ADAPT-Chase's picture
Add files using upload-large-folder tool
74d8e8f verified
#!/usr/bin/env python3
"""
DeepCode - CLI Application Main Program
深度代码 - CLI应用主程序
🧬 Open-Source Code Agent by Data Intelligence Lab @ HKU
⚡ Revolutionizing research reproducibility through collaborative AI
"""
import os
import sys
import asyncio
import time
import json
# 禁止生成.pyc文件
os.environ["PYTHONDONTWRITEBYTECODE"] = "1"
# 添加项目根目录到路径
current_dir = os.path.dirname(os.path.abspath(__file__))
parent_dir = os.path.dirname(current_dir)
if parent_dir not in sys.path:
sys.path.insert(0, parent_dir)
# 导入MCP应用和工作流
from cli.workflows import CLIWorkflowAdapter
from cli.cli_interface import CLIInterface, Colors
class CLIApp:
"""CLI应用主类 - 升级版智能体编排引擎"""
def __init__(self):
self.cli = CLIInterface()
self.workflow_adapter = CLIWorkflowAdapter(cli_interface=self.cli)
self.app = None # Will be initialized by workflow adapter
self.logger = None
self.context = None
# Document segmentation configuration
self.segmentation_config = {"enabled": True, "size_threshold_chars": 50000}
async def initialize_mcp_app(self):
"""初始化MCP应用 - 使用工作流适配器"""
# Workflow adapter will handle MCP initialization
return await self.workflow_adapter.initialize_mcp_app()
async def cleanup_mcp_app(self):
"""清理MCP应用 - 使用工作流适配器"""
await self.workflow_adapter.cleanup_mcp_app()
def update_segmentation_config(self):
"""Update document segmentation configuration in mcp_agent.config.yaml"""
import yaml
import os
config_path = os.path.join(
os.path.dirname(os.path.dirname(os.path.abspath(__file__))),
"mcp_agent.config.yaml",
)
try:
# Read current config
with open(config_path, "r", encoding="utf-8") as f:
config = yaml.safe_load(f)
# Update document segmentation settings
if "document_segmentation" not in config:
config["document_segmentation"] = {}
config["document_segmentation"]["enabled"] = self.segmentation_config[
"enabled"
]
config["document_segmentation"]["size_threshold_chars"] = (
self.segmentation_config["size_threshold_chars"]
)
# Write updated config
with open(config_path, "w", encoding="utf-8") as f:
yaml.dump(config, f, default_flow_style=False, allow_unicode=True)
self.cli.print_status(
"📄 Document segmentation configuration updated", "success"
)
except Exception as e:
self.cli.print_status(
f"⚠️ Failed to update segmentation config: {str(e)}", "warning"
)
async def process_input(self, input_source: str, input_type: str):
"""处理输入源(URL或文件)- 使用升级版智能体编排引擎"""
try:
# Update segmentation configuration before processing
self.update_segmentation_config()
self.cli.print_separator()
self.cli.print_status(
"🚀 Starting intelligent agent orchestration...", "processing"
)
# 显示处理阶段(根据配置决定)
self.cli.display_processing_stages(0, self.cli.enable_indexing)
# 使用工作流适配器进行处理
result = await self.workflow_adapter.process_input_with_orchestration(
input_source=input_source,
input_type=input_type,
enable_indexing=self.cli.enable_indexing,
)
if result["status"] == "success":
# 显示完成状态
final_stage = 8 if self.cli.enable_indexing else 5
self.cli.display_processing_stages(
final_stage, self.cli.enable_indexing
)
self.cli.print_status(
"🎉 Agent orchestration completed successfully!", "complete"
)
# 显示结果
self.display_results(
result.get("analysis_result", ""),
result.get("download_result", ""),
result.get("repo_result", ""),
result.get("pipeline_mode", "comprehensive"),
)
else:
self.cli.print_status(
f"❌ Processing failed: {result.get('error', 'Unknown error')}",
"error",
)
# 添加到历史记录
self.cli.add_to_history(input_source, result)
return result
except Exception as e:
error_msg = str(e)
self.cli.print_error_box("Agent Orchestration Error", error_msg)
self.cli.print_status(f"Error during orchestration: {error_msg}", "error")
# 添加错误到历史记录
error_result = {"status": "error", "error": error_msg}
self.cli.add_to_history(input_source, error_result)
return error_result
def display_results(
self,
analysis_result: str,
download_result: str,
repo_result: str,
pipeline_mode: str = "comprehensive",
):
"""显示处理结果"""
self.cli.print_results_header()
# 显示流水线模式
if pipeline_mode == "chat":
mode_display = "💬 Chat Planning Mode"
elif pipeline_mode == "comprehensive":
mode_display = "🧠 Comprehensive Mode"
else:
mode_display = "⚡ Optimized Mode"
print(
f"{Colors.BOLD}{Colors.PURPLE}🤖 PIPELINE MODE: {mode_display}{Colors.ENDC}"
)
self.cli.print_separator("─", 79, Colors.PURPLE)
print(f"{Colors.BOLD}{Colors.OKCYAN}📊 ANALYSIS PHASE RESULTS:{Colors.ENDC}")
self.cli.print_separator("─", 79, Colors.CYAN)
# 尝试解析并格式化分析结果
try:
if analysis_result.strip().startswith("{"):
parsed_analysis = json.loads(analysis_result)
print(json.dumps(parsed_analysis, indent=2, ensure_ascii=False))
else:
print(
analysis_result[:1000] + "..."
if len(analysis_result) > 1000
else analysis_result
)
except Exception:
print(
analysis_result[:1000] + "..."
if len(analysis_result) > 1000
else analysis_result
)
print(f"\n{Colors.BOLD}{Colors.PURPLE}📥 DOWNLOAD PHASE RESULTS:{Colors.ENDC}")
self.cli.print_separator("─", 79, Colors.PURPLE)
print(
download_result[:1000] + "..."
if len(download_result) > 1000
else download_result
)
print(
f"\n{Colors.BOLD}{Colors.GREEN}⚙️ IMPLEMENTATION PHASE RESULTS:{Colors.ENDC}"
)
self.cli.print_separator("─", 79, Colors.GREEN)
print(repo_result[:1000] + "..." if len(repo_result) > 1000 else repo_result)
# 尝试提取生成的代码目录信息
if "Code generated in:" in repo_result:
code_dir = (
repo_result.split("Code generated in:")[-1].strip().split("\n")[0]
)
print(
f"\n{Colors.BOLD}{Colors.YELLOW}📁 Generated Code Directory: {Colors.ENDC}{code_dir}"
)
# 显示处理完成的工作流阶段
print(
f"\n{Colors.BOLD}{Colors.OKCYAN}🔄 COMPLETED WORKFLOW STAGES:{Colors.ENDC}"
)
if pipeline_mode == "chat":
stages = [
"🚀 Engine Initialization",
"💬 Requirements Analysis",
"🏗️ Workspace Setup",
"📝 Implementation Plan Generation",
"⚙️ Code Implementation",
]
else:
stages = [
"📄 Document Processing",
"🔍 Reference Analysis",
"📋 Plan Generation",
"📦 Repository Download",
"🗂️ Codebase Indexing",
"⚙️ Code Implementation",
]
for stage in stages:
print(f" ✅ {stage}")
self.cli.print_separator()
async def run_interactive_session(self):
"""运行交互式会话"""
# 清屏并显示启动界面
self.cli.clear_screen()
self.cli.print_logo()
self.cli.print_welcome_banner()
# 初始化MCP应用
await self.initialize_mcp_app()
try:
# 主交互循环
while self.cli.is_running:
self.cli.create_menu()
choice = self.cli.get_user_input()
if choice in ["q", "quit", "exit"]:
self.cli.print_goodbye()
break
elif choice in ["u", "url"]:
url = self.cli.get_url_input()
if url:
await self.process_input(url, "url")
elif choice in ["f", "file"]:
file_path = self.cli.upload_file_gui()
if file_path:
await self.process_input(f"file://{file_path}", "file")
elif choice in ["t", "chat", "text"]:
chat_input = self.cli.get_chat_input()
if chat_input:
await self.process_input(chat_input, "chat")
elif choice in ["h", "history"]:
self.cli.show_history()
elif choice in ["c", "config", "configure"]:
# Sync current segmentation config from CLI interface
self.segmentation_config["enabled"] = self.cli.segmentation_enabled
self.segmentation_config["size_threshold_chars"] = (
self.cli.segmentation_threshold
)
self.cli.show_configuration_menu()
# Sync back from CLI interface after configuration changes
self.segmentation_config["enabled"] = self.cli.segmentation_enabled
self.segmentation_config["size_threshold_chars"] = (
self.cli.segmentation_threshold
)
else:
self.cli.print_status(
"Invalid choice. Please select U, F, T, C, H, or Q.", "warning"
)
# 询问是否继续
if self.cli.is_running and choice in ["u", "f", "t", "chat", "text"]:
if not self.cli.ask_continue():
self.cli.is_running = False
self.cli.print_status("Session ended by user", "info")
except KeyboardInterrupt:
print(f"\n{Colors.WARNING}⚠️ Process interrupted by user{Colors.ENDC}")
except Exception as e:
print(f"\n{Colors.FAIL}❌ Unexpected error: {str(e)}{Colors.ENDC}")
finally:
# 清理资源
await self.cleanup_mcp_app()
async def main():
"""主函数"""
start_time = time.time()
try:
# 创建并运行CLI应用
app = CLIApp()
await app.run_interactive_session()
except KeyboardInterrupt:
print(f"\n{Colors.WARNING}⚠️ Application interrupted by user{Colors.ENDC}")
except Exception as e:
print(f"\n{Colors.FAIL}❌ Application error: {str(e)}{Colors.ENDC}")
finally:
end_time = time.time()
print(
f"\n{Colors.BOLD}{Colors.CYAN}⏱️ Total runtime: {end_time - start_time:.2f} seconds{Colors.ENDC}"
)
# 清理缓存文件
print(f"{Colors.YELLOW}🧹 Cleaning up cache files...{Colors.ENDC}")
if os.name == "nt": # Windows
os.system(
"powershell -Command \"Get-ChildItem -Path . -Filter '__pycache__' -Recurse -Directory | Remove-Item -Recurse -Force\" 2>nul"
)
else: # Unix/Linux/macOS
os.system('find . -type d -name "__pycache__" -exec rm -r {} + 2>/dev/null')
print(
f"{Colors.OKGREEN}✨ Goodbye! Thanks for using DeepCode CLI! ✨{Colors.ENDC}"
)
if __name__ == "__main__":
asyncio.run(main())