import torch.nn as nn import torch.nn.functional as F class MLP(nn.Module): """ MLP with a variable number of hidden layers and activation functions. """ def __init__( self, in_dim: int, hidden_size: int, dropout: float, out_dim: int, num_layers: int, activation: str, ): super(MLP, self).__init__() self.layers = nn.ModuleList() # Input layer self.layers.append(nn.Linear(in_dim, hidden_size)) if dropout != 0: self.layers.append(nn.Dropout(dropout)) # Hidden layers for _ in range(num_layers - 1): self.layers.append(nn.Linear(hidden_size, hidden_size)) if dropout != 0: self.layers.append(nn.Dropout(dropout)) # Output layer self.layers.append(nn.Linear(hidden_size, out_dim)) # Activation function if activation == "relu": self.activation = F.relu elif activation == "gelu": self.activation = F.gelu else: raise ValueError(f"Unsupported activation: {activation}") def forward(self, x): for i, layer in enumerate(self.layers): x = layer(x) if i < len(self.layers) - 1: # Apply activation to all but last layer x = self.activation(x) return x