|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
|
|
|
|
|
|
class MLP(nn.Module): |
|
|
""" |
|
|
MLP with a variable number of hidden layers and activation functions. |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
in_dim: int, |
|
|
hidden_size: int, |
|
|
dropout: float, |
|
|
out_dim: int, |
|
|
num_layers: int, |
|
|
activation: str, |
|
|
): |
|
|
super(MLP, self).__init__() |
|
|
self.layers = nn.ModuleList() |
|
|
|
|
|
|
|
|
self.layers.append(nn.Linear(in_dim, hidden_size)) |
|
|
if dropout != 0: |
|
|
self.layers.append(nn.Dropout(dropout)) |
|
|
|
|
|
|
|
|
for _ in range(num_layers - 1): |
|
|
self.layers.append(nn.Linear(hidden_size, hidden_size)) |
|
|
if dropout != 0: |
|
|
self.layers.append(nn.Dropout(dropout)) |
|
|
|
|
|
|
|
|
self.layers.append(nn.Linear(hidden_size, out_dim)) |
|
|
|
|
|
|
|
|
if activation == "relu": |
|
|
self.activation = F.relu |
|
|
elif activation == "gelu": |
|
|
self.activation = F.gelu |
|
|
else: |
|
|
raise ValueError(f"Unsupported activation: {activation}") |
|
|
|
|
|
def forward(self, x): |
|
|
for i, layer in enumerate(self.layers): |
|
|
x = layer(x) |
|
|
if i < len(self.layers) - 1: |
|
|
x = self.activation(x) |
|
|
return x |
|
|
|