeilcvotdlaouxhdpoeloaovb", "output": "YES" }, { "input": "hwlghueoemiqtjhhpashjsouyegdlvoyzeunlroypoprnhlyiwiuxrghekaylndhrhllllwhbebezoglydcvykllotrlaqtvmlla", "output": "YES" }, { "input": "wshiaunnqnqxodholbipwhhjmyeblhgpeleblklpzwhdunmpqkbuzloetmwwxmeltkrcomulxauzlwmlklldjodozxryghsnwgcz", "output": "YES" }, { "input": "shvksednttggehroewuiptvvxtrzgidravtnjwuqrlnnkxbplctzkckinpkgjopjfoxdbojtcvsuvablcbkrzajrlhgobkcxeqti", "output": "YES" }, { "input": "hyyhddqhxhekehkwfhlnlsihzefwchzerevcjtokefplholrbvxlltdlafjxrfhleglrvlolojoqaolagtbeyogxlbgfolllslli", "output": "YES" }, { "input": "iaagrdhhelxpdegueiulflquvlzidoprzkehthkldaytrjwhyhprwjxlltinxvuilxohqgjqcvkkdcuoliekcnlilwgqlnlzouoo", "output": "YES" }, { "input": "wfluaeseldgxyvxpwuhkptdmlflnlhktwxiabsvkolsquymrmhzczzoybvlilhmvsuunggvgxzgyyffk", "output": "NO" }, { "input": "loee", "output": "NO" }, { "input": "izdipwylefqmjbuoznfglgcfvedeouflkeehxbasaqmiooppfsqlhprospqgxvzrcpwlfdddngoqvpwvggsnvvxhmjoslwjudjlo", "output": "NO" }, { "input": "pplynflbjlseflaegzqpdxswgunhnlglqhycrbcwdfhclmcrwekkzsoosmfblljeenwfjyifcvxihhhbyhmhlkvtskeglaovjnsi", "output": "YES" }, { "input": "xqjqmenkodmlhzyzmmvofdngktygbbxbzpluzcohohmalkoeuwfikblltaaigv", "output": "NO" }, { "input": "hello", "output": "YES" }, { "input": "oohell", "output": "NO" }, { "input": "hell", "output": "NO" }, { "input": "eloellohoelo", "output": "NO" }, { "input": "helllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllo", "output": "YES" } ]
1,591,195,103
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
7
93
307,200
import sys a = input() m = len(a) d=0 e=0 n=0 for i in range(0, int(m)): if a[i] == 'h' and a[i + 1] == 'e': d = i + 1 break if d!=0: for k in range(int(d),int(m)): if a[k]=='l': e=k break if e!=0: for p in range(int(m-1),int(d),-1): if a[p]=='o': n=p break if n!=0: s=int(a.count('l',int(e+1),int(n))) if s>=1: print("YES") else: print("NO") else: print("NO") else: print("NO") else: print("NO")
Title: Chat room Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*. Input Specification: The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters. Output Specification: If Vasya managed to say hello, print "YES", otherwise print "NO". Demo Input: ['ahhellllloou\n', 'hlelo\n'] Demo Output: ['YES\n', 'NO\n'] Note: none
```python import sys a = input() m = len(a) d=0 e=0 n=0 for i in range(0, int(m)): if a[i] == 'h' and a[i + 1] == 'e': d = i + 1 break if d!=0: for k in range(int(d),int(m)): if a[k]=='l': e=k break if e!=0: for p in range(int(m-1),int(d),-1): if a[p]=='o': n=p break if n!=0: s=int(a.count('l',int(e+1),int(n))) if s>=1: print("YES") else: print("NO") else: print("NO") else: print("NO") else: print("NO") ```
0
593
A
2Char
PROGRAMMING
1,200
[ "brute force", "implementation" ]
null
null
Andrew often reads articles in his favorite magazine 2Char. The main feature of these articles is that each of them uses at most two distinct letters. Andrew decided to send an article to the magazine, but as he hasn't written any article, he just decided to take a random one from magazine 26Char. However, before sending it to the magazine 2Char, he needs to adapt the text to the format of the journal. To do so, he removes some words from the chosen article, in such a way that the remaining text can be written using no more than two distinct letters. Since the payment depends from the number of non-space characters in the article, Andrew wants to keep the words with the maximum total length.
The first line of the input contains number *n* (1<=≤<=*n*<=≤<=100) — the number of words in the article chosen by Andrew. Following are *n* lines, each of them contains one word. All the words consist only of small English letters and their total length doesn't exceed 1000. The words are not guaranteed to be distinct, in this case you are allowed to use a word in the article as many times as it appears in the input.
Print a single integer — the maximum possible total length of words in Andrew's article.
[ "4\nabb\ncacc\naaa\nbbb\n", "5\na\na\nbcbcb\ncdecdecdecdecdecde\naaaa\n" ]
[ "9", "6" ]
In the first sample the optimal way to choose words is {'abb', 'aaa', 'bbb'}. In the second sample the word 'cdecdecdecdecdecde' consists of three distinct letters, and thus cannot be used in the article. The optimal answer is {'a', 'a', 'aaaa'}.
250
[ { "input": "4\nabb\ncacc\naaa\nbbb", "output": "9" }, { "input": "5\na\na\nbcbcb\ncdecdecdecdecdecde\naaaa", "output": "6" }, { "input": "1\na", "output": "1" }, { "input": "2\nz\nz", "output": "2" }, { "input": "5\nabcde\nfghij\nklmno\npqrst\nuvwxy", "output": "0" }, { "input": "6\ngggggg\ngggggg\ngggggg\ngggggg\ngggggg\ngggggg", "output": "36" }, { "input": "6\naaaaaa\naaaaaa\nbbbbbb\nbbbbbb\naaabbb\nababab", "output": "36" }, { "input": "1\nabc", "output": "0" }, { "input": "2\nabc\nbca", "output": "0" }, { "input": "3\nab\nba\nzzz", "output": "4" }, { "input": "3\nab\nba\nzzzzz", "output": "5" }, { "input": "5\nzzz\nzzzz\nzz\nz\naaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "37" }, { "input": "26\nq\nw\ne\nr\nt\ny\nu\ni\no\np\na\ns\nd\nf\ng\nh\nj\nk\nl\nz\nx\nc\nv\nb\nn\nm", "output": "2" }, { "input": "5\nzzz\nzzzz\nzz\nz\naaaaaaaaaaaaaaaaaaaaaaaaaaaf", "output": "28" }, { "input": "7\npavel\nerika\nalexxxxxxx\ngracio\nzhenya\nsudarev\nchelyaba", "output": "0" }, { "input": "31\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml", "output": "0" }, { "input": "5\nzloyfreid\ngraciocode\nschooldiary\nkazakov\nevgesha", "output": "0" }, { "input": "4\nurkop\nvisualac\ngnutl\nwtf", "output": "0" }, { "input": "3\naa\nb\nccc", "output": "5" }, { "input": "3\na\nbd\ncaaaaaaa", "output": "9" }, { "input": "4\naa\nax\nay\nxxxx", "output": "8" }, { "input": "5\nc\nbb\ne\ndd\nf", "output": "4" }, { "input": "2\naaaaa\naaaaa", "output": "10" } ]
1,447,115,049
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
46
0
n = int(input()) w = [str(input()) for p in range(n)] l = [] # words which can be used for x in w: y = [str(p) for p in x] if len(set(y)) <= 2: l.append(x) c = "".join(l) d = [] # letters which can be used for x in c: if x not in d: d.append(x) r = 0 for x in d: for y in d: # for each pair of letters s = 0 if x != y: for z in l: b = [str(p) for p in z] if set([x,y]).issuperset(set(b)): # if a word in list l is consist of the pair of letters s += len(z) # then that word could be used in the article if s > r: r = s print(r)
Title: 2Char Time Limit: None seconds Memory Limit: None megabytes Problem Description: Andrew often reads articles in his favorite magazine 2Char. The main feature of these articles is that each of them uses at most two distinct letters. Andrew decided to send an article to the magazine, but as he hasn't written any article, he just decided to take a random one from magazine 26Char. However, before sending it to the magazine 2Char, he needs to adapt the text to the format of the journal. To do so, he removes some words from the chosen article, in such a way that the remaining text can be written using no more than two distinct letters. Since the payment depends from the number of non-space characters in the article, Andrew wants to keep the words with the maximum total length. Input Specification: The first line of the input contains number *n* (1<=≤<=*n*<=≤<=100) — the number of words in the article chosen by Andrew. Following are *n* lines, each of them contains one word. All the words consist only of small English letters and their total length doesn't exceed 1000. The words are not guaranteed to be distinct, in this case you are allowed to use a word in the article as many times as it appears in the input. Output Specification: Print a single integer — the maximum possible total length of words in Andrew's article. Demo Input: ['4\nabb\ncacc\naaa\nbbb\n', '5\na\na\nbcbcb\ncdecdecdecdecdecde\naaaa\n'] Demo Output: ['9', '6'] Note: In the first sample the optimal way to choose words is {'abb', 'aaa', 'bbb'}. In the second sample the word 'cdecdecdecdecdecde' consists of three distinct letters, and thus cannot be used in the article. The optimal answer is {'a', 'a', 'aaaa'}.
```python n = int(input()) w = [str(input()) for p in range(n)] l = [] # words which can be used for x in w: y = [str(p) for p in x] if len(set(y)) <= 2: l.append(x) c = "".join(l) d = [] # letters which can be used for x in c: if x not in d: d.append(x) r = 0 for x in d: for y in d: # for each pair of letters s = 0 if x != y: for z in l: b = [str(p) for p in z] if set([x,y]).issuperset(set(b)): # if a word in list l is consist of the pair of letters s += len(z) # then that word could be used in the article if s > r: r = s print(r) ```
0
12
B
Correct Solution?
PROGRAMMING
1,100
[ "implementation", "sortings" ]
B. Correct Solution?
2
256
One cold winter evening Alice and her older brother Bob was sitting at home near the fireplace and giving each other interesting problems to solve. When it was Alice's turn, she told the number *n* to Bob and said: —Shuffle the digits in this number in order to obtain the smallest possible number without leading zeroes. —No problem! — said Bob and immediately gave her an answer. Alice said a random number, so she doesn't know whether Bob's answer is correct. Help her to find this out, because impatient brother is waiting for the verdict.
The first line contains one integer *n* (0<=≤<=*n*<=≤<=109) without leading zeroes. The second lines contains one integer *m* (0<=≤<=*m*<=≤<=109) — Bob's answer, possibly with leading zeroes.
Print OK if Bob's answer is correct and WRONG_ANSWER otherwise.
[ "3310\n1033\n", "4\n5\n" ]
[ "OK\n", "WRONG_ANSWER\n" ]
none
0
[ { "input": "3310\n1033", "output": "OK" }, { "input": "4\n5", "output": "WRONG_ANSWER" }, { "input": "40\n04", "output": "WRONG_ANSWER" }, { "input": "12\n12", "output": "OK" }, { "input": "432\n234", "output": "OK" }, { "input": "17109\n01179", "output": "WRONG_ANSWER" }, { "input": "888\n888", "output": "OK" }, { "input": "912\n9123", "output": "WRONG_ANSWER" }, { "input": "0\n00", "output": "WRONG_ANSWER" }, { "input": "11110\n1111", "output": "WRONG_ANSWER" }, { "input": "7391\n1397", "output": "WRONG_ANSWER" }, { "input": "201\n102", "output": "OK" }, { "input": "111111111\n111111111", "output": "OK" }, { "input": "32352320\n22203335", "output": "WRONG_ANSWER" }, { "input": "1000000000\n1", "output": "WRONG_ANSWER" }, { "input": "994321\n123499", "output": "OK" }, { "input": "10101\n10101", "output": "WRONG_ANSWER" }, { "input": "666\n0666", "output": "WRONG_ANSWER" }, { "input": "2\n02", "output": "WRONG_ANSWER" }, { "input": "313\n133", "output": "OK" }, { "input": "987235645\n234556789", "output": "OK" }, { "input": "90812\n010289", "output": "WRONG_ANSWER" }, { "input": "123\n321", "output": "WRONG_ANSWER" }, { "input": "707\n770", "output": "WRONG_ANSWER" }, { "input": "77774444\n47474747", "output": "WRONG_ANSWER" }, { "input": "1270\n1027", "output": "OK" }, { "input": "320\n23", "output": "WRONG_ANSWER" }, { "input": "123456789\n123456789", "output": "OK" }, { "input": "918273645\n546372819", "output": "WRONG_ANSWER" }, { "input": "300000003\n30000003", "output": "WRONG_ANSWER" }, { "input": "0\n0", "output": "OK" }, { "input": "0\n7", "output": "WRONG_ANSWER" } ]
1,502,366,887
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
8
124
4,608,000
n=input() a=('0','1','2','3','4','5','6','7','8','9') x='9' for i in range(len(n)): if n[i]<x and n[i]!='0': x=n[i] p=i n=n[:p]+n[p+1:] s=x+'' for i in a: s+=i*n.count(i) print('OK' if s==input() else 'WRONG_ANSWER')
Title: Correct Solution? Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: One cold winter evening Alice and her older brother Bob was sitting at home near the fireplace and giving each other interesting problems to solve. When it was Alice's turn, she told the number *n* to Bob and said: —Shuffle the digits in this number in order to obtain the smallest possible number without leading zeroes. —No problem! — said Bob and immediately gave her an answer. Alice said a random number, so she doesn't know whether Bob's answer is correct. Help her to find this out, because impatient brother is waiting for the verdict. Input Specification: The first line contains one integer *n* (0<=≤<=*n*<=≤<=109) without leading zeroes. The second lines contains one integer *m* (0<=≤<=*m*<=≤<=109) — Bob's answer, possibly with leading zeroes. Output Specification: Print OK if Bob's answer is correct and WRONG_ANSWER otherwise. Demo Input: ['3310\n1033\n', '4\n5\n'] Demo Output: ['OK\n', 'WRONG_ANSWER\n'] Note: none
```python n=input() a=('0','1','2','3','4','5','6','7','8','9') x='9' for i in range(len(n)): if n[i]<x and n[i]!='0': x=n[i] p=i n=n[:p]+n[p+1:] s=x+'' for i in a: s+=i*n.count(i) print('OK' if s==input() else 'WRONG_ANSWER') ```
-1
645
A
Amity Assessment
PROGRAMMING
1,200
[ "brute force", "constructive algorithms", "implementation" ]
null
null
Bessie the cow and her best friend Elsie each received a sliding puzzle on Pi Day. Their puzzles consist of a 2<=×<=2 grid and three tiles labeled 'A', 'B', and 'C'. The three tiles sit on top of the grid, leaving one grid cell empty. To make a move, Bessie or Elsie can slide a tile adjacent to the empty cell into the empty cell as shown below: In order to determine if they are truly Best Friends For Life (BFFLs), Bessie and Elsie would like to know if there exists a sequence of moves that takes their puzzles to the same configuration (moves can be performed in both puzzles). Two puzzles are considered to be in the same configuration if each tile is on top of the same grid cell in both puzzles. Since the tiles are labeled with letters, rotations and reflections are not allowed.
The first two lines of the input consist of a 2<=×<=2 grid describing the initial configuration of Bessie's puzzle. The next two lines contain a 2<=×<=2 grid describing the initial configuration of Elsie's puzzle. The positions of the tiles are labeled 'A', 'B', and 'C', while the empty cell is labeled 'X'. It's guaranteed that both puzzles contain exactly one tile with each letter and exactly one empty position.
Output "YES"(without quotes) if the puzzles can reach the same configuration (and Bessie and Elsie are truly BFFLs). Otherwise, print "NO" (without quotes).
[ "AB\nXC\nXB\nAC\n", "AB\nXC\nAC\nBX\n" ]
[ "YES\n", "NO\n" ]
The solution to the first sample is described by the image. All Bessie needs to do is slide her 'A' tile down. In the second sample, the two puzzles can never be in the same configuration. Perhaps Bessie and Elsie are not meant to be friends after all...
500
[ { "input": "AB\nXC\nXB\nAC", "output": "YES" }, { "input": "AB\nXC\nAC\nBX", "output": "NO" }, { "input": "XC\nBA\nCB\nAX", "output": "NO" }, { "input": "AB\nXC\nAX\nCB", "output": "YES" }, { "input": "CB\nAX\nXA\nBC", "output": "YES" }, { "input": "BC\nXA\nBA\nXC", "output": "NO" }, { "input": "CA\nXB\nBA\nCX", "output": "NO" }, { "input": "CA\nXB\nAC\nBX", "output": "NO" }, { "input": "CB\nAX\nCX\nAB", "output": "YES" }, { "input": "AX\nCB\nBC\nXA", "output": "YES" }, { "input": "CA\nXB\nBA\nXC", "output": "NO" }, { "input": "CX\nAB\nAX\nCB", "output": "NO" }, { "input": "AB\nXC\nAB\nCX", "output": "YES" }, { "input": "XC\nBA\nXC\nAB", "output": "NO" }, { "input": "BA\nXC\nAC\nXB", "output": "YES" }, { "input": "AX\nBC\nAC\nBX", "output": "YES" }, { "input": "XC\nBA\nCB\nXA", "output": "NO" }, { "input": "CB\nAX\nXC\nBA", "output": "NO" }, { "input": "AX\nCB\nBC\nAX", "output": "YES" }, { "input": "AB\nXC\nBX\nAC", "output": "YES" }, { "input": "XA\nCB\nBA\nCX", "output": "NO" }, { "input": "CX\nBA\nBX\nAC", "output": "YES" }, { "input": "AB\nXC\nXC\nAB", "output": "NO" }, { "input": "BA\nCX\nAC\nBX", "output": "YES" }, { "input": "XA\nCB\nAB\nXC", "output": "YES" }, { "input": "XC\nBA\nAC\nBX", "output": "NO" }, { "input": "CA\nBX\nBA\nXC", "output": "NO" }, { "input": "AX\nBC\nCA\nXB", "output": "NO" }, { "input": "BC\nAX\nXC\nBA", "output": "YES" }, { "input": "XB\nAC\nBX\nAC", "output": "YES" }, { "input": "CX\nBA\nAX\nBC", "output": "NO" }, { "input": "XB\nCA\nXC\nBA", "output": "NO" }, { "input": "BX\nCA\nXB\nCA", "output": "YES" }, { "input": "XB\nAC\nXC\nAB", "output": "NO" }, { "input": "CX\nBA\nCX\nBA", "output": "YES" }, { "input": "XB\nAC\nCA\nBX", "output": "YES" }, { "input": "BA\nXC\nBC\nAX", "output": "NO" }, { "input": "AC\nXB\nCX\nBA", "output": "NO" }, { "input": "XB\nCA\nCX\nBA", "output": "NO" }, { "input": "AB\nCX\nXA\nBC", "output": "NO" }, { "input": "CX\nAB\nXB\nAC", "output": "NO" }, { "input": "BC\nAX\nAC\nBX", "output": "NO" }, { "input": "XA\nBC\nCB\nAX", "output": "YES" }, { "input": "XC\nAB\nCB\nAX", "output": "YES" }, { "input": "CX\nBA\nCX\nAB", "output": "NO" }, { "input": "CA\nBX\nXC\nBA", "output": "YES" }, { "input": "CX\nBA\nBA\nXC", "output": "NO" }, { "input": "CA\nBX\nCB\nXA", "output": "NO" }, { "input": "CB\nAX\nBC\nAX", "output": "NO" }, { "input": "CB\nAX\nBC\nXA", "output": "NO" }, { "input": "AC\nXB\nCB\nXA", "output": "YES" }, { "input": "AB\nCX\nXB\nAC", "output": "YES" }, { "input": "CX\nBA\nXB\nAC", "output": "YES" }, { "input": "BX\nAC\nAB\nXC", "output": "YES" }, { "input": "CX\nAB\nXC\nBA", "output": "NO" }, { "input": "XB\nAC\nCX\nAB", "output": "NO" }, { "input": "CB\nAX\nXB\nAC", "output": "NO" }, { "input": "CB\nAX\nCA\nXB", "output": "NO" }, { "input": "XC\nBA\nBA\nXC", "output": "NO" }, { "input": "AC\nBX\nCB\nAX", "output": "YES" }, { "input": "CA\nBX\nAC\nXB", "output": "NO" }, { "input": "BX\nAC\nCX\nBA", "output": "YES" }, { "input": "XB\nCA\nAX\nCB", "output": "NO" }, { "input": "CB\nXA\nBC\nXA", "output": "NO" }, { "input": "AX\nCB\nCX\nAB", "output": "NO" }, { "input": "BC\nAX\nXC\nAB", "output": "NO" }, { "input": "XB\nCA\nBC\nXA", "output": "NO" }, { "input": "XB\nAC\nCX\nBA", "output": "YES" }, { "input": "BC\nXA\nCB\nXA", "output": "NO" }, { "input": "AX\nCB\nAX\nBC", "output": "NO" }, { "input": "CA\nBX\nBX\nCA", "output": "NO" }, { "input": "BA\nXC\nXB\nAC", "output": "NO" }, { "input": "XA\nBC\nBX\nAC", "output": "NO" }, { "input": "BX\nCA\nAC\nBX", "output": "YES" }, { "input": "XB\nAC\nXC\nBA", "output": "YES" }, { "input": "XB\nAC\nAB\nXC", "output": "YES" }, { "input": "BA\nCX\nCX\nBA", "output": "NO" }, { "input": "CA\nXB\nXB\nCA", "output": "NO" }, { "input": "BA\nCX\nBA\nXC", "output": "YES" }, { "input": "BA\nCX\nAB\nCX", "output": "NO" }, { "input": "BX\nCA\nXA\nBC", "output": "YES" }, { "input": "XC\nBA\nBX\nCA", "output": "NO" }, { "input": "XC\nAB\nBC\nXA", "output": "NO" }, { "input": "BC\nXA\nXC\nAB", "output": "NO" }, { "input": "BX\nCA\nXB\nAC", "output": "NO" }, { "input": "BA\nXC\nCA\nXB", "output": "NO" }, { "input": "CX\nBA\nAC\nXB", "output": "NO" }, { "input": "AB\nCX\nAC\nBX", "output": "NO" }, { "input": "BC\nXA\nBX\nCA", "output": "NO" }, { "input": "XA\nBC\nCX\nAB", "output": "YES" }, { "input": "AX\nBC\nAX\nCB", "output": "NO" }, { "input": "CB\nAX\nCA\nBX", "output": "NO" }, { "input": "CB\nAX\nBA\nXC", "output": "YES" }, { "input": "AB\nCX\nXC\nBA", "output": "YES" }, { "input": "AC\nXB\nBA\nCX", "output": "YES" }, { "input": "AX\nCB\nCB\nAX", "output": "NO" }, { "input": "CX\nBA\nCA\nXB", "output": "YES" }, { "input": "AC\nBX\nAB\nXC", "output": "NO" }, { "input": "XA\nCB\nXA\nBC", "output": "NO" }, { "input": "XC\nBA\nCA\nBX", "output": "YES" }, { "input": "XA\nBC\nXB\nCA", "output": "YES" }, { "input": "CA\nBX\nCB\nAX", "output": "NO" } ]
1,598,039,409
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
0
93
20,172,800
s=str(input()) s1=str(input()) s2=str(input()) s3=str(input()) e='' f='' flag=0 for i in range(0,len(s)): if(s[i]!='X'): e=e+s[i] for i in range(0,len(s1)): if(s1[i]!='X'): f=f+s1[i] print(e,f) if((e=='AB' and f=='C') or (e=='BC' and f=='A') or (e=='CA' and f=='B') or (e=='A' and f=='CB') or (e=='B' and f=='AC')or(e=='C' and f=='BA')): pass else: flag=1 if(flag==0): e='' f='' for i in range(0,len(s2)): if(s2[i]!='X'): e=e+s2[i] for i in range(0,len(s3)): if(s3[i]!='X'): f=f+s3[i] if(e=='AB' and f=='C' or (e=='BC' and f=='A') or (e=='CA' and f=='B') or (e=='A' and f=='CB') or (e=='B' and f=='AC')or(e=='C' and f=='BA')): pass else: flag=1 if(flag==0): print('NO') else: print('YES')
Title: Amity Assessment Time Limit: None seconds Memory Limit: None megabytes Problem Description: Bessie the cow and her best friend Elsie each received a sliding puzzle on Pi Day. Their puzzles consist of a 2<=×<=2 grid and three tiles labeled 'A', 'B', and 'C'. The three tiles sit on top of the grid, leaving one grid cell empty. To make a move, Bessie or Elsie can slide a tile adjacent to the empty cell into the empty cell as shown below: In order to determine if they are truly Best Friends For Life (BFFLs), Bessie and Elsie would like to know if there exists a sequence of moves that takes their puzzles to the same configuration (moves can be performed in both puzzles). Two puzzles are considered to be in the same configuration if each tile is on top of the same grid cell in both puzzles. Since the tiles are labeled with letters, rotations and reflections are not allowed. Input Specification: The first two lines of the input consist of a 2<=×<=2 grid describing the initial configuration of Bessie's puzzle. The next two lines contain a 2<=×<=2 grid describing the initial configuration of Elsie's puzzle. The positions of the tiles are labeled 'A', 'B', and 'C', while the empty cell is labeled 'X'. It's guaranteed that both puzzles contain exactly one tile with each letter and exactly one empty position. Output Specification: Output "YES"(without quotes) if the puzzles can reach the same configuration (and Bessie and Elsie are truly BFFLs). Otherwise, print "NO" (without quotes). Demo Input: ['AB\nXC\nXB\nAC\n', 'AB\nXC\nAC\nBX\n'] Demo Output: ['YES\n', 'NO\n'] Note: The solution to the first sample is described by the image. All Bessie needs to do is slide her 'A' tile down. In the second sample, the two puzzles can never be in the same configuration. Perhaps Bessie and Elsie are not meant to be friends after all...
```python s=str(input()) s1=str(input()) s2=str(input()) s3=str(input()) e='' f='' flag=0 for i in range(0,len(s)): if(s[i]!='X'): e=e+s[i] for i in range(0,len(s1)): if(s1[i]!='X'): f=f+s1[i] print(e,f) if((e=='AB' and f=='C') or (e=='BC' and f=='A') or (e=='CA' and f=='B') or (e=='A' and f=='CB') or (e=='B' and f=='AC')or(e=='C' and f=='BA')): pass else: flag=1 if(flag==0): e='' f='' for i in range(0,len(s2)): if(s2[i]!='X'): e=e+s2[i] for i in range(0,len(s3)): if(s3[i]!='X'): f=f+s3[i] if(e=='AB' and f=='C' or (e=='BC' and f=='A') or (e=='CA' and f=='B') or (e=='A' and f=='CB') or (e=='B' and f=='AC')or(e=='C' and f=='BA')): pass else: flag=1 if(flag==0): print('NO') else: print('YES') ```
0
233
A
Perfect Permutation
PROGRAMMING
800
[ "implementation", "math" ]
null
null
A permutation is a sequence of integers *p*1,<=*p*2,<=...,<=*p**n*, consisting of *n* distinct positive integers, each of them doesn't exceed *n*. Let's denote the *i*-th element of permutation *p* as *p**i*. We'll call number *n* the size of permutation *p*1,<=*p*2,<=...,<=*p**n*. Nickolas adores permutations. He likes some permutations more than the others. He calls such permutations perfect. A perfect permutation is such permutation *p* that for any *i* (1<=≤<=*i*<=≤<=*n*) (*n* is the permutation size) the following equations hold *p**p**i*<==<=*i* and *p**i*<=≠<=*i*. Nickolas asks you to print any perfect permutation of size *n* for the given *n*.
A single line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the permutation size.
If a perfect permutation of size *n* doesn't exist, print a single integer -1. Otherwise print *n* distinct integers from 1 to *n*, *p*1,<=*p*2,<=...,<=*p**n* — permutation *p*, that is perfect. Separate printed numbers by whitespaces.
[ "1\n", "2\n", "4\n" ]
[ "-1\n", "2 1 \n", "2 1 4 3 \n" ]
none
500
[ { "input": "1", "output": "-1" }, { "input": "2", "output": "2 1 " }, { "input": "4", "output": "2 1 4 3 " }, { "input": "3", "output": "-1" }, { "input": "5", "output": "-1" }, { "input": "6", "output": "2 1 4 3 6 5 " }, { "input": "7", "output": "-1" }, { "input": "20", "output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 " }, { "input": "8", "output": "2 1 4 3 6 5 8 7 " }, { "input": "9", "output": "-1" }, { "input": "10", "output": "2 1 4 3 6 5 8 7 10 9 " }, { "input": "11", "output": "-1" }, { "input": "21", "output": "-1" }, { "input": "50", "output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 " }, { "input": "51", "output": "-1" }, { "input": "52", "output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 " }, { "input": "84", "output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 " }, { "input": "86", "output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 " }, { "input": "100", "output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 " }, { "input": "98", "output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 " }, { "input": "96", "output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 " }, { "input": "33", "output": "-1" }, { "input": "34", "output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 " }, { "input": "36", "output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 " }, { "input": "38", "output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 " }, { "input": "40", "output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 " }, { "input": "42", "output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 " }, { "input": "44", "output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 " }, { "input": "46", "output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 " }, { "input": "48", "output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 " } ]
1,651,513,979
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
60
0
n = int(input()) if n > 1: r = sorted([int(i) for i in range(1, n)], reverse=True) r.insert(0,n) print(r) else: print(-1)
Title: Perfect Permutation Time Limit: None seconds Memory Limit: None megabytes Problem Description: A permutation is a sequence of integers *p*1,<=*p*2,<=...,<=*p**n*, consisting of *n* distinct positive integers, each of them doesn't exceed *n*. Let's denote the *i*-th element of permutation *p* as *p**i*. We'll call number *n* the size of permutation *p*1,<=*p*2,<=...,<=*p**n*. Nickolas adores permutations. He likes some permutations more than the others. He calls such permutations perfect. A perfect permutation is such permutation *p* that for any *i* (1<=≤<=*i*<=≤<=*n*) (*n* is the permutation size) the following equations hold *p**p**i*<==<=*i* and *p**i*<=≠<=*i*. Nickolas asks you to print any perfect permutation of size *n* for the given *n*. Input Specification: A single line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the permutation size. Output Specification: If a perfect permutation of size *n* doesn't exist, print a single integer -1. Otherwise print *n* distinct integers from 1 to *n*, *p*1,<=*p*2,<=...,<=*p**n* — permutation *p*, that is perfect. Separate printed numbers by whitespaces. Demo Input: ['1\n', '2\n', '4\n'] Demo Output: ['-1\n', '2 1 \n', '2 1 4 3 \n'] Note: none
```python n = int(input()) if n > 1: r = sorted([int(i) for i in range(1, n)], reverse=True) r.insert(0,n) print(r) else: print(-1) ```
0
405
A
Gravity Flip
PROGRAMMING
900
[ "greedy", "implementation", "sortings" ]
null
null
Little Chris is bored during his physics lessons (too easy), so he has built a toy box to keep himself occupied. The box is special, since it has the ability to change gravity. There are *n* columns of toy cubes in the box arranged in a line. The *i*-th column contains *a**i* cubes. At first, the gravity in the box is pulling the cubes downwards. When Chris switches the gravity, it begins to pull all the cubes to the right side of the box. The figure shows the initial and final configurations of the cubes in the box: the cubes that have changed their position are highlighted with orange. Given the initial configuration of the toy cubes in the box, find the amounts of cubes in each of the *n* columns after the gravity switch!
The first line of input contains an integer *n* (1<=≤<=*n*<=≤<=100), the number of the columns in the box. The next line contains *n* space-separated integer numbers. The *i*-th number *a**i* (1<=≤<=*a**i*<=≤<=100) denotes the number of cubes in the *i*-th column.
Output *n* integer numbers separated by spaces, where the *i*-th number is the amount of cubes in the *i*-th column after the gravity switch.
[ "4\n3 2 1 2\n", "3\n2 3 8\n" ]
[ "1 2 2 3 \n", "2 3 8 \n" ]
The first example case is shown on the figure. The top cube of the first column falls to the top of the last column; the top cube of the second column falls to the top of the third column; the middle cube of the first column falls to the top of the second column. In the second example case the gravity switch does not change the heights of the columns.
500
[ { "input": "4\n3 2 1 2", "output": "1 2 2 3 " }, { "input": "3\n2 3 8", "output": "2 3 8 " }, { "input": "5\n2 1 2 1 2", "output": "1 1 2 2 2 " }, { "input": "1\n1", "output": "1 " }, { "input": "2\n4 3", "output": "3 4 " }, { "input": "6\n100 40 60 20 1 80", "output": "1 20 40 60 80 100 " }, { "input": "10\n10 8 6 7 5 3 4 2 9 1", "output": "1 2 3 4 5 6 7 8 9 10 " }, { "input": "10\n1 2 3 4 5 6 7 8 9 10", "output": "1 2 3 4 5 6 7 8 9 10 " }, { "input": "100\n82 51 81 14 37 17 78 92 64 15 8 86 89 8 87 77 66 10 15 12 100 25 92 47 21 78 20 63 13 49 41 36 41 79 16 87 87 69 3 76 80 60 100 49 70 59 72 8 38 71 45 97 71 14 76 54 81 4 59 46 39 29 92 3 49 22 53 99 59 52 74 31 92 43 42 23 44 9 82 47 7 40 12 9 3 55 37 85 46 22 84 52 98 41 21 77 63 17 62 91", "output": "3 3 3 4 7 8 8 8 9 9 10 12 12 13 14 14 15 15 16 17 17 20 21 21 22 22 23 25 29 31 36 37 37 38 39 40 41 41 41 42 43 44 45 46 46 47 47 49 49 49 51 52 52 53 54 55 59 59 59 60 62 63 63 64 66 69 70 71 71 72 74 76 76 77 77 78 78 79 80 81 81 82 82 84 85 86 87 87 87 89 91 92 92 92 92 97 98 99 100 100 " }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 " }, { "input": "10\n1 9 7 6 2 4 7 8 1 3", "output": "1 1 2 3 4 6 7 7 8 9 " }, { "input": "20\n53 32 64 20 41 97 50 20 66 68 22 60 74 61 97 54 80 30 72 59", "output": "20 20 22 30 32 41 50 53 54 59 60 61 64 66 68 72 74 80 97 97 " }, { "input": "30\n7 17 4 18 16 12 14 10 1 13 2 16 13 17 8 16 13 14 9 17 17 5 13 5 1 7 6 20 18 12", "output": "1 1 2 4 5 5 6 7 7 8 9 10 12 12 13 13 13 13 14 14 16 16 16 17 17 17 17 18 18 20 " }, { "input": "40\n22 58 68 58 48 53 52 1 16 78 75 17 63 15 36 32 78 75 49 14 42 46 66 54 49 82 40 43 46 55 12 73 5 45 61 60 1 11 31 84", "output": "1 1 5 11 12 14 15 16 17 22 31 32 36 40 42 43 45 46 46 48 49 49 52 53 54 55 58 58 60 61 63 66 68 73 75 75 78 78 82 84 " }, { "input": "70\n1 3 3 1 3 3 1 1 1 3 3 2 3 3 1 1 1 2 3 1 3 2 3 3 3 2 2 3 1 3 3 2 1 1 2 1 2 1 2 2 1 1 1 3 3 2 3 2 3 2 3 3 2 2 2 3 2 3 3 3 1 1 3 3 1 1 1 1 3 1", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 " }, { "input": "90\n17 75 51 30 100 5 50 95 51 73 66 5 7 76 43 49 23 55 3 24 95 79 10 11 44 93 17 99 53 66 82 66 63 76 19 4 51 71 75 43 27 5 24 19 48 7 91 15 55 21 7 6 27 10 2 91 64 58 18 21 16 71 90 88 21 20 6 6 95 85 11 7 40 65 52 49 92 98 46 88 17 48 85 96 77 46 100 34 67 52", "output": "2 3 4 5 5 5 6 6 6 7 7 7 7 10 10 11 11 15 16 17 17 17 18 19 19 20 21 21 21 23 24 24 27 27 30 34 40 43 43 44 46 46 48 48 49 49 50 51 51 51 52 52 53 55 55 58 63 64 65 66 66 66 67 71 71 73 75 75 76 76 77 79 82 85 85 88 88 90 91 91 92 93 95 95 95 96 98 99 100 100 " }, { "input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 " }, { "input": "100\n1 1 1 1 2 1 1 1 1 1 2 2 1 1 2 1 2 1 1 1 2 1 1 2 1 2 1 1 2 2 2 1 1 2 1 1 1 2 2 2 1 1 1 2 1 2 2 1 2 1 1 2 2 1 2 1 2 1 2 2 1 1 1 2 1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 1 1 1 1 2 2 2 2 2 2 2 1 1 1 2 1 2 1", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 " }, { "input": "100\n2 1 1 1 3 2 3 3 2 3 3 1 3 3 1 3 3 1 1 1 2 3 1 2 3 1 2 3 3 1 3 1 1 2 3 2 3 3 2 3 3 1 2 2 1 2 3 2 3 2 2 1 1 3 1 3 2 1 3 1 3 1 3 1 1 3 3 3 2 3 2 2 2 2 1 3 3 3 1 2 1 2 3 2 1 3 1 3 2 1 3 1 2 1 2 3 1 3 2 3", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 " }, { "input": "100\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 5 10 4 1 3 4 2 6 9 9 9 10 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 1 5 1 6 6 6 8 8 6 2 6", "output": "1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 " }, { "input": "100\n12 10 5 11 13 12 14 13 7 15 15 12 13 19 12 18 14 10 10 3 1 10 16 11 19 8 10 15 5 10 12 16 11 13 11 15 14 12 16 8 11 8 15 2 18 2 14 13 15 20 8 8 4 12 14 7 10 3 9 1 7 19 6 7 2 14 8 20 7 17 18 20 3 18 18 9 6 10 4 1 4 19 9 13 3 3 12 11 11 20 8 2 13 6 7 12 1 4 17 3", "output": "1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 6 6 6 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 14 14 14 14 14 14 15 15 15 15 15 15 16 16 16 17 17 18 18 18 18 18 19 19 19 19 20 20 20 20 " }, { "input": "100\n5 13 1 40 30 10 23 32 33 12 6 4 15 29 31 17 23 5 36 31 32 38 24 11 34 39 19 21 6 19 31 35 1 15 6 29 22 15 17 15 1 17 2 34 20 8 27 2 29 26 13 9 22 27 27 3 20 40 4 40 33 29 36 30 35 16 19 28 26 11 36 24 29 5 40 10 38 34 33 23 34 39 31 7 10 31 22 6 36 24 14 31 34 23 2 4 26 16 2 32", "output": "1 1 1 2 2 2 2 3 4 4 4 5 5 5 6 6 6 6 7 8 9 10 10 10 11 11 12 13 13 14 15 15 15 15 16 16 17 17 17 19 19 19 20 20 21 22 22 22 23 23 23 23 24 24 24 26 26 26 27 27 27 28 29 29 29 29 29 30 30 31 31 31 31 31 31 32 32 32 33 33 33 34 34 34 34 34 35 35 36 36 36 36 38 38 39 39 40 40 40 40 " }, { "input": "100\n72 44 34 74 9 60 26 37 55 77 74 69 28 66 54 55 8 36 57 31 31 48 32 66 40 70 77 43 64 28 37 10 21 58 51 32 60 28 51 52 28 35 7 33 1 68 38 70 57 71 8 20 42 57 59 4 58 10 17 47 22 48 16 3 76 67 32 37 64 47 33 41 75 69 2 76 39 9 27 75 20 21 52 25 71 21 11 29 38 10 3 1 45 55 63 36 27 7 59 41", "output": "1 1 2 3 3 4 7 7 8 8 9 9 10 10 10 11 16 17 20 20 21 21 21 22 25 26 27 27 28 28 28 28 29 31 31 32 32 32 33 33 34 35 36 36 37 37 37 38 38 39 40 41 41 42 43 44 45 47 47 48 48 51 51 52 52 54 55 55 55 57 57 57 58 58 59 59 60 60 63 64 64 66 66 67 68 69 69 70 70 71 71 72 74 74 75 75 76 76 77 77 " }, { "input": "100\n75 18 61 10 56 53 42 57 79 80 31 2 50 45 54 99 84 52 71 21 86 3 19 98 14 37 40 62 63 68 5 10 87 8 81 85 52 52 57 94 2 7 56 96 19 76 1 13 81 6 80 47 22 59 99 32 9 5 36 88 98 91 70 70 12 93 12 22 85 1 97 48 94 16 84 84 51 34 62 7 68 51 30 2 37 82 4 7 27 1 80 9 61 16 59 55 12 96 94 82", "output": "1 1 1 2 2 2 3 4 5 5 6 7 7 7 8 9 9 10 10 12 12 12 13 14 16 16 18 19 19 21 22 22 27 30 31 32 34 36 37 37 40 42 45 47 48 50 51 51 52 52 52 53 54 55 56 56 57 57 59 59 61 61 62 62 63 68 68 70 70 71 75 76 79 80 80 80 81 81 82 82 84 84 84 85 85 86 87 88 91 93 94 94 94 96 96 97 98 98 99 99 " }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 " }, { "input": "100\n100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 " }, { "input": "100\n50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50", "output": "50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 " }, { "input": "49\n1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97", "output": "1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 " }, { "input": "30\n1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88", "output": "1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 " }, { "input": "100\n100 51 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 51 100 " }, { "input": "10\n100 90 80 70 60 50 40 30 20 10", "output": "10 20 30 40 50 60 70 80 90 100 " }, { "input": "1\n10", "output": "10 " } ]
1,687,443,667
2,147,483,647
Python 3
OK
TESTS
32
46
0
n = input() li= list(map(int,input().split())) li.sort() for i in li: print(i,end=" ")
Title: Gravity Flip Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Chris is bored during his physics lessons (too easy), so he has built a toy box to keep himself occupied. The box is special, since it has the ability to change gravity. There are *n* columns of toy cubes in the box arranged in a line. The *i*-th column contains *a**i* cubes. At first, the gravity in the box is pulling the cubes downwards. When Chris switches the gravity, it begins to pull all the cubes to the right side of the box. The figure shows the initial and final configurations of the cubes in the box: the cubes that have changed their position are highlighted with orange. Given the initial configuration of the toy cubes in the box, find the amounts of cubes in each of the *n* columns after the gravity switch! Input Specification: The first line of input contains an integer *n* (1<=≤<=*n*<=≤<=100), the number of the columns in the box. The next line contains *n* space-separated integer numbers. The *i*-th number *a**i* (1<=≤<=*a**i*<=≤<=100) denotes the number of cubes in the *i*-th column. Output Specification: Output *n* integer numbers separated by spaces, where the *i*-th number is the amount of cubes in the *i*-th column after the gravity switch. Demo Input: ['4\n3 2 1 2\n', '3\n2 3 8\n'] Demo Output: ['1 2 2 3 \n', '2 3 8 \n'] Note: The first example case is shown on the figure. The top cube of the first column falls to the top of the last column; the top cube of the second column falls to the top of the third column; the middle cube of the first column falls to the top of the second column. In the second example case the gravity switch does not change the heights of the columns.
```python n = input() li= list(map(int,input().split())) li.sort() for i in li: print(i,end=" ") ```
3
34
B
Sale
PROGRAMMING
900
[ "greedy", "sortings" ]
B. Sale
2
256
Once Bob got to a sale of old TV sets. There were *n* TV sets at that sale. TV set with index *i* costs *a**i* bellars. Some TV sets have a negative price — their owners are ready to pay Bob if he buys their useless apparatus. Bob can «buy» any TV sets he wants. Though he's very strong, Bob can carry at most *m* TV sets, and he has no desire to go to the sale for the second time. Please, help Bob find out the maximum sum of money that he can earn.
The first line contains two space-separated integers *n* and *m* (1<=≤<=*m*<=≤<=*n*<=≤<=100) — amount of TV sets at the sale, and amount of TV sets that Bob can carry. The following line contains *n* space-separated integers *a**i* (<=-<=1000<=≤<=*a**i*<=≤<=1000) — prices of the TV sets.
Output the only number — the maximum sum of money that Bob can earn, given that he can carry at most *m* TV sets.
[ "5 3\n-6 0 35 -2 4\n", "4 2\n7 0 0 -7\n" ]
[ "8\n", "7\n" ]
none
1,000
[ { "input": "5 3\n-6 0 35 -2 4", "output": "8" }, { "input": "4 2\n7 0 0 -7", "output": "7" }, { "input": "6 6\n756 -611 251 -66 572 -818", "output": "1495" }, { "input": "5 5\n976 437 937 788 518", "output": "0" }, { "input": "5 3\n-2 -2 -2 -2 -2", "output": "6" }, { "input": "5 1\n998 997 985 937 998", "output": "0" }, { "input": "2 2\n-742 -187", "output": "929" }, { "input": "3 3\n522 597 384", "output": "0" }, { "input": "4 2\n-215 -620 192 647", "output": "835" }, { "input": "10 6\n557 605 685 231 910 633 130 838 -564 -85", "output": "649" }, { "input": "20 14\n932 442 960 943 624 624 955 998 631 910 850 517 715 123 1000 155 -10 961 966 59", "output": "10" }, { "input": "30 5\n991 997 996 967 977 999 991 986 1000 965 984 997 998 1000 958 983 974 1000 991 999 1000 978 961 992 990 998 998 978 998 1000", "output": "0" }, { "input": "50 20\n-815 -947 -946 -993 -992 -846 -884 -954 -963 -733 -940 -746 -766 -930 -821 -937 -937 -999 -914 -938 -936 -975 -939 -981 -977 -952 -925 -901 -952 -978 -994 -957 -946 -896 -905 -836 -994 -951 -887 -939 -859 -953 -985 -988 -946 -829 -956 -842 -799 -886", "output": "19441" }, { "input": "88 64\n999 999 1000 1000 999 996 995 1000 1000 999 1000 997 998 1000 999 1000 997 1000 993 998 994 999 998 996 1000 997 1000 1000 1000 997 1000 998 997 1000 1000 998 1000 998 999 1000 996 999 999 999 996 995 999 1000 998 999 1000 999 999 1000 1000 1000 996 1000 1000 1000 997 1000 1000 997 999 1000 1000 1000 1000 1000 999 999 1000 1000 996 999 1000 1000 995 999 1000 996 1000 998 999 999 1000 999", "output": "0" }, { "input": "99 17\n-993 -994 -959 -989 -991 -995 -976 -997 -990 -1000 -996 -994 -999 -995 -1000 -983 -979 -1000 -989 -968 -994 -992 -962 -993 -999 -983 -991 -979 -995 -993 -973 -999 -995 -995 -999 -993 -995 -992 -947 -1000 -999 -998 -982 -988 -979 -993 -963 -988 -980 -990 -979 -976 -995 -999 -981 -988 -998 -999 -970 -1000 -983 -994 -943 -975 -998 -977 -973 -997 -959 -999 -983 -985 -950 -977 -977 -991 -998 -973 -987 -985 -985 -986 -984 -994 -978 -998 -989 -989 -988 -970 -985 -974 -997 -981 -962 -972 -995 -988 -993", "output": "16984" }, { "input": "100 37\n205 19 -501 404 912 -435 -322 -469 -655 880 -804 -470 793 312 -108 586 -642 -928 906 605 -353 -800 745 -440 -207 752 -50 -28 498 -800 -62 -195 602 -833 489 352 536 404 -775 23 145 -512 524 759 651 -461 -427 -557 684 -366 62 592 -563 -811 64 418 -881 -308 591 -318 -145 -261 -321 -216 -18 595 -202 960 -4 219 226 -238 -882 -963 425 970 -434 -160 243 -672 -4 873 8 -633 904 -298 -151 -377 -61 -72 -677 -66 197 -716 3 -870 -30 152 -469 981", "output": "21743" }, { "input": "100 99\n-931 -806 -830 -828 -916 -962 -660 -867 -952 -966 -820 -906 -724 -982 -680 -717 -488 -741 -897 -613 -986 -797 -964 -939 -808 -932 -810 -860 -641 -916 -858 -628 -821 -929 -917 -976 -664 -985 -778 -665 -624 -928 -940 -958 -884 -757 -878 -896 -634 -526 -514 -873 -990 -919 -988 -878 -650 -973 -774 -783 -733 -648 -756 -895 -833 -974 -832 -725 -841 -748 -806 -613 -924 -867 -881 -943 -864 -991 -809 -926 -777 -817 -998 -682 -910 -996 -241 -722 -964 -904 -821 -920 -835 -699 -805 -632 -779 -317 -915 -654", "output": "81283" }, { "input": "100 14\n995 994 745 684 510 737 984 690 979 977 542 933 871 603 758 653 962 997 747 974 773 766 975 770 527 960 841 989 963 865 974 967 950 984 757 685 986 809 982 959 931 880 978 867 805 562 970 900 834 782 616 885 910 608 974 918 576 700 871 980 656 941 978 759 767 840 573 859 841 928 693 853 716 927 976 851 962 962 627 797 707 873 869 988 993 533 665 887 962 880 929 980 877 887 572 790 721 883 848 782", "output": "0" }, { "input": "100 84\n768 946 998 752 931 912 826 1000 991 910 875 962 901 952 958 733 959 908 872 840 923 826 952 980 974 980 947 955 959 822 997 963 966 933 829 923 971 999 926 932 865 984 974 858 994 855 949 941 992 861 951 949 991 711 763 728 935 485 716 907 869 952 960 859 909 963 978 942 968 933 923 909 997 962 687 764 924 774 875 1000 961 951 987 974 848 921 966 859 995 997 974 931 886 941 974 986 906 978 998 823", "output": "0" }, { "input": "100 80\n-795 -994 -833 -930 -974 -980 -950 -940 -788 -927 -583 -956 -945 -949 -809 -974 -957 -736 -967 -908 -975 -961 -986 -983 -963 -771 -952 -847 -751 -741 -982 -959 -925 -931 -839 -937 -880 -914 -858 -998 -812 -911 -862 -965 -943 -984 -738 -920 -950 -998 -909 -998 -781 -901 -677 -940 -985 -951 -675 -952 -967 -949 -882 -641 -969 -937 -975 -993 -913 -941 -807 -851 -832 -960 -939 -943 -895 -929 -528 -880 -823 -930 -888 -862 -948 -966 -962 -857 -799 -969 -833 -998 -952 -878 -946 -971 -976 -974 -723 -992", "output": "75068" }, { "input": "1 1\n0", "output": "0" }, { "input": "1 1\n1", "output": "0" }, { "input": "1 1\n555", "output": "0" }, { "input": "1 1\n-1", "output": "1" }, { "input": "1 1\n-24", "output": "24" } ]
1,680,716,537
2,147,483,647
Python 3
OK
TESTS
25
62
0
a,b = map(int,input().split()) x=list(map(int,input().split())) x.sort() s = 0 for i in range(b): if x[i]<=0: s-=x[i] else: break print(s)
Title: Sale Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Once Bob got to a sale of old TV sets. There were *n* TV sets at that sale. TV set with index *i* costs *a**i* bellars. Some TV sets have a negative price — their owners are ready to pay Bob if he buys their useless apparatus. Bob can «buy» any TV sets he wants. Though he's very strong, Bob can carry at most *m* TV sets, and he has no desire to go to the sale for the second time. Please, help Bob find out the maximum sum of money that he can earn. Input Specification: The first line contains two space-separated integers *n* and *m* (1<=≤<=*m*<=≤<=*n*<=≤<=100) — amount of TV sets at the sale, and amount of TV sets that Bob can carry. The following line contains *n* space-separated integers *a**i* (<=-<=1000<=≤<=*a**i*<=≤<=1000) — prices of the TV sets. Output Specification: Output the only number — the maximum sum of money that Bob can earn, given that he can carry at most *m* TV sets. Demo Input: ['5 3\n-6 0 35 -2 4\n', '4 2\n7 0 0 -7\n'] Demo Output: ['8\n', '7\n'] Note: none
```python a,b = map(int,input().split()) x=list(map(int,input().split())) x.sort() s = 0 for i in range(b): if x[i]<=0: s-=x[i] else: break print(s) ```
3.9845
711
A
Bus to Udayland
PROGRAMMING
800
[ "brute force", "implementation" ]
null
null
ZS the Coder and Chris the Baboon are travelling to Udayland! To get there, they have to get on the special IOI bus. The IOI bus has *n* rows of seats. There are 4 seats in each row, and the seats are separated into pairs by a walkway. When ZS and Chris came, some places in the bus was already occupied. ZS and Chris are good friends. They insist to get a pair of neighbouring empty seats. Two seats are considered neighbouring if they are in the same row and in the same pair. Given the configuration of the bus, can you help ZS and Chris determine where they should sit?
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of rows of seats in the bus. Then, *n* lines follow. Each line contains exactly 5 characters, the first two of them denote the first pair of seats in the row, the third character denotes the walkway (it always equals '|') and the last two of them denote the second pair of seats in the row. Each character, except the walkway, equals to 'O' or to 'X'. 'O' denotes an empty seat, 'X' denotes an occupied seat. See the sample cases for more details.
If it is possible for Chris and ZS to sit at neighbouring empty seats, print "YES" (without quotes) in the first line. In the next *n* lines print the bus configuration, where the characters in the pair of seats for Chris and ZS is changed with characters '+'. Thus the configuration should differ from the input one by exactly two charaters (they should be equal to 'O' in the input and to '+' in the output). If there is no pair of seats for Chris and ZS, print "NO" (without quotes) in a single line. If there are multiple solutions, you may print any of them.
[ "6\nOO|OX\nXO|XX\nOX|OO\nXX|OX\nOO|OO\nOO|XX\n", "4\nXO|OX\nXO|XX\nOX|OX\nXX|OX\n", "5\nXX|XX\nXX|XX\nXO|OX\nXO|OO\nOX|XO\n" ]
[ "YES\n++|OX\nXO|XX\nOX|OO\nXX|OX\nOO|OO\nOO|XX\n", "NO\n", "YES\nXX|XX\nXX|XX\nXO|OX\nXO|++\nOX|XO\n" ]
Note that the following is an incorrect configuration for the first sample case because the seats must be in the same pair. O+|+X XO|XX OX|OO XX|OX OO|OO OO|XX
500
[ { "input": "6\nOO|OX\nXO|XX\nOX|OO\nXX|OX\nOO|OO\nOO|XX", "output": "YES\n++|OX\nXO|XX\nOX|OO\nXX|OX\nOO|OO\nOO|XX" }, { "input": "4\nXO|OX\nXO|XX\nOX|OX\nXX|OX", "output": "NO" }, { "input": "5\nXX|XX\nXX|XX\nXO|OX\nXO|OO\nOX|XO", "output": "YES\nXX|XX\nXX|XX\nXO|OX\nXO|++\nOX|XO" }, { "input": "1\nXO|OX", "output": "NO" }, { "input": "1\nOO|OO", "output": "YES\n++|OO" }, { "input": "4\nXO|XX\nXX|XO\nOX|XX\nXO|XO", "output": "NO" }, { "input": "9\nOX|XO\nOX|XO\nXO|OX\nOX|OX\nXO|OX\nXX|OO\nOX|OX\nOX|XO\nOX|OX", "output": "YES\nOX|XO\nOX|XO\nXO|OX\nOX|OX\nXO|OX\nXX|++\nOX|OX\nOX|XO\nOX|OX" }, { "input": "61\nOX|XX\nOX|XX\nOX|XX\nXO|XO\nXX|XO\nXX|XX\nXX|XX\nOX|XX\nXO|XO\nOX|XO\nXO|OX\nXX|XX\nXX|XX\nOX|OX\nXX|OX\nOX|XO\nOX|XO\nXO|OX\nXO|XX\nOX|XX\nOX|XX\nXO|OX\nXO|XX\nXO|XX\nOX|XX\nXX|XX\nXX|XO\nXO|XX\nXX|XX\nXO|OX\nXX|XO\nXO|XX\nXO|XO\nXO|OX\nXX|OX\nXO|OX\nOX|XX\nXX|OX\nXX|XX\nOX|XO\nOX|XX\nXO|OX\nOX|XX\nOX|XX\nXO|XO\nXO|XX\nOX|XX\nXO|XO\nOX|XX\nXX|XX\nOX|XO\nXO|XO\nXO|XO\nOX|OX\nXX|OX\nXX|OX\nOX|XO\nOX|XX\nOX|OX\nXO|XX\nOX|XX", "output": "NO" }, { "input": "1\nOO|XX", "output": "YES\n++|XX" }, { "input": "10\nOO|XX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXX|XX", "output": "YES\n++|XX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXX|XX" }, { "input": "10\nXX|XX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXX|OO", "output": "YES\nXX|XX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXO|OX\nXX|++" }, { "input": "5\nXX|XX\nXX|XX\nXO|OX\nOO|OX\nOX|XO", "output": "YES\nXX|XX\nXX|XX\nXO|OX\n++|OX\nOX|XO" }, { "input": "6\nOO|XX\nXO|XX\nOX|OO\nXX|OX\nOO|XX\nOX|XX", "output": "YES\n++|XX\nXO|XX\nOX|OO\nXX|OX\nOO|XX\nOX|XX" } ]
1,625,555,607
2,147,483,647
Python 3
OK
TESTS
71
62
0
s1='\n'.join(input() for i in range(int(input()))) s2=s1.replace('OO','++',1) if s1!=s2: print("YES\n"+s2) else: print("NO")
Title: Bus to Udayland Time Limit: None seconds Memory Limit: None megabytes Problem Description: ZS the Coder and Chris the Baboon are travelling to Udayland! To get there, they have to get on the special IOI bus. The IOI bus has *n* rows of seats. There are 4 seats in each row, and the seats are separated into pairs by a walkway. When ZS and Chris came, some places in the bus was already occupied. ZS and Chris are good friends. They insist to get a pair of neighbouring empty seats. Two seats are considered neighbouring if they are in the same row and in the same pair. Given the configuration of the bus, can you help ZS and Chris determine where they should sit? Input Specification: The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of rows of seats in the bus. Then, *n* lines follow. Each line contains exactly 5 characters, the first two of them denote the first pair of seats in the row, the third character denotes the walkway (it always equals '|') and the last two of them denote the second pair of seats in the row. Each character, except the walkway, equals to 'O' or to 'X'. 'O' denotes an empty seat, 'X' denotes an occupied seat. See the sample cases for more details. Output Specification: If it is possible for Chris and ZS to sit at neighbouring empty seats, print "YES" (without quotes) in the first line. In the next *n* lines print the bus configuration, where the characters in the pair of seats for Chris and ZS is changed with characters '+'. Thus the configuration should differ from the input one by exactly two charaters (they should be equal to 'O' in the input and to '+' in the output). If there is no pair of seats for Chris and ZS, print "NO" (without quotes) in a single line. If there are multiple solutions, you may print any of them. Demo Input: ['6\nOO|OX\nXO|XX\nOX|OO\nXX|OX\nOO|OO\nOO|XX\n', '4\nXO|OX\nXO|XX\nOX|OX\nXX|OX\n', '5\nXX|XX\nXX|XX\nXO|OX\nXO|OO\nOX|XO\n'] Demo Output: ['YES\n++|OX\nXO|XX\nOX|OO\nXX|OX\nOO|OO\nOO|XX\n', 'NO\n', 'YES\nXX|XX\nXX|XX\nXO|OX\nXO|++\nOX|XO\n'] Note: Note that the following is an incorrect configuration for the first sample case because the seats must be in the same pair. O+|+X XO|XX OX|OO XX|OX OO|OO OO|XX
```python s1='\n'.join(input() for i in range(int(input()))) s2=s1.replace('OO','++',1) if s1!=s2: print("YES\n"+s2) else: print("NO") ```
3
313
B
Ilya and Queries
PROGRAMMING
1,100
[ "dp", "implementation" ]
null
null
Ilya the Lion wants to help all his friends with passing exams. They need to solve the following problem to pass the IT exam. You've got string *s*<==<=*s*1*s*2... *s**n* (*n* is the length of the string), consisting only of characters "." and "#" and *m* queries. Each query is described by a pair of integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=&lt;<=*r**i*<=≤<=*n*). The answer to the query *l**i*,<=*r**i* is the number of such integers *i* (*l**i*<=≤<=*i*<=&lt;<=*r**i*), that *s**i*<==<=*s**i*<=+<=1. Ilya the Lion wants to help his friends but is there anyone to help him? Help Ilya, solve the problem.
The first line contains string *s* of length *n* (2<=≤<=*n*<=≤<=105). It is guaranteed that the given string only consists of characters "." and "#". The next line contains integer *m* (1<=≤<=*m*<=≤<=105) — the number of queries. Each of the next *m* lines contains the description of the corresponding query. The *i*-th line contains integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=&lt;<=*r**i*<=≤<=*n*).
Print *m* integers — the answers to the queries in the order in which they are given in the input.
[ "......\n4\n3 4\n2 3\n1 6\n2 6\n", "#..###\n5\n1 3\n5 6\n1 5\n3 6\n3 4\n" ]
[ "1\n1\n5\n4\n", "1\n1\n2\n2\n0\n" ]
none
1,000
[ { "input": "......\n4\n3 4\n2 3\n1 6\n2 6", "output": "1\n1\n5\n4" }, { "input": "#..###\n5\n1 3\n5 6\n1 5\n3 6\n3 4", "output": "1\n1\n2\n2\n0" }, { "input": ".#...#..\n6\n1 5\n2 3\n6 7\n2 4\n2 5\n1 3", "output": "2\n0\n0\n1\n2\n0" }, { "input": "#.#.#..\n5\n3 4\n4 5\n5 7\n5 7\n1 3", "output": "0\n0\n1\n1\n0" }, { "input": "#.##.##.\n7\n1 8\n2 6\n2 6\n6 8\n3 5\n2 4\n2 5", "output": "2\n1\n1\n1\n1\n1\n1" }, { "input": "#..#\n1\n1 4", "output": "1" }, { "input": "#..##...#.\n7\n5 9\n6 10\n1 7\n5 8\n3 5\n2 10\n3 4", "output": "2\n2\n3\n2\n1\n4\n0" }, { "input": "#.#.#\n7\n1 2\n3 4\n3 5\n2 3\n3 5\n1 5\n1 3", "output": "0\n0\n0\n0\n0\n0\n0" }, { "input": "###..#...#\n2\n2 4\n1 2", "output": "1\n1" }, { "input": "..\n1\n1 2", "output": "1" }, { "input": "##\n1\n1 2", "output": "1" }, { "input": ".#\n1\n1 2", "output": "0" }, { "input": "#.\n1\n1 2", "output": "0" }, { "input": "...\n2\n1 2\n1 2", "output": "1\n1" } ]
1,699,319,071
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
9
2,000
102,400
s=input() m=int(input()) for _ in range(m): l,r=map(int,input().split()) count=0 for i in range(l-1,r-1): if s[i]==s[i+1]: count+=1 print(count)
Title: Ilya and Queries Time Limit: None seconds Memory Limit: None megabytes Problem Description: Ilya the Lion wants to help all his friends with passing exams. They need to solve the following problem to pass the IT exam. You've got string *s*<==<=*s*1*s*2... *s**n* (*n* is the length of the string), consisting only of characters "." and "#" and *m* queries. Each query is described by a pair of integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=&lt;<=*r**i*<=≤<=*n*). The answer to the query *l**i*,<=*r**i* is the number of such integers *i* (*l**i*<=≤<=*i*<=&lt;<=*r**i*), that *s**i*<==<=*s**i*<=+<=1. Ilya the Lion wants to help his friends but is there anyone to help him? Help Ilya, solve the problem. Input Specification: The first line contains string *s* of length *n* (2<=≤<=*n*<=≤<=105). It is guaranteed that the given string only consists of characters "." and "#". The next line contains integer *m* (1<=≤<=*m*<=≤<=105) — the number of queries. Each of the next *m* lines contains the description of the corresponding query. The *i*-th line contains integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=&lt;<=*r**i*<=≤<=*n*). Output Specification: Print *m* integers — the answers to the queries in the order in which they are given in the input. Demo Input: ['......\n4\n3 4\n2 3\n1 6\n2 6\n', '#..###\n5\n1 3\n5 6\n1 5\n3 6\n3 4\n'] Demo Output: ['1\n1\n5\n4\n', '1\n1\n2\n2\n0\n'] Note: none
```python s=input() m=int(input()) for _ in range(m): l,r=map(int,input().split()) count=0 for i in range(l-1,r-1): if s[i]==s[i+1]: count+=1 print(count) ```
0
344
A
Magnets
PROGRAMMING
800
[ "implementation" ]
null
null
Mad scientist Mike entertains himself by arranging rows of dominoes. He doesn't need dominoes, though: he uses rectangular magnets instead. Each magnet has two poles, positive (a "plus") and negative (a "minus"). If two magnets are put together at a close distance, then the like poles will repel each other and the opposite poles will attract each other. Mike starts by laying one magnet horizontally on the table. During each following step Mike adds one more magnet horizontally to the right end of the row. Depending on how Mike puts the magnet on the table, it is either attracted to the previous one (forming a group of multiple magnets linked together) or repelled by it (then Mike lays this magnet at some distance to the right from the previous one). We assume that a sole magnet not linked to others forms a group of its own. Mike arranged multiple magnets in a row. Determine the number of groups that the magnets formed.
The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=100000) — the number of magnets. Then *n* lines follow. The *i*-th line (1<=≤<=*i*<=≤<=*n*) contains either characters "01", if Mike put the *i*-th magnet in the "plus-minus" position, or characters "10", if Mike put the magnet in the "minus-plus" position.
On the single line of the output print the number of groups of magnets.
[ "6\n10\n10\n10\n01\n10\n10\n", "4\n01\n01\n10\n10\n" ]
[ "3\n", "2\n" ]
The first testcase corresponds to the figure. The testcase has three groups consisting of three, one and two magnets. The second testcase has two groups, each consisting of two magnets.
500
[ { "input": "6\n10\n10\n10\n01\n10\n10", "output": "3" }, { "input": "4\n01\n01\n10\n10", "output": "2" }, { "input": "1\n10", "output": "1" }, { "input": "2\n01\n10", "output": "2" }, { "input": "2\n10\n10", "output": "1" }, { "input": "3\n10\n01\n10", "output": "3" }, { "input": "1\n01", "output": "1" }, { "input": "2\n01\n01", "output": "1" }, { "input": "2\n10\n01", "output": "2" }, { "input": "3\n01\n01\n01", "output": "1" }, { "input": "3\n10\n10\n01", "output": "2" }, { "input": "3\n01\n10\n10", "output": "2" }, { "input": "115\n10\n10\n10\n10\n01\n01\n10\n10\n10\n01\n01\n10\n01\n01\n10\n10\n10\n01\n10\n01\n10\n10\n01\n01\n10\n10\n10\n10\n01\n10\n01\n01\n10\n10\n10\n10\n01\n10\n10\n10\n01\n10\n01\n10\n10\n10\n10\n01\n01\n01\n10\n10\n01\n01\n01\n10\n10\n01\n10\n01\n01\n01\n01\n10\n10\n01\n10\n01\n01\n01\n01\n01\n10\n01\n10\n10\n01\n01\n01\n10\n01\n01\n10\n10\n01\n01\n01\n01\n01\n10\n01\n10\n01\n10\n01\n01\n01\n10\n01\n10\n10\n01\n10\n10\n01\n01\n01\n10\n10\n10\n10\n10\n10\n10\n10", "output": "55" } ]
1,693,252,122
2,147,483,647
PyPy 3-64
TIME_LIMIT_EXCEEDED
TESTS
6
1,000
11,059,200
n = int(input()) groups = 0 line = [] magnet = input() line.append(magnet) for i in range (1,n): magnet = input() line.append(magnet) # if line[i-1] == "10" and magnet == "10": # pass # elif line[i-1] == "01" and magnet = "01": # pass # else: # groups += 1 if line[i-1] != line[i]: groups += 1 groups += 1 print(groups)
Title: Magnets Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mad scientist Mike entertains himself by arranging rows of dominoes. He doesn't need dominoes, though: he uses rectangular magnets instead. Each magnet has two poles, positive (a "plus") and negative (a "minus"). If two magnets are put together at a close distance, then the like poles will repel each other and the opposite poles will attract each other. Mike starts by laying one magnet horizontally on the table. During each following step Mike adds one more magnet horizontally to the right end of the row. Depending on how Mike puts the magnet on the table, it is either attracted to the previous one (forming a group of multiple magnets linked together) or repelled by it (then Mike lays this magnet at some distance to the right from the previous one). We assume that a sole magnet not linked to others forms a group of its own. Mike arranged multiple magnets in a row. Determine the number of groups that the magnets formed. Input Specification: The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=100000) — the number of magnets. Then *n* lines follow. The *i*-th line (1<=≤<=*i*<=≤<=*n*) contains either characters "01", if Mike put the *i*-th magnet in the "plus-minus" position, or characters "10", if Mike put the magnet in the "minus-plus" position. Output Specification: On the single line of the output print the number of groups of magnets. Demo Input: ['6\n10\n10\n10\n01\n10\n10\n', '4\n01\n01\n10\n10\n'] Demo Output: ['3\n', '2\n'] Note: The first testcase corresponds to the figure. The testcase has three groups consisting of three, one and two magnets. The second testcase has two groups, each consisting of two magnets.
```python n = int(input()) groups = 0 line = [] magnet = input() line.append(magnet) for i in range (1,n): magnet = input() line.append(magnet) # if line[i-1] == "10" and magnet == "10": # pass # elif line[i-1] == "01" and magnet = "01": # pass # else: # groups += 1 if line[i-1] != line[i]: groups += 1 groups += 1 print(groups) ```
0
581
A
Vasya the Hipster
PROGRAMMING
800
[ "implementation", "math" ]
null
null
One day Vasya the Hipster decided to count how many socks he had. It turned out that he had *a* red socks and *b* blue socks. According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot. Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them. Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got. Can you help him?
The single line of the input contains two positive integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100) — the number of red and blue socks that Vasya's got.
Print two space-separated integers — the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got. Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day.
[ "3 1\n", "2 3\n", "7 3\n" ]
[ "1 1\n", "2 0\n", "3 2\n" ]
In the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day.
500
[ { "input": "3 1", "output": "1 1" }, { "input": "2 3", "output": "2 0" }, { "input": "7 3", "output": "3 2" }, { "input": "100 100", "output": "100 0" }, { "input": "4 10", "output": "4 3" }, { "input": "6 10", "output": "6 2" }, { "input": "6 11", "output": "6 2" }, { "input": "10 40", "output": "10 15" }, { "input": "11 56", "output": "11 22" }, { "input": "34 30", "output": "30 2" }, { "input": "33 33", "output": "33 0" }, { "input": "100 45", "output": "45 27" }, { "input": "100 23", "output": "23 38" }, { "input": "45 12", "output": "12 16" }, { "input": "1 1", "output": "1 0" }, { "input": "1 100", "output": "1 49" }, { "input": "100 1", "output": "1 49" }, { "input": "68 59", "output": "59 4" }, { "input": "45 99", "output": "45 27" }, { "input": "99 100", "output": "99 0" }, { "input": "100 98", "output": "98 1" }, { "input": "59 12", "output": "12 23" }, { "input": "86 4", "output": "4 41" }, { "input": "68 21", "output": "21 23" }, { "input": "100 11", "output": "11 44" }, { "input": "100 10", "output": "10 45" }, { "input": "15 45", "output": "15 15" }, { "input": "11 32", "output": "11 10" }, { "input": "34 96", "output": "34 31" }, { "input": "89 89", "output": "89 0" } ]
1,672,502,327
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
By kethan009, contest: Codeforces Round #322 (Div. 2), problem: (A) Vasya the Hipster, Accepted, #, Copy a,b = map(int, input().split()) mix = min(a, b) g = 0 if mix>0: g = mix sing = abs(a-b)//2 print(g, sing)
Title: Vasya the Hipster Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day Vasya the Hipster decided to count how many socks he had. It turned out that he had *a* red socks and *b* blue socks. According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot. Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them. Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got. Can you help him? Input Specification: The single line of the input contains two positive integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100) — the number of red and blue socks that Vasya's got. Output Specification: Print two space-separated integers — the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got. Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day. Demo Input: ['3 1\n', '2 3\n', '7 3\n'] Demo Output: ['1 1\n', '2 0\n', '3 2\n'] Note: In the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day.
```python By kethan009, contest: Codeforces Round #322 (Div. 2), problem: (A) Vasya the Hipster, Accepted, #, Copy a,b = map(int, input().split()) mix = min(a, b) g = 0 if mix>0: g = mix sing = abs(a-b)//2 print(g, sing) ```
-1
0
none
none
none
0
[ "none" ]
null
null
Pavel cooks barbecue. There are *n* skewers, they lay on a brazier in a row, each on one of *n* positions. Pavel wants each skewer to be cooked some time in every of *n* positions in two directions: in the one it was directed originally and in the reversed direction. Pavel has a plan: a permutation *p* and a sequence *b*1,<=*b*2,<=...,<=*b**n*, consisting of zeros and ones. Each second Pavel move skewer on position *i* to position *p**i*, and if *b**i* equals 1 then he reverses it. So he hope that every skewer will visit every position in both directions. Unfortunately, not every pair of permutation *p* and sequence *b* suits Pavel. What is the minimum total number of elements in the given permutation *p* and the given sequence *b* he needs to change so that every skewer will visit each of 2*n* placements? Note that after changing the permutation should remain a permutation as well. There is no problem for Pavel, if some skewer visits some of the placements several times before he ends to cook. In other words, a permutation *p* and a sequence *b* suit him if there is an integer *k* (*k*<=≥<=2*n*), so that after *k* seconds each skewer visits each of the 2*n* placements. It can be shown that some suitable pair of permutation *p* and sequence *b* exists for any *n*.
The first line contain the integer *n* (1<=≤<=*n*<=≤<=2·105) — the number of skewers. The second line contains a sequence of integers *p*1,<=*p*2,<=...,<=*p**n* (1<=≤<=*p**i*<=≤<=*n*) — the permutation, according to which Pavel wants to move the skewers. The third line contains a sequence *b*1,<=*b*2,<=...,<=*b**n* consisting of zeros and ones, according to which Pavel wants to reverse the skewers.
Print single integer — the minimum total number of elements in the given permutation *p* and the given sequence *b* he needs to change so that every skewer will visit each of 2*n* placements.
[ "4\n4 3 2 1\n0 1 1 1\n", "3\n2 3 1\n0 0 0\n" ]
[ "2\n", "1\n" ]
In the first example Pavel can change the permutation to 4, 3, 1, 2. In the second example Pavel can change any element of *b* to 1.
0
[ { "input": "4\n4 3 2 1\n0 1 1 1", "output": "2" }, { "input": "3\n2 3 1\n0 0 0", "output": "1" }, { "input": "1\n1\n0", "output": "1" }, { "input": "2\n1 2\n0 0", "output": "3" }, { "input": "2\n2 1\n0 0", "output": "1" }, { "input": "2\n1 2\n0 1", "output": "2" }, { "input": "2\n2 1\n1 0", "output": "0" }, { "input": "2\n1 2\n1 1", "output": "3" }, { "input": "2\n2 1\n1 1", "output": "1" }, { "input": "5\n2 1 3 4 5\n1 0 0 0 1", "output": "5" }, { "input": "10\n4 10 5 1 6 8 9 2 3 7\n0 1 0 0 1 0 0 1 0 0", "output": "2" }, { "input": "20\n10 15 20 17 8 1 14 6 3 13 19 2 16 12 4 5 11 7 9 18\n0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0", "output": "3" }, { "input": "100\n87 69 49 86 96 12 10 79 29 66 48 77 73 62 70 52 22 28 97 35 91 5 33 82 65 85 68 80 64 8 38 23 94 34 75 53 57 6 100 2 56 50 55 58 74 9 18 44 40 3 43 45 99 51 21 92 89 36 88 54 42 14 78 71 25 76 13 11 27 72 7 32 93 46 83 30 26 37 39 31 95 59 47 24 67 16 4 15 1 98 19 81 84 61 90 41 17 20 63 60\n1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "4" }, { "input": "1\n1\n1", "output": "0" }, { "input": "2\n1 2\n1 0", "output": "2" }, { "input": "2\n2 1\n0 1", "output": "0" }, { "input": "3\n1 2 3\n0 0 0", "output": "4" }, { "input": "3\n1 2 3\n1 0 0", "output": "3" }, { "input": "3\n1 2 3\n0 1 0", "output": "3" }, { "input": "3\n1 2 3\n1 1 0", "output": "4" }, { "input": "3\n1 2 3\n0 0 1", "output": "3" }, { "input": "3\n1 2 3\n1 0 1", "output": "4" }, { "input": "3\n1 2 3\n0 1 1", "output": "4" }, { "input": "3\n1 2 3\n1 1 1", "output": "3" }, { "input": "3\n1 3 2\n0 0 0", "output": "3" }, { "input": "3\n1 3 2\n1 0 0", "output": "2" }, { "input": "3\n1 3 2\n0 1 0", "output": "2" }, { "input": "3\n1 3 2\n1 1 0", "output": "3" }, { "input": "3\n1 3 2\n0 0 1", "output": "2" }, { "input": "3\n1 3 2\n1 0 1", "output": "3" }, { "input": "3\n1 3 2\n0 1 1", "output": "3" }, { "input": "3\n1 3 2\n1 1 1", "output": "2" }, { "input": "3\n2 1 3\n0 0 0", "output": "3" }, { "input": "3\n2 1 3\n1 0 0", "output": "2" }, { "input": "3\n2 1 3\n0 1 0", "output": "2" }, { "input": "3\n2 1 3\n1 1 0", "output": "3" }, { "input": "3\n2 1 3\n0 0 1", "output": "2" }, { "input": "3\n2 1 3\n1 0 1", "output": "3" }, { "input": "3\n2 1 3\n0 1 1", "output": "3" }, { "input": "3\n2 1 3\n1 1 1", "output": "2" }, { "input": "3\n2 3 1\n0 0 0", "output": "1" }, { "input": "3\n2 3 1\n1 0 0", "output": "0" }, { "input": "3\n2 3 1\n0 1 0", "output": "0" }, { "input": "3\n2 3 1\n1 1 0", "output": "1" }, { "input": "3\n2 3 1\n0 0 1", "output": "0" }, { "input": "3\n2 3 1\n1 0 1", "output": "1" }, { "input": "3\n2 3 1\n0 1 1", "output": "1" }, { "input": "3\n2 3 1\n1 1 1", "output": "0" }, { "input": "3\n3 1 2\n0 0 0", "output": "1" }, { "input": "3\n3 1 2\n1 0 0", "output": "0" }, { "input": "3\n3 1 2\n0 1 0", "output": "0" }, { "input": "3\n3 1 2\n1 1 0", "output": "1" }, { "input": "3\n3 1 2\n0 0 1", "output": "0" }, { "input": "3\n3 1 2\n1 0 1", "output": "1" }, { "input": "3\n3 1 2\n0 1 1", "output": "1" }, { "input": "3\n3 1 2\n1 1 1", "output": "0" }, { "input": "3\n3 2 1\n0 0 0", "output": "3" }, { "input": "3\n3 2 1\n1 0 0", "output": "2" }, { "input": "3\n3 2 1\n0 1 0", "output": "2" }, { "input": "3\n3 2 1\n1 1 0", "output": "3" }, { "input": "3\n3 2 1\n0 0 1", "output": "2" }, { "input": "3\n3 2 1\n1 0 1", "output": "3" }, { "input": "3\n3 2 1\n0 1 1", "output": "3" }, { "input": "3\n3 2 1\n1 1 1", "output": "2" } ]
1,592,555,235
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
0
124
0
class Graph: def __init__(self,n): self.nodes=n self.edge_mapping=[None]*(self.nodes+1) def add_edge(self,src,dest): if self.edge_mapping[src]==None: self.edge_mapping[src]=[dest] else: self.edge_mapping[src].append(dest) def dfs_inner(self,node,mark_list): mark_list[node]=1 ret=1 for n in self.edge_mapping[node]: if mark_list[n]==0: ret+=self.dfs_inner(n,mark_list) return ret def dfs(self,start_node): mark_list=[0]*(self.nodes+1) return self.dfs_inner(start_node,mark_list) def printg(self): for z in self.edge_mapping: print(z) if __name__ == '__main__': n=int(input()) g=Graph(n) p_list=list(map(int,input().split())) s_list=list(map(int,input().split())) for x in range(len(p_list)): g.add_edge(p_list[x],x+1) ans=0 trav=g.dfs(1) ans+=min(trav,n-trav) s=0 for x in s_list: s+=x print(ans) if s%2==0: print(ans+1) else: print(ans)
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: Pavel cooks barbecue. There are *n* skewers, they lay on a brazier in a row, each on one of *n* positions. Pavel wants each skewer to be cooked some time in every of *n* positions in two directions: in the one it was directed originally and in the reversed direction. Pavel has a plan: a permutation *p* and a sequence *b*1,<=*b*2,<=...,<=*b**n*, consisting of zeros and ones. Each second Pavel move skewer on position *i* to position *p**i*, and if *b**i* equals 1 then he reverses it. So he hope that every skewer will visit every position in both directions. Unfortunately, not every pair of permutation *p* and sequence *b* suits Pavel. What is the minimum total number of elements in the given permutation *p* and the given sequence *b* he needs to change so that every skewer will visit each of 2*n* placements? Note that after changing the permutation should remain a permutation as well. There is no problem for Pavel, if some skewer visits some of the placements several times before he ends to cook. In other words, a permutation *p* and a sequence *b* suit him if there is an integer *k* (*k*<=≥<=2*n*), so that after *k* seconds each skewer visits each of the 2*n* placements. It can be shown that some suitable pair of permutation *p* and sequence *b* exists for any *n*. Input Specification: The first line contain the integer *n* (1<=≤<=*n*<=≤<=2·105) — the number of skewers. The second line contains a sequence of integers *p*1,<=*p*2,<=...,<=*p**n* (1<=≤<=*p**i*<=≤<=*n*) — the permutation, according to which Pavel wants to move the skewers. The third line contains a sequence *b*1,<=*b*2,<=...,<=*b**n* consisting of zeros and ones, according to which Pavel wants to reverse the skewers. Output Specification: Print single integer — the minimum total number of elements in the given permutation *p* and the given sequence *b* he needs to change so that every skewer will visit each of 2*n* placements. Demo Input: ['4\n4 3 2 1\n0 1 1 1\n', '3\n2 3 1\n0 0 0\n'] Demo Output: ['2\n', '1\n'] Note: In the first example Pavel can change the permutation to 4, 3, 1, 2. In the second example Pavel can change any element of *b* to 1.
```python class Graph: def __init__(self,n): self.nodes=n self.edge_mapping=[None]*(self.nodes+1) def add_edge(self,src,dest): if self.edge_mapping[src]==None: self.edge_mapping[src]=[dest] else: self.edge_mapping[src].append(dest) def dfs_inner(self,node,mark_list): mark_list[node]=1 ret=1 for n in self.edge_mapping[node]: if mark_list[n]==0: ret+=self.dfs_inner(n,mark_list) return ret def dfs(self,start_node): mark_list=[0]*(self.nodes+1) return self.dfs_inner(start_node,mark_list) def printg(self): for z in self.edge_mapping: print(z) if __name__ == '__main__': n=int(input()) g=Graph(n) p_list=list(map(int,input().split())) s_list=list(map(int,input().split())) for x in range(len(p_list)): g.add_edge(p_list[x],x+1) ans=0 trav=g.dfs(1) ans+=min(trav,n-trav) s=0 for x in s_list: s+=x print(ans) if s%2==0: print(ans+1) else: print(ans) ```
0
71
A
Way Too Long Words
PROGRAMMING
800
[ "strings" ]
A. Way Too Long Words
1
256
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
[ "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n" ]
[ "word\nl10n\ni18n\np43s\n" ]
none
500
[ { "input": "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis", "output": "word\nl10n\ni18n\np43s" }, { "input": "5\nabcdefgh\nabcdefghi\nabcdefghij\nabcdefghijk\nabcdefghijklm", "output": "abcdefgh\nabcdefghi\nabcdefghij\na9k\na11m" }, { "input": "3\nnjfngnrurunrgunrunvurn\njfvnjfdnvjdbfvsbdubruvbubvkdb\nksdnvidnviudbvibd", "output": "n20n\nj27b\nk15d" }, { "input": "1\ntcyctkktcctrcyvbyiuhihhhgyvyvyvyvjvytchjckt", "output": "t41t" }, { "input": "24\nyou\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nunofficially\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings", "output": "you\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nu10y\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings" }, { "input": "1\na", "output": "a" }, { "input": "26\na\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz", "output": "a\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz" }, { "input": "1\nabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij", "output": "a98j" }, { "input": "10\ngyartjdxxlcl\nfzsck\nuidwu\nxbymclornemdmtj\nilppyoapitawgje\ncibzc\ndrgbeu\nhezplmsdekhhbo\nfeuzlrimbqbytdu\nkgdco", "output": "g10l\nfzsck\nuidwu\nx13j\ni13e\ncibzc\ndrgbeu\nh12o\nf13u\nkgdco" }, { "input": "20\nlkpmx\nkovxmxorlgwaomlswjxlpnbvltfv\nhykasjxqyjrmybejnmeumzha\ntuevlumpqbbhbww\nqgqsphvrmupxxc\ntrissbaf\nqfgrlinkzvzqdryckaizutd\nzzqtoaxkvwoscyx\noswytrlnhpjvvnwookx\nlpuzqgec\ngyzqfwxggtvpjhzmzmdw\nrlxjgmvdftvrmvbdwudra\nvsntnjpepnvdaxiporggmglhagv\nxlvcqkqgcrbgtgglj\nlyxwxbiszyhlsrgzeedzprbmcpduvq\nyrmqqvrkqskqukzqrwukpsifgtdc\nxpuohcsjhhuhvr\nvvlfrlxpvqejngwrbfbpmqeirxlw\nsvmasocxdvadmaxtrpakysmeaympy\nyuflqboqfdt", "output": "lkpmx\nk26v\nh22a\nt13w\nq12c\ntrissbaf\nq21d\nz13x\no17x\nlpuzqgec\ng18w\nr19a\nv25v\nx15j\nl28q\ny26c\nx12r\nv26w\ns27y\ny9t" }, { "input": "100\nm\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr", "output": "m\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr" } ]
1,678,236,887
2,147,483,647
Python 3
OK
TESTS
20
46
0
num = int(input()) list = [] for i in range(num): words = input() if len(words) > 10: list.append(words[0] + str(len(words)-2) + words[-1]) else: list.append(words) print("\n".join(list))
Title: Way Too Long Words Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters. Output Specification: Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data. Demo Input: ['4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n'] Demo Output: ['word\nl10n\ni18n\np43s\n'] Note: none
```python num = int(input()) list = [] for i in range(num): words = input() if len(words) > 10: list.append(words[0] + str(len(words)-2) + words[-1]) else: list.append(words) print("\n".join(list)) ```
3.977
825
A
Binary Protocol
PROGRAMMING
1,100
[ "implementation" ]
null
null
Polycarp has just invented a new binary protocol for data transmission. He is encoding positive integer decimal number to binary string using following algorithm: - Each digit is represented with number of '1' characters equal to the value of that digit (for 0 it is zero ones). - Digits are written one by one in order corresponding to number and separated by single '0' character. Though Polycarp learnt how to encode the numbers, he has no idea how to decode them back. Help him calculate the decoded number.
The first line contains one integer number *n* (1<=≤<=*n*<=≤<=89) — length of the string *s*. The second line contains string *s* — sequence of '0' and '1' characters, number in its encoded format. It is guaranteed that the number corresponding to the string is positive and doesn't exceed 109. The string always starts with '1'.
Print the decoded number.
[ "3\n111\n", "9\n110011101\n" ]
[ "3\n", "2031\n" ]
none
0
[ { "input": "3\n111", "output": "3" }, { "input": "9\n110011101", "output": "2031" }, { "input": "1\n1", "output": "1" }, { "input": "3\n100", "output": "100" }, { "input": "5\n10001", "output": "1001" }, { "input": "14\n11001100011000", "output": "202002000" }, { "input": "31\n1000011111111100011110111111111", "output": "100090049" }, { "input": "53\n10110111011110111110111111011111110111111110111111111", "output": "123456789" }, { "input": "89\n11111111101111111110111111111011111111101111111110111111111011111111101111111110111111111", "output": "999999999" }, { "input": "10\n1000000000", "output": "1000000000" }, { "input": "2\n10", "output": "10" }, { "input": "4\n1110", "output": "30" }, { "input": "8\n10101010", "output": "11110" } ]
1,516,680,642
582
Python 3
OK
TESTS
13
46
5,632,000
n = int(input()) a = input().split("0") for x in a: print(x.count("1"),end="")
Title: Binary Protocol Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarp has just invented a new binary protocol for data transmission. He is encoding positive integer decimal number to binary string using following algorithm: - Each digit is represented with number of '1' characters equal to the value of that digit (for 0 it is zero ones). - Digits are written one by one in order corresponding to number and separated by single '0' character. Though Polycarp learnt how to encode the numbers, he has no idea how to decode them back. Help him calculate the decoded number. Input Specification: The first line contains one integer number *n* (1<=≤<=*n*<=≤<=89) — length of the string *s*. The second line contains string *s* — sequence of '0' and '1' characters, number in its encoded format. It is guaranteed that the number corresponding to the string is positive and doesn't exceed 109. The string always starts with '1'. Output Specification: Print the decoded number. Demo Input: ['3\n111\n', '9\n110011101\n'] Demo Output: ['3\n', '2031\n'] Note: none
```python n = int(input()) a = input().split("0") for x in a: print(x.count("1"),end="") ```
3
559
B
Equivalent Strings
PROGRAMMING
1,700
[ "divide and conquer", "hashing", "sortings", "strings" ]
null
null
Today on a lecture about strings Gerald learned a new definition of string equivalency. Two strings *a* and *b* of equal length are called equivalent in one of the two cases: 1. They are equal. 1. If we split string *a* into two halves of the same size *a*1 and *a*2, and string *b* into two halves of the same size *b*1 and *b*2, then one of the following is correct: *a*1 is equivalent to *b*1, and *a*2 is equivalent to *b*2 1. *a*1 is equivalent to *b*2, and *a*2 is equivalent to *b*1 As a home task, the teacher gave two strings to his students and asked to determine if they are equivalent. Gerald has already completed this home task. Now it's your turn!
The first two lines of the input contain two strings given by the teacher. Each of them has the length from 1 to 200<=000 and consists of lowercase English letters. The strings have the same length.
Print "YES" (without the quotes), if these two strings are equivalent, and "NO" (without the quotes) otherwise.
[ "aaba\nabaa\n", "aabb\nabab\n" ]
[ "YES\n", "NO\n" ]
In the first sample you should split the first string into strings "aa" and "ba", the second one — into strings "ab" and "aa". "aa" is equivalent to "aa"; "ab" is equivalent to "ba" as "ab" = "a" + "b", "ba" = "b" + "a". In the second sample the first string can be splitted into strings "aa" and "bb", that are equivalent only to themselves. That's why string "aabb" is equivalent only to itself and to string "bbaa".
1,000
[ { "input": "aaba\nabaa", "output": "YES" }, { "input": "aabb\nabab", "output": "NO" }, { "input": "a\na", "output": "YES" }, { "input": "a\nb", "output": "NO" }, { "input": "ab\nab", "output": "YES" }, { "input": "ab\nba", "output": "YES" }, { "input": "ab\nbb", "output": "NO" }, { "input": "zzaa\naazz", "output": "YES" }, { "input": "azza\nzaaz", "output": "YES" }, { "input": "abc\nabc", "output": "YES" }, { "input": "abc\nacb", "output": "NO" }, { "input": "azzz\nzzaz", "output": "YES" }, { "input": "abcd\ndcab", "output": "YES" }, { "input": "abcd\ncdab", "output": "YES" }, { "input": "abcd\ndcba", "output": "YES" }, { "input": "abcd\nacbd", "output": "NO" }, { "input": "oloaxgddgujq\noloaxgujqddg", "output": "YES" }, { "input": "uwzwdxfmosmqatyv\ndxfmzwwusomqvyta", "output": "YES" }, { "input": "hagnzomowtledfdotnll\nledfdotnllomowthagnz", "output": "YES" }, { "input": "snyaydaeobufdg\nsnyaydaeobufdg", "output": "YES" }, { "input": "baaaaa\nabaaaa", "output": "NO" }, { "input": "hhiisug\nmzdjwju", "output": "NO" }, { "input": "bbbabbabaaab\naaaabbabbbbb", "output": "NO" }, { "input": "bbaaab\naababb", "output": "NO" }, { "input": "aabbaaaa\naaaaabab", "output": "NO" }, { "input": "aab\naba", "output": "NO" }, { "input": "abcddd\nbacddd", "output": "NO" }, { "input": "qgiufelsfhanx\naaaaaaaaaaaaa", "output": "NO" }, { "input": "aabaababaaba\naababaaababa", "output": "NO" }, { "input": "nocdqzdriyyil\naaaaaaaaaaaaa", "output": "NO" }, { "input": "zdmctxl\nkojqhgw", "output": "NO" }, { "input": "yhwepqwyhwepqwyhwepqweahnqtueahnqtueahnqtuyhwepqwyhwepqwyhwepqwyhwepqweahnqtueahnqtuyhwepqweahnqtueahnqtueahnqtueahnqtueahnqtueahnqtu\neahnqtueahnqtueahnqtuyhwepqweahnqtuyhwepqwyhwepqweahnqtuyhwepqweahnqtuyhwepqweahnqtueahnqtuyhwepqweahnqtueahnqtuyhwepqwyhwepqwyhwepqw", "output": "NO" }, { "input": "abc\nbac", "output": "NO" }, { "input": "ottceez\npcstdvz", "output": "NO" } ]
1,692,477,920
2,147,483,647
Python 3
OK
TESTS
104
1,232
171,520,000
def equiv(dp, s1, s2): if (s1, s2) in dp.keys(): return (dp[(s1,s2)]) if s1 == s2: dp[(s1, s2)] = True dp[(s2, s1)] = True return True if len(s1) % 2 == 1 or (len(s1) == 1 and len(s2) == 1): dp[(s1, s2)] = False dp[(s2, s1)] = False return False a1, a2 = s1[:len(s1)//2], s1[len(s1)//2:] b1, b2 = s2[:len(s2)//2], s2[len(s2)//2:] if equiv(dp, a1, b1) and equiv(dp, a2, b2): dp[(s1, s2)] = True dp[(s2, s1)] = True return True if equiv(dp, a1, b2) and equiv(dp, a2, b1): dp[(s1, s2)] = True dp[(s2, s1)] = True return True dp[(s1, s2)] = False dp[(s2, s1)] = False return False #s1 = "cda" #s2 = "cfg" dp = dict() s1 = input() s2 = input() print("YES" if equiv(dp, s1, s2) else "NO")
Title: Equivalent Strings Time Limit: None seconds Memory Limit: None megabytes Problem Description: Today on a lecture about strings Gerald learned a new definition of string equivalency. Two strings *a* and *b* of equal length are called equivalent in one of the two cases: 1. They are equal. 1. If we split string *a* into two halves of the same size *a*1 and *a*2, and string *b* into two halves of the same size *b*1 and *b*2, then one of the following is correct: *a*1 is equivalent to *b*1, and *a*2 is equivalent to *b*2 1. *a*1 is equivalent to *b*2, and *a*2 is equivalent to *b*1 As a home task, the teacher gave two strings to his students and asked to determine if they are equivalent. Gerald has already completed this home task. Now it's your turn! Input Specification: The first two lines of the input contain two strings given by the teacher. Each of them has the length from 1 to 200<=000 and consists of lowercase English letters. The strings have the same length. Output Specification: Print "YES" (without the quotes), if these two strings are equivalent, and "NO" (without the quotes) otherwise. Demo Input: ['aaba\nabaa\n', 'aabb\nabab\n'] Demo Output: ['YES\n', 'NO\n'] Note: In the first sample you should split the first string into strings "aa" and "ba", the second one — into strings "ab" and "aa". "aa" is equivalent to "aa"; "ab" is equivalent to "ba" as "ab" = "a" + "b", "ba" = "b" + "a". In the second sample the first string can be splitted into strings "aa" and "bb", that are equivalent only to themselves. That's why string "aabb" is equivalent only to itself and to string "bbaa".
```python def equiv(dp, s1, s2): if (s1, s2) in dp.keys(): return (dp[(s1,s2)]) if s1 == s2: dp[(s1, s2)] = True dp[(s2, s1)] = True return True if len(s1) % 2 == 1 or (len(s1) == 1 and len(s2) == 1): dp[(s1, s2)] = False dp[(s2, s1)] = False return False a1, a2 = s1[:len(s1)//2], s1[len(s1)//2:] b1, b2 = s2[:len(s2)//2], s2[len(s2)//2:] if equiv(dp, a1, b1) and equiv(dp, a2, b2): dp[(s1, s2)] = True dp[(s2, s1)] = True return True if equiv(dp, a1, b2) and equiv(dp, a2, b1): dp[(s1, s2)] = True dp[(s2, s1)] = True return True dp[(s1, s2)] = False dp[(s2, s1)] = False return False #s1 = "cda" #s2 = "cfg" dp = dict() s1 = input() s2 = input() print("YES" if equiv(dp, s1, s2) else "NO") ```
3
731
A
Night at the Museum
PROGRAMMING
800
[ "implementation", "strings" ]
null
null
Grigoriy, like the hero of one famous comedy film, found a job as a night security guard at the museum. At first night he received embosser and was to take stock of the whole exposition. Embosser is a special devise that allows to "print" the text of a plastic tape. Text is printed sequentially, character by character. The device consists of a wheel with a lowercase English letters written in a circle, static pointer to the current letter and a button that print the chosen letter. At one move it's allowed to rotate the alphabetic wheel one step clockwise or counterclockwise. Initially, static pointer points to letter 'a'. Other letters are located as shown on the picture: After Grigoriy add new item to the base he has to print its name on the plastic tape and attach it to the corresponding exhibit. It's not required to return the wheel to its initial position with pointer on the letter 'a'. Our hero is afraid that some exhibits may become alive and start to attack him, so he wants to print the names as fast as possible. Help him, for the given string find the minimum number of rotations of the wheel required to print it.
The only line of input contains the name of some exhibit — the non-empty string consisting of no more than 100 characters. It's guaranteed that the string consists of only lowercase English letters.
Print one integer — the minimum number of rotations of the wheel, required to print the name given in the input.
[ "zeus\n", "map\n", "ares\n" ]
[ "18\n", "35\n", "34\n" ]
To print the string from the first sample it would be optimal to perform the following sequence of rotations: 1. from 'a' to 'z' (1 rotation counterclockwise), 1. from 'z' to 'e' (5 clockwise rotations), 1. from 'e' to 'u' (10 rotations counterclockwise), 1. from 'u' to 's' (2 counterclockwise rotations).
500
[ { "input": "zeus", "output": "18" }, { "input": "map", "output": "35" }, { "input": "ares", "output": "34" }, { "input": "l", "output": "11" }, { "input": "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuv", "output": "99" }, { "input": "gngvi", "output": "44" }, { "input": "aaaaa", "output": "0" }, { "input": "a", "output": "0" }, { "input": "z", "output": "1" }, { "input": "vyadeehhikklnoqrs", "output": "28" }, { "input": "jjiihhhhgggfedcccbazyxx", "output": "21" }, { "input": "fyyptqqxuciqvwdewyppjdzur", "output": "117" }, { "input": "fqcnzmzmbobmancqcoalzmanaobpdse", "output": "368" }, { "input": "zzzzzaaaaaaazzzzzzaaaaaaazzzzzzaaaazzzza", "output": "8" }, { "input": "aucnwhfixuruefkypvrvnvznwtjgwlghoqtisbkhuwxmgzuljvqhmnwzisnsgjhivnjmbknptxatdkelhzkhsuxzrmlcpeoyukiy", "output": "644" }, { "input": "sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss", "output": "8" }, { "input": "nypjygrdtpzpigzyrisqeqfriwgwlengnezppgttgtndbrryjdl", "output": "421" }, { "input": "pnllnnmmmmoqqqqqrrtssssuuvtsrpopqoonllmonnnpppopnonoopooqpnopppqppqstuuuwwwwvxzxzzaa", "output": "84" }, { "input": "btaoahqgxnfsdmzsjxgvdwjukcvereqeskrdufqfqgzqfsftdqcthtkcnaipftcnco", "output": "666" }, { "input": "eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrrwwwwwwwwww", "output": "22" }, { "input": "uyknzcrwjyzmscqucclvacmorepdgmnyhmakmmnygqwglrxkxhkpansbmruwxdeoprxzmpsvwackopujxbbkpwyeggsvjykpxh", "output": "643" }, { "input": "gzwpooohffcxwtpjgfzwtooiccxsrrokezutoojdzwsrmmhecaxwrojcbyrqlfdwwrliiib", "output": "245" }, { "input": "dbvnkktasjdwqsrzfwwtmjgbcxggdxsoeilecihduypktkkbwfbruxzzhlttrssicgdwqruddwrlbtxgmhdbatzvdxbbro", "output": "468" }, { "input": "mdtvowlktxzzbuaeiuebfeorgbdczauxsovbucactkvyvemsknsjfhifqgycqredzchipmkvzbxdjkcbyukomjlzvxzoswumned", "output": "523" }, { "input": "kkkkkkkaaaaxxaaaaaaaxxxxxxxxaaaaaaxaaaaaaaaaakkkkkkkkkaaaaaaannnnnxxxxkkkkkkkkaannnnnnna", "output": "130" }, { "input": "dffiknqqrsvwzcdgjkmpqtuwxadfhkkkmpqrtwxyadfggjmpppsuuwyyzcdgghhknnpsvvvwwwyabccffiloqruwwyyzabeeehh", "output": "163" }, { "input": "qpppmmkjihgecbyvvsppnnnkjiffeebaaywutrrqpmkjhgddbzzzywtssssqnmmljheddbbaxvusrqonmlifedbbzyywwtqnkheb", "output": "155" }, { "input": "wvvwwwvvwxxxyyyxxwwvwwvuttttttuvvwxxwxxyxxwwwwwvvuttssrssstsssssrqpqqppqrssrsrrssrssssrrsrqqrrqpppqp", "output": "57" }, { "input": "dqcpcobpcobnznamznamzlykxkxlxlylzmaobnaobpbnanbpcoaobnboaoboanzlymzmykylymylzlylymanboanaocqdqesfrfs", "output": "1236" }, { "input": "nnnnnnnnnnnnnnnnnnnnaaaaaaaaaaaaaaaaaaaakkkkkkkkkkkkkkkkkkkkkkaaaaaaaaaaaaaaaaaaaaxxxxxxxxxxxxxxxxxx", "output": "49" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "0" }, { "input": "cgilqsuwzaffilptwwbgmnttyyejkorxzflqvzbddhmnrvxchijpuwaeiimosxyycejlpquuwbfkpvbgijkqvxybdjjjptxcfkqt", "output": "331" }, { "input": "ufsepwgtzgtgjssxaitgpailuvgqweoppszjwhoxdhhhpwwdorwfrdjwcdekxiktwziqwbkvbknrtvajpyeqbjvhiikxxaejjpte", "output": "692" }, { "input": "uhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuh", "output": "1293" }, { "input": "vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvgggggggggggggggggggggggggggggggggggggggggggggggggg", "output": "16" }, { "input": "lyidmjyzbszgiwkxhhpnnthfwcvvstueionspfrvqgkvngmwyhezlosrpdnbvtcjjxxsykixwnepbumaacdzadlqhnjlcejovple", "output": "616" }, { "input": "etzqqbaveffalkdguunfmyyrzkccnxmlluxeasqmopxzfvlkbhipqdwjgrttoemruohgwukfisdhznqyvhswbbypoxgtxyappcrl", "output": "605" }, { "input": "lizussgedcbdjhrbeskhgatyozvwwekanlggcstijrniivupmcoofbaxfqrxddyzzptwxcftlhajsmmkkriarrqtkoauhcqefyud", "output": "549" }, { "input": "dvjuvgfdogpknmbowlsfjzcimnygbtjiucyeeroqwhmzwpjqxlbjkqawrdtmvxbiqufllfuqibxvmtdrwaqkjblxqjpwzmhwqore", "output": "688" }, { "input": "eeycuijtbgynmiczjfslwobmnkpgodfgvujvduyfeqchuaoktqrrairkkmmsjahltfcxwtpzzyddxrqfxabfoocmpuviinrjitsc", "output": "604" }, { "input": "cgglnakewwvzoytaghksebrhjdbcdegssuzilrcppayxtgxopybbwshvyqnzhdsifkuwghourmeottrgjwdqpihbklvfzxpomqsa", "output": "572" }, { "input": "aexullmxncckzryymfnuugdklaffevabqqztelpvojecljnhqldazdcaamubpenwxikysxxjjctvbndprsolzehywmgnvkgqvrfp", "output": "609" }, { "input": "psnoieutsvvcwfhtnnphhxkwigzsbzyjmdiyl", "output": "223" }, { "input": "aa", "output": "0" } ]
1,680,457,843
2,147,483,647
PyPy 3-64
OK
TESTS
44
61
0
s=input() count=0 temp='a' for i in range(0,len(s)): count=count+(26-abs(ord(temp)-ord(s[i]))) if abs(ord(temp)-ord(s[i]))>13 else count+abs(ord(temp)-ord(s[i])) temp=s[i] print(count)
Title: Night at the Museum Time Limit: None seconds Memory Limit: None megabytes Problem Description: Grigoriy, like the hero of one famous comedy film, found a job as a night security guard at the museum. At first night he received embosser and was to take stock of the whole exposition. Embosser is a special devise that allows to "print" the text of a plastic tape. Text is printed sequentially, character by character. The device consists of a wheel with a lowercase English letters written in a circle, static pointer to the current letter and a button that print the chosen letter. At one move it's allowed to rotate the alphabetic wheel one step clockwise or counterclockwise. Initially, static pointer points to letter 'a'. Other letters are located as shown on the picture: After Grigoriy add new item to the base he has to print its name on the plastic tape and attach it to the corresponding exhibit. It's not required to return the wheel to its initial position with pointer on the letter 'a'. Our hero is afraid that some exhibits may become alive and start to attack him, so he wants to print the names as fast as possible. Help him, for the given string find the minimum number of rotations of the wheel required to print it. Input Specification: The only line of input contains the name of some exhibit — the non-empty string consisting of no more than 100 characters. It's guaranteed that the string consists of only lowercase English letters. Output Specification: Print one integer — the minimum number of rotations of the wheel, required to print the name given in the input. Demo Input: ['zeus\n', 'map\n', 'ares\n'] Demo Output: ['18\n', '35\n', '34\n'] Note: To print the string from the first sample it would be optimal to perform the following sequence of rotations: 1. from 'a' to 'z' (1 rotation counterclockwise), 1. from 'z' to 'e' (5 clockwise rotations), 1. from 'e' to 'u' (10 rotations counterclockwise), 1. from 'u' to 's' (2 counterclockwise rotations).
```python s=input() count=0 temp='a' for i in range(0,len(s)): count=count+(26-abs(ord(temp)-ord(s[i]))) if abs(ord(temp)-ord(s[i]))>13 else count+abs(ord(temp)-ord(s[i])) temp=s[i] print(count) ```
3
379
A
New Year Candles
PROGRAMMING
1,000
[ "implementation" ]
null
null
Vasily the Programmer loves romance, so this year he decided to illuminate his room with candles. Vasily has *a* candles.When Vasily lights up a new candle, it first burns for an hour and then it goes out. Vasily is smart, so he can make *b* went out candles into a new candle. As a result, this new candle can be used like any other new candle. Now Vasily wonders: for how many hours can his candles light up the room if he acts optimally well? Help him find this number.
The single line contains two integers, *a* and *b* (1<=≤<=*a*<=≤<=1000; 2<=≤<=*b*<=≤<=1000).
Print a single integer — the number of hours Vasily can light up the room for.
[ "4 2\n", "6 3\n" ]
[ "7\n", "8\n" ]
Consider the first sample. For the first four hours Vasily lights up new candles, then he uses four burned out candles to make two new ones and lights them up. When these candles go out (stop burning), Vasily can make another candle. Overall, Vasily can light up the room for 7 hours.
500
[ { "input": "4 2", "output": "7" }, { "input": "6 3", "output": "8" }, { "input": "1000 1000", "output": "1001" }, { "input": "123 5", "output": "153" }, { "input": "1000 2", "output": "1999" }, { "input": "1 2", "output": "1" }, { "input": "1 3", "output": "1" }, { "input": "1 4", "output": "1" }, { "input": "2 2", "output": "3" }, { "input": "3 2", "output": "5" }, { "input": "3 3", "output": "4" }, { "input": "999 2", "output": "1997" }, { "input": "1000 3", "output": "1499" }, { "input": "1000 4", "output": "1333" }, { "input": "1 1000", "output": "1" }, { "input": "80 970", "output": "80" }, { "input": "80 970", "output": "80" }, { "input": "80 970", "output": "80" }, { "input": "80 970", "output": "80" }, { "input": "80 970", "output": "80" }, { "input": "80 970", "output": "80" }, { "input": "10 4", "output": "13" }, { "input": "4 3", "output": "5" }, { "input": "91 5", "output": "113" }, { "input": "777 17", "output": "825" }, { "input": "100 4", "output": "133" }, { "input": "5 3", "output": "7" }, { "input": "6 4", "output": "7" }, { "input": "26 8", "output": "29" }, { "input": "9 4", "output": "11" }, { "input": "20 3", "output": "29" }, { "input": "17 3", "output": "25" } ]
1,688,424,989
2,147,483,647
Python 3
OK
TESTS
32
46
0
a, b = map(int, input().split()) totalHours = a while a >= b: newCandles = a // b totalHours += newCandles a = newCandles + (a % b) print(totalHours)
Title: New Year Candles Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasily the Programmer loves romance, so this year he decided to illuminate his room with candles. Vasily has *a* candles.When Vasily lights up a new candle, it first burns for an hour and then it goes out. Vasily is smart, so he can make *b* went out candles into a new candle. As a result, this new candle can be used like any other new candle. Now Vasily wonders: for how many hours can his candles light up the room if he acts optimally well? Help him find this number. Input Specification: The single line contains two integers, *a* and *b* (1<=≤<=*a*<=≤<=1000; 2<=≤<=*b*<=≤<=1000). Output Specification: Print a single integer — the number of hours Vasily can light up the room for. Demo Input: ['4 2\n', '6 3\n'] Demo Output: ['7\n', '8\n'] Note: Consider the first sample. For the first four hours Vasily lights up new candles, then he uses four burned out candles to make two new ones and lights them up. When these candles go out (stop burning), Vasily can make another candle. Overall, Vasily can light up the room for 7 hours.
```python a, b = map(int, input().split()) totalHours = a while a >= b: newCandles = a // b totalHours += newCandles a = newCandles + (a % b) print(totalHours) ```
3
588
A
Duff and Meat
PROGRAMMING
900
[ "greedy" ]
null
null
Duff is addicted to meat! Malek wants to keep her happy for *n* days. In order to be happy in *i*-th day, she needs to eat exactly *a**i* kilograms of meat. There is a big shop uptown and Malek wants to buy meat for her from there. In *i*-th day, they sell meat for *p**i* dollars per kilogram. Malek knows all numbers *a*1,<=...,<=*a**n* and *p*1,<=...,<=*p**n*. In each day, he can buy arbitrary amount of meat, also he can keep some meat he has for the future. Malek is a little tired from cooking meat, so he asked for your help. Help him to minimize the total money he spends to keep Duff happy for *n* days.
The first line of input contains integer *n* (1<=≤<=*n*<=≤<=105), the number of days. In the next *n* lines, *i*-th line contains two integers *a**i* and *p**i* (1<=≤<=*a**i*,<=*p**i*<=≤<=100), the amount of meat Duff needs and the cost of meat in that day.
Print the minimum money needed to keep Duff happy for *n* days, in one line.
[ "3\n1 3\n2 2\n3 1\n", "3\n1 3\n2 1\n3 2\n" ]
[ "10\n", "8\n" ]
In the first sample case: An optimal way would be to buy 1 kg on the first day, 2 kg on the second day and 3 kg on the third day. In the second sample case: An optimal way would be to buy 1 kg on the first day and 5 kg (needed meat for the second and third day) on the second day.
750
[ { "input": "3\n1 3\n2 2\n3 1", "output": "10" }, { "input": "3\n1 3\n2 1\n3 2", "output": "8" }, { "input": "1\n39 52", "output": "2028" }, { "input": "2\n25 56\n94 17", "output": "2998" }, { "input": "5\n39 21\n95 89\n73 90\n9 55\n85 32", "output": "6321" }, { "input": "12\n70 11\n74 27\n32 11\n26 83\n57 18\n97 28\n75 43\n75 21\n84 29\n16 2\n89 63\n21 88", "output": "6742" }, { "input": "2\n100 68\n38 80", "output": "9384" } ]
1,625,079,112
2,147,483,647
Python 3
OK
TESTS
30
295
1,945,600
n = int(input()) al = [] pl = [] for i in range(n): a, p = map(int, input().split()) al.append(a) pl.append(p) min_price = pl[0] result = 0 for i in range(n): if pl[i] < min_price: min_price = pl[i] result += min_price*al[i] print(result)
Title: Duff and Meat Time Limit: None seconds Memory Limit: None megabytes Problem Description: Duff is addicted to meat! Malek wants to keep her happy for *n* days. In order to be happy in *i*-th day, she needs to eat exactly *a**i* kilograms of meat. There is a big shop uptown and Malek wants to buy meat for her from there. In *i*-th day, they sell meat for *p**i* dollars per kilogram. Malek knows all numbers *a*1,<=...,<=*a**n* and *p*1,<=...,<=*p**n*. In each day, he can buy arbitrary amount of meat, also he can keep some meat he has for the future. Malek is a little tired from cooking meat, so he asked for your help. Help him to minimize the total money he spends to keep Duff happy for *n* days. Input Specification: The first line of input contains integer *n* (1<=≤<=*n*<=≤<=105), the number of days. In the next *n* lines, *i*-th line contains two integers *a**i* and *p**i* (1<=≤<=*a**i*,<=*p**i*<=≤<=100), the amount of meat Duff needs and the cost of meat in that day. Output Specification: Print the minimum money needed to keep Duff happy for *n* days, in one line. Demo Input: ['3\n1 3\n2 2\n3 1\n', '3\n1 3\n2 1\n3 2\n'] Demo Output: ['10\n', '8\n'] Note: In the first sample case: An optimal way would be to buy 1 kg on the first day, 2 kg on the second day and 3 kg on the third day. In the second sample case: An optimal way would be to buy 1 kg on the first day and 5 kg (needed meat for the second and third day) on the second day.
```python n = int(input()) al = [] pl = [] for i in range(n): a, p = map(int, input().split()) al.append(a) pl.append(p) min_price = pl[0] result = 0 for i in range(n): if pl[i] < min_price: min_price = pl[i] result += min_price*al[i] print(result) ```
3
99
A
Help Far Away Kingdom
PROGRAMMING
800
[ "strings" ]
A. Help Far Away Kingdom
2
256
In a far away kingdom lived the King, the Prince, the Shoemaker, the Dressmaker and many other citizens. They lived happily until great trouble came into the Kingdom. The ACMers settled there. Most damage those strange creatures inflicted upon the kingdom was that they loved high precision numbers. As a result, the Kingdom healers had already had three appointments with the merchants who were asked to sell, say, exactly 0.273549107 beer barrels. To deal with the problem somehow, the King issued an order obliging rounding up all numbers to the closest integer to simplify calculations. Specifically, the order went like this: - If a number's integer part does not end with digit 9 and its fractional part is strictly less than 0.5, then the rounded up number coincides with the number’s integer part. - If a number's integer part does not end with digit 9 and its fractional part is not less than 0.5, the rounded up number is obtained if we add 1 to the last digit of the number’s integer part.- If the number’s integer part ends with digit 9, to round up the numbers one should go to Vasilisa the Wise. In the whole Kingdom she is the only one who can perform the tricky operation of carrying into the next position. Merchants found the algorithm very sophisticated and they asked you (the ACMers) to help them. Can you write a program that would perform the rounding according to the King’s order?
The first line contains a single number to round up — the integer part (a non-empty set of decimal digits that do not start with 0 — with the exception of a case when the set consists of a single digit — in this case 0 can go first), then follows character «.» (a dot), and then follows the fractional part (any non-empty set of decimal digits). The number's length does not exceed 1000 characters, including the dot. There are no other characters in the input data.
If the last number of the integer part is not equal to 9, print the rounded-up number without leading zeroes. Otherwise, print the message "GOTO Vasilisa." (without the quotes).
[ "0.0\n", "1.49\n", "1.50\n", "2.71828182845904523536\n", "3.14159265358979323846\n", "12345678901234567890.1\n", "123456789123456789.999\n" ]
[ "0", "1", "2", "3", "3", "12345678901234567890", "GOTO Vasilisa." ]
none
500
[ { "input": "0.0", "output": "0" }, { "input": "1.49", "output": "1" }, { "input": "1.50", "output": "2" }, { "input": "2.71828182845904523536", "output": "3" }, { "input": "3.14159265358979323846", "output": "3" }, { "input": "12345678901234567890.1", "output": "12345678901234567890" }, { "input": "123456789123456789.999", "output": "GOTO Vasilisa." }, { "input": "12345678901234567890.9", "output": "12345678901234567891" }, { "input": "123456789123456788.999", "output": "123456789123456789" }, { "input": "9.000", "output": "GOTO Vasilisa." }, { "input": "0.1", "output": "0" }, { "input": "0.2", "output": "0" }, { "input": "0.3", "output": "0" }, { "input": "0.4", "output": "0" }, { "input": "0.5", "output": "1" }, { "input": "0.6", "output": "1" }, { "input": "0.7", "output": "1" }, { "input": "0.8", "output": "1" }, { "input": "0.9", "output": "1" }, { "input": "1.0", "output": "1" }, { "input": "1.1", "output": "1" }, { "input": "1.2", "output": "1" }, { "input": "1.3", "output": "1" }, { "input": "1.4", "output": "1" }, { "input": "1.5", "output": "2" }, { "input": "1.6", "output": "2" }, { "input": "1.7", "output": "2" }, { "input": "1.8", "output": "2" }, { "input": "1.9", "output": "2" }, { "input": "2.0", "output": "2" }, { "input": "2.1", "output": "2" }, { "input": "2.2", "output": "2" }, { "input": "2.3", "output": "2" }, { "input": "2.4", "output": "2" }, { "input": "2.5", "output": "3" }, { "input": "2.6", "output": "3" }, { "input": "2.7", "output": "3" }, { "input": "2.8", "output": "3" }, { "input": "2.9", "output": "3" }, { "input": "3.0", "output": "3" }, { "input": "3.1", "output": "3" }, { "input": "3.2", "output": "3" }, { "input": "3.3", "output": "3" }, { "input": "3.4", "output": "3" }, { "input": "3.5", "output": "4" }, { "input": "3.6", "output": "4" }, { "input": "3.7", "output": "4" }, { "input": "3.8", "output": "4" }, { "input": "3.9", "output": "4" }, { "input": "4.0", "output": "4" }, { "input": "4.1", "output": "4" }, { "input": "4.2", "output": "4" }, { "input": "4.3", "output": "4" }, { "input": "4.4", "output": "4" }, { "input": "4.5", "output": "5" }, { "input": "4.6", "output": "5" }, { "input": "4.7", "output": "5" }, { "input": "4.8", "output": "5" }, { "input": "4.9", "output": "5" }, { "input": "5.0", "output": "5" }, { "input": "5.1", "output": "5" }, { "input": "5.2", "output": "5" }, { "input": "5.3", "output": "5" }, { "input": "5.4", "output": "5" }, { "input": "5.5", "output": "6" }, { "input": "5.6", "output": "6" }, { "input": "5.7", "output": "6" }, { "input": "5.8", "output": "6" }, { "input": "5.9", "output": "6" }, { "input": "6.0", "output": "6" }, { "input": "6.1", "output": "6" }, { "input": "6.2", "output": "6" }, { "input": "6.3", "output": "6" }, { "input": "6.4", "output": "6" }, { "input": "6.5", "output": "7" }, { "input": "6.6", "output": "7" }, { "input": "6.7", "output": "7" }, { "input": "6.8", "output": "7" }, { "input": "6.9", "output": "7" }, { "input": "7.0", "output": "7" }, { "input": "7.1", "output": "7" }, { "input": "7.2", "output": "7" }, { "input": "7.3", "output": "7" }, { "input": "7.4", "output": "7" }, { "input": "7.5", "output": "8" }, { "input": "7.6", "output": "8" }, { "input": "7.7", "output": "8" }, { "input": "7.8", "output": "8" }, { "input": "7.9", "output": "8" }, { "input": "8.0", "output": "8" }, { "input": "8.1", "output": "8" }, { "input": "8.2", "output": "8" }, { "input": "8.3", "output": "8" }, { "input": "8.4", "output": "8" }, { "input": "8.5", "output": "9" }, { "input": "8.6", "output": "9" }, { "input": "8.7", "output": "9" }, { "input": "8.8", "output": "9" }, { "input": "8.9", "output": "9" }, { "input": "9.0", "output": "GOTO Vasilisa." }, { "input": "9.1", "output": "GOTO Vasilisa." }, { "input": "9.2", "output": "GOTO Vasilisa." }, { "input": "9.3", "output": "GOTO Vasilisa." }, { "input": "9.4", "output": "GOTO Vasilisa." }, { "input": "9.5", "output": "GOTO Vasilisa." }, { "input": "9.6", "output": "GOTO Vasilisa." }, { "input": "9.7", "output": "GOTO Vasilisa." }, { "input": "9.8", "output": "GOTO Vasilisa." }, { "input": "9.9", "output": "GOTO Vasilisa." }, { "input": "609942239104813108618306232517836377583566292129955473517174437591594761209877970062547641606473593416245554763832875919009472288995880898848455284062760160557686724163817329189799336769669146848904803188614226720978399787805489531837751080926098.1664915772983166314490532653577560222779830866949001942720729759794777105570672781798092416748052690224813237139640723361527601154465287615917169132637313918577673651098507390501962", "output": "609942239104813108618306232517836377583566292129955473517174437591594761209877970062547641606473593416245554763832875919009472288995880898848455284062760160557686724163817329189799336769669146848904803188614226720978399787805489531837751080926098" }, { "input": "7002108534951820589946967018226114921984364117669853212254634761258884835434844673935047882480101006606512119541798298905598015607366335061012709906661245805358900665571472645463994925687210711492820804158354236327017974683658305043146543214454877759341394.20211856263503281388748282682120712214711232598021393495443628276945042110862480888110959179019986486690931930108026302665438087068150666835901617457150158918705186964935221768346957536540345814875615118637945520917367155931078965", "output": "7002108534951820589946967018226114921984364117669853212254634761258884835434844673935047882480101006606512119541798298905598015607366335061012709906661245805358900665571472645463994925687210711492820804158354236327017974683658305043146543214454877759341394" }, { "input": "1950583094879039694852660558765931995628486712128191844305265555887022812284005463780616067.5000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "1950583094879039694852660558765931995628486712128191844305265555887022812284005463780616068" }, { "input": "718130341896330596635811874410345440628950330.500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "718130341896330596635811874410345440628950331" }, { "input": "927925904158088313481229162503626281882161630091489367140850985555900173018122871746924067186432044676083646964286435457446768031295712712803570690846298544912543439221596866052681116386179629036945370280722.500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "927925904158088313481229162503626281882161630091489367140850985555900173018122871746924067186432044676083646964286435457446768031295712712803570690846298544912543439221596866052681116386179629036945370280723" }, { "input": "68289614863244584294178637364598054554769889.500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "GOTO Vasilisa." }, { "input": "7536521504744364134984603189602839063535643888645969434165019366202558753840519.4999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999", "output": "GOTO Vasilisa." }, { "input": "646188694587964249318078225173.5000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "646188694587964249318078225174" }, { "input": "7017472758334494297677068672222822550374695787171163207025095950296957261530.50", "output": "7017472758334494297677068672222822550374695787171163207025095950296957261531" }, { "input": "259085737066615534998640212505663524594409165063310128108448186246980628179842202905722595400477937071746695941939306735605849342959111887834258250883469840846714848774368.50000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "259085737066615534998640212505663524594409165063310128108448186246980628179842202905722595400477937071746695941939306735605849342959111887834258250883469840846714848774369" }, { "input": "682500858233333594535201113441004740771119672961581796618069185960107115823662126812159957094407454522028503739299.5000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "GOTO Vasilisa." }, { "input": "41203422675619090661099806687619.49999999999999999999999999999999999999999999999999999999999999999999999999999999999999999", "output": "GOTO Vasilisa." } ]
1,637,052,165
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
5
92
0
n=float(input()) s=int(n) a=n-s if n%10==9: print('GOTO Vasilisa.') else: if a<0.5: print(s) else: print(s+1)
Title: Help Far Away Kingdom Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: In a far away kingdom lived the King, the Prince, the Shoemaker, the Dressmaker and many other citizens. They lived happily until great trouble came into the Kingdom. The ACMers settled there. Most damage those strange creatures inflicted upon the kingdom was that they loved high precision numbers. As a result, the Kingdom healers had already had three appointments with the merchants who were asked to sell, say, exactly 0.273549107 beer barrels. To deal with the problem somehow, the King issued an order obliging rounding up all numbers to the closest integer to simplify calculations. Specifically, the order went like this: - If a number's integer part does not end with digit 9 and its fractional part is strictly less than 0.5, then the rounded up number coincides with the number’s integer part. - If a number's integer part does not end with digit 9 and its fractional part is not less than 0.5, the rounded up number is obtained if we add 1 to the last digit of the number’s integer part.- If the number’s integer part ends with digit 9, to round up the numbers one should go to Vasilisa the Wise. In the whole Kingdom she is the only one who can perform the tricky operation of carrying into the next position. Merchants found the algorithm very sophisticated and they asked you (the ACMers) to help them. Can you write a program that would perform the rounding according to the King’s order? Input Specification: The first line contains a single number to round up — the integer part (a non-empty set of decimal digits that do not start with 0 — with the exception of a case when the set consists of a single digit — in this case 0 can go first), then follows character «.» (a dot), and then follows the fractional part (any non-empty set of decimal digits). The number's length does not exceed 1000 characters, including the dot. There are no other characters in the input data. Output Specification: If the last number of the integer part is not equal to 9, print the rounded-up number without leading zeroes. Otherwise, print the message "GOTO Vasilisa." (without the quotes). Demo Input: ['0.0\n', '1.49\n', '1.50\n', '2.71828182845904523536\n', '3.14159265358979323846\n', '12345678901234567890.1\n', '123456789123456789.999\n'] Demo Output: ['0', '1', '2', '3', '3', '12345678901234567890', 'GOTO Vasilisa.'] Note: none
```python n=float(input()) s=int(n) a=n-s if n%10==9: print('GOTO Vasilisa.') else: if a<0.5: print(s) else: print(s+1) ```
0
34
C
Page Numbers
PROGRAMMING
1,300
[ "expression parsing", "implementation", "sortings", "strings" ]
C. Page Numbers
2
256
«Bersoft» company is working on a new version of its most popular text editor — Bord 2010. Bord, like many other text editors, should be able to print out multipage documents. A user keys a sequence of the document page numbers that he wants to print out (separates them with a comma, without spaces). Your task is to write a part of the program, responsible for «standardization» of this sequence. Your program gets the sequence, keyed by the user, as input. The program should output this sequence in format *l*1-*r*1,*l*2-*r*2,...,*l**k*-*r**k*, where *r**i*<=+<=1<=&lt;<=*l**i*<=+<=1 for all *i* from 1 to *k*<=-<=1, and *l**i*<=≤<=*r**i*. The new sequence should contain all the page numbers, keyed by the user, and nothing else. If some page number appears in the input sequence several times, its appearances, starting from the second one, should be ignored. If for some element *i* from the new sequence *l**i*<==<=*r**i*, this element should be output as *l**i*, and not as «*l**i*<=-<=*l**i*». For example, sequence 1,2,3,1,1,2,6,6,2 should be output as 1-3,6.
The only line contains the sequence, keyed by the user. The sequence contains at least one and at most 100 positive integer numbers. It's guaranteed, that this sequence consists of positive integer numbers, not exceeding 1000, separated with a comma, doesn't contain any other characters, apart from digits and commas, can't end with a comma, and the numbers don't contain leading zeroes. Also it doesn't start with a comma or contain more than one comma in a row.
Output the sequence in the required format.
[ "1,2,3,1,1,2,6,6,2\n", "3,2,1\n", "30,20,10\n" ]
[ "1-3,6\n", "1-3\n", "10,20,30\n" ]
none
1,500
[ { "input": "1,2,3,1,1,2,6,6,2", "output": "1-3,6" }, { "input": "3,2,1", "output": "1-3" }, { "input": "30,20,10", "output": "10,20,30" }, { "input": "826,747,849,687,437", "output": "437,687,747,826,849" }, { "input": "999,999,993,969,999", "output": "969,993,999" }, { "input": "4,24,6,1,15", "output": "1,4,6,15,24" }, { "input": "511,32", "output": "32,511" }, { "input": "907,452,355", "output": "355,452,907" }, { "input": "303,872,764,401", "output": "303,401,764,872" }, { "input": "684,698,429,694,956,812,594,170,937,764", "output": "170,429,594,684,694,698,764,812,937,956" }, { "input": "646,840,437,946,640,564,936,917,487,752,844,734,468,969,674,646,728,642,514,695", "output": "437,468,487,514,564,640,642,646,674,695,728,734,752,840,844,917,936,946,969" }, { "input": "996,999,998,984,989,1000,996,993,1000,983,992,999,999,1000,979,992,987,1000,996,1000,1000,989,981,996,995,999,999,989,999,1000", "output": "979,981,983-984,987,989,992-993,995-996,998-1000" }, { "input": "93,27,28,4,5,78,59,24,19,134,31,128,118,36,90,32,32,1,44,32,33,13,31,10,12,25,38,50,25,12,4,22,28,53,48,83,4,25,57,31,71,24,8,7,28,86,23,80,101,58", "output": "1,4-5,7-8,10,12-13,19,22-25,27-28,31-33,36,38,44,48,50,53,57-59,71,78,80,83,86,90,93,101,118,128,134" }, { "input": "1000,1000,1000,1000,1000,998,998,1000,1000,1000,1000,999,999,1000,1000,1000,999,1000,997,999,997,1000,999,998,1000,999,1000,1000,1000,999,1000,999,999,1000,1000,999,1000,999,1000,1000,998,1000,1000,1000,998,998,1000,1000,999,1000,1000,1000,1000,1000,1000,1000,998,1000,1000,1000,999,1000,1000,999,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,998,1000,1000,1000,998,1000,1000,998,1000,999,1000,1000,1000,1000", "output": "997-1000" }, { "input": "4,4,21,6,5,3,13,2,6,1,3,4,1,3,1,9,11,1,6,17,4,5,20,4,1,9,5,11,3,4,14,1,3,3,1,4,3,5,27,1,1,2,10,7,11,4,19,7,11,6,11,13,3,1,10,7,2,1,16,1,9,4,29,13,2,12,14,2,21,1,9,8,26,12,12,5,2,14,7,8,8,8,9,4,12,2,6,6,7,16,8,14,2,10,20,15,3,7,4", "output": "1-17,19-21,26-27,29" }, { "input": "713,572,318,890,577,657,646,146,373,783,392,229,455,871,20,593,573,336,26,381,280,916,907,732,820,713,111,840,570,446,184,711,481,399,788,647,492,15,40,530,549,506,719,782,126,20,778,996,712,761,9,74,812,418,488,175,103,585,900,3,604,521,109,513,145,708,990,361,682,827,791,22,596,780,596,385,450,643,158,496,876,975,319,783,654,895,891,361,397,81,682,899,347,623,809,557,435,279,513,438", "output": "3,9,15,20,22,26,40,74,81,103,109,111,126,145-146,158,175,184,229,279-280,318-319,336,347,361,373,381,385,392,397,399,418,435,438,446,450,455,481,488,492,496,506,513,521,530,549,557,570,572-573,577,585,593,596,604,623,643,646-647,654,657,682,708,711-713,719,732,761,778,780,782-783,788,791,809,812,820,827,840,871,876,890-891,895,899-900,907,916,975,990,996" }, { "input": "31,75,86,68,111,27,22,22,26,30,54,163,107,75,160,122,14,23,17,26,27,20,43,58,59,71,21,148,9,32,43,91,133,286,132,70,90,156,84,14,77,93,23,18,13,72,18,131,33,28,72,175,30,86,249,20,14,208,28,57,63,199,6,10,24,30,62,267,43,479,60,28,138,1,45,3,19,47,7,166,116,117,50,140,28,14,95,85,93,43,61,15,2,70,10,51,7,95,9,25", "output": "1-3,6-7,9-10,13-15,17-28,30-33,43,45,47,50-51,54,57-63,68,70-72,75,77,84-86,90-91,93,95,107,111,116-117,122,131-133,138,140,148,156,160,163,166,175,199,208,249,267,286,479" }, { "input": "896,898,967,979,973,709,961,968,806,967,896,967,826,975,936,903,986,856,851,931,852,971,786,837,949,978,686,936,952,909,965,749,908,916,943,973,983,975,939,886,964,928,960,976,907,788,994,773,949,871,947,980,945,985,726,981,887,943,907,990,931,874,840,867,948,951,961,904,888,901,976,967,994,921,828,970,972,722,755,970,860,855,914,869,714,899,969,978,898,862,642,939,904,936,819,934,884,983,955,964", "output": "642,686,709,714,722,726,749,755,773,786,788,806,819,826,828,837,840,851-852,855-856,860,862,867,869,871,874,884,886-888,896,898-899,901,903-904,907-909,914,916,921,928,931,934,936,939,943,945,947-949,951-952,955,960-961,964-965,967-973,975-976,978-981,983,985-986,990,994" }, { "input": "994,927,872,970,815,986,952,996,965,1000,877,986,978,999,950,990,936,997,993,960,921,860,895,869,943,998,983,968,973,953,999,990,995,871,853,979,973,963,953,938,997,989,993,964,960,973,946,975,1000,962,920,746,989,957,904,965,920,979,966,961,1000,993,975,952,846,971,991,979,985,969,984,973,956,1000,952,778,983,974,956,927,995,997,980,997,1000,970,960,970,988,983,947,904,935,972,1000,863,992,996,932,967", "output": "746,778,815,846,853,860,863,869,871-872,877,895,904,920-921,927,932,935-936,938,943,946-947,950,952-953,956-957,960-975,978-980,983-986,988-1000" }, { "input": "48,108,63,21,27,8,49,21,75,8,24,42,149,18,8,28,21,18,25,35,59,70,59,33,40,1,67,34,120,82,4,115,72,87,3,15,15,63,37,12,40,27,83,14,38,20,14,58,93,10,31,3,39,6,197,77,54,16,31,146,9,49,14,8,77,82,5,11,80,116,8,61,50,24,7,103,29,11,3,3,1,12,46,24,21,131,39,29,36,2,107,40,16,99,31,41,29,48,17,17", "output": "1-12,14-18,20-21,24-25,27-29,31,33-42,46,48-50,54,58-59,61,63,67,70,72,75,77,80,82-83,87,93,99,103,107-108,115-116,120,131,146,149,197" }, { "input": "744,359,230,586,944,442", "output": "230,359,442,586,744,944" }, { "input": "1", "output": "1" }, { "input": "2", "output": "2" }, { "input": "37", "output": "37" }, { "input": "999", "output": "999" }, { "input": "1000", "output": "1000" } ]
1,660,416,461
2,147,483,647
Python 3
OK
TESTS
26
92
134,860,800
from functools import lru_cache from collections import defaultdict, deque from heapq import heappush, heappop def solution(): arr = list(map(int, input().split(','))) arr = list(sorted(set(arr))) res = [] left = arr[0] right = left for val in arr[1:] + [float("inf")]: if val == right+1: right += 1 continue if right > left: res.append(str(left) + "-" + str(right)) else: res.append(str(left)) left = val right = left print(",".join(res)) import sys import threading sys.setrecursionlimit(1 << 30) threading.stack_size(1 << 27) thread = threading.Thread(target=solution) thread.start(); thread.join() #solution() #a, b = map(int, input().split()) #arr = list(map(int, input().split()))
Title: Page Numbers Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: «Bersoft» company is working on a new version of its most popular text editor — Bord 2010. Bord, like many other text editors, should be able to print out multipage documents. A user keys a sequence of the document page numbers that he wants to print out (separates them with a comma, without spaces). Your task is to write a part of the program, responsible for «standardization» of this sequence. Your program gets the sequence, keyed by the user, as input. The program should output this sequence in format *l*1-*r*1,*l*2-*r*2,...,*l**k*-*r**k*, where *r**i*<=+<=1<=&lt;<=*l**i*<=+<=1 for all *i* from 1 to *k*<=-<=1, and *l**i*<=≤<=*r**i*. The new sequence should contain all the page numbers, keyed by the user, and nothing else. If some page number appears in the input sequence several times, its appearances, starting from the second one, should be ignored. If for some element *i* from the new sequence *l**i*<==<=*r**i*, this element should be output as *l**i*, and not as «*l**i*<=-<=*l**i*». For example, sequence 1,2,3,1,1,2,6,6,2 should be output as 1-3,6. Input Specification: The only line contains the sequence, keyed by the user. The sequence contains at least one and at most 100 positive integer numbers. It's guaranteed, that this sequence consists of positive integer numbers, not exceeding 1000, separated with a comma, doesn't contain any other characters, apart from digits and commas, can't end with a comma, and the numbers don't contain leading zeroes. Also it doesn't start with a comma or contain more than one comma in a row. Output Specification: Output the sequence in the required format. Demo Input: ['1,2,3,1,1,2,6,6,2\n', '3,2,1\n', '30,20,10\n'] Demo Output: ['1-3,6\n', '1-3\n', '10,20,30\n'] Note: none
```python from functools import lru_cache from collections import defaultdict, deque from heapq import heappush, heappop def solution(): arr = list(map(int, input().split(','))) arr = list(sorted(set(arr))) res = [] left = arr[0] right = left for val in arr[1:] + [float("inf")]: if val == right+1: right += 1 continue if right > left: res.append(str(left) + "-" + str(right)) else: res.append(str(left)) left = val right = left print(",".join(res)) import sys import threading sys.setrecursionlimit(1 << 30) threading.stack_size(1 << 27) thread = threading.Thread(target=solution) thread.start(); thread.join() #solution() #a, b = map(int, input().split()) #arr = list(map(int, input().split())) ```
3.725802
637
A
Voting for Photos
PROGRAMMING
1,000
[ "*special", "constructive algorithms", "implementation" ]
null
null
After celebrating the midcourse the students of one of the faculties of the Berland State University decided to conduct a vote for the best photo. They published the photos in the social network and agreed on the rules to choose a winner: the photo which gets most likes wins. If multiple photoes get most likes, the winner is the photo that gets this number first. Help guys determine the winner photo by the records of likes.
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the total likes to the published photoes. The second line contains *n* positive integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1<=000<=000), where *a**i* is the identifier of the photo which got the *i*-th like.
Print the identifier of the photo which won the elections.
[ "5\n1 3 2 2 1\n", "9\n100 200 300 200 100 300 300 100 200\n" ]
[ "2\n", "300\n" ]
In the first test sample the photo with id 1 got two likes (first and fifth), photo with id 2 got two likes (third and fourth), and photo with id 3 got one like (second). Thus, the winner is the photo with identifier 2, as it got: - more likes than the photo with id 3; - as many likes as the photo with id 1, but the photo with the identifier 2 got its second like earlier.
500
[ { "input": "5\n1 3 2 2 1", "output": "2" }, { "input": "9\n100 200 300 200 100 300 300 100 200", "output": "300" }, { "input": "1\n5", "output": "5" }, { "input": "1\n1000000", "output": "1000000" }, { "input": "5\n1 3 4 2 2", "output": "2" }, { "input": "10\n2 1 2 3 1 5 8 7 4 8", "output": "2" }, { "input": "7\n1 1 2 2 2 3 3", "output": "2" }, { "input": "12\n2 3 1 2 3 3 3 2 1 1 2 1", "output": "3" }, { "input": "15\n7 6 8 4 9 8 7 3 4 6 7 5 4 2 8", "output": "7" }, { "input": "15\n100 200 300 500 300 400 600 300 100 200 400 300 600 200 100", "output": "300" }, { "input": "10\n677171 677171 677171 677171 672280 677171 677171 672280 672280 677171", "output": "677171" }, { "input": "15\n137419 137419 531977 438949 137419 438949 438949 137419 438949 531977 531977 531977 438949 438949 438949", "output": "438949" }, { "input": "20\n474463 517819 640039 640039 640039 640039 474463 474463 474463 640039 640039 474463 474463 425567 474463 517819 640039 474463 517819 517819", "output": "474463" }, { "input": "40\n119631 119631 772776 119631 658661 119631 108862 524470 125132 700668 69196 844949 154577 108862 108862 108862 597344 940938 989698 108862 154577 69196 125132 687080 940938 125132 69196 69196 125132 566152 953083 406319 380068 119631 154577 125132 413984 69196 154577 154577", "output": "108862" }, { "input": "5\n1 1 1000000 1000000 1000000", "output": "1000000" }, { "input": "5\n1000000 1 1 1000000 1", "output": "1" }, { "input": "10\n1 1 1000000 1000000 1000000 1 1000000 1 1 1000000", "output": "1" }, { "input": "8\n1000000 1000000 1 1 1 1000000 1000000 1", "output": "1000000" }, { "input": "1\n1", "output": "1" }, { "input": "2\n1 1", "output": "1" }, { "input": "2\n1000000 1", "output": "1000000" }, { "input": "2\n1 1000000", "output": "1" }, { "input": "2\n1000000 1000000", "output": "1000000" }, { "input": "3\n1 1 1", "output": "1" }, { "input": "3\n1 1 2", "output": "1" }, { "input": "3\n1 2 1", "output": "1" }, { "input": "3\n2 1 1", "output": "1" }, { "input": "4\n1 1000000 1000000 1", "output": "1000000" } ]
1,590,313,994
2,147,483,647
Python 3
OK
TESTS
65
124
307,200
n=int(input()) a=list(map(int,input().split())) d={} ans=a[0] count=1 for i in range(n): if a[i] not in d: d[a[i]]=1 else: d[a[i]]+=1 if a[i]==ans: count+=1 elif d[a[i]]>count: ans=a[i] count=d[a[i]] print(ans)
Title: Voting for Photos Time Limit: None seconds Memory Limit: None megabytes Problem Description: After celebrating the midcourse the students of one of the faculties of the Berland State University decided to conduct a vote for the best photo. They published the photos in the social network and agreed on the rules to choose a winner: the photo which gets most likes wins. If multiple photoes get most likes, the winner is the photo that gets this number first. Help guys determine the winner photo by the records of likes. Input Specification: The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the total likes to the published photoes. The second line contains *n* positive integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1<=000<=000), where *a**i* is the identifier of the photo which got the *i*-th like. Output Specification: Print the identifier of the photo which won the elections. Demo Input: ['5\n1 3 2 2 1\n', '9\n100 200 300 200 100 300 300 100 200\n'] Demo Output: ['2\n', '300\n'] Note: In the first test sample the photo with id 1 got two likes (first and fifth), photo with id 2 got two likes (third and fourth), and photo with id 3 got one like (second). Thus, the winner is the photo with identifier 2, as it got: - more likes than the photo with id 3; - as many likes as the photo with id 1, but the photo with the identifier 2 got its second like earlier.
```python n=int(input()) a=list(map(int,input().split())) d={} ans=a[0] count=1 for i in range(n): if a[i] not in d: d[a[i]]=1 else: d[a[i]]+=1 if a[i]==ans: count+=1 elif d[a[i]]>count: ans=a[i] count=d[a[i]] print(ans) ```
3
384
A
Coder
PROGRAMMING
800
[ "implementation" ]
null
null
Iahub likes chess very much. He even invented a new chess piece named Coder. A Coder can move (and attack) one square horizontally or vertically. More precisely, if the Coder is located at position (*x*,<=*y*), he can move to (or attack) positions (*x*<=+<=1,<=*y*), (*x*–1,<=*y*), (*x*,<=*y*<=+<=1) and (*x*,<=*y*–1). Iahub wants to know how many Coders can be placed on an *n*<=×<=*n* chessboard, so that no Coder attacks any other Coder.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=1000).
On the first line print an integer, the maximum number of Coders that can be placed on the chessboard. On each of the next *n* lines print *n* characters, describing the configuration of the Coders. For an empty cell print an '.', and for a Coder print a 'C'. If there are multiple correct answers, you can print any.
[ "2\n" ]
[ "2\nC.\n.C\n" ]
none
500
[ { "input": "2", "output": "2\nC.\n.C" }, { "input": "3", "output": "5\nC.C\n.C.\nC.C" }, { "input": "4", "output": "8\nC.C.\n.C.C\nC.C.\n.C.C" }, { "input": "10", "output": "50\nC.C.C.C.C.\n.C.C.C.C.C\nC.C.C.C.C.\n.C.C.C.C.C\nC.C.C.C.C.\n.C.C.C.C.C\nC.C.C.C.C.\n.C.C.C.C.C\nC.C.C.C.C.\n.C.C.C.C.C" }, { "input": "15", "output": "113\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C" }, { "input": "100", "output": "5000\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.\n.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.\n.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..." }, { "input": "101", "output": "5101\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..." }, { "input": "500", "output": "125000\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.\n...." }, { "input": "501", "output": "125501\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C\n..." }, { "input": "755", "output": "285013\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..." }, { "input": "888", "output": "394272\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..." }, { "input": "998", "output": "498002\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..." }, { "input": "999", "output": "499001\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..." }, { "input": "1000", "output": "500000\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..." }, { "input": "1", "output": "1\nC" } ]
1,569,415,234
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
93
0
def main(): n = int(input()) ans = 0 crow1 = n // 2 row1 = 'C.' * (n // 2) if n % 2 == 1: row1 = row1 + 'C' crow1 += 1 crow2 = n // 2 row2 = '.C' * (n // 2) if n % 2 == 1: row1 = row1 + '.' i = 0 out = [] while i < n: out.append(row1) ans += crow1 i += 1 if i < n: out.append(row2) ans += crow2 i += 1 print(ans) print('\n'.join(out)) if __name__ == "__main__": main()
Title: Coder Time Limit: None seconds Memory Limit: None megabytes Problem Description: Iahub likes chess very much. He even invented a new chess piece named Coder. A Coder can move (and attack) one square horizontally or vertically. More precisely, if the Coder is located at position (*x*,<=*y*), he can move to (or attack) positions (*x*<=+<=1,<=*y*), (*x*–1,<=*y*), (*x*,<=*y*<=+<=1) and (*x*,<=*y*–1). Iahub wants to know how many Coders can be placed on an *n*<=×<=*n* chessboard, so that no Coder attacks any other Coder. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=1000). Output Specification: On the first line print an integer, the maximum number of Coders that can be placed on the chessboard. On each of the next *n* lines print *n* characters, describing the configuration of the Coders. For an empty cell print an '.', and for a Coder print a 'C'. If there are multiple correct answers, you can print any. Demo Input: ['2\n'] Demo Output: ['2\nC.\n.C\n'] Note: none
```python def main(): n = int(input()) ans = 0 crow1 = n // 2 row1 = 'C.' * (n // 2) if n % 2 == 1: row1 = row1 + 'C' crow1 += 1 crow2 = n // 2 row2 = '.C' * (n // 2) if n % 2 == 1: row1 = row1 + '.' i = 0 out = [] while i < n: out.append(row1) ans += crow1 i += 1 if i < n: out.append(row2) ans += crow2 i += 1 print(ans) print('\n'.join(out)) if __name__ == "__main__": main() ```
0
124
A
The number of positions
PROGRAMMING
1,000
[ "math" ]
null
null
Petr stands in line of *n* people, but he doesn't know exactly which position he occupies. He can say that there are no less than *a* people standing in front of him and no more than *b* people standing behind him. Find the number of different positions Petr can occupy.
The only line contains three integers *n*, *a* and *b* (0<=≤<=*a*,<=*b*<=&lt;<=*n*<=≤<=100).
Print the single number — the number of the sought positions.
[ "3 1 1\n", "5 2 3\n" ]
[ "2\n", "3\n" ]
The possible positions in the first sample are: 2 and 3 (if we number the positions starting with 1). In the second sample they are 3, 4 and 5.
500
[ { "input": "3 1 1", "output": "2" }, { "input": "5 2 3", "output": "3" }, { "input": "5 4 0", "output": "1" }, { "input": "6 5 5", "output": "1" }, { "input": "9 4 3", "output": "4" }, { "input": "11 4 6", "output": "7" }, { "input": "13 8 7", "output": "5" }, { "input": "14 5 5", "output": "6" }, { "input": "16 6 9", "output": "10" }, { "input": "20 13 17", "output": "7" }, { "input": "22 4 8", "output": "9" }, { "input": "23 8 14", "output": "15" }, { "input": "26 18 22", "output": "8" }, { "input": "28 6 1", "output": "2" }, { "input": "29 5 23", "output": "24" }, { "input": "32 27 15", "output": "5" }, { "input": "33 11 5", "output": "6" }, { "input": "37 21 15", "output": "16" }, { "input": "39 34 33", "output": "5" }, { "input": "41 27 11", "output": "12" }, { "input": "42 25 16", "output": "17" }, { "input": "45 7 43", "output": "38" }, { "input": "47 16 17", "output": "18" }, { "input": "49 11 37", "output": "38" }, { "input": "51 38 39", "output": "13" }, { "input": "52 29 7", "output": "8" }, { "input": "56 43 12", "output": "13" }, { "input": "58 57 28", "output": "1" }, { "input": "59 12 39", "output": "40" }, { "input": "62 9 52", "output": "53" }, { "input": "63 29 44", "output": "34" }, { "input": "65 30 22", "output": "23" }, { "input": "66 27 38", "output": "39" }, { "input": "71 33 53", "output": "38" }, { "input": "73 14 12", "output": "13" }, { "input": "73 37 35", "output": "36" }, { "input": "76 69 44", "output": "7" }, { "input": "79 25 20", "output": "21" }, { "input": "81 60 20", "output": "21" }, { "input": "81 79 14", "output": "2" }, { "input": "84 0 42", "output": "43" }, { "input": "88 79 8", "output": "9" }, { "input": "90 76 59", "output": "14" }, { "input": "92 2 22", "output": "23" }, { "input": "94 5 88", "output": "89" }, { "input": "94 62 48", "output": "32" }, { "input": "96 22 72", "output": "73" }, { "input": "100 11 88", "output": "89" }, { "input": "100 81 91", "output": "19" }, { "input": "1 0 0", "output": "1" } ]
1,643,786,697
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
2
92
0
c=[int(s) for s in input().split()] b=[] for i in range(2): a=[int(s) for s in range(1,c[0]+1)] for j in range(c[i+1],c[0]): b.append(a[j]) print(len(set(b)))
Title: The number of positions Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petr stands in line of *n* people, but he doesn't know exactly which position he occupies. He can say that there are no less than *a* people standing in front of him and no more than *b* people standing behind him. Find the number of different positions Petr can occupy. Input Specification: The only line contains three integers *n*, *a* and *b* (0<=≤<=*a*,<=*b*<=&lt;<=*n*<=≤<=100). Output Specification: Print the single number — the number of the sought positions. Demo Input: ['3 1 1\n', '5 2 3\n'] Demo Output: ['2\n', '3\n'] Note: The possible positions in the first sample are: 2 and 3 (if we number the positions starting with 1). In the second sample they are 3, 4 and 5.
```python c=[int(s) for s in input().split()] b=[] for i in range(2): a=[int(s) for s in range(1,c[0]+1)] for j in range(c[i+1],c[0]): b.append(a[j]) print(len(set(b))) ```
0
499
B
Lecture
PROGRAMMING
1,000
[ "implementation", "strings" ]
null
null
You have a new professor of graph theory and he speaks very quickly. You come up with the following plan to keep up with his lecture and make notes. You know two languages, and the professor is giving the lecture in the first one. The words in both languages consist of lowercase English characters, each language consists of several words. For each language, all words are distinct, i.e. they are spelled differently. Moreover, the words of these languages have a one-to-one correspondence, that is, for each word in each language, there exists exactly one word in the other language having has the same meaning. You can write down every word the professor says in either the first language or the second language. Of course, during the lecture you write down each word in the language in which the word is shorter. In case of equal lengths of the corresponding words you prefer the word of the first language. You are given the text of the lecture the professor is going to read. Find out how the lecture will be recorded in your notes.
The first line contains two integers, *n* and *m* (1<=≤<=*n*<=≤<=3000, 1<=≤<=*m*<=≤<=3000) — the number of words in the professor's lecture and the number of words in each of these languages. The following *m* lines contain the words. The *i*-th line contains two strings *a**i*, *b**i* meaning that the word *a**i* belongs to the first language, the word *b**i* belongs to the second language, and these two words have the same meaning. It is guaranteed that no word occurs in both languages, and each word occurs in its language exactly once. The next line contains *n* space-separated strings *c*1,<=*c*2,<=...,<=*c**n* — the text of the lecture. It is guaranteed that each of the strings *c**i* belongs to the set of strings {*a*1,<=*a*2,<=... *a**m*}. All the strings in the input are non-empty, each consisting of no more than 10 lowercase English letters.
Output exactly *n* words: how you will record the lecture in your notebook. Output the words of the lecture in the same order as in the input.
[ "4 3\ncodeforces codesecrof\ncontest round\nletter message\ncodeforces contest letter contest\n", "5 3\njoll wuqrd\neuzf un\nhbnyiyc rsoqqveh\nhbnyiyc joll joll euzf joll\n" ]
[ "codeforces round letter round\n", "hbnyiyc joll joll un joll\n" ]
none
500
[ { "input": "4 3\ncodeforces codesecrof\ncontest round\nletter message\ncodeforces contest letter contest", "output": "codeforces round letter round" }, { "input": "5 3\njoll wuqrd\neuzf un\nhbnyiyc rsoqqveh\nhbnyiyc joll joll euzf joll", "output": "hbnyiyc joll joll un joll" }, { "input": "5 5\nqueyqj f\nb vn\ntabzvk qpfzoqx\nytnyonoc hnxsd\njpggvr lchinjmt\nqueyqj jpggvr b ytnyonoc b", "output": "f jpggvr b hnxsd b" }, { "input": "10 22\nazbrll oen\ngh vdyayei\njphveblohx vfglv\nmfyxib jepnvhcuwo\nrpikazqj uam\nl rx\nokjenof qpnyi\nj tixqrno\nod itozmfct\nikkdxmirx ev\nqexftojc p\nkdazb zjs\nmbk ykvqjrxaxu\nhbcwhouzq pwt\nmirpsz zfaegpl\nuhkkvcj rlvwj\nef iqnnwtolrc\npjzfcpmeag ecdayth\nsa qcthz\ncbfhfxi qrnbvdryz\nwqel tj\natx smkbid\nef hbcwhouzq cbfhfxi hbcwhouzq mirpsz cbfhfxi cbfhfxi okjenof pjzfcpmeag kdazb", "output": "ef pwt cbfhfxi pwt mirpsz cbfhfxi cbfhfxi qpnyi ecdayth zjs" }, { "input": "1 1\namit am\namit", "output": "am" }, { "input": "1 1\na c\na", "output": "a" } ]
1,663,856,070
2,147,483,647
PyPy 3-64
OK
TESTS
37
187
7,680,000
n, m = map(int, input().split()) mp = dict() for i in range(m): a, b = map(str, input().split()) mp[a] = b ans = [] c = list(map(str, input().split())) for i in c: if len(i) <= len(mp[i]): ans.append(i) else: ans.append(mp[i]) print(*ans)
Title: Lecture Time Limit: None seconds Memory Limit: None megabytes Problem Description: You have a new professor of graph theory and he speaks very quickly. You come up with the following plan to keep up with his lecture and make notes. You know two languages, and the professor is giving the lecture in the first one. The words in both languages consist of lowercase English characters, each language consists of several words. For each language, all words are distinct, i.e. they are spelled differently. Moreover, the words of these languages have a one-to-one correspondence, that is, for each word in each language, there exists exactly one word in the other language having has the same meaning. You can write down every word the professor says in either the first language or the second language. Of course, during the lecture you write down each word in the language in which the word is shorter. In case of equal lengths of the corresponding words you prefer the word of the first language. You are given the text of the lecture the professor is going to read. Find out how the lecture will be recorded in your notes. Input Specification: The first line contains two integers, *n* and *m* (1<=≤<=*n*<=≤<=3000, 1<=≤<=*m*<=≤<=3000) — the number of words in the professor's lecture and the number of words in each of these languages. The following *m* lines contain the words. The *i*-th line contains two strings *a**i*, *b**i* meaning that the word *a**i* belongs to the first language, the word *b**i* belongs to the second language, and these two words have the same meaning. It is guaranteed that no word occurs in both languages, and each word occurs in its language exactly once. The next line contains *n* space-separated strings *c*1,<=*c*2,<=...,<=*c**n* — the text of the lecture. It is guaranteed that each of the strings *c**i* belongs to the set of strings {*a*1,<=*a*2,<=... *a**m*}. All the strings in the input are non-empty, each consisting of no more than 10 lowercase English letters. Output Specification: Output exactly *n* words: how you will record the lecture in your notebook. Output the words of the lecture in the same order as in the input. Demo Input: ['4 3\ncodeforces codesecrof\ncontest round\nletter message\ncodeforces contest letter contest\n', '5 3\njoll wuqrd\neuzf un\nhbnyiyc rsoqqveh\nhbnyiyc joll joll euzf joll\n'] Demo Output: ['codeforces round letter round\n', 'hbnyiyc joll joll un joll\n'] Note: none
```python n, m = map(int, input().split()) mp = dict() for i in range(m): a, b = map(str, input().split()) mp[a] = b ans = [] c = list(map(str, input().split())) for i in c: if len(i) <= len(mp[i]): ans.append(i) else: ans.append(mp[i]) print(*ans) ```
3
914
B
Conan and Agasa play a Card Game
PROGRAMMING
1,200
[ "games", "greedy", "implementation" ]
null
null
Edogawa Conan got tired of solving cases, and invited his friend, Professor Agasa, over. They decided to play a game of cards. Conan has *n* cards, and the *i*-th card has a number *a**i* written on it. They take turns playing, starting with Conan. In each turn, the player chooses a card and removes it. Also, he removes all cards having a number strictly lesser than the number on the chosen card. Formally, if the player chooses the *i*-th card, he removes that card and removes the *j*-th card for all *j* such that *a**j*<=&lt;<=*a**i*. A player loses if he cannot make a move on his turn, that is, he loses if there are no cards left. Predict the outcome of the game, assuming both players play optimally.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=105) — the number of cards Conan has. The next line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=105), where *a**i* is the number on the *i*-th card.
If Conan wins, print "Conan" (without quotes), otherwise print "Agasa" (without quotes).
[ "3\n4 5 7\n", "2\n1 1\n" ]
[ "Conan\n", "Agasa\n" ]
In the first example, Conan can just choose the card having number 7 on it and hence remove all the cards. After that, there are no cards left on Agasa's turn. In the second example, no matter which card Conan chooses, there will be one one card left, which Agasa can choose. After that, there are no cards left when it becomes Conan's turn again.
1,000
[ { "input": "3\n4 5 7", "output": "Conan" }, { "input": "2\n1 1", "output": "Agasa" }, { "input": "10\n38282 53699 38282 38282 38282 38282 38282 38282 38282 38282", "output": "Conan" }, { "input": "10\n50165 50165 50165 50165 50165 50165 50165 50165 50165 50165", "output": "Agasa" }, { "input": "10\n83176 83176 83176 23495 83176 8196 83176 23495 83176 83176", "output": "Conan" }, { "input": "10\n32093 36846 32093 32093 36846 36846 36846 36846 36846 36846", "output": "Conan" }, { "input": "3\n1 2 3", "output": "Conan" }, { "input": "4\n2 3 4 5", "output": "Conan" }, { "input": "10\n30757 30757 33046 41744 39918 39914 41744 39914 33046 33046", "output": "Conan" }, { "input": "10\n50096 50096 50096 50096 50096 50096 28505 50096 50096 50096", "output": "Conan" }, { "input": "10\n54842 54842 54842 54842 57983 54842 54842 57983 57983 54842", "output": "Conan" }, { "input": "10\n87900 87900 5761 87900 87900 87900 5761 87900 87900 87900", "output": "Agasa" }, { "input": "10\n53335 35239 26741 35239 35239 26741 35239 35239 53335 35239", "output": "Agasa" }, { "input": "10\n75994 64716 75994 64716 75994 75994 56304 64716 56304 64716", "output": "Agasa" }, { "input": "1\n1", "output": "Conan" }, { "input": "5\n2 2 1 1 1", "output": "Conan" }, { "input": "5\n1 4 4 5 5", "output": "Conan" }, { "input": "3\n1 3 3", "output": "Conan" }, { "input": "3\n2 2 2", "output": "Conan" }, { "input": "5\n1 1 1 2 2", "output": "Conan" }, { "input": "4\n1 2 1 2", "output": "Agasa" }, { "input": "7\n7 7 7 7 6 6 6", "output": "Conan" }, { "input": "3\n2 3 3", "output": "Conan" }, { "input": "3\n1 1 100000", "output": "Conan" }, { "input": "1\n100000", "output": "Conan" }, { "input": "5\n3 3 3 4 4", "output": "Conan" }, { "input": "3\n1 2 2", "output": "Conan" }, { "input": "3\n4 4 5", "output": "Conan" }, { "input": "1\n2", "output": "Conan" }, { "input": "3\n97 97 100", "output": "Conan" }, { "input": "5\n100000 100000 100000 1 1", "output": "Conan" }, { "input": "7\n7 7 6 6 5 5 4", "output": "Conan" }, { "input": "5\n100000 100000 100000 2 2", "output": "Conan" }, { "input": "4\n3 3 2 1", "output": "Conan" }, { "input": "1\n485", "output": "Conan" }, { "input": "3\n4 4 100000", "output": "Conan" }, { "input": "3\n1 1 2", "output": "Conan" }, { "input": "3\n1 1 1", "output": "Conan" }, { "input": "5\n1 1 2 2 2", "output": "Conan" } ]
1,680,635,457
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
10
77
7,577,600
from collections import Counter def solve(): n=int(input());a=sorted(list(map(int,input().split())));s=Counter(a) if s[max(s)]%2==1:print("Conan");return t=n-s[max(s)] if t%2==0:print("Agasa") else:print("Conan") solve()
Title: Conan and Agasa play a Card Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Edogawa Conan got tired of solving cases, and invited his friend, Professor Agasa, over. They decided to play a game of cards. Conan has *n* cards, and the *i*-th card has a number *a**i* written on it. They take turns playing, starting with Conan. In each turn, the player chooses a card and removes it. Also, he removes all cards having a number strictly lesser than the number on the chosen card. Formally, if the player chooses the *i*-th card, he removes that card and removes the *j*-th card for all *j* such that *a**j*<=&lt;<=*a**i*. A player loses if he cannot make a move on his turn, that is, he loses if there are no cards left. Predict the outcome of the game, assuming both players play optimally. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=105) — the number of cards Conan has. The next line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=105), where *a**i* is the number on the *i*-th card. Output Specification: If Conan wins, print "Conan" (without quotes), otherwise print "Agasa" (without quotes). Demo Input: ['3\n4 5 7\n', '2\n1 1\n'] Demo Output: ['Conan\n', 'Agasa\n'] Note: In the first example, Conan can just choose the card having number 7 on it and hence remove all the cards. After that, there are no cards left on Agasa's turn. In the second example, no matter which card Conan chooses, there will be one one card left, which Agasa can choose. After that, there are no cards left when it becomes Conan's turn again.
```python from collections import Counter def solve(): n=int(input());a=sorted(list(map(int,input().split())));s=Counter(a) if s[max(s)]%2==1:print("Conan");return t=n-s[max(s)] if t%2==0:print("Agasa") else:print("Conan") solve() ```
0
228
A
Is your horseshoe on the other hoof?
PROGRAMMING
800
[ "implementation" ]
null
null
Valera the Horse is going to the party with friends. He has been following the fashion trends for a while, and he knows that it is very popular to wear all horseshoes of different color. Valera has got four horseshoes left from the last year, but maybe some of them have the same color. In this case he needs to go to the store and buy some few more horseshoes, not to lose face in front of his stylish comrades. Fortunately, the store sells horseshoes of all colors under the sun and Valera has enough money to buy any four of them. However, in order to save the money, he would like to spend as little money as possible, so you need to help Valera and determine what is the minimum number of horseshoes he needs to buy to wear four horseshoes of different colors to a party.
The first line contains four space-separated integers *s*1,<=*s*2,<=*s*3,<=*s*4 (1<=≤<=*s*1,<=*s*2,<=*s*3,<=*s*4<=≤<=109) — the colors of horseshoes Valera has. Consider all possible colors indexed with integers.
Print a single integer — the minimum number of horseshoes Valera needs to buy.
[ "1 7 3 3\n", "7 7 7 7\n" ]
[ "1\n", "3\n" ]
none
500
[ { "input": "1 7 3 3", "output": "1" }, { "input": "7 7 7 7", "output": "3" }, { "input": "81170865 673572653 756938629 995577259", "output": "0" }, { "input": "3491663 217797045 522540872 715355328", "output": "0" }, { "input": "251590420 586975278 916631563 586975278", "output": "1" }, { "input": "259504825 377489979 588153796 377489979", "output": "1" }, { "input": "652588203 931100304 931100304 652588203", "output": "2" }, { "input": "391958720 651507265 391958720 651507265", "output": "2" }, { "input": "90793237 90793237 90793237 90793237", "output": "3" }, { "input": "551651653 551651653 551651653 551651653", "output": "3" }, { "input": "156630260 609654355 668943582 973622757", "output": "0" }, { "input": "17061017 110313588 434481173 796661222", "output": "0" }, { "input": "24975422 256716298 337790533 690960249", "output": "0" }, { "input": "255635360 732742923 798648949 883146723", "output": "0" }, { "input": "133315691 265159773 734556507 265159773", "output": "1" }, { "input": "28442865 741657755 978106882 978106882", "output": "1" }, { "input": "131245479 174845575 497483467 131245479", "output": "1" }, { "input": "139159884 616215581 958341883 616215581", "output": "1" }, { "input": "147784432 947653080 947653080 947653080", "output": "2" }, { "input": "94055790 756126496 756126496 94055790", "output": "2" }, { "input": "240458500 511952208 240458500 511952208", "output": "2" }, { "input": "681828506 972810624 972810624 681828506", "output": "2" }, { "input": "454961014 454961014 454961014 454961014", "output": "3" }, { "input": "915819430 915819430 915819430 915819430", "output": "3" }, { "input": "671645142 671645142 671645142 671645142", "output": "3" }, { "input": "132503558 132503558 132503558 132503558", "output": "3" }, { "input": "5 5 999999 6", "output": "1" }, { "input": "1 1 2 5", "output": "1" }, { "input": "2 1 2 3", "output": "1" }, { "input": "1 1 3 5", "output": "1" }, { "input": "1 1 3 3", "output": "2" }, { "input": "2 2 2 1", "output": "2" }, { "input": "3 1 1 1", "output": "2" }, { "input": "1 2 2 2", "output": "2" } ]
1,692,993,278
2,147,483,647
PyPy 3
OK
TESTS
34
156
0
x = list(map(int, input().split())) y=set(x) print(len(x)-len(y))
Title: Is your horseshoe on the other hoof? Time Limit: None seconds Memory Limit: None megabytes Problem Description: Valera the Horse is going to the party with friends. He has been following the fashion trends for a while, and he knows that it is very popular to wear all horseshoes of different color. Valera has got four horseshoes left from the last year, but maybe some of them have the same color. In this case he needs to go to the store and buy some few more horseshoes, not to lose face in front of his stylish comrades. Fortunately, the store sells horseshoes of all colors under the sun and Valera has enough money to buy any four of them. However, in order to save the money, he would like to spend as little money as possible, so you need to help Valera and determine what is the minimum number of horseshoes he needs to buy to wear four horseshoes of different colors to a party. Input Specification: The first line contains four space-separated integers *s*1,<=*s*2,<=*s*3,<=*s*4 (1<=≤<=*s*1,<=*s*2,<=*s*3,<=*s*4<=≤<=109) — the colors of horseshoes Valera has. Consider all possible colors indexed with integers. Output Specification: Print a single integer — the minimum number of horseshoes Valera needs to buy. Demo Input: ['1 7 3 3\n', '7 7 7 7\n'] Demo Output: ['1\n', '3\n'] Note: none
```python x = list(map(int, input().split())) y=set(x) print(len(x)-len(y)) ```
3
863
B
Kayaking
PROGRAMMING
1,500
[ "brute force", "greedy", "sortings" ]
null
null
Vadim is really keen on travelling. Recently he heard about kayaking activity near his town and became very excited about it, so he joined a party of kayakers. Now the party is ready to start its journey, but firstly they have to choose kayaks. There are 2·*n* people in the group (including Vadim), and they have exactly *n*<=-<=1 tandem kayaks (each of which, obviously, can carry two people) and 2 single kayaks. *i*-th person's weight is *w**i*, and weight is an important matter in kayaking — if the difference between the weights of two people that sit in the same tandem kayak is too large, then it can crash. And, of course, people want to distribute their seats in kayaks in order to minimize the chances that kayaks will crash. Formally, the instability of a single kayak is always 0, and the instability of a tandem kayak is the absolute difference between weights of the people that are in this kayak. Instability of the whole journey is the total instability of all kayaks. Help the party to determine minimum possible total instability!
The first line contains one number *n* (2<=≤<=*n*<=≤<=50). The second line contains 2·*n* integer numbers *w*1, *w*2, ..., *w*2*n*, where *w**i* is weight of person *i* (1<=≤<=*w**i*<=≤<=1000).
Print minimum possible total instability.
[ "2\n1 2 3 4\n", "4\n1 3 4 6 3 4 100 200\n" ]
[ "1\n", "5\n" ]
none
0
[ { "input": "2\n1 2 3 4", "output": "1" }, { "input": "4\n1 3 4 6 3 4 100 200", "output": "5" }, { "input": "3\n305 139 205 406 530 206", "output": "102" }, { "input": "3\n610 750 778 6 361 407", "output": "74" }, { "input": "5\n97 166 126 164 154 98 221 7 51 47", "output": "35" }, { "input": "50\n1 1 2 2 1 3 2 2 1 1 1 1 2 3 3 1 2 1 3 3 2 1 2 3 1 1 2 1 3 1 3 1 3 3 3 1 1 1 3 3 2 2 2 2 3 2 2 2 2 3 1 3 3 3 3 1 3 3 1 3 3 3 3 2 3 1 3 3 1 1 1 3 1 2 2 2 1 1 1 3 1 2 3 2 1 3 3 2 2 1 3 1 3 1 2 2 1 2 3 2", "output": "0" }, { "input": "50\n5 5 5 5 4 2 2 3 2 2 4 1 5 5 1 2 4 2 4 2 5 2 2 2 2 3 2 4 2 5 5 4 3 1 2 3 3 5 4 2 2 5 2 4 5 5 4 4 1 5 5 3 2 2 5 1 3 3 2 4 4 5 1 2 3 4 4 1 3 3 3 5 1 2 4 4 4 4 2 5 2 5 3 2 4 5 5 2 1 1 2 4 5 3 2 1 2 4 4 4", "output": "1" }, { "input": "50\n499 780 837 984 481 526 944 482 862 136 265 605 5 631 974 967 574 293 969 467 573 845 102 224 17 873 648 120 694 996 244 313 404 129 899 583 541 314 525 496 443 857 297 78 575 2 430 137 387 319 382 651 594 411 845 746 18 232 6 289 889 81 174 175 805 1000 799 950 475 713 951 685 729 925 262 447 139 217 788 514 658 572 784 185 112 636 10 251 621 218 210 89 597 553 430 532 264 11 160 476", "output": "368" }, { "input": "50\n873 838 288 87 889 364 720 410 565 651 577 356 740 99 549 592 994 385 777 435 486 118 887 440 749 533 356 790 413 681 267 496 475 317 88 660 374 186 61 437 729 860 880 538 277 301 667 180 60 393 955 540 896 241 362 146 74 680 734 767 851 337 751 860 542 735 444 793 340 259 495 903 743 961 964 966 87 275 22 776 368 701 835 732 810 735 267 988 352 647 924 183 1 924 217 944 322 252 758 597", "output": "393" }, { "input": "50\n297 787 34 268 439 629 600 398 425 833 721 908 830 636 64 509 420 647 499 675 427 599 396 119 798 742 577 355 22 847 389 574 766 453 196 772 808 261 106 844 726 975 173 992 874 89 775 616 678 52 69 591 181 573 258 381 665 301 589 379 362 146 790 842 765 100 229 916 938 97 340 793 758 177 736 396 247 562 571 92 923 861 165 748 345 703 431 930 101 761 862 595 505 393 126 846 431 103 596 21", "output": "387" }, { "input": "50\n721 631 587 746 692 406 583 90 388 16 161 948 921 70 387 426 39 398 517 724 879 377 906 502 359 950 798 408 846 718 911 845 57 886 9 668 537 632 344 762 19 193 658 447 870 173 98 156 592 519 183 539 274 393 962 615 551 626 148 183 769 763 829 120 796 761 14 744 537 231 696 284 581 688 611 826 703 145 224 600 965 613 791 275 984 375 402 281 851 580 992 8 816 454 35 532 347 250 242 637", "output": "376" }, { "input": "50\n849 475 37 120 754 183 758 374 543 198 896 691 11 607 198 343 761 660 239 669 628 259 223 182 216 158 20 565 454 884 137 923 156 22 310 77 267 707 582 169 120 308 439 309 59 152 206 696 210 177 296 887 559 22 154 553 142 247 491 692 473 572 461 206 532 319 503 164 328 365 541 366 300 392 486 257 863 432 877 404 520 69 418 99 519 239 374 927 601 103 226 316 423 219 240 26 455 101 184 61", "output": "351" }, { "input": "3\n1 2 10 11 100 100", "output": "1" }, { "input": "17\n814 744 145 886 751 1000 272 914 270 529 467 164 410 369 123 424 991 12 702 582 561 858 746 950 598 393 606 498 648 686 455 873 728 858", "output": "318" }, { "input": "45\n476 103 187 696 463 457 588 632 763 77 391 721 95 124 378 812 980 193 694 898 859 572 721 274 605 264 929 615 257 918 42 493 1 3 697 349 990 800 82 535 382 816 943 735 11 272 562 323 653 370 766 332 666 130 704 604 645 717 267 255 37 470 925 941 376 611 332 758 504 40 477 263 708 434 38 596 650 990 714 662 572 467 949 799 648 581 545 828 508 636", "output": "355" }, { "input": "2\n55 5 25 51", "output": "4" }, { "input": "25\n89 50 640 463 858 301 522 241 923 378 892 822 550 17 42 66 706 779 657 840 273 222 444 459 94 925 437 159 182 727 92 851 742 215 653 891 782 533 29 128 133 883 317 475 165 994 802 434 744 973", "output": "348" }, { "input": "4\n35 48 71 44 78 79 57 48", "output": "10" }, { "input": "3\n58 89 73 15 5 47", "output": "21" }, { "input": "2\n1 20 99 100", "output": "1" } ]
1,678,083,139
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
2
46
0
# -*- coding: utf-8 -*- def solve(): n = int(input()) n *= 2 a = list(map(int, input().split(' '))) ans = 0x3f3f3f3f for i in range(n): for jj in range(n): j = i + jj + 1 if j >= n: break b = [] for k in range(n): if k != i and k != j: b.append(a[k]) b.sort() res = 0 for k in range(n - 3): res += b[k + 1] - b[k] ans = min(ans, res) print(ans) def main(): t = 1 # t = int(input()) for i in range(t): solve() if __name__ == "__main__": main()
Title: Kayaking Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vadim is really keen on travelling. Recently he heard about kayaking activity near his town and became very excited about it, so he joined a party of kayakers. Now the party is ready to start its journey, but firstly they have to choose kayaks. There are 2·*n* people in the group (including Vadim), and they have exactly *n*<=-<=1 tandem kayaks (each of which, obviously, can carry two people) and 2 single kayaks. *i*-th person's weight is *w**i*, and weight is an important matter in kayaking — if the difference between the weights of two people that sit in the same tandem kayak is too large, then it can crash. And, of course, people want to distribute their seats in kayaks in order to minimize the chances that kayaks will crash. Formally, the instability of a single kayak is always 0, and the instability of a tandem kayak is the absolute difference between weights of the people that are in this kayak. Instability of the whole journey is the total instability of all kayaks. Help the party to determine minimum possible total instability! Input Specification: The first line contains one number *n* (2<=≤<=*n*<=≤<=50). The second line contains 2·*n* integer numbers *w*1, *w*2, ..., *w*2*n*, where *w**i* is weight of person *i* (1<=≤<=*w**i*<=≤<=1000). Output Specification: Print minimum possible total instability. Demo Input: ['2\n1 2 3 4\n', '4\n1 3 4 6 3 4 100 200\n'] Demo Output: ['1\n', '5\n'] Note: none
```python # -*- coding: utf-8 -*- def solve(): n = int(input()) n *= 2 a = list(map(int, input().split(' '))) ans = 0x3f3f3f3f for i in range(n): for jj in range(n): j = i + jj + 1 if j >= n: break b = [] for k in range(n): if k != i and k != j: b.append(a[k]) b.sort() res = 0 for k in range(n - 3): res += b[k + 1] - b[k] ans = min(ans, res) print(ans) def main(): t = 1 # t = int(input()) for i in range(t): solve() if __name__ == "__main__": main() ```
0
629
A
Far Relative’s Birthday Cake
PROGRAMMING
800
[ "brute force", "combinatorics", "constructive algorithms", "implementation" ]
null
null
Door's family is going celebrate Famil Doors's birthday party. They love Famil Door so they are planning to make his birthday cake weird! The cake is a *n*<=×<=*n* square consisting of equal squares with side length 1. Each square is either empty or consists of a single chocolate. They bought the cake and randomly started to put the chocolates on the cake. The value of Famil Door's happiness will be equal to the number of pairs of cells with chocolates that are in the same row or in the same column of the cake. Famil Doors's family is wondering what is the amount of happiness of Famil going to be? Please, note that any pair can be counted no more than once, as two different cells can't share both the same row and the same column.
In the first line of the input, you are given a single integer *n* (1<=≤<=*n*<=≤<=100) — the length of the side of the cake. Then follow *n* lines, each containing *n* characters. Empty cells are denoted with '.', while cells that contain chocolates are denoted by 'C'.
Print the value of Famil Door's happiness, i.e. the number of pairs of chocolate pieces that share the same row or the same column.
[ "3\n.CC\nC..\nC.C\n", "4\nCC..\nC..C\n.CC.\n.CC.\n" ]
[ "4\n", "9\n" ]
If we number rows from top to bottom and columns from left to right, then, pieces that share the same row in the first sample are: 1. (1, 2) and (1, 3) 1. (3, 1) and (3, 3) 1. (2, 1) and (3, 1) 1. (1, 3) and (3, 3)
500
[ { "input": "3\n.CC\nC..\nC.C", "output": "4" }, { "input": "4\nCC..\nC..C\n.CC.\n.CC.", "output": "9" }, { "input": "5\n.CCCC\nCCCCC\n.CCC.\nCC...\n.CC.C", "output": "46" }, { "input": "7\n.CC..CC\nCC.C..C\nC.C..C.\nC...C.C\nCCC.CCC\n.CC...C\n.C.CCC.", "output": "84" }, { "input": "8\n..C....C\nC.CCC.CC\n.C..C.CC\nCC......\nC..C..CC\nC.C...C.\nC.C..C..\nC...C.C.", "output": "80" }, { "input": "9\n.C...CCCC\nC.CCCC...\n....C..CC\n.CC.CCC..\n.C.C..CC.\nC...C.CCC\nCCC.C...C\nCCCC....C\n..C..C..C", "output": "144" }, { "input": "10\n..C..C.C..\n..CC..C.CC\n.C.C...C.C\n..C.CC..CC\n....C..C.C\n...C..C..C\nCC.CC....C\n..CCCC.C.C\n..CC.CCC..\nCCCC..C.CC", "output": "190" }, { "input": "11\nC.CC...C.CC\nCC.C....C.C\n.....C..CCC\n....C.CC.CC\nC..C..CC...\nC...C...C..\nCC..CCC.C.C\n..C.CC.C..C\nC...C.C..CC\n.C.C..CC..C\n.C.C.CC.C..", "output": "228" }, { "input": "21\n...CCC.....CC..C..C.C\n..CCC...CC...CC.CCC.C\n....C.C.C..CCC..C.C.C\n....CCC..C..C.CC.CCC.\n...CCC.C..C.C.....CCC\n.CCC.....CCC..C...C.C\nCCCC.C...CCC.C...C.CC\nC..C...C.CCC..CC..C..\nC...CC..C.C.CC..C.CC.\nCC..CCCCCCCCC..C....C\n.C..CCCC.CCCC.CCC...C\nCCC...CCC...CCC.C..C.\n.CCCCCCCC.CCCC.CC.C..\n.C.C..C....C.CCCCCC.C\n...C...C.CCC.C.CC..C.\nCCC...CC..CC...C..C.C\n.CCCCC...C.C..C.CC.C.\n..CCC.C.C..CCC.CCC...\n..C..C.C.C.....CC.C..\n.CC.C...C.CCC.C....CC\n...C..CCCC.CCC....C..", "output": "2103" }, { "input": "20\nC.C.CCC.C....C.CCCCC\nC.CC.C..CCC....CCCC.\n.CCC.CC...CC.CCCCCC.\n.C...CCCC..C....CCC.\n.C..CCCCCCC.C.C.....\nC....C.C..CCC.C..CCC\n...C.C.CC..CC..CC...\nC...CC.C.CCCCC....CC\n.CC.C.CCC....C.CCC.C\nCC...CC...CC..CC...C\nC.C..CC.C.CCCC.C.CC.\n..CCCCC.C.CCC..CCCC.\n....C..C..C.CC...C.C\nC..CCC..CC..C.CC..CC\n...CC......C.C..C.C.\nCC.CCCCC.CC.CC...C.C\n.C.CC..CC..CCC.C.CCC\nC..C.CC....C....C...\n..CCC..CCC...CC..C.C\n.C.CCC.CCCCCCCCC..CC", "output": "2071" }, { "input": "17\nCCC..C.C....C.C.C\n.C.CC.CC...CC..C.\n.CCCC.CC.C..CCC.C\n...CCC.CC.CCC.C.C\nCCCCCCCC..C.CC.CC\n...C..C....C.CC.C\nCC....CCC...C.CC.\n.CC.C.CC..C......\n.CCCCC.C.CC.CCCCC\n..CCCC...C..CC..C\nC.CC.C.CC..C.C.C.\nC..C..C..CCC.C...\n.C..CCCC..C......\n.CC.C...C..CC.CC.\nC..C....CC...CC..\nC.CC.CC..C.C..C..\nCCCC...C.C..CCCC.", "output": "1160" }, { "input": "15\nCCCC.C..CCC....\nCCCCCC.CC.....C\n...C.CC.C.C.CC.\nCCCCCCC..C..C..\nC..CCC..C.CCCC.\n.CC..C.C.C.CC.C\n.C.C..C..C.C..C\n...C...C..CCCC.\n.....C.C..CC...\nCC.C.C..CC.C..C\n..CCCCC..CCC...\nCC.CC.C..CC.CCC\n..CCC...CC.C..C\nCC..C.C..CCC..C\n.C.C....CCC...C", "output": "789" }, { "input": "1\n.", "output": "0" }, { "input": "3\n.CC\nC..\nC.C", "output": "4" }, { "input": "13\nC.C...C.C.C..\nCC.CCCC.CC..C\n.C.CCCCC.CC..\nCCCC..C...C..\n...CC.C.C...C\n.CC.CCC...CC.\nCC.CCCCCC....\n.C...C..CC..C\nCCCC.CC...C..\n.C.CCC..C.CC.\n..C...CC..C.C\n..C.CCC..CC.C\n.C...CCC.CC.C", "output": "529" }, { "input": "16\n.C.C.C.C.C...C.C\n..C..C.CCCCCC...\n..C.C.C.C..C..C.\n.CC....C.CCC..C.\n.C.CCC..C....CCC\nCC..C.CC..C.C.CC\n...C..C..CC..CC.\n.CCC..C.CC.C.C..\n.CC.C..........C\nC...C....CC..C..\nC.CCC.C..C..C...\n.CCCCCCCCCCCC..C\n..C.C.CC.CC.CCC.\nCC..C.C....C..CC\nC.CCC..C..C.C.CC\n.C.CCC.CC..CCC.C", "output": "874" }, { "input": "2\nCC\nCC", "output": "4" }, { "input": "3\nC..\nC..\nC..", "output": "3" } ]
1,698,302,349
2,147,483,647
Python 3
OK
TESTS
48
46
0
# Input the side length of the cake n = int(input()) # Initialize lists to count chocolates in rows and columns row_count = [0] * n col_count = [0] * n # Read the cake configuration and count chocolates in rows and columns for i in range(n): row = input() for j in range(n): if row[j] == 'C': row_count[i] += 1 col_count[j] += 1 # Calculate the total happiness by counting pairs in rows and columns happiness = 0 for i in range(n): if row_count[i] > 1: happiness += (row_count[i] * (row_count[i] - 1)) // 2 for j in range(n): if col_count[j] > 1: happiness += (col_count[j] * (col_count[j] - 1)) // 2 print(happiness)
Title: Far Relative’s Birthday Cake Time Limit: None seconds Memory Limit: None megabytes Problem Description: Door's family is going celebrate Famil Doors's birthday party. They love Famil Door so they are planning to make his birthday cake weird! The cake is a *n*<=×<=*n* square consisting of equal squares with side length 1. Each square is either empty or consists of a single chocolate. They bought the cake and randomly started to put the chocolates on the cake. The value of Famil Door's happiness will be equal to the number of pairs of cells with chocolates that are in the same row or in the same column of the cake. Famil Doors's family is wondering what is the amount of happiness of Famil going to be? Please, note that any pair can be counted no more than once, as two different cells can't share both the same row and the same column. Input Specification: In the first line of the input, you are given a single integer *n* (1<=≤<=*n*<=≤<=100) — the length of the side of the cake. Then follow *n* lines, each containing *n* characters. Empty cells are denoted with '.', while cells that contain chocolates are denoted by 'C'. Output Specification: Print the value of Famil Door's happiness, i.e. the number of pairs of chocolate pieces that share the same row or the same column. Demo Input: ['3\n.CC\nC..\nC.C\n', '4\nCC..\nC..C\n.CC.\n.CC.\n'] Demo Output: ['4\n', '9\n'] Note: If we number rows from top to bottom and columns from left to right, then, pieces that share the same row in the first sample are: 1. (1, 2) and (1, 3) 1. (3, 1) and (3, 3) 1. (2, 1) and (3, 1) 1. (1, 3) and (3, 3)
```python # Input the side length of the cake n = int(input()) # Initialize lists to count chocolates in rows and columns row_count = [0] * n col_count = [0] * n # Read the cake configuration and count chocolates in rows and columns for i in range(n): row = input() for j in range(n): if row[j] == 'C': row_count[i] += 1 col_count[j] += 1 # Calculate the total happiness by counting pairs in rows and columns happiness = 0 for i in range(n): if row_count[i] > 1: happiness += (row_count[i] * (row_count[i] - 1)) // 2 for j in range(n): if col_count[j] > 1: happiness += (col_count[j] * (col_count[j] - 1)) // 2 print(happiness) ```
3
499
B
Lecture
PROGRAMMING
1,000
[ "implementation", "strings" ]
null
null
You have a new professor of graph theory and he speaks very quickly. You come up with the following plan to keep up with his lecture and make notes. You know two languages, and the professor is giving the lecture in the first one. The words in both languages consist of lowercase English characters, each language consists of several words. For each language, all words are distinct, i.e. they are spelled differently. Moreover, the words of these languages have a one-to-one correspondence, that is, for each word in each language, there exists exactly one word in the other language having has the same meaning. You can write down every word the professor says in either the first language or the second language. Of course, during the lecture you write down each word in the language in which the word is shorter. In case of equal lengths of the corresponding words you prefer the word of the first language. You are given the text of the lecture the professor is going to read. Find out how the lecture will be recorded in your notes.
The first line contains two integers, *n* and *m* (1<=≤<=*n*<=≤<=3000, 1<=≤<=*m*<=≤<=3000) — the number of words in the professor's lecture and the number of words in each of these languages. The following *m* lines contain the words. The *i*-th line contains two strings *a**i*, *b**i* meaning that the word *a**i* belongs to the first language, the word *b**i* belongs to the second language, and these two words have the same meaning. It is guaranteed that no word occurs in both languages, and each word occurs in its language exactly once. The next line contains *n* space-separated strings *c*1,<=*c*2,<=...,<=*c**n* — the text of the lecture. It is guaranteed that each of the strings *c**i* belongs to the set of strings {*a*1,<=*a*2,<=... *a**m*}. All the strings in the input are non-empty, each consisting of no more than 10 lowercase English letters.
Output exactly *n* words: how you will record the lecture in your notebook. Output the words of the lecture in the same order as in the input.
[ "4 3\ncodeforces codesecrof\ncontest round\nletter message\ncodeforces contest letter contest\n", "5 3\njoll wuqrd\neuzf un\nhbnyiyc rsoqqveh\nhbnyiyc joll joll euzf joll\n" ]
[ "codeforces round letter round\n", "hbnyiyc joll joll un joll\n" ]
none
500
[ { "input": "4 3\ncodeforces codesecrof\ncontest round\nletter message\ncodeforces contest letter contest", "output": "codeforces round letter round" }, { "input": "5 3\njoll wuqrd\neuzf un\nhbnyiyc rsoqqveh\nhbnyiyc joll joll euzf joll", "output": "hbnyiyc joll joll un joll" }, { "input": "5 5\nqueyqj f\nb vn\ntabzvk qpfzoqx\nytnyonoc hnxsd\njpggvr lchinjmt\nqueyqj jpggvr b ytnyonoc b", "output": "f jpggvr b hnxsd b" }, { "input": "10 22\nazbrll oen\ngh vdyayei\njphveblohx vfglv\nmfyxib jepnvhcuwo\nrpikazqj uam\nl rx\nokjenof qpnyi\nj tixqrno\nod itozmfct\nikkdxmirx ev\nqexftojc p\nkdazb zjs\nmbk ykvqjrxaxu\nhbcwhouzq pwt\nmirpsz zfaegpl\nuhkkvcj rlvwj\nef iqnnwtolrc\npjzfcpmeag ecdayth\nsa qcthz\ncbfhfxi qrnbvdryz\nwqel tj\natx smkbid\nef hbcwhouzq cbfhfxi hbcwhouzq mirpsz cbfhfxi cbfhfxi okjenof pjzfcpmeag kdazb", "output": "ef pwt cbfhfxi pwt mirpsz cbfhfxi cbfhfxi qpnyi ecdayth zjs" }, { "input": "1 1\namit am\namit", "output": "am" }, { "input": "1 1\na c\na", "output": "a" } ]
1,651,591,339
2,147,483,647
PyPy 3-64
OK
TESTS
37
140
8,704,000
n, m = map(int, input().split()) words = {} for _ in range(m): a, b = map(str, input().split()) if len(a) < len(b): words[a] = a words[b] = a elif len(b) < len(a): words[a] = b words[b] = b else: words[a] = a words[b] = a c = list(map(str, input().split())) print(" ".join(words[ci] for ci in c))
Title: Lecture Time Limit: None seconds Memory Limit: None megabytes Problem Description: You have a new professor of graph theory and he speaks very quickly. You come up with the following plan to keep up with his lecture and make notes. You know two languages, and the professor is giving the lecture in the first one. The words in both languages consist of lowercase English characters, each language consists of several words. For each language, all words are distinct, i.e. they are spelled differently. Moreover, the words of these languages have a one-to-one correspondence, that is, for each word in each language, there exists exactly one word in the other language having has the same meaning. You can write down every word the professor says in either the first language or the second language. Of course, during the lecture you write down each word in the language in which the word is shorter. In case of equal lengths of the corresponding words you prefer the word of the first language. You are given the text of the lecture the professor is going to read. Find out how the lecture will be recorded in your notes. Input Specification: The first line contains two integers, *n* and *m* (1<=≤<=*n*<=≤<=3000, 1<=≤<=*m*<=≤<=3000) — the number of words in the professor's lecture and the number of words in each of these languages. The following *m* lines contain the words. The *i*-th line contains two strings *a**i*, *b**i* meaning that the word *a**i* belongs to the first language, the word *b**i* belongs to the second language, and these two words have the same meaning. It is guaranteed that no word occurs in both languages, and each word occurs in its language exactly once. The next line contains *n* space-separated strings *c*1,<=*c*2,<=...,<=*c**n* — the text of the lecture. It is guaranteed that each of the strings *c**i* belongs to the set of strings {*a*1,<=*a*2,<=... *a**m*}. All the strings in the input are non-empty, each consisting of no more than 10 lowercase English letters. Output Specification: Output exactly *n* words: how you will record the lecture in your notebook. Output the words of the lecture in the same order as in the input. Demo Input: ['4 3\ncodeforces codesecrof\ncontest round\nletter message\ncodeforces contest letter contest\n', '5 3\njoll wuqrd\neuzf un\nhbnyiyc rsoqqveh\nhbnyiyc joll joll euzf joll\n'] Demo Output: ['codeforces round letter round\n', 'hbnyiyc joll joll un joll\n'] Note: none
```python n, m = map(int, input().split()) words = {} for _ in range(m): a, b = map(str, input().split()) if len(a) < len(b): words[a] = a words[b] = a elif len(b) < len(a): words[a] = b words[b] = b else: words[a] = a words[b] = a c = list(map(str, input().split())) print(" ".join(words[ci] for ci in c)) ```
3
813
B
The Golden Age
PROGRAMMING
1,800
[ "brute force", "math" ]
null
null
Unlucky year in Berland is such a year that its number *n* can be represented as *n*<==<=*x**a*<=+<=*y**b*, where *a* and *b* are non-negative integer numbers. For example, if *x*<==<=2 and *y*<==<=3 then the years 4 and 17 are unlucky (4<==<=20<=+<=31, 17<==<=23<=+<=32<==<=24<=+<=30) and year 18 isn't unlucky as there is no such representation for it. Such interval of years that there are no unlucky years in it is called The Golden Age. You should write a program which will find maximum length of The Golden Age which starts no earlier than the year *l* and ends no later than the year *r*. If all years in the interval [*l*,<=*r*] are unlucky then the answer is 0.
The first line contains four integer numbers *x*, *y*, *l* and *r* (2<=≤<=*x*,<=*y*<=≤<=1018, 1<=≤<=*l*<=≤<=*r*<=≤<=1018).
Print the maximum length of The Golden Age within the interval [*l*,<=*r*]. If all years in the interval [*l*,<=*r*] are unlucky then print 0.
[ "2 3 1 10\n", "3 5 10 22\n", "2 3 3 5\n" ]
[ "1\n", "8\n", "0\n" ]
In the first example the unlucky years are 2, 3, 4, 5, 7, 9 and 10. So maximum length of The Golden Age is achived in the intervals [1, 1], [6, 6] and [8, 8]. In the second example the longest Golden Age is the interval [15, 22].
0
[ { "input": "2 3 1 10", "output": "1" }, { "input": "3 5 10 22", "output": "8" }, { "input": "2 3 3 5", "output": "0" }, { "input": "2 2 1 10", "output": "1" }, { "input": "2 2 1 1000000", "output": "213568" }, { "input": "2 2 1 1000000000000000000", "output": "144115188075855871" }, { "input": "2 3 1 1000000", "output": "206415" }, { "input": "2 3 1 1000000000000000000", "output": "261485717957290893" }, { "input": "12345 54321 1 1000000", "output": "933334" }, { "input": "54321 12345 1 1000000000000000000", "output": "976614248345331214" }, { "input": "2 3 100000000 1000000000000", "output": "188286357653" }, { "input": "2 14 732028847861235712 732028847861235712", "output": "0" }, { "input": "14 2 732028847861235713 732028847861235713", "output": "1" }, { "input": "3 2 6 7", "output": "1" }, { "input": "16 5 821690667 821691481", "output": "815" }, { "input": "1000000000000000000 2 1 1000000000000000000", "output": "423539247696576511" }, { "input": "2 1000000000000000000 1000000000000000 1000000000000000000", "output": "423539247696576511" }, { "input": "2 2 1000000000000000000 1000000000000000000", "output": "1" }, { "input": "3 3 1 1", "output": "1" }, { "input": "2 3 626492297402423196 726555387600422608", "output": "100063090197999413" }, { "input": "4 4 1 1", "output": "1" }, { "input": "304279187938024110 126610724244348052 78460471576735729 451077737144268785", "output": "177668463693676057" }, { "input": "510000000000 510000000000 1 1000000000000000000", "output": "999998980000000000" }, { "input": "2 10000000000000000 1 1000000000000000000", "output": "413539247696576512" }, { "input": "84826654960259 220116531311479700 375314289098080160 890689132792406667", "output": "515374843694326508" }, { "input": "1001 9999 1 1000000000000000000", "output": "988998989390034998" }, { "input": "106561009498593483 3066011339919949 752858505287719337 958026822891358781", "output": "205168317603639445" }, { "input": "650233444262690661 556292951587380938 715689923804218376 898772439356652923", "output": "183082515552434548" }, { "input": "4294967297 4294967297 1 1000000000000000000", "output": "999999991410065406" }, { "input": "1000000000000000000 1000000000000000000 1000000000000000000 1000000000000000000", "output": "1" }, { "input": "2 2 1 1", "output": "1" }, { "input": "73429332516742239 589598864615747534 555287238606698050 981268715519611449", "output": "318240518387121676" }, { "input": "282060925969693883 446418005951342865 709861829378794811 826972744183396568", "output": "98493812262359820" }, { "input": "97958277744315833 443452631396066615 33878596673318768 306383421710156519", "output": "208425143965840685" }, { "input": "40975442958818854 7397733549114401 299774870238987084 658001214206968260", "output": "358226343967981177" }, { "input": "699 700 1 1000", "output": "697" }, { "input": "483076744475822225 425097332543006422 404961220953110704 826152774360856248", "output": "343076029885034022" }, { "input": "4294967297 4294967297 1 999999999999999999", "output": "999999991410065405" }, { "input": "702012794 124925148 2623100012 1000000000000000000", "output": "491571744457491660" }, { "input": "433333986179614514 1000000000000000000 433333986179614515 726628630292055493", "output": "293294644112440978" }, { "input": "999999999999999999 364973116927770629 4 4", "output": "1" }, { "input": "4 2 40 812", "output": "191" }, { "input": "2 3 1 1", "output": "1" }, { "input": "1556368728 1110129598 120230736 1258235681", "output": "989898863" }, { "input": "7 9 164249007852879073 459223650245359577", "output": "229336748650748455" }, { "input": "324693328712373699 541961409169732375 513851377473048715 873677521504257312", "output": "324693328712373697" }, { "input": "370083000139673112 230227213530985315 476750241623737312 746365058930029530", "output": "146054845259371103" }, { "input": "4 3 584 899", "output": "146" }, { "input": "4 3 286 581", "output": "161" }, { "input": "304045744870965151 464630021384225732 142628934177558000 844155070300317027", "output": "304045744870965149" }, { "input": "195627622825327857 666148746663834172 1 1000000000000000000", "output": "470521123838506314" }, { "input": "459168731438725410 459955118458373596 410157890472128901 669197645706452507", "output": "209242527248078910" }, { "input": "999999999999999999 999999999999999999 1 1000000000000000000", "output": "999999999999999997" }, { "input": "752299248283963354 680566564599126819 73681814274367577 960486443362068685", "output": "606884750324759243" }, { "input": "20373217421623606 233158243228114207 97091516440255589 395722640217125926", "output": "142191179567388113" }, { "input": "203004070900 20036005000 1 1000000000000000000", "output": "999999776959924100" }, { "input": "565269817339236857 318270460838647700 914534538271870694 956123707310168659", "output": "41589169038297966" }, { "input": "2 5 330 669", "output": "131" }, { "input": "9 9 91 547", "output": "385" }, { "input": "9 4 866389615074294253 992899492208527253", "output": "126509877134233001" }, { "input": "3037000500 3037000500 1 1000000000000000000", "output": "999999993925999000" }, { "input": "4294967297 4294967297 12 1000000000000000000", "output": "999999991410065406" }, { "input": "5 3 78510497842978003 917156799600023483", "output": "238418579101562499" }, { "input": "749206377024033575 287723056504284448 387669391392789697 931234393488075794", "output": "361536985631243879" }, { "input": "999999999999999999 454135 1000000000000000000 1000000000000000000", "output": "0" }, { "input": "759826429841877401 105086867783910112 667080043736858072 797465019478234768", "output": "92746386105019330" }, { "input": "1000000000000000000 1000000000000000000 5 7", "output": "3" }, { "input": "440968000218771383 43378854522801881 169393324037146024 995429539593716237", "output": "511082684852142973" }, { "input": "15049917793417622 113425474361704411 87565655389309185 803955352361026671", "output": "675479960205904638" }, { "input": "4 6 264626841724745187 925995096479842591", "output": "369878143059623936" }, { "input": "4294967297 4294967297 13 1000000000000000000", "output": "999999991410065406" }, { "input": "315729630349763416 22614591055604717 66895291338255006 947444311481017774", "output": "609100090075649641" }, { "input": "3 10 173 739", "output": "386" }, { "input": "161309010783040325 128259041753158864 5843045875031294 854024306926137845", "output": "564456254389938656" }, { "input": "239838434825939759 805278168279318096 202337849919104640 672893754916863788", "output": "433055320090924028" }, { "input": "9 9 435779695685310822 697902619874412541", "output": "262122924189101720" }, { "input": "967302429573451368 723751675006196376 143219686319239751 266477897142546404", "output": "123258210823306654" }, { "input": "10 8 139979660652061677 941135332855173888", "output": "697020144779318016" }, { "input": "4294967297 1000000000000000000 4294967296 17179869184", "output": "12884901886" }, { "input": "100914030314340517 512922595840756536 812829791042966971 966156272123068006", "output": "153326481080101036" }, { "input": "288230376151711744 288230376151711744 1 1000000000000000000", "output": "423539247696576512" }, { "input": "6 9 681 750", "output": "49" }, { "input": "880356874212472951 178538501711453307 162918237570625233 224969951233811739", "output": "46431449522358431" }, { "input": "2 7 405373082004080437 771991379629433514", "output": "153172782079203571" }, { "input": "10 11 10 11", "output": "1" } ]
1,496,676,380
1,280
Python 3
OK
TESTS
85
62
307,200
R=lambda:list(map(int,input().strip().split())) [x,y,l,r]=R() a=list() b=list() cur=1 while(cur<r): a.append(cur) cur*=x cur=1 while(cur<r): b.append(cur) cur*=y s=set() s.add(l-1) s.add(r+1) for p in a: for q in b: s.add(p+q) s=list(s) s.sort() ml=0 for i in range(len(s)-1): if s[i]>=l-1 and s[i+1]<=r+1: ml=max(ml,s[i+1]-s[i]-1) print(ml)
Title: The Golden Age Time Limit: None seconds Memory Limit: None megabytes Problem Description: Unlucky year in Berland is such a year that its number *n* can be represented as *n*<==<=*x**a*<=+<=*y**b*, where *a* and *b* are non-negative integer numbers. For example, if *x*<==<=2 and *y*<==<=3 then the years 4 and 17 are unlucky (4<==<=20<=+<=31, 17<==<=23<=+<=32<==<=24<=+<=30) and year 18 isn't unlucky as there is no such representation for it. Such interval of years that there are no unlucky years in it is called The Golden Age. You should write a program which will find maximum length of The Golden Age which starts no earlier than the year *l* and ends no later than the year *r*. If all years in the interval [*l*,<=*r*] are unlucky then the answer is 0. Input Specification: The first line contains four integer numbers *x*, *y*, *l* and *r* (2<=≤<=*x*,<=*y*<=≤<=1018, 1<=≤<=*l*<=≤<=*r*<=≤<=1018). Output Specification: Print the maximum length of The Golden Age within the interval [*l*,<=*r*]. If all years in the interval [*l*,<=*r*] are unlucky then print 0. Demo Input: ['2 3 1 10\n', '3 5 10 22\n', '2 3 3 5\n'] Demo Output: ['1\n', '8\n', '0\n'] Note: In the first example the unlucky years are 2, 3, 4, 5, 7, 9 and 10. So maximum length of The Golden Age is achived in the intervals [1, 1], [6, 6] and [8, 8]. In the second example the longest Golden Age is the interval [15, 22].
```python R=lambda:list(map(int,input().strip().split())) [x,y,l,r]=R() a=list() b=list() cur=1 while(cur<r): a.append(cur) cur*=x cur=1 while(cur<r): b.append(cur) cur*=y s=set() s.add(l-1) s.add(r+1) for p in a: for q in b: s.add(p+q) s=list(s) s.sort() ml=0 for i in range(len(s)-1): if s[i]>=l-1 and s[i+1]<=r+1: ml=max(ml,s[i+1]-s[i]-1) print(ml) ```
3
540
A
Combination Lock
PROGRAMMING
800
[ "implementation" ]
null
null
Scrooge McDuck keeps his most treasured savings in a home safe with a combination lock. Each time he wants to put there the treasures that he's earned fair and square, he has to open the lock. The combination lock is represented by *n* rotating disks with digits from 0 to 9 written on them. Scrooge McDuck has to turn some disks so that the combination of digits on the disks forms a secret combination. In one move, he can rotate one disk one digit forwards or backwards. In particular, in one move he can go from digit 0 to digit 9 and vice versa. What minimum number of actions does he need for that?
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of disks on the combination lock. The second line contains a string of *n* digits — the original state of the disks. The third line contains a string of *n* digits — Scrooge McDuck's combination that opens the lock.
Print a single integer — the minimum number of moves Scrooge McDuck needs to open the lock.
[ "5\n82195\n64723\n" ]
[ "13\n" ]
In the sample he needs 13 moves: - 1 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b8967f65a723782358b93eff9ce69f336817cf70.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 2 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/07fa58573ece0d32c4d555e498d2b24d2f70f36a.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 3 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/cc2275d9252aae35a6867c6a5b4ba7596e9a7626.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 4 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b100aea470fcaaab4e9529b234ba0d7875943c10.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 5 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/eb2cbe4324cebca65b85816262a85e473cd65967.png" style="max-width: 100.0%;max-height: 100.0%;"/>
500
[ { "input": "5\n82195\n64723", "output": "13" }, { "input": "12\n102021090898\n010212908089", "output": "16" }, { "input": "1\n8\n1", "output": "3" }, { "input": "2\n83\n57", "output": "7" }, { "input": "10\n0728592530\n1362615763", "output": "27" }, { "input": "100\n4176196363694273682807653052945037727131821799902563705176501742060696655282954944720643131654235909\n3459912084922154505910287499879975659298239371519889866585472674423008837878123067103005344986554746", "output": "245" }, { "input": "1\n8\n1", "output": "3" }, { "input": "2\n83\n57", "output": "7" }, { "input": "3\n607\n684", "output": "5" }, { "input": "4\n0809\n0636", "output": "8" }, { "input": "5\n84284\n08941", "output": "16" }, { "input": "25\n8037856825987124762280548\n9519431339078678836940020", "output": "72" }, { "input": "125\n23269567683904664184142384849516523616863461607751021071772615078579713054027902974007001544768640273491193035874486891541257\n47635110303703399505805044019026243695451609639556649012447370081552870340011971572363458960190590266459684717415349529509024", "output": "305" }, { "input": "5\n84284\n08941", "output": "16" }, { "input": "25\n8037856825987124762285484\n9519431339078678836940202", "output": "74" }, { "input": "125\n23269567689466418414238845152168634610771021717726157879713054270294007001544768647391193035874486891412573389247025830678706\n47635110307339950580504010224954516093956649124473708152870340117152363458960190596659684717415349529090241694059599629136831", "output": "357" }, { "input": "5\n84284\n08941", "output": "16" }, { "input": "25\n8378525987476228048406972\n9194339078883694020217816", "output": "55" }, { "input": "125\n23269576839046618414238484916523616863461607750210717761078579713054027902974007015447686027349193035874486891541257338624472\n47635103037033950580504401926243695451609639556490124437081552870340011971572363489601905026645984717415349529509024169604599", "output": "274" }, { "input": "1\n0\n0", "output": "0" }, { "input": "1\n7\n7", "output": "0" }, { "input": "1\n0\n5", "output": "5" }, { "input": "1\n2\n7", "output": "5" }, { "input": "1\n7\n9", "output": "2" }, { "input": "1\n9\n7", "output": "2" }, { "input": "1\n2\n9", "output": "3" }, { "input": "1\n9\n2", "output": "3" }, { "input": "25\n3164978461316464614169874\n9413979197249127496597357", "output": "66" }, { "input": "4\n9999\n9999", "output": "0" }, { "input": "2\n11\n11", "output": "0" } ]
1,603,479,458
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
93
204,800
n=int(input()) a=input() b=input() s=0 for i in range(len(a)): if abs(int(a[i])-int(b[i]))<=4: s=s+(abs(int(a[i])-int(b[i]))) else: s=s+(10-(abs(int(a[i])-int(b[i])))) print(s) print(s)
Title: Combination Lock Time Limit: None seconds Memory Limit: None megabytes Problem Description: Scrooge McDuck keeps his most treasured savings in a home safe with a combination lock. Each time he wants to put there the treasures that he's earned fair and square, he has to open the lock. The combination lock is represented by *n* rotating disks with digits from 0 to 9 written on them. Scrooge McDuck has to turn some disks so that the combination of digits on the disks forms a secret combination. In one move, he can rotate one disk one digit forwards or backwards. In particular, in one move he can go from digit 0 to digit 9 and vice versa. What minimum number of actions does he need for that? Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of disks on the combination lock. The second line contains a string of *n* digits — the original state of the disks. The third line contains a string of *n* digits — Scrooge McDuck's combination that opens the lock. Output Specification: Print a single integer — the minimum number of moves Scrooge McDuck needs to open the lock. Demo Input: ['5\n82195\n64723\n'] Demo Output: ['13\n'] Note: In the sample he needs 13 moves: - 1 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b8967f65a723782358b93eff9ce69f336817cf70.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 2 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/07fa58573ece0d32c4d555e498d2b24d2f70f36a.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 3 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/cc2275d9252aae35a6867c6a5b4ba7596e9a7626.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 4 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b100aea470fcaaab4e9529b234ba0d7875943c10.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 5 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/eb2cbe4324cebca65b85816262a85e473cd65967.png" style="max-width: 100.0%;max-height: 100.0%;"/>
```python n=int(input()) a=input() b=input() s=0 for i in range(len(a)): if abs(int(a[i])-int(b[i]))<=4: s=s+(abs(int(a[i])-int(b[i]))) else: s=s+(10-(abs(int(a[i])-int(b[i])))) print(s) print(s) ```
0
462
A
Appleman and Easy Task
PROGRAMMING
1,000
[ "brute force", "implementation" ]
null
null
Toastman came up with a very easy task. He gives it to Appleman, but Appleman doesn't know how to solve it. Can you help him? Given a *n*<=×<=*n* checkerboard. Each cell of the board has either character 'x', or character 'o'. Is it true that each cell of the board has even number of adjacent cells with 'o'? Two cells of the board are adjacent if they share a side.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Then *n* lines follow containing the description of the checkerboard. Each of them contains *n* characters (either 'x' or 'o') without spaces.
Print "YES" or "NO" (without the quotes) depending on the answer to the problem.
[ "3\nxxo\nxox\noxx\n", "4\nxxxo\nxoxo\noxox\nxxxx\n" ]
[ "YES\n", "NO\n" ]
none
500
[ { "input": "3\nxxo\nxox\noxx", "output": "YES" }, { "input": "4\nxxxo\nxoxo\noxox\nxxxx", "output": "NO" }, { "input": "1\no", "output": "YES" }, { "input": "2\nox\nxo", "output": "YES" }, { "input": "2\nxx\nxo", "output": "NO" }, { "input": "3\nooo\noxo\nxoo", "output": "NO" }, { "input": "3\nxxx\nxxo\nxxo", "output": "NO" }, { "input": "4\nxooo\nooxo\noxoo\nooox", "output": "YES" }, { "input": "4\noooo\noxxo\nxoxo\noooo", "output": "NO" }, { "input": "5\noxoxo\nxxxxx\noxoxo\nxxxxx\noxoxo", "output": "YES" }, { "input": "5\nxxxox\nxxxxo\nxoxox\noxoxx\nxoxxx", "output": "NO" }, { "input": "10\nxoxooooooo\noxxoxxxxxo\nxxooxoooxo\noooxxoxoxo\noxxxooooxo\noxooooxxxo\noxoxoxxooo\noxoooxooxx\noxxxxxoxxo\noooooooxox", "output": "YES" }, { "input": "10\nxxxxxxxoox\nxooxxooooo\noxoooxxooo\nxoxxxxxxxx\nxxoxooxxox\nooxoxxooox\nooxxxxxooo\nxxxxoxooox\nxoxxooxxxx\noooooxxoxo", "output": "NO" }, { "input": "19\noxoxoxoxooxoooxxoox\nxxxxxxxxoxxoxoooooo\noxoxoxooxxxooxxxooo\nxxoxxxooxooxxxoxxox\noxoxooxxxooooxxoxox\nxxxoooxoxxoxxoxxxoo\noxooxxxoooooxxoooxo\nxxooxooxoxxoxxoxxoo\noxxxxooooxxxooooxxx\nooxooxoxxoxxoxooxoo\nxxxooooxxxooooxoxox\noooxoxooxxoxooxooxx\nxxoooxxxooooxxoooxo\nooxxxooxoxooxooxxxx\nxoxoxxooxoxxxooxoxo\nxoxxoxoxooxooxxxxxx\noooxxxooxxxooxoxoxo\nxoooooxoxooxxxxxxxo\nxooxxoooxxoxoxoxoxx", "output": "NO" }, { "input": "12\nxxooxxoxxxoo\nxxoooxoxoxoo\nooxoxoxxooxx\nooxxooooxoxo\nxxxxxxxxoxxx\noxooooxxxooo\noxxoxoxoooxx\nxxxxxxxooxox\noxoooooxoxxx\nxxooxxoxxoxx\noxxxxxxxooxx\nooxoxooxxooo", "output": "NO" }, { "input": "2\noo\nxx", "output": "NO" } ]
1,606,133,718
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
31
109
307,200
n=int(input()) s=0 m=[] for i in range(n): a=input() m.append(a) for j in range(n): x=0 for k in range(n): if j>0: if m[j-1][k]=='o': x+=1 if j<n-1: if m[j+1][k]=='o': x+=1 if k>0: if m[j][k-1]=='o': x+=1 if k<n-1: if m[j][k+1]=='o': x+=1 if x%2==0: continue else: s=1 break if s==1: print("NO") else: print("YES")
Title: Appleman and Easy Task Time Limit: None seconds Memory Limit: None megabytes Problem Description: Toastman came up with a very easy task. He gives it to Appleman, but Appleman doesn't know how to solve it. Can you help him? Given a *n*<=×<=*n* checkerboard. Each cell of the board has either character 'x', or character 'o'. Is it true that each cell of the board has even number of adjacent cells with 'o'? Two cells of the board are adjacent if they share a side. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Then *n* lines follow containing the description of the checkerboard. Each of them contains *n* characters (either 'x' or 'o') without spaces. Output Specification: Print "YES" or "NO" (without the quotes) depending on the answer to the problem. Demo Input: ['3\nxxo\nxox\noxx\n', '4\nxxxo\nxoxo\noxox\nxxxx\n'] Demo Output: ['YES\n', 'NO\n'] Note: none
```python n=int(input()) s=0 m=[] for i in range(n): a=input() m.append(a) for j in range(n): x=0 for k in range(n): if j>0: if m[j-1][k]=='o': x+=1 if j<n-1: if m[j+1][k]=='o': x+=1 if k>0: if m[j][k-1]=='o': x+=1 if k<n-1: if m[j][k+1]=='o': x+=1 if x%2==0: continue else: s=1 break if s==1: print("NO") else: print("YES") ```
0
460
A
Vasya and Socks
PROGRAMMING
900
[ "brute force", "implementation", "math" ]
null
null
Vasya has *n* pairs of socks. In the morning of each day Vasya has to put on a pair of socks before he goes to school. When he comes home in the evening, Vasya takes off the used socks and throws them away. Every *m*-th day (at days with numbers *m*,<=2*m*,<=3*m*,<=...) mom buys a pair of socks to Vasya. She does it late in the evening, so that Vasya cannot put on a new pair of socks before the next day. How many consecutive days pass until Vasya runs out of socks?
The single line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=100; 2<=≤<=*m*<=≤<=100), separated by a space.
Print a single integer — the answer to the problem.
[ "2 2\n", "9 3\n" ]
[ "3\n", "13\n" ]
In the first sample Vasya spends the first two days wearing the socks that he had initially. Then on day three he puts on the socks that were bought on day two. In the second sample Vasya spends the first nine days wearing the socks that he had initially. Then he spends three days wearing the socks that were bought on the third, sixth and ninth days. Than he spends another day wearing the socks that were bought on the twelfth day.
500
[ { "input": "2 2", "output": "3" }, { "input": "9 3", "output": "13" }, { "input": "1 2", "output": "1" }, { "input": "2 3", "output": "2" }, { "input": "1 99", "output": "1" }, { "input": "4 4", "output": "5" }, { "input": "10 2", "output": "19" }, { "input": "10 9", "output": "11" }, { "input": "100 100", "output": "101" }, { "input": "2 27", "output": "2" }, { "input": "99 100", "output": "99" }, { "input": "99 2", "output": "197" }, { "input": "100 3", "output": "149" }, { "input": "98 3", "output": "146" }, { "input": "4 4", "output": "5" }, { "input": "100 2", "output": "199" }, { "input": "62 4", "output": "82" }, { "input": "99 10", "output": "109" }, { "input": "100 5", "output": "124" }, { "input": "80 80", "output": "81" }, { "input": "95 16", "output": "101" }, { "input": "75 16", "output": "79" }, { "input": "99 74", "output": "100" }, { "input": "20 21", "output": "20" }, { "input": "52 96", "output": "52" }, { "input": "24 5", "output": "29" } ]
1,650,391,109
2,147,483,647
Python 3
OK
TESTS
26
46
0
n, m = map(int,input().split()) k = 0 day = 0 while n > 0: n -= 1 day += 1 if day % m == 0: n += 1 print(day)
Title: Vasya and Socks Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya has *n* pairs of socks. In the morning of each day Vasya has to put on a pair of socks before he goes to school. When he comes home in the evening, Vasya takes off the used socks and throws them away. Every *m*-th day (at days with numbers *m*,<=2*m*,<=3*m*,<=...) mom buys a pair of socks to Vasya. She does it late in the evening, so that Vasya cannot put on a new pair of socks before the next day. How many consecutive days pass until Vasya runs out of socks? Input Specification: The single line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=100; 2<=≤<=*m*<=≤<=100), separated by a space. Output Specification: Print a single integer — the answer to the problem. Demo Input: ['2 2\n', '9 3\n'] Demo Output: ['3\n', '13\n'] Note: In the first sample Vasya spends the first two days wearing the socks that he had initially. Then on day three he puts on the socks that were bought on day two. In the second sample Vasya spends the first nine days wearing the socks that he had initially. Then he spends three days wearing the socks that were bought on the third, sixth and ninth days. Than he spends another day wearing the socks that were bought on the twelfth day.
```python n, m = map(int,input().split()) k = 0 day = 0 while n > 0: n -= 1 day += 1 if day % m == 0: n += 1 print(day) ```
3
468
A
24 Game
PROGRAMMING
1,500
[ "constructive algorithms", "greedy", "math" ]
null
null
Little X used to play a card game called "24 Game", but recently he has found it too easy. So he invented a new game. Initially you have a sequence of *n* integers: 1,<=2,<=...,<=*n*. In a single step, you can pick two of them, let's denote them *a* and *b*, erase them from the sequence, and append to the sequence either *a*<=+<=*b*, or *a*<=-<=*b*, or *a*<=×<=*b*. After *n*<=-<=1 steps there is only one number left. Can you make this number equal to 24?
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105).
If it's possible, print "YES" in the first line. Otherwise, print "NO" (without the quotes). If there is a way to obtain 24 as the result number, in the following *n*<=-<=1 lines print the required operations an operation per line. Each operation should be in form: "*a* *op* *b* = *c*". Where *a* and *b* are the numbers you've picked at this operation; *op* is either "+", or "-", or "*"; *c* is the result of corresponding operation. Note, that the absolute value of *c* mustn't be greater than 1018. The result of the last operation must be equal to 24. Separate operator sign and equality sign from numbers with spaces. If there are multiple valid answers, you may print any of them.
[ "1\n", "8\n" ]
[ "NO\n", "YES\n8 * 7 = 56\n6 * 5 = 30\n3 - 4 = -1\n1 - 2 = -1\n30 - -1 = 31\n56 - 31 = 25\n25 + -1 = 24\n" ]
none
500
[ { "input": "1", "output": "NO" }, { "input": "8", "output": "YES\n8 * 7 = 56\n6 * 5 = 30\n3 - 4 = -1\n1 - 2 = -1\n30 - -1 = 31\n56 - 31 = 25\n25 + -1 = 24" }, { "input": "12", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24" }, { "input": "100", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24\n14 - 13 = 1\n24 * 1 = 24\n16 - 15 = 1\n24 * 1 = 24\n18 - 17 = 1\n24 * 1 = 24\n20 - 19 = 1\n24 * 1 = 24\n22 - 21 = 1\n24 * 1 = 24\n24 - 23 = 1\n24 * 1 = 24\n26 - 25 = 1\n24 * 1 = 24\n28 - 27 = 1\n24 * 1 = 24\n30 - 29 = 1\n24 * 1 = 24\n32 - 31 = 1\n24 * 1 = 24\n34 - 33 = 1\n24 * 1 = 24\n36 - 35 = 1\n24 * 1 = 24\n38 - 37 = 1\n24 * 1 = 24\n40 - 39 = 1\n24 * 1 = 24\n42 - 41..." }, { "input": "1000", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24\n14 - 13 = 1\n24 * 1 = 24\n16 - 15 = 1\n24 * 1 = 24\n18 - 17 = 1\n24 * 1 = 24\n20 - 19 = 1\n24 * 1 = 24\n22 - 21 = 1\n24 * 1 = 24\n24 - 23 = 1\n24 * 1 = 24\n26 - 25 = 1\n24 * 1 = 24\n28 - 27 = 1\n24 * 1 = 24\n30 - 29 = 1\n24 * 1 = 24\n32 - 31 = 1\n24 * 1 = 24\n34 - 33 = 1\n24 * 1 = 24\n36 - 35 = 1\n24 * 1 = 24\n38 - 37 = 1\n24 * 1 = 24\n40 - 39 = 1\n24 * 1 = 24\n42 - 41..." }, { "input": "987", "output": "YES\n5 - 3 = 2\n2 * 4 = 8\n1 + 2 = 3\n8 * 3 = 24\n7 - 6 = 1\n24 * 1 = 24\n9 - 8 = 1\n24 * 1 = 24\n11 - 10 = 1\n24 * 1 = 24\n13 - 12 = 1\n24 * 1 = 24\n15 - 14 = 1\n24 * 1 = 24\n17 - 16 = 1\n24 * 1 = 24\n19 - 18 = 1\n24 * 1 = 24\n21 - 20 = 1\n24 * 1 = 24\n23 - 22 = 1\n24 * 1 = 24\n25 - 24 = 1\n24 * 1 = 24\n27 - 26 = 1\n24 * 1 = 24\n29 - 28 = 1\n24 * 1 = 24\n31 - 30 = 1\n24 * 1 = 24\n33 - 32 = 1\n24 * 1 = 24\n35 - 34 = 1\n24 * 1 = 24\n37 - 36 = 1\n24 * 1 = 24\n39 - 38 = 1\n24 * 1 = 24\n41 - 40 = 1\n24 * 1 = 2..." }, { "input": "2", "output": "NO" }, { "input": "3", "output": "NO" }, { "input": "4", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24" }, { "input": "5", "output": "YES\n5 - 3 = 2\n2 * 4 = 8\n1 + 2 = 3\n8 * 3 = 24" }, { "input": "6", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24" }, { "input": "7", "output": "YES\n5 - 3 = 2\n2 * 4 = 8\n1 + 2 = 3\n8 * 3 = 24\n7 - 6 = 1\n24 * 1 = 24" }, { "input": "100000", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24\n14 - 13 = 1\n24 * 1 = 24\n16 - 15 = 1\n24 * 1 = 24\n18 - 17 = 1\n24 * 1 = 24\n20 - 19 = 1\n24 * 1 = 24\n22 - 21 = 1\n24 * 1 = 24\n24 - 23 = 1\n24 * 1 = 24\n26 - 25 = 1\n24 * 1 = 24\n28 - 27 = 1\n24 * 1 = 24\n30 - 29 = 1\n24 * 1 = 24\n32 - 31 = 1\n24 * 1 = 24\n34 - 33 = 1\n24 * 1 = 24\n36 - 35 = 1\n24 * 1 = 24\n38 - 37 = 1\n24 * 1 = 24\n40 - 39 = 1\n24 * 1 = 24\n42 - 41..." }, { "input": "99999", "output": "YES\n5 - 3 = 2\n2 * 4 = 8\n1 + 2 = 3\n8 * 3 = 24\n7 - 6 = 1\n24 * 1 = 24\n9 - 8 = 1\n24 * 1 = 24\n11 - 10 = 1\n24 * 1 = 24\n13 - 12 = 1\n24 * 1 = 24\n15 - 14 = 1\n24 * 1 = 24\n17 - 16 = 1\n24 * 1 = 24\n19 - 18 = 1\n24 * 1 = 24\n21 - 20 = 1\n24 * 1 = 24\n23 - 22 = 1\n24 * 1 = 24\n25 - 24 = 1\n24 * 1 = 24\n27 - 26 = 1\n24 * 1 = 24\n29 - 28 = 1\n24 * 1 = 24\n31 - 30 = 1\n24 * 1 = 24\n33 - 32 = 1\n24 * 1 = 24\n35 - 34 = 1\n24 * 1 = 24\n37 - 36 = 1\n24 * 1 = 24\n39 - 38 = 1\n24 * 1 = 24\n41 - 40 = 1\n24 * 1 = 2..." }, { "input": "99998", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24\n14 - 13 = 1\n24 * 1 = 24\n16 - 15 = 1\n24 * 1 = 24\n18 - 17 = 1\n24 * 1 = 24\n20 - 19 = 1\n24 * 1 = 24\n22 - 21 = 1\n24 * 1 = 24\n24 - 23 = 1\n24 * 1 = 24\n26 - 25 = 1\n24 * 1 = 24\n28 - 27 = 1\n24 * 1 = 24\n30 - 29 = 1\n24 * 1 = 24\n32 - 31 = 1\n24 * 1 = 24\n34 - 33 = 1\n24 * 1 = 24\n36 - 35 = 1\n24 * 1 = 24\n38 - 37 = 1\n24 * 1 = 24\n40 - 39 = 1\n24 * 1 = 24\n42 - 41..." }, { "input": "99997", "output": "YES\n5 - 3 = 2\n2 * 4 = 8\n1 + 2 = 3\n8 * 3 = 24\n7 - 6 = 1\n24 * 1 = 24\n9 - 8 = 1\n24 * 1 = 24\n11 - 10 = 1\n24 * 1 = 24\n13 - 12 = 1\n24 * 1 = 24\n15 - 14 = 1\n24 * 1 = 24\n17 - 16 = 1\n24 * 1 = 24\n19 - 18 = 1\n24 * 1 = 24\n21 - 20 = 1\n24 * 1 = 24\n23 - 22 = 1\n24 * 1 = 24\n25 - 24 = 1\n24 * 1 = 24\n27 - 26 = 1\n24 * 1 = 24\n29 - 28 = 1\n24 * 1 = 24\n31 - 30 = 1\n24 * 1 = 24\n33 - 32 = 1\n24 * 1 = 24\n35 - 34 = 1\n24 * 1 = 24\n37 - 36 = 1\n24 * 1 = 24\n39 - 38 = 1\n24 * 1 = 24\n41 - 40 = 1\n24 * 1 = 2..." }, { "input": "580", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24\n14 - 13 = 1\n24 * 1 = 24\n16 - 15 = 1\n24 * 1 = 24\n18 - 17 = 1\n24 * 1 = 24\n20 - 19 = 1\n24 * 1 = 24\n22 - 21 = 1\n24 * 1 = 24\n24 - 23 = 1\n24 * 1 = 24\n26 - 25 = 1\n24 * 1 = 24\n28 - 27 = 1\n24 * 1 = 24\n30 - 29 = 1\n24 * 1 = 24\n32 - 31 = 1\n24 * 1 = 24\n34 - 33 = 1\n24 * 1 = 24\n36 - 35 = 1\n24 * 1 = 24\n38 - 37 = 1\n24 * 1 = 24\n40 - 39 = 1\n24 * 1 = 24\n42 - 41..." }, { "input": "422", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24\n14 - 13 = 1\n24 * 1 = 24\n16 - 15 = 1\n24 * 1 = 24\n18 - 17 = 1\n24 * 1 = 24\n20 - 19 = 1\n24 * 1 = 24\n22 - 21 = 1\n24 * 1 = 24\n24 - 23 = 1\n24 * 1 = 24\n26 - 25 = 1\n24 * 1 = 24\n28 - 27 = 1\n24 * 1 = 24\n30 - 29 = 1\n24 * 1 = 24\n32 - 31 = 1\n24 * 1 = 24\n34 - 33 = 1\n24 * 1 = 24\n36 - 35 = 1\n24 * 1 = 24\n38 - 37 = 1\n24 * 1 = 24\n40 - 39 = 1\n24 * 1 = 24\n42 - 41..." }, { "input": "116", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24\n14 - 13 = 1\n24 * 1 = 24\n16 - 15 = 1\n24 * 1 = 24\n18 - 17 = 1\n24 * 1 = 24\n20 - 19 = 1\n24 * 1 = 24\n22 - 21 = 1\n24 * 1 = 24\n24 - 23 = 1\n24 * 1 = 24\n26 - 25 = 1\n24 * 1 = 24\n28 - 27 = 1\n24 * 1 = 24\n30 - 29 = 1\n24 * 1 = 24\n32 - 31 = 1\n24 * 1 = 24\n34 - 33 = 1\n24 * 1 = 24\n36 - 35 = 1\n24 * 1 = 24\n38 - 37 = 1\n24 * 1 = 24\n40 - 39 = 1\n24 * 1 = 24\n42 - 41..." }, { "input": "447", "output": "YES\n5 - 3 = 2\n2 * 4 = 8\n1 + 2 = 3\n8 * 3 = 24\n7 - 6 = 1\n24 * 1 = 24\n9 - 8 = 1\n24 * 1 = 24\n11 - 10 = 1\n24 * 1 = 24\n13 - 12 = 1\n24 * 1 = 24\n15 - 14 = 1\n24 * 1 = 24\n17 - 16 = 1\n24 * 1 = 24\n19 - 18 = 1\n24 * 1 = 24\n21 - 20 = 1\n24 * 1 = 24\n23 - 22 = 1\n24 * 1 = 24\n25 - 24 = 1\n24 * 1 = 24\n27 - 26 = 1\n24 * 1 = 24\n29 - 28 = 1\n24 * 1 = 24\n31 - 30 = 1\n24 * 1 = 24\n33 - 32 = 1\n24 * 1 = 24\n35 - 34 = 1\n24 * 1 = 24\n37 - 36 = 1\n24 * 1 = 24\n39 - 38 = 1\n24 * 1 = 24\n41 - 40 = 1\n24 * 1 = 2..." }, { "input": "62052", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24\n14 - 13 = 1\n24 * 1 = 24\n16 - 15 = 1\n24 * 1 = 24\n18 - 17 = 1\n24 * 1 = 24\n20 - 19 = 1\n24 * 1 = 24\n22 - 21 = 1\n24 * 1 = 24\n24 - 23 = 1\n24 * 1 = 24\n26 - 25 = 1\n24 * 1 = 24\n28 - 27 = 1\n24 * 1 = 24\n30 - 29 = 1\n24 * 1 = 24\n32 - 31 = 1\n24 * 1 = 24\n34 - 33 = 1\n24 * 1 = 24\n36 - 35 = 1\n24 * 1 = 24\n38 - 37 = 1\n24 * 1 = 24\n40 - 39 = 1\n24 * 1 = 24\n42 - 41..." }, { "input": "25770", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24\n14 - 13 = 1\n24 * 1 = 24\n16 - 15 = 1\n24 * 1 = 24\n18 - 17 = 1\n24 * 1 = 24\n20 - 19 = 1\n24 * 1 = 24\n22 - 21 = 1\n24 * 1 = 24\n24 - 23 = 1\n24 * 1 = 24\n26 - 25 = 1\n24 * 1 = 24\n28 - 27 = 1\n24 * 1 = 24\n30 - 29 = 1\n24 * 1 = 24\n32 - 31 = 1\n24 * 1 = 24\n34 - 33 = 1\n24 * 1 = 24\n36 - 35 = 1\n24 * 1 = 24\n38 - 37 = 1\n24 * 1 = 24\n40 - 39 = 1\n24 * 1 = 24\n42 - 41..." }, { "input": "56118", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24\n14 - 13 = 1\n24 * 1 = 24\n16 - 15 = 1\n24 * 1 = 24\n18 - 17 = 1\n24 * 1 = 24\n20 - 19 = 1\n24 * 1 = 24\n22 - 21 = 1\n24 * 1 = 24\n24 - 23 = 1\n24 * 1 = 24\n26 - 25 = 1\n24 * 1 = 24\n28 - 27 = 1\n24 * 1 = 24\n30 - 29 = 1\n24 * 1 = 24\n32 - 31 = 1\n24 * 1 = 24\n34 - 33 = 1\n24 * 1 = 24\n36 - 35 = 1\n24 * 1 = 24\n38 - 37 = 1\n24 * 1 = 24\n40 - 39 = 1\n24 * 1 = 24\n42 - 41..." }, { "input": "86351", "output": "YES\n5 - 3 = 2\n2 * 4 = 8\n1 + 2 = 3\n8 * 3 = 24\n7 - 6 = 1\n24 * 1 = 24\n9 - 8 = 1\n24 * 1 = 24\n11 - 10 = 1\n24 * 1 = 24\n13 - 12 = 1\n24 * 1 = 24\n15 - 14 = 1\n24 * 1 = 24\n17 - 16 = 1\n24 * 1 = 24\n19 - 18 = 1\n24 * 1 = 24\n21 - 20 = 1\n24 * 1 = 24\n23 - 22 = 1\n24 * 1 = 24\n25 - 24 = 1\n24 * 1 = 24\n27 - 26 = 1\n24 * 1 = 24\n29 - 28 = 1\n24 * 1 = 24\n31 - 30 = 1\n24 * 1 = 24\n33 - 32 = 1\n24 * 1 = 24\n35 - 34 = 1\n24 * 1 = 24\n37 - 36 = 1\n24 * 1 = 24\n39 - 38 = 1\n24 * 1 = 24\n41 - 40 = 1\n24 * 1 = 2..." }, { "input": "48108", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24\n14 - 13 = 1\n24 * 1 = 24\n16 - 15 = 1\n24 * 1 = 24\n18 - 17 = 1\n24 * 1 = 24\n20 - 19 = 1\n24 * 1 = 24\n22 - 21 = 1\n24 * 1 = 24\n24 - 23 = 1\n24 * 1 = 24\n26 - 25 = 1\n24 * 1 = 24\n28 - 27 = 1\n24 * 1 = 24\n30 - 29 = 1\n24 * 1 = 24\n32 - 31 = 1\n24 * 1 = 24\n34 - 33 = 1\n24 * 1 = 24\n36 - 35 = 1\n24 * 1 = 24\n38 - 37 = 1\n24 * 1 = 24\n40 - 39 = 1\n24 * 1 = 24\n42 - 41..." }, { "input": "33373", "output": "YES\n5 - 3 = 2\n2 * 4 = 8\n1 + 2 = 3\n8 * 3 = 24\n7 - 6 = 1\n24 * 1 = 24\n9 - 8 = 1\n24 * 1 = 24\n11 - 10 = 1\n24 * 1 = 24\n13 - 12 = 1\n24 * 1 = 24\n15 - 14 = 1\n24 * 1 = 24\n17 - 16 = 1\n24 * 1 = 24\n19 - 18 = 1\n24 * 1 = 24\n21 - 20 = 1\n24 * 1 = 24\n23 - 22 = 1\n24 * 1 = 24\n25 - 24 = 1\n24 * 1 = 24\n27 - 26 = 1\n24 * 1 = 24\n29 - 28 = 1\n24 * 1 = 24\n31 - 30 = 1\n24 * 1 = 24\n33 - 32 = 1\n24 * 1 = 24\n35 - 34 = 1\n24 * 1 = 24\n37 - 36 = 1\n24 * 1 = 24\n39 - 38 = 1\n24 * 1 = 24\n41 - 40 = 1\n24 * 1 = 2..." }, { "input": "9782", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24\n14 - 13 = 1\n24 * 1 = 24\n16 - 15 = 1\n24 * 1 = 24\n18 - 17 = 1\n24 * 1 = 24\n20 - 19 = 1\n24 * 1 = 24\n22 - 21 = 1\n24 * 1 = 24\n24 - 23 = 1\n24 * 1 = 24\n26 - 25 = 1\n24 * 1 = 24\n28 - 27 = 1\n24 * 1 = 24\n30 - 29 = 1\n24 * 1 = 24\n32 - 31 = 1\n24 * 1 = 24\n34 - 33 = 1\n24 * 1 = 24\n36 - 35 = 1\n24 * 1 = 24\n38 - 37 = 1\n24 * 1 = 24\n40 - 39 = 1\n24 * 1 = 24\n42 - 41..." }, { "input": "19082", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24\n14 - 13 = 1\n24 * 1 = 24\n16 - 15 = 1\n24 * 1 = 24\n18 - 17 = 1\n24 * 1 = 24\n20 - 19 = 1\n24 * 1 = 24\n22 - 21 = 1\n24 * 1 = 24\n24 - 23 = 1\n24 * 1 = 24\n26 - 25 = 1\n24 * 1 = 24\n28 - 27 = 1\n24 * 1 = 24\n30 - 29 = 1\n24 * 1 = 24\n32 - 31 = 1\n24 * 1 = 24\n34 - 33 = 1\n24 * 1 = 24\n36 - 35 = 1\n24 * 1 = 24\n38 - 37 = 1\n24 * 1 = 24\n40 - 39 = 1\n24 * 1 = 24\n42 - 41..." }, { "input": "4", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24" }, { "input": "7", "output": "YES\n5 - 3 = 2\n2 * 4 = 8\n1 + 2 = 3\n8 * 3 = 24\n7 - 6 = 1\n24 * 1 = 24" }, { "input": "3", "output": "NO" } ]
1,615,714,960
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
46
0
n = int(input()) x = list(map(int, input().split())) y = list(map(int, input().split())) s = set(x+y) sample = [] for i in range(1, n+1): sample.append(i) c = 0 for i in sample: if i in s: c += 1 if c==n: print("I become the guy.") else: print("Oh, my keyboard!")
Title: 24 Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little X used to play a card game called "24 Game", but recently he has found it too easy. So he invented a new game. Initially you have a sequence of *n* integers: 1,<=2,<=...,<=*n*. In a single step, you can pick two of them, let's denote them *a* and *b*, erase them from the sequence, and append to the sequence either *a*<=+<=*b*, or *a*<=-<=*b*, or *a*<=×<=*b*. After *n*<=-<=1 steps there is only one number left. Can you make this number equal to 24? Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105). Output Specification: If it's possible, print "YES" in the first line. Otherwise, print "NO" (without the quotes). If there is a way to obtain 24 as the result number, in the following *n*<=-<=1 lines print the required operations an operation per line. Each operation should be in form: "*a* *op* *b* = *c*". Where *a* and *b* are the numbers you've picked at this operation; *op* is either "+", or "-", or "*"; *c* is the result of corresponding operation. Note, that the absolute value of *c* mustn't be greater than 1018. The result of the last operation must be equal to 24. Separate operator sign and equality sign from numbers with spaces. If there are multiple valid answers, you may print any of them. Demo Input: ['1\n', '8\n'] Demo Output: ['NO\n', 'YES\n8 * 7 = 56\n6 * 5 = 30\n3 - 4 = -1\n1 - 2 = -1\n30 - -1 = 31\n56 - 31 = 25\n25 + -1 = 24\n'] Note: none
```python n = int(input()) x = list(map(int, input().split())) y = list(map(int, input().split())) s = set(x+y) sample = [] for i in range(1, n+1): sample.append(i) c = 0 for i in sample: if i in s: c += 1 if c==n: print("I become the guy.") else: print("Oh, my keyboard!") ```
-1
368
B
Sereja and Suffixes
PROGRAMMING
1,100
[ "data structures", "dp" ]
null
null
Sereja has an array *a*, consisting of *n* integers *a*1, *a*2, ..., *a**n*. The boy cannot sit and do nothing, he decided to study an array. Sereja took a piece of paper and wrote out *m* integers *l*1,<=*l*2,<=...,<=*l**m* (1<=≤<=*l**i*<=≤<=*n*). For each number *l**i* he wants to know how many distinct numbers are staying on the positions *l**i*, *l**i*<=+<=1, ..., *n*. Formally, he want to find the number of distinct numbers among *a**l**i*,<=*a**l**i*<=+<=1,<=...,<=*a**n*.? Sereja wrote out the necessary array elements but the array was so large and the boy was so pressed for time. Help him, find the answer for the described question for each *l**i*.
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105) — the array elements. Next *m* lines contain integers *l*1,<=*l*2,<=...,<=*l**m*. The *i*-th line contains integer *l**i* (1<=≤<=*l**i*<=≤<=*n*).
Print *m* lines — on the *i*-th line print the answer to the number *l**i*.
[ "10 10\n1 2 3 4 1 2 3 4 100000 99999\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n" ]
[ "6\n6\n6\n6\n6\n5\n4\n3\n2\n1\n" ]
none
1,000
[ { "input": "10 10\n1 2 3 4 1 2 3 4 100000 99999\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10", "output": "6\n6\n6\n6\n6\n5\n4\n3\n2\n1" }, { "input": "8 3\n8 6 4 3 4 2 4 8\n6\n4\n2", "output": "3\n4\n5" }, { "input": "7 10\n1 3 8 6 2 2 7\n4\n2\n6\n3\n4\n4\n6\n2\n7\n4", "output": "3\n5\n2\n4\n3\n3\n2\n5\n1\n3" }, { "input": "10 2\n2 6 5 7 2 2 3 2 4 8\n1\n2", "output": "7\n7" }, { "input": "7 1\n68346 10956 76708 23018 84063 34833 80407\n1", "output": "7" }, { "input": "2 2\n8 4\n1\n1", "output": "2\n2" }, { "input": "1 5\n5\n1\n1\n1\n1\n1", "output": "1\n1\n1\n1\n1" }, { "input": "4 7\n3 1 4 2\n4\n1\n2\n3\n2\n4\n4", "output": "1\n4\n3\n2\n3\n1\n1" }, { "input": "4 3\n9 1 7 1\n1\n4\n2", "output": "3\n1\n2" }, { "input": "8 3\n9280 6676 2720 6172 8329 10413 3975 1394\n5\n6\n7", "output": "4\n3\n2" }, { "input": "1 1\n1\n1", "output": "1" } ]
1,698,134,563
2,147,483,647
Python 3
OK
TESTS
30
670
15,257,600
n,m=map(int,input().split()) nums=list(map(int,input().split())) temp=set() ans=[0]*n for i in range(n-1,-1,-1): temp.add(nums[i]) ans[i]=len(temp) for _ in range(m): print(ans[int(input())-1])
Title: Sereja and Suffixes Time Limit: None seconds Memory Limit: None megabytes Problem Description: Sereja has an array *a*, consisting of *n* integers *a*1, *a*2, ..., *a**n*. The boy cannot sit and do nothing, he decided to study an array. Sereja took a piece of paper and wrote out *m* integers *l*1,<=*l*2,<=...,<=*l**m* (1<=≤<=*l**i*<=≤<=*n*). For each number *l**i* he wants to know how many distinct numbers are staying on the positions *l**i*, *l**i*<=+<=1, ..., *n*. Formally, he want to find the number of distinct numbers among *a**l**i*,<=*a**l**i*<=+<=1,<=...,<=*a**n*.? Sereja wrote out the necessary array elements but the array was so large and the boy was so pressed for time. Help him, find the answer for the described question for each *l**i*. Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105) — the array elements. Next *m* lines contain integers *l*1,<=*l*2,<=...,<=*l**m*. The *i*-th line contains integer *l**i* (1<=≤<=*l**i*<=≤<=*n*). Output Specification: Print *m* lines — on the *i*-th line print the answer to the number *l**i*. Demo Input: ['10 10\n1 2 3 4 1 2 3 4 100000 99999\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n'] Demo Output: ['6\n6\n6\n6\n6\n5\n4\n3\n2\n1\n'] Note: none
```python n,m=map(int,input().split()) nums=list(map(int,input().split())) temp=set() ans=[0]*n for i in range(n-1,-1,-1): temp.add(nums[i]) ans[i]=len(temp) for _ in range(m): print(ans[int(input())-1]) ```
3
217
A
Ice Skating
PROGRAMMING
1,200
[ "brute force", "dfs and similar", "dsu", "graphs" ]
null
null
Bajtek is learning to skate on ice. He's a beginner, so his only mode of transportation is pushing off from a snow drift to the north, east, south or west and sliding until he lands in another snow drift. He has noticed that in this way it's impossible to get from some snow drifts to some other by any sequence of moves. He now wants to heap up some additional snow drifts, so that he can get from any snow drift to any other one. He asked you to find the minimal number of snow drifts that need to be created. We assume that Bajtek can only heap up snow drifts at integer coordinates.
The first line of input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of snow drifts. Each of the following *n* lines contains two integers *x**i* and *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=1000) — the coordinates of the *i*-th snow drift. Note that the north direction coinсides with the direction of *Oy* axis, so the east direction coinсides with the direction of the *Ox* axis. All snow drift's locations are distinct.
Output the minimal number of snow drifts that need to be created in order for Bajtek to be able to reach any snow drift from any other one.
[ "2\n2 1\n1 2\n", "2\n2 1\n4 1\n" ]
[ "1\n", "0\n" ]
none
500
[ { "input": "2\n2 1\n1 2", "output": "1" }, { "input": "2\n2 1\n4 1", "output": "0" }, { "input": "24\n171 35\n261 20\n4 206\n501 446\n961 912\n581 748\n946 978\n463 514\n841 889\n341 466\n842 967\n54 102\n235 261\n925 889\n682 672\n623 636\n268 94\n635 710\n474 510\n697 794\n586 663\n182 184\n806 663\n468 459", "output": "21" }, { "input": "17\n660 646\n440 442\n689 618\n441 415\n922 865\n950 972\n312 366\n203 229\n873 860\n219 199\n344 308\n169 176\n961 992\n153 84\n201 230\n987 938\n834 815", "output": "16" }, { "input": "11\n798 845\n722 911\n374 270\n629 537\n748 856\n831 885\n486 641\n751 829\n609 492\n98 27\n654 663", "output": "10" }, { "input": "1\n321 88", "output": "0" }, { "input": "9\n811 859\n656 676\n76 141\n945 951\n497 455\n18 55\n335 294\n267 275\n656 689", "output": "7" }, { "input": "7\n948 946\n130 130\n761 758\n941 938\n971 971\n387 385\n509 510", "output": "6" }, { "input": "6\n535 699\n217 337\n508 780\n180 292\n393 112\n732 888", "output": "5" }, { "input": "14\n25 23\n499 406\n193 266\n823 751\n219 227\n101 138\n978 992\n43 74\n997 932\n237 189\n634 538\n774 740\n842 767\n742 802", "output": "13" }, { "input": "12\n548 506\n151 198\n370 380\n655 694\n654 690\n407 370\n518 497\n819 827\n765 751\n802 771\n741 752\n653 662", "output": "11" }, { "input": "40\n685 711\n433 403\n703 710\n491 485\n616 619\n288 282\n884 871\n367 352\n500 511\n977 982\n51 31\n576 564\n508 519\n755 762\n22 20\n368 353\n232 225\n953 955\n452 436\n311 330\n967 988\n369 364\n791 803\n150 149\n651 661\n118 93\n398 387\n748 766\n852 852\n230 228\n555 545\n515 519\n667 678\n867 862\n134 146\n859 863\n96 99\n486 469\n303 296\n780 786", "output": "38" }, { "input": "3\n175 201\n907 909\n388 360", "output": "2" }, { "input": "7\n312 298\n86 78\n73 97\n619 594\n403 451\n538 528\n71 86", "output": "6" }, { "input": "19\n802 820\n368 248\n758 794\n455 378\n876 888\n771 814\n245 177\n586 555\n844 842\n364 360\n820 856\n731 624\n982 975\n825 856\n122 121\n862 896\n42 4\n792 841\n828 820", "output": "16" }, { "input": "32\n643 877\n842 614\n387 176\n99 338\n894 798\n652 728\n611 648\n622 694\n579 781\n243 46\n322 305\n198 438\n708 579\n246 325\n536 459\n874 593\n120 277\n989 907\n223 110\n35 130\n761 692\n690 661\n518 766\n226 93\n678 597\n725 617\n661 574\n775 496\n56 416\n14 189\n358 359\n898 901", "output": "31" }, { "input": "32\n325 327\n20 22\n72 74\n935 933\n664 663\n726 729\n785 784\n170 171\n315 314\n577 580\n984 987\n313 317\n434 435\n962 961\n55 54\n46 44\n743 742\n434 433\n617 612\n332 332\n883 886\n940 936\n793 792\n645 644\n611 607\n418 418\n465 465\n219 218\n167 164\n56 54\n403 405\n210 210", "output": "29" }, { "input": "32\n652 712\n260 241\n27 154\n188 16\n521 351\n518 356\n452 540\n790 827\n339 396\n336 551\n897 930\n828 627\n27 168\n180 113\n134 67\n794 671\n812 711\n100 241\n686 813\n138 289\n384 506\n884 932\n913 959\n470 508\n730 734\n373 478\n788 862\n392 426\n148 68\n113 49\n713 852\n924 894", "output": "29" }, { "input": "14\n685 808\n542 677\n712 747\n832 852\n187 410\n399 338\n626 556\n530 635\n267 145\n215 209\n559 684\n944 949\n753 596\n601 823", "output": "13" }, { "input": "5\n175 158\n16 2\n397 381\n668 686\n957 945", "output": "4" }, { "input": "5\n312 284\n490 509\n730 747\n504 497\n782 793", "output": "4" }, { "input": "2\n802 903\n476 348", "output": "1" }, { "input": "4\n325 343\n425 442\n785 798\n275 270", "output": "3" }, { "input": "28\n462 483\n411 401\n118 94\n111 127\n5 6\n70 52\n893 910\n73 63\n818 818\n182 201\n642 633\n900 886\n893 886\n684 700\n157 173\n953 953\n671 660\n224 225\n832 801\n152 157\n601 585\n115 101\n739 722\n611 606\n659 642\n461 469\n702 689\n649 653", "output": "25" }, { "input": "36\n952 981\n885 900\n803 790\n107 129\n670 654\n143 132\n66 58\n813 819\n849 837\n165 198\n247 228\n15 39\n619 618\n105 138\n868 855\n965 957\n293 298\n613 599\n227 212\n745 754\n723 704\n877 858\n503 487\n678 697\n592 595\n155 135\n962 982\n93 89\n660 673\n225 212\n967 987\n690 680\n804 813\n489 518\n240 221\n111 124", "output": "34" }, { "input": "30\n89 3\n167 156\n784 849\n943 937\n144 95\n24 159\n80 120\n657 683\n585 596\n43 147\n909 964\n131 84\n345 389\n333 321\n91 126\n274 325\n859 723\n866 922\n622 595\n690 752\n902 944\n127 170\n426 383\n905 925\n172 284\n793 810\n414 510\n890 884\n123 24\n267 255", "output": "29" }, { "input": "5\n664 666\n951 941\n739 742\n844 842\n2 2", "output": "4" }, { "input": "3\n939 867\n411 427\n757 708", "output": "2" }, { "input": "36\n429 424\n885 972\n442 386\n512 511\n751 759\n4 115\n461 497\n496 408\n8 23\n542 562\n296 331\n448 492\n412 395\n109 166\n622 640\n379 355\n251 262\n564 586\n66 115\n275 291\n666 611\n629 534\n510 567\n635 666\n738 803\n420 369\n92 17\n101 144\n141 92\n258 258\n184 235\n492 456\n311 210\n394 357\n531 512\n634 636", "output": "34" }, { "input": "29\n462 519\n871 825\n127 335\n156 93\n576 612\n885 830\n634 779\n340 105\n744 795\n716 474\n93 139\n563 805\n137 276\n177 101\n333 14\n391 437\n873 588\n817 518\n460 597\n572 670\n140 303\n392 441\n273 120\n862 578\n670 639\n410 161\n544 577\n193 116\n252 195", "output": "28" }, { "input": "23\n952 907\n345 356\n812 807\n344 328\n242 268\n254 280\n1000 990\n80 78\n424 396\n595 608\n755 813\n383 380\n55 56\n598 633\n203 211\n508 476\n600 593\n206 192\n855 882\n517 462\n967 994\n642 657\n493 488", "output": "22" }, { "input": "10\n579 816\n806 590\n830 787\n120 278\n677 800\n16 67\n188 251\n559 560\n87 67\n104 235", "output": "8" }, { "input": "23\n420 424\n280 303\n515 511\n956 948\n799 803\n441 455\n362 369\n299 289\n823 813\n982 967\n876 878\n185 157\n529 551\n964 989\n655 656\n1 21\n114 112\n45 56\n935 937\n1000 997\n934 942\n360 366\n648 621", "output": "22" }, { "input": "23\n102 84\n562 608\n200 127\n952 999\n465 496\n322 367\n728 690\n143 147\n855 867\n861 866\n26 59\n300 273\n255 351\n192 246\n70 111\n365 277\n32 104\n298 319\n330 354\n241 141\n56 125\n315 298\n412 461", "output": "22" }, { "input": "7\n429 506\n346 307\n99 171\n853 916\n322 263\n115 157\n906 924", "output": "6" }, { "input": "3\n1 1\n2 1\n2 2", "output": "0" }, { "input": "4\n1 1\n1 2\n2 1\n2 2", "output": "0" }, { "input": "5\n1 1\n1 2\n2 2\n3 1\n3 3", "output": "0" }, { "input": "6\n1 1\n1 2\n2 2\n3 1\n3 2\n3 3", "output": "0" }, { "input": "20\n1 1\n2 2\n3 3\n3 9\n4 4\n5 2\n5 5\n5 7\n5 8\n6 2\n6 6\n6 9\n7 7\n8 8\n9 4\n9 7\n9 9\n10 2\n10 9\n10 10", "output": "1" }, { "input": "21\n1 1\n1 9\n2 1\n2 2\n2 5\n2 6\n2 9\n3 3\n3 8\n4 1\n4 4\n5 5\n5 8\n6 6\n7 7\n8 8\n9 9\n10 4\n10 10\n11 5\n11 11", "output": "1" }, { "input": "22\n1 1\n1 3\n1 4\n1 8\n1 9\n1 11\n2 2\n3 3\n4 4\n4 5\n5 5\n6 6\n6 8\n7 7\n8 3\n8 4\n8 8\n9 9\n10 10\n11 4\n11 9\n11 11", "output": "3" }, { "input": "50\n1 1\n2 2\n2 9\n3 3\n4 4\n4 9\n4 16\n4 24\n5 5\n6 6\n7 7\n8 8\n8 9\n8 20\n9 9\n10 10\n11 11\n12 12\n13 13\n14 7\n14 14\n14 16\n14 25\n15 4\n15 6\n15 15\n15 22\n16 6\n16 16\n17 17\n18 18\n19 6\n19 19\n20 20\n21 21\n22 6\n22 22\n23 23\n24 6\n24 7\n24 8\n24 9\n24 24\n25 1\n25 3\n25 5\n25 7\n25 23\n25 24\n25 25", "output": "7" }, { "input": "55\n1 1\n1 14\n2 2\n2 19\n3 1\n3 3\n3 8\n3 14\n3 23\n4 1\n4 4\n5 5\n5 8\n5 15\n6 2\n6 3\n6 4\n6 6\n7 7\n8 8\n8 21\n9 9\n10 1\n10 10\n11 9\n11 11\n12 12\n13 13\n14 14\n15 15\n15 24\n16 5\n16 16\n17 5\n17 10\n17 17\n17 18\n17 22\n17 27\n18 18\n19 19\n20 20\n21 20\n21 21\n22 22\n23 23\n24 14\n24 24\n25 25\n26 8\n26 11\n26 26\n27 3\n27 27\n28 28", "output": "5" }, { "input": "3\n1 2\n2 1\n2 2", "output": "0" }, { "input": "6\n4 4\n3 4\n5 4\n4 5\n4 3\n3 1", "output": "0" }, { "input": "4\n1 1\n1 2\n2 1\n2 2", "output": "0" }, { "input": "3\n1 1\n2 2\n1 2", "output": "0" }, { "input": "8\n1 3\n1 1\n4 1\n2 2\n2 5\n5 9\n5 1\n5 4", "output": "1" }, { "input": "10\n1 1\n1 2\n1 3\n1 4\n5 5\n6 6\n7 7\n8 8\n9 9\n100 100", "output": "6" }, { "input": "7\n1 1\n2 2\n3 3\n4 4\n1 2\n2 3\n3 4", "output": "0" }, { "input": "6\n1 1\n2 1\n2 2\n2 4\n4 3\n2 3", "output": "0" }, { "input": "4\n3 1\n2 1\n2 2\n1 2", "output": "0" }, { "input": "6\n1 1\n2 2\n2 1\n2 4\n4 3\n2 3", "output": "0" }, { "input": "3\n1 2\n1 3\n1 4", "output": "0" }, { "input": "4\n1 1\n2 2\n1 2\n2 1", "output": "0" }, { "input": "4\n1 3\n2 1\n3 2\n3 1", "output": "1" }, { "input": "7\n1 1\n1 2\n2 2\n3 3\n3 4\n4 4\n1 4", "output": "0" }, { "input": "21\n12 12\n13 12\n12 11\n13 13\n10 10\n11 10\n11 11\n501 500\n501 501\n503 502\n500 500\n503 503\n502 501\n502 502\n700 700\n702 702\n703 702\n701 701\n702 701\n703 703\n701 700", "output": "2" }, { "input": "6\n1 11\n6 8\n11 10\n1 10\n11 11\n6 9", "output": "1" }, { "input": "4\n1 1\n2 2\n3 2\n3 1", "output": "0" }, { "input": "3\n1 2\n3 4\n3 2", "output": "0" }, { "input": "3\n1 1\n1 2\n2 2", "output": "0" }, { "input": "4\n5 5\n5 4\n6 3\n6 4", "output": "0" }, { "input": "3\n1 1\n2 2\n2 1", "output": "0" } ]
1,671,555,728
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
0
2,000
0
n=int(input()) while 1: n+=1 m=n count=0 a=[] while n!=0: a.append(n%10) n//=10 for i in range(len(a)): if a.count(a[i])>1: count=1 break if count==0: print(m)
Title: Ice Skating Time Limit: None seconds Memory Limit: None megabytes Problem Description: Bajtek is learning to skate on ice. He's a beginner, so his only mode of transportation is pushing off from a snow drift to the north, east, south or west and sliding until he lands in another snow drift. He has noticed that in this way it's impossible to get from some snow drifts to some other by any sequence of moves. He now wants to heap up some additional snow drifts, so that he can get from any snow drift to any other one. He asked you to find the minimal number of snow drifts that need to be created. We assume that Bajtek can only heap up snow drifts at integer coordinates. Input Specification: The first line of input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of snow drifts. Each of the following *n* lines contains two integers *x**i* and *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=1000) — the coordinates of the *i*-th snow drift. Note that the north direction coinсides with the direction of *Oy* axis, so the east direction coinсides with the direction of the *Ox* axis. All snow drift's locations are distinct. Output Specification: Output the minimal number of snow drifts that need to be created in order for Bajtek to be able to reach any snow drift from any other one. Demo Input: ['2\n2 1\n1 2\n', '2\n2 1\n4 1\n'] Demo Output: ['1\n', '0\n'] Note: none
```python n=int(input()) while 1: n+=1 m=n count=0 a=[] while n!=0: a.append(n%10) n//=10 for i in range(len(a)): if a.count(a[i])>1: count=1 break if count==0: print(m) ```
0
691
A
Fashion in Berland
PROGRAMMING
1,000
[ "implementation" ]
null
null
According to rules of the Berland fashion, a jacket should be fastened by all the buttons except only one, but not necessarily it should be the last one. Also if the jacket has only one button, it should be fastened, so the jacket will not swinging open. You are given a jacket with *n* buttons. Determine if it is fastened in a right way.
The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of buttons on the jacket. The second line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=1). The number *a**i*<==<=0 if the *i*-th button is not fastened. Otherwise *a**i*<==<=1.
In the only line print the word "YES" if the jacket is fastened in a right way. Otherwise print the word "NO".
[ "3\n1 0 1\n", "3\n1 0 0\n" ]
[ "YES\n", "NO\n" ]
none
0
[ { "input": "3\n1 0 1", "output": "YES" }, { "input": "3\n1 0 0", "output": "NO" }, { "input": "3\n1 1 0", "output": "YES" }, { "input": "3\n1 1 1", "output": "NO" }, { "input": "3\n0 0 1", "output": "NO" }, { "input": "3\n0 0 0", "output": "NO" }, { "input": "3\n0 1 1", "output": "YES" }, { "input": "3\n0 1 0", "output": "NO" }, { "input": "2\n0 1", "output": "YES" }, { "input": "2\n1 0", "output": "YES" }, { "input": "2\n0 0", "output": "NO" }, { "input": "2\n1 1", "output": "NO" }, { "input": "1\n1", "output": "YES" }, { "input": "1\n0", "output": "NO" }, { "input": "10\n1 0 1 1 1 1 1 1 1 1", "output": "YES" }, { "input": "5\n1 1 1 1 0", "output": "YES" }, { "input": "4\n1 0 1 0", "output": "NO" }, { "input": "4\n1 1 0 0", "output": "NO" }, { "input": "10\n0 0 1 1 1 1 1 1 1 1", "output": "NO" }, { "input": "10\n1 1 1 1 1 1 1 1 1 1", "output": "NO" }, { "input": "123\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "NO" }, { "input": "124\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "NO" }, { "input": "94\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "NO" }, { "input": "64\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "NO" }, { "input": "34\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "NO" }, { "input": "35\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "NO" }, { "input": "5\n1 1 1 1 1", "output": "NO" }, { "input": "10\n0 0 0 0 0 0 0 0 0 0", "output": "NO" }, { "input": "231\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "NO" }, { "input": "10\n1 1 0 1 1 1 0 1 1 1", "output": "NO" } ]
1,554,297,755
2,147,483,647
PyPy 3
RUNTIME_ERROR
TESTS
12
202
1,024,000
line = input() line2 = input() total = int(line) arrayValue = line2.split(" ") def checkValid(total, arrayValue): if total == 1: if strings[-1] == 0: print("NO") else: print("YES") else: fastened = 0 for i in range(total): if arrayValue[i] == "0": fastened += 1 if fastened > 1: break if fastened == 1: print("YES") else: print("NO") checkValid(total, arrayValue)
Title: Fashion in Berland Time Limit: None seconds Memory Limit: None megabytes Problem Description: According to rules of the Berland fashion, a jacket should be fastened by all the buttons except only one, but not necessarily it should be the last one. Also if the jacket has only one button, it should be fastened, so the jacket will not swinging open. You are given a jacket with *n* buttons. Determine if it is fastened in a right way. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of buttons on the jacket. The second line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=1). The number *a**i*<==<=0 if the *i*-th button is not fastened. Otherwise *a**i*<==<=1. Output Specification: In the only line print the word "YES" if the jacket is fastened in a right way. Otherwise print the word "NO". Demo Input: ['3\n1 0 1\n', '3\n1 0 0\n'] Demo Output: ['YES\n', 'NO\n'] Note: none
```python line = input() line2 = input() total = int(line) arrayValue = line2.split(" ") def checkValid(total, arrayValue): if total == 1: if strings[-1] == 0: print("NO") else: print("YES") else: fastened = 0 for i in range(total): if arrayValue[i] == "0": fastened += 1 if fastened > 1: break if fastened == 1: print("YES") else: print("NO") checkValid(total, arrayValue) ```
-1
546
A
Soldier and Bananas
PROGRAMMING
800
[ "brute force", "implementation", "math" ]
null
null
A soldier wants to buy *w* bananas in the shop. He has to pay *k* dollars for the first banana, 2*k* dollars for the second one and so on (in other words, he has to pay *i*·*k* dollars for the *i*-th banana). He has *n* dollars. How many dollars does he have to borrow from his friend soldier to buy *w* bananas?
The first line contains three positive integers *k*,<=*n*,<=*w* (1<=<=≤<=<=*k*,<=*w*<=<=≤<=<=1000, 0<=≤<=*n*<=≤<=109), the cost of the first banana, initial number of dollars the soldier has and number of bananas he wants.
Output one integer — the amount of dollars that the soldier must borrow from his friend. If he doesn't have to borrow money, output 0.
[ "3 17 4\n" ]
[ "13" ]
none
500
[ { "input": "3 17 4", "output": "13" }, { "input": "1 2 1", "output": "0" }, { "input": "1 1 1", "output": "0" }, { "input": "1 5 6", "output": "16" }, { "input": "1 1000000000 1", "output": "0" }, { "input": "1000 0 1000", "output": "500500000" }, { "input": "859 453892 543", "output": "126416972" }, { "input": "1000 1000000000 1000", "output": "0" }, { "input": "1000 500500000 1000", "output": "0" }, { "input": "1000 500500001 1000", "output": "0" }, { "input": "1000 500499999 1000", "output": "1" }, { "input": "634 87973 214", "output": "14497197" }, { "input": "432 10000 241", "output": "12587552" }, { "input": "111 111111111 111", "output": "0" }, { "input": "20 43 3", "output": "77" } ]
1,699,125,249
2,147,483,647
Python 3
OK
TESTS
15
46
0
def totalPrice(k,w): sum= 0 for i in range(1,w+1): sum+= (k*i) return sum k,n,w = list(map(int, input().split())) toborrow = totalPrice(k,w)-n if(toborrow<=0): print(0) else: print(toborrow)
Title: Soldier and Bananas Time Limit: None seconds Memory Limit: None megabytes Problem Description: A soldier wants to buy *w* bananas in the shop. He has to pay *k* dollars for the first banana, 2*k* dollars for the second one and so on (in other words, he has to pay *i*·*k* dollars for the *i*-th banana). He has *n* dollars. How many dollars does he have to borrow from his friend soldier to buy *w* bananas? Input Specification: The first line contains three positive integers *k*,<=*n*,<=*w* (1<=<=≤<=<=*k*,<=*w*<=<=≤<=<=1000, 0<=≤<=*n*<=≤<=109), the cost of the first banana, initial number of dollars the soldier has and number of bananas he wants. Output Specification: Output one integer — the amount of dollars that the soldier must borrow from his friend. If he doesn't have to borrow money, output 0. Demo Input: ['3 17 4\n'] Demo Output: ['13'] Note: none
```python def totalPrice(k,w): sum= 0 for i in range(1,w+1): sum+= (k*i) return sum k,n,w = list(map(int, input().split())) toborrow = totalPrice(k,w)-n if(toborrow<=0): print(0) else: print(toborrow) ```
3
702
C
Cellular Network
PROGRAMMING
1,500
[ "binary search", "implementation", "two pointers" ]
null
null
You are given *n* points on the straight line — the positions (*x*-coordinates) of the cities and *m* points on the same line — the positions (*x*-coordinates) of the cellular towers. All towers work in the same way — they provide cellular network for all cities, which are located at the distance which is no more than *r* from this tower. Your task is to find minimal *r* that each city has been provided by cellular network, i.e. for each city there is at least one cellular tower at the distance which is no more than *r*. If *r*<==<=0 then a tower provides cellular network only for the point where it is located. One tower can provide cellular network for any number of cities, but all these cities must be at the distance which is no more than *r* from this tower.
The first line contains two positive integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105) — the number of cities and the number of cellular towers. The second line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109) — the coordinates of cities. It is allowed that there are any number of cities in the same point. All coordinates *a**i* are given in non-decreasing order. The third line contains a sequence of *m* integers *b*1,<=*b*2,<=...,<=*b**m* (<=-<=109<=≤<=*b**j*<=≤<=109) — the coordinates of cellular towers. It is allowed that there are any number of towers in the same point. All coordinates *b**j* are given in non-decreasing order.
Print minimal *r* so that each city will be covered by cellular network.
[ "3 2\n-2 2 4\n-3 0\n", "5 3\n1 5 10 14 17\n4 11 15\n" ]
[ "4\n", "3\n" ]
none
0
[ { "input": "3 2\n-2 2 4\n-3 0", "output": "4" }, { "input": "5 3\n1 5 10 14 17\n4 11 15", "output": "3" }, { "input": "1 1\n-1000000000\n1000000000", "output": "2000000000" }, { "input": "1 1\n1000000000\n-1000000000", "output": "2000000000" }, { "input": "10 10\n1 1 2 2 2 4 4 6 7 9\n0 1 3 3 3 6 7 8 9 10", "output": "1" }, { "input": "10 10\n2 52 280 401 416 499 721 791 841 943\n246 348 447 486 507 566 568 633 953 986", "output": "244" }, { "input": "7 7\n1 2 3 3 4 5 6\n1 1 2 3 4 5 6", "output": "0" }, { "input": "1 3\n-3\n-1 -1 8", "output": "2" }, { "input": "1 2\n8\n-7 5", "output": "3" }, { "input": "2 1\n4 8\n-1", "output": "9" }, { "input": "1 2\n6\n-8 -8", "output": "14" }, { "input": "1 4\n4\n-8 0 1 7", "output": "3" }, { "input": "1 2\n2\n4 7", "output": "2" }, { "input": "2 2\n-5 2\n-7 4", "output": "2" }, { "input": "1 21\n3\n3 10 23 32 34 40 42 49 49 50 50 58 70 71 71 74 76 79 79 80 83", "output": "0" }, { "input": "1 3\n-4\n-8 -1 1", "output": "3" }, { "input": "4 1\n-6 -3 -1 2\n-7", "output": "9" }, { "input": "2 3\n-2 7\n-7 -2 5", "output": "2" }, { "input": "1 1\n-1\n0", "output": "1" }, { "input": "1 3\n0\n-4 0 5", "output": "0" } ]
1,698,087,659
2,147,483,647
PyPy 3-64
OK
TESTS
32
124
17,510,400
# love thy neighbour from sys import stdin,stdout def ArrayIn():return list(map(int,input().split())) #def print(x):stdout.write(f'{x}\n') n, m = ArrayIn() a = ArrayIn() b = ArrayIn() def Dist(x,y):return abs(x-y) l, r=0, 0 ans=-1 while l<n and r<m: prev=int(21e9) while r<m: curr=Dist(a[l],b[r]) if curr>prev: r-=1 break prev=curr r+=1 else:r-=1 ans = max(ans, Dist(a[l],b[r]) ) l+=1 print(ans)
Title: Cellular Network Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given *n* points on the straight line — the positions (*x*-coordinates) of the cities and *m* points on the same line — the positions (*x*-coordinates) of the cellular towers. All towers work in the same way — they provide cellular network for all cities, which are located at the distance which is no more than *r* from this tower. Your task is to find minimal *r* that each city has been provided by cellular network, i.e. for each city there is at least one cellular tower at the distance which is no more than *r*. If *r*<==<=0 then a tower provides cellular network only for the point where it is located. One tower can provide cellular network for any number of cities, but all these cities must be at the distance which is no more than *r* from this tower. Input Specification: The first line contains two positive integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105) — the number of cities and the number of cellular towers. The second line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109) — the coordinates of cities. It is allowed that there are any number of cities in the same point. All coordinates *a**i* are given in non-decreasing order. The third line contains a sequence of *m* integers *b*1,<=*b*2,<=...,<=*b**m* (<=-<=109<=≤<=*b**j*<=≤<=109) — the coordinates of cellular towers. It is allowed that there are any number of towers in the same point. All coordinates *b**j* are given in non-decreasing order. Output Specification: Print minimal *r* so that each city will be covered by cellular network. Demo Input: ['3 2\n-2 2 4\n-3 0\n', '5 3\n1 5 10 14 17\n4 11 15\n'] Demo Output: ['4\n', '3\n'] Note: none
```python # love thy neighbour from sys import stdin,stdout def ArrayIn():return list(map(int,input().split())) #def print(x):stdout.write(f'{x}\n') n, m = ArrayIn() a = ArrayIn() b = ArrayIn() def Dist(x,y):return abs(x-y) l, r=0, 0 ans=-1 while l<n and r<m: prev=int(21e9) while r<m: curr=Dist(a[l],b[r]) if curr>prev: r-=1 break prev=curr r+=1 else:r-=1 ans = max(ans, Dist(a[l],b[r]) ) l+=1 print(ans) ```
3
265
A
Colorful Stones (Simplified Edition)
PROGRAMMING
800
[ "implementation" ]
null
null
There is a sequence of colorful stones. The color of each stone is one of red, green, or blue. You are given a string *s*. The *i*-th (1-based) character of *s* represents the color of the *i*-th stone. If the character is "R", "G", or "B", the color of the corresponding stone is red, green, or blue, respectively. Initially Squirrel Liss is standing on the first stone. You perform instructions one or more times. Each instruction is one of the three types: "RED", "GREEN", or "BLUE". After an instruction *c*, if Liss is standing on a stone whose colors is *c*, Liss will move one stone forward, else she will not move. You are given a string *t*. The number of instructions is equal to the length of *t*, and the *i*-th character of *t* represents the *i*-th instruction. Calculate the final position of Liss (the number of the stone she is going to stand on in the end) after performing all the instructions, and print its 1-based position. It is guaranteed that Liss don't move out of the sequence.
The input contains two lines. The first line contains the string *s* (1<=≤<=|*s*|<=≤<=50). The second line contains the string *t* (1<=≤<=|*t*|<=≤<=50). The characters of each string will be one of "R", "G", or "B". It is guaranteed that Liss don't move out of the sequence.
Print the final 1-based position of Liss in a single line.
[ "RGB\nRRR\n", "RRRBGBRBBB\nBBBRR\n", "BRRBGBRGRBGRGRRGGBGBGBRGBRGRGGGRBRRRBRBBBGRRRGGBBB\nBBRBGGRGRGBBBRBGRBRBBBBRBRRRBGBBGBBRRBBGGRBRRBRGRB\n" ]
[ "2\n", "3\n", "15\n" ]
none
500
[ { "input": "RGB\nRRR", "output": "2" }, { "input": "RRRBGBRBBB\nBBBRR", "output": "3" }, { "input": "BRRBGBRGRBGRGRRGGBGBGBRGBRGRGGGRBRRRBRBBBGRRRGGBBB\nBBRBGGRGRGBBBRBGRBRBBBBRBRRRBGBBGBBRRBBGGRBRRBRGRB", "output": "15" }, { "input": "G\nRRBBRBRRBR", "output": "1" }, { "input": "RRRRRBRRBRRGRBGGRRRGRBBRBBBBBRGRBGBRRGBBBRBBGBRGBB\nB", "output": "1" }, { "input": "RRGGBRGRBG\nBRRGGBBGGR", "output": "7" }, { "input": "BBRRGBGGRGBRGBRBRBGR\nGGGRBGGGBRRRRGRBGBGRGRRBGRBGBG", "output": "15" }, { "input": "GBRRBGBGBBBBRRRGBGRRRGBGBBBRGR\nRRGBRRGRBBBBBBGRRBBR", "output": "8" }, { "input": "BRGRRGRGRRGBBGBBBRRBBRRBGBBGRGBBGGRGBRBGGGRRRBGGBB\nRGBBGRRBBBRRGRRBRBBRGBBGGGRGBGRRRRBRBGGBRBGGGRGBRR", "output": "16" }, { "input": "GGRGGBRRGRGBRRGGRBBGGRRGBBBGBBBGGRBGGBRBBRGBRRRBRG\nGGRGRRRRRRRRRGBBBBRGBRGRGRRGBBRGGBRBBRBGBRGRRRRGGR", "output": "18" }, { "input": "RBBRBGBBGGGBRRBGBRGRRGGRBBBBGRBGGBRRBGBBRBRGBBGGGG\nBRRGRBGRBGBRGBRBGGBBBGBBRGRBGRGRBGRBGGRRBGBRGRRBBG", "output": "23" }, { "input": "RRGGRRBRGRGBRGBRGBBRGGGBRBGBRGBRGGBRBRGBGRRBBGGRBR\nBRGRBBBGRBGRRGGRRRRRRRRGGGGGGGGBGGGGGGGRGRBBRGRGBR", "output": "14" }, { "input": "RBRBRRRRRGGR\nBBBBRRGGBGRBRGBBRGGGRGGBRRBRBRBGGG", "output": "12" }, { "input": "GGRGGGBRGRGRBBRGGGRBGRRR\nGBBBBGBGBGBBBRGGRGGBGRRGRRRGBGB", "output": "12" }, { "input": "RGRBGBRBBGBRRGGGBBGBRRBGRGBBBBBGRRRGGRBB\nBGR", "output": "2" }, { "input": "R\nB", "output": "1" }, { "input": "RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR\nRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR", "output": "50" }, { "input": "RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR\nGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG", "output": "1" }, { "input": "R\nGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG", "output": "1" } ]
1,627,539,050
2,147,483,647
Python 3
OK
TESTS
19
154
6,963,200
inst=list(input()) seq=list(input()) n=len(inst) m=len(seq) i,j=0,0 res=1 while i<n and j<m: if inst[i]==seq[j]: j+=1 i+=1 res+=1 else:j+=1 print(res)
Title: Colorful Stones (Simplified Edition) Time Limit: None seconds Memory Limit: None megabytes Problem Description: There is a sequence of colorful stones. The color of each stone is one of red, green, or blue. You are given a string *s*. The *i*-th (1-based) character of *s* represents the color of the *i*-th stone. If the character is "R", "G", or "B", the color of the corresponding stone is red, green, or blue, respectively. Initially Squirrel Liss is standing on the first stone. You perform instructions one or more times. Each instruction is one of the three types: "RED", "GREEN", or "BLUE". After an instruction *c*, if Liss is standing on a stone whose colors is *c*, Liss will move one stone forward, else she will not move. You are given a string *t*. The number of instructions is equal to the length of *t*, and the *i*-th character of *t* represents the *i*-th instruction. Calculate the final position of Liss (the number of the stone she is going to stand on in the end) after performing all the instructions, and print its 1-based position. It is guaranteed that Liss don't move out of the sequence. Input Specification: The input contains two lines. The first line contains the string *s* (1<=≤<=|*s*|<=≤<=50). The second line contains the string *t* (1<=≤<=|*t*|<=≤<=50). The characters of each string will be one of "R", "G", or "B". It is guaranteed that Liss don't move out of the sequence. Output Specification: Print the final 1-based position of Liss in a single line. Demo Input: ['RGB\nRRR\n', 'RRRBGBRBBB\nBBBRR\n', 'BRRBGBRGRBGRGRRGGBGBGBRGBRGRGGGRBRRRBRBBBGRRRGGBBB\nBBRBGGRGRGBBBRBGRBRBBBBRBRRRBGBBGBBRRBBGGRBRRBRGRB\n'] Demo Output: ['2\n', '3\n', '15\n'] Note: none
```python inst=list(input()) seq=list(input()) n=len(inst) m=len(seq) i,j=0,0 res=1 while i<n and j<m: if inst[i]==seq[j]: j+=1 i+=1 res+=1 else:j+=1 print(res) ```
3
291
A
Spyke Talks
PROGRAMMING
800
[ "*special", "implementation", "sortings" ]
null
null
Polycarpus is the director of a large corporation. There are *n* secretaries working for the corporation, each of them corresponds via the famous Spyke VoIP system during the day. We know that when two people call each other via Spyke, the Spyke network assigns a unique ID to this call, a positive integer session number. One day Polycarpus wondered which secretaries are talking via the Spyke and which are not. For each secretary, he wrote out either the session number of his call or a 0 if this secretary wasn't talking via Spyke at that moment. Help Polycarpus analyze these data and find out the number of pairs of secretaries that are talking. If Polycarpus has made a mistake in the data and the described situation could not have taken place, say so. Note that the secretaries can correspond via Spyke not only with each other, but also with the people from other places. Also, Spyke conferences aren't permitted — that is, one call connects exactly two people.
The first line contains integer *n* (1<=≤<=*n*<=≤<=103) — the number of secretaries in Polycarpus's corporation. The next line contains *n* space-separated integers: *id*1,<=*id*2,<=...,<=*id**n* (0<=≤<=*id**i*<=≤<=109). Number *id**i* equals the number of the call session of the *i*-th secretary, if the secretary is talking via Spyke, or zero otherwise. Consider the secretaries indexed from 1 to *n* in some way.
Print a single integer — the number of pairs of chatting secretaries, or -1 if Polycarpus's got a mistake in his records and the described situation could not have taken place.
[ "6\n0 1 7 1 7 10\n", "3\n1 1 1\n", "1\n0\n" ]
[ "2\n", "-1\n", "0\n" ]
In the first test sample there are two Spyke calls between secretaries: secretary 2 and secretary 4, secretary 3 and secretary 5. In the second test sample the described situation is impossible as conferences aren't allowed.
500
[ { "input": "6\n0 1 7 1 7 10", "output": "2" }, { "input": "3\n1 1 1", "output": "-1" }, { "input": "1\n0", "output": "0" }, { "input": "5\n2 2 1 1 3", "output": "2" }, { "input": "1\n1", "output": "0" }, { "input": "10\n4 21 3 21 21 1 1 2 2 3", "output": "-1" }, { "input": "2\n1 2", "output": "0" }, { "input": "5\n0 0 0 0 0", "output": "0" }, { "input": "6\n6 6 0 8 0 0", "output": "1" }, { "input": "10\n0 0 0 0 0 1 0 1 0 1", "output": "-1" }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 0 3 0 0 3 0 0 0 0 0 0 3 0 0 3 0 0 0 0 0 0 0 3 0 0 0 0 0", "output": "-1" }, { "input": "1\n1000000000", "output": "0" }, { "input": "2\n1 0", "output": "0" }, { "input": "2\n1000000000 1000000000", "output": "1" }, { "input": "5\n1 0 0 0 1", "output": "1" }, { "input": "15\n380515742 842209759 945171461 664384656 945171461 474872104 0 0 131648973 131648973 474872104 842209759 664384656 0 380515742", "output": "6" }, { "input": "123\n0 6361 8903 10428 0 258 0 10422 0 0 2642 1958 0 0 0 0 0 8249 1958 0 0 2642 0 0 0 11566 4709 1847 3998 0 1331 0 0 10289 2739 6135 3450 0 0 10994 6069 4337 5854 1331 5854 0 630 630 11244 5928 2706 0 683 214 0 9080 0 0 0 10422 683 11566 10994 0 0 3450 11244 11542 3998 1847 2708 9871 2739 2001 0 12216 6069 0 5928 0 10289 1307 0 1307 8903 0 6361 6135 6632 10428 0 0 632 258 9080 12216 4709 4967 2706 0 11542 2001 6632 0 8249 214 0 10301 4967 10301 7296 7296 10914 2708 4337 0 0 632 0 10914 0 9871 0", "output": "40" }, { "input": "10\n0 3 2 3 2 0 1 3 3 0", "output": "-1" }, { "input": "20\n0 1 2 0 0 0 0 5 3 4 0 0 1 1 3 0 4 0 1 0", "output": "-1" }, { "input": "47\n1 6 0 6 1 1 6 4 3 6 5 3 6 3 2 2 5 1 4 7 3 5 6 1 6 7 4 5 6 3 3 3 7 4 1 6 1 1 7 1 3 1 5 5 1 3 6", "output": "-1" }, { "input": "74\n0 0 0 0 0 37 0 0 0 0 0 0 0 8 0 0 9 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 9 0 7 0 0 0 0 0 0 19 19 0 0 0 0 0 0 0 0 0 0 0 0 17 0 30 0 0 0 0 0 0 30 0 0 0 0 0 0 0 37 0", "output": "5" }, { "input": "3\n1 1 1", "output": "-1" }, { "input": "2\n2 3", "output": "0" }, { "input": "2\n2 2", "output": "1" }, { "input": "5\n10000 10000 1 1 10000", "output": "-1" } ]
1,672,286,373
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
30
0
n = str(input()) a = [int(x) for x in input().split()] n = 0 for element in a: if a.count(element)>2: print(-1) elif a.count(element)==2: n += 1 a.remove(element) print(a) print(n)
Title: Spyke Talks Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarpus is the director of a large corporation. There are *n* secretaries working for the corporation, each of them corresponds via the famous Spyke VoIP system during the day. We know that when two people call each other via Spyke, the Spyke network assigns a unique ID to this call, a positive integer session number. One day Polycarpus wondered which secretaries are talking via the Spyke and which are not. For each secretary, he wrote out either the session number of his call or a 0 if this secretary wasn't talking via Spyke at that moment. Help Polycarpus analyze these data and find out the number of pairs of secretaries that are talking. If Polycarpus has made a mistake in the data and the described situation could not have taken place, say so. Note that the secretaries can correspond via Spyke not only with each other, but also with the people from other places. Also, Spyke conferences aren't permitted — that is, one call connects exactly two people. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=103) — the number of secretaries in Polycarpus's corporation. The next line contains *n* space-separated integers: *id*1,<=*id*2,<=...,<=*id**n* (0<=≤<=*id**i*<=≤<=109). Number *id**i* equals the number of the call session of the *i*-th secretary, if the secretary is talking via Spyke, or zero otherwise. Consider the secretaries indexed from 1 to *n* in some way. Output Specification: Print a single integer — the number of pairs of chatting secretaries, or -1 if Polycarpus's got a mistake in his records and the described situation could not have taken place. Demo Input: ['6\n0 1 7 1 7 10\n', '3\n1 1 1\n', '1\n0\n'] Demo Output: ['2\n', '-1\n', '0\n'] Note: In the first test sample there are two Spyke calls between secretaries: secretary 2 and secretary 4, secretary 3 and secretary 5. In the second test sample the described situation is impossible as conferences aren't allowed.
```python n = str(input()) a = [int(x) for x in input().split()] n = 0 for element in a: if a.count(element)>2: print(-1) elif a.count(element)==2: n += 1 a.remove(element) print(a) print(n) ```
0
379
A
New Year Candles
PROGRAMMING
1,000
[ "implementation" ]
null
null
Vasily the Programmer loves romance, so this year he decided to illuminate his room with candles. Vasily has *a* candles.When Vasily lights up a new candle, it first burns for an hour and then it goes out. Vasily is smart, so he can make *b* went out candles into a new candle. As a result, this new candle can be used like any other new candle. Now Vasily wonders: for how many hours can his candles light up the room if he acts optimally well? Help him find this number.
The single line contains two integers, *a* and *b* (1<=≤<=*a*<=≤<=1000; 2<=≤<=*b*<=≤<=1000).
Print a single integer — the number of hours Vasily can light up the room for.
[ "4 2\n", "6 3\n" ]
[ "7\n", "8\n" ]
Consider the first sample. For the first four hours Vasily lights up new candles, then he uses four burned out candles to make two new ones and lights them up. When these candles go out (stop burning), Vasily can make another candle. Overall, Vasily can light up the room for 7 hours.
500
[ { "input": "4 2", "output": "7" }, { "input": "6 3", "output": "8" }, { "input": "1000 1000", "output": "1001" }, { "input": "123 5", "output": "153" }, { "input": "1000 2", "output": "1999" }, { "input": "1 2", "output": "1" }, { "input": "1 3", "output": "1" }, { "input": "1 4", "output": "1" }, { "input": "2 2", "output": "3" }, { "input": "3 2", "output": "5" }, { "input": "3 3", "output": "4" }, { "input": "999 2", "output": "1997" }, { "input": "1000 3", "output": "1499" }, { "input": "1000 4", "output": "1333" }, { "input": "1 1000", "output": "1" }, { "input": "80 970", "output": "80" }, { "input": "80 970", "output": "80" }, { "input": "80 970", "output": "80" }, { "input": "80 970", "output": "80" }, { "input": "80 970", "output": "80" }, { "input": "80 970", "output": "80" }, { "input": "10 4", "output": "13" }, { "input": "4 3", "output": "5" }, { "input": "91 5", "output": "113" }, { "input": "777 17", "output": "825" }, { "input": "100 4", "output": "133" }, { "input": "5 3", "output": "7" }, { "input": "6 4", "output": "7" }, { "input": "26 8", "output": "29" }, { "input": "9 4", "output": "11" }, { "input": "20 3", "output": "29" }, { "input": "17 3", "output": "25" } ]
1,669,665,672
2,147,483,647
Python 3
OK
TESTS
32
46
0
a, b = map(int, input().split()) ans = a ost = 0 while a >= b: ans += a // b ost = a % b a //= b a += ost print(ans) # Mon Nov 28 2022 23:01:11 GMT+0300 (Moscow Standard Time)
Title: New Year Candles Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasily the Programmer loves romance, so this year he decided to illuminate his room with candles. Vasily has *a* candles.When Vasily lights up a new candle, it first burns for an hour and then it goes out. Vasily is smart, so he can make *b* went out candles into a new candle. As a result, this new candle can be used like any other new candle. Now Vasily wonders: for how many hours can his candles light up the room if he acts optimally well? Help him find this number. Input Specification: The single line contains two integers, *a* and *b* (1<=≤<=*a*<=≤<=1000; 2<=≤<=*b*<=≤<=1000). Output Specification: Print a single integer — the number of hours Vasily can light up the room for. Demo Input: ['4 2\n', '6 3\n'] Demo Output: ['7\n', '8\n'] Note: Consider the first sample. For the first four hours Vasily lights up new candles, then he uses four burned out candles to make two new ones and lights them up. When these candles go out (stop burning), Vasily can make another candle. Overall, Vasily can light up the room for 7 hours.
```python a, b = map(int, input().split()) ans = a ost = 0 while a >= b: ans += a // b ost = a % b a //= b a += ost print(ans) # Mon Nov 28 2022 23:01:11 GMT+0300 (Moscow Standard Time) ```
3
868
A
Bark to Unlock
PROGRAMMING
900
[ "brute force", "implementation", "strings" ]
null
null
As technologies develop, manufacturers are making the process of unlocking a phone as user-friendly as possible. To unlock its new phone, Arkady's pet dog Mu-mu has to bark the password once. The phone represents a password as a string of two lowercase English letters. Mu-mu's enemy Kashtanka wants to unlock Mu-mu's phone to steal some sensible information, but it can only bark *n* distinct words, each of which can be represented as a string of two lowercase English letters. Kashtanka wants to bark several words (not necessarily distinct) one after another to pronounce a string containing the password as a substring. Tell if it's possible to unlock the phone in this way, or not.
The first line contains two lowercase English letters — the password on the phone. The second line contains single integer *n* (1<=≤<=*n*<=≤<=100) — the number of words Kashtanka knows. The next *n* lines contain two lowercase English letters each, representing the words Kashtanka knows. The words are guaranteed to be distinct.
Print "YES" if Kashtanka can bark several words in a line forming a string containing the password, and "NO" otherwise. You can print each letter in arbitrary case (upper or lower).
[ "ya\n4\nah\noy\nto\nha\n", "hp\n2\nht\ntp\n", "ah\n1\nha\n" ]
[ "YES\n", "NO\n", "YES\n" ]
In the first example the password is "ya", and Kashtanka can bark "oy" and then "ah", and then "ha" to form the string "oyahha" which contains the password. So, the answer is "YES". In the second example Kashtanka can't produce a string containing password as a substring. Note that it can bark "ht" and then "tp" producing "http", but it doesn't contain the password "hp" as a substring. In the third example the string "hahahaha" contains "ah" as a substring.
250
[ { "input": "ya\n4\nah\noy\nto\nha", "output": "YES" }, { "input": "hp\n2\nht\ntp", "output": "NO" }, { "input": "ah\n1\nha", "output": "YES" }, { "input": "bb\n4\nba\nab\naa\nbb", "output": "YES" }, { "input": "bc\n4\nca\nba\nbb\ncc", "output": "YES" }, { "input": "ba\n4\ncd\nad\ncc\ncb", "output": "YES" }, { "input": "pg\n4\nzl\nxs\ndi\nxn", "output": "NO" }, { "input": "bn\n100\ndf\nyb\nze\nml\nyr\nof\nnw\nfm\ndw\nlv\nzr\nhu\nzt\nlw\nld\nmo\nxz\ntp\nmr\nou\nme\npx\nvp\nes\nxi\nnr\nbx\nqc\ngm\njs\nkn\ntw\nrq\nkz\nuc\nvc\nqr\nab\nna\nro\nya\nqy\ngu\nvk\nqk\ngs\nyq\nop\nhw\nrj\neo\nlz\nbh\nkr\nkb\nma\nrd\nza\nuf\nhq\nmc\nmn\nti\nwn\nsh\nax\nsi\nnd\ntz\ndu\nfj\nkl\nws\now\nnf\nvr\nye\nzc\niw\nfv\nkv\noo\nsm\nbc\nrs\nau\nuz\nuv\ngh\nsu\njn\ndz\nrl\nwj\nbk\nzl\nas\nms\nit\nwu", "output": "YES" }, { "input": "bb\n1\naa", "output": "NO" }, { "input": "qm\n25\nqw\nwe\ner\nrt\nty\nyu\nui\nio\nop\npa\nas\nsd\ndf\nfg\ngh\nhj\njk\nkl\nlz\nzx\nxc\ncv\nvb\nbn\nnm", "output": "NO" }, { "input": "mq\n25\nqw\nwe\ner\nrt\nty\nyu\nui\nio\nop\npa\nas\nsd\ndf\nfg\ngh\nhj\njk\nkl\nlz\nzx\nxc\ncv\nvb\nbn\nnm", "output": "YES" }, { "input": "aa\n1\naa", "output": "YES" }, { "input": "bb\n1\nbb", "output": "YES" }, { "input": "ba\n1\ncc", "output": "NO" }, { "input": "ha\n1\nha", "output": "YES" }, { "input": "aa\n1\naa", "output": "YES" }, { "input": "ez\n1\njl", "output": "NO" }, { "input": "aa\n2\nab\nba", "output": "YES" }, { "input": "aa\n2\nca\ncc", "output": "NO" }, { "input": "dd\n2\nac\ndc", "output": "NO" }, { "input": "qc\n2\nyc\nkr", "output": "NO" }, { "input": "aa\n3\nba\nbb\nab", "output": "YES" }, { "input": "ca\n3\naa\nbb\nab", "output": "NO" }, { "input": "ca\n3\nbc\nbd\nca", "output": "YES" }, { "input": "dd\n3\nmt\nrg\nxl", "output": "NO" }, { "input": "be\n20\nad\ncd\ncb\ndb\ndd\naa\nab\nca\nae\ned\ndc\nbb\nba\nda\nee\nea\ncc\nac\nec\neb", "output": "YES" }, { "input": "fc\n20\nca\nbb\nce\nfd\nde\nfa\ncc\nec\nfb\nfc\nff\nbe\ncf\nba\ndb\ned\naf\nae\nda\nef", "output": "YES" }, { "input": "ca\n20\ndc\naf\ndf\neg\naa\nbc\nea\nbd\nab\ndb\ngc\nfb\nba\nbe\nee\ngf\ncf\nag\nga\nca", "output": "YES" }, { "input": "ke\n20\nzk\nra\nbq\nqz\nwt\nzg\nmz\nuk\nge\nuv\nud\nfd\neh\ndm\nsk\nki\nfv\ntp\nat\nfb", "output": "YES" }, { "input": "hh\n50\nag\nhg\ndg\nfh\neg\ngh\ngd\nda\nbh\nab\nhf\ndc\nhb\nfe\nad\nec\nac\nfd\nca\naf\ncg\nhd\neb\nce\nhe\nha\ngb\nea\nae\nfb\nff\nbe\nch\nhh\nee\nde\nge\ngf\naa\ngg\neh\ned\nbf\nfc\nah\nga\nbd\ncb\nbg\nbc", "output": "YES" }, { "input": "id\n50\nhi\ndc\nfg\nee\ngi\nhc\nac\nih\ndg\nfc\nde\ned\nie\neb\nic\ncf\nib\nfa\ngc\nba\nbe\nga\nha\nhg\nia\ndf\nab\nei\neh\nad\nii\nci\ndh\nec\nif\ndi\nbg\nag\nhe\neg\nca\nae\ndb\naa\nid\nfh\nhh\ncc\nfb\ngb", "output": "YES" }, { "input": "fe\n50\nje\nbi\nbg\ngc\nfb\nig\ndf\nji\ndg\nfe\nfc\ncf\ngf\nai\nhe\nac\nch\nja\ngh\njf\nge\ncb\nij\ngb\ncg\naf\neh\nee\nhd\njd\njb\nii\nca\nci\nga\nab\nhi\nag\nfj\nej\nfi\nie\ndj\nfg\nef\njc\njg\njh\nhf\nha", "output": "YES" }, { "input": "rn\n50\nba\nec\nwg\nao\nlk\nmz\njj\ncf\nfa\njk\ndy\nsz\njs\nzr\nqv\ntx\nwv\nrd\nqw\nls\nrr\nvt\nrx\nkc\neh\nnj\niq\nyi\nkh\nue\nnv\nkz\nrn\nes\nua\nzf\nvu\nll\neg\nmj\ncz\nzj\nxz\net\neb\nci\nih\nig\nam\nvd", "output": "YES" }, { "input": "ee\n100\nah\nfb\ncd\nbi\nii\nai\nid\nag\nie\nha\ndi\nec\nae\nce\njb\ndg\njg\ngd\ngf\nda\nih\nbd\nhj\ngg\nhb\ndf\ned\nfh\naf\nja\nci\nfc\nic\nji\nac\nhi\nfj\nch\nbc\njd\naa\nff\nad\ngj\nej\nde\nee\nhe\ncf\nga\nia\ncg\nbb\nhc\nbe\ngi\njf\nbg\naj\njj\nbh\nfe\ndj\nef\ngb\nge\ndb\nig\ncj\ndc\nij\njh\nei\ndd\nib\nhf\neg\nbf\nfg\nab\ngc\nfd\nhd\ngh\neh\njc\neb\nhh\nca\nje\nbj\nif\nea\nhg\nfa\ncc\nba\ndh\ncb\nfi", "output": "YES" }, { "input": "if\n100\njd\nbc\nje\nhi\nga\nde\nkb\nfc\ncd\ngd\naj\ncb\nei\nbf\ncf\ndk\ndb\ncg\nki\ngg\nkg\nfa\nkj\nii\njf\njg\ngb\nbh\nbg\neh\nhj\nhb\ndg\ndj\njc\njb\nce\ndi\nig\nci\ndf\nji\nhc\nfk\naf\nac\ngk\nhd\nae\nkd\nec\nkc\neb\nfh\nij\nie\nca\nhh\nkf\nha\ndd\nif\nef\nih\nhg\nej\nfe\njk\nea\nib\nck\nhf\nak\ngi\nch\ndc\nba\nke\nad\nka\neg\njh\nja\ngc\nfd\ncc\nab\ngj\nik\nfg\nbj\nhe\nfj\nge\ngh\nhk\nbk\ned\nid\nfi", "output": "YES" }, { "input": "kd\n100\nek\nea\nha\nkf\nkj\ngh\ndl\nfj\nal\nga\nlj\nik\ngd\nid\ncb\nfh\ndk\nif\nbh\nkb\nhc\nej\nhk\ngc\ngb\nef\nkk\nll\nlf\nkh\ncl\nlh\njj\nil\nhh\nci\ndb\ndf\ngk\njg\nch\nbd\ncg\nfg\nda\neb\nlg\ndg\nbk\nje\nbg\nbl\njl\ncj\nhb\nei\naa\ngl\nka\nfa\nfi\naf\nkc\nla\ngi\nij\nib\nle\ndi\nck\nag\nlc\nca\nge\nie\nlb\nke\nii\nae\nig\nic\nhe\ncf\nhd\nak\nfb\nhi\ngf\nad\nba\nhg\nbi\nkl\nac\ngg\ngj\nbe\nlk\nld\naj", "output": "YES" }, { "input": "ab\n1\nab", "output": "YES" }, { "input": "ya\n1\nya", "output": "YES" }, { "input": "ay\n1\nyb", "output": "NO" }, { "input": "ax\n2\nii\nxa", "output": "YES" }, { "input": "hi\n1\nhi", "output": "YES" }, { "input": "ag\n1\nag", "output": "YES" }, { "input": "th\n1\nth", "output": "YES" }, { "input": "sb\n1\nsb", "output": "YES" }, { "input": "hp\n1\nhp", "output": "YES" }, { "input": "ah\n1\nah", "output": "YES" }, { "input": "ta\n1\nta", "output": "YES" }, { "input": "tb\n1\ntb", "output": "YES" }, { "input": "ab\n5\nca\nda\nea\nfa\nka", "output": "NO" }, { "input": "ac\n1\nac", "output": "YES" }, { "input": "ha\n2\nha\nzz", "output": "YES" }, { "input": "ok\n1\nok", "output": "YES" }, { "input": "bc\n1\nbc", "output": "YES" }, { "input": "az\n1\nzz", "output": "NO" }, { "input": "ab\n2\nba\ntt", "output": "YES" }, { "input": "ah\n2\nap\nhp", "output": "NO" }, { "input": "sh\n1\nsh", "output": "YES" }, { "input": "az\n1\nby", "output": "NO" }, { "input": "as\n1\nas", "output": "YES" }, { "input": "ab\n2\nab\ncd", "output": "YES" }, { "input": "ab\n2\nxa\nza", "output": "NO" }, { "input": "ab\n2\net\nab", "output": "YES" }, { "input": "ab\n1\naa", "output": "NO" }, { "input": "ab\n2\nab\nde", "output": "YES" }, { "input": "ah\n2\nba\nha", "output": "YES" }, { "input": "ha\n3\ndd\ncc\nha", "output": "YES" }, { "input": "oo\n1\nox", "output": "NO" }, { "input": "ab\n2\nax\nbx", "output": "NO" }, { "input": "ww\n4\nuw\now\npo\nko", "output": "NO" }, { "input": "ay\n1\nay", "output": "YES" }, { "input": "yo\n1\nyo", "output": "YES" }, { "input": "ba\n1\nba", "output": "YES" }, { "input": "qw\n1\nqw", "output": "YES" }, { "input": "la\n1\nla", "output": "YES" }, { "input": "ab\n2\nbb\nbc", "output": "NO" }, { "input": "aa\n2\nab\nac", "output": "NO" }, { "input": "ah\n2\nbb\nha", "output": "YES" }, { "input": "ya\n42\nab\nac\nad\nae\naf\nag\nah\nai\nak\naj\nba\nbc\nbd\nbe\nbf\nbg\nbh\nbi\nbk\nbj\ncb\nca\ncd\nce\ncf\ncg\nch\nci\nck\ncj\ndb\ndc\nda\nde\ndf\ndg\ndh\ndi\ndk\ndj\nef\nek", "output": "NO" }, { "input": "ab\n3\nab\nxx\nyy", "output": "YES" }, { "input": "ab\n2\nab\ncc", "output": "YES" }, { "input": "sa\n2\nxx\nas", "output": "YES" }, { "input": "ma\n1\nma", "output": "YES" }, { "input": "ba\n1\nbb", "output": "NO" }, { "input": "bc\n1\nab", "output": "NO" }, { "input": "fa\n1\nfa", "output": "YES" }, { "input": "ap\n1\nap", "output": "YES" }, { "input": "ab\n1\nbb", "output": "NO" }, { "input": "bk\n1\nbk", "output": "YES" }, { "input": "xy\n2\nxy\naa", "output": "YES" }, { "input": "ab\n2\nza\nbz", "output": "YES" } ]
1,672,584,022
2,147,483,647
PyPy 3-64
OK
TESTS
90
61
0
import sys readline=sys.stdin.readline password=readline().rstrip() N=int(readline()) ans="NO" cntl,cntr,cntlr=0,0,0 for i in range(N): S=readline().rstrip() if password==S: ans="YES" if password[1]==S[0]: cntl+=1 if password[0]==S[1]: cntr+=1 if cntl>=1 and cntr>=1: ans="YES" print(ans)
Title: Bark to Unlock Time Limit: None seconds Memory Limit: None megabytes Problem Description: As technologies develop, manufacturers are making the process of unlocking a phone as user-friendly as possible. To unlock its new phone, Arkady's pet dog Mu-mu has to bark the password once. The phone represents a password as a string of two lowercase English letters. Mu-mu's enemy Kashtanka wants to unlock Mu-mu's phone to steal some sensible information, but it can only bark *n* distinct words, each of which can be represented as a string of two lowercase English letters. Kashtanka wants to bark several words (not necessarily distinct) one after another to pronounce a string containing the password as a substring. Tell if it's possible to unlock the phone in this way, or not. Input Specification: The first line contains two lowercase English letters — the password on the phone. The second line contains single integer *n* (1<=≤<=*n*<=≤<=100) — the number of words Kashtanka knows. The next *n* lines contain two lowercase English letters each, representing the words Kashtanka knows. The words are guaranteed to be distinct. Output Specification: Print "YES" if Kashtanka can bark several words in a line forming a string containing the password, and "NO" otherwise. You can print each letter in arbitrary case (upper or lower). Demo Input: ['ya\n4\nah\noy\nto\nha\n', 'hp\n2\nht\ntp\n', 'ah\n1\nha\n'] Demo Output: ['YES\n', 'NO\n', 'YES\n'] Note: In the first example the password is "ya", and Kashtanka can bark "oy" and then "ah", and then "ha" to form the string "oyahha" which contains the password. So, the answer is "YES". In the second example Kashtanka can't produce a string containing password as a substring. Note that it can bark "ht" and then "tp" producing "http", but it doesn't contain the password "hp" as a substring. In the third example the string "hahahaha" contains "ah" as a substring.
```python import sys readline=sys.stdin.readline password=readline().rstrip() N=int(readline()) ans="NO" cntl,cntr,cntlr=0,0,0 for i in range(N): S=readline().rstrip() if password==S: ans="YES" if password[1]==S[0]: cntl+=1 if password[0]==S[1]: cntr+=1 if cntl>=1 and cntr>=1: ans="YES" print(ans) ```
3
44
A
Indian Summer
PROGRAMMING
900
[ "implementation" ]
A. Indian Summer
2
256
Indian summer is such a beautiful time of the year! A girl named Alyona is walking in the forest and picking a bouquet from fallen leaves. Alyona is very choosy — she doesn't take a leaf if it matches the color and the species of the tree of one of the leaves she already has. Find out how many leaves Alyona has picked.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of leaves Alyona has found. The next *n* lines contain the leaves' descriptions. Each leaf is characterized by the species of the tree it has fallen from and by the color. The species of the trees and colors are given in names, consisting of no more than 10 lowercase Latin letters. A name can not be an empty string. The species of a tree and the color are given in each line separated by a space.
Output the single number — the number of Alyona's leaves.
[ "5\nbirch yellow\nmaple red\nbirch yellow\nmaple yellow\nmaple green\n", "3\noak yellow\noak yellow\noak yellow\n" ]
[ "4\n", "1\n" ]
none
0
[ { "input": "5\nbirch yellow\nmaple red\nbirch yellow\nmaple yellow\nmaple green", "output": "4" }, { "input": "3\noak yellow\noak yellow\noak yellow", "output": "1" }, { "input": "5\nxbnbkzn hp\nkaqkl vrgzbvqstu\nj aqidx\nhos gyul\nwefxmh tygpluae", "output": "5" }, { "input": "1\nqvwli hz", "output": "1" }, { "input": "4\nsrhk x\nsrhk x\nqfoe vnrjuab\nqfoe vnrjuab", "output": "2" }, { "input": "4\nsddqllmmpk syded\nfprsq fnenjnaz\nn hdej\nsddqllmmpk syded", "output": "3" }, { "input": "17\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw", "output": "1" }, { "input": "18\nb d\nrfdb esp\nrfdb esp\nb d\nrfdb esp\nrfdb esp\nb d\nb d\nrfdb esp\nrfdb esp\nb d\nrfdb esp\nb d\nrfdb esp\nb d\nb d\nrfdb esp\nrfdb esp", "output": "2" }, { "input": "13\nsvpzwtwn rykzfdce\nqweiyeck jkreouy\nhk nnli\ntwxrnbbdt vtuv\nxokqjtylly sz\nesdt dbfidjslq\ng ybqgomvw\nxcpfjmf zcqvz\nifajadhj invzueip\nvdemdnxifb hckwebmi\nsdpnhipam wvowzavh\nuqdlfskhgo vunbpghae\ne dtigwnb", "output": "13" }, { "input": "20\nm vkfh\nvptikamead mvx\nitu mf\nklruxckw aqega\nekqkd enjllwol\ncc uybfdh\nimrfdngvo u\ne uh\ntwt jsslcfuogk\nbljwqsag tuqbdn\nqcv q\nasx gzhvwwmajj\nqcv q\nekqkd enjllwol\nasx gzhvwwmajj\nks vv\nkzyfi cn\ncc uybfdh\nitu mf\ncjbjhtbyvk vatwfmux", "output": "15" }, { "input": "2\nab ab\na bab", "output": "2" } ]
1,651,938,170
2,147,483,647
Python 3
OK
TESTS
29
62
0
x=int(input()) lt=[] for i in range(x): a=input().strip() lt.append(a) lt1=[] for i in lt: if i not in lt1: lt1.append(i) print(len(lt1))
Title: Indian Summer Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Indian summer is such a beautiful time of the year! A girl named Alyona is walking in the forest and picking a bouquet from fallen leaves. Alyona is very choosy — she doesn't take a leaf if it matches the color and the species of the tree of one of the leaves she already has. Find out how many leaves Alyona has picked. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of leaves Alyona has found. The next *n* lines contain the leaves' descriptions. Each leaf is characterized by the species of the tree it has fallen from and by the color. The species of the trees and colors are given in names, consisting of no more than 10 lowercase Latin letters. A name can not be an empty string. The species of a tree and the color are given in each line separated by a space. Output Specification: Output the single number — the number of Alyona's leaves. Demo Input: ['5\nbirch yellow\nmaple red\nbirch yellow\nmaple yellow\nmaple green\n', '3\noak yellow\noak yellow\noak yellow\n'] Demo Output: ['4\n', '1\n'] Note: none
```python x=int(input()) lt=[] for i in range(x): a=input().strip() lt.append(a) lt1=[] for i in lt: if i not in lt1: lt1.append(i) print(len(lt1)) ```
3.9845
14
A
Letter
PROGRAMMING
800
[ "implementation" ]
A. Letter
1
64
A boy Bob likes to draw. Not long ago he bought a rectangular graph (checked) sheet with *n* rows and *m* columns. Bob shaded some of the squares on the sheet. Having seen his masterpiece, he decided to share it with his elder brother, who lives in Flatland. Now Bob has to send his picture by post, but because of the world economic crisis and high oil prices, he wants to send his creation, but to spend as little money as possible. For each sent square of paper (no matter whether it is shaded or not) Bob has to pay 3.14 burles. Please, help Bob cut out of his masterpiece a rectangle of the minimum cost, that will contain all the shaded squares. The rectangle's sides should be parallel to the sheet's sides.
The first line of the input data contains numbers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=50), *n* — amount of lines, and *m* — amount of columns on Bob's sheet. The following *n* lines contain *m* characters each. Character «.» stands for a non-shaded square on the sheet, and «*» — for a shaded square. It is guaranteed that Bob has shaded at least one square.
Output the required rectangle of the minimum cost. Study the output data in the sample tests to understand the output format better.
[ "6 7\n.......\n..***..\n..*....\n..***..\n..*....\n..***..\n", "3 3\n***\n*.*\n***\n" ]
[ "***\n*..\n***\n*..\n***\n", "***\n*.*\n***\n" ]
none
0
[ { "input": "6 7\n.......\n..***..\n..*....\n..***..\n..*....\n..***..", "output": "***\n*..\n***\n*..\n***" }, { "input": "3 3\n***\n*.*\n***", "output": "***\n*.*\n***" }, { "input": "1 1\n*", "output": "*" }, { "input": "2 1\n*\n*", "output": "*\n*" }, { "input": "5 1\n.\n*\n.\n.\n.", "output": "*" }, { "input": "1 6\n*****.", "output": "*****" }, { "input": "2 2\n..\n*.", "output": "*" }, { "input": "8 2\n..\n..\n..\n..\n..\n*.\n..\n..", "output": "*" }, { "input": "50 1\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n*\n.\n*\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n*\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.", "output": "*\n.\n*\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n*" }, { "input": "2 1\n*\n.", "output": "*" }, { "input": "5 1\n*\n*\n*\n*\n*", "output": "*\n*\n*\n*\n*" }, { "input": "2 2\n*.\n..", "output": "*" }, { "input": "3 4\n...*\n*...\n..*.", "output": "...*\n*...\n..*." }, { "input": "8 2\n**\n**\n**\n**\n**\n**\n**\n**", "output": "**\n**\n**\n**\n**\n**\n**\n**" }, { "input": "50 1\n.\n*\n*\n*\n.\n.\n*\n.\n*\n*\n*\n*\n*\n*\n*\n.\n*\n*\n*\n*\n*\n*\n*\n*\n*\n*\n*\n*\n*\n.\n.\n.\n.\n*\n*\n.\n*\n*\n.\n.\n.\n.\n*\n*\n.\n.\n.\n.\n.\n.", "output": "*\n*\n*\n.\n.\n*\n.\n*\n*\n*\n*\n*\n*\n*\n.\n*\n*\n*\n*\n*\n*\n*\n*\n*\n*\n*\n*\n*\n.\n.\n.\n.\n*\n*\n.\n*\n*\n.\n.\n.\n.\n*\n*" } ]
1,611,438,058
2,147,483,647
Python 3
OK
TESTS
30
154
307,200
def input_matrix(n): matrix = [] for i in range(n): matrix.append(input()) return matrix def clear(a): i = 0 while "*" not in a[i]: i += 1 j = len(a)-1 while "*" not in a[j]: j -= 1 return a[i:j+1] n, m = map(int, input().split()) a = clear(input_matrix(n)) left = m-1 right = 0 for x in a: if "*" in x: left = min(left, x.find("*")) right = max(right, x.rfind("*")) for x in a: print(x[left:right+1], sep="")
Title: Letter Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: A boy Bob likes to draw. Not long ago he bought a rectangular graph (checked) sheet with *n* rows and *m* columns. Bob shaded some of the squares on the sheet. Having seen his masterpiece, he decided to share it with his elder brother, who lives in Flatland. Now Bob has to send his picture by post, but because of the world economic crisis and high oil prices, he wants to send his creation, but to spend as little money as possible. For each sent square of paper (no matter whether it is shaded or not) Bob has to pay 3.14 burles. Please, help Bob cut out of his masterpiece a rectangle of the minimum cost, that will contain all the shaded squares. The rectangle's sides should be parallel to the sheet's sides. Input Specification: The first line of the input data contains numbers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=50), *n* — amount of lines, and *m* — amount of columns on Bob's sheet. The following *n* lines contain *m* characters each. Character «.» stands for a non-shaded square on the sheet, and «*» — for a shaded square. It is guaranteed that Bob has shaded at least one square. Output Specification: Output the required rectangle of the minimum cost. Study the output data in the sample tests to understand the output format better. Demo Input: ['6 7\n.......\n..***..\n..*....\n..***..\n..*....\n..***..\n', '3 3\n***\n*.*\n***\n'] Demo Output: ['***\n*..\n***\n*..\n***\n', '***\n*.*\n***\n'] Note: none
```python def input_matrix(n): matrix = [] for i in range(n): matrix.append(input()) return matrix def clear(a): i = 0 while "*" not in a[i]: i += 1 j = len(a)-1 while "*" not in a[j]: j -= 1 return a[i:j+1] n, m = map(int, input().split()) a = clear(input_matrix(n)) left = m-1 right = 0 for x in a: if "*" in x: left = min(left, x.find("*")) right = max(right, x.rfind("*")) for x in a: print(x[left:right+1], sep="") ```
3.920711
18
D
Seller Bob
PROGRAMMING
2,000
[ "brute force", "dp", "greedy" ]
D. Seller Bob
2
128
Last year Bob earned by selling memory sticks. During each of *n* days of his work one of the two following events took place: - A customer came to Bob and asked to sell him a 2*x* MB memory stick. If Bob had such a stick, he sold it and got 2*x* berllars. - Bob won some programming competition and got a 2*x* MB memory stick as a prize. Bob could choose whether to present this memory stick to one of his friends, or keep it. Bob never kept more than one memory stick, as he feared to mix up their capacities, and deceive a customer unintentionally. It is also known that for each memory stick capacity there was at most one customer, who wanted to buy that memory stick. Now, knowing all the customers' demands and all the prizes won at programming competitions during the last *n* days, Bob wants to know, how much money he could have earned, if he had acted optimally.
The first input line contains number *n* (1<=≤<=*n*<=≤<=5000) — amount of Bob's working days. The following *n* lines contain the description of the days. Line sell x stands for a day when a customer came to Bob to buy a 2*x* MB memory stick (0<=≤<=*x*<=≤<=2000). It's guaranteed that for each *x* there is not more than one line sell x. Line win x stands for a day when Bob won a 2*x* MB memory stick (0<=≤<=*x*<=≤<=2000).
Output the maximum possible earnings for Bob in berllars, that he would have had if he had known all the events beforehand. Don't forget, please, that Bob can't keep more than one memory stick at a time.
[ "7\nwin 10\nwin 5\nwin 3\nsell 5\nsell 3\nwin 10\nsell 10\n", "3\nwin 5\nsell 6\nsell 4\n" ]
[ "1056\n", "0\n" ]
none
0
[ { "input": "7\nwin 10\nwin 5\nwin 3\nsell 5\nsell 3\nwin 10\nsell 10", "output": "1056" }, { "input": "3\nwin 5\nsell 6\nsell 4", "output": "0" }, { "input": "60\nwin 30\nsell 30\nwin 29\nsell 29\nwin 28\nsell 28\nwin 27\nsell 27\nwin 26\nsell 26\nwin 25\nsell 25\nwin 24\nsell 24\nwin 23\nsell 23\nwin 22\nsell 22\nwin 21\nsell 21\nwin 20\nsell 20\nwin 19\nsell 19\nwin 18\nsell 18\nwin 17\nsell 17\nwin 16\nsell 16\nwin 15\nsell 15\nwin 14\nsell 14\nwin 13\nsell 13\nwin 12\nsell 12\nwin 11\nsell 11\nwin 10\nsell 10\nwin 9\nsell 9\nwin 8\nsell 8\nwin 7\nsell 7\nwin 6\nsell 6\nwin 5\nsell 5\nwin 4\nsell 4\nwin 3\nsell 3\nwin 2\nsell 2\nwin 1\nsell 1", "output": "2147483646" }, { "input": "10\nsell 179\nwin 1278\nsell 1278\nwin 179\nwin 788\nsell 788\nwin 1819\nwin 1278\nsell 1454\nsell 1819", "output": "3745951177859672748085876072016755224158263650470541376602416977749506433342393741012551962469399005106980957564747771946546075632634156222832360666586993197712597743102870994304893421406288896658113922358079050393796282759740479830789771109056742931607432542704338811780614109483471170758503563410473205320757445249359340913055427891395101189449739249593088482768598397566812797391842205760535689034164783939977837838115215972505331175064745799973957898910533590618104893265678599370512439216359131269814745054..." }, { "input": "10\nsell 573\nwin 1304\nsell 278\nwin 1631\nsell 1225\nsell 1631\nsell 177\nwin 1631\nwin 177\nsell 1304", "output": "95482312335125227379668481690754940528280513838693267460502082967052005332103697568042408703168913727303170456338425853153094403747135188778307041838920404959089576368946137708987138986696495077466398994298434148881715073638178666201165545650953479735059082316661443204882826188032944866093372620219104327689636641547141835841165681118172603993695103043804276669836594061369229043451067647935298287687852302215923887110435577776767805943668204998410716005202198549540411238299513630278811648" }, { "input": "10\nwin 1257\nwin 1934\nsell 1934\nsell 1257\nwin 1934\nwin 1257\nsell 495\nwin 495\nwin 495\nwin 1257", "output": "1556007242642049292787218246793379348327505438878680952714050868520307364441227819009733220897932984584977593931988662671459594674963394056587723382487766303981362587048873128400436836690128983570130687310221668877557121158055843621982630476422478413285775826498536883275291967793661985813155062733063913176306327509625594121241472451054995889483447103432414676059872469910105149496451402271546454282618581884282152530090816240540173251729211604658704990425330422792556824836640431985211146197816770068601144273..." }, { "input": "10\nsell 1898\nsell 173\nsell 1635\nsell 29\nsell 881\nsell 434\nsell 1236\nsell 14\nwin 29\nsell 1165", "output": "0" }, { "input": "50\nwin 1591\nwin 312\nwin 1591\nwin 1277\nwin 1732\nwin 1277\nwin 312\nwin 1591\nwin 210\nwin 1591\nwin 210\nsell 1732\nwin 312\nwin 1732\nwin 210\nwin 1591\nwin 312\nwin 210\nwin 1732\nwin 1732\nwin 1591\nwin 1732\nwin 312\nwin 1732\nsell 1277\nwin 1732\nwin 210\nwin 1277\nwin 1277\nwin 312\nwin 1732\nsell 312\nsell 1591\nwin 312\nsell 210\nwin 1732\nwin 312\nwin 210\nwin 1591\nwin 1591\nwin 1732\nwin 210\nwin 1591\nwin 312\nwin 1277\nwin 1591\nwin 210\nwin 1277\nwin 1732\nwin 312", "output": "2420764210856015331214801822295882718446835865177072936070024961324113887299407742968459201784200628346247573017634417460105466317641563795817074771860850712020768123310899251645626280515264270127874292153603360689565451372953171008749749476807656127914801962353129980445541683621172887240439496869443980760905844921588668701053404581445092887732985786593080332302468009347364906506742888063949158794894756704243685813947581549214136427388148927087858952333440295415050590550479915766637705353193400817849524933..." }, { "input": "50\nwin 596\nwin 1799\nwin 1462\nsell 460\nwin 731\nwin 723\nwin 731\nwin 329\nwin 838\nsell 728\nwin 728\nwin 460\nwin 723\nwin 1462\nwin 1462\nwin 460\nwin 329\nwin 1462\nwin 460\nwin 460\nwin 723\nwin 731\nwin 723\nwin 596\nwin 731\nwin 596\nwin 329\nwin 728\nwin 715\nwin 329\nwin 1799\nwin 715\nwin 723\nwin 728\nwin 1462\nwin 596\nwin 728\nsell 1462\nsell 731\nsell 723\nsell 596\nsell 1799\nwin 715\nsell 329\nsell 715\nwin 731\nwin 596\nwin 596\nwin 1799\nsell 838", "output": "3572417428836510418020130226151232933195365572424451233484665849446779664366143933308174097508811001879673917355296871134325099594720989439804421106898301313126179907518635998806895566124222305730664245219198882158809677890894851351153171006242601699481340338225456896495739360268670655803862712132671163869311331357956008411198419420320449558787147867731519734760711196755523479867536729489438488681378976579126837971468043235641314636566999618274861697304906262004280314028540891222536060126170572182168995779..." }, { "input": "50\nwin 879\nwin 1153\nwin 1469\nwin 157\nwin 827\nwin 679\nsell 1229\nwin 454\nsell 879\nsell 1222\nwin 924\nwin 827\nsell 1366\nwin 879\nsell 754\nwin 1153\nwin 679\nwin 1185\nsell 1469\nsell 454\nsell 679\nsell 1153\nwin 1469\nwin 827\nwin 1469\nwin 1024\nwin 1222\nsell 157\nsell 1185\nsell 827\nwin 1469\nsell 1569\nwin 754\nsell 1024\nwin 924\nwin 924\nsell 1876\nsell 479\nsell 435\nwin 754\nwin 174\nsell 174\nsell 147\nsell 924\nwin 1469\nwin 1876\nwin 1229\nwin 1469\nwin 1222\nwin 157", "output": "16332912310228701097717316802721870128775022868221080314403305773060286348016616983179506327297989866534783694332203603069900790667846028602603898749788769867206327097934433881603593880774778104853105937620753202513845830781396468839434689035327911539335925798473899153215505268301939672678983012311225261177070282290958328569587449928340374890197297462448526671963786572758011646874155763250281850311510811863346015732742889066278088442118144" }, { "input": "50\nsell 1549\nwin 1168\nsell 1120\nwin 741\nsell 633\nwin 274\nsell 1936\nwin 1168\nsell 614\nwin 33\nsell 1778\nwin 127\nsell 1168\nwin 33\nwin 633\nsell 1474\nwin 518\nwin 1685\nsell 1796\nsell 741\nsell 485\nwin 747\nsell 588\nsell 1048\nwin 1580\nwin 60\nsell 1685\nsell 1580\nsell 1535\nwin 485\nsell 31\nsell 747\nsell 1473\nsell 518\nwin 633\nsell 1313\nwin 1580\nsell 1560\nsell 127\nsell 274\nwin 123\nwin 31\nsell 123\nsell 33\nwin 1778\nsell 1834\nsell 60\nsell 1751\nsell 1287\nwin 1549", "output": "1720056425011773151265118871077591733216276990085092619030835675616738576936900493041118761959770055340668032173576279597675976622004777210845027112875371906527379337573212312341811682481516081119925150514042583039122963732518350292624889782510925425243478590699982487521431988980734651291693696303059520879874887472437061826782122289965998009474317347011699360401227487786089319043200666474560882786695043543699741809763479940250459103751744852630592882730442346682844070898735881280272505893611419620868096" }, { "input": "1\nsell 2000", "output": "0" }, { "input": "1\nwin 2000", "output": "0" }, { "input": "2\nwin 2000\nsell 2000", "output": "1148130695274254524232833201177681984022317702088695200477642736825766261392370313856659486316506269918445964638987462773447118960863055331425931356166653185391299891453122800006887791482400448714289269900634862447816154636463883639473170260404663539709049965581623988089446296056233116495361642219703326813441689089844585056023794848079140589009347765004290027167066258305220081322362812917612678833172065989953964181270217798584040421598531832515408894339020919205549577835896720391600819572166305827553804255..." } ]
1,521,971,585
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
186
7,577,600
import collections import math n=int(input()) co=0 ans=0 ar=[co]*2001 pos=[co]*2001 for i in range (2001): ar[i]=[] for i in range (n): a,с=input().split() b=int(с) if (a=="win"): ar[b].append(i) else: pos[b]=i+1 bg=5000 ls=0 for i in range (2000,0,-1): count=pos[i] if (count>0): for j in range (len(ar[i])-1,-1,-1): pos[i]-=1 if (ar[i][j]<pos[i]) and ((ar[i][j]>ls) or (pos[i]<bg)): ans+=2**i if (ar[i][j]<bg): bg=ar[i][j] if (pos[i]>ls): ls=pos[i] print (ans) # Sun Mar 25 2018 12:53:04 GMT+0300 (MSK)
Title: Seller Bob Time Limit: 2 seconds Memory Limit: 128 megabytes Problem Description: Last year Bob earned by selling memory sticks. During each of *n* days of his work one of the two following events took place: - A customer came to Bob and asked to sell him a 2*x* MB memory stick. If Bob had such a stick, he sold it and got 2*x* berllars. - Bob won some programming competition and got a 2*x* MB memory stick as a prize. Bob could choose whether to present this memory stick to one of his friends, or keep it. Bob never kept more than one memory stick, as he feared to mix up their capacities, and deceive a customer unintentionally. It is also known that for each memory stick capacity there was at most one customer, who wanted to buy that memory stick. Now, knowing all the customers' demands and all the prizes won at programming competitions during the last *n* days, Bob wants to know, how much money he could have earned, if he had acted optimally. Input Specification: The first input line contains number *n* (1<=≤<=*n*<=≤<=5000) — amount of Bob's working days. The following *n* lines contain the description of the days. Line sell x stands for a day when a customer came to Bob to buy a 2*x* MB memory stick (0<=≤<=*x*<=≤<=2000). It's guaranteed that for each *x* there is not more than one line sell x. Line win x stands for a day when Bob won a 2*x* MB memory stick (0<=≤<=*x*<=≤<=2000). Output Specification: Output the maximum possible earnings for Bob in berllars, that he would have had if he had known all the events beforehand. Don't forget, please, that Bob can't keep more than one memory stick at a time. Demo Input: ['7\nwin 10\nwin 5\nwin 3\nsell 5\nsell 3\nwin 10\nsell 10\n', '3\nwin 5\nsell 6\nsell 4\n'] Demo Output: ['1056\n', '0\n'] Note: none
```python import collections import math n=int(input()) co=0 ans=0 ar=[co]*2001 pos=[co]*2001 for i in range (2001): ar[i]=[] for i in range (n): a,с=input().split() b=int(с) if (a=="win"): ar[b].append(i) else: pos[b]=i+1 bg=5000 ls=0 for i in range (2000,0,-1): count=pos[i] if (count>0): for j in range (len(ar[i])-1,-1,-1): pos[i]-=1 if (ar[i][j]<pos[i]) and ((ar[i][j]>ls) or (pos[i]<bg)): ans+=2**i if (ar[i][j]<bg): bg=ar[i][j] if (pos[i]>ls): ls=pos[i] print (ans) # Sun Mar 25 2018 12:53:04 GMT+0300 (MSK) ```
0
443
A
Anton and Letters
PROGRAMMING
800
[ "constructive algorithms", "implementation" ]
null
null
Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line. Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set.
The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space.
Print a single number — the number of distinct letters in Anton's set.
[ "{a, b, c}\n", "{b, a, b, a}\n", "{}\n" ]
[ "3\n", "2\n", "0\n" ]
none
500
[ { "input": "{a, b, c}", "output": "3" }, { "input": "{b, a, b, a}", "output": "2" }, { "input": "{}", "output": "0" }, { "input": "{a, a, c, b, b, b, c, c, c, c}", "output": "3" }, { "input": "{a, c, b, b}", "output": "3" }, { "input": "{a, b}", "output": "2" }, { "input": "{a}", "output": "1" }, { "input": "{b, a, b, a, b, c, c, b, c, b}", "output": "3" }, { "input": "{e, g, c, e}", "output": "3" }, { "input": "{a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a}", "output": "1" }, { "input": "{a, a, b}", "output": "2" }, { "input": "{a, b, b, b, a, b, a, a, a, a, a, a, b, a, b, a, a, a, a, a, b, a, b, a}", "output": "2" }, { "input": "{j, u, a, c, f, w, e, w, x, t, h, p, v, n, i, l, x, n, i, b, u, c, a, a}", "output": "16" }, { "input": "{x, i, w, c, p, e, h, z, k, i}", "output": "9" }, { "input": "{t, k, o, x, r, d, q, j, k, e, z, w, y, r, z, s, s, e, s, b, k, i}", "output": "15" }, { "input": "{y}", "output": "1" }, { "input": "{x}", "output": "1" }, { "input": "{b, z, a, z}", "output": "3" }, { "input": "{z}", "output": "1" }, { "input": "{a, z}", "output": "2" }, { "input": "{a, b, z}", "output": "3" }, { "input": "{s, q, z, r, t, a, b, h, j, i, o, z, r, q}", "output": "11" } ]
1,688,888,741
2,147,483,647
Python 3
OK
TESTS
27
46
0
s=input() res = set() for i in s : if i.isalpha(): res.add(i) print(len(res))
Title: Anton and Letters Time Limit: None seconds Memory Limit: None megabytes Problem Description: Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line. Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set. Input Specification: The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space. Output Specification: Print a single number — the number of distinct letters in Anton's set. Demo Input: ['{a, b, c}\n', '{b, a, b, a}\n', '{}\n'] Demo Output: ['3\n', '2\n', '0\n'] Note: none
```python s=input() res = set() for i in s : if i.isalpha(): res.add(i) print(len(res)) ```
3
439
A
Devu, the Singer and Churu, the Joker
PROGRAMMING
900
[ "greedy", "implementation" ]
null
null
Devu is a renowned classical singer. He is invited to many big functions/festivals. Recently he was invited to "All World Classical Singing Festival". Other than Devu, comedian Churu was also invited. Devu has provided organizers a list of the songs and required time for singing them. He will sing *n* songs, *i**th* song will take *t**i* minutes exactly. The Comedian, Churu will crack jokes. All his jokes are of 5 minutes exactly. People have mainly come to listen Devu. But you know that he needs rest of 10 minutes after each song. On the other hand, Churu being a very active person, doesn't need any rest. You as one of the organizers should make an optimal sсhedule for the event. For some reasons you must follow the conditions: - The duration of the event must be no more than *d* minutes; - Devu must complete all his songs; - With satisfying the two previous conditions the number of jokes cracked by Churu should be as many as possible. If it is not possible to find a way to conduct all the songs of the Devu, output -1. Otherwise find out maximum number of jokes that Churu can crack in the grand event.
The first line contains two space separated integers *n*, *d* (1<=≤<=*n*<=≤<=100; 1<=≤<=*d*<=≤<=10000). The second line contains *n* space-separated integers: *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=100).
If there is no way to conduct all the songs of Devu, output -1. Otherwise output the maximum number of jokes that Churu can crack in the grand event.
[ "3 30\n2 2 1\n", "3 20\n2 1 1\n" ]
[ "5\n", "-1\n" ]
Consider the first example. The duration of the event is 30 minutes. There could be maximum 5 jokes in the following way: - First Churu cracks a joke in 5 minutes. - Then Devu performs the first song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now Devu performs second song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now finally Devu will perform his last song in 1 minutes. Total time spent is 5 + 2 + 10 + 2 + 10 + 1 = 30 minutes. Consider the second example. There is no way of organizing Devu's all songs. Hence the answer is -1.
500
[ { "input": "3 30\n2 2 1", "output": "5" }, { "input": "3 20\n2 1 1", "output": "-1" }, { "input": "50 10000\n5 4 10 9 9 6 7 7 7 3 3 7 7 4 7 4 10 10 1 7 10 3 1 4 5 7 2 10 10 10 2 3 4 7 6 1 8 4 7 3 8 8 4 10 1 1 9 2 6 1", "output": "1943" }, { "input": "50 10000\n4 7 15 9 11 12 20 9 14 14 10 13 6 13 14 17 6 8 20 12 10 15 13 17 5 12 13 11 7 5 5 2 3 15 13 7 14 14 19 2 13 14 5 15 3 19 15 16 4 1", "output": "1891" }, { "input": "100 9000\n5 2 3 1 1 3 4 9 9 6 7 10 10 10 2 10 6 8 8 6 7 9 9 5 6 2 1 10 10 9 4 5 9 2 4 3 8 5 6 1 1 5 3 6 2 6 6 6 5 8 3 6 7 3 1 10 9 1 8 3 10 9 5 6 3 4 1 1 10 10 2 3 4 8 10 10 5 1 5 3 6 8 10 6 10 2 1 8 10 1 7 6 9 10 5 2 3 5 3 2", "output": "1688" }, { "input": "100 8007\n5 19 14 18 9 6 15 8 1 14 11 20 3 17 7 12 2 6 3 17 7 20 1 14 20 17 2 10 13 7 18 18 9 10 16 8 1 11 11 9 13 18 9 20 12 12 7 15 12 17 11 5 11 15 9 2 15 1 18 3 18 16 15 4 10 5 18 13 13 12 3 8 17 2 12 2 13 3 1 13 2 4 9 10 18 10 14 4 4 17 12 19 2 9 6 5 5 20 18 12", "output": "1391" }, { "input": "39 2412\n1 1 1 1 1 1 26 1 1 1 99 1 1 1 1 1 1 1 1 1 1 88 7 1 1 1 1 76 1 1 1 93 40 1 13 1 68 1 32", "output": "368" }, { "input": "39 2617\n47 1 1 1 63 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 70 1 99 63 1 1 1 1 1 1 1 1 64 1 1", "output": "435" }, { "input": "39 3681\n83 77 1 94 85 47 1 98 29 16 1 1 1 71 96 85 31 97 96 93 40 50 98 1 60 51 1 96 100 72 1 1 1 89 1 93 1 92 100", "output": "326" }, { "input": "45 894\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 28 28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 99 3 1 1", "output": "139" }, { "input": "45 4534\n1 99 65 99 4 46 54 80 51 30 96 1 28 30 44 70 78 1 1 100 1 62 1 1 1 85 1 1 1 61 1 46 75 1 61 77 97 26 67 1 1 63 81 85 86", "output": "514" }, { "input": "72 3538\n52 1 8 1 1 1 7 1 1 1 1 48 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 40 1 1 38 1 1 1 1 1 1 1 1 1 1 1 35 1 93 79 1 1 1 1 1 1 1 1 1 51 1 1 1 1 1 1 1 1 1 1 1 1 96 1", "output": "586" }, { "input": "81 2200\n1 59 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 93 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 50 1 1 1 1 1 1 1 1 1 1 1", "output": "384" }, { "input": "81 2577\n85 91 1 1 2 1 1 100 1 80 1 1 17 86 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 37 1 66 24 1 1 96 49 1 66 1 44 1 1 1 1 98 1 1 1 1 35 1 37 3 35 1 1 87 64 1 24 1 58 1 1 42 83 5 1 1 1 1 1 95 1 94 1 50 1 1", "output": "174" }, { "input": "81 4131\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "807" }, { "input": "81 6315\n1 1 67 100 1 99 36 1 92 5 1 96 42 12 1 57 91 1 1 66 41 30 74 95 1 37 1 39 91 69 1 52 77 47 65 1 1 93 96 74 90 35 85 76 71 92 92 1 1 67 92 74 1 1 86 76 35 1 56 16 27 57 37 95 1 40 20 100 51 1 80 60 45 79 95 1 46 1 25 100 96", "output": "490" }, { "input": "96 1688\n1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 71 1 1 1 30 1 1 1", "output": "284" }, { "input": "96 8889\n1 1 18 1 1 1 1 1 1 1 1 1 99 1 1 1 1 88 1 45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 96 1 1 1 1 21 1 1 1 1 1 1 1 73 1 1 1 1 1 10 1 1 1 1 1 1 1 46 43 1 1 1 1 1 98 1 1 1 1 1 1 6 1 1 1 1 1 74 1 25 1 55 1 1 1 13 1 1 54 1 1 1", "output": "1589" }, { "input": "10 100\n1 1 1 1 1 1 1 1 1 1", "output": "18" }, { "input": "100 10000\n54 46 72 94 79 83 91 54 73 3 24 55 54 31 28 20 19 6 25 19 47 23 1 70 15 87 51 39 54 77 55 5 60 3 15 99 56 88 22 78 79 21 38 27 28 86 7 88 12 59 55 70 25 1 70 49 1 45 69 72 50 17 4 56 8 100 90 34 35 20 61 76 88 79 4 74 65 68 75 26 40 72 59 94 10 67 96 85 29 90 47 24 44 1 66 93 55 36 1 99", "output": "1017" }, { "input": "100 6000\n41 31 23 17 24 78 26 96 93 48 46 2 49 33 35 9 73 100 34 48 83 36 33 69 43 24 3 74 8 81 27 33 94 38 77 9 76 90 62 90 21 67 22 22 12 2 17 27 61 18 72 85 59 65 71 38 90 75 74 66 60 47 58 50 90 95 75 10 5 100 97 29 83 88 65 26 93 90 22 98 36 55 70 38 50 92 88 72 99 96 25 14 74 16 25 92 67 94 77 96", "output": "-1" }, { "input": "1 1\n1", "output": "0" }, { "input": "1 6\n1", "output": "1" }, { "input": "1 5\n1", "output": "0" }, { "input": "1 3\n4", "output": "-1" }, { "input": "3 24\n2 1 2", "output": "-1" } ]
1,538,075,031
2,147,483,647
Python 3
OK
TESTS
26
109
0
n,d = map(int,input().split()) t = list(map(int,input().split())) if (d - (n - 1)*10 - sum(t))<0: print(-1) else: print((d - sum(t))//5)
Title: Devu, the Singer and Churu, the Joker Time Limit: None seconds Memory Limit: None megabytes Problem Description: Devu is a renowned classical singer. He is invited to many big functions/festivals. Recently he was invited to "All World Classical Singing Festival". Other than Devu, comedian Churu was also invited. Devu has provided organizers a list of the songs and required time for singing them. He will sing *n* songs, *i**th* song will take *t**i* minutes exactly. The Comedian, Churu will crack jokes. All his jokes are of 5 minutes exactly. People have mainly come to listen Devu. But you know that he needs rest of 10 minutes after each song. On the other hand, Churu being a very active person, doesn't need any rest. You as one of the organizers should make an optimal sсhedule for the event. For some reasons you must follow the conditions: - The duration of the event must be no more than *d* minutes; - Devu must complete all his songs; - With satisfying the two previous conditions the number of jokes cracked by Churu should be as many as possible. If it is not possible to find a way to conduct all the songs of the Devu, output -1. Otherwise find out maximum number of jokes that Churu can crack in the grand event. Input Specification: The first line contains two space separated integers *n*, *d* (1<=≤<=*n*<=≤<=100; 1<=≤<=*d*<=≤<=10000). The second line contains *n* space-separated integers: *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=100). Output Specification: If there is no way to conduct all the songs of Devu, output -1. Otherwise output the maximum number of jokes that Churu can crack in the grand event. Demo Input: ['3 30\n2 2 1\n', '3 20\n2 1 1\n'] Demo Output: ['5\n', '-1\n'] Note: Consider the first example. The duration of the event is 30 minutes. There could be maximum 5 jokes in the following way: - First Churu cracks a joke in 5 minutes. - Then Devu performs the first song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now Devu performs second song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now finally Devu will perform his last song in 1 minutes. Total time spent is 5 + 2 + 10 + 2 + 10 + 1 = 30 minutes. Consider the second example. There is no way of organizing Devu's all songs. Hence the answer is -1.
```python n,d = map(int,input().split()) t = list(map(int,input().split())) if (d - (n - 1)*10 - sum(t))<0: print(-1) else: print((d - sum(t))//5) ```
3
875
A
Classroom Watch
PROGRAMMING
1,200
[ "brute force", "math" ]
null
null
Eighth-grader Vova is on duty today in the class. After classes, he went into the office to wash the board, and found on it the number *n*. He asked what is this number and the teacher of mathematics Inna Petrovna answered Vova that *n* is the answer to the arithmetic task for first-graders. In the textbook, a certain positive integer *x* was given. The task was to add *x* to the sum of the digits of the number *x* written in decimal numeral system. Since the number *n* on the board was small, Vova quickly guessed which *x* could be in the textbook. Now he wants to get a program which will search for arbitrary values of the number *n* for all suitable values of *x* or determine that such *x* does not exist. Write such a program for Vova.
The first line contains integer *n* (1<=≤<=*n*<=≤<=109).
In the first line print one integer *k* — number of different values of *x* satisfying the condition. In next *k* lines print these values in ascending order.
[ "21\n", "20\n" ]
[ "1\n15\n", "0\n" ]
In the first test case *x* = 15 there is only one variant: 15 + 1 + 5 = 21. In the second test case there are no such *x*.
500
[ { "input": "21", "output": "1\n15" }, { "input": "20", "output": "0" }, { "input": "1", "output": "0" }, { "input": "2", "output": "1\n1" }, { "input": "3", "output": "0" }, { "input": "100000001", "output": "2\n99999937\n100000000" }, { "input": "1000000000", "output": "1\n999999932" }, { "input": "999999979", "output": "2\n999999899\n999999908" }, { "input": "9", "output": "0" }, { "input": "10", "output": "1\n5" }, { "input": "11", "output": "1\n10" }, { "input": "39", "output": "1\n33" }, { "input": "66", "output": "1\n60" }, { "input": "75", "output": "0" }, { "input": "100", "output": "1\n86" }, { "input": "101", "output": "2\n91\n100" }, { "input": "2014", "output": "2\n1988\n2006" }, { "input": "999999994", "output": "0" } ]
1,598,665,312
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
5
1,000
0
num = int(input()) answer = [] for i in range(num): add = 0 stri = str(i) for a in range(len(stri)): add = add + int(stri[a]) if add+i == num: answer.append(i) print(len(answer)) print(' '.join(map(str, answer)))
Title: Classroom Watch Time Limit: None seconds Memory Limit: None megabytes Problem Description: Eighth-grader Vova is on duty today in the class. After classes, he went into the office to wash the board, and found on it the number *n*. He asked what is this number and the teacher of mathematics Inna Petrovna answered Vova that *n* is the answer to the arithmetic task for first-graders. In the textbook, a certain positive integer *x* was given. The task was to add *x* to the sum of the digits of the number *x* written in decimal numeral system. Since the number *n* on the board was small, Vova quickly guessed which *x* could be in the textbook. Now he wants to get a program which will search for arbitrary values of the number *n* for all suitable values of *x* or determine that such *x* does not exist. Write such a program for Vova. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=109). Output Specification: In the first line print one integer *k* — number of different values of *x* satisfying the condition. In next *k* lines print these values in ascending order. Demo Input: ['21\n', '20\n'] Demo Output: ['1\n15\n', '0\n'] Note: In the first test case *x* = 15 there is only one variant: 15 + 1 + 5 = 21. In the second test case there are no such *x*.
```python num = int(input()) answer = [] for i in range(num): add = 0 stri = str(i) for a in range(len(stri)): add = add + int(stri[a]) if add+i == num: answer.append(i) print(len(answer)) print(' '.join(map(str, answer))) ```
0
186
A
Comparing Strings
PROGRAMMING
1,100
[ "implementation", "strings" ]
null
null
Some dwarves that are finishing the StUDY (State University for Dwarven Youngsters) Bachelor courses, have been told "no genome, no degree". That means that all dwarves should write a thesis on genome. Dwarven genome is far from simple. It is represented by a string that consists of lowercase Latin letters. Dwarf Misha has already chosen the subject for his thesis: determining by two dwarven genomes, whether they belong to the same race. Two dwarves belong to the same race if we can swap two characters in the first dwarf's genome and get the second dwarf's genome as a result. Help Dwarf Misha and find out whether two gnomes belong to the same race or not.
The first line contains the first dwarf's genome: a non-empty string, consisting of lowercase Latin letters. The second line contains the second dwarf's genome: a non-empty string, consisting of lowercase Latin letters. The number of letters in each genome doesn't exceed 105. It is guaranteed that the strings that correspond to the genomes are different. The given genomes may have different length.
Print "YES", if the dwarves belong to the same race. Otherwise, print "NO".
[ "ab\nba\n", "aa\nab\n" ]
[ "YES\n", "NO\n" ]
- First example: you can simply swap two letters in string "ab". So we get "ba". - Second example: we can't change string "aa" into string "ab", because "aa" does not contain letter "b".
500
[ { "input": "ab\nba", "output": "YES" }, { "input": "aa\nab", "output": "NO" }, { "input": "a\nza", "output": "NO" }, { "input": "vvea\nvvae", "output": "YES" }, { "input": "rtfabanpc\natfabrnpc", "output": "YES" }, { "input": "mt\ntm", "output": "YES" }, { "input": "qxolmbkkt\naovlajmlf", "output": "NO" }, { "input": "b\ng", "output": "NO" }, { "input": "ab\naba", "output": "NO" }, { "input": "ba\na", "output": "NO" }, { "input": "a\nab", "output": "NO" }, { "input": "a\naa", "output": "NO" }, { "input": "a\nz", "output": "NO" }, { "input": "aabb\nbbaa", "output": "NO" }, { "input": "ab\nbd", "output": "NO" }, { "input": "bac\ndae", "output": "NO" }, { "input": "abc\nakl", "output": "NO" }, { "input": "cb\naa", "output": "NO" }, { "input": "abaab\naabba", "output": "NO" }, { "input": "aab\naaa", "output": "NO" }, { "input": "abcde\nedcba", "output": "NO" }, { "input": "abab\nbaba", "output": "NO" }, { "input": "ab\nbac", "output": "NO" }, { "input": "abcd\naqcb", "output": "NO" }, { "input": "abc\nbad", "output": "NO" }, { "input": "ab\nca", "output": "NO" }, { "input": "abc\nab", "output": "NO" }, { "input": "ab\nbae", "output": "NO" }, { "input": "aaaabcccca\naaaadccccb", "output": "NO" }, { "input": "acaa\nabca", "output": "NO" }, { "input": "aba\naab", "output": "YES" }, { "input": "ah\nla", "output": "NO" }, { "input": "aab\naa", "output": "NO" }, { "input": "abab\nabcd", "output": "NO" }, { "input": "ed\nab", "output": "NO" } ]
1,601,555,783
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
156
0
a= input() b= input() if len(a)>=2 and len(b)>=2: if a[2:] == b[2:] and a[0] == b[1] and b[0] == a[1]: print('YES') else: print('NO ') else: print('NO')
Title: Comparing Strings Time Limit: None seconds Memory Limit: None megabytes Problem Description: Some dwarves that are finishing the StUDY (State University for Dwarven Youngsters) Bachelor courses, have been told "no genome, no degree". That means that all dwarves should write a thesis on genome. Dwarven genome is far from simple. It is represented by a string that consists of lowercase Latin letters. Dwarf Misha has already chosen the subject for his thesis: determining by two dwarven genomes, whether they belong to the same race. Two dwarves belong to the same race if we can swap two characters in the first dwarf's genome and get the second dwarf's genome as a result. Help Dwarf Misha and find out whether two gnomes belong to the same race or not. Input Specification: The first line contains the first dwarf's genome: a non-empty string, consisting of lowercase Latin letters. The second line contains the second dwarf's genome: a non-empty string, consisting of lowercase Latin letters. The number of letters in each genome doesn't exceed 105. It is guaranteed that the strings that correspond to the genomes are different. The given genomes may have different length. Output Specification: Print "YES", if the dwarves belong to the same race. Otherwise, print "NO". Demo Input: ['ab\nba\n', 'aa\nab\n'] Demo Output: ['YES\n', 'NO\n'] Note: - First example: you can simply swap two letters in string "ab". So we get "ba". - Second example: we can't change string "aa" into string "ab", because "aa" does not contain letter "b".
```python a= input() b= input() if len(a)>=2 and len(b)>=2: if a[2:] == b[2:] and a[0] == b[1] and b[0] == a[1]: print('YES') else: print('NO ') else: print('NO') ```
0
110
A
Nearly Lucky Number
PROGRAMMING
800
[ "implementation" ]
A. Nearly Lucky Number
2
256
Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Unfortunately, not all numbers are lucky. Petya calls a number nearly lucky if the number of lucky digits in it is a lucky number. He wonders whether number *n* is a nearly lucky number.
The only line contains an integer *n* (1<=≤<=*n*<=≤<=1018). Please do not use the %lld specificator to read or write 64-bit numbers in С++. It is preferred to use the cin, cout streams or the %I64d specificator.
Print on the single line "YES" if *n* is a nearly lucky number. Otherwise, print "NO" (without the quotes).
[ "40047\n", "7747774\n", "1000000000000000000\n" ]
[ "NO\n", "YES\n", "NO\n" ]
In the first sample there are 3 lucky digits (first one and last two), so the answer is "NO". In the second sample there are 7 lucky digits, 7 is lucky number, so the answer is "YES". In the third sample there are no lucky digits, so the answer is "NO".
500
[ { "input": "40047", "output": "NO" }, { "input": "7747774", "output": "YES" }, { "input": "1000000000000000000", "output": "NO" }, { "input": "7", "output": "NO" }, { "input": "4", "output": "NO" }, { "input": "474404774", "output": "NO" }, { "input": "4744000695826", "output": "YES" }, { "input": "10000000004744744", "output": "YES" }, { "input": "446486416781684178", "output": "YES" }, { "input": "999999999", "output": "NO" }, { "input": "7777", "output": "YES" }, { "input": "87414417444", "output": "NO" }, { "input": "111222333444555667", "output": "YES" }, { "input": "1", "output": "NO" }, { "input": "4700", "output": "NO" }, { "input": "3794555488744477", "output": "NO" }, { "input": "444444444444444444", "output": "NO" }, { "input": "474447447774444774", "output": "NO" }, { "input": "777777777777777", "output": "NO" }, { "input": "34777745021000000", "output": "NO" }, { "input": "963", "output": "NO" }, { "input": "855474448854788540", "output": "NO" }, { "input": "999999999999994744", "output": "YES" }, { "input": "400000000474", "output": "YES" }, { "input": "123456789123456789", "output": "YES" }, { "input": "740577777584945874", "output": "NO" }, { "input": "7777777", "output": "YES" }, { "input": "4444000111222333", "output": "YES" }, { "input": "9847745885202111", "output": "YES" }, { "input": "123456000000", "output": "NO" }, { "input": "4744447444444", "output": "NO" }, { "input": "7477", "output": "YES" }, { "input": "4747477", "output": "YES" }, { "input": "777777777444444444", "output": "NO" } ]
1,697,824,133
2,147,483,647
Python 3
OK
TESTS
34
62
0
#!/usr/bin/env python # coding: utf-8 # In[38]: n = input() count = 0 for digit in n: if digit == '4' or digit == '7': count += 1 if set(str(count)) <= set('47'): print("YES") else: print("NO") # # In[ ]:
Title: Nearly Lucky Number Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Unfortunately, not all numbers are lucky. Petya calls a number nearly lucky if the number of lucky digits in it is a lucky number. He wonders whether number *n* is a nearly lucky number. Input Specification: The only line contains an integer *n* (1<=≤<=*n*<=≤<=1018). Please do not use the %lld specificator to read or write 64-bit numbers in С++. It is preferred to use the cin, cout streams or the %I64d specificator. Output Specification: Print on the single line "YES" if *n* is a nearly lucky number. Otherwise, print "NO" (without the quotes). Demo Input: ['40047\n', '7747774\n', '1000000000000000000\n'] Demo Output: ['NO\n', 'YES\n', 'NO\n'] Note: In the first sample there are 3 lucky digits (first one and last two), so the answer is "NO". In the second sample there are 7 lucky digits, 7 is lucky number, so the answer is "YES". In the third sample there are no lucky digits, so the answer is "NO".
```python #!/usr/bin/env python # coding: utf-8 # In[38]: n = input() count = 0 for digit in n: if digit == '4' or digit == '7': count += 1 if set(str(count)) <= set('47'): print("YES") else: print("NO") # # In[ ]: ```
3.9845
120
D
Three Sons
PROGRAMMING
1,400
[ "brute force" ]
null
null
Three sons inherited from their father a rectangular corn fiend divided into *n*<=×<=*m* squares. For each square we know how many tons of corn grows on it. The father, an old farmer did not love all three sons equally, which is why he bequeathed to divide his field into three parts containing *A*, *B* and *C* tons of corn. The field should be divided by two parallel lines. The lines should be parallel to one side of the field and to each other. The lines should go strictly between the squares of the field. Each resulting part of the field should consist of at least one square. Your task is to find the number of ways to divide the field as is described above, that is, to mark two lines, dividing the field in three parts so that on one of the resulting parts grew *A* tons of corn, *B* on another one and *C* on the remaining one.
The first line contains space-separated integers *n* and *m* — the sizes of the original (1<=≤<=*n*,<=*m*<=≤<=50,<=*max*(*n*,<=*m*)<=≥<=3). Then the field's description follows: *n* lines, each containing *m* space-separated integers *c**ij*, (0<=≤<=*c**ij*<=≤<=100) — the number of tons of corn each square contains. The last line contains space-separated integers *A*,<=*B*,<=*C* (0<=≤<=*A*,<=*B*,<=*C*<=≤<=106).
Print the answer to the problem: the number of ways to divide the father's field so that one of the resulting parts contained *A* tons of corn, another one contained *B* tons, and the remaining one contained *C* tons. If no such way exists, print 0.
[ "3 3\n1 1 1\n1 1 1\n1 1 1\n3 3 3\n", "2 5\n1 1 1 1 1\n2 2 2 2 2\n3 6 6\n", "3 3\n1 2 3\n3 1 2\n2 3 1\n5 6 7\n" ]
[ "2\n", "3\n", "0\n" ]
The lines dividing the field can be horizontal or vertical, but they should be parallel to each other.
0
[ { "input": "3 3\n1 1 1\n1 1 1\n1 1 1\n3 3 3", "output": "2" }, { "input": "2 5\n1 1 1 1 1\n2 2 2 2 2\n3 6 6", "output": "3" }, { "input": "3 3\n1 2 3\n3 1 2\n2 3 1\n5 6 7", "output": "0" }, { "input": "3 3\n0 0 0\n0 0 1\n1 1 0\n2 1 0", "output": "1" }, { "input": "3 3\n0 0 0\n0 1 0\n0 0 0\n1 0 0", "output": "2" }, { "input": "3 2\n0 0\n0 2\n0 0\n2 0 0", "output": "1" }, { "input": "3 2\n0 1\n2 1\n0 1\n3 1 1", "output": "1" }, { "input": "5 10\n0 1 4 4 4 1 4 0 0 4\n1 1 2 0 4 4 2 2 0 3\n3 2 4 0 3 0 1 3 1 0\n4 1 2 3 0 2 0 2 0 1\n4 4 4 0 2 4 3 1 3 2\n10 78 12", "output": "2" }, { "input": "5 10\n0 0 0 0 0 0 0 0 0 0\n0 2 0 1 0 5 0 3 0 4\n0 0 0 0 0 0 0 0 0 0\n0 2 0 4 0 3 0 3 0 2\n0 0 0 0 0 0 0 0 0 0\n0 15 14", "output": "5" }, { "input": "10 10\n2 0 1 5 5 0 4 1 2 0\n3 5 2 5 4 0 2 3 4 0\n4 0 3 0 5 1 2 3 4 4\n1 3 2 0 5 2 4 3 5 0\n5 0 1 5 1 4 4 2 1 2\n3 2 0 4 0 0 0 1 2 4\n3 3 2 2 5 5 2 0 4 3\n3 0 2 5 4 2 5 3 1 4\n2 3 0 3 1 1 0 0 1 4\n3 2 3 5 3 1 0 3 5 5\n45 124 74", "output": "3" }, { "input": "10 15\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0", "output": "127" }, { "input": "10 15\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0", "output": "127" }, { "input": "10 10\n0 0 0 0 0 0 0 0 0 0\n0 6 0 6 0 1 0 4 0 1\n0 0 0 0 0 0 0 0 0 0\n0 4 0 1 0 3 0 4 0 1\n0 0 0 0 0 0 0 0 0 0\n0 3 0 5 0 1 0 2 0 5\n0 0 0 0 0 0 0 0 0 0\n0 1 0 6 0 3 0 4 0 5\n0 0 0 0 0 0 0 0 0 0\n0 3 0 6 0 2 0 4 0 6\n0 69 18", "output": "6" }, { "input": "10 15\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 1 0 1 0 1 0 1 0 1 0 1 0 1 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 1 0 1 0 1 0 1 0 1 0 1 0 1 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 1 0 1 0 1 0 1 0 1 0 1 0 1 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 1 0 1 0 1 0 1 0 1 0 1 0 1 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 1 0 1 0 1 0 1 0 1 0 1 0 1 0\n5 20 10", "output": "24" }, { "input": "10 15\n2 91 9 36 34 23 88 86 19 91 29 41 39 47 9\n66 63 69 60 73 19 93 78 15 38 70 39 36 4 49\n93 4 25 32 31 49 33 76 22 83 60 49 47 27 20\n34 9 29 85 84 59 8 87 92 5 44 4 60 63 74\n92 50 27 78 62 88 2 50 95 29 37 3 42 72 80\n41 72 35 1 35 85 42 64 41 79 58 2 41 4 11\n2 3 19 77 97 52 74 37 16 58 57 44 14 94 41\n5 47 75 72 49 52 41 48 59 56 38 54 81 9 50\n54 6 46 52 39 79 30 52 79 68 76 40 44 38 68\n7 12 11 87 78 23 47 14 27 83 83 14 84 54 69\n289 5446 1371", "output": "0" }, { "input": "30 2\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0 0", "output": "406" }, { "input": "30 2\n0 0\n0 1\n0 0\n0 1\n0 0\n0 1\n0 0\n0 1\n0 0\n0 1\n0 0\n0 1\n0 0\n0 1\n0 0\n0 1\n0 0\n0 1\n0 0\n0 1\n0 0\n0 1\n0 0\n0 1\n0 0\n0 1\n0 0\n0 1\n0 0\n0 1\n12 2 1", "output": "24" }, { "input": "30 2\n34 34\n34 34\n34 34\n34 34\n34 34\n34 34\n34 34\n34 34\n34 34\n34 34\n34 34\n34 34\n34 34\n34 34\n34 34\n34 34\n34 34\n34 34\n34 34\n34 34\n34 34\n34 34\n34 34\n34 34\n34 34\n34 34\n34 34\n34 34\n34 34\n34 34\n1836 68 136", "output": "6" }, { "input": "40 4\n0 0 0 0\n0 1 0 1\n0 0 0 0\n0 1 0 1\n0 0 0 0\n0 1 0 1\n0 0 0 0\n0 1 0 1\n0 0 0 0\n0 1 0 1\n0 0 0 0\n0 1 0 1\n0 0 0 0\n0 1 0 1\n0 0 0 0\n0 1 0 1\n0 0 0 0\n0 1 0 1\n0 0 0 0\n0 1 0 1\n0 0 0 0\n0 1 0 1\n0 0 0 0\n0 1 0 1\n0 0 0 0\n0 1 0 1\n0 0 0 0\n0 1 0 1\n0 0 0 0\n0 1 0 1\n0 0 0 0\n0 1 0 1\n0 0 0 0\n0 1 0 1\n0 0 0 0\n0 1 0 1\n0 0 0 0\n0 1 0 1\n0 0 0 0\n0 1 0 1\n34 4 2", "output": "24" }, { "input": "40 4\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0", "output": "744" } ]
1,631,152,047
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
60
6,963,200
# _ ##################################################################################################################### def main(): return nWaysToDivide([tuple(map(int, input().split())) for _ in range(int(input().split()[0]))], list(map(int, input().split()))) def nWaysToDivide(field, parts): parts.sort() i = nCorns = 0 while nCorns < parts[0]: nCorns += sum(field[i]) i += 1 if nCorns == parts[0]: nCorns = 0 while nCorns < parts[1]: nCorns += sum(field[i]) i += 1 if nCorns == parts[1]: nWays = {1: 1, 2: 3, 3: 6}[len(set(parts))] else: nWays = 0 else: nWays = 0 i = nCorns = 0 while nCorns < parts[0]: nCorns += sum(map(lambda x: x[i], field)) i += 1 if nCorns == parts[0]: nCorns = 0 while nCorns < parts[1]: nCorns += sum(map(lambda x: x[i], field)) i += 1 if nCorns == parts[1]: if not nWays: return {1: 1, 2: 3, 3: 6}[len(set(parts))] return nWays*2 return nWays return nWays if __name__ == '__main__': print(main()) # main() # open('output.txt', 'w').write(main())
Title: Three Sons Time Limit: None seconds Memory Limit: None megabytes Problem Description: Three sons inherited from their father a rectangular corn fiend divided into *n*<=×<=*m* squares. For each square we know how many tons of corn grows on it. The father, an old farmer did not love all three sons equally, which is why he bequeathed to divide his field into three parts containing *A*, *B* and *C* tons of corn. The field should be divided by two parallel lines. The lines should be parallel to one side of the field and to each other. The lines should go strictly between the squares of the field. Each resulting part of the field should consist of at least one square. Your task is to find the number of ways to divide the field as is described above, that is, to mark two lines, dividing the field in three parts so that on one of the resulting parts grew *A* tons of corn, *B* on another one and *C* on the remaining one. Input Specification: The first line contains space-separated integers *n* and *m* — the sizes of the original (1<=≤<=*n*,<=*m*<=≤<=50,<=*max*(*n*,<=*m*)<=≥<=3). Then the field's description follows: *n* lines, each containing *m* space-separated integers *c**ij*, (0<=≤<=*c**ij*<=≤<=100) — the number of tons of corn each square contains. The last line contains space-separated integers *A*,<=*B*,<=*C* (0<=≤<=*A*,<=*B*,<=*C*<=≤<=106). Output Specification: Print the answer to the problem: the number of ways to divide the father's field so that one of the resulting parts contained *A* tons of corn, another one contained *B* tons, and the remaining one contained *C* tons. If no such way exists, print 0. Demo Input: ['3 3\n1 1 1\n1 1 1\n1 1 1\n3 3 3\n', '2 5\n1 1 1 1 1\n2 2 2 2 2\n3 6 6\n', '3 3\n1 2 3\n3 1 2\n2 3 1\n5 6 7\n'] Demo Output: ['2\n', '3\n', '0\n'] Note: The lines dividing the field can be horizontal or vertical, but they should be parallel to each other.
```python # _ ##################################################################################################################### def main(): return nWaysToDivide([tuple(map(int, input().split())) for _ in range(int(input().split()[0]))], list(map(int, input().split()))) def nWaysToDivide(field, parts): parts.sort() i = nCorns = 0 while nCorns < parts[0]: nCorns += sum(field[i]) i += 1 if nCorns == parts[0]: nCorns = 0 while nCorns < parts[1]: nCorns += sum(field[i]) i += 1 if nCorns == parts[1]: nWays = {1: 1, 2: 3, 3: 6}[len(set(parts))] else: nWays = 0 else: nWays = 0 i = nCorns = 0 while nCorns < parts[0]: nCorns += sum(map(lambda x: x[i], field)) i += 1 if nCorns == parts[0]: nCorns = 0 while nCorns < parts[1]: nCorns += sum(map(lambda x: x[i], field)) i += 1 if nCorns == parts[1]: if not nWays: return {1: 1, 2: 3, 3: 6}[len(set(parts))] return nWays*2 return nWays return nWays if __name__ == '__main__': print(main()) # main() # open('output.txt', 'w').write(main()) ```
-1
984
A
Game
PROGRAMMING
800
[ "sortings" ]
null
null
Two players play a game. Initially there are $n$ integers $a_1, a_2, \ldots, a_n$ written on the board. Each turn a player selects one number and erases it from the board. This continues until there is only one number left on the board, i. e. $n - 1$ turns are made. The first player makes the first move, then players alternate turns. The first player wants to minimize the last number that would be left on the board, while the second player wants to maximize it. You want to know what number will be left on the board after $n - 1$ turns if both players make optimal moves.
The first line contains one integer $n$ ($1 \le n \le 1000$) — the number of numbers on the board. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^6$).
Print one number that will be left on the board.
[ "3\n2 1 3\n", "3\n2 2 2\n" ]
[ "2", "2" ]
In the first sample, the first player erases $3$ and the second erases $1$. $2$ is left on the board. In the second sample, $2$ is left on the board regardless of the actions of the players.
500
[ { "input": "3\n2 1 3", "output": "2" }, { "input": "3\n2 2 2", "output": "2" }, { "input": "9\n44 53 51 80 5 27 74 79 94", "output": "53" }, { "input": "10\n38 82 23 37 96 4 81 60 67 86", "output": "60" }, { "input": "10\n58 26 77 15 53 81 68 48 22 65", "output": "53" }, { "input": "1\n124", "output": "124" }, { "input": "2\n2 1", "output": "1" }, { "input": "3\n1 1 1000", "output": "1" }, { "input": "2\n322 322", "output": "322" }, { "input": "3\n9 92 12", "output": "12" }, { "input": "3\n1 2 2", "output": "2" } ]
1,637,124,204
2,147,483,647
Python 3
OK
TESTS
35
46
0
n = int(input()) x = list(map(int, input().split())) x = sorted(x) if n % 2 == 1: print(x[n//2]) elif n % 2 == 0: print(x[n//2-1])
Title: Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Two players play a game. Initially there are $n$ integers $a_1, a_2, \ldots, a_n$ written on the board. Each turn a player selects one number and erases it from the board. This continues until there is only one number left on the board, i. e. $n - 1$ turns are made. The first player makes the first move, then players alternate turns. The first player wants to minimize the last number that would be left on the board, while the second player wants to maximize it. You want to know what number will be left on the board after $n - 1$ turns if both players make optimal moves. Input Specification: The first line contains one integer $n$ ($1 \le n \le 1000$) — the number of numbers on the board. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^6$). Output Specification: Print one number that will be left on the board. Demo Input: ['3\n2 1 3\n', '3\n2 2 2\n'] Demo Output: ['2', '2'] Note: In the first sample, the first player erases $3$ and the second erases $1$. $2$ is left on the board. In the second sample, $2$ is left on the board regardless of the actions of the players.
```python n = int(input()) x = list(map(int, input().split())) x = sorted(x) if n % 2 == 1: print(x[n//2]) elif n % 2 == 0: print(x[n//2-1]) ```
3
955
F
Heaps
PROGRAMMING
2,600
[ "dp", "trees" ]
null
null
You're given a tree with *n* vertices rooted at 1. We say that there's a *k*-ary heap of depth *m* located at *u* if the following holds: - For *m*<==<=1 *u* itself is a *k*-ary heap of depth 1. - For *m*<=&gt;<=1 vertex *u* is a *k*-ary heap of depth *m* if at least *k* of its children are *k*-ary heaps of depth at least *m*<=-<=1. Denote *dp**k*(*u*) as maximum depth of *k*-ary heap in the subtree of *u* (including *u*). Your goal is to compute .
The first line contains an integer *n* denoting the size of the tree (2<=≤<=*n*<=≤<=3·105). The next *n*<=-<=1 lines contain two integers *u*, *v* each, describing vertices connected by *i*-th edge. It's guaranteed that the given configuration forms a tree.
Output the answer to the task.
[ "4\n1 3\n2 3\n4 3\n", "4\n1 2\n2 3\n3 4\n" ]
[ "21\n", "22\n" ]
Consider sample case one. For *k* ≥ 3 all *dp*<sub class="lower-index">*k*</sub> will be equal to 1. For *k* = 2 *dp*<sub class="lower-index">*k*</sub> is 2 if <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/0a527e618740bc1e83327ce591b684aa4351c914.png" style="max-width: 100.0%;max-height: 100.0%;"/> and 1 otherwise. For *k* = 1 *dp*<sub class="lower-index">*k*</sub> values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21.
3,000
[]
1,692,698,995
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
30
0
print("_RANDOM_GUESS_1692698995.4346535")# 1692698995.4346707
Title: Heaps Time Limit: None seconds Memory Limit: None megabytes Problem Description: You're given a tree with *n* vertices rooted at 1. We say that there's a *k*-ary heap of depth *m* located at *u* if the following holds: - For *m*<==<=1 *u* itself is a *k*-ary heap of depth 1. - For *m*<=&gt;<=1 vertex *u* is a *k*-ary heap of depth *m* if at least *k* of its children are *k*-ary heaps of depth at least *m*<=-<=1. Denote *dp**k*(*u*) as maximum depth of *k*-ary heap in the subtree of *u* (including *u*). Your goal is to compute . Input Specification: The first line contains an integer *n* denoting the size of the tree (2<=≤<=*n*<=≤<=3·105). The next *n*<=-<=1 lines contain two integers *u*, *v* each, describing vertices connected by *i*-th edge. It's guaranteed that the given configuration forms a tree. Output Specification: Output the answer to the task. Demo Input: ['4\n1 3\n2 3\n4 3\n', '4\n1 2\n2 3\n3 4\n'] Demo Output: ['21\n', '22\n'] Note: Consider sample case one. For *k* ≥ 3 all *dp*<sub class="lower-index">*k*</sub> will be equal to 1. For *k* = 2 *dp*<sub class="lower-index">*k*</sub> is 2 if <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/0a527e618740bc1e83327ce591b684aa4351c914.png" style="max-width: 100.0%;max-height: 100.0%;"/> and 1 otherwise. For *k* = 1 *dp*<sub class="lower-index">*k*</sub> values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21.
```python print("_RANDOM_GUESS_1692698995.4346535")# 1692698995.4346707 ```
0
236
A
Boy or Girl
PROGRAMMING
800
[ "brute force", "implementation", "strings" ]
null
null
Those days, many boys use beautiful girls' photos as avatars in forums. So it is pretty hard to tell the gender of a user at the first glance. Last year, our hero went to a forum and had a nice chat with a beauty (he thought so). After that they talked very often and eventually they became a couple in the network. But yesterday, he came to see "her" in the real world and found out "she" is actually a very strong man! Our hero is very sad and he is too tired to love again now. So he came up with a way to recognize users' genders by their user names. This is his method: if the number of distinct characters in one's user name is odd, then he is a male, otherwise she is a female. You are given the string that denotes the user name, please help our hero to determine the gender of this user by his method.
The first line contains a non-empty string, that contains only lowercase English letters — the user name. This string contains at most 100 letters.
If it is a female by our hero's method, print "CHAT WITH HER!" (without the quotes), otherwise, print "IGNORE HIM!" (without the quotes).
[ "wjmzbmr\n", "xiaodao\n", "sevenkplus\n" ]
[ "CHAT WITH HER!\n", "IGNORE HIM!\n", "CHAT WITH HER!\n" ]
For the first example. There are 6 distinct characters in "wjmzbmr". These characters are: "w", "j", "m", "z", "b", "r". So wjmzbmr is a female and you should print "CHAT WITH HER!".
500
[ { "input": "wjmzbmr", "output": "CHAT WITH HER!" }, { "input": "xiaodao", "output": "IGNORE HIM!" }, { "input": "sevenkplus", "output": "CHAT WITH HER!" }, { "input": "pezu", "output": "CHAT WITH HER!" }, { "input": "wnemlgppy", "output": "CHAT WITH HER!" }, { "input": "zcinitufxoldnokacdvtmdohsfdjepyfioyvclhmujiqwvmudbfjzxjfqqxjmoiyxrfsbvseawwoyynn", "output": "IGNORE HIM!" }, { "input": "qsxxuoynwtebujwpxwpajitiwxaxwgbcylxneqiebzfphugwkftpaikixmumkhfbjiswmvzbtiyifbx", "output": "CHAT WITH HER!" }, { "input": "qwbdfzfylckctudyjlyrtmvbidfatdoqfmrfshsqqmhzohhsczscvwzpwyoyswhktjlykumhvaounpzwpxcspxwlgt", "output": "IGNORE HIM!" }, { "input": "nuezoadauueermoeaabjrkxttkatspjsjegjcjcdmcxgodowzbwuqncfbeqlhkk", "output": "IGNORE HIM!" }, { "input": "lggvdmulrsvtuagoavstuyufhypdxfomjlzpnduulukszqnnwfvxbvxyzmleocmofwclmzz", "output": "IGNORE HIM!" }, { "input": "tgcdptnkc", "output": "IGNORE HIM!" }, { "input": "wvfgnfrzabgibzxhzsojskmnlmrokydjoexnvi", "output": "IGNORE HIM!" }, { "input": "sxtburpzskucowowebgrbovhadrrayamuwypmmxhscrujkmcgvyinp", "output": "IGNORE HIM!" }, { "input": "pjqxhvxkyeqqvyuujxhmbspatvrckhhkfloottuybjivkkhpyivcighxumavrxzxslfpggnwbtalmhysyfllznphzia", "output": "IGNORE HIM!" }, { "input": "fpellxwskyekoyvrfnuf", "output": "CHAT WITH HER!" }, { "input": "xninyvkuvakfbs", "output": "IGNORE HIM!" }, { "input": "vnxhrweyvhqufpfywdwftoyrfgrhxuamqhblkvdpxmgvphcbeeqbqssresjifwyzgfhurmamhkwupymuomak", "output": "CHAT WITH HER!" }, { "input": "kmsk", "output": "IGNORE HIM!" }, { "input": "lqonogasrkzhryjxppjyriyfxmdfubieglthyswz", "output": "CHAT WITH HER!" }, { "input": "ndormkufcrkxlihdhmcehzoimcfhqsmombnfjrlcalffq", "output": "CHAT WITH HER!" }, { "input": "zqzlnnuwcfufwujygtczfakhcpqbtxtejrbgoodychepzdphdahtxyfpmlrycyicqthsgm", "output": "IGNORE HIM!" }, { "input": "ppcpbnhwoizajrl", "output": "IGNORE HIM!" }, { "input": "sgubujztzwkzvztitssxxxwzanfmddfqvv", "output": "CHAT WITH HER!" }, { "input": "ptkyaxycecpbrjnvxcjtbqiocqcswnmicxbvhdsptbxyxswbw", "output": "IGNORE HIM!" }, { "input": "yhbtzfppwcycxqjpqdfmjnhwaogyuaxamwxpnrdrnqsgdyfvxu", "output": "CHAT WITH HER!" }, { "input": "ojjvpnkrxibyevxk", "output": "CHAT WITH HER!" }, { "input": "wjweqcrqfuollfvfbiyriijovweg", "output": "IGNORE HIM!" }, { "input": "hkdbykboclchfdsuovvpknwqr", "output": "IGNORE HIM!" }, { "input": "stjvyfrfowopwfjdveduedqylerqugykyu", "output": "IGNORE HIM!" }, { "input": "rafcaanqytfclvfdegak", "output": "CHAT WITH HER!" }, { "input": "xczn", "output": "CHAT WITH HER!" }, { "input": "arcoaeozyeawbveoxpmafxxzdjldsielp", "output": "IGNORE HIM!" }, { "input": "smdfafbyehdylhaleevhoggiurdgeleaxkeqdixyfztkuqsculgslheqfafxyghyuibdgiuwrdxfcitojxika", "output": "CHAT WITH HER!" }, { "input": "vbpfgjqnhfazmvtkpjrdasfhsuxnpiepxfrzvoh", "output": "CHAT WITH HER!" }, { "input": "dbdokywnpqnotfrhdbrzmuyoxfdtrgrzcccninbtmoqvxfatcqg", "output": "CHAT WITH HER!" }, { "input": "udlpagtpq", "output": "CHAT WITH HER!" }, { "input": "zjurevbytijifnpfuyswfchdzelxheboruwjqijxcucylysmwtiqsqqhktexcynquvcwhbjsipy", "output": "CHAT WITH HER!" }, { "input": "qagzrqjomdwhagkhrjahhxkieijyten", "output": "CHAT WITH HER!" }, { "input": "achhcfjnnfwgoufxamcqrsontgjjhgyfzuhklkmiwybnrlsvblnsrjqdytglipxsulpnphpjpoewvlusalsgovwnsngb", "output": "CHAT WITH HER!" }, { "input": "qbkjsdwpahdbbohggbclfcufqelnojoehsxxkr", "output": "CHAT WITH HER!" }, { "input": "cpvftiwgyvnlmbkadiafddpgfpvhqqvuehkypqjsoibpiudfvpkhzlfrykc", "output": "IGNORE HIM!" }, { "input": "lnpdosnceumubvk", "output": "IGNORE HIM!" }, { "input": "efrk", "output": "CHAT WITH HER!" }, { "input": "temnownneghnrujforif", "output": "IGNORE HIM!" }, { "input": "ottnneymszwbumgobazfjyxewkjakglbfflsajuzescplpcxqta", "output": "IGNORE HIM!" }, { "input": "eswpaclodzcwhgixhpyzvhdwsgneqidanbzdzszquefh", "output": "IGNORE HIM!" }, { "input": "gwntwbpj", "output": "IGNORE HIM!" }, { "input": "wuqvlbblkddeindiiswsinkfrnkxghhwunzmmvyovpqapdfbolyim", "output": "IGNORE HIM!" }, { "input": "swdqsnzmzmsyvktukaoyqsqzgfmbzhezbfaqeywgwizrwjyzquaahucjchegknqaioliqd", "output": "CHAT WITH HER!" }, { "input": "vlhrpzezawyolhbmvxbwhtjustdbqggexmzxyieihjlelvwjosmkwesfjmramsikhkupzvfgezmrqzudjcalpjacmhykhgfhrjx", "output": "IGNORE HIM!" }, { "input": "lxxwbkrjgnqjwsnflfnsdyxihmlspgivirazsbveztnkuzpaxtygidniflyjheejelnjyjvgkgvdqks", "output": "CHAT WITH HER!" }, { "input": "wpxbxzfhtdecetpljcrvpjjnllosdqirnkzesiqeukbedkayqx", "output": "CHAT WITH HER!" }, { "input": "vmzxgacicvweclaodrunmjnfwtimceetsaoickarqyrkdghcmyjgmtgsqastcktyrjgvjqimdc", "output": "CHAT WITH HER!" }, { "input": "yzlzmesxdttfcztooypjztlgxwcr", "output": "IGNORE HIM!" }, { "input": "qpbjwzwgdzmeluheirjrvzrhbmagfsjdgvzgwumjtjzecsfkrfqjasssrhhtgdqqfydlmrktlgfc", "output": "IGNORE HIM!" }, { "input": "aqzftsvezdgouyrirsxpbuvdjupnzvbhguyayeqozfzymfnepvwgblqzvmxxkxcilmsjvcgyqykpoaktjvsxbygfgsalbjoq", "output": "CHAT WITH HER!" }, { "input": "znicjjgijhrbdlnwmtjgtdgziollrfxroabfhadygnomodaembllreorlyhnehijfyjbfxucazellblegyfrzuraogadj", "output": "IGNORE HIM!" }, { "input": "qordzrdiknsympdrkgapjxokbldorpnmnpucmwakklmqenpmkom", "output": "CHAT WITH HER!" }, { "input": "wqfldgihuxfktzanyycluzhtewmwvnawqlfoavuguhygqrrxtstxwouuzzsryjqtfqo", "output": "CHAT WITH HER!" }, { "input": "vujtrrpshinkskgyknlcfckmqdrwtklkzlyipmetjvaqxdsslkskschbalmdhzsdrrjmxdltbtnxbh", "output": "IGNORE HIM!" }, { "input": "zioixjibuhrzyrbzqcdjbbhhdmpgmqykixcxoqupggaqajuzonrpzihbsogjfsrrypbiphehonyhohsbybnnukqebopppa", "output": "CHAT WITH HER!" }, { "input": "oh", "output": "CHAT WITH HER!" }, { "input": "kxqthadqesbpgpsvpbcbznxpecqrzjoilpauttzlnxvaczcqwuri", "output": "IGNORE HIM!" }, { "input": "zwlunigqnhrwirkvufqwrnwcnkqqonebrwzcshcbqqwkjxhymjjeakuzjettebciadjlkbfp", "output": "CHAT WITH HER!" }, { "input": "fjuldpuejgmggvvigkwdyzytfxzwdlofrpifqpdnhfyroginqaufwgjcbgshyyruwhofctsdaisqpjxqjmtpp", "output": "CHAT WITH HER!" }, { "input": "xiwntnheuitbtqxrmzvxmieldudakogealwrpygbxsbluhsqhtwmdlpjwzyafckrqrdduonkgo", "output": "CHAT WITH HER!" }, { "input": "mnmbupgo", "output": "IGNORE HIM!" }, { "input": "mcjehdiygkbmrbfjqwpwxidbdfelifwhstaxdapigbymmsgrhnzsdjhsqchl", "output": "IGNORE HIM!" }, { "input": "yocxrzspinchmhtmqo", "output": "CHAT WITH HER!" }, { "input": "vasvvnpymtgjirnzuynluluvmgpquskuaafwogeztfnvybblajvuuvfomtifeuzpikjrolzeeoftv", "output": "CHAT WITH HER!" }, { "input": "ecsdicrznvglwggrdbrvehwzaenzjutjydhvimtqegweurpxtjkmpcznshtrvotkvrghxhacjkedidqqzrduzad", "output": "IGNORE HIM!" }, { "input": "ubvhyaebyxoghakajqrpqpctwbrfqzli", "output": "CHAT WITH HER!" }, { "input": "gogbxfeqylxoummvgxpkoqzsmobasesxbqjjktqbwqxeiaagnnhbvepbpy", "output": "IGNORE HIM!" }, { "input": "nheihhxkbbrmlpxpxbhnpofcjmxemyvqqdbanwd", "output": "IGNORE HIM!" }, { "input": "acrzbavz", "output": "CHAT WITH HER!" }, { "input": "drvzznznvrzskftnrhvvzxcalwutxmdza", "output": "IGNORE HIM!" }, { "input": "oacwxipdfcoabhkwxqdbtowiekpnflnqhlrkustgzryvws", "output": "CHAT WITH HER!" }, { "input": "tpnwfmfsibnccvdwjvzviyvjfljupinfigfunyff", "output": "CHAT WITH HER!" }, { "input": "gavaihhamfolcndgytcsgucqdqngxkrlovpthvteacmmthoglxu", "output": "CHAT WITH HER!" }, { "input": "hsfcfvameeupldgvchmogrvwxrvsmnwxxkxoawwodtsahqvehlcw", "output": "IGNORE HIM!" }, { "input": "sbkydrscoojychxchqsuciperfroumenelgiyiwlqfwximrgdbyvkmacy", "output": "CHAT WITH HER!" }, { "input": "rhh", "output": "CHAT WITH HER!" }, { "input": "zhdouqfmlkenjzdijxdfxnlegxeuvhelo", "output": "IGNORE HIM!" }, { "input": "yufkkfwyhhvcjntsgsvpzbhqtmtgyxifqoewmuplphykmptfdebjxuaxigomjtwgtljwdjhjernkitifbomifbhysnmadtnyn", "output": "CHAT WITH HER!" }, { "input": "urigreuzpxnej", "output": "CHAT WITH HER!" } ]
1,696,864,320
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
62
614,400
# Решение задач проекта CODEFORSES, Задача 236A # # (C) 2021 Артур Ще, Москва, Россия # Released under GNU Public License (GPL) # email [email protected] # ----------------------------------------------------------- ''' A. Девушка или Юноша ограничение по времени на тест1 секунда ограничение по памяти на тест256 мегабайт вводстандартный ввод выводстандартный вывод В наши дни очень много парней ставят себе фотографии красивых девушек на аватарки на форумах. Из-за этого очень часто сложно определить пол пользователя на форуме. В прошлом году наш герой пообщался в чате на форуме с одной красоткой (как он думал). После этого наш герой и предполагаемая красотка стали общаться еще чаще и в конце концов стали парой в сети. Но вчера наш герой захотел увидеть свою красотку в реальной жизни и, каково же было его удивление, когда красоткой оказался здоровенный мужчина! Наш герой очень расстроился и теперь он, наверное, никогда больше не сможет полюбить. Сейчас к нему пришла в голову идея, как по имени пользователя определить его пол. Вот его метод: если количество различных символов в имени пользователя нечетное, тогда пользователь мужского пола, иначе — женского. Вам дана строка, обозначающая имя пользователя, помогите нашему герою определить по ней пол пользователя по описанному методу. Входные данные В первой строке записана непустая строка, состоящая только из строчных букв латинского алфавита — имя пользователя. Эта строка состоит из не более чем 100 букв. Выходные данные Если пользователь оказался женского пола по методу нашего героя, выведите «CHAT WITH HER!» (без кавычек), иначе, выведите «IGNORE HIM!» (без кавычек). ''' from datetime import datetime import time start_time = datetime.now() import functools from itertools import * from collections import Counter import random import math z=(input()) x = set(z) print(len(x)) #print(ANS,' TIME:',datetime.now() - start_time)
Title: Boy or Girl Time Limit: None seconds Memory Limit: None megabytes Problem Description: Those days, many boys use beautiful girls' photos as avatars in forums. So it is pretty hard to tell the gender of a user at the first glance. Last year, our hero went to a forum and had a nice chat with a beauty (he thought so). After that they talked very often and eventually they became a couple in the network. But yesterday, he came to see "her" in the real world and found out "she" is actually a very strong man! Our hero is very sad and he is too tired to love again now. So he came up with a way to recognize users' genders by their user names. This is his method: if the number of distinct characters in one's user name is odd, then he is a male, otherwise she is a female. You are given the string that denotes the user name, please help our hero to determine the gender of this user by his method. Input Specification: The first line contains a non-empty string, that contains only lowercase English letters — the user name. This string contains at most 100 letters. Output Specification: If it is a female by our hero's method, print "CHAT WITH HER!" (without the quotes), otherwise, print "IGNORE HIM!" (without the quotes). Demo Input: ['wjmzbmr\n', 'xiaodao\n', 'sevenkplus\n'] Demo Output: ['CHAT WITH HER!\n', 'IGNORE HIM!\n', 'CHAT WITH HER!\n'] Note: For the first example. There are 6 distinct characters in "wjmzbmr". These characters are: "w", "j", "m", "z", "b", "r". So wjmzbmr is a female and you should print "CHAT WITH HER!".
```python # Решение задач проекта CODEFORSES, Задача 236A # # (C) 2021 Артур Ще, Москва, Россия # Released under GNU Public License (GPL) # email [email protected] # ----------------------------------------------------------- ''' A. Девушка или Юноша ограничение по времени на тест1 секунда ограничение по памяти на тест256 мегабайт вводстандартный ввод выводстандартный вывод В наши дни очень много парней ставят себе фотографии красивых девушек на аватарки на форумах. Из-за этого очень часто сложно определить пол пользователя на форуме. В прошлом году наш герой пообщался в чате на форуме с одной красоткой (как он думал). После этого наш герой и предполагаемая красотка стали общаться еще чаще и в конце концов стали парой в сети. Но вчера наш герой захотел увидеть свою красотку в реальной жизни и, каково же было его удивление, когда красоткой оказался здоровенный мужчина! Наш герой очень расстроился и теперь он, наверное, никогда больше не сможет полюбить. Сейчас к нему пришла в голову идея, как по имени пользователя определить его пол. Вот его метод: если количество различных символов в имени пользователя нечетное, тогда пользователь мужского пола, иначе — женского. Вам дана строка, обозначающая имя пользователя, помогите нашему герою определить по ней пол пользователя по описанному методу. Входные данные В первой строке записана непустая строка, состоящая только из строчных букв латинского алфавита — имя пользователя. Эта строка состоит из не более чем 100 букв. Выходные данные Если пользователь оказался женского пола по методу нашего героя, выведите «CHAT WITH HER!» (без кавычек), иначе, выведите «IGNORE HIM!» (без кавычек). ''' from datetime import datetime import time start_time = datetime.now() import functools from itertools import * from collections import Counter import random import math z=(input()) x = set(z) print(len(x)) #print(ANS,' TIME:',datetime.now() - start_time) ```
0
682
A
Alyona and Numbers
PROGRAMMING
1,100
[ "constructive algorithms", "math", "number theory" ]
null
null
After finishing eating her bun, Alyona came up with two integers *n* and *m*. She decided to write down two columns of integers — the first column containing integers from 1 to *n* and the second containing integers from 1 to *m*. Now the girl wants to count how many pairs of integers she can choose, one from the first column and the other from the second column, such that their sum is divisible by 5. Formally, Alyona wants to count the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and equals 0. As usual, Alyona has some troubles and asks you to help.
The only line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1<=000<=000).
Print the only integer — the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and (*x*<=+<=*y*) is divisible by 5.
[ "6 12\n", "11 14\n", "1 5\n", "3 8\n", "5 7\n", "21 21\n" ]
[ "14\n", "31\n", "1\n", "5\n", "7\n", "88\n" ]
Following pairs are suitable in the first sample case: - for *x* = 1 fits *y* equal to 4 or 9; - for *x* = 2 fits *y* equal to 3 or 8; - for *x* = 3 fits *y* equal to 2, 7 or 12; - for *x* = 4 fits *y* equal to 1, 6 or 11; - for *x* = 5 fits *y* equal to 5 or 10; - for *x* = 6 fits *y* equal to 4 or 9. Only the pair (1, 4) is suitable in the third sample case.
500
[ { "input": "6 12", "output": "14" }, { "input": "11 14", "output": "31" }, { "input": "1 5", "output": "1" }, { "input": "3 8", "output": "5" }, { "input": "5 7", "output": "7" }, { "input": "21 21", "output": "88" }, { "input": "10 15", "output": "30" }, { "input": "1 1", "output": "0" }, { "input": "1 1000000", "output": "200000" }, { "input": "1000000 1", "output": "200000" }, { "input": "1000000 1000000", "output": "200000000000" }, { "input": "944 844", "output": "159348" }, { "input": "368 984", "output": "72423" }, { "input": "792 828", "output": "131155" }, { "input": "920 969", "output": "178296" }, { "input": "640 325", "output": "41600" }, { "input": "768 170", "output": "26112" }, { "input": "896 310", "output": "55552" }, { "input": "320 154", "output": "9856" }, { "input": "744 999", "output": "148652" }, { "input": "630 843", "output": "106218" }, { "input": "54 688", "output": "7431" }, { "input": "478 828", "output": "79157" }, { "input": "902 184", "output": "33194" }, { "input": "31 29", "output": "180" }, { "input": "751 169", "output": "25384" }, { "input": "879 14", "output": "2462" }, { "input": "7 858", "output": "1201" }, { "input": "431 702", "output": "60512" }, { "input": "855 355", "output": "60705" }, { "input": "553 29", "output": "3208" }, { "input": "721767 525996", "output": "75929310986" }, { "input": "805191 74841", "output": "12052259926" }, { "input": "888615 590981", "output": "105030916263" }, { "input": "4743 139826", "output": "132638943" }, { "input": "88167 721374", "output": "12720276292" }, { "input": "171591 13322", "output": "457187060" }, { "input": "287719 562167", "output": "32349225415" }, { "input": "371143 78307", "output": "5812618980" }, { "input": "487271 627151", "output": "61118498984" }, { "input": "261436 930642", "output": "48660664382" }, { "input": "377564 446782", "output": "33737759810" }, { "input": "460988 28330", "output": "2611958008" }, { "input": "544412 352983", "output": "38433636199" }, { "input": "660540 869123", "output": "114818101284" }, { "input": "743964 417967", "output": "62190480238" }, { "input": "827388 966812", "output": "159985729411" }, { "input": "910812 515656", "output": "93933134534" }, { "input": "26940 64501", "output": "347531388" }, { "input": "110364 356449", "output": "7867827488" }, { "input": "636358 355531", "output": "45248999219" }, { "input": "752486 871672", "output": "131184195318" }, { "input": "803206 420516", "output": "67552194859" }, { "input": "919334 969361", "output": "178233305115" }, { "input": "35462 261309", "output": "1853307952" }, { "input": "118887 842857", "output": "20040948031" }, { "input": "202311 358998", "output": "14525848875" }, { "input": "285735 907842", "output": "51880446774" }, { "input": "401863 456686", "output": "36705041203" }, { "input": "452583 972827", "output": "88056992428" }, { "input": "235473 715013", "output": "33673251230" }, { "input": "318897 263858", "output": "16828704925" }, { "input": "402321 812702", "output": "65393416268" }, { "input": "518449 361546", "output": "37488632431" }, { "input": "634577 910391", "output": "115542637921" }, { "input": "685297 235043", "output": "32214852554" }, { "input": "801425 751183", "output": "120403367155" }, { "input": "884849 300028", "output": "53095895155" }, { "input": "977 848872", "output": "165869588" }, { "input": "51697 397716", "output": "4112144810" }, { "input": "834588 107199", "output": "17893399803" }, { "input": "918012 688747", "output": "126455602192" }, { "input": "1436 237592", "output": "68236422" }, { "input": "117564 753732", "output": "17722349770" }, { "input": "200988 302576", "output": "12162829017" }, { "input": "284412 818717", "output": "46570587880" }, { "input": "400540 176073", "output": "14104855884" }, { "input": "483964 724917", "output": "70166746198" }, { "input": "567388 241058", "output": "27354683301" }, { "input": "650812 789902", "output": "102815540084" }, { "input": "400999 756281", "output": "60653584944" }, { "input": "100 101", "output": "2020" }, { "input": "100 102", "output": "2040" }, { "input": "103 100", "output": "2060" }, { "input": "100 104", "output": "2080" }, { "input": "3 4", "output": "3" }, { "input": "11 23", "output": "50" }, { "input": "8 14", "output": "23" }, { "input": "23423 34234", "output": "160372597" }, { "input": "1 4", "output": "1" }, { "input": "999999 999999", "output": "199999600001" }, { "input": "82 99", "output": "1624" }, { "input": "21 18", "output": "75" }, { "input": "234 234", "output": "10952" }, { "input": "4 4", "output": "4" }, { "input": "6 13", "output": "15" }, { "input": "3 9", "output": "6" }, { "input": "99999 99999", "output": "1999960001" }, { "input": "34 33", "output": "225" }, { "input": "2 2", "output": "0" }, { "input": "333 1", "output": "66" }, { "input": "3 3", "output": "2" }, { "input": "8 2", "output": "3" }, { "input": "2179 2218", "output": "966605" }, { "input": "1000000 999999", "output": "199999800000" }, { "input": "873828 774207", "output": "135304750879" }, { "input": "13 19", "output": "50" }, { "input": "1648 576469", "output": "190004183" }, { "input": "11 13", "output": "28" }, { "input": "5 8", "output": "8" }, { "input": "650074 943659", "output": "122689636154" }, { "input": "1 3", "output": "0" }, { "input": "54 43", "output": "465" }, { "input": "14 9", "output": "26" }, { "input": "2 3", "output": "1" }, { "input": "543 534", "output": "57993" }, { "input": "321 123", "output": "7896" }, { "input": "21 3", "output": "12" }, { "input": "2 1", "output": "0" }, { "input": "4 3", "output": "3" }, { "input": "47474 74747", "output": "709707816" }, { "input": "4 9", "output": "8" }, { "input": "7 4", "output": "6" }, { "input": "9 4", "output": "8" }, { "input": "12414 4214", "output": "10462520" }, { "input": "2 9", "output": "4" }, { "input": "253 821", "output": "41542" }, { "input": "2 4", "output": "2" } ]
1,684,243,893
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
31
0
# q44 A. Alyona and Numbers n,m = map(int,input().split(' ')) coln=[] colm = [] x=0 # for i in range(1,n+1): # coln.append(i) # for i in range(1,m+1): # colm.append(i) # for i in coln: # for j in colm: # if (i+j)%5 == 0: # x+=1 # print (i,j) # print (x) for i in range (1,(min(n,m)+1)): for j in range (1,(max(n,m)+1)): if (i+j)%5 == 0: x+=1 print (i,j) print (x)
Title: Alyona and Numbers Time Limit: None seconds Memory Limit: None megabytes Problem Description: After finishing eating her bun, Alyona came up with two integers *n* and *m*. She decided to write down two columns of integers — the first column containing integers from 1 to *n* and the second containing integers from 1 to *m*. Now the girl wants to count how many pairs of integers she can choose, one from the first column and the other from the second column, such that their sum is divisible by 5. Formally, Alyona wants to count the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and equals 0. As usual, Alyona has some troubles and asks you to help. Input Specification: The only line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1<=000<=000). Output Specification: Print the only integer — the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and (*x*<=+<=*y*) is divisible by 5. Demo Input: ['6 12\n', '11 14\n', '1 5\n', '3 8\n', '5 7\n', '21 21\n'] Demo Output: ['14\n', '31\n', '1\n', '5\n', '7\n', '88\n'] Note: Following pairs are suitable in the first sample case: - for *x* = 1 fits *y* equal to 4 or 9; - for *x* = 2 fits *y* equal to 3 or 8; - for *x* = 3 fits *y* equal to 2, 7 or 12; - for *x* = 4 fits *y* equal to 1, 6 or 11; - for *x* = 5 fits *y* equal to 5 or 10; - for *x* = 6 fits *y* equal to 4 or 9. Only the pair (1, 4) is suitable in the third sample case.
```python # q44 A. Alyona and Numbers n,m = map(int,input().split(' ')) coln=[] colm = [] x=0 # for i in range(1,n+1): # coln.append(i) # for i in range(1,m+1): # colm.append(i) # for i in coln: # for j in colm: # if (i+j)%5 == 0: # x+=1 # print (i,j) # print (x) for i in range (1,(min(n,m)+1)): for j in range (1,(max(n,m)+1)): if (i+j)%5 == 0: x+=1 print (i,j) print (x) ```
0
0
none
none
none
0
[ "none" ]
null
null
Три брата договорились о встрече. Пронумеруем братьев следующим образом: пусть старший брат имеет номер 1, средний брат имеет номер 2, а младший брат — номер 3. Когда пришло время встречи, один из братьев опоздал. По заданным номерам двух братьев, которые пришли вовремя, вам предстоит определить номер опоздавшего брата.
В первой строке входных данных следуют два различных целых числа *a* и *b* (1<=≤<=*a*,<=*b*<=≤<=3, *a*<=≠<=*b*) — номера братьев, которые пришли на встречу вовремя. Номера даны в произвольном порядке.
Выведите единственное целое число — номер брата, который опоздал на встречу.
[ "3 1\n" ]
[ "2\n" ]
none
0
[ { "input": "3 1", "output": "2" }, { "input": "2 1", "output": "3" }, { "input": "2 3", "output": "1" }, { "input": "1 2", "output": "3" }, { "input": "1 3", "output": "2" }, { "input": "3 2", "output": "1" } ]
1,458,568,952
152
Python 3
RUNTIME_ERROR
PRETESTS
0
46
4,608,000
a = int(input()) b = int(input()) print(6-a-b)
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: Три брата договорились о встрече. Пронумеруем братьев следующим образом: пусть старший брат имеет номер 1, средний брат имеет номер 2, а младший брат — номер 3. Когда пришло время встречи, один из братьев опоздал. По заданным номерам двух братьев, которые пришли вовремя, вам предстоит определить номер опоздавшего брата. Input Specification: В первой строке входных данных следуют два различных целых числа *a* и *b* (1<=≤<=*a*,<=*b*<=≤<=3, *a*<=≠<=*b*) — номера братьев, которые пришли на встречу вовремя. Номера даны в произвольном порядке. Output Specification: Выведите единственное целое число — номер брата, который опоздал на встречу. Demo Input: ['3 1\n'] Demo Output: ['2\n'] Note: none
```python a = int(input()) b = int(input()) print(6-a-b) ```
-1
230
B
T-primes
PROGRAMMING
1,300
[ "binary search", "implementation", "math", "number theory" ]
null
null
We know that prime numbers are positive integers that have exactly two distinct positive divisors. Similarly, we'll call a positive integer *t* Т-prime, if *t* has exactly three distinct positive divisors. You are given an array of *n* positive integers. For each of them determine whether it is Т-prime or not.
The first line contains a single positive integer, *n* (1<=≤<=*n*<=≤<=105), showing how many numbers are in the array. The next line contains *n* space-separated integers *x**i* (1<=≤<=*x**i*<=≤<=1012). Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is advised to use the cin, cout streams or the %I64d specifier.
Print *n* lines: the *i*-th line should contain "YES" (without the quotes), if number *x**i* is Т-prime, and "NO" (without the quotes), if it isn't.
[ "3\n4 5 6\n" ]
[ "YES\nNO\nNO\n" ]
The given test has three numbers. The first number 4 has exactly three divisors — 1, 2 and 4, thus the answer for this number is "YES". The second number 5 has two divisors (1 and 5), and the third number 6 has four divisors (1, 2, 3, 6), hence the answer for them is "NO".
500
[ { "input": "3\n4 5 6", "output": "YES\nNO\nNO" }, { "input": "2\n48 49", "output": "NO\nYES" }, { "input": "10\n10 9 8 7 6 5 4 3 2 1", "output": "NO\nYES\nNO\nNO\nNO\nNO\nYES\nNO\nNO\nNO" }, { "input": "1\n36", "output": "NO" }, { "input": "1\n999966000289", "output": "YES" }, { "input": "1\n999993399999", "output": "NO" }, { "input": "9\n111 121 131 111 121 131 111 121 131", "output": "NO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO" }, { "input": "1\n1", "output": "NO" }, { "input": "1\n10", "output": "NO" }, { "input": "1\n976197352729", "output": "NO" }, { "input": "1\n1000000000000", "output": "NO" }, { "input": "1\n9", "output": "YES" }, { "input": "6\n549755813888 847288609443 762939453125 678223072849 285311670611 137858491849", "output": "NO\nNO\nNO\nNO\nNO\nNO" }, { "input": "3\n223092870 6469693230 200560490130", "output": "NO\nNO\nNO" }, { "input": "2\n81 25", "output": "NO\nYES" }, { "input": "1\n16", "output": "NO" }, { "input": "22\n1 2 3 4 5 6 7 8 9 10 12752041 64 121 144 27550356289 124 24657 23756 135153365 25235235235 42351351 81", "output": "NO\nNO\nNO\nYES\nNO\nNO\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nNO\nNO\nNO\nNO\nNO" }, { "input": "1\n225", "output": "NO" }, { "input": "1\n1521", "output": "NO" }, { "input": "1\n81", "output": "NO" } ]
1,697,019,744
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
1
92
0
def euler_sieve(n): prime = [True] * (n+1) prime[0] = prime[1] = False p = 2 while p*p <= n: if prime[p]: for i in range(p*p, n+1, p): prime[i] = False p += 1 return prime # 判断一个数是否为素数 def is_prime(n): if n < 2: return False return prime[n] t=int(input()) nums=list(map(int,input().split())) n=max(nums) prime = euler_sieve(n) # print(prime) for x in nums: r=int(x*0.5) if r**2!=x: print("NO") else: if prime[r]: print("YES") else: print("NO")
Title: T-primes Time Limit: None seconds Memory Limit: None megabytes Problem Description: We know that prime numbers are positive integers that have exactly two distinct positive divisors. Similarly, we'll call a positive integer *t* Т-prime, if *t* has exactly three distinct positive divisors. You are given an array of *n* positive integers. For each of them determine whether it is Т-prime or not. Input Specification: The first line contains a single positive integer, *n* (1<=≤<=*n*<=≤<=105), showing how many numbers are in the array. The next line contains *n* space-separated integers *x**i* (1<=≤<=*x**i*<=≤<=1012). Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is advised to use the cin, cout streams or the %I64d specifier. Output Specification: Print *n* lines: the *i*-th line should contain "YES" (without the quotes), if number *x**i* is Т-prime, and "NO" (without the quotes), if it isn't. Demo Input: ['3\n4 5 6\n'] Demo Output: ['YES\nNO\nNO\n'] Note: The given test has three numbers. The first number 4 has exactly three divisors — 1, 2 and 4, thus the answer for this number is "YES". The second number 5 has two divisors (1 and 5), and the third number 6 has four divisors (1, 2, 3, 6), hence the answer for them is "NO".
```python def euler_sieve(n): prime = [True] * (n+1) prime[0] = prime[1] = False p = 2 while p*p <= n: if prime[p]: for i in range(p*p, n+1, p): prime[i] = False p += 1 return prime # 判断一个数是否为素数 def is_prime(n): if n < 2: return False return prime[n] t=int(input()) nums=list(map(int,input().split())) n=max(nums) prime = euler_sieve(n) # print(prime) for x in nums: r=int(x*0.5) if r**2!=x: print("NO") else: if prime[r]: print("YES") else: print("NO") ```
0
975
C
Valhalla Siege
PROGRAMMING
1,400
[ "binary search" ]
null
null
Ivar the Boneless is a great leader. He is trying to capture Kattegat from Lagertha. The war has begun and wave after wave Ivar's warriors are falling in battle. Ivar has $n$ warriors, he places them on a straight line in front of the main gate, in a way that the $i$-th warrior stands right after $(i-1)$-th warrior. The first warrior leads the attack. Each attacker can take up to $a_i$ arrows before he falls to the ground, where $a_i$ is the $i$-th warrior's strength. Lagertha orders her warriors to shoot $k_i$ arrows during the $i$-th minute, the arrows one by one hit the first still standing warrior. After all Ivar's warriors fall and all the currently flying arrows fly by, Thor smashes his hammer and all Ivar's warriors get their previous strengths back and stand up to fight again. In other words, if all warriors die in minute $t$, they will all be standing to fight at the end of minute $t$. The battle will last for $q$ minutes, after each minute you should tell Ivar what is the number of his standing warriors.
The first line contains two integers $n$ and $q$ ($1 \le n, q \leq 200\,000$) — the number of warriors and the number of minutes in the battle. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) that represent the warriors' strengths. The third line contains $q$ integers $k_1, k_2, \ldots, k_q$ ($1 \leq k_i \leq 10^{14}$), the $i$-th of them represents Lagertha's order at the $i$-th minute: $k_i$ arrows will attack the warriors.
Output $q$ lines, the $i$-th of them is the number of standing warriors after the $i$-th minute.
[ "5 5\n1 2 1 2 1\n3 10 1 1 1\n", "4 4\n1 2 3 4\n9 1 10 6\n" ]
[ "3\n5\n4\n4\n3\n", "1\n4\n4\n1\n" ]
In the first example: - after the 1-st minute, the 1-st and 2-nd warriors die. - after the 2-nd minute all warriors die (and all arrows left over are wasted), then they will be revived thus answer is 5 — all warriors are alive. - after the 3-rd minute, the 1-st warrior dies. - after the 4-th minute, the 2-nd warrior takes a hit and his strength decreases by 1. - after the 5-th minute, the 2-nd warrior dies.
1,500
[ { "input": "5 5\n1 2 1 2 1\n3 10 1 1 1", "output": "3\n5\n4\n4\n3" }, { "input": "4 4\n1 2 3 4\n9 1 10 6", "output": "1\n4\n4\n1" }, { "input": "10 3\n1 1 1 1 1 1 1 1 1 1\n10 10 5", "output": "10\n10\n5" }, { "input": "1 1\n56563128\n897699770", "output": "1" }, { "input": "100 55\n1 2 4 4 3 5 5 2 3 4 2 1 1 2 3 5 1 5 4 2 5 4 4 3 3 5 3 4 4 5 5 2 3 3 4 4 3 4 5 5 5 5 3 5 1 2 4 3 4 5 3 3 2 1 4 5 3 4 4 1 5 1 5 2 2 1 4 5 3 3 1 4 2 5 4 5 3 2 5 5 2 3 2 3 2 2 3 4 4 4 1 4 2 4 5 3 1 3 3 1\n5 2 1 4 3 4 3 1 4 4 1 2 3 2 1 5 5 4 5 4 2 5 2 1 5 1 4 4 3 5 4 5 1 4 4 1 5 3 1 5 2 4 1 3 2 5 4 5 4 3 4 2 2 4 3", "output": "98\n97\n97\n96\n95\n94\n94\n94\n92\n91\n91\n90\n87\n86\n86\n85\n83\n82\n80\n80\n79\n78\n77\n77\n75\n75\n74\n73\n72\n71\n70\n69\n69\n67\n66\n66\n65\n64\n63\n62\n62\n61\n61\n60\n60\n59\n58\n57\n54\n54\n52\n52\n51\n51\n50" } ]
1,583,325,279
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
0
124
0
from sys import stdin from itertools import accumulate def arr_inp(n): if n == 1: return [int(x) for x in stdin.readline().split()] elif n == 2: return [float(x) for x in stdin.readline().split()] else: return list(stdin.readline()[:-1]) def arr_sum(arr): arr.insert(0, 0) return list(accumulate(arr, lambda x, y: x + y)) def bs(be, en, x, arr): ix = be while (be < en): mid = (be + en) // 2 val = arr[mid] - arr[ix] if val == x: return mid elif val > x: en = mid else: be = mid + 1 return en n, q = arr_inp(1) a, k = [arr_inp(1) for i in range(2)] cum, ix, ext = arr_sum(a), 0, 0 for i in range(q): if ext > k[i]: print(n - ix + 1) ext -= k[i] elif ext == k[i]: ix += 1 ext = 0 if ix >= n: ix = 0 print(n - ix) else: ext = 0 k[i] -= ext nx = bs(ix, n, k[i], cum) if cum[nx] - cum[ix] <= k[i]: if nx >= n: ix = 0 nx = 0 print(n - nx) else: ext = cum[nx] - cum[ix] - k[i] print(n - nx + 1) ix = nx
Title: Valhalla Siege Time Limit: None seconds Memory Limit: None megabytes Problem Description: Ivar the Boneless is a great leader. He is trying to capture Kattegat from Lagertha. The war has begun and wave after wave Ivar's warriors are falling in battle. Ivar has $n$ warriors, he places them on a straight line in front of the main gate, in a way that the $i$-th warrior stands right after $(i-1)$-th warrior. The first warrior leads the attack. Each attacker can take up to $a_i$ arrows before he falls to the ground, where $a_i$ is the $i$-th warrior's strength. Lagertha orders her warriors to shoot $k_i$ arrows during the $i$-th minute, the arrows one by one hit the first still standing warrior. After all Ivar's warriors fall and all the currently flying arrows fly by, Thor smashes his hammer and all Ivar's warriors get their previous strengths back and stand up to fight again. In other words, if all warriors die in minute $t$, they will all be standing to fight at the end of minute $t$. The battle will last for $q$ minutes, after each minute you should tell Ivar what is the number of his standing warriors. Input Specification: The first line contains two integers $n$ and $q$ ($1 \le n, q \leq 200\,000$) — the number of warriors and the number of minutes in the battle. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) that represent the warriors' strengths. The third line contains $q$ integers $k_1, k_2, \ldots, k_q$ ($1 \leq k_i \leq 10^{14}$), the $i$-th of them represents Lagertha's order at the $i$-th minute: $k_i$ arrows will attack the warriors. Output Specification: Output $q$ lines, the $i$-th of them is the number of standing warriors after the $i$-th minute. Demo Input: ['5 5\n1 2 1 2 1\n3 10 1 1 1\n', '4 4\n1 2 3 4\n9 1 10 6\n'] Demo Output: ['3\n5\n4\n4\n3\n', '1\n4\n4\n1\n'] Note: In the first example: - after the 1-st minute, the 1-st and 2-nd warriors die. - after the 2-nd minute all warriors die (and all arrows left over are wasted), then they will be revived thus answer is 5 — all warriors are alive. - after the 3-rd minute, the 1-st warrior dies. - after the 4-th minute, the 2-nd warrior takes a hit and his strength decreases by 1. - after the 5-th minute, the 2-nd warrior dies.
```python from sys import stdin from itertools import accumulate def arr_inp(n): if n == 1: return [int(x) for x in stdin.readline().split()] elif n == 2: return [float(x) for x in stdin.readline().split()] else: return list(stdin.readline()[:-1]) def arr_sum(arr): arr.insert(0, 0) return list(accumulate(arr, lambda x, y: x + y)) def bs(be, en, x, arr): ix = be while (be < en): mid = (be + en) // 2 val = arr[mid] - arr[ix] if val == x: return mid elif val > x: en = mid else: be = mid + 1 return en n, q = arr_inp(1) a, k = [arr_inp(1) for i in range(2)] cum, ix, ext = arr_sum(a), 0, 0 for i in range(q): if ext > k[i]: print(n - ix + 1) ext -= k[i] elif ext == k[i]: ix += 1 ext = 0 if ix >= n: ix = 0 print(n - ix) else: ext = 0 k[i] -= ext nx = bs(ix, n, k[i], cum) if cum[nx] - cum[ix] <= k[i]: if nx >= n: ix = 0 nx = 0 print(n - nx) else: ext = cum[nx] - cum[ix] - k[i] print(n - nx + 1) ix = nx ```
0
6
A
Triangle
PROGRAMMING
900
[ "brute force", "geometry" ]
A. Triangle
2
64
Johnny has a younger sister Anne, who is very clever and smart. As she came home from the kindergarten, she told his brother about the task that her kindergartener asked her to solve. The task was just to construct a triangle out of four sticks of different colours. Naturally, one of the sticks is extra. It is not allowed to break the sticks or use their partial length. Anne has perfectly solved this task, now she is asking Johnny to do the same. The boy answered that he would cope with it without any difficulty. However, after a while he found out that different tricky things can occur. It can happen that it is impossible to construct a triangle of a positive area, but it is possible to construct a degenerate triangle. It can be so, that it is impossible to construct a degenerate triangle even. As Johnny is very lazy, he does not want to consider such a big amount of cases, he asks you to help him.
The first line of the input contains four space-separated positive integer numbers not exceeding 100 — lengthes of the sticks.
Output TRIANGLE if it is possible to construct a non-degenerate triangle. Output SEGMENT if the first case cannot take place and it is possible to construct a degenerate triangle. Output IMPOSSIBLE if it is impossible to construct any triangle. Remember that you are to use three sticks. It is not allowed to break the sticks or use their partial length.
[ "4 2 1 3\n", "7 2 2 4\n", "3 5 9 1\n" ]
[ "TRIANGLE\n", "SEGMENT\n", "IMPOSSIBLE\n" ]
none
0
[ { "input": "4 2 1 3", "output": "TRIANGLE" }, { "input": "7 2 2 4", "output": "SEGMENT" }, { "input": "3 5 9 1", "output": "IMPOSSIBLE" }, { "input": "3 1 5 1", "output": "IMPOSSIBLE" }, { "input": "10 10 10 10", "output": "TRIANGLE" }, { "input": "11 5 6 11", "output": "TRIANGLE" }, { "input": "1 1 1 1", "output": "TRIANGLE" }, { "input": "10 20 30 40", "output": "TRIANGLE" }, { "input": "45 25 5 15", "output": "IMPOSSIBLE" }, { "input": "20 5 8 13", "output": "TRIANGLE" }, { "input": "10 30 7 20", "output": "SEGMENT" }, { "input": "3 2 3 2", "output": "TRIANGLE" }, { "input": "70 10 100 30", "output": "SEGMENT" }, { "input": "4 8 16 2", "output": "IMPOSSIBLE" }, { "input": "3 3 3 10", "output": "TRIANGLE" }, { "input": "1 5 5 5", "output": "TRIANGLE" }, { "input": "13 25 12 1", "output": "SEGMENT" }, { "input": "10 100 7 3", "output": "SEGMENT" }, { "input": "50 1 50 100", "output": "TRIANGLE" }, { "input": "50 1 100 49", "output": "SEGMENT" }, { "input": "49 51 100 1", "output": "SEGMENT" }, { "input": "5 11 2 25", "output": "IMPOSSIBLE" }, { "input": "91 50 9 40", "output": "IMPOSSIBLE" }, { "input": "27 53 7 97", "output": "IMPOSSIBLE" }, { "input": "51 90 24 8", "output": "IMPOSSIBLE" }, { "input": "3 5 1 1", "output": "IMPOSSIBLE" }, { "input": "13 49 69 15", "output": "IMPOSSIBLE" }, { "input": "16 99 9 35", "output": "IMPOSSIBLE" }, { "input": "27 6 18 53", "output": "IMPOSSIBLE" }, { "input": "57 88 17 8", "output": "IMPOSSIBLE" }, { "input": "95 20 21 43", "output": "IMPOSSIBLE" }, { "input": "6 19 32 61", "output": "IMPOSSIBLE" }, { "input": "100 21 30 65", "output": "IMPOSSIBLE" }, { "input": "85 16 61 9", "output": "IMPOSSIBLE" }, { "input": "5 6 19 82", "output": "IMPOSSIBLE" }, { "input": "1 5 1 3", "output": "IMPOSSIBLE" }, { "input": "65 10 36 17", "output": "IMPOSSIBLE" }, { "input": "81 64 9 7", "output": "IMPOSSIBLE" }, { "input": "11 30 79 43", "output": "IMPOSSIBLE" }, { "input": "1 1 5 3", "output": "IMPOSSIBLE" }, { "input": "21 94 61 31", "output": "IMPOSSIBLE" }, { "input": "49 24 9 74", "output": "IMPOSSIBLE" }, { "input": "11 19 5 77", "output": "IMPOSSIBLE" }, { "input": "52 10 19 71", "output": "SEGMENT" }, { "input": "2 3 7 10", "output": "SEGMENT" }, { "input": "1 2 6 3", "output": "SEGMENT" }, { "input": "2 6 1 8", "output": "SEGMENT" }, { "input": "1 2 4 1", "output": "SEGMENT" }, { "input": "4 10 6 2", "output": "SEGMENT" }, { "input": "2 10 7 3", "output": "SEGMENT" }, { "input": "5 2 3 9", "output": "SEGMENT" }, { "input": "6 1 4 10", "output": "SEGMENT" }, { "input": "10 6 4 1", "output": "SEGMENT" }, { "input": "3 2 9 1", "output": "SEGMENT" }, { "input": "22 80 29 7", "output": "SEGMENT" }, { "input": "2 6 3 9", "output": "SEGMENT" }, { "input": "3 1 2 1", "output": "SEGMENT" }, { "input": "3 4 7 1", "output": "SEGMENT" }, { "input": "8 4 3 1", "output": "SEGMENT" }, { "input": "2 8 3 5", "output": "SEGMENT" }, { "input": "4 1 2 1", "output": "SEGMENT" }, { "input": "8 1 3 2", "output": "SEGMENT" }, { "input": "6 2 1 8", "output": "SEGMENT" }, { "input": "3 3 3 6", "output": "TRIANGLE" }, { "input": "3 6 3 3", "output": "TRIANGLE" }, { "input": "4 10 4 4", "output": "TRIANGLE" }, { "input": "1 1 2 1", "output": "TRIANGLE" }, { "input": "3 3 3 6", "output": "TRIANGLE" }, { "input": "5 4 5 5", "output": "TRIANGLE" }, { "input": "8 7 8 8", "output": "TRIANGLE" }, { "input": "3 3 3 1", "output": "TRIANGLE" }, { "input": "1 1 6 6", "output": "TRIANGLE" }, { "input": "1 9 1 9", "output": "TRIANGLE" }, { "input": "7 2 2 7", "output": "TRIANGLE" }, { "input": "7 2 3 2", "output": "TRIANGLE" }, { "input": "4 4 10 10", "output": "TRIANGLE" }, { "input": "7 7 10 7", "output": "TRIANGLE" }, { "input": "4 4 4 5", "output": "TRIANGLE" }, { "input": "1 10 9 2", "output": "TRIANGLE" }, { "input": "1 8 2 7", "output": "TRIANGLE" }, { "input": "4 3 2 8", "output": "TRIANGLE" }, { "input": "5 9 5 3", "output": "TRIANGLE" }, { "input": "4 10 3 5", "output": "TRIANGLE" } ]
1,538,724,201
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
186
0
import itertools z = list(itertools.combinations(list(map(int, input().split())), 3)) for i in z: s = sum(i)/2 area = s*(s-i[0])*(s-i[1])*(s-i[2]) if area > 0: trip+=1 elif area == 0: degp+=1 else: impp+=1 if trip > 0: print("TRIANGLE") elif degp > 0: print("SEGMENT") else: print("IMPOSSIBLE")
Title: Triangle Time Limit: 2 seconds Memory Limit: 64 megabytes Problem Description: Johnny has a younger sister Anne, who is very clever and smart. As she came home from the kindergarten, she told his brother about the task that her kindergartener asked her to solve. The task was just to construct a triangle out of four sticks of different colours. Naturally, one of the sticks is extra. It is not allowed to break the sticks or use their partial length. Anne has perfectly solved this task, now she is asking Johnny to do the same. The boy answered that he would cope with it without any difficulty. However, after a while he found out that different tricky things can occur. It can happen that it is impossible to construct a triangle of a positive area, but it is possible to construct a degenerate triangle. It can be so, that it is impossible to construct a degenerate triangle even. As Johnny is very lazy, he does not want to consider such a big amount of cases, he asks you to help him. Input Specification: The first line of the input contains four space-separated positive integer numbers not exceeding 100 — lengthes of the sticks. Output Specification: Output TRIANGLE if it is possible to construct a non-degenerate triangle. Output SEGMENT if the first case cannot take place and it is possible to construct a degenerate triangle. Output IMPOSSIBLE if it is impossible to construct any triangle. Remember that you are to use three sticks. It is not allowed to break the sticks or use their partial length. Demo Input: ['4 2 1 3\n', '7 2 2 4\n', '3 5 9 1\n'] Demo Output: ['TRIANGLE\n', 'SEGMENT\n', 'IMPOSSIBLE\n'] Note: none
```python import itertools z = list(itertools.combinations(list(map(int, input().split())), 3)) for i in z: s = sum(i)/2 area = s*(s-i[0])*(s-i[1])*(s-i[2]) if area > 0: trip+=1 elif area == 0: degp+=1 else: impp+=1 if trip > 0: print("TRIANGLE") elif degp > 0: print("SEGMENT") else: print("IMPOSSIBLE") ```
-1
558
A
Lala Land and Apple Trees
PROGRAMMING
1,100
[ "brute force", "implementation", "sortings" ]
null
null
Amr lives in Lala Land. Lala Land is a very beautiful country that is located on a coordinate line. Lala Land is famous with its apple trees growing everywhere. Lala Land has exactly *n* apple trees. Tree number *i* is located in a position *x**i* and has *a**i* apples growing on it. Amr wants to collect apples from the apple trees. Amr currently stands in *x*<==<=0 position. At the beginning, he can choose whether to go right or left. He'll continue in his direction until he meets an apple tree he didn't visit before. He'll take all of its apples and then reverse his direction, continue walking in this direction until he meets another apple tree he didn't visit before and so on. In the other words, Amr reverses his direction when visiting each new apple tree. Amr will stop collecting apples when there are no more trees he didn't visit in the direction he is facing. What is the maximum number of apples he can collect?
The first line contains one number *n* (1<=≤<=*n*<=≤<=100), the number of apple trees in Lala Land. The following *n* lines contains two integers each *x**i*, *a**i* (<=-<=105<=≤<=*x**i*<=≤<=105, *x**i*<=≠<=0, 1<=≤<=*a**i*<=≤<=105), representing the position of the *i*-th tree and number of apples on it. It's guaranteed that there is at most one apple tree at each coordinate. It's guaranteed that no tree grows in point 0.
Output the maximum number of apples Amr can collect.
[ "2\n-1 5\n1 5\n", "3\n-2 2\n1 4\n-1 3\n", "3\n1 9\n3 5\n7 10\n" ]
[ "10", "9", "9" ]
In the first sample test it doesn't matter if Amr chose at first to go left or right. In both cases he'll get all the apples. In the second sample test the optimal solution is to go left to *x* =  - 1, collect apples from there, then the direction will be reversed, Amr has to go to *x* = 1, collect apples from there, then the direction will be reversed and Amr goes to the final tree *x* =  - 2. In the third sample test the optimal solution is to go right to *x* = 1, collect apples from there, then the direction will be reversed and Amr will not be able to collect anymore apples because there are no apple trees to his left.
500
[ { "input": "2\n-1 5\n1 5", "output": "10" }, { "input": "3\n-2 2\n1 4\n-1 3", "output": "9" }, { "input": "3\n1 9\n3 5\n7 10", "output": "9" }, { "input": "1\n1 1", "output": "1" }, { "input": "4\n10000 100000\n-1000 100000\n-2 100000\n-1 100000", "output": "300000" }, { "input": "1\n-1 1", "output": "1" }, { "input": "27\n-30721 24576\n-6620 92252\n88986 24715\n-94356 10509\n-6543 29234\n-68554 69530\n39176 96911\n67266 99669\n95905 51002\n-94093 92134\n65382 23947\n-6525 79426\n-448 67531\n-70083 26921\n-86333 50029\n48924 8036\n-27228 5349\n6022 10691\n-13840 56735\n50398 58794\n-63258 45557\n-27792 77057\n98295 1203\n-51294 18757\n35037 61941\n-30112 13076\n82334 20463", "output": "1036452" }, { "input": "18\n-18697 44186\n56333 51938\n-75688 49735\n77762 14039\n-43996 81060\n69700 49107\n74532 45568\n-94476 203\n-92347 90745\n58921 44650\n57563 63561\n44630 8486\n35750 5999\n3249 34202\n75358 68110\n-33245 60458\n-88148 2342\n87856 85532", "output": "632240" }, { "input": "28\n49728 91049\n-42863 4175\n-89214 22191\n77977 16965\n-42960 87627\n-84329 97494\n89270 75906\n-13695 28908\n-72279 13607\n-97327 87062\n-58682 32094\n39108 99936\n29304 93784\n-63886 48237\n-77359 57648\n-87013 79017\n-41086 35033\n-60613 83555\n-48955 56816\n-20568 26802\n52113 25160\n-88885 45294\n22601 42971\n62693 65662\n-15985 5357\n86671 8522\n-59921 11271\n-79304 25044", "output": "891593" }, { "input": "25\n5704 67795\n6766 31836\n-41715 89987\n76854 9848\n11648 90020\n-79763 10107\n96971 92636\n-64205 71937\n87997 38273\n-9782 57187\n22186 6905\n-41130 40258\n-28403 66579\n19578 43375\n35735 52929\n-52417 89388\n-89430 1939\n9401 43491\n-11228 10112\n-86859 16024\n-51486 33467\n-80578 65080\n-52820 98445\n-89165 7657\n-97106 79422", "output": "1109655" }, { "input": "16\n-41732 47681\n44295 28942\n-75194 99827\n69982 18020\n-75378 22026\n80032 22908\n-34879 41113\n36257 48574\n-35882 84333\n29646 71151\n-86214 80886\n72724 39364\n-42529 60880\n29150 29921\n-8471 80781\n79387 70834", "output": "847241" }, { "input": "3\n-94146 4473\n28707 99079\n-4153 8857", "output": "112409" }, { "input": "3\n-3 3\n-2 2\n-1 1", "output": "1" }, { "input": "2\n100000 3\n-100000 9", "output": "12" }, { "input": "2\n-100000 100000\n100000 99999", "output": "199999" } ]
1,599,925,495
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
6
109
307,200
lp = [] np = [] for _ in range(int(input())): z, n = list(map(int, input().split())) if z == abs(z): lp.append(n) else: np.append(n) if len(lp) == len(np): print(sum(lp)+sum(np)) elif len(lp) > len(np): print(sum(np)+sum(lp[:len(np)+1])) else: print(sum(lp) + sum(np[:len(lp)+1]))
Title: Lala Land and Apple Trees Time Limit: None seconds Memory Limit: None megabytes Problem Description: Amr lives in Lala Land. Lala Land is a very beautiful country that is located on a coordinate line. Lala Land is famous with its apple trees growing everywhere. Lala Land has exactly *n* apple trees. Tree number *i* is located in a position *x**i* and has *a**i* apples growing on it. Amr wants to collect apples from the apple trees. Amr currently stands in *x*<==<=0 position. At the beginning, he can choose whether to go right or left. He'll continue in his direction until he meets an apple tree he didn't visit before. He'll take all of its apples and then reverse his direction, continue walking in this direction until he meets another apple tree he didn't visit before and so on. In the other words, Amr reverses his direction when visiting each new apple tree. Amr will stop collecting apples when there are no more trees he didn't visit in the direction he is facing. What is the maximum number of apples he can collect? Input Specification: The first line contains one number *n* (1<=≤<=*n*<=≤<=100), the number of apple trees in Lala Land. The following *n* lines contains two integers each *x**i*, *a**i* (<=-<=105<=≤<=*x**i*<=≤<=105, *x**i*<=≠<=0, 1<=≤<=*a**i*<=≤<=105), representing the position of the *i*-th tree and number of apples on it. It's guaranteed that there is at most one apple tree at each coordinate. It's guaranteed that no tree grows in point 0. Output Specification: Output the maximum number of apples Amr can collect. Demo Input: ['2\n-1 5\n1 5\n', '3\n-2 2\n1 4\n-1 3\n', '3\n1 9\n3 5\n7 10\n'] Demo Output: ['10', '9', '9'] Note: In the first sample test it doesn't matter if Amr chose at first to go left or right. In both cases he'll get all the apples. In the second sample test the optimal solution is to go left to *x* =  - 1, collect apples from there, then the direction will be reversed, Amr has to go to *x* = 1, collect apples from there, then the direction will be reversed and Amr goes to the final tree *x* =  - 2. In the third sample test the optimal solution is to go right to *x* = 1, collect apples from there, then the direction will be reversed and Amr will not be able to collect anymore apples because there are no apple trees to his left.
```python lp = [] np = [] for _ in range(int(input())): z, n = list(map(int, input().split())) if z == abs(z): lp.append(n) else: np.append(n) if len(lp) == len(np): print(sum(lp)+sum(np)) elif len(lp) > len(np): print(sum(np)+sum(lp[:len(np)+1])) else: print(sum(lp) + sum(np[:len(lp)+1])) ```
0
368
B
Sereja and Suffixes
PROGRAMMING
1,100
[ "data structures", "dp" ]
null
null
Sereja has an array *a*, consisting of *n* integers *a*1, *a*2, ..., *a**n*. The boy cannot sit and do nothing, he decided to study an array. Sereja took a piece of paper and wrote out *m* integers *l*1,<=*l*2,<=...,<=*l**m* (1<=≤<=*l**i*<=≤<=*n*). For each number *l**i* he wants to know how many distinct numbers are staying on the positions *l**i*, *l**i*<=+<=1, ..., *n*. Formally, he want to find the number of distinct numbers among *a**l**i*,<=*a**l**i*<=+<=1,<=...,<=*a**n*.? Sereja wrote out the necessary array elements but the array was so large and the boy was so pressed for time. Help him, find the answer for the described question for each *l**i*.
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105) — the array elements. Next *m* lines contain integers *l*1,<=*l*2,<=...,<=*l**m*. The *i*-th line contains integer *l**i* (1<=≤<=*l**i*<=≤<=*n*).
Print *m* lines — on the *i*-th line print the answer to the number *l**i*.
[ "10 10\n1 2 3 4 1 2 3 4 100000 99999\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n" ]
[ "6\n6\n6\n6\n6\n5\n4\n3\n2\n1\n" ]
none
1,000
[ { "input": "10 10\n1 2 3 4 1 2 3 4 100000 99999\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10", "output": "6\n6\n6\n6\n6\n5\n4\n3\n2\n1" }, { "input": "8 3\n8 6 4 3 4 2 4 8\n6\n4\n2", "output": "3\n4\n5" }, { "input": "7 10\n1 3 8 6 2 2 7\n4\n2\n6\n3\n4\n4\n6\n2\n7\n4", "output": "3\n5\n2\n4\n3\n3\n2\n5\n1\n3" }, { "input": "10 2\n2 6 5 7 2 2 3 2 4 8\n1\n2", "output": "7\n7" }, { "input": "7 1\n68346 10956 76708 23018 84063 34833 80407\n1", "output": "7" }, { "input": "2 2\n8 4\n1\n1", "output": "2\n2" }, { "input": "1 5\n5\n1\n1\n1\n1\n1", "output": "1\n1\n1\n1\n1" }, { "input": "4 7\n3 1 4 2\n4\n1\n2\n3\n2\n4\n4", "output": "1\n4\n3\n2\n3\n1\n1" }, { "input": "4 3\n9 1 7 1\n1\n4\n2", "output": "3\n1\n2" }, { "input": "8 3\n9280 6676 2720 6172 8329 10413 3975 1394\n5\n6\n7", "output": "4\n3\n2" }, { "input": "1 1\n1\n1", "output": "1" } ]
1,689,829,723
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
31
0
n, m = map(int, input().split()) nums = list(map(int, input().split())) unique_nums = set() for i in range(n): unique_nums.add(nums[n-i-1]) print(unique_nums) nums[n-i-1] = len(unique_nums) print(nums) print(unique_nums) print(nums) for i in range(m): num = int(input()) print(nums[num-1])
Title: Sereja and Suffixes Time Limit: None seconds Memory Limit: None megabytes Problem Description: Sereja has an array *a*, consisting of *n* integers *a*1, *a*2, ..., *a**n*. The boy cannot sit and do nothing, he decided to study an array. Sereja took a piece of paper and wrote out *m* integers *l*1,<=*l*2,<=...,<=*l**m* (1<=≤<=*l**i*<=≤<=*n*). For each number *l**i* he wants to know how many distinct numbers are staying on the positions *l**i*, *l**i*<=+<=1, ..., *n*. Formally, he want to find the number of distinct numbers among *a**l**i*,<=*a**l**i*<=+<=1,<=...,<=*a**n*.? Sereja wrote out the necessary array elements but the array was so large and the boy was so pressed for time. Help him, find the answer for the described question for each *l**i*. Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105) — the array elements. Next *m* lines contain integers *l*1,<=*l*2,<=...,<=*l**m*. The *i*-th line contains integer *l**i* (1<=≤<=*l**i*<=≤<=*n*). Output Specification: Print *m* lines — on the *i*-th line print the answer to the number *l**i*. Demo Input: ['10 10\n1 2 3 4 1 2 3 4 100000 99999\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n'] Demo Output: ['6\n6\n6\n6\n6\n5\n4\n3\n2\n1\n'] Note: none
```python n, m = map(int, input().split()) nums = list(map(int, input().split())) unique_nums = set() for i in range(n): unique_nums.add(nums[n-i-1]) print(unique_nums) nums[n-i-1] = len(unique_nums) print(nums) print(unique_nums) print(nums) for i in range(m): num = int(input()) print(nums[num-1]) ```
0
0
none
none
none
0
[ "none" ]
null
null
In a building where Polycarp lives there are equal number of flats on each floor. Unfortunately, Polycarp don't remember how many flats are on each floor, but he remembers that the flats are numbered from 1 from lower to upper floors. That is, the first several flats are on the first floor, the next several flats are on the second and so on. Polycarp don't remember the total number of flats in the building, so you can consider the building to be infinitely high (i.e. there are infinitely many floors). Note that the floors are numbered from 1. Polycarp remembers on which floors several flats are located. It is guaranteed that this information is not self-contradictory. It means that there exists a building with equal number of flats on each floor so that the flats from Polycarp's memory have the floors Polycarp remembers. Given this information, is it possible to restore the exact floor for flat *n*?
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=100, 0<=≤<=*m*<=≤<=100), where *n* is the number of the flat you need to restore floor for, and *m* is the number of flats in Polycarp's memory. *m* lines follow, describing the Polycarp's memory: each of these lines contains a pair of integers *k**i*,<=*f**i* (1<=≤<=*k**i*<=≤<=100, 1<=≤<=*f**i*<=≤<=100), which means that the flat *k**i* is on the *f**i*-th floor. All values *k**i* are distinct. It is guaranteed that the given information is not self-contradictory.
Print the number of the floor in which the *n*-th flat is located, if it is possible to determine it in a unique way. Print -1 if it is not possible to uniquely restore this floor.
[ "10 3\n6 2\n2 1\n7 3\n", "8 4\n3 1\n6 2\n5 2\n2 1\n" ]
[ "4\n", "-1\n" ]
In the first example the 6-th flat is on the 2-nd floor, while the 7-th flat is on the 3-rd, so, the 6-th flat is the last on its floor and there are 3 flats on each floor. Thus, the 10-th flat is on the 4-th floor. In the second example there can be 3 or 4 flats on each floor, so we can't restore the floor for the 8-th flat.
0
[ { "input": "10 3\n6 2\n2 1\n7 3", "output": "4" }, { "input": "8 4\n3 1\n6 2\n5 2\n2 1", "output": "-1" }, { "input": "8 3\n7 2\n6 2\n1 1", "output": "2" }, { "input": "4 2\n8 3\n3 1", "output": "2" }, { "input": "11 4\n16 4\n11 3\n10 3\n15 4", "output": "3" }, { "input": "16 6\n3 1\n16 4\n10 3\n9 3\n19 5\n8 2", "output": "4" }, { "input": "1 0", "output": "1" }, { "input": "1 1\n1 1", "output": "1" }, { "input": "1 1\n1 1", "output": "1" }, { "input": "1 2\n1 1\n2 2", "output": "1" }, { "input": "2 2\n2 1\n1 1", "output": "1" }, { "input": "2 0", "output": "-1" }, { "input": "2 1\n3 3", "output": "2" }, { "input": "3 2\n1 1\n3 3", "output": "3" }, { "input": "3 3\n1 1\n3 3\n2 2", "output": "3" }, { "input": "3 0", "output": "-1" }, { "input": "1 1\n2 1", "output": "1" }, { "input": "2 2\n2 1\n1 1", "output": "1" }, { "input": "2 3\n3 2\n1 1\n2 1", "output": "1" }, { "input": "3 0", "output": "-1" }, { "input": "3 1\n1 1", "output": "-1" }, { "input": "2 2\n1 1\n3 1", "output": "1" }, { "input": "1 3\n1 1\n2 1\n3 1", "output": "1" }, { "input": "81 0", "output": "-1" }, { "input": "22 1\n73 73", "output": "22" }, { "input": "63 2\n10 10\n64 64", "output": "63" }, { "input": "88 3\n37 37\n15 15\n12 12", "output": "88" }, { "input": "29 4\n66 66\n47 47\n62 62\n2 2", "output": "29" }, { "input": "9 40\n72 72\n47 47\n63 63\n66 66\n21 21\n94 94\n28 28\n45 45\n93 93\n25 25\n100 100\n43 43\n49 49\n9 9\n74 74\n26 26\n42 42\n50 50\n2 2\n92 92\n76 76\n3 3\n78 78\n44 44\n69 69\n36 36\n65 65\n81 81\n13 13\n46 46\n24 24\n96 96\n73 73\n82 82\n68 68\n64 64\n41 41\n31 31\n29 29\n10 10", "output": "9" }, { "input": "50 70\n3 3\n80 80\n23 23\n11 11\n87 87\n7 7\n63 63\n61 61\n67 67\n53 53\n9 9\n43 43\n55 55\n27 27\n5 5\n1 1\n99 99\n65 65\n37 37\n60 60\n32 32\n38 38\n81 81\n2 2\n34 34\n17 17\n82 82\n26 26\n71 71\n4 4\n16 16\n19 19\n39 39\n51 51\n6 6\n49 49\n64 64\n83 83\n10 10\n56 56\n30 30\n76 76\n90 90\n42 42\n47 47\n91 91\n21 21\n52 52\n40 40\n77 77\n35 35\n88 88\n75 75\n95 95\n28 28\n15 15\n69 69\n22 22\n48 48\n66 66\n31 31\n98 98\n73 73\n25 25\n97 97\n18 18\n13 13\n54 54\n72 72\n29 29", "output": "50" }, { "input": "6 0", "output": "-1" }, { "input": "32 1\n9 5", "output": "16" }, { "input": "73 2\n17 9\n21 11", "output": "37" }, { "input": "6 3\n48 24\n51 26\n62 31", "output": "3" }, { "input": "43 4\n82 41\n52 26\n88 44\n41 21", "output": "22" }, { "input": "28 40\n85 43\n19 10\n71 36\n39 20\n57 29\n6 3\n15 8\n11 6\n99 50\n77 39\n79 40\n31 16\n35 18\n24 12\n54 27\n93 47\n90 45\n72 36\n63 32\n22 11\n83 42\n5 3\n12 6\n56 28\n94 47\n25 13\n41 21\n29 15\n36 18\n23 12\n1 1\n84 42\n55 28\n58 29\n9 5\n68 34\n86 43\n3 2\n48 24\n98 49", "output": "14" }, { "input": "81 70\n55 28\n85 43\n58 29\n20 10\n4 2\n47 24\n42 21\n28 14\n26 13\n38 19\n9 5\n83 42\n7 4\n72 36\n18 9\n61 31\n41 21\n64 32\n90 45\n46 23\n67 34\n2 1\n6 3\n27 14\n87 44\n39 20\n11 6\n21 11\n35 18\n48 24\n44 22\n3 2\n71 36\n62 31\n34 17\n16 8\n99 50\n57 29\n13 7\n79 40\n100 50\n53 27\n89 45\n36 18\n43 22\n92 46\n98 49\n75 38\n40 20\n97 49\n37 19\n68 34\n30 15\n96 48\n17 9\n12 6\n45 23\n65 33\n76 38\n84 42\n23 12\n91 46\n52 26\n8 4\n32 16\n77 39\n88 44\n86 43\n70 35\n51 26", "output": "41" }, { "input": "34 0", "output": "-1" }, { "input": "63 1\n94 24", "output": "16" }, { "input": "4 2\n38 10\n48 12", "output": "1" }, { "input": "37 3\n66 17\n89 23\n60 15", "output": "10" }, { "input": "71 4\n15 4\n13 4\n4 1\n70 18", "output": "18" }, { "input": "77 40\n49 13\n66 17\n73 19\n15 4\n36 9\n1 1\n41 11\n91 23\n51 13\n46 12\n39 10\n42 11\n56 14\n61 16\n70 18\n92 23\n65 17\n54 14\n97 25\n8 2\n87 22\n33 9\n28 7\n38 10\n50 13\n26 7\n7 2\n31 8\n84 21\n47 12\n27 7\n53 14\n19 5\n93 24\n29 8\n3 1\n77 20\n62 16\n9 3\n44 11", "output": "20" }, { "input": "18 70\n51 13\n55 14\n12 3\n43 11\n42 11\n95 24\n96 24\n29 8\n65 17\n71 18\n18 5\n62 16\n31 8\n100 25\n4 1\n77 20\n56 14\n24 6\n93 24\n97 25\n79 20\n40 10\n49 13\n86 22\n21 6\n46 12\n6 2\n14 4\n23 6\n20 5\n52 13\n88 22\n39 10\n70 18\n94 24\n13 4\n37 10\n41 11\n91 23\n85 22\n83 21\n89 23\n33 9\n64 16\n67 17\n57 15\n47 12\n36 9\n72 18\n81 21\n76 19\n35 9\n80 20\n34 9\n5 2\n22 6\n84 21\n63 16\n74 19\n90 23\n68 17\n98 25\n87 22\n2 1\n92 23\n50 13\n38 10\n28 7\n8 2\n60 15", "output": "5" }, { "input": "89 0", "output": "-1" }, { "input": "30 1\n3 1", "output": "-1" }, { "input": "63 2\n48 6\n17 3", "output": "8" }, { "input": "96 3\n45 6\n25 4\n35 5", "output": "12" }, { "input": "37 4\n2 1\n29 4\n27 4\n47 6", "output": "5" }, { "input": "64 40\n40 5\n92 12\n23 3\n75 10\n71 9\n2 1\n54 7\n18 3\n9 2\n74 10\n87 11\n11 2\n90 12\n30 4\n48 6\n12 2\n91 12\n60 8\n35 5\n13 2\n53 7\n46 6\n38 5\n59 8\n97 13\n32 4\n6 1\n36 5\n43 6\n83 11\n81 11\n99 13\n69 9\n10 2\n21 3\n78 10\n31 4\n27 4\n57 8\n1 1", "output": "8" }, { "input": "17 70\n63 8\n26 4\n68 9\n30 4\n61 8\n84 11\n39 5\n53 7\n4 1\n81 11\n50 7\n91 12\n59 8\n90 12\n20 3\n21 3\n83 11\n94 12\n37 5\n8 1\n49 7\n34 5\n19 3\n44 6\n74 10\n2 1\n73 10\n88 11\n43 6\n36 5\n57 8\n64 8\n76 10\n40 5\n71 9\n95 12\n15 2\n41 6\n89 12\n42 6\n96 12\n1 1\n52 7\n38 5\n45 6\n78 10\n82 11\n16 2\n48 6\n51 7\n56 7\n28 4\n87 11\n93 12\n46 6\n29 4\n97 13\n54 7\n35 5\n3 1\n79 10\n99 13\n13 2\n55 7\n100 13\n11 2\n75 10\n24 3\n33 5\n22 3", "output": "3" }, { "input": "9 0", "output": "-1" }, { "input": "50 1\n31 2", "output": "-1" }, { "input": "79 2\n11 1\n22 2", "output": "-1" }, { "input": "16 3\n100 7\n94 6\n3 1", "output": "1" }, { "input": "58 4\n73 5\n52 4\n69 5\n3 1", "output": "4" }, { "input": "25 40\n70 5\n28 2\n60 4\n54 4\n33 3\n21 2\n51 4\n20 2\n44 3\n79 5\n65 5\n1 1\n52 4\n23 2\n38 3\n92 6\n63 4\n3 1\n91 6\n5 1\n64 4\n34 3\n25 2\n97 7\n89 6\n61 4\n71 5\n88 6\n29 2\n56 4\n45 3\n6 1\n53 4\n57 4\n90 6\n76 5\n8 1\n46 3\n73 5\n87 6", "output": "2" }, { "input": "78 70\n89 6\n52 4\n87 6\n99 7\n3 1\n25 2\n46 3\n78 5\n35 3\n68 5\n85 6\n23 2\n60 4\n88 6\n17 2\n8 1\n15 1\n67 5\n95 6\n59 4\n94 6\n31 2\n4 1\n16 1\n10 1\n97 7\n42 3\n2 1\n24 2\n34 3\n37 3\n70 5\n18 2\n41 3\n48 3\n58 4\n20 2\n38 3\n72 5\n50 4\n49 4\n40 3\n61 4\n6 1\n45 3\n28 2\n13 1\n27 2\n96 6\n56 4\n91 6\n77 5\n12 1\n11 1\n53 4\n76 5\n74 5\n82 6\n55 4\n80 5\n14 1\n44 3\n7 1\n83 6\n79 5\n92 6\n66 5\n36 3\n73 5\n100 7", "output": "5" }, { "input": "95 0", "output": "-1" }, { "input": "33 1\n30 1", "output": "-1" }, { "input": "62 2\n14 1\n15 1", "output": "-1" }, { "input": "3 3\n6 1\n25 1\n38 2", "output": "1" }, { "input": "44 4\n72 3\n80 3\n15 1\n36 2", "output": "2" }, { "input": "34 40\n25 1\n28 1\n78 3\n5 1\n13 1\n75 3\n15 1\n67 3\n57 2\n23 1\n26 1\n61 2\n22 1\n48 2\n85 3\n24 1\n82 3\n83 3\n53 2\n38 2\n19 1\n33 2\n69 3\n17 1\n79 3\n54 2\n77 3\n97 4\n20 1\n35 2\n14 1\n18 1\n71 3\n21 1\n36 2\n56 2\n44 2\n63 2\n72 3\n32 1", "output": "2" }, { "input": "83 70\n79 3\n49 2\n2 1\n44 2\n38 2\n77 3\n86 3\n31 1\n83 3\n82 3\n35 2\n7 1\n78 3\n23 1\n39 2\n58 2\n1 1\n87 3\n72 3\n20 1\n48 2\n14 1\n13 1\n6 1\n70 3\n55 2\n52 2\n25 1\n11 1\n61 2\n76 3\n95 3\n32 1\n66 3\n29 1\n9 1\n5 1\n3 1\n88 3\n59 2\n96 3\n10 1\n63 2\n40 2\n42 2\n34 2\n43 2\n19 1\n89 3\n94 3\n24 1\n98 4\n12 1\n30 1\n69 3\n17 1\n50 2\n8 1\n93 3\n16 1\n97 4\n54 2\n71 3\n18 1\n33 2\n80 3\n15 1\n99 4\n75 3\n4 1", "output": "3" }, { "input": "2 0", "output": "-1" }, { "input": "36 1\n96 1", "output": "1" }, { "input": "73 2\n34 1\n4 1", "output": "-1" }, { "input": "6 3\n37 1\n22 1\n70 1", "output": "1" }, { "input": "47 4\n66 1\n57 1\n85 1\n47 1", "output": "1" }, { "input": "9 40\n73 1\n21 1\n37 1\n87 1\n33 1\n69 1\n49 1\n19 1\n35 1\n93 1\n71 1\n43 1\n79 1\n85 1\n29 1\n72 1\n76 1\n47 1\n17 1\n67 1\n95 1\n41 1\n54 1\n88 1\n42 1\n80 1\n98 1\n96 1\n10 1\n24 1\n78 1\n18 1\n3 1\n91 1\n2 1\n15 1\n5 1\n60 1\n36 1\n46 1", "output": "1" }, { "input": "63 70\n82 1\n53 1\n57 1\n46 1\n97 1\n19 1\n36 1\n90 1\n23 1\n88 1\n68 1\n45 1\n2 1\n70 1\n86 1\n8 1\n83 1\n40 1\n99 1\n42 1\n32 1\n52 1\n81 1\n50 1\n77 1\n37 1\n54 1\n75 1\n4 1\n49 1\n73 1\n22 1\n21 1\n98 1\n18 1\n51 1\n14 1\n76 1\n92 1\n80 1\n78 1\n33 1\n79 1\n89 1\n67 1\n9 1\n44 1\n60 1\n64 1\n55 1\n29 1\n100 1\n16 1\n87 1\n10 1\n12 1\n25 1\n85 1\n30 1\n63 1\n39 1\n38 1\n31 1\n5 1\n26 1\n91 1\n43 1\n72 1\n48 1\n94 1", "output": "1" }, { "input": "2 0", "output": "-1" } ]
1,610,766,517
2,317
PyPy 3
WRONG_ANSWER
TESTS
2
124
2,252,800
import sys,math,itertools from collections import Counter,deque,defaultdict from bisect import bisect_left,bisect_right from heapq import heappop,heappush,heapify, nlargest from copy import deepcopy mod = 10**9+7 INF = float('inf') def inp(): return int(sys.stdin.readline()) def inpl(): return list(map(int, sys.stdin.readline().split())) def inpl_1(): return list(map(lambda x:int(x)-1, sys.stdin.readline().split())) n,m = inpl() mem = [inpl_1() for _ in range(m)] can = [] for num_flat in range(1,101): for k,f in mem: floor = k//num_flat if f != floor: break else: can.append((n-1)//num_flat+1) if len(can) != 1: print(-1) else: print(can[0])
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: In a building where Polycarp lives there are equal number of flats on each floor. Unfortunately, Polycarp don't remember how many flats are on each floor, but he remembers that the flats are numbered from 1 from lower to upper floors. That is, the first several flats are on the first floor, the next several flats are on the second and so on. Polycarp don't remember the total number of flats in the building, so you can consider the building to be infinitely high (i.e. there are infinitely many floors). Note that the floors are numbered from 1. Polycarp remembers on which floors several flats are located. It is guaranteed that this information is not self-contradictory. It means that there exists a building with equal number of flats on each floor so that the flats from Polycarp's memory have the floors Polycarp remembers. Given this information, is it possible to restore the exact floor for flat *n*? Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=100, 0<=≤<=*m*<=≤<=100), where *n* is the number of the flat you need to restore floor for, and *m* is the number of flats in Polycarp's memory. *m* lines follow, describing the Polycarp's memory: each of these lines contains a pair of integers *k**i*,<=*f**i* (1<=≤<=*k**i*<=≤<=100, 1<=≤<=*f**i*<=≤<=100), which means that the flat *k**i* is on the *f**i*-th floor. All values *k**i* are distinct. It is guaranteed that the given information is not self-contradictory. Output Specification: Print the number of the floor in which the *n*-th flat is located, if it is possible to determine it in a unique way. Print -1 if it is not possible to uniquely restore this floor. Demo Input: ['10 3\n6 2\n2 1\n7 3\n', '8 4\n3 1\n6 2\n5 2\n2 1\n'] Demo Output: ['4\n', '-1\n'] Note: In the first example the 6-th flat is on the 2-nd floor, while the 7-th flat is on the 3-rd, so, the 6-th flat is the last on its floor and there are 3 flats on each floor. Thus, the 10-th flat is on the 4-th floor. In the second example there can be 3 or 4 flats on each floor, so we can't restore the floor for the 8-th flat.
```python import sys,math,itertools from collections import Counter,deque,defaultdict from bisect import bisect_left,bisect_right from heapq import heappop,heappush,heapify, nlargest from copy import deepcopy mod = 10**9+7 INF = float('inf') def inp(): return int(sys.stdin.readline()) def inpl(): return list(map(int, sys.stdin.readline().split())) def inpl_1(): return list(map(lambda x:int(x)-1, sys.stdin.readline().split())) n,m = inpl() mem = [inpl_1() for _ in range(m)] can = [] for num_flat in range(1,101): for k,f in mem: floor = k//num_flat if f != floor: break else: can.append((n-1)//num_flat+1) if len(can) != 1: print(-1) else: print(can[0]) ```
0
421
A
Pasha and Hamsters
PROGRAMMING
800
[ "constructive algorithms", "implementation" ]
null
null
Pasha has two hamsters: Arthur and Alexander. Pasha put *n* apples in front of them. Pasha knows which apples Arthur likes. Similarly, Pasha knows which apples Alexander likes. Pasha doesn't want any conflict between the hamsters (as they may like the same apple), so he decided to distribute the apples between the hamsters on his own. He is going to give some apples to Arthur and some apples to Alexander. It doesn't matter how many apples each hamster gets but it is important that each hamster gets only the apples he likes. It is possible that somebody doesn't get any apples. Help Pasha distribute all the apples between the hamsters. Note that Pasha wants to distribute all the apples, not just some of them.
The first line contains integers *n*, *a*, *b* (1<=≤<=*n*<=≤<=100; 1<=≤<=*a*,<=*b*<=≤<=*n*) — the number of apples Pasha has, the number of apples Arthur likes and the number of apples Alexander likes, correspondingly. The next line contains *a* distinct integers — the numbers of the apples Arthur likes. The next line contains *b* distinct integers — the numbers of the apples Alexander likes. Assume that the apples are numbered from 1 to *n*. The input is such that the answer exists.
Print *n* characters, each of them equals either 1 or 2. If the *i*-h character equals 1, then the *i*-th apple should be given to Arthur, otherwise it should be given to Alexander. If there are multiple correct answers, you are allowed to print any of them.
[ "4 2 3\n1 2\n2 3 4\n", "5 5 2\n3 4 1 2 5\n2 3\n" ]
[ "1 1 2 2\n", "1 1 1 1 1\n" ]
none
500
[ { "input": "4 2 3\n1 2\n2 3 4", "output": "1 1 2 2" }, { "input": "5 5 2\n3 4 1 2 5\n2 3", "output": "1 1 1 1 1" }, { "input": "100 69 31\n1 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 24 26 27 29 31 37 38 39 40 44 46 48 49 50 51 53 55 56 57 58 59 60 61 63 64 65 66 67 68 69 70 71 72 74 76 77 78 79 80 81 82 83 89 92 94 95 97 98 99 100\n2 13 22 23 25 28 30 32 33 34 35 36 41 42 43 45 47 52 54 62 73 75 84 85 86 87 88 90 91 93 96", "output": "1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 2 1 2 1 1 2 1 2 1 2 2 2 2 2 1 1 1 1 2 2 2 1 2 1 2 1 1 1 1 2 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 2 2 2 2 2 1 2 2 1 2 1 1 2 1 1 1 1" }, { "input": "100 56 44\n1 2 5 8 14 15 17 18 20 21 23 24 25 27 30 33 34 35 36 38 41 42 44 45 46 47 48 49 50 53 56 58 59 60 62 63 64 65 68 69 71 75 76 80 81 84 87 88 90 91 92 94 95 96 98 100\n3 4 6 7 9 10 11 12 13 16 19 22 26 28 29 31 32 37 39 40 43 51 52 54 55 57 61 66 67 70 72 73 74 77 78 79 82 83 85 86 89 93 97 99", "output": "1 1 2 2 1 2 2 1 2 2 2 2 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 2 2 1 2 2 1 1 1 1 2 1 2 2 1 1 2 1 1 1 1 1 1 1 2 2 1 2 2 1 2 1 1 1 2 1 1 1 1 2 2 1 1 2 1 2 2 2 1 1 2 2 2 1 1 2 2 1 2 2 1 1 2 1 1 1 2 1 1 1 2 1 2 1" }, { "input": "100 82 18\n1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 22 23 25 27 29 30 31 32 33 34 35 36 37 38 42 43 44 45 46 47 48 49 50 51 53 54 55 57 58 59 60 61 62 63 64 65 66 67 68 69 71 72 73 74 75 77 78 79 80 82 83 86 88 90 91 92 93 94 96 97 98 99 100\n12 21 24 26 28 39 40 41 52 56 70 76 81 84 85 87 89 95", "output": "1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 2 2 1 2 1 2 1 1 1 1 1 2 1 1 1 1 1" }, { "input": "99 72 27\n1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 20 23 25 26 28 29 30 32 33 34 35 36 39 41 42 43 44 45 46 47 50 51 52 54 55 56 58 59 60 61 62 67 70 71 72 74 75 76 77 80 81 82 84 85 86 88 90 91 92 93 94 95 96 97 98 99\n9 18 19 21 22 24 27 31 37 38 40 48 49 53 57 63 64 65 66 68 69 73 78 79 83 87 89", "output": "1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 2 1 2 2 1 2 1 1 2 1 1 1 2 1 1 1 1 1 2 2 1 2 1 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 2 1 1 1 1 1 2 2 2 2 1 2 2 1 1 1 2 1 1 1 1 2 2 1 1 1 2 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1" }, { "input": "99 38 61\n1 3 10 15 16 22 23 28 31 34 35 36 37 38 39 43 44 49 50 53 56 60 63 68 69 70 72 74 75 77 80 81 83 85 96 97 98 99\n2 4 5 6 7 8 9 11 12 13 14 17 18 19 20 21 24 25 26 27 29 30 32 33 40 41 42 45 46 47 48 51 52 54 55 57 58 59 61 62 64 65 66 67 71 73 76 78 79 82 84 86 87 88 89 90 91 92 93 94 95", "output": "1 2 1 2 2 2 2 2 2 1 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 1 2 2 1 2 2 1 1 1 1 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 2 2 1 1 1 2 1 2 1 1 2 1 2 2 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 1 1 1 1" }, { "input": "99 84 15\n1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 21 22 23 24 25 26 27 28 29 30 31 32 34 35 36 37 38 39 40 41 42 43 44 47 48 50 51 52 53 55 56 58 59 60 61 62 63 64 65 68 69 70 71 72 73 74 75 77 79 80 81 82 83 84 85 86 87 89 90 91 92 93 94 97 98 99\n4 18 33 45 46 49 54 57 66 67 76 78 88 95 96", "output": "1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 2 1 1 1" }, { "input": "4 3 1\n1 3 4\n2", "output": "1 2 1 1" }, { "input": "4 3 1\n1 2 4\n3", "output": "1 1 2 1" }, { "input": "4 2 2\n2 3\n1 4", "output": "2 1 1 2" }, { "input": "4 3 1\n2 3 4\n1", "output": "2 1 1 1" }, { "input": "1 1 1\n1\n1", "output": "1" }, { "input": "2 1 1\n2\n1", "output": "2 1" }, { "input": "2 1 1\n1\n2", "output": "1 2" }, { "input": "3 3 1\n1 2 3\n1", "output": "1 1 1" }, { "input": "3 3 1\n1 2 3\n3", "output": "1 1 1" }, { "input": "3 2 1\n1 3\n2", "output": "1 2 1" }, { "input": "100 1 100\n84\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2" }, { "input": "100 100 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n17", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1" }, { "input": "98 51 47\n1 2 3 4 6 7 8 10 13 15 16 18 19 21 22 23 25 26 27 29 31 32 36 37 39 40 41 43 44 48 49 50 51 52 54 56 58 59 65 66 68 79 80 84 86 88 89 90 94 95 97\n5 9 11 12 14 17 20 24 28 30 33 34 35 38 42 45 46 47 53 55 57 60 61 62 63 64 67 69 70 71 72 73 74 75 76 77 78 81 82 83 85 87 91 92 93 96 98", "output": "1 1 1 1 2 1 1 1 2 1 2 2 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 2 1 1 2 2 2 1 1 2 1 1 1 2 1 1 2 2 2 1 1 1 1 1 2 1 2 1 2 1 1 2 2 2 2 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 1 2 1 2 1 1 1 2 2 2 1 1 2 1 2" }, { "input": "98 28 70\n1 13 15 16 19 27 28 40 42 43 46 53 54 57 61 63 67 68 69 71 75 76 78 80 88 93 97 98\n2 3 4 5 6 7 8 9 10 11 12 14 17 18 20 21 22 23 24 25 26 29 30 31 32 33 34 35 36 37 38 39 41 44 45 47 48 49 50 51 52 55 56 58 59 60 62 64 65 66 70 72 73 74 77 79 81 82 83 84 85 86 87 89 90 91 92 94 95 96", "output": "1 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 2 2 1 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 2 2 1 2 2 2 2 2 2 1 1 2 2 1 2 2 2 1 2 1 2 2 2 1 1 1 2 1 2 2 2 1 1 2 1 2 1 2 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 1 1" }, { "input": "97 21 76\n7 10 16 17 26 30 34 39 40 42 44 46 53 54 56 64 67 72 78 79 94\n1 2 3 4 5 6 8 9 11 12 13 14 15 18 19 20 21 22 23 24 25 27 28 29 31 32 33 35 36 37 38 41 43 45 47 48 49 50 51 52 55 57 58 59 60 61 62 63 65 66 68 69 70 71 73 74 75 76 77 80 81 82 83 84 85 86 87 88 89 90 91 92 93 95 96 97", "output": "2 2 2 2 2 2 1 2 2 1 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 1 2 1 2 1 2 1 2 2 2 2 2 2 1 1 2 1 2 2 2 2 2 2 2 1 2 2 1 2 2 2 2 1 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2" }, { "input": "97 21 76\n1 10 12 13 17 18 22 25 31 48 50 54 61 64 67 74 78 81 86 88 94\n2 3 4 5 6 7 8 9 11 14 15 16 19 20 21 23 24 26 27 28 29 30 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 49 51 52 53 55 56 57 58 59 60 62 63 65 66 68 69 70 71 72 73 75 76 77 79 80 82 83 84 85 87 89 90 91 92 93 95 96 97", "output": "1 2 2 2 2 2 2 2 2 1 2 1 1 2 2 2 1 1 2 2 2 1 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2 1 2 2 2 1 2 2 1 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2" }, { "input": "96 10 86\n2 5 31 37 68 69 80 82 90 91\n1 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 32 33 34 35 36 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77 78 79 81 83 84 85 86 87 88 89 92 93 94 95 96", "output": "2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 1 1 2 2 2 2 2" }, { "input": "95 4 91\n58 65 70 93\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 59 60 61 62 63 64 66 67 68 69 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 94 95", "output": "2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2" }, { "input": "98 88 10\n1 2 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 33 34 35 36 38 39 40 41 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 62 63 64 65 66 67 68 69 71 72 73 74 75 76 77 79 80 81 83 84 85 86 87 88 89 90 92 93 94 95 96 97 98\n3 7 32 37 42 61 70 78 82 91", "output": "1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1" }, { "input": "98 96 2\n1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98\n6 7", "output": "1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1" }, { "input": "97 97 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97\n94", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1" }, { "input": "97 97 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97\n20", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1" }, { "input": "96 96 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96\n48", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1" }, { "input": "95 95 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95\n55", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1" } ]
1,644,211,828
2,147,483,647
PyPy 3-64
OK
TESTS
32
77
512,000
x = input().split() n = int(x[0]) a = int(x[1]) b = int(x[2]) list1 = [] list2 = [] x = input().split() for i in x: list1.append(int(i)) x = input().split() for i in x: list2.append(int(i)) list3 = [0]*n temp = [] common = [] for i in list1: if i in list2: common.append(i) else: list3[i-1] = 1 for i in list2: if i not in common: list3[i-1] = 2 for i in common: list3[i-1] = 1 print(*list3)
Title: Pasha and Hamsters Time Limit: None seconds Memory Limit: None megabytes Problem Description: Pasha has two hamsters: Arthur and Alexander. Pasha put *n* apples in front of them. Pasha knows which apples Arthur likes. Similarly, Pasha knows which apples Alexander likes. Pasha doesn't want any conflict between the hamsters (as they may like the same apple), so he decided to distribute the apples between the hamsters on his own. He is going to give some apples to Arthur and some apples to Alexander. It doesn't matter how many apples each hamster gets but it is important that each hamster gets only the apples he likes. It is possible that somebody doesn't get any apples. Help Pasha distribute all the apples between the hamsters. Note that Pasha wants to distribute all the apples, not just some of them. Input Specification: The first line contains integers *n*, *a*, *b* (1<=≤<=*n*<=≤<=100; 1<=≤<=*a*,<=*b*<=≤<=*n*) — the number of apples Pasha has, the number of apples Arthur likes and the number of apples Alexander likes, correspondingly. The next line contains *a* distinct integers — the numbers of the apples Arthur likes. The next line contains *b* distinct integers — the numbers of the apples Alexander likes. Assume that the apples are numbered from 1 to *n*. The input is such that the answer exists. Output Specification: Print *n* characters, each of them equals either 1 or 2. If the *i*-h character equals 1, then the *i*-th apple should be given to Arthur, otherwise it should be given to Alexander. If there are multiple correct answers, you are allowed to print any of them. Demo Input: ['4 2 3\n1 2\n2 3 4\n', '5 5 2\n3 4 1 2 5\n2 3\n'] Demo Output: ['1 1 2 2\n', '1 1 1 1 1\n'] Note: none
```python x = input().split() n = int(x[0]) a = int(x[1]) b = int(x[2]) list1 = [] list2 = [] x = input().split() for i in x: list1.append(int(i)) x = input().split() for i in x: list2.append(int(i)) list3 = [0]*n temp = [] common = [] for i in list1: if i in list2: common.append(i) else: list3[i-1] = 1 for i in list2: if i not in common: list3[i-1] = 2 for i in common: list3[i-1] = 1 print(*list3) ```
3
877
C
Slava and tanks
PROGRAMMING
1,600
[ "constructive algorithms" ]
null
null
Slava plays his favorite game "Peace Lightning". Now he is flying a bomber on a very specific map. Formally, map is a checkered field of size 1<=×<=*n*, the cells of which are numbered from 1 to *n*, in each cell there can be one or several tanks. Slava doesn't know the number of tanks and their positions, because he flies very high, but he can drop a bomb in any cell. All tanks in this cell will be damaged. If a tank takes damage for the first time, it instantly moves to one of the neighboring cells (a tank in the cell *n* can only move to the cell *n*<=-<=1, a tank in the cell 1 can only move to the cell 2). If a tank takes damage for the second time, it's counted as destroyed and never moves again. The tanks move only when they are damaged for the first time, they do not move by themselves. Help Slava to destroy all tanks using as few bombs as possible.
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000) — the size of the map.
In the first line print *m* — the minimum number of bombs Slava needs to destroy all tanks. In the second line print *m* integers *k*1,<=*k*2,<=...,<=*k**m*. The number *k**i* means that the *i*-th bomb should be dropped at the cell *k**i*. If there are multiple answers, you can print any of them.
[ "2\n", "3\n" ]
[ "3\n2 1 2 ", "4\n2 1 3 2 " ]
none
1,500
[ { "input": "2", "output": "3\n2 1 2 " }, { "input": "3", "output": "4\n2 1 3 2 " }, { "input": "4", "output": "6\n2 4 1 3 2 4 " }, { "input": "6", "output": "9\n2 4 6 1 3 5 2 4 6 " }, { "input": "10", "output": "15\n2 4 6 8 10 1 3 5 7 9 2 4 6 8 10 " }, { "input": "15", "output": "22\n2 4 6 8 10 12 14 1 3 5 7 9 11 13 15 2 4 6 8 10 12 14 " }, { "input": "100", "output": "150\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 " }, { "input": "100000", "output": "150000\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 ..." }, { "input": "55333", "output": "82999\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "42273", "output": "63409\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "29857", "output": "44785\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "27687", "output": "41530\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "25517", "output": "38275\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "23347", "output": "35020\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "10931", "output": "16396\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "98514", "output": "147771\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 ..." }, { "input": "6591", "output": "9886\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 28..." }, { "input": "94174", "output": "141261\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 ..." }, { "input": "92004", "output": "138006\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 ..." }, { "input": "59221", "output": "88831\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "46806", "output": "70209\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "54882", "output": "82323\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "42466", "output": "63699\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "40296", "output": "60444\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "27880", "output": "41820\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "25710", "output": "38565\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "23540", "output": "35310\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "11124", "output": "16686\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "8954", "output": "13431\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "85387", "output": "128080\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 ..." }, { "input": "72971", "output": "109456\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 ..." }, { "input": "81047", "output": "121570\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 ..." }, { "input": "5", "output": "7\n2 4 1 3 5 2 4 " } ]
1,510,655,435
4,355
Python 3
WRONG_ANSWER
TESTS
1
46
0
n = int(input()) if n == 2: print(3) print(2, 1, 2) else: print(int(n + (n + 1)/2)) shoots = [i for i in range(2, n + 1, 2)] + [i for i in range(1, n + 1, 2)] + [i for i in range(2, n + 1, 2)] print(" ".join(map(str, shoots)))
Title: Slava and tanks Time Limit: None seconds Memory Limit: None megabytes Problem Description: Slava plays his favorite game "Peace Lightning". Now he is flying a bomber on a very specific map. Formally, map is a checkered field of size 1<=×<=*n*, the cells of which are numbered from 1 to *n*, in each cell there can be one or several tanks. Slava doesn't know the number of tanks and their positions, because he flies very high, but he can drop a bomb in any cell. All tanks in this cell will be damaged. If a tank takes damage for the first time, it instantly moves to one of the neighboring cells (a tank in the cell *n* can only move to the cell *n*<=-<=1, a tank in the cell 1 can only move to the cell 2). If a tank takes damage for the second time, it's counted as destroyed and never moves again. The tanks move only when they are damaged for the first time, they do not move by themselves. Help Slava to destroy all tanks using as few bombs as possible. Input Specification: The first line contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000) — the size of the map. Output Specification: In the first line print *m* — the minimum number of bombs Slava needs to destroy all tanks. In the second line print *m* integers *k*1,<=*k*2,<=...,<=*k**m*. The number *k**i* means that the *i*-th bomb should be dropped at the cell *k**i*. If there are multiple answers, you can print any of them. Demo Input: ['2\n', '3\n'] Demo Output: ['3\n2 1 2 ', '4\n2 1 3 2 '] Note: none
```python n = int(input()) if n == 2: print(3) print(2, 1, 2) else: print(int(n + (n + 1)/2)) shoots = [i for i in range(2, n + 1, 2)] + [i for i in range(1, n + 1, 2)] + [i for i in range(2, n + 1, 2)] print(" ".join(map(str, shoots))) ```
0
189
A
Cut Ribbon
PROGRAMMING
1,300
[ "brute force", "dp" ]
null
null
Polycarpus has a ribbon, its length is *n*. He wants to cut the ribbon in a way that fulfils the following two conditions: - After the cutting each ribbon piece should have length *a*, *b* or *c*. - After the cutting the number of ribbon pieces should be maximum. Help Polycarpus and find the number of ribbon pieces after the required cutting.
The first line contains four space-separated integers *n*, *a*, *b* and *c* (1<=≤<=*n*,<=*a*,<=*b*,<=*c*<=≤<=4000) — the length of the original ribbon and the acceptable lengths of the ribbon pieces after the cutting, correspondingly. The numbers *a*, *b* and *c* can coincide.
Print a single number — the maximum possible number of ribbon pieces. It is guaranteed that at least one correct ribbon cutting exists.
[ "5 5 3 2\n", "7 5 5 2\n" ]
[ "2\n", "2\n" ]
In the first example Polycarpus can cut the ribbon in such way: the first piece has length 2, the second piece has length 3. In the second example Polycarpus can cut the ribbon in such way: the first piece has length 5, the second piece has length 2.
500
[ { "input": "5 5 3 2", "output": "2" }, { "input": "7 5 5 2", "output": "2" }, { "input": "4 4 4 4", "output": "1" }, { "input": "1 1 1 1", "output": "1" }, { "input": "4000 1 2 3", "output": "4000" }, { "input": "4000 3 4 5", "output": "1333" }, { "input": "10 3 4 5", "output": "3" }, { "input": "100 23 15 50", "output": "2" }, { "input": "3119 3515 1021 7", "output": "11" }, { "input": "918 102 1327 1733", "output": "9" }, { "input": "3164 42 430 1309", "output": "15" }, { "input": "3043 317 1141 2438", "output": "7" }, { "input": "26 1 772 2683", "output": "26" }, { "input": "370 2 1 15", "output": "370" }, { "input": "734 12 6 2", "output": "367" }, { "input": "418 18 14 17", "output": "29" }, { "input": "18 16 28 9", "output": "2" }, { "input": "14 6 2 17", "output": "7" }, { "input": "29 27 18 2", "output": "2" }, { "input": "29 12 7 10", "output": "3" }, { "input": "27 23 4 3", "output": "9" }, { "input": "5 14 5 2", "output": "1" }, { "input": "5 17 26 5", "output": "1" }, { "input": "9 1 10 3", "output": "9" }, { "input": "2 19 15 1", "output": "2" }, { "input": "4 6 4 9", "output": "1" }, { "input": "10 6 2 9", "output": "5" }, { "input": "2 2 9 6", "output": "1" }, { "input": "6 2 4 1", "output": "6" }, { "input": "27 24 5 27", "output": "1" }, { "input": "2683 83 26 2709", "output": "101" }, { "input": "728 412 789 158", "output": "3" }, { "input": "3964 4 2916 176", "output": "991" }, { "input": "3399 2035 2 3334", "output": "683" }, { "input": "3455 244 3301 3", "output": "991" }, { "input": "595 2263 3625 1", "output": "595" }, { "input": "4000 1 1 1", "output": "4000" }, { "input": "3999 2 2 3999", "output": "1" }, { "input": "25 6 8 11", "output": "3" }, { "input": "4000 500 1000 2000", "output": "8" }, { "input": "53 10 11 23", "output": "5" }, { "input": "100 100 1 1", "output": "100" }, { "input": "17 3 4 10", "output": "5" }, { "input": "413 101 102 105", "output": "4" }, { "input": "490 4 49 50", "output": "111" }, { "input": "3999 2 3 3", "output": "1999" }, { "input": "8 3 8 4", "output": "2" }, { "input": "5 1 3 3", "output": "5" }, { "input": "100 3 17 22", "output": "27" }, { "input": "4000 2 3 4", "output": "2000" }, { "input": "4000 3 3 5", "output": "1332" }, { "input": "13 4 6 7", "output": "2" }, { "input": "4000 5 2 2", "output": "2000" }, { "input": "3999 2 2 3", "output": "1999" }, { "input": "4000 33 7 3333", "output": "564" }, { "input": "60 33 20 9", "output": "4" }, { "input": "100 9 11 99", "output": "10" }, { "input": "2009 6 8 9", "output": "334" } ]
1,683,892,384
2,147,483,647
PyPy 3-64
OK
TESTS
58
202
2,969,600
def Cut_Ribbon1(): #we want xa + yb + zc = n. we want to find solutions for (x,y,z) such that (x+y+z) is maximum and x,y,z should be integer # list1 = [int(x) for x in input().split(' ')] n = list1[0] a = list1[1] b = list1[2] c = list1[3] cut_sizes = [a,b,c] a_pieces_max = n//a b_pieces_max = n//b max = 0 for a_pieces in range(0,a_pieces_max+1): for b_pieces in range(0,b_pieces_max+1): z_value =(n - (a_pieces*a) - (b_pieces*b))/c if z_value != int(z_value) or (z_value<0): continue else: num_pieces = a_pieces + b_pieces + z_value if max < num_pieces: max = num_pieces print(int(max)) return Cut_Ribbon1()
Title: Cut Ribbon Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarpus has a ribbon, its length is *n*. He wants to cut the ribbon in a way that fulfils the following two conditions: - After the cutting each ribbon piece should have length *a*, *b* or *c*. - After the cutting the number of ribbon pieces should be maximum. Help Polycarpus and find the number of ribbon pieces after the required cutting. Input Specification: The first line contains four space-separated integers *n*, *a*, *b* and *c* (1<=≤<=*n*,<=*a*,<=*b*,<=*c*<=≤<=4000) — the length of the original ribbon and the acceptable lengths of the ribbon pieces after the cutting, correspondingly. The numbers *a*, *b* and *c* can coincide. Output Specification: Print a single number — the maximum possible number of ribbon pieces. It is guaranteed that at least one correct ribbon cutting exists. Demo Input: ['5 5 3 2\n', '7 5 5 2\n'] Demo Output: ['2\n', '2\n'] Note: In the first example Polycarpus can cut the ribbon in such way: the first piece has length 2, the second piece has length 3. In the second example Polycarpus can cut the ribbon in such way: the first piece has length 5, the second piece has length 2.
```python def Cut_Ribbon1(): #we want xa + yb + zc = n. we want to find solutions for (x,y,z) such that (x+y+z) is maximum and x,y,z should be integer # list1 = [int(x) for x in input().split(' ')] n = list1[0] a = list1[1] b = list1[2] c = list1[3] cut_sizes = [a,b,c] a_pieces_max = n//a b_pieces_max = n//b max = 0 for a_pieces in range(0,a_pieces_max+1): for b_pieces in range(0,b_pieces_max+1): z_value =(n - (a_pieces*a) - (b_pieces*b))/c if z_value != int(z_value) or (z_value<0): continue else: num_pieces = a_pieces + b_pieces + z_value if max < num_pieces: max = num_pieces print(int(max)) return Cut_Ribbon1() ```
3
300
A
Array
PROGRAMMING
1,100
[ "brute force", "constructive algorithms", "implementation" ]
null
null
Vitaly has an array of *n* distinct integers. Vitaly wants to divide this array into three non-empty sets so as the following conditions hold: 1. The product of all numbers in the first set is less than zero (<=&lt;<=0). 1. The product of all numbers in the second set is greater than zero (<=&gt;<=0). 1. The product of all numbers in the third set is equal to zero. 1. Each number from the initial array must occur in exactly one set. Help Vitaly. Divide the given array.
The first line of the input contains integer *n* (3<=≤<=*n*<=≤<=100). The second line contains *n* space-separated distinct integers *a*1,<=*a*2,<=...,<=*a**n* (|*a**i*|<=≤<=103) — the array elements.
In the first line print integer *n*1 (*n*1<=&gt;<=0) — the number of elements in the first set. Then print *n*1 numbers — the elements that got to the first set. In the next line print integer *n*2 (*n*2<=&gt;<=0) — the number of elements in the second set. Then print *n*2 numbers — the elements that got to the second set. In the next line print integer *n*3 (*n*3<=&gt;<=0) — the number of elements in the third set. Then print *n*3 numbers — the elements that got to the third set. The printed sets must meet the described conditions. It is guaranteed that the solution exists. If there are several solutions, you are allowed to print any of them.
[ "3\n-1 2 0\n", "4\n-1 -2 -3 0\n" ]
[ "1 -1\n1 2\n1 0\n", "1 -1\n2 -3 -2\n1 0\n" ]
none
500
[ { "input": "3\n-1 2 0", "output": "1 -1\n1 2\n1 0" }, { "input": "4\n-1 -2 -3 0", "output": "1 -1\n2 -3 -2\n1 0" }, { "input": "5\n-1 -2 1 2 0", "output": "1 -1\n2 1 2\n2 0 -2" }, { "input": "100\n-64 -51 -75 -98 74 -26 -1 -8 -99 -76 -53 -80 -43 -22 -100 -62 -34 -5 -65 -81 -18 -91 -92 -16 -23 -95 -9 -19 -44 -46 -79 52 -35 4 -87 -7 -90 -20 -71 -61 -67 -50 -66 -68 -49 -27 -32 -57 -85 -59 -30 -36 -3 -77 86 -25 -94 -56 60 -24 -37 -72 -41 -31 11 -48 28 -38 -42 -39 -33 -70 -84 0 -93 -73 -14 -69 -40 -97 -6 -55 -45 -54 -10 -29 -96 -12 -83 -15 -21 -47 17 -2 -63 -89 88 13 -58 -82", "output": "89 -64 -51 -75 -98 -26 -1 -8 -99 -76 -53 -80 -43 -22 -100 -62 -34 -5 -65 -81 -18 -91 -92 -16 -23 -95 -9 -19 -44 -46 -79 -35 -87 -7 -90 -20 -71 -61 -67 -50 -66 -68 -49 -27 -32 -57 -85 -59 -30 -36 -3 -77 -25 -94 -56 -24 -37 -72 -41 -31 -48 -38 -42 -39 -33 -70 -84 -93 -73 -14 -69 -40 -97 -6 -55 -45 -54 -10 -29 -96 -12 -83 -15 -21 -47 -2 -63 -89 -58 -82\n10 74 52 4 86 60 11 28 17 88 13\n1 0" }, { "input": "100\n3 -66 -17 54 24 -29 76 89 32 -37 93 -16 99 -25 51 78 23 68 -95 59 18 34 -45 77 9 39 -10 19 8 73 -5 60 12 31 0 2 26 40 48 30 52 49 27 4 87 57 85 58 -61 50 83 80 69 67 91 97 -96 11 100 56 82 53 13 -92 -72 70 1 -94 -63 47 21 14 74 7 6 33 55 65 64 -41 81 42 36 28 38 20 43 71 90 -88 22 84 -86 15 75 62 44 35 98 46", "output": "19 -66 -17 -29 -37 -16 -25 -95 -45 -10 -5 -61 -96 -92 -72 -94 -63 -41 -88 -86\n80 3 54 24 76 89 32 93 99 51 78 23 68 59 18 34 77 9 39 19 8 73 60 12 31 2 26 40 48 30 52 49 27 4 87 57 85 58 50 83 80 69 67 91 97 11 100 56 82 53 13 70 1 47 21 14 74 7 6 33 55 65 64 81 42 36 28 38 20 43 71 90 22 84 15 75 62 44 35 98 46\n1 0" }, { "input": "100\n-17 16 -70 32 -60 75 -100 -9 -68 -30 -42 86 -88 -98 -47 -5 58 -14 -94 -73 -80 -51 -66 -85 -53 49 -25 -3 -45 -69 -11 -64 83 74 -65 67 13 -91 81 6 -90 -54 -12 -39 0 -24 -71 -41 -44 57 -93 -20 -92 18 -43 -52 -55 -84 -89 -19 40 -4 -99 -26 -87 -36 -56 -61 -62 37 -95 -28 63 23 35 -82 1 -2 -78 -96 -21 -77 -76 -27 -10 -97 -8 46 -15 -48 -34 -59 -7 -29 50 -33 -72 -79 22 38", "output": "75 -17 -70 -60 -100 -9 -68 -30 -42 -88 -98 -47 -5 -14 -94 -73 -80 -51 -66 -85 -53 -25 -3 -45 -69 -11 -64 -65 -91 -90 -54 -12 -39 -24 -71 -41 -44 -93 -20 -92 -43 -52 -55 -84 -89 -19 -4 -99 -26 -87 -36 -56 -61 -62 -95 -28 -82 -2 -78 -96 -21 -77 -76 -27 -10 -97 -8 -15 -48 -34 -59 -7 -29 -33 -72 -79\n24 16 32 75 86 58 49 83 74 67 13 81 6 57 18 40 37 63 23 35 1 46 50 22 38\n1 0" }, { "input": "100\n-97 -90 61 78 87 -52 -3 65 83 38 30 -60 35 -50 -73 -77 44 -32 -81 17 -67 58 -6 -34 47 -28 71 -45 69 -80 -4 -7 -57 -79 43 -27 -31 29 16 -89 -21 -93 95 -82 74 -5 -70 -20 -18 36 -64 -66 72 53 62 -68 26 15 76 -40 -99 8 59 88 49 -23 9 10 56 -48 -98 0 100 -54 25 94 13 -63 42 39 -1 55 24 -12 75 51 41 84 -96 -85 -2 -92 14 -46 -91 -19 -11 -86 22 -37", "output": "51 -97 -90 -52 -3 -60 -50 -73 -77 -32 -81 -67 -6 -34 -28 -45 -80 -4 -7 -57 -79 -27 -31 -89 -21 -93 -82 -5 -70 -20 -18 -64 -66 -68 -40 -99 -23 -48 -98 -54 -63 -1 -12 -96 -85 -2 -92 -46 -91 -19 -11 -86\n47 61 78 87 65 83 38 30 35 44 17 58 47 71 69 43 29 16 95 74 36 72 53 62 26 15 76 8 59 88 49 9 10 56 100 25 94 13 42 39 55 24 75 51 41 84 14 22\n2 0 -37" }, { "input": "100\n-75 -60 -18 -92 -71 -9 -37 -34 -82 28 -54 93 -83 -76 -58 -88 -17 -97 64 -39 -96 -81 -10 -98 -47 -100 -22 27 14 -33 -19 -99 87 -66 57 -21 -90 -70 -32 -26 24 -77 -74 13 -44 16 -5 -55 -2 -6 -7 -73 -1 -68 -30 -95 -42 69 0 -20 -79 59 -48 -4 -72 -67 -46 62 51 -52 -86 -40 56 -53 85 -35 -8 49 50 65 29 11 -43 -15 -41 -12 -3 -80 -31 -38 -91 -45 -25 78 94 -23 -63 84 89 -61", "output": "73 -75 -60 -18 -92 -71 -9 -37 -34 -82 -54 -83 -76 -58 -88 -17 -97 -39 -96 -81 -10 -98 -47 -100 -22 -33 -19 -99 -66 -21 -90 -70 -32 -26 -77 -74 -44 -5 -55 -2 -6 -7 -73 -1 -68 -30 -95 -42 -20 -79 -48 -4 -72 -67 -46 -52 -86 -40 -53 -35 -8 -43 -15 -41 -12 -3 -80 -31 -38 -91 -45 -25 -23 -63\n25 28 93 64 27 14 87 57 24 13 16 69 59 62 51 56 85 49 50 65 29 11 78 94 84 89\n2 0 -61" }, { "input": "100\n-87 -48 -76 -1 -10 -17 -22 -19 -27 -99 -43 49 38 -20 -45 -64 44 -96 -35 -74 -65 -41 -21 -75 37 -12 -67 0 -3 5 -80 -93 -81 -97 -47 -63 53 -100 95 -79 -83 -90 -32 88 -77 -16 -23 -54 -28 -4 -73 -98 -25 -39 60 -56 -34 -2 -11 -55 -52 -69 -68 -29 -82 -62 -36 -13 -6 -89 8 -72 18 -15 -50 -71 -70 -92 -42 -78 -61 -9 -30 -85 -91 -94 84 -86 -7 -57 -14 40 -33 51 -26 46 59 -31 -58 -66", "output": "83 -87 -48 -76 -1 -10 -17 -22 -19 -27 -99 -43 -20 -45 -64 -96 -35 -74 -65 -41 -21 -75 -12 -67 -3 -80 -93 -81 -97 -47 -63 -100 -79 -83 -90 -32 -77 -16 -23 -54 -28 -4 -73 -98 -25 -39 -56 -34 -2 -11 -55 -52 -69 -68 -29 -82 -62 -36 -13 -6 -89 -72 -15 -50 -71 -70 -92 -42 -78 -61 -9 -30 -85 -91 -94 -86 -7 -57 -14 -33 -26 -31 -58 -66\n16 49 38 44 37 5 53 95 88 60 8 18 84 40 51 46 59\n1 0" }, { "input": "100\n-95 -28 -43 -72 -11 -24 -37 -35 -44 -66 -45 -62 -96 -51 -55 -23 -31 -26 -59 -17 77 -69 -10 -12 -78 -14 -52 -57 -40 -75 4 -98 -6 7 -53 -3 -90 -63 -8 -20 88 -91 -32 -76 -80 -97 -34 -27 -19 0 70 -38 -9 -49 -67 73 -36 2 81 -39 -65 -83 -64 -18 -94 -79 -58 -16 87 -22 -74 -25 -13 -46 -89 -47 5 -15 -54 -99 56 -30 -60 -21 -86 33 -1 -50 -68 -100 -85 -29 92 -48 -61 42 -84 -93 -41 -82", "output": "85 -95 -28 -43 -72 -11 -24 -37 -35 -44 -66 -45 -62 -96 -51 -55 -23 -31 -26 -59 -17 -69 -10 -12 -78 -14 -52 -57 -40 -75 -98 -6 -53 -3 -90 -63 -8 -20 -91 -32 -76 -80 -97 -34 -27 -19 -38 -9 -49 -67 -36 -39 -65 -83 -64 -18 -94 -79 -58 -16 -22 -74 -25 -13 -46 -89 -47 -15 -54 -99 -30 -60 -21 -86 -1 -50 -68 -100 -85 -29 -48 -61 -84 -93 -41 -82\n14 77 4 7 88 70 73 2 81 87 5 56 33 92 42\n1 0" }, { "input": "100\n-12 -41 57 13 83 -36 53 69 -6 86 -75 87 11 -5 -4 -14 -37 -84 70 2 -73 16 31 34 -45 94 -9 26 27 52 -42 46 96 21 32 7 -18 61 66 -51 95 -48 -76 90 80 -40 89 77 78 54 -30 8 88 33 -24 82 -15 19 1 59 44 64 -97 -60 43 56 35 47 39 50 29 28 -17 -67 74 23 85 -68 79 0 65 55 -3 92 -99 72 93 -71 38 -10 -100 -98 81 62 91 -63 -58 49 -20 22", "output": "35 -12 -41 -36 -6 -75 -5 -4 -14 -37 -84 -73 -45 -9 -42 -18 -51 -48 -76 -40 -30 -24 -15 -97 -60 -17 -67 -68 -3 -99 -71 -10 -100 -98 -63 -58\n63 57 13 83 53 69 86 87 11 70 2 16 31 34 94 26 27 52 46 96 21 32 7 61 66 95 90 80 89 77 78 54 8 88 33 82 19 1 59 44 64 43 56 35 47 39 50 29 28 74 23 85 79 65 55 92 72 93 38 81 62 91 49 22\n2 0 -20" }, { "input": "100\n-34 81 85 -96 50 20 54 86 22 10 -19 52 65 44 30 53 63 71 17 98 -92 4 5 -99 89 -23 48 9 7 33 75 2 47 -56 42 70 -68 57 51 83 82 94 91 45 46 25 95 11 -12 62 -31 -87 58 38 67 97 -60 66 73 -28 13 93 29 59 -49 77 37 -43 -27 0 -16 72 15 79 61 78 35 21 3 8 84 1 -32 36 74 -88 26 100 6 14 40 76 18 90 24 69 80 64 55 41", "output": "19 -34 -96 -19 -92 -99 -23 -56 -68 -12 -31 -87 -60 -28 -49 -43 -27 -16 -32 -88\n80 81 85 50 20 54 86 22 10 52 65 44 30 53 63 71 17 98 4 5 89 48 9 7 33 75 2 47 42 70 57 51 83 82 94 91 45 46 25 95 11 62 58 38 67 97 66 73 13 93 29 59 77 37 72 15 79 61 78 35 21 3 8 84 1 36 74 26 100 6 14 40 76 18 90 24 69 80 64 55 41\n1 0" }, { "input": "100\n-1000 -986 -979 -955 -966 -963 -973 -959 -972 -906 -924 -927 -929 -918 -977 -967 -921 -989 -911 -995 -945 -919 -971 -913 -912 -933 -969 -975 -920 -988 -997 -994 -953 -962 -940 -905 -978 -948 -957 -996 0 -976 -949 -931 -903 -985 -923 -993 -944 -909 -938 -946 -934 -992 -904 -980 -954 -943 -917 -968 -991 -956 -902 -942 -999 -998 -908 -928 -930 -914 -922 -936 -960 -937 -939 -926 -965 -925 -951 -910 -907 -970 -990 -984 -964 -987 -916 -947 -982 -950 -974 -915 -932 -958 -981 -941 -961 -983 -952 -935", "output": "97 -1000 -986 -979 -955 -966 -963 -973 -959 -972 -906 -924 -927 -929 -918 -977 -967 -921 -989 -911 -995 -945 -919 -971 -913 -912 -933 -969 -975 -920 -988 -997 -994 -953 -962 -940 -905 -978 -948 -957 -996 -976 -949 -931 -903 -985 -923 -993 -944 -909 -938 -946 -934 -992 -904 -980 -954 -943 -917 -968 -991 -956 -902 -942 -999 -998 -908 -928 -930 -914 -922 -936 -960 -937 -939 -926 -965 -925 -951 -910 -907 -970 -990 -984 -964 -987 -916 -947 -982 -950 -974 -915 -932 -958 -981 -941 -961 -983\n2 -935 -952\n1 0" }, { "input": "99\n-1000 -986 -979 -955 -966 -963 -973 -959 -972 -906 -924 -927 -929 -918 -977 -967 -921 -989 -911 -995 -945 -919 -971 -913 -912 -933 -969 -975 -920 -988 -997 -994 -953 -962 -940 -905 -978 -948 -957 -996 0 -976 -949 -931 -903 -985 -923 -993 -944 -909 -938 -946 -934 -992 -904 -980 -954 -943 -917 -968 -991 -956 -902 -942 -999 -998 -908 -928 -930 -914 -922 -936 -960 -937 -939 -926 -965 -925 -951 -910 -907 -970 -990 -984 -964 -987 -916 -947 -982 -950 -974 -915 -932 -958 -981 -941 -961 -983 -952", "output": "95 -1000 -986 -979 -955 -966 -963 -973 -959 -972 -906 -924 -927 -929 -918 -977 -967 -921 -989 -911 -995 -945 -919 -971 -913 -912 -933 -969 -975 -920 -988 -997 -994 -953 -962 -940 -905 -978 -948 -957 -996 -976 -949 -931 -903 -985 -923 -993 -944 -909 -938 -946 -934 -992 -904 -980 -954 -943 -917 -968 -991 -956 -902 -942 -999 -998 -908 -928 -930 -914 -922 -936 -960 -937 -939 -926 -965 -925 -951 -910 -907 -970 -990 -984 -964 -987 -916 -947 -982 -950 -974 -915 -932 -958 -981 -941\n2 -952 -983\n2 0 -961" }, { "input": "59\n-990 -876 -641 -726 718 -53 803 -954 894 -265 -587 -665 904 349 754 -978 441 794 -768 -428 -569 -476 188 -620 -290 -333 45 705 -201 109 165 446 13 122 714 -562 -15 -86 -960 43 329 578 287 -776 -14 -71 915 886 -259 337 -495 913 -498 -669 -673 818 225 647 0", "output": "29 -990 -876 -641 -726 -53 -954 -265 -587 -665 -978 -768 -428 -569 -476 -620 -290 -333 -201 -562 -15 -86 -960 -776 -14 -71 -259 -495 -498 -669\n28 718 803 894 904 349 754 441 794 188 45 705 109 165 446 13 122 714 43 329 578 287 915 886 337 913 818 225 647\n2 0 -673" }, { "input": "64\n502 885 -631 -906 735 687 642 -29 -696 -165 -524 15 -129 -663 -846 -501 -651 895 -341 -833 -142 33 -847 688 945 -192 -587 -930 603 849 736 676 788 256 863 -509 319 -49 -807 -158 218 -886 -143 -639 118 -156 -291 325 892 -916 -622 -960 -959 -731 -943 436 -535 861 745 589 -159 376 -182 0", "output": "35 -631 -906 -29 -696 -165 -524 -129 -663 -846 -501 -651 -341 -833 -142 -847 -192 -587 -930 -509 -49 -807 -158 -886 -143 -639 -156 -291 -916 -622 -960 -959 -731 -943 -535 -159\n27 502 885 735 687 642 15 895 33 688 945 603 849 736 676 788 256 863 319 218 118 325 892 436 861 745 589 376\n2 0 -182" }, { "input": "5\n-1 -2 -3 -4 0", "output": "1 -1\n2 -4 -3\n2 0 -2" }, { "input": "3\n-101 101 0", "output": "1 -101\n1 101\n1 0" }, { "input": "21\n-100 -200 -300 -400 -500 -600 -700 -800 -900 -1000 0 100 200 300 400 500 600 700 800 900 1000", "output": "9 -100 -200 -300 -400 -500 -600 -700 -800 -900\n10 100 200 300 400 500 600 700 800 900 1000\n2 0 -1000" }, { "input": "4\n0 -1 -2 -3", "output": "1 -1\n2 -3 -2\n1 0" } ]
1,594,134,623
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
186
6,963,200
n=int(input()) l=list(map(int,input().split())) l.sort() n1=[l[0]] n2=[] n3=[] z=l.count(0) for i in range(1,n): if(l[i]!=0): n2.append(l[i]) print(str(1)+" "+str(n1[0])) print(len(n2),end=" ") for i in n2: print(i,end=" ") print() print(z,end=" ") for i in range(z): print(0,end=" ")
Title: Array Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vitaly has an array of *n* distinct integers. Vitaly wants to divide this array into three non-empty sets so as the following conditions hold: 1. The product of all numbers in the first set is less than zero (<=&lt;<=0). 1. The product of all numbers in the second set is greater than zero (<=&gt;<=0). 1. The product of all numbers in the third set is equal to zero. 1. Each number from the initial array must occur in exactly one set. Help Vitaly. Divide the given array. Input Specification: The first line of the input contains integer *n* (3<=≤<=*n*<=≤<=100). The second line contains *n* space-separated distinct integers *a*1,<=*a*2,<=...,<=*a**n* (|*a**i*|<=≤<=103) — the array elements. Output Specification: In the first line print integer *n*1 (*n*1<=&gt;<=0) — the number of elements in the first set. Then print *n*1 numbers — the elements that got to the first set. In the next line print integer *n*2 (*n*2<=&gt;<=0) — the number of elements in the second set. Then print *n*2 numbers — the elements that got to the second set. In the next line print integer *n*3 (*n*3<=&gt;<=0) — the number of elements in the third set. Then print *n*3 numbers — the elements that got to the third set. The printed sets must meet the described conditions. It is guaranteed that the solution exists. If there are several solutions, you are allowed to print any of them. Demo Input: ['3\n-1 2 0\n', '4\n-1 -2 -3 0\n'] Demo Output: ['1 -1\n1 2\n1 0\n', '1 -1\n2 -3 -2\n1 0\n'] Note: none
```python n=int(input()) l=list(map(int,input().split())) l.sort() n1=[l[0]] n2=[] n3=[] z=l.count(0) for i in range(1,n): if(l[i]!=0): n2.append(l[i]) print(str(1)+" "+str(n1[0])) print(len(n2),end=" ") for i in n2: print(i,end=" ") print() print(z,end=" ") for i in range(z): print(0,end=" ") ```
0
937
A
Olympiad
PROGRAMMING
800
[ "implementation", "sortings" ]
null
null
The recent All-Berland Olympiad in Informatics featured *n* participants with each scoring a certain amount of points. As the head of the programming committee, you are to determine the set of participants to be awarded with diplomas with respect to the following criteria: - At least one participant should get a diploma. - None of those with score equal to zero should get awarded. - When someone is awarded, all participants with score not less than his score should also be awarded. Determine the number of ways to choose a subset of participants that will receive the diplomas.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of participants. The next line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=600) — participants' scores. It's guaranteed that at least one participant has non-zero score.
Print a single integer — the desired number of ways.
[ "4\n1 3 3 2\n", "3\n1 1 1\n", "4\n42 0 0 42\n" ]
[ "3\n", "1\n", "1\n" ]
There are three ways to choose a subset in sample case one. 1. Only participants with 3 points will get diplomas. 1. Participants with 2 or 3 points will get diplomas. 1. Everyone will get a diploma! The only option in sample case two is to award everyone. Note that in sample case three participants with zero scores cannot get anything.
500
[ { "input": "4\n1 3 3 2", "output": "3" }, { "input": "3\n1 1 1", "output": "1" }, { "input": "4\n42 0 0 42", "output": "1" }, { "input": "10\n1 0 1 0 1 0 0 0 0 1", "output": "1" }, { "input": "10\n572 471 540 163 50 30 561 510 43 200", "output": "10" }, { "input": "100\n122 575 426 445 172 81 247 429 97 202 175 325 382 384 417 356 132 502 328 537 57 339 518 211 479 306 140 168 268 16 140 263 593 249 391 310 555 468 231 180 157 18 334 328 276 155 21 280 322 545 111 267 467 274 291 304 235 34 365 180 21 95 501 552 325 331 302 353 296 22 289 399 7 466 32 302 568 333 75 192 284 10 94 128 154 512 9 480 243 521 551 492 420 197 207 125 367 117 438 600", "output": "94" }, { "input": "100\n600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600", "output": "1" }, { "input": "78\n5 4 13 2 5 6 2 10 10 1 2 6 7 9 6 3 5 7 1 10 2 2 7 0 2 11 11 3 1 13 3 10 6 2 0 3 0 5 0 1 4 11 1 1 7 0 12 7 5 12 0 2 12 9 8 3 4 3 4 11 4 10 2 3 10 12 5 6 1 11 2 0 8 7 9 1 3 12", "output": "13" }, { "input": "34\n220 387 408 343 184 447 197 307 337 414 251 319 426 322 347 242 208 412 188 185 241 235 216 259 331 372 322 284 444 384 214 297 389 391", "output": "33" }, { "input": "100\n1 2 1 0 3 0 2 0 0 1 2 0 1 3 0 3 3 1 3 0 0 2 1 2 2 1 3 3 3 3 3 2 0 0 2 1 2 3 2 3 0 1 1 3 3 2 0 3 1 0 2 2 2 1 2 3 2 1 0 3 0 2 0 3 0 2 1 0 3 1 0 2 2 1 3 1 3 0 2 3 3 1 1 3 1 3 0 3 2 0 2 3 3 0 2 0 2 0 1 3", "output": "3" }, { "input": "100\n572 471 540 163 50 30 561 510 43 200 213 387 500 424 113 487 357 333 294 337 435 202 447 494 485 465 161 344 470 559 104 356 393 207 224 213 511 514 60 386 149 216 392 229 429 173 165 401 395 150 127 579 344 390 529 296 225 425 318 79 465 447 177 110 367 212 459 270 41 500 277 567 125 436 178 9 214 342 203 112 144 24 79 155 495 556 40 549 463 281 241 316 2 246 1 396 510 293 332 55", "output": "93" }, { "input": "99\n5 4 13 2 5 6 2 10 10 1 2 6 7 9 6 3 5 7 1 10 2 2 7 0 2 11 11 3 1 13 3 10 6 2 0 3 0 5 0 1 4 11 1 1 7 0 12 7 5 12 0 2 12 9 8 3 4 3 4 11 4 10 2 3 10 12 5 6 1 11 2 0 8 7 9 1 3 12 2 3 9 3 7 13 7 13 0 11 8 12 2 5 9 4 0 6 6 2 13", "output": "13" }, { "input": "99\n1 0 1 0 1 0 0 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1", "output": "1" }, { "input": "99\n21 74 25 44 71 80 46 28 96 1 74 24 81 83 16 55 31 1 27 36 56 38 17 10 78 5 39 67 67 15 39 62 92 48 90 9 54 67 30 79 56 17 33 27 75 54 20 79 21 44 10 66 66 73 90 3 34 33 64 79 20 94 0 51 24 30 1 52 95 21 88 98 6 65 31 1 67 32 74 91 83 9 93 27 53 11 8 79 42 20 50 91 19 96 6 24 66 16 37", "output": "61" }, { "input": "2\n0 1", "output": "1" }, { "input": "2\n0 600", "output": "1" }, { "input": "4\n1 1 1 2", "output": "2" }, { "input": "4\n0 0 1 2", "output": "2" }, { "input": "1\n5", "output": "1" }, { "input": "2\n0 5", "output": "1" }, { "input": "5\n1 0 0 1 2", "output": "2" } ]
1,621,612,580
2,147,483,647
Python 3
OK
TESTS
21
62
0
n=int(input()) s=set(map(int,input().split())) s.discard(0) print(len(s))
Title: Olympiad Time Limit: None seconds Memory Limit: None megabytes Problem Description: The recent All-Berland Olympiad in Informatics featured *n* participants with each scoring a certain amount of points. As the head of the programming committee, you are to determine the set of participants to be awarded with diplomas with respect to the following criteria: - At least one participant should get a diploma. - None of those with score equal to zero should get awarded. - When someone is awarded, all participants with score not less than his score should also be awarded. Determine the number of ways to choose a subset of participants that will receive the diplomas. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of participants. The next line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=600) — participants' scores. It's guaranteed that at least one participant has non-zero score. Output Specification: Print a single integer — the desired number of ways. Demo Input: ['4\n1 3 3 2\n', '3\n1 1 1\n', '4\n42 0 0 42\n'] Demo Output: ['3\n', '1\n', '1\n'] Note: There are three ways to choose a subset in sample case one. 1. Only participants with 3 points will get diplomas. 1. Participants with 2 or 3 points will get diplomas. 1. Everyone will get a diploma! The only option in sample case two is to award everyone. Note that in sample case three participants with zero scores cannot get anything.
```python n=int(input()) s=set(map(int,input().split())) s.discard(0) print(len(s)) ```
3
2
A
Winner
PROGRAMMING
1,500
[ "hashing", "implementation" ]
A. Winner
1
64
The winner of the card game popular in Berland "Berlogging" is determined according to the following rules. If at the end of the game there is only one player with the maximum number of points, he is the winner. The situation becomes more difficult if the number of such players is more than one. During each round a player gains or loses a particular number of points. In the course of the game the number of points is registered in the line "name score", where name is a player's name, and score is the number of points gained in this round, which is an integer number. If score is negative, this means that the player has lost in the round. So, if two or more players have the maximum number of points (say, it equals to *m*) at the end of the game, than wins the one of them who scored at least *m* points first. Initially each player has 0 points. It's guaranteed that at the end of the game at least one player has a positive number of points.
The first line contains an integer number *n* (1<=<=≤<=<=*n*<=<=≤<=<=1000), *n* is the number of rounds played. Then follow *n* lines, containing the information about the rounds in "name score" format in chronological order, where name is a string of lower-case Latin letters with the length from 1 to 32, and score is an integer number between -1000 and 1000, inclusive.
Print the name of the winner.
[ "3\nmike 3\nandrew 5\nmike 2\n", "3\nandrew 3\nandrew 2\nmike 5\n" ]
[ "andrew\n", "andrew\n" ]
none
0
[ { "input": "3\nmike 3\nandrew 5\nmike 2", "output": "andrew" }, { "input": "3\nandrew 3\nandrew 2\nmike 5", "output": "andrew" }, { "input": "5\nkaxqybeultn -352\nmgochgrmeyieyskhuourfg -910\nkaxqybeultn 691\nmgochgrmeyieyskhuourfg -76\nkaxqybeultn -303", "output": "kaxqybeultn" }, { "input": "7\nksjuuerbnlklcfdjeyq 312\ndthjlkrvvbyahttifpdewvyslsh -983\nksjuuerbnlklcfdjeyq 268\ndthjlkrvvbyahttifpdewvyslsh 788\nksjuuerbnlklcfdjeyq -79\nksjuuerbnlklcfdjeyq -593\nksjuuerbnlklcfdjeyq 734", "output": "ksjuuerbnlklcfdjeyq" }, { "input": "12\natrtthfpcvishmqbakprquvnejr 185\natrtthfpcvishmqbakprquvnejr -699\natrtthfpcvishmqbakprquvnejr -911\natrtthfpcvishmqbakprquvnejr -220\nfcgslzkicjrpbqaifgweyzreajjfdo 132\nfcgslzkicjrpbqaifgweyzreajjfdo -242\nm 177\nm -549\natrtthfpcvishmqbakprquvnejr -242\nm 38\natrtthfpcvishmqbakprquvnejr -761\nfcgslzkicjrpbqaifgweyzreajjfdo 879", "output": "fcgslzkicjrpbqaifgweyzreajjfdo" }, { "input": "15\naawtvezfntstrcpgbzjbf 681\nzhahpvqiptvksnbjkdvmknb -74\naawtvezfntstrcpgbzjbf 661\njpdwmyke 474\naawtvezfntstrcpgbzjbf -547\naawtvezfntstrcpgbzjbf 600\nzhahpvqiptvksnbjkdvmknb -11\njpdwmyke 711\nbjmj 652\naawtvezfntstrcpgbzjbf -1000\naawtvezfntstrcpgbzjbf -171\nbjmj -302\naawtvezfntstrcpgbzjbf 961\nzhahpvqiptvksnbjkdvmknb 848\nbjmj -735", "output": "aawtvezfntstrcpgbzjbf" }, { "input": "17\nqdplghhx -649\nivhgbxiv 424\nivhgbxiv -72\nivhgbxiv 479\nugowfouebkelargxylsxn 83\nugowfouebkelargxylsxn -840\nivhgbxiv 382\nqdplghhx -904\nivhgbxiv -710\nugowfouebkelargxylsxn -838\nqdplghhx -974\nqdplghhx 571\nivhgbxiv -145\nugowfouebkelargxylsxn -788\nivhgbxiv 209\nivhgbxiv 420\nqdplghhx -158", "output": "ivhgbxiv" } ]
1,559,375,253
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
186
0
m=[] c=[] indn=[] pt=[] class p: def __init__(self,nm,sc): self.nm=nm self.sc=sc for n in range(int(input())): s=[k for k in input().split()] if s[0] not in indn: m.append(p(s[0],0)) indn.append(s[0]) c.append(s[0]) pt.append(int(s[1])) d=max(pt) for n in range(len(pt)): m[indn.index(c[n])].sc+=pt[n] if m[indn.index(c[n])].sc==d: print(m[indn.index(c[n])].nm) break
Title: Winner Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: The winner of the card game popular in Berland "Berlogging" is determined according to the following rules. If at the end of the game there is only one player with the maximum number of points, he is the winner. The situation becomes more difficult if the number of such players is more than one. During each round a player gains or loses a particular number of points. In the course of the game the number of points is registered in the line "name score", where name is a player's name, and score is the number of points gained in this round, which is an integer number. If score is negative, this means that the player has lost in the round. So, if two or more players have the maximum number of points (say, it equals to *m*) at the end of the game, than wins the one of them who scored at least *m* points first. Initially each player has 0 points. It's guaranteed that at the end of the game at least one player has a positive number of points. Input Specification: The first line contains an integer number *n* (1<=<=≤<=<=*n*<=<=≤<=<=1000), *n* is the number of rounds played. Then follow *n* lines, containing the information about the rounds in "name score" format in chronological order, where name is a string of lower-case Latin letters with the length from 1 to 32, and score is an integer number between -1000 and 1000, inclusive. Output Specification: Print the name of the winner. Demo Input: ['3\nmike 3\nandrew 5\nmike 2\n', '3\nandrew 3\nandrew 2\nmike 5\n'] Demo Output: ['andrew\n', 'andrew\n'] Note: none
```python m=[] c=[] indn=[] pt=[] class p: def __init__(self,nm,sc): self.nm=nm self.sc=sc for n in range(int(input())): s=[k for k in input().split()] if s[0] not in indn: m.append(p(s[0],0)) indn.append(s[0]) c.append(s[0]) pt.append(int(s[1])) d=max(pt) for n in range(len(pt)): m[indn.index(c[n])].sc+=pt[n] if m[indn.index(c[n])].sc==d: print(m[indn.index(c[n])].nm) break ```
0
527
A
Playing with Paper
PROGRAMMING
1,100
[ "implementation", "math" ]
null
null
One day Vasya was sitting on a not so interesting Maths lesson and making an origami from a rectangular *a* mm <=×<= *b* mm sheet of paper (*a*<=&gt;<=*b*). Usually the first step in making an origami is making a square piece of paper from the rectangular sheet by folding the sheet along the bisector of the right angle, and cutting the excess part. After making a paper ship from the square piece, Vasya looked on the remaining (*a*<=-<=*b*) mm <=×<= *b* mm strip of paper. He got the idea to use this strip of paper in the same way to make an origami, and then use the remainder (if it exists) and so on. At the moment when he is left with a square piece of paper, he will make the last ship from it and stop. Can you determine how many ships Vasya will make during the lesson?
The first line of the input contains two integers *a*, *b* (1<=≤<=*b*<=&lt;<=*a*<=≤<=1012) — the sizes of the original sheet of paper.
Print a single integer — the number of ships that Vasya will make.
[ "2 1\n", "10 7\n", "1000000000000 1\n" ]
[ "2\n", "6\n", "1000000000000\n" ]
Pictures to the first and second sample test.
500
[ { "input": "2 1", "output": "2" }, { "input": "10 7", "output": "6" }, { "input": "1000000000000 1", "output": "1000000000000" }, { "input": "3 1", "output": "3" }, { "input": "4 1", "output": "4" }, { "input": "3 2", "output": "3" }, { "input": "4 2", "output": "2" }, { "input": "1000 700", "output": "6" }, { "input": "959986566087 524054155168", "output": "90" }, { "input": "4 3", "output": "4" }, { "input": "7 6", "output": "7" }, { "input": "1000 999", "output": "1000" }, { "input": "1000 998", "output": "500" }, { "input": "1000 997", "output": "336" }, { "input": "42 1", "output": "42" }, { "input": "1000 1", "output": "1000" }, { "input": "8 5", "output": "5" }, { "input": "13 8", "output": "6" }, { "input": "987 610", "output": "15" }, { "input": "442 42", "output": "22" }, { "input": "754 466", "output": "13" }, { "input": "1000000000000 999999999999", "output": "1000000000000" }, { "input": "1000000000000 999999999998", "output": "500000000000" }, { "input": "941 14", "output": "74" }, { "input": "998 2", "output": "499" }, { "input": "1000 42", "output": "32" }, { "input": "1000 17", "output": "66" }, { "input": "5 1", "output": "5" }, { "input": "5 2", "output": "4" }, { "input": "5 3", "output": "4" }, { "input": "5 4", "output": "5" }, { "input": "293 210", "output": "17" }, { "input": "787878787878 424242424242", "output": "8" }, { "input": "956722026041 591286729879", "output": "58" }, { "input": "956722026041 365435296162", "output": "58" }, { "input": "628625247282 464807889701", "output": "102" }, { "input": "695928431619 424778620208", "output": "167" }, { "input": "1000000000000 42", "output": "23809523821" }, { "input": "987654345678 23", "output": "42941493300" }, { "input": "10000000001 2", "output": "5000000002" }, { "input": "1000000000000 2", "output": "500000000000" }, { "input": "1000000000000 3", "output": "333333333336" }, { "input": "100000000000 3", "output": "33333333336" }, { "input": "100000000000 23", "output": "4347826109" }, { "input": "999999999997 7", "output": "142857142861" }, { "input": "8589934592 4294967296", "output": "2" } ]
1,643,800,123
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
31
0
[n,m]=[int(x) for x in input().split()] wynik=0 while n!=1 and m!=1: if n>m: n=n-m else: m=m-n wynik+=1 print(wynik)
Title: Playing with Paper Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day Vasya was sitting on a not so interesting Maths lesson and making an origami from a rectangular *a* mm <=×<= *b* mm sheet of paper (*a*<=&gt;<=*b*). Usually the first step in making an origami is making a square piece of paper from the rectangular sheet by folding the sheet along the bisector of the right angle, and cutting the excess part. After making a paper ship from the square piece, Vasya looked on the remaining (*a*<=-<=*b*) mm <=×<= *b* mm strip of paper. He got the idea to use this strip of paper in the same way to make an origami, and then use the remainder (if it exists) and so on. At the moment when he is left with a square piece of paper, he will make the last ship from it and stop. Can you determine how many ships Vasya will make during the lesson? Input Specification: The first line of the input contains two integers *a*, *b* (1<=≤<=*b*<=&lt;<=*a*<=≤<=1012) — the sizes of the original sheet of paper. Output Specification: Print a single integer — the number of ships that Vasya will make. Demo Input: ['2 1\n', '10 7\n', '1000000000000 1\n'] Demo Output: ['2\n', '6\n', '1000000000000\n'] Note: Pictures to the first and second sample test.
```python [n,m]=[int(x) for x in input().split()] wynik=0 while n!=1 and m!=1: if n>m: n=n-m else: m=m-n wynik+=1 print(wynik) ```
0
776
C
Molly's Chemicals
PROGRAMMING
1,800
[ "binary search", "brute force", "data structures", "implementation", "math" ]
null
null
Molly Hooper has *n* different kinds of chemicals arranged in a line. Each of the chemicals has an affection value, The *i*-th of them has affection value *a**i*. Molly wants Sherlock to fall in love with her. She intends to do this by mixing a contiguous segment of chemicals together to make a love potion with total affection value as a non-negative integer power of *k*. Total affection value of a continuous segment of chemicals is the sum of affection values of each chemical in that segment. Help her to do so in finding the total number of such segments.
The first line of input contains two integers, *n* and *k*, the number of chemicals and the number, such that the total affection value is a non-negative power of this number *k*. (1<=≤<=*n*<=≤<=105, 1<=≤<=|*k*|<=≤<=10). Next line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109) — affection values of chemicals.
Output a single integer — the number of valid segments.
[ "4 2\n2 2 2 2\n", "4 -3\n3 -6 -3 12\n" ]
[ "8\n", "3\n" ]
Do keep in mind that *k*<sup class="upper-index">0</sup> = 1. In the first sample, Molly can get following different affection values: - 2: segments [1, 1], [2, 2], [3, 3], [4, 4]; - 4: segments [1, 2], [2, 3], [3, 4]; - 6: segments [1, 3], [2, 4]; - 8: segments [1, 4]. Out of these, 2, 4 and 8 are powers of *k* = 2. Therefore, the answer is 8. In the second sample, Molly can choose segments [1, 2], [3, 3], [3, 4].
1,500
[ { "input": "4 2\n2 2 2 2", "output": "8" }, { "input": "4 -3\n3 -6 -3 12", "output": "3" }, { "input": "14 -9\n-2 -4 62 53 90 41 35 21 85 74 85 57 10 39", "output": "0" }, { "input": "20 9\n90 21 -6 -61 14 -21 -17 -65 -84 -75 -48 56 67 -50 16 65 -79 -61 92 85", "output": "1" }, { "input": "89 -7\n5972 4011 3914 670 3727 2913 6935 6927 2118 6645 7141 3585 9811 2859 459 8870 6578 8667 468 5152 3241 7455 7323 8817 4866 1040 5102 9146 621 5002 396 4967 9822 4200 3899 4416 5225 9415 9606 4802 5589 1798 9094 5453 7163 264 1026 6187 3918 4237 -17 4306 8960 3321 2927 9205 6248 7607 564 364 3503 8149 2235 8278 6249 3987 524 5718 9359 3549 1474 9204 3870 6996 3932 8295 612 6310 4461 1129 6441 3465 4654 7583 3274 6309 4831 4918 558", "output": "0" }, { "input": "10 2\n2 4 8 16 32 64 128 256 512 1024", "output": "10" }, { "input": "10 1\n-1 1 -1 1 -1 1 -1 1 -1 1", "output": "15" }, { "input": "32 2\n8 16384 32768 65536 32 8388608 1048576 16777216 65536 8 16384 128 2097152 1024 16777216 4 8192 8388608 65536 1024 1024 16 8 16 128 2 1024 128 8 33554432 32768 2048", "output": "33" }, { "input": "1 2\n2", "output": "1" }, { "input": "14 2\n2 2 2 2 2 2 2 2 2 2 2 2 2 2", "output": "45" }, { "input": "2 1\n1 1", "output": "2" }, { "input": "10 1\n1 1 1 1 1 1 1 1 1 1", "output": "10" }, { "input": "4 1\n1 1 1 1", "output": "4" }, { "input": "3 1\n1 1 1", "output": "3" }, { "input": "1 1\n1", "output": "1" }, { "input": "10 -1\n1 0 -1 1 0 -1 1 0 -1 1", "output": "28" }, { "input": "4 1\n-1 -2 3 1", "output": "3" }, { "input": "26 -1\n0 0 1 1 -1 -1 0 0 1 0 0 0 -1 1 0 0 -1 1 -1 1 -1 1 0 0 5 -4", "output": "168" }, { "input": "1 -1\n-1", "output": "1" }, { "input": "10 1\n1 2 3 4 5 6 7 8 9 10", "output": "1" }, { "input": "1 2\n1048576", "output": "1" }, { "input": "4 -1\n1 1 1 1", "output": "4" }, { "input": "5 -1\n1 1 1 1 1", "output": "5" }, { "input": "33 2\n536870912 536870912 536870912 536870912 536870912 536870912 536870912 536870912 536870912 536870912 536870912 536870912 536870912 536870912 536870912 536870912 536870912 536870912 536870912 536870912 536870912 536870912 536870912 536870912 536870912 536870912 536870912 536870912 536870912 536870912 536870912 536870912 536870912", "output": "141" }, { "input": "1 1\n-1", "output": "0" } ]
1,587,718,307
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
12
202
6,246,400
import sys input=sys.stdin.readline from collections import deque n,k=map(int,input().split()) a=[int(x) for x in input().split()] d={} d[0]=1 c=0 ans=0 for i in range(n): c+=a[i] if k==1: if c-1 in d: ans+=d[c-1] else: l=k while l<=10**9: if c-l in d: ans+=d[c-l] l*=k if c in d: d[c]+=1 else: d[c]=1 print(ans)
Title: Molly's Chemicals Time Limit: None seconds Memory Limit: None megabytes Problem Description: Molly Hooper has *n* different kinds of chemicals arranged in a line. Each of the chemicals has an affection value, The *i*-th of them has affection value *a**i*. Molly wants Sherlock to fall in love with her. She intends to do this by mixing a contiguous segment of chemicals together to make a love potion with total affection value as a non-negative integer power of *k*. Total affection value of a continuous segment of chemicals is the sum of affection values of each chemical in that segment. Help her to do so in finding the total number of such segments. Input Specification: The first line of input contains two integers, *n* and *k*, the number of chemicals and the number, such that the total affection value is a non-negative power of this number *k*. (1<=≤<=*n*<=≤<=105, 1<=≤<=|*k*|<=≤<=10). Next line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109) — affection values of chemicals. Output Specification: Output a single integer — the number of valid segments. Demo Input: ['4 2\n2 2 2 2\n', '4 -3\n3 -6 -3 12\n'] Demo Output: ['8\n', '3\n'] Note: Do keep in mind that *k*<sup class="upper-index">0</sup> = 1. In the first sample, Molly can get following different affection values: - 2: segments [1, 1], [2, 2], [3, 3], [4, 4]; - 4: segments [1, 2], [2, 3], [3, 4]; - 6: segments [1, 3], [2, 4]; - 8: segments [1, 4]. Out of these, 2, 4 and 8 are powers of *k* = 2. Therefore, the answer is 8. In the second sample, Molly can choose segments [1, 2], [3, 3], [3, 4].
```python import sys input=sys.stdin.readline from collections import deque n,k=map(int,input().split()) a=[int(x) for x in input().split()] d={} d[0]=1 c=0 ans=0 for i in range(n): c+=a[i] if k==1: if c-1 in d: ans+=d[c-1] else: l=k while l<=10**9: if c-l in d: ans+=d[c-l] l*=k if c in d: d[c]+=1 else: d[c]=1 print(ans) ```
0
263
A
Beautiful Matrix
PROGRAMMING
800
[ "implementation" ]
null
null
You've got a 5<=×<=5 matrix, consisting of 24 zeroes and a single number one. Let's index the matrix rows by numbers from 1 to 5 from top to bottom, let's index the matrix columns by numbers from 1 to 5 from left to right. In one move, you are allowed to apply one of the two following transformations to the matrix: 1. Swap two neighboring matrix rows, that is, rows with indexes *i* and *i*<=+<=1 for some integer *i* (1<=≤<=*i*<=&lt;<=5). 1. Swap two neighboring matrix columns, that is, columns with indexes *j* and *j*<=+<=1 for some integer *j* (1<=≤<=*j*<=&lt;<=5). You think that a matrix looks beautiful, if the single number one of the matrix is located in its middle (in the cell that is on the intersection of the third row and the third column). Count the minimum number of moves needed to make the matrix beautiful.
The input consists of five lines, each line contains five integers: the *j*-th integer in the *i*-th line of the input represents the element of the matrix that is located on the intersection of the *i*-th row and the *j*-th column. It is guaranteed that the matrix consists of 24 zeroes and a single number one.
Print a single integer — the minimum number of moves needed to make the matrix beautiful.
[ "0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n", "0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n" ]
[ "3\n", "1\n" ]
none
500
[ { "input": "0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "3" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "1" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "0" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1", "output": "4" }, { "input": "0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "3" }, { "input": "1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "4" }, { "input": "0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "3" }, { "input": "0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "4" }, { "input": "0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "3" }, { "input": "0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "1" }, { "input": "0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0", "output": "1" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0", "output": "3" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0", "output": "1" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0", "output": "3" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0", "output": "4" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0", "output": "3" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0", "output": "3" } ]
1,694,883,458
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
#O(1) matrix = [list(map(int, input().split())) for _ in range(5)] def count_moves_to_beautiful(matrix): row_with_one, col_with_one = -1, -1 for i in range(5): for j in range(5): if matrix[i][j] == 1: row_with_one, col_with_one = i, j break centro (3, 3) row_moves = abs(row_with_one - 2) col_moves = abs(col_with_one - 2) movimientos de fila y columna return row_moves + col_moves moves_needed = count_moves_to_beautiful(matrix) print(moves_needed)
Title: Beautiful Matrix Time Limit: None seconds Memory Limit: None megabytes Problem Description: You've got a 5<=×<=5 matrix, consisting of 24 zeroes and a single number one. Let's index the matrix rows by numbers from 1 to 5 from top to bottom, let's index the matrix columns by numbers from 1 to 5 from left to right. In one move, you are allowed to apply one of the two following transformations to the matrix: 1. Swap two neighboring matrix rows, that is, rows with indexes *i* and *i*<=+<=1 for some integer *i* (1<=≤<=*i*<=&lt;<=5). 1. Swap two neighboring matrix columns, that is, columns with indexes *j* and *j*<=+<=1 for some integer *j* (1<=≤<=*j*<=&lt;<=5). You think that a matrix looks beautiful, if the single number one of the matrix is located in its middle (in the cell that is on the intersection of the third row and the third column). Count the minimum number of moves needed to make the matrix beautiful. Input Specification: The input consists of five lines, each line contains five integers: the *j*-th integer in the *i*-th line of the input represents the element of the matrix that is located on the intersection of the *i*-th row and the *j*-th column. It is guaranteed that the matrix consists of 24 zeroes and a single number one. Output Specification: Print a single integer — the minimum number of moves needed to make the matrix beautiful. Demo Input: ['0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n', '0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n'] Demo Output: ['3\n', '1\n'] Note: none
```python #O(1) matrix = [list(map(int, input().split())) for _ in range(5)] def count_moves_to_beautiful(matrix): row_with_one, col_with_one = -1, -1 for i in range(5): for j in range(5): if matrix[i][j] == 1: row_with_one, col_with_one = i, j break centro (3, 3) row_moves = abs(row_with_one - 2) col_moves = abs(col_with_one - 2) movimientos de fila y columna return row_moves + col_moves moves_needed = count_moves_to_beautiful(matrix) print(moves_needed) ```
-1
818
B
Permutation Game
PROGRAMMING
1,600
[ "implementation" ]
null
null
*n* children are standing in a circle and playing a game. Children's numbers in clockwise order form a permutation *a*1,<=*a*2,<=...,<=*a**n* of length *n*. It is an integer sequence such that each integer from 1 to *n* appears exactly once in it. The game consists of *m* steps. On each step the current leader with index *i* counts out *a**i* people in clockwise order, starting from the next person. The last one to be pointed at by the leader becomes the new leader. You are given numbers *l*1,<=*l*2,<=...,<=*l**m* — indices of leaders in the beginning of each step. Child with number *l*1 is the first leader in the game. Write a program which will restore a possible permutation *a*1,<=*a*2,<=...,<=*a**n*. If there are multiple solutions then print any of them. If there is no solution then print -1.
The first line contains two integer numbers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100). The second line contains *m* integer numbers *l*1,<=*l*2,<=...,<=*l**m* (1<=≤<=*l**i*<=≤<=*n*) — indices of leaders in the beginning of each step.
Print such permutation of *n* numbers *a*1,<=*a*2,<=...,<=*a**n* that leaders in the game will be exactly *l*1,<=*l*2,<=...,<=*l**m* if all the rules are followed. If there are multiple solutions print any of them. If there is no permutation which satisfies all described conditions print -1.
[ "4 5\n2 3 1 4 4\n", "3 3\n3 1 2\n" ]
[ "3 1 2 4 \n", "-1\n" ]
Let's follow leadership in the first example: - Child 2 starts. - Leadership goes from 2 to 2 + *a*<sub class="lower-index">2</sub> = 3. - Leadership goes from 3 to 3 + *a*<sub class="lower-index">3</sub> = 5. As it's greater than 4, it's going in a circle to 1. - Leadership goes from 1 to 1 + *a*<sub class="lower-index">1</sub> = 4. - Leadership goes from 4 to 4 + *a*<sub class="lower-index">4</sub> = 8. Thus in circle it still remains at 4.
0
[ { "input": "4 5\n2 3 1 4 4", "output": "3 1 2 4 " }, { "input": "3 3\n3 1 2", "output": "-1" }, { "input": "1 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "1 " }, { "input": "6 8\n2 5 4 2 5 4 2 5", "output": "1 3 2 4 5 6 " }, { "input": "100 1\n6", "output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 " }, { "input": "10 5\n7 7 9 9 3", "output": "-1" }, { "input": "10 20\n10 1 5 7 1 2 5 3 6 3 9 4 3 4 9 6 8 4 9 6", "output": "-1" }, { "input": "20 15\n11 19 1 8 17 12 3 1 8 17 12 3 1 8 17", "output": "7 1 18 3 4 5 6 9 10 12 8 11 13 14 16 17 15 19 2 20 " }, { "input": "100 100\n96 73 23 74 35 44 75 13 62 50 76 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63 29 45 24 63", "output": "1 2 3 4 5 6 7 8 10 11 12 13 49 14 15 17 18 19 20 21 22 23 51 39 24 25 27 28 16 29 30 32 33 34 9 35 36 37 40 41 42 43 44 31 79 45 46 47 48 26 52 53 54 55 56 57 58 59 60 62 63 88 66 64 65 67 68 69 70 71 72 73 50 61 38 87 74 75 76 78 80 81 82 83 84 85 86 89 90 91 92 93 94 95 96 77 97 98 99 100 " }, { "input": "100 100\n82 51 81 14 37 17 78 92 64 15 8 86 89 8 87 77 66 10 15 12 100 25 92 47 21 78 20 63 13 49 41 36 41 79 16 87 87 69 3 76 80 60 100 49 70 59 72 8 38 71 45 97 71 14 76 54 81 4 59 46 39 29 92 3 49 22 53 99 59 52 74 31 92 43 42 23 44 9 82 47 7 40 12 9 3 55 37 85 46 22 84 52 98 41 21 77 63 17 62 91", "output": "-1" }, { "input": "20 20\n1 20 2 19 3 18 4 17 5 16 6 15 7 14 8 13 9 12 10 11", "output": "19 17 15 13 11 9 7 5 3 1 20 18 16 14 12 10 8 6 4 2 " }, { "input": "20 5\n1 20 2 19 3", "output": "19 17 1 3 5 6 7 8 9 10 11 12 13 14 15 16 18 20 4 2 " }, { "input": "19 19\n1 19 2 18 3 17 4 16 5 15 6 14 7 13 8 12 9 11 10", "output": "-1" }, { "input": "100 100\n1 99 2 98 3 97 4 96 5 95 6 94 7 93 8 92 9 91 10 90 11 89 12 88 13 87 14 86 15 85 16 84 17 83 18 82 19 81 20 80 21 79 22 78 23 77 24 76 25 75 26 74 27 73 28 72 29 71 30 70 31 69 32 68 33 67 34 66 35 65 36 64 37 63 38 62 39 61 40 60 41 59 42 58 43 57 44 56 45 55 46 54 47 53 48 52 49 51 50 50", "output": "98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 100 99 97 95 93 91 89 87 85 83 81 79 77 75 73 71 69 67 65 63 61 59 57 55 53 51 49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 " }, { "input": "51 18\n8 32 24 19 1 29 49 24 39 33 5 37 37 26 17 28 2 19", "output": "-1" }, { "input": "5 5\n1 2 5 2 4", "output": "-1" }, { "input": "6 6\n1 2 1 1 3 6", "output": "-1" }, { "input": "4 4\n4 3 4 2", "output": "-1" }, { "input": "3 3\n2 2 3", "output": "-1" }, { "input": "4 6\n1 1 2 4 4 4", "output": "-1" }, { "input": "9 4\n8 2 8 3", "output": "-1" }, { "input": "4 6\n2 3 1 4 4 1", "output": "-1" }, { "input": "2 3\n1 1 2", "output": "-1" }, { "input": "5 7\n4 3 4 3 3 4 5", "output": "-1" }, { "input": "2 9\n1 1 1 1 2 1 1 1 1", "output": "-1" }, { "input": "4 4\n2 4 4 4", "output": "1 2 3 4 " }, { "input": "3 3\n1 1 3", "output": "-1" }, { "input": "2 5\n1 2 2 1 1", "output": "-1" }, { "input": "4 4\n1 4 1 3", "output": "-1" }, { "input": "3 4\n1 3 1 1", "output": "-1" }, { "input": "4 4\n1 4 1 1", "output": "-1" }, { "input": "66 67\n19 9 60 40 19 48 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58 5", "output": "-1" }, { "input": "3 3\n3 3 2", "output": "-1" }, { "input": "27 28\n8 18 27 24 20 8 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23", "output": "-1" }, { "input": "4 3\n1 1 2", "output": "-1" }, { "input": "4 4\n2 4 2 3", "output": "-1" }, { "input": "2 3\n2 2 1", "output": "-1" }, { "input": "2 2\n2 2", "output": "1 2 " }, { "input": "3 4\n2 3 3 1", "output": "-1" }, { "input": "5 6\n1 4 4 2 1 4", "output": "-1" }, { "input": "4 3\n2 3 4", "output": "-1" }, { "input": "2 3\n1 2 1", "output": "-1" }, { "input": "10 4\n5 6 5 7", "output": "-1" }, { "input": "3 3\n1 1 2", "output": "-1" }, { "input": "4 5\n1 4 1 3 2", "output": "-1" }, { "input": "6 5\n1 2 4 1 3", "output": "-1" } ]
1,516,857,950
4,850
Python 3
WRONG_ANSWER
TESTS
14
62
5,632,000
n, m = [int(x) for x in input().split()] mm = [int(x) for x in input().split()] a = [0] * (n + 1) f = False for i in range(m - 1): r = mm[i + 1] - mm[i] if r <= 0: while r <= 0: r += n if a[mm[i]] == 0: a[mm[i]] = r unused = [] for i in range(1, n + 1): if a.count(i) > 1: f = True break elif a.count(i) == 0: unused.append(i) if f: print(-1) else: for i in range(1, n + 1): if a[i] == 0: print(unused.pop(), end = ' ') else: print(a[i], end = ' ')
Title: Permutation Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: *n* children are standing in a circle and playing a game. Children's numbers in clockwise order form a permutation *a*1,<=*a*2,<=...,<=*a**n* of length *n*. It is an integer sequence such that each integer from 1 to *n* appears exactly once in it. The game consists of *m* steps. On each step the current leader with index *i* counts out *a**i* people in clockwise order, starting from the next person. The last one to be pointed at by the leader becomes the new leader. You are given numbers *l*1,<=*l*2,<=...,<=*l**m* — indices of leaders in the beginning of each step. Child with number *l*1 is the first leader in the game. Write a program which will restore a possible permutation *a*1,<=*a*2,<=...,<=*a**n*. If there are multiple solutions then print any of them. If there is no solution then print -1. Input Specification: The first line contains two integer numbers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100). The second line contains *m* integer numbers *l*1,<=*l*2,<=...,<=*l**m* (1<=≤<=*l**i*<=≤<=*n*) — indices of leaders in the beginning of each step. Output Specification: Print such permutation of *n* numbers *a*1,<=*a*2,<=...,<=*a**n* that leaders in the game will be exactly *l*1,<=*l*2,<=...,<=*l**m* if all the rules are followed. If there are multiple solutions print any of them. If there is no permutation which satisfies all described conditions print -1. Demo Input: ['4 5\n2 3 1 4 4\n', '3 3\n3 1 2\n'] Demo Output: ['3 1 2 4 \n', '-1\n'] Note: Let's follow leadership in the first example: - Child 2 starts. - Leadership goes from 2 to 2 + *a*<sub class="lower-index">2</sub> = 3. - Leadership goes from 3 to 3 + *a*<sub class="lower-index">3</sub> = 5. As it's greater than 4, it's going in a circle to 1. - Leadership goes from 1 to 1 + *a*<sub class="lower-index">1</sub> = 4. - Leadership goes from 4 to 4 + *a*<sub class="lower-index">4</sub> = 8. Thus in circle it still remains at 4.
```python n, m = [int(x) for x in input().split()] mm = [int(x) for x in input().split()] a = [0] * (n + 1) f = False for i in range(m - 1): r = mm[i + 1] - mm[i] if r <= 0: while r <= 0: r += n if a[mm[i]] == 0: a[mm[i]] = r unused = [] for i in range(1, n + 1): if a.count(i) > 1: f = True break elif a.count(i) == 0: unused.append(i) if f: print(-1) else: for i in range(1, n + 1): if a[i] == 0: print(unused.pop(), end = ' ') else: print(a[i], end = ' ') ```
0
937
A
Olympiad
PROGRAMMING
800
[ "implementation", "sortings" ]
null
null
The recent All-Berland Olympiad in Informatics featured *n* participants with each scoring a certain amount of points. As the head of the programming committee, you are to determine the set of participants to be awarded with diplomas with respect to the following criteria: - At least one participant should get a diploma. - None of those with score equal to zero should get awarded. - When someone is awarded, all participants with score not less than his score should also be awarded. Determine the number of ways to choose a subset of participants that will receive the diplomas.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of participants. The next line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=600) — participants' scores. It's guaranteed that at least one participant has non-zero score.
Print a single integer — the desired number of ways.
[ "4\n1 3 3 2\n", "3\n1 1 1\n", "4\n42 0 0 42\n" ]
[ "3\n", "1\n", "1\n" ]
There are three ways to choose a subset in sample case one. 1. Only participants with 3 points will get diplomas. 1. Participants with 2 or 3 points will get diplomas. 1. Everyone will get a diploma! The only option in sample case two is to award everyone. Note that in sample case three participants with zero scores cannot get anything.
500
[ { "input": "4\n1 3 3 2", "output": "3" }, { "input": "3\n1 1 1", "output": "1" }, { "input": "4\n42 0 0 42", "output": "1" }, { "input": "10\n1 0 1 0 1 0 0 0 0 1", "output": "1" }, { "input": "10\n572 471 540 163 50 30 561 510 43 200", "output": "10" }, { "input": "100\n122 575 426 445 172 81 247 429 97 202 175 325 382 384 417 356 132 502 328 537 57 339 518 211 479 306 140 168 268 16 140 263 593 249 391 310 555 468 231 180 157 18 334 328 276 155 21 280 322 545 111 267 467 274 291 304 235 34 365 180 21 95 501 552 325 331 302 353 296 22 289 399 7 466 32 302 568 333 75 192 284 10 94 128 154 512 9 480 243 521 551 492 420 197 207 125 367 117 438 600", "output": "94" }, { "input": "100\n600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600", "output": "1" }, { "input": "78\n5 4 13 2 5 6 2 10 10 1 2 6 7 9 6 3 5 7 1 10 2 2 7 0 2 11 11 3 1 13 3 10 6 2 0 3 0 5 0 1 4 11 1 1 7 0 12 7 5 12 0 2 12 9 8 3 4 3 4 11 4 10 2 3 10 12 5 6 1 11 2 0 8 7 9 1 3 12", "output": "13" }, { "input": "34\n220 387 408 343 184 447 197 307 337 414 251 319 426 322 347 242 208 412 188 185 241 235 216 259 331 372 322 284 444 384 214 297 389 391", "output": "33" }, { "input": "100\n1 2 1 0 3 0 2 0 0 1 2 0 1 3 0 3 3 1 3 0 0 2 1 2 2 1 3 3 3 3 3 2 0 0 2 1 2 3 2 3 0 1 1 3 3 2 0 3 1 0 2 2 2 1 2 3 2 1 0 3 0 2 0 3 0 2 1 0 3 1 0 2 2 1 3 1 3 0 2 3 3 1 1 3 1 3 0 3 2 0 2 3 3 0 2 0 2 0 1 3", "output": "3" }, { "input": "100\n572 471 540 163 50 30 561 510 43 200 213 387 500 424 113 487 357 333 294 337 435 202 447 494 485 465 161 344 470 559 104 356 393 207 224 213 511 514 60 386 149 216 392 229 429 173 165 401 395 150 127 579 344 390 529 296 225 425 318 79 465 447 177 110 367 212 459 270 41 500 277 567 125 436 178 9 214 342 203 112 144 24 79 155 495 556 40 549 463 281 241 316 2 246 1 396 510 293 332 55", "output": "93" }, { "input": "99\n5 4 13 2 5 6 2 10 10 1 2 6 7 9 6 3 5 7 1 10 2 2 7 0 2 11 11 3 1 13 3 10 6 2 0 3 0 5 0 1 4 11 1 1 7 0 12 7 5 12 0 2 12 9 8 3 4 3 4 11 4 10 2 3 10 12 5 6 1 11 2 0 8 7 9 1 3 12 2 3 9 3 7 13 7 13 0 11 8 12 2 5 9 4 0 6 6 2 13", "output": "13" }, { "input": "99\n1 0 1 0 1 0 0 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1", "output": "1" }, { "input": "99\n21 74 25 44 71 80 46 28 96 1 74 24 81 83 16 55 31 1 27 36 56 38 17 10 78 5 39 67 67 15 39 62 92 48 90 9 54 67 30 79 56 17 33 27 75 54 20 79 21 44 10 66 66 73 90 3 34 33 64 79 20 94 0 51 24 30 1 52 95 21 88 98 6 65 31 1 67 32 74 91 83 9 93 27 53 11 8 79 42 20 50 91 19 96 6 24 66 16 37", "output": "61" }, { "input": "2\n0 1", "output": "1" }, { "input": "2\n0 600", "output": "1" }, { "input": "4\n1 1 1 2", "output": "2" }, { "input": "4\n0 0 1 2", "output": "2" }, { "input": "1\n5", "output": "1" }, { "input": "2\n0 5", "output": "1" }, { "input": "5\n1 0 0 1 2", "output": "2" } ]
1,592,680,166
2,147,483,647
Python 3
OK
TESTS
21
109
0
n=int(input()) arr=[int(x) for x in input().split()] if 0 in arr: c1=arr.count(0) while c1!=0: arr.remove(0) c1-=1 set1=set(arr) print(len(set1)) else: set1=set(arr) print(len(set1))
Title: Olympiad Time Limit: None seconds Memory Limit: None megabytes Problem Description: The recent All-Berland Olympiad in Informatics featured *n* participants with each scoring a certain amount of points. As the head of the programming committee, you are to determine the set of participants to be awarded with diplomas with respect to the following criteria: - At least one participant should get a diploma. - None of those with score equal to zero should get awarded. - When someone is awarded, all participants with score not less than his score should also be awarded. Determine the number of ways to choose a subset of participants that will receive the diplomas. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of participants. The next line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=600) — participants' scores. It's guaranteed that at least one participant has non-zero score. Output Specification: Print a single integer — the desired number of ways. Demo Input: ['4\n1 3 3 2\n', '3\n1 1 1\n', '4\n42 0 0 42\n'] Demo Output: ['3\n', '1\n', '1\n'] Note: There are three ways to choose a subset in sample case one. 1. Only participants with 3 points will get diplomas. 1. Participants with 2 or 3 points will get diplomas. 1. Everyone will get a diploma! The only option in sample case two is to award everyone. Note that in sample case three participants with zero scores cannot get anything.
```python n=int(input()) arr=[int(x) for x in input().split()] if 0 in arr: c1=arr.count(0) while c1!=0: arr.remove(0) c1-=1 set1=set(arr) print(len(set1)) else: set1=set(arr) print(len(set1)) ```
3
76
D
Plus and xor
PROGRAMMING
1,700
[ "dp", "greedy", "math" ]
D. Plus and xor
0
256
Bitwise exclusive OR (or bitwise addition modulo two) is a binary operation which is equivalent to applying logical exclusive OR to every pair of bits located on the same positions in binary notation of operands. In other words, a binary digit of the result is equal to 1 if and only if bits on the respective positions in the operands are different. For example, if *X*<==<=10910<==<=11011012, *Y*<==<=4110<==<=1010012, then: Write a program, which takes two non-negative integers *A* and *B* as an input and finds two non-negative integers *X* and *Y*, which satisfy the following conditions: - *A*<==<=*X*<=+<=*Y* - *B* <==<= *X* xor *Y*, where xor is bitwise exclusive or. - *X* is the smallest number among all numbers for which the first two conditions are true.
The first line contains integer number *A* and the second line contains integer number *B* (0<=≤<=*A*,<=*B*<=≤<=264<=-<=1).
The only output line should contain two integer non-negative numbers *X* and *Y*. Print the only number -1 if there is no answer.
[ "142\n76\n" ]
[ "33 109\n" ]
none
0
[ { "input": "142\n76", "output": "33 109" }, { "input": "638\n126", "output": "256 382" }, { "input": "1639\n1176", "output": "-1" }, { "input": "12608\n0", "output": "6304 6304" }, { "input": "104066\n104066", "output": "0 104066" }, { "input": "1024996\n990106", "output": "17445 1007551" }, { "input": "1215996781\n108302929", "output": "553846926 662149855" }, { "input": "1870807699\n259801747", "output": "805502976 1065304723" }, { "input": "339671107814\n208405902980", "output": "65632602417 274038505397" }, { "input": "1367480970723947\n584615739735395", "output": "391432615494276 976048355229671" }, { "input": "9992164445234764941\n8162963574901971597", "output": "914600435166396672 9077564010068368269" } ]
1,535,087,778
2,147,483,647
Python 3
OK
TESTS
11
109
0
a = int(input()) b = int(input()) x = (a - b) // 2 y = a - x if x ^ y == b: print(x, y) else: print(-1)
Title: Plus and xor Time Limit: 0 seconds Memory Limit: 256 megabytes Problem Description: Bitwise exclusive OR (or bitwise addition modulo two) is a binary operation which is equivalent to applying logical exclusive OR to every pair of bits located on the same positions in binary notation of operands. In other words, a binary digit of the result is equal to 1 if and only if bits on the respective positions in the operands are different. For example, if *X*<==<=10910<==<=11011012, *Y*<==<=4110<==<=1010012, then: Write a program, which takes two non-negative integers *A* and *B* as an input and finds two non-negative integers *X* and *Y*, which satisfy the following conditions: - *A*<==<=*X*<=+<=*Y* - *B* <==<= *X* xor *Y*, where xor is bitwise exclusive or. - *X* is the smallest number among all numbers for which the first two conditions are true. Input Specification: The first line contains integer number *A* and the second line contains integer number *B* (0<=≤<=*A*,<=*B*<=≤<=264<=-<=1). Output Specification: The only output line should contain two integer non-negative numbers *X* and *Y*. Print the only number -1 if there is no answer. Demo Input: ['142\n76\n'] Demo Output: ['33 109\n'] Note: none
```python a = int(input()) b = int(input()) x = (a - b) // 2 y = a - x if x ^ y == b: print(x, y) else: print(-1) ```
3
131
A
cAPS lOCK
PROGRAMMING
1,000
[ "implementation", "strings" ]
null
null
wHAT DO WE NEED cAPS LOCK FOR? Caps lock is a computer keyboard key. Pressing it sets an input mode in which typed letters are capital by default. If it is pressed by accident, it leads to accidents like the one we had in the first passage. Let's consider that a word has been typed with the Caps lock key accidentally switched on, if: - either it only contains uppercase letters; - or all letters except for the first one are uppercase. In this case we should automatically change the case of all letters. For example, the case of the letters that form words "hELLO", "HTTP", "z" should be changed. Write a program that applies the rule mentioned above. If the rule cannot be applied, the program should leave the word unchanged.
The first line of the input data contains a word consisting of uppercase and lowercase Latin letters. The word's length is from 1 to 100 characters, inclusive.
Print the result of the given word's processing.
[ "cAPS\n", "Lock\n" ]
[ "Caps", "Lock\n" ]
none
500
[ { "input": "cAPS", "output": "Caps" }, { "input": "Lock", "output": "Lock" }, { "input": "cAPSlOCK", "output": "cAPSlOCK" }, { "input": "CAPs", "output": "CAPs" }, { "input": "LoCK", "output": "LoCK" }, { "input": "OOPS", "output": "oops" }, { "input": "oops", "output": "oops" }, { "input": "a", "output": "A" }, { "input": "A", "output": "a" }, { "input": "aA", "output": "Aa" }, { "input": "Zz", "output": "Zz" }, { "input": "Az", "output": "Az" }, { "input": "zA", "output": "Za" }, { "input": "AAA", "output": "aaa" }, { "input": "AAa", "output": "AAa" }, { "input": "AaR", "output": "AaR" }, { "input": "Tdr", "output": "Tdr" }, { "input": "aTF", "output": "Atf" }, { "input": "fYd", "output": "fYd" }, { "input": "dsA", "output": "dsA" }, { "input": "fru", "output": "fru" }, { "input": "hYBKF", "output": "Hybkf" }, { "input": "XweAR", "output": "XweAR" }, { "input": "mogqx", "output": "mogqx" }, { "input": "eOhEi", "output": "eOhEi" }, { "input": "nkdku", "output": "nkdku" }, { "input": "zcnko", "output": "zcnko" }, { "input": "lcccd", "output": "lcccd" }, { "input": "vwmvg", "output": "vwmvg" }, { "input": "lvchf", "output": "lvchf" }, { "input": "IUNVZCCHEWENCHQQXQYPUJCRDZLUXCLJHXPHBXEUUGNXOOOPBMOBRIBHHMIRILYJGYYGFMTMFSVURGYHUWDRLQVIBRLPEVAMJQYO", "output": "iunvzcchewenchqqxqypujcrdzluxcljhxphbxeuugnxooopbmobribhhmirilyjgyygfmtmfsvurgyhuwdrlqvibrlpevamjqyo" }, { "input": "OBHSZCAMDXEJWOZLKXQKIVXUUQJKJLMMFNBPXAEFXGVNSKQLJGXHUXHGCOTESIVKSFMVVXFVMTEKACRIWALAGGMCGFEXQKNYMRTG", "output": "obhszcamdxejwozlkxqkivxuuqjkjlmmfnbpxaefxgvnskqljgxhuxhgcotesivksfmvvxfvmtekacriwalaggmcgfexqknymrtg" }, { "input": "IKJYZIKROIYUUCTHSVSKZTETNNOCMAUBLFJCEVANCADASMZRCNLBZPQRXESHEEMOMEPCHROSRTNBIDXYMEPJSIXSZQEBTEKKUHFS", "output": "ikjyzikroiyuucthsvskztetnnocmaublfjcevancadasmzrcnlbzpqrxesheemomepchrosrtnbidxymepjsixszqebtekkuhfs" }, { "input": "cTKDZNWVYRTFPQLDAUUNSPKTDJTUPPFPRXRSINTVFVNNQNKXWUZUDHZBUSOKTABUEDQKUIVRTTVUREEOBJTSDKJKVEGFXVHXEYPE", "output": "Ctkdznwvyrtfpqldauunspktdjtuppfprxrsintvfvnnqnkxwuzudhzbusoktabuedqkuivrttvureeobjtsdkjkvegfxvhxeype" }, { "input": "uCKJZRGZJCPPLEEYJTUNKOQSWGBMTBQEVPYFPIPEKRVYQNTDPANOIXKMPINNFUSZWCURGBDPYTEKBEKCPMVZPMWAOSHJYMGKOMBQ", "output": "Uckjzrgzjcppleeyjtunkoqswgbmtbqevpyfpipekrvyqntdpanoixkmpinnfuszwcurgbdpytekbekcpmvzpmwaoshjymgkombq" }, { "input": "KETAXTSWAAOBKUOKUQREHIOMVMMRSAEWKGXZKRASwTVNSSFSNIWYNPSTMRADOADEEBURRHPOOBIEUIBGYDJCEKPNLEUCANZYJKMR", "output": "KETAXTSWAAOBKUOKUQREHIOMVMMRSAEWKGXZKRASwTVNSSFSNIWYNPSTMRADOADEEBURRHPOOBIEUIBGYDJCEKPNLEUCANZYJKMR" }, { "input": "ZEKGDMWJPVUWFlNXRLUmWKLMMYSLRQQIBRWDPKWITUIMZYYKOEYGREKHHZRZZUFPVTNIHKGTCCTLOKSZITXXZDMPITHNZUIGDZLE", "output": "ZEKGDMWJPVUWFlNXRLUmWKLMMYSLRQQIBRWDPKWITUIMZYYKOEYGREKHHZRZZUFPVTNIHKGTCCTLOKSZITXXZDMPITHNZUIGDZLE" }, { "input": "TcMbVPCFvnNkCEUUCIFLgBJeCOKuJhIGwXFrhAZjuAhBraMSchBfWwIuHAEbgJOFzGtxDLDXzDSaPCFujGGxgxdlHUIQYRrMFCgJ", "output": "TcMbVPCFvnNkCEUUCIFLgBJeCOKuJhIGwXFrhAZjuAhBraMSchBfWwIuHAEbgJOFzGtxDLDXzDSaPCFujGGxgxdlHUIQYRrMFCgJ" }, { "input": "xFGqoLILNvxARKuIntPfeukFtMbvzDezKpPRAKkIoIvwqNXnehRVwkkXYvuRCeoieBaBfTjwsYhDeCLvBwktntyluoxCYVioXGdm", "output": "xFGqoLILNvxARKuIntPfeukFtMbvzDezKpPRAKkIoIvwqNXnehRVwkkXYvuRCeoieBaBfTjwsYhDeCLvBwktntyluoxCYVioXGdm" }, { "input": "udvqolbxdwbkijwvhlyaelhynmnfgszbhgshlcwdkaibceqomzujndixuzivlsjyjqxzxodzbukxxhwwultvekdfntwpzlhhrIjm", "output": "udvqolbxdwbkijwvhlyaelhynmnfgszbhgshlcwdkaibceqomzujndixuzivlsjyjqxzxodzbukxxhwwultvekdfntwpzlhhrIjm" }, { "input": "jgpwhetqqoncighgzbbaLwwwxkxivuwtokehrgprfgewzcwxkavwoflcgsgbhoeamzbefzoonwsyzisetoydrpufktzgbaycgaeg", "output": "jgpwhetqqoncighgzbbaLwwwxkxivuwtokehrgprfgewzcwxkavwoflcgsgbhoeamzbefzoonwsyzisetoydrpufktzgbaycgaeg" }, { "input": "vyujsazdstbnkxeunedfbolicojzjpufgfemhtmdrswvmuhoivjvonacefqenbqudelmdegxqtbwezsbydmanzutvdgkgrjxzlnc", "output": "vyujsazdstbnkxeunedfbolicojzjpufgfemhtmdrswvmuhoivjvonacefqenbqudelmdegxqtbwezsbydmanzutvdgkgrjxzlnc" }, { "input": "pivqnuqkaofcduvbttztjbuavrqwiqrwkfncmvatoxruelyoecnkpqraiahumiaiqeyjapbqyrsxcdgjbihivtqezvasfmzntdfv", "output": "pivqnuqkaofcduvbttztjbuavrqwiqrwkfncmvatoxruelyoecnkpqraiahumiaiqeyjapbqyrsxcdgjbihivtqezvasfmzntdfv" }, { "input": "upvtbsxswbohxshdrbjxcungzquhuomgxwlryvshshsfvqbrxvcikbglietlpqkiwbhiqpmdwuqosbtdvyxekkaqiwrbsibpoect", "output": "upvtbsxswbohxshdrbjxcungzquhuomgxwlryvshshsfvqbrxvcikbglietlpqkiwbhiqpmdwuqosbtdvyxekkaqiwrbsibpoect" }, { "input": "cTKDZNWVYRTFPQLDAUUNSPKTDJTUPPFPRXRSINTVFVNNQNKXWUZUDHZBUSOKTABUEDQKUIVRTTVUREEOBJTSDKJKVEGFXVHXEYPE", "output": "Ctkdznwvyrtfpqldauunspktdjtuppfprxrsintvfvnnqnkxwuzudhzbusoktabuedqkuivrttvureeobjtsdkjkvegfxvhxeype" }, { "input": "JEGDOFJOFGJHFROGHOFGMHOFGHORGFHMOu", "output": "JEGDOFJOFGJHFROGHOFGMHOFGHORGFHMOu" }, { "input": "aBACABa", "output": "aBACABa" }, { "input": "AAAAAAAAAAAAAAAAAAAAAAAAaa", "output": "AAAAAAAAAAAAAAAAAAAAAAAAaa" }, { "input": "aaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", "output": "aaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" }, { "input": "dDDDDDDDDDDDDD", "output": "Dddddddddddddd" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "z", "output": "Z" }, { "input": "AZ", "output": "az" }, { "input": "Z", "output": "z" }, { "input": "aAAAA", "output": "Aaaaa" }, { "input": "F", "output": "f" } ]
1,689,418,122
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
2
46
0
word = input() if word.isupper(): word = word.lower() word = word.capitalize() if word[0].islower() and word[1].isupper(): word = word.lower() word = word.capitalize() print(word)
Title: cAPS lOCK Time Limit: None seconds Memory Limit: None megabytes Problem Description: wHAT DO WE NEED cAPS LOCK FOR? Caps lock is a computer keyboard key. Pressing it sets an input mode in which typed letters are capital by default. If it is pressed by accident, it leads to accidents like the one we had in the first passage. Let's consider that a word has been typed with the Caps lock key accidentally switched on, if: - either it only contains uppercase letters; - or all letters except for the first one are uppercase. In this case we should automatically change the case of all letters. For example, the case of the letters that form words "hELLO", "HTTP", "z" should be changed. Write a program that applies the rule mentioned above. If the rule cannot be applied, the program should leave the word unchanged. Input Specification: The first line of the input data contains a word consisting of uppercase and lowercase Latin letters. The word's length is from 1 to 100 characters, inclusive. Output Specification: Print the result of the given word's processing. Demo Input: ['cAPS\n', 'Lock\n'] Demo Output: ['Caps', 'Lock\n'] Note: none
```python word = input() if word.isupper(): word = word.lower() word = word.capitalize() if word[0].islower() and word[1].isupper(): word = word.lower() word = word.capitalize() print(word) ```
0
792
C
Divide by Three
PROGRAMMING
2,000
[ "dp", "greedy", "math", "number theory" ]
null
null
A positive integer number *n* is written on a blackboard. It consists of not more than 105 digits. You have to transform it into a beautiful number by erasing some of the digits, and you want to erase as few digits as possible. The number is called beautiful if it consists of at least one digit, doesn't have leading zeroes and is a multiple of 3. For example, 0, 99, 10110 are beautiful numbers, and 00, 03, 122 are not. Write a program which for the given *n* will find a beautiful number such that *n* can be transformed into this number by erasing as few digits as possible. You can erase an arbitraty set of digits. For example, they don't have to go one after another in the number *n*. If it's impossible to obtain a beautiful number, print -1. If there are multiple answers, print any of them.
The first line of input contains *n* — a positive integer number without leading zeroes (1<=≤<=*n*<=&lt;<=10100000).
Print one number — any beautiful number obtained by erasing as few as possible digits. If there is no answer, print <=-<=1.
[ "1033\n", "10\n", "11\n" ]
[ "33\n", "0\n", "-1\n" ]
In the first example it is enough to erase only the first digit to obtain a multiple of 3. But if we erase the first digit, then we obtain a number with a leading zero. So the minimum number of digits to be erased is two.
0
[ { "input": "1033", "output": "33" }, { "input": "10", "output": "0" }, { "input": "11", "output": "-1" }, { "input": "3", "output": "3" }, { "input": "1", "output": "-1" }, { "input": "117", "output": "117" }, { "input": "518", "output": "18" }, { "input": "327", "output": "327" }, { "input": "270461", "output": "70461" }, { "input": "609209", "output": "60909" }, { "input": "110930", "output": "930" }, { "input": "37616145150713688775", "output": "3616145150713688775" }, { "input": "98509135612114839419", "output": "9509135612114839419" }, { "input": "41674994051436988162", "output": "1674994051436988162" }, { "input": "82547062721736129804", "output": "82547062721736129804" }, { "input": "4902501252475186372406731932548506197390793597574544727433297197476846519276598727359617092494798814", "output": "490501252475186372406731932548506197390793597574544727433297197476846519276598727359617092494798814" }, { "input": "1291007209605301446874998623691572528836214969878676835460982410817526074579818247646933326771899122", "output": "1291007209605301446874998623691572528836214969878676835460982410817526074579818247646933326771899122" }, { "input": "5388306043547446322173224045662327678394712363272776811399689704247387317165308057863239568137902157", "output": "538830603547446322173224045662327678394712363272776811399689704247387317165308057863239568137902157" }, { "input": "20000111", "output": "200001" }, { "input": "100222", "output": "1002" }, { "input": "202", "output": "0" }, { "input": "100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000033", "output": "33" }, { "input": "101", "output": "0" }, { "input": "1000000222", "output": "10000002" }, { "input": "1001", "output": "0" }, { "input": "205", "output": "0" }, { "input": "102211", "output": "10221" }, { "input": "100000002022", "output": "1000000002" }, { "input": "20203", "output": "3" }, { "input": "1002001", "output": "100200" }, { "input": "10002223", "output": "100023" }, { "input": "1002223", "output": "10023" }, { "input": "100000231", "output": "10000023" }, { "input": "220", "output": "0" }, { "input": "322", "output": "3" }, { "input": "100000222", "output": "1000002" }, { "input": "10033", "output": "33" }, { "input": "2003302", "output": "330" }, { "input": "10011001", "output": "1001001" }, { "input": "20000000011001111", "output": "200000000001111" }, { "input": "100000000", "output": "0" }, { "input": "1000", "output": "0" }, { "input": "200000000000000000000000000008", "output": "0" }, { "input": "1000000000000222", "output": "10000000000002" }, { "input": "100000000000000000222", "output": "1000000000000000002" }, { "input": "29512", "output": "2952" }, { "input": "88888888888888", "output": "888888888888" }, { "input": "100000000000222", "output": "1000000000002" }, { "input": "11000000", "output": "0" }, { "input": "2200", "output": "0" }, { "input": "10000555", "output": "100005" }, { "input": "1000222", "output": "10002" }, { "input": "10021", "output": "1002" }, { "input": "223", "output": "3" }, { "input": "1013", "output": "3" }, { "input": "100020001", "output": "10002000" }, { "input": "20000000000000000000932", "output": "93" }, { "input": "1010", "output": "0" }, { "input": "2000000002222", "output": "20000000022" }, { "input": "10213", "output": "1023" }, { "input": "109111", "output": "10911" }, { "input": "1010101010", "output": "10001010" }, { "input": "300055", "output": "3000" }, { "input": "200200", "output": "0" }, { "input": "202222", "output": "2022" }, { "input": "4000888", "output": "40008" }, { "input": "200000111", "output": "2000001" }, { "input": "2000000111", "output": "20000001" }, { "input": "1000000", "output": "0" }, { "input": "1003301", "output": "330" }, { "input": "100001", "output": "0" }, { "input": "40000000000000000000888", "output": "400000000000000000008" }, { "input": "100000", "output": "0" }, { "input": "4000000888", "output": "40000008" }, { "input": "334733", "output": "3333" }, { "input": "1000002220", "output": "10000020" }, { "input": "100321", "output": "10032" }, { "input": "101111", "output": "1011" }, { "input": "100000000222", "output": "1000000002" }, { "input": "10001", "output": "0" }, { "input": "7", "output": "-1" }, { "input": "2000000000111", "output": "20000000001" }, { "input": "100000001", "output": "0" }, { "input": "10000000000222", "output": "100000000002" }, { "input": "200000000000000111", "output": "2000000000000001" }, { "input": "404044", "output": "40044" }, { "input": "30202", "output": "300" }, { "input": "20000000000000000111", "output": "200000000000000001" }, { "input": "707", "output": "0" }, { "input": "20000300000000003000050000003", "output": "30000000000300000000003" }, { "input": "400000888", "output": "4000008" }, { "input": "2888", "output": "888" }, { "input": "200111", "output": "2001" }, { "input": "10000000888", "output": "100000008" }, { "input": "40000888", "output": "400008" }, { "input": "40404044", "output": "400044" }, { "input": "5500000000", "output": "0" }, { "input": "100012", "output": "10002" }, { "input": "1000007", "output": "0" }, { "input": "200093", "output": "93" }, { "input": "10000000222", "output": "100000002" }, { "input": "20000000002", "output": "0" }, { "input": "74333", "output": "333" }, { "input": "200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000008", "output": "0" }, { "input": "10000000111", "output": "1000000011" }, { "input": "100007", "output": "0" }, { "input": "20000006711", "output": "200000061" }, { "input": "8059", "output": "9" }, { "input": "8008", "output": "0" }, { "input": "88", "output": "-1" }, { "input": "2002", "output": "0" }, { "input": "2000111", "output": "20001" }, { "input": "100000000100000002", "output": "10000000000000002" }, { "input": "1000000000000000000000000000000000", "output": "0" }, { "input": "10000000000000000222", "output": "100000000000000002" }, { "input": "1000001", "output": "0" }, { "input": "200000000000111", "output": "2000000000001" }, { "input": "2000000002", "output": "0" }, { "input": "2010000100001", "output": "10000100001" }, { "input": "200330", "output": "330" }, { "input": "10000222", "output": "100002" }, { "input": "2005", "output": "0" }, { "input": "100000000000822", "output": "1000000000002" }, { "input": "10000000000000000000000", "output": "0" }, { "input": "7046", "output": "6" }, { "input": "4000117", "output": "400017" }, { "input": "971", "output": "9" }, { "input": "404", "output": "0" }, { "input": "5", "output": "-1" }, { "input": "164", "output": "6" }, { "input": "140", "output": "0" }, { "input": "74", "output": "-1" }, { "input": "2058232", "output": "20232" }, { "input": "4", "output": "-1" }, { "input": "20206", "output": "6" }, { "input": "103310", "output": "330" }, { "input": "100", "output": "0" }, { "input": "417179", "output": "7179" }, { "input": "70558", "output": "558" }, { "input": "298", "output": "9" }, { "input": "7003", "output": "3" }, { "input": "2212", "output": "222" }, { "input": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001", "output": "0" }, { "input": "2000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002", "output": "0" }, { "input": "1002200", "output": "100200" }, { "input": "1222", "output": "222" }, { "input": "101200100", "output": "10100100" }, { "input": "1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003", "output": "3" }, { "input": "20020201", "output": "2002020" }, { "input": "12122", "output": "1122" }, { "input": "20200", "output": "0" }, { "input": "2", "output": "-1" }, { "input": "1000000000000258", "output": "10000000000008" } ]
1,611,948,200
6,200
PyPy 3
WRONG_ANSWER
TESTS
8
108
0
n, c , s= input(), 0, 0 for i in range(len(n)-1): if n[i]=='0':c+=1 s+=int(n[i]) s+=int(n[-1]) n=n.replace('0', '', c) if s%3==0: print(n) else: count=[0]*10 for i in range(10): count[i] = n.count(str(i)) if s%3==1: if count[1]: n=(n.replace('1', '', 1)) elif count[4]: n=(n.replace('4', '', 1)) elif count[7]: n=(n.replace('7', '', 1)) else: if count[2]: n=(n.replace('2', '', 1)) elif count[5]: n=(n.replace('5', '', 1)) elif count[8]: n=(n.replace('8', '', 1)) if count[2]: n=(n.replace('2', '', 1)) elif count[5]: n=(n.replace('5', '', 1)) elif count[8]: n=(n.replace('8', '', 1)) else: if count[2]: n=(n.replace('2', '', 1)) elif count[5]: n=(n.replace('5', '', 1)) elif count[8]: n=(n.replace('8', '', 1)) else: if count[1]: n=(n.replace('1', '', 1)) elif count[4]: n=(n.replace('4', '', 1)) elif count[7]: n=(n.replace('7', '', 1)) if count[1]: n=(n.replace('1', '', 1)) elif count[4]: n=(n.replace('4', '', 1)) elif count[7]: n=(n.replace('7', '', 1)) if(len(n)==0):print(-1) else: print(n)
Title: Divide by Three Time Limit: None seconds Memory Limit: None megabytes Problem Description: A positive integer number *n* is written on a blackboard. It consists of not more than 105 digits. You have to transform it into a beautiful number by erasing some of the digits, and you want to erase as few digits as possible. The number is called beautiful if it consists of at least one digit, doesn't have leading zeroes and is a multiple of 3. For example, 0, 99, 10110 are beautiful numbers, and 00, 03, 122 are not. Write a program which for the given *n* will find a beautiful number such that *n* can be transformed into this number by erasing as few digits as possible. You can erase an arbitraty set of digits. For example, they don't have to go one after another in the number *n*. If it's impossible to obtain a beautiful number, print -1. If there are multiple answers, print any of them. Input Specification: The first line of input contains *n* — a positive integer number without leading zeroes (1<=≤<=*n*<=&lt;<=10100000). Output Specification: Print one number — any beautiful number obtained by erasing as few as possible digits. If there is no answer, print <=-<=1. Demo Input: ['1033\n', '10\n', '11\n'] Demo Output: ['33\n', '0\n', '-1\n'] Note: In the first example it is enough to erase only the first digit to obtain a multiple of 3. But if we erase the first digit, then we obtain a number with a leading zero. So the minimum number of digits to be erased is two.
```python n, c , s= input(), 0, 0 for i in range(len(n)-1): if n[i]=='0':c+=1 s+=int(n[i]) s+=int(n[-1]) n=n.replace('0', '', c) if s%3==0: print(n) else: count=[0]*10 for i in range(10): count[i] = n.count(str(i)) if s%3==1: if count[1]: n=(n.replace('1', '', 1)) elif count[4]: n=(n.replace('4', '', 1)) elif count[7]: n=(n.replace('7', '', 1)) else: if count[2]: n=(n.replace('2', '', 1)) elif count[5]: n=(n.replace('5', '', 1)) elif count[8]: n=(n.replace('8', '', 1)) if count[2]: n=(n.replace('2', '', 1)) elif count[5]: n=(n.replace('5', '', 1)) elif count[8]: n=(n.replace('8', '', 1)) else: if count[2]: n=(n.replace('2', '', 1)) elif count[5]: n=(n.replace('5', '', 1)) elif count[8]: n=(n.replace('8', '', 1)) else: if count[1]: n=(n.replace('1', '', 1)) elif count[4]: n=(n.replace('4', '', 1)) elif count[7]: n=(n.replace('7', '', 1)) if count[1]: n=(n.replace('1', '', 1)) elif count[4]: n=(n.replace('4', '', 1)) elif count[7]: n=(n.replace('7', '', 1)) if(len(n)==0):print(-1) else: print(n) ```
0
952
C
Ravioli Sort
PROGRAMMING
1,600
[ "implementation" ]
null
null
Everybody knows of [spaghetti sort](https://en.wikipedia.org/wiki/Spaghetti_sort). You decided to implement an analog sorting algorithm yourself, but as you survey your pantry you realize you're out of spaghetti! The only type of pasta you have is ravioli, but you are not going to let this stop you... You come up with the following algorithm. For each number in the array *a**i*, build a stack of *a**i* ravioli. The image shows the stack for *a**i*<==<=4. Arrange the stacks in one row in the order in which the corresponding numbers appear in the input array. Find the tallest one (if there are several stacks of maximal height, use the leftmost one). Remove it and add its height to the end of the output array. Shift the stacks in the row so that there is no gap between them. Repeat the procedure until all stacks have been removed. At first you are very happy with your algorithm, but as you try it on more inputs you realize that it doesn't always produce the right sorted array. Turns out when two stacks of ravioli are next to each other (at any step of the process) and differ in height by two or more, the top ravioli of the taller stack slides down on top of the lower stack. Given an input array, figure out whether the described algorithm will sort it correctly.
The first line of input contains a single number *n* (1<=≤<=*n*<=≤<=10) — the size of the array. The second line of input contains *n* space-separated integers *a**i* (1<=≤<=*a**i*<=≤<=100) — the elements of the array.
Output "YES" if the array can be sorted using the described procedure and "NO" if it can not.
[ "3\n1 2 3\n", "3\n3 1 2\n" ]
[ "YES\n", "NO\n" ]
In the second example the array will change even before the tallest stack is chosen for the first time: ravioli from stack of height 3 will slide on the stack of height 1, and the algorithm will output an array {2, 2, 2}.
0
[ { "input": "3\n1 2 3", "output": "YES" }, { "input": "3\n3 1 2", "output": "NO" }, { "input": "1\n13", "output": "YES" }, { "input": "10\n67 67 67 67 67 67 67 67 67 67", "output": "YES" }, { "input": "10\n16 17 16 15 14 15 16 17 16 15", "output": "YES" }, { "input": "4\n54 54 54 55", "output": "YES" }, { "input": "3\n68 67 67", "output": "YES" }, { "input": "5\n46 46 47 46 45", "output": "YES" }, { "input": "4\n14 15 15 16", "output": "YES" }, { "input": "6\n59 59 60 60 59 58", "output": "YES" }, { "input": "3\n40 40 40", "output": "YES" }, { "input": "4\n90 91 90 91", "output": "YES" }, { "input": "10\n9 9 9 10 10 9 8 8 9 9", "output": "YES" }, { "input": "3\n22 23 24", "output": "YES" }, { "input": "9\n71 71 70 70 71 70 69 70 71", "output": "YES" }, { "input": "9\n15 14 14 13 13 12 13 13 14", "output": "YES" }, { "input": "4\n61 60 60 60", "output": "YES" }, { "input": "4\n16 17 17 18", "output": "YES" }, { "input": "6\n87 86 86 86 85 86", "output": "YES" }, { "input": "5\n64 63 63 62 61", "output": "YES" }, { "input": "9\n13 80 13 38 98 85 11 73 74", "output": "NO" }, { "input": "10\n2 83 18 65 58 95 37 51 86 47", "output": "NO" }, { "input": "6\n47 100 96 2 96 43", "output": "NO" }, { "input": "10\n28 61 23 73 61 33 45 55 18 43", "output": "NO" }, { "input": "10\n95 51 52 8 44 39 77 17 96 88", "output": "NO" }, { "input": "5\n14 91 91 91 84", "output": "NO" }, { "input": "4\n92 18 29 93", "output": "NO" }, { "input": "7\n23 37 39 8 72 31 85", "output": "NO" }, { "input": "4\n61 28 3 81", "output": "NO" }, { "input": "4\n83 100 81 75", "output": "NO" }, { "input": "9\n95 7 97 61 90 7 30 65 39", "output": "NO" }, { "input": "3\n90 39 98", "output": "NO" }, { "input": "3\n76 9 12", "output": "NO" }, { "input": "3\n69 26 73", "output": "NO" }, { "input": "10\n55 39 93 42 97 40 36 38 11 97", "output": "NO" }, { "input": "5\n21 57 40 94 17", "output": "NO" }, { "input": "7\n35 91 87 78 17 71 63", "output": "NO" }, { "input": "7\n20 21 95 73 49 98 53", "output": "NO" }, { "input": "8\n46 4 30 85 52 6 84 13", "output": "NO" }, { "input": "10\n79 84 22 38 23 22 33 42 13 96", "output": "NO" } ]
1,644,317,489
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
30
0
t = int(input()) inp = input().split() x = sorted(inp) if x == inp: print("YES") else: print("NO")
Title: Ravioli Sort Time Limit: None seconds Memory Limit: None megabytes Problem Description: Everybody knows of [spaghetti sort](https://en.wikipedia.org/wiki/Spaghetti_sort). You decided to implement an analog sorting algorithm yourself, but as you survey your pantry you realize you're out of spaghetti! The only type of pasta you have is ravioli, but you are not going to let this stop you... You come up with the following algorithm. For each number in the array *a**i*, build a stack of *a**i* ravioli. The image shows the stack for *a**i*<==<=4. Arrange the stacks in one row in the order in which the corresponding numbers appear in the input array. Find the tallest one (if there are several stacks of maximal height, use the leftmost one). Remove it and add its height to the end of the output array. Shift the stacks in the row so that there is no gap between them. Repeat the procedure until all stacks have been removed. At first you are very happy with your algorithm, but as you try it on more inputs you realize that it doesn't always produce the right sorted array. Turns out when two stacks of ravioli are next to each other (at any step of the process) and differ in height by two or more, the top ravioli of the taller stack slides down on top of the lower stack. Given an input array, figure out whether the described algorithm will sort it correctly. Input Specification: The first line of input contains a single number *n* (1<=≤<=*n*<=≤<=10) — the size of the array. The second line of input contains *n* space-separated integers *a**i* (1<=≤<=*a**i*<=≤<=100) — the elements of the array. Output Specification: Output "YES" if the array can be sorted using the described procedure and "NO" if it can not. Demo Input: ['3\n1 2 3\n', '3\n3 1 2\n'] Demo Output: ['YES\n', 'NO\n'] Note: In the second example the array will change even before the tallest stack is chosen for the first time: ravioli from stack of height 3 will slide on the stack of height 1, and the algorithm will output an array {2, 2, 2}.
```python t = int(input()) inp = input().split() x = sorted(inp) if x == inp: print("YES") else: print("NO") ```
0
131
A
cAPS lOCK
PROGRAMMING
1,000
[ "implementation", "strings" ]
null
null
wHAT DO WE NEED cAPS LOCK FOR? Caps lock is a computer keyboard key. Pressing it sets an input mode in which typed letters are capital by default. If it is pressed by accident, it leads to accidents like the one we had in the first passage. Let's consider that a word has been typed with the Caps lock key accidentally switched on, if: - either it only contains uppercase letters; - or all letters except for the first one are uppercase. In this case we should automatically change the case of all letters. For example, the case of the letters that form words "hELLO", "HTTP", "z" should be changed. Write a program that applies the rule mentioned above. If the rule cannot be applied, the program should leave the word unchanged.
The first line of the input data contains a word consisting of uppercase and lowercase Latin letters. The word's length is from 1 to 100 characters, inclusive.
Print the result of the given word's processing.
[ "cAPS\n", "Lock\n" ]
[ "Caps", "Lock\n" ]
none
500
[ { "input": "cAPS", "output": "Caps" }, { "input": "Lock", "output": "Lock" }, { "input": "cAPSlOCK", "output": "cAPSlOCK" }, { "input": "CAPs", "output": "CAPs" }, { "input": "LoCK", "output": "LoCK" }, { "input": "OOPS", "output": "oops" }, { "input": "oops", "output": "oops" }, { "input": "a", "output": "A" }, { "input": "A", "output": "a" }, { "input": "aA", "output": "Aa" }, { "input": "Zz", "output": "Zz" }, { "input": "Az", "output": "Az" }, { "input": "zA", "output": "Za" }, { "input": "AAA", "output": "aaa" }, { "input": "AAa", "output": "AAa" }, { "input": "AaR", "output": "AaR" }, { "input": "Tdr", "output": "Tdr" }, { "input": "aTF", "output": "Atf" }, { "input": "fYd", "output": "fYd" }, { "input": "dsA", "output": "dsA" }, { "input": "fru", "output": "fru" }, { "input": "hYBKF", "output": "Hybkf" }, { "input": "XweAR", "output": "XweAR" }, { "input": "mogqx", "output": "mogqx" }, { "input": "eOhEi", "output": "eOhEi" }, { "input": "nkdku", "output": "nkdku" }, { "input": "zcnko", "output": "zcnko" }, { "input": "lcccd", "output": "lcccd" }, { "input": "vwmvg", "output": "vwmvg" }, { "input": "lvchf", "output": "lvchf" }, { "input": "IUNVZCCHEWENCHQQXQYPUJCRDZLUXCLJHXPHBXEUUGNXOOOPBMOBRIBHHMIRILYJGYYGFMTMFSVURGYHUWDRLQVIBRLPEVAMJQYO", "output": "iunvzcchewenchqqxqypujcrdzluxcljhxphbxeuugnxooopbmobribhhmirilyjgyygfmtmfsvurgyhuwdrlqvibrlpevamjqyo" }, { "input": "OBHSZCAMDXEJWOZLKXQKIVXUUQJKJLMMFNBPXAEFXGVNSKQLJGXHUXHGCOTESIVKSFMVVXFVMTEKACRIWALAGGMCGFEXQKNYMRTG", "output": "obhszcamdxejwozlkxqkivxuuqjkjlmmfnbpxaefxgvnskqljgxhuxhgcotesivksfmvvxfvmtekacriwalaggmcgfexqknymrtg" }, { "input": "IKJYZIKROIYUUCTHSVSKZTETNNOCMAUBLFJCEVANCADASMZRCNLBZPQRXESHEEMOMEPCHROSRTNBIDXYMEPJSIXSZQEBTEKKUHFS", "output": "ikjyzikroiyuucthsvskztetnnocmaublfjcevancadasmzrcnlbzpqrxesheemomepchrosrtnbidxymepjsixszqebtekkuhfs" }, { "input": "cTKDZNWVYRTFPQLDAUUNSPKTDJTUPPFPRXRSINTVFVNNQNKXWUZUDHZBUSOKTABUEDQKUIVRTTVUREEOBJTSDKJKVEGFXVHXEYPE", "output": "Ctkdznwvyrtfpqldauunspktdjtuppfprxrsintvfvnnqnkxwuzudhzbusoktabuedqkuivrttvureeobjtsdkjkvegfxvhxeype" }, { "input": "uCKJZRGZJCPPLEEYJTUNKOQSWGBMTBQEVPYFPIPEKRVYQNTDPANOIXKMPINNFUSZWCURGBDPYTEKBEKCPMVZPMWAOSHJYMGKOMBQ", "output": "Uckjzrgzjcppleeyjtunkoqswgbmtbqevpyfpipekrvyqntdpanoixkmpinnfuszwcurgbdpytekbekcpmvzpmwaoshjymgkombq" }, { "input": "KETAXTSWAAOBKUOKUQREHIOMVMMRSAEWKGXZKRASwTVNSSFSNIWYNPSTMRADOADEEBURRHPOOBIEUIBGYDJCEKPNLEUCANZYJKMR", "output": "KETAXTSWAAOBKUOKUQREHIOMVMMRSAEWKGXZKRASwTVNSSFSNIWYNPSTMRADOADEEBURRHPOOBIEUIBGYDJCEKPNLEUCANZYJKMR" }, { "input": "ZEKGDMWJPVUWFlNXRLUmWKLMMYSLRQQIBRWDPKWITUIMZYYKOEYGREKHHZRZZUFPVTNIHKGTCCTLOKSZITXXZDMPITHNZUIGDZLE", "output": "ZEKGDMWJPVUWFlNXRLUmWKLMMYSLRQQIBRWDPKWITUIMZYYKOEYGREKHHZRZZUFPVTNIHKGTCCTLOKSZITXXZDMPITHNZUIGDZLE" }, { "input": "TcMbVPCFvnNkCEUUCIFLgBJeCOKuJhIGwXFrhAZjuAhBraMSchBfWwIuHAEbgJOFzGtxDLDXzDSaPCFujGGxgxdlHUIQYRrMFCgJ", "output": "TcMbVPCFvnNkCEUUCIFLgBJeCOKuJhIGwXFrhAZjuAhBraMSchBfWwIuHAEbgJOFzGtxDLDXzDSaPCFujGGxgxdlHUIQYRrMFCgJ" }, { "input": "xFGqoLILNvxARKuIntPfeukFtMbvzDezKpPRAKkIoIvwqNXnehRVwkkXYvuRCeoieBaBfTjwsYhDeCLvBwktntyluoxCYVioXGdm", "output": "xFGqoLILNvxARKuIntPfeukFtMbvzDezKpPRAKkIoIvwqNXnehRVwkkXYvuRCeoieBaBfTjwsYhDeCLvBwktntyluoxCYVioXGdm" }, { "input": "udvqolbxdwbkijwvhlyaelhynmnfgszbhgshlcwdkaibceqomzujndixuzivlsjyjqxzxodzbukxxhwwultvekdfntwpzlhhrIjm", "output": "udvqolbxdwbkijwvhlyaelhynmnfgszbhgshlcwdkaibceqomzujndixuzivlsjyjqxzxodzbukxxhwwultvekdfntwpzlhhrIjm" }, { "input": "jgpwhetqqoncighgzbbaLwwwxkxivuwtokehrgprfgewzcwxkavwoflcgsgbhoeamzbefzoonwsyzisetoydrpufktzgbaycgaeg", "output": "jgpwhetqqoncighgzbbaLwwwxkxivuwtokehrgprfgewzcwxkavwoflcgsgbhoeamzbefzoonwsyzisetoydrpufktzgbaycgaeg" }, { "input": "vyujsazdstbnkxeunedfbolicojzjpufgfemhtmdrswvmuhoivjvonacefqenbqudelmdegxqtbwezsbydmanzutvdgkgrjxzlnc", "output": "vyujsazdstbnkxeunedfbolicojzjpufgfemhtmdrswvmuhoivjvonacefqenbqudelmdegxqtbwezsbydmanzutvdgkgrjxzlnc" }, { "input": "pivqnuqkaofcduvbttztjbuavrqwiqrwkfncmvatoxruelyoecnkpqraiahumiaiqeyjapbqyrsxcdgjbihivtqezvasfmzntdfv", "output": "pivqnuqkaofcduvbttztjbuavrqwiqrwkfncmvatoxruelyoecnkpqraiahumiaiqeyjapbqyrsxcdgjbihivtqezvasfmzntdfv" }, { "input": "upvtbsxswbohxshdrbjxcungzquhuomgxwlryvshshsfvqbrxvcikbglietlpqkiwbhiqpmdwuqosbtdvyxekkaqiwrbsibpoect", "output": "upvtbsxswbohxshdrbjxcungzquhuomgxwlryvshshsfvqbrxvcikbglietlpqkiwbhiqpmdwuqosbtdvyxekkaqiwrbsibpoect" }, { "input": "cTKDZNWVYRTFPQLDAUUNSPKTDJTUPPFPRXRSINTVFVNNQNKXWUZUDHZBUSOKTABUEDQKUIVRTTVUREEOBJTSDKJKVEGFXVHXEYPE", "output": "Ctkdznwvyrtfpqldauunspktdjtuppfprxrsintvfvnnqnkxwuzudhzbusoktabuedqkuivrttvureeobjtsdkjkvegfxvhxeype" }, { "input": "JEGDOFJOFGJHFROGHOFGMHOFGHORGFHMOu", "output": "JEGDOFJOFGJHFROGHOFGMHOFGHORGFHMOu" }, { "input": "aBACABa", "output": "aBACABa" }, { "input": "AAAAAAAAAAAAAAAAAAAAAAAAaa", "output": "AAAAAAAAAAAAAAAAAAAAAAAAaa" }, { "input": "aaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", "output": "aaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" }, { "input": "dDDDDDDDDDDDDD", "output": "Dddddddddddddd" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "z", "output": "Z" }, { "input": "AZ", "output": "az" }, { "input": "Z", "output": "z" }, { "input": "aAAAA", "output": "Aaaaa" }, { "input": "F", "output": "f" } ]
1,693,827,918
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
31
0
n=input() n=int(n) for i in range(0,n,1): word=input() found=False for j in range(0,len(word),1): if word[i]!='a': found=True newWord1=word+'a' newWord2='a'+word abc="" if newWord1==newWord1[::-1]: abc=newWord2 else: abc=newWord1 if found==True: print("YES") else: print("NO")
Title: cAPS lOCK Time Limit: None seconds Memory Limit: None megabytes Problem Description: wHAT DO WE NEED cAPS LOCK FOR? Caps lock is a computer keyboard key. Pressing it sets an input mode in which typed letters are capital by default. If it is pressed by accident, it leads to accidents like the one we had in the first passage. Let's consider that a word has been typed with the Caps lock key accidentally switched on, if: - either it only contains uppercase letters; - or all letters except for the first one are uppercase. In this case we should automatically change the case of all letters. For example, the case of the letters that form words "hELLO", "HTTP", "z" should be changed. Write a program that applies the rule mentioned above. If the rule cannot be applied, the program should leave the word unchanged. Input Specification: The first line of the input data contains a word consisting of uppercase and lowercase Latin letters. The word's length is from 1 to 100 characters, inclusive. Output Specification: Print the result of the given word's processing. Demo Input: ['cAPS\n', 'Lock\n'] Demo Output: ['Caps', 'Lock\n'] Note: none
```python n=input() n=int(n) for i in range(0,n,1): word=input() found=False for j in range(0,len(word),1): if word[i]!='a': found=True newWord1=word+'a' newWord2='a'+word abc="" if newWord1==newWord1[::-1]: abc=newWord2 else: abc=newWord1 if found==True: print("YES") else: print("NO") ```
-1
284
B
Cows and Poker Game
PROGRAMMING
1,000
[ "brute force", "implementation" ]
null
null
There are *n* cows playing poker at a table. For the current betting phase, each player's status is either "ALLIN", "IN", or "FOLDED", and does not change throughout the phase. To increase the suspense, a player whose current status is not "FOLDED" may show his/her hand to the table. However, so as not to affect any betting decisions, he/she may only do so if all other players have a status of either "ALLIN" or "FOLDED". The player's own status may be either "ALLIN" or "IN". Find the number of cows that can currently show their hands without affecting any betting decisions.
The first line contains a single integer, *n* (2<=≤<=*n*<=≤<=2·105). The second line contains *n* characters, each either "A", "I", or "F". The *i*-th character is "A" if the *i*-th player's status is "ALLIN", "I" if the *i*-th player's status is "IN", or "F" if the *i*-th player's status is "FOLDED".
The first line should contain a single integer denoting the number of players that can currently show their hands.
[ "6\nAFFAAA\n", "3\nAFI\n" ]
[ "4\n", "1\n" ]
In the first sample, cows 1, 4, 5, and 6 can show their hands. In the second sample, only cow 3 can show her hand.
1,000
[ { "input": "6\nAFFAAA", "output": "4" }, { "input": "3\nAFI", "output": "1" }, { "input": "3\nFFF", "output": "0" }, { "input": "3\nFIF", "output": "1" }, { "input": "3\nAAA", "output": "3" }, { "input": "3\nIII", "output": "0" }, { "input": "3\nIIA", "output": "0" }, { "input": "3\nAFF", "output": "1" }, { "input": "5\nFAFFF", "output": "1" }, { "input": "3\nIAA", "output": "1" }, { "input": "3\nIIF", "output": "0" }, { "input": "2\nFA", "output": "1" }, { "input": "2\nFF", "output": "0" }, { "input": "2\nIF", "output": "1" }, { "input": "5\nAAAAI", "output": "1" }, { "input": "5\nIIIIF", "output": "0" }, { "input": "10\nAAAAAAAAAA", "output": "10" }, { "input": "100\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", "output": "100" }, { "input": "5\nFAIAF", "output": "1" }, { "input": "5\nAIAIF", "output": "0" }, { "input": "5\nFAAII", "output": "0" }, { "input": "5\nAIFFF", "output": "1" }, { "input": "5\nAFAFA", "output": "3" }, { "input": "2\nFA", "output": "1" }, { "input": "8\nAFFFFIAF", "output": "1" }, { "input": "8\nIAAIFFFI", "output": "0" }, { "input": "5\nIIIII", "output": "0" } ]
1,604,344,169
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
5
248
0
n = int(input()) s = input().lower() cnt1 = 0 cnt2 = 0 if len(set(s)) == 1 and s[0] == 'f': print(0) exit(0) for i in range(n): if s[i] == 'i': cnt1 +=1 for i in range(n): if s[i] == 'a': cnt2 +=1 print(max(cnt2 , cnt1))
Title: Cows and Poker Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are *n* cows playing poker at a table. For the current betting phase, each player's status is either "ALLIN", "IN", or "FOLDED", and does not change throughout the phase. To increase the suspense, a player whose current status is not "FOLDED" may show his/her hand to the table. However, so as not to affect any betting decisions, he/she may only do so if all other players have a status of either "ALLIN" or "FOLDED". The player's own status may be either "ALLIN" or "IN". Find the number of cows that can currently show their hands without affecting any betting decisions. Input Specification: The first line contains a single integer, *n* (2<=≤<=*n*<=≤<=2·105). The second line contains *n* characters, each either "A", "I", or "F". The *i*-th character is "A" if the *i*-th player's status is "ALLIN", "I" if the *i*-th player's status is "IN", or "F" if the *i*-th player's status is "FOLDED". Output Specification: The first line should contain a single integer denoting the number of players that can currently show their hands. Demo Input: ['6\nAFFAAA\n', '3\nAFI\n'] Demo Output: ['4\n', '1\n'] Note: In the first sample, cows 1, 4, 5, and 6 can show their hands. In the second sample, only cow 3 can show her hand.
```python n = int(input()) s = input().lower() cnt1 = 0 cnt2 = 0 if len(set(s)) == 1 and s[0] == 'f': print(0) exit(0) for i in range(n): if s[i] == 'i': cnt1 +=1 for i in range(n): if s[i] == 'a': cnt2 +=1 print(max(cnt2 , cnt1)) ```
0
992
C
Nastya and a Wardrobe
PROGRAMMING
1,600
[ "math" ]
null
null
Nastya received a gift on New Year — a magic wardrobe. It is magic because in the end of each month the number of dresses in it doubles (i.e. the number of dresses becomes twice as large as it is in the beginning of the month). Unfortunately, right after the doubling the wardrobe eats one of the dresses (if any) with the 50% probability. It happens every month except the last one in the year. Nastya owns *x* dresses now, so she became interested in the [expected number](https://en.wikipedia.org/wiki/Expected_value) of dresses she will have in one year. Nastya lives in Byteland, so the year lasts for *k*<=+<=1 months. Nastya is really busy, so she wants you to solve this problem. You are the programmer, after all. Also, you should find the answer modulo 109<=+<=7, because it is easy to see that it is always integer.
The only line contains two integers *x* and *k* (0<=≤<=*x*,<=*k*<=≤<=1018), where *x* is the initial number of dresses and *k*<=+<=1 is the number of months in a year in Byteland.
In the only line print a single integer — the expected number of dresses Nastya will own one year later modulo 109<=+<=7.
[ "2 0\n", "2 1\n", "3 2\n" ]
[ "4\n", "7\n", "21\n" ]
In the first example a year consists on only one month, so the wardrobe does not eat dresses at all. In the second example after the first month there are 3 dresses with 50% probability and 4 dresses with 50% probability. Thus, in the end of the year there are 6 dresses with 50% probability and 8 dresses with 50% probability. This way the answer for this test is (6 + 8) / 2 = 7.
1,500
[ { "input": "2 0", "output": "4" }, { "input": "2 1", "output": "7" }, { "input": "3 2", "output": "21" }, { "input": "1 411", "output": "485514976" }, { "input": "1 692", "output": "860080936" }, { "input": "16 8", "output": "7937" }, { "input": "18 12", "output": "143361" }, { "input": "1 1000000000000000000", "output": "719476261" }, { "input": "0 24", "output": "0" }, { "input": "24 0", "output": "48" }, { "input": "1000000000000000000 1", "output": "195" }, { "input": "348612312017571993 87570063840727716", "output": "551271547" }, { "input": "314647997243943415 107188213956410843", "output": "109575135" }, { "input": "375000003 2", "output": "0" }, { "input": "451 938", "output": "598946958" }, { "input": "4 1669", "output": "185365669" }, { "input": "24 347", "output": "860029201" }, { "input": "1619 1813", "output": "481568710" }, { "input": "280 472", "output": "632090765" }, { "input": "1271 237", "output": "27878991" }, { "input": "626 560", "output": "399405853" }, { "input": "167 887", "output": "983959273" }, { "input": "1769 422", "output": "698926874" }, { "input": "160 929", "output": "752935252" }, { "input": "1075 274", "output": "476211777" }, { "input": "1332 332", "output": "47520583" }, { "input": "103872254428948073 97291596742897547", "output": "283633261" }, { "input": "157600018563121064 54027847222622605", "output": "166795759" }, { "input": "514028642164226185 95344332761644668", "output": "718282571" }, { "input": "91859547444219924 75483775868568438", "output": "462306789" }, { "input": "295961633522750187 84483303945499729", "output": "11464805" }, { "input": "8814960236468055 86463151557693391", "output": "430718856" }, { "input": "672751296745170589 13026894786355983", "output": "260355651" }, { "input": "909771081413191574 18862935031728197", "output": "800873185" }, { "input": "883717267463724670 29585639347346605", "output": "188389362" }, { "input": "431620727626880523 47616788361847228", "output": "311078131" }, { "input": "816689044159694273 6475970360049048", "output": "211796030" }, { "input": "313779810374175108 13838123840048842", "output": "438854949" }, { "input": "860936792402722414 59551033597232946", "output": "359730003" }, { "input": "332382902893992163 15483141652464187", "output": "719128379" }, { "input": "225761360057436129 49203610094504526", "output": "54291755" }, { "input": "216006901533424028 8313457244750219", "output": "362896012" }, { "input": "568001660010321225 97167523790774710", "output": "907490480" }, { "input": "904089164817530426 53747406876903279", "output": "702270335" }, { "input": "647858974461637674 18385058205826214", "output": "375141527" }, { "input": "720433754707338458 94180351080265292", "output": "273505123" }, { "input": "268086842387268316 76502855388264782", "output": "288717798" }, { "input": "488603693655520686 79239542983498430", "output": "316399174" }, { "input": "152455635055802121 50394545488662355", "output": "697051907" }, { "input": "585664029992038779 34972826534657555", "output": "699566354" }, { "input": "349532090641396787 12248820623854158", "output": "233938854" }, { "input": "353579407209009179 74469254935824590", "output": "771349161" }, { "input": "491414900908765740 49509676303815755", "output": "237095803" }, { "input": "91142854626119420 900651524977956", "output": "211575546" }, { "input": "73543340229981083 66918326344192076", "output": "710215652" }, { "input": "463958371369193376 89203995753927042", "output": "41857490" }, { "input": "911873413622533246 54684577459651780", "output": "926432198" }, { "input": "316313018463929883 78259904441946885", "output": "36284201" }, { "input": "889560480100219043 54181377424922141", "output": "281123162" }, { "input": "0 3259862395629356", "output": "0" }, { "input": "1 3", "output": "9" }, { "input": "3 1", "output": "11" }, { "input": "1000000007 1", "output": "1000000006" }, { "input": "1000000007 2", "output": "1000000004" }, { "input": "1000000007 0", "output": "0" }, { "input": "1000000007 12", "output": "999995912" }, { "input": "1000000007 70", "output": "729983755" }, { "input": "250000002 1", "output": "0" }, { "input": "1000000007 3", "output": "1000000000" }, { "input": "999999999 0", "output": "999999991" }, { "input": "1000000007 5", "output": "999999976" }, { "input": "1000000007 1000000007", "output": "1000000006" }, { "input": "10000000000000000 0", "output": "860000007" }, { "input": "1000000000000 0", "output": "999986007" }, { "input": "99999999999999999 0", "output": "600000012" }, { "input": "1000000000000000 0", "output": "986000007" } ]
1,598,366,135
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
3
139
0
MOD = int(1e9) def fast_power(x, y): res = 1 x %= MOD while y > 0: if y % 2 == 1: res = (res * x) % MOD x = (x * x) % MOD y = y >> 1 return res x, k = map(int, input().split()) if(x % MOD == 0): print(0) else: a = fast_power(2, k) b = (2 * x - 1) % MOD c = (a * b) % MOD + 1 print(c % MOD)
Title: Nastya and a Wardrobe Time Limit: None seconds Memory Limit: None megabytes Problem Description: Nastya received a gift on New Year — a magic wardrobe. It is magic because in the end of each month the number of dresses in it doubles (i.e. the number of dresses becomes twice as large as it is in the beginning of the month). Unfortunately, right after the doubling the wardrobe eats one of the dresses (if any) with the 50% probability. It happens every month except the last one in the year. Nastya owns *x* dresses now, so she became interested in the [expected number](https://en.wikipedia.org/wiki/Expected_value) of dresses she will have in one year. Nastya lives in Byteland, so the year lasts for *k*<=+<=1 months. Nastya is really busy, so she wants you to solve this problem. You are the programmer, after all. Also, you should find the answer modulo 109<=+<=7, because it is easy to see that it is always integer. Input Specification: The only line contains two integers *x* and *k* (0<=≤<=*x*,<=*k*<=≤<=1018), where *x* is the initial number of dresses and *k*<=+<=1 is the number of months in a year in Byteland. Output Specification: In the only line print a single integer — the expected number of dresses Nastya will own one year later modulo 109<=+<=7. Demo Input: ['2 0\n', '2 1\n', '3 2\n'] Demo Output: ['4\n', '7\n', '21\n'] Note: In the first example a year consists on only one month, so the wardrobe does not eat dresses at all. In the second example after the first month there are 3 dresses with 50% probability and 4 dresses with 50% probability. Thus, in the end of the year there are 6 dresses with 50% probability and 8 dresses with 50% probability. This way the answer for this test is (6 + 8) / 2 = 7.
```python MOD = int(1e9) def fast_power(x, y): res = 1 x %= MOD while y > 0: if y % 2 == 1: res = (res * x) % MOD x = (x * x) % MOD y = y >> 1 return res x, k = map(int, input().split()) if(x % MOD == 0): print(0) else: a = fast_power(2, k) b = (2 * x - 1) % MOD c = (a * b) % MOD + 1 print(c % MOD) ```
0
23
A
You're Given a String...
PROGRAMMING
1,200
[ "brute force", "greedy" ]
A. You're Given a String...
2
256
You're given a string of lower-case Latin letters. Your task is to find the length of its longest substring that can be met in the string at least twice. These occurrences can overlap (see sample test 2).
The first input line contains the string. It's guaranteed, that the string is non-empty, consists of lower-case Latin letters, and its length doesn't exceed 100.
Output one number — length of the longest substring that can be met in the string at least twice.
[ "abcd\n", "ababa\n", "zzz\n" ]
[ "0", "3", "2" ]
none
0
[ { "input": "abcd", "output": "0" }, { "input": "ababa", "output": "3" }, { "input": "zzz", "output": "2" }, { "input": "kmmm", "output": "2" }, { "input": "wzznz", "output": "1" }, { "input": "qlzazaaqll", "output": "2" }, { "input": "lzggglgpep", "output": "2" }, { "input": "iegdlraaidefgegiagrdfhihe", "output": "2" }, { "input": "esxpqmdrtidgtkxojuxyrcwxlycywtzbjzpxvbngnlepgzcaeg", "output": "1" }, { "input": "garvpaimjdjiivamusjdwfcaoswuhxyyxvrxzajoyihggvuxumaadycfphrzbprraicvjjlsdhojihaw", "output": "2" }, { "input": "ckvfndqgkmhcyojaqgdkenmbexufryhqejdhctxujmtrwkpbqxufxamgoeigzfyzbhevpbkvviwntdhqscvkmphnkkljizndnbjt", "output": "3" }, { "input": "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb", "output": "99" }, { "input": "ikiikiikikiiikkkkkikkkkiiiiikkiiikkiikiikkkkikkkikikkikiiikkikikiiikikkkiiikkkikkikkikkkkiiikkiiiiii", "output": "10" }, { "input": "ovovhoovvhohhhvhhvhhvhovoohovhhoooooovohvooooohvvoooohvvovhhvhovhhvoovhvhvoovovvhooovhhooovohvhhovhv", "output": "8" }, { "input": "ccwckkkycccccckwckwkwkwkkkkyycykcccycyckwywcckwykcycykkkwcycwwcykcwkwkwwykwkwcykywwwyyykckkyycckwcwk", "output": "5" }, { "input": "ttketfkefktfztezzkzfkkeetkkfktftzktezekkeezkeeetteeteefetefkzzzetekfftkeffzkktffzkzzeftfeezfefzffeef", "output": "4" }, { "input": "rtharczpfznrgdnkltchafduydgbgkdjqrmjqyfmpwjwphrtsjbmswkanjlprbnduaqbcjqxlxmkspkhkcnzbqwxonzxxdmoigti", "output": "2" }, { "input": "fplrkfklvwdeiynbjgaypekambmbjfnoknlhczhkdmljicookdywdgpnlnqlpunnkebnikgcgcjefeqhknvlynmvjcegvcdgvvdb", "output": "2" }, { "input": "txbciieycswqpniwvzipwlottivvnfsysgzvzxwbctcchfpvlbcjikdofhpvsknptpjdbxemtmjcimetkemdbettqnbvzzbdyxxb", "output": "2" }, { "input": "fmubmfwefikoxtqvmaavwjxmoqltapexkqxcsztpezfcltqavuicefxovuswmqimuikoppgqpiapqutkczgcvxzutavkujxvpklv", "output": "3" }, { "input": "ipsrjylhpkjvlzncfixipstwcicxqygqcfrawpzzvckoveyqhathglblhpkjvlzncfixipfajaqobtzvthmhgbuawoxoknirclxg", "output": "15" }, { "input": "kcnjsntjzcbgzjscrsrjkrbytqsrptzspzctjrorsyggrtkcnjsntjzcbgzjscrsrjyqbrtpcgqirsrrjbbbrnyqstnrozcoztt", "output": "20" }, { "input": "unhcfnrhsqetuerjqcetrhlsqgfnqfntvkgxsscquolxxroqgtchffyccetrhlsqgfnqfntvkgxsscquolxxroqgtchffhfqvx", "output": "37" }, { "input": "kkcckkccckkcckcccckcckkkkcckkkkckkkcckckkkkkckkkkkcckkccckkcckcccckcckkkkcckkkkckkkcckckkkkkckckckkc", "output": "46" }, { "input": "mlhsyijxeydqxhtkmpdeqwzogjvxahmssyhfhqessbxzvydbrxdmlhsyijxeydqxhtkmpdeqwzogjvxahmssyhfhqessbxzvydik", "output": "47" }, { "input": "abcdefghijklmnopqrstuvwxyz", "output": "0" }, { "input": "tttttbttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttmttttttt", "output": "85" }, { "input": "ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffffffffffffffffffffffffffffffffffff", "output": "61" }, { "input": "cccccccccccccccccccccccwcccccccccccccccccccccuccccccccccccccnccccccccccccccccccccccccccccccccccccccc", "output": "38" }, { "input": "ffffffffffffffffffffffffffufffgfffffffffffffffffffffffffffffffffffffffgffffffftffffffgffffffffffffff", "output": "38" }, { "input": "rrrrrrrrrrrrrrrrrrrlhbrrrrrrrrurrrrrrrfrrqrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrewrrrrrrryrrxrrrrrrrrrrr", "output": "33" }, { "input": "vyvvvvvvvvzvvvvvzvvvwvvvvrvvvvvvvvvvvvvvvrvvvvvvvvvpkvvpvgvvvvvvvvvvvvvgvvvvvvvvvvvvvvvvvvysvvvbvvvv", "output": "17" }, { "input": "cbubbbbbbbbbbfbbbbbbbbjbobbbbbbbbbbibbubbbbjbbbnzgbbzbbfbbbbbbbbbbbfbpbbbbbbbbbbygbbbgbabbbbbbbhibbb", "output": "12" }, { "input": "lrqrrrrrrrjrrrrrcdrrgrrmwvrrrrrrrrrxfzrmrmrryrrrurrrdrrrrrrrrrrererrrsrrrrrrrrrrrqrrrrcrrwjsrrlrrrrr", "output": "10" }, { "input": "ssssusisisosscssssztzessssyspskjssvosiissussszsosssslsssdsssvssvsssslsssmsfjasjsssssowscsjsssszsspss", "output": "8" }, { "input": "uukuuuumueuuuujuukgdhbztuuuubbguuocuozfaunqufjujuguyuuvkuuauubuubuucuvtjuuuuuusduduuuuuuuueunuuuuuzu", "output": "7" }, { "input": "jpkkgwklngwqcfzmwkkpcwkkkkkekkkekkkdsykqwjkkkhkkkxdnukkkkkkmkqykkkxqklkskkrkkkkkqqjikkkkkkpknkkkkkoh", "output": "7" }, { "input": "bmzbbfbbhqxwthtbbisbbbbbtbbfbbpbfbbpbkbjfbcbbbbzbbbdwmbbbrnvqdbbtbbuglrnbbbbvmbyblebbabibrevaxbbjbqb", "output": "6" }, { "input": "qqqmqqqsbteqqopsuqiqumrqzpqnqgqeniqqkyqqyqqqpxzqeqqquhdqquhqqqfqjirqaqqaquxqoqqjqqqqbjbgqcqqqqicnkqc", "output": "4" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaasaaaavaaaaaaauaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "44" }, { "input": "a", "output": "0" }, { "input": "fg", "output": "0" }, { "input": "yy", "output": "1" }, { "input": "abcabcabc", "output": "6" }, { "input": "qwerqwedqwes", "output": "3" } ]
1,626,609,713
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
92
6,758,400
string=input() n=len(string) count1=[] long=0 for s_i in range(n): for end_i in range(s_i+1,n): sub=string[s_i:end_i+1] if sub not in count1: count1.append(sub) else: if len(sub)>long: long=len(sub) print(long)
Title: You're Given a String... Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: You're given a string of lower-case Latin letters. Your task is to find the length of its longest substring that can be met in the string at least twice. These occurrences can overlap (see sample test 2). Input Specification: The first input line contains the string. It's guaranteed, that the string is non-empty, consists of lower-case Latin letters, and its length doesn't exceed 100. Output Specification: Output one number — length of the longest substring that can be met in the string at least twice. Demo Input: ['abcd\n', 'ababa\n', 'zzz\n'] Demo Output: ['0', '3', '2'] Note: none
```python string=input() n=len(string) count1=[] long=0 for s_i in range(n): for end_i in range(s_i+1,n): sub=string[s_i:end_i+1] if sub not in count1: count1.append(sub) else: if len(sub)>long: long=len(sub) print(long) ```
0