| # LitGPT High-level Python API | |
| This is a work-in-progress draft for a high-level LitGPT Python API. | |
| | |
| ## Model loading & saving | |
| The `LLM.load` command loads an `llm` object, which contains both the model object (a PyTorch module) and a preprocessor. | |
| ```python | |
| from litgpt import LLM | |
| llm = LLM.load( | |
| model="url | local_path", | |
| # high-level user only needs to care about those: | |
| memory_reduction="none | medium | strong" | |
| # advanced options for technical users: | |
| source="hf | local | other" | |
| quantize="bnb.nf4", | |
| precision="bf16-true", | |
| device=""auto | cuda | cpu", | |
| ) | |
| ``` | |
| Here, | |
| - `llm.model` contains the PyTorch Module | |
| - and `llm.preprocessor.tokenizer` contains the tokenizer | |
| The `llm.save` command saves the model weights, tokenizer, and configuration information. | |
| ```python | |
| llm.save(checkpoint_dir, format="lightning | ollama | hf") | |
| ``` | |
| | |
| ## Inference / Chat | |
| ``` | |
| response = llm.generate( | |
| prompt="What do Llamas eat?", | |
| temperature=0.1, | |
| top_p=0.8, | |
| ... | |
| ) | |
| ``` | |
| | |
| ## Dataset | |
| The `llm.prepare_dataset` command prepares a dataset for training. | |
| ``` | |
| llm.download_dataset( | |
| URL, | |
| ... | |
| ) | |
| ``` | |
| ``` | |
| dataset = llm.prepare_dataset( | |
| path, | |
| task="pretrain | instruction_finetune", | |
| test_portion=0.1, | |
| ... | |
| ) | |
| ``` | |
| | |
| ## Training | |
| ```python | |
| llm.instruction_finetune( | |
| config=None, | |
| dataset=dataset, | |
| max_iter=10, | |
| method="full | lora | adapter | adapter_v2" | |
| ) | |
| ``` | |
| ```python | |
| llm.pretrain(config=None, dataset=dataset, max_iter=10, ...) | |
| ``` | |
| | |
| ## Serving | |
| ```python | |
| llm.serve(port=8000) | |
| ``` | |
| Then in another Python session: | |
| ```python | |
| import requests, json | |
| response = requests.post( | |
| "http://127.0.0.1:8000/predict", | |
| json={"prompt": "Fix typos in the following sentence: Example input"} | |
| ) | |
| print(response.json()["output"]) | |
| ``` | |