_id
stringlengths
2
7
title
stringlengths
1
88
partition
stringclasses
3 values
text
stringlengths
75
19.8k
language
stringclasses
1 value
meta_information
dict
q19500
liquid_precip_ratio
train
def liquid_precip_ratio(pr, prsn=None, tas=None, freq='QS-DEC'): r"""Ratio of rainfall to total precipitation The ratio of total liquid precipitation over the total precipitation. If solid precipitation is not provided, then precipitation is assumed solid if the temperature is below 0Β°C. Parameters ---------- pr : xarray.DataArray Mean daily precipitation flux [Kg m-2 s-1] or [mm]. prsn : xarray.DataArray Mean daily solid precipitation flux [Kg m-2 s-1] or [mm]. tas : xarray.DataArray Mean daily temperature [℃] or [K] freq : str Resampling frequency Returns ------- xarray.DataArray Ratio of rainfall to total precipitation Notes ----- Let :math:`PR_i` be the mean daily precipitation of day :math:`i`, then for a period :math:`j` starting at day :math:`a` and finishing on day :math:`b`: .. math:: PR_{ij} = \sum_{i=a}^{b} PR_i PRwet_{ij} See also -------- winter_rain_ratio """ if prsn is None: tu = units.parse_units(tas.attrs['units'].replace('-', '**-')) fu = 'degC' frz = 0 if fu != tu: frz = units.convert(frz, fu, tu) prsn = pr.where(tas < frz, 0) tot = pr.resample(time=freq).sum(dim='time') rain = tot - prsn.resample(time=freq).sum(dim='time') ratio = rain / tot return ratio
python
{ "resource": "" }
q19501
tn_days_below
train
def tn_days_below(tasmin, thresh='-10.0 degC', freq='YS'): r"""Number of days with tmin below a threshold in Number of days where daily minimum temperature is below a threshold. Parameters ---------- tasmin : xarray.DataArray Minimum daily temperature [℃] or [K] thresh : str Threshold temperature on which to base evaluation [℃] or [K] . Default: '-10 degC'. freq : str, optional Resampling frequency Returns ------- xarray.DataArray Number of days Tmin < threshold. Notes ----- Let :math:`TN_{ij}` be the daily minimum temperature at day :math:`i` of period :math:`j`. Then counted is the number of days where: .. math:: TX_{ij} < Threshold [℃] """ thresh = utils.convert_units_to(thresh, tasmin) f1 = utils.threshold_count(tasmin, '<', thresh, freq) return f1
python
{ "resource": "" }
q19502
tx_days_above
train
def tx_days_above(tasmax, thresh='25.0 degC', freq='YS'): r"""Number of summer days Number of days where daily maximum temperature exceed a threshold. Parameters ---------- tasmax : xarray.DataArray Maximum daily temperature [℃] or [K] thresh : str Threshold temperature on which to base evaluation [℃] or [K]. Default: '25 degC'. freq : str, optional Resampling frequency Returns ------- xarray.DataArray Number of summer days. Notes ----- Let :math:`TX_{ij}` be the daily maximum temperature at day :math:`i` of period :math:`j`. Then counted is the number of days where: .. math:: TX_{ij} > Threshold [℃] """ thresh = utils.convert_units_to(thresh, tasmax) f = (tasmax > (thresh)) * 1 return f.resample(time=freq).sum(dim='time')
python
{ "resource": "" }
q19503
max_n_day_precipitation_amount
train
def max_n_day_precipitation_amount(pr, window=1, freq='YS'): r"""Highest precipitation amount cumulated over a n-day moving window. Calculate the n-day rolling sum of the original daily total precipitation series and determine the maximum value over each period. Parameters ---------- da : xarray.DataArray Daily precipitation values [Kg m-2 s-1] or [mm] window : int Window size in days. freq : str, optional Resampling frequency : default 'YS' (yearly) Returns ------- xarray.DataArray The highest cumulated n-day precipitation value at the given time frequency. Examples -------- The following would compute for each grid cell of file `pr.day.nc` the highest 5-day total precipitation at an annual frequency: >>> da = xr.open_dataset('pr.day.nc').pr >>> window = 5 >>> output = max_n_day_precipitation_amount(da, window, freq="YS") """ # rolling sum of the values arr = pr.rolling(time=window, center=False).sum() out = arr.resample(time=freq).max(dim='time', keep_attrs=True) out.attrs['units'] = pr.units # Adjust values and units to make sure they are daily return utils.pint_multiply(out, 1 * units.day, 'mm')
python
{ "resource": "" }
q19504
rain_on_frozen_ground_days
train
def rain_on_frozen_ground_days(pr, tas, thresh='1 mm/d', freq='YS'): """Number of rain on frozen ground events Number of days with rain above a threshold after a series of seven days below freezing temperature. Precipitation is assumed to be rain when the temperature is above 0℃. Parameters ---------- pr : xarray.DataArray Mean daily precipitation flux [Kg m-2 s-1] or [mm] tas : xarray.DataArray Mean daily temperature [℃] or [K] thresh : str Precipitation threshold to consider a day as a rain event. Default : '1 mm/d' freq : str, optional Resampling frequency Returns ------- xarray.DataArray The number of rain on frozen ground events per period [days] Notes ----- Let :math:`PR_i` be the mean daily precipitation and :math:`TG_i` be the mean daily temperature of day :math:`i`. Then for a period :math:`j`, rain on frozen grounds days are counted where: .. math:: PR_{i} > Threshold [mm] and where .. math:: TG_{i} ≀ 0℃ is true for continuous periods where :math:`i β‰₯ 7` """ t = utils.convert_units_to(thresh, pr) frz = utils.convert_units_to('0 C', tas) def func(x, axis): """Check that temperature conditions are below 0 for seven days and above after.""" frozen = x == np.array([0, 0, 0, 0, 0, 0, 0, 1], bool) return frozen.all(axis=axis) tcond = (tas > frz).rolling(time=8).reduce(func) pcond = (pr > t) return (tcond * pcond * 1).resample(time=freq).sum(dim='time')
python
{ "resource": "" }
q19505
tg90p
train
def tg90p(tas, t90, freq='YS'): r"""Number of days with daily mean temperature over the 90th percentile. Number of days with daily mean temperature over the 90th percentile. Parameters ---------- tas : xarray.DataArray Mean daily temperature [℃] or [K] t90 : xarray.DataArray 90th percentile of daily mean temperature [℃] or [K] freq : str, optional Resampling frequency Returns ------- xarray.DataArray Count of days with daily mean temperature below the 10th percentile [days] Notes ----- The 90th percentile should be computed for a 5 day window centered on each calendar day for a reference period. Example ------- >>> t90 = percentile_doy(historical_tas, per=0.9) >>> hot_days = tg90p(tas, t90) """ if 'dayofyear' not in t90.coords.keys(): raise AttributeError("t10 should have dayofyear coordinates.") t90 = utils.convert_units_to(t90, tas) # adjustment of t90 to tas doy range t90 = utils.adjust_doy_calendar(t90, tas) # create array of percentile with tas shape and coords thresh = xr.full_like(tas, np.nan) doy = thresh.time.dt.dayofyear.values thresh.data = t90.sel(dayofyear=doy) # compute the cold days over = (tas > thresh) return over.resample(time=freq).sum(dim='time')
python
{ "resource": "" }
q19506
tg10p
train
def tg10p(tas, t10, freq='YS'): r"""Number of days with daily mean temperature below the 10th percentile. Number of days with daily mean temperature below the 10th percentile. Parameters ---------- tas : xarray.DataArray Mean daily temperature [℃] or [K] t10 : xarray.DataArray 10th percentile of daily mean temperature [℃] or [K] freq : str, optional Resampling frequency Returns ------- xarray.DataArray Count of days with daily mean temperature below the 10th percentile [days] Notes ----- The 10th percentile should be computed for a 5 day window centered on each calendar day for a reference period. Example ------- >>> t10 = percentile_doy(historical_tas, per=0.1) >>> cold_days = tg10p(tas, t10) """ if 'dayofyear' not in t10.coords.keys(): raise AttributeError("t10 should have dayofyear coordinates.") t10 = utils.convert_units_to(t10, tas) # adjustment of t10 to tas doy range t10 = utils.adjust_doy_calendar(t10, tas) # create array of percentile with tas shape and coords thresh = xr.full_like(tas, np.nan) doy = thresh.time.dt.dayofyear.values thresh.data = t10.sel(dayofyear=doy) # compute the cold days below = (tas < thresh) return below.resample(time=freq).sum(dim='time')
python
{ "resource": "" }
q19507
tg_max
train
def tg_max(tas, freq='YS'): r"""Highest mean temperature. The maximum of daily mean temperature. Parameters ---------- tas : xarray.DataArray Mean daily temperature [℃] or [K] freq : str, optional Resampling frequency Returns ------- xarray.DataArray Maximum of daily minimum temperature. Notes ----- Let :math:`TN_{ij}` be the mean temperature at day :math:`i` of period :math:`j`. Then the maximum daily mean temperature for period :math:`j` is: .. math:: TNx_j = max(TN_{ij}) """ return tas.resample(time=freq).max(dim='time', keep_attrs=True)
python
{ "resource": "" }
q19508
tg_mean
train
def tg_mean(tas, freq='YS'): r"""Mean of daily average temperature. Resample the original daily mean temperature series by taking the mean over each period. Parameters ---------- tas : xarray.DataArray Mean daily temperature [℃] or [K] freq : str, optional Resampling frequency Returns ------- xarray.DataArray The mean daily temperature at the given time frequency Notes ----- Let :math:`TN_i` be the mean daily temperature of day :math:`i`, then for a period :math:`p` starting at day :math:`a` and finishing on day :math:`b`: .. math:: TG_p = \frac{\sum_{i=a}^{b} TN_i}{b - a + 1} Examples -------- The following would compute for each grid cell of file `tas.day.nc` the mean temperature at the seasonal frequency, ie DJF, MAM, JJA, SON, DJF, etc.: >>> t = xr.open_dataset('tas.day.nc') >>> tg = tm_mean(t, freq="QS-DEC") """ arr = tas.resample(time=freq) if freq else tas return arr.mean(dim='time', keep_attrs=True)
python
{ "resource": "" }
q19509
tg_min
train
def tg_min(tas, freq='YS'): r"""Lowest mean temperature Minimum of daily mean temperature. Parameters ---------- tas : xarray.DataArray Mean daily temperature [℃] or [K] freq : str, optional Resampling frequency Returns ------- xarray.DataArray Minimum of daily minimum temperature. Notes ----- Let :math:`TG_{ij}` be the mean temperature at day :math:`i` of period :math:`j`. Then the minimum daily mean temperature for period :math:`j` is: .. math:: TGn_j = min(TG_{ij}) """ return tas.resample(time=freq).min(dim='time', keep_attrs=True)
python
{ "resource": "" }
q19510
tn_max
train
def tn_max(tasmin, freq='YS'): r"""Highest minimum temperature. The maximum of daily minimum temperature. Parameters ---------- tasmin : xarray.DataArray Minimum daily temperature [℃] or [K] freq : str, optional Resampling frequency Returns ------- xarray.DataArray Maximum of daily minimum temperature. Notes ----- Let :math:`TN_{ij}` be the minimum temperature at day :math:`i` of period :math:`j`. Then the maximum daily minimum temperature for period :math:`j` is: .. math:: TNx_j = max(TN_{ij}) """ return tasmin.resample(time=freq).max(dim='time', keep_attrs=True)
python
{ "resource": "" }
q19511
tn_mean
train
def tn_mean(tasmin, freq='YS'): r"""Mean minimum temperature. Mean of daily minimum temperature. Parameters ---------- tasmin : xarray.DataArray Minimum daily temperature [℃] or [K] freq : str, optional Resampling frequency Returns ------- xarray.DataArray Mean of daily minimum temperature. Notes ----- Let :math:`TN_{ij}` be the minimum temperature at day :math:`i` of period :math:`j`. Then mean values in period :math:`j` are given by: .. math:: TN_{ij} = \frac{ \sum_{i=1}^{I} TN_{ij} }{I} """ arr = tasmin.resample(time=freq) if freq else tasmin return arr.mean(dim='time', keep_attrs=True)
python
{ "resource": "" }
q19512
tn_min
train
def tn_min(tasmin, freq='YS'): r"""Lowest minimum temperature Minimum of daily minimum temperature. Parameters ---------- tasmin : xarray.DataArray Minimum daily temperature [℃] or [K] freq : str, optional Resampling frequency Returns ------- xarray.DataArray Minimum of daily minimum temperature. Notes ----- Let :math:`TN_{ij}` be the minimum temperature at day :math:`i` of period :math:`j`. Then the minimum daily minimum temperature for period :math:`j` is: .. math:: TNn_j = min(TN_{ij}) """ return tasmin.resample(time=freq).min(dim='time', keep_attrs=True)
python
{ "resource": "" }
q19513
tropical_nights
train
def tropical_nights(tasmin, thresh='20.0 degC', freq='YS'): r"""Tropical nights The number of days with minimum daily temperature above threshold. Parameters ---------- tasmin : xarray.DataArray Minimum daily temperature [℃] or [K] thresh : str Threshold temperature on which to base evaluation [℃] or [K]. Default: '20 degC'. freq : str, optional Resampling frequency Returns ------- xarray.DataArray Number of days with minimum daily temperature above threshold. Notes ----- Let :math:`TN_{ij}` be the daily minimum temperature at day :math:`i` of period :math:`j`. Then counted is the number of days where: .. math:: TN_{ij} > Threshold [℃] """ thresh = utils.convert_units_to(thresh, tasmin) return tasmin.pipe(lambda x: (tasmin > thresh) * 1) \ .resample(time=freq) \ .sum(dim='time')
python
{ "resource": "" }
q19514
tx_max
train
def tx_max(tasmax, freq='YS'): r"""Highest max temperature The maximum value of daily maximum temperature. Parameters ---------- tasmax : xarray.DataArray Maximum daily temperature [℃] or [K] freq : str, optional Resampling frequency Returns ------- xarray.DataArray Maximum value of daily maximum temperature. Notes ----- Let :math:`TX_{ij}` be the maximum temperature at day :math:`i` of period :math:`j`. Then the maximum daily maximum temperature for period :math:`j` is: .. math:: TXx_j = max(TX_{ij}) """ return tasmax.resample(time=freq).max(dim='time', keep_attrs=True)
python
{ "resource": "" }
q19515
tx_mean
train
def tx_mean(tasmax, freq='YS'): r"""Mean max temperature The mean of daily maximum temperature. Parameters ---------- tasmax : xarray.DataArray Maximum daily temperature [℃] or [K] freq : str, optional Resampling frequency Returns ------- xarray.DataArray Mean of daily maximum temperature. Notes ----- Let :math:`TX_{ij}` be the maximum temperature at day :math:`i` of period :math:`j`. Then mean values in period :math:`j` are given by: .. math:: TX_{ij} = \frac{ \sum_{i=1}^{I} TX_{ij} }{I} """ arr = tasmax.resample(time=freq) if freq else tasmax return arr.mean(dim='time', keep_attrs=True)
python
{ "resource": "" }
q19516
tx_min
train
def tx_min(tasmax, freq='YS'): r"""Lowest max temperature The minimum of daily maximum temperature. Parameters ---------- tasmax : xarray.DataArray Maximum daily temperature [℃] or [K] freq : str, optional Resampling frequency Returns ------- xarray.DataArray Minimum of daily maximum temperature. Notes ----- Let :math:`TX_{ij}` be the maximum temperature at day :math:`i` of period :math:`j`. Then the minimum daily maximum temperature for period :math:`j` is: .. math:: TXn_j = min(TX_{ij}) """ return tasmax.resample(time=freq).min(dim='time', keep_attrs=True)
python
{ "resource": "" }
q19517
warm_day_frequency
train
def warm_day_frequency(tasmax, thresh='30 degC', freq='YS'): r"""Frequency of extreme warm days Return the number of days with tasmax > thresh per period Parameters ---------- tasmax : xarray.DataArray Mean daily temperature [℃] or [K] thresh : str Threshold temperature on which to base evaluation [℃] or [K]. Default : '30 degC' freq : str, optional Resampling frequency Returns ------- xarray.DataArray Number of days exceeding threshold. Notes: Let :math:`TX_{ij}` be the daily maximum temperature at day :math:`i` of period :math:`j`. Then counted is the number of days where: .. math:: TN_{ij} > Threshold [℃] """ thresh = utils.convert_units_to(thresh, tasmax) events = (tasmax > thresh) * 1 return events.resample(time=freq).sum(dim='time')
python
{ "resource": "" }
q19518
tx_tn_days_above
train
def tx_tn_days_above(tasmin, tasmax, thresh_tasmin='22 degC', thresh_tasmax='30 degC', freq='YS'): r"""Number of days with both hot maximum and minimum daily temperatures. The number of days per period with tasmin above a threshold and tasmax above another threshold. Parameters ---------- tasmin : xarray.DataArray Minimum daily temperature [℃] or [K] tasmax : xarray.DataArray Maximum daily temperature [℃] or [K] thresh_tasmin : str Threshold temperature for tasmin on which to base evaluation [℃] or [K]. Default : '22 degC' thresh_tasmax : str Threshold temperature for tasmax on which to base evaluation [℃] or [K]. Default : '30 degC' freq : str, optional Resampling frequency Returns ------- xarray.DataArray the number of days with tasmin > thresh_tasmin and tasmax > thresh_tasamax per period Notes ----- Let :math:`TX_{ij}` be the maximum temperature at day :math:`i` of period :math:`j`, :math:`TN_{ij}` the daily minimum temperature at day :math:`i` of period :math:`j`, :math:`TX_{thresh}` the threshold for maximum daily temperature, and :math:`TN_{thresh}` the threshold for minimum daily temperature. Then counted is the number of days where: .. math:: TX_{ij} > TX_{thresh} [℃] and where: .. math:: TN_{ij} > TN_{thresh} [℃] """ thresh_tasmax = utils.convert_units_to(thresh_tasmax, tasmax) thresh_tasmin = utils.convert_units_to(thresh_tasmin, tasmin) events = ((tasmin > (thresh_tasmin)) & (tasmax > (thresh_tasmax))) * 1 return events.resample(time=freq).sum(dim='time')
python
{ "resource": "" }
q19519
warm_night_frequency
train
def warm_night_frequency(tasmin, thresh='22 degC', freq='YS'): r"""Frequency of extreme warm nights Return the number of days with tasmin > thresh per period Parameters ---------- tasmin : xarray.DataArray Minimum daily temperature [℃] or [K] thresh : str Threshold temperature on which to base evaluation [℃] or [K]. Default : '22 degC' freq : str, optional Resampling frequency Returns ------- xarray.DataArray The number of days with tasmin > thresh per period """ thresh = utils.convert_units_to(thresh, tasmin, ) events = (tasmin > thresh) * 1 return events.resample(time=freq).sum(dim='time')
python
{ "resource": "" }
q19520
warm_spell_duration_index
train
def warm_spell_duration_index(tasmax, tx90, window=6, freq='YS'): r"""Warm spell duration index Number of days with at least six consecutive days where the daily maximum temperature is above the 90th percentile. The 90th percentile should be computed for a 5-day window centred on each calendar day in the 1961-1990 period. Parameters ---------- tasmax : xarray.DataArray Maximum daily temperature [℃] or [K] tx90 : float 90th percentile of daily maximum temperature [℃] or [K] window : int Minimum number of days with temperature below threshold to qualify as a warm spell. freq : str, optional Resampling frequency Returns ------- xarray.DataArray Count of days with at least six consecutive days where the daily maximum temperature is above the 90th percentile [days]. References ---------- From the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI). Used in Alexander, L. V., et al. (2006), Global observed changes in daily climate extremes of temperature and precipitation, J. Geophys. Res., 111, D05109, doi: 10.1029/2005JD006290. """ if 'dayofyear' not in tx90.coords.keys(): raise AttributeError("tx90 should have dayofyear coordinates.") # The day of year value of the tasmax series. doy = tasmax.indexes['time'].dayofyear # adjustment of tx90 to tasmax doy range tx90 = utils.adjust_doy_calendar(tx90, tasmax) # Create an array with the shape and coords of tasmax, but with values set to tx90 according to the doy index. thresh = xr.full_like(tasmax, np.nan) thresh.data = tx90.sel(dayofyear=doy) above = (tasmax > thresh) return above.resample(time=freq).apply(rl.windowed_run_count, window=window, dim='time')
python
{ "resource": "" }
q19521
wetdays
train
def wetdays(pr, thresh='1.0 mm/day', freq='YS'): r"""Wet days Return the total number of days during period with precipitation over threshold. Parameters ---------- pr : xarray.DataArray Daily precipitation [mm] thresh : str Precipitation value over which a day is considered wet. Default: '1 mm/day'. freq : str, optional Resampling frequency defining the periods defined in http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling. Returns ------- xarray.DataArray The number of wet days for each period [day] Examples -------- The following would compute for each grid cell of file `pr.day.nc` the number days with precipitation over 5 mm at the seasonal frequency, ie DJF, MAM, JJA, SON, DJF, etc.: >>> pr = xr.open_dataset('pr.day.nc') >>> wd = wetdays(pr, pr_min = 5., freq="QS-DEC") """ thresh = utils.convert_units_to(thresh, pr, 'hydro') wd = (pr >= thresh) * 1 return wd.resample(time=freq).sum(dim='time')
python
{ "resource": "" }
q19522
winter_rain_ratio
train
def winter_rain_ratio(pr, prsn=None, tas=None): """Ratio of rainfall to total precipitation during winter The ratio of total liquid precipitation over the total precipitation over the winter months (DJF. If solid precipitation is not provided, then precipitation is assumed solid if the temperature is below 0Β°C. Parameters ---------- pr : xarray.DataArray Mean daily precipitation flux [Kg m-2 s-1] or [mm]. prsn : xarray.DataArray Mean daily solid precipitation flux [Kg m-2 s-1] or [mm]. tas : xarray.DataArray Mean daily temperature [℃] or [K] freq : str Resampling frequency Returns ------- xarray.DataArray Ratio of rainfall to total precipitation during winter months (DJF) """ ratio = liquid_precip_ratio(pr, prsn, tas, freq='QS-DEC') winter = ratio.indexes['time'].month == 12 return ratio[winter]
python
{ "resource": "" }
q19523
select_time
train
def select_time(da, **indexer): """Select entries according to a time period. Parameters ---------- da : xarray.DataArray Input data. **indexer : {dim: indexer, }, optional Time attribute and values over which to subset the array. For example, use season='DJF' to select winter values, month=1 to select January, or month=[6,7,8] to select summer months. If not indexer is given, all values are considered. Returns ------- xr.DataArray Selected input values. """ if not indexer: selected = da else: key, val = indexer.popitem() time_att = getattr(da.time.dt, key) selected = da.sel(time=time_att.isin(val)).dropna(dim='time') return selected
python
{ "resource": "" }
q19524
select_resample_op
train
def select_resample_op(da, op, freq="YS", **indexer): """Apply operation over each period that is part of the index selection. Parameters ---------- da : xarray.DataArray Input data. op : str {'min', 'max', 'mean', 'std', 'var', 'count', 'sum', 'argmax', 'argmin'} or func Reduce operation. Can either be a DataArray method or a function that can be applied to a DataArray. freq : str Resampling frequency defining the periods defined in http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling. **indexer : {dim: indexer, }, optional Time attribute and values over which to subset the array. For example, use season='DJF' to select winter values, month=1 to select January, or month=[6,7,8] to select summer months. If not indexer is given, all values are considered. Returns ------- xarray.DataArray The maximum value for each period. """ da = select_time(da, **indexer) r = da.resample(time=freq, keep_attrs=True) if isinstance(op, str): return getattr(r, op)(dim='time', keep_attrs=True) return r.apply(op)
python
{ "resource": "" }
q19525
doymax
train
def doymax(da): """Return the day of year of the maximum value.""" i = da.argmax(dim='time') out = da.time.dt.dayofyear[i] out.attrs['units'] = '' return out
python
{ "resource": "" }
q19526
fit
train
def fit(arr, dist='norm'): """Fit an array to a univariate distribution along the time dimension. Parameters ---------- arr : xarray.DataArray Time series to be fitted along the time dimension. dist : str Name of the univariate distribution, such as beta, expon, genextreme, gamma, gumbel_r, lognorm, norm (see scipy.stats). Returns ------- xarray.DataArray An array of distribution parameters fitted using the method of Maximum Likelihood. """ # Get the distribution dc = get_dist(dist) # Fit the parameters (lazy computation) data = dask.array.apply_along_axis(dc.fit, arr.get_axis_num('time'), arr) # Count the number of values used for the fit. # n = arr.count(dim='time') # Create a view to a DataArray with the desired dimensions to copy them over to the parameter array. mean = arr.mean(dim='time', keep_attrs=True) # Create coordinate for the distribution parameters coords = dict(mean.coords.items()) coords['dparams'] = ([] if dc.shapes is None else dc.shapes.split(',')) + ['loc', 'scale'] # TODO: add time and time_bnds coordinates (Low will work on this) # time.attrs['climatology'] = 'climatology_bounds' # coords['time'] = # coords['climatology_bounds'] = out = xr.DataArray(data=data, coords=coords, dims=(u'dparams',) + mean.dims) out.attrs = arr.attrs out.attrs['original_name'] = getattr(arr, 'standard_name', '') out.attrs['standard_name'] = '{0} distribution parameters'.format(dist) out.attrs['long_name'] = '{0} distribution parameters for {1}'.format(dist, getattr(arr, 'standard_name', '')) out.attrs['estimator'] = 'Maximum likelihood' out.attrs['cell_methods'] = (out.attrs.get('cell_methods', '') + ' time: fit').strip() out.attrs['units'] = '' msg = '\nData fitted with {0} statistical distribution using a Maximum Likelihood Estimator' out.attrs['history'] = out.attrs.get('history', '') + msg.format(dist) return out
python
{ "resource": "" }
q19527
fa
train
def fa(arr, t, dist='norm', mode='high'): """Return the value corresponding to the given return period. Parameters ---------- arr : xarray.DataArray Maximized/minimized input data with a `time` dimension. t : int or sequence Return period. The period depends on the resolution of the input data. If the input array's resolution is yearly, then the return period is in years. dist : str Name of the univariate distribution, such as beta, expon, genextreme, gamma, gumbel_r, lognorm, norm (see scipy.stats). mode : {'min', 'max} Whether we are looking for a probability of exceedance (max) or a probability of non-exceedance (min). Returns ------- xarray.DataArray An array of values with a 1/t probability of exceedance (if mode=='max'). """ t = np.atleast_1d(t) # Get the distribution dc = get_dist(dist) # Fit the parameters of the distribution p = fit(arr, dist) # Create a lambda function to facilitate passing arguments to dask. There is probably a better way to do this. if mode in ['max', 'high']: def func(x): return dc.isf(1./t, *x) elif mode in ['min', 'low']: def func(x): return dc.ppf(1./t, *x) else: raise ValueError("mode `{}` should be either 'max' or 'min'".format(mode)) data = dask.array.apply_along_axis(func, p.get_axis_num('dparams'), p) # Create coordinate for the return periods coords = dict(p.coords.items()) coords.pop('dparams') coords['return_period'] = t # Create dimensions dims = list(p.dims) dims.remove('dparams') dims.insert(0, u'return_period') # TODO: add time and time_bnds coordinates (Low will work on this) # time.attrs['climatology'] = 'climatology_bounds' # coords['time'] = # coords['climatology_bounds'] = out = xr.DataArray(data=data, coords=coords, dims=dims) out.attrs = p.attrs out.attrs['standard_name'] = '{0} quantiles'.format(dist) out.attrs['long_name'] = '{0} return period values for {1}'.format(dist, getattr(arr, 'standard_name', '')) out.attrs['cell_methods'] = (out.attrs.get('cell_methods', '') + ' dparams: ppf').strip() out.attrs['units'] = arr.attrs.get('units', '') out.attrs['mode'] = mode out.attrs['history'] = out.attrs.get('history', '') + "Compute values corresponding to return periods." return out
python
{ "resource": "" }
q19528
frequency_analysis
train
def frequency_analysis(da, mode, t, dist, window=1, freq=None, **indexer): """Return the value corresponding to a return period. Parameters ---------- da : xarray.DataArray Input data. t : int or sequence Return period. The period depends on the resolution of the input data. If the input array's resolution is yearly, then the return period is in years. dist : str Name of the univariate distribution, such as beta, expon, genextreme, gamma, gumbel_r, lognorm, norm (see scipy.stats). mode : {'min', 'max'} Whether we are looking for a probability of exceedance (high) or a probability of non-exceedance (low). window : int Averaging window length (days). freq : str Resampling frequency. If None, the frequency is assumed to be 'YS' unless the indexer is season='DJF', in which case `freq` would be set to `YS-DEC`. **indexer : {dim: indexer, }, optional Time attribute and values over which to subset the array. For example, use season='DJF' to select winter values, month=1 to select January, or month=[6,7,8] to select summer months. If not indexer is given, all values are considered. Returns ------- xarray.DataArray An array of values with a 1/t probability of exceedance or non-exceedance when mode is high or low respectively. """ # Apply rolling average if window > 1: da = da.rolling(time=window, center=False).mean() # Assign default resampling frequency if not provided freq = freq or default_freq(**indexer) # Extract the time series of min or max over the period sel = select_resample_op(da, op=mode, freq=freq, **indexer).dropna(dim='time') # Frequency analysis return fa(sel, t, dist, mode)
python
{ "resource": "" }
q19529
default_freq
train
def default_freq(**indexer): """Return the default frequency.""" freq = 'AS-JAN' if indexer: if 'DJF' in indexer.values(): freq = 'AS-DEC' if 'month' in indexer and sorted(indexer.values()) != indexer.values(): raise (NotImplementedError) return freq
python
{ "resource": "" }
q19530
get_dist
train
def get_dist(dist): """Return a distribution object from scipy.stats. """ from scipy import stats dc = getattr(stats, dist, None) if dc is None: e = "Statistical distribution `{}` is not in scipy.stats.".format(dist) raise ValueError(e) return dc
python
{ "resource": "" }
q19531
_get_indicators
train
def _get_indicators(modules): """For all modules or classes listed, return the children that are instances of xclim.utils.Indicator. modules : sequence Sequence of modules to inspect. """ out = [] for obj in modules: for key, val in obj.__dict__.items(): if isinstance(val, xcu.Indicator): out.append(val) return out
python
{ "resource": "" }
q19532
_indicator_table
train
def _indicator_table(): """Return a sequence of dicts storing metadata about all available indices.""" from xclim import temperature, precip import inspect inds = _get_indicators([temperature, precip]) table = [] for ind in inds: # Apply default values args = {name: p.default for (name, p) in ind._sig.parameters.items() if p.default != inspect._empty} table.append(ind.json(args)) return table
python
{ "resource": "" }
q19533
longest_run
train
def longest_run(da, dim='time'): """Return the length of the longest consecutive run of True values. Parameters ---------- arr : N-dimensional array (boolean) Input array dim : Xarray dimension (default = 'time') Dimension along which to calculate consecutive run Returns ------- N-dimensional array (int) Length of longest run of True values along dimension """ d = rle(da, dim=dim) rl_long = d.max(dim=dim) return rl_long
python
{ "resource": "" }
q19534
rle_1d
train
def rle_1d(arr): """Return the length, starting position and value of consecutive identical values. Parameters ---------- arr : sequence Array of values to be parsed. Returns ------- (values, run lengths, start positions) values : np.array The values taken by arr over each run run lengths : np.array The length of each run start position : np.array The starting index of each run Examples -------- >>> a = [1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3] >>> rle_1d(a) (array([1, 2, 3]), array([2, 4, 6]), array([0, 2, 6])) """ ia = np.asarray(arr) n = len(ia) if n == 0: e = 'run length array empty' warn(e) return None, None, None y = np.array(ia[1:] != ia[:-1]) # pairwise unequal (string safe) i = np.append(np.where(y), n - 1) # must include last element position rl = np.diff(np.append(-1, i)) # run lengths pos = np.cumsum(np.append(0, rl))[:-1] # positions return ia[i], rl, pos
python
{ "resource": "" }
q19535
longest_run_1d
train
def longest_run_1d(arr): """Return the length of the longest consecutive run of identical values. Parameters ---------- arr : bool array Input array Returns ------- int Length of longest run. """ v, rl = rle_1d(arr)[:2] return np.where(v, rl, 0).max()
python
{ "resource": "" }
q19536
windowed_run_count_ufunc
train
def windowed_run_count_ufunc(x, window): """Dask-parallel version of windowed_run_count_1d, ie the number of consecutive true values in array for runs at least as long as given duration. Parameters ---------- x : bool array Input array window : int Minimum duration of consecutive run to accumulate values. Returns ------- out : func A function operating along the time dimension of a dask-array. """ return xr.apply_ufunc(windowed_run_count_1d, x, input_core_dims=[['time'], ], vectorize=True, dask='parallelized', output_dtypes=[np.int, ], keep_attrs=True, kwargs={'window': window})
python
{ "resource": "" }
q19537
windowed_run_events_ufunc
train
def windowed_run_events_ufunc(x, window): """Dask-parallel version of windowed_run_events_1d, ie the number of runs at least as long as given duration. Parameters ---------- x : bool array Input array window : int Minimum run length Returns ------- out : func A function operating along the time dimension of a dask-array. """ return xr.apply_ufunc(windowed_run_events_1d, x, input_core_dims=[['time'], ], vectorize=True, dask='parallelized', output_dtypes=[np.int, ], keep_attrs=True, kwargs={'window': window})
python
{ "resource": "" }
q19538
longest_run_ufunc
train
def longest_run_ufunc(x): """Dask-parallel version of longest_run_1d, ie the maximum number of consecutive true values in array. Parameters ---------- x : bool array Input array Returns ------- out : func A function operating along the time dimension of a dask-array. """ return xr.apply_ufunc(longest_run_1d, x, input_core_dims=[['time'], ], vectorize=True, dask='parallelized', output_dtypes=[np.int, ], keep_attrs=True, )
python
{ "resource": "" }
q19539
check_valid
train
def check_valid(var, key, expected): r"""Check that a variable's attribute has the expected value. Warn user otherwise.""" att = getattr(var, key, None) if att is None: e = 'Variable does not have a `{}` attribute.'.format(key) warn(e) elif att != expected: e = 'Variable has a non-conforming {}. Got `{}`, expected `{}`'.format(key, att, expected) warn(e)
python
{ "resource": "" }
q19540
check_valid_temperature
train
def check_valid_temperature(var, units): r"""Check that variable is air temperature.""" check_valid(var, 'standard_name', 'air_temperature') check_valid(var, 'units', units) assert_daily(var)
python
{ "resource": "" }
q19541
valid_daily_max_min_temperature
train
def valid_daily_max_min_temperature(comp, units='K'): r"""Decorator to check that a computation runs on valid min and max temperature datasets.""" @wraps(comp) def func(tasmax, tasmin, **kwds): valid_daily_max_temperature(tasmax, units) valid_daily_min_temperature(tasmin, units) return comp(tasmax, tasmin, **kwds) return func
python
{ "resource": "" }
q19542
valid_daily_mean_discharge
train
def valid_daily_mean_discharge(comp): r"""Decorator to check that a computation runs on valid discharge data.""" @wraps(comp) def func(q, **kwds): check_valid_discharge(q) return comp(q, **kwds) return func
python
{ "resource": "" }
q19543
check_is_dataarray
train
def check_is_dataarray(comp): r"""Decorator to check that a computation has an instance of xarray.DataArray as first argument.""" @wraps(comp) def func(data_array, *args, **kwds): assert isinstance(data_array, xr.DataArray) return comp(data_array, *args, **kwds) return func
python
{ "resource": "" }
q19544
missing_any
train
def missing_any(da, freq, **kwds): r"""Return a boolean DataArray indicating whether there are missing days in the resampled array. Parameters ---------- da : DataArray Input array at daily frequency. freq : str Resampling frequency. Returns ------- out : DataArray A boolean array set to True if any month or year has missing values. """ c = da.notnull().resample(time=freq).sum(dim='time') if '-' in freq: pfreq, anchor = freq.split('-') else: pfreq = freq if pfreq.endswith('S'): start_time = c.indexes['time'] end_time = start_time.shift(1, freq=freq) else: end_time = c.indexes['time'] start_time = end_time.shift(-1, freq=freq) n = (end_time - start_time).days nda = xr.DataArray(n.values, coords={'time': c.time}, dims='time') return c != nda
python
{ "resource": "" }
q19545
rstjinja
train
def rstjinja(app, docname, source): """ Render our pages as a jinja template for fancy templating goodness. """ # Make sure we're outputting HTML if app.builder.format != 'html': return src = source[0] rendered = app.builder.templates.render_string( src, app.config.html_context ) source[0] = rendered
python
{ "resource": "" }
q19546
units2pint
train
def units2pint(value): """Return the pint Unit for the DataArray units. Parameters ---------- value : xr.DataArray or string Input data array or expression. Returns ------- pint.Unit Units of the data array. """ def _transform(s): """Convert a CF-unit string to a pint expression.""" return re.subn(r'\^?(-?\d)', r'**\g<1>', s)[0] if isinstance(value, str): unit = value elif isinstance(value, xr.DataArray): unit = value.attrs['units'] elif isinstance(value, units.Quantity): return value.units else: raise NotImplementedError("Value of type {} not supported.".format(type(value))) try: # Pint compatible return units.parse_expression(unit).units except (pint.UndefinedUnitError, pint.DimensionalityError): # Convert from CF-units to pint-compatible return units.parse_expression(_transform(unit)).units
python
{ "resource": "" }
q19547
pint2cfunits
train
def pint2cfunits(value): """Return a CF-Convention unit string from a `pint` unit. Parameters ---------- value : pint.Unit Input unit. Returns ------- out : str Units following CF-Convention. """ # Print units using abbreviations (millimeter -> mm) s = "{:~}".format(value) # Search and replace patterns pat = r'(?P<inverse>/ )?(?P<unit>\w+)(?: \*\* (?P<pow>\d))?' def repl(m): i, u, p = m.groups() p = p or (1 if i else '') neg = '-' if i else ('^' if p else '') return "{}{}{}".format(u, neg, p) out, n = re.subn(pat, repl, s) return out
python
{ "resource": "" }
q19548
pint_multiply
train
def pint_multiply(da, q, out_units=None): """Multiply xarray.DataArray by pint.Quantity. Parameters ---------- da : xr.DataArray Input array. q : pint.Quantity Multiplicating factor. out_units : str Units the output array should be converted into. """ a = 1 * units2pint(da) f = a * q.to_base_units() if out_units: f = f.to(out_units) out = da * f.magnitude out.attrs['units'] = pint2cfunits(f.units) return out
python
{ "resource": "" }
q19549
convert_units_to
train
def convert_units_to(source, target, context=None): """ Convert a mathematical expression into a value with the same units as a DataArray. Parameters ---------- source : str, pint.Quantity or xr.DataArray The value to be converted, e.g. '4C' or '1 mm/d'. target : str, pint.Unit or DataArray Target array of values to which units must conform. context : str Returns ------- out The source value converted to target's units. """ # Target units if isinstance(target, units.Unit): tu = target elif isinstance(target, (str, xr.DataArray)): tu = units2pint(target) else: raise NotImplementedError if isinstance(source, str): q = units.parse_expression(source) # Return magnitude of converted quantity. This is going to fail if units are not compatible. return q.to(tu).m if isinstance(source, units.Quantity): return source.to(tu).m if isinstance(source, xr.DataArray): fu = units2pint(source) if fu == tu: return source tu_u = pint2cfunits(tu) with units.context(context or 'none'): out = units.convert(source, fu, tu) out.attrs['units'] = tu_u return out # TODO remove backwards compatibility of int/float thresholds after v1.0 release if isinstance(source, (float, int)): if context == 'hydro': fu = units.mm / units.day else: fu = units.degC warnings.warn("Future versions of XCLIM will require explicit unit specifications.", FutureWarning) return (source * fu).to(tu).m raise NotImplementedError("source of type {} is not supported.".format(type(source)))
python
{ "resource": "" }
q19550
threshold_count
train
def threshold_count(da, op, thresh, freq): """Count number of days above or below threshold. Parameters ---------- da : xarray.DataArray Input data. op : {>, <, >=, <=, gt, lt, ge, le } Logical operator, e.g. arr > thresh. thresh : float Threshold value. freq : str Resampling frequency defining the periods defined in http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling. Returns ------- xarray.DataArray The number of days meeting the constraints for each period. """ from xarray.core.ops import get_op if op in binary_ops: op = binary_ops[op] elif op in binary_ops.values(): pass else: raise ValueError("Operation `{}` not recognized.".format(op)) func = getattr(da, '_binary_op')(get_op(op)) c = func(da, thresh) * 1 return c.resample(time=freq).sum(dim='time')
python
{ "resource": "" }
q19551
percentile_doy
train
def percentile_doy(arr, window=5, per=.1): """Percentile value for each day of the year Return the climatological percentile over a moving window around each day of the year. Parameters ---------- arr : xarray.DataArray Input data. window : int Number of days around each day of the year to include in the calculation. per : float Percentile between [0,1] Returns ------- xarray.DataArray The percentiles indexed by the day of the year. """ # TODO: Support percentile array, store percentile in coordinates. # This is supported by DataArray.quantile, but not by groupby.reduce. rr = arr.rolling(min_periods=1, center=True, time=window).construct('window') # Create empty percentile array g = rr.groupby('time.dayofyear') p = g.reduce(np.nanpercentile, dim=('time', 'window'), q=per * 100) # The percentile for the 366th day has a sample size of 1/4 of the other days. # To have the same sample size, we interpolate the percentile from 1-365 doy range to 1-366 if p.dayofyear.max() == 366: p = adjust_doy_calendar(p.loc[p.dayofyear < 366], arr) p.attrs.update(arr.attrs.copy()) return p
python
{ "resource": "" }
q19552
infer_doy_max
train
def infer_doy_max(arr): """Return the largest doy allowed by calendar. Parameters ---------- arr : xarray.DataArray Array with `time` coordinate. Returns ------- int The largest day of the year found in calendar. """ cal = arr.time.encoding.get('calendar', None) if cal in calendars: doy_max = calendars[cal] else: # If source is an array with no calendar information and whose length is not at least of full year, # then this inference could be wrong ( doy_max = arr.time.dt.dayofyear.max().data if len(arr.time) < 360: raise ValueError("Cannot infer the calendar from a series less than a year long.") if doy_max not in [360, 365, 366]: raise ValueError("The target array's calendar is not recognized") return doy_max
python
{ "resource": "" }
q19553
_interpolate_doy_calendar
train
def _interpolate_doy_calendar(source, doy_max): """Interpolate from one set of dayofyear range to another Interpolate an array defined over a `dayofyear` range (say 1 to 360) to another `dayofyear` range (say 1 to 365). Parameters ---------- source : xarray.DataArray Array with `dayofyear` coordinates. doy_max : int Largest day of the year allowed by calendar. Returns ------- xarray.DataArray Interpolated source array over coordinates spanning the target `dayofyear` range. """ if 'dayofyear' not in source.coords.keys(): raise AttributeError("source should have dayofyear coordinates.") # Interpolation of source to target dayofyear range doy_max_source = source.dayofyear.max() # Interpolate to fill na values tmp = source.interpolate_na(dim='dayofyear') # Interpolate to target dayofyear range tmp.coords['dayofyear'] = np.linspace(start=1, stop=doy_max, num=doy_max_source) return tmp.interp(dayofyear=range(1, doy_max + 1))
python
{ "resource": "" }
q19554
adjust_doy_calendar
train
def adjust_doy_calendar(source, target): """Interpolate from one set of dayofyear range to another calendar. Interpolate an array defined over a `dayofyear` range (say 1 to 360) to another `dayofyear` range (say 1 to 365). Parameters ---------- source : xarray.DataArray Array with `dayofyear` coordinates. target : xarray.DataArray Array with `time` coordinate. Returns ------- xarray.DataArray Interpolated source array over coordinates spanning the target `dayofyear` range. """ doy_max_source = source.dayofyear.max() doy_max = infer_doy_max(target) if doy_max_source == doy_max: return source return _interpolate_doy_calendar(source, doy_max)
python
{ "resource": "" }
q19555
daily_downsampler
train
def daily_downsampler(da, freq='YS'): r"""Daily climate data downsampler Parameters ---------- da : xarray.DataArray freq : string Returns ------- xarray.DataArray Note ---- Usage Example grouper = daily_downsampler(da_std, freq='YS') x2 = grouper.mean() # add time coords to x2 and change dimension tags to time time1 = daily_downsampler(da_std.time, freq=freq).first() x2.coords['time'] = ('tags', time1.values) x2 = x2.swap_dims({'tags': 'time'}) x2 = x2.sortby('time') """ # generate tags from da.time and freq if isinstance(da.time.values[0], np.datetime64): years = ['{:04d}'.format(y) for y in da.time.dt.year.values] months = ['{:02d}'.format(m) for m in da.time.dt.month.values] else: # cannot use year, month, season attributes, not available for all calendars ... years = ['{:04d}'.format(v.year) for v in da.time.values] months = ['{:02d}'.format(v.month) for v in da.time.values] seasons = ['DJF DJF MAM MAM MAM JJA JJA JJA SON SON SON DJF'.split()[int(m) - 1] for m in months] n_t = da.time.size if freq == 'YS': # year start frequency l_tags = years elif freq == 'MS': # month start frequency l_tags = [years[i] + months[i] for i in range(n_t)] elif freq == 'QS-DEC': # DJF, MAM, JJA, SON seasons # construct tags from list of season+year, increasing year for December ys = [] for i in range(n_t): m = months[i] s = seasons[i] y = years[i] if m == '12': y = str(int(y) + 1) ys.append(y + s) l_tags = ys else: raise RuntimeError('freqency {:s} not implemented'.format(freq)) # add tags to buffer DataArray buffer = da.copy() buffer.coords['tags'] = ('time', l_tags) # return groupby according to tags return buffer.groupby('tags')
python
{ "resource": "" }
q19556
walk_map
train
def walk_map(d, func): """Apply a function recursively to values of dictionary. Parameters ---------- d : dict Input dictionary, possibly nested. func : function Function to apply to dictionary values. Returns ------- dict Dictionary whose values are the output of the given function. """ out = {} for k, v in d.items(): if isinstance(v, (dict, defaultdict)): out[k] = walk_map(v, func) else: out[k] = func(v) return out
python
{ "resource": "" }
q19557
parse_doc
train
def parse_doc(doc): """Crude regex parsing.""" if doc is None: return {} out = {} sections = re.split(r'(\w+)\n\s+-{4,50}', doc) # obj.__doc__.split('\n\n') intro = sections.pop(0) if intro: content = list(map(str.strip, intro.strip().split('\n\n'))) if len(content) == 1: out['title'] = content[0] elif len(content) == 2: out['title'], out['abstract'] = content for i in range(0, len(sections), 2): header, content = sections[i:i + 2] if header in ['Notes', 'References']: out[header.lower()] = content.replace('\n ', '\n') elif header == 'Parameters': pass elif header == 'Returns': match = re.search(r'xarray\.DataArray\s*(.*)', content) if match: out['long_name'] = match.groups()[0] return out
python
{ "resource": "" }
q19558
format_kwargs
train
def format_kwargs(attrs, params): """Modify attribute with argument values. Parameters ---------- attrs : dict Attributes to be assigned to function output. The values of the attributes in braces will be replaced the the corresponding args values. params : dict A BoundArguments.arguments dictionary storing a function's arguments. """ attrs_mapping = {'cell_methods': {'YS': 'years', 'MS': 'months'}, 'long_name': {'YS': 'Annual', 'MS': 'Monthly'}} for key, val in attrs.items(): mba = {} # Add formatting {} around values to be able to replace them with _attrs_mapping using format. for k, v in params.items(): if isinstance(v, six.string_types) and v in attrs_mapping.get(key, {}).keys(): mba[k] = '{' + v + '}' else: mba[k] = v attrs[key] = val.format(**mba).format(**attrs_mapping.get(key, {}))
python
{ "resource": "" }
q19559
Indicator.json
train
def json(self, args=None): """Return a dictionary representation of the class. Notes ----- This is meant to be used by a third-party library wanting to wrap this class into another interface. """ names = ['identifier', 'abstract', 'keywords'] out = {key: getattr(self, key) for key in names} out.update(self.cf_attrs) out = self.format(out, args) out['notes'] = self.notes out['parameters'] = str({key: {'default': p.default if p.default != p.empty else None, 'desc': ''} for (key, p) in self._sig.parameters.items()}) if six.PY2: out = walk_map(out, lambda x: x.decode('utf8') if isinstance(x, six.string_types) else x) return out
python
{ "resource": "" }
q19560
Indicator.factory
train
def factory(cls, attrs): """Create a subclass from the attributes dictionary.""" name = attrs['identifier'].capitalize() return type(name, (cls,), attrs)
python
{ "resource": "" }
q19561
sent2features
train
def sent2features(sentence, template): """ extract features in a sentence :type sentence: list of token, each token is a list of tag """ return [word2features(sentence, i, template) for i in range(len(sentence))]
python
{ "resource": "" }
q19562
tokenize
train
def tokenize(text, format=None): """ tokenize text for word segmentation :param text: raw text input :return: tokenize text """ text = Text(text) text = text.replace("\t", " ") tokens = re.findall(patterns, text) tokens = [token[0] for token in tokens] if format == "text": return " ".join(tokens) else: return tokens
python
{ "resource": "" }
q19563
pos_tag
train
def pos_tag(sentence, format=None): """ Vietnamese POS tagging Parameters ========== sentence: {unicode, str} Raw sentence Returns ======= tokens: list of tuple with word, pos tag tagged sentence Examples -------- >>> # -*- coding: utf-8 -*- >>> from underthesea import pos_tag >>> sentence = "Chợ thα»‹t chΓ³ nα»•i tiαΊΏng ở TPHCM bα»‹ truy quΓ©t" >>> pos_tag(sentence) [('Chợ', 'N'), ('thα»‹t', 'N'), ('chΓ³', 'N'), ('nα»•i tiαΊΏng', 'A'), ('ở', 'E'), ('TPHCM', 'Np'), ('bα»‹', 'V'), ('truy quΓ©t', 'V')] """ sentence = word_tokenize(sentence) crf_model = CRFPOSTagPredictor.Instance() result = crf_model.predict(sentence, format) return result
python
{ "resource": "" }
q19564
WSCorpus.save
train
def save(self, folder, format): """save wscorpus to files :param str folder: path to directory :type folder: string :param str format: either TEXT or COLUMN :type format: str """ try: mkdir(folder) except Exception: pass for document in self.documents: f = join(folder, document.id) content = u"\n".join(document.sentences) write(f, content)
python
{ "resource": "" }
q19565
ner
train
def ner(sentence, format=None): """ Location and classify named entities in text Parameters ========== sentence: {unicode, str} raw sentence Returns ======= tokens: list of tuple with word, pos tag, chunking tag, ner tag tagged sentence Examples -------- >>> # -*- coding: utf-8 -*- >>> from underthesea import ner >>> sentence = "Γ”ng Putin ca ngợi nhα»―ng thΓ nh tα»±u vΔ© Δ‘αΊ‘i cα»§a LiΓͺn XΓ΄" >>> ner(sentence) [('Γ”ng', 'Nc', 'B-NP', 'O'), ('Putin', 'Np', 'B-NP', 'B-PER'), ('ca ngợi', 'V', 'B-VP', 'O'), ('nhα»―ng', 'L', 'B-NP', 'O'), ('thΓ nh tα»±u', 'N', 'B-NP', 'O'), ('vΔ© Δ‘αΊ‘i', 'A', 'B-AP', 'O'), ('cα»§a', 'E', 'B-PP', 'O'), ('LiΓͺn XΓ΄', 'Np', 'B-NP', 'B-LOC')] """ sentence = chunk(sentence) crf_model = CRFNERPredictor.Instance() result = crf_model.predict(sentence, format) return result
python
{ "resource": "" }
q19566
encrypt
train
def encrypt(pubkey, password): """Encrypt password using given RSA public key and encode it with base64. The encrypted password can only be decrypted by someone with the private key (in this case, only Travis). """ key = load_key(pubkey) encrypted_password = key.encrypt(password, PKCS1v15()) return base64.b64encode(encrypted_password)
python
{ "resource": "" }
q19567
prepend_line
train
def prepend_line(filepath, line): """Rewrite a file adding a line to its beginning. """ with open(filepath) as f: lines = f.readlines() lines.insert(0, line) with open(filepath, 'w') as f: f.writelines(lines)
python
{ "resource": "" }
q19568
word_tokenize
train
def word_tokenize(sentence, format=None): """ Vietnamese word segmentation Parameters ========== sentence: {unicode, str} raw sentence Returns ======= tokens: list of text tagged sentence Examples -------- >>> # -*- coding: utf-8 -*- >>> from underthesea import word_tokenize >>> sentence = "BΓ‘c sΔ© bΓ’y giờ cΓ³ thể thαΊ£n nhiΓͺn bΓ‘o tin bệnh nhΓ’n bα»‹ ung thΖ°" >>> word_tokenize(sentence) ['BΓ‘c sΔ©', 'bΓ’y giờ', 'cΓ³ thể', 'thαΊ£n nhiΓͺn', 'bΓ‘o tin', 'bệnh nhΓ’n', 'bα»‹', 'ung thΖ°'] >>> word_tokenize(sentence, format="text") 'BΓ‘c_sΔ© bΓ’y_giờ cΓ³_thể thαΊ£n_nhiΓͺn bΓ‘o_tin bệnh_nhΓ’n bα»‹ ung_thΖ°' """ tokens = tokenize(sentence) crf_model = CRFModel.instance() output = crf_model.predict(tokens, format) tokens = [token[0] for token in output] tags = [token[1] for token in output] output = [] for tag, token in zip(tags, tokens): if tag == "I-W": output[-1] = output[-1] + u" " + token else: output.append(token) if format == "text": output = u" ".join([item.replace(" ", "_") for item in output]) return output
python
{ "resource": "" }
q19569
FastTextClassifier.fit
train
def fit(self, X, y, model_filename=None): """Fit FastText according to X, y Parameters: ---------- X : list of text each item is a text y: list each item is either a label (in multi class problem) or list of labels (in multi label problem) """ train_file = "temp.train" X = [x.replace("\n", " ") for x in X] y = [item[0] for item in y] y = [_.replace(" ", "-") for _ in y] lines = ["__label__{} , {}".format(j, i) for i, j in zip(X, y)] content = "\n".join(lines) write(train_file, content) if model_filename: self.estimator = fasttext.supervised(train_file, model_filename) else: self.estimator = fasttext.supervised(train_file) os.remove(train_file)
python
{ "resource": "" }
q19570
ConfigDriver.create_driver
train
def create_driver(self): """Create a selenium driver using specified config properties :returns: a new selenium driver :rtype: selenium.webdriver.remote.webdriver.WebDriver """ driver_type = self.config.get('Driver', 'type') try: if self.config.getboolean_optional('Server', 'enabled'): self.logger.info("Creating remote driver (type = %s)", driver_type) driver = self._create_remote_driver() else: self.logger.info("Creating local driver (type = %s)", driver_type) driver = self._create_local_driver() except Exception as exc: error_message = get_error_message_from_exception(exc) self.logger.error("%s driver can not be launched: %s", driver_type.capitalize(), error_message) raise return driver
python
{ "resource": "" }
q19571
ConfigDriver._create_local_driver
train
def _create_local_driver(self): """Create a driver in local machine :returns: a new local selenium driver """ driver_type = self.config.get('Driver', 'type') driver_name = driver_type.split('-')[0] if driver_name in ('android', 'ios', 'iphone'): # Create local appium driver driver = self._setup_appium() else: driver_setup = { 'firefox': self._setup_firefox, 'chrome': self._setup_chrome, 'safari': self._setup_safari, 'opera': self._setup_opera, 'iexplore': self._setup_explorer, 'edge': self._setup_edge, 'phantomjs': self._setup_phantomjs } driver_setup_method = driver_setup.get(driver_name) if not driver_setup_method: raise Exception('Unknown driver {0}'.format(driver_name)) # Get driver capabilities capabilities = self._get_capabilities_from_driver_type(driver_name) self._add_capabilities_from_properties(capabilities, 'Capabilities') # Create local selenium driver driver = driver_setup_method(capabilities) return driver
python
{ "resource": "" }
q19572
ConfigDriver._get_capabilities_from_driver_type
train
def _get_capabilities_from_driver_type(driver_name): """Create initial driver capabilities :params driver_name: name of selected driver :returns: capabilities dictionary """ if driver_name == 'firefox': return DesiredCapabilities.FIREFOX.copy() elif driver_name == 'chrome': return DesiredCapabilities.CHROME.copy() elif driver_name == 'safari': return DesiredCapabilities.SAFARI.copy() elif driver_name == 'opera': return DesiredCapabilities.OPERA.copy() elif driver_name == 'iexplore': return DesiredCapabilities.INTERNETEXPLORER.copy() elif driver_name == 'edge': return DesiredCapabilities.EDGE.copy() elif driver_name == 'phantomjs': return DesiredCapabilities.PHANTOMJS.copy() elif driver_name in ('android', 'ios', 'iphone'): return {} raise Exception('Unknown driver {0}'.format(driver_name))
python
{ "resource": "" }
q19573
ConfigDriver._add_capabilities_from_properties
train
def _add_capabilities_from_properties(self, capabilities, section): """Add capabilities from properties file :param capabilities: capabilities object :param section: properties section """ cap_type = {'Capabilities': 'server', 'AppiumCapabilities': 'Appium server'} try: for cap, cap_value in dict(self.config.items(section)).items(): self.logger.debug("Added %s capability: %s = %s", cap_type[section], cap, cap_value) capabilities[cap] = cap_value if cap == 'version' else self._convert_property_type(cap_value) except NoSectionError: pass
python
{ "resource": "" }
q19574
ConfigDriver._setup_firefox
train
def _setup_firefox(self, capabilities): """Setup Firefox webdriver :param capabilities: capabilities object :returns: a new local Firefox driver """ if capabilities.get("marionette"): gecko_driver = self.config.get('Driver', 'gecko_driver_path') self.logger.debug("Gecko driver path given in properties: %s", gecko_driver) else: gecko_driver = None # Get Firefox binary firefox_binary = self.config.get_optional('Firefox', 'binary') firefox_options = Options() if self.config.getboolean_optional('Driver', 'headless'): self.logger.debug("Running Firefox in headless mode") firefox_options.add_argument('-headless') self._add_firefox_arguments(firefox_options) if firefox_binary: firefox_options.binary = firefox_binary log_path = os.path.join(DriverWrappersPool.output_directory, 'geckodriver.log') try: # Selenium 3 return webdriver.Firefox(firefox_profile=self._create_firefox_profile(), capabilities=capabilities, executable_path=gecko_driver, firefox_options=firefox_options, log_path=log_path) except TypeError: # Selenium 2 return webdriver.Firefox(firefox_profile=self._create_firefox_profile(), capabilities=capabilities, executable_path=gecko_driver, firefox_options=firefox_options)
python
{ "resource": "" }
q19575
ConfigDriver._create_firefox_profile
train
def _create_firefox_profile(self): """Create and configure a firefox profile :returns: firefox profile """ # Get Firefox profile profile_directory = self.config.get_optional('Firefox', 'profile') if profile_directory: self.logger.debug("Using firefox profile: %s", profile_directory) # Create Firefox profile profile = webdriver.FirefoxProfile(profile_directory=profile_directory) profile.native_events_enabled = True # Add Firefox preferences try: for pref, pref_value in dict(self.config.items('FirefoxPreferences')).items(): self.logger.debug("Added firefox preference: %s = %s", pref, pref_value) profile.set_preference(pref, self._convert_property_type(pref_value)) profile.update_preferences() except NoSectionError: pass # Add Firefox extensions try: for pref, pref_value in dict(self.config.items('FirefoxExtensions')).items(): self.logger.debug("Added firefox extension: %s = %s", pref, pref_value) profile.add_extension(pref_value) except NoSectionError: pass return profile
python
{ "resource": "" }
q19576
ConfigDriver._convert_property_type
train
def _convert_property_type(value): """Converts the string value in a boolean, integer or string :param value: string value :returns: boolean, integer or string value """ if value in ('true', 'True'): return True elif value in ('false', 'False'): return False elif str(value).startswith('{') and str(value).endswith('}'): return ast.literal_eval(value) else: try: return int(value) except ValueError: return value
python
{ "resource": "" }
q19577
ConfigDriver._setup_chrome
train
def _setup_chrome(self, capabilities): """Setup Chrome webdriver :param capabilities: capabilities object :returns: a new local Chrome driver """ chrome_driver = self.config.get('Driver', 'chrome_driver_path') self.logger.debug("Chrome driver path given in properties: %s", chrome_driver) return webdriver.Chrome(chrome_driver, chrome_options=self._create_chrome_options(), desired_capabilities=capabilities)
python
{ "resource": "" }
q19578
ConfigDriver._create_chrome_options
train
def _create_chrome_options(self): """Create and configure a chrome options object :returns: chrome options object """ # Create Chrome options options = webdriver.ChromeOptions() if self.config.getboolean_optional('Driver', 'headless'): self.logger.debug("Running Chrome in headless mode") options.add_argument('--headless') if os.name == 'nt': # Temporarily needed if running on Windows. options.add_argument('--disable-gpu') # Add Chrome preferences, mobile emulation options and chrome arguments self._add_chrome_options(options, 'prefs') self._add_chrome_options(options, 'mobileEmulation') self._add_chrome_arguments(options) return options
python
{ "resource": "" }
q19579
ConfigDriver._add_chrome_options
train
def _add_chrome_options(self, options, option_name): """Add Chrome options from properties file :param options: chrome options object :param option_name: chrome option name """ options_conf = {'prefs': {'section': 'ChromePreferences', 'message': 'preference'}, 'mobileEmulation': {'section': 'ChromeMobileEmulation', 'message': 'mobile emulation option'}} option_value = dict() try: for key, value in dict(self.config.items(options_conf[option_name]['section'])).items(): self.logger.debug("Added chrome %s: %s = %s", options_conf[option_name]['message'], key, value) option_value[key] = self._convert_property_type(value) if len(option_value) > 0: options.add_experimental_option(option_name, option_value) except NoSectionError: pass
python
{ "resource": "" }
q19580
ConfigDriver._add_chrome_arguments
train
def _add_chrome_arguments(self, options): """Add Chrome arguments from properties file :param options: chrome options object """ try: for pref, pref_value in dict(self.config.items('ChromeArguments')).items(): pref_value = '={}'.format(pref_value) if pref_value else '' self.logger.debug("Added chrome argument: %s%s", pref, pref_value) options.add_argument('{}{}'.format(pref, self._convert_property_type(pref_value))) except NoSectionError: pass
python
{ "resource": "" }
q19581
ConfigDriver._setup_opera
train
def _setup_opera(self, capabilities): """Setup Opera webdriver :param capabilities: capabilities object :returns: a new local Opera driver """ opera_driver = self.config.get('Driver', 'opera_driver_path') self.logger.debug("Opera driver path given in properties: %s", opera_driver) return webdriver.Opera(executable_path=opera_driver, desired_capabilities=capabilities)
python
{ "resource": "" }
q19582
ConfigDriver._setup_explorer
train
def _setup_explorer(self, capabilities): """Setup Internet Explorer webdriver :param capabilities: capabilities object :returns: a new local Internet Explorer driver """ explorer_driver = self.config.get('Driver', 'explorer_driver_path') self.logger.debug("Explorer driver path given in properties: %s", explorer_driver) return webdriver.Ie(explorer_driver, capabilities=capabilities)
python
{ "resource": "" }
q19583
ConfigDriver._setup_edge
train
def _setup_edge(self, capabilities): """Setup Edge webdriver :param capabilities: capabilities object :returns: a new local Edge driver """ edge_driver = self.config.get('Driver', 'edge_driver_path') self.logger.debug("Edge driver path given in properties: %s", edge_driver) return webdriver.Edge(edge_driver, capabilities=capabilities)
python
{ "resource": "" }
q19584
ConfigDriver._setup_phantomjs
train
def _setup_phantomjs(self, capabilities): """Setup phantomjs webdriver :param capabilities: capabilities object :returns: a new local phantomjs driver """ phantomjs_driver = self.config.get('Driver', 'phantomjs_driver_path') self.logger.debug("Phantom driver path given in properties: %s", phantomjs_driver) return webdriver.PhantomJS(executable_path=phantomjs_driver, desired_capabilities=capabilities)
python
{ "resource": "" }
q19585
ConfigDriver._setup_appium
train
def _setup_appium(self): """Setup Appium webdriver :returns: a new remote Appium driver """ self.config.set('Server', 'host', '127.0.0.1') self.config.set('Server', 'port', '4723') return self._create_remote_driver()
python
{ "resource": "" }
q19586
Utils.set_implicitly_wait
train
def set_implicitly_wait(self): """Read implicitly timeout from configuration properties and configure driver implicitly wait""" implicitly_wait = self.driver_wrapper.config.get_optional('Driver', 'implicitly_wait') if implicitly_wait: self.driver_wrapper.driver.implicitly_wait(implicitly_wait)
python
{ "resource": "" }
q19587
Utils.capture_screenshot
train
def capture_screenshot(self, name): """Capture screenshot and save it in screenshots folder :param name: screenshot name suffix :returns: screenshot path """ filename = '{0:0=2d}_{1}'.format(DriverWrappersPool.screenshots_number, name) filename = '{}.png'.format(get_valid_filename(filename)) filepath = os.path.join(DriverWrappersPool.screenshots_directory, filename) if not os.path.exists(DriverWrappersPool.screenshots_directory): os.makedirs(DriverWrappersPool.screenshots_directory) if self.driver_wrapper.driver.get_screenshot_as_file(filepath): self.logger.info('Screenshot saved in %s', filepath) DriverWrappersPool.screenshots_number += 1 return filepath return None
python
{ "resource": "" }
q19588
Utils.save_webdriver_logs
train
def save_webdriver_logs(self, test_name): """Get webdriver logs and write them to log files :param test_name: test that has generated these logs """ try: log_types = self.driver_wrapper.driver.log_types except Exception: # geckodriver does not implement log_types, but it implements get_log for client and server log_types = ['client', 'server'] self.logger.debug("Reading logs from '%s' and writing them to log files", ', '.join(log_types)) for log_type in log_types: try: self.save_webdriver_logs_by_type(log_type, test_name) except Exception: # Capture exceptions to avoid errors in teardown method pass
python
{ "resource": "" }
q19589
Utils.save_webdriver_logs_by_type
train
def save_webdriver_logs_by_type(self, log_type, test_name): """Get webdriver logs of the specified type and write them to a log file :param log_type: browser, client, driver, performance, server, syslog, crashlog or logcat :param test_name: test that has generated these logs """ try: logs = self.driver_wrapper.driver.get_log(log_type) except Exception: return if len(logs) > 0: log_file_name = '{}_{}.txt'.format(get_valid_filename(test_name), log_type) log_file_name = os.path.join(DriverWrappersPool.logs_directory, log_file_name) with open(log_file_name, 'a+', encoding='utf-8') as log_file: driver_type = self.driver_wrapper.config.get('Driver', 'type') log_file.write( u"\n{} '{}' test logs with driver = {}\n\n".format(datetime.now(), test_name, driver_type)) for entry in logs: timestamp = datetime.fromtimestamp(float(entry['timestamp']) / 1000.).strftime( '%Y-%m-%d %H:%M:%S.%f') log_file.write(u'{}\t{}\t{}\n'.format(timestamp, entry['level'], entry['message'].rstrip()))
python
{ "resource": "" }
q19590
Utils.discard_logcat_logs
train
def discard_logcat_logs(self): """Discard previous logcat logs""" if self.driver_wrapper.is_android_test(): try: self.driver_wrapper.driver.get_log('logcat') except Exception: pass
python
{ "resource": "" }
q19591
Utils._expected_condition_find_element
train
def _expected_condition_find_element(self, element): """Tries to find the element, but does not thrown an exception if the element is not found :param element: PageElement or element locator as a tuple (locator_type, locator_value) to be found :returns: the web element if it has been found or False :rtype: selenium.webdriver.remote.webelement.WebElement or appium.webdriver.webelement.WebElement """ from toolium.pageelements.page_element import PageElement web_element = False try: if isinstance(element, PageElement): # Use _find_web_element() instead of web_element to avoid logging error message element._web_element = None element._find_web_element() web_element = element._web_element elif isinstance(element, tuple): web_element = self.driver_wrapper.driver.find_element(*element) except NoSuchElementException: pass return web_element
python
{ "resource": "" }
q19592
Utils._expected_condition_find_first_element
train
def _expected_condition_find_first_element(self, elements): """Try to find sequentially the elements of the list and return the first element found :param elements: list of PageElements or element locators as a tuple (locator_type, locator_value) to be found sequentially :returns: first element found or None :rtype: toolium.pageelements.PageElement or tuple """ from toolium.pageelements.page_element import PageElement element_found = None for element in elements: try: if isinstance(element, PageElement): element._web_element = None element._find_web_element() else: self.driver_wrapper.driver.find_element(*element) element_found = element break except (NoSuchElementException, TypeError): pass return element_found
python
{ "resource": "" }
q19593
Utils._expected_condition_find_element_clickable
train
def _expected_condition_find_element_clickable(self, element): """Tries to find the element and checks that it is clickable, but does not thrown an exception if the element is not found :param element: PageElement or element locator as a tuple (locator_type, locator_value) to be found :returns: the web element if it is clickable or False :rtype: selenium.webdriver.remote.webelement.WebElement or appium.webdriver.webelement.WebElement """ web_element = self._expected_condition_find_element_visible(element) try: return web_element if web_element and web_element.is_enabled() else False except StaleElementReferenceException: return False
python
{ "resource": "" }
q19594
Utils._expected_condition_find_element_stopped
train
def _expected_condition_find_element_stopped(self, element_times): """Tries to find the element and checks that it has stopped moving, but does not thrown an exception if the element is not found :param element_times: Tuple with 2 items where: [0] element: PageElement or element locator as a tuple (locator_type, locator_value) to be found [1] times: number of iterations checking the element's location that must be the same for all of them in order to considering the element has stopped :returns: the web element if it is clickable or False :rtype: selenium.webdriver.remote.webelement.WebElement or appium.webdriver.webelement.WebElement """ element, times = element_times web_element = self._expected_condition_find_element(element) try: locations_list = [tuple(web_element.location.values()) for i in range(int(times)) if not time.sleep(0.001)] return web_element if set(locations_list) == set(locations_list[-1:]) else False except StaleElementReferenceException: return False
python
{ "resource": "" }
q19595
Utils._expected_condition_find_element_containing_text
train
def _expected_condition_find_element_containing_text(self, element_text_pair): """Tries to find the element and checks that it contains the specified text, but does not thrown an exception if the element is not found :param element_text_pair: Tuple with 2 items where: [0] element: PageElement or element locator as a tuple (locator_type, locator_value) to be found [1] text: text to be contained into the element :returns: the web element if it contains the text or False :rtype: selenium.webdriver.remote.webelement.WebElement or appium.webdriver.webelement.WebElement """ element, text = element_text_pair web_element = self._expected_condition_find_element(element) try: return web_element if web_element and text in web_element.text else False except StaleElementReferenceException: return False
python
{ "resource": "" }
q19596
Utils._expected_condition_value_in_element_attribute
train
def _expected_condition_value_in_element_attribute(self, element_attribute_value): """Tries to find the element and checks that it contains the requested attribute with the expected value, but does not thrown an exception if the element is not found :param element_attribute_value: Tuple with 3 items where: [0] element: PageElement or element locator as a tuple (locator_type, locator_value) to be found [1] attribute: element's attribute where to check its value [2] value: expected value for the element's attribute :returns: the web element if it contains the expected value for the requested attribute or False :rtype: selenium.webdriver.remote.webelement.WebElement or appium.webdriver.webelement.WebElement """ element, attribute, value = element_attribute_value web_element = self._expected_condition_find_element(element) try: return web_element if web_element and web_element.get_attribute(attribute) == value else False except StaleElementReferenceException: return False
python
{ "resource": "" }
q19597
Utils._wait_until
train
def _wait_until(self, condition_method, condition_input, timeout=None): """ Common method to wait until condition met :param condition_method: method to check the condition :param condition_input: parameter that will be passed to the condition method :param timeout: max time to wait :returns: condition method response """ # Remove implicitly wait timeout self.driver_wrapper.driver.implicitly_wait(0) # Get explicitly wait timeout timeout = timeout if timeout else self.get_explicitly_wait() # Wait for condition condition_response = WebDriverWait(self.driver_wrapper.driver, timeout).until( lambda s: condition_method(condition_input)) # Restore implicitly wait timeout from properties self.set_implicitly_wait() return condition_response
python
{ "resource": "" }
q19598
Utils.wait_until_element_present
train
def wait_until_element_present(self, element, timeout=None): """Search element and wait until it is found :param element: PageElement or element locator as a tuple (locator_type, locator_value) to be found :param timeout: max time to wait :returns: the web element if it is present :rtype: selenium.webdriver.remote.webelement.WebElement or appium.webdriver.webelement.WebElement :raises TimeoutException: If the element is not found after the timeout """ return self._wait_until(self._expected_condition_find_element, element, timeout)
python
{ "resource": "" }
q19599
Utils.wait_until_first_element_is_found
train
def wait_until_first_element_is_found(self, elements, timeout=None): """Search list of elements and wait until one of them is found :param elements: list of PageElements or element locators as a tuple (locator_type, locator_value) to be found sequentially :param timeout: max time to wait :returns: first element found :rtype: toolium.pageelements.PageElement or tuple :raises TimeoutException: If no element in the list is found after the timeout """ try: return self._wait_until(self._expected_condition_find_first_element, elements, timeout) except TimeoutException as exception: msg = 'None of the page elements has been found after %s seconds' timeout = timeout if timeout else self.get_explicitly_wait() self.logger.error(msg, timeout) exception.msg += "\n {}".format(msg % timeout) raise exception
python
{ "resource": "" }