_id
stringlengths
2
7
title
stringlengths
1
88
partition
stringclasses
3 values
text
stringlengths
75
19.8k
language
stringclasses
1 value
meta_information
dict
q11500
MagICMenu.on_import1
train
def on_import1(self, event): """ initialize window to import an arbitrary file into the working directory """ pmag_menu_dialogs.MoveFileIntoWD(self.parent, self.parent.WD)
python
{ "resource": "" }
q11501
MagICMenu.orient_import2
train
def orient_import2(self, event): """ initialize window to import an AzDip format file into the working directory """ pmag_menu_dialogs.ImportAzDipFile(self.parent, self.parent.WD)
python
{ "resource": "" }
q11502
_UTMLetterDesignator
train
def _UTMLetterDesignator(Lat): """ This routine determines the correct UTM letter designator for the given latitude returns 'Z' if latitude is outside the UTM limits of 84N to 80S Written by Chuck Gantz- chuck.gantz@globalstar.com """ if 84 >= Lat >= 72: return 'X' elif 72 > Lat >= 64: return 'W' elif 64 > Lat >= 56: return 'V' elif 56 > Lat >= 48: return 'U' elif 48 > Lat >= 40: return 'T' elif 40 > Lat >= 32: return 'S' elif 32 > Lat >= 24: return 'R' elif 24 > Lat >= 16: return 'Q' elif 16 > Lat >= 8: return 'P' elif 8 > Lat >= 0: return 'N' elif 0 > Lat >=-8: return 'M' elif -8 > Lat >=-16: return 'L' elif -16 > Lat >=-24: return 'K' elif -24 > Lat >=-32: return 'J' elif -32 > Lat >=-40: return 'H' elif -40 > Lat >=-48: return 'G' elif -48 > Lat >=-56: return 'F' elif -56 > Lat >=-64: return 'E' elif -64 > Lat >=-72: return 'D' elif -72 > Lat >=-80: return 'C' else: return 'Z'
python
{ "resource": "" }
q11503
MainFrame.highlight_problems
train
def highlight_problems(self, has_problems): """ Outline grid buttons in red if they have validation errors """ if has_problems: self.validation_mode = set(has_problems) # highlighting doesn't work with Windows if sys.platform in ['win32', 'win62']: self.message.SetLabel('The following grid(s) have incorrect or incomplete data:\n{}'.format(', '.join(self.validation_mode))) # highlighting does work with OSX else: for dtype in ["specimens", "samples", "sites", "locations", "ages", "measurements"]: wind = self.FindWindowByName(dtype + '_btn') if dtype not in has_problems: wind.Unbind(wx.EVT_PAINT, handler=self.highlight_button) else: wind.Bind(wx.EVT_PAINT, self.highlight_button) self.Refresh() self.message.SetLabel('Highlighted grids have incorrect or incomplete data') self.bSizer_msg.ShowItems(True) # manually fire a paint event to make sure all buttons # are highlighted/unhighlighted appropriately paintEvent = wx.CommandEvent(wx.wxEVT_PAINT, self.GetId()) self.GetEventHandler().ProcessEvent(paintEvent) else: self.message.SetLabel("Validated!") self.bSizer_msg.ShowItems(True) self.hbox.Fit(self)
python
{ "resource": "" }
q11504
MainFrame.reset_highlights
train
def reset_highlights(self): """ Remove red outlines from all buttons """ for dtype in ["specimens", "samples", "sites", "locations", "ages"]: wind = self.FindWindowByName(dtype + '_btn') wind.Unbind(wx.EVT_PAINT, handler=self.highlight_button) self.Refresh() #self.message.SetLabel('Highlighted grids have incorrect or incomplete data') self.bSizer_msg.ShowItems(False) self.hbox.Fit(self)
python
{ "resource": "" }
q11505
MainFrame.highlight_button
train
def highlight_button(self, event): """ Draw a red highlight line around the event object """ wind = event.GetEventObject() pos = wind.GetPosition() size = wind.GetSize() try: dc = wx.PaintDC(self) except wx._core.PyAssertionError: # if it's not a native paint event, we can't us wx.PaintDC dc = wx.ClientDC(self) dc.SetPen(wx.Pen('red', 5, wx.SOLID)) dc.DrawRectangle(pos[0], pos[1], size[0], size[1]) event.Skip()
python
{ "resource": "" }
q11506
MagICMenu.on_close_grid
train
def on_close_grid(self, event): """ If there is an open grid, save its data and close it. """ if self.parent.grid_frame: self.parent.grid_frame.onSave(None) self.parent.grid_frame.Destroy()
python
{ "resource": "" }
q11507
main
train
def main(): """ NAME dipole_plat.py DESCRIPTION gives paleolatitude from given inclination, assuming GAD field SYNTAX dipole_plat.py [command line options]<filename OPTIONS -h prints help message and quits -i allows interactive entry of latitude -f file, specifies file name on command line """ if '-h' in sys.argv: print(main.__doc__) sys.exit() elif '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] f=open(file,'r') data=f.readlines() elif '-i' not in sys.argv: data=sys.stdin.readlines() if '-i' not in sys.argv: for line in data: rec=line.split() print('%7.1f'%(pmag.plat(float(rec[0])))) else: while 1: try: inc=input("Inclination for converting to paleolatitude: <cntl-D> to quit ") print('%7.1f'%(pmag.plat(float(inc)))) except: print('\n Good-bye \n') sys.exit()
python
{ "resource": "" }
q11508
main
train
def main(): """ NAME pmag_results_extract.py DESCRIPTION make a tab delimited output file from pmag_results table SYNTAX pmag_results_extract.py [command line options] OPTIONS -h prints help message and quits -f RFILE, specify pmag_results table; default is pmag_results.txt -fa AFILE, specify er_ages table; default is NONE -fsp SFILE, specify pmag_specimens table, default is NONE -fcr CFILE, specify pmag_criteria table, default is NONE -g include specimen_grade in table - only works for PmagPy generated pmag_specimen formatted files. -tex, output in LaTeX format """ do_help = pmag.get_flag_arg_from_sys('-h') if do_help: print(main.__doc__) return False res_file = pmag.get_named_arg('-f', 'pmag_results.txt') crit_file = pmag.get_named_arg('-fcr', '') spec_file = pmag.get_named_arg('-fsp', '') age_file = pmag.get_named_arg('-fa', '') grade = pmag.get_flag_arg_from_sys('-g') latex = pmag.get_flag_arg_from_sys('-tex') WD = pmag.get_named_arg('-WD', os.getcwd()) ipmag.pmag_results_extract(res_file, crit_file, spec_file, age_file, latex, grade, WD)
python
{ "resource": "" }
q11509
main
train
def main(): """ NAME grab_magic_key.py DESCRIPTION picks out key and saves to file SYNTAX grab_magic_key.py [command line optins] OPTIONS -h prints help message and quits -f FILE: specify input magic format file -key KEY: specify key to print to standard output """ dir_path = "./" if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path = sys.argv[ind+1] if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind = sys.argv.index('-f') magic_file = dir_path+'/'+sys.argv[ind+1] else: print(main.__doc__) sys.exit() if '-key' in sys.argv: ind = sys.argv.index('-key') grab_key = sys.argv[ind+1] else: print(main.__doc__) sys.exit() # # # get data read in Data, file_type = pmag.magic_read(magic_file) if len(Data) > 0: for rec in Data: print(rec[grab_key]) else: print('bad file name')
python
{ "resource": "" }
q11510
main
train
def main(): """ NAME plot_2cdfs.py DESCRIPTION makes plots of cdfs of data in input file SYNTAX plot_2cdfs.py [-h][command line options] OPTIONS -h prints help message and quits -f FILE1 FILE2 -t TITLE -fmt [svg,eps,png,pdf,jpg..] specify format of output figure, default is svg """ fmt='svg' title="" if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] X=numpy.loadtxt(file) file=sys.argv[ind+2] X2=numpy.loadtxt(file) # else: # X=numpy.loadtxt(sys.stdin,dtype=numpy.float) else: print('-f option required') print(main.__doc__) sys.exit() if '-fmt' in sys.argv: ind=sys.argv.index('-fmt') fmt=sys.argv[ind+1] if '-t' in sys.argv: ind=sys.argv.index('-t') title=sys.argv[ind+1] CDF={'X':1} pmagplotlib.plot_init(CDF['X'],5,5) pmagplotlib.plot_cdf(CDF['X'],X,'','r','') pmagplotlib.plot_cdf(CDF['X'],X2,title,'b','') D,p=scipy.stats.ks_2samp(X,X2) if p>=.05: print(D,p,' not rejected at 95%') else: print(D,p,' rejected at 95%') pmagplotlib.draw_figs(CDF) ans= input('S[a]ve plot, <Return> to quit ') if ans=='a': files={'X':'CDF_.'+fmt} pmagplotlib.save_plots(CDF,files)
python
{ "resource": "" }
q11511
main
train
def main(): """ NAME reorder_samples.py DESCRIPTION takes specimen file and reorders sample file with selected orientation methods placed first SYNTAX reorder_samples.py [command line options] OPTIONS -h prints help message and quits -fsp: specimen input pmag_specimens format file, default is "pmag_specimens.txt" -fsm: sample input er_samples format file, default is "er_samples.txt" -F: output er_samples format file, default is "er_samples.txt" OUPUT writes re-ordered er_samples.txt file """ infile='pmag_specimens.txt' sampfile="er_samples.txt" outfile="er_samples.txt" # get command line stuff if "-h" in sys.argv: print(main.__doc__) sys.exit() if '-fsp' in sys.argv: ind=sys.argv.index("-fsp") infile=sys.argv[ind+1] if '-fsm' in sys.argv: ind=sys.argv.index("-fsm") sampfile=sys.argv[ind+1] if '-F' in sys.argv: ind=sys.argv.index("-F") outfile=sys.argv[ind+1] if '-WD' in sys.argv: ind=sys.argv.index("-WD") dir_path=sys.argv[ind+1] infile=dir_path+'/'+infile sampfile=dir_path+'/'+sampfile outfile=dir_path+'/'+outfile # now do re-ordering pmag.ReorderSamples(infile,sampfile,outfile)
python
{ "resource": "" }
q11512
get_intensity_col
train
def get_intensity_col(data): """ Check measurement dataframe for intensity columns 'magn_moment', 'magn_volume', 'magn_mass','magn_uncal'. Return the first intensity column that is in the dataframe AND has data. Parameters ---------- data : pandas DataFrame Returns --------- str intensity method column or "" """ # possible intensity columns intlist = ['magn_moment', 'magn_volume', 'magn_mass','magn_uncal'] # intensity columns that are in the data int_meths = [col_name for col_name in data.columns if col_name in intlist] # drop fully null columns data.dropna(axis='columns', how='all') # ignore columns with only blank values (including "") for col_name in int_meths[:]: if not data[col_name].any(): int_meths.remove(col_name) if len(int_meths): if 'magn_moment' in int_meths: return 'magn_moment' return int_meths[0] return ""
python
{ "resource": "" }
q11513
prep_for_intensity_plot
train
def prep_for_intensity_plot(data, meth_code, dropna=(), reqd_cols=()): """ Strip down measurement data to what is needed for an intensity plot. Find the column with intensity data. Drop empty columns, and make sure required columns are present. Keep only records with the specified method code. Parameters ---------- data : pandas DataFrame measurement dataframe meth_code : str MagIC method code to include, i.e. 'LT-AF-Z' dropna : list columns that must not be empty reqd_cols : list columns that must be present Returns ---------- status : bool True if successful, else False data : pandas DataFrame measurement data with required columns """ # initialize dropna = list(dropna) reqd_cols = list(reqd_cols) # get intensity column try: magn_col = get_intensity_col(data) except AttributeError: return False, "Could not get intensity method from data" # drop empty columns if magn_col not in dropna: dropna.append(magn_col) data = data.dropna(axis=0, subset=dropna) # add to reqd_cols list if 'method_codes' not in reqd_cols: reqd_cols.append('method_codes') if magn_col not in reqd_cols: reqd_cols.append(magn_col) # drop non reqd cols, make sure all reqd cols are present try: data = data[reqd_cols] except KeyError as ex: print(ex) missing = set(reqd_cols).difference(data.columns) return False, "missing these required columns: {}".format(", ".join(missing)) # filter out records without the correct method code data = data[data['method_codes'].str.contains(meth_code).astype(bool)] return True, data
python
{ "resource": "" }
q11514
Contribution.add_empty_magic_table
train
def add_empty_magic_table(self, dtype, col_names=None, groups=None): """ Add a blank MagicDataFrame to the contribution. You can provide either a list of column names, or a list of column group names. If provided, col_names takes precedence. """ if dtype not in self.table_names: print("-W- {} is not a valid MagIC table name".format(dtype)) print("-I- Valid table names are: {}".format(", ".join(self.table_names))) return data_container = MagicDataFrame(dtype=dtype, columns=col_names, groups=groups) self.tables[dtype] = data_container
python
{ "resource": "" }
q11515
Contribution.add_magic_table_from_data
train
def add_magic_table_from_data(self, dtype, data): """ Add a MagIC table to the contribution from a data list Parameters ---------- dtype : str MagIC table type, i.e. 'specimens' data : list of dicts data list with format [{'key1': 'val1', ...}, {'key1': 'val2', ...}, ... }] """ self.tables[dtype] = MagicDataFrame(dtype=dtype, data=data) if dtype == 'measurements': self.tables['measurements'].add_sequence() return dtype, self.tables[dtype]
python
{ "resource": "" }
q11516
Contribution.add_magic_table
train
def add_magic_table(self, dtype, fname=None, df=None): """ Read in a new file to add a table to self.tables. Requires dtype argument and EITHER filename or df. Parameters ---------- dtype : str MagIC table name (plural, i.e. 'specimens') fname : str filename of MagIC format file (short path, directory is self.directory) default: None df : pandas DataFrame data to create the new table with default: None """ if df is None: # if providing a filename but no data type if dtype == "unknown": filename = os.path.join(self.directory, fname) if not os.path.exists(filename): return False, False data_container = MagicDataFrame(filename, dmodel=self.data_model) dtype = data_container.dtype if dtype == 'empty': return False, False else: self.tables[dtype] = data_container return dtype, data_container # if providing a data type, use the canonical filename elif dtype not in self.filenames: print('-W- "{}" is not a valid MagIC table type'.format(dtype)) print("-I- Available table types are: {}".format(", ".join(self.table_names))) return False, False #filename = os.path.join(self.directory, self.filenames[dtype]) filename = pmag.resolve_file_name(self.filenames[dtype], self.directory) if os.path.exists(filename): data_container = MagicDataFrame(filename, dtype=dtype, dmodel=self.data_model) if data_container.dtype != "empty": self.tables[dtype] = data_container return dtype, data_container else: return False, False else: #print("-W- No such file: {}".format(filename)) return False, False # df is not None else: if not dtype: print("-W- Must provide dtype") return False, False data_container = MagicDataFrame(dtype=dtype, df=df) self.tables[dtype] = data_container self.tables[dtype].sort_dataframe_cols() return dtype, self.tables[dtype]
python
{ "resource": "" }
q11517
Contribution.propagate_measurement_info
train
def propagate_measurement_info(self): """ Take a contribution with a measurement table. Create specimen, sample, site, and location tables using the unique names in the measurement table to fill in the index. """ meas_df = self.tables['measurements'].df names_list = ['specimen', 'sample', 'site', 'location'] # add in any tables that you can for num, name in enumerate(names_list): # don't replace tables that already exist if (name + "s") in self.tables: continue elif name in meas_df.columns: items = meas_df[name].unique() df = pd.DataFrame(columns=[name], index=items) df[name] = df.index # add in parent name if possible # (i.e., sample name to specimens table) if num < (len(names_list) - 1): parent = names_list[num+1] if parent in meas_df.columns: meas_df = meas_df.where(meas_df.notnull(), "") df[parent] = meas_df.drop_duplicates(subset=[name])[parent].values.astype(str) df = df.where(df != "", np.nan) df = df.dropna(how='all', axis='rows') if len(df): self.tables[name + "s"] = MagicDataFrame(dtype=name + "s", df=df) self.write_table_to_file(name + "s")
python
{ "resource": "" }
q11518
Contribution.get_parent_and_child
train
def get_parent_and_child(self, table_name): """ Get the name of the parent table and the child table for a given MagIC table name. Parameters ---------- table_name : string of MagIC table name ['specimens', 'samples', 'sites', 'locations'] Returns ------- parent_name : string of parent table name child_name : string of child table name """ if table_name not in self.ancestry: return None, None parent_ind = self.ancestry.index(table_name) + 1 if parent_ind + 1 > len(self.ancestry): parent_name = None else: parent_name = self.ancestry[parent_ind] child_ind = self.ancestry.index(table_name) - 1 if child_ind < 0: child_name = None else: child_name = self.ancestry[child_ind] return parent_name, child_name
python
{ "resource": "" }
q11519
Contribution.propagate_cols_up
train
def propagate_cols_up(self, cols, target_df_name, source_df_name): """ Take values from source table, compile them into a colon-delimited list, and apply them to the target table. This method won't overwrite values in the target table, it will only supply values where they are missing. Parameters ---------- cols : list-like list of columns to propagate target_df_name : str name of table to propagate values into source_df_name: name of table to propagate values from Returns --------- target_df : MagicDataFrame updated MagicDataFrame with propagated values """ print("-I- Trying to propagate {} columns from {} table into {} table".format(cols, source_df_name, target_df_name)) # make sure target table is read in if target_df_name not in self.tables: self.add_magic_table(target_df_name) if target_df_name not in self.tables: print("-W- Couldn't read in {} table".format(target_df_name)) return # make sure source table is read in if source_df_name not in self.tables: self.add_magic_table(source_df_name) print("-W- Couldn't read in {} table".format(source_df_name)) return target_df = self.tables[target_df_name] source_df = self.tables[source_df_name] target_name = target_df_name[:-1] # make sure source_df has relevant columns for col in cols: if col not in source_df.df.columns: source_df.df[col] = None # if target_df has info, propagate that into all rows target_df.front_and_backfill(cols) # make sure target_name is in source_df for merging if target_name not in source_df.df.columns: print("-W- You can't merge data from {} table into {} table".format(source_df_name, target_df_name)) print(" Your {} table is missing {} column".format(source_df_name, target_name)) self.tables[target_df_name] = target_df return target_df source_df.front_and_backfill([target_name]) # group source df by target_name grouped = source_df.df.groupby(source_df.df[target_name]) if not len(grouped): print("-W- Couldn't propagate from {} to {}".format(source_df_name, target_df_name)) return target_df # function to generate capitalized, sorted, colon-delimited list # of unique, non-null values from a column def func(group, col_name): lst = group[col_name][group[col_name].notnull()].unique() split_lst = [col.split(':') for col in lst if col] sorted_lst = sorted(np.unique([item.capitalize() for sublist in split_lst for item in sublist])) group_col = ":".join(sorted_lst) return group_col # apply func to each column for col in cols: res = grouped.apply(func, col) target_df.df['new_' + col] = res target_df.df[col] = np.where(target_df.df[col], target_df.df[col], target_df.df['new_' + col]) target_df.df.drop(['new_' + col], axis='columns', inplace=True) # set table self.tables[target_df_name] = target_df return target_df
python
{ "resource": "" }
q11520
Contribution.propagate_ages
train
def propagate_ages(self): """ Mine ages table for any age data, and write it into specimens, samples, sites, locations tables. Do not overwrite existing age data. """ # if there is no age table, skip if 'ages' not in self.tables: return # if age table has no data, skip if not len(self.tables['ages'].df): return # get levels in age table self.get_age_levels() # if age levels could not be determined, skip if not "level" in self.tables["ages"].df.columns: return if not any(self.tables["ages"].df["level"]): return # go through each level of age data for level in self.tables['ages'].df['level'].unique(): table_name = level + 's' age_headers = self.data_model.get_group_headers(table_name, 'Age') # find age headers that are actually in table actual_age_headers = list(set(self.tables[table_name].df.columns).intersection(age_headers)) # find site age headers that are available in ages table available_age_headers = list(set(self.tables['ages'].df.columns).intersection(age_headers)) # fill in all available age info to all rows self.tables[table_name].front_and_backfill(actual_age_headers) # add any available headers to table add_headers = set(available_age_headers).difference(actual_age_headers) for header in add_headers: self.tables[table_name].df[header] = None # propagate values from ages into table def move_values(ser, level, available_headers): name = ser.name cond1 = self.tables['ages'].df[level] == name cond2 = self.tables['ages'].df['level'] == level mask = cond1 & cond2 sli = self.tables['ages'].df[mask] if len(sli): return list(sli[available_headers].values[0]) return [None] * len(available_headers) res = self.tables[table_name].df.apply(move_values, axis=1, args=[level, available_age_headers]) # fill in table with values gleaned from ages new_df = pd.DataFrame(data=list(res.values), index=res.index, columns=available_age_headers) age_values = np.where(self.tables[table_name].df[available_age_headers], self.tables[table_name].df[available_age_headers], new_df) self.tables[table_name].df[available_age_headers] = age_values # # put age_high, age_low into locations table print("-I- Adding age_high and age_low to locations table based on minimum/maximum ages found in sites table") self.propagate_min_max_up(cols=['age'], target_df_name='locations', source_df_name='sites')
python
{ "resource": "" }
q11521
Contribution.remove_non_magic_cols
train
def remove_non_magic_cols(self): """ Remove all non-MagIC columns from all tables. """ for table_name in self.tables: table = self.tables[table_name] table.remove_non_magic_cols_from_table()
python
{ "resource": "" }
q11522
Contribution.write_table_to_file
train
def write_table_to_file(self, dtype, custom_name=None, append=False, dir_path=None): """ Write out a MagIC table to file, using custom filename as specified in self.filenames. Parameters ---------- dtype : str magic table name """ if custom_name: fname = custom_name else: fname = self.filenames[dtype] if not dir_path: dir_path=self.directory if dtype in self.tables: write_df = self.remove_names(dtype) outfile = self.tables[dtype].write_magic_file(custom_name=fname, dir_path=dir_path, append=append, df=write_df) return outfile
python
{ "resource": "" }
q11523
Contribution.find_missing_items
train
def find_missing_items(self, dtype): """ Find any items that are referenced in a child table but are missing in their own table. For example, a site that is listed in the samples table, but has no entry in the sites table. Parameters ---------- dtype : str table name, e.g. 'specimens' Returns --------- set of missing values """ parent_dtype, child_dtype = self.get_parent_and_child(dtype) if not child_dtype in self.tables: return set() items = set(self.tables[dtype].df.index.unique()) items_in_child_table = set(self.tables[child_dtype].df[dtype[:-1]].unique()) return {i for i in (items_in_child_table - items) if not_null(i)}
python
{ "resource": "" }
q11524
Contribution.get_con_id
train
def get_con_id(self): """ Return contribution id if available """ con_id = "" if "contribution" in self.tables: if "id" in self.tables["contribution"].df.columns: con_id = str(self.tables["contribution"].df["id"].values[0]) return con_id
python
{ "resource": "" }
q11525
MagicDataFrame.remove_non_magic_cols_from_table
train
def remove_non_magic_cols_from_table(self, ignore_cols=()): """ Remove all non-magic columns from self.df. Changes in place. Parameters ---------- ignore_cols : list-like columns not to remove, whether they are proper MagIC columns or not Returns --------- unrecognized_cols : list any columns that were removed """ unrecognized_cols = self.get_non_magic_cols() for col in ignore_cols: if col in unrecognized_cols: unrecognized_cols.remove(col) if unrecognized_cols: print('-I- Removing non-MagIC column names from {}:'.format(self.dtype), end=' ') for col in unrecognized_cols: self.df.drop(col, axis='columns', inplace=True) print(col, end=' ') print("\n") return unrecognized_cols
python
{ "resource": "" }
q11526
MagicDataFrame.add_row
train
def add_row(self, label, row_data, columns=""): """ Add a row with data. If any new keys are present in row_data dictionary, that column will be added to the dataframe. This is done inplace """ # use provided column order, making sure you don't lose any values # from self.df.columns if len(columns): if sorted(self.df.columns) == sorted(columns): self.df.columns = columns else: new_columns = [] new_columns.extend(columns) for col in self.df.columns: if col not in new_columns: new_columns.append(col) # makes sure all columns have data or None if sorted(row_data.keys()) != sorted(self.df.columns): # add any new column names for key in row_data: if key not in self.df.columns: self.df[key] = None # add missing column names into row_data for col_label in self.df.columns: if col_label not in list(row_data.keys()): row_data[col_label] = None # (make sure you are working with strings) self.df.index = self.df.index.astype(str) label = str(label) # create a new row with suffix "new" # (this ensures that you get a unique, new row, # instead of adding on to an existing row with the same label) self.df.loc[label + "new"] = pd.Series(row_data) # rename it to be correct self.df.rename(index={label + "new": label}, inplace=True) # use next line to sort index inplace #self.df.sort_index(inplace=True) return self.df
python
{ "resource": "" }
q11527
MagicDataFrame.add_data
train
def add_data(self, data): # add append option later """ Add df to a MagicDataFrame using a data list. Parameters ---------- data : list of dicts data list with format [{'key1': 'val1', ...}, {'key1': 'val2', ...}, ... }] dtype : str MagIC table type """ df = pd.DataFrame(data) name, dtype = self.get_singular_and_plural_dtype(self.dtype) if name in df.columns: df.index = df[name] df.index.name = name + " name" self.df = df
python
{ "resource": "" }
q11528
MagicDataFrame.add_blank_row
train
def add_blank_row(self, label): """ Add a blank row with only an index value to self.df. This is done inplace. """ col_labels = self.df.columns blank_item = pd.Series({}, index=col_labels, name=label) # use .loc to add in place (append won't do that) self.df.loc[blank_item.name] = blank_item return self.df
python
{ "resource": "" }
q11529
MagicDataFrame.delete_row
train
def delete_row(self, ind): """ remove self.df row at ind inplace """ self.df = pd.concat([self.df[:ind], self.df[ind+1:]], sort=True) return self.df
python
{ "resource": "" }
q11530
MagicDataFrame.delete_rows
train
def delete_rows(self, condition, info_str=None): """ delete all rows with condition==True inplace Parameters ---------- condition : pandas DataFrame indexer all self.df rows that meet this condition will be deleted info_str : str description of the kind of rows to be deleted, e.g "specimen rows with blank method codes" Returns -------- df_data : pandas DataFrame updated self.df """ self.df['num'] = list(range(len(self.df))) df_data = self.df # delete all records that meet condition if len(df_data[condition]) > 0: #we have one or more records to delete inds = df_data[condition]['num'] # list of all rows where condition is TRUE for ind in inds[::-1]: df_data = self.delete_row(ind) if info_str: print("-I- Deleting {}. ".format(info_str), end=' ') print('deleting row {}'.format(str(ind))) # sort so that all rows for an item are together df_data.sort_index(inplace=True) # redo temporary index df_data['num'] = list(range(len(df_data))) self.df = df_data return df_data
python
{ "resource": "" }
q11531
MagicDataFrame.drop_stub_rows
train
def drop_stub_rows(self, ignore_cols=('specimen', 'sample', 'software_packages', 'num')): """ Drop self.df rows that have only null values, ignoring certain columns. Parameters ---------- ignore_cols : list-like list of column names to ignore for Returns --------- self.df : pandas DataFrame """ # ignore citations if they just say 'This study' if 'citations' in self.df.columns: if list(self.df['citations'].unique()) == ['This study']: ignore_cols = ignore_cols + ('citations',) drop_cols = self.df.columns.difference(ignore_cols) self.df.dropna(axis='index', subset=drop_cols, how='all', inplace=True) return self.df
python
{ "resource": "" }
q11532
MagicDataFrame.drop_duplicate_rows
train
def drop_duplicate_rows(self, ignore_cols=['specimen', 'sample']): """ Drop self.df rows that have only null values, ignoring certain columns BUT only if those rows do not have a unique index. Different from drop_stub_rows because it only drops empty rows if there is another row with that index. Parameters ---------- ignore_cols : list_like list of colum names to ignore Returns ---------- self.df : pandas DataFrame """ # keep any row with a unique index unique_index = self.df.index.unique() cond1 = ~self.df.index.duplicated(keep=False) # or with actual data ignore_cols = [col for col in ignore_cols if col in self.df.columns] relevant_df = self.df.drop(ignore_cols, axis=1) cond2 = relevant_df.notnull().any(axis=1) orig_len = len(self.df) new_df = self.df[cond1 | cond2] # make sure we haven't lost anything important if any(unique_index.difference(new_df.index.unique())): cond1 = ~self.df.index.duplicated(keep="first") self.df = self.df[cond1 | cond2] end_len = len(self.df) removed = orig_len - end_len if removed: print('-I- Removed {} redundant records from {} table'.format(removed, self.dtype)) return self.df
python
{ "resource": "" }
q11533
MagicDataFrame.update_record
train
def update_record(self, name, new_data, condition, update_only=False, debug=False): """ Find the first row in self.df with index == name and condition == True. Update that record with new_data, then delete any additional records where index == name and condition == True. Change is inplace """ # add numeric index column temporarily self.df['num'] = list(range(len(self.df))) df_data = self.df condition2 = (df_data.index == name) # edit first of existing data that meets condition if len(df_data[condition & condition2]) > 0: #we have one or more records to update or delete # list of all rows where condition is true and index == name inds = df_data[condition & condition2]['num'] #inds = df_data[condition]['num'] # list of all rows where condition is true existing_data = dict(df_data.iloc[inds.iloc[0]]) # get first record of existing_data from dataframe existing_data.update(new_data) # update existing data with new interpretations # update row self.update_row(inds.iloc[0], existing_data) # now remove all the remaining records of same condition if len(inds) > 1: for ind in inds[1:]: print("deleting redundant records for:", name) df_data = self.delete_row(ind) else: if update_only: print("no record found for that condition, not updating ", name) else: print('no record found - creating new one for ', name) # add new row df_data = self.add_row(name, new_data) # sort so that all rows for an item are together df_data.sort_index(inplace=True) # redo temporary index df_data['num'] = list(range(len(df_data))) self.df = df_data return df_data
python
{ "resource": "" }
q11534
MagicDataFrame.sort_dataframe_cols
train
def sort_dataframe_cols(self): """ Sort self.df so that self.name is the first column, and the rest of the columns are sorted by group. """ # get the group for each column cols = self.df.columns groups = list(map(lambda x: self.data_model.get_group_for_col(self.dtype, x), cols)) sorted_cols = cols.groupby(groups) ordered_cols = [] # put names first try: names = sorted_cols.pop('Names') except KeyError: names = [] ordered_cols.extend(list(names)) no_group = [] # remove ungrouped columns if '' in sorted_cols: no_group = sorted_cols.pop('') # flatten list of columns for k in sorted(sorted_cols): ordered_cols.extend(sorted(sorted_cols[k])) # add back in ungrouped columns ordered_cols.extend(no_group) # put name first try: if self.name in ordered_cols: ordered_cols.remove(self.name) ordered_cols[:0] = [self.name] except AttributeError: pass # self.df = self.df[ordered_cols] return self.df
python
{ "resource": "" }
q11535
MagicDataFrame.get_non_magic_cols
train
def get_non_magic_cols(self): """ Find all columns in self.df that are not real MagIC 3 columns. Returns -------- unrecognized_cols : list """ table_dm = self.data_model.dm[self.dtype] approved_cols = table_dm.index unrecognized_cols = (set(self.df.columns) - set(approved_cols)) return unrecognized_cols
python
{ "resource": "" }
q11536
MagicDataFrame.get_first_non_null_value
train
def get_first_non_null_value(self, ind_name, col_name): """ For a given index and column, find the first non-null value. Parameters ---------- self : MagicDataFrame ind_name : str index name for indexing col_name : str column name for indexing Returns --------- single value of str, float, or int """ short_df = self.df.loc[ind_name, col_name] mask = pd.notnull(short_df) print(short_df[mask]) try: val = short_df[mask].unique()[0] except IndexError: val = None return val
python
{ "resource": "" }
q11537
get_pmag_dir
train
def get_pmag_dir(): """ Returns directory in which PmagPy is installed """ # this is correct for py2exe (DEPRECATED) #win_frozen = is_frozen() #if win_frozen: # path = os.path.abspath(unicode(sys.executable, sys.getfilesystemencoding())) # path = os.path.split(path)[0] # return path # this is correct for py2app try: return os.environ['RESOURCEPATH'] # this works for everything else except KeyError: pass # new way: # if we're in the local PmagPy directory: if os.path.isfile(os.path.join(os.getcwd(), 'pmagpy', 'pmag.py')): lib_dir = os.path.join(os.getcwd(), 'pmagpy') # if we're anywhere else: elif getattr(sys, 'frozen', False): #pyinstaller datafile directory return sys._MEIPASS else: # horrible, hack-y fix # (prevents namespace issue between # local github PmagPy and pip-installed PmagPy). # must reload because we may have # changed directories since importing temp = os.getcwd() os.chdir('..') reload(locator) lib_file = resource_filename('locator', 'resource.py') full_dir = os.path.split(lib_file)[0] ind = full_dir.rfind(os.sep) lib_dir = full_dir[:ind+1] lib_dir = os.path.realpath(os.path.join(lib_dir, 'pmagpy')) os.chdir(temp) # end fix # old way: #lib_dir = os.path.dirname(os.path.realpath(__file__)) if not os.path.isfile(os.path.join(lib_dir, 'pmag.py')): lib_dir = os.getcwd() fname = os.path.join(lib_dir, 'pmag.py') if not os.path.isfile(fname): pmag_dir = os.path.split(os.path.split(__file__)[0])[0] if os.path.isfile(os.path.join(pmag_dir,'pmagpy','pmag.py')): return pmag_dir else: print('-W- Can\'t find the data model! Make sure you have installed pmagpy using pip: "pip install pmagpy --upgrade"') return '.' # strip "/" or "\" and "pmagpy" to return proper PmagPy directory if lib_dir.endswith(os.sep): lib_dir = lib_dir[:-1] if lib_dir.endswith('pmagpy'): pmag_dir = os.path.split(lib_dir)[0] else: pmag_dir = lib_dir return pmag_dir
python
{ "resource": "" }
q11538
main
train
def main(): """ NAME plot_magic_keys.py DESCRIPTION picks out keys and makes and xy plot SYNTAX plot_magic_keys.py [command line options] OPTIONS -h prints help message and quits -f FILE: specify input magic format file -xkey KEY: specify key for X -ykey KEY: specify key for Y -b xmin xmax ymin ymax, sets bounds """ dir_path="./" if '-WD' in sys.argv: ind=sys.argv.index('-WD') dir_path=sys.argv[ind+1] if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind=sys.argv.index('-f') magic_file=dir_path+'/'+sys.argv[ind+1] else: print(main.__doc__) sys.exit() if '-xkey' in sys.argv: ind=sys.argv.index('-xkey') xkey=sys.argv[ind+1] if '-ykey' in sys.argv: ind=sys.argv.index('-ykey') ykey=sys.argv[ind+1] else: print(main.__doc__) sys.exit() if '-b' in sys.argv: ind=sys.argv.index('-b') xmin=float(sys.argv[ind+1]) xmax=float(sys.argv[ind+2]) ymin=float(sys.argv[ind+3]) ymax=float(sys.argv[ind+4]) # # # get data read in X,Y=[],[] Data,file_type=pmag.magic_read(magic_file) if len(Data)>0: for rec in Data: if xkey in list(rec.keys()) and rec[xkey]!="" and ykey in list(rec.keys()) and rec[ykey]!="": try: X.append(float(rec[xkey])) Y.append(float(rec[ykey])) except: pass FIG={'fig':1} pmagplotlib.plot_init(FIG['fig'],5,5) if '-b' in sys.argv: pmagplotlib.plot_xy(FIG['fig'],X,Y,sym='ro',xlab=xkey,ylab=ykey,xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax ) else: pmagplotlib.plot_xy(FIG['fig'],X,Y,sym='ro',xlab=xkey,ylab=ykey) pmagplotlib.draw_figs(FIG) ans=input(" S[a]ve to save plot, [q]uit, Return to continue: ") if ans=="q": sys.exit() if ans=="a": files = {} for key in list(FIG.keys()): files[key]=str(key) + ".svg" pmagplotlib.save_plots(FIG,files) sys.exit() else: print('no data to plot')
python
{ "resource": "" }
q11539
main
train
def main(): """ NAME eqarea.py DESCRIPTION makes equal area projections from declination/inclination data INPUT FORMAT takes dec/inc as first two columns in space delimited file SYNTAX eqarea.py [options] OPTIONS -f FILE, specify file on command line -sav save figure and quit -fmt [svg,jpg,png,pdf] set figure format [default is svg] -s SIZE specify symbol size - default is 20 -Lsym SHAPE COLOR specify shape and color for lower hemisphere -Usym SHAPE COLOR specify shape and color for upper hemisphere shapes: 's': square,'o': circle,'^,>,v,<': [up,right,down,left] triangle, 'd': diamond, 'p': pentagram, 'h': hexagon, '8': octagon, '+': plus, 'x': cross colors: [b]lue,[g]reen,[r]ed,[c]yan,[m]agenta,[y]ellow,blac[k],[w]hite """ title = "" files, fmt = {}, 'svg' sym = {'lower': ['o', 'r'], 'upper': ['o', 'w']} plot = 0 if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-sav' in sys.argv: plot = 1 if '-fmt' in sys.argv: ind = sys.argv.index('-fmt') fmt = sys.argv[ind + 1] if '-s' in sys.argv: ind = sys.argv.index('-s') sym['size'] = int(sys.argv[ind + 1]) else: sym['size'] = 20 if '-Lsym' in sys.argv: ind = sys.argv.index('-Lsym') sym['lower'][0] = sys.argv[ind + 1] sym['lower'][1] = sys.argv[ind + 2] if '-Usym' in sys.argv: ind = sys.argv.index('-Usym') sym['upper'][0] = sys.argv[ind + 1] sym['upper'][1] = sys.argv[ind + 2] if '-f' in sys.argv: # ask for filename ind = sys.argv.index('-f') fname = sys.argv[ind + 1] else: print(main.__doc__) print(' \n -f option required') sys.exit() # graceful quit DI = numpy.loadtxt(fname) EQ = {'eq': 1} pmagplotlib.plot_init(EQ['eq'], 5, 5) pmagplotlib.plot_eq_sym(EQ['eq'], DI, 'Equal Area Plot', sym) # make plot if plot == 0: pmagplotlib.draw_figs(EQ) # make it visible for key in list(EQ.keys()): files[key] = key + '.' + fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles = {} titles['eq'] = 'Equal Area Plot' EQ = pmagplotlib.add_borders(EQ, titles, black, purple) pmagplotlib.save_plots(EQ, files) elif plot == 1: fname = os.path.split(fname)[1].split('.')[0] files['eq'] = fname + '_eq.' + fmt pmagplotlib.save_plots(EQ, files) else: ans = input(" S[a]ve to save plot, [q]uit without saving: ") if ans == "a": pmagplotlib.save_plots(EQ, files)
python
{ "resource": "" }
q11540
MagICMenu.on_quit
train
def on_quit(self, event): """ shut down application """ if self.parent.grid_frame: if self.parent.grid_frame.grid.changes: dlg = wx.MessageDialog(self,caption="Message:", message="Are you sure you want to exit the program?\nYou have a grid open with unsaved changes.\n ", style=wx.OK|wx.CANCEL) result = dlg.ShowModal() if result == wx.ID_OK: dlg.Destroy() else: dlg.Destroy() return if self.parent.grid_frame: self.parent.grid_frame.Destroy() # if there have been edits, save all data to files # before quitting if self.parent.edited: self.parent.er_magic.write_files() self.parent.Close() try: sys.exit() except TypeError: pass
python
{ "resource": "" }
q11541
main
train
def main(): """ NAME gobing.py DESCRIPTION calculates Bingham parameters from dec inc data INPUT FORMAT takes dec/inc as first two columns in space delimited file SYNTAX gobing.py [options] OPTIONS -f FILE to read from FILE -F, specifies output file name < filename for reading from standard input OUTPUT mean dec, mean inc, Eta, Deta, Ieta, Zeta, Zdec, Zinc, N """ if len(sys.argv) > 0: if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-f' in sys.argv: # ask for filename ind=sys.argv.index('-f') file=sys.argv[ind+1] f=open(file,'r') data=f.readlines() else: data=sys.stdin.readlines() # read in data from standard input DIs= [] # set up list for dec inc data ofile = "" if '-F' in sys.argv: # set up output file ind = sys.argv.index('-F') ofile= sys.argv[ind+1] out = open(ofile, 'w + a') for line in data: # read in the data from standard input if '\t' in line: rec=line.split('\t') # split each line on space to get records else: rec=line.split() # split each line on space to get records DIs.append((float(rec[0]),float(rec[1]))) # bpars=pmag.dobingham(DIs) output = '%7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %i' % (bpars["dec"],bpars["inc"],bpars["Eta"],bpars["Edec"],bpars["Einc"],bpars["Zeta"],bpars["Zdec"],bpars["Zinc"],bpars["n"]) if ofile == "": print(output) else: out.write(output+'\n')
python
{ "resource": "" }
q11542
main
train
def main(): """ NAME atrm_magic.py DESCRIPTION Converts ATRM data to best-fit tensor (6 elements plus sigma) Original program ARMcrunch written to accomodate ARM anisotropy data collected from 6 axial directions (+X,+Y,+Z,-X,-Y,-Z) using the off-axis remanence terms to construct the tensor. A better way to do the anisotropy of ARMs is to use 9,12 or 15 measurements in the Hext rotational scheme. SYNTAX atrm_magic.py [-h][command line options] OPTIONS -h prints help message and quits -f FILE: specify input file, default is atrm_measurements.txt -fsp FILE: specimen input file, default is specimens.txt (optional) -Fsp FILE: specify output file, default is specimens.txt (MagIC 3 only) -DM DATA_MODEL: specify MagIC 2 or MagIC 3, default is 3 INPUT Input for the present program is a TRM acquisition data with an optional baseline. The order of the measurements is: Decs=[0,90,0,180,270,0,0,90,0] Incs=[0,0,90,0,0,-90,0,0,90] The last two measurements are optional """ # initialize some parameters args = sys.argv if "-h" in args: print(main.__doc__) sys.exit() #if "-Fa" in args: # ind = args.index("-Fa") # rmag_anis = args[ind + 1] #if "-Fr" in args: # ind = args.index("-Fr") # rmag_res = args[ind + 1] #meas_file = "atrm_measurements.txt" #rmag_anis = "trm_anisotropy.txt" #rmag_res = "atrm_results.txt" dir_path = pmag.get_named_arg("-WD", ".") input_dir_path = pmag.get_named_arg("-ID", "") meas_file = pmag.get_named_arg("-f", "measurements.txt") data_model_num = int(pmag.get_named_arg("-DM", 3)) spec_outfile = pmag.get_named_arg("-Fsp", "specimens.txt") spec_infile = pmag.get_named_arg("-fsp", "specimens.txt") ipmag.atrm_magic(meas_file, dir_path, input_dir_path, spec_infile, spec_outfile, data_model_num)
python
{ "resource": "" }
q11543
OrientFrameGrid3.create_sheet
train
def create_sheet(self): ''' create an editable grid showing demag_orient.txt ''' #-------------------------------- # orient.txt supports many other headers # but we will only initialize with # the essential headers for # sample orientation and headers present # in existing demag_orient.txt file #-------------------------------- #-------------------------------- # create the grid #-------------------------------- samples_list = list(self.orient_data.keys()) samples_list.sort() self.samples_list = [ sample for sample in samples_list if sample is not "" ] #self.headers.extend(self.add_extra_headers(samples_list)) display_headers = [header[1] for header in self.headers] self.grid = magic_grid.MagicGrid(self.panel, 'orient grid', self.samples_list, display_headers) self.grid.InitUI() #-------------------------------- # color the columns by groups #-------------------------------- for i in range(len(self.samples_list)): self.grid.SetCellBackgroundColour(i, 0, "LIGHT GREY") self.grid.SetCellBackgroundColour(i, 1, "LIGHT STEEL BLUE") self.grid.SetCellBackgroundColour(i, 2, "YELLOW") self.grid.SetCellBackgroundColour(i, 3, "YELLOW") self.grid.SetCellBackgroundColour(i, 4, "PALE GREEN") self.grid.SetCellBackgroundColour(i, 5, "PALE GREEN") self.grid.SetCellBackgroundColour(i, 6, "KHAKI") self.grid.SetCellBackgroundColour(i, 7, "KHAKI") self.grid.SetCellBackgroundColour(i, 8, "KHAKI") self.grid.SetCellBackgroundColour(i, 9, "KHAKI") self.grid.SetCellBackgroundColour(i, 10, "KHAKI") self.grid.SetCellBackgroundColour(i, 11, "LIGHT MAGENTA") self.grid.SetCellBackgroundColour(i, 12, "LIGHT MAGENTA") #-------------------------------- # fill data from self.orient_data #-------------------------------- headers = [header[0] for header in self.headers] for sample in self.samples_list: for key in list(self.orient_data[sample].keys()): if key in headers: sample_index = self.samples_list.index(sample) i = headers.index(key) val = str(self.orient_data[sample][key]) # if it's a pmag_object, use its name try: val = val.name except AttributeError: pass if val and val != "None": self.grid.SetCellValue(sample_index, i, val) #-------------------------------- #-------------------------------- # fill in some default values #-------------------------------- for row in range(self.grid.GetNumberRows()): col = 1 if not self.grid.GetCellValue(row, col): self.grid.SetCellValue(row, col, 'g') #-------------------------------- # temporary trick to get drop-down-menus to work self.grid.changes = {'a'} self.grid.AutoSize() #self.drop_down_menu = drop_down_menus.Menus("orient", self, self.grid, '') self.drop_down_menu = drop_down_menus3.Menus("orient", self.contribution, self.grid) self.Bind(wx.grid.EVT_GRID_LABEL_LEFT_CLICK, self.onLeftClickLabel, self.grid)
python
{ "resource": "" }
q11544
main
train
def main(): """ NAME mk_redo.py DESCRIPTION Makes thellier_redo and zeq_redo files from existing pmag_specimens format file SYNTAX mk_redo.py [-h] [command line options] INPUT takes specimens.txt formatted input file OPTIONS -h: prints help message and quits -f FILE: specify input file, default is 'specimens.txt' -F REDO: specify output file suffix, default is redo so that output filenames are 'thellier_redo' for thellier data and 'zeq_redo' for direction only data OUTPUT makes a thellier_redo or a zeq_redo format file """ if '-h' in sys.argv: print(main.__doc__) sys.exit() zfile, tfile = 'zeq_redo', 'thellier_redo' zredo, tredo = "", "" dir_path = pmag.get_named_arg('-WD', '.') inspec = pmag.get_named_arg('-f', 'specimens.txt') if '-F' in sys.argv: ind = sys.argv.index('-F') redo = sys.argv[ind + 1] tfile = redo zfile = redo inspec = pmag.resolve_file_name(inspec, dir_path) zfile = pmag.resolve_file_name(zfile, dir_path) tfile = pmag.resolve_file_name(tfile, dir_path) # # read in data # specs = [] prior_spec_data, file_type = pmag.magic_read(inspec) if file_type != 'specimens': print(file_type, " this is not a valid pmag_specimens file") sys.exit() outstrings = [] for spec in prior_spec_data: tmp = spec["method_codes"].split(":") meths = [] for meth in tmp: methods = meth.strip().split('-') for m in methods: if m not in meths: meths.append(m) if 'DIR' in meths: # DE-BFL, DE-BFP or DE-FM specs.append(spec['specimen']) if 'dir_comp' in list(spec.keys()) and spec['dir_comp'] != "" and spec['dir_comp'] != " ": comp_name = spec['dir_comp'] else: comp_name = string.ascii_uppercase[specs.count( spec['specimen']) - 1] calculation_type = "DE-BFL" # assume default calculation type is best-fit line if "BFP" in meths: calculation_type = 'DE-BFP' elif "FM" in meths: calculation_type = 'DE-FM' if zredo == "": zredo = open(zfile, "w") outstring = '%s %s %s %s %s \n' % ( spec["specimen"], calculation_type, spec["meas_step_min"], spec["meas_step_max"], comp_name) if outstring not in outstrings: zredo.write(outstring) outstrings.append(outstring) # only writes unique interpretions elif "PI" in meths and "TRM" in meths: # thellier record if tredo == "": tredo = open(tfile, "w") outstring = '%s %i %i \n' % (spec["specimen"], float( spec["meas_step_min"]), float(spec["meas_step_max"])) if outstring not in outstrings: tredo.write(outstring) outstrings.append(outstring) # only writes unique interpretions print('Redo files saved to: ', zfile, tfile)
python
{ "resource": "" }
q11545
find_side
train
def find_side(ls, side): """ Given a shapely LineString which is assumed to be rectangular, return the line corresponding to a given side of the rectangle. """ minx, miny, maxx, maxy = ls.bounds points = {'left': [(minx, miny), (minx, maxy)], 'right': [(maxx, miny), (maxx, maxy)], 'bottom': [(minx, miny), (maxx, miny)], 'top': [(minx, maxy), (maxx, maxy)],} return sgeom.LineString(points[side])
python
{ "resource": "" }
q11546
lambert_xticks
train
def lambert_xticks(ax, ticks): """Draw ticks on the bottom x-axis of a Lambert Conformal projection.""" te = lambda xy: xy[0] lc = lambda t, n, b: np.vstack((np.zeros(n) + t, np.linspace(b[2], b[3], n))).T xticks, xticklabels = _lambert_ticks(ax, ticks, 'bottom', lc, te) ax.xaxis.tick_bottom() ax.set_xticks(xticks) ax.set_xticklabels([ax.xaxis.get_major_formatter()(xtick) for xtick in xticklabels])
python
{ "resource": "" }
q11547
lambert_yticks
train
def lambert_yticks(ax, ticks): """Draw ricks on the left y-axis of a Lamber Conformal projection.""" te = lambda xy: xy[1] lc = lambda t, n, b: np.vstack((np.linspace(b[0], b[1], n), np.zeros(n) + t)).T yticks, yticklabels = _lambert_ticks(ax, ticks, 'left', lc, te) ax.yaxis.tick_left() ax.set_yticks(yticks) ax.set_yticklabels([ax.yaxis.get_major_formatter()(ytick) for ytick in yticklabels])
python
{ "resource": "" }
q11548
_lambert_ticks
train
def _lambert_ticks(ax, ticks, tick_location, line_constructor, tick_extractor): """Get the tick locations and labels for an axis of a Lambert Conformal projection.""" outline_patch = sgeom.LineString(ax.outline_patch.get_path().vertices.tolist()) axis = find_side(outline_patch, tick_location) n_steps = 30 extent = ax.get_extent(ccrs.PlateCarree()) _ticks = [] for t in ticks: xy = line_constructor(t, n_steps, extent) proj_xyz = ax.projection.transform_points(ccrs.Geodetic(), xy[:, 0], xy[:, 1]) xyt = proj_xyz[..., :2] ls = sgeom.LineString(xyt.tolist()) locs = axis.intersection(ls) if not locs: tick = [None] else: tick = tick_extractor(locs.xy) _ticks.append(tick[0]) # Remove ticks that aren't visible: ticklabels = copy(ticks) while True: try: index = _ticks.index(None) except ValueError: break _ticks.pop(index) ticklabels.pop(index) return _ticks, ticklabels
python
{ "resource": "" }
q11549
main
train
def main(): """ NAME dmag_magic.py DESCRIPTION plots intensity decay curves for demagnetization experiments SYNTAX dmag_magic -h [command line options] INPUT takes magic formatted measurements.txt files OPTIONS -h prints help message and quits -f FILE: specify input file, default is: measurements.txt -obj OBJ: specify object [loc, sit, sam, spc] for plot, default is by location -LT [AF,T,M]: specify lab treatment type, default AF -XLP [PI]: exclude specific lab protocols, (for example, method codes like LP-PI) -N do not normalize by NRM magnetization -sav save plots silently and quit -fmt [svg,jpg,png,pdf] set figure format [default is svg] NOTE loc: location (study); sit: site; sam: sample; spc: specimen """ if '-h' in sys.argv: print(main.__doc__) sys.exit() # initialize variables from command line + defaults dir_path = pmag.get_named_arg("-WD", default_val=".") input_dir_path = pmag.get_named_arg('-ID', '') if not input_dir_path: input_dir_path = dir_path in_file = pmag.get_named_arg("-f", default_val="measurements.txt") in_file = pmag.resolve_file_name(in_file, input_dir_path) if "-ID" not in sys.argv: input_dir_path = os.path.split(in_file)[0] plot_by = pmag.get_named_arg("-obj", default_val="loc") LT = pmag.get_named_arg("-LT", "AF") no_norm = pmag.get_flag_arg_from_sys("-N") norm = False if no_norm else True save_plots = pmag.get_flag_arg_from_sys("-sav") fmt = pmag.get_named_arg("-fmt", "svg") XLP = pmag.get_named_arg("-XLP", "") spec_file = pmag.get_named_arg("-fsp", default_val="specimens.txt") samp_file = pmag.get_named_arg("-fsa", default_val="samples.txt") site_file = pmag.get_named_arg("-fsi", default_val="sites.txt") loc_file = pmag.get_named_arg("-flo", default_val="locations.txt") dmag_magic(in_file, dir_path, input_dir_path, spec_file, samp_file, site_file, loc_file, plot_by, LT, norm, XLP, save_plots, fmt)
python
{ "resource": "" }
q11550
main
train
def main(): """This program prints doubled values!""" import numpy X=arange(.1,10.1,.2) #make a list of numbers Y=myfunc(X) # calls myfunc with argument X for i in range(len(X)): print(X[i],Y[i])
python
{ "resource": "" }
q11551
main
train
def main(): """ NAME common_mean.py DESCRIPTION calculates bootstrap statistics to test for common mean INPUT FORMAT takes dec/inc as first two columns in two space delimited files SYNTAX common_mean.py [command line options] OPTIONS -h prints help message and quits -f FILE, input file -f2 FILE, optional second file to compare with first file -dir D I, optional direction to compare with input file -fmt [svg,jpg,pnd,pdf] set figure format [default is svg] NOTES must have either F2 OR dir but not both """ d,i,file2="","","" fmt,plot='svg',0 if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-sav' in sys.argv: plot=1 if '-fmt' in sys.argv: ind=sys.argv.index('-fmt') fmt=sys.argv[ind+1] if '-f' in sys.argv: ind=sys.argv.index('-f') file1=sys.argv[ind+1] if '-f2' in sys.argv: ind=sys.argv.index('-f2') file2=sys.argv[ind+1] if '-dir' in sys.argv: ind=sys.argv.index('-dir') d=float(sys.argv[ind+1]) i=float(sys.argv[ind+2]) D1=numpy.loadtxt(file1,dtype=numpy.float) if file2!="": D2=numpy.loadtxt(file2,dtype=numpy.float) # counter,NumSims=0,1000 # # get bootstrapped means for first data set # print("Doing first set of directions, please be patient..") BDI1=pmag.di_boot(D1) # # convert to cartesian coordinates X1,X2, Y1,Y2 and Z1, Z2 # if d=="": # repeat for second data set print("Doing second set of directions, please be patient..") BDI2=pmag.di_boot(D2) else: BDI2=[] # set up plots CDF={'X':1,'Y':2,'Z':3} pmagplotlib.plot_init(CDF['X'],4,4) pmagplotlib.plot_init(CDF['Y'],4,4) pmagplotlib.plot_init(CDF['Z'],4,4) # draw the cdfs pmagplotlib.plot_com(CDF,BDI1,BDI2,[d,i]) files={} files['X']='CD_X.'+fmt files['Y']='CD_Y.'+fmt files['Z']='CD_Z.'+fmt if plot==0: pmagplotlib.draw_figs(CDF) ans=input("S[a]ve plots, <Return> to quit ") if ans=="a": pmagplotlib.save_plots(CDF,files) else: sys.exit() else: pmagplotlib.save_plots(CDF,files) sys.exit()
python
{ "resource": "" }
q11552
main
train
def main(): """ NAME sundec.py DESCRIPTION calculates calculates declination from sun compass measurements INPUT FORMAT GMT_offset, lat,long,year,month,day,hours,minutes,shadow_angle where GMT_offset is the hours to subtract from local time for GMT. SYNTAX sundec.py [-i][-f FILE] [< filename ] OPTIONS -i for interactive data entry -f FILE to set file name on command line otherwise put data in input format in space delimited file OUTPUT: declination """ if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] f=open(file,'r') data=f.readlines() # read in data from standard input for line in data: # step through line by line dec=spitout(line) sys.exit() if '-i' in sys.argv: while 1: # repeat this block until program killed sundata={} # dictionary with sundata in it print ("Time difference between Greenwich Mean Time (hrs to subtract from local time to get GMT): ") try: sundata["delta_u"]=input("<cntl-D> to quit ") except: print("\n Good-bye\n") sys.exit() date="" date=date+input("Year: <cntl-D to quit> ") date=date+":"+input("Month: ") date=date+":"+input("Day: ") date=date+":"+input("hour: ") date=date+":"+input("minute: ") sundata["date"]=date sundata["lat"]=input("Latitude of sampling site (negative in southern hemisphere): ") sundata["lon"]=input("Longitude of sampling site (negative for western hemisphere): ") sundata["shadow_angle"]=input("Shadow angle: ") print('%7.1f'%(pmag.dosundec(sundata))) # call sundec function from pmag module and print else: data=sys.stdin.readlines() # read in data from standard input for line in data: # step through line by line dec=spitout(line)
python
{ "resource": "" }
q11553
main
train
def main(): """ NAME sites_locations.py DESCRIPTION reads in er_sites.txt file and finds all locations and bounds of locations outputs er_locations.txt file SYNTAX sites_locations.py [command line options] OPTIONS -h prints help message and quits -f: specimen input er_sites format file, default is "er_sites.txt" -F: locations table: default is "er_locations.txt" """ # set defaults site_file="er_sites.txt" loc_file="er_locations.txt" Names,user=[],"unknown" Done=[] version_num=pmag.get_version() args=sys.argv dir_path='.' # get command line stuff if '-WD' in args: ind=args.index("-WD") dir_path=args[ind+1] if "-h" in args: print(main.__doc__) sys.exit() if '-f' in args: ind=args.index("-f") site_file=args[ind+1] if '-F' in args: ind=args.index("-F") loc_file=args[ind+1] # site_file=dir_path+'/'+site_file loc_file=dir_path+'/'+loc_file Sites,file_type=pmag.magic_read(site_file) if file_type != 'er_sites': print(file_type) print(file_type,"This is not a valid er_sites file ") sys.exit() # read in site data # LocNames,Locations=[],[] for site in Sites: if site['er_location_name'] not in LocNames: # new location name LocNames.append(site['er_location_name']) sites_locs=pmag.get_dictitem(Sites,'er_location_name',site['er_location_name'],'T') # get all sites for this loc lats=pmag.get_dictkey(sites_locs,'site_lat','f') # get all the latitudes as floats lons=pmag.get_dictkey(sites_locs,'site_lon','f') # get all the longitudes as floats LocRec={'er_citation_names':'This study','er_location_name':site['er_location_name'],'location_type':''} LocRec['location_begin_lat']=str(min(lats)) LocRec['location_end_lat']=str(max(lats)) LocRec['location_begin_lon']=str(min(lons)) LocRec['location_end_lon']=str(max(lons)) Locations.append(LocRec) if len(Locations)>0: pmag.magic_write(loc_file,Locations,"er_locations") print("Locations written to: ",loc_file)
python
{ "resource": "" }
q11554
main
train
def main(): """ NAME azdip_magic.py DESCRIPTION takes space delimited AzDip file and converts to MagIC formatted tables SYNTAX azdip_magic.py [command line options] OPTIONS -f FILE: specify input file -Fsa FILE: specify output file, default is: er_samples.txt/samples.txt -ncn NCON: specify naming convention: default is #1 below -mcd: specify sampling method codes as a colon delimited string: [default is: FS-FD] FS-FD field sampling done with a drill FS-H field sampling done with hand samples FS-LOC-GPS field location done with GPS FS-LOC-MAP field location done with map SO-POM a Pomeroy orientation device was used SO-ASC an ASC orientation device was used SO-MAG orientation with magnetic compass -loc: location name, default="unknown" -app appends to existing samples file, default is to overwrite INPUT FORMAT Input files must be space delimited: Samp Az Dip Strike Dip Orientation convention: Lab arrow azimuth = mag_azimuth; Lab arrow dip = 90-field_dip e.g. field_dip is degrees from horizontal of drill direction Magnetic declination convention: Az is already corrected in file Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX [5] site name same as sample [6] site is entered under a separate column -- NOT CURRENTLY SUPPORTED [7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY NB: all others you will have to customize your self or e-mail ltauxe@ucsd.edu for help. OUTPUT output saved in samples file will overwrite any existing files """ args = sys.argv if "-h" in args: print(main.__doc__) sys.exit() dataframe = extractor.command_line_dataframe([['f', False, 'orient.txt'], ['Fsa', False, 'samples.txt'], ['ncn', False, "1"], ['mcd', False, 'FS-FD'], ['loc', False, 'unknown'], ['app', False, False], ['WD', False, '.'], ['ID', False, '.'], ['DM', False, 3]]) checked_args = extractor.extract_and_check_args(args, dataframe) #print('checked_args:', checked_args) orient_file, samp_file, samp_con, method_codes, location_name, append, output_dir, input_dir, data_model = extractor.get_vars(['f', 'Fsa', 'ncn', 'mcd', 'loc', 'app', 'WD', 'ID', 'DM'], checked_args) if len(str(samp_con)) > 1: samp_con, Z = samp_con.split('-') Z = float(Z) else: Z = 1 ipmag.azdip_magic(orient_file, samp_file, samp_con, Z, method_codes, location_name, append, output_dir, input_dir, data_model)
python
{ "resource": "" }
q11555
main
train
def main(): """ NAME k15_magic.py DESCRIPTION converts .k15 format data to magic_measurements format. assums Jelinek Kappabridge measurement scheme SYNTAX k15_magic.py [-h] [command line options] OPTIONS -h prints help message and quits -DM DATA_MODEL: specify data model 2 or 3 (default 3) -f KFILE: specify .k15 format input file -F MFILE: specify measurement output file -Fsa SFILE, specify sample file for output -Fa AFILE, specify specimen file for output [rmag_anisotropy for data model 2 only] #-ins INST: specify instrument that measurements were made on # not implemented -spc NUM: specify number of digits for specimen ID, default is 0 -ncn NCOM: specify naming convention (default is #1) Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXXYYY: YYY is sample designation with Z characters from site XXX [5] site name = sample name [6] site name entered in site_name column in the orient.txt format input file -- NOT CURRENTLY SUPPORTED [7-Z] [XXX]YYY: XXX is site designation with Z characters from samples XXXYYY NB: all others you will have to either customize your self or e-mail ltauxe@ucsd.edu for help. DEFAULTS MFILE: measurements.txt SFILE: samples.txt AFILE: specimens.txt INPUT name [az,pl,strike,dip], followed by 3 rows of 5 measurements for each specimen """ args = sys.argv if '-h' in args: print(do_help()) sys.exit() # def k15_magic(k15file, specnum=0, sample_naming_con='1', er_location_name="unknown", measfile='magic_measurements.txt', sampfile="er_samples.txt", aniso_outfile='rmag_anisotropy.txt', result_file="rmag_results.txt", input_dir_path='.', output_dir_path='.'): dataframe = extractor.command_line_dataframe([['f', True, ''], ['F', False, 'measurements.txt'], ['Fsa', False, 'samples.txt'], ['Fa', False, 'specimens.txt'], [ 'Fr', False, 'rmag_results.txt'], ['spc', False, 0], ['ncn', False, '1'], ['loc', False, 'unknown'], ['WD', False, '.'], ['ID', False, '.'], ['DM', False, 3]]) checked_args = extractor.extract_and_check_args(args, dataframe) k15file, measfile, sampfile, aniso_outfile, result_file, specnum, sample_naming_con, location_name, output_dir_path, input_dir_path, data_model_num = extractor.get_vars( ['f', 'F', 'Fsa', 'Fa', 'Fr', 'spc', 'ncn', 'loc', 'WD', 'ID', 'DM'], checked_args) program_ran, error_message = convert.k15(k15file, specnum=specnum, sample_naming_con=sample_naming_con, location=location_name, meas_file=measfile, samp_file=sampfile, aniso_outfile=aniso_outfile, result_file=result_file, input_dir_path=input_dir_path, dir_path=output_dir_path, data_model_num=data_model_num)
python
{ "resource": "" }
q11556
main
train
def main(): """ NAME pca.py DESCRIPTION calculates best-fit line/plane through demagnetization data INPUT FORMAT takes specimen_name treatment intensity declination inclination in space delimited file SYNTAX pca.py [command line options][< filename] OPTIONS -h prints help and quits -f FILE -dir [L,P,F][BEG][END] specify direction type, beginning and end (L:line, P:plane or F:fisher mean of unit vectors) BEG: first step (NRM = step zero) END: last step (NRM = step zero) < filename for reading from standard input OUTPUT: specimen_name calculation_type N beg end MAD dec inc if calculation_type is 'p', dec and inc are pole to plane, otherwise, best-fit direction EXAMPLE: pca.py -dir L 1 5 <ex3.3 will calculate best-fit line through demagnetization steps 1 and 5 from file ex5.1 """ if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] f=open(file,'r') data=f.readlines() else: data=sys.stdin.readlines() # read in data from standard input if '-dir' in sys.argv: # ind=sys.argv.index('-dir') typ=sys.argv[ind+1] if typ=='L': calculation_type='DE-BFL' if typ=='P': calculation_type='DE-BFP' if typ=='F': calculation_type='DE-FM' beg_pca = int(sys.argv[ind+2]) end_pca = int(sys.argv[ind+3]) # # datablock= [] # set up list for data s="" ind=0 for line in data: # read in the data from standard input rec=line.split() # split each line on space to get records if s=="": s=rec[0] print(s, calculation_type) print(ind,rec[1],rec[3],rec[4],rec[2]) ind+=1 datablock.append([float(rec[1]),float(rec[3]),float(rec[4]),float(rec[2]),'0']) # treatment,dec,inc,int,dummy mpars=pmag.domean(datablock,beg_pca,end_pca,calculation_type) if calculation_type=="DE-FM": print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,calculation_type,mpars["specimen_n"],mpars["measurement_step_min"],mpars["measurement_step_max"],mpars["specimen_a95"],mpars["specimen_dec"],mpars["specimen_inc"])) else: print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,calculation_type,mpars["specimen_n"],mpars["measurement_step_min"],mpars["measurement_step_max"],mpars["specimen_mad"],mpars["specimen_dec"],mpars["specimen_inc"]))
python
{ "resource": "" }
q11557
requiredUnless
train
def requiredUnless(col_name, arg, dm, df, *args): """ Arg is a string in the format "str1, str2, ..." Each string will be a column name. Col_name is required in df unless each column from arg is present. """ # if column name is present, no need to check if it is required if col_name in df.columns: return None arg_list = arg.split(",") arg_list = [argument.strip('"') for argument in arg_list] msg = "" for a in arg_list: # ignore validations that reference a different table if "." in a: continue if a not in df.columns: msg += "{} column is required unless {} is present. ".format(col_name, a) if msg: return msg else: return None return None
python
{ "resource": "" }
q11558
requiredIfGroup
train
def requiredIfGroup(col_name, arg, dm, df, *args): """ Col_name is required if other columns of the group arg are present. """ group_name = arg groups = set() columns = df.columns for col in columns: if col not in dm.index: continue group = dm.loc[col]['group'] groups.add(group) if group_name in groups: if col_name in columns: return None else: return "{} column is required if column group {} is used".format(col_name, group_name) return None
python
{ "resource": "" }
q11559
required
train
def required(col_name, arg, dm, df, *args): """ Col_name is required in df.columns. Return error message if not. """ if col_name in df.columns: return None else: return '"{}" column is required'.format(col_name)
python
{ "resource": "" }
q11560
validate_table
train
def validate_table(the_con, dtype, verbose=False, output_dir="."): """ Return name of bad table, or False if no errors found. Calls validate_df then parses its output. """ print("-I- Validating {}".format(dtype)) # grab dataframe current_df = the_con.tables[dtype].df # grab data model current_dm = the_con.tables[dtype].data_model.dm[dtype] # run all validations (will add columns to current_df) current_df = validate_df(current_df, current_dm, the_con) # get names of the added columns value_col_names, present_col_names, type_col_names, missing_groups, validation_col_names = get_validation_col_names(current_df) # print out failure messages ofile = os.path.join(output_dir, "{}_errors.txt".format(dtype)) failing_items = get_row_failures(current_df, value_col_names, type_col_names, verbose, outfile=ofile) bad_rows, bad_cols, missing_cols = get_bad_rows_and_cols(current_df, validation_col_names, value_col_names, type_col_names, verbose=True) # delete all validation rows current_df.drop(validation_col_names, axis=1, inplace=True) current_df.drop(missing_groups, axis=1, inplace=True) if len(failing_items): print("-I- Complete list of row errors can be found in {}".format(ofile)) return dtype, bad_rows, bad_cols, missing_cols, missing_groups, failing_items elif len(missing_cols) or len(missing_groups): print("-I- You are missing some required headers") if len(missing_cols): print("-I- You are missing these required headers: {}".format(", ".join(missing_cols))) if len(missing_groups): formatted_groups = [group[11:] for group in missing_groups] print('-I- You need at least one header from these groups: {}'.format(", ".join(formatted_groups))) else: formatted_groups = [] return dtype, bad_rows, bad_cols, missing_cols, formatted_groups, failing_items else: print("-I- No row errors found!") return False
python
{ "resource": "" }
q11561
validate_contribution
train
def validate_contribution(the_con): """ Go through a Contribution and validate each table """ passing = True for dtype in list(the_con.tables.keys()): print("validating {}".format(dtype)) fail = validate_table(the_con, dtype) if fail: passing = False print('--')
python
{ "resource": "" }
q11562
get_degree_cols
train
def get_degree_cols(df): """ Take in a pandas DataFrame, and return a list of columns that are in that DataFrame AND should be between 0 - 360 degrees. """ vals = ['lon_w', 'lon_e', 'lat_lon_precision', 'pole_lon', 'paleolon', 'paleolon_sigma', 'lon', 'lon_sigma', 'vgp_lon', 'paleo_lon', 'paleo_lon_sigma', 'azimuth', 'azimuth_dec_correction', 'dir_dec', 'geographic_precision', 'bed_dip_direction'] relevant_cols = list(set(vals).intersection(df.columns)) return relevant_cols
python
{ "resource": "" }
q11563
extract_col_name
train
def extract_col_name(string): """ Take a string and split it. String will be a format like "presence_pass_azimuth", where "azimuth" is the MagIC column name and "presence_pass" is the validation. Return "presence", "azimuth". """ prefixes = ["presence_pass_", "value_pass_", "type_pass_"] end = string.rfind("_") for prefix in prefixes: if string.startswith(prefix): return prefix[:-6], string[len(prefix):end] return string, string
python
{ "resource": "" }
q11564
main
train
def main(): """ NAME s_magic.py DESCRIPTION converts .s format data to measurements format. SYNTAX s_magic.py [command line options] OPTIONS -h prints help message and quits -DM DATA_MODEL_NUM data model number (default is 3) -f SFILE specifies the .s file name -sig last column has sigma -typ Anisotropy type: AMS,AARM,ATRM (default is AMS) -F FILE specifies the specimens formatted file name -usr USER specify username -loc location specify location/study name -spc NUM : specify number of characters to designate a specimen, default = 0 -spn SPECNAME, this specimen has the name SPECNAME -n first column has specimen name -crd [s,g,t], specify coordinate system of data s=specimen,g=geographic,t=tilt adjusted, default is 's' -ncn NCON: naming convention Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXXYYY: YYY is sample designation with Z characters from site XXX [5] sample = site [6] sample, site, location info in er_samples.txt -- NOT CURRENTLY SUPPORTED [7-Z] [XXX]YYY: XXX is site designation with Z characters from samples XXXYYY NB: all others you will have to either customize your self or e-mail ltauxe@ucsd.edu for help. DEFAULT FILE: specimens.txt INPUT X11,X22,X33,X12,X23,X13 (.s format file) X11,X22,X33,X12,X23,X13,sigma (.s format file with -sig option) SID, X11,X22,X33,X12,X23,X13 (.s format file with -n option) OUTPUT specimens.txt format file NOTE because .s files do not have specimen names or location information, the output MagIC files will have to be changed prior to importing to data base. """ if '-h' in sys.argv: print(main.__doc__) sys.exit() data_model_num = pmag.get_named_arg("-DM", 3) data_model_num = int(float(data_model_num)) sfile = pmag.get_named_arg("-f", reqd=True) if data_model_num == 2: anisfile = pmag.get_named_arg("-F", "rmag_anisotropy.txt") else: anisfile = pmag.get_named_arg("-F", "specimens.txt") location = pmag.get_named_arg("-loc", "unknown") user = pmag.get_named_arg("-usr", "") sitename = pmag.get_named_arg("unknown", "") specnum = pmag.get_named_arg("-spc", 0) specnum = -int(specnum) dir_path = pmag.get_named_arg("-WD", ".") name = pmag.get_flag_arg_from_sys("-n") sigma = pmag.get_flag_arg_from_sys("-sig") spec = pmag.get_named_arg("-spn", "unknown") atype = pmag.get_named_arg("-typ", 'AMS') samp_con = pmag.get_named_arg("-ncn", "1") #if '-sig' in sys.argv: # sigma = 1 #if "-n" in sys.argv: # name = 1 coord_type = pmag.get_named_arg("-crd", 's') convert.s_magic(sfile, anisfile, dir_path, atype, coord_type, sigma, samp_con, specnum, location, spec, sitename, user, data_model_num, name)
python
{ "resource": "" }
q11565
main
train
def main(): """ NAME incfish.py DESCRIPTION calculates fisher parameters from inc only data INPUT FORMAT takes inc data SYNTAX incfish.py [options] [< filename] OPTIONS -h prints help message and quits -i for interactive filename entry -f FILE, specify input file name -F FILE, specify output file name < filename for reading from standard input OUTPUT mean inc,Fisher inc, N, R, k, a95 NOTES takes the absolute value of inclinations (to take into account reversals), but returns gaussian mean if < 50.0, because of polarity ambiguity and lack of bias. """ inc=[] if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-i' in sys.argv: # ask for filename file=input("Enter file name with inc data: ") inc=numpy.loadtxt(file) elif '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] inc=numpy.loadtxt(file) else: inc = numpy.loadtxt(sys.stdin,dtype=numpy.float) ofile="" if '-F' in sys.argv: ind = sys.argv.index('-F') ofile= sys.argv[ind+1] out = open(ofile, 'w + a') # #get doincfish to do the dirty work: fpars= pmag.doincfish(inc) outstring='%7.1f %7.1f %i %8.1f %7.1f %7.1f'%(fpars['ginc'],fpars['inc'],fpars['n'],fpars['r'],fpars['k'],fpars['alpha95']) if ofile == "": print(outstring) else: out.write(outstring+'\n')
python
{ "resource": "" }
q11566
sort_diclist
train
def sort_diclist(undecorated, sort_on): """ Sort a list of dictionaries by the value in each dictionary for the sorting key Parameters ---------- undecorated : list of dicts sort_on : str, numeric key that is present in all dicts to sort on Returns --------- ordered list of dicts Examples --------- >>> lst = [{'key1': 10, 'key2': 2}, {'key1': 1, 'key2': 20}] >>> sort_diclist(lst, 'key1') [{'key2': 20, 'key1': 1}, {'key2': 2, 'key1': 10}] >>> sort_diclist(lst, 'key2') [{'key2': 2, 'key1': 10}, {'key2': 20, 'key1': 1}] """ decorated = [(len(dict_[sort_on]) if hasattr(dict_[sort_on], '__len__') else dict_[ sort_on], index) for (index, dict_) in enumerate(undecorated)] decorated.sort() return[undecorated[index] for (key, index) in decorated]
python
{ "resource": "" }
q11567
convert_lat
train
def convert_lat(Recs): """ uses lat, for age<5Ma, model_lat if present, else tries to use average_inc to estimate plat. """ New = [] for rec in Recs: if 'model_lat' in list(rec.keys()) and rec['model_lat'] != "": New.append(rec) elif 'average_age' in list(rec.keys()) and rec['average_age'] != "" and float(rec['average_age']) <= 5.: if 'site_lat' in list(rec.keys()) and rec['site_lat'] != "": rec['model_lat'] = rec['site_lat'] New.append(rec) elif 'average_inc' in list(rec.keys()) and rec['average_inc'] != "": rec['model_lat'] = '%7.1f' % (plat(float(rec['average_inc']))) New.append(rec) return New
python
{ "resource": "" }
q11568
convert_directory_2_to_3
train
def convert_directory_2_to_3(meas_fname="magic_measurements.txt", input_dir=".", output_dir=".", meas_only=False, data_model=None): """ Convert 2.0 measurements file into 3.0 measurements file. Merge and convert specimen, sample, site, and location data. Also translates criteria data. Parameters ---------- meas_name : name of measurement file (do not include full path, default is "magic_measurements.txt") input_dir : name of input directory (default is ".") output_dir : name of output directory (default is ".") meas_only : boolean, convert only measurement data (default is False) data_model : data_model3.DataModel object (default is None) Returns --------- NewMeas : 3.0 measurements data (output of pmag.convert_items) upgraded : list of files successfully upgraded to 3.0 no_upgrade: list of 2.5 files not upgraded to 3.0 """ convert = {'specimens': map_magic.spec_magic2_2_magic3_map, 'samples': map_magic.samp_magic2_2_magic3_map, 'sites': map_magic.site_magic2_2_magic3_map, 'locations': map_magic.loc_magic2_2_magic3_map, 'ages': map_magic.age_magic2_2_magic3_map} full_name = os.path.join(input_dir, meas_fname) if not os.path.exists(full_name): print("-W- {} is not a file".format(full_name)) return False, False, False # read in data model 2.5 measurements file data2, filetype = magic_read(full_name) # convert list of dicts to 3.0 NewMeas = convert_items(data2, map_magic.meas_magic2_2_magic3_map) # write 3.0 output to file ofile = os.path.join(output_dir, 'measurements.txt') magic_write(ofile, NewMeas, 'measurements') upgraded = [] if os.path.exists(ofile): print("-I- 3.0 format measurements file was successfully created: {}".format(ofile)) upgraded.append("measurements.txt") else: print("-W- 3.0 format measurements file could not be created") # no_upgrade = [] if not meas_only: # try to convert specimens, samples, sites, & locations for dtype in ['specimens', 'samples', 'sites', 'locations', 'ages']: mapping = convert[dtype] res = convert_and_combine_2_to_3( dtype, mapping, input_dir, output_dir, data_model) if res: upgraded.append(res) # try to upgrade criteria file if os.path.exists(os.path.join(input_dir, 'pmag_criteria.txt')): crit_file = convert_criteria_file_2_to_3(input_dir=input_dir, output_dir=output_dir, data_model=data_model)[0] if crit_file: upgraded.append(crit_file) else: no_upgrade.append("pmag_criteria.txt") # create list of all un-upgradeable files for fname in os.listdir(input_dir): if fname in ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt']: continue elif 'rmag' in fname: no_upgrade.append(fname) elif fname in ['pmag_results.txt', 'er_synthetics.txt', 'er_images.txt', 'er_plots.txt']: no_upgrade.append(fname) return NewMeas, upgraded, no_upgrade
python
{ "resource": "" }
q11569
convert_criteria_file_2_to_3
train
def convert_criteria_file_2_to_3(fname="pmag_criteria.txt", input_dir=".", output_dir=".", data_model=None): """ Convert a criteria file from 2.5 to 3.0 format and write it out to file Parameters ---------- fname : string of filename (default "pmag_criteria.txt") input_dir : string of input directory (default ".") output_dir : string of output directory (default ".") data_model : data_model.DataModel object (default None) Returns --------- outfile : string output criteria filename, or False crit_container : cb.MagicDataFrame with 3.0 criteria table """ # get criteria from infile fname = os.path.join(input_dir, fname) if not os.path.exists(fname): return False, None orig_crit, warnings = read_criteria_from_file(fname, initialize_acceptance_criteria(), data_model=2, return_warnings=True) converted_crit = {} # get data model including criteria map if not data_model: from . import data_model3 as dm3 DM = dm3.DataModel() else: DM = data_model crit_map = DM.crit_map # drop all empty mappings stripped_crit_map = crit_map.dropna(axis='rows') # go through criteria and get 3.0 name and criterion_operation for crit in orig_crit: if orig_crit[crit]['value'] in [-999, '-999', -999.]: continue if crit in stripped_crit_map.index: criterion_operation = stripped_crit_map.loc[crit]['criteria_map']['criterion_operation'] table_col = stripped_crit_map.loc[crit]['criteria_map']['table_column'] orig_crit[crit]['criterion_operation'] = criterion_operation converted_crit[table_col] = orig_crit[crit] else: print('-W- Could not convert {} to 3.0, skipping'.format(crit)) # switch axes converted_df = pd.DataFrame(converted_crit).transpose() # name the index converted_df.index.name = "table_column" # rename columns to 3.0 values # 'category' --> criterion (uses defaults from initalize_default_criteria) # 'pmag_criteria_code' --> criterion (uses what's actually in the translated file) converted_df.rename(columns={'pmag_criteria_code': 'criterion', 'er_citation_names': 'citations', 'criteria_definition': 'description', 'value': 'criterion_value'}, inplace=True) # drop unused columns valid_cols = DM.dm['criteria'].index drop_cols = set(converted_df.columns) - set(valid_cols) converted_df.drop(drop_cols, axis='columns', inplace=True) # move 'table_column' from being the index to being a column converted_df['table_column'] = converted_df.index crit_container = cb.MagicDataFrame(dtype='criteria', df=converted_df) crit_container.write_magic_file(dir_path=output_dir) return "criteria.txt", crit_container
python
{ "resource": "" }
q11570
orient
train
def orient(mag_azimuth, field_dip, or_con): """ uses specified orientation convention to convert user supplied orientations to laboratory azimuth and plunge """ or_con = str(or_con) if mag_azimuth == -999: return "", "" if or_con == "1": # lab_mag_az=mag_az; sample_dip = -dip return mag_azimuth, -field_dip if or_con == "2": return mag_azimuth - 90., -field_dip if or_con == "3": # lab_mag_az=mag_az; sample_dip = 90.-dip return mag_azimuth, 90. - field_dip if or_con == "4": # lab_mag_az=mag_az; sample_dip = dip return mag_azimuth, field_dip if or_con == "5": # lab_mag_az=mag_az; sample_dip = dip-90. return mag_azimuth, field_dip - 90. if or_con == "6": # lab_mag_az=mag_az-90.; sample_dip = 90.-dip return mag_azimuth - 90., 90. - field_dip if or_con == "7": # lab_mag_az=mag_az; sample_dip = 90.-dip return mag_azimuth - 90., 90. - field_dip print("Error in orientation convention")
python
{ "resource": "" }
q11571
get_Sb
train
def get_Sb(data): """ returns vgp scatter for data set """ Sb, N = 0., 0. for rec in data: delta = 90. - abs(rec['vgp_lat']) if rec['average_k'] != 0: k = rec['average_k'] L = rec['average_lat'] * np.pi / 180. # latitude in radians Nsi = rec['average_nn'] K = old_div(k, (2. * (1. + 3. * np.sin(L)**2) / (5. - 3. * np.sin(L)**2))) Sw = old_div(81., np.sqrt(K)) else: Sw, Nsi = 0, 1. Sb += delta**2. - old_div((Sw**2), Nsi) N += 1. return np.sqrt(old_div(Sb, float(N - 1.)))
python
{ "resource": "" }
q11572
flip
train
def flip(di_block, combine=False): """ determines 'normal' direction along the principle eigenvector, then flips the antipodes of the reverse mode to the antipode Parameters ___________ di_block : nested list of directions Return D1 : normal mode D2 : flipped reverse mode as two DI blocks combine : if True return combined D1, D2, nested D,I pairs """ ppars = doprinc(di_block) # get principle direction if combine: D3 = [] D1, D2 = [], [] for rec in di_block: ang = angle([rec[0], rec[1]], [ppars['dec'], ppars['inc']]) if ang > 90.: d, i = (rec[0] - 180.) % 360., -rec[1] D2.append([d, i]) if combine: D3.append([d, i]) else: D1.append([rec[0], rec[1]]) if combine: D3.append([rec[0], rec[1]]) if combine: return D3 else: return D1, D2
python
{ "resource": "" }
q11573
dovds
train
def dovds(data): """ calculates vector difference sum for demagnetization data """ vds, X = 0, [] for rec in data: X.append(dir2cart(rec)) for k in range(len(X) - 1): xdif = X[k + 1][0] - X[k][0] ydif = X[k + 1][1] - X[k][1] zdif = X[k + 1][2] - X[k][2] vds += np.sqrt(xdif**2 + ydif**2 + zdif**2) vds += np.sqrt(X[-1][0]**2 + X[-1][1]**2 + X[-1][2]**2) return vds
python
{ "resource": "" }
q11574
get_specs
train
def get_specs(data): """ Takes a magic format file and returns a list of unique specimen names """ # sort the specimen names speclist = [] for rec in data: try: spec = rec["er_specimen_name"] except KeyError as e: spec = rec["specimen"] if spec not in speclist: speclist.append(spec) speclist.sort() return speclist
python
{ "resource": "" }
q11575
mark_dmag_rec
train
def mark_dmag_rec(s, ind, data): """ Edits demagnetization data to mark "bad" points with measurement_flag """ datablock = [] for rec in data: if rec['er_specimen_name'] == s: meths = rec['magic_method_codes'].split(':') if 'LT-NO' in meths or 'LT-AF-Z' in meths or 'LT-T-Z' in meths: datablock.append(rec) dmagrec = datablock[ind] for k in range(len(data)): meths = data[k]['magic_method_codes'].split(':') if 'LT-NO' in meths or 'LT-AF-Z' in meths or 'LT-T-Z' in meths: if data[k]['er_specimen_name'] == s: if data[k]['treatment_temp'] == dmagrec['treatment_temp'] and data[k]['treatment_ac_field'] == dmagrec['treatment_ac_field']: if data[k]['measurement_dec'] == dmagrec['measurement_dec'] and data[k]['measurement_inc'] == dmagrec['measurement_inc'] and data[k]['measurement_magn_moment'] == dmagrec['measurement_magn_moment']: if data[k]['measurement_flag'] == 'g': flag = 'b' else: flag = 'g' data[k]['measurement_flag'] = flag break return data
python
{ "resource": "" }
q11576
open_file
train
def open_file(infile, verbose=True): """ Open file and return a list of the file's lines. Try to use utf-8 encoding, and if that fails use Latin-1. Parameters ---------- infile : str full path to file Returns ---------- data: list all lines in the file """ try: with codecs.open(infile, "r", "utf-8") as f: lines = list(f.readlines()) # file might not exist except FileNotFoundError: if verbose: print( '-W- You are trying to open a file: {} that does not exist'.format(infile)) return [] # encoding might be wrong except UnicodeDecodeError: try: with codecs.open(infile, "r", "Latin-1") as f: print( '-I- Using less strict decoding for {}, output may have formatting errors'.format(infile)) lines = list(f.readlines()) # if file exists, and encoding is correct, who knows what the problem is except Exception as ex: print("-W- ", type(ex), ex) return [] except Exception as ex: print("-W- ", type(ex), ex) return [] # don't leave a blank line at the end i = 0 while i < 10: if not len(lines[-1].strip("\n").strip("\t")): lines = lines[:-1] i += 1 else: i = 10 return lines
python
{ "resource": "" }
q11577
putout
train
def putout(ofile, keylist, Rec): """ writes out a magic format record to ofile """ pmag_out = open(ofile, 'a') outstring = "" for key in keylist: try: outstring = outstring + '\t' + str(Rec[key]).strip() except: print(key, Rec[key]) # raw_input() outstring = outstring + '\n' pmag_out.write(outstring[1:]) pmag_out.close()
python
{ "resource": "" }
q11578
first_rec
train
def first_rec(ofile, Rec, file_type): """ opens the file ofile as a magic template file with headers as the keys to Rec """ keylist = [] opened = False # sometimes Windows needs a little extra time to open a file # or else it throws an error while not opened: try: pmag_out = open(ofile, 'w') opened = True except IOError: time.sleep(1) outstring = "tab \t" + file_type + "\n" pmag_out.write(outstring) keystring = "" for key in list(Rec.keys()): keystring = keystring + '\t' + key.strip() keylist.append(key) keystring = keystring + '\n' pmag_out.write(keystring[1:]) pmag_out.close() return keylist
python
{ "resource": "" }
q11579
magic_write_old
train
def magic_write_old(ofile, Recs, file_type): """ writes out a magic format list of dictionaries to ofile Parameters _________ ofile : path to output file Recs : list of dictionaries in MagIC format file_type : MagIC table type (e.g., specimens) Effects : writes a MagIC formatted file from Recs """ if len(Recs) < 1: print ('nothing to write') return pmag_out = open(ofile, 'w') outstring = "tab \t" + file_type + "\n" pmag_out.write(outstring) keystring = "" keylist = [] for key in list(Recs[0].keys()): keylist.append(key) keylist.sort() for key in keylist: keystring = keystring + '\t' + key.strip() keystring = keystring + '\n' pmag_out.write(keystring[1:]) for Rec in Recs: outstring = "" for key in keylist: try: outstring = outstring + '\t' + str(Rec[key].strip()) except: if 'er_specimen_name' in list(Rec.keys()): print(Rec['er_specimen_name']) elif 'er_specimen_names' in list(Rec.keys()): print(Rec['er_specimen_names']) print(key, Rec[key]) # raw_input() outstring = outstring + '\n' pmag_out.write(outstring[1:]) pmag_out.close()
python
{ "resource": "" }
q11580
dotilt_V
train
def dotilt_V(indat): """ Does a tilt correction on an array with rows of dec,inc bedding dip direction and dip. Parameters ---------- input : declination, inclination, bedding dip direction and bedding dip nested array of [[dec1, inc1, bed_az1, bed_dip1],[dec2,inc2,bed_az2,bed_dip2]...] Returns ------- dec,inc : arrays of rotated declination, inclination """ indat = indat.transpose() # unpack input array into separate arrays dec, inc, bed_az, bed_dip = indat[0], indat[1], indat[2], indat[3] rad = old_div(np.pi, 180.) # convert to radians Dir = np.array([dec, inc]).transpose() X = dir2cart(Dir).transpose() # get cartesian coordinates N = np.size(dec) # get some sines and cosines of new coordinate system sa, ca = -np.sin(bed_az * rad), np.cos(bed_az * rad) cdp, sdp = np.cos(bed_dip * rad), np.sin(bed_dip * rad) # do the rotation xc = X[0] * (sa * sa + ca * ca * cdp) + X[1] * \ (ca * sa * (1. - cdp)) + X[2] * sdp * ca yc = X[0] * ca * sa * (1. - cdp) + X[1] * \ (ca * ca + sa * sa * cdp) - X[2] * sa * sdp zc = X[0] * ca * sdp - X[1] * sdp * sa - X[2] * cdp # convert back to direction: cart = np.array([xc, yc, -zc]).transpose() Dir = cart2dir(cart).transpose() # return declination, inclination arrays of rotated direction return Dir[0], Dir[1]
python
{ "resource": "" }
q11581
find_samp_rec
train
def find_samp_rec(s, data, az_type): """ find the orientation info for samp s """ datablock, or_error, bed_error = [], 0, 0 orient = {} orient["sample_dip"] = "" orient["sample_azimuth"] = "" orient['sample_description'] = "" for rec in data: if rec["er_sample_name"].lower() == s.lower(): if 'sample_orientation_flag' in list(rec.keys()) and rec['sample_orientation_flag'] == 'b': orient['sample_orientation_flag'] = 'b' return orient if "magic_method_codes" in list(rec.keys()) and az_type != "0": methods = rec["magic_method_codes"].replace(" ", "").split(":") if az_type in methods and "sample_azimuth" in list(rec.keys()) and rec["sample_azimuth"] != "": orient["sample_azimuth"] = float(rec["sample_azimuth"]) if "sample_dip" in list(rec.keys()) and rec["sample_dip"] != "": orient["sample_dip"] = float(rec["sample_dip"]) if "sample_bed_dip_direction" in list(rec.keys()) and rec["sample_bed_dip_direction"] != "": orient["sample_bed_dip_direction"] = float( rec["sample_bed_dip_direction"]) if "sample_bed_dip" in list(rec.keys()) and rec["sample_bed_dip"] != "": orient["sample_bed_dip"] = float(rec["sample_bed_dip"]) else: if "sample_azimuth" in list(rec.keys()): orient["sample_azimuth"] = float(rec["sample_azimuth"]) if "sample_dip" in list(rec.keys()): orient["sample_dip"] = float(rec["sample_dip"]) if "sample_bed_dip_direction" in list(rec.keys()): orient["sample_bed_dip_direction"] = float( rec["sample_bed_dip_direction"]) if "sample_bed_dip" in list(rec.keys()): orient["sample_bed_dip"] = float(rec["sample_bed_dip"]) if 'sample_description' in list(rec.keys()): orient['sample_description'] = rec['sample_description'] if orient["sample_azimuth"] != "": break return orient
python
{ "resource": "" }
q11582
vspec
train
def vspec(data): """ Takes the vector mean of replicate measurements at a given step """ vdata, Dirdata, step_meth = [], [], [] tr0 = data[0][0] # set beginning treatment data.append("Stop") k, R = 1, 0 for i in range(k, len(data)): Dirdata = [] if data[i][0] != tr0: if i == k: # sample is unique vdata.append(data[i - 1]) step_meth.append(" ") else: # sample is not unique for l in range(k - 1, i): Dirdata.append([data[l][1], data[l][2], data[l][3]]) dir, R = vector_mean(Dirdata) vdata.append([data[i - 1][0], dir[0], dir[1], old_div(R, (i - k + 1)), '1', 'g']) step_meth.append("DE-VM") tr0 = data[i][0] k = i + 1 if tr0 == "stop": break del data[-1] return step_meth, vdata
python
{ "resource": "" }
q11583
Vdiff
train
def Vdiff(D1, D2): """ finds the vector difference between two directions D1,D2 """ A = dir2cart([D1[0], D1[1], 1.]) B = dir2cart([D2[0], D2[1], 1.]) C = [] for i in range(3): C.append(A[i] - B[i]) return cart2dir(C)
python
{ "resource": "" }
q11584
cart2dir
train
def cart2dir(cart): """ Converts a direction in cartesian coordinates into declination, inclinations Parameters ---------- cart : input list of [x,y,z] or list of lists [[x1,y1,z1],[x2,y2,z2]...] Returns ------- direction_array : returns an array of [declination, inclination, intensity] Examples -------- >>> pmag.cart2dir([0,1,0]) array([ 90., 0., 1.]) """ cart = np.array(cart) rad = old_div(np.pi, 180.) # constant to convert degrees to radians if len(cart.shape) > 1: Xs, Ys, Zs = cart[:, 0], cart[:, 1], cart[:, 2] else: # single vector Xs, Ys, Zs = cart[0], cart[1], cart[2] if np.iscomplexobj(Xs): Xs = Xs.real if np.iscomplexobj(Ys): Ys = Ys.real if np.iscomplexobj(Zs): Zs = Zs.real Rs = np.sqrt(Xs**2 + Ys**2 + Zs**2) # calculate resultant vector length # calculate declination taking care of correct quadrants (arctan2) and # making modulo 360. Decs = (old_div(np.arctan2(Ys, Xs), rad)) % 360. try: # calculate inclination (converting to degrees) # Incs = old_div(np.arcsin(old_div(Zs, Rs)), rad) except: print('trouble in cart2dir') # most likely division by zero somewhere return np.zeros(3) return np.array([Decs, Incs, Rs]).transpose()
python
{ "resource": "" }
q11585
findrec
train
def findrec(s, data): """ finds all the records belonging to s in data """ datablock = [] for rec in data: if s == rec[0]: datablock.append([rec[1], rec[2], rec[3], rec[4]]) return datablock
python
{ "resource": "" }
q11586
circ
train
def circ(dec, dip, alpha): """ function to calculate points on an circle about dec,dip with angle alpha """ rad = old_div(np.pi, 180.) D_out, I_out = [], [] dec, dip, alpha = dec * rad, dip * rad, alpha * rad dec1 = dec + old_div(np.pi, 2.) isign = 1 if dip != 0: isign = (old_div(abs(dip), dip)) dip1 = (dip - isign * (old_div(np.pi, 2.))) t = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] v = [0, 0, 0] t[0][2] = np.cos(dec) * np.cos(dip) t[1][2] = np.sin(dec) * np.cos(dip) t[2][2] = np.sin(dip) t[0][1] = np.cos(dec) * np.cos(dip1) t[1][1] = np.sin(dec) * np.cos(dip1) t[2][1] = np.sin(dip1) t[0][0] = np.cos(dec1) t[1][0] = np.sin(dec1) t[2][0] = 0 for i in range(101): psi = float(i) * np.pi / 50. v[0] = np.sin(alpha) * np.cos(psi) v[1] = np.sin(alpha) * np.sin(psi) v[2] = np.sqrt(abs(1. - v[0]**2 - v[1]**2)) elli = [0, 0, 0] for j in range(3): for k in range(3): elli[j] = elli[j] + t[j][k] * v[k] Dir = cart2dir(elli) D_out.append(Dir[0]) I_out.append(Dir[1]) return D_out, I_out
python
{ "resource": "" }
q11587
getnames
train
def getnames(): """ get mail names """ namestring = "" addmore = 1 while addmore: scientist = input("Enter name - <Return> when done ") if scientist != "": namestring = namestring + ":" + scientist else: namestring = namestring[1:] addmore = 0 return namestring
python
{ "resource": "" }
q11588
gha
train
def gha(julian_day, f): """ returns greenwich hour angle """ rad = old_div(np.pi, 180.) d = julian_day - 2451545.0 + f L = 280.460 + 0.9856474 * d g = 357.528 + 0.9856003 * d L = L % 360. g = g % 360. # ecliptic longitude lamb = L + 1.915 * np.sin(g * rad) + .02 * np.sin(2 * g * rad) # obliquity of ecliptic epsilon = 23.439 - 0.0000004 * d # right ascension (in same quadrant as lambda) t = (np.tan(old_div((epsilon * rad), 2)))**2 r = old_div(1, rad) rl = lamb * rad alpha = lamb - r * t * np.sin(2 * rl) + \ (old_div(r, 2)) * t * t * np.sin(4 * rl) # alpha=mod(alpha,360.0) # declination delta = np.sin(epsilon * rad) * np.sin(lamb * rad) delta = old_div(np.arcsin(delta), rad) # equation of time eqt = (L - alpha) # utm = f * 24 * 60 H = old_div(utm, 4) + eqt + 180 H = H % 360.0 return H, delta
python
{ "resource": "" }
q11589
julian
train
def julian(mon, day, year): """ returns julian day """ ig = 15 + 31 * (10 + 12 * 1582) if year == 0: print("Julian no can do") return if year < 0: year = year + 1 if mon > 2: julian_year = year julian_month = mon + 1 else: julian_year = year - 1 julian_month = mon + 13 j1 = int(365.25 * julian_year) j2 = int(30.6001 * julian_month) j3 = day + 1720995 julian_day = j1 + j2 + j3 if day + 31 * (mon + 12 * year) >= ig: jadj = int(0.01 * julian_year) julian_day = julian_day + 2 - jadj + int(0.25 * jadj) return julian_day
python
{ "resource": "" }
q11590
fillkeys
train
def fillkeys(Recs): """ reconciles keys of dictionaries within Recs. """ keylist, OutRecs = [], [] for rec in Recs: for key in list(rec.keys()): if key not in keylist: keylist.append(key) for rec in Recs: for key in keylist: if key not in list(rec.keys()): rec[key] = "" OutRecs.append(rec) return OutRecs, keylist
python
{ "resource": "" }
q11591
fisher_mean
train
def fisher_mean(data): """ Calculates the Fisher mean and associated parameter from a di_block Parameters ---------- di_block : a nested list of [dec,inc] or [dec,inc,intensity] Returns ------- fpars : dictionary containing the Fisher mean and statistics dec : mean declination inc : mean inclination r : resultant vector length n : number of data points k : Fisher k value csd : Fisher circular standard deviation alpha95 : Fisher circle of 95% confidence """ R, Xbar, X, fpars = 0, [0, 0, 0], [], {} N = len(data) if N < 2: return fpars X = dir2cart(data) for i in range(len(X)): for c in range(3): Xbar[c] += X[i][c] for c in range(3): R += Xbar[c]**2 R = np.sqrt(R) for c in range(3): Xbar[c] = Xbar[c]/R dir = cart2dir(Xbar) fpars["dec"] = dir[0] fpars["inc"] = dir[1] fpars["n"] = N fpars["r"] = R if N != R: k = (N - 1.) / (N - R) fpars["k"] = k csd = 81./np.sqrt(k) else: fpars['k'] = 'inf' csd = 0. b = 20.**(1./(N - 1.)) - 1 a = 1 - b * (N - R) / R if a < -1: a = -1 a95 = np.degrees(np.arccos(a)) fpars["alpha95"] = a95 fpars["csd"] = csd if a < 0: fpars["alpha95"] = 180.0 return fpars
python
{ "resource": "" }
q11592
gausspars
train
def gausspars(data): """ calculates gaussian statistics for data """ N, mean, d = len(data), 0., 0. if N < 1: return "", "" if N == 1: return data[0], 0 for j in range(N): mean += old_div(data[j], float(N)) for j in range(N): d += (data[j] - mean)**2 stdev = np.sqrt(d * (1./(float(N - 1)))) return mean, stdev
python
{ "resource": "" }
q11593
weighted_mean
train
def weighted_mean(data): """ calculates weighted mean of data """ W, N, mean, d = 0, len(data), 0, 0 if N < 1: return "", "" if N == 1: return data[0][0], 0 for x in data: W += x[1] # sum of the weights for x in data: mean += old_div((float(x[1]) * float(x[0])), float(W)) for x in data: d += (old_div(float(x[1]), float(W))) * (float(x[0]) - mean)**2 stdev = np.sqrt(d * (old_div(1., (float(N - 1))))) return mean, stdev
python
{ "resource": "" }
q11594
vclose
train
def vclose(L, V): """ gets the closest vector """ lam, X = 0, [] for k in range(3): lam = lam + V[k] * L[k] beta = np.sqrt(1. - lam**2) for k in range(3): X.append((old_div((V[k] - lam * L[k]), beta))) return X
python
{ "resource": "" }
q11595
calculate_best_fit_vectors
train
def calculate_best_fit_vectors(L, E, V, n_planes): """ Calculates the best fit vectors for a set of plane interpretations used in fisher mean calculations @param: L - a list of the "EL, EM, EN" array of MM88 or the cartisian form of dec and inc of the plane interpretation @param: E - the sum of the cartisian coordinates of all the line fits to be used in the mean @param: V - inital direction to start iterating from to get plane best fits @returns: nested list of n_plane by 3 dimension where the 3 are the cartisian dimension of the best fit vector """ U, XV = E[:], [] # make a copy of E to prevent mutation for pole in L: XV.append(vclose(pole, V)) # get some points on the great circle for c in range(3): U[c] = U[c] + XV[-1][c] # iterate to find best agreement angle_tol = 1. while angle_tol > 0.1: angles = [] for k in range(n_planes): for c in range(3): U[c] = U[c] - XV[k][c] R = np.sqrt(U[0]**2 + U[1]**2 + U[2]**2) for c in range(3): V[c] = old_div(U[c], R) XX = vclose(L[k], V) ang = XX[0] * XV[k][0] + XX[1] * XV[k][1] + XX[2] * XV[k][2] angles.append(np.arccos(ang) * 180. / np.pi) for c in range(3): XV[k][c] = XX[c] U[c] = U[c] + XX[c] amax = -1 for ang in angles: if ang > amax: amax = ang angle_tol = amax return XV
python
{ "resource": "" }
q11596
process_data_for_mean
train
def process_data_for_mean(data, direction_type_key): """ takes list of dicts with dec and inc as well as direction_type if possible or method_codes and sorts the data into lines and planes and process it for fisher means @param: data - list of dicts with dec inc and some manner of PCA type info @param: direction_type_key - key that indicates the direction type variable in the dictionaries of data @return: tuple with values - ( list of lists with [dec, inc, 1.] for all lines number of line list of lists with [EL,EM,EN] of all planes number of planes list of sum of the cartezian components of all lines ) """ dec_key, inc_key, meth_key = 'dec', 'inc', 'magic_method_codes' # data model 2.5 if 'dir_dec' in data[0].keys(): # this is data model 3.0 dec_key, inc_key, meth_key = 'dir_dec', 'dir_inc', 'method_codes' n_lines, n_planes = 0, 0 L, fdata = [], [] E = [0, 0, 0] # sort data into lines and planes and collect cartesian coordinates for rec in data: cart = dir2cart([float(rec[dec_key]), float(rec[inc_key])])[0] if direction_type_key in list(rec.keys()): if rec[direction_type_key] == 'p': # this is a pole to a plane n_planes += 1 L.append(cart) # this is the "EL, EM, EN" array of MM88 else: # this is a line n_lines += 1 # collect data for fisher calculation fdata.append([float(rec[dec_key]), float(rec[inc_key]), 1.]) E[0] += cart[0] E[1] += cart[1] E[2] += cart[2] elif 'method_codes' in list(rec.keys()): if "DE-BFP" in rec[meth_key]: # this is a pole to a plane n_planes += 1 L.append(cart) # this is the "EL, EM, EN" array of MM88 else: # this is a line n_lines += 1 # collect data for fisher calculation fdata.append([rec[dec_key], rec[inc_key], 1.]) E[0] += cart[0] E[1] += cart[1] E[2] += cart[2] elif meth_key in list(rec.keys()): if "DE-BFP" in rec[meth_key]: # this is a pole to a plane n_planes += 1 L.append(cart) # this is the "EL, EM, EN" array of MM88 else: # this is a line n_lines += 1 # collect data for fisher calculation fdata.append([rec[dec_key], rec[inc_key], 1.]) E[0] += cart[0] E[1] += cart[1] E[2] += cart[2] else: # EVERYTHING IS A LINE!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! n_lines += 1 # collect data for fisher calculation fdata.append([rec[dec_key], rec[inc_key], 1.]) E[0] += cart[0] E[1] += cart[1] E[2] += cart[2] return fdata, n_lines, L, n_planes, E
python
{ "resource": "" }
q11597
cdfout
train
def cdfout(data, file): """ spits out the cdf for data to file """ f = open(file, "w") data.sort() for j in range(len(data)): y = old_div(float(j), float(len(data))) out = str(data[j]) + ' ' + str(y) + '\n' f.write(out) f.close()
python
{ "resource": "" }
q11598
dobingham
train
def dobingham(di_block): """ Calculates the Bingham mean and associated statistical parameters from directions that are input as a di_block Parameters ---------- di_block : a nested list of [dec,inc] or [dec,inc,intensity] Returns ------- bpars : dictionary containing the Bingham mean and associated statistics dictionary keys dec : mean declination inc : mean inclination n : number of datapoints Eta : major ellipse Edec : declination of major ellipse axis Einc : inclination of major ellipse axis Zeta : minor ellipse Zdec : declination of minor ellipse axis Zinc : inclination of minor ellipse axis """ control, X, bpars = [], [], {} N = len(di_block) if N < 2: return bpars # # get cartesian coordinates # for rec in di_block: X.append(dir2cart([rec[0], rec[1], 1.])) # # put in T matrix # T = np.array(Tmatrix(X)) t, V = tauV(T) w1, w2, w3 = t[2], t[1], t[0] k1, k2 = binglookup(w1, w2) PDir = cart2dir(V[0]) EDir = cart2dir(V[1]) ZDir = cart2dir(V[2]) if PDir[1] < 0: PDir[0] += 180. PDir[1] = -PDir[1] PDir[0] = PDir[0] % 360. bpars["dec"] = PDir[0] bpars["inc"] = PDir[1] bpars["Edec"] = EDir[0] bpars["Einc"] = EDir[1] bpars["Zdec"] = ZDir[0] bpars["Zinc"] = ZDir[1] bpars["n"] = N # # now for Bingham ellipses. # fac1, fac2 = -2 * N * (k1) * (w3 - w1), -2 * N * (k2) * (w3 - w2) sig31, sig32 = np.sqrt(old_div(1., fac1)), np.sqrt(old_div(1., fac2)) bpars["Zeta"], bpars["Eta"] = 2.45 * sig31 * \ 180. / np.pi, 2.45 * sig32 * 180. / np.pi return bpars
python
{ "resource": "" }
q11599
doflip
train
def doflip(dec, inc): """ flips lower hemisphere data to upper hemisphere """ if inc < 0: inc = -inc dec = (dec + 180.) % 360. return dec, inc
python
{ "resource": "" }