File size: 16,247 Bytes
4ad5cc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
# RoboInter-Data: Intermediate Representation Annotations for Robot Manipulation
Rich, dense, per-frame **intermediate representation annotations** for robot manipulation, built on top of [DROID](https://droid-dataset.github.io/) and [RH20T](https://rh20t.github.io/). Developed as part of the [RoboInter](https://github.com/InternRobotics/RoboInter) project. You can try our [**Online demo**](https://huggingface.co/spaces/wz7in/robointer-demo).
The annotations cover 230k episodes and include: subtasks,
primitive skills, segmentation, gripper/object bounding boxes, placement proposals, affordance boxes,
grasp poses, traces, contact points, etc. And each with a quality rating (Primary / Secondary).
## Dataset Structure
```
RoboInter-Data/
│
├── Annotation_with_action_lerobotv21/ # [Main] LeRobot v2.1 format (actions + annotations + videos)
│ ├── lerobot_droid_anno/ # DROID: 152,986 episodes
│ └── lerobot_rh20t_anno/ # RH20T: 82,894 episodes
│
├── Annotation_pure/ # Annotation-only LMDB (no actions/videos)
│ └── annotations/ # 35 GB, all 235,920 episodes
│
├── Annotation_raw/ # Original unprocessed annotations
│ ├── droid_annotation.pkl # Raw DROID annotations (~20 GB)
│ ├── rh20t_annotation.pkl # Raw RH20T annotations (~11 GB)
│ └── segmentation_npz.zip.* # Segmentation masks (~50 GB, split archives)
│
├── Annotation_demo_app/ # Small demo subset for online visualization
│ ├── demo_data/ # LMDB annotations for 20 sampled videos
│ └── videos/ # 20 MP4 videos
│
├── Annotation_demo_larger/ # Larger demo subset for local visualization
│ ├── demo_annotations/ # LMDB annotations for 120 videos
│ └── videos/ # 120 MP4 videos
│
├── All_Keys_of_Primary.json # Episode names where all annotations are Primary quality
├── RoboInter_Data_Qsheet.json # Per-episode quality ratings for each annotation type
├── RoboInter_Data_Qsheet_value_stats.json# Distribution statistics of quality ratings
├── RoboInter_Data_RawPath_Qmapping.json # Mapping: original data source path -> episode splits & quality
├── range_nop.json # Non-idle frame ranges for all 230k episodes
├── range_nop_droid_all.json # Non-idle frame ranges (DROID only)
├── range_nop_rh20t_all.json # Non-idle frame ranges (RH20T only)
├── val_video.json # Validation set: 7,246 episode names
└── VideoID_2_SegmentationNPZ.json # Episode video ID -> segmentation NPZ file path mapping
```
---
## 1. Annotation_with_action_lerobotv21 (Recommended)
The primary data format. Contains **actions + observations + annotations** in [LeRobot v2.1](https://github.com/huggingface/lerobot) format (parquet + MP4 videos), ready for policy training.
### Directory Layout
```
lerobot_droid_anno/ (or lerobot_rh20t_anno/)
├── meta/
│ ├── info.json # Dataset metadata (fps=10, features, etc.)
│ ├── episodes.jsonl # Episode information
│ └── tasks.jsonl # Task/instruction mapping
├── data/
│ └── chunk-{NNN}/ # Parquet files (1,000 episodes per chunk)
│ └── episode_{NNNNNN}.parquet
└── videos/
└── chunk-{NNN}/
├── observation.images.primary/
│ └── episode_{NNNNNN}.mp4
└── observation.images.wrist/
└── episode_{NNNNNN}.mp4
```
### Data Fields
| Category | Field | Shape / Type | Description |
|----------|-------|-------------|-------------|
| **Core** | `action` | (7,) float64 | Delta EEF: [dx, dy, dz, drx, dry, drz, gripper] |
| | `state` | (7,) float64 | EEF state: [x, y, z, rx, ry, rz, gripper] |
| | `observation.images.primary` | (180, 320, 3) video | Primary camera RGB |
| | `observation.images.wrist` | (180, 320, 3) video | Wrist camera RGB |
| **Annotation** | `annotation.instruction_add` | string | Structured task language instruction |
| | `annotation.substask` | string | Current subtask description |
| | `annotation.primitive_skill` | string | Primitive skill label (pick, place, push, ...) |
| | `annotation.object_box` | JSON `[[x1,y1],[x2,y2]]` | Manipulated object bounding box |
| | `annotation.gripper_box` | JSON `[[x1,y1],[x2,y2]]` | Gripper bounding box |
| | `annotation.trace` | JSON `[[x,y], ...]` | Future 10-step gripper trajectory |
| | `annotation.contact_frame` | JSON int | Frame index when gripper contacts object |
| | `annotation.contact_points` | JSON `[x, y]` | Contact point pixel coordinates |
| | `annotation.affordance_box` | JSON `[[x1,y1],[x2,y2]]` | Gripper box at contact frame |
| | `annotation.state_affordance` | JSON `[x,y,z,rx,ry,rz]` | 6D EEF state at contact frame |
| | `annotation.placement_proposal` | JSON `[[x1,y1],[x2,y2]]` | Target placement bounding box |
| | `annotation.time_clip` | JSON `[[s,e], ...]` | Subtask temporal segments |
| **Quality** | `Q_annotation.*` | string | Quality rating: `"Primary"` / `"Secondary"` / `""` |
### Quick Start
The dataloader is located at our RoboInter [Codebase](https://github.com/InternRobotics/RoboInter/blob/main/RoboInterData/lerobot_dataloader).
```python
from lerobot_dataloader import create_dataloader
# Single dataset
dataloader = create_dataloader(
"path/to/Annotation_with_action_lerobotv21/lerobot_droid_anno",
batch_size=32,
action_horizon=16,
)
for batch in dataloader:
images = batch["observation.images.primary"] # (B, H, W, 3)
actions = batch["action"] # (B, 16, 7)
trace = batch["annotation.trace"] # JSON strings
skill = batch["annotation.primitive_skill"] # List[str]
break
# Multiple datasets (DROID + RH20T)
dataloader = create_dataloader(
[
"path/to/lerobot_droid_anno",
"path/to/lerobot_rh20t_anno",
],
batch_size=32,
action_horizon=16,
)
```
### Filtering by Quality & Frame Range
```python
from lerobot_dataloader import create_dataloader, QAnnotationFilter
dataloader = create_dataloader(
"path/to/lerobot_droid_anno",
batch_size=32,
range_nop_path="path/to/range_nop.json", # Remove idle frames
q_filters=[
QAnnotationFilter("Q_annotation.trace", ["Primary"]),
QAnnotationFilter("Q_annotation.gripper_box", ["Primary", "Secondary"]),
],
)
```
For full dataloader documentation and transforms, see: [RoboInterData/lerobot_dataloader](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData/lerobot_dataloader).
### Format Conversion Scripts
The LeRobot v2.1 data was converted using:
- **DROID**: [convert_droid_to_lerobot_anno_fast.py](https://github.com/InternRobotics/RoboInter/blob/main/RoboInterData/convert_to_lerobot/convert_droid_to_lerobot_anno_fast.py)
- **RH20T**: [convert_rh20t_to_lerobot_anno_fast.py](https://github.com/InternRobotics/RoboInter/blob/main/RoboInterData/convert_to_lerobot/convert_rh20t_to_lerobot_anno_fast.py)
---
## 2. Annotation_pure (Annotation-Only LMDB)
Contains **only the intermediate representation annotations** (no action data, no videos) stored as a single LMDB database. Useful for lightweight access to annotations or as input for the LeRobot conversion pipeline. The format conversion scripts and corresponding lightweight dataloader functions are provided in [lmdb_tool](https://github.com/InternRobotics/RoboInter/blob/main/RoboInterData/lmdb_tool). You can downloade high-resolution
videos by following [Droid hr_video_reader](https://github.com/InternRobotics/RoboInter/blob/main/RoboInterData/hr_video_reader) and [RH20T API](https://github.com/rh20t/rh20t_api).
### Data Format
Each LMDB key is an episode name (e.g., `"3072_exterior_image_1_left"`). The value is a dict mapping frame indices to per-frame annotation dicts:
```python
{
0: { # frame_id
"time_clip": [[0, 132], [132, 197], [198, 224]], # subtask segments
"instruction_add": "pick up the red cup", # language instruction
"substask": "reach for the cup", # current subtask
"primitive_skill": "reach", # skill label
"segmentation": None, # (stored separately in Annotation_raw)
"object_box": [[45, 30], [120, 95]], # manipulated object bbox
"placement_proposal": [[150, 80], [220, 140]], # target placement bbox
"trace": [[x, y], ...], # next 10 gripper waypoints
"gripper_box": [[60, 50], [100, 80]], # gripper bbox
"contact_frame": 101, # contact event frame (−1 if past contact)
"state_affordance": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6],# 6D EEF state at contact
"affordance_box": [[62, 48], [98, 82]], # gripper bbox at contact frame
"contact_points": [[75, 65], [85, 65]], # contact pixel coordinates
...
},
1: { ... },
...
}
```
### Reading LMDB
```python
import lmdb
import pickle
lmdb_path = "Annotation_pure/annotations"
env = lmdb.open(lmdb_path, readonly=True, lock=False, readahead=False)
with env.begin() as txn:
# List all episode keys
cursor = txn.cursor()
for key, value in cursor:
episode_name = key.decode("utf-8")
episode_data = pickle.loads(value)
# Access frame 0
frame_0 = episode_data[0]
print(f"{episode_name}: {frame_0['instruction_add']}")
print(f" object_box: {frame_0['object_box']}")
print(f" trace: {frame_0['trace'][:3]}...") # first 3 waypoints
break
env.close()
```
### CLI Inspection Tool
```bash
cd RoboInter/RoboInterData/lmdb_tool
# Basic info
python read_lmdb.py --lmdb_path Annotation_pure/annotations --action info
# View a specific episode
python read_lmdb.py --lmdb_path Annotation_pure/annotations --action item --key "3072_exterior_image_1_left"
# Field coverage statistics
python read_lmdb.py --lmdb_path Annotation_pure/annotations --action stats --key "3072_exterior_image_1_left"
# Multi-episode summary
python read_lmdb.py --lmdb_path Annotation_pure/annotations --action summary --limit 100
```
---
## 3. Annotation_raw (Original Annotations)
The original, unprocessed annotation files before conversion to LMDB format. These files are large and slow to load.
| File | Size | Description |
|------|------|-------------|
| `droid_annotation.pkl` | ~20 GB | Raw DROID intermediate representation annotations |
| `rh20t_annotation.pkl` | ~11 GB | Raw RH20T intermediate representation annotations |
| `segmentation_npz.zip.*` | ~50 GB | Object segmentation masks (split archives) |
### Reading Raw PKL
```bash
cd /RoboInter-Data/Annotation_raw
cat segmentation_npz.zip.* > segmentation_npz.zip
unzip segmentation_npz.zip
```
```python
import pickle
with open("Annotation_raw/droid_annotation.pkl", "rb") as f:
droid_data = pickle.load(f) # Warning: ~20 GB, takes several minutes
# droid_data[episode_key] contains raw intermediate representation data
# including: all_language, all_gripper_box, all_grounding_box, all_contact_point, all_traj, etc.
```
> To convert raw PKL to the LMDB format used in `Annotation_pure`, see the conversion script in the [RoboInter repository](https://github.com/InternRobotics/RoboInter).
---
## 4. Demo Subsets (Annotation_demo_app & Annotation_demo_larger)
Pre-packaged subsets for quick visualization using the [RoboInterData-Demo](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData-Demo) Gradio app. Both subsets share the same LMDB annotation format + MP4 video structure.
| Subset | Videos | Size | Use Case |
|--------|--------|------|----------|
| `Annotation_demo_app` | 20 | ~929 MB | HuggingFace Spaces [online demo](https://huggingface.co/spaces/wz7in/robointer-demo) |
| `Annotation_demo_larger` | 120 | ~12 GB | Local visualization with more examples |
### Running the Visualizer
```bash
git clone https://github.com/InternRobotics/RoboInter.git
cd RoboInter/RoboInterData-Demo
# Option A: Use the small demo subset (for Spaces)
ln -s /path/to/Annotation_demo_app/demo_data ./demo_data
ln -s /path/to/Annotation_demo_app/videos ./videos
# Option B: Use the larger demo subset (for local)
ln -s /path/to/Annotation_demo_larger/demo_annotations ./demo_data
ln -s /path/to/Annotation_demo_larger/videos ./videos
pip install -r requirements.txt
python app.py
# Open http://localhost:7860
```
The visualizer supports all annotation types: object segmentation masks, gripper/object/affordance bounding boxes, trajectory traces, contact points, grasp poses, and language annotations (instructions, subtasks, primitive skills).
---
## 5. Metadata JSON Files
### Quality & Filtering
| File | Description |
|------|-------------|
| `All_Keys_of_Primary.json` | List of 65,515 episode names where **all** annotation types are rated Primary quality. |
| `RoboInter_Data_Qsheet.json` | Per-episode quality ratings for every annotation type. Each entry contains `Q_instruction_add`, `Q_substask`, `Q_trace`, etc. with values `"Primary"`, `"Secondary"`, or `null`. |
| `RoboInter_Data_Qsheet_value_stats.json` | Distribution of quality ratings across all episodes. |
| `RoboInter_Data_RawPath_Qmapping.json` | Mapping from original data source paths to episode splits and their quality ratings. |
### Frame Ranges (Idle Frame Removal)
| File | Description |
|------|-------------|
| `range_nop.json` | Non-idle frame ranges for all 235,920 episodes (DROID + RH20T). |
| `range_nop_droid_all.json` | Non-idle frame ranges for DROID episodes only. |
| `range_nop_rh20t_all.json` | Non-idle frame ranges for RH20T episodes only. |
Format: `{ "episode_name": [start_frame, end_frame, valid_length] }`
```python
import json
with open("range_nop.json") as f:
range_nop = json.load(f)
# Example: "3072_exterior_image_1_left": [12, 217, 206]
# Means: valid action frames are 12~217, total 206 valid frames
# (frames 0~11 and 218+ are idle/stationary)
```
### Other
| File | Description |
|------|-------------|
| `val_video.json` | List of 7,246 episode names reserved for the validation set. |
| `VideoID_2_SegmentationNPZ.json` | Mapping from episode video ID to the corresponding segmentation NPZ file path in `Annotation_raw/segmentation_npz`. `null` if no segmentation is available. |
---
## Related Resources
| Resource | Link |
|----------|------|
| Project | [RoboInter](https://github.com/InternRobotics/RoboInter) |
| VQA Dataset | [RoboInter-VQA](https://huggingface.co/datasets/InternRobotics/RoboInter-VQA) |
| VLM Checkpoints | [RoboInter-VLM](https://huggingface.co/InternRobotics/RoboInter-VLM) |
| LMDB Tool | [RoboInterData/lmdb_tool](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData/lmdb_tool) |
| High-Resolution Video Reader | [RoboInterData/hr_video_reader](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData/hr_video_reader) |
| LeRobot DataLoader | [RoboInterData/lerobot_dataloader](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData/lerobot_dataloader) |
| LeRobot Conversion | [RoboInterData/convert_to_lerobot](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData/convert_to_lerobot) |
| Demo Visualizer | [RoboInterData-Demo](https://github.com/InternRobotics/RoboInter/tree/main/RoboInterData-Demo) |
| Online Demo | [HuggingFace Space](https://huggingface.co/spaces/wz7in/robointer-demo) |
| Raw DROID Dataset | [droid-dataset.github.io](https://droid-dataset.github.io/) |
| Raw RH20T Dataset | [rh20t.github.io](https://rh20t.github.io/) |
## License
Please refer to the original dataset licenses for [RoboInter](https://github.com/InternRobotics/RoboInter), [DROID](https://droid-dataset.github.io/), and [RH20T](https://rh20t.github.io/).
|