from typing import Dict, List, Tuple, Union import torch import typeguard from jaxtyping import Float, jaxtyped from pdeinvbench.utils.types import ( Type1DRPartialsTuple, Type2DRDPartialsTuple, TypeBatchSolField1D, TypePartials2D, TypeXGrid, TypeYGrid, ) @jaxtyped(typechecker=typeguard.typechecked) def partials_torch_1d_systems( solution_field: TypeBatchSolField1D, x: TypeXGrid, dt: torch.Tensor, ) -> Type1DRPartialsTuple: """ Compute the spatial and temporal partial differentials for 1d systems. solution field: solution field x: spatial grid dt: time differential Returns: data_x: X spatial gradient (du/dx) data_x_usqr: spatial gradient of u^2/2 (du^2/dx) data_xx: X spatial second gradient (d^2u/dx^2) data_t: temporal gradient (du/dt) (All return arguments are same shape as data) """ x_axis = -1 t_axis = -2 # take first batch element of spatial and time grids (all the same, artifact of dataloader) if len(x.shape) == 2: x = x[0] data_x = torch.gradient(solution_field, spacing=(x,), dim=x_axis)[0] data_x_usqr = torch.gradient( solution_field * solution_field / 2, spacing=(x,), dim=x_axis )[0] data_xx = torch.gradient(data_x, spacing=(x,), dim=x_axis)[0] data_t = torch.gradient(solution_field, spacing=dt, dim=t_axis)[0] return data_x, data_x_usqr, data_xx, data_t @jaxtyped(typechecker=typeguard.typechecked) def partials_torch_2d_systems( solution_field: TypePartials2D, x: TypeXGrid, y: TypeYGrid, dt: torch.Tensor, ) -> Type2DRDPartialsTuple: """ Compute the spatial and temporal partial differentials for 2D systems. solution_field: solution field x, y: spatial grids dt: time differential Returns: data_x: X spatial gradient (du/dx) data_y: Y spatial gradient (du/dy) data_xx: X spatial second gradient (d^2u/dx^2) data_yy: Y spatial second gradient (d^2u/dy^2) data_t: temporal gradient (du/dt) """ # take first batch element of spatial grids (all the same, artifact of dataloader) if len(x.shape) == 2: x = x[0] if len(y.shape) == 2: y = y[0] y_axis = -1 x_axis = -2 t_axis = -3 data_x = torch.gradient(solution_field, spacing=(x,), dim=x_axis)[0] data_xx = torch.gradient(data_x, spacing=(x,), dim=x_axis)[0] data_y = torch.gradient(solution_field, spacing=(y,), dim=y_axis)[0] data_yy = torch.gradient(data_y, spacing=(y,), dim=y_axis)[0] data_t = torch.gradient(solution_field, spacing=dt, dim=t_axis)[0] return data_x, data_y, data_xx, data_yy, data_t