|
|
import numpy as np |
|
|
import pdeinvbench.utils.pytorch_utils as ptu |
|
|
from pdeinvbench.utils.pytorch_utils import is_numpy |
|
|
from jaxtyping import jaxtyped |
|
|
import typeguard |
|
|
import wandb |
|
|
from pdeinvbench.utils.types import ( |
|
|
TypeScaleInputField2D, |
|
|
TypeScaleInputField1D, |
|
|
TypeScaledField1D, |
|
|
TypeLoggingField1D, |
|
|
TypeLoggingField2D, |
|
|
) |
|
|
from typing import Dict, Tuple |
|
|
import torch |
|
|
|
|
|
from lightning.pytorch.loggers import WandbLogger |
|
|
|
|
|
import time |
|
|
import warnings |
|
|
|
|
|
|
|
|
class CustomWandbLogger(WandbLogger): |
|
|
def after_save_checkpoint(self, checkpoint_callback): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
super().after_save_checkpoint(checkpoint_callback) |
|
|
if self._log_model: |
|
|
api = wandb.Api() |
|
|
entity = self._wandb_init["entity"] |
|
|
project = self._project |
|
|
model_ckpt = self._checkpoint_name |
|
|
try: |
|
|
model_artifacts = api.artifacts( |
|
|
"model", f"{entity}/{project}/{model_ckpt}" |
|
|
) |
|
|
for model_ckpt in model_artifacts: |
|
|
if ( |
|
|
model_ckpt.state != "DELETED" |
|
|
and "latest" not in model_ckpt.aliases |
|
|
and "best" not in model_ckpt.aliases |
|
|
): |
|
|
model_ckpt.delete() |
|
|
except Exception as e: |
|
|
|
|
|
warnings.warn(f"W&B error {e}") |
|
|
|
|
|
|
|
|
@jaxtyped(typechecker=typeguard.typechecked) |
|
|
def scale_2d_field_for_wandb( |
|
|
predictions: TypeScaleInputField2D, |
|
|
targets: TypeScaleInputField2D, |
|
|
) -> TypeLoggingField2D: |
|
|
""" |
|
|
Scales the predicted trajectory and the ground truth trajectory between [0,255] for wandb video logging for 2d systems, per channel. |
|
|
Computes the absolute difference between the predicted and ground truth trajectories and scales the difference |
|
|
between [0,255] for wandb video logging. |
|
|
For the predictions and target fields: |
|
|
The 0 value corresponds to the lowest solution field value across both ground truth and predicted trajectories. |
|
|
The 255 value corresponds to the largest solution field value across both ground truth and predicted trajectories. |
|
|
The absolute difference field: |
|
|
The 0 value corresponds to the lowest absolute difference value across both ground truth and predicted trajectories. |
|
|
The 255 value corresponds to the largest absolute difference value across both ground truth and predicted trajectories. |
|
|
The scaled fields repeated 3 times as RGB channel dimensions for logging. |
|
|
:param predictions: numpy.Array - predicted solution (T x X_spatial x y_spatial) |
|
|
:param target: numpy.Array - target solution (T x X_spatial x y_spatial) |
|
|
:return: numpy.Array - scaled target field (T x 3 x X_spatial x y_spatial), scaled predicted fields (T x 3 x X_spatial x y_spatial), scaled absolute difference field (T x 3 x X_spatial x y_spatial) |
|
|
""" |
|
|
if is_numpy(predictions): |
|
|
predictions = np.expand_dims(predictions, axis=1) |
|
|
else: |
|
|
predictions = ptu.torch_to_numpy(predictions.unsqueeze(1)) |
|
|
if is_numpy(targets): |
|
|
targets = np.expand_dims(targets, axis=1) |
|
|
else: |
|
|
targets = ptu.torch_to_numpy(targets.unsqueeze(1)) |
|
|
|
|
|
pred_min, pred_max = np.min(predictions), np.max(predictions) |
|
|
target_min, target_max = np.min(targets), np.max(targets) |
|
|
scale_min, scale_max = min(pred_min, target_min), max(pred_max, target_max) |
|
|
scaled_target = 255 * ( |
|
|
( |
|
|
( |
|
|
np.repeat( |
|
|
targets, |
|
|
repeats=3, |
|
|
axis=1, |
|
|
) |
|
|
) |
|
|
- scale_min |
|
|
) |
|
|
/ (scale_max - scale_min) |
|
|
) |
|
|
scaled_pred = 255 * ( |
|
|
( |
|
|
( |
|
|
np.repeat( |
|
|
predictions, |
|
|
repeats=3, |
|
|
axis=1, |
|
|
) |
|
|
) |
|
|
- scale_min |
|
|
) |
|
|
/ (scale_max - scale_min) |
|
|
) |
|
|
|
|
|
diff_min, diff_max = np.min(np.abs(predictions - targets)), np.max( |
|
|
np.abs(predictions - targets) |
|
|
) |
|
|
scaled_diff = 255 * ( |
|
|
( |
|
|
np.repeat( |
|
|
np.abs(predictions - targets), |
|
|
repeats=3, |
|
|
axis=1, |
|
|
) |
|
|
- diff_min |
|
|
) |
|
|
/ (diff_max - diff_min) |
|
|
) |
|
|
return ( |
|
|
scaled_target.astype(np.uint8), |
|
|
scaled_pred.astype(np.uint8), |
|
|
scaled_diff.astype(np.uint8), |
|
|
) |
|
|
|
|
|
|
|
|
@jaxtyped(typechecker=typeguard.typechecked) |
|
|
def scale_1d_field(field: TypeScaleInputField1D) -> TypeScaledField1D: |
|
|
""" |
|
|
Scales 1D trajectory between 0 and 255 for wandb image logging. |
|
|
The 0 value corresponds to the lowest solution field value across both ground truth and predicted trajectories. |
|
|
The 255 value corresponds to the largest solution field value across both ground truth and predicted trajectories. |
|
|
:param field: numpy.Array - predicted solution (T x X_spatial) |
|
|
:return: numpy.Array - scaled field |
|
|
|
|
|
""" |
|
|
scale_min = np.min(field) |
|
|
scale_max = np.max(field) |
|
|
scaled_field = 255 * ((field - scale_min) / scale_max - scale_min) |
|
|
return scaled_field.astype(np.uint8) |
|
|
|
|
|
|
|
|
@jaxtyped(typechecker=typeguard.typechecked) |
|
|
def scale_1d_field_for_wandb( |
|
|
predictions: TypeScaleInputField1D, |
|
|
target: TypeScaleInputField1D, |
|
|
) -> TypeLoggingField1D: |
|
|
""" |
|
|
Scales the predicted trajectory and the ground truth trajectory between [0,255] for wandb video logging for 1d systems. |
|
|
Computes the absolute difference between the predicted and ground truth trajectories and scales the difference |
|
|
between [0,255] for wandb video logging. |
|
|
For the predictions and target fields: |
|
|
The 0 value corresponds to the lowest solution field value across both ground truth and predicted trajectories. |
|
|
The 255 value corresponds to the largest solution field value across both ground truth and predicted trajectories. |
|
|
The absolute difference field: |
|
|
The 0 value corresponds to the lowest absolute difference value across both ground truth and predicted trajectories. |
|
|
The 255 value corresponds to the largest absolute difference value across both ground truth and predicted trajectories. |
|
|
:param predictions: numpy.Array - predicted solution (T x X_spatial) |
|
|
:param target: numpy.Array - target solution (T x X_spatial) |
|
|
:return: numpy.Array - scaled target field, scaled predicted fields, scaled absolute difference field |
|
|
""" |
|
|
scale_min = min(np.min(target), np.min(predictions)) |
|
|
scale_max = max(np.max(target), np.max(predictions)) |
|
|
scaled_target = 255 * ((target - scale_min) / scale_max - scale_min) |
|
|
scaled_predictions = 255 * ((predictions - scale_min) / scale_max - scale_min) |
|
|
|
|
|
difference = np.absolute(target - predictions) |
|
|
difference_min, difference_max = np.min(difference), np.max(difference) |
|
|
scaled_diff = 255 * ( |
|
|
(difference - difference_min) / (difference_max - difference_min) |
|
|
) |
|
|
return ( |
|
|
scaled_target.astype(np.uint8), |
|
|
scaled_predictions.astype(np.uint8), |
|
|
scaled_diff.astype(np.uint8), |
|
|
) |
|
|
|
|
|
|
|
|
def get_best_model_weights( |
|
|
entity: str, |
|
|
project: str, |
|
|
metric: str = "validation/param_loss", |
|
|
filters: Dict = None, |
|
|
) -> Dict[str, torch.Tensor]: |
|
|
"""Get the weights from the best performing model.""" |
|
|
api = wandb.Api() |
|
|
|
|
|
|
|
|
filter_str = " ".join([f"{k}={v}" for k, v in (filters or {}).items()]) |
|
|
|
|
|
|
|
|
runs = api.runs(f"{entity}/{project}", filters=filter_str) |
|
|
|
|
|
best_value = float("inf") |
|
|
best_run = None |
|
|
|
|
|
for run in runs: |
|
|
if run.state != "finished": |
|
|
continue |
|
|
|
|
|
try: |
|
|
current_value = run.summary.get(metric) |
|
|
if current_value is None: |
|
|
continue |
|
|
|
|
|
if current_value < best_value: |
|
|
best_value = current_value |
|
|
best_run = run |
|
|
|
|
|
except Exception as e: |
|
|
print(f"Error processing run {run.id}: {e}") |
|
|
continue |
|
|
|
|
|
if best_run is None: |
|
|
raise ValueError("No valid runs found!") |
|
|
|
|
|
|
|
|
checkpoint_file = None |
|
|
for file in best_run.files(): |
|
|
if file.name.endswith(".ckpt"): |
|
|
checkpoint_file = file |
|
|
break |
|
|
|
|
|
if checkpoint_file is None: |
|
|
raise ValueError(f"No checkpoint found in best run {best_run.id}") |
|
|
|
|
|
|
|
|
checkpoint_file.download(replace=True) |
|
|
checkpoint = torch.load(checkpoint_file.name) |
|
|
|
|
|
return checkpoint["state_dict"] |
|
|
|
|
|
|
|
|
def collect_loss_dicts(outputs, batch, metric_name, metrics_array): |
|
|
outputs = ptu.torch_dict_to_numpy(outputs) |
|
|
pde_params_np = ptu.torch_dict_to_numpy(batch[-1]) |
|
|
ic_index = batch[-2] |
|
|
if type(ic_index) == torch.Tensor: |
|
|
|
|
|
ic_index = ic_index.cpu().numpy() |
|
|
timestamps = batch[-3] |
|
|
if type(timestamps) == torch.Tensor: |
|
|
timestamps = timestamps.cpu().numpy() |
|
|
required_batch_size = outputs[metric_name].shape[0] |
|
|
param_key = list(pde_params_np.keys())[0] |
|
|
if required_batch_size > pde_params_np[param_key].shape[0]: |
|
|
num_repeat_elements = required_batch_size - pde_params_np[param_key].shape[0] |
|
|
batch = tree_map( |
|
|
lambda x: torch.cat( |
|
|
[x] + [x[-1].unsqueeze(0) for _ in range(num_repeat_elements)] |
|
|
), |
|
|
batch, |
|
|
) |
|
|
pde_params_np = ptu.torch_dict_to_numpy(batch[-1]) |
|
|
|
|
|
metrics_array.append((outputs, pde_params_np, ic_index, timestamps)) |
|
|
|