import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import Conv1d, Conv2d, Linear, ReLU from pdeinvbench.utils.types import PDE class ConvDownsampler(nn.Module): """ Multi-layer convolutional downsampler for spatial dimension reduction. Stacks multiple ConvBlock layers, each consisting of a convolutional layer, ReLU activation, dropout, and max pooling. Supports both 1D and 2D spatial dimensions. Parameters ---------- n_layers : int Number of convolutional blocks to stack. input_dimension : int Spatial dimensionality of the input (1 for 1D, 2 for 2D). Determines whether to use Conv1d or Conv2d operations. in_channels : int Number of input channels. Note: this stays constant across all layers in the current implementation. out_channels : int Number of output channels for each convolutional layer. kernel_size : int Size of the convolving kernel. stride : int Stride of the convolution operation. padding : int Zero-padding added to both sides of the input. dropout : float Dropout probability applied after each ReLU activation. """ def __init__( self, n_layers: int, input_dimension: int, in_channels: int, out_channels: int, kernel_size: int, stride: int, padding: int, dropout: float, ): super(ConvDownsampler, self).__init__() self.n_layers = n_layers self.input_dimension = input_dimension self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.dropout = dropout self.blocks = nn.ModuleList() for _ in range(n_layers): self.blocks.append( ConvBlock( input_dimension, in_channels, out_channels, kernel_size, stride, padding, dropout, ) ) def forward(self, x): for block in self.blocks: x = block(x) return x class ConvBlock(nn.Module): """ Conv block with a convolutional layer, ReLU activation and maxpooling. """ def __init__( self, input_dimension: int, in_channels: int, out_channels: int, kernel_size: int, stride: int, padding: int, dropout: float, ): super(ConvBlock, self).__init__() if input_dimension == 2: self.conv = Conv2d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=(padding, padding), ) self.maxpool = nn.MaxPool2d(2) elif input_dimension == 1: self.conv = Conv1d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, ) self.maxpool = nn.MaxPool1d(2) else: raise ValueError("Input dimension must be 1 or 2.") self.relu = ReLU() self.dropout_layer = nn.Dropout(dropout) def forward(self, x): x = self.conv(x) x = self.relu(x) x = self.dropout_layer(x) x = self.maxpool(x) return x class IdentityMap(nn.Module): """ Identity downsampler to use for darcy flow. Since Fno maps to function spaces, there is no spatial downsampling that needs to be done. """ def __init__(self, **kwargs): super(IdentityMap, self).__init__() # Ignore all kwargs - IdentityMap doesn't need any configuration def forward(self, x): return x