|
|
from typing import Dict, List, Tuple, Union |
|
|
|
|
|
import torch |
|
|
import typeguard |
|
|
from jaxtyping import Float, jaxtyped |
|
|
|
|
|
from pdeinvbench.utils.types import ( |
|
|
Type1DRPartialsTuple, |
|
|
Type2DRDPartialsTuple, |
|
|
TypeBatchSolField1D, |
|
|
TypePartials2D, |
|
|
TypeXGrid, |
|
|
TypeYGrid, |
|
|
) |
|
|
|
|
|
|
|
|
@jaxtyped(typechecker=typeguard.typechecked) |
|
|
def partials_torch_1d_systems( |
|
|
solution_field: TypeBatchSolField1D, |
|
|
x: TypeXGrid, |
|
|
dt: torch.Tensor, |
|
|
) -> Type1DRPartialsTuple: |
|
|
""" |
|
|
Compute the spatial and temporal partial differentials for 1d systems. |
|
|
solution field: solution field |
|
|
x: spatial grid |
|
|
dt: time differential |
|
|
Returns: |
|
|
data_x: X spatial gradient (du/dx) |
|
|
data_x_usqr: spatial gradient of u^2/2 (du^2/dx) |
|
|
data_xx: X spatial second gradient (d^2u/dx^2) |
|
|
data_t: temporal gradient (du/dt) |
|
|
(All return arguments are same shape as data) |
|
|
""" |
|
|
x_axis = -1 |
|
|
t_axis = -2 |
|
|
|
|
|
|
|
|
if len(x.shape) == 2: |
|
|
x = x[0] |
|
|
|
|
|
data_x = torch.gradient(solution_field, spacing=(x,), dim=x_axis)[0] |
|
|
data_x_usqr = torch.gradient( |
|
|
solution_field * solution_field / 2, spacing=(x,), dim=x_axis |
|
|
)[0] |
|
|
data_xx = torch.gradient(data_x, spacing=(x,), dim=x_axis)[0] |
|
|
data_t = torch.gradient(solution_field, spacing=dt, dim=t_axis)[0] |
|
|
return data_x, data_x_usqr, data_xx, data_t |
|
|
|
|
|
|
|
|
@jaxtyped(typechecker=typeguard.typechecked) |
|
|
def partials_torch_2d_systems( |
|
|
solution_field: TypePartials2D, |
|
|
x: TypeXGrid, |
|
|
y: TypeYGrid, |
|
|
dt: torch.Tensor, |
|
|
) -> Type2DRDPartialsTuple: |
|
|
""" |
|
|
Compute the spatial and temporal partial differentials for 2D systems. |
|
|
solution_field: solution field |
|
|
x, y: spatial grids |
|
|
dt: time differential |
|
|
Returns: |
|
|
data_x: X spatial gradient (du/dx) |
|
|
data_y: Y spatial gradient (du/dy) |
|
|
data_xx: X spatial second gradient (d^2u/dx^2) |
|
|
data_yy: Y spatial second gradient (d^2u/dy^2) |
|
|
data_t: temporal gradient (du/dt) |
|
|
""" |
|
|
|
|
|
|
|
|
if len(x.shape) == 2: |
|
|
x = x[0] |
|
|
if len(y.shape) == 2: |
|
|
y = y[0] |
|
|
y_axis = -1 |
|
|
x_axis = -2 |
|
|
t_axis = -3 |
|
|
data_x = torch.gradient(solution_field, spacing=(x,), dim=x_axis)[0] |
|
|
data_xx = torch.gradient(data_x, spacing=(x,), dim=x_axis)[0] |
|
|
data_y = torch.gradient(solution_field, spacing=(y,), dim=y_axis)[0] |
|
|
data_yy = torch.gradient(data_y, spacing=(y,), dim=y_axis)[0] |
|
|
data_t = torch.gradient(solution_field, spacing=dt, dim=t_axis)[0] |
|
|
return data_x, data_y, data_xx, data_yy, data_t |
|
|
|