|
|
import numpy as np |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
from torch.nn import Conv1d, Conv2d, Linear, ReLU |
|
|
|
|
|
from pdeinvbench.utils.types import PDE |
|
|
|
|
|
|
|
|
class ConvDownsampler(nn.Module): |
|
|
""" |
|
|
Multi-layer convolutional downsampler for spatial dimension reduction. |
|
|
|
|
|
Stacks multiple ConvBlock layers, each consisting of a convolutional layer, |
|
|
ReLU activation, dropout, and max pooling. Supports both 1D and 2D spatial |
|
|
dimensions. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
n_layers : int |
|
|
Number of convolutional blocks to stack. |
|
|
input_dimension : int |
|
|
Spatial dimensionality of the input (1 for 1D, 2 for 2D). |
|
|
Determines whether to use Conv1d or Conv2d operations. |
|
|
in_channels : int |
|
|
Number of input channels. Note: this stays constant across all layers |
|
|
in the current implementation. |
|
|
out_channels : int |
|
|
Number of output channels for each convolutional layer. |
|
|
kernel_size : int |
|
|
Size of the convolving kernel. |
|
|
stride : int |
|
|
Stride of the convolution operation. |
|
|
padding : int |
|
|
Zero-padding added to both sides of the input. |
|
|
dropout : float |
|
|
Dropout probability applied after each ReLU activation. |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
n_layers: int, |
|
|
input_dimension: int, |
|
|
in_channels: int, |
|
|
out_channels: int, |
|
|
kernel_size: int, |
|
|
stride: int, |
|
|
padding: int, |
|
|
dropout: float, |
|
|
): |
|
|
super(ConvDownsampler, self).__init__() |
|
|
|
|
|
self.n_layers = n_layers |
|
|
self.input_dimension = input_dimension |
|
|
self.in_channels = in_channels |
|
|
self.out_channels = out_channels |
|
|
self.kernel_size = kernel_size |
|
|
self.stride = stride |
|
|
self.padding = padding |
|
|
self.dropout = dropout |
|
|
self.blocks = nn.ModuleList() |
|
|
for _ in range(n_layers): |
|
|
self.blocks.append( |
|
|
ConvBlock( |
|
|
input_dimension, |
|
|
in_channels, |
|
|
out_channels, |
|
|
kernel_size, |
|
|
stride, |
|
|
padding, |
|
|
dropout, |
|
|
) |
|
|
) |
|
|
|
|
|
def forward(self, x): |
|
|
for block in self.blocks: |
|
|
x = block(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class ConvBlock(nn.Module): |
|
|
""" |
|
|
Conv block with a convolutional layer, ReLU activation and maxpooling. |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
input_dimension: int, |
|
|
in_channels: int, |
|
|
out_channels: int, |
|
|
kernel_size: int, |
|
|
stride: int, |
|
|
padding: int, |
|
|
dropout: float, |
|
|
): |
|
|
super(ConvBlock, self).__init__() |
|
|
|
|
|
if input_dimension == 2: |
|
|
self.conv = Conv2d( |
|
|
in_channels, |
|
|
out_channels, |
|
|
kernel_size=kernel_size, |
|
|
stride=stride, |
|
|
padding=(padding, padding), |
|
|
) |
|
|
self.maxpool = nn.MaxPool2d(2) |
|
|
elif input_dimension == 1: |
|
|
self.conv = Conv1d( |
|
|
in_channels, |
|
|
out_channels, |
|
|
kernel_size=kernel_size, |
|
|
stride=stride, |
|
|
padding=padding, |
|
|
) |
|
|
self.maxpool = nn.MaxPool1d(2) |
|
|
else: |
|
|
raise ValueError("Input dimension must be 1 or 2.") |
|
|
|
|
|
self.relu = ReLU() |
|
|
self.dropout_layer = nn.Dropout(dropout) |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.conv(x) |
|
|
x = self.relu(x) |
|
|
x = self.dropout_layer(x) |
|
|
x = self.maxpool(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class IdentityMap(nn.Module): |
|
|
""" |
|
|
Identity downsampler to use for darcy flow. Since Fno maps to function spaces, |
|
|
there is no spatial downsampling that needs to be done. |
|
|
""" |
|
|
|
|
|
def __init__(self, **kwargs): |
|
|
super(IdentityMap, self).__init__() |
|
|
|
|
|
|
|
|
def forward(self, x): |
|
|
return x |
|
|
|