|
|
import warnings |
|
|
from pathlib import Path |
|
|
|
|
|
import lightning as L |
|
|
import pytest |
|
|
import torch |
|
|
|
|
|
import litgpt |
|
|
from litgpt.api import GPT, LLM |
|
|
from litgpt.generate.base import ( |
|
|
batched_generate_fn, |
|
|
batched_next_token, |
|
|
generate_fn, |
|
|
next_token, |
|
|
) |
|
|
from litgpt.scripts.download import download_from_hub |
|
|
from litgpt.utils import _RunIf |
|
|
|
|
|
warnings.filterwarnings("ignore") |
|
|
|
|
|
|
|
|
def create_llm(tmp_path, batch_size, max_seq_length, device) -> tuple[LLM, GPT]: |
|
|
L.seed_everything(42) |
|
|
|
|
|
model_name = "microsoft/phi-2" |
|
|
download_from_hub(repo_id=model_name, tokenizer_only=True, checkpoint_dir=tmp_path) |
|
|
|
|
|
llm: LLM = LLM.load( |
|
|
model_name, |
|
|
tokenizer_dir=Path(tmp_path / model_name), |
|
|
init="random", |
|
|
) |
|
|
model: GPT = llm.model |
|
|
model.set_kv_cache(batch_size=batch_size, max_seq_length=max_seq_length, device=device) |
|
|
|
|
|
return llm, model |
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="Test requires a GPU.") |
|
|
def test_batched_equivalence(tmp_path): |
|
|
model_name = "microsoft/phi-2" |
|
|
download_from_hub(repo_id=model_name, tokenizer_only=True, checkpoint_dir=tmp_path) |
|
|
|
|
|
device = "cuda:0" |
|
|
batch_size = 3 |
|
|
sample_kwargs = {"top_k": 1} |
|
|
|
|
|
llm: LLM = LLM.load( |
|
|
model_name, |
|
|
tokenizer_dir=Path(tmp_path / model_name), |
|
|
init="random", |
|
|
) |
|
|
model: GPT = llm.model |
|
|
model.set_kv_cache(batch_size=1, max_seq_length=50, device=device) |
|
|
|
|
|
input_pos_1 = torch.tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=torch.int64, device=device) |
|
|
input_pos_2 = torch.tensor([10], dtype=torch.int64, device=device) |
|
|
|
|
|
x = torch.tensor( |
|
|
[43993, 25, 1867, 466, 32660, 17485, 4483, 30, 198, 26410], |
|
|
device=device, |
|
|
dtype=torch.int64, |
|
|
) |
|
|
|
|
|
batch_x1 = torch.stack([x] * batch_size, dim=0) |
|
|
|
|
|
|
|
|
tok_1 = next_token(model, input_pos_1, x.unsqueeze(0), **sample_kwargs) |
|
|
tok_2 = next_token(model, input_pos_2, tok_1.unsqueeze(0), **sample_kwargs) |
|
|
|
|
|
assert tok_1.ndim == 1 |
|
|
assert tok_2.ndim == 1 |
|
|
assert tok_1.size(0) == 1 |
|
|
assert tok_2.size(0) == 1 |
|
|
|
|
|
|
|
|
model.clear_kv_cache() |
|
|
model.set_kv_cache(batch_size=batch_size, max_seq_length=50, device="cuda:0") |
|
|
|
|
|
toks_1: torch.Tensor = batched_next_token(model, input_pos_1, batch_x1, sample_kwargs) |
|
|
toks_2: torch.Tensor = batched_next_token(model, input_pos_2, toks_1, sample_kwargs) |
|
|
|
|
|
assert toks_1.ndim == 2 |
|
|
assert toks_2.ndim == 2 |
|
|
assert toks_1.size(0) == batch_size |
|
|
assert toks_2.size(0) == batch_size |
|
|
|
|
|
|
|
|
assert all(t == tok_1 for t in toks_1), f"{tok_1} != {toks_1}" |
|
|
assert all(t == tok_2 for t in toks_2), f"{tok_2} != {toks_2}" |
|
|
|
|
|
|
|
|
@_RunIf(min_cuda_gpus=1) |
|
|
def test_simple_batch(): |
|
|
old_allow_tf32 = torch.backends.cuda.matmul.allow_tf32 |
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
|
config = litgpt.Config.from_name("microsoft/phi-2", padded_vocab_size=10000, n_layer=2, n_head=8, n_embd=256) |
|
|
with torch.device("cuda"): |
|
|
m = litgpt.GPT(config).requires_grad_(False).eval() |
|
|
x0 = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 7]]) |
|
|
input_pos0 = torch.tensor([[0, 1, 2, 3], [0, 1, 2, 2]]) |
|
|
x1 = torch.tensor([[1], [2]]) |
|
|
input_pos1 = torch.tensor([[4], [3]]) |
|
|
|
|
|
with torch.device("cuda"): |
|
|
m.set_kv_cache(2) |
|
|
outs0 = m(x0, input_pos0) |
|
|
outs1 = m(x1, input_pos1) |
|
|
|
|
|
with torch.device("cuda"): |
|
|
m.set_kv_cache(1) |
|
|
|
|
|
outs0_ref0 = m(x0[:1], input_pos0[0]) |
|
|
outs1_ref0 = m(x1[:1], input_pos1[0]) |
|
|
|
|
|
with torch.device("cuda"): |
|
|
m.set_kv_cache(1) |
|
|
|
|
|
outs0_ref1 = m(x0[1:], input_pos0[1]) |
|
|
outs1_ref1 = m(x1[1:], input_pos1[1]) |
|
|
|
|
|
outs0_ref = torch.cat([outs0_ref0, outs0_ref1]) |
|
|
outs1_ref = torch.cat([outs1_ref0, outs1_ref1]) |
|
|
|
|
|
print(outs0_ref - outs0) |
|
|
print(outs0.shape) |
|
|
torch.testing.assert_close(outs0, outs0_ref) |
|
|
torch.testing.assert_close(outs1, outs1_ref) |
|
|
torch.backends.cuda.matmul.allow_tf32 = old_allow_tf32 |
|
|
|
|
|
|
|
|
@_RunIf(min_cuda_gpus=1) |
|
|
def test_batch_generate(tmp_path): |
|
|
torch.use_deterministic_algorithms(True) |
|
|
|
|
|
device = "cuda:0" |
|
|
batch_size = 3 |
|
|
sample_kwargs = {"top_k": 1} |
|
|
llm, model = create_llm(tmp_path, batch_size, 50, device) |
|
|
|
|
|
batch_x = torch.tensor( |
|
|
[ |
|
|
[43993, 25, 1867, 466, 32660, 17485, 4483, 30, 198, 26410], |
|
|
[25, 1867, 466, 32660, 17485, 4483, 30, 198, 26410, 7596], |
|
|
[1867, 466, 32660, 17485, 4483, 30, 198, 26410, 7596, 7596], |
|
|
], |
|
|
device=device, |
|
|
dtype=torch.int64, |
|
|
) |
|
|
|
|
|
|
|
|
tokens = [] |
|
|
for l in batched_generate_fn( |
|
|
model, |
|
|
prompts=batch_x, |
|
|
max_returned_tokens=50, |
|
|
sample_args=sample_kwargs, |
|
|
include_prompt=True, |
|
|
include_eos=False, |
|
|
): |
|
|
tokens.append([t.item() if t is not None else None for t in l]) |
|
|
|
|
|
def find_unique_stop(triplets): |
|
|
|
|
|
number_count = {} |
|
|
|
|
|
|
|
|
for triplet in triplets: |
|
|
for num in triplet: |
|
|
number_count[num] = number_count.get(num, 0) + 1 |
|
|
|
|
|
|
|
|
unique_first = [] |
|
|
unique_second = [] |
|
|
unique_third = [] |
|
|
|
|
|
|
|
|
for a, b, c in triplets: |
|
|
if number_count[a] == 1: |
|
|
unique_first.append(a) |
|
|
if number_count[b] == 1: |
|
|
unique_second.append(b) |
|
|
if number_count[c] == 1: |
|
|
unique_third.append(c) |
|
|
|
|
|
import random |
|
|
|
|
|
random.shuffle(unique_first) |
|
|
random.shuffle(unique_second) |
|
|
random.shuffle(unique_third) |
|
|
return [unique_first[0], unique_second[0], unique_third[0]] |
|
|
|
|
|
|
|
|
stops = find_unique_stop(tokens[batch_x.size(1) :]) |
|
|
first_stream = [t[0] for t in tokens if t[0] is not None] |
|
|
second_stream = [t[1] for t in tokens if t[1] is not None] |
|
|
third_stream = [t[2] for t in tokens if t[2] is not None] |
|
|
|
|
|
|
|
|
stop_idxes = [ |
|
|
first_stream.index(stops[0]), |
|
|
second_stream.index(stops[1]), |
|
|
third_stream.index(stops[2]), |
|
|
] |
|
|
|
|
|
|
|
|
last_tokens = [ |
|
|
first_stream[stop_idxes[0] - 1], |
|
|
second_stream[stop_idxes[1] - 1], |
|
|
third_stream[stop_idxes[2] - 1], |
|
|
] |
|
|
|
|
|
for t in tokens: |
|
|
print(t) |
|
|
|
|
|
|
|
|
tokens = [] |
|
|
for l in batched_generate_fn( |
|
|
model, |
|
|
prompts=batch_x, |
|
|
max_returned_tokens=50, |
|
|
stop_tokens=[(s,) for s in stops], |
|
|
sample_args=sample_kwargs, |
|
|
include_prompt=True, |
|
|
include_eos=False, |
|
|
): |
|
|
tokens.append([t.item() if t is not None else None for t in l]) |
|
|
|
|
|
|
|
|
|
|
|
first_stream = [t[0] for t in tokens if t[0] is not None] |
|
|
print(first_stream) |
|
|
print(len(first_stream), stop_idxes[0]) |
|
|
assert len(first_stream) == stop_idxes[0] |
|
|
assert first_stream[-1] == last_tokens[0] |
|
|
|
|
|
second_stream = [t[1] for t in tokens if t[1] is not None] |
|
|
print(second_stream) |
|
|
print(len(second_stream), stop_idxes[1]) |
|
|
assert len(second_stream) == stop_idxes[1] |
|
|
assert second_stream[-1] == last_tokens[1] |
|
|
|
|
|
third_stream = [t[2] for t in tokens if t[2] is not None] |
|
|
print(third_stream) |
|
|
print(len(third_stream), stop_idxes[2]) |
|
|
assert len(third_stream) == stop_idxes[2] |
|
|
assert third_stream[-1] == last_tokens[2] |
|
|
|
|
|
torch.use_deterministic_algorithms(False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@_RunIf(min_cuda_gpus=1) |
|
|
def test_batch_generate_equivalence(tmp_path): |
|
|
torch.use_deterministic_algorithms(True) |
|
|
|
|
|
device = "cuda:0" |
|
|
batch_size = 3 |
|
|
sample_kwargs = {"top_k": 1} |
|
|
llm, model = create_llm(tmp_path, batch_size, 50, device) |
|
|
|
|
|
batch_x = torch.tensor( |
|
|
[ |
|
|
[43993, 25, 1867, 466, 32660, 17485, 4483, 30, 198, 26410], |
|
|
[25, 1867, 466, 32660, 17485, 4483, 30, 198, 26410, 7596], |
|
|
[1867, 466, 32660, 17485, 4483, 30, 198, 26410, 7596, 7596], |
|
|
], |
|
|
device=device, |
|
|
dtype=torch.int64, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
batch_tokens = [] |
|
|
for l in batched_generate_fn( |
|
|
model, |
|
|
prompts=batch_x, |
|
|
max_returned_tokens=50, |
|
|
sample_args=sample_kwargs, |
|
|
include_prompt=False, |
|
|
include_eos=False, |
|
|
): |
|
|
batch_tokens.append([t.item() if t is not None else None for t in l]) |
|
|
|
|
|
first_stream = [t[0] for t in batch_tokens if t[0] is not None] |
|
|
|
|
|
batch_size = 1 |
|
|
llm, model = create_llm(tmp_path, batch_size, 50, device) |
|
|
|
|
|
tokens = [] |
|
|
for t in generate_fn( |
|
|
model, |
|
|
prompt=batch_x[0], |
|
|
max_returned_tokens=50, |
|
|
include_prompt=False, |
|
|
include_eos=False, |
|
|
**sample_kwargs, |
|
|
): |
|
|
if t.size(0) == 1: |
|
|
tokens.append(t.item()) |
|
|
else: |
|
|
tokens.extend(t.tolist()) |
|
|
|
|
|
torch.use_deterministic_algorithms(False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(first_stream) |
|
|
print(tokens) |
|
|
|
|
|
|