_id
stringlengths 2
7
| title
stringlengths 1
88
| partition
stringclasses 3
values | text
stringlengths 75
19.8k
| language
stringclasses 1
value | meta_information
dict |
|---|---|---|---|---|---|
q15500
|
line_starts_subpgm
|
train
|
def line_starts_subpgm(line: str) -> Tuple[bool, Optional[str]]:
"""
Indicates whether a line in the program is the first line of a subprogram
definition.
Args:
line
Returns:
(True, f_name) if line begins a definition for subprogram f_name;
(False, None) if line does not begin a subprogram definition.
"""
match = RE_SUB_START.match(line)
if match != None:
f_name = match.group(1)
return (True, f_name)
match = RE_FN_START.match(line)
if match != None:
f_name = match.group(1)
return (True, f_name)
return (False, None)
|
python
|
{
"resource": ""
}
|
q15501
|
program_unit_name
|
train
|
def program_unit_name(line:str) -> str:
"""Given a line that starts a program unit, i.e., a program, module,
subprogram, or function, this function returns the name associated
with that program unit."""
match = RE_PGM_UNIT_START.match(line)
assert match != None
return match.group(2)
|
python
|
{
"resource": ""
}
|
q15502
|
prepend
|
train
|
def prepend(x: T, xs: Iterable[T]) -> Iterator[T]:
""" Prepend a value to an iterable.
Parameters
----------
x
An element of type T.
xs
An iterable of elements of type T.
Returns
-------
Iterator
An iterator that yields *x* followed by elements of *xs*.
Examples
--------
>>> from delphi.utils.fp import prepend
>>> list(prepend(1, [2, 3]))
[1, 2, 3]
"""
return chain([x], xs)
|
python
|
{
"resource": ""
}
|
q15503
|
append
|
train
|
def append(x: T, xs: Iterable[T]) -> Iterator[T]:
""" Append a value to an iterable.
Parameters
----------
x
An element of type T.
xs
An iterable of elements of type T.
Returns
-------
Iterator
An iterator that yields elements of *xs*, then yields *x*.
Examples
--------
>>> from delphi.utils.fp import append
>>> list(append(1, [2, 3]))
[2, 3, 1]
"""
return chain(xs, [x])
|
python
|
{
"resource": ""
}
|
q15504
|
flatten
|
train
|
def flatten(xs: Union[List, Tuple]) -> List:
""" Flatten a nested list or tuple. """
return (
sum(map(flatten, xs), [])
if (isinstance(xs, list) or isinstance(xs, tuple))
else [xs]
)
|
python
|
{
"resource": ""
}
|
q15505
|
iterate
|
train
|
def iterate(f: Callable[[T], T], x: T) -> Iterator[T]:
""" Makes infinite iterator that returns the result of successive
applications of a function to an element
.. math::
iterate(f, x) = [x, f(x), f(f(x)), f(f(f(x))), ...]
Examples
--------
>>> from delphi.utils.fp import iterate, take
>>> list(take(5, iterate(lambda x: x*2, 1)))
[1, 2, 4, 8, 16]
"""
return scanl(lambda x, _: f(x), x, repeat(None))
|
python
|
{
"resource": ""
}
|
q15506
|
ptake
|
train
|
def ptake(n: int, xs: Iterable[T]) -> Iterable[T]:
""" take with a tqdm progress bar. """
return tqdm(take(n, xs), total=n)
|
python
|
{
"resource": ""
}
|
q15507
|
ltake
|
train
|
def ltake(n: int, xs: Iterable[T]) -> List[T]:
""" A non-lazy version of take. """
return list(take(n, xs))
|
python
|
{
"resource": ""
}
|
q15508
|
compose
|
train
|
def compose(*fs: Any) -> Callable:
""" Compose functions from left to right.
e.g. compose(f, g)(x) = f(g(x))
"""
return foldl1(lambda f, g: lambda *x: f(g(*x)), fs)
|
python
|
{
"resource": ""
}
|
q15509
|
rcompose
|
train
|
def rcompose(*fs: Any) -> Callable:
""" Compose functions from right to left.
e.g. rcompose(f, g)(x) = g(f(x))
"""
return foldl1(lambda f, g: lambda *x: g(f(*x)), fs)
|
python
|
{
"resource": ""
}
|
q15510
|
flatMap
|
train
|
def flatMap(f: Callable, xs: Iterable) -> List:
""" Map a function onto an iterable and flatten the result. """
return flatten(lmap(f, xs))
|
python
|
{
"resource": ""
}
|
q15511
|
process_climis_crop_production_data
|
train
|
def process_climis_crop_production_data(data_dir: str):
""" Process CliMIS crop production data """
climis_crop_production_csvs = glob(
"{data_dir}/Climis South Sudan Crop Production Data/"
"Crops_EstimatedProductionConsumptionBalance*.csv"
)
state_county_df = pd.read_csv(
f"{data_dir}/ipc_data.csv", skipinitialspace=True
)
combined_records = []
for f in climis_crop_production_csvs:
year = int(f.split("/")[-1].split("_")[2].split(".")[0])
df = pd.read_csv(f).dropna()
for i, r in df.iterrows():
record = {
"Year": year,
"Month": None,
"Source": "CliMIS",
"Country": "South Sudan",
}
region = r["State/County"].strip()
if region.lower() in state_county_df["State"].str.lower().values:
record["State"] = region
record["County"] = None
else:
potential_states = state_county_df.loc[
state_county_df["County"] == region
]["State"]
record["State"] = (
potential_states.iloc[0]
if len(potential_states) != 0
else None
)
record["County"] = region
for field in r.index:
if field != "State/County":
if "Net Cereal production" in field:
record["Variable"] = "Net Cereal Production"
record["Value"] = r[field]
if field.split()[-1].startswith("("):
record["Unit"] = field.split()[-1][1:-1].lower()
else:
record["Unit"] = None
combined_records.append(record)
df = pd.DataFrame(combined_records)
return df
|
python
|
{
"resource": ""
}
|
q15512
|
AnalysisGraph.assign_uuids_to_nodes_and_edges
|
train
|
def assign_uuids_to_nodes_and_edges(self):
""" Assign uuids to nodes and edges. """
for node in self.nodes(data=True):
node[1]["id"] = str(uuid4())
for edge in self.edges(data=True):
edge[2]["id"] = str(uuid4())
|
python
|
{
"resource": ""
}
|
q15513
|
AnalysisGraph.from_statements_file
|
train
|
def from_statements_file(cls, file: str):
""" Construct an AnalysisGraph object from a pickle file containing a
list of INDRA statements. """
with open(file, "rb") as f:
sts = pickle.load(f)
return cls.from_statements(sts)
|
python
|
{
"resource": ""
}
|
q15514
|
AnalysisGraph.from_text
|
train
|
def from_text(cls, text: str):
""" Construct an AnalysisGraph object from text, using Eidos to perform
machine reading. """
eidosProcessor = process_text(text)
return cls.from_statements(eidosProcessor.statements)
|
python
|
{
"resource": ""
}
|
q15515
|
AnalysisGraph.from_uncharted_json_file
|
train
|
def from_uncharted_json_file(cls, file):
""" Construct an AnalysisGraph object from a file containing INDRA
statements serialized exported by Uncharted's CauseMos webapp.
"""
with open(file, "r") as f:
_dict = json.load(f)
return cls.from_uncharted_json_serialized_dict(_dict)
|
python
|
{
"resource": ""
}
|
q15516
|
AnalysisGraph.from_uncharted_json_serialized_dict
|
train
|
def from_uncharted_json_serialized_dict(
cls, _dict, minimum_evidence_pieces_required: int = 1
):
""" Construct an AnalysisGraph object from a dict of INDRA statements
exported by Uncharted's CauseMos webapp. """
sts = _dict["statements"]
G = nx.DiGraph()
for s in sts:
if len(s["evidence"]) >= minimum_evidence_pieces_required:
subj, obj = s["subj"], s["obj"]
if (
subj["db_refs"]["concept"] is not None
and obj["db_refs"]["concept"] is not None
):
subj_name, obj_name = [
"/".join(s[x]["db_refs"]["concept"].split("/")[:])
for x in ["subj", "obj"]
]
G.add_edge(subj_name, obj_name)
subj_delta = s["subj_delta"]
obj_delta = s["obj_delta"]
for delta in (subj_delta, obj_delta):
# TODO : Ensure that all the statements provided by
# Uncharted have unambiguous polarities.
if delta["polarity"] is None:
delta["polarity"] = 1
influence_stmt = Influence(
Concept(subj_name, db_refs=subj["db_refs"]),
Concept(obj_name, db_refs=obj["db_refs"]),
subj_delta=s["subj_delta"],
obj_delta=s["obj_delta"],
evidence=[
INDRAEvidence(
source_api=ev["source_api"],
annotations=ev["annotations"],
text=ev["text"],
epistemics=ev.get("epistemics"),
)
for ev in s["evidence"]
],
)
influence_sts = G.edges[subj_name, obj_name].get(
"InfluenceStatements", []
)
influence_sts.append(influence_stmt)
G.edges[subj_name, obj_name][
"InfluenceStatements"
] = influence_sts
for concept, indicator in _dict[
"concept_to_indicator_mapping"
].items():
if indicator is not None:
indicator_source, indicator_name = (
indicator["name"].split("/")[0],
"/".join(indicator["name"].split("/")[1:]),
)
if concept in G:
if G.nodes[concept].get("indicators") is None:
G.nodes[concept]["indicators"] = {}
G.nodes[concept]["indicators"][indicator_name] = Indicator(
indicator_name, indicator_source
)
self = cls(G)
self.assign_uuids_to_nodes_and_edges()
return self
|
python
|
{
"resource": ""
}
|
q15517
|
AnalysisGraph.sample_observed_state
|
train
|
def sample_observed_state(self, s: pd.Series) -> Dict:
""" Sample observed state vector. This is the implementation of the
emission function.
Args:
s: Latent state vector.
Returns:
Observed state vector.
"""
return {
n[0]: {
i.name: np.random.normal(s[n[0]] * i.mean, i.stdev)
for i in n[1]["indicators"].values()
}
for n in self.nodes(data=True)
}
|
python
|
{
"resource": ""
}
|
q15518
|
AnalysisGraph.sample_from_likelihood
|
train
|
def sample_from_likelihood(self, n_timesteps=10):
""" Sample a collection of observed state sequences from the likelihood
model given a collection of transition matrices.
Args:
n_timesteps: The number of timesteps for the sequences.
"""
self.latent_state_sequences = lmap(
lambda A: ltake(
n_timesteps,
iterate(
lambda s: pd.Series(A @ s.values, index=s.index), self.s0
),
),
self.transition_matrix_collection,
)
self.observed_state_sequences = [
[self.sample_observed_state(s) for s in latent_state_sequence]
for latent_state_sequence in self.latent_state_sequences
]
|
python
|
{
"resource": ""
}
|
q15519
|
AnalysisGraph.get_timeseries_values_for_indicators
|
train
|
def get_timeseries_values_for_indicators(
self, resolution: str = "month", months: Iterable[int] = range(6, 9)
):
""" Attach timeseries to indicators, for performing Bayesian inference.
"""
if resolution == "month":
funcs = [
partial(get_indicator_value, month=month) for month in months
]
else:
raise NotImplementedError(
"Currently, only the 'month' resolution is supported."
)
for n in self.nodes(data=True):
for indicator in n[1]["indicators"].values():
indicator.timeseries = [
func(indicator, year="2017")[0] for func in funcs
]
if len(set(indicator.timeseries)) == 1:
indicator.timeseries = None
|
python
|
{
"resource": ""
}
|
q15520
|
AnalysisGraph.sample_from_posterior
|
train
|
def sample_from_posterior(self, A: pd.DataFrame) -> None:
""" Run Bayesian inference - sample from the posterior distribution."""
self.sample_from_proposal(A)
self.set_latent_state_sequence(A)
self.update_log_prior(A)
self.update_log_likelihood()
candidate_log_joint_probability = self.log_prior + self.log_likelihood
delta_log_joint_probability = (
candidate_log_joint_probability - self.log_joint_probability
)
acceptance_probability = min(1, np.exp(delta_log_joint_probability))
if acceptance_probability > np.random.rand():
self.update_log_joint_probability()
else:
A[f"∂({self.source})/∂t"][self.target] = self.original_value
self.set_latent_state_sequence(A)
self.update_log_likelihood()
self.update_log_prior(A)
self.update_log_joint_probability()
|
python
|
{
"resource": ""
}
|
q15521
|
AnalysisGraph.create_bmi_config_file
|
train
|
def create_bmi_config_file(self, filename: str = "bmi_config.txt") -> None:
""" Create a BMI config file to initialize the model.
Args:
filename: The filename with which the config file should be saved.
"""
s0 = self.construct_default_initial_state()
s0.to_csv(filename, index_label="variable")
|
python
|
{
"resource": ""
}
|
q15522
|
AnalysisGraph.export_node
|
train
|
def export_node(self, n) -> Dict[str, Union[str, List[str]]]:
""" Return dict suitable for exporting to JSON.
Args:
n: A dict representing the data in a networkx AnalysisGraph node.
Returns:
The node dict with additional fields for name, units, dtype, and
arguments.
"""
node_dict = {
"name": n[0],
"units": _get_units(n[0]),
"dtype": _get_dtype(n[0]),
"arguments": list(self.predecessors(n[0])),
}
if not n[1].get("indicators") is None:
for indicator in n[1]["indicators"].values():
if "dataset" in indicator.__dict__:
del indicator.__dict__["dataset"]
node_dict["indicators"] = [
_process_datetime(indicator.__dict__)
for indicator in n[1]["indicators"].values()
]
else:
node_dict["indicators"] = None
return node_dict
|
python
|
{
"resource": ""
}
|
q15523
|
AnalysisGraph.map_concepts_to_indicators
|
train
|
def map_concepts_to_indicators(
self, n: int = 1, min_temporal_res: Optional[str] = None
):
""" Map each concept node in the AnalysisGraph instance to one or more
tangible quantities, known as 'indicators'.
Args:
n: Number of matches to keep
min_temporal_res: Minimum temporal resolution that the indicators
must have data for.
"""
for node in self.nodes(data=True):
query_parts = [
"select Indicator from concept_to_indicator_mapping",
f"where `Concept` like '{node[0]}'",
]
# TODO May need to delve into SQL/database stuff a bit more deeply
# for this. Foreign keys perhaps?
query = " ".join(query_parts)
results = engine.execute(query)
if min_temporal_res is not None:
if min_temporal_res not in ["month"]:
raise ValueError("min_temporal_res must be 'month'")
vars_with_required_temporal_resolution = [
r[0]
for r in engine.execute(
"select distinct `Variable` from indicator where "
f"`{min_temporal_res.capitalize()}` is not null"
)
]
results = [
r
for r in results
if r[0] in vars_with_required_temporal_resolution
]
node[1]["indicators"] = {
x: Indicator(x, "MITRE12")
for x in [r[0] for r in take(n, results)]
}
|
python
|
{
"resource": ""
}
|
q15524
|
AnalysisGraph.parameterize
|
train
|
def parameterize(
self,
country: Optional[str] = "South Sudan",
state: Optional[str] = None,
year: Optional[int] = None,
month: Optional[int] = None,
unit: Optional[str] = None,
fallback_aggaxes: List[str] = ["year", "month"],
aggfunc: Callable = np.mean,
):
""" Parameterize the analysis graph.
Args:
country
year
month
fallback_aggaxes:
An iterable of strings denoting the axes upon which to perform
fallback aggregation if the desired constraints cannot be met.
aggfunc: The function that will be called to perform the
aggregation if there are multiple matches.
"""
valid_axes = ("country", "state", "year", "month")
if any(map(lambda axis: axis not in valid_axes, fallback_aggaxes)):
raise ValueError(
"All elements of the fallback_aggaxes set must be one of the "
f"following: {valid_axes}"
)
for n in self.nodes(data=True):
for indicator in n[1]["indicators"].values():
indicator.mean, indicator.unit = get_indicator_value(
indicator,
country,
state,
year,
month,
unit,
fallback_aggaxes,
aggfunc,
)
indicator.stdev = 0.1 * abs(indicator.mean)
|
python
|
{
"resource": ""
}
|
q15525
|
AnalysisGraph.delete_nodes
|
train
|
def delete_nodes(self, nodes: Iterable[str]):
""" Iterate over a set of nodes and remove the ones that are present in
the graph. """
for n in nodes:
if self.has_node(n):
self.remove_node(n)
|
python
|
{
"resource": ""
}
|
q15526
|
AnalysisGraph.delete_node
|
train
|
def delete_node(self, node: str):
""" Removes a node if it is in the graph. """
if self.has_node(node):
self.remove_node(node)
|
python
|
{
"resource": ""
}
|
q15527
|
AnalysisGraph.delete_edge
|
train
|
def delete_edge(self, source: str, target: str):
""" Removes an edge if it is in the graph. """
if self.has_edge(source, target):
self.remove_edge(source, target)
|
python
|
{
"resource": ""
}
|
q15528
|
AnalysisGraph.delete_edges
|
train
|
def delete_edges(self, edges: Iterable[Tuple[str, str]]):
""" Iterate over a set of edges and remove the ones that are present in
the graph. """
for edge in edges:
if self.has_edge(*edge):
self.remove_edge(*edge)
|
python
|
{
"resource": ""
}
|
q15529
|
AnalysisGraph.merge_nodes
|
train
|
def merge_nodes(self, n1: str, n2: str, same_polarity: bool = True):
""" Merge node n1 into node n2, with the option to specify relative
polarity.
Args:
n1
n2
same_polarity
"""
for p in self.predecessors(n1):
for st in self[p][n1]["InfluenceStatements"]:
if not same_polarity:
st.obj_delta["polarity"] = -st.obj_delta["polarity"]
st.obj.db_refs["UN"][0] = (n2, st.obj.db_refs["UN"][0][1])
if not self.has_edge(p, n2):
self.add_edge(p, n2)
self[p][n2]["InfluenceStatements"] = self[p][n1][
"InfluenceStatements"
]
else:
self[p][n2]["InfluenceStatements"] += self[p][n1][
"InfluenceStatements"
]
for s in self.successors(n1):
for st in self.edges[n1, s]["InfluenceStatements"]:
if not same_polarity:
st.subj_delta["polarity"] = -st.subj_delta["polarity"]
st.subj.db_refs["UN"][0] = (n2, st.subj.db_refs["UN"][0][1])
if not self.has_edge(n2, s):
self.add_edge(n2, s)
self[n2][s]["InfluenceStatements"] = self[n1][s][
"InfluenceStatements"
]
else:
self[n2][s]["InfluenceStatements"] += self[n1][s][
"InfluenceStatements"
]
self.remove_node(n1)
|
python
|
{
"resource": ""
}
|
q15530
|
AnalysisGraph.get_subgraph_for_concept
|
train
|
def get_subgraph_for_concept(
self, concept: str, depth: int = 1, reverse: bool = False
):
""" Returns a new subgraph of the analysis graph for a single concept.
Args:
concept: The concept that the subgraph will be centered around.
depth: The depth to which the depth-first search must be performed.
reverse: Sets the direction of causal influence flow to examine.
Setting this to False (default) will search for upstream causal
influences, and setting it to True will search for
downstream causal influences.
Returns:
AnalysisGraph
"""
nodeset = {concept}
if reverse:
func = self.predecessors
else:
func = self.successors
for i in range(depth):
nodeset.update(
chain.from_iterable([list(func(n)) for n in nodeset])
)
return AnalysisGraph(self.subgraph(nodeset).copy())
|
python
|
{
"resource": ""
}
|
q15531
|
create_pgm_dict
|
train
|
def create_pgm_dict(
lambdaFile: str,
asts: List,
file_name: str,
mode_mapper_dict: dict,
save_file=False,
) -> Dict:
""" Create a Python dict representing the PGM, with additional metadata for
JSON output. """
lambdaStrings = ["import math\n\n"]
state = PGMState(lambdaStrings)
generator = GrFNGenerator()
generator.mode_mapper = mode_mapper_dict
pgm = generator.genPgm(asts, state, {}, "")[0]
if pgm.get("start"):
pgm["start"] = pgm["start"][0]
else:
pgm["start"] = generator.function_defs[-1]
pgm["source"] = [[get_path(file_name, "source")]]
# dateCreated stores the date and time on which the lambda and PGM file was created.
# It is stored in YYYMMDD format
pgm["dateCreated"] = f"{datetime.today().strftime('%Y%m%d')}"
with open(lambdaFile, "w") as f:
f.write("".join(lambdaStrings))
# View the PGM file that will be used to build a scope tree
if save_file:
json.dump(pgm, open(file_name[:file_name.rfind(".")] + ".json", "w"))
return pgm
|
python
|
{
"resource": ""
}
|
q15532
|
filter_and_process_statements
|
train
|
def filter_and_process_statements(
sts,
grounding_score_cutoff: float = 0.8,
belief_score_cutoff: float = 0.85,
concepts_of_interest: List[str] = [],
):
""" Filter preassembled statements according to certain rules. """
filtered_sts = []
counters = {}
def update_counter(counter_name):
if counter_name in counters:
counters[counter_name] += 1
else:
counters[counter_name] = 1
for s in tqdm(sts):
update_counter("Original number of statements")
# Apply belief score threshold cutoff
if not s.belief > belief_score_cutoff:
continue
update_counter(f"Statements with belief score > {belief_score_cutoff}")
# Select statements with UN groundings
if s.subj.db_refs.get("UN") is None or s.obj.db_refs.get("UN") is None:
continue
update_counter("Statements with UN groundings")
# Apply grounding score cutoffs
if not all(
x[1] > grounding_score_cutoff
for x in (y.db_refs["UN"][0] for y in (s.subj, s.obj))
):
continue
update_counter(
f"Statements with subj and obj grounding scores > {grounding_score_cutoff}"
)
# Assign default polarities
if s.subj_delta["polarity"] is None:
s.subj_delta["polarity"] = 1
if s.obj_delta["polarity"] is None:
s.obj_delta["polarity"] = 1
filtered_sts.append(s)
for k, v in counters.items():
print(f"{k}: {v}")
return filtered_sts
|
python
|
{
"resource": ""
}
|
q15533
|
create_CAG_with_indicators
|
train
|
def create_CAG_with_indicators(input, output, filename="CAG_with_indicators.pdf"):
""" Create a CAG with mapped indicators """
with open(input, "rb") as f:
G = pickle.load(f)
G.map_concepts_to_indicators(min_temporal_res="month")
G.set_indicator("UN/events/weather/precipitation", "Historical Average Total Daily Rainfall (Maize)", "DSSAT")
G.set_indicator("UN/events/human/agriculture/food_production",
"Historical Production (Maize)", "DSSAT")
G.set_indicator("UN/entities/human/food/food_security", "IPC Phase Classification", "FEWSNET")
G.set_indicator("UN/entities/food_availability", "Production, Meat indigenous, total", "FAO")
G.set_indicator("UN/entities/human/financial/economic/market", "Inflation Rate", "ieconomics.com")
G.set_indicator("UN/events/human/death", "Battle-related deaths", "WDI")
with open(output, "wb") as f:
pickle.dump(G, f)
|
python
|
{
"resource": ""
}
|
q15534
|
ComputationalGraph.run
|
train
|
def run(
self,
inputs: Dict[str, Union[float, Iterable]],
torch_size: Optional[int] = None,
) -> Union[float, Iterable]:
"""Executes the GrFN over a particular set of inputs and returns the
result.
Args:
inputs: Input set where keys are the names of input nodes in the
GrFN and each key points to a set of input values (or just one).
Returns:
A set of outputs from executing the GrFN, one for every set of
inputs.
"""
# Set input values
for i in self.inputs:
self.nodes[i]["value"] = inputs[i]
for func_set in self.function_sets:
for func_name in func_set:
lambda_fn = self.nodes[func_name]["lambda_fn"]
output_node = list(self.successors(func_name))[0]
signature = self.nodes[func_name]["func_inputs"]
input_values = [self.nodes[n]["value"] for n in signature]
res = lambda_fn(*input_values)
if torch_size is not None and len(signature) == 0:
self.nodes[output_node]["value"] = torch.tensor(
[res] * torch_size, dtype=torch.double
)
else:
self.nodes[output_node]["value"] = res
# Return the output
return self.nodes[self.output_node]["value"]
|
python
|
{
"resource": ""
}
|
q15535
|
GroundedFunctionNetwork.traverse_nodes
|
train
|
def traverse_nodes(self, node_set, depth=0):
"""BFS traversal of nodes that returns name traversal as large string.
Args:
node_set: Set of input nodes to begin traversal.
depth: Current traversal depth for child node viewing.
Returns:
type: String containing tabbed traversal view.
"""
tab = " "
result = list()
for n in node_set:
repr = (
n
if self.nodes[n]["type"] == "variable"
else f"{n}{inspect.signature(self.nodes[n]['lambda_fn'])}"
)
result.append(f"{tab * depth}{repr}")
result.extend(
self.traverse_nodes(self.successors(n), depth=depth + 1)
)
return result
|
python
|
{
"resource": ""
}
|
q15536
|
GroundedFunctionNetwork.from_json_and_lambdas
|
train
|
def from_json_and_lambdas(cls, file: str, lambdas):
"""Builds a GrFN from a JSON object.
Args:
cls: The class variable for object creation.
file: Filename of a GrFN JSON file.
Returns:
type: A GroundedFunctionNetwork object.
"""
with open(file, "r") as f:
data = json.load(f)
return cls.from_dict(data, lambdas)
|
python
|
{
"resource": ""
}
|
q15537
|
GroundedFunctionNetwork.from_python_file
|
train
|
def from_python_file(
cls, python_file, lambdas_path, json_filename: str, stem: str
):
"""Builds GrFN object from Python file."""
with open(python_file, "r") as f:
pySrc = f.read()
return cls.from_python_src(pySrc, lambdas_path, json_filename, stem)
|
python
|
{
"resource": ""
}
|
q15538
|
GroundedFunctionNetwork.from_python_src
|
train
|
def from_python_src(
cls,
pySrc,
lambdas_path,
json_filename: str,
stem: str,
save_file: bool = False,
):
"""Builds GrFN object from Python source code."""
asts = [ast.parse(pySrc)]
pgm_dict = genPGM.create_pgm_dict(
lambdas_path,
asts,
json_filename,
{"FileName": f"{stem}.py"}, # HACK
)
lambdas = importlib.__import__(stem + "_lambdas")
return cls.from_dict(pgm_dict, lambdas)
|
python
|
{
"resource": ""
}
|
q15539
|
GroundedFunctionNetwork.from_fortran_file
|
train
|
def from_fortran_file(cls, fortran_file: str, tmpdir: str = "."):
"""Builds GrFN object from a Fortran program."""
stem = Path(fortran_file).stem
if tmpdir == "." and "/" in fortran_file:
tmpdir = Path(fortran_file).parent
preprocessed_fortran_file = f"{tmpdir}/{stem}_preprocessed.f"
lambdas_path = f"{tmpdir}/{stem}_lambdas.py"
json_filename = stem + ".json"
with open(fortran_file, "r") as f:
inputLines = f.readlines()
with open(preprocessed_fortran_file, "w") as f:
f.write(preprocessor.process(inputLines))
xml_string = sp.run(
[
"java",
"fortran.ofp.FrontEnd",
"--class",
"fortran.ofp.XMLPrinter",
"--verbosity",
"0",
preprocessed_fortran_file,
],
stdout=sp.PIPE,
).stdout
trees = [ET.fromstring(xml_string)]
comments = get_comments.get_comments(preprocessed_fortran_file)
os.remove(preprocessed_fortran_file)
xml_to_json_translator = translate.XMLToJSONTranslator()
outputDict = xml_to_json_translator.analyze(trees, comments)
pySrc = pyTranslate.create_python_source_list(outputDict)[0][0]
G = cls.from_python_src(pySrc, lambdas_path, json_filename, stem)
return G
|
python
|
{
"resource": ""
}
|
q15540
|
GroundedFunctionNetwork.from_fortran_src
|
train
|
def from_fortran_src(cls, fortran_src: str, dir: str = "."):
""" Create a GroundedFunctionNetwork instance from a string with raw
Fortran code.
Args:
fortran_src: A string with Fortran source code.
dir: (Optional) - the directory in which the temporary Fortran file
will be created (make sure you have write permission!) Defaults to
the current directory.
Returns:
A GroundedFunctionNetwork instance
"""
import tempfile
fp = tempfile.NamedTemporaryFile('w+t', delete=False, dir=dir)
fp.writelines(fortran_src)
fp.close()
G = cls.from_fortran_file(fp.name, dir)
os.remove(fp.name)
return G
|
python
|
{
"resource": ""
}
|
q15541
|
GroundedFunctionNetwork.clear
|
train
|
def clear(self):
"""Clear variable nodes for next computation."""
for n in self.nodes():
if self.nodes[n]["type"] == "variable":
self.nodes[n]["value"] = None
elif self.nodes[n]["type"] == "function":
self.nodes[n]["func_visited"] = False
|
python
|
{
"resource": ""
}
|
q15542
|
GroundedFunctionNetwork.to_FIB
|
train
|
def to_FIB(self, other):
""" Creates a ForwardInfluenceBlanket object representing the
intersection of this model with the other input model.
Args:
other: The GroundedFunctionNetwork object to compare this model to.
Returns:
A ForwardInfluenceBlanket object to use for model comparison.
"""
if not isinstance(other, GroundedFunctionNetwork):
raise TypeError(
f"Expected GroundedFunctionNetwork, but got {type(other)}"
)
def shortname(var):
return var[var.find("::") + 2 : var.rfind("_")]
def shortname_vars(graph, shortname):
return [v for v in graph.nodes() if shortname in v]
this_var_nodes = [
shortname(n)
for (n, d) in self.nodes(data=True)
if d["type"] == "variable"
]
other_var_nodes = [
shortname(n)
for (n, d) in other.nodes(data=True)
if d["type"] == "variable"
]
shared_vars = set(this_var_nodes).intersection(set(other_var_nodes))
full_shared_vars = {
full_var
for shared_var in shared_vars
for full_var in shortname_vars(self, shared_var)
}
return ForwardInfluenceBlanket(self, full_shared_vars)
|
python
|
{
"resource": ""
}
|
q15543
|
GroundedFunctionNetwork.to_agraph
|
train
|
def to_agraph(self):
""" Export to a PyGraphviz AGraph object. """
A = nx.nx_agraph.to_agraph(self)
A.graph_attr.update(
{"dpi": 227, "fontsize": 20, "fontname": "Menlo", "rankdir": "TB"}
)
A.node_attr.update({"fontname": "Menlo"})
def build_tree(cluster_name, root_graph):
subgraph_nodes = [
n[0]
for n in self.nodes(data=True)
if n[1]["parent"] == cluster_name
]
root_graph.add_nodes_from(subgraph_nodes)
subgraph = root_graph.add_subgraph(
subgraph_nodes,
name=f"cluster_{cluster_name}",
label=cluster_name,
style="bold, rounded",
)
for n in self.scope_tree.successors(cluster_name):
build_tree(n, subgraph)
root = [n for n, d in self.scope_tree.in_degree() if d == 0][0]
build_tree(root, A)
return A
|
python
|
{
"resource": ""
}
|
q15544
|
GroundedFunctionNetwork.to_CAG_agraph
|
train
|
def to_CAG_agraph(self):
"""Returns a variable-only view of the GrFN in the form of an AGraph.
Returns:
type: A CAG constructed via variable influence in the GrFN object.
"""
CAG = self.to_CAG()
A = nx.nx_agraph.to_agraph(CAG)
A.graph_attr.update({"dpi": 227, "fontsize": 20, "fontname": "Menlo"})
A.node_attr.update(
{
"shape": "rectangle",
"color": "#650021",
"style": "rounded",
"fontname": "Gill Sans",
}
)
A.edge_attr.update({"color": "#650021", "arrowsize": 0.5})
return A
|
python
|
{
"resource": ""
}
|
q15545
|
GroundedFunctionNetwork.to_call_agraph
|
train
|
def to_call_agraph(self):
""" Build a PyGraphviz AGraph object corresponding to a call graph of
functions. """
A = nx.nx_agraph.to_agraph(self.call_graph)
A.graph_attr.update({"dpi": 227, "fontsize": 20, "fontname": "Menlo"})
A.node_attr.update(
{"shape": "rectangle", "color": "#650021", "style": "rounded"}
)
A.edge_attr.update({"color": "#650021", "arrowsize": 0.5})
return A
|
python
|
{
"resource": ""
}
|
q15546
|
ForwardInfluenceBlanket.S2_surface
|
train
|
def S2_surface(self, sizes, bounds, presets, covers, use_torch=False,
num_samples = 10):
"""Calculates the sensitivity surface of a GrFN for the two variables with
the highest S2 index.
Args:
num_samples: Number of samples for sensitivity analysis.
sizes: Tuple of (number of x inputs, number of y inputs).
bounds: Set of bounds for GrFN inputs.
presets: Set of standard values for GrFN inputs.
Returns:
Tuple:
Tuple: The names of the two variables that were selected
Tuple: The X, Y vectors of eval values
Z: The numpy matrix of output evaluations
"""
args = self.inputs
Si = self.sobol_analysis(
num_samples,
{
"num_vars": len(args),
"names": args,
"bounds": [bounds[arg] for arg in args],
},
covers
)
S2 = Si["S2"]
(s2_max, v1, v2) = get_max_s2_sensitivity(S2)
x_var = args[v1]
y_var = args[v2]
search_space = [(x_var, bounds[x_var]), (y_var, bounds[y_var])]
preset_vals = {
arg: presets[arg]
for i, arg in enumerate(args)
if i != v1 and i != v2
}
X = np.linspace(*search_space[0][1], sizes[0])
Y = np.linspace(*search_space[1][1], sizes[1])
if use_torch:
Xm, Ym = torch.meshgrid(torch.tensor(X), torch.tensor(Y))
inputs = {n: torch.full_like(Xm, v) for n, v in presets.items()}
inputs.update({search_space[0][0]: Xm, search_space[1][0]: Ym})
Z = self.run(inputs, covers).numpy()
else:
Xm, Ym = np.meshgrid(X, Y)
Z = np.zeros((len(X), len(Y)))
for x, y in itertools.product(range(len(X)), range(len(Y))):
inputs = {n: v for n, v in presets.items()}
inputs.update({search_space[0][0]: x, search_space[1][0]: y})
Z[x][y] = self.run(inputs, covers)
return X, Y, Z, x_var, y_var
|
python
|
{
"resource": ""
}
|
q15547
|
XMLToJSONTranslator.process_direct_map
|
train
|
def process_direct_map(self, root, state) -> List[Dict]:
"""Handles tags that are mapped directly from xml to IR with no
additional processing other than recursive translation of any child
nodes."""
val = {"tag": root.tag, "args": []}
for node in root:
val["args"] += self.parseTree(node, state)
return [val]
|
python
|
{
"resource": ""
}
|
q15548
|
XMLToJSONTranslator.parseTree
|
train
|
def parseTree(self, root, state: ParseState) -> List[Dict]:
"""
Parses the XML ast tree recursively to generate a JSON AST
which can be ingested by other scripts to generate Python
scripts.
Args:
root: The current root of the tree.
state: The current state of the tree defined by an object of the
ParseState class.
Returns:
ast: A JSON ast that defines the structure of the Fortran file.
"""
if root.tag in self.AST_TAG_HANDLERS:
return self.AST_TAG_HANDLERS[root.tag](root, state)
elif root.tag in self.libRtns:
return self.process_libRtn(root, state)
else:
prog = []
for node in root:
prog += self.parseTree(node, state)
return prog
|
python
|
{
"resource": ""
}
|
q15549
|
XMLToJSONTranslator.loadFunction
|
train
|
def loadFunction(self, root):
"""
Loads a list with all the functions in the Fortran File
Args:
root: The root of the XML ast tree.
Returns:
None
Does not return anything but populates a list (self.functionList) that
contains all the functions in the Fortran File.
"""
for element in root.iter():
if element.tag == "function":
self.functionList.append(element.attrib["name"])
|
python
|
{
"resource": ""
}
|
q15550
|
XMLToJSONTranslator.analyze
|
train
|
def analyze(
self, trees: List[ET.ElementTree], comments: OrderedDict
) -> Dict:
outputDict = {}
ast = []
# Parse through the ast once to identify and grab all the functions
# present in the Fortran file.
for tree in trees:
self.loadFunction(tree)
# Parse through the ast tree a second time to convert the XML ast
# format to a format that can be used to generate Python statements.
for tree in trees:
ast += self.parseTree(tree, ParseState())
"""
Find the entry point for the Fortran file.
The entry point for a conventional Fortran file is always the PROGRAM
section. This 'if' statement checks for the presence of a PROGRAM
segment.
If not found, the entry point can be any of the functions or
subroutines in the file. So, all the functions and subroutines of the
program are listed and included as the possible entry point.
"""
if self.entryPoint:
entry = {"program": self.entryPoint[0]}
else:
entry = {}
if self.functionList:
entry["function"] = self.functionList
if self.subroutineList:
entry["subroutine"] = self.subroutineList
# Load the functions list and Fortran ast to a single data structure
# which can be pickled and hence is portable across various scripts and
# usages.
outputDict["ast"] = ast
outputDict["functionList"] = self.functionList
outputDict["comments"] = comments
return outputDict
|
python
|
{
"resource": ""
}
|
q15551
|
construct_FAO_ontology
|
train
|
def construct_FAO_ontology():
""" Construct FAO variable ontology for use with Eidos. """
df = pd.read_csv("south_sudan_data_fao.csv")
gb = df.groupby("Element")
d = [
{
"events": [
{
k: [
{e: [process_variable_name(k, e)]}
for e in list(set(gb.get_group(k)["Item"].tolist()))
]
}
for k in gb.groups.keys()
]
}
]
yaml = YAML()
yaml.default_flow_style = False
with open("fao_variable_ontology.yml", "w") as f:
yaml.dump(d, f)
|
python
|
{
"resource": ""
}
|
q15552
|
inspect_edge
|
train
|
def inspect_edge(G: AnalysisGraph, source: str, target: str):
""" 'Drill down' into an edge in the analysis graph and inspect its
provenance. This function prints the provenance.
Args:
G
source
target
"""
return create_statement_inspection_table(
G[source][target]["InfluenceStatements"]
)
|
python
|
{
"resource": ""
}
|
q15553
|
_get_edge_sentences
|
train
|
def _get_edge_sentences(
G: AnalysisGraph, source: str, target: str
) -> List[str]:
""" Return the sentences that led to the construction of a specified edge.
Args:
G
source: The source of the edge.
target: The target of the edge.
"""
return chain.from_iterable(
[
[repr(e.text) for e in s.evidence]
for s in G.edges[source, target]["InfluenceStatements"]
]
)
|
python
|
{
"resource": ""
}
|
q15554
|
get_node_type
|
train
|
def get_node_type(type_str):
"""Returns the NodeType given a name of a JSON function object."""
if type_str == "container":
return NodeType.CONTAINER
elif type_str == "loop_plate":
return NodeType.LOOP
elif type_str == "assign":
return NodeType.ASSIGN
elif type_str == "condition":
return NodeType.CONDITION
elif type_str == "decision":
return NodeType.DECISION
else:
raise ValueError("Unrecognized type string: ", type_str)
|
python
|
{
"resource": ""
}
|
q15555
|
list_output_formats
|
train
|
def list_output_formats(type_list):
"""This function takes a list of type names and returns a list of
format specifiers for list-directed output of values of those types."""
out_format_list = []
for type_item in type_list:
item_format = default_output_format(type_item)
out_format_list.append(item_format)
return out_format_list
|
python
|
{
"resource": ""
}
|
q15556
|
list_data_type
|
train
|
def list_data_type(type_list):
"""This function takes a list of format specifiers and returns a list of data
types represented by the format specifiers."""
data_type = []
for item in type_list:
match = re.match(r"(\d+)(.+)", item)
if not match:
reps = 1
if item[0] in "FfEegG":
data_type.append("REAL")
elif item[0] in "Ii":
data_type.append("INTEGER")
else:
reps = match.group(1)
fmt = match.group(2)
if "(" in fmt and "," in fmt:
fmt = fmt[1:-1].split(",")
elif "(" in fmt:
fmt = [fmt[1:-1]]
else:
fmt = [fmt]
for i in range(int(reps)):
for ft in fmt:
if ft[0] in "FfEegG":
data_type.append("REAL")
elif ft[0] in "Ii":
data_type.append("INTEGER")
return data_type
|
python
|
{
"resource": ""
}
|
q15557
|
Format.read_line
|
train
|
def read_line(self, line):
"""
Match a line of input according to the format specified and return a
tuple of the resulting values
"""
if not self._read_line_init:
self.init_read_line()
match = self._re.match(line)
assert match is not None, f"Format mismatch (line = {line})"
matched_values = []
for i in range(self._re.groups):
cvt_re = self._match_exps[i]
cvt_div = self._divisors[i]
cvt_fn = self._in_cvt_fns[i]
match_str = match.group(i + 1)
match0 = re.match(cvt_re, match_str)
if match0 is not None:
if cvt_fn == "float":
if "." in match_str:
val = float(match_str)
else:
val = int(match_str) / cvt_div
elif cvt_fn == "int":
val = int(match_str)
else:
sys.stderr.write(
f"Unrecognized conversion function: {cvt_fn}\n"
)
else:
sys.stderr.write(
f"Format conversion failed: {match_str}\n"
)
matched_values.append(val)
return tuple(matched_values)
|
python
|
{
"resource": ""
}
|
q15558
|
Format.write_line
|
train
|
def write_line(self, values):
"""
Process a list of values according to the format specified to generate
a line of output.
"""
if not self._write_line_init:
self.init_write_line()
if len(self._out_widths) > len(values):
raise For2PyError(f"ERROR: too few values for format {self._format_list}\n")
out_strs = []
for i in range(len(self._out_widths)):
out_fmt = self._out_gen_fmt[i]
out_width = self._out_widths[i]
out_val = out_fmt.format(values[i])
if len(out_val) > out_width: # value too big for field
out_val = "*" * out_width
out_strs.append(out_val)
out_str_exp = (
'"' + self._output_fmt + '".format' + str(tuple(out_strs))
)
out_str = eval(out_str_exp)
return out_str + "\n"
|
python
|
{
"resource": ""
}
|
q15559
|
get_variable_and_source
|
train
|
def get_variable_and_source(x: str):
""" Process the variable name to make it more human-readable. """
xs = x.replace("\/", "|").split("/")
xs = [x.replace("|", "/") for x in xs]
if xs[0] == "FAO":
return " ".join(xs[2:]), xs[0]
else:
return xs[-1], xs[0]
|
python
|
{
"resource": ""
}
|
q15560
|
construct_concept_to_indicator_mapping
|
train
|
def construct_concept_to_indicator_mapping(n: int = 1) -> Dict[str, List[str]]:
""" Create a dictionary mapping high-level concepts to low-level indicators
Args:
n: Number of indicators to return
Returns:
Dictionary that maps concept names to lists of indicator names.
"""
df = pd.read_sql_table("concept_to_indicator_mapping", con=engine)
gb = df.groupby("Concept")
_dict = {
k: [get_variable_and_source(x) for x in take(n, v["Indicator"].values)]
for k, v in gb
}
return _dict
|
python
|
{
"resource": ""
}
|
q15561
|
Mortality.base_mortality_rate
|
train
|
def base_mortality_rate(self, index: pd.Index) -> pd.Series:
"""Computes the base mortality rate for every individual.
Parameters
----------
index :
A representation of the simulants to compute the base mortality
rate for.
Returns
-------
The base mortality rate for all simulants in the index.
"""
return pd.Series(self.config.mortality_rate, index=index)
|
python
|
{
"resource": ""
}
|
q15562
|
Mortality.determine_deaths
|
train
|
def determine_deaths(self, event: Event):
"""Determines who dies each time step.
Parameters
----------
event :
An event object emitted by the simulation containing an index
representing the simulants affected by the event and timing
information.
"""
effective_rate = self.mortality_rate(event.index)
effective_probability = 1 - np.exp(-effective_rate)
draw = self.randomness.get_draw(event.index)
affected_simulants = draw < effective_probability
self.population_view.update(pd.Series('dead', index=event.index[affected_simulants]))
|
python
|
{
"resource": ""
}
|
q15563
|
_prep_components
|
train
|
def _prep_components(component_list: Sequence[str]) -> List[Tuple[str, Tuple[str]]]:
"""Transform component description strings into tuples of component paths and required arguments.
Parameters
----------
component_list :
The component descriptions to transform.
Returns
-------
List of component/argument tuples.
"""
components = []
for c in component_list:
path, args_plus = c.split('(')
cleaned_args = _clean_args(args_plus[:-1].split(','), path)
components.append((path, cleaned_args))
return components
|
python
|
{
"resource": ""
}
|
q15564
|
ComponentConfigurationParser.get_components
|
train
|
def get_components(self, component_config: Union[ConfigTree, List]) -> List:
"""Extracts component specifications from configuration information and returns initialized components.
Parameters
----------
component_config :
A hierarchical component specification blob. This configuration information needs to be parsable
into a full import path and a set of initialization arguments by the ``parse_component_config``
method.
Returns
-------
List
A list of initialized components.
"""
if isinstance(component_config, ConfigTree):
component_list = self.parse_component_config(component_config.to_dict())
else: # Components were specified in a list rather than a tree.
component_list = component_config
component_list = _prep_components(component_list)
return _import_and_instantiate_components(component_list)
|
python
|
{
"resource": ""
}
|
q15565
|
ComponentConfigurationParser.parse_component_config
|
train
|
def parse_component_config(self, component_config: Dict[str, Union[Dict, List]]) -> List[str]:
"""Parses a hierarchical component specification into a list of standardized component definitions.
This default parser expects component configurations as a list of dicts. Each dict at the top level
corresponds to a different package and has a single key. This key may be just the name of the package
or a Python style import path to the module in which components live. The values of the top level dicts
are a list of dicts or strings. If dicts, the keys are another step along the import path. If strings,
the strings are representations of calls to the class constructor of components to be generated. This
pattern may be arbitrarily nested.
Parameters
----------
component_config :
A hierarchical component specification blob.
Returns
-------
List
A list of standardized component definitions. Component definition strings are specified as
``'absolute.import.path.ClassName("argument1", "argument2", ...)'``.
"""
return _parse_component_config(component_config)
|
python
|
{
"resource": ""
}
|
q15566
|
_next_state
|
train
|
def _next_state(index, event_time, transition_set, population_view):
"""Moves a population between different states using information from a `TransitionSet`.
Parameters
----------
index : iterable of ints
An iterable of integer labels for the simulants.
event_time : pandas.Timestamp
When this transition is occurring.
transition_set : TransitionSet
A set of potential transitions available to the simulants.
population_view : vivarium.framework.population.PopulationView
A view of the internal state of the simulation.
"""
if len(transition_set) == 0 or index.empty:
return
outputs, decisions = transition_set.choose_new_state(index)
groups = _groupby_new_state(index, outputs, decisions)
if groups:
for output, affected_index in sorted(groups, key=lambda x: str(x[0])):
if output == 'null_transition':
pass
elif isinstance(output, Transient):
if not isinstance(output, State):
raise ValueError('Invalid transition output: {}'.format(output))
output.transition_effect(affected_index, event_time, population_view)
output.next_state(affected_index, event_time, population_view)
elif isinstance(output, State):
output.transition_effect(affected_index, event_time, population_view)
else:
raise ValueError('Invalid transition output: {}'.format(output))
|
python
|
{
"resource": ""
}
|
q15567
|
_groupby_new_state
|
train
|
def _groupby_new_state(index, outputs, decisions):
"""Groups the simulants in the index by their new output state.
Parameters
----------
index : iterable of ints
An iterable of integer labels for the simulants.
outputs : iterable
A list of possible output states.
decisions : `pandas.Series`
A series containing the name of the next state for each simulant in the index.
Returns
-------
iterable of 2-tuples
The first item in each tuple is the name of an output state and the second item
is a `pandas.Index` representing the simulants to transition into that state.
"""
output_map = {o: i for i, o in enumerate(outputs)}
groups = pd.Series(index).groupby([output_map[d] for d in decisions])
results = [(outputs[i], pd.Index(sub_group.values)) for i, sub_group in groups]
selected_outputs = [o for o, _ in results]
for output in outputs:
if output not in selected_outputs:
results.append((output, pd.Index([])))
return results
|
python
|
{
"resource": ""
}
|
q15568
|
State.next_state
|
train
|
def next_state(self, index, event_time, population_view):
"""Moves a population between different states using information this state's `transition_set`.
Parameters
----------
index : iterable of ints
An iterable of integer labels for the simulants.
event_time : pandas.Timestamp
When this transition is occurring.
population_view : vivarium.framework.population.PopulationView
A view of the internal state of the simulation.
"""
return _next_state(index, event_time, self.transition_set, population_view)
|
python
|
{
"resource": ""
}
|
q15569
|
State.transition_effect
|
train
|
def transition_effect(self, index, event_time, population_view):
"""Updates the simulation state and triggers any side-effects associated with entering this state.
Parameters
----------
index : iterable of ints
An iterable of integer labels for the simulants.
event_time : pandas.Timestamp
The time at which this transition occurs.
population_view : `vivarium.framework.population.PopulationView`
A view of the internal state of the simulation.
"""
population_view.update(pd.Series(self.state_id, index=index))
self._transition_side_effect(index, event_time)
|
python
|
{
"resource": ""
}
|
q15570
|
State.add_transition
|
train
|
def add_transition(self, output,
probability_func=lambda index: np.ones(len(index), dtype=float),
triggered=Trigger.NOT_TRIGGERED):
"""Builds a transition from this state to the given state.
output : State
The end state after the transition.
"""
t = Transition(self, output, probability_func=probability_func, triggered=triggered)
self.transition_set.append(t)
return t
|
python
|
{
"resource": ""
}
|
q15571
|
TransitionSet.choose_new_state
|
train
|
def choose_new_state(self, index):
"""Chooses a new state for each simulant in the index.
Parameters
----------
index : iterable of ints
An iterable of integer labels for the simulants.
Returns
-------
outputs : list
The possible end states of this set of transitions.
decisions: `pandas.Series`
A series containing the name of the next state for each simulant in the index.
"""
outputs, probabilities = zip(*[(transition.output_state, np.array(transition.probability(index)))
for transition in self.transitions])
probabilities = np.transpose(probabilities)
outputs, probabilities = self._normalize_probabilities(outputs, probabilities)
return outputs, self.random.choice(index, outputs, probabilities)
|
python
|
{
"resource": ""
}
|
q15572
|
TransitionSet._normalize_probabilities
|
train
|
def _normalize_probabilities(self, outputs, probabilities):
"""Normalize probabilities to sum to 1 and add a null transition if desired.
Parameters
----------
outputs : iterable
List of possible end states corresponding to this containers transitions.
probabilities : iterable of iterables
A set of probability weights whose columns correspond to the end states in `outputs`
and whose rows correspond to each simulant undergoing the transition.
Returns
-------
outputs: list
The original output list expanded to include a null transition (a transition back
to the starting state) if requested.
probabilities : ndarray
The original probabilities rescaled to sum to 1 and potentially expanded to
include a null transition weight.
"""
outputs = list(outputs)
total = np.sum(probabilities, axis=1)
if self.allow_null_transition or not np.any(total):
if np.any(total > 1+1e-08): # Accommodate rounding errors
raise ValueError(
"Null transition requested with un-normalized probability weights: {}".format(probabilities))
total[total > 1] = 1 # Correct allowed rounding errors.
probabilities = np.concatenate([probabilities, (1-total)[:, np.newaxis]], axis=1)
outputs.append('null_transition')
return outputs, probabilities/(np.sum(probabilities, axis=1)[:, np.newaxis])
|
python
|
{
"resource": ""
}
|
q15573
|
Machine.transition
|
train
|
def transition(self, index, event_time):
"""Finds the population in each state and moves them to the next state.
Parameters
----------
index : iterable of ints
An iterable of integer labels for the simulants.
event_time : pandas.Timestamp
The time at which this transition occurs.
"""
for state, affected in self._get_state_pops(index):
if not affected.empty:
state.next_state(affected.index, event_time, self.population_view.subview([self.state_column]))
|
python
|
{
"resource": ""
}
|
q15574
|
Machine.to_dot
|
train
|
def to_dot(self):
"""Produces a ball and stick graph of this state machine.
Returns
-------
`graphviz.Digraph`
A ball and stick visualization of this state machine.
"""
from graphviz import Digraph
dot = Digraph(format='png')
for state in self.states:
if isinstance(state, TransientState):
dot.node(state.state_id, style='dashed')
else:
dot.node(state.state_id)
for transition in state.transition_set:
dot.edge(state.state_id, transition.output.state_id, transition.label())
return dot
|
python
|
{
"resource": ""
}
|
q15575
|
ComponentManager.setup_components
|
train
|
def setup_components(self, builder, configuration):
"""Apply component level configuration defaults to the global config and run setup methods on the components
registering and setting up any child components generated in the process.
Parameters
----------
builder:
Interface to several simulation tools.
configuration:
Simulation configuration parameters.
"""
self._managers = _setup_components(builder, self._managers, configuration)
self._components = _setup_components(builder, self._components, configuration)
|
python
|
{
"resource": ""
}
|
q15576
|
field_to_markdown
|
train
|
def field_to_markdown(field):
"""Genera texto en markdown a partir de los metadatos de un `field`.
Args:
field (dict): Diccionario con metadatos de un `field`.
Returns:
str: Texto que describe un `field`.
"""
if "title" in field:
field_title = "**{}**".format(field["title"])
else:
raise Exception("Es necesario un `title` para describir un campo.")
field_type = " ({})".format(field["type"]) if "type" in field else ""
field_desc = ": {}".format(
field["description"]) if "description" in field else ""
text_template = "{title}{type}{description}"
text = text_template.format(title=field_title, type=field_type,
description=field_desc)
return text
|
python
|
{
"resource": ""
}
|
q15577
|
DataJson._build_index
|
train
|
def _build_index(self):
"""Itera todos los datasets, distribucioens y fields indexandolos."""
datasets_index = {}
distributions_index = {}
fields_index = {}
# recorre todos los datasets
for dataset_index, dataset in enumerate(self.datasets):
if "identifier" in dataset:
datasets_index[dataset["identifier"]] = {
"dataset_index": dataset_index
}
# recorre las distribuciones del dataset
for distribution_index, distribution in enumerate(
dataset.get("distribution", [])):
if "identifier" in distribution:
distributions_index[distribution["identifier"]] = {
"distribution_index": distribution_index,
"dataset_identifier": dataset["identifier"]
}
# recorre los fields de la distribucion
for field_index, field in enumerate(
distribution.get("field", [])):
if "id" in field:
fields_index[field["id"]] = {
"field_index":
field_index,
"dataset_identifier":
dataset["identifier"],
"distribution_identifier":
distribution["identifier"]
}
setattr(self, "_distributions_index", distributions_index)
setattr(self, "_datasets_index", datasets_index)
setattr(self, "_fields_index", fields_index)
|
python
|
{
"resource": ""
}
|
q15578
|
import_by_path
|
train
|
def import_by_path(path: str) -> Callable:
"""Import a class or function given it's absolute path.
Parameters
----------
path:
Path to object to import
"""
module_path, _, class_name = path.rpartition('.')
return getattr(import_module(module_path), class_name)
|
python
|
{
"resource": ""
}
|
q15579
|
_set_default_value
|
train
|
def _set_default_value(dict_obj, keys, value):
"""Setea valor en diccionario anidado, siguiendo lista de keys.
Args:
dict_obj (dict): Un diccionario anidado.
keys (list): Una lista de keys para navegar el diccionario.
value (any): Un valor para reemplazar.
"""
variable = dict_obj
if len(keys) == 1:
if not variable.get(keys[0]):
variable[keys[0]] = value
else:
for idx, field in enumerate(keys):
if idx < len(keys) - 1:
variable = variable[field]
if not variable.get(keys[-1]):
variable[keys[-1]] = value
|
python
|
{
"resource": ""
}
|
q15580
|
_make_contact_point
|
train
|
def _make_contact_point(dataset):
"""De estar presentes las claves necesarias, genera el diccionario
"contactPoint" de un dataset."""
keys = [k for k in ["contactPoint_fn", "contactPoint_hasEmail"]
if k in dataset]
if keys:
dataset["contactPoint"] = {
key.replace("contactPoint_", ""): dataset.pop(key) for key in keys
}
return dataset
|
python
|
{
"resource": ""
}
|
q15581
|
_read_csv_table
|
train
|
def _read_csv_table(path):
"""Lee un CSV a una lista de diccionarios."""
with open(path, 'rb') as csvfile:
reader = csv.DictReader(csvfile)
table = list(reader)
return table
|
python
|
{
"resource": ""
}
|
q15582
|
_read_xlsx_table
|
train
|
def _read_xlsx_table(path):
"""Lee la hoja activa de un archivo XLSX a una lista de diccionarios."""
workbook = pyxl.load_workbook(path)
worksheet = workbook.active
table = helpers.sheet_to_table(worksheet)
return table
|
python
|
{
"resource": ""
}
|
q15583
|
validate_model_specification_file
|
train
|
def validate_model_specification_file(file_path: str) -> str:
"""Ensures the provided file is a yaml file"""
if not os.path.isfile(file_path):
raise ConfigurationError('If you provide a model specification file, it must be a file. '
f'You provided {file_path}')
extension = file_path.split('.')[-1]
if extension not in ['yaml', 'yml']:
raise ConfigurationError(f'Model specification files must be in a yaml format. You provided {extension}')
# Attempt to load
yaml.full_load(file_path)
return file_path
|
python
|
{
"resource": ""
}
|
q15584
|
ConfigNode.get_value_with_source
|
train
|
def get_value_with_source(self, layer=None):
"""Returns a tuple of the value's source and the value at the specified
layer. If no layer is specified then the outer layer is used.
Parameters
----------
layer : str
Name of the layer to use. If None then the outermost where the value
exists will be used.
Raises
------
KeyError
If the value is not set for the specified layer
"""
if layer:
return self._values[layer]
for layer in reversed(self._layers):
if layer in self._values:
return self._values[layer]
raise KeyError(layer)
|
python
|
{
"resource": ""
}
|
q15585
|
ConfigNode.metadata
|
train
|
def metadata(self):
"""Returns all values and associated metadata for this node as a dict.
The value which would be selected if the node's value was requested
is indicated by the `default` flag.
"""
result = []
for layer in self._layers:
if layer in self._values:
result.append({
'layer': layer,
'value': self._values[layer][1],
'source': self._values[layer][0],
'default': layer == self._layers[-1]
})
return result
|
python
|
{
"resource": ""
}
|
q15586
|
ConfigNode.set_value
|
train
|
def set_value(self, value, layer=None, source=None):
"""Set a value for a particular layer with optional metadata about source.
Parameters
----------
value : str
Data to store in the node.
layer : str
Name of the layer to use. If None then the outermost where the value
exists will be used.
source : str
Metadata indicating the source of this value (e.g. a file path)
Raises
------
TypeError
If the node is frozen
KeyError
If the named layer does not exist
"""
if self._frozen:
raise TypeError('Frozen ConfigNode does not support assignment')
if not layer:
layer = self._layers[-1]
self._values[layer] = (source, value)
|
python
|
{
"resource": ""
}
|
q15587
|
ConfigTree.freeze
|
train
|
def freeze(self):
"""Causes the ConfigTree to become read only.
This is useful for loading and then freezing configurations that should not be modified at runtime.
"""
self.__dict__['_frozen'] = True
for child in self._children.values():
child.freeze()
|
python
|
{
"resource": ""
}
|
q15588
|
ConfigTree.get_from_layer
|
train
|
def get_from_layer(self, name, layer=None):
"""Get a configuration value from the named layer.
Parameters
----------
name : str
The name of the value to retrieve
layer: str
The name of the layer to retrieve the value from. If it is not supplied
then the outermost layer in which the key is defined will be used.
"""
if name not in self._children:
if self._frozen:
raise KeyError(name)
self._children[name] = ConfigTree(layers=self._layers)
child = self._children[name]
if isinstance(child, ConfigNode):
return child.get_value(layer)
else:
return child
|
python
|
{
"resource": ""
}
|
q15589
|
ConfigTree._set_with_metadata
|
train
|
def _set_with_metadata(self, name, value, layer=None, source=None):
"""Set a value in the named layer with the given source.
Parameters
----------
name : str
The name of the value
value
The value to store
layer : str, optional
The name of the layer to store the value in. If none is supplied
then the value will be stored in the outermost layer.
source : str, optional
The source to attribute the value to.
Raises
------
TypeError
if the ConfigTree is frozen
"""
if self._frozen:
raise TypeError('Frozen ConfigTree does not support assignment')
if isinstance(value, dict):
if name not in self._children or not isinstance(self._children[name], ConfigTree):
self._children[name] = ConfigTree(layers=list(self._layers))
self._children[name].update(value, layer, source)
else:
if name not in self._children or not isinstance(self._children[name], ConfigNode):
self._children[name] = ConfigNode(list(self._layers))
child = self._children[name]
child.set_value(value, layer, source)
|
python
|
{
"resource": ""
}
|
q15590
|
ConfigTree.update
|
train
|
def update(self, data: Union[Mapping, str, bytes], layer: str=None, source: str=None):
"""Adds additional data into the ConfigTree.
Parameters
----------
data :
source data
layer :
layer to load data into. If none is supplied the outermost one is used
source :
Source to attribute the values to
See Also
--------
read_dict
"""
if isinstance(data, dict):
self._read_dict(data, layer, source)
elif isinstance(data, ConfigTree):
# TODO: set this to parse the other config tree including layer and source info. Maybe.
self._read_dict(data.to_dict(), layer, source)
elif isinstance(data, str):
if data.endswith(('.yaml', '.yml')):
source = source if source else data
self._load(data, layer, source)
else:
try:
self._loads(data, layer, source)
except AttributeError:
raise ValueError("The string data should be yaml formated string or path to .yaml/.yml file")
elif data is None:
pass
else:
raise ValueError(f"Update must be called with dictionary, string, or ConfigTree. "
f"You passed in {type(data)}")
|
python
|
{
"resource": ""
}
|
q15591
|
ConfigTree._read_dict
|
train
|
def _read_dict(self, data_dict, layer=None, source=None):
"""Load a dictionary into the ConfigTree. If the dict contains nested dicts
then the values will be added recursively. See module docstring for example code.
Parameters
----------
data_dict : dict
source data
layer : str
layer to load data into. If none is supplied the outermost one is used
source : str
Source to attribute the values to
"""
for k, v in data_dict.items():
self._set_with_metadata(k, v, layer, source)
|
python
|
{
"resource": ""
}
|
q15592
|
ConfigTree._loads
|
train
|
def _loads(self, data_string, layer=None, source=None):
"""Load data from a yaml formatted string.
Parameters
----------
data_string : str
yaml formatted string. The root element of the document should be
an associative array
layer : str
layer to load data into. If none is supplied the outermost one is used
source : str
Source to attribute the values to
"""
data_dict = yaml.full_load(data_string)
self._read_dict(data_dict, layer, source)
|
python
|
{
"resource": ""
}
|
q15593
|
ConfigTree._load
|
train
|
def _load(self, f, layer=None, source=None):
"""Load data from a yaml formatted file.
Parameters
----------
f : str or file like object
If f is a string then it is interpreted as a path to the file to load
If it is a file like object then data is read directly from it.
layer : str
layer to load data into. If none is supplied the outermost one is used
source : str
Source to attribute the values to
"""
if hasattr(f, 'read'):
self._loads(f.read(), layer=layer, source=source)
else:
with open(f) as f:
self._loads(f.read(), layer=layer, source=source)
|
python
|
{
"resource": ""
}
|
q15594
|
ConfigTree.metadata
|
train
|
def metadata(self, name):
"""Return value and metadata associated with the named value
Parameters
----------
name : str
name to retrieve. If the name contains '.'s it will be retrieved recursively
Raises
------
KeyError
if name is not defined in the ConfigTree
"""
if name in self._children:
return self._children[name].metadata()
else:
head, _, tail = name.partition('.')
if head in self._children:
return self._children[head].metadata(key=tail)
else:
raise KeyError(name)
|
python
|
{
"resource": ""
}
|
q15595
|
ConfigTree.unused_keys
|
train
|
def unused_keys(self):
"""Lists all keys which are present in the ConfigTree but which have not been accessed."""
unused = set()
for k, c in self._children.items():
if isinstance(c, ConfigNode):
if not c.has_been_accessed():
unused.add(k)
else:
for ck in c.unused_keys():
unused.add(k+'.'+ck)
return unused
|
python
|
{
"resource": ""
}
|
q15596
|
create_validator
|
train
|
def create_validator(schema_filename=None, schema_dir=None):
"""Crea el validador necesario para inicializar un objeto DataJson.
Para poder resolver referencias inter-esquemas, un Validador requiere
que se especifique un RefResolver (Resolvedor de Referencias) con el
directorio base (absoluto) y el archivo desde el que se referencia el
directorio.
Para poder validar formatos, un Validador requiere que se provea
explícitamente un FormatChecker. Actualmente se usa el default de la
librería, jsonschema.FormatChecker().
Args:
schema_filename (str): Nombre del archivo que contiene el esquema
validador "maestro".
schema_dir (str): Directorio (absoluto) donde se encuentra el
esquema validador maestro y sus referencias, de tenerlas.
Returns:
Draft4Validator: Un validador de JSONSchema Draft #4. El validador
se crea con un RefResolver que resuelve referencias de
`schema_filename` dentro de `schema_dir`.
"""
schema_filename = schema_filename or DEFAULT_CATALOG_SCHEMA_FILENAME
schema_dir = schema_dir or ABSOLUTE_SCHEMA_DIR
schema_path = os.path.join(schema_dir, schema_filename)
schema = readers.read_json(schema_path)
# Según https://github.com/Julian/jsonschema/issues/98
# Permite resolver referencias locales a otros esquemas.
if platform.system() == 'Windows':
base_uri = "file:///" + schema_path.replace("\\", "/")
else:
base_uri = "file://" + schema_path
resolver = jsonschema.RefResolver(base_uri=base_uri, referrer=schema)
format_checker = jsonschema.FormatChecker()
validator = jsonschema.Draft4Validator(
schema=schema, resolver=resolver, format_checker=format_checker)
return validator
|
python
|
{
"resource": ""
}
|
q15597
|
initialize_simulation
|
train
|
def initialize_simulation(components: List, input_config: Mapping=None,
plugin_config: Mapping=None) -> InteractiveContext:
"""Construct a simulation from a list of components, component
configuration, and a plugin configuration.
The simulation context returned by this method still needs to be setup by
calling its setup method. It is mostly useful for testing and debugging.
Parameters
----------
components
A list of initialized simulation components. Corresponds to the
components block of a model specification.
input_config
A nested dictionary with any additional simulation configuration
information needed. Corresponds to the configuration block of a model
specification.
plugin_config
A dictionary containing a description of any simulation plugins to
include in the simulation. If you're using this argument, you're either
deep in the process of simulation development or the maintainers have
done something wrong. Corresponds to the plugins block of a model
specification.
Returns
-------
An initialized (but not set up) simulation context.
"""
config = build_simulation_configuration()
config.update(input_config)
plugin_manager = PluginManager(plugin_config)
return InteractiveContext(config, components, plugin_manager)
|
python
|
{
"resource": ""
}
|
q15598
|
setup_simulation
|
train
|
def setup_simulation(components: List, input_config: Mapping=None,
plugin_config: Mapping=None) -> InteractiveContext:
"""Construct a simulation from a list of components and call its setup
method.
Parameters
----------
components
A list of initialized simulation components. Corresponds to the
components block of a model specification.
input_config
A nested dictionary with any additional simulation configuration
information needed. Corresponds to the configuration block of a model
specification.
plugin_config
A dictionary containing a description of any simulation plugins to
include in the simulation. If you're using this argument, you're either
deep in the process of simulation development or the maintainers have
done something wrong. Corresponds to the plugins block of a model
specification.
Returns
-------
A simulation context that is setup and ready to run.
"""
simulation = initialize_simulation(components, input_config, plugin_config)
simulation.setup()
return simulation
|
python
|
{
"resource": ""
}
|
q15599
|
initialize_simulation_from_model_specification
|
train
|
def initialize_simulation_from_model_specification(model_specification_file: str) -> InteractiveContext:
"""Construct a simulation from a model specification file.
The simulation context returned by this method still needs to be setup by
calling its setup method. It is mostly useful for testing and debugging.
Parameters
----------
model_specification_file
The path to a model specification file.
Returns
-------
An initialized (but not set up) simulation context.
"""
model_specification = build_model_specification(model_specification_file)
plugin_config = model_specification.plugins
component_config = model_specification.components
simulation_config = model_specification.configuration
plugin_manager = PluginManager(plugin_config)
component_config_parser = plugin_manager.get_plugin('component_configuration_parser')
components = component_config_parser.get_components(component_config)
return InteractiveContext(simulation_config, components, plugin_manager)
|
python
|
{
"resource": ""
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.