_id
stringlengths
2
7
title
stringlengths
1
88
partition
stringclasses
3 values
text
stringlengths
75
19.8k
language
stringclasses
1 value
meta_information
dict
q17200
publish
train
def publish(event_type: str, event_data: dict = None, object_type: str = None, object_id: str = None, object_key: str = None, origin: str = None): """Publish an event. Published the event to all subscribers and stores the event with the object. Args: event_type (str): The event type event_data (dict, optional): Optional event data object_type (str): Type of object. object_id (str): Object ID object_key (str, optional): Key used to stored the object. If None, the default assume the key is of the form <object type>:<object id> origin (str): Origin or publisher of the event. """ event = Event(event_id=_get_event_id(object_type), event_type=event_type, event_data=event_data, event_origin=origin, object_type=object_type, object_id=object_id, object_key=object_key) # Publish the event to subscribers _publish_to_subscribers(event) # Update the object event list and data. if object_key is None: object_key = '{}:{}'.format(object_type, object_id) _update_object(object_key, event) # Execute the set of db transactions as an atomic transaction. DB.execute()
python
{ "resource": "" }
q17201
_get_events_list
train
def _get_events_list(object_key: str) -> List[str]: """Get list of event ids for the object with the specified key. Args: object_key (str): Key of an object in the database. """ return DB.get_list(_keys.events_list(object_key))
python
{ "resource": "" }
q17202
_get_events_data
train
def _get_events_data(object_key: str) -> List[dict]: """Get the list of event data for the object with the specified key. Args: object_key (str): Key of an object in the database. """ events_data = [] key = _keys.events_data(object_key) for event_id in _get_events_list(object_key): event_dict = literal_eval(DB.get_hash_value(key, event_id)) events_data.append(event_dict) return events_data
python
{ "resource": "" }
q17203
get_events
train
def get_events(object_key: str) -> List[Event]: """Get list of events for the object with the specified key.""" events_data = _get_events_data(object_key) return [Event.from_config(event_dict) for event_dict in events_data]
python
{ "resource": "" }
q17204
_publish_to_subscribers
train
def _publish_to_subscribers(event: Event): """Publish and event to all subscribers. - Adds the event id to the published event list for all subscribers. - Adds the event data to the published event data for all subscribers. - Publishes the event id notification to all subscribers. Args: event (Event): Event object to publish. """ subscribers = get_subscribers(event.object_type) # Add the event to each subscribers published list for sub in subscribers: DB.prepend_to_list(_keys.published(event.object_type, sub), event.id, pipeline=True) event_dict = deepcopy(event.config) event_dict.pop('id') DB.set_hash_value(_keys.data(event.object_type, sub), event.id, str(event_dict), pipeline=True) DB.publish(event.object_type, event.id, pipeline=True)
python
{ "resource": "" }
q17205
_update_object
train
def _update_object(object_key: str, event: Event): """Update the events list and events data for the object. - Adds the event Id to the list of events for the object. - Adds the event data to the hash of object event data keyed by event id. Args: object_key (str): Key of the object being updated. event (Event): Event object """ events_list_key = _keys.events_list(object_key) events_data_key = _keys.events_data(object_key) event_dict = deepcopy(event.config) event_dict.pop('id') DB.append_to_list(events_list_key, event.id, pipeline=True) DB.set_hash_value(events_data_key, event.id, json.dumps(event_dict), pipeline=True)
python
{ "resource": "" }
q17206
_get_event_id
train
def _get_event_id(object_type: str) -> str: """Return an event key for the event on the object type. This must be a unique event id for the object. Args: object_type (str): Type of object Returns: str, event id """ key = _keys.event_counter(object_type) DB.watch(key, pipeline=True) count = DB.get_value(key) DB.increment(key) DB.execute() if count is None: count = 0 return '{}_event_{:08d}'.format(object_type, int(count))
python
{ "resource": "" }
q17207
ProcessingBlockDevice.pb_id
train
def pb_id(self, pb_id: str): """Set the PB Id for this device.""" # FIXME(BMo) instead of creating the object to check if the PB exists # use a method on PB List? # ProcessingBlock(pb_id) self.set_state(DevState.ON) self._pb_id = pb_id
python
{ "resource": "" }
q17208
ProcessingBlockDevice.pb_config
train
def pb_config(self): """Return the PB configuration.""" pb = ProcessingBlock(self._pb_id) return json.dumps(pb.config)
python
{ "resource": "" }
q17209
StateObject.current_timestamp
train
def current_timestamp(self) -> datetime: """Get the current state timestamp.""" timestamp = DB.get_hash_value(self._key, 'current_timestamp') return datetime_from_isoformat(timestamp)
python
{ "resource": "" }
q17210
StateObject.target_timestamp
train
def target_timestamp(self) -> datetime: """Get the target state timestamp.""" timestamp = DB.get_hash_value(self._key, 'target_timestamp') return datetime_from_isoformat(timestamp)
python
{ "resource": "" }
q17211
StateObject.update_target_state
train
def update_target_state(self, value: str, force: bool = True) -> datetime: """Set the target state. Args: value (str): New value for target state force (bool): If true, ignore allowed transitions Returns: datetime, update timestamp Raises: RuntimeError, if it is not possible to currently set the target state. ValueError, if the specified target stat is not allowed. """ value = value.lower() if not force: current_state = self.current_state if current_state == 'unknown': raise RuntimeError("Unable to set target state when current " "state is 'unknown'") allowed_target_states = self._allowed_target_states[current_state] LOG.debug('Updating target state of %s to %s', self._id, value) if value not in allowed_target_states: raise ValueError("Invalid target state: '{}'. {} can be " "commanded to states: {}". format(value, current_state, allowed_target_states)) return self._update_state('target', value)
python
{ "resource": "" }
q17212
StateObject.update_current_state
train
def update_current_state(self, value: str, force: bool = False) -> datetime: """Update the current state. Args: value (str): New value for sdp state force (bool): If true, ignore allowed transitions Returns: datetime, update timestamp Raises: ValueError: If the specified current state is not allowed. """ value = value.lower() if not force: current_state = self.current_state # IF the current state is unknown, it can be set to any of the # allowed states, otherwise only allow certain transitions. if current_state == 'unknown': allowed_transitions = self._allowed_states else: allowed_transitions = self._allowed_transitions[current_state] allowed_transitions.append(current_state) LOG.debug('Updating current state of %s to %s', self._id, value) if value not in allowed_transitions: raise ValueError("Invalid current state update: '{}'. '{}' " "can be transitioned to states: {}" .format(value, current_state, allowed_transitions)) return self._update_state('current', value)
python
{ "resource": "" }
q17213
StateObject._initialise
train
def _initialise(self, initial_state: str = 'unknown') -> dict: """Return a dictionary used to initialise a state object. This method is used to obtain a dictionary/hash describing the initial state of SDP or a service in SDP. Args: initial_state (str): Initial state. Returns: dict, Initial state configuration """ initial_state = initial_state.lower() if initial_state != 'unknown' and \ initial_state not in self._allowed_states: raise ValueError('Invalid initial state: {}'.format(initial_state)) _initial_state = dict( current_state=initial_state, target_state=initial_state, current_timestamp=datetime.utcnow().isoformat(), target_timestamp=datetime.utcnow().isoformat()) return _initial_state
python
{ "resource": "" }
q17214
ConfigDb.add_sched_block_instance
train
def add_sched_block_instance(self, config_dict): """Add Scheduling Block to the database. Args: config_dict (dict): SBI configuration """ # Get schema for validation schema = self._get_schema() LOG.debug('Adding SBI with config: %s', config_dict) # Validates the schema validate(config_dict, schema) # Add status field and value to the data updated_block = self._add_status(config_dict) # Splitting into different names and fields before # adding to the database scheduling_block_data, processing_block_data = \ self._split_sched_block_instance(updated_block) # Adding Scheduling block instance with id name = "scheduling_block:" + updated_block["id"] self._db.set_specified_values(name, scheduling_block_data) # Add a event to the scheduling block event list to notify # of a new scheduling block being added to the db. self._db.push_event(self.scheduling_event_name, updated_block["status"], updated_block["id"]) # Adding Processing block with id for value in processing_block_data: name = ("scheduling_block:" + updated_block["id"] + ":processing_block:" + value['id']) self._db.set_specified_values(name, value) # Add a event to the processing block event list to notify # of a new processing block being added to the db. self._db.push_event(self.processing_event_name, value["status"], value["id"])
python
{ "resource": "" }
q17215
ConfigDb.get_sched_block_instance_ids
train
def get_sched_block_instance_ids(self): """Get unordered list of scheduling block ids""" # Initialise empty list scheduling_block_ids = [] # Pattern used to search scheduling block ids pattern = 'scheduling_block:*' block_ids = self._db.get_ids(pattern) for block_id in block_ids: if 'processing_block' not in block_id: id_split = block_id.split(':')[-1] scheduling_block_ids.append(id_split) return sorted(scheduling_block_ids)
python
{ "resource": "" }
q17216
ConfigDb.get_processing_block_ids
train
def get_processing_block_ids(self): """Get list of processing block ids using the processing block id""" # Initialise empty list _processing_block_ids = [] # Pattern used to search processing block ids pattern = '*:processing_block:*' block_ids = self._db.get_ids(pattern) for block_id in block_ids: id_split = block_id.split(':')[-1] _processing_block_ids.append(id_split) return sorted(_processing_block_ids)
python
{ "resource": "" }
q17217
ConfigDb.get_sub_array_ids
train
def get_sub_array_ids(self): """Get list of sub array ids""" # Initialise empty list _scheduling_block_ids = [] _sub_array_ids = [] for blocks_id in self.get_sched_block_instance_ids(): _scheduling_block_ids.append(blocks_id) block_details = self.get_block_details(_scheduling_block_ids) for details in block_details: _sub_array_ids.append(details['sub_array_id']) _sub_array_ids = sorted(list(set(_sub_array_ids))) return _sub_array_ids
python
{ "resource": "" }
q17218
ConfigDb.get_sub_array_sbi_ids
train
def get_sub_array_sbi_ids(self, sub_array_id): """Get Scheduling Block Instance ID associated with sub array id""" _ids = [] sbi_ids = self.get_sched_block_instance_ids() for details in self.get_block_details(sbi_ids): if details['sub_array_id'] == sub_array_id: _ids.append(details['id']) return sorted(_ids)
python
{ "resource": "" }
q17219
ConfigDb.get_block_details
train
def get_block_details(self, block_ids): """Get details of scheduling or processing block Args: block_ids (list): List of block IDs """ # Convert input to list if needed if not hasattr(block_ids, "__iter__"): block_ids = [block_ids] for _id in block_ids: block_key = self._db.get_block(_id)[0] block_data = self._db.get_all_field_value(block_key) # NOTE(BM) unfortunately this doesn't quite work for keys where \ # the value is a python type (list, dict etc) \ # The following hack works for now but is probably not infallible for key in block_data: for char in ['[', '{']: if char in block_data[key]: block_data[key] = ast.literal_eval( str(block_data[key])) yield block_data
python
{ "resource": "" }
q17220
ConfigDb.update_value
train
def update_value(self, block_id, field, value): """"Update the value of the given block id and field""" block_name = self._db.get_block(block_id) for name in block_name: self._db.set_value(name, field, value)
python
{ "resource": "" }
q17221
ConfigDb.delete_sched_block_instance
train
def delete_sched_block_instance(self, block_id): """Delete the specified Scheduling Block Instance. Removes the Scheduling Block Instance, and all Processing Blocks that belong to it from the database""" LOG.debug('Deleting SBI %s', block_id) scheduling_blocks = self._db.get_all_blocks(block_id) if not scheduling_blocks: raise RuntimeError('Scheduling block not found: {}'. format(block_id)) if scheduling_blocks: for blocks in scheduling_blocks: if "processing_block" not in blocks: self._db.delete_block(blocks) else: split_key = blocks.split(':') self._db.delete_block(blocks) # Add a event to the processing block event list to notify # about deleting from the db self._db.push_event(self.processing_event_name, "deleted", split_key[3]) # Add a event to the scheduling block event list to notify # of a deleting a scheduling block from the db self._db.push_event(self.scheduling_event_name, "deleted", block_id)
python
{ "resource": "" }
q17222
ConfigDb._get_schema
train
def _get_schema(): """Get the schema for validation""" schema_path = os.path.join(os.path.dirname(__file__), 'schema', 'scheduling_block_schema.json') with open(schema_path, 'r') as file: schema_data = file.read() schema = json.loads(schema_data) return schema
python
{ "resource": "" }
q17223
ConfigDb._add_status
train
def _add_status(scheduling_block): """This function adds status fields to all the section in the scheduling block instance""" scheduling_block['status'] = "created" for block in scheduling_block: if isinstance(scheduling_block[block], list): for field in scheduling_block[block]: field['status'] = 'created' return scheduling_block
python
{ "resource": "" }
q17224
ConfigDb._split_sched_block_instance
train
def _split_sched_block_instance(self, scheduling_block): """Split the scheduling block data into multiple names before adding to the configuration database""" # Initialise empty list _scheduling_block_data = {} _processing_block_data = {} _processing_block_id = [] for block in scheduling_block: values = scheduling_block[block] if block != 'processing_blocks': _scheduling_block_data[block] = values else: # Check if there is a processing block that already exits in # the database processing_block_id = self.get_processing_block_ids() for value in values: if value['id'] not in processing_block_id: _processing_block_data = values else: raise Exception("Processing block already exits", value['id']) # Adding processing block id to the scheduling block list for block_id in _processing_block_data: _processing_block_id.append(block_id['id']) _scheduling_block_data['processing_block_ids'] = _processing_block_id return _scheduling_block_data, _processing_block_data
python
{ "resource": "" }
q17225
init_logger
train
def init_logger(logger_name='sip', log_level=None, p3_mode: bool = True, show_thread: bool = False, propagate: bool = False, show_log_origin=False): """Initialise the SIP logger. Attaches a stdout stream handler to the 'sip' logger. This will apply to all logger objects with a name prefixed by 'sip.' This function respects the 'SIP_LOG_LEVEL' environment variable to set the logging level. Args: logger_name (str, optional): Name of the logger object. log_level (str or int, optional): Logging level for the SIP logger. p3_mode (bool, optional): Print logging statements in a format that P3 can support. show_thread (bool, optional): Display the thread in the log message. propagate (bool, optional): Propagate settings to parent loggers. show_log_origin (boo, optional): If true show the origin (file, line no.) of log messages. """ log = logging.getLogger(logger_name) log.propagate = propagate # Remove existing handlers (avoids duplicate messages) for handler in log.handlers: log.removeHandler(handler) _debug = '%(filename)s:%(lineno)d | ' if show_log_origin else '' # P3 mode is intended to work with the fluentd configuration on P3. # This has ms timestamp precision and uses '-' as a delimiter # between statements in the log file. if p3_mode: _prefix = '%(asctime)s - %(name)s - %(levelname)s' if show_thread: _format = '{} - %(threadName)s - {}%(message)s'\ .format(_prefix, _debug) else: _format = '{} - {}%(message)s'.format(_prefix, _debug) formatter = logging.Formatter(_format) formatter.converter = time.gmtime # If not in P3 mode, the timestamp will be us precision and use '|' # as a separator. else: _prefix = '%(asctime)s | %(name)s | %(levelname)s' if show_thread: _format = '{} | %(threadName)s | {}%(message)s'\ .format(_prefix, _debug) else: _format = '{} | {}%(message)s'.format(_prefix, _debug) formatter = SIPFormatter(_format, datefmt='%Y-%m-%dT%H:%M:%S.%fZ') handler = logging.StreamHandler(stream=sys.stdout) handler.setFormatter(formatter) log.addHandler(handler) # Set the logging level. if log_level: log.setLevel(log_level) else: log.setLevel(os.getenv('SIP_LOG_LEVEL', 'DEBUG'))
python
{ "resource": "" }
q17226
disable_logger
train
def disable_logger(logger_name: str, propagate: bool = False): """Disable output for the logger of the specified name.""" log = logging.getLogger(logger_name) log.propagate = propagate for handler in log.handlers: log.removeHandler(handler)
python
{ "resource": "" }
q17227
set_log_level
train
def set_log_level(logger_name: str, log_level: str, propagate: bool = False): """Set the log level of the specified logger.""" log = logging.getLogger(logger_name) log.propagate = propagate log.setLevel(log_level)
python
{ "resource": "" }
q17228
SIPFormatter.formatTime
train
def formatTime(self, record, datefmt=None): """Format the log timestamp.""" _seconds_fraction = record.created - int(record.created) _datetime_utc = time.mktime(time.gmtime(record.created)) _datetime_utc += _seconds_fraction _created = self.converter(_datetime_utc) if datefmt: time_string = _created.strftime(datefmt) else: time_string = _created.strftime('%Y-%m-%dT%H:%M:%S.%fZ') time_string = "%s,%03d" % (time_string, record.msecs) return time_string
python
{ "resource": "" }
q17229
generate_sbi
train
def generate_sbi(index: int = None): """Generate a SBI config JSON string.""" date = datetime.datetime.utcnow().strftime('%Y%m%d') if index is None: index = randint(0, 999) sbi_id = 'SBI-{}-sip-demo-{:03d}'.format(date, index) sb_id = 'SBI-{}-sip-demo-{:03d}'.format(date, index) pb_id = 'PB-{}-sip-demo-{:03d}'.format(date, index) print('* Generating SBI: %s, PB: %s' % (sb_id, pb_id)) sbi = dict( id=sbi_id, version='1.0.0', scheduling_block=dict( id=sb_id, project='sip', programme_block='sip_demos' ), processing_blocks=[ dict( id=pb_id, version='1.0.0', type='offline', priority=1, dependencies=[], resources_required=[], workflow=dict( id='mock_workflow', version='1.0.0', parameters=dict( stage1=dict(duration=30), stage2=dict(duration=30), stage3=dict(duration=30) ) ) ) ] ) return sbi
python
{ "resource": "" }
q17230
PulsarSender.send
train
def send(self, config, log, obs_id, beam_id): """ Send the pulsar data to the ftp server Args: config (dict): Dictionary of settings log (logging.Logger): Python logging object obs_id: observation id beam_id: beam id """ log.info('Starting Pulsar Data Transfer...') socket = self._ftp.transfercmd('STOR {0}_{1}'.format(obs_id, beam_id)) socket.send(json.dumps(config).encode()) socket.send(bytearray(1000 * 1000)) # Overwrites the metadata name in the config dict # and re-sends the data to the receiver. config['metadata']['name'] = 'candidate_two' socket.send(json.dumps(config).encode()) socket.send(bytearray(1000 * 1000)) socket.close() log.info('Pulsar Data Transfer Completed...')
python
{ "resource": "" }
q17231
SubarrayDevice.init_device
train
def init_device(self): """Initialise the device.""" Device.init_device(self) time.sleep(0.1) self.set_state(DevState.STANDBY)
python
{ "resource": "" }
q17232
SubarrayDevice.configure
train
def configure(self, sbi_config: str): """Configure an SBI for this subarray. Args: sbi_config (str): SBI configuration JSON Returns: str, """ # print(sbi_config) config_dict = json.loads(sbi_config) self.debug_stream('SBI configuration:\n%s', json.dumps(config_dict, indent=2)) try: sbi = Subarray(self.get_name()).configure_sbi(config_dict) except jsonschema.exceptions.ValidationError as error: return json.dumps(dict(path=error.absolute_path.__str__(), schema_path=error.schema_path.__str__(), message=error.message), indent=2) except RuntimeError as error: return json.dumps(dict(error=str(error)), indent=2) return 'Accepted SBI: {}'.format(sbi.id)
python
{ "resource": "" }
q17233
SubarrayDevice.processing_blocks
train
def processing_blocks(self): """Return list of PBs associated with the subarray. <http://www.esrf.eu/computing/cs/tango/pytango/v920/server_api/server.html#PyTango.server.pipe> """ sbi_ids = Subarray(self.get_name()).sbi_ids pbs = [] for sbi_id in sbi_ids: sbi = SchedulingBlockInstance(sbi_id) pbs.append(sbi.processing_block_ids) return 'PB', pbs
python
{ "resource": "" }
q17234
datetime_from_isoformat
train
def datetime_from_isoformat(value: str): """Return a datetime object from an isoformat string. Args: value (str): Datetime string in isoformat. """ if sys.version_info >= (3, 7): return datetime.fromisoformat(value) return datetime.strptime(value, '%Y-%m-%dT%H:%M:%S.%f')
python
{ "resource": "" }
q17235
SDPMasterDevice.always_executed_hook
train
def always_executed_hook(self): """Run for each command.""" _logT = self._devProxy.get_logging_target() if 'device::sip_sdp_logger' not in _logT: try: self._devProxy.add_logging_target('device::sip_sdp/elt/logger') self.info_stream("Test of Tango logging from " "'tc_tango_master'") except Exception as e: LOG.debug('Failed to setup Tango logging %s', e )
python
{ "resource": "" }
q17236
SDPMasterDevice.configure
train
def configure(self, value): """Schedule an offline only SBI with SDP.""" # Only accept new SBIs if the SDP is on. if self._sdp_state.current_state != 'on': raise RuntimeWarning('Unable to configure SBIs unless SDP is ' '\'on\'.') # Check that the new SBI is not already registered. sbi_config_dict = json.loads(value) sbi_list = SchedulingBlockInstanceList() LOG.info('SBIs before: %s', sbi_list.active) if sbi_config_dict.get('id') in sbi_list.active: raise RuntimeWarning('Unable to add SBI with ID {}, an SBI with ' 'this ID is already registered with SDP!' .format(sbi_config_dict.get('id'))) # Add the SBI to the dictionary. LOG.info('Scheduling offline SBI! Config:\n%s', value) sbi = SchedulingBlockInstance.from_config(sbi_config_dict) LOG.info('SBIs after: %s', sbi_list.active) sbi_pb_ids = sbi.processing_block_ids LOG.info('SBI "%s" contains PBs: %s', sbi.id, sbi_pb_ids) # pb_list = ProcessingBlockList() # LOG.info('Active PBs: %s', pb_list.active) # Get the list and number of Tango PB devices tango_db = Database() pb_device_class = "ProcessingBlockDevice" pb_device_server_instance = "processing_block_ds/1" pb_devices = tango_db.get_device_name(pb_device_server_instance, pb_device_class) LOG.info('Number of PB devices in the pool = %d', len(pb_devices)) # Get a PB device which has not been assigned. for pb_id in sbi_pb_ids: for pb_device_name in pb_devices: device = DeviceProxy(pb_device_name) if not device.pb_id: LOG.info('Assigning PB device = %s to PB id = %s', pb_device_name, pb_id) # Set the device attribute 'pb_id' to the processing block # id it is tracking. device.pb_id = pb_id break
python
{ "resource": "" }
q17237
SDPMasterDevice._get_service_state
train
def _get_service_state(service_id: str): """Get the Service state object for the specified id.""" LOG.debug('Getting state of service %s', service_id) services = get_service_id_list() service_ids = [s for s in services if service_id in s] if len(service_ids) != 1: return 'Service not found! services = {}'.format(str(services)) subsystem, name, version = service_ids[0].split(':') return ServiceState(subsystem, name, version)
python
{ "resource": "" }
q17238
SDPMasterDevice.allowed_target_sdp_states
train
def allowed_target_sdp_states(self): """Return a list of allowed target states for the current state.""" _current_state = self._sdp_state.current_state _allowed_target_states = self._sdp_state.allowed_target_states[ _current_state] return json.dumps(dict(allowed_target_sdp_states= _allowed_target_states))
python
{ "resource": "" }
q17239
SDPMasterDevice.target_sdp_state
train
def target_sdp_state(self, state): """Update the target state of SDP.""" LOG.info('Setting SDP target state to %s', state) if self._sdp_state.current_state == state: LOG.info('Target state ignored, SDP is already "%s"!', state) if state == 'on': self.set_state(DevState.ON) if state == 'off': self.set_state(DevState.OFF) if state == 'standby': self.set_state(DevState.STANDBY) if state == 'disable': self.set_state(DevState.DISABLE) self._sdp_state.update_target_state(state)
python
{ "resource": "" }
q17240
SDPMasterDevice.health
train
def health(self): """Health check method, returns the up-time of the device.""" return json.dumps(dict(uptime='{:.3f}s' .format((time.time() - self._start_time))))
python
{ "resource": "" }
q17241
SDPMasterDevice.scheduling_block_instances
train
def scheduling_block_instances(self): """Return the a JSON dict encoding the SBIs known to SDP.""" # TODO(BMo) change this to a pipe? sbi_list = SchedulingBlockInstanceList() return json.dumps(dict(active=sbi_list.active, completed=sbi_list.completed, aborted=sbi_list.aborted))
python
{ "resource": "" }
q17242
SDPMasterDevice.processing_blocks
train
def processing_blocks(self): """Return the a JSON dict encoding the PBs known to SDP.""" pb_list = ProcessingBlockList() # TODO(BMo) realtime, offline etc. return json.dumps(dict(active=pb_list.active, completed=pb_list.completed, aborted=pb_list.aborted))
python
{ "resource": "" }
q17243
SDPMasterDevice.processing_block_devices
train
def processing_block_devices(self): """Get list of processing block devices.""" # Get the list and number of Tango PB devices tango_db = Database() pb_device_class = "ProcessingBlockDevice" pb_device_server_instance = "processing_block_ds/1" pb_devices = tango_db.get_device_name(pb_device_server_instance, pb_device_class) LOG.info('Number of PB devices in the pool = %d', len(pb_devices)) pb_device_map = [] for pb_device_name in pb_devices: device = DeviceProxy(pb_device_name) if device.pb_id: LOG.info('%s %s', pb_device_name, device.pb_id) pb_device_map.append((pb_device_name, device.pb_id)) return str(pb_device_map)
python
{ "resource": "" }
q17244
SDPMasterDevice._set_master_state
train
def _set_master_state(self, state): """Set the state of the SDPMaster.""" if state == 'init': self._service_state.update_current_state('init', force=True) self.set_state(DevState.INIT) elif state == 'on': self.set_state(DevState.ON) self._service_state.update_current_state('on')
python
{ "resource": "" }
q17245
register_subarray_devices
train
def register_subarray_devices(): """Register subarray devices.""" tango_db = Database() LOG.info("Registering Subarray devices:") device_info = DbDevInfo() # pylint: disable=protected-access device_info._class = "SubarrayDevice" device_info.server = "subarray_ds/1" for index in range(16): device_info.name = "sip_sdp/elt/subarray_{:02d}".format(index) LOG.info("\t%s", device_info.name) tango_db.add_device(device_info) tango_db.put_class_property(device_info._class, dict(version='1.0.0'))
python
{ "resource": "" }
q17246
add_workflow_definitions
train
def add_workflow_definitions(sbi_config: dict): """Add any missing SBI workflow definitions as placeholders. This is a utility function used in testing and adds mock / test workflow definitions to the database for workflows defined in the specified SBI config. Args: sbi_config (dict): SBI configuration dictionary. """ registered_workflows = [] for i in range(len(sbi_config['processing_blocks'])): workflow_config = sbi_config['processing_blocks'][i]['workflow'] workflow_name = '{}:{}'.format(workflow_config['id'], workflow_config['version']) if workflow_name in registered_workflows: continue workflow_definition = dict( id=workflow_config['id'], version=workflow_config['version'], stages=[] ) key = "workflow_definitions:{}:{}".format(workflow_config['id'], workflow_config['version']) DB.save_dict(key, workflow_definition, hierarchical=False) registered_workflows.append(workflow_name)
python
{ "resource": "" }
q17247
generate_version
train
def generate_version(max_major: int = 1, max_minor: int = 7, max_patch: int = 15) -> str: """Select a random version. Args: max_major (int, optional) maximum major version max_minor (int, optional) maximum minor version max_patch (int, optional) maximum patch version Returns: str, Version String """ major = randint(0, max_major) minor = randint(0, max_minor) patch = randint(0, max_patch) return '{:d}.{:d}.{:d}'.format(major, minor, patch)
python
{ "resource": "" }
q17248
generate_sb
train
def generate_sb(date: datetime.datetime, project: str, programme_block: str) -> dict: """Generate a Scheduling Block data object. Args: date (datetime.datetime): UTC date of the SBI project (str): Project Name programme_block (str): Programme Returns: str, Scheduling Block Instance (SBI) ID. """ date = date.strftime('%Y%m%d') instance_id = randint(0, 9999) sb_id = 'SB-{}-{}-{:04d}'.format(date, project, instance_id) return dict(id=sb_id, project=project, programme_block=programme_block)
python
{ "resource": "" }
q17249
generate_pb_config
train
def generate_pb_config(pb_id: str, pb_config: dict = None, workflow_config: dict = None) -> dict: """Generate a PB configuration dictionary. Args: pb_id (str): Processing Block Id pb_config (dict, optional) PB configuration. workflow_config (dict, optional): Workflow configuration Returns: dict, PB configuration dictionary. """ if workflow_config is None: workflow_config = dict() if pb_config is None: pb_config = dict() pb_type = pb_config.get('type', choice(PB_TYPES)) workflow_id = workflow_config.get('id') if workflow_id is None: if pb_type == 'offline': workflow_id = choice(OFFLINE_WORKFLOWS) else: workflow_id = choice(REALTIME_WORKFLOWS) workflow_version = workflow_config.get('version', generate_version()) workflow_parameters = workflow_config.get('parameters', dict()) pb_data = dict( id=pb_id, version=__pb_version__, type=pb_type, priority=pb_config.get('priority', randint(0, 10)), dependencies=pb_config.get('dependencies', []), resources_required=pb_config.get('resources_required', []), workflow=dict( id=workflow_id, version=workflow_version, parameters=workflow_parameters ) ) return pb_data
python
{ "resource": "" }
q17250
generate_sbi_config
train
def generate_sbi_config(num_pbs: int = 3, project: str = 'sip', programme_block: str = 'sip_demos', pb_config: Union[dict, List[dict]] = None, workflow_config: Union[dict, List[dict]] = None, register_workflows=False) -> dict: """Generate a SBI configuration dictionary. Args: num_pbs (int, optional): Number of Processing Blocks (default = 3) project (str, optional): Project to associate the SBI with. programme_block (str, optional): SBI programme block pb_config (dict, List[dict], optional): PB configuration workflow_config (dict, List[dict], optional): Workflow configuration register_workflows (bool, optional): If true also register workflows. Returns: dict, SBI configuration dictionary """ if isinstance(workflow_config, dict): workflow_config = [workflow_config] if isinstance(pb_config, dict): pb_config = [pb_config] utc_now = datetime.datetime.utcnow() pb_list = [] for i in range(num_pbs): pb_id = ProcessingBlock.get_id(utc_now) if workflow_config is not None: _workflow_config = workflow_config[i] else: _workflow_config = None if pb_config is not None: _pb_config = pb_config[i] else: _pb_config = None pb_dict = generate_pb_config(pb_id, _pb_config, _workflow_config) pb_list.append(pb_dict) sbi_config = dict( id=SchedulingBlockInstance.get_id(utc_now, project), version=__sbi_version__, scheduling_block=generate_sb(utc_now, project, programme_block), processing_blocks=pb_list ) if register_workflows: add_workflow_definitions(sbi_config) return sbi_config
python
{ "resource": "" }
q17251
generate_sbi_json
train
def generate_sbi_json(num_pbs: int = 3, project: str = 'sip', programme_block: str = 'sip_demos', pb_config: Union[dict, List[dict]] = None, workflow_config: Union[dict, List[dict]] = None, register_workflows=True) -> str: """Return a JSON string used to configure an SBI.""" return json.dumps(generate_sbi_config(num_pbs, project, programme_block, pb_config, workflow_config, register_workflows))
python
{ "resource": "" }
q17252
SDPLoggerDevice.log
train
def log(self, argin): """Log a command for the SDP STango ubsystem devices.""" # # Tango Manual Appendix 9 gives the format # argin[0] = millisecond Unix timestamp # argin[1] = log level # argin[2] = the source log device name # argin[3] = the log message # argin[4] = Not used - reserved # argin[5] = thread identifier of originating message tm = datetime.datetime.fromtimestamp(float(argin[0])/1000.) fmt = "%Y-%m-%d %H:%M:%S" message = "TANGO Log message - {} - {} {} {}".format( tm.strftime(fmt), argin[1], argin[2], argin[3]) LOG.info(message)
python
{ "resource": "" }
q17253
_scheduling_block_ids
train
def _scheduling_block_ids(num_blocks, start_id, project): """Generate Scheduling Block instance ID""" for i in range(num_blocks): _root = '{}-{}'.format(strftime("%Y%m%d", gmtime()), project) yield '{}-sb{:03d}'.format(_root, i + start_id), \ '{}-sbi{:03d}'.format(_root, i + start_id)
python
{ "resource": "" }
q17254
_generate_processing_blocks
train
def _generate_processing_blocks(start_id, min_blocks=0, max_blocks=4): """Generate a number of Processing Blocks""" processing_blocks = [] num_blocks = random.randint(min_blocks, max_blocks) for i in range(start_id, start_id + num_blocks): _id = 'sip-pb{:03d}'.format(i) block = dict(id=_id, resources_requirement={}, workflow={}) processing_blocks.append(block) return processing_blocks
python
{ "resource": "" }
q17255
_scheduling_block_config
train
def _scheduling_block_config(num_blocks=5, start_sbi_id=0, start_pb_id=0, project='sip'): """Return a Scheduling Block Configuration dictionary""" pb_id = start_pb_id for sb_id, sbi_id in _scheduling_block_ids(num_blocks, start_sbi_id, project): sub_array_id = 'subarray-{:02d}'.format(random.choice(range(5))) config = dict(id=sbi_id, sched_block_id=sb_id, sub_array_id=sub_array_id, processing_blocks=_generate_processing_blocks(pb_id)) pb_id += len(config['processing_blocks']) yield config
python
{ "resource": "" }
q17256
add_scheduling_blocks
train
def add_scheduling_blocks(num_blocks, clear=True): """Add a number of scheduling blocks to the db.""" db_client = ConfigDb() if clear: LOG.info('Resetting database ...') db_client.clear() start_sbi_id = 0 start_pb_id = 0 else: start_sbi_id = len(db_client.get_sched_block_instance_ids()) start_pb_id = len(db_client.get_processing_block_ids()) LOG.info("Adding %i SBIs to the db", num_blocks) for config in _scheduling_block_config(num_blocks, start_sbi_id, start_pb_id): LOG.info('Creating SBI %s with %i PBs.', config['id'], len(config['processing_blocks'])) db_client.add_sched_block_instance(config)
python
{ "resource": "" }
q17257
main
train
def main(args=None, **kwargs): """Start the Processing Block device server.""" LOG.info('Starting SDP PB devices.') return run([ProcessingBlockDevice], verbose=True, msg_stream=sys.stdout, args=args, **kwargs)
python
{ "resource": "" }
q17258
ProcessingBlock.dependencies
train
def dependencies(self) -> List[Dependency]: """Return the PB dependencies.""" dependencies_str = DB.get_hash_value(self.key, 'dependencies') dependencies = [] for dependency in ast.literal_eval(dependencies_str): dependencies.append(Dependency(dependency)) return dependencies
python
{ "resource": "" }
q17259
ProcessingBlock.resources_assigned
train
def resources_assigned(self) -> List[Resource]: """Return list of resources assigned to the PB.""" resources_str = DB.get_hash_value(self.key, 'resources_assigned') resources_assigned = [] for resource in ast.literal_eval(resources_str): resources_assigned.append(Resource(resource)) return resources_assigned
python
{ "resource": "" }
q17260
ProcessingBlock.workflow_stages
train
def workflow_stages(self) -> List[WorkflowStage]: """Return list of workflow stages. Returns: dict, resources of a specified pb """ workflow_stages = [] stages = DB.get_hash_value(self.key, 'workflow_stages') for index in range(len(ast.literal_eval(stages))): workflow_stages.append(WorkflowStage(self.id, index)) return workflow_stages
python
{ "resource": "" }
q17261
ProcessingBlock.add_assigned_resource
train
def add_assigned_resource(self, resource_type: str, value: Union[str, int, float, bool], parameters: dict = None): """Add assigned resource to the processing block. Args: resource_type (str): Resource type value: Resource value parameters (dict, optional): Parameters specific to the resource """ if parameters is None: parameters = dict() resources = DB.get_hash_value(self.key, 'resources_assigned') resources = ast.literal_eval(resources) resources.append(dict(type=resource_type, value=value, parameters=parameters)) DB.set_hash_value(self.key, 'resources_assigned', resources)
python
{ "resource": "" }
q17262
ProcessingBlock.remove_assigned_resource
train
def remove_assigned_resource(self, resource_type: str, value: Union[str, int, float, bool] = None, parameters: dict = None): """Remove assigned resources from the processing block. All matching resources will be removed. If only type is specified all resources of the specified type will be removed. If value and/or parameters are specified they will be used for matching the resource to remove. Args: resource_type (str): Resource type value: Resource value parameters (dict, optional): Parameters specific to the resource """ resources = DB.get_hash_value(self.key, 'resources_assigned') resources = ast.literal_eval(resources) new_resources = [] for resource in resources: if resource['type'] != resource_type: new_resources.append(resource) elif value is not None and resource['value'] != value: new_resources.append(resource) elif parameters is not None and \ resource['parameters'] != parameters: new_resources.append(resource) DB.set_hash_value(self.key, 'resources_assigned', new_resources)
python
{ "resource": "" }
q17263
ProcessingBlock.abort
train
def abort(self): """Abort the processing_block.""" LOG.debug('Aborting PB %s', self._id) self.set_status('aborted') pb_type = DB.get_hash_value(self.key, 'type') key = '{}:active'.format(self._type) DB.remove_from_list(key, self._id) key = '{}:active:{}'.format(self._type, pb_type) DB.remove_from_list(key, self._id) key = '{}:aborted'.format(self._type) DB.append_to_list(key, self._id) key = '{}:aborted:{}'.format(self._type, pb_type) DB.append_to_list(key, self._id) self._mark_updated()
python
{ "resource": "" }
q17264
ProcessingBlock._mark_updated
train
def _mark_updated(self): """Update the updated timestamp.""" timestamp = datetime.datetime.utcnow().isoformat() DB.set_hash_value(self.key, 'updated', timestamp)
python
{ "resource": "" }
q17265
get
train
def get(): """Subarray list. This method will list all sub-arrays known to SDP. """ _url = get_root_url() LOG.debug('GET Sub array list') sub_array_ids = sorted(DB.get_sub_array_ids()) response = dict(sub_arrays=[]) for array_id in sub_array_ids: array_summary = dict(sub_arrary_id=array_id) block_ids = DB.get_sub_array_sbi_ids(array_id) LOG.debug('Subarray IDs: %s', array_id) LOG.debug('SBI IDs: %s', block_ids) array_summary['num_scheduling_blocks'] = len(block_ids) array_summary['links'] = { 'detail': '{}/sub-array/{}'.format(_url, array_id) } response['sub_arrays'].append(array_summary) response['links'] = dict(self=request.url, home=_url) return response, status.HTTP_200_OK
python
{ "resource": "" }
q17266
post
train
def post(): """Generate a SBI.""" _url = get_root_url() LOG.debug("POST subarray SBI.") # TODO(BM) generate sbi_config .. see report ... # ... will need to add this as a util function on the db... sbi_config = {} DB.add_sbi(sbi_config) response = dict() return response, status.HTTP_200_OK
python
{ "resource": "" }
q17267
Subarray.set_parameters
train
def set_parameters(self, parameters_dict): """Set the subarray parameters. Args: parameters_dict (dict): Dictionary of Subarray parameters """ DB.set_hash_value(self._key, 'parameters', parameters_dict) self.publish("parameters_updated")
python
{ "resource": "" }
q17268
Subarray.sbi_ids
train
def sbi_ids(self) -> List[str]: """Get the list of SBI Ids. Returns: list, list of SBI ids associated with this subarray. """ return ast.literal_eval(DB.get_hash_value(self._key, 'sbi_ids'))
python
{ "resource": "" }
q17269
Subarray.configure_sbi
train
def configure_sbi(self, sbi_config: dict, schema_path: str = None): """Add a new SBI to the database associated with this subarray. Args: sbi_config (dict): SBI configuration. schema_path (str, optional): Path to the SBI config schema. """ if not self.active: raise RuntimeError("Unable to add SBIs to inactive subarray!") sbi_config['subarray_id'] = self._id sbi = SchedulingBlockInstance.from_config(sbi_config, schema_path) self._add_sbi_id(sbi_config['id']) return sbi
python
{ "resource": "" }
q17270
Subarray.abort
train
def abort(self): """Abort all SBIs associated with the subarray.""" for sbi_id in self.sbi_ids: sbi = SchedulingBlockInstance(sbi_id) sbi.abort() self.set_state('ABORTED')
python
{ "resource": "" }
q17271
Subarray.deactivate
train
def deactivate(self): """Deactivate the subarray.""" DB.set_hash_value(self._key, 'active', 'False') # Remove the subarray from each of the SBIs for sbi_id in self.sbi_ids: SchedulingBlockInstance(sbi_id).clear_subarray() DB.set_hash_value(self._key, 'sbi_ids', []) self.publish('subarray_deactivated')
python
{ "resource": "" }
q17272
Subarray.remove_sbi_id
train
def remove_sbi_id(self, sbi_id): """Remove an SBI Identifier.""" sbi_ids = self.sbi_ids sbi_ids.remove(sbi_id) DB.set_hash_value(self._key, 'sbi_ids', sbi_ids)
python
{ "resource": "" }
q17273
Subarray._add_sbi_id
train
def _add_sbi_id(self, sbi_id): """Add a SBI Identifier.""" sbi_ids = self.sbi_ids sbi_ids.append(sbi_id) DB.set_hash_value(self._key, 'sbi_ids', sbi_ids)
python
{ "resource": "" }
q17274
EventQueue.get
train
def get(self) -> Union[Event, None]: """Get the latest event from the queue. Call this method to query the queue for the latest event. If no event has been published None is returned. Returns: Event or None """ message = self._queue.get_message() if message and message['type'] == 'message': event_id = DB.get_event(self._pub_key, self._processed_key) event_data_str = DB.get_hash_value(self._data_key, event_id) event_dict = ast.literal_eval(event_data_str) event_dict['id'] = event_id event_dict['subscriber'] = self._subscriber return Event.from_config(event_dict) return None
python
{ "resource": "" }
q17275
EventQueue.get_processed_events
train
def get_processed_events(self) -> List[Event]: """Get all processed events. This method is intended to be used to recover events stuck in the processed state which could happen if an event handling processing an processed event goes down before completing the event processing. Returns: list[Events], list of event objects. """ event_ids = DB.get_list(self._processed_key) events = [] for event_id in event_ids: event_str = DB.get_hash_value(self._data_key, event_id) event_dict = ast.literal_eval(event_str) event_dict['id'] = event_id event_dict['subscriber'] = self._subscriber events.append(Event.from_config(event_dict)) return events
python
{ "resource": "" }
q17276
EventQueue.complete_event
train
def complete_event(self, event_id: str): """Complete the specified event.""" event_ids = DB.get_list(self._processed_key) if event_id not in event_ids: raise KeyError('Unable to complete event. Event {} has not been ' 'processed (ie. it is not in the processed ' 'list).'.format(event_id)) DB.remove_from_list(self._processed_key, event_id, pipeline=True) key = _keys.completed_events(self._object_type, self._subscriber) DB.append_to_list(key, event_id, pipeline=True) DB.execute()
python
{ "resource": "" }
q17277
add
train
def add(workflow_definition: dict, templates_root: str): """Add a workflow definition to the Configuration Database. Templates are expected to be found in a directory tree with the following structure: - workflow_id: |- workflow_version |- stage_id |- stage_version |- <templates> Args: workflow_definition (dict): Workflow definition. templates_root (str): Workflow templates root path """ schema_path = join(dirname(__file__), 'schema', 'workflow_definition.json') with open(schema_path, 'r') as file: schema = json.loads(file.read()) jsonschema.validate(workflow_definition, schema) _id = workflow_definition['id'] _version = workflow_definition['version'] _load_templates(workflow_definition, templates_root) workflow_id = workflow_definition['id'] version = workflow_definition['version'] name = "workflow_definitions:{}:{}".format(workflow_id, version) if DB.get_keys(name): raise KeyError('Workflow definition already exists: {}'.format(name)) # DB.set_hash_values(name, workflow_definition) DB.save_dict(name, workflow_definition, hierarchical=False)
python
{ "resource": "" }
q17278
delete
train
def delete(workflow_id: str = None, workflow_version: str = None): """Delete workflow definitions. Args: workflow_id (str, optional): Optional workflow identifier workflow_version (str, optional): Optional workflow identifier version If workflow_id and workflow_version are None, delete all workflow definitions. """ if workflow_id is None and workflow_version is None: keys = DB.get_keys("workflow_definitions:*") DB.delete(*keys) elif workflow_id is not None and workflow_version is None: keys = DB.get_keys("workflow_definitions:{}:*".format(workflow_id)) DB.delete(*keys) elif workflow_id is None and workflow_version is not None: keys = DB.get_keys("workflow_definitions:*:{}" .format(workflow_version)) DB.delete(*keys) else: name = "workflow_definitions:{}:{}".format(workflow_id, workflow_version) DB.delete(name)
python
{ "resource": "" }
q17279
get_workflow
train
def get_workflow(workflow_id: str, workflow_version: str) -> dict: """Get a workflow definition from the Configuration Database. Args: workflow_id (str): Workflow identifier workflow_version (str): Workflow version Returns: dict, Workflow definition dictionary """ name = "workflow_definitions:{}:{}".format(workflow_id, workflow_version) workflow = DB.get_hash_dict(name) workflow['stages'] = ast.literal_eval(workflow['stages']) return workflow
python
{ "resource": "" }
q17280
get_workflows
train
def get_workflows() -> dict: """Get dict of ALL known workflow definitions. Returns list[dict] """ keys = DB.get_keys("workflow_definitions:*") known_workflows = dict() for key in keys: values = key.split(':') if values[1] not in known_workflows: known_workflows[values[1]] = list() known_workflows[values[1]].append(values[2]) return known_workflows
python
{ "resource": "" }
q17281
_load_templates
train
def _load_templates(workflow: dict, templates_root: str): """Load templates keys.""" workflow_template_path = join(templates_root, workflow['id'], workflow['version']) for i, stage_config in enumerate(workflow['stages']): stage_template_path = join(workflow_template_path, stage_config['id'], stage_config['version']) for config_type in ['ee_config', 'app_config']: for key, value in stage_config[config_type].items(): if 'template' in key: template_file = join(stage_template_path, value) with open(template_file, 'r') as file: template_str = file.read() workflow['stages'][i][config_type][key] = template_str
python
{ "resource": "" }
q17282
delete_pb_devices
train
def delete_pb_devices(): """Delete PBs devices from the Tango database.""" parser = argparse.ArgumentParser(description='Register PB devices.') parser.add_argument('num_pb', type=int, help='Number of PBs devices to register.') args = parser.parse_args() log = logging.getLogger('sip.tango_control.subarray') tango_db = Database() log.info("Deleting PB devices:") for index in range(args.num_pb): name = 'sip_sdp/pb/{:05d}'.format(index) log.info("\t%s", name) tango_db.delete_device(name)
python
{ "resource": "" }
q17283
main
train
def main(): """Main function for SPEAD sender module.""" # Check command line arguments. if len(sys.argv) != 2: raise RuntimeError('Usage: python3 async_send.py <json config>') # Set up logging. sip_logging.init_logger(show_thread=False) # Load SPEAD configuration from JSON file. # _path = os.path.dirname(os.path.abspath(__file__)) # with open(os.path.join(_path, 'spead_send.json')) as file_handle: # spead_config = json.load(file_handle) spead_config = json.loads(sys.argv[1]) try: _path = os.path.dirname(os.path.abspath(__file__)) schema_path = os.path.join(_path, 'config_schema.json') with open(schema_path) as schema_file: schema = json.load(schema_file) validate(spead_config, schema) except ValidationError as error: print(error.cause) raise # Set up the SPEAD sender and run it (see method, above). sender = SpeadSender(spead_config) sender.run()
python
{ "resource": "" }
q17284
SpeadSender.fill_buffer
train
def fill_buffer(heap_data, i_chan): """Blocking function to populate data in the heap. This is run in an executor. """ # Calculate the time count and fraction. now = datetime.datetime.utcnow() time_full = now.timestamp() time_count = int(time_full) time_fraction = int((time_full - time_count) * (2**32 - 1)) diff = now - (now.replace(hour=0, minute=0, second=0, microsecond=0)) time_data = diff.seconds + 1e-6 * diff.microseconds # Write the data into the buffer. heap_data['visibility_timestamp_count'] = time_count heap_data['visibility_timestamp_fraction'] = time_fraction heap_data['correlator_output_data']['VIS'][:][:] = \ time_data + i_chan * 1j
python
{ "resource": "" }
q17285
SpeadSender.run
train
def run(self): """Starts the sender.""" # Create the thread pool. executor = concurrent.futures.ThreadPoolExecutor( max_workers=self._config['num_workers']) # Wait to ensure multiple senders can be synchronised. now = int(datetime.datetime.utcnow().timestamp()) start_time = ((now + 29) // 30) * 30 self._log.info('Waiting until {}'.format( datetime.datetime.fromtimestamp(start_time))) while int(datetime.datetime.utcnow().timestamp()) < start_time: time.sleep(0.1) # Run the event loop. loop = asyncio.get_event_loop() try: loop.run_until_complete(self._run_loop(executor)) except KeyboardInterrupt: pass finally: # Send the end of stream message to each stream. self._log.info('Shutting down, closing streams...') tasks = [] for stream, item_group in self._streams: tasks.append(stream.async_send_heap(item_group.get_end())) loop.run_until_complete(asyncio.gather(*tasks)) self._log.info('... finished.') executor.shutdown()
python
{ "resource": "" }
q17286
SchedulingObjectList.set_complete
train
def set_complete(self, object_id: str): """Mark the specified object as completed.""" if object_id in self.active: DB.remove_from_list('{}:active'.format(self.type), object_id) DB.append_to_list('{}:completed'.format(self.type), object_id)
python
{ "resource": "" }
q17287
SchedulingObjectList.publish
train
def publish(self, object_id: str, event_type: str, event_data: dict = None): """Publish a scheduling object event. Args: object_id (str): ID of the scheduling object event_type (str): Type of event. event_data (dict, optional): Event data. """ object_key = SchedulingObject.get_key(self.type, object_id) publish(event_type=event_type, event_data=event_data, object_type=self.type, object_id=object_id, object_key=object_key, origin=None)
python
{ "resource": "" }
q17288
_start_workflow_stages
train
def _start_workflow_stages(pb: ProcessingBlock, pb_id: str, workflow_stage_dict: dict, workflow_stage: WorkflowStage, docker: DockerSwarmClient): """Start a workflow stage by starting a number of docker services. This function first assesses if the specified workflow stage can be started based on its dependencies. If this is found to be the case, the workflow stage is stared by first resolving and template arguments in the workflow stage configuration, and then using the Docker Swarm Client API to start workflow stage services. As part of this, the workflow_stage_dict data structure is updated accordingly. TODO(BMo) This function will need refactoring at some point as part of an update to the way workflow state metadata is stored in the configuration database. Currently the stage_data dictionary is a bit of a hack for a badly specified Configuration Database backed WorkflowStage object. This function is used by `execute_processing_block`. Args: pb (ProcessingBlock): Configuration database Processing Block data object pb_id (str): Processing Block identifier workflow_stage_dict (dict): Workflow stage metadata structure workflow_stage (WorkflowStage): Workflow state configuration database data object. docker (DockerClient): Docker Swarm Client object. """ # FIXME(BMo) replace pb_id argument, get this from the pb instead! stage_data = workflow_stage_dict[workflow_stage.id] stage_data['start'] = False # Determine if the stage can be started. if stage_data['status'] == 'none': if not workflow_stage.dependencies: stage_data['start'] = True else: dependency_status = [] for dependency in workflow_stage.dependencies: dependency_status.append( workflow_stage_dict[dependency['value']][ 'status'] == 'complete') # ii += 1 stage_data['start'] = all(dependency_status) # Start the workflow stage. if stage_data['start']: # Configure EE (set up templates) LOG.info('-- Starting workflow stage: %s --', workflow_stage.id) LOG.info('Configuring EE templates.') args_template = jinja2.Template(workflow_stage.args_template) stage_params = pb.workflow_parameters[workflow_stage.id] template_params = {**workflow_stage.config, **stage_params} args = args_template.render(stage=template_params) LOG.info('Resolving workflow script arguments.') args = json.dumps(json.loads(args)) compose_template = jinja2.Template( workflow_stage.compose_template) compose_str = compose_template.render(stage=dict(args=args)) # Prefix service names with the PB id compose_dict = yaml.load(compose_str) service_names = compose_dict['services'].keys() new_service_names = [ '{}_{}_{}'.format(pb_id, pb.workflow_id, name) for name in service_names] for new, old in zip(new_service_names, service_names): compose_dict['services'][new] = \ compose_dict['services'].pop(old) compose_str = yaml.dump(compose_dict) # Run the compose file service_ids = docker.create_services(compose_str) LOG.info('Staring workflow containers:') for service_id in service_ids: service_name = docker.get_service_name(service_id) LOG.info(" %s, %s ", service_name, service_id) stage_data['services'][service_id] = {} LOG.info('Created Services: %s', service_ids) stage_data['services'][service_id] = dict( name=docker.get_service_name(service_id), status='running', complete=False ) stage_data["status"] = 'running'
python
{ "resource": "" }
q17289
_update_workflow_stages
train
def _update_workflow_stages(stage_data: dict, workflow_stage: WorkflowStage, docker: DockerSwarmClient): """Check and update the status of a workflow stage. This function checks and updates the status of a workflow stage specified by the parameters in the specified stage_data dictionary. If the workflow stage is not marked as complete, this function will check with the Docker Swarm API on the status of Docker services defined for the stage. If **all** services are found to be complete (based on their service state being reported as 'shutdown', the workflow stage is marked complete. This function is used by `execute_processing_block`. TODO(BMo) This function will need refactoring at some point as part of an update to the way workflow state metadata is stored in the configuration database. Currently the stage_data dictionary is a bit of a hack for a badly specified Configuration Database backed WorkflowStage object. Args: stage_data (dict): Dictionary holding workflow stage metadata. workflow_stage (WorkflowStage): Workflow stage data object. docker (DockerClient): Docker Swarm Client object. """ service_status_complete = [] # FIXME(BMo) is not "complete" -> is "running" if stage_data["status"] != "complete": for service_id, service_dict in stage_data['services'].items(): service_state = docker.get_service_state(service_id) if service_state == 'shutdown': docker.delete_service(service_id) service_dict['status'] = service_state service_dict['complete'] = (service_state == 'shutdown') service_status_complete.append(service_dict['complete']) if all(service_status_complete): LOG.info('Workflow stage service %s complete!', workflow_stage.id) stage_data['status'] = "complete"
python
{ "resource": "" }
q17290
_abort_workflow
train
def _abort_workflow(pb: ProcessingBlock, workflow_stage_dict: dict, docker: DockerSwarmClient): """Abort the workflow. TODO(BMo): This function currently does nothing as the abort flag is hardcoded to False! This function is used by `execute_processing_block`. Args: pb (ProcessingBlock): Configuration database Processing block object. workflow_stage_dict (dict): Workflow stage metadata dictionary. docker (DockerClient): Docker Swarm Client object. Returns: bool, True if the stage is aborted, otherwise False. """ # TODO(BMo) Ask the database if the abort flag on the PB is set. _abort_flag = False if _abort_flag: for workflow_stage in pb.workflow_stages: for service_id, _ in \ workflow_stage_dict[workflow_stage.id]['services'].items(): docker.delete_service(service_id) LOG.info("Deleted Service Id %s", service_id) return True return False
python
{ "resource": "" }
q17291
_workflow_complete
train
def _workflow_complete(workflow_stage_dict: dict): """Check if the workflow is complete. This function checks if the entire workflow is complete. This function is used by `execute_processing_block`. Args: workflow_stage_dict (dict): Workflow metadata dictionary. Returns: bool, True if the workflow is complete, otherwise False. """ # Check if all stages are complete, if so end the PBC by breaking # out of the while loop complete_stages = [] for _, stage_config in workflow_stage_dict.items(): complete_stages.append((stage_config['status'] == 'complete')) if all(complete_stages): LOG.info('PB workflow complete!') return True return False
python
{ "resource": "" }
q17292
execute_processing_block
train
def execute_processing_block(pb_id: str, log_level='DEBUG'): """Execute a processing block. Celery tasks that executes a workflow defined in a Configuration database Processing Block data object. Args: pb_id (str): The PB id for the PBC log_level (str): Python logging level. """ init_logger('sip', show_log_origin=True, propagate=False, log_level=log_level) LOG.info('+' * 40) LOG.info('+ Executing Processing block: %s!', pb_id) LOG.info('+' * 40) LOG.info('Processing Block Controller version: %s', __version__) LOG.info('Docker Swarm API version: %s', sip_swarm_api_version) LOG.info('Configuration database API version: %s', config_db_version) pb = ProcessingBlock(pb_id) LOG.info('Starting workflow %s %s', pb.workflow_id, pb.workflow_version) pb.set_status('running') docker = DockerSwarmClient() # Coping workflow stages to a dict workflow_stage_dict = {} for stage in pb.workflow_stages: workflow_stage_dict[stage.id] = deepcopy(stage.config) workflow_stage_dict[stage.id]['services'] = dict() # Loop until workflow stages are complete. while True: time.sleep(0.1) for workflow_stage in pb.workflow_stages: _start_workflow_stages(pb, pb_id, workflow_stage_dict, workflow_stage, docker) _update_workflow_stages(workflow_stage_dict[workflow_stage.id], workflow_stage, docker) if _abort_workflow(pb, workflow_stage_dict, docker): break if _workflow_complete(workflow_stage_dict): break pb_list = ProcessingBlockList() pb_list.set_complete(pb_id) pb.set_status('completed') LOG.info('-' * 40) LOG.info('- Destroying PBC for %s', pb_id) LOG.info('-' * 40) return pb.status
python
{ "resource": "" }
q17293
ProcessingBlockQueue.put
train
def put(self, block_id, priority, pb_type='offline'): """Add a Processing Block to the queue. When a new entry it added, the queue is (re-)sorted by priority followed by insertion order (older blocks with equal priority are first). Args: block_id (str): Processing Block Identifier priority (int): Processing Block scheduling priority (higher values = higher priority) pb_type (str): Processing Block type (offline, realtime) """ if pb_type not in ('offline', 'realtime'): raise ValueError('Invalid PB type.') with self._mutex: added_time = datetime.datetime.utcnow().isoformat() entry = (priority, sys.maxsize-self._index, block_id, pb_type, added_time) self._index += 1 if self._block_map.get(block_id) is not None: raise KeyError('ERROR: Block id "{}" already exists in ' 'PC PB queue!'. format(block_id)) self._block_map[block_id] = entry LOG.debug("Adding PB %s to queue", block_id) self._queue.append(entry) self._queue.sort() # Sort by priority followed by insertion order. self._queue.reverse()
python
{ "resource": "" }
q17294
ProcessingBlockQueue.get
train
def get(self): """Get the highest priority Processing Block from the queue.""" with self._mutex: entry = self._queue.pop() del self._block_map[entry[2]] return entry[2]
python
{ "resource": "" }
q17295
ProcessingBlockQueue.remove
train
def remove(self, block_id): """Remove a Processing Block from the queue. Args: block_id (str): """ with self._mutex: entry = self._block_map[block_id] self._queue.remove(entry)
python
{ "resource": "" }
q17296
get_service_state_list
train
def get_service_state_list() -> List[ServiceState]: """Return a list of ServiceState objects known to SDP.""" keys = DB.get_keys('states*') LOG.debug('Loading list of known services.') services = [] for key in keys: values = key.split(':') if len(values) == 4: services.append(ServiceState(*values[1:4])) return services
python
{ "resource": "" }
q17297
get_service_id_list
train
def get_service_id_list() -> List[tuple]: """Return list of Services.""" keys = DB.get_keys('states*') services = [] for key in keys: values = key.split(':') if len(values) == 4: services.append(':'.join(values[1:])) return services
python
{ "resource": "" }
q17298
get
train
def get(): """Return the list of Processing Blocks known to SDP.""" LOG.debug('GET Processing Block list') _url = get_root_url() # Get list of Processing block Ids block_ids = sorted(DB.get_processing_block_ids()) LOG.debug('Processing Block IDs: %s', block_ids) # Construct response object response = dict(num_processing_blocks=len(block_ids), processing_blocks=list()) # Loop over blocks and add block summary to response. for block in DB.get_block_details(block_ids): block_id = block['id'] LOG.debug('Creating PB summary for %s', block_id) block['links'] = dict( detail='{}/processing-block/{}'.format(_url, block_id), scheduling_block='{}/scheduling-block/{}' .format(_url, block_id.split(':')[0]) ) response['processing_blocks'].append(block) response['links'] = { 'self': '{}'.format(request.url), 'home': '{}'.format(_url) } return response, HTTPStatus.OK
python
{ "resource": "" }
q17299
SchedulingObject.config
train
def config(self) -> dict: """Get the scheduling object config.""" # Check that the key exists self._check_object_exists() config_dict = DB.get_hash_dict(self.key) for _, value in config_dict.items(): for char in ['[', '{']: if char in value: value = ast.literal_eval(value) return config_dict
python
{ "resource": "" }