File size: 15,501 Bytes
484b847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import os
from typing import Callable, Dict, List, Tuple, Union
import time
import lightning as L
import torch
import typeguard
from functorch.dim import tree_map
from jaxtyping import Float, jaxtyped
from lightning.pytorch.utilities import grad_norm
from pdeinvbench.utils.pytorch_utils import compute_grad_norm
from lightning.pytorch.loggers import WandbLogger
from pdeinvbench.data.utils import unnormalize_params
from pdeinvbench.utils.logging_utils import get_best_model_weights
from copy import deepcopy

from pdeinvbench.losses import (
    get_param_metric,
    get_pde_residual_function,
    pde_residual_reduction,
)
from pdeinvbench.losses.metrics import (
    classification_metrics_darcy_flow,
    param_relative_loss,
)
from pdeinvbench.models.inverse_model import InverseModel
from pdeinvbench.utils import pytorch_utils as ptu
from pdeinvbench.utils.types import (
    PDE,
    DataMetrics,
    ParamMetrics,
    TypeAutoRegressiveInitFrames,
    TypeAutoRegressivePredFrames,
    TypeBatch,
    TypeBatch1D,
    TypeBatch2D,
    TypeLossDict,
    TypeParam,
    TypePredict1D,
    TypePredict2D,
)
from pdeinvbench.lightning_modules.inversemodule import InverseModule


class InverseTestTimeTailoringModule(InverseModule):
    """
    InverseModule with test time tailoring
    :param num_tailoring_steps: Number of tailoring steps
    :param tailoring_optimizer: Optimizer for tailoring steps
    :param tailor_per_batch: Whether to tailor per batch or per element
    :param tailor_anchor_loss_weight: Weight for the anchor loss
    :param tailor_residual_loss_weight: Weight for the residual loss
    """

    def __init__(
        self,
        *args,
        num_tailoring_steps: int = 0,
        tailoring_optimizer: torch.optim.Optimizer = None,
        tailor_per_batch: bool = False,
        tailor_anchor_loss_weight: float = 0,
        tailor_residual_loss_weight: float = 1,
        **kwargs,
    ):
        super().__init__(*args, **kwargs)
        self.num_tailoring_steps = num_tailoring_steps
        self.tailoring_optimizer = tailoring_optimizer
        self.tailor_per_batch = tailor_per_batch
        self.tailor_anchor_loss_weight = tailor_anchor_loss_weight
        self.tailor_residual_loss_weight = tailor_residual_loss_weight

    @torch.enable_grad()
    def tailor(
        self,
        batch: Union[TypeBatch1D, TypeBatch2D],
        stage: str,
        dataloader_idx: int = 0,
        true_params: any = None,
    ) -> Union[
        TypePredict1D,
        TypePredict2D,
    ]:
        """
        As is, pytorch lightning doesn't support test time tailoring out of the box. As a result, we use a separate optimizer for the tailoring step.
        The tailoring step is performed on the model using :self.tailoring_optimizer: and the loss is computed using :self.pde_residual:, calls super().predict_with_loss to get the loss.
        :param batch: Batch of data.
        :param stage: Which of "train", "validation", "test","tailoring" is the current stage.
        :param dataloader_idx: Index of the dataloader.
        Returns the appended prediction, appended target and losses, same as :super().predict_with_loss:.
        """
        timing_metrics = {"tailoring_step_time": [], "tailoring_total_time": None}
        total_tailoring_start_time = time.time()
        # Each tailoring step is isolated so we make a copy of the model
        base_model = self.model
        model = deepcopy(base_model).to(next(base_model.parameters()).device)
        # We remap self.model to the tailored model to enable calling super().predict_with_loss
        self.model = model
        self.model.train()
        optimizer = self.tailoring_optimizer(model.parameters())
        aux_metrics = {"grad_norm": []}

        for tailoring_step in range(self.num_tailoring_steps):
            tailoring_step_start_time = time.time()
            with torch.enable_grad():
                optimizer.zero_grad()
                predicted_pde_params, _, loss = self.predict_with_loss(
                    batch, "tailoring"
                )

                if "timing_metrics" in loss:
                    del loss["timing_metrics"]

                for key in predicted_pde_params:
                    loss[f"tailored_vs_init_predicted_relative_param_loss_{key}"] = (
                        loss[f"relative_param_loss_{key}"]
                    )
                if self.pde != PDE.DarcyFlow2D:
                    tailored_vs_true_params_relative_error = param_relative_loss(
                        predicted_pde_params,
                        true_params,
                        reduction="mean",
                    )
                else:
                    tailored_vs_true_params_relative_error = param_relative_loss(
                        {"coeff": predicted_pde_params["coeff"]},
                        {"coeff": true_params["coeff"]},
                        reduction="mean",
                    )

                if self.tailor_anchor_loss_weight == 0:
                    # Only backprop based on the residual loss
                    total_loss = (
                        self.tailor_residual_loss_weight * loss["residual_loss"]
                    )
                else:
                    # sum anchor param loss and residual loss and backprop instead
                    total_loss = (
                        self.tailor_residual_loss_weight * loss["residual_loss"]
                    ) + (self.tailor_anchor_loss_weight * loss["param_loss"])
                total_loss.backward()
                optimizer.step()
                # Aux metrics for debugging
                grad_norm = compute_grad_norm(self.model, None)
                for param in tailored_vs_true_params_relative_error:
                    if (
                        f"tailored_vs_true_params_relative_error_{param}"
                        not in aux_metrics
                    ):
                        aux_metrics[
                            f"tailored_vs_true_params_relative_error_{param}"
                        ] = []
                    if self.tailor_per_batch:
                        metric_value = tailored_vs_true_params_relative_error[param]
                        if isinstance(metric_value, torch.Tensor):
                            metric_value = metric_value.detach().cpu()
                        else:
                            metric_value = metric_value
                        aux_metrics[
                            f"tailored_vs_true_params_relative_error_{param}"
                        ].append(metric_value)
                    else:
                        aux_metrics[
                            f"tailored_vs_true_params_relative_error_{param}"
                        ].append(tailored_vs_true_params_relative_error[param].item())
                aux_metrics["grad_norm"].append(grad_norm)
                for metric, value in loss.items():
                    if metric not in aux_metrics:
                        aux_metrics[metric] = []
                    if self.tailor_per_batch:
                        metric_value = value
                        if isinstance(metric_value, torch.Tensor):
                            metric_value = metric_value.detach().cpu()
                        else:
                            metric_value = metric_value
                        aux_metrics[metric].append(metric_value)
                    else:
                        aux_metrics[metric].append(value.item())
                if "total_loss" not in aux_metrics:
                    aux_metrics["total_loss"] = []
                if "optimizing_residual_loss" not in aux_metrics:
                    aux_metrics["optimizing_residual_loss"] = []
                if "optimizing_anchor_loss" not in aux_metrics:
                    aux_metrics["optimizing_anchor_loss"] = []
                aux_metrics["total_loss"].append(total_loss.item())
                aux_metrics["optimizing_residual_loss"].append(
                    loss["residual_loss"].item()
                )
                aux_metrics["optimizing_anchor_loss"].append(loss["param_loss"].item())
            torch.cuda.empty_cache()
            tailoring_step_end_time = time.time()
            if "tailoring_step_time" not in aux_metrics:
                aux_metrics["tailoring_step_time"] = []
            aux_metrics["tailoring_step_time"].append(
                torch.tensor(tailoring_step_end_time - tailoring_step_start_time)
            )
        with torch.no_grad():
            batch[-1] = true_params
            final_appended_prediction, final_appended_target, final_losses = (
                self.predict_with_loss(batch, stage)
            )

        # We delete the model and optimizer to prevent memory leaks
        optimizer.zero_grad(set_to_none=True)
        del model, optimizer
        torch.cuda.empty_cache()
        # Reset the model to the base model
        self.model = base_model
        total_tailoring_end_time = time.time()
        total_tailoring_time = total_tailoring_end_time - total_tailoring_start_time
        final_losses["total_tailoring_time"] = torch.tensor(total_tailoring_time)
        return (
            final_appended_prediction,
            final_appended_target,
            {
                "final_losses": final_losses,
                "aux_metrics": aux_metrics,
            },
        )

    @jaxtyped(typechecker=typeguard.typechecked)
    def test_step(
        self,
        batch: Union[TypeBatch1D, TypeBatch2D],
        batch_idx: int,
        dataloader_idx: int = 0,
    ) -> TypeLossDict:
        stage = "test"
        self.model.train()
        test_losses = self.validation_step(batch, batch_idx, dataloader_idx, stage)
        # return test_losses if not tailoring
        if self.num_tailoring_steps == 0 or self.tailoring_optimizer is None:
            return test_losses
        else:
            self.log_metrics(stage, test_losses, prefix_dir="pre-tailored")
            # replace the true PDE params with the predicted PDE params for tailoring anchor loss
            true_pde_params = batch[-1].copy()
            for param, predicted_param in test_losses["predictions"].items():
                if self.pde != PDE.DarcyFlow2D:
                    batch[-1][param] = predicted_param.detach()
                else:
                    batch[-1][param] = torch.tensor(predicted_param).to(
                        next(self.model.parameters()).device
                    )
                    true_pde_params = tree_map(
                        lambda x: torch.tensor(x).to(
                            next(self.model.parameters()).device
                        ),
                        true_pde_params,
                    )

        if self.tailor_per_batch:
            predictions, targets, loss_dict = self.tailor(
                batch, stage, dataloader_idx, true_pde_params
            )

            losses, aux_metrics = (
                loss_dict["final_losses"],
                loss_dict["aux_metrics"],
            )
            losses["predictions"] = predictions
            losses["targets"] = targets
        else:
            # Add a second "batch dimension" to the batch. As a result, we manually loop over the batch dimension.
            # Ideally, we would use vmap over the real batch dimension, but there are inplace ops in the forward pass of FNO that is not vectorizable.
            # Related github issue with a minimal example: https://github.com/pytorch/pytorch/issues/103329
            # Specifically, inplace ops such as: https://github.com/neuraloperator/neuraloperator/blob/main/neuralop/layers/spectral_convolution.py#L459 are not vectorizable.

            # PDE param is a dict so we have to handle it separately. Each parameter is a tensor with shape (B, 1). We unsqueeze it such that the tensor is now (B, 1, 1)
            # When we loop over and index the real batch dimension, the PDE parameter will be a tensor of shape (1, 1), reprsenting a batch of size 1. This ensure PDE param also has a second batch dim.
            batch = tree_map(lambda x: x.unsqueeze(1), batch)
            batch_size = batch[0][0].shape[0]
            losses = []
            aux_metrics = {"grad_norm": []}
            appended_predictions = []
            appended_targets = []
            for idx in range(batch_size):
                single_input = tree_map(lambda x: x[idx], batch)
                single_true_params = tree_map(
                    lambda x: x[idx].unsqueeze(1), true_pde_params
                )

                predictions, targets, curr_loss_dict = self.tailor(
                    single_input, stage, dataloader_idx, single_true_params
                )
                loss, single_aux_metrics = (
                    curr_loss_dict["final_losses"],
                    curr_loss_dict["aux_metrics"],
                )

                appended_predictions.append(predictions)
                appended_targets.append(targets)
                losses.append(loss)
                # Append the aux metrics
                for k in single_aux_metrics.keys():
                    if k not in aux_metrics:
                        aux_metrics[k] = []
                    aux_metrics[k].append(single_aux_metrics[k])

            # Stack the results back into a tensor
            appended_predictions = {
                key: torch.stack(
                    [prediction[key] for prediction in appended_predictions], dim=0
                )
                for key in appended_predictions[0].keys()
            }
            appended_targets = {
                key: torch.stack([target[key] for target in appended_targets], dim=0)
                for key in appended_targets[0].keys()
            }

            # Stack the losses back into a tensor
            losses = {
                key: torch.stack([loss[key] for loss in losses], dim=0)
                for key in losses[0].keys() if key != "timing_metrics"
            }
            # Only certain keys need to be squeezed
            losses = tree_map(lambda x: x if x.dim() < 2 else x.squeeze(1), losses)

            # Loss contains the following keys from super().predict_with_loss
            # 'data_loss' (B), 'residual_loss' (B), 'loss' (B), 'data_loss_per_batch_element' (B), 'residual_per_batch_element' (B), 'data_loss_per_frame' (B, T)
            # As a result of looping, we have to reduce the batch dimension for some keys.
            # Average the losses
            for key in losses.keys():
                if "per_batch_element" not in key:
                    losses[key] = losses[key].mean(dim=0)

            # Average the aux metrics and prep for logging
            for k in aux_metrics.keys():
                aux_metrics[k] = torch.tensor(aux_metrics[k]).mean(dim=0)
            losses["predictions"] = appended_predictions
            losses["targets"] = appended_targets
        self.log_metrics(stage, losses, prefix_dir="post-tailored")
        losses["tailoring_metrics"] = aux_metrics
        losses["pre_tailored_metrics"] = test_losses

        return losses

    def log_metrics(self, stage, losses, prefix_dir=""):
        super().log_metrics(stage, losses, prefix_dir)
        if "total_tailoring_time" in losses:
            self.log(
                os.path.join(stage, prefix_dir, "total_tailoring_time"),
                losses["total_tailoring_time"],
                on_step=False,
                on_epoch=True,
            )