|
|
import os |
|
|
import logging |
|
|
from functools import partial |
|
|
import hydra |
|
|
import torch |
|
|
import wandb |
|
|
from hydra.core.hydra_config import HydraConfig |
|
|
from hydra.utils import instantiate |
|
|
from lightning import seed_everything |
|
|
from omegaconf import DictConfig, OmegaConf |
|
|
from pdeinvbench.utils import validate_git_status |
|
|
from pdeinvbench.utils.config_utils import resolve_pde_resolution |
|
|
import sys |
|
|
import pdeinvbench |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@hydra.main( |
|
|
version_base=None, |
|
|
config_path="configs/", |
|
|
config_name="1dkdv", |
|
|
) |
|
|
def main(cfg: DictConfig) -> None: |
|
|
|
|
|
validate_git_status() |
|
|
|
|
|
hydra_cfg = HydraConfig.get() |
|
|
overrides = hydra_cfg.overrides.task |
|
|
overrides = [ |
|
|
override |
|
|
for override in overrides |
|
|
if "data_root" not in override |
|
|
and "batch_size" not in override |
|
|
and "logging.project" not in override |
|
|
and "logging.save_dir" not in override |
|
|
and "num_nodes" not in override |
|
|
and "log_model" not in override |
|
|
and "supervised_learning_min_epoch" not in override |
|
|
and "supervised_learning_max_epoch" not in override |
|
|
] |
|
|
|
|
|
|
|
|
resolve_pde_resolution(cfg) |
|
|
|
|
|
|
|
|
wandb_name = hydra_cfg.job["config_name"] + "_" + "_".join(overrides) |
|
|
|
|
|
|
|
|
seed_everything(cfg.seed) |
|
|
|
|
|
|
|
|
|
|
|
wandb_args = OmegaConf.to_container( |
|
|
cfg.logging, resolve=True, throw_on_missing=True |
|
|
) |
|
|
|
|
|
wandb_args.pop("_target_") |
|
|
|
|
|
|
|
|
wandb_args["dir"] = wandb_args.pop("save_dir") |
|
|
cfg_as_dict = OmegaConf.to_container( |
|
|
cfg, resolve=True, throw_on_missing=True) |
|
|
|
|
|
|
|
|
|
|
|
experiment = wandb.init(**wandb_args, name=wandb_name, config=cfg_as_dict) |
|
|
|
|
|
train_dataloader = instantiate(cfg.data.train_dataloader) |
|
|
val_dataloaders = [] |
|
|
test_dataloaders = [] |
|
|
|
|
|
val_dataloader = instantiate(cfg.data.val_dataloader) |
|
|
|
|
|
val_dataloaders.append(val_dataloader) |
|
|
|
|
|
|
|
|
test_dataloaders.append(val_dataloader) |
|
|
if "ood_dataloader" in cfg.data.keys() and os.path.exists(cfg.data.ood_data_root): |
|
|
print("ood loader") |
|
|
test_dataloaders.append(instantiate(cfg.data.ood_dataloader)) |
|
|
if "ood_dataloader_extreme" in cfg.data.keys() and os.path.exists( |
|
|
cfg.data.ood_data_root_extreme |
|
|
): |
|
|
print("ood loader extreme") |
|
|
test_dataloaders.append(instantiate(cfg.data.ood_dataloader_extreme)) |
|
|
if "test_dataloader" in cfg.data.keys() and os.path.exists(cfg.data.test_data_root): |
|
|
print("test iid loader") |
|
|
test_dataloaders.append(instantiate(cfg.data.test_dataloader)) |
|
|
|
|
|
|
|
|
model = instantiate(cfg.model.model_config) |
|
|
|
|
|
if "inverse_model_wandb_run" in cfg.keys() and cfg.inverse_model_wandb_run != "": |
|
|
logging.info("Loading inverse model checkpoint from wandb") |
|
|
inverse_model_run_path = cfg.inverse_model_wandb_run |
|
|
artifact = experiment.use_artifact( |
|
|
inverse_model_run_path, type="model") |
|
|
checkpoint_path = os.path.join(artifact.download(), "model.ckpt") |
|
|
state_dict = torch.load(checkpoint_path, weights_only=False)[ |
|
|
"state_dict"] |
|
|
state_dict = {k.partition( |
|
|
"model.")[2]: v for k, v in state_dict.items()} |
|
|
model.load_state_dict(state_dict) |
|
|
|
|
|
optimizer = instantiate(cfg.optimizer, params=model.parameters()) |
|
|
lr_scheduler = instantiate(cfg.lr_scheduler, optimizer=optimizer) |
|
|
|
|
|
module_kwargs = { |
|
|
"model": model, |
|
|
"optimizer": optimizer, |
|
|
"lr_scheduler": lr_scheduler, |
|
|
} |
|
|
|
|
|
if "tailoring_optimizer" in cfg.keys(): |
|
|
|
|
|
def tailoring_optimizer(x): |
|
|
return instantiate(cfg.tailoring_optimizer, params=x) |
|
|
|
|
|
module_kwargs["tailoring_optimizer"] = tailoring_optimizer |
|
|
else: |
|
|
tailoring_optimizer = None |
|
|
|
|
|
if tailoring_optimizer != None: |
|
|
print(cfg.tailoring_optimizer) |
|
|
|
|
|
print("instantiate inverse module") |
|
|
Inverse_module = instantiate( |
|
|
cfg.lightning_module, |
|
|
**module_kwargs, |
|
|
) |
|
|
print("instantiate inverse module done") |
|
|
|
|
|
log_model = "all" |
|
|
if "log_model" in cfg: |
|
|
log_model = cfg.log_model |
|
|
logger = instantiate( |
|
|
cfg.logging, experiment=experiment, log_model=log_model) |
|
|
logger._save_dir += "/" + \ |
|
|
cfg_as_dict["logging"]["project"] + "/" + wandb_name |
|
|
logger.watch(model, log="all") |
|
|
|
|
|
if tailoring_optimizer is not None: |
|
|
L_trainer = instantiate( |
|
|
cfg.trainer, |
|
|
logger=logger, |
|
|
inference_mode=False, |
|
|
) |
|
|
else: |
|
|
L_trainer = instantiate(cfg.trainer, logger=logger) |
|
|
|
|
|
if "test_run" in cfg and cfg.test_run: |
|
|
L_trainer.test(model=Inverse_module, |
|
|
dataloaders=test_dataloaders, weights_only=False) |
|
|
else: |
|
|
|
|
|
L_trainer.fit( |
|
|
Inverse_module, |
|
|
train_dataloaders=train_dataloader, |
|
|
val_dataloaders=val_dataloaders, |
|
|
) |
|
|
L_trainer.test(dataloaders=test_dataloaders, |
|
|
ckpt_path="best", weights_only=False) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|