DabbyOWL's picture
Reset history
484b847 verified
from types import NoneType
from typing import Any, List, Mapping
import lightning.pytorch as pl
import matplotlib.pyplot as plt
import numpy as np
import plotly.express as plotly_express
import plotly.graph_objects as go
import torch
import wandb
from functorch.dim import tree_map
from lightning.pytorch.callbacks import Callback
import pdeinvbench.utils.pytorch_utils as ptu
from pdeinvbench.utils.logging_utils import (
collect_loss_dicts,
)
from pdeinvbench.utils.types import PDE, TypeBatch1D, TypeBatch2D
class PDEParamErrorPlottingCallback(Callback):
"""
Logs a set of errors stratified based on PDE parameter value.
"""
def __init__(self):
self.validation_step_loss_dicts = []
"""
Loss dicts for validation and autoregressive validation. Each element is a tuple of (losses, pde_params).
PDE_params comes directly from the dataloader.
Loss: Dict[str, torch.Tensor] with keys (shape)
'data_loss' (B), 'residual_loss' (B), 'loss' (), 'data_loss_per_batch_element' (B), 'residual_per_batch_element' (B).
"""
self.pde = None # type: ignore
self.params_to_predict = []
def on_validation_epoch_start(
self, trainer: pl.Trainer, pl_module: pl.LightningModule
):
# Clear memory of loss dicts
self.validation_step_loss_dicts = []
self.pde = pl_module.pde
if self.pde == PDE.DarcyFlow2D:
self.params_to_predict = ["index"]
else:
self.params_to_predict = pl_module.params_to_predict
def on_validation_batch_end(
self,
trainer: pl.Trainer,
pl_module: pl.LightningModule,
outputs: Mapping[str, torch.Tensor],
batch: TypeBatch1D | TypeBatch2D,
batch_idx: int,
dataloader_idx: int = 0,
):
# Convert to numpy arrays
collect_loss_dicts(
outputs,
batch,
"residual_per_batch_element",
self.validation_step_loss_dicts,
)
def on_test_batch_end(
self,
trainer: pl.Trainer,
pl_module: pl.LightningModule,
outputs: Mapping[str, torch.Tensor],
batch: TypeBatch1D | TypeBatch2D,
batch_idx: int,
dataloader_idx: int = 0,
):
self.on_validation_batch_end(
trainer, pl_module, outputs, batch, batch_idx)
def generate_pde_parameter_histogram(self, loss_tuples):
"""
Generates a histogram of PDE parameter values vs loss
"""
if len(loss_tuples) == 0:
return None
if self.pde == PDE.DarcyFlow2D:
parameter_keys = ["index"]
else:
parameter_keys = loss_tuples[0][1].keys()
plots = {}
for parameter in parameter_keys:
# Num batches x Batch size
parameter_values = [
ptu.torch_to_numpy(loss_tuple[1][parameter].ravel())
for loss_tuple in loss_tuples
]
parameter_values = np.concatenate(parameter_values, axis=0)
residuals = [
ptu.torch_to_numpy(loss_tuple[0]["residual_per_batch_element"])
for loss_tuple in loss_tuples
]
residuals = np.concatenate(residuals, axis=0)
key_name = "param_loss_per_batch_element"
data_or_param_loss = [loss_tuple[0][key_name]
for loss_tuple in loss_tuples]
if len(data_or_param_loss[0].shape) != 0:
data_or_param_loss = np.concatenate(data_or_param_loss, axis=0)
residual_fig = plotly_express.density_heatmap(
x=parameter_values,
y=residuals,
nbinsx=20,
nbinsy=20,
title=f"Residual vs. {parameter}",
)
residual_fig.update_layout(
xaxis_title=f"{parameter} Values",
yaxis_title="Residual",
title_x=0.5,
margin_t=40,
)
title = "Parameter"
data_or_param_loss_fig = plotly_express.density_heatmap(
x=parameter_values,
y=data_or_param_loss,
nbinsx=20,
nbinsy=20,
title=f"{title} Loss vs. {parameter}",
)
data_or_param_loss_fig.update_layout(
xaxis_title=f"{title} Loss (MSE)",
yaxis_title=f"{parameter} Values",
title_x=0.5,
margin_t=40,
)
plots[parameter] = [residual_fig, data_or_param_loss_fig]
return plots
def on_test_epoch_start(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
self.on_validation_epoch_start(trainer, pl_module)
def log_plots(self, prefix: str):
plots = self.generate_pde_parameter_histogram(
self.validation_step_loss_dicts)
if plots is not None:
for parameter, plots in plots.items():
residual_fig, data_loss_fig = plots
wandb.log(
{
f"{prefix}/residual_vs_{parameter}": residual_fig,
f"{prefix}/data_loss_vs_{parameter}": data_loss_fig,
}
)
plt.close()
def log_parameter_predictions_table(self, loss_tuples, prefix: str = "test"):
if len(loss_tuples) == 0:
return None
if self.pde == PDE.DarcyFlow2D:
parameter_keys = ["index"]
else:
parameter_keys = loss_tuples[0][1].keys()
plots = {}
columns = ["ic_index", "true_parameters",
"predicted_parameters", "param_loss"]
for parameter in parameter_keys:
# Num batches x Batch size
true_parameters = [
ptu.torch_to_numpy(loss_tuple[1][parameter].ravel())
for loss_tuple in loss_tuples
]
true_parameters = np.concatenate(true_parameters, axis=0)
residuals = [
ptu.torch_to_numpy(loss_tuple[0]["residual_per_batch_element"])
for loss_tuple in loss_tuples
]
residuals = np.concatenate(residuals, axis=0)
key_name = "param_loss_per_batch_element"
data_or_param_loss = [
ptu.torch_to_numpy(loss_tuple[0][key_name])
for loss_tuple in loss_tuples
]
if len(data_or_param_loss[0].shape) != 0:
data_or_param_loss = np.concatenate(data_or_param_loss, axis=0)
ic_index = [
ptu.torch_to_numpy(loss_tuple[2]).ravel() for loss_tuple in loss_tuples
]
timestamps = [
ptu.torch_to_numpy(loss_tuple[3]).ravel() for loss_tuple in loss_tuples
]
ic_index = np.concatenate(ic_index, axis=0)
timestamps = np.concatenate(timestamps, axis=0)
predicted_parameters = [
ptu.torch_to_numpy(
loss_tuple[0]["predictions"][parameter]).ravel()
for loss_tuple in loss_tuples
]
predicted_parameters = np.concatenate(predicted_parameters, axis=0)
data = [
[
ic_index[i],
timestamps[i],
true_parameters[i],
predicted_parameters[i],
data_or_param_loss[i],
]
for i in range(len(ic_index))
]
table = wandb.Table(
data=data,
columns=[
"ic_index",
"timestamps",
"true_parameters",
"predicted_parameters",
"param_loss",
],
)
wandb.log(
{f"{prefix}/parameter_predictions_table_{parameter}": table})
def on_validation_epoch_end(
self, trainer: pl.Trainer, pl_module: pl.LightningModule
):
# Plot error stratified by PDE parameter value
self.log_plots("validation")
# Clear caches
self.validation_step_loss_dicts = []
def on_test_epoch_start(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
self.on_validation_epoch_start(trainer, pl_module)
def on_test_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
self.log_plots("test")
self.log_parameter_predictions_table(
self.validation_step_loss_dicts, "test")
# Clear caches
self.validation_step_loss_dicts = []
class PDEParamErrorTestTimeTailoringCallback(PDEParamErrorPlottingCallback):
"""
Logs errors before and after tailoring, stratified by PDE parameter value.
"""
def __init__(self):
super().__init__()
"""
Loss dicts for test time tailoring. Each element is a tuple of (losses, pde_params).
PDE_params comes directly from the dataloader.
Loss: Dict[str, torch.Tensor] with keys (shape)
'data_loss' (B), 'residual_loss' (B), 'loss' (), 'data_loss_per_batch_element' (B), 'residual_per_batch_element' (B).
"""
self.pre_tailored_loss_dicts = []
self.post_tailored_loss_dicts = []
self.params_to_predict = []
self.pde = None # type: ignore
def on_test_epoch_start(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
self.pde = pl_module.pde
if self.pde == PDE.DarcyFlow2D:
# 'Coeff' is a 2D parameter field, index corresponds to the filename of the parameter in the 2D field
self.params_to_predict = ["index"]
else:
self.params_to_predict = pl_module.params_to_predict
def on_test_batch_end(
self,
trainer: pl.Trainer,
pl_module: pl.LightningModule,
outputs: Mapping[str, torch.Tensor],
batch: TypeBatch1D | TypeBatch2D,
batch_idx: int,
dataloader_idx: int = 0,
):
if (
not hasattr(pl_module, "num_tailoring_steps")
or pl_module.tailoring_optimizer is None
or pl_module.num_tailoring_steps == 0
):
return
if "pre_tailored_metrics" in outputs:
collect_loss_dicts(
outputs["pre_tailored_metrics"],
batch,
"param_loss_per_batch_element",
self.pre_tailored_loss_dicts,
)
collect_loss_dicts(
{key: v for key, v in outputs.items() if key != "pre_tailored_metrics"},
batch,
"param_loss_per_batch_element",
self.post_tailored_loss_dicts,
)
def log_tables(self):
# take the param_loss_per_batch_element for the pre and post tailored metrics
pre_tailored_data_loss = [
loss_tuple[0]["param_loss_per_batch_element"]
for loss_tuple in self.pre_tailored_loss_dicts
]
post_tailored_data_loss = [
loss_tuple[0]["param_loss_per_batch_element"]
for loss_tuple in self.post_tailored_loss_dicts
]
parameter_values = [
ptu.torch_to_numpy(
loss_tuple[1][self.params_to_predict[0]].ravel())
for loss_tuple in self.pre_tailored_loss_dicts
]
pre_tailored_parameter_values = [
ptu.torch_to_numpy(
loss_tuple[0]["predictions"][self.params_to_predict[0]].ravel()
)
for loss_tuple in self.pre_tailored_loss_dicts
]
post_tailored_parameter_values = [
ptu.torch_to_numpy(
loss_tuple[0]["predictions"][self.params_to_predict[0]].ravel()
)
for loss_tuple in self.post_tailored_loss_dicts
]
parameter_values = np.concatenate(parameter_values, axis=0)
pre_tailored_parameter_values = np.concatenate(
pre_tailored_parameter_values, axis=0
)
post_tailored_parameter_values = np.concatenate(
post_tailored_parameter_values, axis=0
)
pre_tailored_data_loss = np.concatenate(pre_tailored_data_loss, axis=0)
post_tailored_data_loss = np.concatenate(
post_tailored_data_loss, axis=0)
# log table containing paramter value, pre tailored data loss, post tailored data loss
data = [
[
parameter_values[i],
pre_tailored_data_loss[i],
post_tailored_data_loss[i],
pre_tailored_parameter_values[i],
post_tailored_parameter_values[i],
]
for i in range(len(parameter_values))
]
table = wandb.Table(
data=data,
columns=[
"parameter_value",
"pre_tailored_data_loss",
"post_tailored_data_loss",
"pre_tailored_parameter_value",
"post_tailored_parameter_value",
],
)
wandb.log({"tailoring_data_loss_table": table})
def on_test_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
if (
not hasattr(pl_module, "num_tailoring_steps")
or pl_module.tailoring_optimizer is None
or pl_module.num_tailoring_steps == 0
):
return
self.log_tables()
self.pre_tailored_loss_dicts = []
self.post_tailored_loss_dicts = []
class TailoringTimingMetricsCallback(Callback):
"""
Logs the timing metrics for the tailoring step.
"""
def __init__(self):
self.tailoring_timing_metrics = {}
def on_test_batch_end(
self,
trainer: pl.Trainer,
pl_module: pl.LightningModule,
outputs: Mapping[str, torch.Tensor],
batch: TypeBatch1D | TypeBatch2D,
batch_idx: int,
dataloader_idx: int = 0,
):
if (
not hasattr(pl_module, "tailoring_optimizer")
or pl_module.tailoring_optimizer is None
or pl_module.num_tailoring_steps == 0
):
return
if "tailoring_timing_metrics" in outputs:
self.tailoring_timing_metrics[dataloader_idx] = outputs[
"tailoring_timing_metrics"
]
def on_test_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
for dataloader_idx in self.tailoring_timing_metrics:
wandb.log(
{
f"tailoring_timing_metrics_dataloader_{dataloader_idx}": self.tailoring_timing_metrics[
dataloader_idx
]
}
)
class InverseErrorByTailoringStepCallback(Callback):
"""
Helper callback that plots the error by tailoring step. On the Y-axis is the metric and the X-axis is the tailoring step.
Uses plotly to generate the plot and plots to W&B.
This is specifically for PINO and tailoring.
"""
def __init__(self):
# Required class variables - reset on val epoch start
self.errors_by_tailor_step = {}
def on_test_epoch_start(
self, trainer: pl.Trainer, pl_module: pl.LightningModule
) -> None:
if (
not hasattr(pl_module, "tailoring_optimizer")
or pl_module.tailoring_optimizer is None
or pl_module.num_tailoring_steps == 0
):
return
self.errors_by_tailor_step = {}
def generate_plots(self, pl_module, loader_idx=0):
"""
Generates the plots for the data and residual error by tailoring step.
"""
num_tailoring_steps = pl_module.num_tailoring_steps
metric_plots = {}
for error_metric in self.errors_by_tailor_step[loader_idx]:
metric_data_by_tailor_step = np.asarray(
self.errors_by_tailor_step[loader_idx][error_metric]
)
# Calculate mean across tailoring steps
mean_metric_data_by_tailor_step = np.mean(
metric_data_by_tailor_step, axis=0
)
# Calculate y-axis bounds with some padding (e.g., 5% of the range)
y_min = np.min(metric_data_by_tailor_step)
y_max = np.max(metric_data_by_tailor_step)
y_range = y_max - y_min
y_axis_min = y_min - 0.05 * y_range # Add 5% padding below min
y_axis_max = y_max + 0.05 * y_range # Add 5% padding above max
# Create data for the table
data = [
[x, y]
for (x, y) in zip(
list(range(num_tailoring_steps)
), mean_metric_data_by_tailor_step
)
]
table = wandb.Table(
data=data, columns=["tailor_steps", f"mean_{error_metric}"]
)
# Create a Plotly figure for custom y-axis bounds
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=list(range(num_tailoring_steps)),
y=mean_metric_data_by_tailor_step,
mode="lines",
name=f"Mean {error_metric}",
)
)
fig.update_layout(
title=f"Tailoring Steps vs Mean {error_metric}",
xaxis_title="Tailoring Steps",
yaxis_title=f"Mean {error_metric}",
# Set y-axis bounds
yaxis=dict(range=[y_axis_min, y_axis_max]),
)
# Log the Plotly figure to WandB
metric_plots[error_metric] = wandb.Plotly(fig)
return metric_plots
def on_test_batch_end(
self,
trainer: pl.Trainer,
pl_module: pl.LightningModule,
outputs: Mapping[str, torch.Tensor],
batch: TypeBatch1D | TypeBatch2D,
batch_idx: int,
dataloader_idx: int = 0,
):
"""
After each batch, we accumulate the metric for each tailoring step.
"""
if (
not hasattr(pl_module, "tailoring_optimizer")
or pl_module.tailoring_optimizer is None
or pl_module.num_tailoring_steps == 0
):
return
tailoring_metrics = outputs["tailoring_metrics"]
if dataloader_idx not in self.errors_by_tailor_step:
self.errors_by_tailor_step[dataloader_idx] = {}
current_dataloader = trainer.test_dataloaders[dataloader_idx]
for metric, metric_data in tailoring_metrics.items():
if metric not in self.errors_by_tailor_step[dataloader_idx]:
self.errors_by_tailor_step[dataloader_idx][metric] = []
if "per_batch_element" in metric and pl_module.tailor_per_batch:
current_batch_size = metric_data[0].shape[0]
elements_to_add = pl_module.batch_size - current_batch_size
if current_batch_size != pl_module.batch_size:
for tailoring_step in range(pl_module.num_tailoring_steps):
step_ouput = metric_data[tailoring_step]
# Get the last element of the tensor
last_element = step_ouput[-1]
# Create a tensor with repeated last elements
repeated_elements = (
last_element.repeat(elements_to_add, 1)
if len(step_ouput.shape) > 1
else last_element.repeat(elements_to_add)
)
# Concatenate the original tensor with the repeated elements
metric_data[tailoring_step] = torch.cat(
[step_ouput, repeated_elements], dim=0
)
self.errors_by_tailor_step[dataloader_idx][metric].append(
metric_data)
def on_test_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
if (
not hasattr(pl_module, "tailoring_optimizer")
or pl_module.tailoring_optimizer is None
or pl_module.num_tailoring_steps == 0
):
return
"""
After each epoch, we plot the metric by tailoring step.
"""
for dataloader_idx in self.errors_by_tailor_step:
tailoring_figures = self.generate_plots(pl_module, dataloader_idx)
to_log = {}
for tailoring_metric, err_fig in tailoring_figures.items():
to_log[
f"tailoring_step_plots_dataloader_{dataloader_idx}/{tailoring_metric}"
] = err_fig
wandb.log(to_log)
plt.close()