_id
stringlengths
2
7
title
stringlengths
1
88
partition
stringclasses
3 values
text
stringlengths
75
19.8k
language
stringclasses
1 value
meta_information
dict
q16900
Context.block_view
train
def block_view(self, mri): # type: (str) -> Block """Get a view of a block Args: mri: The mri of the controller hosting the block Returns: Block: The block we control """ controller = self.get_controller(mri) block = controller.block_view(weakref.proxy(self)) return block
python
{ "resource": "" }
q16901
Context.set_notify_dispatch_request
train
def set_notify_dispatch_request(self, notify_dispatch_request, *args): """Set function to call just before requests are dispatched Args: notify_dispatch_request (callable): function will be called with request as single arg just before request is dispatched """ self._notify_dispatch_request = notify_dispatch_request self._notify_args = args
python
{ "resource": "" }
q16902
Context.ignore_stops_before_now
train
def ignore_stops_before_now(self): """Ignore any stops received before this point""" self._sentinel_stop = object() self._q.put(self._sentinel_stop)
python
{ "resource": "" }
q16903
Context.put
train
def put(self, path, value, timeout=None, event_timeout=None): """"Puts a value to a path and returns when it completes Args: path (list): The path to put to value (object): The value to set timeout (float): time in seconds to wait for responses, wait forever if None event_timeout: maximum time in seconds to wait between each response event, wait forever if None Returns: The value after the put completes """ future = self.put_async(path, value) self.wait_all_futures( future, timeout=timeout, event_timeout=event_timeout) return future.result()
python
{ "resource": "" }
q16904
Context.put_async
train
def put_async(self, path, value): """"Puts a value to a path and returns immediately Args: path (list): The path to put to value (object): The value to set Returns: Future: A single Future which will resolve to the result """ request = Put(self._get_next_id(), path, value) request.set_callback(self._q.put) future = self._dispatch_request(request) return future
python
{ "resource": "" }
q16905
Context.post
train
def post(self, path, params=None, timeout=None, event_timeout=None): """Synchronously calls a method Args: path (list): The path to post to params (dict): parameters for the call timeout (float): time in seconds to wait for responses, wait forever if None event_timeout: maximum time in seconds to wait between each response event, wait forever if None Returns: the result from 'method' """ future = self.post_async(path, params) self.wait_all_futures( future, timeout=timeout, event_timeout=event_timeout) return future.result()
python
{ "resource": "" }
q16906
Context.post_async
train
def post_async(self, path, params=None): """Asynchronously calls a function on a child block Args: path (list): The path to post to params (dict): parameters for the call Returns: Future: as single Future that will resolve to the result """ request = Post(self._get_next_id(), path, params) request.set_callback(self._q.put) future = self._dispatch_request(request) return future
python
{ "resource": "" }
q16907
Context.unsubscribe
train
def unsubscribe(self, future): """Terminates the subscription given by a future Args: future (Future): The future of the original subscription """ assert future not in self._pending_unsubscribes, \ "%r has already been unsubscribed from" % \ self._pending_unsubscribes[future] subscribe = self._requests[future] self._pending_unsubscribes[future] = subscribe # Clear out the subscription self._subscriptions.pop(subscribe.id) request = Unsubscribe(subscribe.id) request.set_callback(self._q.put) try: controller = self.get_controller(subscribe.path[0]) except ValueError: # Controller has already gone, probably during tearDown pass else: self.handle_request(controller, request)
python
{ "resource": "" }
q16908
Context.unsubscribe_all
train
def unsubscribe_all(self, callback=False): """Send an unsubscribe for all active subscriptions""" futures = ((f, r) for f, r in self._requests.items() if isinstance(r, Subscribe) and f not in self._pending_unsubscribes) if futures: for future, request in futures: if callback: log.warn("Unsubscribing from %s", request.path) cothread.Callback(self.unsubscribe, future) else: self.unsubscribe(future)
python
{ "resource": "" }
q16909
Context.when_matches
train
def when_matches(self, path, good_value, bad_values=None, timeout=None, event_timeout=None): """Resolve when an path value equals value Args: path (list): The path to wait to good_value (object): the value to wait for bad_values (list): values to raise an error on timeout (float): time in seconds to wait for responses, wait forever if None event_timeout: maximum time in seconds to wait between each response event, wait forever if None """ future = self.when_matches_async(path, good_value, bad_values) self.wait_all_futures( future, timeout=timeout, event_timeout=event_timeout)
python
{ "resource": "" }
q16910
Context.when_matches_async
train
def when_matches_async(self, path, good_value, bad_values=None): """Wait for an attribute to become a given value Args: path (list): The path to wait to good_value: If it is a callable then expect it to return True if we are satisfied and raise on error. If it is not callable then compare each value against this one and return if it matches. bad_values (list): values to raise an error on Returns: Future: a single Future that will resolve when the path matches good_value or bad_values """ when = When(good_value, bad_values) future = self.subscribe(path, when) when.set_future_context(future, weakref.proxy(self)) return future
python
{ "resource": "" }
q16911
Context.wait_all_futures
train
def wait_all_futures(self, futures, timeout=None, event_timeout=None): # type: (Union[List[Future], Future, None], float, float) -> None """Services all futures until the list 'futures' are all done then returns. Calls relevant subscription callbacks as they come off the queue and raises an exception on abort Args: futures: a `Future` or list of all futures that the caller wants to wait for timeout: maximum total time in seconds to wait for responses, wait forever if None event_timeout: maximum time in seconds to wait between each response event, wait forever if None """ if timeout is None: end = None else: end = time.time() + timeout if not isinstance(futures, list): if futures: futures = [futures] else: futures = [] filtered_futures = [] for f in futures: if f.done(): if f.exception() is not None: raise f.exception() else: filtered_futures.append(f) while filtered_futures: if event_timeout is not None: until = time.time() + event_timeout if end is not None: until = min(until, end) else: until = end self._service_futures(filtered_futures, until)
python
{ "resource": "" }
q16912
Context.sleep
train
def sleep(self, seconds): """Services all futures while waiting Args: seconds (float): Time to wait """ until = time.time() + seconds try: while True: self._service_futures([], until) except TimeoutError: return
python
{ "resource": "" }
q16913
Spawned.get
train
def get(self, timeout=None): # type: (float) -> T """Return the result or raise the error the function has produced""" self.wait(timeout) if isinstance(self._result, Exception): raise self._result return self._result
python
{ "resource": "" }
q16914
RunnableController.update_configure_params
train
def update_configure_params(self, part=None, info=None): # type: (Part, ConfigureParamsInfo) -> None """Tell controller part needs different things passed to Configure""" with self.changes_squashed: # Update the dict if part: self.part_configure_params[part] = info # No process yet, so don't do this yet if self.process is None: return # Get the model of our configure method as the starting point configure_model = MethodModel.from_callable(self.configure) # These will not be inserted as the already exist ignored = tuple(ConfigureHook.call_types) # Re-calculate the following required = [] takes_elements = OrderedDict() defaults = OrderedDict() # First do the required arguments for k in configure_model.takes.required: required.append(k) takes_elements[k] = configure_model.takes.elements[k] for part in self.parts.values(): try: info = self.part_configure_params[part] except KeyError: continue for k in info.required: if k not in required and k not in ignored: required.append(k) takes_elements[k] = info.metas[k] # Now the default and optional for k in configure_model.takes.elements: if k not in required: takes_elements[k] = configure_model.takes.elements[k] for part in self.parts.values(): try: info = self.part_configure_params[part] except KeyError: continue for k in info.metas: if k not in required and k not in ignored: takes_elements[k] = info.metas[k] if k in info.defaults: defaults[k] = info.defaults[k] # Set the values configure_model.takes.set_elements(takes_elements) configure_model.takes.set_required(required) configure_model.set_defaults(defaults) # Update methods from the new metas self._block.configure.set_takes(configure_model.takes) self._block.configure.set_defaults(configure_model.defaults) # Now make a validate model with returns validate_model = MethodModel.from_dict(configure_model.to_dict()) returns = MapMeta.from_dict(validate_model.takes.to_dict()) for v in returns.elements.values(): v.set_writeable(False) self._block.validate.set_takes(validate_model.takes) self._block.validate.set_defaults(validate_model.defaults) self._block.validate.set_returns(returns)
python
{ "resource": "" }
q16915
RunnableController.validate
train
def validate(self, generator, axesToMove=None, **kwargs): # type: (AGenerator, AAxesToMove, **Any) -> AConfigureParams """Validate configuration parameters and return validated parameters. Doesn't take device state into account so can be run in any state """ iterations = 10 # We will return this, so make sure we fill in defaults for k, default in self._block.configure.defaults.items(): if k not in kwargs: kwargs[k] = default # The validated parameters we will eventually return params = ConfigureParams(generator, axesToMove, **kwargs) # Make some tasks just for validate part_contexts = self.create_part_contexts() # Get any status from all parts status_part_info = self.run_hooks( ReportStatusHook(p, c) for p, c in part_contexts.items()) while iterations > 0: # Try up to 10 times to get a valid set of parameters iterations -= 1 # Validate the params with all the parts validate_part_info = self.run_hooks( ValidateHook(p, c, status_part_info, **kwargs) for p, c, kwargs in self._part_params(part_contexts, params)) tweaks = ParameterTweakInfo.filter_values(validate_part_info) if tweaks: for tweak in tweaks: deserialized = self._block.configure.takes.elements[ tweak.parameter].validate(tweak.value) setattr(params, tweak.parameter, deserialized) self.log.debug( "Tweaking %s to %s", tweak.parameter, deserialized) else: # Consistent set, just return the params return params raise ValueError("Could not get a consistent set of parameters")
python
{ "resource": "" }
q16916
RunnableController.abort
train
def abort(self): # type: () -> None """Abort the current operation and block until aborted Normally it will return in Aborted state. If something goes wrong it will return in Fault state. If the user disables then it will return in Disabled state. """ # Tell _call_do_run not to resume if self.resume_queue: self.resume_queue.put(False) self.try_aborting_function(ss.ABORTING, ss.ABORTED, self.do_abort)
python
{ "resource": "" }
q16917
RunnableController.resume
train
def resume(self): # type: () -> None """Resume a paused scan. Normally it will return in Running state. If something goes wrong it will return in Fault state. """ self.transition(ss.RUNNING) self.resume_queue.put(True)
python
{ "resource": "" }
q16918
ConfigureHook.create_info
train
def create_info(cls, configure_func): # type: (Callable) -> ConfigureParamsInfo """Create a `ConfigureParamsInfo` describing the extra parameters that should be passed at configure""" call_types = getattr(configure_func, "call_types", {}) # type: Dict[str, Anno] metas = OrderedDict() required = [] defaults = OrderedDict() for k, anno in call_types.items(): if k not in cls.call_types: scls = VMeta.lookup_annotype_converter(anno) metas[k] = scls.from_annotype(anno, writeable=True) if anno.default is NO_DEFAULT: required.append(k) elif anno.default is not None: defaults[k] = anno.default return ConfigureParamsInfo(metas, required, defaults)
python
{ "resource": "" }
q16919
Hookable.register_hooked
train
def register_hooked(self, hooks, # type: Union[Type[Hook], Sequence[Type[Hook]]] func, # type: Hooked args_gen=None # type: Optional[ArgsGen] ): # type: (Type[Hook], Callable, Optional[Callable]) -> None """Register func to be run when any of the hooks are run by parent Args: hooks: A Hook class or list of Hook classes of interest func: The callable that should be run on that Hook args_gen: Optionally specify the argument names that should be passed to func. If not given then use func.call_types.keys """ if self.hooked is None: self.hooked = {} if args_gen is None: args_gen = getattr(func, "call_types", {}).keys if not isinstance(hooks, Sequence): hooks = [hooks] for hook_cls in hooks: self.hooked[hook_cls] = (func, args_gen)
python
{ "resource": "" }
q16920
Hookable.on_hook
train
def on_hook(self, hook): # type: (Hook) -> None """Takes a hook, and optionally calls hook.run on a function""" try: func, args_gen = self.hooked[type(hook)] except (KeyError, TypeError): return else: hook(func, args_gen())
python
{ "resource": "" }
q16921
StateSet.transition_allowed
train
def transition_allowed(self, initial_state, target_state): # type: (str, str) -> bool """Check if a transition between two states is allowed""" assert initial_state in self._allowed, \ "%s is not in %s" % (initial_state, list(self._allowed)) return target_state in self._allowed[initial_state]
python
{ "resource": "" }
q16922
StateSet.set_allowed
train
def set_allowed(self, initial_state, *allowed_states): # type: (str, *str) -> None """Add an allowed transition from initial_state to allowed_states""" allowed_states = list(allowed_states) self._allowed.setdefault(initial_state, set()).update(allowed_states) for state in allowed_states + [initial_state]: if state not in self.possible_states: self.possible_states.append(state)
python
{ "resource": "" }
q16923
cmd_string
train
def cmd_string(name, cmd): # type: (AName, ACmd) -> ADefine """Define a string parameter coming from a shell command to be used within this YAML file. Trailing newlines will be stripped.""" value = subprocess.check_output(cmd, shell=True).rstrip("\n") return Define(name, value)
python
{ "resource": "" }
q16924
export_env_string
train
def export_env_string(name, value): # type: (AEnvName, AEnvValue) -> ADefine """Exports an environment variable with the given value""" os.environ[name] = value return Define(name, value)
python
{ "resource": "" }
q16925
WebsocketClientComms.on_message
train
def on_message(self, message): """Pass response from server to process receive queue Args: message(str): Received message """ # Called in tornado loop try: self.log.debug("Got message %s", message) d = json_decode(message) response = deserialize_object(d, Response) if isinstance(response, (Return, Error)): request = self._request_lookup.pop(response.id) if isinstance(response, Error): # Make the message an exception so it can be raised response.message = ResponseError(response.message) else: request = self._request_lookup[response.id] # Transfer the work of the callback to cothread cothread.Callback(request.callback, response) except Exception: # If we don't catch the exception here, tornado will spew odd # error messages about 'HTTPRequest' object has no attribute 'path' self.log.exception("on_message(%r) failed", message)
python
{ "resource": "" }
q16926
Info.filter_parts
train
def filter_parts(cls, part_info): # type: (Type[T], PartInfo) -> Dict[str, List[T]] """Filter the part_info dict looking for instances of our class Args: part_info (dict): {part_name: [Info] or None} as returned from Controller.run_hook() Returns: dict: {part_name: [info]} where info is a subclass of cls """ filtered = OrderedDict() for part_name, info_list in part_info.items(): if info_list is None or isinstance(info_list, Exception): continue info_list = [i for i in info_list if isinstance(i, cls)] if info_list: filtered[part_name] = info_list return filtered
python
{ "resource": "" }
q16927
Info.filter_values
train
def filter_values(cls, part_info): # type: (Type[T], PartInfo) -> List[T] """Filter the part_info dict list looking for instances of our class Args: part_info (dict): {part_name: [Info] or None} as returned from Controller.run_hook() Returns: list: [info] where info is a subclass of cls """ filtered = [] for info_list in cls.filter_parts(part_info).values(): filtered += info_list return filtered
python
{ "resource": "" }
q16928
Info.filter_single_value
train
def filter_single_value(cls, part_info, error_msg=None): # type: (Type[T], PartInfo, str) -> T """Filter the part_info dict list looking for a single instance of our class Args: part_info (dict): {part_name: [Info] or None} as returned from Controller.run_hook() error_msg (str, optional): Specific error message to show if there isn't a single value Returns: info subclass of cls """ filtered = cls.filter_values(part_info) if len(filtered) != 1: if error_msg is None: error_msg = "Expected a single %s, got %s of them" % \ (cls.__name__, len(filtered)) raise BadValueError(error_msg) return filtered[0]
python
{ "resource": "" }
q16929
PvaServerComms.disconnect_pv_clients
train
def disconnect_pv_clients(self, mris): # type: (List[str]) -> None """Disconnect anyone listening to any of the given mris""" for mri in mris: for pv in self._pvs.pop(mri, {}).values(): # Close pv with force destroy on, this will call # onLastDisconnect pv.close(destroy=True, sync=True, timeout=1.0)
python
{ "resource": "" }
q16930
Port.with_source_port_tag
train
def with_source_port_tag(self, tags, connected_value): """Add a Source Port tag to the tags list, removing any other Source Ports""" new_tags = [t for t in tags if not t.startswith("sourcePort:")] new_tags.append(self.source_port_tag(connected_value)) return new_tags
python
{ "resource": "" }
q16931
Port.port_tag_details
train
def port_tag_details(cls, tags): # type: (Sequence[str]) -> Union[Tuple[bool, Port, str], None] """Search tags for port info, returning it Args: tags: A list of tags to check Returns: None or (is_source, port, connected_value|disconnected_value) where port is one of the Enum entries of Port """ for tag in tags: match = port_tag_re.match(tag) if match: source_sink, port, extra = match.groups() return source_sink == "source", cls(port), extra
python
{ "resource": "" }
q16932
StatefulController.transition
train
def transition(self, state, message=""): """Change to a new state if the transition is allowed Args: state (str): State to transition to message (str): Message if the transition is to a fault state """ with self.changes_squashed: initial_state = self.state.value if self.state_set.transition_allowed( initial_state=initial_state, target_state=state): self.log.debug( "%s: Transitioning from %s to %s", self.mri, initial_state, state) if state == ss.DISABLED: alarm = Alarm.invalid("Disabled") elif state == ss.FAULT: alarm = Alarm.major(message) else: alarm = Alarm() self.update_health(self, HealthInfo(alarm)) self.state.set_value(state) self.state.set_alarm(alarm) for child, writeable in self._children_writeable[state].items(): if isinstance(child, AttributeModel): child.meta.set_writeable(writeable) elif isinstance(child, MethodModel): child.set_writeable(writeable) else: raise TypeError("Cannot transition from %s to %s" % (initial_state, state))
python
{ "resource": "" }
q16933
wait_for_stateful_block_init
train
def wait_for_stateful_block_init(context, mri, timeout=DEFAULT_TIMEOUT): """Wait until a Block backed by a StatefulController has initialized Args: context (Context): The context to use to make the child block mri (str): The mri of the child block timeout (float): The maximum time to wait """ context.when_matches( [mri, "state", "value"], StatefulStates.READY, bad_values=[StatefulStates.FAULT, StatefulStates.DISABLED], timeout=timeout)
python
{ "resource": "" }
q16934
Future.exception
train
def exception(self, timeout=None): """Return the exception raised by the call that the future represents. Args: timeout: The number of seconds to wait for the exception if the future isn't done. If None, then there is no limit on the wait time. Returns: The exception raised by the call that the future represents or None if the call completed without raising. Raises: TimeoutError: If the future didn't finish executing before the given timeout. """ if self._state == self.RUNNING: self._context.wait_all_futures([self], timeout) return self._exception
python
{ "resource": "" }
q16935
Future.set_result
train
def set_result(self, result): """Sets the return value of work associated with the future. Should only be used by Task and unit tests. """ self._result = result self._state = self.FINISHED
python
{ "resource": "" }
q16936
Future.set_exception
train
def set_exception(self, exception): """Sets the result of the future as being the given exception. Should only be used by Task and unit tests. """ assert isinstance(exception, Exception), \ "%r should be an Exception" % exception self._exception = exception self._state = self.FINISHED
python
{ "resource": "" }
q16937
Request.return_response
train
def return_response(self, value=None): # type: (Any) -> Tuple[Callback, Return] """Create a Return Response object to signal a return value""" response = Return(id=self.id, value=value) return self.callback, response
python
{ "resource": "" }
q16938
Request.error_response
train
def error_response(self, exception): # type: (Exception) -> Tuple[Callback, Error] """Create an Error Response object to signal an error""" response = Error(id=self.id, message=exception) log.exception("Exception raised for request %s", self) return self.callback, response
python
{ "resource": "" }
q16939
make_view
train
def make_view(controller, context, data): # type: (Controller, Context, Any) -> Any """Make a View subclass containing properties specific for given data Args: controller (Controller): The child controller that hosts the data context (Context): The context the parent has made that the View should use for manipulating the data data (Model): The actual data that context will be manipulating Returns: View: A View subclass instance that provides a user-focused API to the given data """ if isinstance(data, BlockModel): # Make an Block View view = _make_view_subclass(Block, controller, context, data) elif isinstance(data, AttributeModel): # Make an Attribute View view = Attribute(controller, context, data) elif isinstance(data, MethodModel): # Make a Method View view = Method(controller, context, data) elif isinstance(data, Model): # Make a generic View view = _make_view_subclass(View, controller, context, data) elif isinstance(data, dict): # Make a dict of Views d = OrderedDict() for k, v in data.items(): d[k] = make_view(controller, context, v) view = d elif isinstance(data, list): # Need to recurse down view = [make_view(controller, context, x) for x in data] else: # Just return the data unwrapped as it should be immutable view = data return view
python
{ "resource": "" }
q16940
Attribute.put_value
train
def put_value(self, value, timeout=None): """Put a value to the Attribute and wait for completion""" self._context.put(self._data.path + ["value"], value, timeout=timeout)
python
{ "resource": "" }
q16941
ExposureDeadtimeInfo.calculate_exposure
train
def calculate_exposure(self, duration): # type: (float) -> float """Calculate the exposure to set the detector to given the duration of the frame and the readout_time and frequency_accuracy""" exposure = duration - self.frequency_accuracy * duration / 1000000.0 - \ self.readout_time assert exposure > 0.0, \ "Exposure time %s too small when deadtime taken into account" % ( exposure,) return exposure
python
{ "resource": "" }
q16942
Model.set_notifier_path
train
def set_notifier_path(self, notifier, path): """Sets the notifier, and the path from the path from block root Args: notifier (Notifier): The Notifier to tell when endpoint data changes path (list): The absolute path to get to this object """ # type: (Union[Notifier, DummyNotifier], List[str]) -> None # This function should either change from the DummyNotifier or to # the DummyNotifier, never between two valid notifiers assert self.notifier is Model.notifier or notifier is Model.notifier, \ "Already have a notifier %s path %s" % (self.notifier, self.path) self.notifier = notifier self.path = path # Tell all our children too for name, ct in self.call_types.items(): if ct.is_mapping: child = getattr(self, name) if child and issubclass(ct.typ[1], Model): for k, v in child.items(): v.set_notifier_path(notifier, self.path + [name, k]) elif issubclass(ct.typ, Model): assert not ct.is_array, \ "Can't deal with Arrays of Models %s" % ct child = getattr(self, name) child.set_notifier_path(notifier, self.path + [name])
python
{ "resource": "" }
q16943
Model.apply_change
train
def apply_change(self, path, *args): # type: (List[str], Any) -> None """Take a single change from a Delta and apply it to this model""" if len(path) > 1: # This is for a child self[path[0]].apply_change(path[1:], *args) else: # This is for us assert len(path) == 1 and len(args) == 1, \ "Cannot process change %s" % ([self.path + path] + list(args)) getattr(self, "set_%s" % path[0])(args[0])
python
{ "resource": "" }
q16944
VMeta.create_attribute_model
train
def create_attribute_model(self, initial_value=None): # type: (Any) -> AttributeModel """Make an AttributeModel instance of the correct type for this Meta Args: initial_value: The initial value the Attribute should take Returns: AttributeModel: The created attribute model instance """ attr = self.attribute_class(meta=self, value=initial_value) return attr
python
{ "resource": "" }
q16945
VMeta.from_annotype
train
def from_annotype(cls, anno, writeable, **kwargs): # type: (Anno, bool, **Any) -> VMeta """Return an instance of this class from an Anno""" ret = cls(description=anno.description, writeable=writeable, **kwargs) widget = ret.default_widget() if widget != Widget.NONE: ret.set_tags([widget.tag()]) return ret
python
{ "resource": "" }
q16946
VMeta.register_annotype_converter
train
def register_annotype_converter(cls, types, is_array=False, is_mapping=False): # type: (Union[Sequence[type], type], bool, bool) -> Any """Register this class as a converter for Anno instances""" if not isinstance(types, Sequence): types = [types] def decorator(subclass): for typ in types: cls._annotype_lookup[(typ, is_array, is_mapping)] = subclass return subclass return decorator
python
{ "resource": "" }
q16947
VMeta.lookup_annotype_converter
train
def lookup_annotype_converter(cls, anno): # type: (Anno) -> Type[VMeta] """Look up a vmeta based on an Anno""" if hasattr(anno.typ, "__bases__"): # This is a proper type bases = inspect.getmro(anno.typ) else: # This is a numpy dtype bases = [anno.typ] for typ in bases: key = (typ, bool(anno.is_array), bool(anno.is_mapping)) try: return cls._annotype_lookup[key] except KeyError: pass raise KeyError(anno)
python
{ "resource": "" }
q16948
AttributeModel.set_value
train
def set_value(self, value, set_alarm_ts=True, alarm=None, ts=None): # type: (Any, bool, Alarm, TimeStamp) -> Any """Set value, calculating alarm and ts if requested""" value = self.meta.validate(value) if set_alarm_ts: if alarm is None: alarm = Alarm.ok else: alarm = deserialize_object(alarm, Alarm) if ts is None: ts = TimeStamp() else: ts = deserialize_object(ts, TimeStamp) self.set_value_alarm_ts(value, alarm, ts) else: self.set_endpoint_data("value", value) return self.value
python
{ "resource": "" }
q16949
AttributeModel.set_value_alarm_ts
train
def set_value_alarm_ts(self, value, alarm, ts): """Set value with pre-validated alarm and timeStamp""" # type: (Any, Alarm, TimeStamp) -> None with self.notifier.changes_squashed: # Assume they are of the right format self.value = value self.notifier.add_squashed_change(self.path + ["value"], value) if alarm is not self.alarm: self.alarm = alarm self.notifier.add_squashed_change(self.path + ["alarm"], alarm) self.timeStamp = ts self.notifier.add_squashed_change(self.path + ["timeStamp"], ts)
python
{ "resource": "" }
q16950
PandABlocksClient.send_recv
train
def send_recv(self, message, timeout=10.0): """Send a message to a PandABox and wait for the response Args: message (str): The message to send timeout (float): How long to wait before raising queue.Empty Returns: str: The response """ response_queue = self.send(message) response = self.recv(response_queue, timeout) return response
python
{ "resource": "" }
q16951
PandABlocksClient._send_loop
train
def _send_loop(self): """Service self._send_queue, sending requests to server""" while True: message, response_queue = self._send_queue.get() if message is self.STOP: break try: self._response_queues.put(response_queue) self._socket.send(message) except Exception: # pylint:disable=broad-except log.exception("Exception sending message %s", message)
python
{ "resource": "" }
q16952
PandABlocksClient._respond
train
def _respond(self, resp): """Respond to the person waiting""" response_queue = self._response_queues.get(timeout=0.1) response_queue.put(resp) self._completed_response_lines = [] self._is_multiline = None
python
{ "resource": "" }
q16953
PandABlocksClient._recv_loop
train
def _recv_loop(self): """Service socket recv, returning responses to the correct queue""" self._completed_response_lines = [] self._is_multiline = None lines_iterator = self._get_lines() while True: try: line = next(lines_iterator) if self._is_multiline is None: self._is_multiline = line.startswith("!") or line == "." if line.startswith("ERR"): self._respond(ValueError(line)) elif self._is_multiline: if line == ".": self._respond(self._completed_response_lines) else: assert line[0] == "!", \ "Multiline response {} doesn't start with !" \ .format(repr(line)) self._completed_response_lines.append(line[1:]) else: self._respond(line) except StopIteration: return except Exception: log.exception("Exception receiving message") raise
python
{ "resource": "" }
q16954
PandABlocksClient.parameterized_send
train
def parameterized_send(self, request, parameter_list): """Send batched requests for a list of parameters Args: request (str): Request to send, like "%s.*?\n" parameter_list (list): parameters to format with, like ["TTLIN", "TTLOUT"] Returns: dict: {parameter: response_queue} """ response_queues = OrderedDict() for parameter in parameter_list: response_queues[parameter] = self.send(request % parameter) return response_queues
python
{ "resource": "" }
q16955
ChildPart.notify_dispatch_request
train
def notify_dispatch_request(self, request): # type: (Request) -> None """Will be called when a context passed to a hooked function is about to dispatch a request""" if isinstance(request, Put) and request.path[0] == self.mri: # This means the context we were passed has just made a Put request # so mark the field as "we_modified" so it doesn't screw up the # modified led attribute_name = request.path[-2] if attribute_name not in self.no_save: self.log.warning( "Part %s tried to set '%s' that is not in self.no_save. " "This will stop the 'modified' attribute from working.", self, attribute_name)
python
{ "resource": "" }
q16956
ChildPart.sever_sink_ports
train
def sever_sink_ports(self, context, ports, connected_to=None): # type: (AContext, APortMap, str) -> None """Conditionally sever Sink Ports of the child. If connected_to is then None then sever all, otherwise restrict to connected_to's Source Ports Args: context (Context): The context to use ports (dict): {part_name: [PortInfo]} connected_to (str): Restrict severing to this part """ # Find the Source Ports to connect to if connected_to: # Calculate a lookup of the Source Port "name" to type source_port_lookup = self._source_port_lookup( ports.get(connected_to, [])) else: source_port_lookup = True # Find our Sink Ports sink_ports = self._get_flowgraph_ports(ports, SinkPortInfo) # If we have Sunk Ports that need to be disconnected then do so if sink_ports and source_port_lookup: child = context.block_view(self.mri) attribute_values = {} for name, port_info in sink_ports.items(): if source_port_lookup is True or source_port_lookup.get( child[name].value, None) == port_info.port: attribute_values[name] = port_info.disconnected_value child.put_attribute_values(attribute_values)
python
{ "resource": "" }
q16957
ChildPart.calculate_part_visibility
train
def calculate_part_visibility(self, ports): # type: (APortMap) -> None """Calculate what is connected to what Args: ports: {part_name: [PortInfo]} from other ports """ # Calculate a lookup of Source Port connected_value to part_name source_port_lookup = {} for part_name, port_infos in SourcePortInfo.filter_parts(ports).items(): for port_info in port_infos: source_port_lookup[port_info.connected_value] = ( part_name, port_info.port) # Look through all the Sink Ports, and set both ends of the # connection to visible if they aren't specified for part_name, port_infos in SinkPortInfo.filter_parts( ports).items(): for port_info in port_infos: if port_info.value != port_info.disconnected_value: conn_part, port = source_port_lookup.get( port_info.value, (None, None)) if conn_part and port == port_info.port: if conn_part not in self.part_visibility: self.part_visibility[conn_part] = True if part_name not in self.part_visibility: self.part_visibility[part_name] = True
python
{ "resource": "" }
q16958
Notifier.handle_subscribe
train
def handle_subscribe(self, request): # type: (Subscribe) -> CallbackResponses """Handle a Subscribe request from outside. Called with lock taken""" ret = self._tree.handle_subscribe(request, request.path[1:]) self._subscription_keys[request.generate_key()] = request return ret
python
{ "resource": "" }
q16959
Notifier.handle_unsubscribe
train
def handle_unsubscribe(self, request): # type: (Unsubscribe) -> CallbackResponses """Handle a Unsubscribe request from outside. Called with lock taken""" subscribe = self._subscription_keys.pop(request.generate_key()) ret = self._tree.handle_unsubscribe(subscribe, subscribe.path[1:]) return ret
python
{ "resource": "" }
q16960
Notifier.add_squashed_change
train
def add_squashed_change(self, path, data): # type: (List[str], Any) -> None """Register a squashed change to a particular path Args: path (list): The path of what has changed, relative from Block data (object): The new data """ assert self._squashed_count, "Called while not squashing changes" self._squashed_changes.append([path[1:], data])
python
{ "resource": "" }
q16961
NotifierNode.notify_changes
train
def notify_changes(self, changes): # type: (List[List]) -> CallbackResponses """Set our data and notify anyone listening Args: changes (list): [[path, optional data]] where path is the path to what has changed, and data is the unserialized object that has changed Returns: list: [(callback, Response)] that need to be called """ ret = [] child_changes = {} for change in changes: # Add any changes that our children need to know about self._add_child_change(change, child_changes) # If we have update subscribers, serialize at this level if self.update_requests: serialized = serialize_object(self.data) for request in self.update_requests: ret.append(request.update_response(serialized)) # If we have delta subscribers, serialize the changes if self.delta_requests: for change in changes: change[-1] = serialize_object(change[-1]) for request in self.delta_requests: ret.append(request.delta_response(changes)) # Now notify our children for name, child_changes in child_changes.items(): ret += self.children[name].notify_changes(child_changes) return ret
python
{ "resource": "" }
q16962
NotifierNode._update_data
train
def _update_data(self, data): # type: (Any) -> Dict[str, List] """Set our data and notify any subscribers of children what has changed Args: data (object): The new data Returns: dict: {child_name: [path_list, optional child_data]} of the change that needs to be passed to a child as a result of this """ self.data = data child_change_dict = {} # Reflect change of data to children for name in self.children: child_data = getattr(data, name, None) if child_data is None: # Deletion child_change_dict[name] = [[]] else: # Change child_change_dict[name] = [[], child_data] return child_change_dict
python
{ "resource": "" }
q16963
NotifierNode.handle_subscribe
train
def handle_subscribe(self, request, path): # type: (Subscribe, List[str]) -> CallbackResponses """Add to the list of request to notify, and notify the initial value of the data held Args: request (Subscribe): The subscribe request path (list): The relative path from ourself Returns: list: [(callback, Response)] that need to be called """ ret = [] if path: # Recurse down name = path[0] if name not in self.children: self.children[name] = NotifierNode( getattr(self.data, name, None), self) ret += self.children[name].handle_subscribe(request, path[1:]) else: # This is for us serialized = serialize_object(self.data) if request.delta: self.delta_requests.append(request) ret.append(request.delta_response([[[], serialized]])) else: self.update_requests.append(request) ret.append(request.update_response(serialized)) return ret
python
{ "resource": "" }
q16964
NotifierNode.handle_unsubscribe
train
def handle_unsubscribe(self, request, path): # type: (Subscribe, List[str]) -> CallbackResponses """Remove from the notifier list and send a return Args: request (Subscribe): The original subscribe request path (list): The relative path from ourself Returns: list: [(callback, Response)] that need to be called """ ret = [] if path: # Recurse down name = path[0] child = self.children[name] ret += child.handle_unsubscribe(request, path[1:]) if not child.children and not child.update_requests \ and not child.delta_requests: del self.children[name] else: # This is for us if request in self.update_requests: self.update_requests.remove(request) else: self.delta_requests.remove(request) ret.append(request.return_response()) return ret
python
{ "resource": "" }
q16965
string
train
def string(name, description, default=None): # type: (AName, ADescription, AStringDefault) -> AAnno """Add a string parameter to be passed when instantiating this YAML file""" args = common_args(name, default) return Anno(description, typ=str, **args)
python
{ "resource": "" }
q16966
float64
train
def float64(name, description, default=None): # type: (AName, ADescription, AFloat64Default) -> AAnno """Add a float64 parameter to be passed when instantiating this YAML file""" args = common_args(name, default) return Anno(description, typ=float, **args)
python
{ "resource": "" }
q16967
int32
train
def int32(name, description, default=None): # type: (AName, ADescription, AInt32Default) -> AAnno """Add an int32 parameter to be passed when instantiating this YAML file""" args = common_args(name, default) return Anno(description, typ=int, **args)
python
{ "resource": "" }
q16968
make_block_creator
train
def make_block_creator(yaml_path, filename=None): # type: (str, str) -> Callable[..., List[Controller]] """Make a collection function that will create a list of blocks Args: yaml_path (str): File path to YAML file, or a file in the same dir filename (str): If give, use this filename as the last element in the yaml_path (so yaml_path can be __file__) Returns: function: A collection function decorated with @takes. This can be used in other blocks or instantiated by the process. If the YAML text specified controllers or parts then a block instance with the given name will be instantiated. If there are any blocks listed then they will be called. All created blocks by this or any sub collection will be returned """ sections, yamlname, docstring = Section.from_yaml(yaml_path, filename) yamldir = os.path.dirname(yaml_path) # Check we have only one controller controller_sections = [s for s in sections if s.section == "controllers"] assert len(controller_sections) == 1, \ "Expected exactly 1 controller, got %s" % (controller_sections,) controller_section = controller_sections[0] def block_creator(kwargs): # Create the param dict of the static defined arguments defines = _create_defines(sections, yamlname, yamldir, kwargs) controllers, parts = _create_blocks_and_parts(sections, defines) # Make the controller controller = controller_section.instantiate(defines) for part in parts: controller.add_part(part) controllers.append(controller) return controllers creator = creator_with_nice_signature( block_creator, sections, yamlname, yaml_path, docstring) return creator
python
{ "resource": "" }
q16969
Section.instantiate
train
def instantiate(self, substitutions): """Keep recursing down from base using dotted name, then call it with self.params and args Args: substitutions (dict): Substitutions to make to self.param_dict Returns: The found object called with (*args, map_from_d) E.g. if ob is malcolm.parts, and name is "ca.CADoublePart", then the object will be malcolm.parts.ca.CADoublePart """ param_dict = self.substitute_params(substitutions) pkg, ident = self.name.rsplit(".", 1) pkg = "malcolm.modules.%s" % pkg try: ob = importlib.import_module(pkg) except ImportError as e: raise_with_traceback( ImportError("\n%s:%d:\n%s" % ( self.filename, self.lineno, e))) try: ob = getattr(ob, ident) except AttributeError: raise_with_traceback( ImportError("\n%s:%d:\nPackage %r has no ident %r" % ( self.filename, self.lineno, pkg, ident))) try: model = MethodModel.from_callable(ob, returns=False) args = model.validate(param_dict) ret = ob(**args) except Exception as e: sourcefile = inspect.getsourcefile(ob) lineno = inspect.getsourcelines(ob)[1] raise_with_traceback( YamlError("\n%s:%d:\n%s:%d:\n%s" % ( self.filename, self.lineno, sourcefile, lineno, e))) else: return ret
python
{ "resource": "" }
q16970
Section.from_yaml
train
def from_yaml(cls, yaml_path, filename=None): """Split a dictionary into parameters controllers parts blocks defines Args: yaml_path (str): File path to YAML file, or a file in the same dir filename (str): If give, use this filename as the last element in the yaml_path (so yaml_path can be __file__) Returns: tuple: (sections, yamlname, docstring) where sections is a list of created sections """ if filename: # different filename to support passing __file__ yaml_path = os.path.join(os.path.dirname(yaml_path), filename) assert yaml_path.endswith(".yaml"), \ "Expected a/path/to/<yamlname>.yaml, got %r" % yaml_path yamlname = os.path.basename(yaml_path)[:-5] log.debug("Parsing %s", yaml_path) with open(yaml_path) as f: text = f.read() # First separate them into their relevant sections ds = yaml.load(text, Loader=yaml.RoundTripLoader) docstring = None sections = [] for d in ds: assert len(d) == 1, \ "Expected section length 1, got %d" % len(d) lineno = d._yaml_line_col.line + 1 name = list(d)[0] sections.append(cls( yaml_path, lineno, name, d[name])) if name == "builtin.defines.docstring": docstring = d[name]["value"] return sections, yamlname, docstring
python
{ "resource": "" }
q16971
Section.substitute_params
train
def substitute_params(self, substitutions): """Substitute param values in our param_dict from params Args: substitutions (Map or dict): Values to substitute. E.g. Map of {"name": "me"} E.g. if self.param_dict is: {"name": "$(name):pos", "exposure": 1.0} And substitutions is: {"name": "me"} After the call self.param_dict will be: {"name": "me:pos", "exposure": 1.0} """ param_dict = {} # TODO: this should be yaml.add_implicit_resolver() for k, v in self.param_dict.items(): param_dict[k] = replace_substitutions(v, substitutions) return param_dict
python
{ "resource": "" }
q16972
MotorInfo.make_velocity_profile
train
def make_velocity_profile(self, v1, v2, distance, min_time): """Calculate PVT points that will perform the move within motor params Args: v1 (float): Starting velocity in EGUs/s v2 (float): Ending velocity in EGUs/s distance (float): Relative distance to travel in EGUs min_time (float): The minimum time the move should take Returns: tuple: (time_list, position_list) where time_list is a list of relative time points in seconds, and position_list is the position in EGUs that the motor should be """ # Take off the settle time and distance if min_time > 0: min_time -= self.velocity_settle distance -= self.velocity_settle * v2 # The ramp time and distance of a continuous ramp from v1 to v2 ramp_time = self.acceleration_time(v1, v2) ramp_distance = self.ramp_distance(v1, v2, ramp_time) remaining_distance = distance - ramp_distance # Check if we need to stretch in time if min_time > ramp_time: # Check how fast we would need to be going so that the total move # completes in min_time pad_velocity = remaining_distance / (min_time - ramp_time) if pad_velocity > max(v1, v2): # Can't just pad the ramp, make a hat pointing up it = self._make_hat( v1, v2, self.acceleration, distance, min_time) elif pad_velocity < min(v1, v2): # Can't just pad the ramp, make a hat pointing down it = self._make_hat( v1, v2, -self.acceleration, distance, min_time) else: # Make a padded ramp it = self._make_padded_ramp(v1, v2, pad_velocity, min_time) elif remaining_distance < 0: # Make a hat pointing down it = self._make_hat(v1, v2, -self.acceleration, distance, min_time) else: # Make a hat pointing up it = self._make_hat(v1, v2, self.acceleration, distance, min_time) # Create the time and velocity arrays time_array = [0.0] velocity_array = [v1] for t, v in it: assert t >= 0, "Got negative t %s" % t if t == 0: assert v == velocity_array[-1], \ "Can't move velocity in zero time" continue if v * velocity_array[-1] < 0: # Crossed zero, put in an explicit zero velocity fraction = velocity_array[-1] / (velocity_array[-1] - v) time_array.append(time_array[-1] + fraction * t) velocity_array.append(0) t -= fraction * t time_array.append(time_array[-1] + t) velocity_array.append(v) # Add on the settle time if self.velocity_settle > 0: time_array.append(time_array[-1] + self.velocity_settle) velocity_array.append(v2) return time_array, velocity_array
python
{ "resource": "" }
q16973
MotorInfo.cs_axis_mapping
train
def cs_axis_mapping(cls, part_info, # type: Dict[str, Optional[Sequence]] axes_to_move # type: Sequence[str] ): # type: (...) -> Tuple[str, Dict[str, MotorInfo]] """Given the motor infos for the parts, filter those with scannable names in axes_to_move, check they are all in the same CS, and return the cs_port and mapping of cs_axis to MotorInfo""" cs_ports = set() # type: Set[str] axis_mapping = {} # type: Dict[str, MotorInfo] for motor_info in cls.filter_values(part_info): if motor_info.scannable in axes_to_move: assert motor_info.cs_axis in cs_axis_names, \ "Can only scan 1-1 mappings, %r is %r" % \ (motor_info.scannable, motor_info.cs_axis) cs_ports.add(motor_info.cs_port) axis_mapping[motor_info.scannable] = motor_info missing = list(set(axes_to_move) - set(axis_mapping)) assert not missing, \ "Some scannables %s are not in the CS mapping %s" % ( missing, axis_mapping) assert len(cs_ports) == 1, \ "Requested axes %s are in multiple CS numbers %s" % ( axes_to_move, list(cs_ports)) cs_axis_counts = Counter([x.cs_axis for x in axis_mapping.values()]) # Any cs_axis defs that are used for more that one raw motor overlap = [k for k, v in cs_axis_counts.items() if v > 1] assert not overlap, \ "CS axis defs %s have more that one raw motor attached" % overlap return cs_ports.pop(), axis_mapping
python
{ "resource": "" }
q16974
ManagerController.set_layout
train
def set_layout(self, value): """Set the layout table value. Called on attribute put""" # Can't do this with changes_squashed as it will call update_modified # from another thread and deadlock. Need RLock.is_owned() from update_* part_info = self.run_hooks( LayoutHook(p, c, self.port_info, value) for p, c in self.create_part_contexts(only_visible=False).items()) with self.changes_squashed: layout_parts = LayoutInfo.filter_parts(part_info) name, mri, x, y, visible = [], [], [], [], [] for part_name, layout_infos in layout_parts.items(): for layout_info in layout_infos: name.append(part_name) mri.append(layout_info.mri) x.append(layout_info.x) y.append(layout_info.y) visible.append(layout_info.visible) layout_table = LayoutTable(name, mri, x, y, visible) try: # Compare the Array seq to get at the numpy array np.testing.assert_equal( layout_table.visible.seq, self.layout.value.visible.seq) except AssertionError: visibility_changed = True else: visibility_changed = False self.layout.set_value(layout_table) if self.saved_visibility is None: # First write of table, set layout and exports saves self.saved_visibility = layout_table.visible self.saved_exports = self.exports.value.to_dict() # Force visibility changed so we update_block_endpoints # even if there weren't any visible visibility_changed = True if visibility_changed: self.update_modified() self.update_exportable() # Part visibility changed, might have attributes or methods # that we need to hide or show self.update_block_endpoints()
python
{ "resource": "" }
q16975
ManagerController.save
train
def save(self, designName=""): # type: (ASaveDesign) -> None """Save the current design to file""" self.try_stateful_function( ss.SAVING, ss.READY, self.do_save, designName)
python
{ "resource": "" }
q16976
ManagerController._validated_config_filename
train
def _validated_config_filename(self, name): """Make config dir and return full file path and extension Args: name (str): Filename without dir or extension Returns: str: Full path including extension """ dir_name = self._make_config_dir() filename = os.path.join(dir_name, name.split(".json")[0] + ".json") return filename
python
{ "resource": "" }
q16977
ManagerController.do_load
train
def do_load(self, design, init=False): # type: (str, bool) -> None """Load a design name, running the child LoadHooks. Args: design: Name of the design json file, without extension init: Passed to the LoadHook to tell the children if this is being run at Init or not """ if design: filename = self._validated_config_filename(design) with open(filename, "r") as f: text = f.read() structure = json_decode(text) else: structure = {} # Attributes and Children used to be merged, support this attributes = structure.get("attributes", structure) children = structure.get("children", structure) # Set the layout table name, mri, x, y, visible = [], [], [], [], [] for part_name, d in attributes.get("layout", {}).items(): name.append(part_name) mri.append("") x.append(d["x"]) y.append(d["y"]) visible.append(d["visible"]) self.set_layout(LayoutTable(name, mri, x, y, visible)) # Set the exports table source, export = [], [] for source_name, export_name in attributes.get("exports", {}).items(): source.append(source_name) export.append(export_name) self.exports.set_value(ExportTable(source, export)) # Set other attributes our_values = {k: v for k, v in attributes.items() if k in self.our_config_attributes} block = self.block_view() block.put_attribute_values(our_values) # Run the load hook to get parts to load their own structure self.run_hooks( LoadHook(p, c, children.get(p.name, {}), init) for p, c in self.create_part_contexts(only_visible=False).items()) self._mark_clean(design, init)
python
{ "resource": "" }
q16978
FieldRegistry.add_method_model
train
def add_method_model(self, func, # type: Callable name=None, # type: Optional[str] description=None, # type: Optional[str] owner=None, # type: object ): # type: (...) -> MethodModel """Register a function to be added to the block""" if name is None: name = func.__name__ method = MethodModel.from_callable(func, description) self._add_field(owner, name, method, func) return method
python
{ "resource": "" }
q16979
PartRegistrar.add_method_model
train
def add_method_model(self, func, # type: Callable name=None, # type: Optional[str] description=None, # type: Optional[str] ): # type: (...) -> MethodModel """Register a function to be added to the Block as a MethodModel""" return self._field_registry.add_method_model( func, name, description, self._part)
python
{ "resource": "" }
q16980
PartRegistrar.add_attribute_model
train
def add_attribute_model(self, name, # type: str attr, # type: AttributeModel writeable_func=None, # type: Optional[Callable] ): # type: (...) -> AttributeModel """Register a pre-existing AttributeModel to be added to the Block""" return self._field_registry.add_attribute_model( name, attr, writeable_func, self._part)
python
{ "resource": "" }
q16981
MOProblem.objective_bounds
train
def objective_bounds(self): """ Return objective bounds Returns ------- lower : list of floats Lower boundaries for the objectives Upper : list of floats Upper boundaries for the objectives """ if self.ideal and self.nadir: return self.ideal, self.nadir raise NotImplementedError( "Ideal and nadir value calculation is not yet implemented" )
python
{ "resource": "" }
q16982
_centroids
train
def _centroids(n_clusters: int, points: List[List[float]]) -> List[List[float]]: """ Return n_clusters centroids of points """ k_means = KMeans(n_clusters=n_clusters) k_means.fit(points) closest, _ = pairwise_distances_argmin_min(k_means.cluster_centers_, points) return list(map(list, np.array(points)[closest.tolist()]))
python
{ "resource": "" }
q16983
new_points
train
def new_points( factory: IterationPointFactory, solution, weights: List[List[float]] = None ) -> List[Tuple[np.ndarray, List[float]]]: """Generate approximate set of points Generate set of Pareto optimal solutions projecting from the Pareto optimal solution using weights to determine the direction. Parameters ---------- factory: IterationPointFactory with suitable optimization problem solution: Current solution from which new solutions are projected weights: Direction of the projection, if not given generate with :func:random_weights """ from desdeo.preference.direct import DirectSpecification points = [] nof = factory.optimization_method.optimization_problem.problem.nof_objectives() if not weights: weights = random_weights(nof, 50 * nof) for pref in map( lambda w: DirectSpecification(factory.optimization_method, np.array(w)), weights ): points.append(factory.result(pref, solution)) return points
python
{ "resource": "" }
q16984
as_minimized
train
def as_minimized(values: List[float], maximized: List[bool]) -> List[float]: """ Return vector values as minimized """ return [v * -1. if m else v for v, m in zip(values, maximized)]
python
{ "resource": "" }
q16985
_prompt_wrapper
train
def _prompt_wrapper(message, default=None, validator=None): """ Handle references piped from file """ class MockDocument: def __init__(self, text): self.text = text if HAS_INPUT: ret = prompt(message, default=default, validator=validator) else: ret = sys.stdin.readline().strip() print(message, ret) if validator: validator.validate(MockDocument(ret)) if "q" in ret: if not HAS_OUTPUT: print("User exit") sys.exit("User exit") return ret
python
{ "resource": "" }
q16986
init_nautilus
train
def init_nautilus(method): """Initialize nautilus method Parameters ---------- method Interactive method used for the process Returns ------- PreferenceInformation subclass to be initialized """ print("Preference elicitation options:") print("\t1 - Percentages") print("\t2 - Relative ranks") print("\t3 - Direct") PREFCLASSES = [PercentageSpecifictation, RelativeRanking, DirectSpecification] pref_sel = int( _prompt_wrapper( "Reference elicitation ", default=u"%s" % (1), validator=NumberValidator([1, 3]), ) ) preference_class = PREFCLASSES[pref_sel - 1] print("Nadir: %s" % method.problem.nadir) print("Ideal: %s" % method.problem.ideal) if method.current_iter - method.user_iters: finished_iter = method.user_iters - method.current_iter else: finished_iter = 0 new_iters = int( _prompt_wrapper( u"Ni: ", default=u"%s" % (method.current_iter), validator=NumberValidator() ) ) method.current_iter = new_iters method.user_iters = finished_iter + new_iters return preference_class
python
{ "resource": "" }
q16987
iter_nautilus
train
def iter_nautilus(method): """ Iterate NAUTILUS method either interactively, or using given preferences if given Parameters ---------- method : instance of NAUTILUS subclass Fully initialized NAUTILUS method instance """ solution = None while method.current_iter: preference_class = init_nautilus(method) pref = preference_class(method, None) default = ",".join(map(str, pref.default_input())) while method.current_iter: method.print_current_iteration() pref_input = _prompt_wrapper( u"Preferences: ", default=default, validator=VectorValidator(method, pref), ) cmd = _check_cmd(pref_input) if cmd: solution = method.zh break pref = preference_class( method, np.fromstring(pref_input, dtype=np.float, sep=",") ) default = ",".join(map(str, pref.pref_input)) solution, _ = method.next_iteration(pref) if cmd and list(cmd)[0] == "c": break return solution
python
{ "resource": "" }
q16988
isin
train
def isin(value, values): """ Check that value is in values """ for i, v in enumerate(value): if v not in np.array(values)[:, i]: return False return True
python
{ "resource": "" }
q16989
NIMBUS.between
train
def between(self, objs1: List[float], objs2: List[float], n=1): """ Generate `n` solutions which attempt to trade-off `objs1` and `objs2`. Parameters ---------- objs1 First boundary point for desired objective function values objs2 Second boundary point for desired objective function values n Number of solutions to generate """ from desdeo.preference.base import ReferencePoint objs1_arr = np.array(objs1) objs2_arr = np.array(objs2) segments = n + 1 diff = objs2_arr - objs1_arr solutions = [] for x in range(1, segments): btwn_obj = objs1_arr + float(x) / segments * diff solutions.append( self._get_ach().result(ReferencePoint(self, btwn_obj), None) ) return ResultSet(solutions)
python
{ "resource": "" }
q16990
find_focusable
train
def find_focusable(node): """ Search for the first focusable window within the node tree """ if not node.children: return node if node.focus: return find_focusable(node.children_dict[node.focus[0]])
python
{ "resource": "" }
q16991
find_parent_split
train
def find_parent_split(node, orientation): """ Find the first parent split relative to the given node according to the desired orientation """ if (node and node.orientation == orientation and len(node.children) > 1): return node if not node or node.type == "workspace": return None return find_parent_split(node.parent, orientation)
python
{ "resource": "" }
q16992
cycle_windows
train
def cycle_windows(tree, direction): """ Cycle through windows of the current workspace """ wanted = { "orientation": ("vertical" if direction in ("up", "down") else "horizontal"), "direction": (1 if direction in ("down", "right") else -1), } split = find_parent_split(tree.focused.parent, wanted["orientation"]) if split: # Get the next child given the direction child_ids = [child.id for child in split.children] focus_idx = child_ids.index(split.focused_child.id) next_idx = (focus_idx + wanted['direction']) % len(child_ids) next_node = split.children[next_idx] return find_focusable(next_node) return None
python
{ "resource": "" }
q16993
cycle_outputs
train
def cycle_outputs(tree, direction): """ Cycle through directions """ direction = 1 if direction == "next" else -1 outputs = [output for output in tree.root.children if output.name != "__i3"] focus_idx = outputs.index(tree.root.focused_child) next_idx = (focus_idx + direction) % len(outputs) next_output = outputs[next_idx] return find_focusable(next_output)
python
{ "resource": "" }
q16994
NIMBUSClassification.with_class
train
def with_class(self, cls): """ Return functions with the class """ rcls = [] for key, value in self._classification.items(): if value[0] == cls: rcls.append(key) return rcls
python
{ "resource": "" }
q16995
NIMBUSClassification._as_reference_point
train
def _as_reference_point(self) -> np.ndarray: """ Return classification information as reference point """ ref_val = [] for fn, f in self._classification.items(): if f[0] == "<": ref_val.append(self._method.problem.ideal[fn]) elif f[0] == "<>": ref_val.append(self._method.problem.nadir[fn]) else: ref_val.append(f[1]) return np.array(ref_val)
python
{ "resource": "" }
q16996
main
train
def main(logfile=False): """ Solve River Pollution problem with NAUTILUS V1 and E-NAUTILUS Methods """ # Duplicate output to log file class NAUTILUSOptionValidator(Validator): def validate(self, document): if document.text not in "ao": raise ValidationError( message="Please select a for apriori or o for optimization option", cursor_position=0, ) if logfile: Tee(logfile) first = True current_iter = 0 while first or current_iter: # SciPy breaks box constraints nautilus_v1 = NAUTILUSv1(RiverPollution(), SciPyDE) if not first: nautilus_v1.current_iter = current_iter first = False nadir = nautilus_v1.problem.nadir ideal = nautilus_v1.problem.ideal solution = tui.iter_nautilus(nautilus_v1) current_iter = nautilus_v1.current_iter # TODO: Move to tui module method_e = None if current_iter > 0: option = _prompt_wrapper( "select a for apriori or o for optimization option: ", default="o", validator=NAUTILUSOptionValidator(), ) if option.lower() == "a": wi = _prompt_wrapper( "Number of PO solutions (10 or 20): ", default="20", validator=tui.NumberValidator(), ) weights = WEIGHTS[wi] factory = IterationPointFactory( SciPyDE(NautilusAchievementProblem(RiverPollution())) ) points = misc.new_points(factory, solution, weights=weights) method_e = ENAUTILUS(PreGeneratedProblem(points=points), PointSearch) method_e.zh_prev = solution else: method_e = ENAUTILUS(RiverPollution(), SciPyDE) # method_e.zh = solution method_e.current_iter = nautilus_v1.current_iter method_e.user_iters = nautilus_v1.user_iters print( "E-NAUTILUS\nselected iteration point: %s:" % ",".join(map(str, solution)) ) while method_e and method_e.current_iter > 0: if solution is None: solution = method_e.problem.nadir method_e.problem.nadir = nadir method_e.problem.ideal = ideal cmd = tui.iter_enautilus( method_e, initial_iterpoint=solution, initial_bound=method_e.fh_lo ) if cmd: print(method_e.current_iter) current_iter = method_e.current_iter break if tui.HAS_INPUT: input("Press ENTER to exit")
python
{ "resource": "" }
q16997
setup
train
def setup(app): """Setup connects events to the sitemap builder""" app.add_config_value( 'site_url', default=None, rebuild=False ) try: app.add_config_value( 'html_baseurl', default=None, rebuild=False ) except: pass app.connect('html-page-context', add_html_link) app.connect('build-finished', create_sitemap) app.sitemap_links = [] app.locales = []
python
{ "resource": "" }
q16998
OptimizationMethod.search
train
def search(self, max=False, **params) -> Tuple[np.ndarray, List[float]]: """ Search for the optimal solution This sets up the search for the optimization and calls the _search method Parameters ---------- max : bool (default False) If true find mximum of the objective function instead of minimum **params : dict [optional] Parameters for single objective optimization method """ self._max = max if max: self._coeff = -1.0 else: self._coeff = 1.0 return self._search(**params)
python
{ "resource": "" }
q16999
NAUTILUSv1.next_iteration
train
def next_iteration(self, preference=None): """ Return next iteration bounds """ if preference: self.preference = preference print(("Given preference: %s" % self.preference.pref_input)) self._update_fh() # tmpzh = list(self.zh) self._update_zh(self.zh, self.fh) # self.zh = list(np.array(self.zh) / 2. + np.array(self.zh_prev) / 2.) # self.zh_prev = tmpzh if self.current_iter != 1: self.fh_lo = list(self.lower_bounds_factory.result(self.zh_prev)) self.current_iter -= 1 return self.fh_lo, self.zh
python
{ "resource": "" }