File size: 9,786 Bytes
484b847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import numpy as np
import pdeinvbench.utils.pytorch_utils as ptu
from pdeinvbench.utils.pytorch_utils import is_numpy
from jaxtyping import jaxtyped
import typeguard
import wandb
from pdeinvbench.utils.types import (
    TypeScaleInputField2D,
    TypeScaleInputField1D,
    TypeScaledField1D,
    TypeLoggingField1D,
    TypeLoggingField2D,
)
from typing import Dict, Tuple
import torch

from lightning.pytorch.loggers import WandbLogger

import time
import warnings


class CustomWandbLogger(WandbLogger):
    def after_save_checkpoint(self, checkpoint_callback):

        # Logic to delete intermediate checkpoints
        # You can use the W&B API to delete specific checkpoints if needed
        # Example: delete the checkpoints that are not the best
        super().after_save_checkpoint(checkpoint_callback)
        if self._log_model:
            api = wandb.Api()
            entity = self._wandb_init["entity"]
            project = self._project
            model_ckpt = self._checkpoint_name
            try:
                model_artifacts = api.artifacts(
                    "model", f"{entity}/{project}/{model_ckpt}"
                )
                for model_ckpt in model_artifacts:
                    if (
                        model_ckpt.state != "DELETED"
                        and "latest" not in model_ckpt.aliases
                        and "best" not in model_ckpt.aliases
                    ):
                        model_ckpt.delete()
            except Exception as e:
                # adhoc way to do deal with latency in wandb
                warnings.warn(f"W&B error {e}")


@jaxtyped(typechecker=typeguard.typechecked)
def scale_2d_field_for_wandb(
    predictions: TypeScaleInputField2D,
    targets: TypeScaleInputField2D,
) -> TypeLoggingField2D:
    """
    Scales the predicted trajectory and the ground truth trajectory between [0,255] for wandb video logging for 2d systems, per channel.
    Computes the absolute difference between the predicted and ground truth trajectories and scales the difference
    between [0,255] for wandb video logging.
    For the predictions and target fields:
        The 0 value corresponds to the lowest solution field value across both ground truth and predicted trajectories.
        The 255 value corresponds to the largest solution field value across both ground truth and predicted trajectories.
    The absolute difference field:
        The 0 value corresponds to the lowest absolute difference value across both ground truth and predicted trajectories.
        The 255 value corresponds to the largest absolute difference value across both ground truth and predicted trajectories.
    The scaled fields repeated 3 times as RGB channel dimensions for logging.
    :param predictions: numpy.Array - predicted solution (T x X_spatial x y_spatial)
    :param target: numpy.Array - target solution (T x X_spatial x y_spatial)
    :return: numpy.Array - scaled target field (T x 3 x X_spatial x y_spatial), scaled predicted fields (T x 3 x X_spatial x y_spatial), scaled absolute difference field (T x 3 x X_spatial x y_spatial)
    """
    if is_numpy(predictions):
        predictions = np.expand_dims(predictions, axis=1)
    else:
        predictions = ptu.torch_to_numpy(predictions.unsqueeze(1))
    if is_numpy(targets):
        targets = np.expand_dims(targets, axis=1)
    else:
        targets = ptu.torch_to_numpy(targets.unsqueeze(1))

    pred_min, pred_max = np.min(predictions), np.max(predictions)
    target_min, target_max = np.min(targets), np.max(targets)
    scale_min, scale_max = min(pred_min, target_min), max(pred_max, target_max)
    scaled_target = 255 * (
        (
            (
                np.repeat(
                    targets,
                    repeats=3,
                    axis=1,
                )
            )
            - scale_min
        )
        / (scale_max - scale_min)
    )
    scaled_pred = 255 * (
        (
            (
                np.repeat(
                    predictions,
                    repeats=3,
                    axis=1,
                )
            )
            - scale_min
        )
        / (scale_max - scale_min)
    )

    diff_min, diff_max = np.min(np.abs(predictions - targets)), np.max(
        np.abs(predictions - targets)
    )
    scaled_diff = 255 * (
        (
            np.repeat(
                np.abs(predictions - targets),
                repeats=3,
                axis=1,
            )
            - diff_min
        )
        / (diff_max - diff_min)
    )
    return (
        scaled_target.astype(np.uint8),
        scaled_pred.astype(np.uint8),
        scaled_diff.astype(np.uint8),
    )


@jaxtyped(typechecker=typeguard.typechecked)
def scale_1d_field(field: TypeScaleInputField1D) -> TypeScaledField1D:
    """
    Scales 1D trajectory between 0 and 255 for wandb image logging.
    The 0 value corresponds to the lowest solution field value across both ground truth and predicted trajectories.
    The 255 value corresponds to the largest solution field value across both ground truth and predicted trajectories.
    :param field: numpy.Array - predicted solution (T x X_spatial)
    :return: numpy.Array - scaled field

    """
    scale_min = np.min(field)
    scale_max = np.max(field)
    scaled_field = 255 * ((field - scale_min) / scale_max - scale_min)
    return scaled_field.astype(np.uint8)


@jaxtyped(typechecker=typeguard.typechecked)
def scale_1d_field_for_wandb(
    predictions: TypeScaleInputField1D,
    target: TypeScaleInputField1D,
) -> TypeLoggingField1D:
    """
    Scales the predicted trajectory and the ground truth trajectory between [0,255] for wandb video logging for 1d systems.
    Computes the absolute difference between the predicted and ground truth trajectories and scales the difference
    between [0,255] for wandb video logging.
    For the predictions and target fields:
        The 0 value corresponds to the lowest solution field value across both ground truth and predicted trajectories.
        The 255 value corresponds to the largest solution field value across both ground truth and predicted trajectories.
    The absolute difference field:
        The 0 value corresponds to the lowest absolute difference value across both ground truth and predicted trajectories.
        The 255 value corresponds to the largest absolute difference value across both ground truth and predicted trajectories.
    :param predictions: numpy.Array - predicted solution (T x X_spatial)
    :param target: numpy.Array - target solution (T x X_spatial)
    :return: numpy.Array - scaled target field, scaled predicted fields, scaled absolute difference field
    """
    scale_min = min(np.min(target), np.min(predictions))
    scale_max = max(np.max(target), np.max(predictions))
    scaled_target = 255 * ((target - scale_min) / scale_max - scale_min)
    scaled_predictions = 255 * ((predictions - scale_min) / scale_max - scale_min)

    difference = np.absolute(target - predictions)
    difference_min, difference_max = np.min(difference), np.max(difference)
    scaled_diff = 255 * (
        (difference - difference_min) / (difference_max - difference_min)
    )
    return (
        scaled_target.astype(np.uint8),
        scaled_predictions.astype(np.uint8),
        scaled_diff.astype(np.uint8),
    )


def get_best_model_weights(
    entity: str,
    project: str,
    metric: str = "validation/param_loss",
    filters: Dict = None,
) -> Dict[str, torch.Tensor]:
    """Get the weights from the best performing model."""
    api = wandb.Api()

    # Build filters query
    filter_str = " ".join([f"{k}={v}" for k, v in (filters or {}).items()])

    # Get all runs
    runs = api.runs(f"{entity}/{project}", filters=filter_str)

    best_value = float("inf")
    best_run = None

    for run in runs:
        if run.state != "finished":
            continue

        try:
            current_value = run.summary.get(metric)
            if current_value is None:
                continue

            if current_value < best_value:
                best_value = current_value
                best_run = run

        except Exception as e:
            print(f"Error processing run {run.id}: {e}")
            continue

    if best_run is None:
        raise ValueError("No valid runs found!")

    # Download the checkpoint
    checkpoint_file = None
    for file in best_run.files():
        if file.name.endswith(".ckpt"):
            checkpoint_file = file
            break

    if checkpoint_file is None:
        raise ValueError(f"No checkpoint found in best run {best_run.id}")

    # Download and load checkpoint
    checkpoint_file.download(replace=True)
    checkpoint = torch.load(checkpoint_file.name)

    return checkpoint["state_dict"]


def collect_loss_dicts(outputs, batch, metric_name, metrics_array):
    outputs = ptu.torch_dict_to_numpy(outputs)
    pde_params_np = ptu.torch_dict_to_numpy(batch[-1])
    ic_index = batch[-2]
    if type(ic_index) == torch.Tensor:
        # to cpu and then numpy
        ic_index = ic_index.cpu().numpy()
    timestamps = batch[-3]
    if type(timestamps) == torch.Tensor:
        timestamps = timestamps.cpu().numpy()
    required_batch_size = outputs[metric_name].shape[0]
    param_key = list(pde_params_np.keys())[0]
    if required_batch_size > pde_params_np[param_key].shape[0]:
        num_repeat_elements = required_batch_size - pde_params_np[param_key].shape[0]
        batch = tree_map(
            lambda x: torch.cat(
                [x] + [x[-1].unsqueeze(0) for _ in range(num_repeat_elements)]
            ),
            batch,
        )
        pde_params_np = ptu.torch_dict_to_numpy(batch[-1])

    metrics_array.append((outputs, pde_params_np, ic_index, timestamps))