gReLU Model Zoo
Collection
Zoo of models and datasets associated with https://github.com/Genentech/gReLU/
•
6 items
•
Updated
The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.
This dataset contains pseudobulk scATAC-seq data for human microglia, derived from the study by Corces et al. (2020) (https://www.nature.com/articles/s41588-020-00721-x). Genome coordinates correspond to the hg38 reference genome. This data is used in tutorial 3 of gReLU (https://github.com/Genentech/gReLU/blob/main/docs/tutorials/3_train.ipynb).
The dataset is divided into two configurations: peaks and fragments.
peak_file.narrowPeak)
Standard ENCODE narrowPeak format (tab-separated).
chrom: Chromosome / Contig name.start: 0-based start position.end: End position.name: Peak identifier.score: Integer score for display.strand: Orientation.signalValue: Measurement of overall enrichment.pValue: Statistical significance (-log10).qValue: False discovery rate (-log10).peak: Point-source (summit) relative to start.fragment_file.bed)
Standard BED6 format representing individual ATAC-seq fragments.
chrom: Chromosome.start: Start position.end: End position.source: Sequencing run identifier (e.g., SRR11442505).score: Placeholder (0).strand: Orientation.from huggingface_hub import hf_hub_download
import grelu.io.bed
import pandas as pd
peak_path = hf_hub_download(
repo_id="Genentech/microglia-scatac-tutorial-data",
repo_type="dataset",
filename="peak_file.narrowPeak"
)
peaks = grelu.io.bed.read_narrowpeak(peak_file)
frag_path = hf_hub_download(
repo_id="Genentech/microglia-scatac-tutorial-data",
repo_type="dataset",
filename="fragment_file.bed"
)
fragments = pd.read_csv(frag_path, sep='\t', header=None,
names=['chrom', 'start', 'end', 'source', 'score', 'strand'])