_id
stringlengths
2
7
title
stringlengths
1
88
partition
stringclasses
3 values
text
stringlengths
75
19.8k
language
stringclasses
1 value
meta_information
dict
q24900
convert_to_database_compatible_value
train
def convert_to_database_compatible_value(value): """Pandas 0.23 broke DataFrame.to_sql, so we workaround it by rolling our own extremely low-tech conversion routine """ if pd.isnull(value): return None if isinstance(value, pd.Timestamp): return value.to_pydatetime() try: return value.item() except AttributeError: return value
python
{ "resource": "" }
q24901
matches
train
def matches(value, pattern): """Check whether `value` matches `pattern`. Parameters ---------- value : ast.AST pattern : ast.AST Returns ------- matched : bool """ # types must match exactly if type(value) != type(pattern): return False # primitive value, such as None, True, False etc if not isinstance(value, ast.AST) and not isinstance(pattern, ast.AST): return value == pattern fields = [ (field, getattr(pattern, field)) for field in pattern._fields if hasattr(pattern, field) ] for field_name, field_value in fields: if not matches(getattr(value, field_name), field_value): return False return True
python
{ "resource": "" }
q24902
highest_precedence_dtype
train
def highest_precedence_dtype(exprs): """Return the highest precedence type from the passed expressions Also verifies that there are valid implicit casts between any of the types and the selected highest precedence type. This is a thin wrapper around datatypes highest precedence check. Parameters ---------- exprs : Iterable[ir.ValueExpr] A sequence of Expressions Returns ------- dtype: DataType The highest precedence datatype """ if not exprs: raise ValueError('Must pass at least one expression') return dt.highest_precedence(expr.type() for expr in exprs)
python
{ "resource": "" }
q24903
castable
train
def castable(source, target): """Return whether source ir type is implicitly castable to target Based on the underlying datatypes and the value in case of Literals """ op = source.op() value = getattr(op, 'value', None) return dt.castable(source.type(), target.type(), value=value)
python
{ "resource": "" }
q24904
one_of
train
def one_of(inners, arg): """At least one of the inner validators must pass""" for inner in inners: with suppress(com.IbisTypeError, ValueError): return inner(arg) rules_formatted = ', '.join(map(repr, inners)) raise com.IbisTypeError( 'Arg passes neither of the following rules: {}'.format(rules_formatted) )
python
{ "resource": "" }
q24905
instance_of
train
def instance_of(klass, arg): """Require that a value has a particular Python type.""" if not isinstance(arg, klass): raise com.IbisTypeError( 'Given argument with type {} is not an instance of {}'.format( type(arg), klass ) ) return arg
python
{ "resource": "" }
q24906
value
train
def value(dtype, arg): """Validates that the given argument is a Value with a particular datatype Parameters ---------- dtype : DataType subclass or DataType instance arg : python literal or an ibis expression If a python literal is given the validator tries to coerce it to an ibis literal. Returns ------- arg : AnyValue An ibis value expression with the specified datatype """ if not isinstance(arg, ir.Expr): # coerce python literal to ibis literal arg = ir.literal(arg) if not isinstance(arg, ir.AnyValue): raise com.IbisTypeError( 'Given argument with type {} is not a value ' 'expression'.format(type(arg)) ) # retrieve literal values for implicit cast check value = getattr(arg.op(), 'value', None) if isinstance(dtype, type) and isinstance(arg.type(), dtype): # dtype class has been specified like dt.Interval or dt.Decimal return arg elif dt.castable(arg.type(), dt.dtype(dtype), value=value): # dtype instance or string has been specified and arg's dtype is # implicitly castable to it, like dt.int8 is castable to dt.int64 return arg else: raise com.IbisTypeError( 'Given argument with datatype {} is not ' 'subtype of {} nor implicitly castable to ' 'it'.format(arg.type(), dtype) )
python
{ "resource": "" }
q24907
table
train
def table(schema, arg): """A table argument. Parameters ---------- schema : Union[sch.Schema, List[Tuple[str, dt.DataType]] A validator for the table's columns. Only column subset validators are currently supported. Accepts any arguments that `sch.schema` accepts. See the example for usage. arg : The validatable argument. Examples -------- The following op will accept an argument named ``'table'``. Note that the ``schema`` argument specifies rules for columns that are required to be in the table: ``time``, ``group`` and ``value1``. These must match the types specified in the column rules. Column ``value2`` is optional, but if present it must be of the specified type. The table may have extra columns not specified in the schema. """ assert isinstance(arg, ir.TableExpr) if arg.schema() >= sch.schema(schema): return arg raise com.IbisTypeError( 'Argument is not a table with column subset of {}'.format(schema) )
python
{ "resource": "" }
q24908
wrap_uda
train
def wrap_uda( hdfs_file, inputs, output, update_fn, init_fn=None, merge_fn=None, finalize_fn=None, serialize_fn=None, close_fn=None, name=None, ): """ Creates a callable aggregation function object. Must be created in Impala to be used Parameters ---------- hdfs_file: .so file that contains relevant UDA inputs: list of strings denoting ibis datatypes output: string denoting ibis datatype update_fn: string Library symbol name for update function init_fn: string, optional Library symbol name for initialization function merge_fn: string, optional Library symbol name for merge function finalize_fn: string, optional Library symbol name for finalize function serialize_fn : string, optional Library symbol name for serialize UDA API function. Not required for all UDAs; see documentation for more. close_fn : string, optional name: string, optional Used internally to track function Returns ------- container : UDA object """ func = ImpalaUDA( inputs, output, update_fn, init_fn, merge_fn, finalize_fn, serialize_fn=serialize_fn, name=name, lib_path=hdfs_file, ) return func
python
{ "resource": "" }
q24909
wrap_udf
train
def wrap_udf(hdfs_file, inputs, output, so_symbol, name=None): """ Creates a callable scalar function object. Must be created in Impala to be used Parameters ---------- hdfs_file: .so file that contains relevant UDF inputs: list of strings or sig.TypeSignature Input types to UDF output: string Ibis data type so_symbol: string, C++ function name for relevant UDF name: string (optional). Used internally to track function Returns ------- container : UDF object """ func = ImpalaUDF(inputs, output, so_symbol, name=name, lib_path=hdfs_file) return func
python
{ "resource": "" }
q24910
add_operation
train
def add_operation(op, func_name, db): """ Registers the given operation within the Ibis SQL translation toolchain Parameters ---------- op: operator class name: used in issuing statements to SQL engine database: database the relevant operator is registered to """ full_name = '{0}.{1}'.format(db, func_name) # TODO # if op.input_type is rlz.listof: # translator = comp.varargs(full_name) # else: arity = len(op.signature) translator = comp.fixed_arity(full_name, arity) comp._operation_registry[op] = translator
python
{ "resource": "" }
q24911
connect
train
def connect( host='localhost', port=21050, database='default', timeout=45, use_ssl=False, ca_cert=None, user=None, password=None, auth_mechanism='NOSASL', kerberos_service_name='impala', pool_size=8, hdfs_client=None, ): """Create an ImpalaClient for use with Ibis. Parameters ---------- host : str, optional Host name of the impalad or HiveServer2 in Hive port : int, optional Impala's HiveServer2 port database : str, optional Default database when obtaining new cursors timeout : int, optional Connection timeout in seconds when communicating with HiveServer2 use_ssl : bool, optional Use SSL when connecting to HiveServer2 ca_cert : str, optional Local path to 3rd party CA certificate or copy of server certificate for self-signed certificates. If SSL is enabled, but this argument is ``None``, then certificate validation is skipped. user : str, optional LDAP user to authenticate password : str, optional LDAP password to authenticate auth_mechanism : str, optional {'NOSASL' <- default, 'PLAIN', 'GSSAPI', 'LDAP'}. Use NOSASL for non-secured Impala connections. Use PLAIN for non-secured Hive clusters. Use LDAP for LDAP authenticated connections. Use GSSAPI for Kerberos-secured clusters. kerberos_service_name : str, optional Specify particular impalad service principal. Examples -------- >>> import ibis >>> import os >>> hdfs_host = os.environ.get('IBIS_TEST_NN_HOST', 'localhost') >>> hdfs_port = int(os.environ.get('IBIS_TEST_NN_PORT', 50070)) >>> impala_host = os.environ.get('IBIS_TEST_IMPALA_HOST', 'localhost') >>> impala_port = int(os.environ.get('IBIS_TEST_IMPALA_PORT', 21050)) >>> hdfs = ibis.hdfs_connect(host=hdfs_host, port=hdfs_port) >>> hdfs # doctest: +ELLIPSIS <ibis.filesystems.WebHDFS object at 0x...> >>> client = ibis.impala.connect( ... host=impala_host, ... port=impala_port, ... hdfs_client=hdfs, ... ) >>> client # doctest: +ELLIPSIS <ibis.impala.client.ImpalaClient object at 0x...> Returns ------- ImpalaClient """ params = { 'host': host, 'port': port, 'database': database, 'timeout': timeout, 'use_ssl': use_ssl, 'ca_cert': ca_cert, 'user': user, 'password': password, 'auth_mechanism': auth_mechanism, 'kerberos_service_name': kerberos_service_name, } con = ImpalaConnection(pool_size=pool_size, **params) try: client = ImpalaClient(con, hdfs_client=hdfs_client) except Exception: con.close() raise else: if options.default_backend is None: options.default_backend = client return client
python
{ "resource": "" }
q24912
execute_with_scope
train
def execute_with_scope(expr, scope, aggcontext=None, clients=None, **kwargs): """Execute an expression `expr`, with data provided in `scope`. Parameters ---------- expr : ibis.expr.types.Expr The expression to execute. scope : collections.Mapping A dictionary mapping :class:`~ibis.expr.operations.Node` subclass instances to concrete data such as a pandas DataFrame. aggcontext : Optional[ibis.pandas.aggcontext.AggregationContext] Returns ------- result : scalar, pd.Series, pd.DataFrame """ op = expr.op() # Call pre_execute, to allow clients to intercept the expression before # computing anything *and* before associating leaf nodes with data. This # allows clients to provide their own data for each leaf. if clients is None: clients = list(find_backends(expr)) if aggcontext is None: aggcontext = agg_ctx.Summarize() pre_executed_scope = pre_execute( op, *clients, scope=scope, aggcontext=aggcontext, **kwargs ) new_scope = toolz.merge(scope, pre_executed_scope) result = execute_until_in_scope( expr, new_scope, aggcontext=aggcontext, clients=clients, # XXX: we *explicitly* pass in scope and not new_scope here so that # post_execute sees the scope of execute_with_scope, not the scope of # execute_until_in_scope post_execute_=functools.partial( post_execute, scope=scope, aggcontext=aggcontext, clients=clients, **kwargs, ), **kwargs, ) return result
python
{ "resource": "" }
q24913
execute_until_in_scope
train
def execute_until_in_scope( expr, scope, aggcontext=None, clients=None, post_execute_=None, **kwargs ): """Execute until our op is in `scope`. Parameters ---------- expr : ibis.expr.types.Expr scope : Mapping aggcontext : Optional[AggregationContext] clients : List[ibis.client.Client] kwargs : Mapping """ # these should never be None assert aggcontext is not None, 'aggcontext is None' assert clients is not None, 'clients is None' assert post_execute_ is not None, 'post_execute_ is None' # base case: our op has been computed (or is a leaf data node), so # return the corresponding value op = expr.op() if op in scope: return scope[op] new_scope = execute_bottom_up( expr, scope, aggcontext=aggcontext, post_execute_=post_execute_, clients=clients, **kwargs, ) new_scope = toolz.merge( new_scope, pre_execute(op, *clients, scope=scope, **kwargs) ) return execute_until_in_scope( expr, new_scope, aggcontext=aggcontext, clients=clients, post_execute_=post_execute_, **kwargs, )
python
{ "resource": "" }
q24914
execute_bottom_up
train
def execute_bottom_up( expr, scope, aggcontext=None, post_execute_=None, clients=None, **kwargs ): """Execute `expr` bottom-up. Parameters ---------- expr : ibis.expr.types.Expr scope : Mapping[ibis.expr.operations.Node, object] aggcontext : Optional[ibis.pandas.aggcontext.AggregationContext] kwargs : Dict[str, object] Returns ------- result : Mapping[ ibis.expr.operations.Node, Union[pandas.Series, pandas.DataFrame, scalar_types] ] A mapping from node to the computed result of that Node """ assert post_execute_ is not None, 'post_execute_ is None' op = expr.op() # if we're in scope then return the scope, this will then be passed back # into execute_bottom_up, which will then terminate if op in scope: return scope elif isinstance(op, ops.Literal): # special case literals to avoid the overhead of dispatching # execute_node return { op: execute_literal( op, op.value, expr.type(), aggcontext=aggcontext, **kwargs ) } # figure out what arguments we're able to compute on based on the # expressions inputs. things like expressions, None, and scalar types are # computable whereas ``list``s are not computable_args = [arg for arg in op.inputs if is_computable_input(arg)] # recursively compute each node's arguments until we've changed type scopes = [ execute_bottom_up( arg, scope, aggcontext=aggcontext, post_execute_=post_execute_, clients=clients, **kwargs, ) if hasattr(arg, 'op') else {arg: arg} for arg in computable_args ] # if we're unable to find data then raise an exception if not scopes: raise com.UnboundExpressionError( 'Unable to find data for expression:\n{}'.format(repr(expr)) ) # there should be exactly one dictionary per computable argument assert len(computable_args) == len(scopes) new_scope = toolz.merge(scopes) # pass our computed arguments to this node's execute_node implementation data = [ new_scope[arg.op()] if hasattr(arg, 'op') else arg for arg in computable_args ] result = execute_node( op, *data, scope=scope, aggcontext=aggcontext, clients=clients, **kwargs, ) computed = post_execute_(op, result) return {op: computed}
python
{ "resource": "" }
q24915
KuduImpalaInterface.connect
train
def connect( self, host_or_hosts, port_or_ports=7051, rpc_timeout=None, admin_timeout=None, ): """ Pass-through connection interface to the Kudu client Parameters ---------- host_or_hosts : string or list of strings If you have multiple Kudu masters for HA, pass a list port_or_ports : int or list of int, default 7051 If you pass multiple host names, pass multiple ports rpc_timeout : kudu.TimeDelta See Kudu client documentation for details admin_timeout : kudu.TimeDelta See Kudu client documentation for details Returns ------- None """ self.client = kudu.connect( host_or_hosts, port_or_ports, rpc_timeout_ms=rpc_timeout, admin_timeout_ms=admin_timeout, )
python
{ "resource": "" }
q24916
KuduImpalaInterface.create_table
train
def create_table( self, impala_name, kudu_name, primary_keys=None, obj=None, schema=None, database=None, external=False, force=False, ): """ Create an Kudu-backed table in the connected Impala cluster. For non-external tables, this will create a Kudu table with a compatible storage schema. This function is patterned after the ImpalaClient.create_table function designed for physical filesystems (like HDFS). Parameters ---------- impala_name : string Name of the created Impala table kudu_name : string Name of hte backing Kudu table. Will be created if external=False primary_keys : list of column names List of obj : TableExpr or pandas.DataFrame, optional If passed, creates table from select statement results schema : ibis.Schema, optional Mutually exclusive with expr, creates an empty table with a particular schema database : string, default None (optional) external : boolean, default False If False, a new Kudu table will be created. Otherwise, the Kudu table must already exist. """ self._check_connected() if not external and (primary_keys is None or len(primary_keys) == 0): raise ValueError( 'Must specify primary keys when DDL creates a ' 'new Kudu table' ) if obj is not None: if external: raise ValueError( 'Cannot create an external Kudu-Impala table ' 'from an expression or DataFrame' ) if isinstance(obj, pd.DataFrame): from ibis.impala.pandas_interop import write_temp_dataframe writer, to_insert = write_temp_dataframe( self.impala_client, obj ) else: to_insert = obj # XXX: exposing a lot of internals ast = self.impala_client._build_ast(to_insert) select = ast.queries[0] stmt = CTASKudu( impala_name, kudu_name, self.client.master_addrs, select, primary_keys, database=database, ) else: if external: ktable = self.client.table(kudu_name) kschema = ktable.schema schema = schema_kudu_to_ibis(kschema) primary_keys = kschema.primary_keys() elif schema is None: raise ValueError( 'Must specify schema for new empty ' 'Kudu-backed table' ) stmt = CreateTableKudu( impala_name, kudu_name, self.client.master_addrs, schema, primary_keys, external=external, database=database, can_exist=False, ) self.impala_client._execute(stmt)
python
{ "resource": "" }
q24917
connect
train
def connect( host='localhost', port=9000, database='default', user='default', password='', client_name='ibis', compression=_default_compression, ): """Create an ClickhouseClient for use with Ibis. Parameters ---------- host : str, optional Host name of the clickhouse server port : int, optional Clickhouse server's port database : str, optional Default database when executing queries user : str, optional User to authenticate with password : str, optional Password to authenticate with client_name: str, optional This will appear in clickhouse server logs compression: str, optional Weather or not to use compression. Default is lz4 if installed else False. Possible choices: lz4, lz4hc, quicklz, zstd, True, False True is equivalent to 'lz4'. Examples -------- >>> import ibis >>> import os >>> clickhouse_host = os.environ.get('IBIS_TEST_CLICKHOUSE_HOST', ... 'localhost') >>> clickhouse_port = int(os.environ.get('IBIS_TEST_CLICKHOUSE_PORT', ... 9000)) >>> client = ibis.clickhouse.connect( ... host=clickhouse_host, ... port=clickhouse_port ... ) >>> client # doctest: +ELLIPSIS <ibis.clickhouse.client.ClickhouseClient object at 0x...> Returns ------- ClickhouseClient """ client = ClickhouseClient( host, port=port, database=database, user=user, password=password, client_name=client_name, compression=compression, ) if options.default_backend is None: options.default_backend = client return client
python
{ "resource": "" }
q24918
ClickhouseClient.list_databases
train
def list_databases(self, like=None): """ List databases in the Clickhouse cluster. Like the SHOW DATABASES command in the clickhouse-shell. Parameters ---------- like : string, default None e.g. 'foo*' to match all tables starting with 'foo' Returns ------- databases : list of strings """ statement = 'SELECT name FROM system.databases' if like: statement += " WHERE name LIKE '{0}'".format(like) data, _, _ = self.raw_sql(statement, results=True) return data[0]
python
{ "resource": "" }
q24919
remap_overlapping_column_names
train
def remap_overlapping_column_names(table_op, root_table, data_columns): """Return an ``OrderedDict`` mapping possibly suffixed column names to column names without suffixes. Parameters ---------- table_op : TableNode The ``TableNode`` we're selecting from. root_table : TableNode The root table of the expression we're selecting from. data_columns : set or frozenset The available columns to select from Returns ------- mapping : OrderedDict[str, str] A map from possibly-suffixed column names to column names without suffixes. """ if not isinstance(table_op, ops.Join): return None left_root, right_root = ops.distinct_roots(table_op.left, table_op.right) suffixes = { left_root: constants.LEFT_JOIN_SUFFIX, right_root: constants.RIGHT_JOIN_SUFFIX, } column_names = [ ({name, name + suffixes[root_table]} & data_columns, name) for name in root_table.schema.names ] mapping = OrderedDict( (first(col_name), final_name) for col_name, final_name in column_names if col_name ) return mapping
python
{ "resource": "" }
q24920
_compute_predicates
train
def _compute_predicates(table_op, predicates, data, scope, **kwargs): """Compute the predicates for a table operation. Parameters ---------- table_op : TableNode predicates : List[ir.ColumnExpr] data : pd.DataFrame scope : dict kwargs : dict Returns ------- computed_predicate : pd.Series[bool] Notes ----- This handles the cases where the predicates are computed columns, in addition to the simple case of named columns coming directly from the input table. """ for predicate in predicates: # Map each root table of the predicate to the data so that we compute # predicates on the result instead of any left or right tables if the # Selection is on a Join. Project data to only inlude columns from # the root table. root_tables = predicate.op().root_tables() # handle suffixes additional_scope = {} data_columns = frozenset(data.columns) for root_table in root_tables: mapping = remap_overlapping_column_names( table_op, root_table, data_columns ) if mapping is not None: new_data = data.loc[:, mapping.keys()].rename(columns=mapping) else: new_data = data additional_scope[root_table] = new_data new_scope = toolz.merge(scope, additional_scope) yield execute(predicate, scope=new_scope, **kwargs)
python
{ "resource": "" }
q24921
flatten_union
train
def flatten_union(table): """Extract all union queries from `table`. Parameters ---------- table : TableExpr Returns ------- Iterable[Union[TableExpr, bool]] """ op = table.op() if isinstance(op, ops.Union): return toolz.concatv( flatten_union(op.left), [op.distinct], flatten_union(op.right) ) return [table]
python
{ "resource": "" }
q24922
ExprTranslator.get_result
train
def get_result(self): """ Build compiled SQL expression from the bottom up and return as a string """ translated = self.translate(self.expr) if self._needs_name(self.expr): # TODO: this could fail in various ways name = self.expr.get_name() translated = self.name(translated, name) return translated
python
{ "resource": "" }
q24923
Select.compile
train
def compile(self): """ This method isn't yet idempotent; calling multiple times may yield unexpected results """ # Can't tell if this is a hack or not. Revisit later self.context.set_query(self) # If any subqueries, translate them and add to beginning of query as # part of the WITH section with_frag = self.format_subqueries() # SELECT select_frag = self.format_select_set() # FROM, JOIN, UNION from_frag = self.format_table_set() # WHERE where_frag = self.format_where() # GROUP BY and HAVING groupby_frag = self.format_group_by() # ORDER BY order_frag = self.format_order_by() # LIMIT limit_frag = self.format_limit() # Glue together the query fragments and return query = '\n'.join( filter( None, [ with_frag, select_frag, from_frag, where_frag, groupby_frag, order_frag, limit_frag, ], ) ) return query
python
{ "resource": "" }
q24924
table
train
def table(schema, name=None): """ Create an unbound Ibis table for creating expressions. Cannot be executed without being bound to some physical table. Useful for testing Parameters ---------- schema : ibis Schema name : string, default None Name for table Returns ------- table : TableExpr """ if not isinstance(schema, Schema): if isinstance(schema, dict): schema = Schema.from_dict(schema) else: schema = Schema.from_tuples(schema) node = ops.UnboundTable(schema, name=name) return node.to_expr()
python
{ "resource": "" }
q24925
timestamp
train
def timestamp(value, timezone=None): """ Returns a timestamp literal if value is likely coercible to a timestamp Parameters ---------- value : timestamp value as string timezone: timezone as string defaults to None Returns -------- result : TimestampScalar """ if isinstance(value, str): try: value = pd.Timestamp(value, tz=timezone) except pd.errors.OutOfBoundsDatetime: value = dateutil.parser.parse(value) if isinstance(value, numbers.Integral): raise TypeError( ( "Passing an integer to ibis.timestamp is not supported. Use " "ibis.literal({value:d}).to_timestamp() to create a timestamp " "expression from an integer." ).format(value=value) ) return literal(value, type=dt.Timestamp(timezone=timezone))
python
{ "resource": "" }
q24926
date
train
def date(value): """ Returns a date literal if value is likely coercible to a date Parameters ---------- value : date value as string Returns -------- result : TimeScalar """ if isinstance(value, str): value = to_date(value) return literal(value, type=dt.date)
python
{ "resource": "" }
q24927
time
train
def time(value): """ Returns a time literal if value is likely coercible to a time Parameters ---------- value : time value as string Returns -------- result : TimeScalar """ if isinstance(value, str): value = to_time(value) return literal(value, type=dt.time)
python
{ "resource": "" }
q24928
interval
train
def interval( value=None, unit='s', years=None, quarters=None, months=None, weeks=None, days=None, hours=None, minutes=None, seconds=None, milliseconds=None, microseconds=None, nanoseconds=None, ): """ Returns an interval literal Parameters ---------- value : int or datetime.timedelta, default None years : int, default None quarters : int, default None months : int, default None days : int, default None weeks : int, default None hours : int, default None minutes : int, default None seconds : int, default None milliseconds : int, default None microseconds : int, default None nanoseconds : int, default None Returns -------- result : IntervalScalar """ if value is not None: if isinstance(value, datetime.timedelta): unit = 's' value = int(value.total_seconds()) elif not isinstance(value, int): raise ValueError('Interval value must be an integer') else: kwds = [ ('Y', years), ('Q', quarters), ('M', months), ('W', weeks), ('D', days), ('h', hours), ('m', minutes), ('s', seconds), ('ms', milliseconds), ('us', microseconds), ('ns', nanoseconds), ] defined_units = [(k, v) for k, v in kwds if v is not None] if len(defined_units) != 1: raise ValueError('Exactly one argument is required') unit, value = defined_units[0] value_type = literal(value).type() type = dt.Interval(unit, value_type) return literal(value, type=type).op().to_expr()
python
{ "resource": "" }
q24929
negate
train
def negate(arg): """ Negate a numeric expression Parameters ---------- arg : numeric value expression Returns ------- negated : type of caller """ op = arg.op() if hasattr(op, 'negate'): result = op.negate() else: result = ops.Negate(arg) return result.to_expr()
python
{ "resource": "" }
q24930
over
train
def over(expr, window): """ Turn an aggregation or full-sample analytic operation into a windowed operation. See ibis.window for more details on window configuration Parameters ---------- expr : value expression window : ibis.Window Returns ------- expr : type of input """ prior_op = expr.op() if isinstance(prior_op, ops.WindowOp): op = prior_op.over(window) else: op = ops.WindowOp(expr, window) result = op.to_expr() try: name = expr.get_name() except com.ExpressionError: pass else: result = result.name(name) return result
python
{ "resource": "" }
q24931
value_counts
train
def value_counts(arg, metric_name='count'): """ Compute a frequency table for this value expression Parameters ---------- Returns ------- counts : TableExpr Aggregated table """ base = ir.find_base_table(arg) metric = base.count().name(metric_name) try: arg.get_name() except com.ExpressionError: arg = arg.name('unnamed') return base.group_by(arg).aggregate(metric)
python
{ "resource": "" }
q24932
isin
train
def isin(arg, values): """ Check whether the value expression is contained within the indicated list of values. Parameters ---------- values : list, tuple, or array expression The values can be scalar or array-like. Each of them must be comparable with the calling expression, or None (NULL). Examples -------- >>> import ibis >>> table = ibis.table([('string_col', 'string')]) >>> table2 = ibis.table([('other_string_col', 'string')]) >>> expr = table.string_col.isin(['foo', 'bar', 'baz']) >>> expr2 = table.string_col.isin(table2.other_string_col) Returns ------- contains : BooleanValue """ op = ops.Contains(arg, values) return op.to_expr()
python
{ "resource": "" }
q24933
cases
train
def cases(arg, case_result_pairs, default=None): """ Create a case expression in one shot. Returns ------- case_expr : SimpleCase """ builder = arg.case() for case, result in case_result_pairs: builder = builder.when(case, result) if default is not None: builder = builder.else_(default) return builder.end()
python
{ "resource": "" }
q24934
_generic_summary
train
def _generic_summary(arg, exact_nunique=False, prefix=None): """ Compute a set of summary metrics from the input value expression Parameters ---------- arg : value expression exact_nunique : boolean, default False Compute the exact number of distinct values (slower) prefix : string, default None String prefix for metric names Returns ------- summary : (count, # nulls, nunique) """ metrics = [arg.count(), arg.isnull().sum().name('nulls')] if exact_nunique: unique_metric = arg.nunique().name('uniques') else: unique_metric = arg.approx_nunique().name('uniques') metrics.append(unique_metric) return _wrap_summary_metrics(metrics, prefix)
python
{ "resource": "" }
q24935
_numeric_summary
train
def _numeric_summary(arg, exact_nunique=False, prefix=None): """ Compute a set of summary metrics from the input numeric value expression Parameters ---------- arg : numeric value expression exact_nunique : boolean, default False prefix : string, default None String prefix for metric names Returns ------- summary : (count, # nulls, min, max, sum, mean, nunique) """ metrics = [ arg.count(), arg.isnull().sum().name('nulls'), arg.min(), arg.max(), arg.sum(), arg.mean(), ] if exact_nunique: unique_metric = arg.nunique().name('nunique') else: unique_metric = arg.approx_nunique().name('approx_nunique') metrics.append(unique_metric) return _wrap_summary_metrics(metrics, prefix)
python
{ "resource": "" }
q24936
round
train
def round(arg, digits=None): """ Round values either to integer or indicated number of decimal places. Returns ------- rounded : type depending on digits argument digits None or 0 decimal types: decimal other numeric types: bigint digits nonzero decimal types: decimal other numeric types: double """ op = ops.Round(arg, digits) return op.to_expr()
python
{ "resource": "" }
q24937
log
train
def log(arg, base=None): """ Perform the logarithm using a specified base Parameters ---------- base : number, default None If None, base e is used Returns ------- logarithm : double type """ op = ops.Log(arg, base) return op.to_expr()
python
{ "resource": "" }
q24938
quantile
train
def quantile(arg, quantile, interpolation='linear'): """ Return value at the given quantile, a la numpy.percentile. Parameters ---------- quantile : float/int or array-like 0 <= quantile <= 1, the quantile(s) to compute interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. Returns ------- quantile if scalar input, scalar type, same as input if array input, list of scalar type """ if isinstance(quantile, collections.abc.Sequence): op = ops.MultiQuantile(arg, quantile, interpolation) else: op = ops.Quantile(arg, quantile, interpolation) return op.to_expr()
python
{ "resource": "" }
q24939
_integer_to_interval
train
def _integer_to_interval(arg, unit='s'): """ Convert integer interval with the same inner type Parameters ---------- unit : {'Y', 'M', 'W', 'D', 'h', 'm', s', 'ms', 'us', 'ns'} Returns ------- interval : interval value expression """ op = ops.IntervalFromInteger(arg, unit) return op.to_expr()
python
{ "resource": "" }
q24940
correlation
train
def correlation(left, right, where=None, how='sample'): """ Compute correlation of two numeric array Parameters ---------- how : {'sample', 'pop'}, default 'sample' Returns ------- corr : double scalar """ expr = ops.Correlation(left, right, how, where).to_expr() return expr
python
{ "resource": "" }
q24941
covariance
train
def covariance(left, right, where=None, how='sample'): """ Compute covariance of two numeric array Parameters ---------- how : {'sample', 'pop'}, default 'sample' Returns ------- cov : double scalar """ expr = ops.Covariance(left, right, how, where).to_expr() return expr
python
{ "resource": "" }
q24942
geo_area
train
def geo_area(arg, use_spheroid=None): """ Compute area of a geo spatial data Parameters ---------- arg : geometry or geography use_spheroid: default None Returns ------- area : double scalar """ op = ops.GeoArea(arg, use_spheroid) return op.to_expr()
python
{ "resource": "" }
q24943
geo_contains
train
def geo_contains(left, right): """ Check if the first geometry contains the second one Parameters ---------- left : geometry right : geometry Returns ------- contains : bool scalar """ op = ops.GeoContains(left, right) return op.to_expr()
python
{ "resource": "" }
q24944
geo_distance
train
def geo_distance(left, right, use_spheroid=None): """ Compute distance between two geo spatial data Parameters ---------- left : geometry or geography right : geometry or geography use_spheroid : default None Returns ------- distance : double scalar """ op = ops.GeoDistance(left, right, use_spheroid) return op.to_expr()
python
{ "resource": "" }
q24945
geo_length
train
def geo_length(arg, use_spheroid=None): """ Compute length of a geo spatial data Parameters ---------- arg : geometry or geography use_spheroid : default None Returns ------- length : double scalar """ op = ops.GeoLength(arg, use_spheroid) return op.to_expr()
python
{ "resource": "" }
q24946
geo_perimeter
train
def geo_perimeter(arg, use_spheroid=None): """ Compute perimeter of a geo spatial data Parameters ---------- arg : geometry or geography use_spheroid : default None Returns ------- perimeter : double scalar """ op = ops.GeoPerimeter(arg, use_spheroid) return op.to_expr()
python
{ "resource": "" }
q24947
geo_max_distance
train
def geo_max_distance(left, right): """Returns the 2-dimensional maximum distance between two geometries in projected units. If g1 and g2 is the same geometry the function will return the distance between the two vertices most far from each other in that geometry Parameters ---------- left : geometry right : geometry Returns ------- MaxDistance : double scalar """ op = ops.GeoMaxDistance(left, right) return op.to_expr()
python
{ "resource": "" }
q24948
geo_point_n
train
def geo_point_n(arg, n): """Return the Nth point in a single linestring in the geometry. Negative values are counted backwards from the end of the LineString, so that -1 is the last point. Returns NULL if there is no linestring in the geometry Parameters ---------- arg : geometry n : integer Returns ------- PointN : geometry scalar """ op = ops.GeoPointN(arg, n) return op.to_expr()
python
{ "resource": "" }
q24949
ifelse
train
def ifelse(arg, true_expr, false_expr): """ Shorthand for implementing ternary expressions bool_expr.ifelse(0, 1) e.g., in SQL: CASE WHEN bool_expr THEN 0 else 1 END """ # Result will be the result of promotion of true/false exprs. These # might be conflicting types; same type resolution as case expressions # must be used. case = ops.SearchedCaseBuilder() return case.when(arg, true_expr).else_(false_expr).end()
python
{ "resource": "" }
q24950
_string_substr
train
def _string_substr(self, start, length=None): """ Pull substrings out of each string value by position and maximum length. Parameters ---------- start : int First character to start splitting, indices starting at 0 (like Python) length : int, optional Maximum length of each substring. If not supplied, splits each string to the end Returns ------- substrings : type of caller """ op = ops.Substring(self, start, length) return op.to_expr()
python
{ "resource": "" }
q24951
regex_extract
train
def regex_extract(arg, pattern, index): """ Returns specified index, 0 indexed, from string based on regex pattern given Parameters ---------- pattern : string (regular expression string) index : int, 0 indexed Returns ------- extracted : string """ return ops.RegexExtract(arg, pattern, index).to_expr()
python
{ "resource": "" }
q24952
regex_replace
train
def regex_replace(arg, pattern, replacement): """ Replaces match found by regex with replacement string. Replacement string can also be a regex Parameters ---------- pattern : string (regular expression string) replacement : string (can be regular expression string) Examples -------- >>> import ibis >>> table = ibis.table([('strings', 'string')]) >>> result = table.strings.replace('(b+)', r'<\1>') # 'aaabbbaa' becomes 'aaa<bbb>aaa' # noqa: E501 Returns ------- modified : string """ return ops.RegexReplace(arg, pattern, replacement).to_expr()
python
{ "resource": "" }
q24953
_string_replace
train
def _string_replace(arg, pattern, replacement): """ Replaces each exactly occurrence of pattern with given replacement string. Like Python built-in str.replace Parameters ---------- pattern : string replacement : string Examples -------- >>> import ibis >>> table = ibis.table([('strings', 'string')]) >>> result = table.strings.replace('aaa', 'foo') # 'aaabbbaaa' becomes 'foobbbfoo' # noqa: E501 Returns ------- replaced : string """ return ops.StringReplace(arg, pattern, replacement).to_expr()
python
{ "resource": "" }
q24954
to_timestamp
train
def to_timestamp(arg, format_str, timezone=None): """ Parses a string and returns a timestamp. Parameters ---------- format_str : A format string potentially of the type '%Y-%m-%d' timezone : An optional string indicating the timezone, i.e. 'America/New_York' Examples -------- >>> import ibis >>> date_as_str = ibis.literal('20170206') >>> result = date_as_str.to_timestamp('%Y%m%d') Returns ------- parsed : TimestampValue """ return ops.StringToTimestamp(arg, format_str, timezone).to_expr()
python
{ "resource": "" }
q24955
parse_url
train
def parse_url(arg, extract, key=None): """ Returns the portion of a URL corresponding to a part specified by 'extract' Can optionally specify a key to retrieve an associated value if extract parameter is 'QUERY' Parameters ---------- extract : one of {'PROTOCOL', 'HOST', 'PATH', 'REF', 'AUTHORITY', 'FILE', 'USERINFO', 'QUERY'} key : string (optional) Examples -------- >>> url = "https://www.youtube.com/watch?v=kEuEcWfewf8&t=10" >>> parse_url(url, 'QUERY', 'v') # doctest: +SKIP 'kEuEcWfewf8' Returns ------- extracted : string """ return ops.ParseURL(arg, extract, key).to_expr()
python
{ "resource": "" }
q24956
_array_slice
train
def _array_slice(array, index): """Slice or index `array` at `index`. Parameters ---------- index : int or ibis.expr.types.IntegerValue or slice Returns ------- sliced_array : ibis.expr.types.ValueExpr If `index` is an ``int`` or :class:`~ibis.expr.types.IntegerValue` then the return type is the element type of `array`. If `index` is a ``slice`` then the return type is the same type as the input. """ if isinstance(index, slice): start = index.start stop = index.stop if (start is not None and start < 0) or ( stop is not None and stop < 0 ): raise ValueError('negative slicing not yet supported') step = index.step if step is not None and step != 1: raise NotImplementedError('step can only be 1') op = ops.ArraySlice(array, start if start is not None else 0, stop) else: op = ops.ArrayIndex(array, index) return op.to_expr()
python
{ "resource": "" }
q24957
get
train
def get(expr, key, default=None): """ Return the mapped value for this key, or the default if the key does not exist Parameters ---------- key : any default : any """ return ops.MapValueOrDefaultForKey(expr, key, default).to_expr()
python
{ "resource": "" }
q24958
_struct_get_field
train
def _struct_get_field(expr, field_name): """Get the `field_name` field from the ``Struct`` expression `expr`. Parameters ---------- field_name : str The name of the field to access from the ``Struct`` typed expression `expr`. Must be a Python ``str`` type; programmatic struct field access is not yet supported. Returns ------- value_expr : ibis.expr.types.ValueExpr An expression with the type of the field being accessed. """ return ops.StructField(expr, field_name).to_expr().name(field_name)
python
{ "resource": "" }
q24959
join
train
def join(left, right, predicates=(), how='inner'): """Perform a relational join between two tables. Does not resolve resulting table schema. Parameters ---------- left : TableExpr right : TableExpr predicates : join expression(s) how : string, default 'inner' - 'inner': inner join - 'left': left join - 'outer': full outer join - 'right': right outer join - 'semi' or 'left_semi': left semi join - 'anti': anti join Returns ------- joined : TableExpr Note that the schema is not materialized yet """ klass = _join_classes[how.lower()] if isinstance(predicates, Expr): predicates = _L.flatten_predicate(predicates) op = klass(left, right, predicates) return op.to_expr()
python
{ "resource": "" }
q24960
asof_join
train
def asof_join(left, right, predicates=(), by=(), tolerance=None): """Perform an asof join between two tables. Similar to a left join except that the match is done on nearest key rather than equal keys. Optionally, match keys with 'by' before joining with predicates. Parameters ---------- left : TableExpr right : TableExpr predicates : join expression(s) by : string column to group by before joining tolerance : interval Amount of time to look behind when joining Returns ------- joined : TableExpr Note that the schema is not materialized yet """ return ops.AsOfJoin(left, right, predicates, by, tolerance).to_expr()
python
{ "resource": "" }
q24961
_table_info
train
def _table_info(self, buf=None): """ Similar to pandas DataFrame.info. Show column names, types, and null counts. Output to stdout by default """ metrics = [self.count().name('nrows')] for col in self.columns: metrics.append(self[col].count().name(col)) metrics = self.aggregate(metrics).execute().loc[0] names = ['Column', '------'] + self.columns types = ['Type', '----'] + [repr(x) for x in self.schema().types] counts = ['Non-null #', '----------'] + [str(x) for x in metrics[1:]] col_metrics = util.adjoin(2, names, types, counts) result = 'Table rows: {}\n\n{}'.format(metrics[0], col_metrics) print(result, file=buf)
python
{ "resource": "" }
q24962
_table_set_column
train
def _table_set_column(table, name, expr): """ Replace an existing column with a new expression Parameters ---------- name : string Column name to replace expr : value expression New data for column Returns ------- set_table : TableExpr New table expression """ expr = table._ensure_expr(expr) if expr._name != name: expr = expr.name(name) if name not in table: raise KeyError('{0} is not in the table'.format(name)) # TODO: This assumes that projection is required; may be backend-dependent proj_exprs = [] for key in table.columns: if key == name: proj_exprs.append(expr) else: proj_exprs.append(table[key]) return table.projection(proj_exprs)
python
{ "resource": "" }
q24963
filter
train
def filter(table, predicates): """ Select rows from table based on boolean expressions Parameters ---------- predicates : boolean array expressions, or list thereof Returns ------- filtered_expr : TableExpr """ resolved_predicates = _resolve_predicates(table, predicates) return _L.apply_filter(table, resolved_predicates)
python
{ "resource": "" }
q24964
aggregate
train
def aggregate(table, metrics=None, by=None, having=None, **kwds): """ Aggregate a table with a given set of reductions, with grouping expressions, and post-aggregation filters. Parameters ---------- table : table expression metrics : expression or expression list by : optional, default None Grouping expressions having : optional, default None Post-aggregation filters Returns ------- agg_expr : TableExpr """ if metrics is None: metrics = [] for k, v in sorted(kwds.items()): v = table._ensure_expr(v) metrics.append(v.name(k)) op = table.op().aggregate(table, metrics, by=by, having=having) return op.to_expr()
python
{ "resource": "" }
q24965
_table_union
train
def _table_union(left, right, distinct=False): """ Form the table set union of two table expressions having identical schemas. Parameters ---------- right : TableExpr distinct : boolean, default False Only union distinct rows not occurring in the calling table (this can be very expensive, be careful) Returns ------- union : TableExpr """ op = ops.Union(left, right, distinct=distinct) return op.to_expr()
python
{ "resource": "" }
q24966
_table_materialize
train
def _table_materialize(table): """ Force schema resolution for a joined table, selecting all fields from all tables. """ if table._is_materialized(): return table op = ops.MaterializedJoin(table) return op.to_expr()
python
{ "resource": "" }
q24967
mutate
train
def mutate(table, exprs=None, **mutations): """ Convenience function for table projections involving adding columns Parameters ---------- exprs : list, default None List of named expressions to add as columns mutations : keywords for new columns Returns ------- mutated : TableExpr Examples -------- Using keywords arguments to name the new columns >>> import ibis >>> table = ibis.table([('foo', 'double'), ('bar', 'double')], name='t') >>> expr = table.mutate(qux=table.foo + table.bar, baz=5) >>> expr # doctest: +NORMALIZE_WHITESPACE ref_0 UnboundTable[table] name: t schema: foo : float64 bar : float64 <BLANKLINE> Selection[table] table: Table: ref_0 selections: Table: ref_0 baz = Literal[int8] 5 qux = Add[float64*] left: foo = Column[float64*] 'foo' from table ref_0 right: bar = Column[float64*] 'bar' from table ref_0 Using the :meth:`ibis.expr.types.Expr.name` method to name the new columns >>> new_columns = [ibis.literal(5).name('baz',), ... (table.foo + table.bar).name('qux')] >>> expr2 = table.mutate(new_columns) >>> expr.equals(expr2) True """ if exprs is None: exprs = [] else: exprs = util.promote_list(exprs) for k, v in sorted(mutations.items(), key=operator.itemgetter(0)): if util.is_function(v): v = v(table) else: v = as_value_expr(v) exprs.append(v.name(k)) has_replacement = False for expr in exprs: if expr.get_name() in table: has_replacement = True if has_replacement: by_name = dict((x.get_name(), x) for x in exprs) used = set() proj_exprs = [] for c in table.columns: if c in by_name: proj_exprs.append(by_name[c]) used.add(c) else: proj_exprs.append(c) for x in exprs: if x.get_name() not in used: proj_exprs.append(x) return table.projection(proj_exprs) else: return table.projection([table] + exprs)
python
{ "resource": "" }
q24968
projection
train
def projection(table, exprs): """ Compute new table expression with the indicated column expressions from this table. Parameters ---------- exprs : column expression, or string, or list of column expressions and strings. If strings passed, must be columns in the table already Returns ------- projection : TableExpr Notes ----- Passing an aggregate function to this method will broadcast the aggregate's value over the number of rows in the table. See the examples section for more details. Examples -------- Simple projection >>> import ibis >>> fields = [('a', 'int64'), ('b', 'double')] >>> t = ibis.table(fields, name='t') >>> proj = t.projection([t.a, (t.b + 1).name('b_plus_1')]) >>> proj # doctest: +NORMALIZE_WHITESPACE ref_0 UnboundTable[table] name: t schema: a : int64 b : float64 <BLANKLINE> Selection[table] table: Table: ref_0 selections: a = Column[int64*] 'a' from table ref_0 b_plus_1 = Add[float64*] left: b = Column[float64*] 'b' from table ref_0 right: Literal[int8] 1 >>> proj2 = t[t.a, (t.b + 1).name('b_plus_1')] >>> proj.equals(proj2) True Aggregate projection >>> agg_proj = t[t.a.sum().name('sum_a'), t.b.mean().name('mean_b')] >>> agg_proj # doctest: +NORMALIZE_WHITESPACE, +ELLIPSIS ref_0 UnboundTable[table] name: t schema: a : int64 b : float64 <BLANKLINE> Selection[table] table: Table: ref_0 selections: sum_a = WindowOp[int64*] sum_a = Sum[int64] a = Column[int64*] 'a' from table ref_0 where: None <ibis.expr.window.Window object at 0x...> mean_b = WindowOp[float64*] mean_b = Mean[float64] b = Column[float64*] 'b' from table ref_0 where: None <ibis.expr.window.Window object at 0x...> Note the ``<ibis.expr.window.Window>`` objects here, their existence means that the result of the aggregation will be broadcast across the number of rows in the input column. The purpose of this expression rewrite is to make it easy to write column/scalar-aggregate operations like .. code-block:: python t[(t.a - t.a.mean()).name('demeaned_a')] """ import ibis.expr.analysis as L if isinstance(exprs, (Expr, str)): exprs = [exprs] projector = L.Projector(table, exprs) op = projector.get_result() return op.to_expr()
python
{ "resource": "" }
q24969
_table_relabel
train
def _table_relabel(table, substitutions, replacements=None): """ Change table column names, otherwise leaving table unaltered Parameters ---------- substitutions Returns ------- relabeled : TableExpr """ if replacements is not None: raise NotImplementedError observed = set() exprs = [] for c in table.columns: expr = table[c] if c in substitutions: expr = expr.name(substitutions[c]) observed.add(c) exprs.append(expr) for c in substitutions: if c not in observed: raise KeyError('{0!r} is not an existing column'.format(c)) return table.projection(exprs)
python
{ "resource": "" }
q24970
prevent_rewrite
train
def prevent_rewrite(expr, client=None): """Prevent optimization from happening below `expr`. Parameters ---------- expr : ir.TableExpr Any table expression whose optimization you want to prevent client : ibis.client.Client, optional, default None A client to use to create the SQLQueryResult operation. This is useful if you're compiling an expression that derives from an :class:`~ibis.expr.operations.UnboundTable` operation. Returns ------- sql_query_result : ir.TableExpr """ if client is None: client, = ibis.client.find_backends(expr) query = client.compile(expr) return ops.SQLQueryResult(query, expr.schema(), client).to_expr()
python
{ "resource": "" }
q24971
from_dataframe
train
def from_dataframe(df, name='df', client=None): """ convenience function to construct an ibis table from a DataFrame EXPERIMENTAL API Parameters ---------- df : DataFrame name : str, default 'df' client : Client, default new PandasClient client dictionary will be mutated with the name of the DataFrame Returns ------- Table """ if client is None: return connect({name: df}).table(name) client.dictionary[name] = df return client.table(name)
python
{ "resource": "" }
q24972
_flatten_subclass_tree
train
def _flatten_subclass_tree(cls): """Return the set of all child classes of `cls`. Parameters ---------- cls : Type Returns ------- frozenset[Type] """ subclasses = frozenset(cls.__subclasses__()) children = frozenset(toolz.concat(map(_flatten_subclass_tree, subclasses))) return frozenset({cls}) | subclasses | children
python
{ "resource": "" }
q24973
bigquery_field_to_ibis_dtype
train
def bigquery_field_to_ibis_dtype(field): """Convert BigQuery `field` to an ibis type.""" typ = field.field_type if typ == 'RECORD': fields = field.fields assert fields, 'RECORD fields are empty' names = [el.name for el in fields] ibis_types = list(map(dt.dtype, fields)) ibis_type = dt.Struct(names, ibis_types) else: ibis_type = _LEGACY_TO_STANDARD.get(typ, typ) ibis_type = _DTYPE_TO_IBIS_TYPE.get(ibis_type, ibis_type) if field.mode == 'REPEATED': ibis_type = dt.Array(ibis_type) return ibis_type
python
{ "resource": "" }
q24974
bigquery_schema
train
def bigquery_schema(table): """Infer the schema of a BigQuery `table` object.""" fields = OrderedDict((el.name, dt.dtype(el)) for el in table.schema) partition_info = table._properties.get('timePartitioning', None) # We have a partitioned table if partition_info is not None: partition_field = partition_info.get('field', NATIVE_PARTITION_COL) # Only add a new column if it's not already a column in the schema fields.setdefault(partition_field, dt.timestamp) return sch.schema(fields)
python
{ "resource": "" }
q24975
parse_project_and_dataset
train
def parse_project_and_dataset( project: str, dataset: Optional[str] = None ) -> Tuple[str, str, Optional[str]]: """Compute the billing project, data project, and dataset if available. This function figure out the project id under which queries will run versus the project of where the data live as well as what dataset to use. Parameters ---------- project : str A project name dataset : Optional[str] A ``<project>.<dataset>`` string or just a dataset name Examples -------- >>> data_project, billing_project, dataset = parse_project_and_dataset( ... 'ibis-gbq', ... 'foo-bar.my_dataset' ... ) >>> data_project 'foo-bar' >>> billing_project 'ibis-gbq' >>> dataset 'my_dataset' >>> data_project, billing_project, dataset = parse_project_and_dataset( ... 'ibis-gbq', ... 'my_dataset' ... ) >>> data_project 'ibis-gbq' >>> billing_project 'ibis-gbq' >>> dataset 'my_dataset' >>> data_project, billing_project, dataset = parse_project_and_dataset( ... 'ibis-gbq' ... ) >>> data_project 'ibis-gbq' >>> print(dataset) None """ try: data_project, dataset = dataset.split('.') except (ValueError, AttributeError): billing_project = data_project = project else: billing_project = project return data_project, billing_project, dataset
python
{ "resource": "" }
q24976
BigQueryCursor.fetchall
train
def fetchall(self): """Fetch all rows.""" result = self.query.result() return [row.values() for row in result]
python
{ "resource": "" }
q24977
BigQueryCursor.columns
train
def columns(self): """Return the columns of the result set.""" result = self.query.result() return [field.name for field in result.schema]
python
{ "resource": "" }
q24978
BigQueryCursor.description
train
def description(self): """Get the fields of the result set's schema.""" result = self.query.result() return [field for field in result.schema]
python
{ "resource": "" }
q24979
execute_cast_simple_literal_to_timestamp
train
def execute_cast_simple_literal_to_timestamp(op, data, type, **kwargs): """Cast integer and strings to timestamps""" return pd.Timestamp(data, tz=type.timezone)
python
{ "resource": "" }
q24980
execute_cast_timestamp_to_timestamp
train
def execute_cast_timestamp_to_timestamp(op, data, type, **kwargs): """Cast timestamps to other timestamps including timezone if necessary""" input_timezone = data.tz target_timezone = type.timezone if input_timezone == target_timezone: return data if input_timezone is None or target_timezone is None: return data.tz_localize(target_timezone) return data.tz_convert(target_timezone)
python
{ "resource": "" }
q24981
wrap_case_result
train
def wrap_case_result(raw, expr): """Wrap a CASE statement result in a Series and handle returning scalars. Parameters ---------- raw : ndarray[T] The raw results of executing the ``CASE`` expression expr : ValueExpr The expression from the which `raw` was computed Returns ------- Union[scalar, Series] """ raw_1d = np.atleast_1d(raw) if np.any(pd.isnull(raw_1d)): result = pd.Series(raw_1d) else: result = pd.Series( raw_1d, dtype=constants.IBIS_TYPE_TO_PANDAS_TYPE[expr.type()] ) if result.size == 1 and isinstance(expr, ir.ScalarExpr): return result.item() return result
python
{ "resource": "" }
q24982
window
train
def window(preceding=None, following=None, group_by=None, order_by=None): """Create a window clause for use with window functions. This ROW window clause aggregates adjacent rows based on differences in row number. All window frames / ranges are inclusive. Parameters ---------- preceding : int, tuple, or None, default None Specify None for unbounded, 0 to include current row tuple for off-center window following : int, tuple, or None, default None Specify None for unbounded, 0 to include current row tuple for off-center window group_by : expressions, default None Either specify here or with TableExpr.group_by order_by : expressions, default None For analytic functions requiring an ordering, specify here, or let Ibis determine the default ordering (for functions like rank) Returns ------- Window """ return Window( preceding=preceding, following=following, group_by=group_by, order_by=order_by, how='rows', )
python
{ "resource": "" }
q24983
range_window
train
def range_window(preceding=None, following=None, group_by=None, order_by=None): """Create a range-based window clause for use with window functions. This RANGE window clause aggregates rows based upon differences in the value of the order-by expression. All window frames / ranges are inclusive. Parameters ---------- preceding : int, tuple, or None, default None Specify None for unbounded, 0 to include current row tuple for off-center window following : int, tuple, or None, default None Specify None for unbounded, 0 to include current row tuple for off-center window group_by : expressions, default None Either specify here or with TableExpr.group_by order_by : expressions, default None For analytic functions requiring an ordering, specify here, or let Ibis determine the default ordering (for functions like rank) Returns ------- Window """ return Window( preceding=preceding, following=following, group_by=group_by, order_by=order_by, how='range', )
python
{ "resource": "" }
q24984
cumulative_window
train
def cumulative_window(group_by=None, order_by=None): """Create a cumulative window for use with aggregate window functions. All window frames / ranges are inclusive. Parameters ---------- group_by : expressions, default None Either specify here or with TableExpr.group_by order_by : expressions, default None For analytic functions requiring an ordering, specify here, or let Ibis determine the default ordering (for functions like rank) Returns ------- Window """ return Window( preceding=None, following=0, group_by=group_by, order_by=order_by )
python
{ "resource": "" }
q24985
trailing_window
train
def trailing_window(rows, group_by=None, order_by=None): """Create a trailing window for use with aggregate window functions. Parameters ---------- rows : int Number of trailing rows to include. 0 includes only the current row group_by : expressions, default None Either specify here or with TableExpr.group_by order_by : expressions, default None For analytic functions requiring an ordering, specify here, or let Ibis determine the default ordering (for functions like rank) Returns ------- Window """ return Window( preceding=rows, following=0, group_by=group_by, order_by=order_by )
python
{ "resource": "" }
q24986
trailing_range_window
train
def trailing_range_window(preceding, order_by, group_by=None): """Create a trailing time window for use with aggregate window functions. Parameters ---------- preceding : float or expression of intervals, i.e. ibis.interval(days=1) + ibis.interval(hours=5) order_by : expressions, default None For analytic functions requiring an ordering, specify here, or let Ibis determine the default ordering (for functions like rank) group_by : expressions, default None Either specify here or with TableExpr.group_by Returns ------- Window """ return Window( preceding=preceding, following=0, group_by=group_by, order_by=order_by, how='range', )
python
{ "resource": "" }
q24987
ImpalaDatabase.create_table
train
def create_table(self, table_name, obj=None, **kwargs): """ Dispatch to ImpalaClient.create_table. See that function's docstring for more """ return self.client.create_table( table_name, obj=obj, database=self.name, **kwargs )
python
{ "resource": "" }
q24988
ImpalaConnection.close
train
def close(self): """ Close all open Impyla sessions """ for impyla_connection in self._connections: impyla_connection.close() self._connections.clear() self.connection_pool.clear()
python
{ "resource": "" }
q24989
ImpalaTable.compute_stats
train
def compute_stats(self, incremental=False): """ Invoke Impala COMPUTE STATS command to compute column, table, and partition statistics. See also ImpalaClient.compute_stats """ return self._client.compute_stats( self._qualified_name, incremental=incremental )
python
{ "resource": "" }
q24990
ImpalaTable.insert
train
def insert( self, obj=None, overwrite=False, partition=None, values=None, validate=True, ): """ Insert into Impala table. Wraps ImpalaClient.insert Parameters ---------- obj : TableExpr or pandas DataFrame overwrite : boolean, default False If True, will replace existing contents of table partition : list or dict, optional For partitioned tables, indicate the partition that's being inserted into, either with an ordered list of partition keys or a dict of partition field name to value. For example for the partition (year=2007, month=7), this can be either (2007, 7) or {'year': 2007, 'month': 7}. validate : boolean, default True If True, do more rigorous validation that schema of table being inserted is compatible with the existing table Examples -------- >>> t.insert(table_expr) # doctest: +SKIP # Completely overwrite contents >>> t.insert(table_expr, overwrite=True) # doctest: +SKIP """ if isinstance(obj, pd.DataFrame): from ibis.impala.pandas_interop import write_temp_dataframe writer, expr = write_temp_dataframe(self._client, obj) else: expr = obj if values is not None: raise NotImplementedError if validate: existing_schema = self.schema() insert_schema = expr.schema() if not insert_schema.equals(existing_schema): _validate_compatible(insert_schema, existing_schema) if partition is not None: partition_schema = self.partition_schema() partition_schema_names = frozenset(partition_schema.names) expr = expr.projection( [ column for column in expr.columns if column not in partition_schema_names ] ) else: partition_schema = None ast = build_ast(expr, ImpalaDialect.make_context()) select = ast.queries[0] statement = ddl.InsertSelect( self._qualified_name, select, partition=partition, partition_schema=partition_schema, overwrite=overwrite, ) return self._execute(statement)
python
{ "resource": "" }
q24991
ImpalaTable.add_partition
train
def add_partition(self, spec, location=None): """ Add a new table partition, creating any new directories in HDFS if necessary. Partition parameters can be set in a single DDL statement, or you can use alter_partition to set them after the fact. Returns ------- None (for now) """ part_schema = self.partition_schema() stmt = ddl.AddPartition( self._qualified_name, spec, part_schema, location=location ) return self._execute(stmt)
python
{ "resource": "" }
q24992
ImpalaTable.alter_partition
train
def alter_partition( self, spec, location=None, format=None, tbl_properties=None, serde_properties=None, ): """ Change setting and parameters of an existing partition Parameters ---------- spec : dict or list The partition keys for the partition being modified location : string, optional format : string, optional tbl_properties : dict, optional serde_properties : dict, optional Returns ------- None (for now) """ part_schema = self.partition_schema() def _run_ddl(**kwds): stmt = ddl.AlterPartition( self._qualified_name, spec, part_schema, **kwds ) return self._execute(stmt) return self._alter_table_helper( _run_ddl, location=location, format=format, tbl_properties=tbl_properties, serde_properties=serde_properties, )
python
{ "resource": "" }
q24993
ImpalaTable.drop_partition
train
def drop_partition(self, spec): """ Drop an existing table partition """ part_schema = self.partition_schema() stmt = ddl.DropPartition(self._qualified_name, spec, part_schema) return self._execute(stmt)
python
{ "resource": "" }
q24994
ImpalaClient.close
train
def close(self): """ Close Impala connection and drop any temporary objects """ for obj in self._temp_objects: try: obj.drop() except HS2Error: pass self.con.close()
python
{ "resource": "" }
q24995
ImpalaClient.create_database
train
def create_database(self, name, path=None, force=False): """ Create a new Impala database Parameters ---------- name : string Database name path : string, default None HDFS path where to store the database data; otherwise uses Impala default """ if path: # explicit mkdir ensures the user own the dir rather than impala, # which is easier for manual cleanup, if necessary self.hdfs.mkdir(path) statement = ddl.CreateDatabase(name, path=path, can_exist=force) return self._execute(statement)
python
{ "resource": "" }
q24996
ImpalaClient.drop_database
train
def drop_database(self, name, force=False): """Drop an Impala database. Parameters ---------- name : string Database name force : bool, default False If False and there are any tables in this database, raises an IntegrityError """ if not force or self.exists_database(name): tables = self.list_tables(database=name) udfs = self.list_udfs(database=name) udas = self.list_udas(database=name) else: tables = [] udfs = [] udas = [] if force: for table in tables: self.log('Dropping {0}'.format('{0}.{1}'.format(name, table))) self.drop_table_or_view(table, database=name) for func in udfs: self.log( 'Dropping function {0}({1})'.format(func.name, func.inputs) ) self.drop_udf( func.name, input_types=func.inputs, database=name, force=True, ) for func in udas: self.log( 'Dropping aggregate function {0}({1})'.format( func.name, func.inputs ) ) self.drop_uda( func.name, input_types=func.inputs, database=name, force=True, ) else: if len(tables) > 0 or len(udfs) > 0 or len(udas) > 0: raise com.IntegrityError( 'Database {0} must be empty before ' 'being dropped, or set ' 'force=True'.format(name) ) statement = ddl.DropDatabase(name, must_exist=not force) return self._execute(statement)
python
{ "resource": "" }
q24997
ImpalaClient.list_databases
train
def list_databases(self, like=None): """ List databases in the Impala cluster. Like the SHOW DATABASES command in the impala-shell. Parameters ---------- like : string, default None e.g. 'foo*' to match all tables starting with 'foo' Returns ------- databases : list of strings """ statement = 'SHOW DATABASES' if like: statement += " LIKE '{0}'".format(like) with self._execute(statement, results=True) as cur: results = self._get_list(cur) return results
python
{ "resource": "" }
q24998
ImpalaClient.get_options
train
def get_options(self): """ Return current query options for the Impala session """ query = 'SET' return dict(row[:2] for row in self.con.fetchall(query))
python
{ "resource": "" }
q24999
ImpalaClient.parquet_file
train
def parquet_file( self, hdfs_dir, schema=None, name=None, database=None, external=True, like_file=None, like_table=None, persist=False, ): """ Make indicated parquet file in HDFS available as an Ibis table. The table created can be optionally named and persisted, otherwise a unique name will be generated. Temporarily, for any non-persistent external table created by Ibis we will attempt to drop it when the underlying object is garbage collected (or the Python interpreter shuts down normally). Parameters ---------- hdfs_dir : string Path in HDFS schema : ibis Schema If no schema provided, and neither of the like_* argument is passed, one will be inferred from one of the parquet files in the directory. like_file : string Absolute path to Parquet file in HDFS to use for schema definitions. An alternative to having to supply an explicit schema like_table : string Fully scoped and escaped string to an Impala table whose schema we will use for the newly created table. name : string, optional random unique name generated otherwise database : string, optional Database to create the (possibly temporary) table in external : boolean, default True If a table is external, the referenced data will not be deleted when the table is dropped in Impala. Otherwise (external=False) Impala takes ownership of the Parquet file. persist : boolean, default False Do not drop the table upon Ibis garbage collection / interpreter shutdown Returns ------- parquet_table : ImpalaTable """ name, database = self._get_concrete_table_path( name, database, persist=persist ) # If no schema provided, need to find some absolute path to a file in # the HDFS directory if like_file is None and like_table is None and schema is None: file_name = self.hdfs._find_any_file(hdfs_dir) like_file = pjoin(hdfs_dir, file_name) stmt = ddl.CreateTableParquet( name, hdfs_dir, schema=schema, database=database, example_file=like_file, example_table=like_table, external=external, can_exist=False, ) self._execute(stmt) return self._wrap_new_table(name, database, persist)
python
{ "resource": "" }