DabbyOWL's picture
Reset history
484b847 verified
import os
from typing import Callable, Dict, List, Tuple, Union
import time
import lightning as L
import torch
import typeguard
from functorch.dim import tree_map
from jaxtyping import Float, jaxtyped
from lightning.pytorch.utilities import grad_norm
from pdeinvbench.utils.pytorch_utils import compute_grad_norm
from lightning.pytorch.loggers import WandbLogger
from pdeinvbench.data.utils import unnormalize_params
from pdeinvbench.utils.logging_utils import get_best_model_weights
from copy import deepcopy
from pdeinvbench.losses import (
get_param_metric,
get_pde_residual_function,
pde_residual_reduction,
)
from pdeinvbench.losses.metrics import (
classification_metrics_darcy_flow,
param_relative_loss,
)
from pdeinvbench.models.inverse_model import InverseModel
from pdeinvbench.utils import pytorch_utils as ptu
from pdeinvbench.utils.types import (
PDE,
DataMetrics,
ParamMetrics,
TypeAutoRegressiveInitFrames,
TypeAutoRegressivePredFrames,
TypeBatch,
TypeBatch1D,
TypeBatch2D,
TypeLossDict,
TypeParam,
TypePredict1D,
TypePredict2D,
)
from pdeinvbench.lightning_modules.inversemodule import InverseModule
class InverseTestTimeTailoringModule(InverseModule):
"""
InverseModule with test time tailoring
:param num_tailoring_steps: Number of tailoring steps
:param tailoring_optimizer: Optimizer for tailoring steps
:param tailor_per_batch: Whether to tailor per batch or per element
:param tailor_anchor_loss_weight: Weight for the anchor loss
:param tailor_residual_loss_weight: Weight for the residual loss
"""
def __init__(
self,
*args,
num_tailoring_steps: int = 0,
tailoring_optimizer: torch.optim.Optimizer = None,
tailor_per_batch: bool = False,
tailor_anchor_loss_weight: float = 0,
tailor_residual_loss_weight: float = 1,
**kwargs,
):
super().__init__(*args, **kwargs)
self.num_tailoring_steps = num_tailoring_steps
self.tailoring_optimizer = tailoring_optimizer
self.tailor_per_batch = tailor_per_batch
self.tailor_anchor_loss_weight = tailor_anchor_loss_weight
self.tailor_residual_loss_weight = tailor_residual_loss_weight
@torch.enable_grad()
def tailor(
self,
batch: Union[TypeBatch1D, TypeBatch2D],
stage: str,
dataloader_idx: int = 0,
true_params: any = None,
) -> Union[
TypePredict1D,
TypePredict2D,
]:
"""
As is, pytorch lightning doesn't support test time tailoring out of the box. As a result, we use a separate optimizer for the tailoring step.
The tailoring step is performed on the model using :self.tailoring_optimizer: and the loss is computed using :self.pde_residual:, calls super().predict_with_loss to get the loss.
:param batch: Batch of data.
:param stage: Which of "train", "validation", "test","tailoring" is the current stage.
:param dataloader_idx: Index of the dataloader.
Returns the appended prediction, appended target and losses, same as :super().predict_with_loss:.
"""
timing_metrics = {"tailoring_step_time": [], "tailoring_total_time": None}
total_tailoring_start_time = time.time()
# Each tailoring step is isolated so we make a copy of the model
base_model = self.model
model = deepcopy(base_model).to(next(base_model.parameters()).device)
# We remap self.model to the tailored model to enable calling super().predict_with_loss
self.model = model
self.model.train()
optimizer = self.tailoring_optimizer(model.parameters())
aux_metrics = {"grad_norm": []}
for tailoring_step in range(self.num_tailoring_steps):
tailoring_step_start_time = time.time()
with torch.enable_grad():
optimizer.zero_grad()
predicted_pde_params, _, loss = self.predict_with_loss(
batch, "tailoring"
)
if "timing_metrics" in loss:
del loss["timing_metrics"]
for key in predicted_pde_params:
loss[f"tailored_vs_init_predicted_relative_param_loss_{key}"] = (
loss[f"relative_param_loss_{key}"]
)
if self.pde != PDE.DarcyFlow2D:
tailored_vs_true_params_relative_error = param_relative_loss(
predicted_pde_params,
true_params,
reduction="mean",
)
else:
tailored_vs_true_params_relative_error = param_relative_loss(
{"coeff": predicted_pde_params["coeff"]},
{"coeff": true_params["coeff"]},
reduction="mean",
)
if self.tailor_anchor_loss_weight == 0:
# Only backprop based on the residual loss
total_loss = (
self.tailor_residual_loss_weight * loss["residual_loss"]
)
else:
# sum anchor param loss and residual loss and backprop instead
total_loss = (
self.tailor_residual_loss_weight * loss["residual_loss"]
) + (self.tailor_anchor_loss_weight * loss["param_loss"])
total_loss.backward()
optimizer.step()
# Aux metrics for debugging
grad_norm = compute_grad_norm(self.model, None)
for param in tailored_vs_true_params_relative_error:
if (
f"tailored_vs_true_params_relative_error_{param}"
not in aux_metrics
):
aux_metrics[
f"tailored_vs_true_params_relative_error_{param}"
] = []
if self.tailor_per_batch:
metric_value = tailored_vs_true_params_relative_error[param]
if isinstance(metric_value, torch.Tensor):
metric_value = metric_value.detach().cpu()
else:
metric_value = metric_value
aux_metrics[
f"tailored_vs_true_params_relative_error_{param}"
].append(metric_value)
else:
aux_metrics[
f"tailored_vs_true_params_relative_error_{param}"
].append(tailored_vs_true_params_relative_error[param].item())
aux_metrics["grad_norm"].append(grad_norm)
for metric, value in loss.items():
if metric not in aux_metrics:
aux_metrics[metric] = []
if self.tailor_per_batch:
metric_value = value
if isinstance(metric_value, torch.Tensor):
metric_value = metric_value.detach().cpu()
else:
metric_value = metric_value
aux_metrics[metric].append(metric_value)
else:
aux_metrics[metric].append(value.item())
if "total_loss" not in aux_metrics:
aux_metrics["total_loss"] = []
if "optimizing_residual_loss" not in aux_metrics:
aux_metrics["optimizing_residual_loss"] = []
if "optimizing_anchor_loss" not in aux_metrics:
aux_metrics["optimizing_anchor_loss"] = []
aux_metrics["total_loss"].append(total_loss.item())
aux_metrics["optimizing_residual_loss"].append(
loss["residual_loss"].item()
)
aux_metrics["optimizing_anchor_loss"].append(loss["param_loss"].item())
torch.cuda.empty_cache()
tailoring_step_end_time = time.time()
if "tailoring_step_time" not in aux_metrics:
aux_metrics["tailoring_step_time"] = []
aux_metrics["tailoring_step_time"].append(
torch.tensor(tailoring_step_end_time - tailoring_step_start_time)
)
with torch.no_grad():
batch[-1] = true_params
final_appended_prediction, final_appended_target, final_losses = (
self.predict_with_loss(batch, stage)
)
# We delete the model and optimizer to prevent memory leaks
optimizer.zero_grad(set_to_none=True)
del model, optimizer
torch.cuda.empty_cache()
# Reset the model to the base model
self.model = base_model
total_tailoring_end_time = time.time()
total_tailoring_time = total_tailoring_end_time - total_tailoring_start_time
final_losses["total_tailoring_time"] = torch.tensor(total_tailoring_time)
return (
final_appended_prediction,
final_appended_target,
{
"final_losses": final_losses,
"aux_metrics": aux_metrics,
},
)
@jaxtyped(typechecker=typeguard.typechecked)
def test_step(
self,
batch: Union[TypeBatch1D, TypeBatch2D],
batch_idx: int,
dataloader_idx: int = 0,
) -> TypeLossDict:
stage = "test"
self.model.train()
test_losses = self.validation_step(batch, batch_idx, dataloader_idx, stage)
# return test_losses if not tailoring
if self.num_tailoring_steps == 0 or self.tailoring_optimizer is None:
return test_losses
else:
self.log_metrics(stage, test_losses, prefix_dir="pre-tailored")
# replace the true PDE params with the predicted PDE params for tailoring anchor loss
true_pde_params = batch[-1].copy()
for param, predicted_param in test_losses["predictions"].items():
if self.pde != PDE.DarcyFlow2D:
batch[-1][param] = predicted_param.detach()
else:
batch[-1][param] = torch.tensor(predicted_param).to(
next(self.model.parameters()).device
)
true_pde_params = tree_map(
lambda x: torch.tensor(x).to(
next(self.model.parameters()).device
),
true_pde_params,
)
if self.tailor_per_batch:
predictions, targets, loss_dict = self.tailor(
batch, stage, dataloader_idx, true_pde_params
)
losses, aux_metrics = (
loss_dict["final_losses"],
loss_dict["aux_metrics"],
)
losses["predictions"] = predictions
losses["targets"] = targets
else:
# Add a second "batch dimension" to the batch. As a result, we manually loop over the batch dimension.
# Ideally, we would use vmap over the real batch dimension, but there are inplace ops in the forward pass of FNO that is not vectorizable.
# Related github issue with a minimal example: https://github.com/pytorch/pytorch/issues/103329
# Specifically, inplace ops such as: https://github.com/neuraloperator/neuraloperator/blob/main/neuralop/layers/spectral_convolution.py#L459 are not vectorizable.
# PDE param is a dict so we have to handle it separately. Each parameter is a tensor with shape (B, 1). We unsqueeze it such that the tensor is now (B, 1, 1)
# When we loop over and index the real batch dimension, the PDE parameter will be a tensor of shape (1, 1), reprsenting a batch of size 1. This ensure PDE param also has a second batch dim.
batch = tree_map(lambda x: x.unsqueeze(1), batch)
batch_size = batch[0][0].shape[0]
losses = []
aux_metrics = {"grad_norm": []}
appended_predictions = []
appended_targets = []
for idx in range(batch_size):
single_input = tree_map(lambda x: x[idx], batch)
single_true_params = tree_map(
lambda x: x[idx].unsqueeze(1), true_pde_params
)
predictions, targets, curr_loss_dict = self.tailor(
single_input, stage, dataloader_idx, single_true_params
)
loss, single_aux_metrics = (
curr_loss_dict["final_losses"],
curr_loss_dict["aux_metrics"],
)
appended_predictions.append(predictions)
appended_targets.append(targets)
losses.append(loss)
# Append the aux metrics
for k in single_aux_metrics.keys():
if k not in aux_metrics:
aux_metrics[k] = []
aux_metrics[k].append(single_aux_metrics[k])
# Stack the results back into a tensor
appended_predictions = {
key: torch.stack(
[prediction[key] for prediction in appended_predictions], dim=0
)
for key in appended_predictions[0].keys()
}
appended_targets = {
key: torch.stack([target[key] for target in appended_targets], dim=0)
for key in appended_targets[0].keys()
}
# Stack the losses back into a tensor
losses = {
key: torch.stack([loss[key] for loss in losses], dim=0)
for key in losses[0].keys() if key != "timing_metrics"
}
# Only certain keys need to be squeezed
losses = tree_map(lambda x: x if x.dim() < 2 else x.squeeze(1), losses)
# Loss contains the following keys from super().predict_with_loss
# 'data_loss' (B), 'residual_loss' (B), 'loss' (B), 'data_loss_per_batch_element' (B), 'residual_per_batch_element' (B), 'data_loss_per_frame' (B, T)
# As a result of looping, we have to reduce the batch dimension for some keys.
# Average the losses
for key in losses.keys():
if "per_batch_element" not in key:
losses[key] = losses[key].mean(dim=0)
# Average the aux metrics and prep for logging
for k in aux_metrics.keys():
aux_metrics[k] = torch.tensor(aux_metrics[k]).mean(dim=0)
losses["predictions"] = appended_predictions
losses["targets"] = appended_targets
self.log_metrics(stage, losses, prefix_dir="post-tailored")
losses["tailoring_metrics"] = aux_metrics
losses["pre_tailored_metrics"] = test_losses
return losses
def log_metrics(self, stage, losses, prefix_dir=""):
super().log_metrics(stage, losses, prefix_dir)
if "total_tailoring_time" in losses:
self.log(
os.path.join(stage, prefix_dir, "total_tailoring_time"),
losses["total_tailoring_time"],
on_step=False,
on_epoch=True,
)