|
|
from types import NoneType |
|
|
from typing import Any, List, Mapping |
|
|
|
|
|
import lightning.pytorch as pl |
|
|
import matplotlib.pyplot as plt |
|
|
import numpy as np |
|
|
import plotly.express as plotly_express |
|
|
import plotly.graph_objects as go |
|
|
import torch |
|
|
import wandb |
|
|
from functorch.dim import tree_map |
|
|
from lightning.pytorch.callbacks import Callback |
|
|
|
|
|
import pdeinvbench.utils.pytorch_utils as ptu |
|
|
from pdeinvbench.utils.logging_utils import ( |
|
|
collect_loss_dicts, |
|
|
) |
|
|
from pdeinvbench.utils.types import PDE, TypeBatch1D, TypeBatch2D |
|
|
|
|
|
|
|
|
class PDEParamErrorPlottingCallback(Callback): |
|
|
""" |
|
|
Logs a set of errors stratified based on PDE parameter value. |
|
|
""" |
|
|
|
|
|
def __init__(self): |
|
|
self.validation_step_loss_dicts = [] |
|
|
""" |
|
|
Loss dicts for validation and autoregressive validation. Each element is a tuple of (losses, pde_params). |
|
|
PDE_params comes directly from the dataloader. |
|
|
Loss: Dict[str, torch.Tensor] with keys (shape) |
|
|
'data_loss' (B), 'residual_loss' (B), 'loss' (), 'data_loss_per_batch_element' (B), 'residual_per_batch_element' (B). |
|
|
""" |
|
|
self.pde = None |
|
|
self.params_to_predict = [] |
|
|
|
|
|
def on_validation_epoch_start( |
|
|
self, trainer: pl.Trainer, pl_module: pl.LightningModule |
|
|
): |
|
|
|
|
|
self.validation_step_loss_dicts = [] |
|
|
self.pde = pl_module.pde |
|
|
if self.pde == PDE.DarcyFlow2D: |
|
|
self.params_to_predict = ["index"] |
|
|
else: |
|
|
self.params_to_predict = pl_module.params_to_predict |
|
|
|
|
|
def on_validation_batch_end( |
|
|
self, |
|
|
trainer: pl.Trainer, |
|
|
pl_module: pl.LightningModule, |
|
|
outputs: Mapping[str, torch.Tensor], |
|
|
batch: TypeBatch1D | TypeBatch2D, |
|
|
batch_idx: int, |
|
|
dataloader_idx: int = 0, |
|
|
): |
|
|
|
|
|
collect_loss_dicts( |
|
|
outputs, |
|
|
batch, |
|
|
"residual_per_batch_element", |
|
|
self.validation_step_loss_dicts, |
|
|
) |
|
|
|
|
|
def on_test_batch_end( |
|
|
self, |
|
|
trainer: pl.Trainer, |
|
|
pl_module: pl.LightningModule, |
|
|
outputs: Mapping[str, torch.Tensor], |
|
|
batch: TypeBatch1D | TypeBatch2D, |
|
|
batch_idx: int, |
|
|
dataloader_idx: int = 0, |
|
|
): |
|
|
self.on_validation_batch_end( |
|
|
trainer, pl_module, outputs, batch, batch_idx) |
|
|
|
|
|
def generate_pde_parameter_histogram(self, loss_tuples): |
|
|
""" |
|
|
Generates a histogram of PDE parameter values vs loss |
|
|
""" |
|
|
if len(loss_tuples) == 0: |
|
|
return None |
|
|
if self.pde == PDE.DarcyFlow2D: |
|
|
parameter_keys = ["index"] |
|
|
else: |
|
|
parameter_keys = loss_tuples[0][1].keys() |
|
|
plots = {} |
|
|
for parameter in parameter_keys: |
|
|
|
|
|
parameter_values = [ |
|
|
ptu.torch_to_numpy(loss_tuple[1][parameter].ravel()) |
|
|
for loss_tuple in loss_tuples |
|
|
] |
|
|
parameter_values = np.concatenate(parameter_values, axis=0) |
|
|
|
|
|
residuals = [ |
|
|
ptu.torch_to_numpy(loss_tuple[0]["residual_per_batch_element"]) |
|
|
for loss_tuple in loss_tuples |
|
|
] |
|
|
residuals = np.concatenate(residuals, axis=0) |
|
|
|
|
|
key_name = "param_loss_per_batch_element" |
|
|
|
|
|
data_or_param_loss = [loss_tuple[0][key_name] |
|
|
for loss_tuple in loss_tuples] |
|
|
|
|
|
if len(data_or_param_loss[0].shape) != 0: |
|
|
data_or_param_loss = np.concatenate(data_or_param_loss, axis=0) |
|
|
|
|
|
residual_fig = plotly_express.density_heatmap( |
|
|
x=parameter_values, |
|
|
y=residuals, |
|
|
nbinsx=20, |
|
|
nbinsy=20, |
|
|
title=f"Residual vs. {parameter}", |
|
|
) |
|
|
residual_fig.update_layout( |
|
|
xaxis_title=f"{parameter} Values", |
|
|
yaxis_title="Residual", |
|
|
title_x=0.5, |
|
|
margin_t=40, |
|
|
) |
|
|
title = "Parameter" |
|
|
data_or_param_loss_fig = plotly_express.density_heatmap( |
|
|
x=parameter_values, |
|
|
y=data_or_param_loss, |
|
|
nbinsx=20, |
|
|
nbinsy=20, |
|
|
title=f"{title} Loss vs. {parameter}", |
|
|
) |
|
|
data_or_param_loss_fig.update_layout( |
|
|
xaxis_title=f"{title} Loss (MSE)", |
|
|
yaxis_title=f"{parameter} Values", |
|
|
title_x=0.5, |
|
|
margin_t=40, |
|
|
) |
|
|
plots[parameter] = [residual_fig, data_or_param_loss_fig] |
|
|
return plots |
|
|
|
|
|
def on_test_epoch_start(self, trainer: pl.Trainer, pl_module: pl.LightningModule): |
|
|
self.on_validation_epoch_start(trainer, pl_module) |
|
|
|
|
|
def log_plots(self, prefix: str): |
|
|
plots = self.generate_pde_parameter_histogram( |
|
|
self.validation_step_loss_dicts) |
|
|
if plots is not None: |
|
|
for parameter, plots in plots.items(): |
|
|
residual_fig, data_loss_fig = plots |
|
|
wandb.log( |
|
|
{ |
|
|
f"{prefix}/residual_vs_{parameter}": residual_fig, |
|
|
f"{prefix}/data_loss_vs_{parameter}": data_loss_fig, |
|
|
} |
|
|
) |
|
|
plt.close() |
|
|
|
|
|
def log_parameter_predictions_table(self, loss_tuples, prefix: str = "test"): |
|
|
if len(loss_tuples) == 0: |
|
|
return None |
|
|
if self.pde == PDE.DarcyFlow2D: |
|
|
parameter_keys = ["index"] |
|
|
else: |
|
|
parameter_keys = loss_tuples[0][1].keys() |
|
|
plots = {} |
|
|
columns = ["ic_index", "true_parameters", |
|
|
"predicted_parameters", "param_loss"] |
|
|
for parameter in parameter_keys: |
|
|
|
|
|
true_parameters = [ |
|
|
ptu.torch_to_numpy(loss_tuple[1][parameter].ravel()) |
|
|
for loss_tuple in loss_tuples |
|
|
] |
|
|
true_parameters = np.concatenate(true_parameters, axis=0) |
|
|
|
|
|
residuals = [ |
|
|
ptu.torch_to_numpy(loss_tuple[0]["residual_per_batch_element"]) |
|
|
for loss_tuple in loss_tuples |
|
|
] |
|
|
residuals = np.concatenate(residuals, axis=0) |
|
|
|
|
|
key_name = "param_loss_per_batch_element" |
|
|
|
|
|
data_or_param_loss = [ |
|
|
ptu.torch_to_numpy(loss_tuple[0][key_name]) |
|
|
for loss_tuple in loss_tuples |
|
|
] |
|
|
|
|
|
if len(data_or_param_loss[0].shape) != 0: |
|
|
data_or_param_loss = np.concatenate(data_or_param_loss, axis=0) |
|
|
|
|
|
ic_index = [ |
|
|
ptu.torch_to_numpy(loss_tuple[2]).ravel() for loss_tuple in loss_tuples |
|
|
] |
|
|
timestamps = [ |
|
|
ptu.torch_to_numpy(loss_tuple[3]).ravel() for loss_tuple in loss_tuples |
|
|
] |
|
|
|
|
|
ic_index = np.concatenate(ic_index, axis=0) |
|
|
timestamps = np.concatenate(timestamps, axis=0) |
|
|
|
|
|
predicted_parameters = [ |
|
|
ptu.torch_to_numpy( |
|
|
loss_tuple[0]["predictions"][parameter]).ravel() |
|
|
for loss_tuple in loss_tuples |
|
|
] |
|
|
|
|
|
predicted_parameters = np.concatenate(predicted_parameters, axis=0) |
|
|
|
|
|
data = [ |
|
|
[ |
|
|
ic_index[i], |
|
|
timestamps[i], |
|
|
true_parameters[i], |
|
|
predicted_parameters[i], |
|
|
data_or_param_loss[i], |
|
|
] |
|
|
for i in range(len(ic_index)) |
|
|
] |
|
|
table = wandb.Table( |
|
|
data=data, |
|
|
columns=[ |
|
|
"ic_index", |
|
|
"timestamps", |
|
|
"true_parameters", |
|
|
"predicted_parameters", |
|
|
"param_loss", |
|
|
], |
|
|
) |
|
|
wandb.log( |
|
|
{f"{prefix}/parameter_predictions_table_{parameter}": table}) |
|
|
|
|
|
def on_validation_epoch_end( |
|
|
self, trainer: pl.Trainer, pl_module: pl.LightningModule |
|
|
): |
|
|
|
|
|
self.log_plots("validation") |
|
|
|
|
|
self.validation_step_loss_dicts = [] |
|
|
|
|
|
def on_test_epoch_start(self, trainer: pl.Trainer, pl_module: pl.LightningModule): |
|
|
self.on_validation_epoch_start(trainer, pl_module) |
|
|
|
|
|
def on_test_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule): |
|
|
self.log_plots("test") |
|
|
self.log_parameter_predictions_table( |
|
|
self.validation_step_loss_dicts, "test") |
|
|
|
|
|
self.validation_step_loss_dicts = [] |
|
|
|
|
|
|
|
|
class PDEParamErrorTestTimeTailoringCallback(PDEParamErrorPlottingCallback): |
|
|
""" |
|
|
Logs errors before and after tailoring, stratified by PDE parameter value. |
|
|
""" |
|
|
|
|
|
def __init__(self): |
|
|
super().__init__() |
|
|
""" |
|
|
Loss dicts for test time tailoring. Each element is a tuple of (losses, pde_params). |
|
|
PDE_params comes directly from the dataloader. |
|
|
Loss: Dict[str, torch.Tensor] with keys (shape) |
|
|
'data_loss' (B), 'residual_loss' (B), 'loss' (), 'data_loss_per_batch_element' (B), 'residual_per_batch_element' (B). |
|
|
""" |
|
|
self.pre_tailored_loss_dicts = [] |
|
|
self.post_tailored_loss_dicts = [] |
|
|
self.params_to_predict = [] |
|
|
self.pde = None |
|
|
|
|
|
def on_test_epoch_start(self, trainer: pl.Trainer, pl_module: pl.LightningModule): |
|
|
self.pde = pl_module.pde |
|
|
if self.pde == PDE.DarcyFlow2D: |
|
|
|
|
|
self.params_to_predict = ["index"] |
|
|
else: |
|
|
self.params_to_predict = pl_module.params_to_predict |
|
|
|
|
|
def on_test_batch_end( |
|
|
self, |
|
|
trainer: pl.Trainer, |
|
|
pl_module: pl.LightningModule, |
|
|
outputs: Mapping[str, torch.Tensor], |
|
|
batch: TypeBatch1D | TypeBatch2D, |
|
|
batch_idx: int, |
|
|
dataloader_idx: int = 0, |
|
|
): |
|
|
if ( |
|
|
not hasattr(pl_module, "num_tailoring_steps") |
|
|
or pl_module.tailoring_optimizer is None |
|
|
or pl_module.num_tailoring_steps == 0 |
|
|
): |
|
|
return |
|
|
if "pre_tailored_metrics" in outputs: |
|
|
|
|
|
collect_loss_dicts( |
|
|
outputs["pre_tailored_metrics"], |
|
|
batch, |
|
|
"param_loss_per_batch_element", |
|
|
self.pre_tailored_loss_dicts, |
|
|
) |
|
|
collect_loss_dicts( |
|
|
{key: v for key, v in outputs.items() if key != "pre_tailored_metrics"}, |
|
|
batch, |
|
|
"param_loss_per_batch_element", |
|
|
self.post_tailored_loss_dicts, |
|
|
) |
|
|
|
|
|
def log_tables(self): |
|
|
|
|
|
|
|
|
pre_tailored_data_loss = [ |
|
|
loss_tuple[0]["param_loss_per_batch_element"] |
|
|
for loss_tuple in self.pre_tailored_loss_dicts |
|
|
] |
|
|
post_tailored_data_loss = [ |
|
|
loss_tuple[0]["param_loss_per_batch_element"] |
|
|
for loss_tuple in self.post_tailored_loss_dicts |
|
|
] |
|
|
|
|
|
parameter_values = [ |
|
|
ptu.torch_to_numpy( |
|
|
loss_tuple[1][self.params_to_predict[0]].ravel()) |
|
|
for loss_tuple in self.pre_tailored_loss_dicts |
|
|
] |
|
|
|
|
|
pre_tailored_parameter_values = [ |
|
|
ptu.torch_to_numpy( |
|
|
loss_tuple[0]["predictions"][self.params_to_predict[0]].ravel() |
|
|
) |
|
|
for loss_tuple in self.pre_tailored_loss_dicts |
|
|
] |
|
|
post_tailored_parameter_values = [ |
|
|
ptu.torch_to_numpy( |
|
|
loss_tuple[0]["predictions"][self.params_to_predict[0]].ravel() |
|
|
) |
|
|
for loss_tuple in self.post_tailored_loss_dicts |
|
|
] |
|
|
|
|
|
parameter_values = np.concatenate(parameter_values, axis=0) |
|
|
pre_tailored_parameter_values = np.concatenate( |
|
|
pre_tailored_parameter_values, axis=0 |
|
|
) |
|
|
post_tailored_parameter_values = np.concatenate( |
|
|
post_tailored_parameter_values, axis=0 |
|
|
) |
|
|
|
|
|
pre_tailored_data_loss = np.concatenate(pre_tailored_data_loss, axis=0) |
|
|
post_tailored_data_loss = np.concatenate( |
|
|
post_tailored_data_loss, axis=0) |
|
|
|
|
|
|
|
|
data = [ |
|
|
[ |
|
|
parameter_values[i], |
|
|
pre_tailored_data_loss[i], |
|
|
post_tailored_data_loss[i], |
|
|
pre_tailored_parameter_values[i], |
|
|
post_tailored_parameter_values[i], |
|
|
] |
|
|
for i in range(len(parameter_values)) |
|
|
] |
|
|
table = wandb.Table( |
|
|
data=data, |
|
|
columns=[ |
|
|
"parameter_value", |
|
|
"pre_tailored_data_loss", |
|
|
"post_tailored_data_loss", |
|
|
"pre_tailored_parameter_value", |
|
|
"post_tailored_parameter_value", |
|
|
], |
|
|
) |
|
|
wandb.log({"tailoring_data_loss_table": table}) |
|
|
|
|
|
def on_test_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule): |
|
|
if ( |
|
|
not hasattr(pl_module, "num_tailoring_steps") |
|
|
or pl_module.tailoring_optimizer is None |
|
|
or pl_module.num_tailoring_steps == 0 |
|
|
): |
|
|
return |
|
|
self.log_tables() |
|
|
self.pre_tailored_loss_dicts = [] |
|
|
self.post_tailored_loss_dicts = [] |
|
|
|
|
|
|
|
|
class TailoringTimingMetricsCallback(Callback): |
|
|
""" |
|
|
Logs the timing metrics for the tailoring step. |
|
|
""" |
|
|
|
|
|
def __init__(self): |
|
|
self.tailoring_timing_metrics = {} |
|
|
|
|
|
def on_test_batch_end( |
|
|
self, |
|
|
trainer: pl.Trainer, |
|
|
pl_module: pl.LightningModule, |
|
|
outputs: Mapping[str, torch.Tensor], |
|
|
batch: TypeBatch1D | TypeBatch2D, |
|
|
batch_idx: int, |
|
|
dataloader_idx: int = 0, |
|
|
): |
|
|
if ( |
|
|
not hasattr(pl_module, "tailoring_optimizer") |
|
|
or pl_module.tailoring_optimizer is None |
|
|
or pl_module.num_tailoring_steps == 0 |
|
|
): |
|
|
return |
|
|
|
|
|
if "tailoring_timing_metrics" in outputs: |
|
|
self.tailoring_timing_metrics[dataloader_idx] = outputs[ |
|
|
"tailoring_timing_metrics" |
|
|
] |
|
|
|
|
|
def on_test_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule): |
|
|
for dataloader_idx in self.tailoring_timing_metrics: |
|
|
wandb.log( |
|
|
{ |
|
|
f"tailoring_timing_metrics_dataloader_{dataloader_idx}": self.tailoring_timing_metrics[ |
|
|
dataloader_idx |
|
|
] |
|
|
} |
|
|
) |
|
|
|
|
|
|
|
|
class InverseErrorByTailoringStepCallback(Callback): |
|
|
""" |
|
|
Helper callback that plots the error by tailoring step. On the Y-axis is the metric and the X-axis is the tailoring step. |
|
|
Uses plotly to generate the plot and plots to W&B. |
|
|
This is specifically for PINO and tailoring. |
|
|
""" |
|
|
|
|
|
def __init__(self): |
|
|
|
|
|
self.errors_by_tailor_step = {} |
|
|
|
|
|
def on_test_epoch_start( |
|
|
self, trainer: pl.Trainer, pl_module: pl.LightningModule |
|
|
) -> None: |
|
|
if ( |
|
|
not hasattr(pl_module, "tailoring_optimizer") |
|
|
or pl_module.tailoring_optimizer is None |
|
|
or pl_module.num_tailoring_steps == 0 |
|
|
): |
|
|
return |
|
|
self.errors_by_tailor_step = {} |
|
|
|
|
|
def generate_plots(self, pl_module, loader_idx=0): |
|
|
""" |
|
|
Generates the plots for the data and residual error by tailoring step. |
|
|
""" |
|
|
num_tailoring_steps = pl_module.num_tailoring_steps |
|
|
metric_plots = {} |
|
|
|
|
|
for error_metric in self.errors_by_tailor_step[loader_idx]: |
|
|
metric_data_by_tailor_step = np.asarray( |
|
|
self.errors_by_tailor_step[loader_idx][error_metric] |
|
|
) |
|
|
|
|
|
|
|
|
mean_metric_data_by_tailor_step = np.mean( |
|
|
metric_data_by_tailor_step, axis=0 |
|
|
) |
|
|
|
|
|
|
|
|
y_min = np.min(metric_data_by_tailor_step) |
|
|
y_max = np.max(metric_data_by_tailor_step) |
|
|
y_range = y_max - y_min |
|
|
y_axis_min = y_min - 0.05 * y_range |
|
|
y_axis_max = y_max + 0.05 * y_range |
|
|
|
|
|
|
|
|
data = [ |
|
|
[x, y] |
|
|
for (x, y) in zip( |
|
|
list(range(num_tailoring_steps) |
|
|
), mean_metric_data_by_tailor_step |
|
|
) |
|
|
] |
|
|
table = wandb.Table( |
|
|
data=data, columns=["tailor_steps", f"mean_{error_metric}"] |
|
|
) |
|
|
|
|
|
|
|
|
fig = go.Figure() |
|
|
fig.add_trace( |
|
|
go.Scatter( |
|
|
x=list(range(num_tailoring_steps)), |
|
|
y=mean_metric_data_by_tailor_step, |
|
|
mode="lines", |
|
|
name=f"Mean {error_metric}", |
|
|
) |
|
|
) |
|
|
fig.update_layout( |
|
|
title=f"Tailoring Steps vs Mean {error_metric}", |
|
|
xaxis_title="Tailoring Steps", |
|
|
yaxis_title=f"Mean {error_metric}", |
|
|
|
|
|
yaxis=dict(range=[y_axis_min, y_axis_max]), |
|
|
) |
|
|
|
|
|
|
|
|
metric_plots[error_metric] = wandb.Plotly(fig) |
|
|
return metric_plots |
|
|
|
|
|
def on_test_batch_end( |
|
|
self, |
|
|
trainer: pl.Trainer, |
|
|
pl_module: pl.LightningModule, |
|
|
outputs: Mapping[str, torch.Tensor], |
|
|
batch: TypeBatch1D | TypeBatch2D, |
|
|
batch_idx: int, |
|
|
dataloader_idx: int = 0, |
|
|
): |
|
|
""" |
|
|
After each batch, we accumulate the metric for each tailoring step. |
|
|
""" |
|
|
if ( |
|
|
not hasattr(pl_module, "tailoring_optimizer") |
|
|
or pl_module.tailoring_optimizer is None |
|
|
or pl_module.num_tailoring_steps == 0 |
|
|
): |
|
|
return |
|
|
|
|
|
tailoring_metrics = outputs["tailoring_metrics"] |
|
|
if dataloader_idx not in self.errors_by_tailor_step: |
|
|
self.errors_by_tailor_step[dataloader_idx] = {} |
|
|
current_dataloader = trainer.test_dataloaders[dataloader_idx] |
|
|
|
|
|
for metric, metric_data in tailoring_metrics.items(): |
|
|
if metric not in self.errors_by_tailor_step[dataloader_idx]: |
|
|
self.errors_by_tailor_step[dataloader_idx][metric] = [] |
|
|
if "per_batch_element" in metric and pl_module.tailor_per_batch: |
|
|
current_batch_size = metric_data[0].shape[0] |
|
|
elements_to_add = pl_module.batch_size - current_batch_size |
|
|
if current_batch_size != pl_module.batch_size: |
|
|
for tailoring_step in range(pl_module.num_tailoring_steps): |
|
|
step_ouput = metric_data[tailoring_step] |
|
|
|
|
|
|
|
|
last_element = step_ouput[-1] |
|
|
|
|
|
|
|
|
repeated_elements = ( |
|
|
last_element.repeat(elements_to_add, 1) |
|
|
if len(step_ouput.shape) > 1 |
|
|
else last_element.repeat(elements_to_add) |
|
|
) |
|
|
|
|
|
|
|
|
metric_data[tailoring_step] = torch.cat( |
|
|
[step_ouput, repeated_elements], dim=0 |
|
|
) |
|
|
|
|
|
self.errors_by_tailor_step[dataloader_idx][metric].append( |
|
|
metric_data) |
|
|
|
|
|
def on_test_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule): |
|
|
if ( |
|
|
not hasattr(pl_module, "tailoring_optimizer") |
|
|
or pl_module.tailoring_optimizer is None |
|
|
or pl_module.num_tailoring_steps == 0 |
|
|
): |
|
|
return |
|
|
|
|
|
""" |
|
|
After each epoch, we plot the metric by tailoring step. |
|
|
""" |
|
|
|
|
|
for dataloader_idx in self.errors_by_tailor_step: |
|
|
tailoring_figures = self.generate_plots(pl_module, dataloader_idx) |
|
|
to_log = {} |
|
|
for tailoring_metric, err_fig in tailoring_figures.items(): |
|
|
to_log[ |
|
|
f"tailoring_step_plots_dataloader_{dataloader_idx}/{tailoring_metric}" |
|
|
] = err_fig |
|
|
|
|
|
wandb.log(to_log) |
|
|
plt.close() |
|
|
|