_id
stringlengths
2
7
title
stringlengths
1
88
partition
stringclasses
3 values
text
stringlengths
75
19.8k
language
stringclasses
1 value
meta_information
dict
q20000
modflow_hob_to_instruction_file
train
def modflow_hob_to_instruction_file(hob_file): """write an instruction file for a modflow head observation file Parameters ---------- hob_file : str modflow hob file Returns ------- df : pandas.DataFrame pandas DataFrame with control file observation information """ hob_df = pd.read_csv(hob_file,delim_whitespace=True,skiprows=1, header=None,names=["simval","obsval","obsnme"]) hob_df.loc[:,"obsnme"] = hob_df.obsnme.apply(str.lower) hob_df.loc[:,"ins_line"] = hob_df.obsnme.apply(lambda x:"l1 !{0:s}!".format(x)) hob_df.loc[0,"ins_line"] = hob_df.loc[0,"ins_line"].replace('l1','l2') ins_file = hob_file + ".ins" f_ins = open(ins_file, 'w') f_ins.write("pif ~\n") f_ins.write(hob_df.loc[:,["ins_line"]].to_string(col_space=0, columns=["ins_line"], header=False, index=False, formatters=[SFMT]) + '\n') hob_df.loc[:,"weight"] = 1.0 hob_df.loc[:,"obgnme"] = "obgnme" f_ins.close() return hob_df
python
{ "resource": "" }
q20001
modflow_hydmod_to_instruction_file
train
def modflow_hydmod_to_instruction_file(hydmod_file): """write an instruction file for a modflow hydmod file Parameters ---------- hydmod_file : str modflow hydmod file Returns ------- df : pandas.DataFrame pandas DataFrame with control file observation information Note ---- calls modflow_read_hydmod_file() """ hydmod_df, hydmod_outfile = modflow_read_hydmod_file(hydmod_file) hydmod_df.loc[:,"ins_line"] = hydmod_df.obsnme.apply(lambda x:"l1 w !{0:s}!".format(x)) ins_file = hydmod_outfile + ".ins" with open(ins_file, 'w') as f_ins: f_ins.write("pif ~\nl1\n") f_ins.write(hydmod_df.loc[:,["ins_line"]].to_string(col_space=0, columns=["ins_line"], header=False, index=False, formatters=[SFMT]) + '\n') hydmod_df.loc[:,"weight"] = 1.0 hydmod_df.loc[:,"obgnme"] = "obgnme" try: os.system("inschek {0}.ins {0}".format(hydmod_outfile)) except: print("error running inschek") obs_obf = hydmod_outfile + ".obf" if os.path.exists(obs_obf): df = pd.read_csv(obs_obf,delim_whitespace=True,header=None,names=["obsnme","obsval"]) df.loc[:,"obgnme"] = df.obsnme.apply(lambda x: x[:-9]) df.to_csv("_setup_"+os.path.split(hydmod_outfile)[-1]+'.csv',index=False) df.index = df.obsnme return df return hydmod_df
python
{ "resource": "" }
q20002
modflow_read_hydmod_file
train
def modflow_read_hydmod_file(hydmod_file, hydmod_outfile=None): """ read in a binary hydmod file and return a dataframe of the results Parameters ---------- hydmod_file : str modflow hydmod binary file hydmod_outfile : str output file to write. If None, use <hydmod_file>.dat. Default is None Returns ------- df : pandas.DataFrame pandas DataFrame with hymod_file values Note ---- requires flopy """ try: import flopy.utils as fu except Exception as e: print('flopy is not installed - cannot read {0}\n{1}'.format(hydmod_file, e)) return #print('Starting to read HYDMOD data from {0}'.format(hydmod_file)) obs = fu.HydmodObs(hydmod_file) hyd_df = obs.get_dataframe() hyd_df.columns = [i[2:] if i.lower() != 'totim' else i for i in hyd_df.columns] #hyd_df.loc[:,"datetime"] = hyd_df.index hyd_df['totim'] = hyd_df.index.map(lambda x: x.strftime("%Y%m%d")) hyd_df.rename(columns={'totim': 'datestamp'}, inplace=True) # reshape into a single column hyd_df = pd.melt(hyd_df, id_vars='datestamp') hyd_df.rename(columns={'value': 'obsval'}, inplace=True) hyd_df['obsnme'] = [i.lower() + '_' + j.lower() for i, j in zip(hyd_df.variable, hyd_df.datestamp)] vc = hyd_df.obsnme.value_counts().sort_values() vc = list(vc.loc[vc>1].index.values) if len(vc) > 0: hyd_df.to_csv("hyd_df.duplciates.csv") obs.get_dataframe().to_csv("hyd_org.duplicates.csv") raise Exception("duplicates in obsnme:{0}".format(vc)) #assert hyd_df.obsnme.value_counts().max() == 1,"duplicates in obsnme" if not hydmod_outfile: hydmod_outfile = hydmod_file + '.dat' hyd_df.to_csv(hydmod_outfile, columns=['obsnme','obsval'], sep=' ',index=False) #hyd_df = hyd_df[['obsnme','obsval']] return hyd_df[['obsnme','obsval']], hydmod_outfile
python
{ "resource": "" }
q20003
apply_mtlist_budget_obs
train
def apply_mtlist_budget_obs(list_filename,gw_filename="mtlist_gw.dat", sw_filename="mtlist_sw.dat", start_datetime="1-1-1970"): """ process an MT3D list file to extract mass budget entries. Parameters ---------- list_filename : str the mt3d list file gw_filename : str the name of the output file with gw mass budget information. Default is "mtlist_gw.dat" sw_filename : str the name of the output file with sw mass budget information. Default is "mtlist_sw.dat" start_datatime : str an str that can be cast to a pandas.TimeStamp. Used to give observations a meaningful name Returns ------- gw : pandas.DataFrame the gw mass dataframe sw : pandas.DataFrame (optional) the sw mass dataframe Note ---- requires flopy if SFT is not active, no SW mass budget will be returned """ try: import flopy except Exception as e: raise Exception("error import flopy: {0}".format(str(e))) mt = flopy.utils.MtListBudget(list_filename) gw, sw = mt.parse(start_datetime=start_datetime, diff=True) gw = gw.drop([col for col in gw.columns for drop_col in ["kper", "kstp", "tkstp"] if (col.lower().startswith(drop_col))], axis=1) gw.to_csv(gw_filename, sep=' ', index_label="datetime", date_format="%Y%m%d") if sw is not None: sw = sw.drop([col for col in sw.columns for drop_col in ["kper", "kstp", "tkstp"] if (col.lower().startswith(drop_col))], axis=1) sw.to_csv(sw_filename, sep=' ', index_label="datetime", date_format="%Y%m%d") return gw, sw
python
{ "resource": "" }
q20004
setup_mflist_budget_obs
train
def setup_mflist_budget_obs(list_filename,flx_filename="flux.dat", vol_filename="vol.dat",start_datetime="1-1'1970",prefix='', save_setup_file=False): """ setup observations of budget volume and flux from modflow list file. writes an instruction file and also a _setup_.csv to use when constructing a pest control file Parameters ---------- list_filename : str modflow list file flx_filename : str output filename that will contain the budget flux observations. Default is "flux.dat" vol_filename : str) output filename that will contain the budget volume observations. Default is "vol.dat" start_datetime : str an str that can be parsed into a pandas.TimeStamp. used to give budget observations meaningful names prefix : str a prefix to add to the water budget observations. Useful if processing more than one list file as part of the forward run process. Default is ''. save_setup_file : (boolean) a flag to save _setup_<list_filename>.csv file that contains useful control file information Returns ------- df : pandas.DataFrame a dataframe with information for constructing a control file. If INSCHEK fails to run, reutrns None Note ---- This function uses INSCHEK to get observation values; the observation values are the values of the list file list_filename. If INSCHEK fails to run, the obseravtion values are set to 1.0E+10 the instruction files are named <flux_file>.ins and <vol_file>.ins, respectively It is recommended to use the default values for flux_file and vol_file. """ flx,vol = apply_mflist_budget_obs(list_filename,flx_filename,vol_filename, start_datetime) _write_mflist_ins(flx_filename+".ins",flx,prefix+"flx") _write_mflist_ins(vol_filename+".ins",vol, prefix+"vol") #run("inschek {0}.ins {0}".format(flx_filename)) #run("inschek {0}.ins {0}".format(vol_filename)) try: #os.system("inschek {0}.ins {0}".format(flx_filename)) #os.system("inschek {0}.ins {0}".format(vol_filename)) run("inschek {0}.ins {0}".format(flx_filename)) run("inschek {0}.ins {0}".format(vol_filename)) except: print("error running inschek") return None flx_obf = flx_filename+".obf" vol_obf = vol_filename + ".obf" if os.path.exists(flx_obf) and os.path.exists(vol_obf): df = pd.read_csv(flx_obf,delim_whitespace=True,header=None,names=["obsnme","obsval"]) df.loc[:,"obgnme"] = df.obsnme.apply(lambda x: x[:-9]) df2 = pd.read_csv(vol_obf, delim_whitespace=True, header=None, names=["obsnme", "obsval"]) df2.loc[:, "obgnme"] = df2.obsnme.apply(lambda x: x[:-9]) df = df.append(df2) if save_setup_file: df.to_csv("_setup_"+os.path.split(list_filename)[-1]+'.csv',index=False) df.index = df.obsnme return df
python
{ "resource": "" }
q20005
apply_mflist_budget_obs
train
def apply_mflist_budget_obs(list_filename,flx_filename="flux.dat", vol_filename="vol.dat", start_datetime="1-1-1970"): """ process a MODFLOW list file to extract flux and volume water budget entries. Parameters ---------- list_filename : str the modflow list file flx_filename : str the name of the output file with water budget flux information. Default is "flux.dat" vol_filename : str the name of the output file with water budget volume information. Default is "vol.dat" start_datatime : str an str that can be cast to a pandas.TimeStamp. Used to give observations a meaningful name Returns ------- flx : pandas.DataFrame the flux dataframe vol : pandas.DataFrame the volume dataframe Note ---- requires flopy """ try: import flopy except Exception as e: raise Exception("error import flopy: {0}".format(str(e))) mlf = flopy.utils.MfListBudget(list_filename) flx,vol = mlf.get_dataframes(start_datetime=start_datetime,diff=True) flx.to_csv(flx_filename,sep=' ',index_label="datetime",date_format="%Y%m%d") vol.to_csv(vol_filename,sep=' ',index_label="datetime",date_format="%Y%m%d") return flx,vol
python
{ "resource": "" }
q20006
apply_hds_obs
train
def apply_hds_obs(hds_file): """ process a modflow head save file. A companion function to setup_hds_obs that is called during the forward run process Parameters ---------- hds_file : str a modflow head save filename. if hds_file ends with 'ucn', then the file is treated as a UcnFile type. Note ---- requires flopy writes <hds_file>.dat expects <hds_file>.dat.ins to exist uses pyemu.pst_utils.parse_ins_file to get observation names """ try: import flopy except Exception as e: raise Exception("apply_hds_obs(): error importing flopy: {0}".\ format(str(e))) from .. import pst_utils assert os.path.exists(hds_file) out_file = hds_file+".dat" ins_file = out_file + ".ins" assert os.path.exists(ins_file) df = pd.DataFrame({"obsnme":pst_utils.parse_ins_file(ins_file)}) df.index = df.obsnme # populate metdata items = ["k","i","j","kper"] for i,item in enumerate(items): df.loc[:,item] = df.obsnme.apply(lambda x: int(x.split('_')[i+1])) if hds_file.lower().endswith('ucn'): hds = flopy.utils.UcnFile(hds_file) else: hds = flopy.utils.HeadFile(hds_file) kpers = df.kper.unique() df.loc[:,"obsval"] = np.NaN for kper in kpers: kstp = last_kstp_from_kper(hds,kper) data = hds.get_data(kstpkper=(kstp,kper)) #jwhite 15jan2018 fix for really large values that are getting some #trash added to them... data[np.isnan(data)] = 0.0 data[data>1.0e+20] = 1.0e+20 data[data<-1.0e+20] = -1.0e+20 df_kper = df.loc[df.kper==kper,:] df.loc[df_kper.index,"obsval"] = data[df_kper.k,df_kper.i,df_kper.j] assert df.dropna().shape[0] == df.shape[0] df.loc[:,["obsnme","obsval"]].to_csv(out_file,index=False,sep=" ")
python
{ "resource": "" }
q20007
modflow_sfr_gag_to_instruction_file
train
def modflow_sfr_gag_to_instruction_file(gage_output_file, ins_file=None, parse_filename=False): """writes an instruction file for an SFR gage output file to read Flow only at all times Parameters ---------- gage_output_file : str the gage output filename (ASCII). ins_file : str the name of the instruction file to create. If None, the name is <gage_output_file>.ins. Default is None parse_filename : bool if True, get the gage_num parameter by parsing the gage output file filename if False, get the gage number from the file itself Returns ------- df : pandas.DataFrame a dataframe with obsnme and obsval for the sfr simulated flows. If inschek was not successfully run, then returns None ins_file : str file name of instructions file relating to gage output. obs_file : str file name of processed gage output for all times Note ---- sets up observations for gage outputs only for the Flow column. if parse_namefile is true, only text up to first '.' is used as the gage_num TODO : allow other observation types and align explicitly with times - now returns all values """ if ins_file is None: ins_file = gage_output_file + '.ins' # navigate the file to be sure the header makes sense indat = [line.strip() for line in open(gage_output_file, 'r').readlines()] header = [i for i in indat if i.startswith('"')] # yank out the gage number to identify the observation names if parse_filename: gage_num = os.path.basename(gage_output_file).split('.')[0] else: gage_num = re.sub("[^0-9]", "", indat[0].lower().split("gage no.")[-1].strip().split()[0]) # get the column names cols = [i.lower() for i in header if 'data' in i.lower()][0].lower().replace('"', '').replace('data:', '').split() # make sure "Flow" is included in the columns if 'flow' not in cols: raise Exception('Requested field "Flow" not in gage output columns') # find which column is for "Flow" flowidx = np.where(np.array(cols) == 'flow')[0][0] # write out the instruction file lines inslines = ['l1 ' + (flowidx + 1) * 'w ' + '!g{0}_{1:d}!'.format(gage_num, j) for j in range(len(indat) - len(header))] inslines[0] = inslines[0].replace('l1', 'l{0:d}'.format(len(header) + 1)) # write the instruction file with open(ins_file, 'w') as ofp: ofp.write('pif ~\n') [ofp.write('{0}\n'.format(line)) for line in inslines] df = _try_run_inschek(ins_file, gage_output_file) if df is not None: return df, ins_file, gage_output_file else: print("Inschek didn't run so nothing returned") return None
python
{ "resource": "" }
q20008
Schur.pandas
train
def pandas(self): """get a pandas dataframe of prior and posterior for all predictions Returns: pandas.DataFrame : pandas.DataFrame a dataframe with prior and posterior uncertainty estimates for all forecasts (predictions) """ names,prior,posterior = [],[],[] for iname,name in enumerate(self.posterior_parameter.row_names): names.append(name) posterior.append(np.sqrt(float( self.posterior_parameter[iname, iname]. x))) iprior = self.parcov.row_names.index(name) prior.append(np.sqrt(float(self.parcov[iprior, iprior].x))) for pred_name, pred_var in self.posterior_prediction.items(): names.append(pred_name) posterior.append(np.sqrt(pred_var)) prior.append(self.prior_prediction[pred_name]) return pd.DataFrame({"posterior": posterior, "prior": prior}, index=names)
python
{ "resource": "" }
q20009
Schur.map_parameter_estimate
train
def map_parameter_estimate(self): """ get the posterior expectation for parameters using Bayes linear estimation Returns ------- post_expt : pandas.DataFrame a dataframe with prior and posterior parameter expectations """ res = self.pst.res assert res is not None # build the prior expectation parameter vector prior_expt = self.pst.parameter_data.loc[:,["parval1"]].copy() islog = self.pst.parameter_data.partrans == "log" prior_expt.loc[islog] = prior_expt.loc[islog].apply(np.log10) prior_expt = Matrix.from_dataframe(prior_expt) prior_expt.col_names = ["prior_expt"] # build the residual vector res_vec = Matrix.from_dataframe(res.loc[:,["residual"]]) # form the terms of Schur's complement b = self.parcov * self.jco.T c = ((self.jco * self.parcov * self.jco.T) + self.obscov).inv bc = Matrix((b * c).x, row_names=b.row_names, col_names=c.col_names) # calc posterior expectation upgrade = bc * res_vec upgrade.col_names = ["prior_expt"] post_expt = prior_expt + upgrade # post processing - back log transform post_expt = pd.DataFrame(data=post_expt.x,index=post_expt.row_names, columns=["post_expt"]) post_expt.loc[:,"prior_expt"] = prior_expt.x.flatten() post_expt.loc[islog,:] = 10.0**post_expt.loc[islog,:] # unc_sum = self.get_parameter_summary() # post_expt.loc[:,"standard_deviation"] = unc_sum.post_var.apply(np.sqrt) post_expt.sort_index(inplace=True) return post_expt
python
{ "resource": "" }
q20010
Schur.get_parameter_summary
train
def get_parameter_summary(self,include_map=False): """get a summary of the parameter uncertainty Parameters ---------- include_map : bool if True, add the prior and posterior expectations and report standard deviation instead of variance Returns ------- pandas.DataFrame : pandas.DataFrame dataframe of prior,posterior variances and percent uncertainty reduction of each parameter Note ---- this is the primary method for accessing parameter uncertainty estimates - use this! Example ------- ``>>>import matplotlib.pyplot as plt`` ``>>>import pyemu`` ``>>>sc = pyemu.Schur(jco="pest.jcb")`` ``>>>sc = pyemu.Schur(jco="pest.jcb",forecasts=["fore1","fore2"])`` ``>>>par_sum = sc.get_parameter_summary()`` ``>>>par_sum.plot(kind="bar")`` ``>>>plt.show()`` """ prior_mat = self.parcov.get(self.posterior_parameter.col_names) if prior_mat.isdiagonal: prior = prior_mat.x.flatten() else: prior = np.diag(prior_mat.x) post = np.diag(self.posterior_parameter.x) if include_map: par_data = self.map_parameter_estimate prior = pd.DataFrame(data=prior,index=prior_mat.col_names) islog = self.pst.parameter_data.partrans == "log" par_data.loc[islog,:] = np.log10(par_data.loc[islog,:]) par_data.loc[:,"prior_stdev"] = prior post = pd.DataFrame(data=post,index=prior.index) par_data.loc[:,"post_stdev"] = post par_data.loc[:,"is_log"] = islog return par_data else: ureduce = 100.0 * (1.0 - (post / prior)) return pd.DataFrame({"prior_var":prior,"post_var":post, "percent_reduction":ureduce}, index=self.posterior_parameter.col_names)
python
{ "resource": "" }
q20011
Schur.get_forecast_summary
train
def get_forecast_summary(self, include_map=False): """get a summary of the forecast uncertainty Parameters ---------- include_map : bool if True, add the prior and posterior expectations and report standard deviation instead of variance Returns ------- pandas.DataFrame : pandas.DataFrame dataframe of prior,posterior variances and percent uncertainty reduction of each parameter Note ---- this is the primary method for accessing forecast uncertainty estimates - use this! Example ------- ``>>>import matplotlib.pyplot as plt`` ``>>>import pyemu`` This usage assumes you have set the ``++forecasts()`` argument in the control file: ``>>>sc = pyemu.Schur(jco="pest.jcb")`` or, you can pass the forecasts directly, assuming the forecasts are names of zero-weight observations: ``>>>sc = pyemu.Schur(jco="pest.jcb",forecasts=["fore1","fore2"])`` ``>>>fore_sum = sc.get_forecast_summary()`` ``>>>fore_sum.plot(kind="bar")`` ``>>>plt.show()`` """ sum = {"prior_var":[], "post_var":[], "percent_reduction":[]} for forecast in self.prior_forecast.keys(): pr = self.prior_forecast[forecast] pt = self.posterior_forecast[forecast] ur = 100.0 * (1.0 - (pt/pr)) sum["prior_var"].append(pr) sum["post_var"].append(pt) sum["percent_reduction"].append(ur) df = pd.DataFrame(sum,index=self.prior_forecast.keys()) if include_map: df.loc[:,"prior_stdev"] = df.pop("prior_var").apply(np.sqrt) df.loc[:,"post_stdev"] = df.pop("post_var").apply(np.sqrt) df.pop("percent_reduction") forecast_map = self.map_forecast_estimate df.loc[:,"prior_expt"] = forecast_map.prior_expt df.loc[:,"post_expt"] = forecast_map.post_expt return df return pd.DataFrame(sum,index=self.prior_forecast.keys())
python
{ "resource": "" }
q20012
Schur.__contribution_from_parameters
train
def __contribution_from_parameters(self, parameter_names): """private method get the prior and posterior uncertainty reduction as a result of some parameter becoming perfectly known Parameters ---------- parameter_names : list parameter that are perfectly known Returns ------- dict : dict dictionary of forecast name, [prior uncertainty w/o parameter_names, % posterior uncertainty w/o parameter names] Note ---- this method is used by get_parameter_contribution() method - don't call this method directly """ #get the prior and posterior for the base case bprior,bpost = self.prior_prediction, self.posterior_prediction #get the prior and posterior for the conditioned case la_cond = self.get_conditional_instance(parameter_names) cprior,cpost = la_cond.prior_prediction, la_cond.posterior_prediction return cprior,cpost
python
{ "resource": "" }
q20013
Schur.get_conditional_instance
train
def get_conditional_instance(self, parameter_names): """ get a new Schur instance that includes conditional update from some parameters becoming known perfectly Parameters ---------- parameter_names : list parameters that are to be treated as notionally perfectly known Returns ------- la_cond : Schur a new Schur instance conditional on perfect knowledge of some parameters Note ---- this method is used by the get_parameter_contribution() method - don't call this method directly """ if not isinstance(parameter_names, list): parameter_names = [parameter_names] for iname, name in enumerate(parameter_names): name = str(name).lower() parameter_names[iname] = name assert name in self.jco.col_names,\ "contribution parameter " + name + " not found jco" keep_names = [] for name in self.jco.col_names: if name not in parameter_names: keep_names.append(name) if len(keep_names) == 0: raise Exception("Schur.contribution_from_Parameters " + "atleast one parameter must remain uncertain") #get the reduced predictions if self.predictions is None: raise Exception("Schur.contribution_from_Parameters " + "no predictions have been set") # cond_preds = [] # for pred in self.predictions: # cond_preds.append(pred.get(keep_names, pred.col_names)) cond_preds = self.predictions.get(row_names=keep_names) la_cond = Schur(jco=self.jco.get(self.jco.row_names, keep_names), parcov=self.parcov.condition_on(parameter_names), obscov=self.obscov, predictions=cond_preds,verbose=False) return la_cond
python
{ "resource": "" }
q20014
Schur.get_par_contribution
train
def get_par_contribution(self,parlist_dict=None,include_prior_results=False): """get a dataframe the prior and posterior uncertainty reduction as a result of some parameter becoming perfectly known Parameters ---------- parlist_dict : dict a nested dictionary-list of groups of parameters that are to be treated as perfectly known. key values become row labels in returned dataframe. If None, each adjustable parameter is sequentially treated as known and the returned dataframe has row labels for each adjustable parameter include_prior_results : bool flag to return a multi-indexed dataframe with both conditional prior and posterior forecast uncertainty estimates. Default is False Returns ------- pandas.DataFrame : pandas.DataFrame a dataframe that summarizes the parameter contribution analysis. The dataframe has index (row labels) of the keys in parlist_dict and a column labels of forecast names. The values in the dataframe are the posterior variance of the forecast conditional on perfect knowledge of the parameters in the values of parlist_dict. Varies depending on `include_prior_results`. Example ------- ``>>>import pyemu`` ``>>>sc = pyemu.Schur(jco="pest.jcb")`` ``>>>df = sc.get_par_contribution()`` """ self.log("calculating contribution from parameters") if parlist_dict is None: parlist_dict = {}#dict(zip(self.pst.adj_par_names,self.pst.adj_par_names)) # make sure all of the adjustable pars are in the jco for pname in self.pst.adj_par_names: if pname in self.jco.col_names: parlist_dict[pname] = pname else: if type(parlist_dict) == list: parlist_dict = dict(zip(parlist_dict,parlist_dict)) results = {} names = ["base"] for forecast in self.prior_forecast.keys(): pr = self.prior_forecast[forecast] pt = self.posterior_forecast[forecast] #reduce = 100.0 * ((pr - pt) / pr) results[(forecast,"prior")] = [pr] results[(forecast,"post")] = [pt] #results[(forecast,"percent_reduce")] = [reduce] for case_name,par_list in parlist_dict.items(): if len(par_list) == 0: continue names.append(case_name) self.log("calculating contribution from: " + str(par_list)) case_prior,case_post = self.__contribution_from_parameters(par_list) self.log("calculating contribution from: " + str(par_list)) for forecast in case_prior.keys(): pr = case_prior[forecast] pt = case_post[forecast] #reduce = 100.0 * ((pr - pt) / pr) results[(forecast, "prior")].append(pr) results[(forecast, "post")].append(pt) #results[(forecast, "percent_reduce")].append(reduce) df = pd.DataFrame(results,index=names) #base = df.loc["base",df.columns.get_level_values(1)=="post"] #df = 1.0 - (df.loc[:,df.columns.get_level_values(1)=="post"] / base) self.log("calculating contribution from parameters") if include_prior_results: return df else: df = df.xs("post", level=1, drop_level=True, axis=1) return df
python
{ "resource": "" }
q20015
ErrVar.omitted_jco
train
def omitted_jco(self): """get the omitted jco Returns ------- omitted_jco : pyemu.Jco Note ---- returns a reference if ErrorVariance.__omitted_jco is None, then dynamically load the attribute before returning """ if self.__omitted_jco is None: self.log("loading omitted_jco") self.__load_omitted_jco() self.log("loading omitted_jco") return self.__omitted_jco
python
{ "resource": "" }
q20016
ErrVar.omitted_parcov
train
def omitted_parcov(self): """get the omitted prior parameter covariance matrix Returns ------- omitted_parcov : pyemu.Cov Note ---- returns a reference If ErrorVariance.__omitted_parcov is None, attribute is dynamically loaded """ if self.__omitted_parcov is None: self.log("loading omitted_parcov") self.__load_omitted_parcov() self.log("loading omitted_parcov") return self.__omitted_parcov
python
{ "resource": "" }
q20017
ErrVar.get_identifiability_dataframe
train
def get_identifiability_dataframe(self,singular_value=None,precondition=False): """get the parameter identifiability as a pandas dataframe Parameters ---------- singular_value : int the singular spectrum truncation point. Defaults to minimum of non-zero-weighted observations and adjustable parameters precondition : bool flag to use the preconditioned hessian (xtqt + sigma_theta^-1). Default is False Returns ------- pandas.DataFrame : pandas.DataFrame A pandas dataframe of the V_1**2 Matrix with the identifiability in the column labeled "ident" """ if singular_value is None: singular_value = int(min(self.pst.nnz_obs, self.pst.npar_adj)) #v1_df = self.qhalfx.v[:, :singular_value].to_dataframe() ** 2 xtqx = self.xtqx if precondition: xtqx = xtqx + self.parcov.inv #v1_df = self.xtqx.v[:, :singular_value].to_dataframe() ** 2 v1_df = xtqx.v[:, :singular_value].to_dataframe() ** 2 v1_df["ident"] = v1_df.sum(axis=1) return v1_df
python
{ "resource": "" }
q20018
ErrVar.variance_at
train
def variance_at(self, singular_value): """get the error variance of all three terms at a singluar value Parameters ---------- singular_value : int singular value to test Returns ------- dict : dict dictionary of (err var term,prediction_name), standard_deviation pairs """ results = {} results.update(self.first_prediction(singular_value)) results.update(self.second_prediction(singular_value)) results.update(self.third_prediction(singular_value)) return results
python
{ "resource": "" }
q20019
ErrVar.I_minus_R
train
def I_minus_R(self,singular_value): """get I - R at singular value Parameters ---------- singular_value : int singular value to calc R at Returns ------- I - R : pyemu.Matrix identity matrix minus resolution matrix at singular_value """ if self.__I_R is not None and singular_value == self.__I_R_sv: return self.__I_R else: if singular_value > self.jco.ncol: return self.parcov.zero else: #v2 = self.qhalfx.v[:, singular_value:] v2 = self.xtqx.v[:, singular_value:] self.__I_R = v2 * v2.T self.__I_R_sv = singular_value return self.__I_R
python
{ "resource": "" }
q20020
ErrVar.third_prediction
train
def third_prediction(self,singular_value): """get the omitted parameter contribution to prediction error variance at a singular value. used to construct error variance dataframe Parameters ---------- singular_value : int singular value to calc third term at Returns ------- dict : dict dictionary of ("third",prediction_names),error variance """ if not self.predictions: raise Exception("ErrVar.third(): not predictions are set") if self.__need_omitted is False: zero_preds = {} for pred in self.predictions_iter: zero_preds[("third", pred.col_names[0])] = 0.0 return zero_preds self.log("calc third term prediction @" + str(singular_value)) mn = min(self.jco.shape) try: mn = min(self.pst.npar_adj, self.pst.nnz_obs) except: pass if singular_value > mn: inf_pred = {} for pred in self.predictions_iter: inf_pred[("third",pred.col_names[0])] = 1.0E+35 return inf_pred else: results = {} for prediction,omitted_prediction in \ zip(self.predictions_iter, self.omitted_predictions): # comes out as row vector, but needs to be a column vector p = ((prediction.T * self.G(singular_value) * self.omitted_jco) - omitted_prediction.T).T result = float((p.T * self.omitted_parcov * p).x) results[("third", prediction.col_names[0])] = result self.log("calc third term prediction @" + str(singular_value)) return results
python
{ "resource": "" }
q20021
pp_file_to_dataframe
train
def pp_file_to_dataframe(pp_filename): """ read a pilot point file to a pandas Dataframe Parameters ---------- pp_filename : str pilot point file Returns ------- df : pandas.DataFrame a dataframe with pp_utils.PP_NAMES for columns """ df = pd.read_csv(pp_filename, delim_whitespace=True, header=None, names=PP_NAMES,usecols=[0,1,2,3,4]) df.loc[:,"name"] = df.name.apply(str).apply(str.lower) return df
python
{ "resource": "" }
q20022
pp_tpl_to_dataframe
train
def pp_tpl_to_dataframe(tpl_filename): """ read a pilot points template file to a pandas dataframe Parameters ---------- tpl_filename : str pilot points template file Returns ------- df : pandas.DataFrame a dataframe with "parnme" included """ inlines = open(tpl_filename, 'r').readlines() header = inlines.pop(0) marker = header.strip().split()[1] assert len(marker) == 1 usecols = [0,1,2,3] df = pd.read_csv(tpl_filename, delim_whitespace=True,skiprows=1, header=None, names=PP_NAMES[:-1],usecols=usecols) df.loc[:,"name"] = df.name.apply(str).apply(str.lower) df["parnme"] = [i.split(marker)[1].strip() for i in inlines] return df
python
{ "resource": "" }
q20023
write_pp_shapfile
train
def write_pp_shapfile(pp_df,shapename=None): """write pilot points dataframe to a shapefile Parameters ---------- pp_df : pandas.DataFrame or str pilot point dataframe or a pilot point filename. Dataframe must include "x" and "y" shapename : str shapefile name. If None, pp_df must be str and shapefile is saved as <pp_df>.shp Note ---- requires pyshp """ try: import shapefile except Exception as e: raise Exception("error importing shapefile: {0}, \ntry pip install pyshp...".format(str(e))) if not isinstance(pp_df,list): pp_df = [pp_df] dfs = [] for pp in pp_df: if isinstance(pp,pd.DataFrame): dfs.append(pp) elif isinstance(pp,str): dfs.append(pp_file_to_dataframe(pp)) else: raise Exception("unsupported arg type:{0}".format(type(pp))) if shapename is None: shapename = "pp_locs.shp" try: shp = shapefile.Writer(shapeType=shapefile.POINT) except: shp = shapefile.Writer(target=shapename, shapeType=shapefile.POINT) for name, dtype in dfs[0].dtypes.iteritems(): if dtype == object: shp.field(name=name, fieldType='C', size=50) elif dtype in [int, np.int, np.int64, np.int32]: shp.field(name=name, fieldType='N', size=50, decimal=0) elif dtype in [float, np.float, np.float32, np.float32]: shp.field(name=name, fieldType='N', size=50, decimal=8) else: raise Exception("unrecognized field type in pp_df:{0}:{1}".format(name, dtype)) # some pandas awesomeness.. for df in dfs: #df.apply(lambda x: shp.poly([[[x.x, x.y]]]), axis=1) df.apply(lambda x: shp.point(x.x, x.y), axis=1) df.apply(lambda x: shp.record(*x), axis=1) try: shp.save(shapename) except: shp.close()
python
{ "resource": "" }
q20024
write_pp_file
train
def write_pp_file(filename,pp_df): """write a pilot points dataframe to a pilot points file Parameters ---------- filename : str pilot points file to write pp_df : pandas.DataFrame a dataframe that has columns "x","y","zone", and "value" """ with open(filename,'w') as f: f.write(pp_df.to_string(col_space=0, columns=PP_NAMES, formatters=PP_FMT, justify="right", header=False, index=False) + '\n')
python
{ "resource": "" }
q20025
pilot_points_to_tpl
train
def pilot_points_to_tpl(pp_file,tpl_file=None,name_prefix=None): """write a template file for a pilot points file Parameters ---------- pp_file : str pilot points file tpl_file : str template file name to write. If None, append ".tpl" to the pp_file arg. Default is None name_prefix : str name to prepend to parameter names for each pilot point. For example, if ``name_prefix = "hk_"``, then each pilot point parameter will be named "hk_0001","hk_0002", etc. If None, parameter names from pp_df.name are used. Default is None. Returns ------- pp_df : pandas.DataFrame a dataframe with pilot point information (name,x,y,zone,parval1) with the parameter information (parnme,tpl_str) """ if isinstance(pp_file,pd.DataFrame): pp_df = pp_file assert tpl_file is not None else: assert os.path.exists(pp_file) pp_df = pd.read_csv(pp_file, delim_whitespace=True, header=None, names=PP_NAMES) if tpl_file is None: tpl_file = pp_file + ".tpl" if name_prefix is not None: digits = str(len(str(pp_df.shape[0]))) fmt = "{0:0"+digits+"d}" names = [name_prefix+fmt.format(i) for i in range(pp_df.shape[0])] else: names = pp_df.name.copy() too_long = [] for name in names: if len(name) > 12: too_long.append(name) if len(too_long) > 0: raise Exception("the following parameter names are too long:" +\ ",".join(too_long)) tpl_entries = ["~ {0} ~".format(name) for name in names] pp_df.loc[:,"tpl"] = tpl_entries pp_df.loc[:,"parnme"] = names f_tpl = open(tpl_file,'w') f_tpl.write("ptf ~\n") f_tpl.write(pp_df.to_string(col_space=0, columns=["name","x","y","zone","tpl"], formatters=PP_FMT, justify="left", header=False, index=False) + '\n') return pp_df
python
{ "resource": "" }
q20026
run
train
def run(cmd_str,cwd='.',verbose=False): """ an OS agnostic function to execute command Parameters ---------- cmd_str : str the str to execute with os.system() cwd : str the directory to execute the command in verbose : bool flag to echo to stdout complete cmd str Note ---- uses platform to detect OS and adds .exe or ./ as appropriate for Windows, if os.system returns non-zero, raises exception Example ------- ``>>>import pyemu`` ``>>>pyemu.helpers.run("pestpp pest.pst")`` """ warnings.warn("run() has moved to pyemu.os_utils",PyemuWarning) pyemu.os_utils.run(cmd_str=cmd_str,cwd=cwd,verbose=verbose)
python
{ "resource": "" }
q20027
condition_on_par_knowledge
train
def condition_on_par_knowledge(cov,par_knowledge_dict): """ experimental function to include conditional prior information for one or more parameters in a full covariance matrix """ missing = [] for parnme in par_knowledge_dict.keys(): if parnme not in cov.row_names: missing.append(parnme) if len(missing): raise Exception("par knowledge dict parameters not found: {0}".\ format(','.join(missing))) # build the selection matrix and sigma epsilon #sel = cov.zero2d #sel = pyemu.Matrix(x=np.zeros((cov.shape[0],1)),row_names=cov.row_names,col_names=['sel']) sel = cov.zero2d sigma_ep = cov.zero2d for parnme,var in par_knowledge_dict.items(): idx = cov.row_names.index(parnme) #sel.x[idx,:] = 1.0 sel.x[idx,idx] = 1.0 sigma_ep.x[idx,idx] = var #print(sigma_ep.x) #q = sigma_ep.inv #cov_inv = cov.inv print(sel) term2 = sel * cov * sel.T #term2 += sigma_ep #term2 = cov print(term2) term2 = term2.inv term2 *= sel term2 *= cov new_cov = cov - term2 return new_cov
python
{ "resource": "" }
q20028
kl_setup
train
def kl_setup(num_eig,sr,struct,prefixes, factors_file="kl_factors.dat",islog=True, basis_file=None, tpl_dir="."): """setup a karhuenen-Loeve based parameterization for a given geostatistical structure. Parameters ---------- num_eig : int number of basis vectors to retain in the reduced basis sr : flopy.reference.SpatialReference struct : str or pyemu.geostats.Geostruct geostatistical structure (or file containing one) array_dict : dict a dict of arrays to setup as KL-based parameters. The key becomes the parameter name prefix. The total number of parameters is len(array_dict) * num_eig basis_file : str the name of the PEST-format binary file where the reduced basis will be saved tpl_file : str the name of the template file to make. The template file is a csv file with the parameter names, the original factor values,and the template entries. The original values can be used to set the parval1 entries in the control file Returns ------- back_array_dict : dict a dictionary of back transformed arrays. This is useful to see how much "smoothing" is taking place compared to the original arrays. Note ---- requires flopy Example ------- ``>>>import flopy`` ``>>>import pyemu`` ``>>>m = flopy.modflow.Modflow.load("mymodel.nam")`` ``>>>a_dict = {"hk":m.lpf.hk[0].array}`` ``>>>ba_dict = pyemu.helpers.kl_setup(10,m.sr,"struct.dat",a_dict)`` """ try: import flopy except Exception as e: raise Exception("error import flopy: {0}".format(str(e))) assert isinstance(sr,flopy.utils.SpatialReference) # for name,array in array_dict.items(): # assert isinstance(array,np.ndarray) # assert array.shape[0] == sr.nrow # assert array.shape[1] == sr.ncol # assert len(name) + len(str(num_eig)) <= 12,"name too long:{0}".\ # format(name) if isinstance(struct,str): assert os.path.exists(struct) gs = pyemu.utils.read_struct_file(struct) else: gs = struct names = [] for i in range(sr.nrow): names.extend(["i{0:04d}j{1:04d}".format(i,j) for j in range(sr.ncol)]) cov = gs.covariance_matrix(sr.xcentergrid.flatten(), sr.ycentergrid.flatten(), names=names) eig_names = ["eig_{0:04d}".format(i) for i in range(cov.shape[0])] trunc_basis = cov.u trunc_basis.col_names = eig_names #trunc_basis.col_names = [""] if basis_file is not None: trunc_basis.to_binary(basis_file) trunc_basis = trunc_basis[:,:num_eig] eig_names = eig_names[:num_eig] pp_df = pd.DataFrame({"name":eig_names},index=eig_names) pp_df.loc[:,"x"] = -1.0 * sr.ncol pp_df.loc[:,"y"] = -1.0 * sr.nrow pp_df.loc[:,"zone"] = -999 pp_df.loc[:,"parval1"] = 1.0 pyemu.pp_utils.write_pp_file(os.path.join("temp.dat"),pp_df) eigen_basis_to_factor_file(sr.nrow,sr.ncol,trunc_basis,factors_file=factors_file,islog=islog) dfs = [] for prefix in prefixes: tpl_file = os.path.join(tpl_dir,"{0}.dat_kl.tpl".format(prefix)) df = pyemu.pp_utils.pilot_points_to_tpl("temp.dat",tpl_file,prefix) shutil.copy2("temp.dat",tpl_file.replace(".tpl","")) df.loc[:,"tpl_file"] = tpl_file df.loc[:,"in_file"] = tpl_file.replace(".tpl","") df.loc[:,"prefix"] = prefix df.loc[:,"pargp"] = "kl_{0}".format(prefix) dfs.append(df) #arr = pyemu.geostats.fac2real(df,factors_file=factors_file,out_file=None) df = pd.concat(dfs) df.loc[:,"parubnd"] = 10.0 df.loc[:,"parlbnd"] = 0.1 return pd.concat(dfs)
python
{ "resource": "" }
q20029
zero_order_tikhonov
train
def zero_order_tikhonov(pst, parbounds=True,par_groups=None, reset=True): """setup preferred-value regularization Parameters ---------- pst : pyemu.Pst the control file instance parbounds : bool flag to weight the prior information equations according to parameter bound width - approx the KL transform. Default is True par_groups : list parameter groups to build PI equations for. If None, all adjustable parameters are used. Default is None reset : bool flag to reset the prior_information attribute of the pst instance. Default is True Example ------- ``>>>import pyemu`` ``>>>pst = pyemu.Pst("pest.pst")`` ``>>>pyemu.helpers.zero_order_tikhonov(pst)`` """ if par_groups is None: par_groups = pst.par_groups pilbl, obgnme, weight, equation = [], [], [], [] for idx, row in pst.parameter_data.iterrows(): pt = row["partrans"].lower() try: pt = pt.decode() except: pass if pt not in ["tied", "fixed"] and\ row["pargp"] in par_groups: pilbl.append(row["parnme"]) weight.append(1.0) ogp_name = "regul"+row["pargp"] obgnme.append(ogp_name[:12]) parnme = row["parnme"] parval1 = row["parval1"] if pt == "log": parnme = "log(" + parnme + ")" parval1 = np.log10(parval1) eq = "1.0 * " + parnme + " ={0:15.6E}".format(parval1) equation.append(eq) if reset: pst.prior_information = pd.DataFrame({"pilbl": pilbl, "equation": equation, "obgnme": obgnme, "weight": weight}) else: pi = pd.DataFrame({"pilbl": pilbl, "equation": equation, "obgnme": obgnme, "weight": weight}) pst.prior_information = pst.prior_information.append(pi) if parbounds: regweight_from_parbound(pst) if pst.control_data.pestmode == "estimation": pst.control_data.pestmode = "regularization"
python
{ "resource": "" }
q20030
first_order_pearson_tikhonov
train
def first_order_pearson_tikhonov(pst,cov,reset=True,abs_drop_tol=1.0e-3): """setup preferred-difference regularization from a covariance matrix. The weights on the prior information equations are the Pearson correlation coefficients implied by covariance matrix. Parameters ---------- pst : pyemu.Pst pst instance cov : pyemu.Cov covariance matrix instance reset : bool drop all other pi equations. If False, append to existing pi equations abs_drop_tol : float tolerance to control how many pi equations are written. If the Pearson C is less than abs_drop_tol, the prior information equation will not be included in the control file Example ------- ``>>>import pyemu`` ``>>>pst = pyemu.Pst("pest.pst")`` ``>>>cov = pyemu.Cov.from_ascii("prior.cov")`` ``>>>pyemu.helpers.first_order_pearson_tikhonov(pst,cov,abs_drop_tol=0.25)`` """ assert isinstance(cov,pyemu.Cov) print("getting CC matrix") cc_mat = cov.get(pst.adj_par_names).to_pearson() #print(pst.parameter_data.dtypes) try: ptrans = pst.parameter_data.partrans.apply(lambda x:x.decode()).to_dict() except: ptrans = pst.parameter_data.partrans.to_dict() pi_num = pst.prior_information.shape[0] + 1 pilbl, obgnme, weight, equation = [], [], [], [] sadj_names = set(pst.adj_par_names) print("processing") for i,iname in enumerate(cc_mat.row_names): if iname not in sadj_names: continue for j,jname in enumerate(cc_mat.row_names[i+1:]): if jname not in sadj_names: continue #print(i,iname,i+j+1,jname) cc = cc_mat.x[i,j+i+1] if cc < abs_drop_tol: continue pilbl.append("pcc_{0}".format(pi_num)) iiname = str(iname) if str(ptrans[iname]) == "log": iiname = "log("+iname+")" jjname = str(jname) if str(ptrans[jname]) == "log": jjname = "log("+jname+")" equation.append("1.0 * {0} - 1.0 * {1} = 0.0".\ format(iiname,jjname)) weight.append(cc) obgnme.append("regul_cc") pi_num += 1 df = pd.DataFrame({"pilbl": pilbl,"equation": equation, "obgnme": obgnme,"weight": weight}) df.index = df.pilbl if reset: pst.prior_information = df else: pst.prior_information = pst.prior_information.append(df) if pst.control_data.pestmode == "estimation": pst.control_data.pestmode = "regularization"
python
{ "resource": "" }
q20031
apply_array_pars
train
def apply_array_pars(arr_par_file="arr_pars.csv"): """ a function to apply array-based multipler parameters. Used to implement the parameterization constructed by PstFromFlopyModel during a forward run Parameters ---------- arr_par_file : str path to csv file detailing parameter array multipliers Note ---- "arr_pars.csv" - is written by PstFromFlopy the function should be added to the forward_run.py script but can be called on any correctly formatted csv """ df = pd.read_csv(arr_par_file) # for fname in df.model_file: # try: # os.remove(fname) # except: # print("error removing mult array:{0}".format(fname)) if 'pp_file' in df.columns: for pp_file,fac_file,mlt_file in zip(df.pp_file,df.fac_file,df.mlt_file): if pd.isnull(pp_file): continue pyemu.geostats.fac2real(pp_file=pp_file,factors_file=fac_file, out_file=mlt_file,lower_lim=1.0e-10) for model_file in df.model_file.unique(): # find all mults that need to be applied to this array df_mf = df.loc[df.model_file==model_file,:] results = [] org_file = df_mf.org_file.unique() if org_file.shape[0] != 1: raise Exception("wrong number of org_files for {0}". format(model_file)) org_arr = np.loadtxt(org_file[0]) for mlt in df_mf.mlt_file: org_arr *= np.loadtxt(mlt) if "upper_bound" in df.columns: ub_vals = df_mf.upper_bound.value_counts().dropna().to_dict() if len(ub_vals) == 0: pass elif len(ub_vals) > 1: raise Exception("different upper bound values for {0}".format(org_file)) else: ub = list(ub_vals.keys())[0] org_arr[org_arr>ub] = ub if "lower_bound" in df.columns: lb_vals = df_mf.lower_bound.value_counts().dropna().to_dict() if len(lb_vals) == 0: pass elif len(lb_vals) > 1: raise Exception("different lower bound values for {0}".format(org_file)) else: lb = list(lb_vals.keys())[0] org_arr[org_arr < lb] = lb np.savetxt(model_file,np.atleast_2d(org_arr),fmt="%15.6E",delimiter='')
python
{ "resource": "" }
q20032
PstFromFlopyModel.setup_sfr_obs
train
def setup_sfr_obs(self): """setup sfr ASCII observations""" if not self.sfr_obs: return if self.m.sfr is None: self.logger.lraise("no sfr package found...") org_sfr_out_file = os.path.join(self.org_model_ws,"{0}.sfr.out".format(self.m.name)) if not os.path.exists(org_sfr_out_file): self.logger.lraise("setup_sfr_obs() error: could not locate existing sfr out file: {0}". format(org_sfr_out_file)) new_sfr_out_file = os.path.join(self.m.model_ws,os.path.split(org_sfr_out_file)[-1]) shutil.copy2(org_sfr_out_file,new_sfr_out_file) seg_group_dict = None if isinstance(self.sfr_obs,dict): seg_group_dict = self.sfr_obs df = pyemu.gw_utils.setup_sfr_obs(new_sfr_out_file,seg_group_dict=seg_group_dict, model=self.m,include_path=True) if df is not None: self.obs_dfs["sfr"] = df self.frun_post_lines.append("pyemu.gw_utils.apply_sfr_obs()")
python
{ "resource": "" }
q20033
PstFromFlopyModel.setup_mult_dirs
train
def setup_mult_dirs(self): """ setup the directories to use for multiplier parameterization. Directories are make within the PstFromFlopyModel.m.model_ws directory """ # setup dirs to hold the original and multiplier model input quantities set_dirs = [] # if len(self.pp_props) > 0 or len(self.zone_props) > 0 or \ # len(self.grid_props) > 0: if self.pp_props is not None or \ self.zone_props is not None or \ self.grid_props is not None or\ self.const_props is not None or \ self.kl_props is not None: set_dirs.append(self.arr_org) set_dirs.append(self.arr_mlt) # if len(self.bc_props) > 0: if len(self.temporal_list_props) > 0 or len(self.spatial_list_props) > 0: set_dirs.append(self.list_org) if len(self.spatial_list_props): set_dirs.append(self.list_mlt) for d in set_dirs: d = os.path.join(self.m.model_ws,d) self.log("setting up '{0}' dir".format(d)) if os.path.exists(d): if self.remove_existing: shutil.rmtree(d,onerror=remove_readonly) else: raise Exception("dir '{0}' already exists". format(d)) os.mkdir(d) self.log("setting up '{0}' dir".format(d))
python
{ "resource": "" }
q20034
PstFromFlopyModel.setup_model
train
def setup_model(self,model,org_model_ws,new_model_ws): """ setup the flopy.mbase instance for use with multipler parameters. Changes model_ws, sets external_path and writes new MODFLOW input files Parameters ---------- model : flopy.mbase flopy model instance org_model_ws : str the orginal model working space new_model_ws : str the new model working space """ split_new_mws = [i for i in os.path.split(new_model_ws) if len(i) > 0] if len(split_new_mws) != 1: self.logger.lraise("new_model_ws can only be 1 folder-level deep:{0}". format(str(split_new_mws))) if isinstance(model,str): self.log("loading flopy model") try: import flopy except: raise Exception("from_flopy_model() requires flopy") # prepare the flopy model self.org_model_ws = org_model_ws self.new_model_ws = new_model_ws self.m = flopy.modflow.Modflow.load(model,model_ws=org_model_ws, check=False,verbose=True,forgive=False) self.log("loading flopy model") else: self.m = model self.org_model_ws = str(self.m.model_ws) self.new_model_ws = new_model_ws self.log("updating model attributes") self.m.array_free_format = True self.m.free_format_input = True self.m.external_path = '.' self.log("updating model attributes") if os.path.exists(new_model_ws): if not self.remove_existing: self.logger.lraise("'new_model_ws' already exists") else: self.logger.warn("removing existing 'new_model_ws") shutil.rmtree(new_model_ws,onerror=pyemu.os_utils.remove_readonly) time.sleep(1) self.m.change_model_ws(new_model_ws,reset_external=True) self.m.exe_name = self.m.exe_name.replace(".exe",'') self.m.exe = self.m.version self.log("writing new modflow input files") self.m.write_input() self.log("writing new modflow input files")
python
{ "resource": "" }
q20035
PstFromFlopyModel.get_count
train
def get_count(self,name): """ get the latest counter for a certain parameter type. Parameters ---------- name : str the parameter type Returns ------- count : int the latest count for a parameter type Note ---- calling this function increments the counter for the passed parameter type """ if name not in self.mlt_counter: self.mlt_counter[name] = 1 c = 0 else: c = self.mlt_counter[name] self.mlt_counter[name] += 1 #print(name,c) return c
python
{ "resource": "" }
q20036
PstFromFlopyModel.write_u2d
train
def write_u2d(self, u2d): """ write a flopy.utils.Util2D instance to an ASCII text file using the Util2D filename Parameters ---------- u2d : flopy.utils.Util2D Returns ------- filename : str the name of the file written (without path) """ filename = os.path.split(u2d.filename)[-1] np.savetxt(os.path.join(self.m.model_ws,self.arr_org,filename), u2d.array,fmt="%15.6E") return filename
python
{ "resource": "" }
q20037
PstFromFlopyModel.write_grid_tpl
train
def write_grid_tpl(self,name,tpl_file,zn_array): """ write a template file a for grid-based multiplier parameters Parameters ---------- name : str the base parameter name tpl_file : str the template file to write zn_array : numpy.ndarray an array used to skip inactive cells Returns ------- df : pandas.DataFrame a dataframe with parameter information """ parnme,x,y = [],[],[] with open(os.path.join(self.m.model_ws,tpl_file),'w') as f: f.write("ptf ~\n") for i in range(self.m.nrow): for j in range(self.m.ncol): if zn_array[i,j] < 1: pname = ' 1.0 ' else: pname = "{0}{1:03d}{2:03d}".format(name,i,j) if len(pname) > 12: self.logger.lraise("grid pname too long:{0}".\ format(pname)) parnme.append(pname) pname = ' ~ {0} ~ '.format(pname) x.append(self.m.sr.xcentergrid[i,j]) y.append(self.m.sr.ycentergrid[i,j]) f.write(pname) f.write("\n") df = pd.DataFrame({"parnme":parnme,"x":x,"y":y},index=parnme) df.loc[:,"pargp"] = "{0}{1}".format(self.gr_suffix.replace('_',''),name) df.loc[:,"tpl"] = tpl_file return df
python
{ "resource": "" }
q20038
PstFromFlopyModel.grid_prep
train
def grid_prep(self): """ prepare grid-based parameterizations """ if len(self.grid_props) == 0: return if self.grid_geostruct is None: self.logger.warn("grid_geostruct is None,"\ " using ExpVario with contribution=1 and a=(max(delc,delr)*10") dist = 10 * float(max(self.m.dis.delr.array.max(), self.m.dis.delc.array.max())) v = pyemu.geostats.ExpVario(contribution=1.0,a=dist) self.grid_geostruct = pyemu.geostats.GeoStruct(variograms=v)
python
{ "resource": "" }
q20039
PstFromFlopyModel.kl_prep
train
def kl_prep(self,mlt_df): """ prepare KL based parameterizations Parameters ---------- mlt_df : pandas.DataFrame a dataframe with multiplier array information Note ---- calls pyemu.helpers.setup_kl() """ if len(self.kl_props) == 0: return if self.kl_geostruct is None: self.logger.warn("kl_geostruct is None,"\ " using ExpVario with contribution=1 and a=(10.0*max(delr,delc))") kl_dist = 10.0 * float(max(self.m.dis.delr.array.max(), self.m.dis.delc.array.max())) v = pyemu.geostats.ExpVario(contribution=1.0,a=kl_dist) self.kl_geostruct = pyemu.geostats.GeoStruct(variograms=v) kl_df = mlt_df.loc[mlt_df.suffix==self.kl_suffix,:] layers = kl_df.layer.unique() #kl_dict = {l:list(kl_df.loc[kl_df.layer==l,"prefix"].unique()) for l in layers} # big assumption here - if prefix is listed more than once, use the lowest layer index #for i,l in enumerate(layers): # p = set(kl_dict[l]) # for ll in layers[i+1:]: # pp = set(kl_dict[ll]) # d = pp - p # kl_dict[ll] = list(d) kl_prefix = list(kl_df.loc[:,"prefix"]) kl_array_file = {p:m for p,m in zip(kl_df.prefix,kl_df.mlt_file)} self.logger.statement("kl_prefix: {0}".format(str(kl_prefix))) fac_file = os.path.join(self.m.model_ws, "kl.fac") self.log("calling kl_setup() with factors file {0}".format(fac_file)) kl_df = kl_setup(self.kl_num_eig,self.m.sr,self.kl_geostruct,kl_prefix, factors_file=fac_file,basis_file=fac_file+".basis.jcb", tpl_dir=self.m.model_ws) self.logger.statement("{0} kl parameters created". format(kl_df.shape[0])) self.logger.statement("kl 'pargp':{0}". format(','.join(kl_df.pargp.unique()))) self.log("calling kl_setup() with factors file {0}".format(fac_file)) kl_mlt_df = mlt_df.loc[mlt_df.suffix==self.kl_suffix] for prefix in kl_df.prefix.unique(): prefix_df = kl_df.loc[kl_df.prefix==prefix,:] in_file = os.path.split(prefix_df.loc[:,"in_file"].iloc[0])[-1] assert prefix in mlt_df.prefix.values,"{0}:{1}".format(prefix,mlt_df.prefix) mlt_df.loc[mlt_df.prefix==prefix,"pp_file"] = in_file mlt_df.loc[mlt_df.prefix==prefix,"fac_file"] = os.path.split(fac_file)[-1] print(kl_mlt_df) mlt_df.loc[mlt_df.suffix == self.kl_suffix, "tpl_file"] = np.NaN self.par_dfs[self.kl_suffix] = kl_df
python
{ "resource": "" }
q20040
PstFromFlopyModel.setup_observations
train
def setup_observations(self): """ main entry point for setting up observations """ obs_methods = [self.setup_water_budget_obs,self.setup_hyd, self.setup_smp,self.setup_hob,self.setup_hds, self.setup_sfr_obs] obs_types = ["mflist water budget obs","hyd file", "external obs-sim smp files","hob","hds","sfr"] self.obs_dfs = {} for obs_method, obs_type in zip(obs_methods,obs_types): self.log("processing obs type {0}".format(obs_type)) obs_method() self.log("processing obs type {0}".format(obs_type))
python
{ "resource": "" }
q20041
PstFromFlopyModel.draw
train
def draw(self, num_reals=100, sigma_range=6): """ draw like a boss! Parameters ---------- num_reals : int number of realizations to generate. Default is 100 sigma_range : float number of standard deviations represented by the parameter bounds. Default is 6. Returns ------- cov : pyemu.Cov a full covariance matrix """ self.log("drawing realizations") struct_dict = {} if self.pp_suffix in self.par_dfs.keys(): pp_df = self.par_dfs[self.pp_suffix] pp_dfs = [] for pargp in pp_df.pargp.unique(): gp_df = pp_df.loc[pp_df.pargp==pargp,:] p_df = gp_df.drop_duplicates(subset="parnme") pp_dfs.append(p_df) #pp_dfs = [pp_df.loc[pp_df.pargp==pargp,:].copy() for pargp in pp_df.pargp.unique()] struct_dict[self.pp_geostruct] = pp_dfs if self.gr_suffix in self.par_dfs.keys(): gr_df = self.par_dfs[self.gr_suffix] gr_dfs = [] for pargp in gr_df.pargp.unique(): gp_df = gr_df.loc[gr_df.pargp==pargp,:] p_df = gp_df.drop_duplicates(subset="parnme") gr_dfs.append(p_df) #gr_dfs = [gr_df.loc[gr_df.pargp==pargp,:].copy() for pargp in gr_df.pargp.unique()] struct_dict[self.grid_geostruct] = gr_dfs if "temporal_list" in self.par_dfs.keys(): bc_df = self.par_dfs["temporal_list"] bc_df.loc[:,"y"] = 0 bc_df.loc[:,"x"] = bc_df.timedelta.apply(lambda x: x.days) bc_dfs = [] for pargp in bc_df.pargp.unique(): gp_df = bc_df.loc[bc_df.pargp==pargp,:] p_df = gp_df.drop_duplicates(subset="parnme") #print(p_df) bc_dfs.append(p_df) #bc_dfs = [bc_df.loc[bc_df.pargp==pargp,:].copy() for pargp in bc_df.pargp.unique()] struct_dict[self.temporal_list_geostruct] = bc_dfs if "spatial_list" in self.par_dfs.keys(): bc_df = self.par_dfs["spatial_list"] bc_dfs = [] for pargp in bc_df.pargp.unique(): gp_df = bc_df.loc[bc_df.pargp==pargp,:] #p_df = gp_df.drop_duplicates(subset="parnme") #print(p_df) bc_dfs.append(gp_df) struct_dict[self.spatial_list_geostruct] = bc_dfs pe = geostatistical_draws(self.pst,struct_dict=struct_dict,num_reals=num_reals, sigma_range=sigma_range) self.log("drawing realizations") return pe
python
{ "resource": "" }
q20042
PstFromFlopyModel.write_forward_run
train
def write_forward_run(self): """ write the forward run script forward_run.py """ with open(os.path.join(self.m.model_ws,self.forward_run_file),'w') as f: f.write("import os\nimport numpy as np\nimport pandas as pd\nimport flopy\n") f.write("import pyemu\n") for ex_imp in self.extra_forward_imports: f.write('import {0}\n'.format(ex_imp)) for tmp_file in self.tmp_files: f.write("try:\n") f.write(" os.remove('{0}')\n".format(tmp_file)) f.write("except Exception as e:\n") f.write(" print('error removing tmp file:{0}')\n".format(tmp_file)) for line in self.frun_pre_lines: f.write(line+'\n') for line in self.frun_model_lines: f.write(line+'\n') for line in self.frun_post_lines: f.write(line+'\n')
python
{ "resource": "" }
q20043
PstFromFlopyModel.parse_k
train
def parse_k(self,k,vals): """ parse the iterable from a property or boundary condition argument Parameters ---------- k : int or iterable int the iterable vals : iterable of ints the acceptable values that k may contain Returns ------- k_vals : iterable of int parsed k values """ try: k = int(k) except: pass else: assert k in vals,"k {0} not in vals".format(k) return [k] if k is None: return vals else: try: k_vals = vals[k] except Exception as e: raise Exception("error slicing vals with {0}:{1}". format(k,str(e))) return k_vals
python
{ "resource": "" }
q20044
PstFromFlopyModel.parse_pakattr
train
def parse_pakattr(self,pakattr): """ parse package-iterable pairs from a property or boundary condition argument Parameters ---------- pakattr : iterable len 2 Returns ------- pak : flopy.PakBase the flopy package from the model instance attr : (varies) the flopy attribute from pak. Could be Util2D, Util3D, Transient2D, or MfList attrname : (str) the name of the attribute for MfList type. Only returned if attr is MfList. For example, if attr is MfList and pak is flopy.modflow.ModflowWel, then attrname can only be "flux" """ raw = pakattr.lower().split('.') if len(raw) != 2: self.logger.lraise("pakattr is wrong:{0}".format(pakattr)) pakname = raw[0] attrname = raw[1] pak = self.m.get_package(pakname) if pak is None: if pakname == "extra": self.logger.statement("'extra' pak detected:{0}".format(pakattr)) ud = flopy.utils.Util3d(self.m,(self.m.nlay,self.m.nrow,self.m.ncol),np.float32,1.0,attrname) return "extra",ud self.logger.lraise("pak {0} not found".format(pakname)) if hasattr(pak,attrname): attr = getattr(pak,attrname) return pak,attr elif hasattr(pak,"stress_period_data"): dtype = pak.stress_period_data.dtype if attrname not in dtype.names: self.logger.lraise("attr {0} not found in dtype.names for {1}.stress_period_data".\ format(attrname,pakname)) attr = pak.stress_period_data return pak,attr,attrname # elif hasattr(pak,'hfb_data'): # dtype = pak.hfb_data.dtype # if attrname not in dtype.names: # self.logger.lraise('attr {0} not found in dtypes.names for {1}.hfb_data. Thanks for playing.'.\ # format(attrname,pakname)) # attr = pak.hfb_data # return pak, attr, attrname else: self.logger.lraise("unrecognized attr:{0}".format(attrname))
python
{ "resource": "" }
q20045
PstFromFlopyModel.setup_list_pars
train
def setup_list_pars(self): """ main entry point for setting up list multiplier parameters """ tdf = self.setup_temporal_list_pars() sdf = self.setup_spatial_list_pars() if tdf is None and sdf is None: return os.chdir(self.m.model_ws) try: apply_list_pars() except Exception as e: os.chdir("..") self.logger.lraise("error test running apply_list_pars():{0}".format(str(e))) os.chdir('..') line = "pyemu.helpers.apply_list_pars()\n" self.logger.statement("forward_run line:{0}".format(line)) self.frun_pre_lines.append(line)
python
{ "resource": "" }
q20046
PstFromFlopyModel.list_helper
train
def list_helper(self,k,pak,attr,col): """ helper to setup list multiplier parameters for a given k, pak, attr set. Parameters ---------- k : int or iterable of int the zero-based stress period indices pak : flopy.PakBase= the MODFLOW package attr : MfList the MfList instance col : str the column name in the MfList recarray to parameterize """ # special case for horrible HFB6 exception # if type(pak) == flopy.modflow.mfhfb.ModflowHfb: # filename = pak.file_name[0] # else: filename = attr.get_filename(k) filename_model = os.path.join(self.m.external_path,filename) shutil.copy2(os.path.join(self.m.model_ws,filename_model), os.path.join(self.m.model_ws,self.list_org,filename)) return filename_model
python
{ "resource": "" }
q20047
PstFromFlopyModel.setup_smp
train
def setup_smp(self): """ setup observations from PEST-style SMP file pairs """ if self.obssim_smp_pairs is None: return if len(self.obssim_smp_pairs) == 2: if isinstance(self.obssim_smp_pairs[0],str): self.obssim_smp_pairs = [self.obssim_smp_pairs] for obs_smp,sim_smp in self.obssim_smp_pairs: self.log("processing {0} and {1} smp files".format(obs_smp,sim_smp)) if not os.path.exists(obs_smp): self.logger.lraise("couldn't find obs smp: {0}".format(obs_smp)) if not os.path.exists(sim_smp): self.logger.lraise("couldn't find sim smp: {0}".format(sim_smp)) new_obs_smp = os.path.join(self.m.model_ws, os.path.split(obs_smp)[-1]) shutil.copy2(obs_smp,new_obs_smp) new_sim_smp = os.path.join(self.m.model_ws, os.path.split(sim_smp)[-1]) shutil.copy2(sim_smp,new_sim_smp) pyemu.smp_utils.smp_to_ins(new_sim_smp)
python
{ "resource": "" }
q20048
PstFromFlopyModel.setup_hob
train
def setup_hob(self): """ setup observations from the MODFLOW HOB package """ if self.m.hob is None: return hob_out_unit = self.m.hob.iuhobsv new_hob_out_fname = os.path.join(self.m.model_ws,self.m.get_output_attribute(unit=hob_out_unit)) org_hob_out_fname = os.path.join(self.org_model_ws,self.m.get_output_attribute(unit=hob_out_unit)) if not os.path.exists(org_hob_out_fname): self.logger.warn("could not find hob out file: {0}...skipping".format(hob_out_fname)) return shutil.copy2(org_hob_out_fname,new_hob_out_fname) hob_df = pyemu.gw_utils.modflow_hob_to_instruction_file(new_hob_out_fname) self.obs_dfs["hob"] = hob_df self.tmp_files.append(os.path.split(hob_out_fname))
python
{ "resource": "" }
q20049
PstFromFlopyModel.setup_hyd
train
def setup_hyd(self): """ setup observations from the MODFLOW HYDMOD package """ if self.m.hyd is None: return if self.mfhyd: org_hyd_out = os.path.join(self.org_model_ws,self.m.name+".hyd.bin") if not os.path.exists(org_hyd_out): self.logger.warn("can't find existing hyd out file:{0}...skipping". format(org_hyd_out)) return new_hyd_out = os.path.join(self.m.model_ws,os.path.split(org_hyd_out)[-1]) shutil.copy2(org_hyd_out,new_hyd_out) df = pyemu.gw_utils.modflow_hydmod_to_instruction_file(new_hyd_out) df.loc[:,"obgnme"] = df.obsnme.apply(lambda x: '_'.join(x.split('_')[:-1])) line = "pyemu.gw_utils.modflow_read_hydmod_file('{0}')".\ format(os.path.split(new_hyd_out)[-1]) self.logger.statement("forward_run line: {0}".format(line)) self.frun_post_lines.append(line) self.obs_dfs["hyd"] = df self.tmp_files.append(os.path.split(new_hyd_out)[-1])
python
{ "resource": "" }
q20050
PstFromFlopyModel.setup_water_budget_obs
train
def setup_water_budget_obs(self): """ setup observations from the MODFLOW list file for volume and flux water buget information """ if self.mflist_waterbudget: org_listfile = os.path.join(self.org_model_ws,self.m.lst.file_name[0]) if os.path.exists(org_listfile): shutil.copy2(org_listfile,os.path.join(self.m.model_ws, self.m.lst.file_name[0])) else: self.logger.warn("can't find existing list file:{0}...skipping". format(org_listfile)) return list_file = os.path.join(self.m.model_ws,self.m.lst.file_name[0]) flx_file = os.path.join(self.m.model_ws,"flux.dat") vol_file = os.path.join(self.m.model_ws,"vol.dat") df = pyemu.gw_utils.setup_mflist_budget_obs(list_file, flx_filename=flx_file, vol_filename=vol_file, start_datetime=self.m.start_datetime) if df is not None: self.obs_dfs["wb"] = df #line = "try:\n os.remove('{0}')\nexcept:\n pass".format(os.path.split(list_file)[-1]) #self.logger.statement("forward_run line:{0}".format(line)) #self.frun_pre_lines.append(line) self.tmp_files.append(os.path.split(list_file)[-1]) line = "pyemu.gw_utils.apply_mflist_budget_obs('{0}',flx_filename='{1}',vol_filename='{2}',start_datetime='{3}')".\ format(os.path.split(list_file)[-1], os.path.split(flx_file)[-1], os.path.split(vol_file)[-1], self.m.start_datetime) self.logger.statement("forward_run line:{0}".format(line)) self.frun_post_lines.append(line)
python
{ "resource": "" }
q20051
read_resfile
train
def read_resfile(resfile): """load a residual file into a pandas.DataFrame Parameters ---------- resfile : str residual file name Returns ------- pandas.DataFrame : pandas.DataFrame """ assert os.path.exists(resfile),"read_resfile() error: resfile " +\ "{0} not found".format(resfile) converters = {"name": str_con, "group": str_con} f = open(resfile, 'r') while True: line = f.readline() if line == '': raise Exception("Pst.get_residuals: EOF before finding "+ "header in resfile: " + resfile) if "name" in line.lower(): header = line.lower().strip().split() break res_df = pd.read_csv(f, header=None, names=header, sep="\s+", converters=converters) res_df.index = res_df.name f.close() return res_df
python
{ "resource": "" }
q20052
res_from_en
train
def res_from_en(pst,enfile): """load ensemble file for residual into a pandas.DataFrame Parameters ---------- enfile : str ensemble file name Returns ------- pandas.DataFrame : pandas.DataFrame """ converters = {"name": str_con, "group": str_con} try: #substitute ensemble for res, 'base' if there, otherwise mean obs=pst.observation_data if isinstance(enfile,str): df=pd.read_csv(enfile,converters=converters) df.columns=df.columns.str.lower() df = df.set_index('real_name').T.rename_axis('name').rename_axis(None, 1) else: df = enfile.T if 'base' in df.columns: df['modelled']=df['base'] df['std']=df.std(axis=1) else: df['modelled']=df.mean(axis=1) df['std']=df.std(axis=1) #probably a more pandastic way to do this res_df=df[['modelled','std']].copy() res_df['group']=obs.loc[:,'obgnme'].copy() res_df['measured']=obs['obsval'].copy() res_df['weight']=obs['weight'].copy() res_df['residual']=res_df['measured']-res_df['modelled'] except Exception as e: raise Exception("Pst.res_from_en:{0}".format(str(e))) return res_df
python
{ "resource": "" }
q20053
read_parfile
train
def read_parfile(parfile): """load a pest-compatible .par file into a pandas.DataFrame Parameters ---------- parfile : str pest parameter file name Returns ------- pandas.DataFrame : pandas.DataFrame """ assert os.path.exists(parfile), "Pst.parrep(): parfile not found: " +\ str(parfile) f = open(parfile, 'r') header = f.readline() par_df = pd.read_csv(f, header=None, names=["parnme", "parval1", "scale", "offset"], sep="\s+") par_df.index = par_df.parnme return par_df
python
{ "resource": "" }
q20054
write_parfile
train
def write_parfile(df,parfile): """ write a pest parameter file from a dataframe Parameters ---------- df : (pandas.DataFrame) dataframe with column names that correspond to the entries in the parameter data section of a pest control file parfile : str name of the parameter file to write """ columns = ["parnme","parval1","scale","offset"] formatters = {"parnme":lambda x:"{0:20s}".format(x), "parval1":lambda x:"{0:20.7E}".format(x), "scale":lambda x:"{0:20.7E}".format(x), "offset":lambda x:"{0:20.7E}".format(x)} for col in columns: assert col in df.columns,"write_parfile() error: " +\ "{0} not found in df".format(col) with open(parfile,'w') as f: f.write("single point\n") f.write(df.to_string(col_space=0, columns=columns, formatters=formatters, justify="right", header=False, index=False, index_names=False) + '\n')
python
{ "resource": "" }
q20055
parse_tpl_file
train
def parse_tpl_file(tpl_file): """ parse a pest template file to get the parameter names Parameters ---------- tpl_file : str template file name Returns ------- par_names : list list of parameter names """ par_names = set() with open(tpl_file,'r') as f: try: header = f.readline().strip().split() assert header[0].lower() in ["ptf","jtf"],\ "template file error: must start with [ptf,jtf], not:" +\ str(header[0]) assert len(header) == 2,\ "template file error: header line must have two entries: " +\ str(header) marker = header[1] assert len(marker) == 1,\ "template file error: marker must be a single character, not:" +\ str(marker) for line in f: par_line = set(line.lower().strip().split(marker)[1::2]) par_names.update(par_line) #par_names.extend(par_line) #for p in par_line: # if p not in par_names: # par_names.append(p) except Exception as e: raise Exception("error processing template file " +\ tpl_file+" :\n" + str(e)) #par_names = [pn.strip().lower() for pn in par_names] #seen = set() #seen_add = seen.add #return [x for x in par_names if not (x in seen or seen_add(x))] return [p.strip() for p in list(par_names)]
python
{ "resource": "" }
q20056
write_to_template
train
def write_to_template(parvals,tpl_file,in_file): """ write parameter values to model input files using template files Parameters ---------- parvals : dict or pandas.Series a way to look up parameter values using parameter names tpl_file : str template file in_file : str input file """ f_in = open(in_file,'w') f_tpl = open(tpl_file,'r') header = f_tpl.readline().strip().split() assert header[0].lower() in ["ptf", "jtf"], \ "template file error: must start with [ptf,jtf], not:" + \ str(header[0]) assert len(header) == 2, \ "template file error: header line must have two entries: " + \ str(header) marker = header[1] assert len(marker) == 1, \ "template file error: marker must be a single character, not:" + \ str(marker) for line in f_tpl: if marker not in line: f_in.write(line) else: line = line.rstrip() par_names = line.lower().split(marker)[1::2] par_names = [name.strip() for name in par_names] start,end = get_marker_indices(marker,line) assert len(par_names) == len(start) new_line = line[:start[0]] between = [line[e:s] for s,e in zip(start[1:],end[:-1])] for i,name in enumerate(par_names): s,e = start[i],end[i] w = e - s if w > 15: d = 6 else: d = 3 fmt = "{0:" + str(w)+"."+str(d)+"E}" val_str = fmt.format(parvals[name]) new_line += val_str if i != len(par_names) - 1: new_line += between[i] new_line += line[end[-1]:] f_in.write(new_line+'\n') f_tpl.close() f_in.close()
python
{ "resource": "" }
q20057
parse_ins_file
train
def parse_ins_file(ins_file): """parse a pest instruction file to get observation names Parameters ---------- ins_file : str instruction file name Returns ------- list of observation names """ obs_names = [] with open(ins_file,'r') as f: header = f.readline().strip().split() assert header[0].lower() in ["pif","jif"],\ "instruction file error: must start with [pif,jif], not:" +\ str(header[0]) marker = header[1] assert len(marker) == 1,\ "instruction file error: marker must be a single character, not:" +\ str(marker) for line in f: line = line.lower() if marker in line: raw = line.lower().strip().split(marker) for item in raw[::2]: obs_names.extend(parse_ins_string(item)) else: obs_names.extend(parse_ins_string(line.strip())) #obs_names = [on.strip().lower() for on in obs_names] return obs_names
python
{ "resource": "" }
q20058
parse_ins_string
train
def parse_ins_string(string): """ split up an instruction file line to get the observation names Parameters ---------- string : str instruction file line Returns ------- obs_names : list list of observation names """ istart_markers = ["[","(","!"] iend_markers = ["]",")","!"] obs_names = [] idx = 0 while True: if idx >= len(string) - 1: break char = string[idx] if char in istart_markers: em = iend_markers[istart_markers.index(char)] # print("\n",idx) # print(string) # print(string[idx+1:]) # print(string[idx+1:].index(em)) # print(string[idx+1:].index(em)+idx+1) eidx = min(len(string),string[idx+1:].index(em)+idx+1) obs_name = string[idx+1:eidx] if obs_name.lower() != "dum": obs_names.append(obs_name) idx = eidx + 1 else: idx += 1 return obs_names
python
{ "resource": "" }
q20059
populate_dataframe
train
def populate_dataframe(index,columns, default_dict, dtype): """ helper function to populate a generic Pst dataframe attribute. This function is called as part of constructing a generic Pst instance Parameters ---------- index : (varies) something to use as the dataframe index columns: (varies) something to use as the dataframe columns default_dict : (dict) dictionary of default values for columns dtype : numpy.dtype dtype used to cast dataframe columns Returns ------- new_df : pandas.DataFrame """ new_df = pd.DataFrame(index=index,columns=columns) for fieldname,dt in zip(columns,dtype.descr): default = default_dict[fieldname] new_df.loc[:,fieldname] = default new_df.loc[:,fieldname] = new_df.loc[:,fieldname].astype(dt[1]) return new_df
python
{ "resource": "" }
q20060
generic_pst
train
def generic_pst(par_names=["par1"],obs_names=["obs1"],addreg=False): """generate a generic pst instance. This can used to later fill in the Pst parts programatically. Parameters ---------- par_names : (list) parameter names to setup obs_names : (list) observation names to setup Returns ------- new_pst : pyemu.Pst """ if not isinstance(par_names,list): par_names = list(par_names) if not isinstance(obs_names,list): obs_names = list(obs_names) new_pst = pyemu.Pst("pest.pst",load=False) pargp_data = populate_dataframe(["pargp"], new_pst.pargp_fieldnames, new_pst.pargp_defaults, new_pst.pargp_dtype) new_pst.parameter_groups = pargp_data par_data = populate_dataframe(par_names,new_pst.par_fieldnames, new_pst.par_defaults,new_pst.par_dtype) par_data.loc[:,"parnme"] = par_names par_data.index = par_names par_data.sort_index(inplace=True) new_pst.parameter_data = par_data obs_data = populate_dataframe(obs_names,new_pst.obs_fieldnames, new_pst.obs_defaults,new_pst.obs_dtype) obs_data.loc[:,"obsnme"] = obs_names obs_data.index = obs_names obs_data.sort_index(inplace=True) new_pst.observation_data = obs_data new_pst.template_files = ["file.tpl"] new_pst.input_files = ["file.in"] new_pst.instruction_files = ["file.ins"] new_pst.output_files = ["file.out"] new_pst.model_command = ["model.bat"] new_pst.prior_information = new_pst.null_prior #new_pst.other_lines = ["* singular value decomposition\n","1\n", # "{0:d} {1:15.6E}\n".format(new_pst.npar_adj,1.0E-6), # "1 1 1\n"] if addreg: new_pst.zero_order_tikhonov() return new_pst
python
{ "resource": "" }
q20061
try_run_inschek
train
def try_run_inschek(pst): """ attempt to run INSCHEK for each instruction file, model output file pair in a pyemu.Pst. If the run is successful, the INSCHEK written .obf file is used to populate the pst.observation_data.obsval attribute Parameters ---------- pst : (pyemu.Pst) """ for ins_file,out_file in zip(pst.instruction_files,pst.output_files): df = _try_run_inschek(ins_file,out_file) if df is not None: pst.observation_data.loc[df.index, "obsval"] = df.obsval
python
{ "resource": "" }
q20062
get_phi_comps_from_recfile
train
def get_phi_comps_from_recfile(recfile): """read the phi components from a record file by iteration Parameters ---------- recfile : str pest record file name Returns ------- iters : dict nested dictionary of iteration number, {group,contribution} """ iiter = 1 iters = {} f = open(recfile,'r') while True: line = f.readline() if line == '': break if "starting phi for this iteration" in line.lower() or \ "final phi" in line.lower(): contributions = {} while True: line = f.readline() if line == '': break if "contribution to phi" not in line.lower(): iters[iiter] = contributions iiter += 1 break raw = line.strip().split() val = float(raw[-1]) group = raw[-3].lower().replace('\"', '') contributions[group] = val return iters
python
{ "resource": "" }
q20063
res_from_obseravtion_data
train
def res_from_obseravtion_data(observation_data): """create a generic residual dataframe filled with np.NaN for missing information Parameters ---------- observation_data : pandas.DataFrame pyemu.Pst.observation_data Returns ------- res_df : pandas.DataFrame """ res_df = observation_data.copy() res_df.loc[:, "name"] = res_df.pop("obsnme") res_df.loc[:, "measured"] = res_df.pop("obsval") res_df.loc[:, "group"] = res_df.pop("obgnme") res_df.loc[:, "modelled"] = np.NaN res_df.loc[:, "residual"] = np.NaN return res_df
python
{ "resource": "" }
q20064
clean_missing_exponent
train
def clean_missing_exponent(pst_filename,clean_filename="clean.pst"): """fixes the issue where some terrible fortran program may have written a floating point format without the 'e' - like 1.0-3, really?! Parameters ---------- pst_filename : str the pest control file clean_filename : str the new pest control file to write. Default is "clean.pst" Returns ------- None """ lines = [] with open(pst_filename,'r') as f: for line in f: line = line.lower().strip() if '+' in line: raw = line.split('+') for i,r in enumerate(raw[:-1]): if r[-1] != 'e': r = r + 'e' raw[i] = r lines.append('+'.join(raw)) else: lines.append(line) with open(clean_filename,'w') as f: for line in lines: f.write(line+'\n')
python
{ "resource": "" }
q20065
Pst.phi
train
def phi(self): """get the weighted total objective function Returns ------- phi : float sum of squared residuals """ sum = 0.0 for grp, contrib in self.phi_components.items(): sum += contrib return sum
python
{ "resource": "" }
q20066
Pst.phi_components
train
def phi_components(self): """ get the individual components of the total objective function Returns ------- dict : dict dictionary of observation group, contribution to total phi Raises ------ Assertion error if Pst.observation_data groups don't match Pst.res groups """ # calculate phi components for each obs group components = {} ogroups = self.observation_data.groupby("obgnme").groups rgroups = self.res.groupby("group").groups self.res.index = self.res.name for og,onames in ogroups.items(): #assert og in rgroups.keys(),"Pst.phi_componentw obs group " +\ # "not found: " + str(og) #og_res_df = self.res.ix[rgroups[og]] og_res_df = self.res.loc[onames,:].dropna() #og_res_df.index = og_res_df.name og_df = self.observation_data.ix[ogroups[og]] og_df.index = og_df.obsnme #og_res_df = og_res_df.loc[og_df.index,:] assert og_df.shape[0] == og_res_df.shape[0],\ " Pst.phi_components error: group residual dataframe row length" +\ "doesn't match observation data group dataframe row length" + \ str(og_df.shape) + " vs. " + str(og_res_df.shape) components[og] = np.sum((og_res_df["residual"] * og_df["weight"]) ** 2) if not self.control_data.pestmode.startswith("reg") and \ self.prior_information.shape[0] > 0: ogroups = self.prior_information.groupby("obgnme").groups for og in ogroups.keys(): assert og in rgroups.keys(),"Pst.adjust_weights_res() obs group " +\ "not found: " + str(og) og_res_df = self.res.ix[rgroups[og]] og_res_df.index = og_res_df.name og_df = self.prior_information.ix[ogroups[og]] og_df.index = og_df.pilbl og_res_df = og_res_df.loc[og_df.index,:] assert og_df.shape[0] == og_res_df.shape[0],\ " Pst.phi_components error: group residual dataframe row length" +\ "doesn't match observation data group dataframe row length" + \ str(og_df.shape) + " vs. " + str(og_res_df.shape) components[og] = np.sum((og_res_df["residual"] * og_df["weight"]) ** 2) return components
python
{ "resource": "" }
q20067
Pst.phi_components_normalized
train
def phi_components_normalized(self): """ get the individual components of the total objective function normalized to the total PHI being 1.0 Returns ------- dict : dict dictionary of observation group, normalized contribution to total phi Raises ------ Assertion error if self.observation_data groups don't match self.res groups """ # use a dictionary comprehension to go through and normalize each component of phi to the total phi_components_normalized = {i: self.phi_components[i]/self.phi for i in self.phi_components} return phi_components_normalized
python
{ "resource": "" }
q20068
Pst.set_res
train
def set_res(self,res): """ reset the private Pst.res attribute Parameters ---------- res : (varies) something to use as Pst.res attribute """ if isinstance(res,str): res = pst_utils.read_resfile(res) self.__res = res
python
{ "resource": "" }
q20069
Pst.res
train
def res(self): """get the residuals dataframe attribute Returns ------- res : pandas.DataFrame Note ---- if the Pst.__res attribute has not been loaded, this call loads the res dataframe from a file """ if self.__res is not None: return self.__res else: if self.resfile is not None: assert os.path.exists(self.resfile),"Pst.res: self.resfile " +\ str(self.resfile) + " does not exist" else: self.resfile = self.filename.replace(".pst", ".res") if not os.path.exists(self.resfile): self.resfile = self.resfile.replace(".res", ".rei") if not os.path.exists(self.resfile): self.resfile = self.resfile.replace(".rei", ".base.rei") if not os.path.exists(self.resfile): if self.new_filename is not None: self.resfile = self.new_filename.replace(".pst",".res") if not os.path.exists(self.resfile): self.resfile = self.resfile.replace(".res","rei") if not os.path.exists(self.resfile): raise Exception("Pst.res: " + "could not residual file case.res" + " or case.rei" + " or case.base.rei" + " or case.obs.csv") res = pst_utils.read_resfile(self.resfile) missing_bool = self.observation_data.obsnme.apply\ (lambda x: x not in res.name) missing = self.observation_data.obsnme[missing_bool] if missing.shape[0] > 0: raise Exception("Pst.res: the following observations " + "were not found in " + "{0}:{1}".format(self.resfile,','.join(missing))) self.__res = res return self.__res
python
{ "resource": "" }
q20070
Pst.nprior
train
def nprior(self): """number of prior information equations Returns ------- nprior : int the number of prior info equations """ self.control_data.nprior = self.prior_information.shape[0] return self.control_data.nprior
python
{ "resource": "" }
q20071
Pst.nnz_obs
train
def nnz_obs(self): """ get the number of non-zero weighted observations Returns ------- nnz_obs : int the number of non-zeros weighted observations """ nnz = 0 for w in self.observation_data.weight: if w > 0.0: nnz += 1 return nnz
python
{ "resource": "" }
q20072
Pst.nobs
train
def nobs(self): """get the number of observations Returns ------- nobs : int the number of observations """ self.control_data.nobs = self.observation_data.shape[0] return self.control_data.nobs
python
{ "resource": "" }
q20073
Pst.npar
train
def npar(self): """get number of parameters Returns ------- npar : int the number of parameters """ self.control_data.npar = self.parameter_data.shape[0] return self.control_data.npar
python
{ "resource": "" }
q20074
Pst.pars_in_groups
train
def pars_in_groups(self): """ return a dictionary of parameter names in each parameter group. Returns: dictionary """ pargp = self.par_groups allpars = dict() for cpg in pargp: allpars[cpg] = [i for i in self.parameter_data.loc[self.parameter_data.pargp == cpg, 'parnme']] return allpars
python
{ "resource": "" }
q20075
Pst.obs_groups
train
def obs_groups(self): """get the observation groups Returns ------- obs_groups : list a list of unique observation groups """ og = list(self.observation_data.groupby("obgnme").groups.keys()) #og = list(map(pst_utils.SFMT, og)) return og
python
{ "resource": "" }
q20076
Pst.nnz_obs_groups
train
def nnz_obs_groups(self): """ get the observation groups that contain at least one non-zero weighted observation Returns ------- nnz_obs_groups : list a list of observation groups that contain at least one non-zero weighted observation """ og = [] obs = self.observation_data for g in self.obs_groups: if obs.loc[obs.obgnme==g,"weight"].sum() > 0.0: og.append(g) return og
python
{ "resource": "" }
q20077
Pst.adj_par_groups
train
def adj_par_groups(self): """get the parameter groups with atleast one adjustable parameter Returns ------- adj_par_groups : list a list of parameter groups with at least one adjustable parameter """ adj_pargp = [] for pargp in self.par_groups: ptrans = self.parameter_data.loc[self.parameter_data.pargp==pargp,"partrans"].values if "log" in ptrans or "none" in ptrans: adj_pargp.append(pargp) return adj_pargp
python
{ "resource": "" }
q20078
Pst.prior_groups
train
def prior_groups(self): """get the prior info groups Returns ------- prior_groups : list a list of prior information groups """ og = list(self.prior_information.groupby("obgnme").groups.keys()) #og = list(map(pst_utils.SFMT, og)) return og
python
{ "resource": "" }
q20079
Pst.prior_names
train
def prior_names(self): """ get the prior information names Returns ------- prior_names : list a list of prior information names """ return list(self.prior_information.groupby( self.prior_information.index).groups.keys())
python
{ "resource": "" }
q20080
Pst.nnz_obs_names
train
def nnz_obs_names(self): """get the non-zero weight observation names Returns ------- nnz_obs_names : list a list of non-zero weighted observation names """ # nz_names = [] # for w,n in zip(self.observation_data.weight, # self.observation_data.obsnme): # if w > 0.0: # nz_names.append(n) obs = self.observation_data nz_names = list(obs.loc[obs.weight>0.0,"obsnme"]) return nz_names
python
{ "resource": "" }
q20081
Pst.zero_weight_obs_names
train
def zero_weight_obs_names(self): """ get the zero-weighted observation names Returns ------- zero_weight_obs_names : list a list of zero-weighted observation names """ self.observation_data.index = self.observation_data.obsnme groups = self.observation_data.groupby( self.observation_data.weight.apply(lambda x: x==0.0)).groups if True in groups: return list(self.observation_data.loc[groups[True],"obsnme"]) else: return []
python
{ "resource": "" }
q20082
Pst._read_df
train
def _read_df(f,nrows,names,converters,defaults=None): """ a private method to read part of an open file into a pandas.DataFrame. Parameters ---------- f : file object nrows : int number of rows to read names : list names to set the columns of the dataframe with converters : dict dictionary of lambda functions to convert strings to numerical format defaults : dict dictionary of default values to assign columns. Default is None Returns ------- pandas.DataFrame : pandas.DataFrame """ seek_point = f.tell() line = f.readline() raw = line.strip().split() if raw[0].lower() == "external": filename = raw[1] assert os.path.exists(filename),"Pst._read_df() error: external file '{0}' not found".format(filename) df = pd.read_csv(filename,index_col=False,comment='#') df.columns = df.columns.str.lower() for name in names: assert name in df.columns,"Pst._read_df() error: name" +\ "'{0}' not in external file '{1}' columns".format(name,filename) if name in converters: df.loc[:,name] = df.loc[:,name].apply(converters[name]) if defaults is not None: for name in names: df.loc[:, name] = df.loc[:, name].fillna(defaults[name]) else: if nrows is None: raise Exception("Pst._read_df() error: non-external sections require nrows") f.seek(seek_point) df = pd.read_csv(f, header=None,names=names, nrows=nrows,delim_whitespace=True, converters=converters, index_col=False, comment='#') # in case there was some extra junk at the end of the lines if df.shape[1] > len(names): df = df.iloc[:,len(names)] df.columns = names isnull = pd.isnull(df) if defaults is not None: for name in names: df.loc[:,name] = df.loc[:,name].fillna(defaults[name]) elif np.any(pd.isnull(df).values.flatten()): raise Exception("NANs found") f.seek(seek_point) extras = [] for i in range(nrows): line = f.readline() extra = np.NaN if '#' in line: raw = line.strip().split('#') extra = ' # '.join(raw[1:]) extras.append(extra) df.loc[:,"extra"] = extras return df
python
{ "resource": "" }
q20083
Pst.rectify_pgroups
train
def rectify_pgroups(self): """ private method to synchronize parameter groups section with the parameter data section """ # add any parameters groups pdata_groups = list(self.parameter_data.loc[:,"pargp"].\ value_counts().keys()) #print(pdata_groups) need_groups = [] existing_groups = list(self.parameter_groups.pargpnme) for pg in pdata_groups: if pg not in existing_groups: need_groups.append(pg) if len(need_groups) > 0: #print(need_groups) defaults = copy.copy(pst_utils.pst_config["pargp_defaults"]) for grp in need_groups: defaults["pargpnme"] = grp self.parameter_groups = \ self.parameter_groups.append(defaults,ignore_index=True) # now drop any left over groups that aren't needed for gp in self.parameter_groups.loc[:,"pargpnme"]: if gp in pdata_groups and gp not in need_groups: need_groups.append(gp) self.parameter_groups.index = self.parameter_groups.pargpnme self.parameter_groups = self.parameter_groups.loc[need_groups,:]
python
{ "resource": "" }
q20084
Pst._parse_pi_par_names
train
def _parse_pi_par_names(self): """ private method to get the parameter names from prior information equations. Sets a 'names' column in Pst.prior_information that is a list of parameter names """ if self.prior_information.shape[0] == 0: return if "names" in self.prior_information.columns: self.prior_information.pop("names") if "rhs" in self.prior_information.columns: self.prior_information.pop("rhs") def parse(eqs): raw = eqs.split('=') rhs = float(raw[1]) raw = [i for i in re.split('[###]', raw[0].lower().strip().replace(' + ','###').replace(' - ','###')) if i != ''] # in case of a leading '-' or '+' if len(raw[0]) == 0: raw = raw[1:] # pnames = [] # for r in raw: # if '*' not in r: # continue # pname = r.split('*')[1].replace("log(", '').replace(')', '').strip() # pnames.append(pname) # return pnames return [r.split('*')[1].replace("log(",'').replace(')','').strip() for r in raw if '*' in r] self.prior_information.loc[:,"names"] =\ self.prior_information.equation.apply(lambda x: parse(x))
python
{ "resource": "" }
q20085
Pst.add_pi_equation
train
def add_pi_equation(self,par_names,pilbl=None,rhs=0.0,weight=1.0, obs_group="pi_obgnme",coef_dict={}): """ a helper to construct a new prior information equation. Parameters ---------- par_names : list parameter names in the equation pilbl : str name to assign the prior information equation. If None, a generic equation name is formed. Default is None rhs : (float) the right-hand side of the equation weight : (float) the weight of the equation obs_group : str the observation group for the equation. Default is 'pi_obgnme' coef_dict : dict a dictionary of parameter name, coefficient pairs to assign leading coefficients for one or more parameters in the equation. If a parameter is not listed, 1.0 is used for its coefficients. Default is {} """ if pilbl is None: pilbl = "pilbl_{0}".format(self.__pi_count) self.__pi_count += 1 missing,fixed = [],[] for par_name in par_names: if par_name not in self.parameter_data.parnme: missing.append(par_name) elif self.parameter_data.loc[par_name,"partrans"] in ["fixed","tied"]: fixed.append(par_name) if len(missing) > 0: raise Exception("Pst.add_pi_equation(): the following pars "+\ " were not found: {0}".format(','.join(missing))) if len(fixed) > 0: raise Exception("Pst.add_pi_equation(): the following pars "+\ " were are fixed/tied: {0}".format(','.join(missing))) eqs_str = '' sign = '' for i,par_name in enumerate(par_names): coef = coef_dict.get(par_name,1.0) if coef < 0.0: sign = '-' coef = np.abs(coef) elif i > 0: sign = '+' if self.parameter_data.loc[par_name,"partrans"] == "log": par_name = "log({})".format(par_name) eqs_str += " {0} {1} * {2} ".format(sign,coef,par_name) eqs_str += " = {0}".format(rhs) self.prior_information.loc[pilbl,"pilbl"] = pilbl self.prior_information.loc[pilbl,"equation"] = eqs_str self.prior_information.loc[pilbl,"weight"] = weight self.prior_information.loc[pilbl,"obgnme"] = obs_group
python
{ "resource": "" }
q20086
Pst.write
train
def write(self,new_filename,update_regul=True,version=None): """main entry point to write a pest control file. Parameters ---------- new_filename : str name of the new pest control file update_regul : (boolean) flag to update zero-order Tikhonov prior information equations to prefer the current parameter values version : int flag for which version of control file to write (must be 1 or 2). if None, uses Pst._version, which set in the constructor and modified during the load """ if version is None: version = self._version if version == 1: return self._write_version1(new_filename=new_filename,update_regul=update_regul) elif version == 2: return self._write_version2(new_filename=new_filename, update_regul=update_regul) else: raise Exception("Pst.write() error: version must be 1 or 2, not '{0}'".format(version))
python
{ "resource": "" }
q20087
Pst.parrep
train
def parrep(self, parfile=None,enforce_bounds=True): """replicates the pest parrep util. replaces the parval1 field in the parameter data section dataframe Parameters ---------- parfile : str parameter file to use. If None, try to use a parameter file that corresponds to the case name. Default is None enforce_hounds : bool flag to enforce parameter bounds after parameter values are updated. This is useful because PEST and PEST++ round the parameter values in the par file, which may cause slight bound violations """ if parfile is None: parfile = self.filename.replace(".pst", ".par") par_df = pst_utils.read_parfile(parfile) self.parameter_data.index = self.parameter_data.parnme par_df.index = par_df.parnme self.parameter_data.parval1 = par_df.parval1 self.parameter_data.scale = par_df.scale self.parameter_data.offset = par_df.offset if enforce_bounds: par = self.parameter_data idx = par.loc[par.parval1 > par.parubnd,"parnme"] par.loc[idx,"parval1"] = par.loc[idx,"parubnd"] idx = par.loc[par.parval1 < par.parlbnd,"parnme"] par.loc[idx, "parval1"] = par.loc[idx, "parlbnd"]
python
{ "resource": "" }
q20088
Pst.adjust_weights_recfile
train
def adjust_weights_recfile(self, recfile=None,original_ceiling=True): """adjusts the weights by group of the observations based on the phi components in a pest record file so that total phi is equal to the number of non-zero weighted observations Parameters ---------- recfile : str record file name. If None, try to use a record file with the Pst case name. Default is None original_ceiling : bool flag to keep weights from increasing - this is generally a good idea. Default is True """ if recfile is None: recfile = self.filename.replace(".pst", ".rec") assert os.path.exists(recfile), \ "Pst.adjust_weights_recfile(): recfile not found: " +\ str(recfile) iter_components = pst_utils.get_phi_comps_from_recfile(recfile) iters = iter_components.keys() iters.sort() obs = self.observation_data ogroups = obs.groupby("obgnme").groups last_complete_iter = None for ogroup, idxs in ogroups.iteritems(): for iiter in iters[::-1]: incomplete = False if ogroup not in iter_components[iiter]: incomplete = True break if not incomplete: last_complete_iter = iiter break if last_complete_iter is None: raise Exception("Pst.pwtadj2(): no complete phi component" + " records found in recfile") self._adjust_weights_by_phi_components( iter_components[last_complete_iter],original_ceiling)
python
{ "resource": "" }
q20089
Pst.adjust_weights_resfile
train
def adjust_weights_resfile(self, resfile=None,original_ceiling=True): """adjusts the weights by group of the observations based on the phi components in a pest residual file so that total phi is equal to the number of non-zero weighted observations Parameters ---------- resfile : str residual file name. If None, try to use a residual file with the Pst case name. Default is None original_ceiling : bool flag to keep weights from increasing - this is generally a good idea. Default is True """ if resfile is not None: self.resfile = resfile self.__res = None phi_comps = self.phi_components self._adjust_weights_by_phi_components(phi_comps,original_ceiling)
python
{ "resource": "" }
q20090
Pst.adjust_weights_discrepancy
train
def adjust_weights_discrepancy(self, resfile=None,original_ceiling=True): """adjusts the weights of each non-zero weight observation based on the residual in the pest residual file so each observations contribution to phi is 1.0 Parameters ---------- resfile : str residual file name. If None, try to use a residual file with the Pst case name. Default is None original_ceiling : bool flag to keep weights from increasing - this is generally a good idea. Default is True """ if resfile is not None: self.resfile = resfile self.__res = None obs = self.observation_data.loc[self.nnz_obs_names,:] swr = (self.res.loc[self.nnz_obs_names,:].residual * obs.weight)**2 factors = (1.0/swr).apply(np.sqrt) if original_ceiling: factors = factors.apply(lambda x: 1.0 if x > 1.0 else x) self.observation_data.loc[self.nnz_obs_names,"weight"] *= factors
python
{ "resource": "" }
q20091
Pst._adjust_weights_by_phi_components
train
def _adjust_weights_by_phi_components(self, components,original_ceiling): """resets the weights of observations by group to account for residual phi components. Parameters ---------- components : dict a dictionary of obs group:phi contribution pairs original_ceiling : bool flag to keep weights from increasing """ obs = self.observation_data nz_groups = obs.groupby(obs["weight"].map(lambda x: x == 0)).groups ogroups = obs.groupby("obgnme").groups for ogroup, idxs in ogroups.items(): if self.control_data.pestmode.startswith("regul") \ and "regul" in ogroup.lower(): continue og_phi = components[ogroup] nz_groups = obs.loc[idxs,:].groupby(obs.loc[idxs,"weight"].\ map(lambda x: x == 0)).groups og_nzobs = 0 if False in nz_groups.keys(): og_nzobs = len(nz_groups[False]) if og_nzobs == 0 and og_phi > 0: raise Exception("Pst.adjust_weights_by_phi_components():" " no obs with nonzero weight," + " but phi > 0 for group:" + str(ogroup)) if og_phi > 0: factor = np.sqrt(float(og_nzobs) / float(og_phi)) if original_ceiling: factor = min(factor,1.0) obs.loc[idxs,"weight"] = obs.weight[idxs] * factor self.observation_data = obs
python
{ "resource": "" }
q20092
Pst.__reset_weights
train
def __reset_weights(self, target_phis, res_idxs, obs_idxs): """private method to reset weights based on target phi values for each group. This method should not be called directly Parameters ---------- target_phis : dict target phi contribution for groups to reweight res_idxs : dict the index positions of each group of interest in the res dataframe obs_idxs : dict the index positions of each group of interest in the observation data dataframe """ for item in target_phis.keys(): assert item in res_idxs.keys(),\ "Pst.__reset_weights(): " + str(item) +\ " not in residual group indices" assert item in obs_idxs.keys(), \ "Pst.__reset_weights(): " + str(item) +\ " not in observation group indices" actual_phi = ((self.res.loc[res_idxs[item], "residual"] * self.observation_data.loc [obs_idxs[item], "weight"])**2).sum() if actual_phi > 0.0: weight_mult = np.sqrt(target_phis[item] / actual_phi) self.observation_data.loc[obs_idxs[item], "weight"] *= weight_mult else: ("Pst.__reset_weights() warning: phi group {0} has zero phi, skipping...".format(item))
python
{ "resource": "" }
q20093
Pst.adjust_weights
train
def adjust_weights(self,obs_dict=None, obsgrp_dict=None): """reset the weights of observation groups to contribute a specified amount to the composite objective function Parameters ---------- obs_dict : dict dictionary of obs name,new contribution pairs obsgrp_dict : dict dictionary of obs group name,contribution pairs Note ---- if all observations in a named obs group have zero weight, they will be assigned a non-zero weight so that the request phi contribution can be met. Similarly, any observations listed in obs_dict with zero weight will also be reset """ self.observation_data.index = self.observation_data.obsnme self.res.index = self.res.name if obsgrp_dict is not None: # reset groups with all zero weights obs = self.observation_data for grp in obsgrp_dict.keys(): if obs.loc[obs.obgnme==grp,"weight"].sum() == 0.0: obs.loc[obs.obgnme==grp,"weight"] = 1.0 res_groups = self.res.groupby("group").groups obs_groups = self.observation_data.groupby("obgnme").groups self.__reset_weights(obsgrp_dict, res_groups, obs_groups) if obs_dict is not None: # reset obs with zero weight obs = self.observation_data for oname in obs_dict.keys(): if obs.loc[oname,"weight"] == 0.0: obs.loc[oname,"weight"] = 1.0 #res_groups = self.res.groupby("name").groups res_groups = self.res.groupby(self.res.index).groups #obs_groups = self.observation_data.groupby("obsnme").groups obs_groups = self.observation_data.groupby(self.observation_data.index).groups self.__reset_weights(obs_dict, res_groups, obs_groups)
python
{ "resource": "" }
q20094
Pst.proportional_weights
train
def proportional_weights(self, fraction_stdev=1.0, wmax=100.0, leave_zero=True): """setup weights inversely proportional to the observation value Parameters ---------- fraction_stdev : float the fraction portion of the observation val to treat as the standard deviation. set to 1.0 for inversely proportional wmax : float maximum weight to allow leave_zero : bool flag to leave existing zero weights """ new_weights = [] for oval, ow in zip(self.observation_data.obsval, self.observation_data.weight): if leave_zero and ow == 0.0: ow = 0.0 elif oval == 0.0: ow = wmax else: nw = 1.0 / (np.abs(oval) * fraction_stdev) ow = min(wmax, nw) new_weights.append(ow) self.observation_data.weight = new_weights
python
{ "resource": "" }
q20095
Pst.calculate_pertubations
train
def calculate_pertubations(self): """ experimental method to calculate finite difference parameter pertubations. The pertubation values are added to the Pst.parameter_data attribute Note ---- user beware! """ self.build_increments() self.parameter_data.loc[:,"pertubation"] = \ self.parameter_data.parval1 + \ self.parameter_data.increment self.parameter_data.loc[:,"out_forward"] = \ self.parameter_data.loc[:,"pertubation"] > \ self.parameter_data.loc[:,"parubnd"] out_forward = self.parameter_data.groupby("out_forward").groups if True in out_forward: self.parameter_data.loc[out_forward[True],"pertubation"] = \ self.parameter_data.loc[out_forward[True],"parval1"] - \ self.parameter_data.loc[out_forward[True],"increment"] self.parameter_data.loc[:,"out_back"] = \ self.parameter_data.loc[:,"pertubation"] < \ self.parameter_data.loc[:,"parlbnd"] out_back = self.parameter_data.groupby("out_back").groups if True in out_back: still_out = out_back[True] print(self.parameter_data.loc[still_out,:],flush=True) raise Exception("Pst.calculate_pertubations(): " +\ "can't calc pertubations for the following "+\ "Parameters {0}".format(','.join(still_out)))
python
{ "resource": "" }
q20096
Pst.build_increments
train
def build_increments(self): """ experimental method to calculate parameter increments for use in the finite difference pertubation calculations Note ---- user beware! """ self.enforce_bounds() self.add_transform_columns() par_groups = self.parameter_data.groupby("pargp").groups inctype = self.parameter_groups.groupby("inctyp").groups for itype,inc_groups in inctype.items(): pnames = [] for group in inc_groups: pnames.extend(par_groups[group]) derinc = self.parameter_groups.loc[group,"derinc"] self.parameter_data.loc[par_groups[group],"derinc"] = derinc if itype == "absolute": self.parameter_data.loc[pnames,"increment"] = \ self.parameter_data.loc[pnames,"derinc"] elif itype == "relative": self.parameter_data.loc[pnames,"increment"] = \ self.parameter_data.loc[pnames,"derinc"] * \ self.parameter_data.loc[pnames,"parval1"] elif itype == "rel_to_max": mx = self.parameter_data.loc[pnames,"parval1"].max() self.parameter_data.loc[pnames,"increment"] = \ self.parameter_data.loc[pnames,"derinc"] * mx else: raise Exception('Pst.get_derivative_increments(): '+\ 'unrecognized increment type:{0}'.format(itype)) #account for fixed pars isfixed = self.parameter_data.partrans=="fixed" self.parameter_data.loc[isfixed,"increment"] = \ self.parameter_data.loc[isfixed,"parval1"]
python
{ "resource": "" }
q20097
Pst.add_transform_columns
train
def add_transform_columns(self): """ add transformed values to the Pst.parameter_data attribute """ for col in ["parval1","parlbnd","parubnd","increment"]: if col not in self.parameter_data.columns: continue self.parameter_data.loc[:,col+"_trans"] = (self.parameter_data.loc[:,col] * self.parameter_data.scale) +\ self.parameter_data.offset #isnotfixed = self.parameter_data.partrans != "fixed" islog = self.parameter_data.partrans == "log" self.parameter_data.loc[islog,col+"_trans"] = \ self.parameter_data.loc[islog,col+"_trans"].\ apply(lambda x:np.log10(x))
python
{ "resource": "" }
q20098
Pst.enforce_bounds
train
def enforce_bounds(self): """ enforce bounds violation resulting from the parameter pertubation calculations """ too_big = self.parameter_data.loc[:,"parval1"] > \ self.parameter_data.loc[:,"parubnd"] self.parameter_data.loc[too_big,"parval1"] = \ self.parameter_data.loc[too_big,"parubnd"] too_small = self.parameter_data.loc[:,"parval1"] < \ self.parameter_data.loc[:,"parlbnd"] self.parameter_data.loc[too_small,"parval1"] = \ self.parameter_data.loc[too_small,"parlbnd"]
python
{ "resource": "" }
q20099
Pst.from_io_files
train
def from_io_files(cls,tpl_files,in_files,ins_files,out_files,pst_filename=None): """ create a Pst instance from model interface files. Assigns generic values for parameter info. Tries to use INSCHEK to set somewhat meaningful observation values Parameters ---------- tpl_files : list list of template file names in_files : list list of model input file names (pairs with template files) ins_files : list list of instruction file names out_files : list list of model output file names (pairs with instruction files) pst_filename : str name of control file to write. If None, no file is written. Default is None Returns ------- Pst : Pst Note ---- calls pyemu.helpers.pst_from_io_files() """ from pyemu import helpers return helpers.pst_from_io_files(tpl_files=tpl_files,in_files=in_files, ins_files=ins_files,out_files=out_files, pst_filename=pst_filename)
python
{ "resource": "" }