_id
stringlengths
2
7
title
stringlengths
1
88
partition
stringclasses
3 values
text
stringlengths
75
19.8k
language
stringclasses
1 value
meta_information
dict
q5300
_coerce_topic
train
def _coerce_topic(topic): """ Ensure that the topic name is text string of a valid length. :param topic: Kafka topic name. Valid characters are in the set ``[a-zA-Z0-9._-]``. :raises ValueError: when the topic name exceeds 249 bytes :raises TypeError: when the topic is not :class:`unicode` or :class:`str` """ if not isinstance(topic, string_types): raise TypeError('topic={!r} must be text'.format(topic)) if not isinstance(topic, text_type): topic = topic.decode('ascii') if len(topic) < 1: raise ValueError('invalid empty topic name') if len(topic) > 249: raise ValueError('topic={!r} name is too long: {} > 249'.format( topic, len(topic))) return topic
python
{ "resource": "" }
q5301
_coerce_consumer_group
train
def _coerce_consumer_group(consumer_group): """ Ensure that the consumer group is a text string. :param consumer_group: :class:`bytes` or :class:`str` instance :raises TypeError: when `consumer_group` is not :class:`bytes` or :class:`str` """ if not isinstance(consumer_group, string_types): raise TypeError('consumer_group={!r} must be text'.format(consumer_group)) if not isinstance(consumer_group, text_type): consumer_group = consumer_group.decode('utf-8') return consumer_group
python
{ "resource": "" }
q5302
_coerce_client_id
train
def _coerce_client_id(client_id): """ Ensure the provided client ID is a byte string. If a text string is provided, it is encoded as UTF-8 bytes. :param client_id: :class:`bytes` or :class:`str` instance """ if isinstance(client_id, type(u'')): client_id = client_id.encode('utf-8') if not isinstance(client_id, bytes): raise TypeError('{!r} is not a valid consumer group (must be' ' str or bytes)'.format(client_id)) return client_id
python
{ "resource": "" }
q5303
write_short_ascii
train
def write_short_ascii(s): """ Encode a Kafka short string which represents text. :param str s: Text string (`str` on Python 3, `str` or `unicode` on Python 2) or ``None``. The string will be ASCII-encoded. :returns: length-prefixed `bytes` :raises: `struct.error` for strings longer than 32767 characters """ if s is None: return _NULL_SHORT_STRING if not isinstance(s, string_types): raise TypeError('{!r} is not text'.format(s)) return write_short_bytes(s.encode('ascii'))
python
{ "resource": "" }
q5304
write_short_bytes
train
def write_short_bytes(b): """ Encode a Kafka short string which contains arbitrary bytes. A short string is limited to 32767 bytes in length by the signed 16-bit length prefix. A length prefix of -1 indicates ``null``, represented as ``None`` in Python. :param bytes b: No more than 32767 bytes, or ``None`` for the null encoding. :return: length-prefixed `bytes` :raises: `struct.error` for strings longer than 32767 characters """ if b is None: return _NULL_SHORT_STRING if not isinstance(b, bytes): raise TypeError('{!r} is not bytes'.format(b)) elif len(b) > 32767: raise struct.error(len(b)) else: return struct.pack('>h', len(b)) + b
python
{ "resource": "" }
q5305
CrontabReader.parse_cron_line
train
def parse_cron_line(self, line): """Parses crontab line and returns only starting time string Args: line: crontab line Returns: Time part of cron line """ stripped = line.strip() if stripped and stripped.startswith('#') is False: rexres = self.rex.search(stripped) if rexres: return ' '.join(rexres.group(1).split()) return None
python
{ "resource": "" }
q5306
_KafkaBrokerClient.updateMetadata
train
def updateMetadata(self, new): """ Update the metadata stored for this broker. Future connections made to the broker will use the host and port defined in the new metadata. Any existing connection is not dropped, however. :param new: :clas:`afkak.common.BrokerMetadata` with the same node ID as the current metadata. """ if self.node_id != new.node_id: raise ValueError("Broker metadata {!r} doesn't match node_id={}".format(new, self.node_id)) self.node_id = new.node_id self.host = new.host self.port = new.port
python
{ "resource": "" }
q5307
_KafkaBrokerClient.makeRequest
train
def makeRequest(self, requestId, request, expectResponse=True): """ Send a request to our broker via our self.proto KafkaProtocol object. Return a deferred which will fire when the reply matching the requestId comes back from the server, or, if expectResponse is False, then return None instead. If we are not currently connected, then we buffer the request to send when the connection comes back up. """ if requestId in self.requests: # Id is duplicate to 'in-flight' request. Reject it, as we # won't be able to properly deliver the response(s) # Note that this won't protect against a client calling us # twice with the same ID, but first with expectResponse=False # But that's pathological, and the only defense is to track # all requestIds sent regardless of whether we expect to see # a response, which is effectively a memory leak... raise DuplicateRequestError( 'Reuse of requestId:{}'.format(requestId)) # If we've been told to shutdown (close() called) then fail request if self._dDown: return fail(ClientError('makeRequest() called after close()')) # Ok, we are going to save/send it, create a _Request object to track canceller = partial( self.cancelRequest, requestId, CancelledError(message="Request correlationId={} was cancelled".format(requestId))) tReq = _Request(requestId, request, expectResponse, canceller) # add it to our requests dict self.requests[requestId] = tReq # Add an errback to the tReq.d to remove it from our requests dict # if something goes wrong... tReq.d.addErrback(self._handleRequestFailure, requestId) # Do we have a connection over which to send the request? if self.proto: # Send the request self._sendRequest(tReq) # Have we not even started trying to connect yet? Do so now elif not self.connector: self._connect() return tReq.d
python
{ "resource": "" }
q5308
_KafkaBrokerClient.disconnect
train
def disconnect(self): """ Disconnect from the Kafka broker. This is used to implement disconnection on timeout as a workaround for Kafka connections occasionally getting stuck on the server side under load. Requests are not cancelled, so they will be retried. """ if self.proto: log.debug('%r Disconnecting from %r', self, self.proto.transport.getPeer()) self.proto.transport.loseConnection()
python
{ "resource": "" }
q5309
_KafkaBrokerClient.close
train
def close(self): """Permanently dispose of the broker client. This terminates any outstanding connection and cancels any pending requests. """ log.debug('%r: close() proto=%r connector=%r', self, self.proto, self.connector) assert self._dDown is None self._dDown = Deferred() if self.proto is not None: self.proto.transport.loseConnection() elif self.connector is not None: def connectingFailed(reason): """ Handle the failure resulting from cancellation. :reason: a `Failure`, most likely a cancellation error (but that's not guaranteed). :returns: `None` to handle the failure """ log.debug('%r: connection attempt has been cancelled: %r', self, reason) self._dDown.callback(None) self.connector.addErrback(connectingFailed) self.connector.cancel() else: # Fake a cleanly closing connection self._dDown.callback(None) try: raise CancelledError(message="Broker client for node_id={} {}:{} was closed".format( self.node_id, self.host, self.port)) except Exception: reason = Failure() # Cancel any requests for correlation_id in list(self.requests.keys()): # must copy, may del self.cancelRequest(correlation_id, reason) return self._dDown
python
{ "resource": "" }
q5310
_KafkaBrokerClient._connectionLost
train
def _connectionLost(self, reason): """Called when the protocol connection is lost - Log the disconnection. - Mark any outstanding requests as unsent so they will be sent when a new connection is made. - If closing the broker client, mark completion of that process. :param reason: Failure that indicates the reason for disconnection. """ log.info('%r: Connection closed: %r', self, reason) # Reset our proto so we don't try to send to a down connection self.proto = None # Mark any in-flight requests as unsent. for tReq in self.requests.values(): tReq.sent = False if self._dDown: self._dDown.callback(None) elif self.requests: self._connect()
python
{ "resource": "" }
q5311
_KafkaBrokerClient.handleResponse
train
def handleResponse(self, response): """Handle the response string received by KafkaProtocol. Ok, we've received the response from the broker. Find the requestId in the message, lookup & fire the deferred with the response. """ requestId = KafkaCodec.get_response_correlation_id(response) # Protect against responses coming back we didn't expect tReq = self.requests.pop(requestId, None) if tReq is None: # This could happen if we've sent it, are waiting on the response # when it's cancelled, causing us to remove it from self.requests log.warning('Unexpected response with correlationId=%d: %r', requestId, reprlib.repr(response)) else: tReq.d.callback(response)
python
{ "resource": "" }
q5312
_KafkaBrokerClient._sendRequest
train
def _sendRequest(self, tReq): """Send a single request over our protocol to the Kafka broker.""" try: tReq.sent = True self.proto.sendString(tReq.data) except Exception as e: log.exception('%r: Failed to send request %r', self, tReq) del self.requests[tReq.id] tReq.d.errback(e) else: if not tReq.expect: # Once we've sent a request for which we don't expect a reply, # we're done, remove it from requests, and fire the deferred # with 'None', since there is no reply to be expected del self.requests[tReq.id] tReq.d.callback(None)
python
{ "resource": "" }
q5313
_KafkaBrokerClient._sendQueued
train
def _sendQueued(self): """Connection just came up, send the unsent requests.""" for tReq in list(self.requests.values()): # must copy, may del if not tReq.sent: self._sendRequest(tReq)
python
{ "resource": "" }
q5314
_KafkaBrokerClient._connect
train
def _connect(self): """Connect to the Kafka Broker This routine will repeatedly try to connect to the broker (with backoff according to the retry policy) until it succeeds. """ def tryConnect(): self.connector = d = maybeDeferred(connect) d.addCallback(cbConnect) d.addErrback(ebConnect) def connect(): endpoint = self._endpointFactory(self._reactor, self.host, self.port) log.debug('%r: connecting with %s', self, endpoint) return endpoint.connect(self) def cbConnect(proto): log.debug('%r: connected to %r', self, proto.transport.getPeer()) self._failures = 0 self.connector = None self.proto = proto if self._dDown: proto.transport.loseConnection() else: self._sendQueued() def ebConnect(fail): if self._dDown: log.debug('%r: breaking connect loop due to %r after close()', self, fail) return fail self._failures += 1 delay = self._retryPolicy(self._failures) log.debug('%r: failure %d to connect -> %s; retry in %.2f seconds.', self, self._failures, fail.value, delay) self.connector = d = deferLater(self._reactor, delay, lambda: None) d.addCallback(cbDelayed) def cbDelayed(result): tryConnect() self._failures = 0 tryConnect()
python
{ "resource": "" }
q5315
group_envs
train
def group_envs(envlist): """Group Tox environments for Travis CI builds Separate by Python version so that they can go in different Travis jobs: >>> group_envs('py37-int-snappy', 'py36-int') [('py36', 'int', ['py36-int']), ('py37', 'int', ['py37-int-snappy'])] Group unit tests and linting together: >>> group_envs(['py27-unit', 'py27-lint']) [('py27', 'unit', ['py27-unit', 'py27-lint'])] """ groups = {} for env in envlist: envpy, category = env.split('-')[0:2] if category == 'lint': category = 'unit' try: groups[envpy, category].append(env) except KeyError: groups[envpy, category] = [env] return sorted((envpy, category, envs) for (envpy, category), envs in groups.items())
python
{ "resource": "" }
q5316
create_gzip_message
train
def create_gzip_message(message_set): """ Construct a gzip-compressed message containing multiple messages The given messages will be encoded, compressed, and sent as a single atomic message to Kafka. :param list message_set: a list of :class:`Message` instances """ encoded_message_set = KafkaCodec._encode_message_set(message_set) gzipped = gzip_encode(encoded_message_set) return Message(0, CODEC_GZIP, None, gzipped)
python
{ "resource": "" }
q5317
create_snappy_message
train
def create_snappy_message(message_set): """ Construct a Snappy-compressed message containing multiple messages The given messages will be encoded, compressed, and sent as a single atomic message to Kafka. :param list message_set: a list of :class:`Message` instances """ encoded_message_set = KafkaCodec._encode_message_set(message_set) snapped = snappy_encode(encoded_message_set) return Message(0, CODEC_SNAPPY, None, snapped)
python
{ "resource": "" }
q5318
create_message_set
train
def create_message_set(requests, codec=CODEC_NONE): """ Create a message set from a list of requests. Each request can have a list of messages and its own key. If codec is :data:`CODEC_NONE`, return a list of raw Kafka messages. Otherwise, return a list containing a single codec-encoded message. :param codec: The encoding for the message set, one of the constants: - `afkak.CODEC_NONE` - `afkak.CODEC_GZIP` - `afkak.CODEC_SNAPPY` :raises: :exc:`UnsupportedCodecError` for an unsupported codec """ msglist = [] for req in requests: msglist.extend([create_message(m, key=req.key) for m in req.messages]) if codec == CODEC_NONE: return msglist elif codec == CODEC_GZIP: return [create_gzip_message(msglist)] elif codec == CODEC_SNAPPY: return [create_snappy_message(msglist)] else: raise UnsupportedCodecError("Codec 0x%02x unsupported" % codec)
python
{ "resource": "" }
q5319
KafkaCodec.decode_consumermetadata_response
train
def decode_consumermetadata_response(cls, data): """ Decode bytes to a ConsumerMetadataResponse :param bytes data: bytes to decode """ (correlation_id, error_code, node_id), cur = \ relative_unpack('>ihi', data, 0) host, cur = read_short_ascii(data, cur) (port,), cur = relative_unpack('>i', data, cur) return ConsumerMetadataResponse( error_code, node_id, nativeString(host), port)
python
{ "resource": "" }
q5320
KafkaCodec.encode_offset_fetch_request
train
def encode_offset_fetch_request(cls, client_id, correlation_id, group, payloads): """ Encode some OffsetFetchRequest structs :param bytes client_id: string :param int correlation_id: int :param bytes group: string, the consumer group you are fetching offsets for :param list payloads: list of :class:`OffsetFetchRequest` """ grouped_payloads = group_by_topic_and_partition(payloads) message = cls._encode_message_header( client_id, correlation_id, KafkaCodec.OFFSET_FETCH_KEY, api_version=1) message += write_short_ascii(group) message += struct.pack('>i', len(grouped_payloads)) for topic, topic_payloads in grouped_payloads.items(): message += write_short_ascii(topic) message += struct.pack('>i', len(topic_payloads)) for partition in topic_payloads: message += struct.pack('>i', partition) return message
python
{ "resource": "" }
q5321
KafkaBootstrapProtocol.stringReceived
train
def stringReceived(self, response): """ Handle a response from the broker. """ correlation_id = response[0:4] try: d = self._pending.pop(correlation_id) except KeyError: self._log.warn(( "Response has unknown correlation ID {correlation_id!r}." " Dropping connection to {peer}." ), correlation_id=correlation_id, peer=self.transport.getPeer()) self.transport.loseConnection() else: d.callback(response)
python
{ "resource": "" }
q5322
KafkaBootstrapProtocol.connectionLost
train
def connectionLost(self, reason=connectionDone): """ Mark the protocol as failed and fail all pending operations. """ self._failed = reason pending, self._pending = self._pending, None for d in pending.values(): d.errback(reason)
python
{ "resource": "" }
q5323
KafkaBootstrapProtocol.request
train
def request(self, request): """ Send a request to the Kafka broker. :param bytes request: The bytes of a Kafka `RequestMessage`_ structure. It must have a unique (to this connection) correlation ID. :returns: `Deferred` which will: - Succeed with the bytes of a Kafka `ResponseMessage`_ - Fail when the connection terminates .. _RequestMessage:: https://kafka.apache.org/protocol.html#protocol_messages """ if self._failed is not None: return fail(self._failed) correlation_id = request[4:8] assert correlation_id not in self._pending d = Deferred() self.sendString(request) self._pending[correlation_id] = d return d
python
{ "resource": "" }
q5324
Producer.stop
train
def stop(self): """ Terminate any outstanding requests. :returns: :class:``Deferred` which fires when fully stopped. """ self.stopping = True # Cancel any outstanding request to our client if self._batch_send_d: self._batch_send_d.cancel() # Do we have to worry about our looping call? if self.batch_every_t is not None: # Stop our looping call, and wait for the deferred to be called if self._sendLooper is not None: self._sendLooper.stop() # Make sure requests that wasn't cancelled above are now self._cancel_outstanding() return self._sendLooperD or succeed(None)
python
{ "resource": "" }
q5325
Producer._next_partition
train
def _next_partition(self, topic, key=None): """get the next partition to which to publish Check with our client for the latest partitions for the topic, then ask our partitioner for the next partition to which we should publish for the give key. If needed, create a new partitioner for the topic. """ # check if the client has metadata for the topic while self.client.metadata_error_for_topic(topic): # client doesn't have good metadata for topic. ask to fetch... # check if we have request attempts left if self._req_attempts >= self._max_attempts: # No, no attempts left, so raise the error _check_error(self.client.metadata_error_for_topic(topic)) yield self.client.load_metadata_for_topics(topic) if not self.client.metadata_error_for_topic(topic): break self._req_attempts += 1 d = Deferred() self.client.reactor.callLater( self._retry_interval, d.callback, True) self._retry_interval *= self.RETRY_INTERVAL_FACTOR yield d # Ok, should be safe to get the partitions now... partitions = self.client.topic_partitions[topic] # Do we have a partitioner for this topic already? if topic not in self.partitioners: # No, create a new paritioner for topic, partitions self.partitioners[topic] = \ self.partitioner_class(topic, partitions) # Lookup the next partition partition = self.partitioners[topic].partition(key, partitions) returnValue(partition)
python
{ "resource": "" }
q5326
Producer._send_requests
train
def _send_requests(self, parts_results, requests): """Send the requests We've determined the partition for each message group in the batch, or got errors for them. """ # We use these dictionaries to be able to combine all the messages # destined to the same topic/partition into one request # the messages & deferreds, both by topic+partition reqsByTopicPart = defaultdict(list) payloadsByTopicPart = defaultdict(list) deferredsByTopicPart = defaultdict(list) # We now have a list of (succeeded/failed, partition/None) tuples # for the partition lookups we did on each message group, zipped with # the requests for (success, part_or_failure), req in zip(parts_results, requests): if req.deferred.called: # Submitter cancelled the request while we were waiting for # the topic/partition, skip it continue if not success: # We failed to get a partition for this request, errback to the # caller with the failure. Maybe this should retry? However, # since this failure is likely to affect an entire Topic, there # should be no issues with ordering of messages within a # partition of a topic getting out of order. Let the caller # retry the particular request if they like, or they could # cancel all their outstanding requests in req.deferred.errback(part_or_failure) continue # Ok, we now have a partition for this request, we can add the # request for this topic/partition to reqsByTopicPart, and the # caller's deferred to deferredsByTopicPart topicPart = TopicAndPartition(req.topic, part_or_failure) reqsByTopicPart[topicPart].append(req) deferredsByTopicPart[topicPart].append(req.deferred) # Build list of payloads grouped by topic/partition # That is, we bundle all the messages destined for a given # topic/partition, even if they were submitted by different # requests into a single 'payload', and then we submit all the # payloads as a list to the client for sending to the various # brokers. The finest granularity of success/failure is at the # payload (topic/partition) level. payloads = [] for (topic, partition), reqs in reqsByTopicPart.items(): msgSet = create_message_set(reqs, self.codec) req = ProduceRequest(topic, partition, msgSet) topicPart = TopicAndPartition(topic, partition) payloads.append(req) payloadsByTopicPart[topicPart] = req # Make sure we have some payloads to send if not payloads: return # send the request d = self.client.send_produce_request( payloads, acks=self.req_acks, timeout=self.ack_timeout, fail_on_error=False) self._req_attempts += 1 # add our handlers d.addBoth(self._handle_send_response, payloadsByTopicPart, deferredsByTopicPart) return d
python
{ "resource": "" }
q5327
Producer._complete_batch_send
train
def _complete_batch_send(self, resp): """Complete the processing of our batch send operation Clear the deferred tracking our current batch processing and reset our retry count and retry interval Return none to eat any errors coming from up the deferred chain """ self._batch_send_d = None self._req_attempts = 0 self._retry_interval = self._init_retry_interval if isinstance(resp, Failure) and not resp.check(tid_CancelledError, CancelledError): log.error("Failure detected in _complete_batch_send: %r\n%r", resp, resp.getTraceback()) return
python
{ "resource": "" }
q5328
Producer._send_batch
train
def _send_batch(self): """ Send the waiting messages, if there are any, and we can... This is called by our LoopingCall every send_every_t interval, and from send_messages everytime we have enough messages to send. This is also called from py:method:`send_messages` via py:method:`_check_send_batch` if there are enough messages/bytes to require a send. Note, the send will be delayed (triggered by completion or failure of previous) if we are currently trying to complete the last batch send. """ # We can be triggered by the LoopingCall, and have nothing to send... # Or, we've got SendRequest(s) to send, but are still processing the # previous batch... if (not self._batch_reqs) or self._batch_send_d: return # Save a local copy, and clear the global list & metrics requests, self._batch_reqs = self._batch_reqs, [] self._waitingByteCount = 0 self._waitingMsgCount = 0 # Iterate over them, fetching the partition for each message batch d_list = [] for req in requests: # For each request, we get the topic & key and use that to lookup # the next partition on which we should produce d_list.append(self._next_partition(req.topic, req.key)) d = self._batch_send_d = Deferred() # Since DeferredList doesn't propagate cancel() calls to deferreds it # might be waiting on for a result, we need to use this structure, # rather than just using the DeferredList directly d.addCallback(lambda r: DeferredList(d_list, consumeErrors=True)) d.addCallback(self._send_requests, requests) # Once we finish fully processing the current batch, clear the # _batch_send_d and check if any more requests piled up when we # were busy. d.addBoth(self._complete_batch_send) d.addBoth(self._check_send_batch) # Fire off the callback to start processing... d.callback(None)
python
{ "resource": "" }
q5329
Producer._handle_send_response
train
def _handle_send_response(self, result, payloadsByTopicPart, deferredsByTopicPart): """Handle the response from our client to our send_produce_request This is a bit complex. Failures can happen in a few ways: 1. The client sent an empty list, False, None or some similar thing as the result, but we were expecting real responses. 2. The client had a failure before it even tried sending any requests to any brokers. a. Kafka error: See if we can retry the whole request b. Non-kafka: Figure it's a programming error, fail all deferreds 3. The client sent all the requests (it's all or none) to the brokers but one or more request failed (timed out before receiving a response, or the brokerclient threw some sort of exception on send In this case, the client throws FailedPayloadsError, and attaches the responses (NOTE: some can have errors!), and the payloads where the send itself failed to the exception. 4. The client sent all the requests, all responses were received, but the Kafka broker indicated an error with servicing the request on some of the responses. """ def _deliver_result(d_list, result=None): """Possibly callback each deferred in a list with single result""" for d in d_list: if not isinstance(d, Deferred): # nested list... _deliver_result(d, result) else: # We check d.called since the request could have been # cancelled while we waited for the response if not d.called: d.callback(result) def _do_retry(payloads): # We use 'fail_on_error=False' because we want our client to # process every response that comes back from the brokers so # we can determine which requests were successful, and which # failed for retry d = self.client.send_produce_request( payloads, acks=self.req_acks, timeout=self.ack_timeout, fail_on_error=False) self._req_attempts += 1 # add our handlers d.addBoth(self._handle_send_response, payloadsByTopicPart, deferredsByTopicPart) return d def _cancel_retry(failure, dc): # Cancel the retry callLater and pass-thru the failure dc.cancel() # cancel all the top-level deferreds associated with the request _deliver_result(deferredsByTopicPart.values(), failure) return failure def _check_retry_payloads(failed_payloads_with_errs): """Check our retry count and retry after a delay or errback If we have more retries to try, create a deferred that will fire with the result of delayed retry. If not, errback the remaining deferreds with failure Params: failed_payloads - list of (payload, failure) tuples """ # Do we have retries left? if self._req_attempts >= self._max_attempts: # No, no retries left, fail each failed_payload with its # associated failure for p, f in failed_payloads_with_errs: t_and_p = TopicAndPartition(p.topic, p.partition) _deliver_result(deferredsByTopicPart[t_and_p], f) return # Retries remain! Schedule one... d = Deferred() dc = self.client.reactor.callLater( self._retry_interval, d.callback, [p for p, f in failed_payloads]) self._retry_interval *= self.RETRY_INTERVAL_FACTOR # Cancel the callLater when request is cancelled before it fires d.addErrback(_cancel_retry, dc) # Reset the topic metadata for all topics which had failed_requests # where the failures were of the kind UnknownTopicOrPartitionError # or NotLeaderForPartitionError, since those indicate our client's # metadata is out of date. reset_topics = set() for payload, e in failed_payloads: if (isinstance(e, NotLeaderForPartitionError) or isinstance(e, UnknownTopicOrPartitionError)): reset_topics.add(payload.topic) if reset_topics: self.client.reset_topic_metadata(*reset_topics) d.addCallback(_do_retry) return d # The payloads we need to retry, if we still can.. failed_payloads = [] # In the case we are sending requests without requiring acks, the # brokerclient will immediately callback() the deferred upon send with # None. In that case, we just iterate over all the deferreds in # deferredsByTopicPart and callback them with None # If we are expecting responses/acks, and we get an empty result, we # callback with a Failure of NoResponseError if not result: # Success, but no results, is that what we're expecting? if self.req_acks == PRODUCER_ACK_NOT_REQUIRED: result = None else: # We got no result, but we were expecting one? Fail everything! result = Failure(NoResponseError()) _deliver_result(deferredsByTopicPart.values(), result) return elif isinstance(result, Failure): # Failure! Was it total, or partial? if not result.check(FailedPayloadsError): # Total failure of some sort! # The client was unable to send the request at all. If it's # a KafkaError (probably Leader/Partition unavailable), retry if result.check(KafkaError): # Yep, a kafak error. Set failed_payloads, and we'll retry # them all below. Set failure for errback to callers if we # are all out of retries failure, result = result, [] # no succesful results, retry failed_payloads = [(p, failure) for p in payloadsByTopicPart.values()] else: # Was the request cancelled? if not result.check(tid_CancelledError): # Uh Oh, programming error? Log it! log.error("Unexpected failure: %r in " "_handle_send_response", result) # Cancelled, or programming error, we fail the requests _deliver_result(deferredsByTopicPart.values(), result) return else: # FailedPayloadsError: This means that some/all of the # requests to a/some brokerclients failed to send. # Pull the successful responses and the failed_payloads off # the exception and handle them below. Preserve the # FailedPayloadsError as 'failure' failure = result result = failure.value.args[0] failed_payloads = failure.value.args[1] # Do we have results? Iterate over them and if the response indicates # success, then callback the associated deferred. If the response # indicates an error, then setup that request for retry. # NOTE: In this case, each failed_payload get it's own error... for res in result: t_and_p = TopicAndPartition(res.topic, res.partition) t_and_p_err = _check_error(res, raiseException=False) if not t_and_p_err: # Success for this topic/partition d_list = deferredsByTopicPart[t_and_p] _deliver_result(d_list, res) else: p = payloadsByTopicPart[t_and_p] failed_payloads.append((p, t_and_p_err)) # Were there any failed requests to possibly retry? if failed_payloads: return _check_retry_payloads(failed_payloads) return
python
{ "resource": "" }
q5330
Producer._cancel_outstanding
train
def _cancel_outstanding(self): """Cancel all of our outstanding requests""" for d in list(self._outstanding): d.addErrback(lambda _: None) # Eat any uncaught errors d.cancel()
python
{ "resource": "" }
q5331
KafkaClient.reset_consumer_group_metadata
train
def reset_consumer_group_metadata(self, *groups): """Reset cache of what broker manages the offset for specified groups Remove the cache of what Kafka broker should be contacted when fetching or updating the committed offsets for a given consumer group or groups. NOTE: Does not cancel any outstanding requests for updates to the consumer group metadata for the specified groups. """ groups = tuple(_coerce_consumer_group(g) for g in groups) for group in groups: if group in self.consumer_group_to_brokers: del self.consumer_group_to_brokers[group]
python
{ "resource": "" }
q5332
KafkaClient.reset_all_metadata
train
def reset_all_metadata(self): """Clear all cached metadata Metadata will be re-fetched as required to satisfy requests. """ self.topics_to_brokers.clear() self.topic_partitions.clear() self.topic_errors.clear() self.consumer_group_to_brokers.clear()
python
{ "resource": "" }
q5333
KafkaClient.topic_fully_replicated
train
def topic_fully_replicated(self, topic): """ Determine if the given topic is fully replicated according to the currently known cluster metadata. .. note:: This relies on cached cluster metadata. You may call :meth:`load_metadata_for_topics()` first to refresh this cache. :param str topic: Topic name :returns: A boolean indicating that: 1. The number of partitions in the topic is non-zero. 2. For each partition, all replicas are in the in-sync replica (ISR) set. :rtype: :class:`bool` """ topic = _coerce_topic(topic) if topic not in self.topic_partitions: return False if not self.topic_partitions[topic]: # Don't consider an empty partition list 'fully replicated' return False return all( self.partition_fully_replicated(TopicAndPartition(topic, p)) for p in self.topic_partitions[topic] )
python
{ "resource": "" }
q5334
KafkaClient.close
train
def close(self): """Permanently dispose of the client - Immediately mark the client as closed, causing current operations to fail with :exc:`~afkak.common.CancelledError` and future operations to fail with :exc:`~afkak.common.ClientError`. - Clear cached metadata. - Close any connections to Kafka brokers. :returns: deferred that fires when all resources have been released """ # If we're already waiting on an/some outstanding disconnects # make sure we continue to wait for them... log.debug("%r: close", self) self._closing = True # Close down any clients we have brokerclients, self.clients = self.clients, None self._close_brokerclients(brokerclients.values()) # clean up other outstanding operations self.reset_all_metadata() return self.close_dlist or defer.succeed(None)
python
{ "resource": "" }
q5335
KafkaClient.load_metadata_for_topics
train
def load_metadata_for_topics(self, *topics): """Discover topic metadata and brokers Afkak internally calls this method whenever metadata is required. :param str topics: Topic names to look up. The resulting metadata includes the list of topic partitions, brokers owning those partitions, and which partitions are in sync. Fetching metadata for a topic may trigger auto-creation if that is enabled on the Kafka broker. When no topic name is given metadata for *all* topics is fetched. This is an expensive operation, but it does not trigger topic creation. :returns: :class:`Deferred` for the completion of the metadata fetch. This will fire with ``True`` on success, ``None`` on cancellation, or fail with an exception on error. On success, topic metadata is available from the attributes of :class:`KafkaClient`: :data:`~KafkaClient.topic_partitions`, :data:`~KafkaClient.topics_to_brokers`, etc. """ topics = tuple(_coerce_topic(t) for t in topics) log.debug("%r: load_metadata_for_topics(%s)", self, ', '.join(repr(t) for t in topics)) fetch_all_metadata = not topics # create the request requestId = self._next_id() request = KafkaCodec.encode_metadata_request(self._clientIdBytes, requestId, topics) # Callbacks for the request deferred... def _handleMetadataResponse(response): # Decode the response brokers, topics = KafkaCodec.decode_metadata_response(response) log.debug("%r: got metadata brokers=%r topics=%r", self, brokers, topics) # If we fetched the metadata for all topics, then store away the # received metadata for diagnostics. if fetch_all_metadata: self._brokers = brokers self._topics = topics # Iff we were fetching for all topics, and we got at least one # broker back, then remove brokers when we update our brokers ok_to_remove = (fetch_all_metadata and len(brokers)) # Take the metadata we got back, update our self.clients, and # if needed disconnect or connect from/to old/new brokers self._update_brokers(brokers.values(), remove=ok_to_remove) # Now loop through all the topics/partitions in the response # and setup our cache/data-structures for topic, topic_metadata in topics.items(): _, topic_error, partitions = topic_metadata self.reset_topic_metadata(topic) self.topic_errors[topic] = topic_error if not partitions: log.warning('No partitions for %s, Err:%d', topic, topic_error) continue self.topic_partitions[topic] = [] for partition, meta in partitions.items(): self.topic_partitions[topic].append(partition) topic_part = TopicAndPartition(topic, partition) self.partition_meta[topic_part] = meta if meta.leader == -1: log.warning('No leader for topic %s partition %s', topic, partition) self.topics_to_brokers[topic_part] = None else: self.topics_to_brokers[ topic_part] = brokers[meta.leader] self.topic_partitions[topic] = sorted( self.topic_partitions[topic]) return True def _handleMetadataErr(err): # This should maybe do more cleanup? if err.check(t_CancelledError, CancelledError): # Eat the error # XXX Shouldn't this return False? The success branch # returns True. return None log.error("Failed to retrieve metadata:%s", err) raise KafkaUnavailableError( "Unable to load metadata from configured " "hosts: {!r}".format(err)) # Send the request, add the handlers d = self._send_broker_unaware_request(requestId, request) d.addCallbacks(_handleMetadataResponse, _handleMetadataErr) return d
python
{ "resource": "" }
q5336
KafkaClient.load_consumer_metadata_for_group
train
def load_consumer_metadata_for_group(self, group): """ Determine broker for the consumer metadata for the specified group Returns a deferred which callbacks with True if the group's coordinator could be determined, or errbacks with ConsumerCoordinatorNotAvailableError if not. Parameters ---------- group: group name as `str` """ group = _coerce_consumer_group(group) log.debug("%r: load_consumer_metadata_for_group(%r)", self, group) # If we are already loading the metadata for this group, then # just return the outstanding deferred if group in self.coordinator_fetches: d = defer.Deferred() self.coordinator_fetches[group][1].append(d) return d # No outstanding request, create a new one requestId = self._next_id() request = KafkaCodec.encode_consumermetadata_request( self._clientIdBytes, requestId, group) # Callbacks for the request deferred... def _handleConsumerMetadataResponse(response_bytes): # Decode the response (returns ConsumerMetadataResponse) response = KafkaCodec.decode_consumermetadata_response(response_bytes) log.debug("%r: load_consumer_metadata_for_group(%r) -> %r", self, group, response) if response.error: raise BrokerResponseError.errnos.get(response.error, UnknownError)(response) bm = BrokerMetadata(response.node_id, response.host, response.port) self.consumer_group_to_brokers[group] = bm self._update_brokers([bm]) return True def _handleConsumerMetadataErr(err): log.error("Failed to retrieve consumer metadata for group %r", group, exc_info=(err.type, err.value, err.getTracebackObject())) # Clear any stored value for the group's coordinator self.reset_consumer_group_metadata(group) # FIXME: This exception should chain from err. raise ConsumerCoordinatorNotAvailableError( "Coordinator for group {!r} not available".format(group), ) def _propagate(result): [_, ds] = self.coordinator_fetches.pop(group, None) for d in ds: d.callback(result) # Send the request, add the handlers request_d = self._send_broker_unaware_request(requestId, request) d = defer.Deferred() # Save the deferred under the fetches for this group self.coordinator_fetches[group] = (request_d, [d]) request_d.addCallback(_handleConsumerMetadataResponse) request_d.addErrback(_handleConsumerMetadataErr) request_d.addBoth(_propagate) return d
python
{ "resource": "" }
q5337
KafkaClient.send_offset_commit_request
train
def send_offset_commit_request(self, group, payloads=None, fail_on_error=True, callback=None, group_generation_id=-1, consumer_id=''): """Send a list of OffsetCommitRequests to the Kafka broker for the given consumer group. Args: group (str): The consumer group to which to commit the offsets payloads ([OffsetCommitRequest]): List of topic, partition, offsets to commit. fail_on_error (bool): Whether to raise an exception if a response from the Kafka broker indicates an error callback (callable): a function to call with each of the responses before returning the returned value to the caller. group_generation_id (int): Must currently always be -1 consumer_id (str): Must currently always be empty string Returns: [OffsetCommitResponse]: List of OffsetCommitResponse objects. Will raise KafkaError for failed requests if fail_on_error is True """ group = _coerce_consumer_group(group) encoder = partial(KafkaCodec.encode_offset_commit_request, group=group, group_generation_id=group_generation_id, consumer_id=consumer_id) decoder = KafkaCodec.decode_offset_commit_response resps = yield self._send_broker_aware_request( payloads, encoder, decoder, consumer_group=group) returnValue(self._handle_responses( resps, fail_on_error, callback, group))
python
{ "resource": "" }
q5338
KafkaClient._get_brokerclient
train
def _get_brokerclient(self, node_id): """ Get a broker client. :param int node_id: Broker node ID :raises KeyError: for an unknown node ID :returns: :class:`_KafkaBrokerClient` """ if self._closing: raise ClientError("Cannot get broker client for node_id={}: {} has been closed".format(node_id, self)) if node_id not in self.clients: broker_metadata = self._brokers[node_id] log.debug("%r: creating client for %s", self, broker_metadata) self.clients[node_id] = _KafkaBrokerClient( self.reactor, self._endpoint_factory, broker_metadata, self.clientId, self._retry_policy, ) return self.clients[node_id]
python
{ "resource": "" }
q5339
KafkaClient._close_brokerclients
train
def _close_brokerclients(self, clients): """ Close the given broker clients. :param clients: Iterable of `_KafkaBrokerClient` """ def _log_close_failure(failure, brokerclient): log.debug( 'BrokerClient: %s close result: %s: %s', brokerclient, failure.type.__name__, failure.getErrorMessage()) def _clean_close_dlist(result, close_dlist): # If there aren't any other outstanding closings going on, then # close_dlist == self.close_dlist, and we can reset it. if close_dlist == self.close_dlist: self.close_dlist = None if not self.close_dlist: dList = [] else: log.debug("%r: _close_brokerclients has nested deferredlist: %r", self, self.close_dlist) dList = [self.close_dlist] for brokerClient in clients: log.debug("Calling close on: %r", brokerClient) d = brokerClient.close().addErrback(_log_close_failure, brokerClient) dList.append(d) self.close_dlist = DeferredList(dList) self.close_dlist.addBoth(_clean_close_dlist, self.close_dlist)
python
{ "resource": "" }
q5340
KafkaClient._update_brokers
train
def _update_brokers(self, brokers, remove=False): """ Update `self._brokers` and `self.clients` Update our self.clients based on brokers in received metadata Take the received dict of brokers and reconcile it with our current list of brokers (self.clients). If there is a new one, bring up a new connection to it, and if remove is True, and any in our current list aren't in the metadata returned, disconnect from it. :param brokers: Iterable of `BrokerMetadata`. A client will be created for every broker given if it doesn't yet exist. :param bool remove: Is this metadata for *all* brokers? If so, clients for brokers which are no longer found in the metadata will be closed. """ log.debug("%r: _update_brokers(%r, remove=%r)", self, brokers, remove) brokers_by_id = {bm.node_id: bm for bm in brokers} self._brokers.update(brokers_by_id) # Update the metadata of broker clients that already exist. for node_id, broker_meta in brokers_by_id.items(): if node_id not in self.clients: continue self.clients[node_id].updateMetadata(broker_meta) # Remove any clients for brokers which no longer exist. if remove: to_close = [ self.clients.pop(node_id) for node_id in set(self.clients) - set(brokers_by_id) ] if to_close: self._close_brokerclients(to_close)
python
{ "resource": "" }
q5341
KafkaClient._make_request_to_broker
train
def _make_request_to_broker(self, broker, requestId, request, **kwArgs): """Send a request to the specified broker.""" def _timeout_request(broker, requestId): """The time we allotted for the request expired, cancel it.""" try: # FIXME: This should be done by calling .cancel() on the Deferred # returned by the broker client. broker.cancelRequest(requestId, reason=RequestTimedOutError( 'Request: {} cancelled due to timeout'.format(requestId))) except KeyError: # pragma: no cover This should never happen... log.exception('ERROR: Failed to find key for timed-out ' 'request. Broker: %r Req: %d', broker, requestId) raise if self._disconnect_on_timeout: broker.disconnect() def _alert_blocked_reactor(timeout, start): """Complain if this timer didn't fire before the timeout elapsed""" now = self.reactor.seconds() if now >= (start + timeout): log.warning('Reactor was starved for %r seconds', now - start) def _cancel_timeout(result, dc): """Request completed/cancelled, cancel the timeout delayedCall.""" if dc.active(): dc.cancel() return result # Make the request to the specified broker log.debug('_mrtb: sending request: %d to broker: %r', requestId, broker) d = broker.makeRequest(requestId, request, **kwArgs) # Set a delayedCall to fire if we don't get a reply in time dc = self.reactor.callLater( self.timeout, _timeout_request, broker, requestId) # Set a delayedCall to complain if the reactor has been blocked rc = self.reactor.callLater( (self.timeout * 0.9), _alert_blocked_reactor, self.timeout, self.reactor.seconds()) # Setup a callback on the request deferred to cancel both callLater d.addBoth(_cancel_timeout, dc) d.addBoth(_cancel_timeout, rc) return d
python
{ "resource": "" }
q5342
KafkaClient._send_bootstrap_request
train
def _send_bootstrap_request(self, request): """Make a request using an ephemeral broker connection This routine is used to make broker-unaware requests to get the initial cluster metadata. It cycles through the configured hosts, trying to connect and send the request to each in turn. This temporary connection is closed once a response is received. Note that most Kafka APIs require requests be sent to a specific broker. This method will only function for broker-agnostic requests like: * `Metadata <https://kafka.apache.org/protocol.html#The_Messages_Metadata>`_ * `FindCoordinator <https://kafka.apache.org/protocol.html#The_Messages_FindCoordinator>`_ :param bytes request: The bytes of a Kafka `RequestMessage`_ structure. It must have a unique (to this connection) correlation ID. :returns: API response message for *request* :rtype: Deferred[bytes] :raises: - `KafkaUnavailableError` when making the request of all known hosts has failed. - `twisted.internet.defer.TimeoutError` when connecting or making a request exceeds the timeout. """ hostports = list(self._bootstrap_hosts) random.shuffle(hostports) for host, port in hostports: ep = self._endpoint_factory(self.reactor, host, port) try: protocol = yield ep.connect(_bootstrapFactory) except Exception as e: log.debug("%s: bootstrap connect to %s:%s -> %s", self, host, port, e) continue try: response = yield protocol.request(request).addTimeout(self.timeout, self.reactor) except Exception: log.debug("%s: bootstrap request to %s:%s failed", self, host, port, exc_info=True) else: returnValue(response) finally: protocol.transport.loseConnection() raise KafkaUnavailableError("Failed to bootstrap from hosts {}".format(hostports))
python
{ "resource": "" }
q5343
ExpressionDescriptor.get_description
train
def get_description(self, description_type=DescriptionTypeEnum.FULL): """Generates a human readable string for the Cron Expression Args: description_type: Which part(s) of the expression to describe Returns: The cron expression description Raises: Exception: if throw_exception_on_parse_error is True """ try: if self._parsed is False: parser = ExpressionParser(self._expression, self._options) self._expression_parts = parser.parse() self._parsed = True choices = { DescriptionTypeEnum.FULL: self.get_full_description, DescriptionTypeEnum.TIMEOFDAY: self.get_time_of_day_description, DescriptionTypeEnum.HOURS: self.get_hours_description, DescriptionTypeEnum.MINUTES: self.get_minutes_description, DescriptionTypeEnum.SECONDS: self.get_seconds_description, DescriptionTypeEnum.DAYOFMONTH: self.get_day_of_month_description, DescriptionTypeEnum.MONTH: self.get_month_description, DescriptionTypeEnum.DAYOFWEEK: self.get_day_of_week_description, DescriptionTypeEnum.YEAR: self.get_year_description, } description = choices.get(description_type, self.get_seconds_description)() except Exception as ex: if self._options.throw_exception_on_parse_error: raise else: description = str(ex) return description
python
{ "resource": "" }
q5344
ExpressionDescriptor.get_full_description
train
def get_full_description(self): """Generates the FULL description Returns: The FULL description Raises: FormatException: if formating fails and throw_exception_on_parse_error is True """ try: time_segment = self.get_time_of_day_description() day_of_month_desc = self.get_day_of_month_description() month_desc = self.get_month_description() day_of_week_desc = self.get_day_of_week_description() year_desc = self.get_year_description() description = "{0}{1}{2}{3}{4}".format( time_segment, day_of_month_desc, day_of_week_desc, month_desc, year_desc) description = self.transform_verbosity( description, self._options.verbose) description = self.transform_case( description, self._options.casing_type) except Exception: description = _( "An error occured when generating the expression description. Check the cron expression syntax.") if self._options.throw_exception_on_parse_error: raise FormatException(description) return description
python
{ "resource": "" }
q5345
ExpressionDescriptor.get_time_of_day_description
train
def get_time_of_day_description(self): """Generates a description for only the TIMEOFDAY portion of the expression Returns: The TIMEOFDAY description """ seconds_expression = self._expression_parts[0] minute_expression = self._expression_parts[1] hour_expression = self._expression_parts[2] description = StringBuilder() # handle special cases first if any(exp in minute_expression for exp in self._special_characters) is False and \ any(exp in hour_expression for exp in self._special_characters) is False and \ any(exp in seconds_expression for exp in self._special_characters) is False: # specific time of day (i.e. 10 14) description.append(_("At ")) description.append( self.format_time( hour_expression, minute_expression, seconds_expression)) elif "-" in minute_expression and \ "," not in minute_expression and \ any(exp in hour_expression for exp in self._special_characters) is False: # minute range in single hour (i.e. 0-10 11) minute_parts = minute_expression.split('-') description.append(_("Every minute between {0} and {1}").format( self.format_time(hour_expression, minute_parts[0]), self.format_time(hour_expression, minute_parts[1]))) elif "," in hour_expression and "-" not in hour_expression and \ any(exp in minute_expression for exp in self._special_characters) is False: # hours list with single minute (o.e. 30 6,14,16) hour_parts = hour_expression.split(',') description.append(_("At")) for i, hour_part in enumerate(hour_parts): description.append(" ") description.append( self.format_time(hour_part, minute_expression)) if i < (len(hour_parts) - 2): description.append(",") if i == len(hour_parts) - 2: description.append(_(" and")) else: # default time description seconds_description = self.get_seconds_description() minutes_description = self.get_minutes_description() hours_description = self.get_hours_description() description.append(seconds_description) if description: description.append(", ") description.append(minutes_description) if description: description.append(", ") description.append(hours_description) return str(description)
python
{ "resource": "" }
q5346
ExpressionDescriptor.get_seconds_description
train
def get_seconds_description(self): """Generates a description for only the SECONDS portion of the expression Returns: The SECONDS description """ return self.get_segment_description( self._expression_parts[0], _("every second"), lambda s: s, lambda s: _("every {0} seconds").format(s), lambda s: _("seconds {0} through {1} past the minute"), lambda s: _("at {0} seconds past the minute") )
python
{ "resource": "" }
q5347
ExpressionDescriptor.get_minutes_description
train
def get_minutes_description(self): """Generates a description for only the MINUTE portion of the expression Returns: The MINUTE description """ return self.get_segment_description( self._expression_parts[1], _("every minute"), lambda s: s, lambda s: _("every {0} minutes").format(s), lambda s: _("minutes {0} through {1} past the hour"), lambda s: '' if s == "0" else _("at {0} minutes past the hour") )
python
{ "resource": "" }
q5348
ExpressionDescriptor.get_hours_description
train
def get_hours_description(self): """Generates a description for only the HOUR portion of the expression Returns: The HOUR description """ expression = self._expression_parts[2] return self.get_segment_description( expression, _("every hour"), lambda s: self.format_time(s, "0"), lambda s: _("every {0} hours").format(s), lambda s: _("between {0} and {1}"), lambda s: _("at {0}") )
python
{ "resource": "" }
q5349
ExpressionDescriptor.get_day_of_week_description
train
def get_day_of_week_description(self): """Generates a description for only the DAYOFWEEK portion of the expression Returns: The DAYOFWEEK description """ if self._expression_parts[5] == "*" and self._expression_parts[3] != "*": # DOM is specified and DOW is * so to prevent contradiction like "on day 1 of the month, every day" # we will not specified a DOW description. return "" def get_day_name(s): exp = s if "#" in s: exp, useless = s.split("#", 2) elif "L" in s: exp = exp.replace("L", '') return self.number_to_day(int(exp)) def get_format(s): if "#" in s: day_of_week_of_month = s[s.find("#") + 1:] try: day_of_week_of_month_number = int(day_of_week_of_month) choices = { 1: _("first"), 2: _("second"), 3: _("third"), 4: _("forth"), 5: _("fifth"), } day_of_week_of_month_description = choices.get(day_of_week_of_month_number, '') except ValueError: day_of_week_of_month_description = '' formated = "{}{}{}".format(_(", on the "), day_of_week_of_month_description, _(" {0} of the month")) elif "L" in s: formated = _(", on the last {0} of the month") else: formated = _(", only on {0}") return formated return self.get_segment_description( self._expression_parts[5], _(", every day"), lambda s: get_day_name(s), lambda s: _(", every {0} days of the week").format(s), lambda s: _(", {0} through {1}"), lambda s: get_format(s) )
python
{ "resource": "" }
q5350
ExpressionDescriptor.get_month_description
train
def get_month_description(self): """Generates a description for only the MONTH portion of the expression Returns: The MONTH description """ return self.get_segment_description( self._expression_parts[4], '', lambda s: datetime.date(datetime.date.today().year, int(s), 1).strftime("%B"), lambda s: _(", every {0} months").format(s), lambda s: _(", {0} through {1}"), lambda s: _(", only in {0}") )
python
{ "resource": "" }
q5351
ExpressionDescriptor.get_day_of_month_description
train
def get_day_of_month_description(self): """Generates a description for only the DAYOFMONTH portion of the expression Returns: The DAYOFMONTH description """ expression = self._expression_parts[3] expression = expression.replace("?", "*") if expression == "L": description = _(", on the last day of the month") elif expression == "LW" or expression == "WL": description = _(", on the last weekday of the month") else: regex = re.compile("(\\d{1,2}W)|(W\\d{1,2})") if regex.match(expression): m = regex.match(expression) day_number = int(m.group().replace("W", "")) day_string = _("first weekday") if day_number == 1 else _("weekday nearest day {0}").format( day_number) description = _(", on the {0} of the month").format( day_string) else: description = self.get_segment_description( expression, _(", every day"), lambda s: s, lambda s: _(", every day") if s == "1" else _(", every {0} days"), lambda s: _(", between day {0} and {1} of the month"), lambda s: _(", on day {0} of the month") ) return description
python
{ "resource": "" }
q5352
ExpressionDescriptor.get_year_description
train
def get_year_description(self): """Generates a description for only the YEAR portion of the expression Returns: The YEAR description """ def format_year(s): regex = re.compile(r"^\d+$") if regex.match(s): year_int = int(s) if year_int < 1900: return year_int return datetime.date(year_int, 1, 1).strftime("%Y") else: return s return self.get_segment_description( self._expression_parts[6], '', lambda s: format_year(s), lambda s: _(", every {0} years").format(s), lambda s: _(", {0} through {1}"), lambda s: _(", only in {0}") )
python
{ "resource": "" }
q5353
ExpressionDescriptor.number_to_day
train
def number_to_day(self, day_number): """Returns localized day name by its CRON number Args: day_number: Number of a day Returns: Day corresponding to day_number Raises: IndexError: When day_number is not found """ return [ calendar.day_name[6], calendar.day_name[0], calendar.day_name[1], calendar.day_name[2], calendar.day_name[3], calendar.day_name[4], calendar.day_name[5] ][day_number]
python
{ "resource": "" }
q5354
Consumer.shutdown
train
def shutdown(self): """Gracefully shutdown the consumer Consumer will complete any outstanding processing, commit its current offsets (if so configured) and stop. Returns deferred which callbacks with a tuple of: (last processed offset, last committed offset) if it was able to successfully commit, or errbacks with the commit failure, if any, or fail(RestopError) if consumer is not running. """ def _handle_shutdown_commit_success(result): """Handle the result of the commit attempted by shutdown""" self._shutdown_d, d = None, self._shutdown_d self.stop() self._shuttingdown = False # Shutdown complete d.callback((self._last_processed_offset, self._last_committed_offset)) def _handle_shutdown_commit_failure(failure): """Handle failure of commit() attempted by shutdown""" if failure.check(OperationInProgress): failure.value.deferred.addCallback(_commit_and_stop) return self._shutdown_d, d = None, self._shutdown_d self.stop() self._shuttingdown = False # Shutdown complete d.errback(failure) def _commit_and_stop(result): """Commit the current offsets (if needed) and stop the consumer""" if not self.consumer_group: # No consumer group, no committing return _handle_shutdown_commit_success(None) # Need to commit prior to stopping self.commit().addCallbacks(_handle_shutdown_commit_success, _handle_shutdown_commit_failure) # If we're not running, return an failure if self._start_d is None: return fail(Failure( RestopError("Shutdown called on non-running consumer"))) # If we're called multiple times, return a failure if self._shutdown_d: return fail(Failure( RestopError("Shutdown called more than once."))) # Set our _shuttingdown flag, so our _process_message routine will stop # feeding new messages to the processor, and fetches won't be retried self._shuttingdown = True # Keep track of state for debugging self._state = '[shutting down]' # Create a deferred to track the shutdown self._shutdown_d = d = Deferred() # Are we waiting for the processor to complete? If so, when it's done, # commit our offsets and stop. if self._processor_d: self._processor_d.addCallback(_commit_and_stop) else: # No need to wait for the processor, we can commit and stop now _commit_and_stop(None) # return the deferred return d
python
{ "resource": "" }
q5355
Consumer.stop
train
def stop(self): """ Stop the consumer and return offset of last processed message. This cancels all outstanding operations. Also, if the deferred returned by `start` hasn't been called, it is called with a tuple consisting of the last processed offset and the last committed offset. :raises: :exc:`RestopError` if the :class:`Consumer` is not running. """ if self._start_d is None: raise RestopError("Stop called on non-running consumer") self._stopping = True # Keep track of state for debugging self._state = '[stopping]' # Are we waiting for a request to come back? if self._request_d: self._request_d.cancel() # Are we working our way through a block of messages? if self._msg_block_d: # Need to add a cancel handler... _msg_block_d, self._msg_block_d = self._msg_block_d, None _msg_block_d.addErrback(lambda fail: fail.trap(CancelledError)) _msg_block_d.cancel() # Are we waiting for the processor to complete? if self._processor_d: self._processor_d.cancel() # Are we waiting to retry a request? if self._retry_call: self._retry_call.cancel() # Are we waiting on a commit request? if self._commit_ds: while self._commit_ds: d = self._commit_ds.pop() d.cancel() if self._commit_req: self._commit_req.cancel() # Are we waiting to retry a commit? if self._commit_call: self._commit_call.cancel() # Do we have an auto-commit looping call? if self._commit_looper is not None: self._commit_looper.stop() # Done stopping self._stopping = False # Keep track of state for debugging self._state = '[stopped]' # Clear and possibly callback our start() Deferred self._start_d, d = None, self._start_d if not d.called: d.callback((self._last_processed_offset, self._last_committed_offset)) # Return the offset of the message we last processed return self._last_processed_offset
python
{ "resource": "" }
q5356
Consumer.commit
train
def commit(self): """ Commit the offset of the message we last processed if it is different from what we believe is the last offset committed to Kafka. .. note:: It is possible to commit a smaller offset than Kafka has stored. This is by design, so we can reprocess a Kafka message stream if desired. On error, will retry according to :attr:`request_retry_max_attempts` (by default, forever). If called while a commit operation is in progress, and new messages have been processed since the last request was sent then the commit will fail with :exc:`OperationInProgress`. The :exc:`OperationInProgress` exception wraps a :class:`~twisted.internet.defer.Deferred` which fires when the outstanding commit operation completes. :returns: A :class:`~twisted.internet.defer.Deferred` which resolves with the committed offset when the operation has completed. It will resolve immediately if the current offset and the last committed offset do not differ. """ # Can't commit without a consumer_group if not self.consumer_group: return fail(Failure(InvalidConsumerGroupError( "Bad Group_id:{0!r}".format(self.consumer_group)))) # short circuit if we are 'up to date', or haven't processed anything if ((self._last_processed_offset is None) or (self._last_processed_offset == self._last_committed_offset)): return succeed(self._last_committed_offset) # If we're currently processing a commit we return a failure # with a deferred we'll fire when the in-progress one completes if self._commit_ds: d = Deferred() self._commit_ds.append(d) return fail(OperationInProgress(d)) # Ok, we have processed messages since our last commit attempt, and # we're not currently waiting on a commit request to complete: # Start a new one d = Deferred() self._commit_ds.append(d) # Send the request self._send_commit_request() # Reset the commit_looper here, rather than on success to give # more stability to the commit interval. if self._commit_looper is not None: self._commit_looper.reset() # return the deferred return d
python
{ "resource": "" }
q5357
Consumer._auto_commit
train
def _auto_commit(self, by_count=False): """Check if we should start a new commit operation and commit""" # Check if we are even supposed to do any auto-committing if (self._stopping or self._shuttingdown or (not self._start_d) or (self._last_processed_offset is None) or (not self.consumer_group) or (by_count and not self.auto_commit_every_n)): return # If we're auto_committing because the timer expired, or by count and # we don't have a record of our last_committed_offset, or we've # processed enough messages since our last commit, then try to commit if (not by_count or self._last_committed_offset is None or (self._last_processed_offset - self._last_committed_offset ) >= self.auto_commit_every_n): if not self._commit_ds: commit_d = self.commit() commit_d.addErrback(self._handle_auto_commit_error) else: # We're waiting on the last commit to complete, so add a # callback to be called when the current request completes d = Deferred() d.addCallback(self._retry_auto_commit, by_count) self._commit_ds.append(d)
python
{ "resource": "" }
q5358
Consumer._handle_offset_response
train
def _handle_offset_response(self, response): """ Handle responses to both OffsetRequest and OffsetFetchRequest, since they are similar enough. :param response: A tuple of a single OffsetFetchResponse or OffsetResponse """ # Got a response, clear our outstanding request deferred self._request_d = None # Successful request, reset our retry delay, count, etc self.retry_delay = self.retry_init_delay self._fetch_attempt_count = 1 response = response[0] if hasattr(response, 'offsets'): # It's a response to an OffsetRequest self._fetch_offset = response.offsets[0] else: # It's a response to an OffsetFetchRequest # Make sure we got a valid offset back. Kafka uses -1 to indicate # no committed offset was retrieved if response.offset == OFFSET_NOT_COMMITTED: self._fetch_offset = OFFSET_EARLIEST else: self._fetch_offset = response.offset + 1 self._last_committed_offset = response.offset self._do_fetch()
python
{ "resource": "" }
q5359
Consumer._handle_offset_error
train
def _handle_offset_error(self, failure): """ Retry the offset fetch request if appropriate. Once the :attr:`.retry_delay` reaches our :attr:`.retry_max_delay`, we log a warning. This should perhaps be extended to abort sooner on certain errors. """ # outstanding request got errback'd, clear it self._request_d = None if self._stopping and failure.check(CancelledError): # Not really an error return # Do we need to abort? if (self.request_retry_max_attempts != 0 and self._fetch_attempt_count >= self.request_retry_max_attempts): log.debug( "%r: Exhausted attempts: %d fetching offset from kafka: %r", self, self.request_retry_max_attempts, failure) self._start_d.errback(failure) return # Decide how to log this failure... If we have retried so many times # we're at the retry_max_delay, then we log at warning every other time # debug otherwise if (self.retry_delay < self.retry_max_delay or 0 == (self._fetch_attempt_count % 2)): log.debug("%r: Failure fetching offset from kafka: %r", self, failure) else: # We've retried until we hit the max delay, log at warn log.warning("%r: Still failing fetching offset from kafka: %r", self, failure) self._retry_fetch()
python
{ "resource": "" }
q5360
Consumer._send_commit_request
train
def _send_commit_request(self, retry_delay=None, attempt=None): """Send a commit request with our last_processed_offset""" # If there's a _commit_call, and it's not active, clear it, it probably # just called us... if self._commit_call and not self._commit_call.active(): self._commit_call = None # Make sure we only have one outstanding commit request at a time if self._commit_req is not None: raise OperationInProgress(self._commit_req) # Handle defaults if retry_delay is None: retry_delay = self.retry_init_delay if attempt is None: attempt = 1 # Create new OffsetCommitRequest with the latest processed offset commit_offset = self._last_processed_offset commit_request = OffsetCommitRequest( self.topic, self.partition, commit_offset, TIMESTAMP_INVALID, self.commit_metadata) log.debug("Committing off=%d grp=%s tpc=%s part=%s req=%r", self._last_processed_offset, self.consumer_group, self.topic, self.partition, commit_request) # Send the request, add our callbacks self._commit_req = d = self.client.send_offset_commit_request( self.consumer_group, [commit_request]) d.addBoth(self._clear_commit_req) d.addCallbacks( self._update_committed_offset, self._handle_commit_error, callbackArgs=(commit_offset,), errbackArgs=(retry_delay, attempt))
python
{ "resource": "" }
q5361
Consumer._handle_commit_error
train
def _handle_commit_error(self, failure, retry_delay, attempt): """ Retry the commit request, depending on failure type Depending on the type of the failure, we retry the commit request with the latest processed offset, or callback/errback self._commit_ds """ # Check if we are stopping and the request was cancelled if self._stopping and failure.check(CancelledError): # Not really an error return self._deliver_commit_result(self._last_committed_offset) # Check that the failure type is a Kafka error...this could maybe be # a tighter check to determine whether a retry will succeed... if not failure.check(KafkaError): log.error("Unhandleable failure during commit attempt: %r\n\t%r", failure, failure.getBriefTraceback()) return self._deliver_commit_result(failure) # Do we need to abort? if (self.request_retry_max_attempts != 0 and attempt >= self.request_retry_max_attempts): log.debug("%r: Exhausted attempts: %d to commit offset: %r", self, self.request_retry_max_attempts, failure) return self._deliver_commit_result(failure) # Check the retry_delay to see if we should log at the higher level # Using attempts % 2 gets us 1-warn/minute with defaults timings if retry_delay < self.retry_max_delay or 0 == (attempt % 2): log.debug("%r: Failure committing offset to kafka: %r", self, failure) else: # We've retried until we hit the max delay, log alternately at warn log.warning("%r: Still failing committing offset to kafka: %r", self, failure) # Schedule a delayed call to retry the commit retry_delay = min(retry_delay * REQUEST_RETRY_FACTOR, self.retry_max_delay) self._commit_call = self.client.reactor.callLater( retry_delay, self._send_commit_request, retry_delay, attempt + 1)
python
{ "resource": "" }
q5362
Consumer._handle_processor_error
train
def _handle_processor_error(self, failure): """Handle a failure in the processing of a block of messages This method is called when the processor func fails while processing a block of messages. Since we can't know how best to handle a processor failure, we just :func:`errback` our :func:`start` method's deferred to let our user know about the failure. """ # Check if we're stopping/stopped and the errback of the processor # deferred is just the cancelling we initiated. If so, we skip # notifying via the _start_d deferred, as it will be 'callback'd at the # end of stop() if not (self._stopping and failure.check(CancelledError)): if self._start_d: # Make sure we're not already stopped self._start_d.errback(failure)
python
{ "resource": "" }
q5363
Consumer._handle_fetch_error
train
def _handle_fetch_error(self, failure): """A fetch request resulted in an error. Retry after our current delay When a fetch error occurs, we check to see if the Consumer is being stopped, and if so just return, trapping the CancelledError. If not, we check if the Consumer has a non-zero setting for :attr:`request_retry_max_attempts` and if so and we have reached that limit we errback() the Consumer's start() deferred with the failure. If not, we determine whether to log at debug or warning (we log at warning every other retry after backing off to the max retry delay, resulting in a warning message approximately once per minute with the default timings) We then wait our current :attr:`retry_delay`, and retry the fetch. We also increase our retry_delay by Apery's constant (1.20205) and note the failed fetch by incrementing :attr:`_fetch_attempt_count`. NOTE: this may retry forever. TODO: Possibly make this differentiate based on the failure """ # The _request_d deferred has fired, clear it. self._request_d = None if failure.check(OffsetOutOfRangeError): if self.auto_offset_reset is None: self._start_d.errback(failure) return self._fetch_offset = self.auto_offset_reset if self._stopping and failure.check(CancelledError): # Not really an error return # Do we need to abort? if (self.request_retry_max_attempts != 0 and self._fetch_attempt_count >= self.request_retry_max_attempts): log.debug( "%r: Exhausted attempts: %d fetching messages from kafka: %r", self, self.request_retry_max_attempts, failure) self._start_d.errback(failure) return # Decide how to log this failure... If we have retried so many times # we're at the retry_max_delay, then we log at warning every other time # debug otherwise if (self.retry_delay < self.retry_max_delay or 0 == (self._fetch_attempt_count % 2)): log.debug("%r: Failure fetching messages from kafka: %r", self, failure) else: # We've retried until we hit the max delay, log at warn log.warning("%r: Still failing fetching messages from kafka: %r", self, failure) self._retry_fetch()
python
{ "resource": "" }
q5364
Consumer._handle_fetch_response
train
def _handle_fetch_response(self, responses): """The callback handling the successful response from the fetch request Delivers the message list to the processor, handles per-message errors (ConsumerFetchSizeTooSmall), triggers another fetch request If the processor is still processing the last batch of messages, we defer this processing until it's done. Otherwise, we start another fetch request and submit the messages to the processor """ # Successful fetch, reset our retry delay self.retry_delay = self.retry_init_delay self._fetch_attempt_count = 1 # Check to see if we are still processing the last block we fetched... if self._msg_block_d: # We are still working through the last block of messages... # We have to wait until it's done, then process this response self._msg_block_d.addCallback( lambda _: self._handle_fetch_response(responses)) return # No ongoing processing, great, let's get some started. # Request no longer outstanding, clear the deferred tracker so we # can refetch self._request_d = None messages = [] try: for resp in responses: # We should really only ever get one... if resp.partition != self.partition: log.warning( "%r: Got response with partition: %r not our own: %r", self, resp.partition, self.partition) continue # resp.messages is a KafkaCodec._decode_message_set_iter # Note that 'message' here is really an OffsetAndMessage for message in resp.messages: # Check for messages included which are from prior to our # desired offset: can happen due to compressed message sets if message.offset < self._fetch_offset: log.debug( 'Skipping message at offset: %d, because its ' 'offset is less that our fetch offset: %d.', message.offset, self._fetch_offset) continue # Create a 'SourcedMessage' and add it to the messages list messages.append( SourcedMessage( message=message.message, offset=message.offset, topic=self.topic, partition=self.partition)) # Update our notion of from where to fetch. self._fetch_offset = message.offset + 1 except ConsumerFetchSizeTooSmall: # A message was too large for us to receive, given our current # buffer size. Grow it until it works, or we hit our max # Grow by 16x up to 1MB (could result in 16MB buf), then by 2x factor = 2 if self.buffer_size <= 2**20: factor = 16 if self.max_buffer_size is None: # No limit, increase until we succeed or fail to alloc RAM self.buffer_size *= factor elif (self.max_buffer_size is not None and self.buffer_size < self.max_buffer_size): # Limited, but currently below it. self.buffer_size = min( self.buffer_size * factor, self.max_buffer_size) else: # We failed, and are already at our max. Nothing we can do but # create a Failure and errback() our start() deferred log.error("Max fetch size %d too small", self.max_buffer_size) failure = Failure( ConsumerFetchSizeTooSmall( "Max buffer size:%d too small for message", self.max_buffer_size)) self._start_d.errback(failure) return log.debug( "Next message larger than fetch size, increasing " "to %d (~2x) and retrying", self.buffer_size) finally: # If we were able to extract any messages, deliver them to the # processor now. if messages: self._msg_block_d = Deferred() self._process_messages(messages) # start another fetch, if needed, but use callLater to avoid recursion self._retry_fetch(0)
python
{ "resource": "" }
q5365
Consumer._process_messages
train
def _process_messages(self, messages): """Send messages to the `processor` callback to be processed In the case we have a commit policy, we send messages to the processor in blocks no bigger than auto_commit_every_n (if set). Otherwise, we send the entire message block to be processed. """ # Have we been told to shutdown? if self._shuttingdown: return # Do we have any messages to process? if not messages: # No, we're done with this block. If we had another fetch result # waiting, this callback will trigger the processing thereof. if self._msg_block_d: _msg_block_d, self._msg_block_d = self._msg_block_d, None _msg_block_d.callback(True) return # Yes, we've got some messages to process. # Default to processing the entire block... proc_block_size = sys.maxsize # Unless our auto commit_policy restricts us to process less if self.auto_commit_every_n: proc_block_size = self.auto_commit_every_n # Divide messages into two lists: one to process now, and remainder msgs_to_proc = messages[:proc_block_size] msgs_remainder = messages[proc_block_size:] # Call our processor callable and handle the possibility it returned # a deferred... last_offset = msgs_to_proc[-1].offset self._processor_d = d = maybeDeferred(self.processor, self, msgs_to_proc) log.debug('self.processor return: %r, last_offset: %r', d, last_offset) # Once the processor completes, clear our _processor_d d.addBoth(self._clear_processor_deferred) # Record the offset of the last processed message and check autocommit d.addCallback(self._update_processed_offset, last_offset) # If we were stopped, cancel the processor deferred. Note, we have to # do this here, in addition to in stop() because the processor func # itself could have called stop(), and then when it returned, we re-set # self._processor_d to the return of maybeDeferred(). if self._stopping or self._start_d is None: d.cancel() else: # Setup to process the rest of our messages d.addCallback(lambda _: self._process_messages(msgs_remainder)) # Add an error handler d.addErrback(self._handle_processor_error)
python
{ "resource": "" }
q5366
Consumer._do_fetch
train
def _do_fetch(self): """Send a fetch request if there isn't a request outstanding Sends a fetch request to the Kafka cluster to get messages at the current offset. When the response comes back, if there are messages, it delivers them to the :attr:`processor` callback and initiates another fetch request. If there is a recoverable error, the fetch is retried after :attr:`retry_delay`. In the case of an unrecoverable error, :func:`errback` is called on the :class:`Deferred` returned by :meth:`start()`. """ # Check for outstanding request. if self._request_d: log.debug("_do_fetch: Outstanding request: %r", self._request_d) return # Cleanup our _retry_call, if we have one if self._retry_call is not None: if self._retry_call.active(): self._retry_call.cancel() self._retry_call = None # Do we know our offset yet, or do we need to figure it out? if (self._fetch_offset == OFFSET_EARLIEST or self._fetch_offset == OFFSET_LATEST): # We need to fetch the offset for our topic/partition offset_request = OffsetRequest( self.topic, self.partition, self._fetch_offset, 1) self._request_d = self.client.send_offset_request([offset_request]) self._request_d.addCallbacks( self._handle_offset_response, self._handle_offset_error) elif self._fetch_offset == OFFSET_COMMITTED: # We need to fetch the committed offset for our topic/partition # Note we use the same callbacks, as the responses are "close # enough" for our needs here if not self.consumer_group: # consumer_group must be set for OFFSET_COMMITTED failure = Failure( InvalidConsumerGroupError("Bad Group_id:{0!r}".format( self.consumer_group))) self._start_d.errback(failure) request = OffsetFetchRequest(self.topic, self.partition) self._request_d = self.client.send_offset_fetch_request( self.consumer_group, [request]) self._request_d.addCallbacks( self._handle_offset_response, self._handle_offset_error) else: # Create fetch request payload for our partition request = FetchRequest( self.topic, self.partition, self._fetch_offset, self.buffer_size) # Send request and add handlers for the response self._request_d = self.client.send_fetch_request( [request], max_wait_time=self.fetch_max_wait_time, min_bytes=self.fetch_min_bytes) # We need a temp for this because if the response is already # available, _handle_fetch_response() will clear self._request_d d = self._request_d d.addCallback(self._handle_fetch_response) d.addErrback(self._handle_fetch_error)
python
{ "resource": "" }
q5367
HashedPartitioner.partition
train
def partition(self, key, partitions): """ Select a partition based on the hash of the key. :param key: Partition key :type key: text string or UTF-8 `bytes` or `bytearray` :param list partitions: An indexed sequence of partition identifiers. :returns: One of the given partition identifiers. The result will be the same each time the same key and partition list is passed. """ return partitions[(self._hash(key) & 0x7FFFFFFF) % len(partitions)]
python
{ "resource": "" }
q5368
snappy_encode
train
def snappy_encode(payload, xerial_compatible=False, xerial_blocksize=32 * 1024): """ Compress the given data with the Snappy algorithm. :param bytes payload: Data to compress. :param bool xerial_compatible: If set then the stream is broken into length-prefixed blocks in a fashion compatible with the xerial snappy library. The format winds up being:: +-------------+------------+--------------+------------+--------------+ | Header | Block1_len | Block1 data | BlockN len | BlockN data | |-------------+------------+--------------+------------+--------------| | 16 bytes | BE int32 | snappy bytes | BE int32 | snappy bytes | +-------------+------------+--------------+------------+--------------+ :param int xerial_blocksize: Number of bytes per chunk to independently Snappy encode. 32k is the default in the xerial library. :returns: Compressed bytes. :rtype: :class:`bytes` """ if not has_snappy(): # FIXME This should be static, not checked every call. raise NotImplementedError("Snappy codec is not available") if xerial_compatible: def _chunker(): for i in range(0, len(payload), xerial_blocksize): yield payload[i:i+xerial_blocksize] out = BytesIO() out.write(_XERIAL_HEADER) for chunk in _chunker(): block = snappy.compress(chunk) out.write(struct.pack('!i', len(block))) out.write(block) out.seek(0) return out.read() else: return snappy.compress(payload)
python
{ "resource": "" }
q5369
VideoFile._get_video_info
train
def _get_video_info(self): """ Returns basic information about the video as dictionary. """ if not hasattr(self, '_info_cache'): encoding_backend = get_backend() try: path = os.path.abspath(self.path) except AttributeError: path = os.path.abspath(self.name) self._info_cache = encoding_backend.get_media_info(path) return self._info_cache
python
{ "resource": "" }
q5370
FFmpegBackend.encode
train
def encode(self, source_path, target_path, params): # NOQA: C901 """ Encodes a video to a specified file. All encoder specific options are passed in using `params`. """ total_time = self.get_media_info(source_path)['duration'] cmds = [self.ffmpeg_path, '-i', source_path] cmds.extend(self.params) cmds.extend(params) cmds.extend([target_path]) process = self._spawn(cmds) buf = output = '' # update progress while True: # any more data? out = process.stderr.read(10) if not out: break out = out.decode(console_encoding) output += out buf += out try: line, buf = buf.split('\r', 1) except ValueError: continue try: time_str = RE_TIMECODE.findall(line)[0] except IndexError: continue # convert progress to percent time = 0 for part in time_str.split(':'): time = 60 * time + float(part) percent = time / total_time logger.debug('yield {}%'.format(percent)) yield percent if os.path.getsize(target_path) == 0: raise exceptions.FFmpegError("File size of generated file is 0") # wait for process to exit self._check_returncode(process) logger.debug(output) if not output: raise exceptions.FFmpegError("No output from FFmpeg.") yield 100
python
{ "resource": "" }
q5371
FFmpegBackend.get_media_info
train
def get_media_info(self, video_path): """ Returns information about the given video as dict. """ cmds = [self.ffprobe_path, '-i', video_path] cmds.extend(['-print_format', 'json']) cmds.extend(['-show_format', '-show_streams']) process = self._spawn(cmds) stdout, __ = self._check_returncode(process) media_info = self._parse_media_info(stdout) return { 'duration': float(media_info['format']['duration']), 'width': int(media_info['video'][0]['width']), 'height': int(media_info['video'][0]['height']), }
python
{ "resource": "" }
q5372
FFmpegBackend.get_thumbnail
train
def get_thumbnail(self, video_path, at_time=0.5): """ Extracts an image of a video and returns its path. If the requested thumbnail is not within the duration of the video an `InvalidTimeError` is thrown. """ filename = os.path.basename(video_path) filename, __ = os.path.splitext(filename) _, image_path = tempfile.mkstemp(suffix='_{}.jpg'.format(filename)) video_duration = self.get_media_info(video_path)['duration'] if at_time > video_duration: raise exceptions.InvalidTimeError() thumbnail_time = at_time cmds = [self.ffmpeg_path, '-i', video_path, '-vframes', '1'] cmds.extend(['-ss', str(thumbnail_time), '-y', image_path]) process = self._spawn(cmds) self._check_returncode(process) if not os.path.getsize(image_path): # we somehow failed to generate thumbnail os.unlink(image_path) raise exceptions.InvalidTimeError() return image_path
python
{ "resource": "" }
q5373
convert_all_videos
train
def convert_all_videos(app_label, model_name, object_pk): """ Automatically converts all videos of a given instance. """ # get instance Model = apps.get_model(app_label=app_label, model_name=model_name) instance = Model.objects.get(pk=object_pk) # search for `VideoFields` fields = instance._meta.fields for field in fields: if isinstance(field, VideoField): if not getattr(instance, field.name): # ignore empty fields continue # trigger conversion fieldfile = getattr(instance, field.name) convert_video(fieldfile)
python
{ "resource": "" }
q5374
convert_video
train
def convert_video(fieldfile, force=False): """ Converts a given video file into all defined formats. """ instance = fieldfile.instance field = fieldfile.field filename = os.path.basename(fieldfile.path) source_path = fieldfile.path encoding_backend = get_backend() for options in settings.VIDEO_ENCODING_FORMATS[encoding_backend.name]: video_format, created = Format.objects.get_or_create( object_id=instance.pk, content_type=ContentType.objects.get_for_model(instance), field_name=field.name, format=options['name']) # do not reencode if not requested if video_format.file and not force: continue else: # set progress to 0 video_format.reset_progress() # TODO do not upscale videos _, target_path = tempfile.mkstemp( suffix='_{name}.{extension}'.format(**options)) try: encoding = encoding_backend.encode( source_path, target_path, options['params']) while encoding: try: progress = next(encoding) except StopIteration: break video_format.update_progress(progress) except VideoEncodingError: # TODO handle with more care video_format.delete() os.remove(target_path) continue # save encoded file video_format.file.save( '{filename}_{name}.{extension}'.format(filename=filename, **options), File(open(target_path, mode='rb'))) video_format.update_progress(100) # now we are ready # remove temporary file os.remove(target_path)
python
{ "resource": "" }
q5375
Firefly.distance_to
train
def distance_to(self, other): """Return Euclidian distance between self and other Firefly""" return np.linalg.norm(self.position-other.position)
python
{ "resource": "" }
q5376
Firefly.compute_intensity
train
def compute_intensity(self, _cost_func): """Evaluate cost function and compute intensity at this position""" self.evaluate(_cost_func) self.intensity = 1 / self.time
python
{ "resource": "" }
q5377
Firefly.move_towards
train
def move_towards(self, other, beta, alpha): """Move firefly towards another given beta and alpha values""" self.position += beta * (other.position - self.position) self.position += alpha * (np.random.uniform(-0.5, 0.5, len(self.position))) self.position = np.minimum(self.position, [b[1] for b in self.bounds]) self.position = np.maximum(self.position, [b[0] for b in self.bounds])
python
{ "resource": "" }
q5378
DeviceInterface.benchmark
train
def benchmark(self, func, gpu_args, instance, times, verbose): """benchmark the kernel instance""" logging.debug('benchmark ' + instance.name) logging.debug('thread block dimensions x,y,z=%d,%d,%d', *instance.threads) logging.debug('grid dimensions x,y,z=%d,%d,%d', *instance.grid) time = None try: time = self.dev.benchmark(func, gpu_args, instance.threads, instance.grid, times) except Exception as e: #some launches may fail because too many registers are required #to run the kernel given the current thread block size #the desired behavior is to simply skip over this configuration #and proceed to try the next one skippable_exceptions = ["too many resources requested for launch", "OUT_OF_RESOURCES", "INVALID_WORK_GROUP_SIZE"] if any([skip_str in str(e) for skip_str in skippable_exceptions]): logging.debug('benchmark fails due to runtime failure too many resources required') if verbose: print("skipping config", instance.name, "reason: too many resources requested for launch") else: logging.debug('benchmark encountered runtime failure: ' + str(e)) print("Error while benchmarking:", instance.name) raise e return time
python
{ "resource": "" }
q5379
DeviceInterface.check_kernel_output
train
def check_kernel_output(self, func, gpu_args, instance, answer, atol, verify, verbose): """runs the kernel once and checks the result against answer""" logging.debug('check_kernel_output') #if not using custom verify function, check if the length is the same if not verify and len(instance.arguments) != len(answer): raise TypeError("The length of argument list and provided results do not match.") #zero GPU memory for output arguments for i, arg in enumerate(instance.arguments): if verify or answer[i] is not None: if isinstance(arg, numpy.ndarray): self.dev.memcpy_htod(gpu_args[i], arg) #run the kernel check = self.run_kernel(func, gpu_args, instance) if not check: return True #runtime failure occured that should be ignored, skip correctness check #retrieve gpu results to host memory result_host = [] for i, arg in enumerate(instance.arguments): if verify or answer[i] is not None: if isinstance(arg, numpy.ndarray): result_host.append(numpy.zeros_like(arg)) self.dev.memcpy_dtoh(result_host[-1], gpu_args[i]) else: result_host.append(None) #if the user has specified a custom verify function, then call it, else use default based on numpy allclose if verify: try: return verify(answer, result_host, atol=atol) except TypeError: return verify(answer, result_host) else: return _default_verify_function(instance, answer, result_host, atol, verbose)
python
{ "resource": "" }
q5380
DeviceInterface.compile_and_benchmark
train
def compile_and_benchmark(self, gpu_args, params, kernel_options, tuning_options): """ Compile and benchmark a kernel instance based on kernel strings and parameters """ instance_string = util.get_instance_string(params) logging.debug('compile_and_benchmark ' + instance_string) mem_usage = round(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024.0, 1) logging.debug('Memory usage : %2.2f MB', mem_usage) verbose = tuning_options.verbose instance = self.create_kernel_instance(kernel_options, params, verbose) if instance is None: return None try: #compile the kernel func = self.compile_kernel(instance, verbose) if func is None: return None #add constant memory arguments to compiled module if kernel_options.cmem_args is not None: self.dev.copy_constant_memory_args(kernel_options.cmem_args) #add texture memory arguments to compiled module if kernel_options.texmem_args is not None: self.dev.copy_texture_memory_args(kernel_options.texmem_args) #test kernel for correctness and benchmark if tuning_options.answer is not None: self.check_kernel_output(func, gpu_args, instance, tuning_options.answer, tuning_options.atol, tuning_options.verify, verbose) #benchmark time = self.benchmark(func, gpu_args, instance, tuning_options.times, verbose) except Exception as e: #dump kernel_string to temp file temp_filename = util.get_temp_filename(suffix=".c") util.write_file(temp_filename, instance.kernel_string) print("Error while compiling or benchmarking, see source files: " + temp_filename + " ".join(instance.temp_files.values())) raise e #clean up any temporary files, if no error occured for v in instance.temp_files.values(): util.delete_temp_file(v) return time
python
{ "resource": "" }
q5381
DeviceInterface.compile_kernel
train
def compile_kernel(self, instance, verbose): """compile the kernel for this specific instance""" logging.debug('compile_kernel ' + instance.name) #compile kernel_string into device func func = None try: func = self.dev.compile(instance.name, instance.kernel_string) except Exception as e: #compiles may fail because certain kernel configurations use too #much shared memory for example, the desired behavior is to simply #skip over this configuration and try the next one if "uses too much shared data" in str(e): logging.debug('compile_kernel failed due to kernel using too much shared memory') if verbose: print("skipping config", instance.name, "reason: too much shared memory used") else: logging.debug('compile_kernel failed due to error: ' + str(e)) print("Error while compiling:", instance.name) raise e return func
python
{ "resource": "" }
q5382
DeviceInterface.copy_constant_memory_args
train
def copy_constant_memory_args(self, cmem_args): """adds constant memory arguments to the most recently compiled module, if using CUDA""" if self.lang == "CUDA": self.dev.copy_constant_memory_args(cmem_args) else: raise Exception("Error cannot copy constant memory arguments when language is not CUDA")
python
{ "resource": "" }
q5383
DeviceInterface.copy_texture_memory_args
train
def copy_texture_memory_args(self, texmem_args): """adds texture memory arguments to the most recently compiled module, if using CUDA""" if self.lang == "CUDA": self.dev.copy_texture_memory_args(texmem_args) else: raise Exception("Error cannot copy texture memory arguments when language is not CUDA")
python
{ "resource": "" }
q5384
DeviceInterface.create_kernel_instance
train
def create_kernel_instance(self, kernel_options, params, verbose): """create kernel instance from kernel source, parameters, problem size, grid divisors, and so on""" instance_string = util.get_instance_string(params) grid_div = (kernel_options.grid_div_x, kernel_options.grid_div_y, kernel_options.grid_div_z) #insert default block_size_names if needed if not kernel_options.block_size_names: kernel_options.block_size_names = util.default_block_size_names #setup thread block and grid dimensions threads, grid = util.setup_block_and_grid(kernel_options.problem_size, grid_div, params, kernel_options.block_size_names) if numpy.prod(threads) > self.dev.max_threads: if verbose: print("skipping config", instance_string, "reason: too many threads per block") return None #obtain the kernel_string and prepare additional files, if any temp_files = dict() kernel_source = kernel_options.kernel_string if not isinstance(kernel_source, list): kernel_source = [kernel_source] name, kernel_string, temp_files = util.prepare_list_of_files(kernel_options.kernel_name, kernel_source, params, grid, threads, kernel_options.block_size_names) #collect everything we know about this instance and return it return KernelInstance(name, kernel_string, temp_files, threads, grid, params, kernel_options.arguments)
python
{ "resource": "" }
q5385
DeviceInterface.run_kernel
train
def run_kernel(self, func, gpu_args, instance): """ Run a compiled kernel instance on a device """ logging.debug('run_kernel %s', instance.name) logging.debug('thread block dims (%d, %d, %d)', *instance.threads) logging.debug('grid dims (%d, %d, %d)', *instance.grid) try: self.dev.run_kernel(func, gpu_args, instance.threads, instance.grid) except Exception as e: if "too many resources requested for launch" in str(e) or "OUT_OF_RESOURCES" in str(e): logging.debug('ignoring runtime failure due to too many resources required') return False else: logging.debug('encountered unexpected runtime failure: ' + str(e)) raise e return True
python
{ "resource": "" }
q5386
NoodlesRunner.run
train
def run(self, parameter_space, kernel_options, tuning_options): """ Tune all instances in parameter_space using a multiple threads :param parameter_space: The parameter space as an iterable. :type parameter_space: iterable :param kernel_options: A dictionary with all options for the kernel. :type kernel_options: kernel_tuner.interface.Options :param tuning_options: A dictionary with all options regarding the tuning process. :type tuning_options: kernel_tuner.interface.Options :returns: A list of dictionaries for executed kernel configurations and their execution times. And a dictionary that contains a information about the hardware/software environment on which the tuning took place. :rtype: list(dict()), dict() """ workflow = self._parameter_sweep(parameter_space, kernel_options, self.device_options, tuning_options) if tuning_options.verbose: with NCDisplay(_error_filter) as display: answer = run_parallel_with_display(workflow, self.max_threads, display) else: answer = run_parallel(workflow, self.max_threads) if answer is None: print("Tuning did not return any results, did an error occur?") return None # Filter out None times result = [] for chunk in answer: result += [d for d in chunk if d['time']] return result, {}
python
{ "resource": "" }
q5387
NoodlesRunner._parameter_sweep
train
def _parameter_sweep(self, parameter_space, kernel_options, device_options, tuning_options): """Build a Noodles workflow by sweeping the parameter space""" results = [] #randomize parameter space to do pseudo load balancing parameter_space = list(parameter_space) random.shuffle(parameter_space) #split parameter space into chunks work_per_thread = int(numpy.ceil(len(parameter_space) / float(self.max_threads))) chunks = _chunk_list(parameter_space, work_per_thread) for chunk in chunks: chunked_result = self._run_chunk(chunk, kernel_options, device_options, tuning_options) results.append(lift(chunked_result)) return gather(*results)
python
{ "resource": "" }
q5388
NoodlesRunner._run_chunk
train
def _run_chunk(self, chunk, kernel_options, device_options, tuning_options): """Benchmark a single kernel instance in the parameter space""" #detect language and create high-level device interface self.dev = DeviceInterface(kernel_options.kernel_string, iterations=tuning_options.iterations, **device_options) #move data to the GPU gpu_args = self.dev.ready_argument_list(kernel_options.arguments) results = [] for element in chunk: params = dict(OrderedDict(zip(tuning_options.tune_params.keys(), element))) try: time = self.dev.compile_and_benchmark(gpu_args, params, kernel_options, tuning_options) params['time'] = time results.append(params) except Exception: params['time'] = None results.append(params) return results
python
{ "resource": "" }
q5389
tune
train
def tune(runner, kernel_options, device_options, tuning_options): """ Tune a random sample of sample_fraction fraction in the parameter space :params runner: A runner from kernel_tuner.runners :type runner: kernel_tuner.runner :param kernel_options: A dictionary with all options for the kernel. :type kernel_options: kernel_tuner.interface.Options :param device_options: A dictionary with all options for the device on which the kernel should be tuned. :type device_options: kernel_tuner.interface.Options :param tuning_options: A dictionary with all options regarding the tuning process. :type tuning_options: kernel_tuner.interface.Options :returns: A list of dictionaries for executed kernel configurations and their execution times. And a dictionary that contains a information about the hardware/software environment on which the tuning took place. :rtype: list(dict()), dict() """ tune_params = tuning_options.tune_params #compute cartesian product of all tunable parameters parameter_space = itertools.product(*tune_params.values()) #check for search space restrictions if tuning_options.restrictions is not None: parameter_space = filter(lambda p: util.check_restrictions(tuning_options.restrictions, p, tune_params.keys(), tuning_options.verbose), parameter_space) #reduce parameter space to a random sample using sample_fraction parameter_space = numpy.array(list(parameter_space)) size = len(parameter_space) fraction = int(numpy.ceil(size * float(tuning_options.sample_fraction))) sample_indices = numpy.random.choice(range(size), size=fraction, replace=False) parameter_space = parameter_space[sample_indices] #call the runner results, env = runner.run(parameter_space, kernel_options, tuning_options) return results, env
python
{ "resource": "" }
q5390
check_argument_type
train
def check_argument_type(dtype, kernel_argument, i): """check if the numpy.dtype matches the type used in the code""" types_map = {"uint8": ["uchar", "unsigned char", "uint8_t"], "int8": ["char", "int8_t"], "uint16": ["ushort", "unsigned short", "uint16_t"], "int16": ["short", "int16_t"], "uint32": ["uint", "unsigned int", "uint32_t"], "int32": ["int", "int32_t"], #discrepancy between OpenCL and C here, long may be 32bits in C "uint64": ["ulong", "unsigned long", "uint64_t"], "int64": ["long", "int64_t"], "float16": ["half"], "float32": ["float"], "float64": ["double"]} if dtype in types_map: return any([substr in kernel_argument for substr in types_map[dtype]]) else: return False
python
{ "resource": "" }
q5391
check_argument_list
train
def check_argument_list(kernel_name, kernel_string, args): """ raise an exception if a kernel arguments do not match host arguments """ kernel_arguments = list() collected_errors = list() for iterator in re.finditer(kernel_name + "[ \n\t]*" + "\(", kernel_string): kernel_start = iterator.end() kernel_end = kernel_string.find(")", kernel_start) if kernel_start != 0: kernel_arguments.append(kernel_string[kernel_start:kernel_end].split(",")) for arguments_set, arguments in enumerate(kernel_arguments): collected_errors.append(list()) if len(arguments) != len(args): collected_errors[arguments_set].append("Kernel and host argument lists do not match in size.") continue for (i, arg) in enumerate(args): kernel_argument = arguments[i] if not isinstance(arg, (numpy.ndarray, numpy.generic)): raise TypeError("Argument at position " + str(i) + " of type: " + str(type(arg)) + " should be of type numpy.ndarray or numpy scalar") correct = True if isinstance(arg, numpy.ndarray) and not "*" in kernel_argument: correct = False #array is passed to non-pointer kernel argument if correct and check_argument_type(str(arg.dtype), kernel_argument, i): continue collected_errors[arguments_set].append("Argument at position " + str(i) + " of dtype: " + str(arg.dtype) + " does not match " + kernel_argument + ".") if not collected_errors[arguments_set]: # We assume that if there is a possible list of arguments that matches with the provided one # it is the right one return for errors in collected_errors: warnings.warn(errors[0], UserWarning)
python
{ "resource": "" }
q5392
check_tune_params_list
train
def check_tune_params_list(tune_params): """ raise an exception if a tune parameter has a forbidden name """ forbidden_names = ("grid_size_x", "grid_size_y", "grid_size_z") forbidden_name_substr = ("time", "times") for name, param in tune_params.items(): if name in forbidden_names: raise ValueError("Tune parameter " + name + " with value " + str(param) + " has a forbidden name!") for forbidden_substr in forbidden_name_substr: if forbidden_substr in name: raise ValueError("Tune parameter " + name + " with value " + str(param) + " has a forbidden name: not allowed to use " + forbidden_substr + " in tune parameter names!")
python
{ "resource": "" }
q5393
check_restrictions
train
def check_restrictions(restrictions, element, keys, verbose): """ check whether a specific instance meets the search space restrictions """ params = OrderedDict(zip(keys, element)) for restrict in restrictions: if not eval(replace_param_occurrences(restrict, params)): if verbose: print("skipping config", get_instance_string(params), "reason: config fails restriction") return False return True
python
{ "resource": "" }
q5394
detect_language
train
def detect_language(lang, kernel_source): """attempt to detect language from the kernel_string if not specified""" if lang is None: if callable(kernel_source): raise TypeError("Please specify language when using a code generator function") kernel_string = get_kernel_string(kernel_source) if "__global__" in kernel_string: lang = "CUDA" elif "__kernel" in kernel_string: lang = "OpenCL" else: lang = "C" return lang
python
{ "resource": "" }
q5395
get_config_string
train
def get_config_string(params, units=None): """ return a compact string representation of a dictionary """ compact_str_items = [] # first make a list of compact strings for each parameter for k, v in params.items(): unit = "" if isinstance(units, dict): #check if not None not enough, units could be mocked which causes errors unit = units.get(k, "") compact_str_items.append(k + "=" + str(v) + unit) # and finally join them compact_str = ", ".join(compact_str_items) return compact_str
python
{ "resource": "" }
q5396
get_grid_dimensions
train
def get_grid_dimensions(current_problem_size, params, grid_div, block_size_names): """compute grid dims based on problem sizes and listed grid divisors""" def get_dimension_divisor(divisor_list, default, params): if divisor_list is None: if default in params: divisor_list = [default] else: return 1 return numpy.prod([int(eval(replace_param_occurrences(s, params))) for s in divisor_list]) divisors = [get_dimension_divisor(d, block_size_names[i], params) for i, d in enumerate(grid_div)] return tuple(int(numpy.ceil(float(current_problem_size[i]) / float(d))) for i, d in enumerate(divisors))
python
{ "resource": "" }
q5397
get_kernel_string
train
def get_kernel_string(kernel_source, params=None): """ retrieve the kernel source and return as a string This function processes the passed kernel_source argument, which could be a function, a string with a filename, or just a string with code already. If kernel_source is a function, the function is called with instance parameters in 'params' as the only argument. If kernel_source looks like filename, the file is read in, but if the file does not exist, it is assumed that the string is not a filename after all. :param kernel_source: One of the sources for the kernel, could be a function that generates the kernel code, a string containing a filename that points to the kernel source, or just a string that contains the code. :type kernel_source: string or callable :param params: Dictionary containing the tunable parameters for this specific kernel instance, only needed when kernel_source is a generator. :type param: dict :returns: A string containing the kernel code. :rtype: string """ #logging.debug('get_kernel_string called with %s', str(kernel_source)) logging.debug('get_kernel_string called') kernel_string = None if callable(kernel_source): kernel_string = kernel_source(params) elif isinstance(kernel_source, str): if looks_like_a_filename(kernel_source): kernel_string = read_file(kernel_source) or kernel_source else: kernel_string = kernel_source else: raise TypeError("Error kernel_source is not a string nor a callable function") return kernel_string
python
{ "resource": "" }
q5398
get_problem_size
train
def get_problem_size(problem_size, params): """compute current problem size""" if isinstance(problem_size, (str, int, numpy.integer)): problem_size = (problem_size, ) current_problem_size = [1, 1, 1] for i, s in enumerate(problem_size): if isinstance(s, str): current_problem_size[i] = int(eval(replace_param_occurrences(s, params))) elif isinstance(s, (int, numpy.integer)): current_problem_size[i] = s else: raise TypeError("Error: problem_size should only contain strings or integers") return current_problem_size
python
{ "resource": "" }
q5399
get_temp_filename
train
def get_temp_filename(suffix=None): """ return a string in the form of temp_X, where X is a large integer """ file = tempfile.mkstemp(suffix=suffix or "", prefix="temp_", dir=os.getcwd()) # or "" for Python 2 compatibility os.close(file[0]) return file[1]
python
{ "resource": "" }