_id
stringlengths 2
7
| title
stringlengths 1
88
| partition
stringclasses 3
values | text
stringlengths 75
19.8k
| language
stringclasses 1
value | meta_information
dict |
|---|---|---|---|---|---|
q5600
|
offset_limit
|
train
|
def offset_limit(func):
"""
Decorator that converts python slicing to offset and limit
"""
def func_wrapper(self, start, stop):
offset = start
limit = stop - start
return func(self, offset, limit)
return func_wrapper
|
python
|
{
"resource": ""
}
|
q5601
|
generate_id
|
train
|
def generate_id(*s):
"""
generates an id from one or more given strings
it uses english as the base language in case some strings
are translated, this ensures consistent ids
"""
with translation.override("en"):
generated_id = slugify("-".join([str(i) for i in s]))
return generated_id
|
python
|
{
"resource": ""
}
|
q5602
|
append_query_parameter
|
train
|
def append_query_parameter(url, parameters, ignore_if_exists=True):
""" quick and dirty appending of query parameters to a url """
if ignore_if_exists:
for key in parameters.keys():
if key + "=" in url:
del parameters[key]
parameters_str = "&".join(k + "=" + v for k, v in parameters.items())
append_token = "&" if "?" in url else "?"
return url + append_token + parameters_str
|
python
|
{
"resource": ""
}
|
q5603
|
BetterFileInput.render
|
train
|
def render(self, name, value, attrs=None, renderer=None):
"""For django 1.10 compatibility"""
if django.VERSION >= (1, 11):
return super(BetterFileInput, self).render(name, value, attrs)
t = render_to_string(
template_name=self.template_name,
context=self.get_context(name, value, attrs),
)
return mark_safe(t)
|
python
|
{
"resource": ""
}
|
q5604
|
get_table
|
train
|
def get_table(ports):
"""
This function returns a pretty table used to display the port results.
:param ports: list of found ports
:return: the table to display
"""
table = PrettyTable(["Name", "Port", "Protocol", "Description"])
table.align["Name"] = "l"
table.align["Description"] = "l"
table.padding_width = 1
for port in ports:
table.add_row(port)
return table
|
python
|
{
"resource": ""
}
|
q5605
|
run
|
train
|
def run(port, like, use_json, server):
"""Search port names and numbers."""
if not port and not server[0]:
raise click.UsageError("Please specify a port")
if server[0]:
app.run(host=server[0], port=server[1])
return
ports = get_ports(port, like)
if not ports:
sys.stderr.write("No ports found for '{0}'\n".format(port))
return
if use_json:
print(json.dumps(ports, indent=4))
else:
table = get_table(ports)
print(table)
|
python
|
{
"resource": ""
}
|
q5606
|
RPCClient.validate_addr
|
train
|
def validate_addr(self, address, id=None, endpoint=None):
"""
returns whether or not addr string is valid
Args:
address: (str) address to lookup ( in format 'AXjaFSP23Jkbe6Pk9pPGT6NBDs1HVdqaXK')
id: (int, optional) id to use for response tracking
endpoint: (RPCEndpoint, optional) endpoint to specify to use
Returns:
json object of the result or the error encountered in the RPC call
"""
return self._call_endpoint(VALIDATE_ADDR, params=[address], id=id, endpoint=endpoint)
|
python
|
{
"resource": ""
}
|
q5607
|
MPIPool.map
|
train
|
def map(self, worker, tasks, callback=None):
"""Evaluate a function or callable on each task in parallel using MPI.
The callable, ``worker``, is called on each element of the ``tasks``
iterable. The results are returned in the expected order (symmetric with
``tasks``).
Parameters
----------
worker : callable
A function or callable object that is executed on each element of
the specified ``tasks`` iterable. This object must be picklable
(i.e. it can't be a function scoped within a function or a
``lambda`` function). This should accept a single positional
argument and return a single object.
tasks : iterable
A list or iterable of tasks. Each task can be itself an iterable
(e.g., tuple) of values or data to pass in to the worker function.
callback : callable, optional
An optional callback function (or callable) that is called with the
result from each worker run and is executed on the master process.
This is useful for, e.g., saving results to a file, since the
callback is only called on the master thread.
Returns
-------
results : list
A list of results from the output of each ``worker()`` call.
"""
# If not the master just wait for instructions.
if not self.is_master():
self.wait()
return
if callback is None:
callback = _dummy_callback
workerset = self.workers.copy()
tasklist = [(tid, (worker, arg)) for tid, arg in enumerate(tasks)]
resultlist = [None] * len(tasklist)
pending = len(tasklist)
while pending:
if workerset and tasklist:
worker = workerset.pop()
taskid, task = tasklist.pop()
log.log(_VERBOSE, "Sent task %s to worker %s with tag %s",
task[1], worker, taskid)
self.comm.send(task, dest=worker, tag=taskid)
if tasklist:
flag = self.comm.Iprobe(source=MPI.ANY_SOURCE, tag=MPI.ANY_TAG)
if not flag:
continue
else:
self.comm.Probe(source=MPI.ANY_SOURCE, tag=MPI.ANY_TAG)
status = MPI.Status()
result = self.comm.recv(source=MPI.ANY_SOURCE, tag=MPI.ANY_TAG,
status=status)
worker = status.source
taskid = status.tag
log.log(_VERBOSE, "Master received from worker %s with tag %s",
worker, taskid)
callback(result)
workerset.add(worker)
resultlist[taskid] = result
pending -= 1
return resultlist
|
python
|
{
"resource": ""
}
|
q5608
|
MPIPool.close
|
train
|
def close(self):
""" Tell all the workers to quit."""
if self.is_worker():
return
for worker in self.workers:
self.comm.send(None, worker, 0)
|
python
|
{
"resource": ""
}
|
q5609
|
update_git_devstr
|
train
|
def update_git_devstr(version, path=None):
"""
Updates the git revision string if and only if the path is being imported
directly from a git working copy. This ensures that the revision number in
the version string is accurate.
"""
try:
# Quick way to determine if we're in git or not - returns '' if not
devstr = get_git_devstr(sha=True, show_warning=False, path=path)
except OSError:
return version
if not devstr:
# Probably not in git so just pass silently
return version
if 'dev' in version: # update to the current git revision
version_base = version.split('.dev', 1)[0]
devstr = get_git_devstr(sha=False, show_warning=False, path=path)
return version_base + '.dev' + devstr
else:
# otherwise it's already the true/release version
return version
|
python
|
{
"resource": ""
}
|
q5610
|
get_git_devstr
|
train
|
def get_git_devstr(sha=False, show_warning=True, path=None):
"""
Determines the number of revisions in this repository.
Parameters
----------
sha : bool
If True, the full SHA1 hash will be returned. Otherwise, the total
count of commits in the repository will be used as a "revision
number".
show_warning : bool
If True, issue a warning if git returns an error code, otherwise errors
pass silently.
path : str or None
If a string, specifies the directory to look in to find the git
repository. If `None`, the current working directory is used, and must
be the root of the git repository.
If given a filename it uses the directory containing that file.
Returns
-------
devversion : str
Either a string with the revision number (if `sha` is False), the
SHA1 hash of the current commit (if `sha` is True), or an empty string
if git version info could not be identified.
"""
if path is None:
path = os.getcwd()
if not _get_repo_path(path, levels=0):
return ''
if not os.path.isdir(path):
path = os.path.abspath(os.path.dirname(path))
if sha:
# Faster for getting just the hash of HEAD
cmd = ['rev-parse', 'HEAD']
else:
cmd = ['rev-list', '--count', 'HEAD']
def run_git(cmd):
try:
p = subprocess.Popen(['git'] + cmd, cwd=path,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
stdin=subprocess.PIPE)
stdout, stderr = p.communicate()
except OSError as e:
if show_warning:
warnings.warn('Error running git: ' + str(e))
return (None, b'', b'')
if p.returncode == 128:
if show_warning:
warnings.warn('No git repository present at {0!r}! Using '
'default dev version.'.format(path))
return (p.returncode, b'', b'')
if p.returncode == 129:
if show_warning:
warnings.warn('Your git looks old (does it support {0}?); '
'consider upgrading to v1.7.2 or '
'later.'.format(cmd[0]))
return (p.returncode, stdout, stderr)
elif p.returncode != 0:
if show_warning:
warnings.warn('Git failed while determining revision '
'count: {0}'.format(_decode_stdio(stderr)))
return (p.returncode, stdout, stderr)
return p.returncode, stdout, stderr
returncode, stdout, stderr = run_git(cmd)
if not sha and returncode == 129:
# git returns 129 if a command option failed to parse; in
# particular this could happen in git versions older than 1.7.2
# where the --count option is not supported
# Also use --abbrev-commit and --abbrev=0 to display the minimum
# number of characters needed per-commit (rather than the full hash)
cmd = ['rev-list', '--abbrev-commit', '--abbrev=0', 'HEAD']
returncode, stdout, stderr = run_git(cmd)
# Fall back on the old method of getting all revisions and counting
# the lines
if returncode == 0:
return str(stdout.count(b'\n'))
else:
return ''
elif sha:
return _decode_stdio(stdout)[:40]
else:
return _decode_stdio(stdout).strip()
|
python
|
{
"resource": ""
}
|
q5611
|
_get_repo_path
|
train
|
def _get_repo_path(pathname, levels=None):
"""
Given a file or directory name, determine the root of the git repository
this path is under. If given, this won't look any higher than ``levels``
(that is, if ``levels=0`` then the given path must be the root of the git
repository and is returned if so.
Returns `None` if the given path could not be determined to belong to a git
repo.
"""
if os.path.isfile(pathname):
current_dir = os.path.abspath(os.path.dirname(pathname))
elif os.path.isdir(pathname):
current_dir = os.path.abspath(pathname)
else:
return None
current_level = 0
while levels is None or current_level <= levels:
if os.path.exists(os.path.join(current_dir, '.git')):
return current_dir
current_level += 1
if current_dir == os.path.dirname(current_dir):
break
current_dir = os.path.dirname(current_dir)
return None
|
python
|
{
"resource": ""
}
|
q5612
|
translate
|
train
|
def translate(
nucleotide_sequence,
first_codon_is_start=True,
to_stop=True,
truncate=False):
"""Translates cDNA coding sequence into amino acid protein sequence.
Should typically start with a start codon but allowing non-methionine
first residues since the CDS we're translating might have been affected
by a start loss mutation.
The sequence may include the 3' UTR but will stop translation at the first
encountered stop codon.
Parameters
----------
nucleotide_sequence : BioPython Seq
cDNA sequence
first_codon_is_start : bool
Treat the beginning of nucleotide_sequence (translates methionin)
truncate : bool
Truncate sequence if it's not a multiple of 3 (default = False)
Returns BioPython Seq of amino acids
"""
if not isinstance(nucleotide_sequence, Seq):
nucleotide_sequence = Seq(nucleotide_sequence)
if truncate:
# if sequence isn't a multiple of 3, truncate it so BioPython
# doesn't complain
n_nucleotides = int(len(nucleotide_sequence) / 3) * 3
nucleotide_sequence = nucleotide_sequence[:n_nucleotides]
else:
n_nucleotides = len(nucleotide_sequence)
assert n_nucleotides % 3 == 0, \
("Expected nucleotide sequence to be multiple of 3"
" but got %s of length %d") % (
nucleotide_sequence,
n_nucleotides)
# passing cds=False to translate since we may want to deal with premature
# stop codons
protein_sequence = nucleotide_sequence.translate(to_stop=to_stop, cds=False)
if first_codon_is_start and (
len(protein_sequence) == 0 or protein_sequence[0] != "M"):
if nucleotide_sequence[:3] in START_CODONS:
# TODO: figure out when these should be made into methionines
# and when left as whatever amino acid they normally code for
# e.g. Leucine start codons
# See: DOI: 10.1371/journal.pbio.0020397
return "M" + protein_sequence[1:]
else:
raise ValueError(
("Expected first codon of %s to be start codon"
" (one of %s) but got %s") % (
protein_sequence[:10],
START_CODONS,
nucleotide_sequence))
return protein_sequence
|
python
|
{
"resource": ""
}
|
q5613
|
main
|
train
|
def main(args_list=None):
"""
Script which loads variants and annotates them with overlapping genes.
Example usage:
varcode-genes
--vcf mutect.vcf \
--vcf strelka.vcf \
--maf tcga_brca.maf \
--variant chr1 498584 C G \
--json-variants more_variants.json
"""
print_version_info()
if args_list is None:
args_list = sys.argv[1:]
args = arg_parser.parse_args(args_list)
variants = variant_collection_from_args(args)
variants_dataframe = variants.to_dataframe()
logger.info('\n%s', variants_dataframe)
if args.output_csv:
variants_dataframe.to_csv(args.output_csv, index=False)
|
python
|
{
"resource": ""
}
|
q5614
|
load_maf_dataframe
|
train
|
def load_maf_dataframe(path, nrows=None, raise_on_error=True, encoding=None):
"""
Load the guaranteed columns of a TCGA MAF file into a DataFrame
Parameters
----------
path : str
Path to MAF file
nrows : int
Optional limit to number of rows loaded
raise_on_error : bool
Raise an exception upon encountering an error or log an error
encoding : str, optional
Encoding to use for UTF when reading MAF file.
"""
require_string(path, "Path to MAF")
n_basic_columns = len(MAF_COLUMN_NAMES)
# pylint: disable=no-member
# pylint gets confused by read_csv
df = pandas.read_csv(
path,
comment="#",
sep="\t",
low_memory=False,
skip_blank_lines=True,
header=0,
encoding=encoding)
if len(df.columns) < n_basic_columns:
error_message = (
"Too few columns in MAF file %s, expected %d but got %d : %s" % (
path, n_basic_columns, len(df.columns), df.columns))
if raise_on_error:
raise ValueError(error_message)
else:
logging.warn(error_message)
# check each pair of expected/actual column names to make sure they match
for expected, actual in zip(MAF_COLUMN_NAMES, df.columns):
if expected != actual:
# MAFs in the wild have capitalization differences in their
# column names, normalize them to always use the names above
if expected.lower() == actual.lower():
# using DataFrame.rename in Python 2.7.x doesn't seem to
# work for some files, possibly because Pandas treats
# unicode vs. str columns as different?
df[expected] = df[actual]
del df[actual]
else:
error_message = (
"Expected column %s but got %s" % (expected, actual))
if raise_on_error:
raise ValueError(error_message)
else:
logging.warn(error_message)
return df
|
python
|
{
"resource": ""
}
|
q5615
|
load_maf
|
train
|
def load_maf(
path,
optional_cols=[],
sort_key=variant_ascending_position_sort_key,
distinct=True,
raise_on_error=True,
encoding=None):
"""
Load reference name and Variant objects from MAF filename.
Parameters
----------
path : str
Path to MAF (*.maf).
optional_cols : list, optional
A list of MAF columns to include as metadata if they are present in the MAF.
Does not result in an error if those columns are not present.
sort_key : fn
Function which maps each element to a sorting criterion.
Set to None to not to sort the variants.
distinct : bool
Don't keep repeated variants
raise_on_error : bool
Raise an exception upon encountering an error or just log a warning.
encoding : str, optional
Encoding to use for UTF when reading MAF file.
"""
# pylint: disable=no-member
# pylint gets confused by read_csv inside load_maf_dataframe
maf_df = load_maf_dataframe(path, raise_on_error=raise_on_error, encoding=encoding)
if len(maf_df) == 0 and raise_on_error:
raise ValueError("Empty MAF file %s" % path)
ensembl_objects = {}
variants = []
metadata = {}
for _, x in maf_df.iterrows():
contig = x.Chromosome
if isnull(contig):
error_message = "Invalid contig name: %s" % (contig,)
if raise_on_error:
raise ValueError(error_message)
else:
logging.warn(error_message)
continue
start_pos = x.Start_Position
ref = x.Reference_Allele
# it's possible in a MAF file to have multiple Ensembl releases
# mixed in a single MAF file (the genome assembly is
# specified by the NCBI_Build column)
ncbi_build = x.NCBI_Build
if ncbi_build in ensembl_objects:
ensembl = ensembl_objects[ncbi_build]
else:
if isinstance(ncbi_build, int):
reference_name = "B%d" % ncbi_build
else:
reference_name = str(ncbi_build)
ensembl = infer_genome(reference_name)
ensembl_objects[ncbi_build] = ensembl
# have to try both Tumor_Seq_Allele1 and Tumor_Seq_Allele2
# to figure out which is different from the reference allele
if x.Tumor_Seq_Allele1 != ref:
alt = x.Tumor_Seq_Allele1
else:
if x.Tumor_Seq_Allele2 == ref:
error_message = (
"Both tumor alleles agree with reference %s: %s" % (
ref, x,))
if raise_on_error:
raise ValueError(error_message)
else:
logging.warn(error_message)
continue
alt = x.Tumor_Seq_Allele2
variant = Variant(
contig,
start_pos,
str(ref),
str(alt),
ensembl=ensembl)
# keep metadata about the variant and its TCGA annotation
metadata[variant] = {
'Hugo_Symbol': x.Hugo_Symbol,
'Center': x.Center,
'Strand': x.Strand,
'Variant_Classification': x.Variant_Classification,
'Variant_Type': x.Variant_Type,
'dbSNP_RS': x.dbSNP_RS,
'dbSNP_Val_Status': x.dbSNP_Val_Status,
'Tumor_Sample_Barcode': x.Tumor_Sample_Barcode,
'Matched_Norm_Sample_Barcode': x.Matched_Norm_Sample_Barcode,
}
for optional_col in optional_cols:
if optional_col in x:
metadata[variant][optional_col] = x[optional_col]
variants.append(variant)
return VariantCollection(
variants=variants,
source_to_metadata_dict={path: metadata},
sort_key=sort_key,
distinct=distinct)
|
python
|
{
"resource": ""
}
|
q5616
|
apply_to_field_if_exists
|
train
|
def apply_to_field_if_exists(effect, field_name, fn, default):
"""
Apply function to specified field of effect if it is not None,
otherwise return default.
"""
value = getattr(effect, field_name, None)
if value is None:
return default
else:
return fn(value)
|
python
|
{
"resource": ""
}
|
q5617
|
apply_to_transcript_if_exists
|
train
|
def apply_to_transcript_if_exists(effect, fn, default):
"""
Apply function to transcript associated with effect,
if it exists, otherwise return default.
"""
return apply_to_field_if_exists(
effect=effect,
field_name="transcript",
fn=fn,
default=default)
|
python
|
{
"resource": ""
}
|
q5618
|
gene_id_of_associated_transcript
|
train
|
def gene_id_of_associated_transcript(effect):
"""
Ensembl gene ID of transcript associated with effect, returns
None if effect does not have transcript.
"""
return apply_to_transcript_if_exists(
effect=effect,
fn=lambda t: t.gene_id,
default=None)
|
python
|
{
"resource": ""
}
|
q5619
|
parse_transcript_number
|
train
|
def parse_transcript_number(effect):
"""
Try to parse the number at the end of a transcript name associated with
an effect.
e.g. TP53-001 returns the integer 1.
Parameters
----------
effect : subclass of MutationEffect
Returns int
"""
name = name_of_associated_transcript(effect)
if "-" not in name:
return 0
parts = name.split("-")
last_part = parts[-1]
if last_part.isdigit():
return int(last_part)
else:
return 0
|
python
|
{
"resource": ""
}
|
q5620
|
select_between_exonic_splice_site_and_alternate_effect
|
train
|
def select_between_exonic_splice_site_and_alternate_effect(effect):
"""
If the given effect is an ExonicSpliceSite then it might contain
an alternate effect of higher priority. In that case, return the
alternate effect. Otherwise, this acts as an identity function.
"""
if effect.__class__ is not ExonicSpliceSite:
return effect
if effect.alternate_effect is None:
return effect
splice_priority = effect_priority(effect)
alternate_priority = effect_priority(effect.alternate_effect)
if splice_priority > alternate_priority:
return effect
else:
return effect.alternate_effect
|
python
|
{
"resource": ""
}
|
q5621
|
keep_max_priority_effects
|
train
|
def keep_max_priority_effects(effects):
"""
Given a list of effects, only keep the ones with the maximum priority
effect type.
Parameters
----------
effects : list of MutationEffect subclasses
Returns list of same length or shorter
"""
priority_values = map(effect_priority, effects)
max_priority = max(priority_values)
return [e for (e, p) in zip(effects, priority_values) if p == max_priority]
|
python
|
{
"resource": ""
}
|
q5622
|
filter_pipeline
|
train
|
def filter_pipeline(effects, filters):
"""
Apply each filter to the effect list sequentially. If any filter
returns zero values then ignore it. As soon as only one effect is left,
return it.
Parameters
----------
effects : list of MutationEffect subclass instances
filters : list of functions
Each function takes a list of effects and returns a list of effects
Returns list of effects
"""
for filter_fn in filters:
filtered_effects = filter_fn(effects)
if len(effects) == 1:
return effects
elif len(filtered_effects) > 1:
effects = filtered_effects
return effects
|
python
|
{
"resource": ""
}
|
q5623
|
top_priority_effect_for_single_gene
|
train
|
def top_priority_effect_for_single_gene(effects):
"""
For effects which are from the same gene, check to see if there
is a canonical transcript with both the maximum length CDS
and maximum length full transcript sequence.
If not, then use number of exons and transcript name as tie-breaking
features.
Parameters
----------
effects : list of MutationEffect subclass instances
Returns single effect object
"""
# first filter effects to keep those on
# 1) maximum priority effects
# 2) protein coding genes
# 3) protein coding transcripts
# 4) complete transcripts
#
# If any of these filters drop all the effects then we move on to the next
# filtering step.
effects = filter_pipeline(
effects=effects,
filters=[
keep_max_priority_effects,
keep_effects_on_protein_coding_genes,
keep_effects_on_protein_coding_transcripts,
keep_effects_on_complete_transcripts,
],
)
if len(effects) == 1:
return effects[0]
# compare CDS length and transcript lengths of remaining effects
# if one effect has the maximum of both categories then return it
cds_lengths = [cds_length_of_associated_transcript(e) for e in effects]
max_cds_length = max(cds_lengths)
# get set of indices of all effects with maximum CDS length
max_cds_length_indices = {
i
for (i, l) in enumerate(cds_lengths)
if l == max_cds_length
}
seq_lengths = [length_of_associated_transcript(e) for e in effects]
max_seq_length = max(seq_lengths)
# get set of indices for all effects whose associated transcript
# has maximum sequence length
max_seq_length_indices = {
i
for (i, l) in enumerate(seq_lengths)
if l == max_seq_length
}
# which effects have transcripts with both the longest CDS and
# longest full transcript sequence?
intersection_of_indices = \
max_cds_length_indices.intersection(max_seq_length_indices)
n_candidates = len(intersection_of_indices)
if n_candidates == 1:
best_index = intersection_of_indices.pop()
return effects[best_index]
elif n_candidates == 0:
# if set of max CDS effects and max sequence length effects is disjoint
# then let's try to do the tie-breaking sort over their union
union_of_indices = max_cds_length_indices.union(max_seq_length_indices)
candidate_effects = [effects[i] for i in union_of_indices]
else:
# if multiple effects have transcripts with the max CDS length and
# the max full sequence length then run the tie-breaking sort
# over all these candidates
candidate_effects = [effects[i] for i in intersection_of_indices]
# break ties by number of exons, whether name of transcript ends if "01",
# and all else being equal, prefer transcript names that end with lower
# numbers
return max(
candidate_effects,
key=tie_breaking_sort_key_for_single_gene_effects)
|
python
|
{
"resource": ""
}
|
q5624
|
VariantCollection.filter_by_transcript_expression
|
train
|
def filter_by_transcript_expression(
self,
transcript_expression_dict,
min_expression_value=0.0):
"""
Filters variants down to those which have overlap a transcript whose
expression value in the transcript_expression_dict argument is greater
than min_expression_value.
Parameters
----------
transcript_expression_dict : dict
Dictionary mapping Ensembl transcript IDs to expression estimates
(either FPKM or TPM)
min_expression_value : float
Threshold above which we'll keep an effect in the result collection
"""
return self.filter_any_above_threshold(
multi_key_fn=lambda variant: variant.transcript_ids,
value_dict=transcript_expression_dict,
threshold=min_expression_value)
|
python
|
{
"resource": ""
}
|
q5625
|
VariantCollection.filter_by_gene_expression
|
train
|
def filter_by_gene_expression(
self,
gene_expression_dict,
min_expression_value=0.0):
"""
Filters variants down to those which have overlap a gene whose
expression value in the transcript_expression_dict argument is greater
than min_expression_value.
Parameters
----------
gene_expression_dict : dict
Dictionary mapping Ensembl gene IDs to expression estimates
(either FPKM or TPM)
min_expression_value : float
Threshold above which we'll keep an effect in the result collection
"""
return self.filter_any_above_threshold(
multi_key_fn=lambda effect: effect.gene_ids,
value_dict=gene_expression_dict,
threshold=min_expression_value)
|
python
|
{
"resource": ""
}
|
q5626
|
VariantCollection.exactly_equal
|
train
|
def exactly_equal(self, other):
'''
Comparison between VariantCollection instances that takes into account
the info field of Variant instances.
Returns
----------
True if the variants in this collection equal the variants in the other
collection. The Variant.info fields are included in the comparison.
'''
return (
self.__class__ == other.__class__ and
len(self) == len(other) and
all(x.exactly_equal(y) for (x, y) in zip(self, other)))
|
python
|
{
"resource": ""
}
|
q5627
|
VariantCollection._combine_variant_collections
|
train
|
def _combine_variant_collections(cls, combine_fn, variant_collections, kwargs):
"""
Create a single VariantCollection from multiple different collections.
Parameters
----------
cls : class
Should be VariantCollection
combine_fn : function
Function which takes any number of sets of variants and returns
some combination of them (typically union or intersection).
variant_collections : tuple of VariantCollection
kwargs : dict
Optional dictionary of keyword arguments to pass to the initializer
for VariantCollection.
"""
kwargs["variants"] = combine_fn(*[set(vc) for vc in variant_collections])
kwargs["source_to_metadata_dict"] = cls._merge_metadata_dictionaries(
[vc.source_to_metadata_dict for vc in variant_collections])
kwargs["sources"] = set.union(*([vc.sources for vc in variant_collections]))
for key, value in variant_collections[0].to_dict().items():
# If some optional parameter isn't explicitly specified as an
# argument to union() or intersection() then use the same value
# as the first VariantCollection.
#
# I'm doing this so that the meaning of VariantCollection.union
# and VariantCollection.intersection with a single argument is
# the identity function (rather than setting optional parameters
# to their default values.
if key not in kwargs:
kwargs[key] = value
return cls(**kwargs)
|
python
|
{
"resource": ""
}
|
q5628
|
VariantCollection.union
|
train
|
def union(self, *others, **kwargs):
"""
Returns the union of variants in a several VariantCollection objects.
"""
return self._combine_variant_collections(
combine_fn=set.union,
variant_collections=(self,) + others,
kwargs=kwargs)
|
python
|
{
"resource": ""
}
|
q5629
|
VariantCollection.intersection
|
train
|
def intersection(self, *others, **kwargs):
"""
Returns the intersection of variants in several VariantCollection objects.
"""
return self._combine_variant_collections(
combine_fn=set.intersection,
variant_collections=(self,) + others,
kwargs=kwargs)
|
python
|
{
"resource": ""
}
|
q5630
|
VariantCollection.to_dataframe
|
train
|
def to_dataframe(self):
"""Build a DataFrame from this variant collection"""
def row_from_variant(variant):
return OrderedDict([
("chr", variant.contig),
("start", variant.original_start),
("ref", variant.original_ref),
("alt", variant.original_alt),
("gene_name", ";".join(variant.gene_names)),
("gene_id", ";".join(variant.gene_ids))
])
rows = [row_from_variant(v) for v in self]
if len(rows) == 0:
# TODO: return a DataFrame with the appropriate columns
return pd.DataFrame()
return pd.DataFrame.from_records(rows, columns=rows[0].keys())
|
python
|
{
"resource": ""
}
|
q5631
|
trim_shared_suffix
|
train
|
def trim_shared_suffix(ref, alt):
"""
Reuse the `trim_shared_prefix` function above to implement similar
functionality for string suffixes.
Given ref='ABC' and alt='BC', we first revese both strings:
reverse_ref = 'CBA'
reverse_alt = 'CB'
and then the result of calling trim_shared_prefix will be:
('A', '', 'CB')
We then reverse all three of the result strings to get back
the shared suffix and both prefixes leading up to it:
('A', '', 'BC')
"""
n_ref = len(ref)
n_alt = len(alt)
n_min = min(n_ref, n_alt)
i = 0
while i < n_min and ref[-i - 1] == alt[-i - 1]:
i += 1
# i is length of shared suffix.
if i == 0:
return (ref, alt, '')
return (ref[:-i], alt[:-i], ref[-i:])
|
python
|
{
"resource": ""
}
|
q5632
|
trim_shared_flanking_strings
|
train
|
def trim_shared_flanking_strings(ref, alt):
"""
Given two nucleotide or amino acid strings, identify
if they have a common prefix, a common suffix, and return
their unique components along with the prefix and suffix.
For example, if the input ref = "SYFFQGR" and alt = "SYMLLFIFQGR"
then the result will be:
("F", "MLLFI", "SY", "FQGR")
"""
ref, alt, prefix = trim_shared_prefix(ref, alt)
ref, alt, suffix = trim_shared_suffix(ref, alt)
return ref, alt, prefix, suffix
|
python
|
{
"resource": ""
}
|
q5633
|
main
|
train
|
def main(args_list=None):
"""
Script which loads variants and annotates them with overlapping genes
and predicted coding effects.
Example usage:
varcode
--vcf mutect.vcf \
--vcf strelka.vcf \
--maf tcga_brca.maf \
--variant chr1 498584 C G \
--json-variants more_variants.json
"""
print_version_info()
if args_list is None:
args_list = sys.argv[1:]
args = arg_parser.parse_args(args_list)
variants = variant_collection_from_args(args)
effects = variants.effects()
if args.only_coding:
effects = effects.drop_silent_and_noncoding()
if args.one_per_variant:
variant_to_effect_dict = effects.top_priority_effect_per_variant()
effects = effects.clone_with_new_elements(list(variant_to_effect_dict.values()))
effects_dataframe = effects.to_dataframe()
logger.info('\n%s', effects)
if args.output_csv:
effects_dataframe.to_csv(args.output_csv, index=False)
|
python
|
{
"resource": ""
}
|
q5634
|
get_codons
|
train
|
def get_codons(
variant,
trimmed_cdna_ref,
trimmed_cdna_alt,
sequence_from_start_codon,
cds_offset):
"""
Returns indices of first and last reference codons affected by the variant,
as well as the actual sequence of the mutated codons which replace those
reference codons.
Parameters
----------
variant : Variant
trimmed_cdna_ref : str
Trimmed reference cDNA nucleotides affected by the variant
trimmed_cdna_alt : str
Trimmed alternate cDNA nucleotides which replace the reference
sequence_from_start_codon : str
cDNA nucleotide coding sequence
cds_offset : int
Integer offset into the coding sequence where ref is replace with alt
"""
# index (starting from 0) of first affected reference codon
ref_codon_start_offset = cds_offset // 3
# which nucleotide of the first codon got changed?
nucleotide_offset_into_first_ref_codon = cds_offset % 3
n_ref_nucleotides = len(trimmed_cdna_ref)
if n_ref_nucleotides == 0:
if nucleotide_offset_into_first_ref_codon == 2:
# if we're inserting between codons
ref_codon_end_offset = ref_codon_start_offset
else:
# inserting inside a reference codon
ref_codon_end_offset = ref_codon_start_offset + 1
ref_codons = sequence_from_start_codon[
ref_codon_start_offset * 3:ref_codon_end_offset * 3]
# split the reference codon into nucleotides before/after insertion
prefix = ref_codons[:nucleotide_offset_into_first_ref_codon + 1]
suffix = ref_codons[nucleotide_offset_into_first_ref_codon + 1:]
else:
ref_codon_end_offset = (cds_offset + n_ref_nucleotides - 1) // 3 + 1
# codons in the reference sequence
ref_codons = sequence_from_start_codon[
ref_codon_start_offset * 3:ref_codon_end_offset * 3]
# We construct the new codons by taking the unmodified prefix
# of the first ref codon, the unmodified suffix of the last ref codon
# and sticking the alt nucleotides in between.
# Since this is supposed to be an in-frame mutation, the concatenated
# nucleotide string is expected to have a length that is a multiple of
# three.
prefix = ref_codons[:nucleotide_offset_into_first_ref_codon]
offset_in_last_ref_codon = (cds_offset + n_ref_nucleotides - 1) % 3
if offset_in_last_ref_codon == 0:
suffix = ref_codons[-2:]
elif offset_in_last_ref_codon == 1:
suffix = ref_codons[-1:]
else:
suffix = ""
mutant_codons = prefix + trimmed_cdna_alt + suffix
assert len(mutant_codons) % 3 == 0, \
"Expected in-frame mutation but got %s (length = %d)" % (
mutant_codons, len(mutant_codons))
return ref_codon_start_offset, ref_codon_end_offset, mutant_codons
|
python
|
{
"resource": ""
}
|
q5635
|
predict_in_frame_coding_effect
|
train
|
def predict_in_frame_coding_effect(
variant,
transcript,
trimmed_cdna_ref,
trimmed_cdna_alt,
sequence_from_start_codon,
cds_offset):
"""Coding effect of an in-frame nucleotide change
Parameters
----------
variant : Variant
transcript : Transcript
trimmed_cdna_ref : str
Reference nucleotides from the coding sequence of the transcript
trimmed_cdna_alt : str
Nucleotides to insert in place of the reference nucleotides
sequence_from_start_codon : Bio.Seq or str
Transcript sequence from the CDS start codon (including the 3' UTR).
This sequence includes the 3' UTR since a mutation may delete the stop
codon and we'll have to translate past the normal end of the CDS to
determine the new protein sequence.
cds_offset : int
Index of first ref nucleotide, starting from 0 = beginning of coding
sequence. If variant is a pure insertion (no ref nucleotides) then this
argument indicates the offset *after* which to insert the alt
nucleotides.
"""
ref_codon_start_offset, ref_codon_end_offset, mutant_codons = get_codons(
variant=variant,
trimmed_cdna_ref=trimmed_cdna_ref,
trimmed_cdna_alt=trimmed_cdna_alt,
sequence_from_start_codon=sequence_from_start_codon,
cds_offset=cds_offset)
mutation_affects_start_codon = (ref_codon_start_offset == 0)
if mutation_affects_start_codon and mutant_codons[:3] not in START_CODONS:
# if we changed a start codon to something else then
# we no longer know where the protein begins (or even in
# what frame).
# TODO: use the Kozak consensus sequence or a predictive model
# to identify the most likely start site
return StartLoss(
variant=variant,
transcript=transcript)
# rely on Ensembl's annotation of the protein sequence since we can't
# easily predict whether the starting nucleotide is a methionine
# (most common) or leucine
aa_ref = transcript.protein_sequence[ref_codon_start_offset:ref_codon_end_offset]
reference_protein_length = len(transcript.protein_sequence)
aa_alt, mutant_stop_codon_index, using_three_prime_utr = \
translate_in_frame_mutation(
transcript=transcript,
ref_codon_start_offset=ref_codon_start_offset,
ref_codon_end_offset=ref_codon_end_offset,
mutant_codons=mutant_codons)
mutant_codons_contain_stop = mutant_stop_codon_index != -1
# trim shared subsequences at the start and end of reference
# and mutated amino acid sequences
aa_ref, aa_alt, shared_prefix, shared_suffix = \
trim_shared_flanking_strings(
aa_ref,
aa_alt)
n_aa_ref = len(aa_ref)
n_aa_alt = len(aa_alt)
n_aa_shared = len(shared_prefix)
is_insertion = (ref_codon_start_offset == ref_codon_end_offset)
# index of first amino acid which is different from the reference
aa_mutation_start_offset = (
ref_codon_start_offset + n_aa_shared + is_insertion)
if mutant_codons_contain_stop:
mutant_stop_codon_index += n_aa_shared
if mutation_affects_start_codon and (aa_ref == aa_alt):
# Substitution between start codons gets special treatment since,
# though superficially synonymous, this could still potentially
# cause a start loss / change in reading frame and might be worth
# closer scrutiny
return AlternateStartCodon(
variant=variant,
transcript=transcript,
ref_codon=transcript.sequence[:3],
alt_codon=mutant_codons[:3])
n_ref_amino_acids_after_mutated_site = (
reference_protein_length - aa_mutation_start_offset - 1)
if mutant_codons_contain_stop and (
n_aa_alt <= n_ref_amino_acids_after_mutated_site):
# if the new coding sequence contains a stop codon, then this is a
# PrematureStop mutation if it decreases the length of the protein
return PrematureStop(
variant=variant,
transcript=transcript,
aa_mutation_start_offset=aa_mutation_start_offset,
aa_ref=aa_ref,
aa_alt=aa_alt)
if (aa_mutation_start_offset > reference_protein_length) or (
n_aa_ref == n_aa_alt == 0):
# if inserted nucleotides go after original stop codon or if nothing
# is changed in the amino acid sequence then this is a Silent variant
return Silent(
variant=variant,
transcript=transcript,
aa_pos=aa_mutation_start_offset,
aa_ref=shared_prefix + shared_suffix)
elif using_three_prime_utr:
# if non-silent mutation is at the end of the protein then
# should be a stop-loss
return StopLoss(
variant,
transcript,
aa_ref=aa_ref,
aa_alt=aa_alt)
elif n_aa_alt == 0:
return Deletion(
variant,
transcript,
aa_mutation_start_offset=aa_mutation_start_offset,
aa_ref=aa_ref)
elif n_aa_ref == 0:
return Insertion(
variant,
transcript,
aa_mutation_start_offset=aa_mutation_start_offset,
aa_alt=aa_alt)
elif n_aa_ref == n_aa_alt == 1:
# simple substitution e.g. p.V600E
return Substitution(
variant,
transcript,
aa_mutation_start_offset=aa_mutation_start_offset,
aa_ref=aa_ref,
aa_alt=aa_alt)
else:
# multiple amino acids were substituted e.g. p.VQQ39FF
return ComplexSubstitution(
variant,
transcript,
aa_mutation_start_offset=aa_mutation_start_offset,
aa_ref=aa_ref,
aa_alt=aa_alt)
|
python
|
{
"resource": ""
}
|
q5636
|
insert_before
|
train
|
def insert_before(sequence, offset, new_residues):
"""Mutate the given sequence by inserting the string `new_residues` before
`offset`.
Parameters
----------
sequence : sequence
String of amino acids or DNA bases
offset : int
Base 0 offset from start of sequence, after which we should insert
`new_residues`.
new_residues : sequence
"""
assert 0 < offset <= len(sequence), \
"Invalid position %d for sequence of length %d" % (
offset, len(sequence))
prefix = sequence[:offset]
suffix = sequence[offset:]
return prefix + new_residues + suffix
|
python
|
{
"resource": ""
}
|
q5637
|
insert_after
|
train
|
def insert_after(sequence, offset, new_residues):
"""Mutate the given sequence by inserting the string `new_residues` after
`offset`.
Parameters
----------
sequence : sequence
String of amino acids or DNA bases
offset : int
Base 0 offset from start of sequence, after which we should insert
`new_residues`.
new_residues : sequence
"""
assert 0 <= offset < len(sequence), \
"Invalid position %d for sequence of length %d" % (
offset, len(sequence))
prefix = sequence[:offset + 1]
suffix = sequence[offset + 1:]
return prefix + new_residues + suffix
|
python
|
{
"resource": ""
}
|
q5638
|
substitute
|
train
|
def substitute(sequence, offset, ref, alt):
"""Mutate a sequence by substituting given `alt` at instead of `ref` at the
given `position`.
Parameters
----------
sequence : sequence
String of amino acids or DNA bases
offset : int
Base 0 offset from start of `sequence`
ref : sequence or str
What do we expect to find at the position?
alt : sequence or str
Alternate sequence to insert
"""
n_ref = len(ref)
sequence_ref = sequence[offset:offset + n_ref]
assert str(sequence_ref) == str(ref), \
"Reference %s at offset %d != expected reference %s" % \
(sequence_ref, offset, ref)
prefix = sequence[:offset]
suffix = sequence[offset + n_ref:]
return prefix + alt + suffix
|
python
|
{
"resource": ""
}
|
q5639
|
infer_genome
|
train
|
def infer_genome(genome_object_string_or_int):
"""
If given an integer, return associated human EnsemblRelease for that
Ensembl version.
If given a string, return latest EnsemblRelease which has a reference
of the same name.
If given a PyEnsembl Genome, simply return it.
"""
if isinstance(genome_object_string_or_int, Genome):
return genome_object_string_or_int
if is_integer(genome_object_string_or_int):
return cached_release(genome_object_string_or_int)
elif is_string(genome_object_string_or_int):
# first infer the canonical reference name, e.g. mapping hg19 -> GRCh37
# and then get the associated PyEnsembl Genome object
reference_name = infer_reference_name(genome_object_string_or_int)
return genome_for_reference_name(reference_name)
else:
raise TypeError(
("Expected genome to be an int, string, or pyensembl.Genome "
"instance, got %s : %s") % (
str(genome_object_string_or_int),
type(genome_object_string_or_int)))
|
python
|
{
"resource": ""
}
|
q5640
|
Variant.genes
|
train
|
def genes(self):
"""
Return Gene object for all genes which overlap this variant.
"""
if self._genes is None:
self._genes = self.ensembl.genes_at_locus(
self.contig, self.start, self.end)
return self._genes
|
python
|
{
"resource": ""
}
|
q5641
|
Variant.is_insertion
|
train
|
def is_insertion(self):
"""
Does this variant represent the insertion of nucleotides into the
reference genome?
"""
# An insertion would appear in a VCF like C>CT, so that the
# alternate allele starts with the reference nucleotides.
# Since the nucleotide strings may be normalized in the constructor,
# it's worth noting that the normalized form of this variant would be
# ''>'T', so that 'T'.startswith('') still holds.
return (len(self.ref) < len(self.alt)) and self.alt.startswith(self.ref)
|
python
|
{
"resource": ""
}
|
q5642
|
Variant.is_deletion
|
train
|
def is_deletion(self):
"""
Does this variant represent the deletion of nucleotides from the
reference genome?
"""
# A deletion would appear in a VCF like CT>C, so that the
# reference allele starts with the alternate nucleotides.
# This is true even in the normalized case, where the alternate
# nucleotides are an empty string.
return (len(self.ref) > len(self.alt)) and self.ref.startswith(self.alt)
|
python
|
{
"resource": ""
}
|
q5643
|
Variant.is_snv
|
train
|
def is_snv(self):
"""Is the variant a single nucleotide variant"""
return (len(self.ref) == len(self.alt) == 1) and (self.ref != self.alt)
|
python
|
{
"resource": ""
}
|
q5644
|
Variant.is_transition
|
train
|
def is_transition(self):
"""Is this variant and pyrimidine to pyrimidine change or purine to purine change"""
return self.is_snv and is_purine(self.ref) == is_purine(self.alt)
|
python
|
{
"resource": ""
}
|
q5645
|
Variant.is_transversion
|
train
|
def is_transversion(self):
"""Is this variant a pyrimidine to purine change or vice versa"""
return self.is_snv and is_purine(self.ref) != is_purine(self.alt)
|
python
|
{
"resource": ""
}
|
q5646
|
variant_overlaps_interval
|
train
|
def variant_overlaps_interval(
variant_start,
n_ref_bases,
interval_start,
interval_end):
"""
Does a variant overlap a given interval on the same chromosome?
Parameters
----------
variant_start : int
Inclusive base-1 position of variant's starting location
(or location before an insertion)
n_ref_bases : int
Number of reference bases affect by variant (used to compute
end coordinate or determine whether variant is an insertion)
interval_start : int
Interval's inclusive base-1 start position
interval_end : int
Interval's inclusive base-1 end position
"""
if n_ref_bases == 0:
# insertions only overlap intervals which start before and
# end after the insertion point, they must be fully contained
# by the other interval
return interval_start <= variant_start and interval_end >= variant_start
variant_end = variant_start + n_ref_bases
"""
if self._changes_exonic_splice_site(
strand_ref,
strand_alt,)
"""
# overlap means other interval starts before this variant ends
# and the interval ends after this variant starts
return interval_start <= variant_end and interval_end >= variant_start
|
python
|
{
"resource": ""
}
|
q5647
|
changes_exonic_splice_site
|
train
|
def changes_exonic_splice_site(
transcript_offset,
transcript,
transcript_ref,
transcript_alt,
exon_start_offset,
exon_end_offset,
exon_number):
"""Does the given exonic mutation of a particular transcript change a
splice site?
Parameters
----------
transcript_offset : int
Offset from start of transcript of first reference nucleotide
(or the last nucleotide before an insertion)
transcript : pyensembl.Transcript
transcript_ref : str
Reference nucleotides
transcript_alt : alt
Alternate nucleotides
exon_start_offset : int
Start offset of exon relative to beginning of transcript
exon_end_offset : int
End offset of exon relative to beginning of transcript
exon_number : int
Which exon in the order they form the transcript
"""
# first we're going to make sure the variant doesn't disrupt the
# splicing sequences we got from Divina et. al's
# Ab initio prediction of mutation-induced cryptic
# splice-site activation and exon skipping
# (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947103/)
#
# 5' splice site: MAG|GURAGU consensus
# M is A or C; R is purine; | is the exon-intron boundary
#
# 3' splice site: YAG|R
#
if exon_number > 1 and transcript_offset == exon_start_offset:
# if this is any exon past the first, check to see if it lost
# the purine on its left side
#
# the 3' splice site sequence has just a single purine on
# the exon side
if len(transcript_ref) > 0 and transcript_ref[0] in PURINE_NUCLEOTIDES:
if len(transcript_alt) > 0:
if transcript_alt[0] not in PURINE_NUCLEOTIDES:
return True
else:
# if the mutation is a deletion, are there ref nucleotides
# afterward?
offset_after_deletion = transcript_offset + len(transcript_ref)
if len(transcript.sequence) > offset_after_deletion:
next_base = transcript.sequence[offset_after_deletion]
if next_base not in PURINE_NUCLEOTIDES:
return True
if exon_number < len(transcript.exons):
# if the mutation affects an exon whose right end gets spliced
# to a next exon, check if the variant alters the exon side of
# 5' consensus splicing sequence
#
# splicing sequence:
# MAG|GURAGU
# M is A or C; R is purine; | is the exon-intron boundary
#
# TODO: check for overlap of two intervals instead of just
# seeing if the mutation starts inside the exonic splice site
if variant_overlaps_interval(
variant_start=transcript_offset,
n_ref_bases=len(transcript_ref),
interval_start=exon_end_offset - 2,
interval_end=exon_end_offset):
end_of_reference_exon = transcript.sequence[
exon_end_offset - 2:exon_end_offset + 1]
if matches_exon_end_pattern(end_of_reference_exon):
# if the last three nucleotides conform to the consensus
# sequence then treat any deviation as an ExonicSpliceSite
# mutation
end_of_variant_exon = end_of_reference_exon
if matches_exon_end_pattern(end_of_variant_exon):
# end of exon matches splicing signal, check if it still
# does after the mutation
return True
|
python
|
{
"resource": ""
}
|
q5648
|
is_purine
|
train
|
def is_purine(nucleotide, allow_extended_nucleotides=False):
"""Is the nucleotide a purine"""
if not allow_extended_nucleotides and nucleotide not in STANDARD_NUCLEOTIDES:
raise ValueError(
"{} is a non-standard nucleotide, neither purine or pyrimidine".format(nucleotide))
return nucleotide in PURINE_NUCLEOTIDES
|
python
|
{
"resource": ""
}
|
q5649
|
normalize_nucleotide_string
|
train
|
def normalize_nucleotide_string(
nucleotides,
allow_extended_nucleotides=False,
empty_chars=".-",
treat_nan_as_empty=True):
"""
Normalizes a nucleotide string by converting various ways of encoding empty
strings into "", making all letters upper case, and checking to make sure
all letters in the string are actually nucleotides.
Parameters
----------
nucleotides : str
Sequence of nucleotides, e.g. "ACCTG"
extended_nucleotides : bool
Allow non-canonical nucleotide characters like 'X' for unknown base
empty_chars : str
Characters which encode empty strings, such as "." used in VCF format
or "-" used in MAF format
treat_nan_as_empty : bool
Some MAF files represent deletions/insertions with NaN ref/alt values
"""
if nucleotides in empty_chars:
return ""
elif treat_nan_as_empty and isinstance(nucleotides, float) and np.isnan(nucleotides):
return ""
require_string(nucleotides, name="nucleotide string")
nucleotides = nucleotides.upper()
if allow_extended_nucleotides:
valid_nucleotides = EXTENDED_NUCLEOTIDES
else:
valid_nucleotides = STANDARD_NUCLEOTIDES
if not set(nucleotides) <= valid_nucleotides:
raise ValueError(
"Invalid character(s) in nucleotide string: %s" % (
",".join(set(nucleotides) - valid_nucleotides),))
return nucleotides
|
python
|
{
"resource": ""
}
|
q5650
|
load_vcf
|
train
|
def load_vcf(
path,
genome=None,
reference_vcf_key="reference",
only_passing=True,
allow_extended_nucleotides=False,
include_info=True,
chunk_size=10 ** 5,
max_variants=None,
sort_key=variant_ascending_position_sort_key,
distinct=True):
"""
Load reference name and Variant objects from the given VCF filename.
Currently only local files are supported by this function (no http). If you
call this on an HTTP URL, it will fall back to `load_vcf`.
Parameters
----------
path : str
Path to VCF (*.vcf) or compressed VCF (*.vcf.gz).
genome : {pyensembl.Genome, reference name, Ensembl version int}, optional
Optionally pass in a PyEnsembl Genome object, name of reference, or
PyEnsembl release version to specify the reference associated with a
VCF (otherwise infer reference from VCF using reference_vcf_key)
reference_vcf_key : str, optional
Name of metadata field which contains path to reference FASTA
file (default = 'reference')
only_passing : boolean, optional
If true, any entries whose FILTER field is not one of "." or "PASS" is
dropped.
allow_extended_nucleotides : boolean, default False
Allow characters other that A,C,T,G in the ref and alt strings.
include_info : boolean, default True
Whether to parse the INFO and per-sample columns. If you don't need
these, set to False for faster parsing.
chunk_size: int, optional
Number of records to load in memory at once.
max_variants : int, optional
If specified, return only the first max_variants variants.
sort_key : fn
Function which maps each element to a sorting criterion.
Set to None to not to sort the variants.
distinct : boolean, default True
Don't keep repeated variants
"""
require_string(path, "Path or URL to VCF")
parsed_path = parse_url_or_path(path)
if parsed_path.scheme and parsed_path.scheme.lower() != "file":
# pandas.read_table nominally supports HTTP, but it tends to crash on
# large files and does not support gzip. Switching to the python-based
# implementation of read_table (with engine="python") helps with some
# issues but introduces a new set of problems (e.g. the dtype parameter
# is not accepted). For these reasons, we're currently not attempting
# to load VCFs over HTTP with pandas directly, and instead download it
# to a temporary file and open that.
(filename, headers) = urllib.request.urlretrieve(path)
try:
# The downloaded file has no file extension, which confuses pyvcf
# for gziped files in Python 3. We rename it to have the correct
# file extension.
new_filename = "%s.%s" % (
filename, parsed_path.path.split(".")[-1])
os.rename(filename, new_filename)
filename = new_filename
return load_vcf(
filename,
genome=genome,
reference_vcf_key=reference_vcf_key,
only_passing=only_passing,
allow_extended_nucleotides=allow_extended_nucleotides,
include_info=include_info,
chunk_size=chunk_size,
max_variants=max_variants,
sort_key=sort_key,
distinct=distinct)
finally:
logger.info("Removing temporary file: %s", filename)
os.unlink(filename)
# Loading a local file.
# The file will be opened twice: first to parse the header with pyvcf, then
# by pandas to read the data.
# PyVCF reads the metadata immediately and stops at the first line with
# data. We can close the file after that.
handle = PyVCFReaderFromPathOrURL(path)
handle.close()
genome = infer_genome_from_vcf(
genome,
handle.vcf_reader,
reference_vcf_key)
df_iterator = read_vcf_into_dataframe(
path,
include_info=include_info,
sample_names=handle.vcf_reader.samples if include_info else None,
chunk_size=chunk_size)
if include_info:
def sample_info_parser(unparsed_sample_info_strings, format_string):
"""
Given a format string like "GT:AD:ADP:DP:FS"
and a list of sample info strings where each entry is like
"0/1:3,22:T=3,G=22:25:33", return a dict that maps:
sample name -> field name -> value. Uses pyvcf to parse the fields.
"""
return pyvcf_calls_to_sample_info_list(
handle.vcf_reader._parse_samples(
unparsed_sample_info_strings, format_string, None))
else:
sample_info_parser = None
return dataframes_to_variant_collection(
df_iterator,
source_path=path,
info_parser=handle.vcf_reader._parse_info if include_info else None,
only_passing=only_passing,
max_variants=max_variants,
sample_names=handle.vcf_reader.samples if include_info else None,
sample_info_parser=sample_info_parser,
variant_kwargs={
'ensembl': genome,
'allow_extended_nucleotides': allow_extended_nucleotides},
variant_collection_kwargs={
'sort_key': sort_key,
'distinct': distinct})
|
python
|
{
"resource": ""
}
|
q5651
|
dataframes_to_variant_collection
|
train
|
def dataframes_to_variant_collection(
dataframes,
source_path,
info_parser=None,
only_passing=True,
max_variants=None,
sample_names=None,
sample_info_parser=None,
variant_kwargs={},
variant_collection_kwargs={}):
"""
Load a VariantCollection from an iterable of pandas dataframes.
This takes an iterable of dataframes instead of a single dataframe to avoid
having to load huge dataframes at once into memory. If you have a single
dataframe, just pass it in a single-element list.
Parameters
----------
dataframes
Iterable of dataframes (e.g. a generator). Expected columns are:
["CHROM", "POS", "ID", "REF", "ALT", "QUAL", "FILTER"]
and 'INFO' if `info_parser` is not Null. Columns must be in this
order.
source_path : str
Path of VCF file from which DataFrame chunks were generated.
info_parser : string -> object, optional
Callable to parse INFO strings.
only_passing : boolean, optional
If true, any entries whose FILTER field is not one of "." or "PASS" is
dropped.
max_variants : int, optional
If specified, return only the first max_variants variants.
sample_names : list of strings, optional
Sample names. The final columns of the dataframe should match these.
If specified, the per-sample info columns will be parsed. You must
also specify sample_info_parser.
sample_info_parser : string list * string -> dict, optional
Callable to parse per-sample info columns.
variant_kwargs : dict, optional
Additional keyword paramters to pass to Variant.__init__
variant_collection_kwargs : dict, optional
Additional keyword parameters to pass to VariantCollection.__init__.
"""
expected_columns = (
["CHROM", "POS", "ID", "REF", "ALT", "QUAL", "FILTER"] +
(["INFO"] if info_parser else []))
if info_parser and sample_names:
if sample_info_parser is None:
raise TypeError(
"Must specify sample_info_parser if specifying sample_names")
expected_columns.append("FORMAT")
expected_columns.extend(sample_names)
variants = []
metadata = {}
try:
for chunk in dataframes:
assert chunk.columns.tolist() == expected_columns,\
"dataframe columns (%s) do not match expected columns (%s)" % (
chunk.columns, expected_columns)
for tpl in chunk.itertuples():
(i, chrom, pos, id_, ref, alts, qual, flter) = tpl[:8]
if flter == ".":
flter = None
elif flter == "PASS":
flter = []
elif only_passing:
continue
else:
flter = flter.split(';')
if id_ == ".":
id_ = None
qual = float(qual) if qual != "." else None
alt_num = 0
info = sample_info = None
for alt in alts.split(","):
if alt != ".":
if info_parser is not None and info is None:
info = info_parser(tpl[8]) # INFO column
if sample_names:
# Sample name -> field -> value dict.
sample_info = sample_info_parser(
list(tpl[10:]), # sample info columns
tpl[9], # FORMAT column
)
variant = Variant(
chrom,
int(pos), # want a Python int not numpy.int64
ref,
alt,
**variant_kwargs)
variants.append(variant)
metadata[variant] = {
'id': id_,
'qual': qual,
'filter': flter,
'info': info,
'sample_info': sample_info,
'alt_allele_index': alt_num,
}
if max_variants and len(variants) > max_variants:
raise StopIteration
alt_num += 1
except StopIteration:
pass
return VariantCollection(
variants=variants,
source_to_metadata_dict={source_path: metadata},
**variant_collection_kwargs)
|
python
|
{
"resource": ""
}
|
q5652
|
read_vcf_into_dataframe
|
train
|
def read_vcf_into_dataframe(
path,
include_info=False,
sample_names=None,
chunk_size=None):
"""
Load the data of a VCF into a pandas dataframe. All headers are ignored.
Parameters
----------
path : str
Path to local file. HTTP and other protocols are not implemented.
include_info : boolean, default False
If true, the INFO field is not parsed, but is included as a string in
the resulting data frame. If false, the INFO field is omitted.
sample_names: string list, optional
Sample names. The final columns of the dataframe should match these.
If specified (and include_info is also specified), the FORMAT and
per-sample info columns will be included in the result dataframe.
chunk_size : int, optional
If buffering is desired, the number of rows per chunk.
Returns
---------
If chunk_size is None (the default), a dataframe with the contents of the
VCF file. Otherwise, an iterable of dataframes, each with chunk_size rows.
"""
vcf_field_types = OrderedDict()
vcf_field_types['CHROM'] = str
vcf_field_types['POS'] = int
vcf_field_types['ID'] = str
vcf_field_types['REF'] = str
vcf_field_types['ALT'] = str
vcf_field_types['QUAL'] = str
vcf_field_types['FILTER'] = str
if include_info:
vcf_field_types['INFO'] = str
if sample_names:
vcf_field_types['FORMAT'] = str
for name in sample_names:
vcf_field_types[name] = str
parsed_path = parse_url_or_path(path)
if not parsed_path.scheme or parsed_path.scheme.lower() == "file":
path = parsed_path.path
else:
raise NotImplementedError("Only local files are supported.")
compression = None
if path.endswith(".gz"):
compression = "gzip"
elif path.endswith(".bz2"):
compression = "bz2"
reader = pandas.read_table(
path,
compression=compression,
comment="#",
chunksize=chunk_size,
dtype=vcf_field_types,
names=list(vcf_field_types),
usecols=range(len(vcf_field_types)))
return reader
|
python
|
{
"resource": ""
}
|
q5653
|
stream_gzip_decompress_lines
|
train
|
def stream_gzip_decompress_lines(stream):
"""
Uncompress a gzip stream into lines of text.
Parameters
----------
Generator of chunks of gzip compressed text.
Returns
-------
Generator of uncompressed lines.
"""
dec = zlib.decompressobj(zlib.MAX_WBITS | 16)
previous = ""
for compressed_chunk in stream:
chunk = dec.decompress(compressed_chunk).decode()
if chunk:
lines = (previous + chunk).split("\n")
previous = lines.pop()
for line in lines:
yield line
yield previous
|
python
|
{
"resource": ""
}
|
q5654
|
infer_genome_from_vcf
|
train
|
def infer_genome_from_vcf(genome, vcf_reader, reference_vcf_key):
"""
Helper function to make a pyensembl.Genome instance.
"""
if genome:
return infer_genome(genome)
elif reference_vcf_key not in vcf_reader.metadata:
raise ValueError("Unable to infer reference genome for %s" % (
vcf_reader.filename,))
else:
reference_path = vcf_reader.metadata[reference_vcf_key]
return infer_genome(reference_path)
|
python
|
{
"resource": ""
}
|
q5655
|
cdna_codon_sequence_after_insertion_frameshift
|
train
|
def cdna_codon_sequence_after_insertion_frameshift(
sequence_from_start_codon,
cds_offset_before_insertion,
inserted_nucleotides):
"""
Returns index of mutated codon and nucleotide sequence starting at the first
mutated codon.
"""
# special logic for insertions
coding_sequence_after_insertion = \
sequence_from_start_codon[cds_offset_before_insertion + 1:]
if cds_offset_before_insertion % 3 == 2:
# insertion happens after last nucleotide in a codon,
# doesn't disrupt the existing codon from cds_offset-2 to cds_offset
mutated_codon_index = cds_offset_before_insertion // 3 + 1
nucleotides_before = ""
elif cds_offset_before_insertion % 3 == 1:
# insertion happens after 2nd nucleotide of a codon
# codon positions:
# 1) cds_offset - 1
# 2) cds_offset
# <----- Insertsion
# 3) cds_offset + 1
mutated_codon_index = cds_offset_before_insertion // 3
# the first codon in the returned sequence will contain two reference
# nucleotides before the insertion
nucleotides_before = sequence_from_start_codon[
cds_offset_before_insertion - 1:cds_offset_before_insertion + 1]
elif cds_offset_before_insertion % 3 == 0:
# insertion happens after 1st nucleotide of a codon
# codon positions:
# 1) cds_offset
# <----- Insertsion
# 2) cds_offset + 1
# 3) cds_offset + 2
mutated_codon_index = cds_offset_before_insertion // 3
# the first codon in the returned sequence will contain one reference
# nucleotide before the insertion
nucleotides_before = sequence_from_start_codon[cds_offset_before_insertion]
sequence_from_mutated_codon = (
nucleotides_before +
inserted_nucleotides +
coding_sequence_after_insertion)
return mutated_codon_index, sequence_from_mutated_codon
|
python
|
{
"resource": ""
}
|
q5656
|
cdna_codon_sequence_after_deletion_or_substitution_frameshift
|
train
|
def cdna_codon_sequence_after_deletion_or_substitution_frameshift(
sequence_from_start_codon,
cds_offset,
trimmed_cdna_ref,
trimmed_cdna_alt):
"""
Logic for any frameshift which isn't an insertion.
We have insertions as a special case since our base-inclusive
indexing means something different for insertions:
cds_offset = base before insertion
Whereas in this case:
cds_offset = first reference base affected by a variant
Returns index of first modified codon and sequence from that codon
onward.
"""
mutated_codon_index = cds_offset // 3
# get the sequence starting from the first modified codon until the end
# of the transcript.
sequence_after_mutated_codon = \
sequence_from_start_codon[mutated_codon_index * 3:]
# the variant's ref nucleotides should start either 0, 1, or 2 nucleotides
# into `sequence_after_mutated_codon`
offset_into_mutated_codon = cds_offset % 3
sequence_from_mutated_codon = substitute(
sequence=sequence_after_mutated_codon,
offset=offset_into_mutated_codon,
ref=trimmed_cdna_ref,
alt=trimmed_cdna_alt)
return mutated_codon_index, sequence_from_mutated_codon
|
python
|
{
"resource": ""
}
|
q5657
|
predict_frameshift_coding_effect
|
train
|
def predict_frameshift_coding_effect(
variant,
transcript,
trimmed_cdna_ref,
trimmed_cdna_alt,
cds_offset,
sequence_from_start_codon):
"""
Coding effect of a frameshift mutation.
Parameters
----------
variant : Variant
transcript : Transcript
trimmed_cdna_ref : nucleotide sequence
Reference nucleotides in the coding sequence of the given transcript.
trimmed_cdna_alt : nucleotide sequence
Alternate nucleotides introduced by mutation
cds_offset : int
Offset into the CDS of first ref nucleotide. For insertions, this
is the offset of the last ref nucleotide before the insertion.
sequence_from_start_codon : nucleotide sequence
Nucleotides of the coding sequence and 3' UTR
"""
if len(trimmed_cdna_ref) != 0:
mutated_codon_index, sequence_from_mutated_codon = \
cdna_codon_sequence_after_deletion_or_substitution_frameshift(
sequence_from_start_codon=sequence_from_start_codon,
cds_offset=cds_offset,
trimmed_cdna_ref=trimmed_cdna_ref,
trimmed_cdna_alt=trimmed_cdna_alt)
else:
mutated_codon_index, sequence_from_mutated_codon = \
cdna_codon_sequence_after_insertion_frameshift(
sequence_from_start_codon=sequence_from_start_codon,
cds_offset_before_insertion=cds_offset,
inserted_nucleotides=trimmed_cdna_alt)
return create_frameshift_effect(
mutated_codon_index=mutated_codon_index,
sequence_from_mutated_codon=sequence_from_mutated_codon,
variant=variant,
transcript=transcript)
|
python
|
{
"resource": ""
}
|
q5658
|
predict_variant_effects
|
train
|
def predict_variant_effects(variant, raise_on_error=False):
"""Determine the effects of a variant on any transcripts it overlaps.
Returns an EffectCollection object.
Parameters
----------
variant : Variant
raise_on_error : bool
Raise an exception if we encounter an error while trying to
determine the effect of this variant on a transcript, or simply
log the error and continue.
"""
# if this variant isn't overlapping any genes, return a
# Intergenic effect
# TODO: look for nearby genes and mark those as Upstream and Downstream
# effects
if len(variant.gene_ids) == 0:
effects = [Intergenic(variant)]
else:
# list of all MutationEffects for all genes & transcripts
effects = []
# group transcripts by their gene ID
transcripts_grouped_by_gene = groupby_field(variant.transcripts, 'gene_id')
# want effects in the list grouped by the gene they come from
for gene_id in sorted(variant.gene_ids):
if gene_id not in transcripts_grouped_by_gene:
# intragenic variant overlaps a gene but not any transcripts
gene = variant.ensembl.gene_by_id(gene_id)
effects.append(Intragenic(variant, gene))
else:
# gene ID has transcripts overlapped by this variant
for transcript in transcripts_grouped_by_gene[gene_id]:
if raise_on_error:
effect = predict_variant_effect_on_transcript(
variant=variant,
transcript=transcript)
else:
effect = predict_variant_effect_on_transcript_or_failure(
variant=variant,
transcript=transcript)
effects.append(effect)
return EffectCollection(effects)
|
python
|
{
"resource": ""
}
|
q5659
|
predict_variant_effect_on_transcript_or_failure
|
train
|
def predict_variant_effect_on_transcript_or_failure(variant, transcript):
"""
Try predicting the effect of a variant on a particular transcript but
suppress raised exceptions by converting them into `Failure` effect
values.
"""
try:
return predict_variant_effect_on_transcript(
variant=variant,
transcript=transcript)
except (AssertionError, ValueError) as error:
logger.warn(
"Encountered error annotating %s for %s: %s",
variant,
transcript,
error)
return Failure(variant, transcript)
|
python
|
{
"resource": ""
}
|
q5660
|
choose_intronic_effect_class
|
train
|
def choose_intronic_effect_class(
variant,
nearest_exon,
distance_to_exon):
"""
Infer effect of variant which does not overlap any exon of
the given transcript.
"""
assert distance_to_exon > 0, \
"Expected intronic effect to have distance_to_exon > 0, got %d" % (
distance_to_exon,)
if nearest_exon.strand == "+":
# if exon on positive strand
start_before = variant.trimmed_base1_start < nearest_exon.start
start_same = variant.trimmed_base1_start == nearest_exon.start
before_exon = start_before or (variant.is_insertion and start_same)
else:
# if exon on negative strand
end_after = variant.trimmed_base1_end > nearest_exon.end
end_same = variant.trimmed_base1_end == nearest_exon.end
before_exon = end_after or (variant.is_insertion and end_same)
# distance cutoffs based on consensus splice sequences from
# http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947103/
# 5' splice site: MAG|GURAGU consensus
# M is A or C; R is purine; | is the exon-intron boundary
# 3' splice site: YAG|R
if distance_to_exon <= 2:
if before_exon:
# 2 last nucleotides of intron before exon are the splice
# acceptor site, typically "AG"
return SpliceAcceptor
else:
# 2 first nucleotides of intron after exon are the splice donor
# site, typically "GT"
return SpliceDonor
elif not before_exon and distance_to_exon <= 6:
# variants in nucleotides 3-6 at start of intron aren't as certain
# to cause problems as nucleotides 1-2 but still implicated in
# alternative splicing
return IntronicSpliceSite
elif before_exon and distance_to_exon <= 3:
# nucleotide -3 before exon is part of the 3' splicing
# motif but allows for more degeneracy than the -2, -1 nucleotides
return IntronicSpliceSite
else:
# intronic mutation unrelated to splicing
return Intronic
|
python
|
{
"resource": ""
}
|
q5661
|
exonic_transcript_effect
|
train
|
def exonic_transcript_effect(variant, exon, exon_number, transcript):
"""Effect of this variant on a Transcript, assuming we already know
that this variant overlaps some exon of the transcript.
Parameters
----------
variant : Variant
exon : pyensembl.Exon
Exon which this variant overlaps
exon_number : int
Index (starting from 1) of the given exon in the transcript's
sequence of exons.
transcript : pyensembl.Transcript
"""
genome_ref = variant.trimmed_ref
genome_alt = variant.trimmed_alt
variant_start = variant.trimmed_base1_start
variant_end = variant.trimmed_base1_end
# clip mutation to only affect the current exon
if variant_start < exon.start:
# if mutation starts before current exon then only look
# at nucleotides which overlap the exon
logger.info('Mutation in variant %s starts before exon %s', variant, exon)
assert len(genome_ref) > 0, "Unexpected insertion into intron"
n_skip_start = exon.start - variant_start
genome_ref = genome_ref[n_skip_start:]
genome_alt = genome_alt[n_skip_start:]
genome_start = exon.start
else:
genome_start = variant_start
if variant_end > exon.end:
# if mutation goes past exon end then only look at nucleotides
# which overlap the exon
logger.info('Mutation in variant %s ends after exon %s', variant, exon)
n_skip_end = variant_end - exon.end
genome_ref = genome_ref[:-n_skip_end]
genome_alt = genome_alt[:len(genome_ref)]
genome_end = exon.end
else:
genome_end = variant_end
transcript_offset = interval_offset_on_transcript(
genome_start, genome_end, transcript)
if transcript.on_backward_strand:
cdna_ref = reverse_complement(genome_ref)
cdna_alt = reverse_complement(genome_alt)
else:
cdna_ref = genome_ref
cdna_alt = genome_alt
n_ref = len(cdna_ref)
expected_ref = str(
transcript.sequence[transcript_offset:transcript_offset + n_ref])
if cdna_ref != expected_ref:
raise ValueError(
("Found ref nucleotides '%s' in sequence"
" of %s at offset %d (chromosome positions %d:%d)"
" but variant %s has '%s'") % (
expected_ref,
transcript,
transcript_offset,
genome_start,
genome_end,
variant,
cdna_ref))
utr5_length = min(transcript.start_codon_spliced_offsets)
# does the variant start inside the 5' UTR?
if utr5_length > transcript_offset:
# does the variant end after the 5' UTR, within the coding region?
if utr5_length < transcript_offset + n_ref:
# TODO: we *might* lose the Kozak sequence or the start codon
# but without looking at the modified sequence how can we tell
# for sure that this is a start-loss variant?
return StartLoss(variant, transcript)
else:
# if variant contained within 5' UTR
return FivePrimeUTR(variant, transcript)
utr3_offset = max(transcript.stop_codon_spliced_offsets) + 1
if transcript_offset >= utr3_offset:
return ThreePrimeUTR(variant, transcript)
exon_start_offset = interval_offset_on_transcript(
exon.start, exon.end, transcript)
exon_end_offset = exon_start_offset + len(exon) - 1
# Further below we're going to try to predict exonic splice site
# modifications, which will take this effect_annotation as their
# alternative hypothesis for what happens if splicing doesn't change.
# If the mutation doesn't affect an exonic splice site, then
# we'll just return this effect.
coding_effect_annotation = predict_variant_coding_effect_on_transcript(
variant=variant,
transcript=transcript,
trimmed_cdna_ref=cdna_ref,
trimmed_cdna_alt=cdna_alt,
transcript_offset=transcript_offset)
if changes_exonic_splice_site(
transcript=transcript,
transcript_ref=cdna_ref,
transcript_alt=cdna_alt,
transcript_offset=transcript_offset,
exon_start_offset=exon_start_offset,
exon_end_offset=exon_end_offset,
exon_number=exon_number):
return ExonicSpliceSite(
variant=variant,
transcript=transcript,
exon=exon,
alternate_effect=coding_effect_annotation)
return coding_effect_annotation
|
python
|
{
"resource": ""
}
|
q5662
|
apply_groupby
|
train
|
def apply_groupby(records, fn, skip_none=False):
"""
Given a list of objects, group them into a dictionary by
applying fn to each one and using returned values as a dictionary
key.
Parameters
----------
records : list
fn : function
skip_none : bool
If False, then None can be a key in the returned dictionary,
otherwise records whose key value is None get skipped.
Returns dict.
"""
# create an empty list for every new key
groups = defaultdict(list)
for record in records:
value = fn(record)
if value is not None or not skip_none:
groups[value].append(record)
return dict(groups)
|
python
|
{
"resource": ""
}
|
q5663
|
groupby_field
|
train
|
def groupby_field(records, field_name, skip_none=True):
"""
Given a list of objects, group them into a dictionary by
the unique values of a given field name.
"""
return apply_groupby(
records,
lambda obj: getattr(obj, field_name),
skip_none=skip_none)
|
python
|
{
"resource": ""
}
|
q5664
|
memoize
|
train
|
def memoize(fn):
"""
Simple memoization decorator for functions and methods,
assumes that all arguments to the function can be hashed and
compared.
"""
memoized_values = {}
@wraps(fn)
def wrapped_fn(*args, **kwargs):
key = (args, tuple(sorted(kwargs.items())))
try:
return memoized_values[key]
except KeyError:
memoized_values[key] = fn(*args, **kwargs)
return memoized_values[key]
return wrapped_fn
|
python
|
{
"resource": ""
}
|
q5665
|
EffectCollection.filter_by_transcript_expression
|
train
|
def filter_by_transcript_expression(
self,
transcript_expression_dict,
min_expression_value=0.0):
"""
Filters effects to those which have an associated transcript whose
expression value in the transcript_expression_dict argument is greater
than min_expression_value.
Parameters
----------
transcript_expression_dict : dict
Dictionary mapping Ensembl transcript IDs to expression estimates
(either FPKM or TPM)
min_expression_value : float
Threshold above which we'll keep an effect in the result collection
"""
return self.filter_above_threshold(
key_fn=lambda effect: effect.transcript_id,
value_dict=transcript_expression_dict,
threshold=min_expression_value)
|
python
|
{
"resource": ""
}
|
q5666
|
EffectCollection.filter_by_gene_expression
|
train
|
def filter_by_gene_expression(
self,
gene_expression_dict,
min_expression_value=0.0):
"""
Filters effects to those which have an associated gene whose
expression value in the gene_expression_dict argument is greater
than min_expression_value.
Parameters
----------
gene_expression_dict : dict
Dictionary mapping Ensembl gene IDs to expression estimates
(either FPKM or TPM)
min_expression_value : float
Threshold above which we'll keep an effect in the result collection
"""
return self.filter_above_threshold(
key_fn=lambda effect: effect.gene_id,
value_dict=gene_expression_dict,
threshold=min_expression_value)
|
python
|
{
"resource": ""
}
|
q5667
|
EffectCollection.filter_by_effect_priority
|
train
|
def filter_by_effect_priority(self, min_priority_class):
"""
Create a new EffectCollection containing only effects whose priority
falls below the given class.
"""
min_priority = transcript_effect_priority_dict[min_priority_class]
return self.filter(
lambda effect: effect_priority(effect) >= min_priority)
|
python
|
{
"resource": ""
}
|
q5668
|
EffectCollection.top_priority_effect_per_variant
|
train
|
def top_priority_effect_per_variant(self):
"""Highest priority effect for each unique variant"""
return OrderedDict(
(variant, top_priority_effect(variant_effects))
for (variant, variant_effects)
in self.groupby_variant().items())
|
python
|
{
"resource": ""
}
|
q5669
|
EffectCollection.top_priority_effect_per_transcript_id
|
train
|
def top_priority_effect_per_transcript_id(self):
"""Highest priority effect for each unique transcript ID"""
return OrderedDict(
(transcript_id, top_priority_effect(variant_effects))
for (transcript_id, variant_effects)
in self.groupby_transcript_id().items())
|
python
|
{
"resource": ""
}
|
q5670
|
EffectCollection.top_priority_effect_per_gene_id
|
train
|
def top_priority_effect_per_gene_id(self):
"""Highest priority effect for each unique gene ID"""
return OrderedDict(
(gene_id, top_priority_effect(variant_effects))
for (gene_id, variant_effects)
in self.groupby_gene_id().items())
|
python
|
{
"resource": ""
}
|
q5671
|
EffectCollection.top_expression_effect
|
train
|
def top_expression_effect(self, expression_levels):
"""
Return effect whose transcript has the highest expression level.
If none of the effects are expressed or have associated transcripts,
then return None. In case of ties, add lexicographical sorting by
effect priority and transcript length.
"""
effect_expression_dict = self.effect_expression(expression_levels)
if len(effect_expression_dict) == 0:
return None
def key_fn(effect_fpkm_pair):
"""
Sort effects primarily by their expression level
and secondarily by the priority logic used in
`top_priority_effect`.
"""
(effect, fpkm) = effect_fpkm_pair
return (fpkm, multi_gene_effect_sort_key(effect))
return max(effect_expression_dict.items(), key=key_fn)[0]
|
python
|
{
"resource": ""
}
|
q5672
|
EffectCollection.to_dataframe
|
train
|
def to_dataframe(self):
"""Build a dataframe from the effect collection"""
# list of properties to extract from Variant objects if they're
# not None
variant_properties = [
"contig",
"start",
"ref",
"alt",
"is_snv",
"is_transversion",
"is_transition"
]
def row_from_effect(effect):
row = OrderedDict()
row['variant'] = str(effect.variant.short_description)
for field_name in variant_properties:
# if effect.variant is None then this column value will be None
row[field_name] = getattr(effect.variant, field_name, None)
row['gene_id'] = effect.gene_id
row['gene_name'] = effect.gene_name
row['transcript_id'] = effect.transcript_id
row['transcript_name'] = effect.transcript_name
row['effect_type'] = effect.__class__.__name__
row['effect'] = effect.short_description
return row
return pd.DataFrame.from_records([row_from_effect(effect) for effect in self])
|
python
|
{
"resource": ""
}
|
q5673
|
random_variants
|
train
|
def random_variants(
count,
genome_name="GRCh38",
deletions=True,
insertions=True,
random_seed=None):
"""
Generate a VariantCollection with random variants that overlap
at least one complete coding transcript.
"""
rng = random.Random(random_seed)
ensembl = genome_for_reference_name(genome_name)
if ensembl in _transcript_ids_cache:
transcript_ids = _transcript_ids_cache[ensembl]
else:
transcript_ids = ensembl.transcript_ids()
_transcript_ids_cache[ensembl] = transcript_ids
variants = []
# we should finish way before this loop is over but just in case
# something is wrong with PyEnsembl we want to avoid an infinite loop
for _ in range(count * 100):
if len(variants) < count:
transcript_id = rng.choice(transcript_ids)
transcript = ensembl.transcript_by_id(transcript_id)
if not transcript.complete:
continue
exon = rng.choice(transcript.exons)
base1_genomic_position = rng.randint(exon.start, exon.end)
transcript_offset = transcript.spliced_offset(base1_genomic_position)
seq = transcript.sequence
ref = str(seq[transcript_offset])
if transcript.on_backward_strand:
ref = reverse_complement(ref)
alt_nucleotides = [x for x in STANDARD_NUCLEOTIDES if x != ref]
if insertions:
nucleotide_pairs = [
x + y
for x in STANDARD_NUCLEOTIDES
for y in STANDARD_NUCLEOTIDES
]
alt_nucleotides.extend(nucleotide_pairs)
if deletions:
alt_nucleotides.append("")
alt = rng.choice(alt_nucleotides)
variant = Variant(
transcript.contig,
base1_genomic_position,
ref=ref,
alt=alt,
ensembl=ensembl)
variants.append(variant)
else:
return VariantCollection(variants)
raise ValueError(
("Unable to generate %d random variants, "
"there may be a problem with PyEnsembl") % count)
|
python
|
{
"resource": ""
}
|
q5674
|
MSLDAP.get_server_info
|
train
|
def get_server_info(self, anonymous = True):
"""
Performs bind on the server and grabs the DSA info object.
If anonymous is set to true, then it will perform anonymous bind, not using user credentials
Otherwise it will use the credentials set in the object constructor.
"""
if anonymous == True:
logger.debug('Getting server info via Anonymous BIND on server %s' % self.target_server.get_host())
server = Server(self.target_server.get_host(), use_ssl=self.target_server.is_ssl(), get_info=ALL)
conn = Connection(server, auto_bind=True)
logger.debug('Got server info')
else:
logger.debug('Getting server info via credentials supplied on server %s' % self.target_server.get_host())
server = Server(self.target_server.get_host(), use_ssl=self.target_server.is_ssl(), get_info=ALL)
if self.use_sspi == True:
conn = self.monkeypatch()
else:
conn = Connection(self._srv, user=self.login_credential.get_msuser(), password=self.login_credential.get_password(), authentication=self.login_credential.get_authmethod())
logger.debug('Performing BIND to server %s' % self.target_server.get_host())
if not self._con.bind():
if 'description' in self._con.result:
raise Exception('Failed to bind to server! Reason: %s' % conn.result['description'])
raise Exception('Failed to bind to server! Reason: %s' % conn.result)
logger.debug('Connected to server!')
return server.info
|
python
|
{
"resource": ""
}
|
q5675
|
MSLDAP.get_all_user_objects
|
train
|
def get_all_user_objects(self):
"""
Fetches all user objects from the AD, and returns MSADUser object
"""
logger.debug('Polling AD for all user objects')
ldap_filter = r'(objectClass=user)'
attributes = MSADUser.ATTRS
for entry in self.pagedsearch(ldap_filter, attributes):
# TODO: return ldapuser object
yield MSADUser.from_ldap(entry, self._ldapinfo)
logger.debug('Finished polling for entries!')
|
python
|
{
"resource": ""
}
|
q5676
|
MSLDAP.get_all_knoreq_user_objects
|
train
|
def get_all_knoreq_user_objects(self, include_machine = False):
"""
Fetches all user objects with useraccountcontrol DONT_REQ_PREAUTH flag set from the AD, and returns MSADUser object.
"""
logger.debug('Polling AD for all user objects, machine accounts included: %s'% include_machine)
if include_machine == True:
ldap_filter = r'(userAccountControl:1.2.840.113556.1.4.803:=4194304)'
else:
ldap_filter = r'(&(userAccountControl:1.2.840.113556.1.4.803:=4194304)(!(sAMAccountName = *$)))'
attributes = MSADUser.ATTRS
for entry in self.pagedsearch(ldap_filter, attributes):
# TODO: return ldapuser object
yield MSADUser.from_ldap(entry, self._ldapinfo)
logger.debug('Finished polling for entries!')
|
python
|
{
"resource": ""
}
|
q5677
|
vn
|
train
|
def vn(x):
"""
value or none, returns none if x is an empty list
"""
if x == []:
return None
if isinstance(x, list):
return '|'.join(x)
if isinstance(x, datetime):
return x.isoformat()
return x
|
python
|
{
"resource": ""
}
|
q5678
|
BotoSqliteEngine.load_tables
|
train
|
def load_tables(self, query, meta):
"""
Load necessary resources tables into db to execute given query.
"""
try:
for table in meta.tables:
self.load_table(table)
except NoCredentialsError:
help_link = 'http://boto3.readthedocs.io/en/latest/guide/configuration.html'
raise QueryError('Unable to locate AWS credential. '
'Please see {0} on how to configure AWS credential.'.format(help_link))
|
python
|
{
"resource": ""
}
|
q5679
|
BotoSqliteEngine.load_table
|
train
|
def load_table(self, table):
"""
Load resources as specified by given table into our db.
"""
region = table.database if table.database else self.default_region
resource_name, collection_name = table.table.split('_', 1)
# we use underscore "_" instead of dash "-" for region name but boto3 need dash
boto_region_name = region.replace('_', '-')
resource = self.boto3_session.resource(resource_name, region_name=boto_region_name)
if not hasattr(resource, collection_name):
raise QueryError(
'Unknown collection <{0}> of resource <{1}>'.format(collection_name, resource_name))
self.attach_region(region)
self.refresh_table(region, table.table, resource, getattr(resource, collection_name))
|
python
|
{
"resource": ""
}
|
q5680
|
json_serialize
|
train
|
def json_serialize(obj):
"""
Simple generic JSON serializer for common objects.
"""
if isinstance(obj, datetime):
return obj.isoformat()
if hasattr(obj, 'id'):
return jsonify(obj.id)
if hasattr(obj, 'name'):
return jsonify(obj.name)
raise TypeError('{0} is not JSON serializable'.format(obj))
|
python
|
{
"resource": ""
}
|
q5681
|
json_get
|
train
|
def json_get(serialized_object, field):
"""
This emulates the HSTORE `->` get value operation.
It get value from JSON serialized column by given key and return `null` if not present.
Key can be either an integer for array index access or a string for object field access.
:return: JSON serialized value of key in object
"""
# return null if serialized_object is null or "serialized null"
if serialized_object is None:
return None
obj = json.loads(serialized_object)
if obj is None:
return None
if isinstance(field, int):
# array index access
res = obj[field] if 0 <= field < len(obj) else None
else:
# object field access
res = obj.get(field)
if not isinstance(res, (int, float, string_types)):
res = json.dumps(res)
return res
|
python
|
{
"resource": ""
}
|
q5682
|
create_table
|
train
|
def create_table(db, schema_name, table_name, columns):
"""
Create a table, schema_name.table_name, in given database with given list of column names.
"""
table = '{0}.{1}'.format(schema_name, table_name) if schema_name else table_name
db.execute('DROP TABLE IF EXISTS {0}'.format(table))
columns_list = ', '.join(columns)
db.execute('CREATE TABLE {0} ({1})'.format(table, columns_list))
|
python
|
{
"resource": ""
}
|
q5683
|
insert_all
|
train
|
def insert_all(db, schema_name, table_name, columns, items):
"""
Insert all item in given items list into the specified table, schema_name.table_name.
"""
table = '{0}.{1}'.format(schema_name, table_name) if schema_name else table_name
columns_list = ', '.join(columns)
values_list = ', '.join(['?'] * len(columns))
query = 'INSERT INTO {table} ({columns}) VALUES ({values})'.format(
table=table, columns=columns_list, values=values_list)
for item in items:
values = [getattr(item, col) for col in columns]
db.execute(query, values)
|
python
|
{
"resource": ""
}
|
q5684
|
Creator.get_events
|
train
|
def get_events(self, *args, **kwargs):
"""
Returns a full EventDataWrapper object for this creator.
/creators/{creatorId}/events
:returns: EventDataWrapper -- A new request to API. Contains full results set.
"""
from .event import Event, EventDataWrapper
return self.get_related_resource(Event, EventDataWrapper, args, kwargs)
|
python
|
{
"resource": ""
}
|
q5685
|
Creator.get_series
|
train
|
def get_series(self, *args, **kwargs):
"""
Returns a full SeriesDataWrapper object for this creator.
/creators/{creatorId}/series
:returns: SeriesDataWrapper -- A new request to API. Contains full results set.
"""
from .series import Series, SeriesDataWrapper
return self.get_related_resource(Series, SeriesDataWrapper, args, kwargs)
|
python
|
{
"resource": ""
}
|
q5686
|
Creator.get_stories
|
train
|
def get_stories(self, *args, **kwargs):
"""
Returns a full StoryDataWrapper object for this creator.
/creators/{creatorId}/stories
:returns: StoriesDataWrapper -- A new request to API. Contains full results set.
"""
from .story import Story, StoryDataWrapper
return self.get_related_resource(Story, StoryDataWrapper, args, kwargs)
|
python
|
{
"resource": ""
}
|
q5687
|
MarvelObject.list_to_instance_list
|
train
|
def list_to_instance_list(_self, _list, _Class):
"""
Takes a list of resource dicts and returns a list
of resource instances, defined by the _Class param.
:param _self: Original resource calling the method
:type _self: core.MarvelObject
:param _list: List of dicts describing a Resource.
:type _list: list
:param _Class: The Resource class to create a list of (Comic, Creator, etc).
:type _Class: core.MarvelObject
:returns: list -- List of Resource instances (Comic, Creator, etc).
"""
items = []
for item in _list:
items.append(_Class(_self.marvel, item))
return items
|
python
|
{
"resource": ""
}
|
q5688
|
Marvel._call
|
train
|
def _call(self, resource_url, params=None):
"""
Calls the Marvel API endpoint
:param resource_url: url slug of the resource
:type resource_url: str
:param params: query params to add to endpoint
:type params: str
:returns: response -- Requests response
"""
url = "%s%s" % (self._endpoint(), resource_url)
if params:
url += "?%s&%s" % (params, self._auth())
else:
url += "?%s" % self._auth()
return requests.get(url)
|
python
|
{
"resource": ""
}
|
q5689
|
Marvel.get_character
|
train
|
def get_character(self, id):
"""Fetches a single character by id.
get /v1/public/characters
:param id: ID of Character
:type params: int
:returns: CharacterDataWrapper
>>> m = Marvel(public_key, private_key)
>>> cdw = m.get_character(1009718)
>>> print cdw.data.count
1
>>> print cdw.data.results[0].name
Wolverine
"""
url = "%s/%s" % (Character.resource_url(), id)
response = json.loads(self._call(url).text)
return CharacterDataWrapper(self, response)
|
python
|
{
"resource": ""
}
|
q5690
|
Marvel.get_characters
|
train
|
def get_characters(self, *args, **kwargs):
"""Fetches lists of comic characters with optional filters.
get /v1/public/characters/{characterId}
:returns: CharacterDataWrapper
>>> m = Marvel(public_key, private_key)
>>> cdw = m.get_characters(orderBy="name,-modified", limit="5", offset="15")
>>> print cdw.data.count
1401
>>> for result in cdw.data.results:
... print result.name
Aginar
Air-Walker (Gabriel Lan)
Ajak
Ajaxis
Akemi
"""
#pass url string and params string to _call
response = json.loads(self._call(Character.resource_url(), self._params(kwargs)).text)
return CharacterDataWrapper(self, response, kwargs)
|
python
|
{
"resource": ""
}
|
q5691
|
Marvel.get_comics
|
train
|
def get_comics(self, *args, **kwargs):
"""
Fetches list of comics.
get /v1/public/comics
:returns: ComicDataWrapper
>>> m = Marvel(public_key, private_key)
>>> cdw = m.get_comics(orderBy="issueNumber,-modified", limit="10", offset="15")
>>> print cdw.data.count
10
>>> print cdw.data.results[0].name
Some Comic
"""
response = json.loads(self._call(Comic.resource_url(), self._params(kwargs)).text)
return ComicDataWrapper(self, response)
|
python
|
{
"resource": ""
}
|
q5692
|
Marvel.get_creator
|
train
|
def get_creator(self, id):
"""Fetches a single creator by id.
get /v1/public/creators/{creatorId}
:param id: ID of Creator
:type params: int
:returns: CreatorDataWrapper
>>> m = Marvel(public_key, private_key)
>>> cdw = m.get_creator(30)
>>> print cdw.data.count
1
>>> print cdw.data.result.fullName
Stan Lee
"""
url = "%s/%s" % (Creator.resource_url(), id)
response = json.loads(self._call(url).text)
return CreatorDataWrapper(self, response)
|
python
|
{
"resource": ""
}
|
q5693
|
Marvel.get_event
|
train
|
def get_event(self, id):
"""Fetches a single event by id.
get /v1/public/event/{eventId}
:param id: ID of Event
:type params: int
:returns: EventDataWrapper
>>> m = Marvel(public_key, private_key)
>>> response = m.get_event(253)
>>> print response.data.result.title
Infinity Gauntlet
"""
url = "%s/%s" % (Event.resource_url(), id)
response = json.loads(self._call(url).text)
return EventDataWrapper(self, response)
|
python
|
{
"resource": ""
}
|
q5694
|
Marvel.get_single_series
|
train
|
def get_single_series(self, id):
"""Fetches a single comic series by id.
get /v1/public/series/{seriesId}
:param id: ID of Series
:type params: int
:returns: SeriesDataWrapper
>>> m = Marvel(public_key, private_key)
>>> response = m.get_single_series(12429)
>>> print response.data.result.title
5 Ronin (2010)
"""
url = "%s/%s" % (Series.resource_url(), id)
response = json.loads(self._call(url).text)
return SeriesDataWrapper(self, response)
|
python
|
{
"resource": ""
}
|
q5695
|
Marvel.get_story
|
train
|
def get_story(self, id):
"""Fetches a single story by id.
get /v1/public/stories/{storyId}
:param id: ID of Story
:type params: int
:returns: StoryDataWrapper
>>> m = Marvel(public_key, private_key)
>>> response = m.get_story(29)
>>> print response.data.result.title
Caught in the heart of a nuclear explosion, mild-mannered scientist Bruce Banner finds himself...
"""
url = "%s/%s" % (Story.resource_url(), id)
response = json.loads(self._call(url).text)
return StoryDataWrapper(self, response)
|
python
|
{
"resource": ""
}
|
q5696
|
Marvel.get_stories
|
train
|
def get_stories(self, *args, **kwargs):
"""Fetches lists of stories.
get /v1/public/stories
:returns: StoryDataWrapper
>>> #Find all the stories that involved both Hulk and Wolverine
>>> #hulk's id: 1009351
>>> #wolverine's id: 1009718
>>> m = Marvel(public_key, private_key)
>>> response = m.get_stories(characters="1009351,1009718")
>>> print response.data.total
4066
>>> stories = response.data.results
>>> print stories[1].title
Cover #477
"""
response = json.loads(self._call(Story.resource_url(), self._params(kwargs)).text)
return StoryDataWrapper(self, response)
|
python
|
{
"resource": ""
}
|
q5697
|
Story.get_creators
|
train
|
def get_creators(self, *args, **kwargs):
"""
Returns a full CreatorDataWrapper object for this story.
/stories/{storyId}/creators
:returns: CreatorDataWrapper -- A new request to API. Contains full results set.
"""
from .creator import Creator, CreatorDataWrapper
return self.get_related_resource(Creator, CreatorDataWrapper, args, kwargs)
|
python
|
{
"resource": ""
}
|
q5698
|
Story.get_characters
|
train
|
def get_characters(self, *args, **kwargs):
"""
Returns a full CharacterDataWrapper object for this story.
/stories/{storyId}/characters
:returns: CharacterDataWrapper -- A new request to API. Contains full results set.
"""
from .character import Character, CharacterDataWrapper
return self.get_related_resource(Character, CharacterDataWrapper, args, kwargs)
|
python
|
{
"resource": ""
}
|
q5699
|
ffmpeg_version
|
train
|
def ffmpeg_version():
"""Returns the available ffmpeg version
Returns
----------
version : str
version number as string
"""
cmd = [
'ffmpeg',
'-version'
]
output = sp.check_output(cmd)
aac_codecs = [
x for x in
output.splitlines() if "ffmpeg version " in str(x)
][0]
hay = aac_codecs.decode('ascii')
match = re.findall(r'ffmpeg version (\d+\.)?(\d+\.)?(\*|\d+)', hay)
if match:
return "".join(match[0])
else:
return None
|
python
|
{
"resource": ""
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.