File size: 20,858 Bytes
484b847 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 |
from types import NoneType
from typing import Any, List, Mapping
import lightning.pytorch as pl
import matplotlib.pyplot as plt
import numpy as np
import plotly.express as plotly_express
import plotly.graph_objects as go
import torch
import wandb
from functorch.dim import tree_map
from lightning.pytorch.callbacks import Callback
import pdeinvbench.utils.pytorch_utils as ptu
from pdeinvbench.utils.logging_utils import (
collect_loss_dicts,
)
from pdeinvbench.utils.types import PDE, TypeBatch1D, TypeBatch2D
class PDEParamErrorPlottingCallback(Callback):
"""
Logs a set of errors stratified based on PDE parameter value.
"""
def __init__(self):
self.validation_step_loss_dicts = []
"""
Loss dicts for validation and autoregressive validation. Each element is a tuple of (losses, pde_params).
PDE_params comes directly from the dataloader.
Loss: Dict[str, torch.Tensor] with keys (shape)
'data_loss' (B), 'residual_loss' (B), 'loss' (), 'data_loss_per_batch_element' (B), 'residual_per_batch_element' (B).
"""
self.pde = None # type: ignore
self.params_to_predict = []
def on_validation_epoch_start(
self, trainer: pl.Trainer, pl_module: pl.LightningModule
):
# Clear memory of loss dicts
self.validation_step_loss_dicts = []
self.pde = pl_module.pde
if self.pde == PDE.DarcyFlow2D:
self.params_to_predict = ["index"]
else:
self.params_to_predict = pl_module.params_to_predict
def on_validation_batch_end(
self,
trainer: pl.Trainer,
pl_module: pl.LightningModule,
outputs: Mapping[str, torch.Tensor],
batch: TypeBatch1D | TypeBatch2D,
batch_idx: int,
dataloader_idx: int = 0,
):
# Convert to numpy arrays
collect_loss_dicts(
outputs,
batch,
"residual_per_batch_element",
self.validation_step_loss_dicts,
)
def on_test_batch_end(
self,
trainer: pl.Trainer,
pl_module: pl.LightningModule,
outputs: Mapping[str, torch.Tensor],
batch: TypeBatch1D | TypeBatch2D,
batch_idx: int,
dataloader_idx: int = 0,
):
self.on_validation_batch_end(
trainer, pl_module, outputs, batch, batch_idx)
def generate_pde_parameter_histogram(self, loss_tuples):
"""
Generates a histogram of PDE parameter values vs loss
"""
if len(loss_tuples) == 0:
return None
if self.pde == PDE.DarcyFlow2D:
parameter_keys = ["index"]
else:
parameter_keys = loss_tuples[0][1].keys()
plots = {}
for parameter in parameter_keys:
# Num batches x Batch size
parameter_values = [
ptu.torch_to_numpy(loss_tuple[1][parameter].ravel())
for loss_tuple in loss_tuples
]
parameter_values = np.concatenate(parameter_values, axis=0)
residuals = [
ptu.torch_to_numpy(loss_tuple[0]["residual_per_batch_element"])
for loss_tuple in loss_tuples
]
residuals = np.concatenate(residuals, axis=0)
key_name = "param_loss_per_batch_element"
data_or_param_loss = [loss_tuple[0][key_name]
for loss_tuple in loss_tuples]
if len(data_or_param_loss[0].shape) != 0:
data_or_param_loss = np.concatenate(data_or_param_loss, axis=0)
residual_fig = plotly_express.density_heatmap(
x=parameter_values,
y=residuals,
nbinsx=20,
nbinsy=20,
title=f"Residual vs. {parameter}",
)
residual_fig.update_layout(
xaxis_title=f"{parameter} Values",
yaxis_title="Residual",
title_x=0.5,
margin_t=40,
)
title = "Parameter"
data_or_param_loss_fig = plotly_express.density_heatmap(
x=parameter_values,
y=data_or_param_loss,
nbinsx=20,
nbinsy=20,
title=f"{title} Loss vs. {parameter}",
)
data_or_param_loss_fig.update_layout(
xaxis_title=f"{title} Loss (MSE)",
yaxis_title=f"{parameter} Values",
title_x=0.5,
margin_t=40,
)
plots[parameter] = [residual_fig, data_or_param_loss_fig]
return plots
def on_test_epoch_start(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
self.on_validation_epoch_start(trainer, pl_module)
def log_plots(self, prefix: str):
plots = self.generate_pde_parameter_histogram(
self.validation_step_loss_dicts)
if plots is not None:
for parameter, plots in plots.items():
residual_fig, data_loss_fig = plots
wandb.log(
{
f"{prefix}/residual_vs_{parameter}": residual_fig,
f"{prefix}/data_loss_vs_{parameter}": data_loss_fig,
}
)
plt.close()
def log_parameter_predictions_table(self, loss_tuples, prefix: str = "test"):
if len(loss_tuples) == 0:
return None
if self.pde == PDE.DarcyFlow2D:
parameter_keys = ["index"]
else:
parameter_keys = loss_tuples[0][1].keys()
plots = {}
columns = ["ic_index", "true_parameters",
"predicted_parameters", "param_loss"]
for parameter in parameter_keys:
# Num batches x Batch size
true_parameters = [
ptu.torch_to_numpy(loss_tuple[1][parameter].ravel())
for loss_tuple in loss_tuples
]
true_parameters = np.concatenate(true_parameters, axis=0)
residuals = [
ptu.torch_to_numpy(loss_tuple[0]["residual_per_batch_element"])
for loss_tuple in loss_tuples
]
residuals = np.concatenate(residuals, axis=0)
key_name = "param_loss_per_batch_element"
data_or_param_loss = [
ptu.torch_to_numpy(loss_tuple[0][key_name])
for loss_tuple in loss_tuples
]
if len(data_or_param_loss[0].shape) != 0:
data_or_param_loss = np.concatenate(data_or_param_loss, axis=0)
ic_index = [
ptu.torch_to_numpy(loss_tuple[2]).ravel() for loss_tuple in loss_tuples
]
timestamps = [
ptu.torch_to_numpy(loss_tuple[3]).ravel() for loss_tuple in loss_tuples
]
ic_index = np.concatenate(ic_index, axis=0)
timestamps = np.concatenate(timestamps, axis=0)
predicted_parameters = [
ptu.torch_to_numpy(
loss_tuple[0]["predictions"][parameter]).ravel()
for loss_tuple in loss_tuples
]
predicted_parameters = np.concatenate(predicted_parameters, axis=0)
data = [
[
ic_index[i],
timestamps[i],
true_parameters[i],
predicted_parameters[i],
data_or_param_loss[i],
]
for i in range(len(ic_index))
]
table = wandb.Table(
data=data,
columns=[
"ic_index",
"timestamps",
"true_parameters",
"predicted_parameters",
"param_loss",
],
)
wandb.log(
{f"{prefix}/parameter_predictions_table_{parameter}": table})
def on_validation_epoch_end(
self, trainer: pl.Trainer, pl_module: pl.LightningModule
):
# Plot error stratified by PDE parameter value
self.log_plots("validation")
# Clear caches
self.validation_step_loss_dicts = []
def on_test_epoch_start(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
self.on_validation_epoch_start(trainer, pl_module)
def on_test_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
self.log_plots("test")
self.log_parameter_predictions_table(
self.validation_step_loss_dicts, "test")
# Clear caches
self.validation_step_loss_dicts = []
class PDEParamErrorTestTimeTailoringCallback(PDEParamErrorPlottingCallback):
"""
Logs errors before and after tailoring, stratified by PDE parameter value.
"""
def __init__(self):
super().__init__()
"""
Loss dicts for test time tailoring. Each element is a tuple of (losses, pde_params).
PDE_params comes directly from the dataloader.
Loss: Dict[str, torch.Tensor] with keys (shape)
'data_loss' (B), 'residual_loss' (B), 'loss' (), 'data_loss_per_batch_element' (B), 'residual_per_batch_element' (B).
"""
self.pre_tailored_loss_dicts = []
self.post_tailored_loss_dicts = []
self.params_to_predict = []
self.pde = None # type: ignore
def on_test_epoch_start(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
self.pde = pl_module.pde
if self.pde == PDE.DarcyFlow2D:
# 'Coeff' is a 2D parameter field, index corresponds to the filename of the parameter in the 2D field
self.params_to_predict = ["index"]
else:
self.params_to_predict = pl_module.params_to_predict
def on_test_batch_end(
self,
trainer: pl.Trainer,
pl_module: pl.LightningModule,
outputs: Mapping[str, torch.Tensor],
batch: TypeBatch1D | TypeBatch2D,
batch_idx: int,
dataloader_idx: int = 0,
):
if (
not hasattr(pl_module, "num_tailoring_steps")
or pl_module.tailoring_optimizer is None
or pl_module.num_tailoring_steps == 0
):
return
if "pre_tailored_metrics" in outputs:
collect_loss_dicts(
outputs["pre_tailored_metrics"],
batch,
"param_loss_per_batch_element",
self.pre_tailored_loss_dicts,
)
collect_loss_dicts(
{key: v for key, v in outputs.items() if key != "pre_tailored_metrics"},
batch,
"param_loss_per_batch_element",
self.post_tailored_loss_dicts,
)
def log_tables(self):
# take the param_loss_per_batch_element for the pre and post tailored metrics
pre_tailored_data_loss = [
loss_tuple[0]["param_loss_per_batch_element"]
for loss_tuple in self.pre_tailored_loss_dicts
]
post_tailored_data_loss = [
loss_tuple[0]["param_loss_per_batch_element"]
for loss_tuple in self.post_tailored_loss_dicts
]
parameter_values = [
ptu.torch_to_numpy(
loss_tuple[1][self.params_to_predict[0]].ravel())
for loss_tuple in self.pre_tailored_loss_dicts
]
pre_tailored_parameter_values = [
ptu.torch_to_numpy(
loss_tuple[0]["predictions"][self.params_to_predict[0]].ravel()
)
for loss_tuple in self.pre_tailored_loss_dicts
]
post_tailored_parameter_values = [
ptu.torch_to_numpy(
loss_tuple[0]["predictions"][self.params_to_predict[0]].ravel()
)
for loss_tuple in self.post_tailored_loss_dicts
]
parameter_values = np.concatenate(parameter_values, axis=0)
pre_tailored_parameter_values = np.concatenate(
pre_tailored_parameter_values, axis=0
)
post_tailored_parameter_values = np.concatenate(
post_tailored_parameter_values, axis=0
)
pre_tailored_data_loss = np.concatenate(pre_tailored_data_loss, axis=0)
post_tailored_data_loss = np.concatenate(
post_tailored_data_loss, axis=0)
# log table containing paramter value, pre tailored data loss, post tailored data loss
data = [
[
parameter_values[i],
pre_tailored_data_loss[i],
post_tailored_data_loss[i],
pre_tailored_parameter_values[i],
post_tailored_parameter_values[i],
]
for i in range(len(parameter_values))
]
table = wandb.Table(
data=data,
columns=[
"parameter_value",
"pre_tailored_data_loss",
"post_tailored_data_loss",
"pre_tailored_parameter_value",
"post_tailored_parameter_value",
],
)
wandb.log({"tailoring_data_loss_table": table})
def on_test_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
if (
not hasattr(pl_module, "num_tailoring_steps")
or pl_module.tailoring_optimizer is None
or pl_module.num_tailoring_steps == 0
):
return
self.log_tables()
self.pre_tailored_loss_dicts = []
self.post_tailored_loss_dicts = []
class TailoringTimingMetricsCallback(Callback):
"""
Logs the timing metrics for the tailoring step.
"""
def __init__(self):
self.tailoring_timing_metrics = {}
def on_test_batch_end(
self,
trainer: pl.Trainer,
pl_module: pl.LightningModule,
outputs: Mapping[str, torch.Tensor],
batch: TypeBatch1D | TypeBatch2D,
batch_idx: int,
dataloader_idx: int = 0,
):
if (
not hasattr(pl_module, "tailoring_optimizer")
or pl_module.tailoring_optimizer is None
or pl_module.num_tailoring_steps == 0
):
return
if "tailoring_timing_metrics" in outputs:
self.tailoring_timing_metrics[dataloader_idx] = outputs[
"tailoring_timing_metrics"
]
def on_test_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
for dataloader_idx in self.tailoring_timing_metrics:
wandb.log(
{
f"tailoring_timing_metrics_dataloader_{dataloader_idx}": self.tailoring_timing_metrics[
dataloader_idx
]
}
)
class InverseErrorByTailoringStepCallback(Callback):
"""
Helper callback that plots the error by tailoring step. On the Y-axis is the metric and the X-axis is the tailoring step.
Uses plotly to generate the plot and plots to W&B.
This is specifically for PINO and tailoring.
"""
def __init__(self):
# Required class variables - reset on val epoch start
self.errors_by_tailor_step = {}
def on_test_epoch_start(
self, trainer: pl.Trainer, pl_module: pl.LightningModule
) -> None:
if (
not hasattr(pl_module, "tailoring_optimizer")
or pl_module.tailoring_optimizer is None
or pl_module.num_tailoring_steps == 0
):
return
self.errors_by_tailor_step = {}
def generate_plots(self, pl_module, loader_idx=0):
"""
Generates the plots for the data and residual error by tailoring step.
"""
num_tailoring_steps = pl_module.num_tailoring_steps
metric_plots = {}
for error_metric in self.errors_by_tailor_step[loader_idx]:
metric_data_by_tailor_step = np.asarray(
self.errors_by_tailor_step[loader_idx][error_metric]
)
# Calculate mean across tailoring steps
mean_metric_data_by_tailor_step = np.mean(
metric_data_by_tailor_step, axis=0
)
# Calculate y-axis bounds with some padding (e.g., 5% of the range)
y_min = np.min(metric_data_by_tailor_step)
y_max = np.max(metric_data_by_tailor_step)
y_range = y_max - y_min
y_axis_min = y_min - 0.05 * y_range # Add 5% padding below min
y_axis_max = y_max + 0.05 * y_range # Add 5% padding above max
# Create data for the table
data = [
[x, y]
for (x, y) in zip(
list(range(num_tailoring_steps)
), mean_metric_data_by_tailor_step
)
]
table = wandb.Table(
data=data, columns=["tailor_steps", f"mean_{error_metric}"]
)
# Create a Plotly figure for custom y-axis bounds
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=list(range(num_tailoring_steps)),
y=mean_metric_data_by_tailor_step,
mode="lines",
name=f"Mean {error_metric}",
)
)
fig.update_layout(
title=f"Tailoring Steps vs Mean {error_metric}",
xaxis_title="Tailoring Steps",
yaxis_title=f"Mean {error_metric}",
# Set y-axis bounds
yaxis=dict(range=[y_axis_min, y_axis_max]),
)
# Log the Plotly figure to WandB
metric_plots[error_metric] = wandb.Plotly(fig)
return metric_plots
def on_test_batch_end(
self,
trainer: pl.Trainer,
pl_module: pl.LightningModule,
outputs: Mapping[str, torch.Tensor],
batch: TypeBatch1D | TypeBatch2D,
batch_idx: int,
dataloader_idx: int = 0,
):
"""
After each batch, we accumulate the metric for each tailoring step.
"""
if (
not hasattr(pl_module, "tailoring_optimizer")
or pl_module.tailoring_optimizer is None
or pl_module.num_tailoring_steps == 0
):
return
tailoring_metrics = outputs["tailoring_metrics"]
if dataloader_idx not in self.errors_by_tailor_step:
self.errors_by_tailor_step[dataloader_idx] = {}
current_dataloader = trainer.test_dataloaders[dataloader_idx]
for metric, metric_data in tailoring_metrics.items():
if metric not in self.errors_by_tailor_step[dataloader_idx]:
self.errors_by_tailor_step[dataloader_idx][metric] = []
if "per_batch_element" in metric and pl_module.tailor_per_batch:
current_batch_size = metric_data[0].shape[0]
elements_to_add = pl_module.batch_size - current_batch_size
if current_batch_size != pl_module.batch_size:
for tailoring_step in range(pl_module.num_tailoring_steps):
step_ouput = metric_data[tailoring_step]
# Get the last element of the tensor
last_element = step_ouput[-1]
# Create a tensor with repeated last elements
repeated_elements = (
last_element.repeat(elements_to_add, 1)
if len(step_ouput.shape) > 1
else last_element.repeat(elements_to_add)
)
# Concatenate the original tensor with the repeated elements
metric_data[tailoring_step] = torch.cat(
[step_ouput, repeated_elements], dim=0
)
self.errors_by_tailor_step[dataloader_idx][metric].append(
metric_data)
def on_test_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
if (
not hasattr(pl_module, "tailoring_optimizer")
or pl_module.tailoring_optimizer is None
or pl_module.num_tailoring_steps == 0
):
return
"""
After each epoch, we plot the metric by tailoring step.
"""
for dataloader_idx in self.errors_by_tailor_step:
tailoring_figures = self.generate_plots(pl_module, dataloader_idx)
to_log = {}
for tailoring_metric, err_fig in tailoring_figures.items():
to_log[
f"tailoring_step_plots_dataloader_{dataloader_idx}/{tailoring_metric}"
] = err_fig
wandb.log(to_log)
plt.close()
|