File size: 12,653 Bytes
74d8e8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
#!/usr/bin/env python3
"""
DeepCode - CLI Application Main Program
深度代码 - CLI应用主程序

🧬 Open-Source Code Agent by Data Intelligence Lab @ HKU
⚡ Revolutionizing research reproducibility through collaborative AI
"""

import os
import sys
import asyncio
import time
import json

# 禁止生成.pyc文件
os.environ["PYTHONDONTWRITEBYTECODE"] = "1"

# 添加项目根目录到路径
current_dir = os.path.dirname(os.path.abspath(__file__))
parent_dir = os.path.dirname(current_dir)
if parent_dir not in sys.path:
    sys.path.insert(0, parent_dir)

# 导入MCP应用和工作流

from cli.workflows import CLIWorkflowAdapter
from cli.cli_interface import CLIInterface, Colors


class CLIApp:
    """CLI应用主类 - 升级版智能体编排引擎"""

    def __init__(self):
        self.cli = CLIInterface()
        self.workflow_adapter = CLIWorkflowAdapter(cli_interface=self.cli)
        self.app = None  # Will be initialized by workflow adapter
        self.logger = None
        self.context = None
        # Document segmentation configuration
        self.segmentation_config = {"enabled": True, "size_threshold_chars": 50000}

    async def initialize_mcp_app(self):
        """初始化MCP应用 - 使用工作流适配器"""
        # Workflow adapter will handle MCP initialization
        return await self.workflow_adapter.initialize_mcp_app()

    async def cleanup_mcp_app(self):
        """清理MCP应用 - 使用工作流适配器"""
        await self.workflow_adapter.cleanup_mcp_app()

    def update_segmentation_config(self):
        """Update document segmentation configuration in mcp_agent.config.yaml"""
        import yaml
        import os

        config_path = os.path.join(
            os.path.dirname(os.path.dirname(os.path.abspath(__file__))),
            "mcp_agent.config.yaml",
        )

        try:
            # Read current config
            with open(config_path, "r", encoding="utf-8") as f:
                config = yaml.safe_load(f)

            # Update document segmentation settings
            if "document_segmentation" not in config:
                config["document_segmentation"] = {}

            config["document_segmentation"]["enabled"] = self.segmentation_config[
                "enabled"
            ]
            config["document_segmentation"]["size_threshold_chars"] = (
                self.segmentation_config["size_threshold_chars"]
            )

            # Write updated config
            with open(config_path, "w", encoding="utf-8") as f:
                yaml.dump(config, f, default_flow_style=False, allow_unicode=True)

            self.cli.print_status(
                "📄 Document segmentation configuration updated", "success"
            )

        except Exception as e:
            self.cli.print_status(
                f"⚠️ Failed to update segmentation config: {str(e)}", "warning"
            )

    async def process_input(self, input_source: str, input_type: str):
        """处理输入源(URL或文件)- 使用升级版智能体编排引擎"""
        try:
            # Update segmentation configuration before processing
            self.update_segmentation_config()

            self.cli.print_separator()
            self.cli.print_status(
                "🚀 Starting intelligent agent orchestration...", "processing"
            )

            # 显示处理阶段(根据配置决定)
            self.cli.display_processing_stages(0, self.cli.enable_indexing)

            # 使用工作流适配器进行处理
            result = await self.workflow_adapter.process_input_with_orchestration(
                input_source=input_source,
                input_type=input_type,
                enable_indexing=self.cli.enable_indexing,
            )

            if result["status"] == "success":
                # 显示完成状态
                final_stage = 8 if self.cli.enable_indexing else 5
                self.cli.display_processing_stages(
                    final_stage, self.cli.enable_indexing
                )
                self.cli.print_status(
                    "🎉 Agent orchestration completed successfully!", "complete"
                )

                # 显示结果
                self.display_results(
                    result.get("analysis_result", ""),
                    result.get("download_result", ""),
                    result.get("repo_result", ""),
                    result.get("pipeline_mode", "comprehensive"),
                )
            else:
                self.cli.print_status(
                    f"❌ Processing failed: {result.get('error', 'Unknown error')}",
                    "error",
                )

            # 添加到历史记录
            self.cli.add_to_history(input_source, result)

            return result

        except Exception as e:
            error_msg = str(e)
            self.cli.print_error_box("Agent Orchestration Error", error_msg)
            self.cli.print_status(f"Error during orchestration: {error_msg}", "error")

            # 添加错误到历史记录
            error_result = {"status": "error", "error": error_msg}
            self.cli.add_to_history(input_source, error_result)

            return error_result

    def display_results(
        self,
        analysis_result: str,
        download_result: str,
        repo_result: str,
        pipeline_mode: str = "comprehensive",
    ):
        """显示处理结果"""
        self.cli.print_results_header()

        # 显示流水线模式
        if pipeline_mode == "chat":
            mode_display = "💬 Chat Planning Mode"
        elif pipeline_mode == "comprehensive":
            mode_display = "🧠 Comprehensive Mode"
        else:
            mode_display = "⚡ Optimized Mode"
        print(
            f"{Colors.BOLD}{Colors.PURPLE}🤖 PIPELINE MODE: {mode_display}{Colors.ENDC}"
        )
        self.cli.print_separator("─", 79, Colors.PURPLE)

        print(f"{Colors.BOLD}{Colors.OKCYAN}📊 ANALYSIS PHASE RESULTS:{Colors.ENDC}")
        self.cli.print_separator("─", 79, Colors.CYAN)

        # 尝试解析并格式化分析结果
        try:
            if analysis_result.strip().startswith("{"):
                parsed_analysis = json.loads(analysis_result)
                print(json.dumps(parsed_analysis, indent=2, ensure_ascii=False))
            else:
                print(
                    analysis_result[:1000] + "..."
                    if len(analysis_result) > 1000
                    else analysis_result
                )
        except Exception:
            print(
                analysis_result[:1000] + "..."
                if len(analysis_result) > 1000
                else analysis_result
            )

        print(f"\n{Colors.BOLD}{Colors.PURPLE}📥 DOWNLOAD PHASE RESULTS:{Colors.ENDC}")
        self.cli.print_separator("─", 79, Colors.PURPLE)
        print(
            download_result[:1000] + "..."
            if len(download_result) > 1000
            else download_result
        )

        print(
            f"\n{Colors.BOLD}{Colors.GREEN}⚙️  IMPLEMENTATION PHASE RESULTS:{Colors.ENDC}"
        )
        self.cli.print_separator("─", 79, Colors.GREEN)
        print(repo_result[:1000] + "..." if len(repo_result) > 1000 else repo_result)

        # 尝试提取生成的代码目录信息
        if "Code generated in:" in repo_result:
            code_dir = (
                repo_result.split("Code generated in:")[-1].strip().split("\n")[0]
            )
            print(
                f"\n{Colors.BOLD}{Colors.YELLOW}📁 Generated Code Directory: {Colors.ENDC}{code_dir}"
            )

        # 显示处理完成的工作流阶段
        print(
            f"\n{Colors.BOLD}{Colors.OKCYAN}🔄 COMPLETED WORKFLOW STAGES:{Colors.ENDC}"
        )

        if pipeline_mode == "chat":
            stages = [
                "🚀 Engine Initialization",
                "💬 Requirements Analysis",
                "🏗️ Workspace Setup",
                "📝 Implementation Plan Generation",
                "⚙️ Code Implementation",
            ]
        else:
            stages = [
                "📄 Document Processing",
                "🔍 Reference Analysis",
                "📋 Plan Generation",
                "📦 Repository Download",
                "🗂️ Codebase Indexing",
                "⚙️ Code Implementation",
            ]

        for stage in stages:
            print(f"  ✅ {stage}")

        self.cli.print_separator()

    async def run_interactive_session(self):
        """运行交互式会话"""
        # 清屏并显示启动界面
        self.cli.clear_screen()
        self.cli.print_logo()
        self.cli.print_welcome_banner()

        # 初始化MCP应用
        await self.initialize_mcp_app()

        try:
            # 主交互循环
            while self.cli.is_running:
                self.cli.create_menu()
                choice = self.cli.get_user_input()

                if choice in ["q", "quit", "exit"]:
                    self.cli.print_goodbye()
                    break

                elif choice in ["u", "url"]:
                    url = self.cli.get_url_input()
                    if url:
                        await self.process_input(url, "url")

                elif choice in ["f", "file"]:
                    file_path = self.cli.upload_file_gui()
                    if file_path:
                        await self.process_input(f"file://{file_path}", "file")

                elif choice in ["t", "chat", "text"]:
                    chat_input = self.cli.get_chat_input()
                    if chat_input:
                        await self.process_input(chat_input, "chat")

                elif choice in ["h", "history"]:
                    self.cli.show_history()

                elif choice in ["c", "config", "configure"]:
                    # Sync current segmentation config from CLI interface
                    self.segmentation_config["enabled"] = self.cli.segmentation_enabled
                    self.segmentation_config["size_threshold_chars"] = (
                        self.cli.segmentation_threshold
                    )

                    self.cli.show_configuration_menu()

                    # Sync back from CLI interface after configuration changes
                    self.segmentation_config["enabled"] = self.cli.segmentation_enabled
                    self.segmentation_config["size_threshold_chars"] = (
                        self.cli.segmentation_threshold
                    )

                else:
                    self.cli.print_status(
                        "Invalid choice. Please select U, F, T, C, H, or Q.", "warning"
                    )

                # 询问是否继续
                if self.cli.is_running and choice in ["u", "f", "t", "chat", "text"]:
                    if not self.cli.ask_continue():
                        self.cli.is_running = False
                        self.cli.print_status("Session ended by user", "info")

        except KeyboardInterrupt:
            print(f"\n{Colors.WARNING}⚠️  Process interrupted by user{Colors.ENDC}")
        except Exception as e:
            print(f"\n{Colors.FAIL}❌ Unexpected error: {str(e)}{Colors.ENDC}")
        finally:
            # 清理资源
            await self.cleanup_mcp_app()


async def main():
    """主函数"""
    start_time = time.time()

    try:
        # 创建并运行CLI应用
        app = CLIApp()
        await app.run_interactive_session()

    except KeyboardInterrupt:
        print(f"\n{Colors.WARNING}⚠️  Application interrupted by user{Colors.ENDC}")
    except Exception as e:
        print(f"\n{Colors.FAIL}❌ Application error: {str(e)}{Colors.ENDC}")
    finally:
        end_time = time.time()
        print(
            f"\n{Colors.BOLD}{Colors.CYAN}⏱️  Total runtime: {end_time - start_time:.2f} seconds{Colors.ENDC}"
        )

        # 清理缓存文件
        print(f"{Colors.YELLOW}🧹 Cleaning up cache files...{Colors.ENDC}")
        if os.name == "nt":  # Windows
            os.system(
                "powershell -Command \"Get-ChildItem -Path . -Filter '__pycache__' -Recurse -Directory | Remove-Item -Recurse -Force\" 2>nul"
            )
        else:  # Unix/Linux/macOS
            os.system('find . -type d -name "__pycache__" -exec rm -r {} + 2>/dev/null')

        print(
            f"{Colors.OKGREEN}✨ Goodbye! Thanks for using DeepCode CLI! ✨{Colors.ENDC}"
        )


if __name__ == "__main__":
    asyncio.run(main())