_id
stringlengths
2
7
title
stringlengths
1
88
partition
stringclasses
3 values
text
stringlengths
75
19.8k
language
stringclasses
1 value
meta_information
dict
q4900
add_uniform_time_weights
train
def add_uniform_time_weights(ds): """Append uniform time weights to a Dataset. All DataArrays with a time coordinate require a time weights coordinate. For Datasets read in without a time bounds coordinate or explicit time weights built in, aospy adds uniform time weights at each point in the time coordinate. Parameters ---------- ds : Dataset Input data Returns ------- Dataset """ time = ds[TIME_STR] unit_interval = time.attrs['units'].split('since')[0].strip() time_weights = xr.ones_like(time) time_weights.attrs['units'] = unit_interval del time_weights.attrs['calendar'] ds[TIME_WEIGHTS_STR] = time_weights return ds
python
{ "resource": "" }
q4901
_assert_has_data_for_time
train
def _assert_has_data_for_time(da, start_date, end_date): """Check to make sure data is in Dataset for the given time range. Parameters ---------- da : DataArray DataArray with a time variable start_date : datetime-like object or str start date end_date : datetime-like object or str end date Raises ------ AssertionError If the time range is not within the time range of the DataArray """ if isinstance(start_date, str) and isinstance(end_date, str): logging.warning( 'When using strings to specify start and end dates, the check ' 'to determine if data exists for the full extent of the desired ' 'interval is not implemented. Therefore it is possible that ' 'you are doing a calculation for a lesser interval than you ' 'specified. If you would like this check to occur, use explicit ' 'datetime-like objects for bounds instead.') return if RAW_START_DATE_STR in da.coords: with warnings.catch_warnings(record=True): da_start = da[RAW_START_DATE_STR].values da_end = da[RAW_END_DATE_STR].values else: times = da.time.isel(**{TIME_STR: [0, -1]}) da_start, da_end = times.values message = ('Data does not exist for requested time range: {0} to {1};' ' found data from time range: {2} to {3}.') # Add tolerance of one second, due to precision of cftime.datetimes tol = datetime.timedelta(seconds=1) if isinstance(da_start, np.datetime64): tol = np.timedelta64(tol, 'ns') range_exists = ((da_start - tol) <= start_date and (da_end + tol) >= end_date) assert (range_exists), message.format(start_date, end_date, da_start, da_end)
python
{ "resource": "" }
q4902
sel_time
train
def sel_time(da, start_date, end_date): """Subset a DataArray or Dataset for a given date range. Ensures that data are present for full extent of requested range. Appends start and end date of the subset to the DataArray. Parameters ---------- da : DataArray or Dataset data to subset start_date : np.datetime64 start of date interval end_date : np.datetime64 end of date interval Returns ---------- da : DataArray or Dataset subsetted data Raises ------ AssertionError if data for requested range do not exist for part or all of requested range """ _assert_has_data_for_time(da, start_date, end_date) da[SUBSET_START_DATE_STR] = xr.DataArray(start_date) da[SUBSET_END_DATE_STR] = xr.DataArray(end_date) return da.sel(**{TIME_STR: slice(start_date, end_date)})
python
{ "resource": "" }
q4903
assert_matching_time_coord
train
def assert_matching_time_coord(arr1, arr2): """Check to see if two DataArrays have the same time coordinate. Parameters ---------- arr1 : DataArray or Dataset First DataArray or Dataset arr2 : DataArray or Dataset Second DataArray or Dataset Raises ------ ValueError If the time coordinates are not identical between the two Datasets """ message = ('Time weights not indexed by the same time coordinate as' ' computed data. This will lead to an improperly computed' ' time weighted average. Exiting.\n' 'arr1: {}\narr2: {}') if not (arr1[TIME_STR].identical(arr2[TIME_STR])): raise ValueError(message.format(arr1[TIME_STR], arr2[TIME_STR]))
python
{ "resource": "" }
q4904
ensure_time_as_index
train
def ensure_time_as_index(ds): """Ensures that time is an indexed coordinate on relevant quantites. Sometimes when the data we load from disk has only one timestep, the indexing of time-defined quantities in the resulting xarray.Dataset gets messed up, in that the time bounds array and data variables don't get indexed by time, even though they should. Therefore, we need this helper function to (possibly) correct this. Note that this must be applied before CF-conventions are decoded; otherwise it casts ``np.datetime64[ns]`` as ``int`` values. Parameters ---------- ds : Dataset Dataset with a time coordinate Returns ------- Dataset """ time_indexed_coords = {TIME_WEIGHTS_STR, TIME_BOUNDS_STR} time_indexed_vars = set(ds.data_vars).union(time_indexed_coords) time_indexed_vars = time_indexed_vars.intersection(ds.variables) variables_to_replace = {} for name in time_indexed_vars: if TIME_STR not in ds[name].indexes: da = ds[name] if TIME_STR not in da.dims: da = ds[name].expand_dims(TIME_STR) da = da.assign_coords(**{TIME_STR: ds[TIME_STR]}) variables_to_replace[name] = da return ds.assign(**variables_to_replace)
python
{ "resource": "" }
q4905
infer_year
train
def infer_year(date): """Given a datetime-like object or string infer the year. Parameters ---------- date : datetime-like object or str Input date Returns ------- int Examples -------- >>> infer_year('2000') 2000 >>> infer_year('2000-01') 2000 >>> infer_year('2000-01-31') 2000 >>> infer_year(datetime.datetime(2000, 1, 1)) 2000 >>> infer_year(np.datetime64('2000-01-01')) 2000 >>> infer_year(DatetimeNoLeap(2000, 1, 1)) 2000 >>> """ if isinstance(date, str): # Look for a string that begins with four numbers; the first four # numbers found are the year. pattern = r'(?P<year>\d{4})' result = re.match(pattern, date) if result: return int(result.groupdict()['year']) else: raise ValueError('Invalid date string provided: {}'.format(date)) elif isinstance(date, np.datetime64): return date.item().year else: return date.year
python
{ "resource": "" }
q4906
maybe_convert_to_index_date_type
train
def maybe_convert_to_index_date_type(index, date): """Convert a datetime-like object to the index's date type. Datetime indexing in xarray can be done using either a pandas DatetimeIndex or a CFTimeIndex. Both support partial-datetime string indexing regardless of the calendar type of the underlying data; therefore if a string is passed as a date, we return it unchanged. If a datetime-like object is provided, it will be converted to the underlying date type of the index. For a DatetimeIndex that is np.datetime64; for a CFTimeIndex that is an object of type cftime.datetime specific to the calendar used. Parameters ---------- index : pd.Index Input time index date : datetime-like object or str Input datetime Returns ------- date of the type appropriate for the time index of the Dataset """ if isinstance(date, str): return date if isinstance(index, pd.DatetimeIndex): if isinstance(date, np.datetime64): return date else: return np.datetime64(str(date)) else: date_type = index.date_type if isinstance(date, date_type): return date else: if isinstance(date, np.datetime64): # Convert to datetime.date or datetime.datetime object date = date.item() if isinstance(date, datetime.date): # Convert to a datetime.datetime object date = datetime.datetime.combine( date, datetime.datetime.min.time()) return date_type(date.year, date.month, date.day, date.hour, date.minute, date.second, date.microsecond)
python
{ "resource": "" }
q4907
Region._make_mask
train
def _make_mask(self, data, lon_str=LON_STR, lat_str=LAT_STR): """Construct the mask that defines a region on a given data's grid.""" mask = False for west, east, south, north in self.mask_bounds: if west < east: mask_lon = (data[lon_str] > west) & (data[lon_str] < east) else: mask_lon = (data[lon_str] < west) | (data[lon_str] > east) mask_lat = (data[lat_str] > south) & (data[lat_str] < north) mask |= mask_lon & mask_lat return mask
python
{ "resource": "" }
q4908
Region.mask_var
train
def mask_var(self, data, lon_cyclic=True, lon_str=LON_STR, lat_str=LAT_STR): """Mask the given data outside this region. Parameters ---------- data : xarray.DataArray The array to be regionally masked. lon_cyclic : bool, optional (default True) Whether or not the longitudes of ``data`` span the whole globe, meaning that they should be wrapped around as necessary to cover the Region's full width. lon_str, lat_str : str, optional The names of the longitude and latitude dimensions, respectively, in the data to be masked. Defaults are ``aospy.internal_names.LON_STR`` and ``aospy.internal_names.LON_STR``, respectively. Returns ------- xarray.DataArray The original array with points outside of the region masked. """ # TODO: is this still necessary? if not lon_cyclic: if self.west_bound > self.east_bound: raise ValueError("Longitudes of data to be masked are " "specified as non-cyclic, but Region's " "definition requires wraparound longitudes.") masked = data.where(self._make_mask(data, lon_str=lon_str, lat_str=lat_str)) return masked
python
{ "resource": "" }
q4909
Region.ts
train
def ts(self, data, lon_cyclic=True, lon_str=LON_STR, lat_str=LAT_STR, land_mask_str=LAND_MASK_STR, sfc_area_str=SFC_AREA_STR): """Create yearly time-series of region-averaged data. Parameters ---------- data : xarray.DataArray The array to create the regional timeseries of lon_cyclic : { None, True, False }, optional (default True) Whether or not the longitudes of ``data`` span the whole globe, meaning that they should be wrapped around as necessary to cover the Region's full width. lat_str, lon_str, land_mask_str, sfc_area_str : str, optional The name of the latitude, longitude, land mask, and surface area coordinates, respectively, in ``data``. Defaults are the corresponding values in ``aospy.internal_names``. Returns ------- xarray.DataArray The timeseries of values averaged within the region and within each year, one value per year. """ data_masked = self.mask_var(data, lon_cyclic=lon_cyclic, lon_str=lon_str, lat_str=lat_str) sfc_area = data[sfc_area_str] sfc_area_masked = self.mask_var(sfc_area, lon_cyclic=lon_cyclic, lon_str=lon_str, lat_str=lat_str) land_mask = _get_land_mask(data, self.do_land_mask, land_mask_str=land_mask_str) weights = sfc_area_masked * land_mask # Mask weights where data values are initially invalid in addition # to applying the region mask. weights = weights.where(np.isfinite(data)) weights_reg_sum = weights.sum(lon_str).sum(lat_str) data_reg_sum = (data_masked * sfc_area_masked * land_mask).sum(lat_str).sum(lon_str) return data_reg_sum / weights_reg_sum
python
{ "resource": "" }
q4910
Region.av
train
def av(self, data, lon_str=LON_STR, lat_str=LAT_STR, land_mask_str=LAND_MASK_STR, sfc_area_str=SFC_AREA_STR): """Time-average of region-averaged data. Parameters ---------- data : xarray.DataArray The array to compute the regional time-average of lat_str, lon_str, land_mask_str, sfc_area_str : str, optional The name of the latitude, longitude, land mask, and surface area coordinates, respectively, in ``data``. Defaults are the corresponding values in ``aospy.internal_names``. Returns ------- xarray.DataArray The region-averaged and time-averaged data. """ ts = self.ts(data, lon_str=lon_str, lat_str=lat_str, land_mask_str=land_mask_str, sfc_area_str=sfc_area_str) if YEAR_STR not in ts.coords: return ts else: return ts.mean(YEAR_STR)
python
{ "resource": "" }
q4911
_rename_coords
train
def _rename_coords(ds, attrs): """Rename coordinates to aospy's internal names.""" for name_int, names_ext in attrs.items(): # Check if coord is in dataset already. ds_coord_name = set(names_ext).intersection(set(ds.coords)) if ds_coord_name: # Rename to the aospy internal name. try: ds = ds.rename({list(ds_coord_name)[0]: name_int}) logging.debug("Rename coord from `{0}` to `{1}` for " "Dataset `{2}`".format(ds_coord_name, name_int, ds)) # xarray throws a ValueError if the name already exists except ValueError: ds = ds return ds
python
{ "resource": "" }
q4912
_bounds_from_array
train
def _bounds_from_array(arr, dim_name, bounds_name): """Get the bounds of an array given its center values. E.g. if lat-lon grid center lat/lon values are known, but not the bounds of each grid box. The algorithm assumes that the bounds are simply halfway between each pair of center values. """ # TODO: don't assume needed dimension is in axis=0 # TODO: refactor to get rid of repetitive code spacing = arr.diff(dim_name).values lower = xr.DataArray(np.empty_like(arr), dims=arr.dims, coords=arr.coords) lower.values[:-1] = arr.values[:-1] - 0.5*spacing lower.values[-1] = arr.values[-1] - 0.5*spacing[-1] upper = xr.DataArray(np.empty_like(arr), dims=arr.dims, coords=arr.coords) upper.values[:-1] = arr.values[:-1] + 0.5*spacing upper.values[-1] = arr.values[-1] + 0.5*spacing[-1] bounds = xr.concat([lower, upper], dim='bounds') return bounds.T
python
{ "resource": "" }
q4913
_diff_bounds
train
def _diff_bounds(bounds, coord): """Get grid spacing by subtracting upper and lower bounds.""" try: return bounds[:, 1] - bounds[:, 0] except IndexError: diff = np.diff(bounds, axis=0) return xr.DataArray(diff, dims=coord.dims, coords=coord.coords)
python
{ "resource": "" }
q4914
_grid_sfc_area
train
def _grid_sfc_area(lon, lat, lon_bounds=None, lat_bounds=None): """Calculate surface area of each grid cell in a lon-lat grid.""" # Compute the bounds if not given. if lon_bounds is None: lon_bounds = _bounds_from_array( lon, internal_names.LON_STR, internal_names.LON_BOUNDS_STR) if lat_bounds is None: lat_bounds = _bounds_from_array( lat, internal_names.LAT_STR, internal_names.LAT_BOUNDS_STR) # Compute the surface area. dlon = _diff_bounds(utils.vertcoord.to_radians(lon_bounds, is_delta=True), lon) sinlat_bounds = np.sin(utils.vertcoord.to_radians(lat_bounds, is_delta=True)) dsinlat = np.abs(_diff_bounds(sinlat_bounds, lat)) sfc_area = dlon*dsinlat*(RADIUS_EARTH**2) # Rename the coordinates such that they match the actual lat / lon. try: sfc_area = sfc_area.rename( {internal_names.LAT_BOUNDS_STR: internal_names.LAT_STR, internal_names.LON_BOUNDS_STR: internal_names.LON_STR}) except ValueError: pass # Clean up: correct names and dimension order. sfc_area = sfc_area.rename(internal_names.SFC_AREA_STR) sfc_area[internal_names.LAT_STR] = lat sfc_area[internal_names.LON_STR] = lon return sfc_area.transpose()
python
{ "resource": "" }
q4915
Model._get_grid_files
train
def _get_grid_files(self): """Get the files holding grid data for an aospy object.""" grid_file_paths = self.grid_file_paths datasets = [] if isinstance(grid_file_paths, str): grid_file_paths = [grid_file_paths] for path in grid_file_paths: try: ds = xr.open_dataset(path, decode_times=False) except (TypeError, AttributeError): ds = xr.open_mfdataset(path, decode_times=False).load() except (RuntimeError, OSError) as e: msg = str(e) + ': {}'.format(path) raise RuntimeError(msg) datasets.append(ds) return tuple(datasets)
python
{ "resource": "" }
q4916
Model._set_mult_grid_attr
train
def _set_mult_grid_attr(self): """ Set multiple attrs from grid file given their names in the grid file. """ grid_objs = self._get_grid_files() if self.grid_attrs is None: self.grid_attrs = {} # Override GRID_ATTRS with entries in grid_attrs attrs = internal_names.GRID_ATTRS.copy() for k, v in self.grid_attrs.items(): if k not in attrs: raise ValueError( 'Unrecognized internal name, {!r}, specified for a ' 'custom grid attribute name. See the full list of ' 'valid internal names below:\n\n{}'.format( k, list(internal_names.GRID_ATTRS.keys()))) attrs[k] = (v, ) for name_int, names_ext in attrs.items(): for name in names_ext: grid_attr = _get_grid_attr(grid_objs, name) if grid_attr is not None: TIME_STR = internal_names.TIME_STR renamed_attr = _rename_coords(grid_attr, attrs) if ((TIME_STR not in renamed_attr.dims) and (TIME_STR in renamed_attr.coords)): renamed_attr = renamed_attr.drop(TIME_STR) setattr(self, name_int, renamed_attr) break
python
{ "resource": "" }
q4917
Model.set_grid_data
train
def set_grid_data(self): """Populate the attrs that hold grid data.""" if self._grid_data_is_set: return self._set_mult_grid_attr() if not np.any(getattr(self, 'sfc_area', None)): try: sfc_area = _grid_sfc_area(self.lon, self.lat, self.lon_bounds, self.lat_bounds) except AttributeError: sfc_area = _grid_sfc_area(self.lon, self.lat) self.sfc_area = sfc_area try: self.levs_thick = utils.vertcoord.level_thickness(self.level) except AttributeError: self.level = None self.levs_thick = None self._grid_data_is_set = True
python
{ "resource": "" }
q4918
_other_to_lon
train
def _other_to_lon(func): """Wrapper for casting Longitude operator arguments to Longitude""" def func_other_to_lon(obj, other): return func(obj, _maybe_cast_to_lon(other)) return func_other_to_lon
python
{ "resource": "" }
q4919
_get_attr_by_tag
train
def _get_attr_by_tag(obj, tag, attr_name): """Get attribute from an object via a string tag. Parameters ---------- obj : object from which to get the attribute attr_name : str Unmodified name of the attribute to be found. The actual attribute that is returned may be modified be 'tag'. tag : str Tag specifying how to modify 'attr_name' by pre-pending it with 'tag'. Must be a key of the _TAG_ATTR_MODIFIERS dict. Returns ------- the specified attribute of obj """ attr_name = _TAG_ATTR_MODIFIERS[tag] + attr_name return getattr(obj, attr_name)
python
{ "resource": "" }
q4920
_get_all_objs_of_type
train
def _get_all_objs_of_type(type_, parent): """Get all attributes of the given type from the given object. Parameters ---------- type_ : The desired type parent : The object from which to get the attributes with type matching 'type_' Returns ------- A list (possibly empty) of attributes from 'parent' """ return set([obj for obj in parent.__dict__.values() if isinstance(obj, type_)])
python
{ "resource": "" }
q4921
_prune_invalid_time_reductions
train
def _prune_invalid_time_reductions(spec): """Prune time reductions of spec with no time dimension.""" valid_reductions = [] if not spec['var'].def_time and spec['dtype_out_time'] is not None: for reduction in spec['dtype_out_time']: if reduction not in _TIME_DEFINED_REDUCTIONS: valid_reductions.append(reduction) else: msg = ("Var {0} has no time dimension " "for the given time reduction " "{1} so this calculation will " "be skipped".format(spec['var'].name, reduction)) logging.info(msg) else: valid_reductions = spec['dtype_out_time'] return valid_reductions
python
{ "resource": "" }
q4922
_compute_or_skip_on_error
train
def _compute_or_skip_on_error(calc, compute_kwargs): """Execute the Calc, catching and logging exceptions, but don't re-raise. Prevents one failed calculation from stopping a larger requested set of calculations. """ try: return calc.compute(**compute_kwargs) except Exception: msg = ("Skipping aospy calculation `{0}` due to error with the " "following traceback: \n{1}") logging.warning(msg.format(calc, traceback.format_exc())) return None
python
{ "resource": "" }
q4923
_submit_calcs_on_client
train
def _submit_calcs_on_client(calcs, client, func): """Submit calculations via dask.bag and a distributed client""" logging.info('Connected to client: {}'.format(client)) if LooseVersion(dask.__version__) < '0.18': dask_option_setter = dask.set_options else: dask_option_setter = dask.config.set with dask_option_setter(get=client.get): return db.from_sequence(calcs).map(func).compute()
python
{ "resource": "" }
q4924
_exec_calcs
train
def _exec_calcs(calcs, parallelize=False, client=None, **compute_kwargs): """Execute the given calculations. Parameters ---------- calcs : Sequence of ``aospy.Calc`` objects parallelize : bool, default False Whether to submit the calculations in parallel or not client : distributed.Client or None The distributed Client used if parallelize is set to True; if None a distributed LocalCluster is used. compute_kwargs : dict of keyword arguments passed to ``Calc.compute`` Returns ------- A list of the values returned by each Calc object that was executed. """ if parallelize: def func(calc): """Wrap _compute_or_skip_on_error to require only the calc argument""" if 'write_to_tar' in compute_kwargs: compute_kwargs['write_to_tar'] = False return _compute_or_skip_on_error(calc, compute_kwargs) if client is None: n_workers = _n_workers_for_local_cluster(calcs) with distributed.LocalCluster(n_workers=n_workers) as cluster: with distributed.Client(cluster) as client: result = _submit_calcs_on_client(calcs, client, func) else: result = _submit_calcs_on_client(calcs, client, func) if compute_kwargs['write_to_tar']: _serial_write_to_tar(calcs) return result else: return [_compute_or_skip_on_error(calc, compute_kwargs) for calc in calcs]
python
{ "resource": "" }
q4925
submit_mult_calcs
train
def submit_mult_calcs(calc_suite_specs, exec_options=None): """Generate and execute all specified computations. Once the calculations are prepped and submitted for execution, any calculation that triggers any exception or error is skipped, and the rest of the calculations proceed unaffected. This prevents an error in a single calculation from crashing a large suite of calculations. Parameters ---------- calc_suite_specs : dict The specifications describing the full set of calculations to be generated and potentially executed. Accepted keys and their values: library : module or package comprising an aospy object library The aospy object library for these calculations. projects : list of aospy.Proj objects The projects to permute over. models : 'all', 'default', or list of aospy.Model objects The models to permute over. If 'all', use all models in the ``models`` attribute of each ``Proj``. If 'default', use all models in the ``default_models`` attribute of each ``Proj``. runs : 'all', 'default', or list of aospy.Run objects The runs to permute over. If 'all', use all runs in the ``runs`` attribute of each ``Model``. If 'default', use all runs in the ``default_runs`` attribute of each ``Model``. variables : list of aospy.Var objects The variables to be calculated. regions : 'all' or list of aospy.Region objects The region(s) over which any regional reductions will be performed. If 'all', use all regions in the ``regions`` attribute of each ``Proj``. date_ranges : 'default' or a list of tuples The range of dates (inclusive) over which to perform calculations. If 'default', use the ``default_start_date`` and ``default_end_date`` attribute of each ``Run``. Else provide a list of tuples, each containing a pair of start and end dates, such as ``date_ranges=[(start, end)]`` where ``start`` and ``end`` are each ``datetime.datetime`` objects, partial datetime strings (e.g. '0001'), ``np.datetime64`` objects, or ``cftime.datetime`` objects. output_time_intervals : {'ann', season-string, month-integer} The sub-annual time interval over which to aggregate. - 'ann' : Annual mean - season-string : E.g. 'JJA' for June-July-August - month-integer : 1 for January, 2 for February, etc. Each one is a separate reduction, e.g. [1, 2] would produce averages (or other specified time reduction) over all Januaries, and separately over all Februaries. output_time_regional_reductions : list of reduction string identifiers Unlike most other keys, these are not permuted over when creating the :py:class:`aospy.Calc` objects that execute the calculations; each :py:class:`aospy.Calc` performs all of the specified reductions. Accepted string identifiers are: - Gridpoint-by-gridpoint output: - 'av' : Gridpoint-by-gridpoint time-average - 'std' : Gridpoint-by-gridpoint temporal standard deviation - 'ts' : Gridpoint-by-gridpoint time-series - Averages over each region specified via `region`: - 'reg.av', 'reg.std', 'reg.ts' : analogous to 'av', 'std', 'ts' output_vertical_reductions : {None, 'vert_av', 'vert_int'}, optional How to reduce the data vertically: - None : no vertical reduction - 'vert_av' : mass-weighted vertical average - 'vert_int' : mass-weighted vertical integral input_time_intervals : {'annual', 'monthly', 'daily', '#hr'} A string specifying the time resolution of the input data. In '#hr' above, the '#' stands for a number, e.g. 3hr or 6hr, for sub-daily output. These are the suggested specifiers, but others may be used if they are also used by the DataLoaders for the given Runs. input_time_datatypes : {'inst', 'ts', 'av'} What the time axis of the input data represents: - 'inst' : Timeseries of instantaneous values - 'ts' : Timeseries of averages over the period of each time-index - 'av' : A single value averaged over a date range input_vertical_datatypes : {False, 'pressure', 'sigma'}, optional The vertical coordinate system used by the input data: - False : not defined vertically - 'pressure' : pressure coordinates - 'sigma' : hybrid sigma-pressure coordinates input_time_offsets : {None, dict}, optional How to offset input data in time to correct for metadata errors - None : no time offset applied - dict : e.g. ``{'hours': -3}`` to offset times by -3 hours See :py:meth:`aospy.utils.times.apply_time_offset`. exec_options : dict or None (default None) Options regarding how the calculations are reported, submitted, and saved. If None, default settings are used for all options. Currently supported options (each should be either `True` or `False`): - prompt_verify : (default False) If True, print summary of calculations to be performed and prompt user to confirm before submitting for execution. - parallelize : (default False) If True, submit calculations in parallel. - client : distributed.Client or None (default None) The dask.distributed Client used to schedule computations. If None and parallelize is True, a LocalCluster will be started. - write_to_tar : (default True) If True, write results of calculations to .tar files, one for each :py:class:`aospy.Run` object. These tar files have an identical directory structures the standard output relative to their root directory, which is specified via the `tar_direc_out` argument of each Proj object's instantiation. Returns ------- A list of the return values from each :py:meth:`aospy.Calc.compute` call If a calculation ran without error, this value is the :py:class:`aospy.Calc` object itself, with the results of its calculations saved in its ``data_out`` attribute. ``data_out`` is a dictionary, with the keys being the temporal-regional reduction identifiers (e.g. 'reg.av'), and the values being the corresponding result. If any error occurred during a calculation, the return value is None. Raises ------ AospyException If the ``prompt_verify`` option is set to True and the user does not respond affirmatively to the prompt. """ if exec_options is None: exec_options = dict() if exec_options.pop('prompt_verify', False): print(_print_suite_summary(calc_suite_specs)) _user_verify() calc_suite = CalcSuite(calc_suite_specs) calcs = calc_suite.create_calcs() if not calcs: raise AospyException( "The specified combination of parameters yielded zero " "calculations. Most likely, one of the parameters is " "inadvertently empty." ) return _exec_calcs(calcs, **exec_options)
python
{ "resource": "" }
q4926
CalcSuite._get_requested_spec
train
def _get_requested_spec(self, obj, spec_name): """Helper to translate user specifications to needed objects.""" requested = self._specs_in[spec_name] if isinstance(requested, str): return _get_attr_by_tag(obj, requested, spec_name) else: return requested
python
{ "resource": "" }
q4927
CalcSuite._permute_core_specs
train
def _permute_core_specs(self): """Generate all requested combinations of the core objects.""" obj_trees = [] projects = self._get_requested_spec(self._obj_lib, _PROJECTS_STR) for project in projects: models = self._get_requested_spec(project, _MODELS_STR) for model in models: runs = self._get_requested_spec(model, _RUNS_STR) for run in runs: obj_trees.append({ self._NAMES_SUITE_TO_CALC[_PROJECTS_STR]: project, self._NAMES_SUITE_TO_CALC[_MODELS_STR]: model, self._NAMES_SUITE_TO_CALC[_RUNS_STR]: run, }) return obj_trees
python
{ "resource": "" }
q4928
CalcSuite._get_regions
train
def _get_regions(self): """Get the requested regions.""" if self._specs_in[_REGIONS_STR] == 'all': return [_get_all_objs_of_type( Region, getattr(self._obj_lib, 'regions', self._obj_lib) )] else: return [set(self._specs_in[_REGIONS_STR])]
python
{ "resource": "" }
q4929
CalcSuite._get_variables
train
def _get_variables(self): """Get the requested variables.""" if self._specs_in[_VARIABLES_STR] == 'all': return _get_all_objs_of_type( Var, getattr(self._obj_lib, 'variables', self._obj_lib) ) else: return set(self._specs_in[_VARIABLES_STR])
python
{ "resource": "" }
q4930
CalcSuite._get_aux_specs
train
def _get_aux_specs(self): """Get and pre-process all of the non-core specifications.""" # Drop the "core" specifications, which are handled separately. specs = self._specs_in.copy() [specs.pop(core) for core in self._CORE_SPEC_NAMES] specs[_REGIONS_STR] = self._get_regions() specs[_VARIABLES_STR] = self._get_variables() specs['date_ranges'] = self._get_date_ranges() specs['output_time_regional_reductions'] = self._get_time_reg_reducts() return specs
python
{ "resource": "" }
q4931
CalcSuite._permute_aux_specs
train
def _permute_aux_specs(self): """Generate all permutations of the non-core specifications.""" # Convert to attr names that Calc is expecting. calc_aux_mapping = self._NAMES_SUITE_TO_CALC.copy() # Special case: manually add 'library' to mapping calc_aux_mapping[_OBJ_LIB_STR] = None [calc_aux_mapping.pop(core) for core in self._CORE_SPEC_NAMES] specs = self._get_aux_specs() for suite_name, calc_name in calc_aux_mapping.items(): specs[calc_name] = specs.pop(suite_name) return _permuted_dicts_of_specs(specs)
python
{ "resource": "" }
q4932
CalcSuite._combine_core_aux_specs
train
def _combine_core_aux_specs(self): """Combine permutations over core and auxilliary Calc specs.""" all_specs = [] for core_dict in self._permute_core_specs(): for aux_dict in self._permute_aux_specs(): all_specs.append(_merge_dicts(core_dict, aux_dict)) return all_specs
python
{ "resource": "" }
q4933
CalcSuite.create_calcs
train
def create_calcs(self): """Generate a Calc object for each requested parameter combination.""" specs = self._combine_core_aux_specs() for spec in specs: spec['dtype_out_time'] = _prune_invalid_time_reductions(spec) return [Calc(**sp) for sp in specs]
python
{ "resource": "" }
q4934
data_in_label
train
def data_in_label(intvl_in, dtype_in_time, dtype_in_vert=False): """Create string label specifying the input data of a calculation.""" intvl_lbl = intvl_in time_lbl = dtype_in_time lbl = '_'.join(['from', intvl_lbl, time_lbl]).replace('__', '_') vert_lbl = dtype_in_vert if dtype_in_vert else False if vert_lbl: lbl = '_'.join([lbl, vert_lbl]).replace('__', '_') return lbl
python
{ "resource": "" }
q4935
data_name_gfdl
train
def data_name_gfdl(name, domain, data_type, intvl_type, data_yr, intvl, data_in_start_yr, data_in_dur): """Determine the filename of GFDL model data output.""" # Determine starting year of netCDF file to be accessed. extra_yrs = (data_yr - data_in_start_yr) % data_in_dur data_in_yr = data_yr - extra_yrs # Determine file name. Two cases: time series (ts) or time-averaged (av). if data_type in ('ts', 'inst'): if intvl_type == 'annual': if data_in_dur == 1: filename = '.'.join([domain, '{:04d}'.format(data_in_yr), name, 'nc']) else: filename = '.'.join([domain, '{:04d}-{:04d}'.format( data_in_yr, data_in_yr + data_in_dur - 1 ), name, 'nc']) elif intvl_type == 'monthly': filename = (domain + '.{:04d}'.format(data_in_yr) + '01-' + '{:04d}'.format(int(data_in_yr+data_in_dur-1)) + '12.' + name + '.nc') elif intvl_type == 'daily': filename = (domain + '.{:04d}'.format(data_in_yr) + '0101-' + '{:04d}'.format(int(data_in_yr+data_in_dur-1)) + '1231.' + name + '.nc') elif 'hr' in intvl_type: filename = '.'.join( [domain, '{:04d}010100-{:04d}123123'.format( data_in_yr, data_in_yr + data_in_dur - 1), name, 'nc'] ) elif data_type == 'av': if intvl_type in ['annual', 'ann']: label = 'ann' elif intvl_type in ['seasonal', 'seas']: label = intvl.upper() elif intvl_type in ['monthly', 'mon']: label, val = time_label(intvl) if data_in_dur == 1: filename = (domain + '.{:04d}'.format(data_in_yr) + '.' + label + '.nc') else: filename = (domain + '.{:04d}'.format(data_in_yr) + '-' + '{:04d}'.format(int(data_in_yr+data_in_dur-1)) + '.' + label + '.nc') elif data_type == 'av_ts': filename = (domain + '.{:04d}'.format(data_in_yr) + '-' + '{:04d}'.format(int(data_in_yr+data_in_dur-1)) + '.01-12.nc') return filename
python
{ "resource": "" }
q4936
dmget
train
def dmget(files_list): """Call GFDL command 'dmget' to access archived files.""" if isinstance(files_list, str): files_list = [files_list] archive_files = [] for f in files_list: if f.startswith('/archive'): archive_files.append(f) try: subprocess.call(['dmget'] + archive_files) except OSError: logging.debug('dmget command not found in this machine')
python
{ "resource": "" }
q4937
_replace_pressure
train
def _replace_pressure(arguments, dtype_in_vert): """Replace p and dp Vars with appropriate Var objects specific to the dtype_in_vert.""" arguments_out = [] for arg in arguments: if isinstance(arg, Var): if arg.name == 'p': arguments_out.append(_P_VARS[dtype_in_vert]) elif arg.name == 'dp': arguments_out.append(_DP_VARS[dtype_in_vert]) else: arguments_out.append(arg) else: arguments_out.append(arg) return arguments_out
python
{ "resource": "" }
q4938
_add_metadata_as_attrs
train
def _add_metadata_as_attrs(data, units, description, dtype_out_vert): """Add metadata attributes to Dataset or DataArray""" if isinstance(data, xr.DataArray): return _add_metadata_as_attrs_da(data, units, description, dtype_out_vert) else: for name, arr in data.data_vars.items(): _add_metadata_as_attrs_da(arr, units, description, dtype_out_vert) return data
python
{ "resource": "" }
q4939
_add_metadata_as_attrs_da
train
def _add_metadata_as_attrs_da(data, units, description, dtype_out_vert): """Add metadata attributes to DataArray""" if dtype_out_vert == 'vert_int': if units != '': units = '(vertical integral of {0}): {0} kg m^-2)'.format(units) else: units = '(vertical integral of quantity with unspecified units)' data.attrs['units'] = units data.attrs['description'] = description return data
python
{ "resource": "" }
q4940
Calc._dir_out
train
def _dir_out(self): """Create string of the data directory to save individual .nc files.""" return os.path.join(self.proj.direc_out, self.proj.name, self.model.name, self.run.name, self.name)
python
{ "resource": "" }
q4941
Calc._dir_tar_out
train
def _dir_tar_out(self): """Create string of the data directory to store a tar file.""" return os.path.join(self.proj.tar_direc_out, self.proj.name, self.model.name, self.run.name)
python
{ "resource": "" }
q4942
Calc._file_name
train
def _file_name(self, dtype_out_time, extension='nc'): """Create the name of the aospy file.""" if dtype_out_time is None: dtype_out_time = '' out_lbl = utils.io.data_out_label(self.intvl_out, dtype_out_time, dtype_vert=self.dtype_out_vert) in_lbl = utils.io.data_in_label(self.intvl_in, self.dtype_in_time, self.dtype_in_vert) start_year = utils.times.infer_year(self.start_date) end_year = utils.times.infer_year(self.end_date) yr_lbl = utils.io.yr_label((start_year, end_year)) return '.'.join( [self.name, out_lbl, in_lbl, self.model.name, self.run.name, yr_lbl, extension] ).replace('..', '.')
python
{ "resource": "" }
q4943
Calc._print_verbose
train
def _print_verbose(*args): """Print diagnostic message.""" try: return '{0} {1} ({2})'.format(args[0], args[1], ctime()) except IndexError: return '{0} ({1})'.format(args[0], ctime())
python
{ "resource": "" }
q4944
Calc._to_desired_dates
train
def _to_desired_dates(self, arr): """Restrict the xarray DataArray or Dataset to the desired months.""" times = utils.times.extract_months( arr[internal_names.TIME_STR], self.months ) return arr.sel(time=times)
python
{ "resource": "" }
q4945
Calc._add_grid_attributes
train
def _add_grid_attributes(self, ds): """Add model grid attributes to a dataset""" for name_int, names_ext in self._grid_attrs.items(): ds_coord_name = set(names_ext).intersection(set(ds.coords) | set(ds.data_vars)) model_attr = getattr(self.model, name_int, None) if ds_coord_name and (model_attr is not None): # Force coords to have desired name. ds = ds.rename({list(ds_coord_name)[0]: name_int}) ds = ds.set_coords(name_int) if not np.array_equal(ds[name_int], model_attr): if np.allclose(ds[name_int], model_attr): msg = ("Values for '{0}' are nearly (but not exactly) " "the same in the Run {1} and the Model {2}. " "Therefore replacing Run's values with the " "model's.".format(name_int, self.run, self.model)) logging.info(msg) ds[name_int].values = model_attr.values else: msg = ("Model coordinates for '{0}' do not match those" " in Run: {1} vs. {2}" "".format(name_int, ds[name_int], model_attr)) logging.info(msg) else: # Bring in coord from model object if it exists. ds = ds.load() if model_attr is not None: ds[name_int] = model_attr ds = ds.set_coords(name_int) if (self.dtype_in_vert == 'pressure' and internal_names.PLEVEL_STR in ds.coords): self.pressure = ds.level return ds
python
{ "resource": "" }
q4946
Calc._get_input_data
train
def _get_input_data(self, var, start_date, end_date): """Get the data for a single variable over the desired date range.""" logging.info(self._print_verbose("Getting input data:", var)) if isinstance(var, (float, int)): return var else: cond_pfull = ((not hasattr(self, internal_names.PFULL_STR)) and var.def_vert and self.dtype_in_vert == internal_names.ETA_STR) data = self.data_loader.recursively_compute_variable( var, start_date, end_date, self.time_offset, self.model, **self.data_loader_attrs) name = data.name data = self._add_grid_attributes(data.to_dataset(name=data.name)) data = data[name] if cond_pfull: try: self.pfull_coord = data[internal_names.PFULL_STR] except KeyError: pass # Force all data to be at full pressure levels, not half levels. bool_to_pfull = (self.dtype_in_vert == internal_names.ETA_STR and var.def_vert == internal_names.PHALF_STR) if bool_to_pfull: data = utils.vertcoord.to_pfull_from_phalf(data, self.pfull_coord) if var.def_time: # Restrict to the desired dates within each year. if self.dtype_in_time != 'av': return self._to_desired_dates(data) else: return data
python
{ "resource": "" }
q4947
Calc._get_all_data
train
def _get_all_data(self, start_date, end_date): """Get the needed data from all of the vars in the calculation.""" return [self._get_input_data(var, start_date, end_date) for var in _replace_pressure(self.variables, self.dtype_in_vert)]
python
{ "resource": "" }
q4948
Calc._compute
train
def _compute(self, data): """Perform the calculation.""" local_ts = self._local_ts(*data) dt = local_ts[internal_names.TIME_WEIGHTS_STR] # Convert dt to units of days to prevent overflow dt = dt / np.timedelta64(1, 'D') return local_ts, dt
python
{ "resource": "" }
q4949
Calc._compute_full_ts
train
def _compute_full_ts(self, data): """Perform calculation and create yearly timeseries at each point.""" # Get results at each desired timestep and spatial point. full_ts, dt = self._compute(data) # Vertically integrate. vert_types = ('vert_int', 'vert_av') if self.dtype_out_vert in vert_types and self.var.def_vert: dp = self._get_input_data(_DP_VARS[self.dtype_in_vert], self.start_date, self.end_date) full_ts = utils.vertcoord.int_dp_g(full_ts, dp) if self.dtype_out_vert == 'vert_av': ps = self._get_input_data(utils.vertcoord.ps, self.start_date, self.end_date) full_ts *= (GRAV_EARTH / ps) return full_ts, dt
python
{ "resource": "" }
q4950
Calc._full_to_yearly_ts
train
def _full_to_yearly_ts(self, arr, dt): """Average the full timeseries within each year.""" time_defined = self.def_time and not ('av' in self.dtype_in_time) if time_defined: arr = utils.times.yearly_average(arr, dt) return arr
python
{ "resource": "" }
q4951
Calc._time_reduce
train
def _time_reduce(self, arr, reduction): """Perform the specified time reduction on a local time-series.""" if self.dtype_in_time == 'av' or not self.def_time: return arr reductions = { 'ts': lambda xarr: xarr, 'av': lambda xarr: xarr.mean(internal_names.YEAR_STR), 'std': lambda xarr: xarr.std(internal_names.YEAR_STR), } try: return reductions[reduction](arr) except KeyError: raise ValueError("Specified time-reduction method '{}' is not " "supported".format(reduction))
python
{ "resource": "" }
q4952
Calc.region_calcs
train
def region_calcs(self, arr, func): """Perform a calculation for all regions.""" # Get pressure values for data output on hybrid vertical coordinates. bool_pfull = (self.def_vert and self.dtype_in_vert == internal_names.ETA_STR and self.dtype_out_vert is False) if bool_pfull: pfull_data = self._get_input_data(_P_VARS[self.dtype_in_vert], self.start_date, self.end_date) pfull = self._full_to_yearly_ts( pfull_data, arr[internal_names.TIME_WEIGHTS_STR] ).rename('pressure') # Loop over the regions, performing the calculation. reg_dat = {} for reg in self.region: # Just pass along the data if averaged already. if 'av' in self.dtype_in_time: data_out = reg.ts(arr) # Otherwise perform the calculation. else: method = getattr(reg, func) data_out = method(arr) if bool_pfull: # Don't apply e.g. standard deviation to coordinates. if func not in ['av', 'ts']: method = reg.ts # Convert Pa to hPa coord = method(pfull) * 1e-2 data_out = data_out.assign_coords( **{reg.name + '_pressure': coord} ) reg_dat.update(**{reg.name: data_out}) return xr.Dataset(reg_dat)
python
{ "resource": "" }
q4953
Calc._apply_all_time_reductions
train
def _apply_all_time_reductions(self, data): """Apply all requested time reductions to the data.""" logging.info(self._print_verbose("Applying desired time-" "reduction methods.")) reduc_specs = [r.split('.') for r in self.dtype_out_time] reduced = {} for reduc, specs in zip(self.dtype_out_time, reduc_specs): func = specs[-1] if 'reg' in specs: reduced.update({reduc: self.region_calcs(data, func)}) else: reduced.update({reduc: self._time_reduce(data, func)}) return OrderedDict(sorted(reduced.items(), key=lambda t: t[0]))
python
{ "resource": "" }
q4954
Calc.compute
train
def compute(self, write_to_tar=True): """Perform all desired calculations on the data and save externally.""" data = self._get_all_data(self.start_date, self.end_date) logging.info('Computing timeseries for {0} -- ' '{1}.'.format(self.start_date, self.end_date)) full, full_dt = self._compute_full_ts(data) full_out = self._full_to_yearly_ts(full, full_dt) reduced = self._apply_all_time_reductions(full_out) logging.info("Writing desired gridded outputs to disk.") for dtype_time, data in reduced.items(): data = _add_metadata_as_attrs(data, self.var.units, self.var.description, self.dtype_out_vert) self.save(data, dtype_time, dtype_out_vert=self.dtype_out_vert, save_files=True, write_to_tar=write_to_tar) return self
python
{ "resource": "" }
q4955
Calc._save_files
train
def _save_files(self, data, dtype_out_time): """Save the data to netcdf files in direc_out.""" path = self.path_out[dtype_out_time] if not os.path.isdir(self.dir_out): os.makedirs(self.dir_out) if 'reg' in dtype_out_time: try: reg_data = xr.open_dataset(path) except (EOFError, RuntimeError, IOError): reg_data = xr.Dataset() reg_data.update(data) data_out = reg_data else: data_out = data if isinstance(data_out, xr.DataArray): data_out = xr.Dataset({self.name: data_out}) data_out.to_netcdf(path, engine='netcdf4', format='NETCDF3_64BIT')
python
{ "resource": "" }
q4956
Calc._write_to_tar
train
def _write_to_tar(self, dtype_out_time): """Add the data to the tar file in tar_out_direc.""" # When submitted in parallel and the directory does not exist yet # multiple processes may try to create a new directory; this leads # to an OSError for all processes that tried to make the # directory, but were later than the first. try: os.makedirs(self.dir_tar_out) except OSError: pass # tarfile 'append' mode won't overwrite the old file, which we want. # So open in 'read' mode, extract the file, and then delete it. # But 'read' mode throws OSError if file doesn't exist: make it first. utils.io.dmget([self.path_tar_out]) with tarfile.open(self.path_tar_out, 'a') as tar: pass with tarfile.open(self.path_tar_out, 'r') as tar: old_data_path = os.path.join(self.dir_tar_out, self.file_name[dtype_out_time]) try: tar.extract(self.file_name[dtype_out_time], path=old_data_path) except KeyError: pass else: # The os module treats files on archive as non-empty # directories, so can't use os.remove or os.rmdir. shutil.rmtree(old_data_path) retcode = subprocess.call([ "tar", "--delete", "--file={}".format(self.path_tar_out), self.file_name[dtype_out_time] ]) if retcode: msg = ("The 'tar' command to save your aospy output " "exited with an error. Most likely, this is due " "to using an old version of 'tar' (especially if " "you are on a Mac). Consider installing a newer " "version of 'tar' or disabling tar output by " "setting `write_to_tar=False` in the " "`calc_exec_options` argument of " "`submit_mult_calcs`.") logging.warn(msg) with tarfile.open(self.path_tar_out, 'a') as tar: tar.add(self.path_out[dtype_out_time], arcname=self.file_name[dtype_out_time])
python
{ "resource": "" }
q4957
Calc._update_data_out
train
def _update_data_out(self, data, dtype): """Append the data of the given dtype_out to the data_out attr.""" try: self.data_out.update({dtype: data}) except AttributeError: self.data_out = {dtype: data}
python
{ "resource": "" }
q4958
Calc.save
train
def save(self, data, dtype_out_time, dtype_out_vert=False, save_files=True, write_to_tar=False): """Save aospy data to data_out attr and to an external file.""" self._update_data_out(data, dtype_out_time) if save_files: self._save_files(data, dtype_out_time) if write_to_tar and self.proj.tar_direc_out: self._write_to_tar(dtype_out_time) logging.info('\t{}'.format(self.path_out[dtype_out_time]))
python
{ "resource": "" }
q4959
Calc._load_from_disk
train
def _load_from_disk(self, dtype_out_time, dtype_out_vert=False, region=False): """Load aospy data saved as netcdf files on the file system.""" ds = xr.open_dataset(self.path_out[dtype_out_time]) if region: arr = ds[region.name] # Use region-specific pressure values if available. if (self.dtype_in_vert == internal_names.ETA_STR and not dtype_out_vert): reg_pfull_str = region.name + '_pressure' arr = arr.drop([r for r in arr.coords.iterkeys() if r not in (internal_names.PFULL_STR, reg_pfull_str)]) # Rename pfull to pfull_ref always. arr = arr.rename({internal_names.PFULL_STR: internal_names.PFULL_STR + '_ref'}) # Rename region_pfull to pfull if its there. if hasattr(arr, reg_pfull_str): return arr.rename({reg_pfull_str: internal_names.PFULL_STR}) return arr return arr return ds[self.name]
python
{ "resource": "" }
q4960
Calc._load_from_tar
train
def _load_from_tar(self, dtype_out_time, dtype_out_vert=False): """Load data save in tarball form on the file system.""" path = os.path.join(self.dir_tar_out, 'data.tar') utils.io.dmget([path]) with tarfile.open(path, 'r') as data_tar: ds = xr.open_dataset( data_tar.extractfile(self.file_name[dtype_out_time]) ) return ds[self.name]
python
{ "resource": "" }
q4961
Calc.load
train
def load(self, dtype_out_time, dtype_out_vert=False, region=False, plot_units=False, mask_unphysical=False): """Load the data from the object if possible or from disk.""" msg = ("Loading data from disk for object={0}, dtype_out_time={1}, " "dtype_out_vert={2}, and region=" "{3}".format(self, dtype_out_time, dtype_out_vert, region)) logging.info(msg + ' ({})'.format(ctime())) # Grab from the object if its there. try: data = self.data_out[dtype_out_time] except (AttributeError, KeyError): # Otherwise get from disk. Try scratch first, then archive. try: data = self._load_from_disk(dtype_out_time, dtype_out_vert, region=region) except IOError: data = self._load_from_tar(dtype_out_time, dtype_out_vert) # Copy the array to self.data_out for ease of future access. self._update_data_out(data, dtype_out_time) # Apply desired plotting/cleanup methods. if mask_unphysical: data = self.var.mask_unphysical(data) if plot_units: data = self.var.to_plot_units(data, dtype_vert=dtype_out_vert) return data
python
{ "resource": "" }
q4962
conv_precip_frac
train
def conv_precip_frac(precip_largescale, precip_convective): """Fraction of total precip that is from convection parameterization. Parameters ---------- precip_largescale, precip_convective : xarray.DataArrays Precipitation from grid-scale condensation and from convective parameterization, respectively. Returns ------- xarray.DataArray """ total = total_precip(precip_largescale, precip_convective) # Mask using xarray's `where` method to prevent divide-by-zero. return precip_convective / total.where(total)
python
{ "resource": "" }
q4963
dumps
train
def dumps(x, float_bits=DEFAULT_FLOAT_BITS): """ Dump data structure to str. Here float_bits is either 32 or 64. """ with lock: if float_bits == 32: encode_func[float] = encode_float32 elif float_bits == 64: encode_func[float] = encode_float64 else: raise ValueError('Float bits (%d) is not 32 or 64' % float_bits) r = [] encode_func[type(x)](x, r) return b''.join(r)
python
{ "resource": "" }
q4964
Brain.stop_batch_learning
train
def stop_batch_learning(self): """Finish a series of batch learn operations.""" self._learning = False self.graph.commit() self.graph.cursor().execute("PRAGMA journal_mode=truncate") self.graph.ensure_indexes()
python
{ "resource": "" }
q4965
Brain.learn
train
def learn(self, text): """Learn a string of text. If the input is not already Unicode, it will be decoded as utf-8.""" if type(text) != types.UnicodeType: # Assume that non-Unicode text is encoded as utf-8, which # should be somewhat safe in the modern world. text = text.decode("utf-8", "ignore") tokens = self.tokenizer.split(text) trace("Brain.learn_input_token_count", len(tokens)) self._learn_tokens(tokens)
python
{ "resource": "" }
q4966
Brain._to_graph
train
def _to_graph(self, contexts): """This is an iterator that returns each edge of our graph with its two nodes""" prev = None for context in contexts: if prev is None: prev = context continue yield prev[0], context[1], context[0] prev = context
python
{ "resource": "" }
q4967
Brain.reply
train
def reply(self, text, loop_ms=500, max_len=None): """Reply to a string of text. If the input is not already Unicode, it will be decoded as utf-8.""" if type(text) != types.UnicodeType: # Assume that non-Unicode text is encoded as utf-8, which # should be somewhat safe in the modern world. text = text.decode("utf-8", "ignore") tokens = self.tokenizer.split(text) input_ids = map(self.graph.get_token_by_text, tokens) # filter out unknown words and non-words from the potential pivots pivot_set = self._filter_pivots(input_ids) # Conflate the known ids with the stems of their words if self.stemmer is not None: self._conflate_stems(pivot_set, tokens) # If we didn't recognize any word tokens in the input, pick # something random from the database and babble. if len(pivot_set) == 0: pivot_set = self._babble() score_cache = {} best_score = -1.0 best_reply = None # Loop for approximately loop_ms milliseconds. This can either # take more (if the first reply takes a long time to generate) # or less (if the _generate_replies search ends early) time, # but it should stay roughly accurate. start = time.time() end = start + loop_ms * 0.001 count = 0 all_replies = [] _start = time.time() for edges, pivot_node in self._generate_replies(pivot_set): reply = Reply(self.graph, tokens, input_ids, pivot_node, edges) if max_len and self._too_long(max_len, reply): continue key = reply.edge_ids if key not in score_cache: with trace_us("Brain.evaluate_reply_us"): score = self.scorer.score(reply) score_cache[key] = score else: # skip scoring, we've already seen this reply score = -1 if score > best_score: best_reply = reply best_score = score # dump all replies to the console if debugging is enabled if log.isEnabledFor(logging.DEBUG): all_replies.append((score, reply)) count += 1 if time.time() > end: break if best_reply is None: # we couldn't find any pivot words in _babble(), so we're # working with an essentially empty brain. Use the classic # MegaHAL reply: return "I don't know enough to answer you yet!" _time = time.time() - _start self.scorer.end(best_reply) if log.isEnabledFor(logging.DEBUG): replies = [(score, reply.to_text()) for score, reply in all_replies] replies.sort() for score, text in replies: log.debug("%f %s", score, text) trace("Brain.reply_input_token_count", len(tokens)) trace("Brain.known_word_token_count", len(pivot_set)) trace("Brain.reply_us", _time) trace("Brain.reply_count", count, _time) trace("Brain.best_reply_score", int(best_score * 1000)) trace("Brain.best_reply_length", len(best_reply.edge_ids)) log.debug("made %d replies (%d unique) in %f seconds" % (count, len(score_cache), _time)) if len(text) > 60: msg = text[0:60] + "..." else: msg = text log.info("[%s] %d %f", msg, count, best_score) # look up the words for these tokens with trace_us("Brain.reply_words_lookup_us"): text = best_reply.to_text() return text
python
{ "resource": "" }
q4968
Brain.init
train
def init(filename, order=3, tokenizer=None): """Initialize a brain. This brain's file must not already exist. Keyword arguments: order -- Order of the forward/reverse Markov chains (integer) tokenizer -- One of Cobe, MegaHAL (default Cobe). See documentation for cobe.tokenizers for details. (string)""" log.info("Initializing a cobe brain: %s" % filename) if tokenizer is None: tokenizer = "Cobe" if tokenizer not in ("Cobe", "MegaHAL"): log.info("Unknown tokenizer: %s. Using CobeTokenizer", tokenizer) tokenizer = "Cobe" graph = Graph(sqlite3.connect(filename)) with trace_us("Brain.init_time_us"): graph.init(order, tokenizer)
python
{ "resource": "" }
q4969
PulseExtStreamRestoreInfo.struct_from_value
train
def struct_from_value( cls, name, volume, channel_list=None, mute=False, device=None ): 'Same arguments as with class instance init.' chan_map = c.PA_CHANNEL_MAP() if not channel_list: c.pa.channel_map_init_mono(chan_map) else: if not is_str(channel_list): channel_list = b','.join(map(c.force_bytes, channel_list)) c.pa.channel_map_parse(chan_map, channel_list) if not isinstance(volume, PulseVolumeInfo): volume = PulseVolumeInfo(volume, chan_map.channels) struct = c.PA_EXT_STREAM_RESTORE_INFO( name=c.force_bytes(name), mute=int(bool(mute)), device=c.force_bytes(device), channel_map=chan_map, volume=volume.to_struct() ) return struct
python
{ "resource": "" }
q4970
Pulse.connect
train
def connect(self, autospawn=False, wait=False): '''Connect to pulseaudio server. "autospawn" option will start new pulse daemon, if necessary. Specifying "wait" option will make function block until pulseaudio server appears.''' if self._loop_closed: raise PulseError('Eventloop object was already' ' destroyed and cannot be reused from this instance.') if self.connected is not None: self._ctx_init() flags, self.connected = 0, None if not autospawn: flags |= c.PA_CONTEXT_NOAUTOSPAWN if wait: flags |= c.PA_CONTEXT_NOFAIL try: c.pa.context_connect(self._ctx, self.server, flags, None) except c.pa.CallError: self.connected = False while self.connected is None: self._pulse_iterate() if self.connected is False: raise PulseError('Failed to connect to pulseaudio server')
python
{ "resource": "" }
q4971
Pulse.stream_restore_delete
train
def stream_restore_delete(obj_name_or_list): '''Can be passed string name, PulseExtStreamRestoreInfo object or a list of any of these.''' if is_str(obj_name_or_list, PulseExtStreamRestoreInfo): obj_name_or_list = [obj_name_or_list] name_list = list((obj.name if isinstance( obj, PulseExtStreamRestoreInfo ) else obj) for obj in obj_name_or_list) name_struct = (c.c_char_p * len(name_list))() name_struct[:] = list(map(c.force_bytes, name_list)) return [name_struct]
python
{ "resource": "" }
q4972
Pulse.default_set
train
def default_set(self, obj): 'Set passed sink or source to be used as default one by pulseaudio server.' assert_pulse_object(obj) method = { PulseSinkInfo: self.sink_default_set, PulseSourceInfo: self.source_default_set }.get(type(obj)) if not method: raise NotImplementedError(type(obj)) method(obj)
python
{ "resource": "" }
q4973
MLink.update
train
def update(uid, post_data): ''' Updat the link. ''' entry = TabLink.update( name=post_data['name'], link=post_data['link'], order=post_data['order'], logo=post_data['logo'] if 'logo' in post_data else '', ).where(TabLink.uid == uid) try: entry.execute() return True except: return False
python
{ "resource": "" }
q4974
MLink.create_link
train
def create_link(id_link, post_data): ''' Add record in link. ''' if MLink.get_by_uid(id_link): return False try: the_order = int(post_data['order']) except: the_order = 999 TabLink.create(name=post_data['name'], link=post_data['link'], order=the_order, logo=post_data['logo'] if 'logo' in post_data else '', uid=id_link) return id_link
python
{ "resource": "" }
q4975
WikiHandler.recent
train
def recent(self): ''' List recent wiki. ''' kwd = { 'pager': '', 'title': 'Recent Pages', } self.render('wiki_page/wiki_list.html', view=MWiki.query_recent(), format_date=tools.format_date, kwd=kwd, userinfo=self.userinfo)
python
{ "resource": "" }
q4976
WikiHandler.view_or_add
train
def view_or_add(self, title): ''' To judge if there is a post of the title. Then, to show, or to add. ''' postinfo = MWiki.get_by_wiki(title) if postinfo: if postinfo.kind == self.kind: self.view(postinfo) else: return False else: self.to_add(title)
python
{ "resource": "" }
q4977
WikiHandler.update
train
def update(self, uid): ''' Update the wiki. ''' postinfo = MWiki.get_by_uid(uid) if self.check_post_role()['EDIT'] or postinfo.user_name == self.get_current_user(): pass else: return False post_data = self.get_post_data() post_data['user_name'] = self.userinfo.user_name cnt_old = tornado.escape.xhtml_unescape(postinfo.cnt_md).strip() cnt_new = post_data['cnt_md'].strip() if cnt_old == cnt_new: pass else: MWikiHist.create_wiki_history(postinfo) MWiki.update(uid, post_data) # cele_gen_whoosh.delay() tornado.ioloop.IOLoop.instance().add_callback(self.cele_gen_whoosh) self.redirect('/wiki/{0}'.format(tornado.escape.url_escape(post_data['title'])))
python
{ "resource": "" }
q4978
WikiHandler.view
train
def view(self, view): ''' View the wiki. ''' kwd = { 'pager': '', 'editable': self.editable(), } self.render('wiki_page/wiki_view.html', postinfo=view, kwd=kwd, userinfo=self.userinfo)
python
{ "resource": "" }
q4979
FilterHandler.echo_html
train
def echo_html(self, url_str): ''' Show the HTML ''' logger.info('info echo html: {0}'.format(url_str)) condition = self.gen_redis_kw() url_arr = self.parse_url(url_str) sig = url_arr[0] num = (len(url_arr) - 2) // 2 catinfo = MCategory.get_by_uid(sig) if catinfo.pid == '0000': condition['def_cat_pid'] = sig else: condition['def_cat_uid'] = sig fenye_num = 1 for idx in range(num): ckey = url_arr[idx * 2 + 2] tval = url_arr[idx * 2 + 3] if tval == '0': continue if ckey == 'fenye': # 分页参数。单独处理。 fenye_num = int(tval) continue else: cval = tval ckey = 'tag_' + ckey condition[ckey] = cval if url_arr[1] == 'con': infos = MPost.query_list_pager(condition, fenye_num, kind=catinfo.kind) self.echo_html_list_str(sig, infos) elif url_arr[1] == 'num': allinfos = MPost.query_under_condition(condition, kind=catinfo.kind) self.write( tornado.escape.xhtml_unescape( echo_html_fenye_str( allinfos.count(), fenye_num ) ) )
python
{ "resource": "" }
q4980
gen_array_crud
train
def gen_array_crud(): ''' Return the dictionay of the switcher form XLXS file. if valud of the column of the row is `1`, it will be added to the array. ''' if WORK_BOOK: pass else: return False papa_id = 0 switch_dics = {} kind_dics = {} for work_sheet in WORK_BOOK: kind_sig = str(work_sheet['A1'].value).strip() # the number of the categories in a website won't greater than 1000. for row_num in range(3, 1000): # 父类, column A a_cell_value = work_sheet['A{0}'.format(row_num)].value # 子类, column B b_cell_val = work_sheet['B{0}'.format(row_num)].value if a_cell_value or b_cell_val: pass else: break if a_cell_value and a_cell_value != '': papa_id = a_cell_value.strip()[1:] u_dic = __get_switch_arr(work_sheet, row_num) switch_dics['dic_{0}00'.format(papa_id)] = u_dic kind_dics['kind_{0}00'.format(papa_id)] = kind_sig if b_cell_val and b_cell_val != '': sun_id = b_cell_val.strip()[1:] if len(sun_id) == 4: app_uid = sun_id else: app_uid = '{0}{1}'.format(papa_id, sun_id) u_dic = __get_switch_arr(work_sheet, row_num) switch_dics['dic_{0}'.format(app_uid)] = u_dic kind_dics['kind_{0}'.format(app_uid)] = kind_sig return (switch_dics, kind_dics)
python
{ "resource": "" }
q4981
__get_switch_arr
train
def __get_switch_arr(work_sheet, row_num): ''' if valud of the column of the row is `1`, it will be added to the array. ''' u_dic = [] for col_idx in FILTER_COLUMNS: cell_val = work_sheet['{0}{1}'.format(col_idx, row_num)].value if cell_val in [1, '1']: # Appending the slug name of the switcher. u_dic.append(work_sheet['{0}1'.format(col_idx)].value.strip().split(',')[0]) return u_dic
python
{ "resource": "" }
q4982
MUsage.add_or_update
train
def add_or_update(user_id, post_id, kind): ''' Create the record if new, else update it. ''' rec = MUsage.query_by_signature(user_id, post_id) cate_rec = MInfor2Catalog.get_first_category(post_id) if cate_rec: cat_id = cate_rec.tag_id else: return False if rec.count() > 0: logger.info('Usage update: {uid}'.format(uid=post_id)) rec = rec.get() query = TabUsage.update(kind=kind).where(TabUsage.uid == rec.uid) query.execute() MUsage.count_increate(rec.uid, cat_id, rec.count) else: logger.info('Usage create: {uid}'.format(uid=post_id)) TabUsage.create( uid=tools.get_uuid(), post_id=post_id, user_id=user_id, count=1, tag_id=cat_id, timestamp=int(time.time()), kind=kind, )
python
{ "resource": "" }
q4983
run_send_all
train
def run_send_all(*args): ''' Send email to all user. ''' for user_rec in MUser.query_all(): email_add = user_rec.user_email send_mail([email_add], "{0}|{1}".format(SMTP_CFG['name'], email_cfg['title']), email_cfg['content'])
python
{ "resource": "" }
q4984
run_send_nologin
train
def run_send_nologin(*args): ''' Send email to who not logged in recently. ''' for user_rec in MUser.query_nologin(): email_add = user_rec.user_email print(email_add) send_mail([email_add], "{0}|{1}".format(SMTP_CFG['name'], email_cfg['title']), email_cfg['content']) MUser.set_sendemail_time(user_rec.uid)
python
{ "resource": "" }
q4985
gen_xlsx_category
train
def gen_xlsx_category(): ''' Genereting catetory from xlsx file. ''' if os.path.exists(XLSX_FILE): pass else: return # 在分类中排序 order_index = 1 all_cate_arr = [] for sheet_ranges in load_workbook(filename=XLSX_FILE): kind_sig = str(sheet_ranges['A1'].value).strip() for row_num in range(3, 10000): # 父类 a_cell_val = sheet_ranges['A{0}'.format(row_num)].value b_cell_val = sheet_ranges['B{0}'.format(row_num)].value c_cell_val = sheet_ranges['C{0}'.format(row_num)].value if a_cell_val or b_cell_val or c_cell_val: pass else: break if a_cell_val and a_cell_val != '': cell_arr = a_cell_val.strip() p_uid = cell_arr[1:] # 所有以 t 开头 t_slug = sheet_ranges['C{0}'.format(row_num)].value.strip() t_title = sheet_ranges['D{0}'.format(row_num)].value.strip() u_uid = p_uid + (4 - len(p_uid)) * '0' pp_uid = '0000' elif b_cell_val and b_cell_val != '': cell_arr = b_cell_val c_iud = cell_arr[1:] t_slug = sheet_ranges['C{0}'.format(row_num)].value.strip() t_title = sheet_ranges['D{0}'.format(row_num)].value.strip() if len(c_iud) == 4: u_uid = c_iud else: u_uid = '{0}{1}'.format(p_uid, c_iud) pp_uid = p_uid + (4 - len(p_uid)) * '0' else: continue post_data = { 'name': t_title, 'slug': t_slug, 'order': order_index, 'uid': u_uid, 'pid': pp_uid, 'kind': kind_sig, } all_cate_arr.append(post_data) MCategory.add_or_update(u_uid, post_data) order_index += 1 return all_cate_arr
python
{ "resource": "" }
q4986
gen_category
train
def gen_category(yaml_file, sig): ''' Genereting catetory from YAML file. ''' out_dic = yaml.load(open(yaml_file)) for key in out_dic: if key.endswith('00'): uid = key[1:] cur_dic = out_dic[key] porder = cur_dic['order'] cat_dic = { 'uid': uid, 'slug': cur_dic['slug'], 'name': cur_dic['name'], 'count': 0, 'tmpl': 1, 'pid': '0000', 'order': porder * 100, 'kind': '{0}'.format(sig), } MCategory.add_or_update(uid, cat_dic) else: sub_arr = out_dic[key] pid = key[1:3] for sub_dic in sub_arr: porder = out_dic['z' + pid + '00']['order'] for key2 in sub_dic: uid = key2[1:] cur_dic = sub_dic[key2] sorder = cur_dic['order'] cat_dic = { 'uid': uid, 'slug': cur_dic['slug'], 'name': cur_dic['name'], 'count': 0, 'tmpl': 1, 'pid': pid + '00', 'order': porder * 100 + sorder, 'kind': '{0}'.format(sig), } MCategory.add_or_update(pid + uid, cat_dic)
python
{ "resource": "" }
q4987
gen_yaml_category
train
def gen_yaml_category(): ''' find YAML. ''' for wroot, _, wfiles in os.walk('./database/meta'): for wfile in wfiles: if wfile.endswith('.yaml'): gen_category(os.path.join(wroot, wfile), wfile[0])
python
{ "resource": "" }
q4988
get_cfg
train
def get_cfg(): ''' Get the configure value. ''' cfg_var = dir(cfg) if 'DB_CFG' in cfg_var: db_cfg = cfg.DB_CFG else: db_cfg = ConfigDefault.DB_CFG if 'SMTP_CFG' in cfg_var: smtp_cfg = cfg.SMTP_CFG else: smtp_cfg = ConfigDefault.SMTP_CFG if 'SITE_CFG' in cfg_var: site_cfg = cfg.SITE_CFG else: site_cfg = ConfigDefault.SITE_CFG if 'ROLE_CFG' in cfg_var: role_cfg = cfg.ROLE_CFG else: role_cfg = ConfigDefault.ROLE_CFG role_cfg['view'] = role_cfg.get('view', '') role_cfg['add'] = role_cfg.get('add', '1000') role_cfg['edit'] = role_cfg.get('edit', '2000') role_cfg['delete'] = role_cfg.get('delete', '3000') role_cfg['admin'] = role_cfg.get('admin', '0300') ################################################################### site_url = site_cfg['site_url'].strip('/') site_cfg['site_url'] = site_url infor = site_url.split(':') if len(infor) == 1: site_cfg['PORT'] = 8888 else: site_cfg['PORT'] = infor[-1] if 'DEBUG' in site_cfg: pass else: site_cfg['DEBUG'] = False db_con = PostgresqlExtDatabase( db_cfg['db'], user=db_cfg.get('user', db_cfg['db']), password=db_cfg['pass'], host='127.0.0.1', port=db_cfg.get('port', '5432'), autocommit=True, autorollback=True) return (db_con, smtp_cfg, site_cfg, role_cfg)
python
{ "resource": "" }
q4989
PageHandler.view_or_add
train
def view_or_add(self, slug): ''' When access with the slug, It will add the page if there is no record in database. ''' rec_page = MWiki.get_by_uid(slug) if rec_page: if rec_page.kind == self.kind: self.view(rec_page) else: return False else: self.to_add(slug)
python
{ "resource": "" }
q4990
PageHandler.to_add
train
def to_add(self, citiao): ''' To Add page. ''' kwd = { 'cats': MCategory.query_all(), 'slug': citiao, 'pager': '', } self.render('wiki_page/page_add.html', kwd=kwd, userinfo=self.userinfo)
python
{ "resource": "" }
q4991
PageHandler.__could_edit
train
def __could_edit(self, slug): ''' Test if the user could edit the page. ''' page_rec = MWiki.get_by_uid(slug) if not page_rec: return False if self.check_post_role()['EDIT']: return True elif page_rec.user_name == self.userinfo.user_name: return True else: return False
python
{ "resource": "" }
q4992
PageHandler.update
train
def update(self, slug): ''' Update the page. ''' post_data = self.get_post_data() post_data['user_name'] = self.userinfo.user_name pageinfo = MWiki.get_by_uid(slug) cnt_old = tornado.escape.xhtml_unescape(pageinfo.cnt_md).strip() cnt_new = post_data['cnt_md'].strip() if cnt_old == cnt_new: pass else: MWikiHist.create_wiki_history(MWiki.get_by_uid(slug)) MWiki.update(slug, post_data) tornado.ioloop.IOLoop.instance().add_callback(self.cele_gen_whoosh) self.redirect('/page/{0}'.format(post_data['slug']))
python
{ "resource": "" }
q4993
PageHandler.to_modify
train
def to_modify(self, uid): ''' Try to modify the page. ''' kwd = { 'pager': '', } self.render('wiki_page/page_edit.html', postinfo=MWiki.get_by_uid(uid), kwd=kwd, cfg=CMS_CFG, userinfo=self.userinfo)
python
{ "resource": "" }
q4994
PageHandler.view
train
def view(self, rec): ''' View the page. ''' kwd = { 'pager': '', } self.render('wiki_page/page_view.html', postinfo=rec, kwd=kwd, author=rec.user_name, format_date=tools.format_date, userinfo=self.userinfo, cfg=CMS_CFG)
python
{ "resource": "" }
q4995
PageHandler.ajax_count_plus
train
def ajax_count_plus(self, slug): ''' post count plus one via ajax. ''' output = { 'status': 1 if MWiki.view_count_plus(slug) else 0, } return json.dump(output, self)
python
{ "resource": "" }
q4996
PageHandler.add_page
train
def add_page(self, slug): ''' Add new page. ''' post_data = self.get_post_data() post_data['user_name'] = self.userinfo.user_name if MWiki.get_by_uid(slug): self.set_status(400) return False else: MWiki.create_page(slug, post_data) tornado.ioloop.IOLoop.instance().add_callback(self.cele_gen_whoosh) self.redirect('/page/{0}'.format(slug))
python
{ "resource": "" }
q4997
MPostHist.update_cnt
train
def update_cnt(uid, post_data): ''' Update the content by ID. ''' entry = TabPostHist.update( user_name=post_data['user_name'], cnt_md=tornado.escape.xhtml_escape(post_data['cnt_md']), time_update=tools.timestamp(), ).where(TabPostHist.uid == uid) entry.execute()
python
{ "resource": "" }
q4998
MPostHist.query_by_postid
train
def query_by_postid(postid, limit=5): ''' Query history of certian records. ''' recs = TabPostHist.select().where( TabPostHist.post_id == postid ).order_by( TabPostHist.time_update.desc() ).limit(limit) return recs
python
{ "resource": "" }
q4999
MPostHist.get_last
train
def get_last(postid, limit=10): ''' Get the last one of the records. ''' recs = TabPostHist.select().where( TabPostHist.post_id == postid ).order_by(TabPostHist.time_update.desc()).limit(limit) if recs.count(): return recs.get() return None
python
{ "resource": "" }