_id
stringlengths
2
7
title
stringlengths
1
88
partition
stringclasses
3 values
text
stringlengths
75
19.8k
language
stringclasses
1 value
meta_information
dict
q18600
Logger.warning
train
def warning(self, msg, *args, **kwargs) -> Task: # type: ignore """ Log msg with severity 'WARNING'. To pass exception information, use the keyword argument exc_info with a true value, e.g. await logger.warning("Houston, we have a bit of a problem", exc_info=1) """ return self._make_log_task(logging.WARNING, msg, args, **kwargs)
python
{ "resource": "" }
q18601
Logger.error
train
def error(self, msg, *args, **kwargs) -> Task: # type: ignore """ Log msg with severity 'ERROR'. To pass exception information, use the keyword argument exc_info with a true value, e.g. await logger.error("Houston, we have a major problem", exc_info=1) """ return self._make_log_task(logging.ERROR, msg, args, **kwargs)
python
{ "resource": "" }
q18602
Logger.critical
train
def critical(self, msg, *args, **kwargs) -> Task: # type: ignore """ Log msg with severity 'CRITICAL'. To pass exception information, use the keyword argument exc_info with a true value, e.g. await logger.critical("Houston, we have a major disaster", exc_info=1) """ return self._make_log_task(logging.CRITICAL, msg, args, **kwargs)
python
{ "resource": "" }
q18603
Logger.exception
train
def exception( # type: ignore self, msg, *args, exc_info=True, **kwargs ) -> Task: """ Convenience method for logging an ERROR with exception information. """ return self.error(msg, *args, exc_info=exc_info, **kwargs)
python
{ "resource": "" }
q18604
validate_aggregation
train
def validate_aggregation(agg): """Validate an aggregation for use in Vega-Lite. Translate agg to one of the following supported named aggregations: ['mean', 'sum', 'median', 'min', 'max', 'count'] Parameters ---------- agg : string or callable A string Supported reductions are ['mean', 'sum', 'median', 'min', 'max', 'count']. If agg is a numpy function, the return value is the string representation. If agg is unrecognized, raise a ValueError """ if agg is None: return agg supported_aggs = ['mean', 'sum', 'median', 'min', 'max', 'count'] numpy_aggs = {getattr(np, a): a for a in ['mean', 'sum', 'median', 'min', 'max']} builtin_aggs = {min: 'min', max: 'max', sum: 'sum'} agg = numpy_aggs.get(agg, agg) agg = builtin_aggs.get(agg, agg) if agg not in supported_aggs: raise ValueError("Unrecognized Vega-Lite aggregation: {0}".format(agg)) return agg
python
{ "resource": "" }
q18605
andrews_curves
train
def andrews_curves( data, class_column, samples=200, alpha=None, width=450, height=300, **kwds ): """ Generates an Andrews curves visualization for visualising clusters of multivariate data. Andrews curves have the functional form: f(t) = x_1/sqrt(2) + x_2 sin(t) + x_3 cos(t) + x_4 sin(2t) + x_5 cos(2t) + ... Where x coefficients correspond to the values of each dimension and t is linearly spaced between -pi and +pi. Each row of frame then corresponds to a single curve. Parameters: ----------- data : DataFrame Data to be plotted, preferably normalized to (0.0, 1.0) class_column : string Name of the column containing class names samples : integer Number of points to plot in each curve alpha: float, optional The transparency of the lines width : int, optional the width of the plot in pixels height : int, optional the height of the plot in pixels **kwds: keywords Additional options Returns: -------- chart: alt.Chart object """ if kwds: warnings.warn( "Unrecognized keywords in pdvega.andrews_curves(): {0}" "".format(list(kwds.keys())) ) t = np.linspace(-np.pi, np.pi, samples) vals = data.drop(class_column, axis=1).values.T curves = np.outer(vals[0], np.ones_like(t)) for i in range(1, len(vals)): ft = ((i + 1) // 2) * t if i % 2 == 1: curves += np.outer(vals[i], np.sin(ft)) else: curves += np.outer(vals[i], np.cos(ft)) df = pd.DataFrame( { "t": np.tile(t, curves.shape[0]), "sample": np.repeat(np.arange(curves.shape[0]), curves.shape[1]), " ": curves.ravel(), class_column: np.repeat(data[class_column], samples), } ) chart = alt.Chart(df).properties(width=width, height=height).mark_line() chart = chart.encode( x=alt.X(field="t", type="quantitative"), y=alt.Y(field=" ", type="quantitative"), color=alt.Color(field=class_column, type=infer_vegalite_type(df[class_column])), detail=alt.Detail(field='sample', type="quantitative") ) if alpha is None and df[class_column].nunique() > 20: alpha = 0.5 if alpha is not None: assert 0 <= alpha <= 1 return chart.encode(opacity=alt.value(alpha)) return chart
python
{ "resource": "" }
q18606
dict_hash
train
def dict_hash(dct): """Return a hash of the contents of a dictionary""" dct_s = json.dumps(dct, sort_keys=True) try: m = md5(dct_s) except TypeError: m = md5(dct_s.encode()) return m.hexdigest()
python
{ "resource": "" }
q18607
exec_then_eval
train
def exec_then_eval(code, namespace=None): """Exec a code block & return evaluation of the last line""" # TODO: make this less brittle. namespace = namespace or {} block = ast.parse(code, mode='exec') last = ast.Expression(block.body.pop().value) exec(compile(block, '<string>', mode='exec'), namespace) return eval(compile(last, '<string>', mode='eval'), namespace)
python
{ "resource": "" }
q18608
import_obj
train
def import_obj(clsname, default_module=None): """ Import the object given by clsname. If default_module is specified, import from this module. """ if default_module is not None: if not clsname.startswith(default_module + '.'): clsname = '{0}.{1}'.format(default_module, clsname) mod, clsname = clsname.rsplit('.', 1) mod = importlib.import_module(mod) try: obj = getattr(mod, clsname) except AttributeError: raise ImportError('Cannot import {0} from {1}'.format(clsname, mod)) return obj
python
{ "resource": "" }
q18609
get_scheme_cartocss
train
def get_scheme_cartocss(column, scheme_info): """Get TurboCARTO CartoCSS based on input parameters""" if 'colors' in scheme_info: color_scheme = '({})'.format(','.join(scheme_info['colors'])) else: color_scheme = 'cartocolor({})'.format(scheme_info['name']) if not isinstance(scheme_info['bins'], int): bins = ','.join(str(i) for i in scheme_info['bins']) else: bins = scheme_info['bins'] bin_method = scheme_info['bin_method'] comparison = ', {}'.format(BinMethod.mapping.get(bin_method, '>=')) return ('ramp([{column}], {color_scheme}, ' '{bin_method}({bins}){comparison})').format( column=column, color_scheme=color_scheme, bin_method=bin_method, bins=bins, comparison=comparison)
python
{ "resource": "" }
q18610
custom
train
def custom(colors, bins=None, bin_method=BinMethod.quantiles): """Create a custom scheme. Args: colors (list of str): List of hex values for styling data bins (int, optional): Number of bins to style by. If not given, the number of colors will be used. bin_method (str, optional): Classification method. One of the values in :obj:`BinMethod`. Defaults to `quantiles`, which only works with quantitative data. """ return { 'colors': colors, 'bins': bins if bins is not None else len(colors), 'bin_method': bin_method, }
python
{ "resource": "" }
q18611
scheme
train
def scheme(name, bins, bin_method='quantiles'): """Return a custom scheme based on CARTOColors. Args: name (str): Name of a CARTOColor. bins (int or iterable): If an `int`, the number of bins for classifying data. CARTOColors have 7 bins max for quantitative data, and 11 max for qualitative data. If `bins` is a `list`, it is the upper range for classifying data. E.g., `bins` can be of the form ``(10, 20, 30, 40, 50)``. bin_method (str, optional): One of methods in :obj:`BinMethod`. Defaults to ``quantiles``. If `bins` is an interable, then that is the bin method that will be used and this will be ignored. .. Warning:: Input types are particularly sensitive in this function, and little feedback is given for errors. ``name`` and ``bin_method`` arguments are case-sensitive. """ return { 'name': name, 'bins': bins, 'bin_method': (bin_method if isinstance(bins, int) else ''), }
python
{ "resource": "" }
q18612
CartoContext._is_authenticated
train
def _is_authenticated(self): """Checks if credentials allow for authenticated carto access""" if not self.auth_api_client.is_valid_api_key(): raise CartoException( 'Cannot authenticate user `{}`. Check credentials.'.format( self.creds.username()))
python
{ "resource": "" }
q18613
CartoContext.read
train
def read(self, table_name, limit=None, decode_geom=False, shared_user=None, retry_times=3): """Read a table from CARTO into a pandas DataFrames. Args: table_name (str): Name of table in user's CARTO account. limit (int, optional): Read only `limit` lines from `table_name`. Defaults to ``None``, which reads the full table. decode_geom (bool, optional): Decodes CARTO's geometries into a `Shapely <https://github.com/Toblerity/Shapely>`__ object that can be used, for example, in `GeoPandas <http://geopandas.org/>`__. shared_user (str, optional): If a table has been shared with you, specify the user name (schema) who shared it. retry_times (int, optional): If the read call is rate limited, number of retries to be made Returns: pandas.DataFrame: DataFrame representation of `table_name` from CARTO. Example: .. code:: python import cartoframes cc = cartoframes.CartoContext(BASEURL, APIKEY) df = cc.read('acadia_biodiversity') """ # choose schema (default user - org or standalone - or shared) schema = 'public' if not self.is_org else ( shared_user or self.creds.username()) dataset = Dataset(self, table_name, schema) return dataset.download(limit, decode_geom, retry_times)
python
{ "resource": "" }
q18614
CartoContext.tables
train
def tables(self): """List all tables in user's CARTO account Returns: :obj:`list` of :py:class:`Table <cartoframes.analysis.Table>` """ datasets = DatasetManager(self.auth_client).filter( show_table_size_and_row_count='false', show_table='false', show_stats='false', show_likes='false', show_liked='false', show_permission='false', show_uses_builder_features='false', show_synchronization='false', load_totals='false') return [Table.from_dataset(d) for d in datasets]
python
{ "resource": "" }
q18615
CartoContext.write
train
def write(self, df, table_name, temp_dir=CACHE_DIR, overwrite=False, lnglat=None, encode_geom=False, geom_col=None, **kwargs): """Write a DataFrame to a CARTO table. Examples: Write a pandas DataFrame to CARTO. .. code:: python cc.write(df, 'brooklyn_poverty', overwrite=True) Scrape an HTML table from Wikipedia and send to CARTO with content guessing to create a geometry from the country column. This uses a CARTO Import API param `content_guessing` parameter. .. code:: python url = 'https://en.wikipedia.org/wiki/List_of_countries_by_life_expectancy' # retrieve first HTML table from that page df = pd.read_html(url, header=0)[0] # send to carto, let it guess polygons based on the 'country' # column. Also set privacy to 'public' cc.write(df, 'life_expectancy', content_guessing=True, privacy='public') cc.map(layers=Layer('life_expectancy', color='both_sexes_life_expectancy')) Args: df (pandas.DataFrame): DataFrame to write to ``table_name`` in user CARTO account table_name (str): Table to write ``df`` to in CARTO. temp_dir (str, optional): Directory for temporary storage of data that is sent to CARTO. Defaults are defined by `appdirs <https://github.com/ActiveState/appdirs/blob/master/README.rst>`__. overwrite (bool, optional): Behavior for overwriting ``table_name`` if it exits on CARTO. Defaults to ``False``. lnglat (tuple, optional): lng/lat pair that can be used for creating a geometry on CARTO. Defaults to ``None``. In some cases, geometry will be created without specifying this. See CARTO's `Import API <https://carto.com/developers/import-api/reference/#tag/Standard-Tables>`__ for more information. encode_geom (bool, optional): Whether to write `geom_col` to CARTO as `the_geom`. geom_col (str, optional): The name of the column where geometry information is stored. Used in conjunction with `encode_geom`. **kwargs: Keyword arguments to control write operations. Options are: - `compression` to set compression for files sent to CARTO. This will cause write speedups depending on the dataset. Options are ``None`` (no compression, default) or ``gzip``. - Some arguments from CARTO's Import API. See the `params listed in the documentation <https://carto.com/developers/import-api/reference/#tag/Standard-Tables>`__ for more information. For example, when using `content_guessing='true'`, a column named 'countries' with country names will be used to generate polygons for each country. Another use is setting the privacy of a dataset. To avoid unintended consequences, avoid `file`, `url`, and other similar arguments. Returns: :py:class:`Dataset <cartoframes.datasets.Dataset>` .. note:: DataFrame indexes are changed to ordinary columns. CARTO creates an index called `cartodb_id` for every table that runs from 1 to the length of the DataFrame. """ # noqa tqdm.write('Params: encode_geom, geom_col and everything in kwargs are deprecated and not being used any more') dataset = Dataset(self, table_name, df=df) if_exists = Dataset.FAIL if overwrite: if_exists = Dataset.REPLACE dataset = dataset.upload(with_lonlat=lnglat, if_exists=if_exists) tqdm.write('Table successfully written to CARTO: {table_url}'.format( table_url=utils.join_url(self.creds.base_url(), 'dataset', dataset.table_name))) return dataset
python
{ "resource": "" }
q18616
CartoContext._get_privacy
train
def _get_privacy(self, table_name): """gets current privacy of a table""" ds_manager = DatasetManager(self.auth_client) try: dataset = ds_manager.get(table_name) return dataset.privacy.lower() except NotFoundException: return None
python
{ "resource": "" }
q18617
CartoContext._update_privacy
train
def _update_privacy(self, table_name, privacy): """Updates the privacy of a dataset""" ds_manager = DatasetManager(self.auth_client) dataset = ds_manager.get(table_name) dataset.privacy = privacy dataset.save()
python
{ "resource": "" }
q18618
CartoContext.fetch
train
def fetch(self, query, decode_geom=False): """Pull the result from an arbitrary SELECT SQL query from a CARTO account into a pandas DataFrame. Args: query (str): SELECT query to run against CARTO user database. This data will then be converted into a pandas DataFrame. decode_geom (bool, optional): Decodes CARTO's geometries into a `Shapely <https://github.com/Toblerity/Shapely>`__ object that can be used, for example, in `GeoPandas <http://geopandas.org/>`__. Returns: pandas.DataFrame: DataFrame representation of query supplied. Pandas data types are inferred from PostgreSQL data types. In the case of PostgreSQL date types, dates are attempted to be converted, but on failure a data type 'object' is used. Examples: This query gets the 10 highest values from a table and returns a dataframe. .. code:: python topten_df = cc.query( ''' SELECT * FROM my_table ORDER BY value_column DESC LIMIT 10 ''' ) This query joins points to polygons based on intersection, and aggregates by summing the values of the points in each polygon. The query returns a dataframe, with a geometry column that contains polygons. .. code:: python points_aggregated_to_polygons = cc.query( ''' SELECT polygons.*, sum(points.values) FROM polygons JOIN points ON ST_Intersects(points.the_geom, polygons.the_geom) GROUP BY polygons.the_geom, polygons.cartodb_id ''', decode_geom=True ) """ copy_query = 'COPY ({query}) TO stdout WITH (FORMAT csv, HEADER true)'.format(query=query) query_columns = get_columns(self, query) result = recursive_read(self, copy_query) df_types = dtypes(query_columns, exclude_dates=True) df = pd.read_csv(result, dtype=df_types, parse_dates=date_columns_names(query_columns), true_values=['t'], false_values=['f'], index_col='cartodb_id' if 'cartodb_id' in df_types.keys() else False, converters={'the_geom': lambda x: _decode_geom(x) if decode_geom else x}) if decode_geom: df.rename({'the_geom': 'geometry'}, axis='columns', inplace=True) return df
python
{ "resource": "" }
q18619
CartoContext.query
train
def query(self, query, table_name=None, decode_geom=False, is_select=None): """Pull the result from an arbitrary SQL SELECT query from a CARTO account into a pandas DataFrame. This is the default behavior, when `is_select=True` Can also be used to perform database operations (creating/dropping tables, adding columns, updates, etc.). In this case, you have to explicitly specify `is_select=False` This method is a helper for the `CartoContext.fetch` and `CartoContext.execute` methods. We strongly encourage you to use any of those methods depending on the type of query you want to run. If you want to get the results of a `SELECT` query into a pandas DataFrame, then use `CartoContext.fetch`. For any other query that performs an operation into the CARTO database, use `CartoContext.execute` Args: query (str): Query to run against CARTO user database. This data will then be converted into a pandas DataFrame. table_name (str, optional): If set (and `is_select=True`), this will create a new table in the user's CARTO account that is the result of the SELECT query provided. Defaults to None (no table created). decode_geom (bool, optional): Decodes CARTO's geometries into a `Shapely <https://github.com/Toblerity/Shapely>`__ object that can be used, for example, in `GeoPandas <http://geopandas.org/>`__. It only works for SELECT queries when `is_select=True` is_select (bool, optional): This argument has to be set depending on the query performed. True for SELECT queries, False for any other query. For the case of a SELECT SQL query (`is_select=True`) the result will be stored into a pandas DataFrame. When an arbitrary SQL query (`is_select=False`) it will perform a database operation (UPDATE, DROP, INSERT, etc.) By default `is_select=None` that means that the method will return a dataframe if the `query` starts with a `select` clause, otherwise it will just execute the query and return `None` Returns: pandas.DataFrame: When `is_select=True` and the query is actually a SELECT query this method returns a pandas DataFrame representation of query supplied otherwise returns None. Pandas data types are inferred from PostgreSQL data types. In the case of PostgreSQL date types, dates are attempted to be converted, but on failure a data type 'object' is used. Raises: CartoException: If there's any error when executing the query Examples: Query a table in CARTO and write a new table that is result of query. This query gets the 10 highest values from a table and returns a dataframe, as well as creating a new table called 'top_ten' in the CARTO account. .. code:: python topten_df = cc.query( ''' SELECT * FROM my_table ORDER BY value_column DESC LIMIT 10 ''', table_name='top_ten' ) This query joins points to polygons based on intersection, and aggregates by summing the values of the points in each polygon. The query returns a dataframe, with a geometry column that contains polygons and also creates a new table called 'points_aggregated_to_polygons' in the CARTO account. .. code:: python points_aggregated_to_polygons = cc.query( ''' SELECT polygons.*, sum(points.values) FROM polygons JOIN points ON ST_Intersects(points.the_geom, polygons.the_geom) GROUP BY polygons.the_geom, polygons.cartodb_id ''', table_name='points_aggregated_to_polygons', decode_geom=True ) Drops `my_table` .. code:: python cc.query( ''' DROP TABLE my_table ''' ) Updates the column `my_column` in the table `my_table` .. code:: python cc.query( ''' UPDATE my_table SET my_column = 1 ''' ) """ dataframe = None is_select_query = is_select or (is_select is None and query.strip().lower().startswith('select')) if is_select_query: if table_name: dataset = Dataset.create_from_query(self, query, table_name) dataframe = dataset.download(decode_geom=decode_geom) else: dataframe = self.fetch(query, decode_geom=decode_geom) else: self.execute(query) return dataframe
python
{ "resource": "" }
q18620
CartoContext._check_query
train
def _check_query(self, query, style_cols=None): """Checks if query from Layer or QueryLayer is valid""" try: self.sql_client.send( utils.minify_sql(( 'EXPLAIN', 'SELECT', ' {style_cols}{comma}', ' the_geom, the_geom_webmercator', 'FROM ({query}) _wrap;', )).format(query=query, comma=',' if style_cols else '', style_cols=(','.join(style_cols) if style_cols else '')), do_post=False) except Exception as err: raise ValueError(('Layer query `{query}` and/or style column(s) ' '{cols} are not valid: {err}.' '').format(query=query, cols=', '.join(['`{}`'.format(c) for c in style_cols]), err=err))
python
{ "resource": "" }
q18621
CartoContext._get_bounds
train
def _get_bounds(self, layers): """Return the bounds of all data layers involved in a cartoframes map. Args: layers (list): List of cartoframes layers. See `cartoframes.layers` for all types. Returns: dict: Dictionary of northern, southern, eastern, and western bounds of the superset of data layers. Keys are `north`, `south`, `east`, and `west`. Units are in WGS84. """ extent_query = ('SELECT ST_EXTENT(the_geom) AS the_geom ' 'FROM ({query}) AS t{idx}\n') union_query = 'UNION ALL\n'.join( [extent_query.format(query=layer.orig_query, idx=idx) for idx, layer in enumerate(layers) if not layer.is_basemap]) extent = self.sql_client.send( utils.minify_sql(( 'SELECT', ' ST_XMIN(ext) AS west,', ' ST_YMIN(ext) AS south,', ' ST_XMAX(ext) AS east,', ' ST_YMAX(ext) AS north', 'FROM (', ' SELECT ST_Extent(the_geom) AS ext', ' FROM ({union_query}) AS _wrap1', ') AS _wrap2', )).format(union_query=union_query), do_post=False) return extent['rows'][0]
python
{ "resource": "" }
q18622
vmap
train
def vmap(layers, context, size=None, basemap=BaseMaps.voyager, bounds=None, viewport=None, **kwargs): """CARTO VL-powered interactive map Args: layers (list of Layer-types): List of layers. One or more of :py:class:`Layer <cartoframes.contrib.vector.Layer>`, :py:class:`QueryLayer <cartoframes.contrib.vector.QueryLayer>`, or :py:class:`LocalLayer <cartoframes.contrib.vector.LocalLayer>`. context (:py:class:`CartoContext <cartoframes.context.CartoContext>`): A :py:class:`CartoContext <cartoframes.context.CartoContext>` instance size (tuple of int or str): a (width, height) pair for the size of the map. Default is None, which makes the map 100% wide and 640px tall. If specified as int, will be used as pixels, but you can also use string values for the CSS attributes. So, you could specify it as size=('75%', 250). basemap (str): - if a `str`, name of a CARTO vector basemap. One of `positron`, `voyager`, or `darkmatter` from the :obj:`BaseMaps` class - if a `dict`, Mapbox or other style as the value of the `style` key. If a Mapbox style, the access token is the value of the `token` key. bounds (dict or list): a dict with `east`,`north`,`west`,`south` properties, or a list of floats in the following order: [west, south, east, north]. If not provided the bounds will be automatically calculated to fit all features. viewport (dict): Configure where and how map will be centered. If not specified, or specified without lat / lng, automatic bounds or the bounds argument will be used to center the map. You can specify only zoom, bearing or pitch if you desire automatic bounds but want to tweak the viewport. - lng (float): Longitude to center the map on. Must specify lat as well. - lat (float): Latitude to center the map on. Must specify lng as well. - zoom (float): Zoom level. - bearing (float): A bearing, or heading, is the direction you're facing, measured clockwise as an angle from true north on a compass. (north is 0, east is 90, south is 180, and west is 270). - pitch (float): The angle towards the horizon measured in degrees, with a range between 0 and 60 degrees. Zero degrees results in a two-dimensional map, as if your line of sight forms a perpendicular angle with the earth's surface. Example: .. code:: from cartoframes.contrib import vector from cartoframes import CartoContext cc = CartoContext( base_url='https://your_user_name.carto.com', api_key='your api key' ) vector.vmap([vector.Layer('table in your account'), ], cc) CARTO basemap style. .. code:: from cartoframes.contrib import vector from cartoframes import CartoContext cc = CartoContext( base_url='https://your_user_name.carto.com', api_key='your api key' ) vector.vmap( [vector.Layer('table in your account'), ], context=cc, basemap=vector.BaseMaps.darkmatter ) Custom basemap style. Here we use the Mapbox streets style, which requires an access token. .. code:: from cartoframes.contrib import vector from cartoframes import CartoContext cc = CartoContext( base_url='https://<username>.carto.com', api_key='your api key' ) vector.vmap( [vector.Layer('table in your account'), ], context=cc, basemap={ 'style': 'mapbox://styles/mapbox/streets-v9', 'token: '<your mapbox token>' } ) Custom bounds .. code:: from cartoframes.contrib import vector from cartoframes import CartoContext cc = CartoContext( base_url='https://<username>.carto.com', api_key='your api key' ) vector.vmap( [vector.Layer('table in your account'), ], context=cc, bounds={'west': -10, 'east': 10, 'north': -10, 'south': 10} ) Adjusting the map's viewport. .. code:: from cartoframes.contrib import vector from cartoframes import CartoContext cc = CartoContext( base_url='https://<username>.carto.com', api_key='your api key' ) vector.vmap( [vector.Layer('table in your account'), ], context=cc, viewport={'lng': 10, 'lat': 15, 'zoom': 10, 'bearing': 90, 'pitch': 45} ) """ if bounds: bounds = _format_bounds(bounds) else: bounds = _get_super_bounds(layers, context) jslayers = [] for _, layer in enumerate(layers): is_local = isinstance(layer, LocalLayer) intera = ( dict(event=layer.interactivity, header=layer.header) if layer.interactivity is not None else None ) jslayers.append({ 'is_local': is_local, 'styling': layer.styling, 'source': layer._geojson_str if is_local else layer.query, 'interactivity': intera, 'legend': layer.legend }) _carto_vl_path = kwargs.get('_carto_vl_path', _DEFAULT_CARTO_VL_PATH) _airship_path = kwargs.get('_airship_path', None) html = _get_html_doc( size, jslayers, bounds, creds=context.creds, viewport=viewport, basemap=basemap, _carto_vl_path=_carto_vl_path, _airship_path=_airship_path) return HTML(html)
python
{ "resource": "" }
q18623
_get_bounds_local
train
def _get_bounds_local(layers): """Aggregates bounding boxes of all local layers return: dict of bounding box of all bounds in layers """ if not layers: return {'west': None, 'south': None, 'east': None, 'north': None} bounds = layers[0].bounds for layer in layers[1:]: bounds = np.concatenate( ( np.minimum( bounds[:2], layer.bounds[:2] ), np.maximum( bounds[2:], layer.bounds[2:] ) ) ) return dict(zip(['west', 'south', 'east', 'north'], bounds))
python
{ "resource": "" }
q18624
_combine_bounds
train
def _combine_bounds(bbox1, bbox2): """Takes two bounding boxes dicts and gives a new bbox that encompasses them both""" WORLD = {'west': -180, 'south': -85.1, 'east': 180, 'north': 85.1} ALL_KEYS = set(WORLD.keys()) def dict_all_nones(bbox_dict): """Returns True if all dict values are None""" return all(v is None for v in bbox_dict.values()) # if neither are defined, use the world if not bbox1 and not bbox2: return WORLD # if all nones, use the world if dict_all_nones(bbox1) and dict_all_nones(bbox2): return WORLD assert ALL_KEYS == set(bbox1.keys()) and ALL_KEYS == set(bbox2.keys()),\ 'Input bounding boxes must have the same dictionary keys' # create dict with cardinal directions and None-valued keys outbbox = dict.fromkeys(['west', 'south', 'east', 'north']) def conv2nan(val): """convert Nones to np.nans""" return np.nan if val is None else val # set values and/or defaults for coord in ('north', 'east'): outbbox[coord] = np.nanmax([ conv2nan(bbox1[coord]), conv2nan(bbox2[coord]) ]) for coord in ('south', 'west'): outbbox[coord] = np.nanmin([ conv2nan(bbox1[coord]), conv2nan(bbox2[coord]) ]) return outbbox
python
{ "resource": "" }
q18625
QueryLayer._compose_style
train
def _compose_style(self): """Appends `prop` with `style` to layer styling""" valid_styles = ( 'color', 'width', 'filter', 'strokeWidth', 'strokeColor', ) self.styling = '\n'.join( '{prop}: {style}'.format(prop=s, style=getattr(self, s)) for s in valid_styles if getattr(self, s) is not None )
python
{ "resource": "" }
q18626
QueryLayer._set_interactivity
train
def _set_interactivity(self, interactivity): """Adds interactivity syntax to the styling""" event_default = 'hover' if interactivity is None: return if isinstance(interactivity, (tuple, list)): self.interactivity = event_default interactive_cols = '\n'.join( '@{0}: ${0}'.format(col) for col in interactivity ) elif isinstance(interactivity, str): self.interactivity = event_default interactive_cols = '@{0}: ${0}'.format(interactivity) elif isinstance(interactivity, dict): self.interactivity = interactivity.get('event', event_default) self.header = interactivity.get('header') interactive_cols = '\n'.join( '@{0}: ${0}'.format(col) for col in interactivity['cols'] ) else: raise ValueError('`interactivity` must be a str, a list of str, ' 'or a dict with a `cols` key') self.styling = '\n'.join([interactive_cols, self.styling])
python
{ "resource": "" }
q18627
get_map_name
train
def get_map_name(layers, has_zoom): """Creates a map named based on supplied parameters""" version = '20170406' num_layers = len(non_basemap_layers(layers)) has_labels = len(layers) > 1 and layers[-1].is_basemap has_time = has_time_layer(layers) basemap_id = dict(light=0, dark=1, voyager=2)[layers[0].source] return ('cartoframes_ver{version}' '_layers{layers}' '_time{has_time}' '_baseid{baseid}' '_labels{has_labels}' '_zoom{has_zoom}').format( version=version, layers=num_layers, has_time=('1' if has_time else '0'), # TODO: Remove this once baselayer urls can be passed in named # map config baseid=basemap_id, has_labels=('1' if has_labels else '0'), has_zoom=('1' if has_zoom else '0') )
python
{ "resource": "" }
q18628
get_map_template
train
def get_map_template(layers, has_zoom): """Creates a map template based on custom parameters supplied""" num_layers = len(non_basemap_layers(layers)) has_time = has_time_layer(layers) name = get_map_name(layers, has_zoom=has_zoom) # Add basemap layer layers_field = [{ 'type': 'http', 'options': { # TODO: Remove this once baselayer urls can be passed in named map # config 'urlTemplate': layers[0].url, # 'urlTemplate': '<%= basemap_url %>', 'subdomains': "abcd", }, }] # [BUG] Remove this once baselayer urls can be passed in named map config placeholders = {} # placeholders = { # 'basemap_url': { # 'type': 'sql_ident', # 'default': ('https://cartodb-basemaps-{s}.global.ssl.fastly.net/' # 'dark_all/{z}/{x}/{y}.png'), # }, # } for idx in range(num_layers): layers_field.extend([{ 'type': ('torque' if (has_time and idx == (num_layers - 1)) else 'mapnik'), 'options': { 'cartocss_version': '2.1.1', 'cartocss': '<%= cartocss_{idx} %>'.format(idx=idx), 'sql': '<%= sql_{idx} %>'.format(idx=idx), # [BUG] No [] for templating # 'interactivity': '<%= interactivity_{idx} %>'.format( # idx=idx), } }]) placeholders.update({ 'cartocss_{idx}'.format(idx=idx): { 'type': 'sql_ident', 'default': ('#layer {' ' marker-fill: red;' ' marker-width: 5;' ' marker-allow-overlap: true;' ' marker-line-color: #000; }'), }, 'sql_{idx}'.format(idx=idx): { 'type': 'sql_ident', 'default': ( "SELECT " "ST_PointFromText('POINT(0 0)', 4326) AS the_geom, " "1 AS cartodb_id, " "ST_PointFromText('Point(0 0)', 3857) AS " "the_geom_webmercator" ), }, # [BUG] No [] for templating # 'interactivity_{idx}'.format(idx=idx): { # 'type': 'sql_ident', # 'default': '["cartodb_id"]', # }, }) # Add labels if they're in front if num_layers > 0 and layers[-1].is_basemap: layers_field.extend([{ 'type': 'http', 'options': { # TODO: Remove this once baselayer urls can be passed in named # map config 'urlTemplate': layers[-1].url, # 'urlTemplate': '<%= basemap_url %>', 'subdomains': "abcd", }, }]) if has_zoom: view = { 'zoom': '<%= zoom %>', 'center': { 'lng': '<%= lng %>', 'lat': '<%= lat %>', }, } placeholders.update({ 'zoom': { 'type': 'number', 'default': 3, }, 'lng': { 'type': 'number', 'default': 0, }, 'lat': { 'type': 'number', 'default': 0, }, }) else: view = { 'bounds': { 'west': '<%= west %>', 'south': '<%= south %>', 'east': '<%= east %>', 'north': '<%= north %>', }, } placeholders.update({ 'west': { 'type': 'number', 'default': -45, }, 'south': { 'type': 'number', 'default': -45, }, 'east': { 'type': 'number', 'default': 45, }, 'north': { 'type': 'number', 'default': 45, }, }) return json.dumps({ 'version': '0.0.1', 'name': name, 'placeholders': placeholders, 'layergroup': { 'version': '1.0.1', 'layers': layers_field, }, 'view': view, })
python
{ "resource": "" }
q18629
QueryLayer._parse_color
train
def _parse_color(self, color): """Setup the color scheme""" # If column was specified, force a scheme # It could be that there is a column named 'blue' for example if isinstance(color, dict): if 'column' not in color: raise ValueError("Color must include a 'column' value") # get scheme if exists. if not, one will be chosen later if needed scheme = color.get('scheme') color = color['column'] self.style_cols[color] = None elif (color and color[0] != '#' and color not in webcolors.CSS3_NAMES_TO_HEX): # color specified that is not a web color or hex value so its # assumed to be a column name color = color self.style_cols[color] = None scheme = None else: # assume it's a color (hex, rgb(...), or webcolor name) color = color scheme = None return color, scheme
python
{ "resource": "" }
q18630
QueryLayer._parse_time
train
def _parse_time(self, time): """Parse time inputs""" if time is None: return None if isinstance(time, dict): if 'column' not in time: raise ValueError("`time` must include a 'column' key/value") time_column = time['column'] time_options = time elif isinstance(time, str): time_column = time time_options = {} else: raise ValueError( '`time` should be a column name or dictionary of ' 'styling options.') self.style_cols[time_column] = None time = { 'column': time_column, 'method': 'count', 'cumulative': False, 'frames': 256, 'duration': 30, 'trails': 2, } time.update(time_options) return time
python
{ "resource": "" }
q18631
QueryLayer._parse_size
train
def _parse_size(self, size, has_time=False): """Parse size inputs""" if has_time: size = size or 4 else: size = size or 10 if isinstance(size, str): size = {'column': size} if isinstance(size, dict): if 'column' not in size: raise ValueError("`size` must include a 'column' key/value") if has_time: raise ValueError("When time is specified, size can " "only be a fixed size") old_size = size # Default size range, bins, and bin_method size = { 'range': [5, 25], 'bins': 5, 'bin_method': BinMethod.quantiles, } # Assign default range and update if min/max given old_size['range'] = old_size.get('range', size['range']) if 'min' in old_size: old_size['range'][0] = old_size['min'] old_size.pop('min') if 'max' in old_size: old_size['range'][1] = old_size['max'] old_size.pop('max') # Update all the keys in size if they exist in old_size size.update(old_size) self.style_cols[size['column']] = None return size
python
{ "resource": "" }
q18632
QueryLayer._validate_columns
train
def _validate_columns(self): """Validate the options in the styles""" geom_cols = {'the_geom', 'the_geom_webmercator', } col_overlap = set(self.style_cols) & geom_cols if col_overlap: raise ValueError('Style columns cannot be geometry ' 'columns. `{col}` was chosen.'.format( col=','.join(col_overlap)))
python
{ "resource": "" }
q18633
QueryLayer._setup
train
def _setup(self, layers, layer_idx): """Setups layers once geometry types and data types are known, and when a map is requested to be rendered from zero or more data layers""" basemap = layers[0] # if color not specified, choose a default if self.time: # default time/torque color self.color = self.color or '#2752ff' else: self.color = self.color or DEFAULT_COLORS[layer_idx] if isinstance(self.size, (int, float)): if self.geom_type == 'point': self.size = self.size or 4 else: self.size = self.size or 1.5 # choose appropriate scheme if not already specified if (not self.scheme) and (self.color in self.style_cols): self._choose_scheme() if self.time: self._setup_time(basemap) else: # use turbo-carto for non-animated maps self.cartocss = self._get_cartocss(basemap)
python
{ "resource": "" }
q18634
QueryLayer._choose_scheme
train
def _choose_scheme(self): """Choose color scheme""" if self.style_cols[self.color] in ('string', 'boolean', ): self.scheme = antique(10) elif self.style_cols[self.color] in ('number', ): self.scheme = mint(5) elif self.style_cols[self.color] in ('date', 'geometry', ): raise ValueError( 'Cannot style column `{col}` of type `{type}`. It must be ' 'numeric, text, or boolean.'.format( col=self.color, type=self.style_cols[self.color]))
python
{ "resource": "" }
q18635
normalize_names
train
def normalize_names(column_names): """Given an arbitrary column name, translate to a SQL-normalized column name a la CARTO's Import API will translate to Examples * 'Field: 2' -> 'field_2' * '2 Items' -> '_2_items' * 'Unnamed: 0' -> 'unnamed_0', * '201moore' -> '_201moore', * '201moore' -> '_201moore_1', * 'Acadia 1.2.3' -> 'acadia_1_2_3', * 'old_soaker' -> 'old_soaker', * '_testingTesting' -> '_testingtesting', * 1 -> '_1', * 1.0 -> '_1_0', * 'public' -> 'public', * 'SELECT' -> '_select', * 'à' -> 'a', * 'longcolumnshouldbesplittedsomehowanditellyouwhereitsgonnabesplittedrightnow' -> \ 'longcolumnshouldbesplittedsomehowanditellyouwhereitsgonnabespli', * 'longcolumnshouldbesplittedsomehowanditellyouwhereitsgonnabesplittedrightnow' -> \ 'longcolumnshouldbesplittedsomehowanditellyouwhereitsgonnabe_1', * 'all' -> '_all' Args: column_names (list): List of column names that will be SQL normalized Returns: list: List of SQL-normalized column names """ result = [] for column_name in column_names: column = Column(column_name).normalize(forbidden_column_names=result) result.append(column.name) return result
python
{ "resource": "" }
q18636
cssify
train
def cssify(css_dict): """Function to get CartoCSS from Python dicts""" css = '' for key, value in dict_items(css_dict): css += '{key} {{ '.format(key=key) for field, field_value in dict_items(value): css += ' {field}: {field_value};'.format(field=field, field_value=field_value) css += '} ' return css.strip()
python
{ "resource": "" }
q18637
temp_ignore_warnings
train
def temp_ignore_warnings(func): """Temporarily ignores warnings like those emitted by the carto python sdk """ @wraps(func) def wrapper(*args, **kwargs): """wrapper around func to filter/reset warnings""" with catch_warnings(): filterwarnings('ignore') evaled_func = func(*args, **kwargs) return evaled_func return wrapper
python
{ "resource": "" }
q18638
get_columns
train
def get_columns(context, query): """Get list of cartoframes.columns.Column""" table_info = context.sql_client.send(query) if 'fields' in table_info: return Column.from_sql_api_fields(table_info['fields']) return None
python
{ "resource": "" }
q18639
get_column_names
train
def get_column_names(context, query): """Get column names and types from a query""" table_info = context.sql_client.send(query) if 'fields' in table_info: return table_info['fields'] return None
python
{ "resource": "" }
q18640
_encode_decode_decorator
train
def _encode_decode_decorator(func): """decorator for encoding and decoding geoms""" def wrapper(*args): """error catching""" try: processed_geom = func(*args) return processed_geom except ImportError as err: raise ImportError('The Python package `shapely` needs to be ' 'installed to encode or decode geometries. ' '({})'.format(err)) return wrapper
python
{ "resource": "" }
q18641
_decode_geom
train
def _decode_geom(ewkb): """Decode encoded wkb into a shapely geometry """ # it's already a shapely object if hasattr(ewkb, 'geom_type'): return ewkb from shapely import wkb from shapely import wkt if ewkb: try: return wkb.loads(ba.unhexlify(ewkb)) except Exception: try: return wkb.loads(ba.unhexlify(ewkb), hex=True) except Exception: try: return wkb.loads(ewkb, hex=True) except Exception: try: return wkb.loads(ewkb) except Exception: try: return wkt.loads(ewkb) except Exception: pass return None
python
{ "resource": "" }
q18642
Dataset.exists
train
def exists(self): """Checks to see if table exists""" try: self.cc.sql_client.send( 'EXPLAIN SELECT * FROM "{table_name}"'.format( table_name=self.table_name), do_post=False) return True except CartoException as err: # If table doesn't exist, we get an error from the SQL API self.cc._debug_print(err=err) return False
python
{ "resource": "" }
q18643
Credentials.save
train
def save(self, config_loc=None): """Saves current user credentials to user directory. Args: config_loc (str, optional): Location where credentials are to be stored. If no argument is provided, it will be send to the default location. Example: .. code:: from cartoframes import Credentials creds = Credentials(username='eschbacher', key='abcdefg') creds.save() # save to default location """ if not os.path.exists(_USER_CONFIG_DIR): """create directory if not exists""" os.makedirs(_USER_CONFIG_DIR) with open(_DEFAULT_PATH, 'w') as f: json.dump({'key': self._key, 'base_url': self._base_url, 'username': self._username}, f)
python
{ "resource": "" }
q18644
Credentials._retrieve
train
def _retrieve(self, config_file=None): """Retrives credentials from a file. Defaults to the user config directory""" with open(config_file or _DEFAULT_PATH, 'r') as f: creds = json.load(f) self._key = creds.get('key') self._base_url = creds.get('base_url') self._username = creds.get('username')
python
{ "resource": "" }
q18645
Credentials.delete
train
def delete(self, config_file=None): """Deletes the credentials file specified in `config_file`. If no file is specified, it deletes the default user credential file. Args: config_file (str): Path to configuration file. Defaults to delete the user default location if `None`. .. Tip:: To see if there is a default user credential file stored, do the following:: >>> creds = Credentials() >>> print(creds) Credentials(username=eschbacher, key=abcdefg, base_url=https://eschbacher.carto.com/) """ path_to_remove = config_file or _DEFAULT_PATH try: os.remove(path_to_remove) print('Credentials at {} successfully removed.'.format( path_to_remove)) except OSError as err: warnings.warn('No credential file found at {}.'.format( path_to_remove))
python
{ "resource": "" }
q18646
Credentials.set
train
def set(self, key=None, username=None, base_url=None): """Update the credentials of a Credentials instance instead with new values. Args: key (str): API key of user account. Defaults to previous value if not specified. username (str): User name of account. This parameter is optional if `base_url` is not specified, but defaults to the previous value if not set. base_url (str): Base URL of user account. This parameter is optional if `username` is specified and on CARTO's cloud-based account. Generally of the form ``https://your_user_name.carto.com/`` for cloud-based accounts. If on-prem or otherwise, contact your admin. Example: .. code:: from cartoframes import Credentials # load credentials saved in previous session creds = Credentials() # set new API key creds.set(key='new_api_key') # save new creds to default user config directory creds.save() Note: If the `username` is specified but the `base_url` is not, the `base_url` will be updated to ``https://<username>.carto.com/``. """ self.__init__(key=(key or self._key), username=(username or self._username), base_url=base_url)
python
{ "resource": "" }
q18647
Credentials.base_url
train
def base_url(self, base_url=None): """Return or set `base_url`. Args: base_url (str, optional): If set, updates the `base_url`. Otherwise returns current `base_url`. Note: This does not update the `username` attribute. Separately update the username with ``Credentials.username`` or update `base_url` and `username` at the same time with ``Credentials.set``. Example: .. code:: >>> from cartoframes import Credentials # load credentials saved in previous session >>> creds = Credentials() # returns current base_url >>> creds.base_url() 'https://eschbacher.carto.com/' # updates base_url with new value >>> creds.base_url('new_base_url') """ if base_url: # POSTs need to be over HTTPS (e.g., Import API reverts to a GET) if urlparse(base_url).scheme != 'https': raise ValueError( '`base_url`s need to be over `https`. Update your ' '`base_url`.' ) self._base_url = base_url else: return self._base_url
python
{ "resource": "" }
q18648
chat
train
def chat(room=None, stream=None, **kwargs): """Quick setup for a chatroom. :param str room: Roomname, if not given, a random sequence is generated and printed. :param MediaStream stream: The media stream to share, if not given a CameraStream will be created. :rtype: WebRTCRoom """ if room is None: room = _random_room() print("room =", room) if stream is None: stream = CameraStream() room = WebRTCRoomMqtt(stream=stream, room=room) box = widgets.HBox(children=[]) widgets.jslink((room, 'streams'), (box, 'children')) display(box) return room
python
{ "resource": "" }
q18649
SceneGraph.add_child
train
def add_child(self, child): """Adds an object as a child in the scene graph.""" if not issubclass(child.__class__, SceneGraph): raise TypeError("child must have parent/child iteration implemented to be a node in a SceneGraph.") # if not hasattr(child, 'update'): # raise TypeError("child must have an attribute update()") child._parent = self self._children.append(child)
python
{ "resource": "" }
q18650
ProjectionBase.copy
train
def copy(self): """Returns a copy of the projection matrix""" params = {} for key, val in self.__dict__.items(): if 'matrix' not in key: k = key[1:] if key[0] == '_' else key params[k] = val # params = {param: params[param] for param in params} return self.__class__(**params)
python
{ "resource": "" }
q18651
PerspectiveProjection.match_aspect_to_viewport
train
def match_aspect_to_viewport(self): """Updates Camera.aspect to match the viewport's aspect ratio.""" viewport = self.viewport self.aspect = float(viewport.width) / viewport.height
python
{ "resource": "" }
q18652
Camera.to_pickle
train
def to_pickle(self, filename): """Save Camera to a pickle file, given a filename.""" with open(filename, 'wb') as f: pickle.dump(self, f)
python
{ "resource": "" }
q18653
Camera.from_pickle
train
def from_pickle(cls, filename): """Loads and Returns a Camera from a pickle file, given a filename.""" with open(filename, 'rb') as f: cam = pickle.load(f) projection = cam.projection.copy() return cls(projection=projection, position=cam.position.xyz, rotation=cam.rotation.__class__(*cam.rotation[:]))
python
{ "resource": "" }
q18654
CameraGroup.look_at
train
def look_at(self, x, y, z): """Converges the two cameras to look at the specific point""" for camera in self.cameras: camera.look_at(x, y, z)
python
{ "resource": "" }
q18655
FBO.bind
train
def bind(self): """Bind the FBO. Anything drawn afterward will be stored in the FBO's texture.""" # This is called simply to deal with anything that might be currently bound (for example, Pyglet objects), gl.glBindTexture(gl.GL_TEXTURE_2D, 0) # Store current viewport size for later self._old_viewport = get_viewport() # Bind the FBO, and change the viewport to fit its texture. gl.glBindFramebufferEXT(gl.GL_FRAMEBUFFER_EXT, self.id) # Rendering off-screen gl.glViewport(0, 0, self.texture.width, self.texture.height)
python
{ "resource": "" }
q18656
FBO.unbind
train
def unbind(self): """Unbind the FBO.""" # Unbind the FBO if self.texture.mipmap: with self.texture: self.texture.generate_mipmap() gl.glBindFramebufferEXT(gl.GL_FRAMEBUFFER_EXT, 0) # Restore the old viewport size gl.glViewport(*self._old_viewport)
python
{ "resource": "" }
q18657
create_opengl_object
train
def create_opengl_object(gl_gen_function, n=1): """Returns int pointing to an OpenGL texture""" handle = gl.GLuint(1) gl_gen_function(n, byref(handle)) # Create n Empty Objects if n > 1: return [handle.value + el for el in range(n)] # Return list of handle values else: return handle.value
python
{ "resource": "" }
q18658
vec
train
def vec(data, dtype=float): """ Makes GLfloat or GLuint vector containing float or uint args. By default, newtype is 'float', but can be set to 'int' to make uint list. """ gl_types = {float: gl.GLfloat, int: gl.GLuint} try: gl_dtype = gl_types[dtype] except KeyError: raise TypeError('dtype not recognized. Recognized types are int and float') if gl_dtype == gl.GLuint: for el in data: if el < 0: raise ValueError("integer ratcave.vec arrays are unsigned--negative values are not supported.") return (gl_dtype * len(data))(*data)
python
{ "resource": "" }
q18659
calculate_normals
train
def calculate_normals(vertices): """Return Nx3 normal array from Nx3 vertex array.""" verts = np.array(vertices, dtype=float) normals = np.zeros_like(verts) for start, end in pairwise(np.arange(0, verts.shape[0] + 1, 3)): vecs = np.vstack((verts[start + 1] - verts[start], verts[start + 2] - verts[start])) # Get triangle of vertices and calculate 2-1 and 3-1 vecs /= np.linalg.norm(vecs, axis=1, keepdims=True) # normalize vectors normal = np.cross(*vecs) # normal is the cross products of vectors. normals[start:end, :] = normal / np.linalg.norm(normal) return normals
python
{ "resource": "" }
q18660
Scene.draw
train
def draw(self, clear=True): """Draw each visible mesh in the scene from the perspective of the scene's camera and lit by its light.""" if clear: self.clear() with self.gl_states, self.camera, self.light: for mesh in self.meshes: try: mesh.draw() except AttributeError: pass
python
{ "resource": "" }
q18661
Scene.draw360_to_texture
train
def draw360_to_texture(self, cubetexture, **kwargs): """ Draw each visible mesh in the scene from the perspective of the scene's camera and lit by its light, and applies it to each face of cubetexture, which should be currently bound to an FBO. """ assert self.camera.projection.aspect == 1. and self.camera.projection.fov_y == 90 # todo: fix aspect property, which currently reads from viewport. if not isinstance(cubetexture, TextureCube): raise ValueError("Must render to TextureCube") # for face, rotation in enumerate([[180, 90, 0], [180, -90, 0], [90, 0, 0], [-90, 0, 0], [180, 0, 0], [0, 0, 180]]): old_rotation = self.camera.rotation self.camera.rotation = self.camera.rotation.to_euler(units='deg') for face, rotation in enumerate([[180, -90, 0], [180, 90, 0], [90, 0, 0], [-90, 0, 0], [180, 0, 0], [0, 0, 180]]): #first 2 switched self.camera.rotation.xyz = rotation cubetexture.attach_to_fbo(face) self.draw(**kwargs) self.camera.rotation = old_rotation
python
{ "resource": "" }
q18662
VAO.assign_vertex_attrib_location
train
def assign_vertex_attrib_location(self, vbo, location): """Load data into a vbo""" with vbo: if self.n_verts: assert vbo.data.shape[0] == self.n_verts else: self.n_verts = vbo.data.shape[0] # vbo.buffer_data() gl.glVertexAttribPointer(location, vbo.data.shape[1], gl.GL_FLOAT, gl.GL_FALSE, 0, 0) gl.glEnableVertexAttribArray(location)
python
{ "resource": "" }
q18663
Mesh.copy
train
def copy(self): """Returns a copy of the Mesh.""" return Mesh(arrays=deepcopy([arr.copy() for arr in [self.vertices, self.normals, self.texcoords]]), texture=self.textures, mean_center=deepcopy(self._mean_center), position=self.position.xyz, rotation=self.rotation.__class__(*self.rotation[:]), scale=self.scale.xyz, drawmode=self.drawmode, point_size=self.point_size, dynamic=self.dynamic, visible=self.visible, gl_states=deepcopy(self.gl_states))
python
{ "resource": "" }
q18664
Mesh.from_pickle
train
def from_pickle(cls, filename): """Loads and Returns a Mesh from a pickle file, given a filename.""" with open(filename, 'rb') as f: mesh = pickle.load(f).copy() return mesh
python
{ "resource": "" }
q18665
Mesh.reset_uniforms
train
def reset_uniforms(self): """ Resets the uniforms to the Mesh object to the ""global"" coordinate system""" self.uniforms['model_matrix'] = self.model_matrix_global.view() self.uniforms['normal_matrix'] = self.normal_matrix_global.view()
python
{ "resource": "" }
q18666
Mesh._fill_vao
train
def _fill_vao(self): """Put array location in VAO for shader in same order as arrays given to Mesh.""" with self.vao: self.vbos = [] for loc, verts in enumerate(self.arrays): vbo = VBO(verts) self.vbos.append(vbo) self.vao.assign_vertex_attrib_location(vbo, loc)
python
{ "resource": "" }
q18667
Mesh.draw
train
def draw(self): """ Draw the Mesh if it's visible, from the perspective of the camera and lit by the light. The function sends the uniforms""" if not self.vao: self.vao = VAO(indices=self.array_indices) self._fill_vao() if self.visible: if self.dynamic: for vbo in self.vbos: vbo._buffer_subdata() if self.drawmode == gl.GL_POINTS: gl.glPointSize(self.point_size) for texture in self.textures: texture.bind() with self.vao as vao: self.uniforms.send() vao.draw(mode=self.drawmode) for texture in self.textures: texture.unbind()
python
{ "resource": "" }
q18668
cross_product_matrix
train
def cross_product_matrix(vec): """Returns a 3x3 cross-product matrix from a 3-element vector.""" return np.array([[0, -vec[2], vec[1]], [vec[2], 0, -vec[0]], [-vec[1], vec[0], 0]])
python
{ "resource": "" }
q18669
Texture.max_texture_limit
train
def max_texture_limit(self): """The maximum number of textures available for this graphic card's fragment shader.""" max_unit_array = (gl.GLint * 1)() gl.glGetIntegerv(gl.GL_MAX_TEXTURE_IMAGE_UNITS, max_unit_array) return max_unit_array[0]
python
{ "resource": "" }
q18670
Texture._apply_filter_settings
train
def _apply_filter_settings(self): """Applies some hard-coded texture filtering settings.""" # TODO: Allow easy customization of filters if self.mipmap: gl.glTexParameterf(self.target, gl.GL_TEXTURE_MIN_FILTER, gl.GL_LINEAR_MIPMAP_LINEAR) else: gl.glTexParameterf(self.target, gl.GL_TEXTURE_MIN_FILTER, gl.GL_LINEAR) gl.glTexParameterf(self.target, gl.GL_TEXTURE_MAG_FILTER, gl.GL_LINEAR) gl.glTexParameterf(self.target, gl.GL_TEXTURE_WRAP_S, gl.GL_CLAMP_TO_EDGE) gl.glTexParameterf(self.target, gl.GL_TEXTURE_WRAP_T, gl.GL_CLAMP_TO_EDGE)
python
{ "resource": "" }
q18671
Texture.attach_to_fbo
train
def attach_to_fbo(self): """Attach the texture to a bound FBO object, for rendering to texture.""" gl.glFramebufferTexture2DEXT(gl.GL_FRAMEBUFFER_EXT, self.attachment_point, self.target0, self.id, 0)
python
{ "resource": "" }
q18672
Texture.from_image
train
def from_image(cls, img_filename, mipmap=False, **kwargs): """Uses Pyglet's image.load function to generate a Texture from an image file. If 'mipmap', then texture will have mipmap layers calculated.""" img = pyglet.image.load(img_filename) tex = img.get_mipmapped_texture() if mipmap else img.get_texture() gl.glBindTexture(gl.GL_TEXTURE_2D, 0) return cls(id=tex.id, data=tex, mipmap=mipmap, **kwargs)
python
{ "resource": "" }
q18673
TextureCube._genTex2D
train
def _genTex2D(self): """Generate an empty texture in OpenGL""" for face in range(6): gl.glTexImage2D(self.target0 + face, 0, self.internal_fmt, self.width, self.height, 0, self.pixel_fmt, gl.GL_UNSIGNED_BYTE, 0)
python
{ "resource": "" }
q18674
WavefrontReader.get_mesh
train
def get_mesh(self, body_name, **kwargs): """Builds Mesh from geom name in the wavefront file. Takes all keyword arguments that Mesh takes.""" body = self.bodies[body_name] vertices = body['v'] normals = body['vn'] if 'vn' in body else None texcoords = body['vt'] if 'vt' in body else None mesh = Mesh.from_incomplete_data(vertices=vertices, normals=normals, texcoords=texcoords, **kwargs) uniforms = kwargs['uniforms'] if 'uniforms' in kwargs else {} if 'material' in body: material_props = {self.material_property_map[key]: value for key, value in iteritems(body['material'])} for key, value in iteritems(material_props): if isinstance(value, str): if key == 'map_Kd': if not value in self.textures: self.textures[value] = Texture.from_image(value) mesh.textures.append(self.textures[value]) else: setattr(mesh, key, value) elif hasattr(value, '__len__'): # iterable materials mesh.uniforms[key] = value elif key in ['d', 'illum']: # integer materials mesh.uniforms[key] = value elif key in ['spec_weight', 'Ni']: # float materials: should be specially converted to float if not already done. mesh.uniforms[key] = float(value) else: print('Warning: Not applying uniform {}: {}'.format(key, value)) return mesh
python
{ "resource": "" }
q18675
UniformCollection.send
train
def send(self): """ Sends all the key-value pairs to the graphics card. These uniform variables will be available in the currently-bound shader. """ for name, array in iteritems(self): shader_id = c_int(0) gl.glGetIntegerv(gl.GL_CURRENT_PROGRAM, byref(shader_id)) if shader_id.value == 0: raise UnboundLocalError("""Shader not bound to OpenGL context--uniform cannot be sent. ------------ Tip ------------- with ratcave.default_shader: mesh.draw() ------------------------------ """) # Attach a shader location value to the array, for quick memory lookup. (gl calls are expensive, for some reason) try: loc, shader_id_for_array = array.loc if shader_id.value != shader_id_for_array: raise Exception('Uniform location bound to a different shader') except (AttributeError, Exception) as e: array.loc = (gl.glGetUniformLocation(shader_id.value, name.encode('ascii')), shader_id.value) if array.ndim == 2: # Assuming a 4x4 float32 matrix (common for graphics operations) try: pointer = array.pointer except AttributeError: array.pointer = array.ctypes.data_as(POINTER(c_float * 16)).contents pointer = array.pointer gl.glUniformMatrix4fv(array.loc[0], 1, True, pointer) else: sendfun = self._sendfuns[array.dtype.kind][len(array) - 1] # Find correct glUniform function sendfun(array.loc[0], *array)
python
{ "resource": "" }
q18676
Shader.bind
train
def bind(self): """Activate this Shader, making it the currently-bound program. Any Mesh.draw() calls after bind() will have their data processed by this Shader. To unbind, call Shader.unbind(). Example:: shader.bind() mesh.draw() shader.unbind() .. note:: Shader.bind() and Shader.unbind() can be also be called implicitly by using the 'with' statement. Example of with statement with Shader:: with shader: mesh.draw() """ if not self.is_linked: if not self.is_compiled: self.compile() self.link() super(self.__class__, self).bind()
python
{ "resource": "" }
q18677
Shader.from_file
train
def from_file(cls, vert, frag, **kwargs): """ Reads the shader programs, given the vert and frag filenames Arguments: - vert (str): The filename of the vertex shader program (ex: 'vertshader.vert') - frag (str): The filename of the fragment shader program (ex: 'fragshader.frag') Returns: - shader (Shader): The Shader using these files. """ vert_program = open(vert).read() frag_program = open(frag).read() return cls(vert=vert_program, frag=frag_program, **kwargs)
python
{ "resource": "" }
q18678
Shader.link
train
def link(self): """link the program, making it the active shader. .. note:: Shader.bind() is preferred here, because link() Requires the Shader to be compiled already. """ gl.glLinkProgram(self.id) # Check if linking was successful. If not, print the log. link_status = c_int(0) gl.glGetProgramiv(self.id, gl.GL_LINK_STATUS, byref(link_status)) if not link_status: gl.glGetProgramiv(self.id, gl.GL_INFO_LOG_LENGTH, byref(link_status)) # retrieve the log length buffer = create_string_buffer(link_status.value) # create a buffer for the log gl.glGetProgramInfoLog(self.id, link_status, None, buffer) # retrieve the log text print(buffer.value) # print the log to the console self.is_linked = True
python
{ "resource": "" }
q18679
PhysicalGraph.add_child
train
def add_child(self, child, modify=False): """ Adds an object as a child in the scene graph. With modify=True, model_matrix_transform gets change from identity and prevents the changes of the coordinates of the child""" SceneGraph.add_child(self, child) self.notify() if modify: child._model_matrix_transform[:] = trans.inverse_matrix(self.model_matrix_global) child._normal_matrix_transform[:] = trans.inverse_matrix(self.normal_matrix_global)
python
{ "resource": "" }
q18680
Example.setup_tree
train
def setup_tree(self): """Setup an example Treeview""" self.tree.insert("", tk.END, text="Example 1", iid="1") self.tree.insert("", tk.END, text="Example 2", iid="2") self.tree.insert("2", tk.END, text="Example Child") self.tree.heading("#0", text="Example heading")
python
{ "resource": "" }
q18681
Example.grid_widgets
train
def grid_widgets(self): """Put widgets in the grid""" sticky = {"sticky": "nswe"} self.label.grid(row=1, column=1, columnspan=2, **sticky) self.dropdown.grid(row=2, column=1, **sticky) self.entry.grid(row=2, column=2, **sticky) self.button.grid(row=3, column=1, columnspan=2, **sticky) self.radio_one.grid(row=4, column=1, **sticky) self.radio_two.grid(row=4, column=2, **sticky) self.checked.grid(row=5, column=1, **sticky) self.unchecked.grid(row=5, column=2, **sticky) self.scroll.grid(row=1, column=3, rowspan=8, padx=5, **sticky) self.tree.grid(row=6, column=1, columnspan=2, **sticky) self.scale_entry.grid(row=7, column=1, columnspan=2, **sticky) self.combo.grid(row=8, column=1, columnspan=2, **sticky) self.progress.grid(row=9, column=1, columnspan=2, padx=5, pady=5, **sticky)
python
{ "resource": "" }
q18682
Example.screenshot
train
def screenshot(self, *args): """Take a screenshot, crop and save""" from mss import mss if not os.path.exists("screenshots"): os.makedirs("screenshots") box = { "top": self.winfo_y(), "left": self.winfo_x(), "width": self.winfo_width(), "height": self.winfo_height() } screenshot = mss().grab(box) screenshot = Image.frombytes("RGB", screenshot.size, screenshot.rgb) screenshot.save("screenshots/{}.png".format(ttk.Style(self).theme_use()))
python
{ "resource": "" }
q18683
Example.screenshot_themes
train
def screenshot_themes(self, *args): """Take a screenshot for all themes available""" from time import sleep for theme in THEMES: example.set_theme(theme) example.update() sleep(0.05) self.screenshot()
python
{ "resource": "" }
q18684
ThemedWidget._load_themes
train
def _load_themes(self): """Load the themes into the Tkinter interpreter""" with utils.temporary_chdir(utils.get_file_directory()): self._append_theme_dir("themes") self.tk.eval("source themes/pkgIndex.tcl") theme_dir = "gif" if not self.png_support else "png" self._append_theme_dir(theme_dir) self.tk.eval("source {}/pkgIndex.tcl".format(theme_dir)) self.tk.call("package", "require", "ttk::theme::scid")
python
{ "resource": "" }
q18685
ThemedWidget._append_theme_dir
train
def _append_theme_dir(self, name): """Append a theme dir to the Tk interpreter auto_path""" path = "[{}]".format(get_file_directory() + "/" + name) self.tk.call("lappend", "auto_path", path)
python
{ "resource": "" }
q18686
ThemedWidget.set_theme
train
def set_theme(self, theme_name): """ Set new theme to use. Uses a direct tk call to allow usage of the themes supplied with this package. :param theme_name: name of theme to activate """ package = theme_name if theme_name not in self.PACKAGES else self.PACKAGES[theme_name] self.tk.call("package", "require", "ttk::theme::{}".format(package)) self.tk.call("ttk::setTheme", theme_name)
python
{ "resource": "" }
q18687
ThemedWidget.set_theme_advanced
train
def set_theme_advanced(self, theme_name, brightness=1.0, saturation=1.0, hue=1.0, preserve_transparency=True, output_dir=None, advanced_name="advanced"): """ Load an advanced theme that is dynamically created Applies the given modifiers to the images of the theme given and then creates a theme from these new images with the name 'advanced' and then applies this theme. Is not available without support for PNG-based themes, then raises RuntimeError. """ if not self.png_support: raise RuntimeError("PNG-based themes are not supported in the environment") # Check if the theme is a pixmap theme if theme_name not in self.pixmap_themes: raise ValueError("Theme is not a valid pixmap theme") # Check if theme is available in the first place if theme_name not in self.themes: raise ValueError("Theme to create new theme from is not available: {}".format(theme_name)) if advanced_name in self.themes: raise RuntimeError("The same name for an advanced theme cannot be used twice") # Unload advanced if already loaded output_dir = os.path.join(utils.get_temp_directory(), advanced_name) if output_dir is None else output_dir self._setup_advanced_theme(theme_name, output_dir, advanced_name) # Perform image operations image_directory = os.path.join(output_dir, advanced_name, advanced_name) self._setup_images(image_directory, brightness, saturation, hue, preserve_transparency) # Load the new theme with utils.temporary_chdir(output_dir): self.tk.call("lappend", "auto_path", "[{}]".format(output_dir)) self.tk.eval("source pkgIndex.tcl") self.set_theme(advanced_name)
python
{ "resource": "" }
q18688
ThemedWidget._setup_advanced_theme
train
def _setup_advanced_theme(self, theme_name, output_dir, advanced_name): """ Setup all the files required to enable an advanced theme. Copies all the files over and creates the required directories if they do not exist. :param theme_name: theme to copy the files over from :param output_dir: output directory to place the files in """ """Directories""" output_theme_dir = os.path.join(output_dir, advanced_name) output_images_dir = os.path.join(output_theme_dir, advanced_name) input_theme_dir = os.path.join( utils.get_themes_directory(theme_name, self.png_support), theme_name) input_images_dir = os.path.join(input_theme_dir, theme_name) advanced_pkg_dir = os.path.join(utils.get_file_directory(), "advanced") """Directory creation""" for directory in [output_dir, output_theme_dir]: utils.create_directory(directory) """Theme TCL file""" file_name = theme_name + ".tcl" theme_input = os.path.join(input_theme_dir, file_name) theme_output = os.path.join(output_theme_dir, "{}.tcl".format(advanced_name)) with open(theme_input, "r") as fi, open(theme_output, "w") as fo: for line in fi: # Setup new theme line = line.replace(theme_name, advanced_name) # Setup new image format line = line.replace("gif89", "png") line = line.replace("gif", "png") # Write processed line fo.write(line) """pkgIndex.tcl file""" theme_pkg_input = os.path.join(advanced_pkg_dir, "pkgIndex.tcl") theme_pkg_output = os.path.join(output_theme_dir, "pkgIndex.tcl") with open(theme_pkg_input, "r") as fi, open(theme_pkg_output, "w") as fo: for line in fi: fo.write(line.replace("advanced", advanced_name)) """pkgIndex_package.tcl -> pkgIndex.tcl""" theme_pkg_input = os.path.join(advanced_pkg_dir, "pkgIndex_package.tcl") theme_pkg_output = os.path.join(output_dir, "pkgIndex.tcl") with open(theme_pkg_input, "r") as fi, open(theme_pkg_output, "w") as fo: for line in fi: fo.write(line.replace("advanced", advanced_name)) """Images""" if os.path.exists(output_images_dir): rmtree(output_images_dir) copytree(input_images_dir, output_images_dir)
python
{ "resource": "" }
q18689
ThemedWidget._setup_images
train
def _setup_images(directory, brightness, saturation, hue, preserve_transparency): """ Apply modifiers to the images of a theme Modifies the images using the PIL.ImageEnhance module. Using this function, theme images are modified to given them a unique look and feel. Works best with PNG-based images. """ for file_name in os.listdir(directory): with open(os.path.join(directory, file_name), "rb") as fi: image = Image.open(fi).convert("RGBA") # Only perform required operations if brightness != 1.0: enhancer = ImageEnhance.Brightness(image) image = enhancer.enhance(brightness) if saturation != 1.0: enhancer = ImageEnhance.Color(image) image = enhancer.enhance(saturation) if hue != 1.0: image = imgops.shift_hue(image, hue) if preserve_transparency is True: image = imgops.make_transparent(image) # Save the new image image.save(os.path.join(directory, file_name.replace("gif", "png"))) image.close() for file_name in (item for item in os.listdir(directory) if item.endswith(".gif")): os.remove(os.path.join(directory, file_name))
python
{ "resource": "" }
q18690
ThemedTk.set_theme
train
def set_theme(self, theme_name, toplevel=None, themebg=None): """Redirect the set_theme call to also set Tk background color""" if self._toplevel is not None and toplevel is None: toplevel = self._toplevel if self._themebg is not None and themebg is None: themebg = self._themebg ThemedWidget.set_theme(self, theme_name) color = self._get_bg_color() if themebg is True: self.config(background=color) if toplevel is True: self._setup_toplevel_hook(color)
python
{ "resource": "" }
q18691
ThemedTk.config
train
def config(self, kw=None, **kwargs): """configure redirect to support additional options""" themebg = kwargs.pop("themebg", self._themebg) toplevel = kwargs.pop("toplevel", self._toplevel) theme = kwargs.pop("theme", self.current_theme) color = self._get_bg_color() if themebg != self._themebg: if themebg is False: self.configure(bg="white") else: self.configure(bg=color) self._themebg = themebg if toplevel != self._toplevel: if toplevel is True: self._setup_toplevel_hook(color) else: tk.Toplevel.__init__ = self.__init__toplevel self._toplevel = toplevel if theme != self.current_theme: self.set_theme(theme) return tk.Tk.config(self, kw, **kwargs)
python
{ "resource": "" }
q18692
ThemedTk.cget
train
def cget(self, k): """cget redirect to support additional options""" if k == "themebg": return self._themebg elif k == "toplevel": return self._toplevel elif k == "theme": return self.current_theme return tk.Tk.cget(self, k)
python
{ "resource": "" }
q18693
build_and_install_wheel
train
def build_and_install_wheel(python): """Build a binary distribution wheel and install it""" dist_type = "bdist_wheel" if not SDIST else "sdist" return_code = run_command("{} setup.py {}".format(python, dist_type)) if return_code != 0: print("Building and installing wheel failed.") exit(return_code) # Check if an artifact exists assert check_wheel_existence() print("Wheel file exists.") # Install the wheel file wheel = [file for file in os.listdir("dist") if file.endswith((".whl", ".tar.gz"))][0] wheel = os.path.join("dist", wheel) print("Wheel file:", wheel) return_code = run_command("{} -m pip install --ignore-installed {}".format(python, wheel)) if return_code != 0: print("Installation of wheel failed.") exit(return_code) print("Wheel file installed.")
python
{ "resource": "" }
q18694
ci
train
def ci(python="python", codecov="codecov", coverage_file="coverage.xml", wheel=True): """ Run the most common CI tasks """ # Import pip from pip import __version__ as pip_version if Version(pip_version) >= Version("10.0.0"): import pip._internal as pip else: import pip # Install requirements with pip pip.main(["install"] + DEPENDENCIES + REQUIREMENTS + ["-U"]) # Build the installation wheel if wheel is True: build_and_install_wheel(python) # Remove all non-essential files for to_delete in TO_DELETE: rmtree(to_delete) # Run the tests on the installed ttkthemes return_code = run_command("{} -m nose --with-coverage --cover-xml --cover-package=ttkthemes".format(python)) if return_code != 0: print("Tests failed.") exit(return_code) print("Tests successful.") # Run codecov return_code = run_command("{} -f {}".format(codecov, coverage_file)) if return_code != 0: print("Codecov failed.") exit(return_code) # Successfully finished CI exit(0)
python
{ "resource": "" }
q18695
ci_macos
train
def ci_macos(): """ Setup Travis-CI macOS for wheel building """ run_command("brew install $PYTHON pipenv || echo \"Installed PipEnv\"") command_string = "sudo -H $PIP install " for element in DEPENDENCIES + REQUIREMENTS + ["-U"]: command_string += element + " " run_command(command_string) # Build a wheel run_command("sudo -H $PYTHON setup.py bdist_wheel") assert check_wheel_existence() exit(0)
python
{ "resource": "" }
q18696
ThemedStyle.theme_use
train
def theme_use(self, theme_name=None): """ Set a new theme to use or return current theme name :param theme_name: name of theme to use :returns: active theme name """ if theme_name is not None: self.set_theme(theme_name) return ttk.Style.theme_use(self)
python
{ "resource": "" }
q18697
get_temp_directory
train
def get_temp_directory(): """Return an absolute path to an existing temporary directory""" # Supports all platforms supported by tempfile directory = os.path.join(gettempdir(), "ttkthemes") if not os.path.exists(directory): os.makedirs(directory) return directory
python
{ "resource": "" }
q18698
create_directory
train
def create_directory(directory): """Create directory but first delete it if it exists""" if os.path.exists(directory): rmtree(directory) os.makedirs(directory) return directory
python
{ "resource": "" }
q18699
make_transparent
train
def make_transparent(image): """Turn all black pixels in an image into transparent ones""" data = image.copy().getdata() modified = [] for item in data: if _check_pixel(item) is True: modified.append((255, 255, 255, 255)) # White transparent pixel continue modified.append(item) image.putdata(modified) return image
python
{ "resource": "" }