|
|
|
|
|
""" |
|
|
DeepCode - CLI Application Main Program |
|
|
深度代码 - CLI应用主程序 |
|
|
|
|
|
🧬 Open-Source Code Agent by Data Intelligence Lab @ HKU |
|
|
⚡ Revolutionizing research reproducibility through collaborative AI |
|
|
""" |
|
|
|
|
|
import os |
|
|
import sys |
|
|
import asyncio |
|
|
import time |
|
|
import json |
|
|
|
|
|
|
|
|
os.environ["PYTHONDONTWRITEBYTECODE"] = "1" |
|
|
|
|
|
|
|
|
current_dir = os.path.dirname(os.path.abspath(__file__)) |
|
|
parent_dir = os.path.dirname(current_dir) |
|
|
if parent_dir not in sys.path: |
|
|
sys.path.insert(0, parent_dir) |
|
|
|
|
|
|
|
|
|
|
|
from cli.workflows import CLIWorkflowAdapter |
|
|
from cli.cli_interface import CLIInterface, Colors |
|
|
|
|
|
|
|
|
class CLIApp: |
|
|
"""CLI应用主类 - 升级版智能体编排引擎""" |
|
|
|
|
|
def __init__(self): |
|
|
self.cli = CLIInterface() |
|
|
self.workflow_adapter = CLIWorkflowAdapter(cli_interface=self.cli) |
|
|
self.app = None |
|
|
self.logger = None |
|
|
self.context = None |
|
|
|
|
|
self.segmentation_config = {"enabled": True, "size_threshold_chars": 50000} |
|
|
|
|
|
async def initialize_mcp_app(self): |
|
|
"""初始化MCP应用 - 使用工作流适配器""" |
|
|
|
|
|
return await self.workflow_adapter.initialize_mcp_app() |
|
|
|
|
|
async def cleanup_mcp_app(self): |
|
|
"""清理MCP应用 - 使用工作流适配器""" |
|
|
await self.workflow_adapter.cleanup_mcp_app() |
|
|
|
|
|
def update_segmentation_config(self): |
|
|
"""Update document segmentation configuration in mcp_agent.config.yaml""" |
|
|
import yaml |
|
|
import os |
|
|
|
|
|
config_path = os.path.join( |
|
|
os.path.dirname(os.path.dirname(os.path.abspath(__file__))), |
|
|
"mcp_agent.config.yaml", |
|
|
) |
|
|
|
|
|
try: |
|
|
|
|
|
with open(config_path, "r", encoding="utf-8") as f: |
|
|
config = yaml.safe_load(f) |
|
|
|
|
|
|
|
|
if "document_segmentation" not in config: |
|
|
config["document_segmentation"] = {} |
|
|
|
|
|
config["document_segmentation"]["enabled"] = self.segmentation_config[ |
|
|
"enabled" |
|
|
] |
|
|
config["document_segmentation"]["size_threshold_chars"] = ( |
|
|
self.segmentation_config["size_threshold_chars"] |
|
|
) |
|
|
|
|
|
|
|
|
with open(config_path, "w", encoding="utf-8") as f: |
|
|
yaml.dump(config, f, default_flow_style=False, allow_unicode=True) |
|
|
|
|
|
self.cli.print_status( |
|
|
"📄 Document segmentation configuration updated", "success" |
|
|
) |
|
|
|
|
|
except Exception as e: |
|
|
self.cli.print_status( |
|
|
f"⚠️ Failed to update segmentation config: {str(e)}", "warning" |
|
|
) |
|
|
|
|
|
async def process_input(self, input_source: str, input_type: str): |
|
|
"""处理输入源(URL或文件)- 使用升级版智能体编排引擎""" |
|
|
try: |
|
|
|
|
|
self.update_segmentation_config() |
|
|
|
|
|
self.cli.print_separator() |
|
|
self.cli.print_status( |
|
|
"🚀 Starting intelligent agent orchestration...", "processing" |
|
|
) |
|
|
|
|
|
|
|
|
self.cli.display_processing_stages(0, self.cli.enable_indexing) |
|
|
|
|
|
|
|
|
result = await self.workflow_adapter.process_input_with_orchestration( |
|
|
input_source=input_source, |
|
|
input_type=input_type, |
|
|
enable_indexing=self.cli.enable_indexing, |
|
|
) |
|
|
|
|
|
if result["status"] == "success": |
|
|
|
|
|
final_stage = 8 if self.cli.enable_indexing else 5 |
|
|
self.cli.display_processing_stages( |
|
|
final_stage, self.cli.enable_indexing |
|
|
) |
|
|
self.cli.print_status( |
|
|
"🎉 Agent orchestration completed successfully!", "complete" |
|
|
) |
|
|
|
|
|
|
|
|
self.display_results( |
|
|
result.get("analysis_result", ""), |
|
|
result.get("download_result", ""), |
|
|
result.get("repo_result", ""), |
|
|
result.get("pipeline_mode", "comprehensive"), |
|
|
) |
|
|
else: |
|
|
self.cli.print_status( |
|
|
f"❌ Processing failed: {result.get('error', 'Unknown error')}", |
|
|
"error", |
|
|
) |
|
|
|
|
|
|
|
|
self.cli.add_to_history(input_source, result) |
|
|
|
|
|
return result |
|
|
|
|
|
except Exception as e: |
|
|
error_msg = str(e) |
|
|
self.cli.print_error_box("Agent Orchestration Error", error_msg) |
|
|
self.cli.print_status(f"Error during orchestration: {error_msg}", "error") |
|
|
|
|
|
|
|
|
error_result = {"status": "error", "error": error_msg} |
|
|
self.cli.add_to_history(input_source, error_result) |
|
|
|
|
|
return error_result |
|
|
|
|
|
def display_results( |
|
|
self, |
|
|
analysis_result: str, |
|
|
download_result: str, |
|
|
repo_result: str, |
|
|
pipeline_mode: str = "comprehensive", |
|
|
): |
|
|
"""显示处理结果""" |
|
|
self.cli.print_results_header() |
|
|
|
|
|
|
|
|
if pipeline_mode == "chat": |
|
|
mode_display = "💬 Chat Planning Mode" |
|
|
elif pipeline_mode == "comprehensive": |
|
|
mode_display = "🧠 Comprehensive Mode" |
|
|
else: |
|
|
mode_display = "⚡ Optimized Mode" |
|
|
print( |
|
|
f"{Colors.BOLD}{Colors.PURPLE}🤖 PIPELINE MODE: {mode_display}{Colors.ENDC}" |
|
|
) |
|
|
self.cli.print_separator("─", 79, Colors.PURPLE) |
|
|
|
|
|
print(f"{Colors.BOLD}{Colors.OKCYAN}📊 ANALYSIS PHASE RESULTS:{Colors.ENDC}") |
|
|
self.cli.print_separator("─", 79, Colors.CYAN) |
|
|
|
|
|
|
|
|
try: |
|
|
if analysis_result.strip().startswith("{"): |
|
|
parsed_analysis = json.loads(analysis_result) |
|
|
print(json.dumps(parsed_analysis, indent=2, ensure_ascii=False)) |
|
|
else: |
|
|
print( |
|
|
analysis_result[:1000] + "..." |
|
|
if len(analysis_result) > 1000 |
|
|
else analysis_result |
|
|
) |
|
|
except Exception: |
|
|
print( |
|
|
analysis_result[:1000] + "..." |
|
|
if len(analysis_result) > 1000 |
|
|
else analysis_result |
|
|
) |
|
|
|
|
|
print(f"\n{Colors.BOLD}{Colors.PURPLE}📥 DOWNLOAD PHASE RESULTS:{Colors.ENDC}") |
|
|
self.cli.print_separator("─", 79, Colors.PURPLE) |
|
|
print( |
|
|
download_result[:1000] + "..." |
|
|
if len(download_result) > 1000 |
|
|
else download_result |
|
|
) |
|
|
|
|
|
print( |
|
|
f"\n{Colors.BOLD}{Colors.GREEN}⚙️ IMPLEMENTATION PHASE RESULTS:{Colors.ENDC}" |
|
|
) |
|
|
self.cli.print_separator("─", 79, Colors.GREEN) |
|
|
print(repo_result[:1000] + "..." if len(repo_result) > 1000 else repo_result) |
|
|
|
|
|
|
|
|
if "Code generated in:" in repo_result: |
|
|
code_dir = ( |
|
|
repo_result.split("Code generated in:")[-1].strip().split("\n")[0] |
|
|
) |
|
|
print( |
|
|
f"\n{Colors.BOLD}{Colors.YELLOW}📁 Generated Code Directory: {Colors.ENDC}{code_dir}" |
|
|
) |
|
|
|
|
|
|
|
|
print( |
|
|
f"\n{Colors.BOLD}{Colors.OKCYAN}🔄 COMPLETED WORKFLOW STAGES:{Colors.ENDC}" |
|
|
) |
|
|
|
|
|
if pipeline_mode == "chat": |
|
|
stages = [ |
|
|
"🚀 Engine Initialization", |
|
|
"💬 Requirements Analysis", |
|
|
"🏗️ Workspace Setup", |
|
|
"📝 Implementation Plan Generation", |
|
|
"⚙️ Code Implementation", |
|
|
] |
|
|
else: |
|
|
stages = [ |
|
|
"📄 Document Processing", |
|
|
"🔍 Reference Analysis", |
|
|
"📋 Plan Generation", |
|
|
"📦 Repository Download", |
|
|
"🗂️ Codebase Indexing", |
|
|
"⚙️ Code Implementation", |
|
|
] |
|
|
|
|
|
for stage in stages: |
|
|
print(f" ✅ {stage}") |
|
|
|
|
|
self.cli.print_separator() |
|
|
|
|
|
async def run_interactive_session(self): |
|
|
"""运行交互式会话""" |
|
|
|
|
|
self.cli.clear_screen() |
|
|
self.cli.print_logo() |
|
|
self.cli.print_welcome_banner() |
|
|
|
|
|
|
|
|
await self.initialize_mcp_app() |
|
|
|
|
|
try: |
|
|
|
|
|
while self.cli.is_running: |
|
|
self.cli.create_menu() |
|
|
choice = self.cli.get_user_input() |
|
|
|
|
|
if choice in ["q", "quit", "exit"]: |
|
|
self.cli.print_goodbye() |
|
|
break |
|
|
|
|
|
elif choice in ["u", "url"]: |
|
|
url = self.cli.get_url_input() |
|
|
if url: |
|
|
await self.process_input(url, "url") |
|
|
|
|
|
elif choice in ["f", "file"]: |
|
|
file_path = self.cli.upload_file_gui() |
|
|
if file_path: |
|
|
await self.process_input(f"file://{file_path}", "file") |
|
|
|
|
|
elif choice in ["t", "chat", "text"]: |
|
|
chat_input = self.cli.get_chat_input() |
|
|
if chat_input: |
|
|
await self.process_input(chat_input, "chat") |
|
|
|
|
|
elif choice in ["h", "history"]: |
|
|
self.cli.show_history() |
|
|
|
|
|
elif choice in ["c", "config", "configure"]: |
|
|
|
|
|
self.segmentation_config["enabled"] = self.cli.segmentation_enabled |
|
|
self.segmentation_config["size_threshold_chars"] = ( |
|
|
self.cli.segmentation_threshold |
|
|
) |
|
|
|
|
|
self.cli.show_configuration_menu() |
|
|
|
|
|
|
|
|
self.segmentation_config["enabled"] = self.cli.segmentation_enabled |
|
|
self.segmentation_config["size_threshold_chars"] = ( |
|
|
self.cli.segmentation_threshold |
|
|
) |
|
|
|
|
|
else: |
|
|
self.cli.print_status( |
|
|
"Invalid choice. Please select U, F, T, C, H, or Q.", "warning" |
|
|
) |
|
|
|
|
|
|
|
|
if self.cli.is_running and choice in ["u", "f", "t", "chat", "text"]: |
|
|
if not self.cli.ask_continue(): |
|
|
self.cli.is_running = False |
|
|
self.cli.print_status("Session ended by user", "info") |
|
|
|
|
|
except KeyboardInterrupt: |
|
|
print(f"\n{Colors.WARNING}⚠️ Process interrupted by user{Colors.ENDC}") |
|
|
except Exception as e: |
|
|
print(f"\n{Colors.FAIL}❌ Unexpected error: {str(e)}{Colors.ENDC}") |
|
|
finally: |
|
|
|
|
|
await self.cleanup_mcp_app() |
|
|
|
|
|
|
|
|
async def main(): |
|
|
"""主函数""" |
|
|
start_time = time.time() |
|
|
|
|
|
try: |
|
|
|
|
|
app = CLIApp() |
|
|
await app.run_interactive_session() |
|
|
|
|
|
except KeyboardInterrupt: |
|
|
print(f"\n{Colors.WARNING}⚠️ Application interrupted by user{Colors.ENDC}") |
|
|
except Exception as e: |
|
|
print(f"\n{Colors.FAIL}❌ Application error: {str(e)}{Colors.ENDC}") |
|
|
finally: |
|
|
end_time = time.time() |
|
|
print( |
|
|
f"\n{Colors.BOLD}{Colors.CYAN}⏱️ Total runtime: {end_time - start_time:.2f} seconds{Colors.ENDC}" |
|
|
) |
|
|
|
|
|
|
|
|
print(f"{Colors.YELLOW}🧹 Cleaning up cache files...{Colors.ENDC}") |
|
|
if os.name == "nt": |
|
|
os.system( |
|
|
"powershell -Command \"Get-ChildItem -Path . -Filter '__pycache__' -Recurse -Directory | Remove-Item -Recurse -Force\" 2>nul" |
|
|
) |
|
|
else: |
|
|
os.system('find . -type d -name "__pycache__" -exec rm -r {} + 2>/dev/null') |
|
|
|
|
|
print( |
|
|
f"{Colors.OKGREEN}✨ Goodbye! Thanks for using DeepCode CLI! ✨{Colors.ENDC}" |
|
|
) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
asyncio.run(main()) |
|
|
|