File size: 6,048 Bytes
484b847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import logging
from functools import partial
import hydra
import torch
import wandb
from hydra.core.hydra_config import HydraConfig
from hydra.utils import instantiate
from lightning import seed_everything
from omegaconf import DictConfig, OmegaConf
from pdeinvbench.utils import validate_git_status
from pdeinvbench.utils.config_utils import resolve_pde_resolution
import sys
import pdeinvbench

# Add any other submodules you need


@hydra.main(
    version_base=None,
    config_path="configs/",
    config_name="1dkdv",
)
def main(cfg: DictConfig) -> None:
    # check git dirty status
    validate_git_status()

    hydra_cfg = HydraConfig.get()
    overrides = hydra_cfg.overrides.task
    overrides = [
        override
        for override in overrides
        if "data_root" not in override
        and "batch_size" not in override
        and "logging.project" not in override
        and "logging.save_dir" not in override
        and "num_nodes" not in override
        and "log_model" not in override
        and "supervised_learning_min_epoch" not in override
        and "supervised_learning_max_epoch" not in override
    ]

    # First thing is to determine the constants
    resolve_pde_resolution(cfg)

    # Combine the config name with overrides:
    wandb_name = hydra_cfg.job["config_name"] + "_" + "_".join(overrides)

    # Fix random seed
    seed_everything(cfg.seed)

    # Define logger
    # Arguments for wandb.init
    wandb_args = OmegaConf.to_container(
        cfg.logging, resolve=True, throw_on_missing=True
    )
    # Remove the _target_ key which usually points to the lightning logger
    wandb_args.pop("_target_")
    # Rename the save_dir key to dir, which is what wandb.init expects
    # We keep save_dir in cfg.logging so that we can still resolve the lightning wandb logger
    wandb_args["dir"] = wandb_args.pop("save_dir")
    cfg_as_dict = OmegaConf.to_container(
        cfg, resolve=True, throw_on_missing=True)
    # Manually instantiate the wandb experiment
    # We do this so that the wandb run is created with the correct parameters to recreate the run at the start.
    # Otherwise, the config is only saved at the end of the run.
    experiment = wandb.init(**wandb_args, name=wandb_name, config=cfg_as_dict)
    # Instantiate dataloaders
    train_dataloader = instantiate(cfg.data.train_dataloader)
    val_dataloaders = []
    test_dataloaders = []

    val_dataloader = instantiate(cfg.data.val_dataloader)

    val_dataloaders.append(val_dataloader)

    # to run validation set at test time as well with best weights
    test_dataloaders.append(val_dataloader)
    if "ood_dataloader" in cfg.data.keys() and os.path.exists(cfg.data.ood_data_root):
        print("ood loader")
        test_dataloaders.append(instantiate(cfg.data.ood_dataloader))
    if "ood_dataloader_extreme" in cfg.data.keys() and os.path.exists(
        cfg.data.ood_data_root_extreme
    ):
        print("ood loader extreme")
        test_dataloaders.append(instantiate(cfg.data.ood_dataloader_extreme))
    if "test_dataloader" in cfg.data.keys() and os.path.exists(cfg.data.test_data_root):
        print("test iid loader")
        test_dataloaders.append(instantiate(cfg.data.test_dataloader))

    # Instantiate model and optimizer
    model = instantiate(cfg.model.model_config)

    if "inverse_model_wandb_run" in cfg.keys() and cfg.inverse_model_wandb_run != "":
        logging.info("Loading inverse model checkpoint from wandb")
        inverse_model_run_path = cfg.inverse_model_wandb_run
        artifact = experiment.use_artifact(
            inverse_model_run_path, type="model")
        checkpoint_path = os.path.join(artifact.download(), "model.ckpt")
        state_dict = torch.load(checkpoint_path, weights_only=False)[
            "state_dict"]
        state_dict = {k.partition(
            "model.")[2]: v for k, v in state_dict.items()}
        model.load_state_dict(state_dict)

    optimizer = instantiate(cfg.optimizer, params=model.parameters())
    lr_scheduler = instantiate(cfg.lr_scheduler, optimizer=optimizer)

    module_kwargs = {
        "model": model,
        "optimizer": optimizer,
        "lr_scheduler": lr_scheduler,
    }

    if "tailoring_optimizer" in cfg.keys():
        # We use a partial function so that we can dynamically build new optimizers
        def tailoring_optimizer(x):
            return instantiate(cfg.tailoring_optimizer, params=x)

        module_kwargs["tailoring_optimizer"] = tailoring_optimizer
    else:
        tailoring_optimizer = None
    # Wraps the base model to perform prediction and losses
    if tailoring_optimizer != None:
        print(cfg.tailoring_optimizer)

    print("instantiate inverse module")
    Inverse_module = instantiate(
        cfg.lightning_module,
        **module_kwargs,
    )
    print("instantiate inverse module done")
    # Instantiate the lightning logger & force the lightning logger to use the wandb experiment manually created
    log_model = "all"
    if "log_model" in cfg:
        log_model = cfg.log_model
    logger = instantiate(
        cfg.logging, experiment=experiment, log_model=log_model)
    logger._save_dir += "/" + \
        cfg_as_dict["logging"]["project"] + "/" + wandb_name
    logger.watch(model, log="all")
    # Lightning trainer
    if tailoring_optimizer is not None:
        L_trainer = instantiate(
            cfg.trainer,
            logger=logger,
            inference_mode=False,
        )
    else:
        L_trainer = instantiate(cfg.trainer, logger=logger)

    if "test_run" in cfg and cfg.test_run:
        L_trainer.test(model=Inverse_module,
                       dataloaders=test_dataloaders, weights_only=False)
    else:
        # Train
        L_trainer.fit(
            Inverse_module,
            train_dataloaders=train_dataloader,
            val_dataloaders=val_dataloaders,
        )
        L_trainer.test(dataloaders=test_dataloaders,
                       ckpt_path="best", weights_only=False)


if __name__ == "__main__":
    main()