_id
stringlengths
2
7
title
stringlengths
1
88
partition
stringclasses
3 values
text
stringlengths
75
19.8k
language
stringclasses
1 value
meta_information
dict
q10400
Request.body
train
def body(self): """return the raw version of the body""" body = None if self.body_input: body = self.body_input.read(int(self.get_header('content-length', -1))) return body
python
{ "resource": "" }
q10401
Request.body_kwargs
train
def body_kwargs(self): """ the request body, if this is a POST request this tries to do the right thing with the body, so if you have set the body and the content type is json, then it will return the body json decoded, if you need the original string body, use body example -- self.body = '{"foo":{"name":"bar"}}' b = self.body_kwargs # dict with: {"foo": { "name": "bar"}} print self.body # string with: '{"foo":{"name":"bar"}}' """ body_kwargs = {} ct = self.get_header("content-type") if ct: ct = ct.lower() if ct.rfind("json") >= 0: body = self.body if body: body_kwargs = json.loads(body) else: if self.body_input: body = RequestBody( fp=self.body_input, headers=self.headers, environ=self.environ #environ=self.raw_request ) body_kwargs = dict(body) else: body = self.body if body: body_kwargs = self._parse_query_str(body) return body_kwargs
python
{ "resource": "" }
q10402
Request.kwargs
train
def kwargs(self): """combine GET and POST params to be passed to the controller""" kwargs = dict(self.query_kwargs) kwargs.update(self.body_kwargs) return kwargs
python
{ "resource": "" }
q10403
Request.get_auth_bearer
train
def get_auth_bearer(self): """return the bearer token in the authorization header if it exists""" access_token = '' auth_header = self.get_header('authorization') if auth_header: m = re.search(r"^Bearer\s+(\S+)$", auth_header, re.I) if m: access_token = m.group(1) return access_token
python
{ "resource": "" }
q10404
Request.get_auth_basic
train
def get_auth_basic(self): """return the username and password of a basic auth header if it exists""" username = '' password = '' auth_header = self.get_header('authorization') if auth_header: m = re.search(r"^Basic\s+(\S+)$", auth_header, re.I) if m: auth_str = Base64.decode(m.group(1)) username, password = auth_str.split(':', 1) return username, password
python
{ "resource": "" }
q10405
Response.code
train
def code(self): """the http status code to return to the client, by default, 200 if a body is present otherwise 204""" code = getattr(self, '_code', None) if not code: if self.has_body(): code = 200 else: code = 204 return code
python
{ "resource": "" }
q10406
Response.normalize_body
train
def normalize_body(self, b): """return the body as a string, formatted to the appropriate content type :param b: mixed, the current raw body :returns: unicode string """ if b is None: return '' if self.is_json(): # TODO ??? # I don't like this, if we have a content type but it isn't one # of the supported ones we were returning the exception, which threw # Jarid off, but now it just returns a string, which is not best either # my thought is we could have a body_type_subtype method that would # make it possible to easily handle custom types # eg, "application/json" would become: self.body_application_json(b, is_error) b = json.dumps(b, cls=ResponseBody) else: # just return a string representation of body if no content type b = String(b, self.encoding) return b
python
{ "resource": "" }
q10407
TargetDecorator.normalize_target_params
train
def normalize_target_params(self, request, controller_args, controller_kwargs): """get params ready for calling target this method exists because child classes might only really need certain params passed to the method, this allows the child classes to decided what their target methods need :param request: the http.Request instance for this specific request :param controller_args: the arguments that will be passed to the controller :param controller_kwargs: the key/val arguments that will be passed to the controller, these usually come from query strings and post bodies :returns: a tuple (list, dict) that correspond to the *args, **kwargs that will be passed to the target() method """ return [], dict( request=request, controller_args=controller_args, controller_kwargs=controller_kwargs )
python
{ "resource": "" }
q10408
TargetDecorator.handle_target
train
def handle_target(self, request, controller_args, controller_kwargs): """Internal method for this class handles normalizing the passed in values from the decorator using .normalize_target_params() and then passes them to the set .target() """ try: param_args, param_kwargs = self.normalize_target_params( request=request, controller_args=controller_args, controller_kwargs=controller_kwargs ) ret = self.target(*param_args, **param_kwargs) if not ret: raise ValueError("{} check failed".format(self.__class__.__name__)) except CallError: raise except Exception as e: self.handle_error(e)
python
{ "resource": "" }
q10409
TargetDecorator.decorate
train
def decorate(self, func, target, *anoop, **kwnoop): """decorate the passed in func calling target when func is called :param func: the function being decorated :param target: the target that will be run when func is called :returns: the decorated func """ if target: self.target = target def decorated(decorated_self, *args, **kwargs): self.handle_target( request=decorated_self.request, controller_args=args, controller_kwargs=kwargs ) return func(decorated_self, *args, **kwargs) return decorated
python
{ "resource": "" }
q10410
param.normalize_flags
train
def normalize_flags(self, flags): """normalize the flags to make sure needed values are there after this method is called self.flags is available :param flags: the flags that will be normalized """ flags['type'] = flags.get('type', None) paction = flags.get('action', 'store') if paction == 'store_false': flags['default'] = True flags['type'] = bool elif paction == 'store_true': flags['default'] = False flags['type'] = bool prequired = False if 'default' in flags else flags.get('required', True) flags["action"] = paction flags["required"] = prequired self.flags = flags
python
{ "resource": "" }
q10411
param.normalize_type
train
def normalize_type(self, names): """Decide if this param is an arg or a kwarg and set appropriate internal flags""" self.name = names[0] self.is_kwarg = False self.is_arg = False self.names = [] try: # http://stackoverflow.com/a/16488383/5006 uses ask forgiveness because # of py2/3 differences of integer check self.index = int(self.name) self.name = "" self.is_arg = True except ValueError: self.is_kwarg = True self.names = names
python
{ "resource": "" }
q10412
param.normalize_param
train
def normalize_param(self, slf, args, kwargs): """this is where all the magic happens, this will try and find the param and put its value in kwargs if it has a default and stuff""" if self.is_kwarg: kwargs = self.normalize_kwarg(slf.request, kwargs) else: args = self.normalize_arg(slf.request, args) return slf, args, kwargs
python
{ "resource": "" }
q10413
param.find_kwarg
train
def find_kwarg(self, request, names, required, default, kwargs): """actually try to retrieve names key from params dict :param request: the current request instance, handy for child classes :param names: the names this kwarg can be :param required: True if a name has to be found in kwargs :param default: the default value if name isn't found :param kwargs: the kwargs that will be used to find the value :returns: tuple, found_name, val where found_name is the actual name kwargs contained """ val = default found_name = '' for name in names: if name in kwargs: val = kwargs[name] found_name = name break if not found_name and required: raise ValueError("required param {} does not exist".format(self.name)) return found_name, val
python
{ "resource": "" }
q10414
WebsocketClient.open
train
def open(cls, *args, **kwargs): """just something to make it easier to quickly open a connection, do something and then close it""" c = cls(*args, **kwargs) c.connect() try: yield c finally: c.close()
python
{ "resource": "" }
q10415
WebsocketClient.connect
train
def connect(self, path="", headers=None, query=None, timeout=0, **kwargs): """ make the actual connection to the websocket :param headers: dict, key/val pairs of any headers to add to connection, if you would like to override headers just pass in an empty value :param query: dict, any query string params you want to send up with the connection url :returns: Payload, this will return the CONNECT response from the websocket """ ret = None ws_url = self.get_fetch_url(path, query) ws_headers = self.get_fetch_headers("GET", headers) ws_headers = ['{}: {}'.format(h[0], h[1]) for h in ws_headers.items() if h[1]] timeout = self.get_timeout(timeout=timeout, **kwargs) self.set_trace(kwargs.pop("trace", False)) #pout.v(websocket_url, websocket_headers, self.query_kwargs, self.headers) try: logger.debug("{} connecting to {}".format(self.client_id, ws_url)) self.ws = websocket.create_connection( ws_url, header=ws_headers, timeout=timeout, sslopt={'cert_reqs':ssl.CERT_NONE}, ) ret = self.recv_callback(callback=lambda r: r.uuid == "CONNECT") if ret.code >= 400: raise IOError("Failed to connect with code {}".format(ret.code)) # self.headers = headers # self.query_kwargs = query_kwargs except websocket.WebSocketTimeoutException: raise IOError("Failed to connect within {} seconds".format(timeout)) except websocket.WebSocketException as e: raise IOError("Failed to connect with error: {}".format(e)) except socket.error as e: # this is an IOError, I just wanted to be aware of that, most common # problem is: [Errno 111] Connection refused raise return ret
python
{ "resource": "" }
q10416
WebsocketClient.fetch
train
def fetch(self, method, path, query=None, body=None, timeout=0, **kwargs): """send a Message :param method: string, something like "POST" or "GET" :param path: string, the path part of a uri (eg, /foo/bar) :param body: dict, what you want to send to "method path" :param timeout: integer, how long to wait before failing trying to send """ ret = None if not query: query = {} if not body: body = {} query.update(body) # body takes precedence body = query self.send_count += 1 payload = self.get_fetch_request(method, path, body) attempts = 1 max_attempts = self.attempts success = False while not success: kwargs['timeout'] = timeout try: try: if not self.connected: self.connect(path) with self.wstimeout(**kwargs) as timeout: kwargs['timeout'] = timeout logger.debug('{} send {} attempt {}/{} with timeout {}'.format( self.client_id, payload.uuid, attempts, max_attempts, timeout )) sent_bits = self.ws.send(payload.payload) logger.debug('{} sent {} bytes'.format(self.client_id, sent_bits)) if sent_bits: ret = self.fetch_response(payload, **kwargs) if ret: success = True except websocket.WebSocketConnectionClosedException as e: self.ws.shutdown() raise IOError("connection is not open but reported it was open: {}".format(e)) except (IOError, TypeError) as e: logger.debug('{} error on send attempt {}: {}'.format(self.client_id, attempts, e)) success = False finally: if not success: attempts += 1 if attempts > max_attempts: raise else: timeout *= 2 if (attempts / max_attempts) > 0.50: logger.debug( "{} closing and re-opening connection for next attempt".format(self.client_id) ) self.close() return ret
python
{ "resource": "" }
q10417
WebsocketClient.ping
train
def ping(self, timeout=0, **kwargs): """THIS DOES NOT WORK, UWSGI DOES NOT RESPOND TO PINGS""" # http://stackoverflow.com/a/2257449/5006 def rand_id(size=8, chars=string.ascii_uppercase + string.digits): return ''.join(random.choice(chars) for _ in range(size)) payload = rand_id() self.ws.ping(payload) opcode, data = self.recv_raw(timeout, [websocket.ABNF.OPCODE_PONG], **kwargs) if data != payload: raise IOError("Pinged server but did not receive correct pong")
python
{ "resource": "" }
q10418
WebsocketClient.recv_raw
train
def recv_raw(self, timeout, opcodes, **kwargs): """this is very internal, it will return the raw opcode and data if they match the passed in opcodes""" orig_timeout = self.get_timeout(timeout) timeout = orig_timeout while timeout > 0.0: start = time.time() if not self.connected: self.connect(timeout=timeout, **kwargs) with self.wstimeout(timeout, **kwargs) as timeout: logger.debug('{} waiting to receive for {} seconds'.format(self.client_id, timeout)) try: opcode, data = self.ws.recv_data() if opcode in opcodes: timeout = 0.0 break else: if opcode == websocket.ABNF.OPCODE_CLOSE: raise websocket.WebSocketConnectionClosedException() except websocket.WebSocketTimeoutException: pass except websocket.WebSocketConnectionClosedException: # bug in Websocket.recv_data(), this should be done by Websocket try: self.ws.shutdown() except AttributeError: pass #raise EOFError("websocket closed by server and reconnection did nothing") if timeout: stop = time.time() timeout -= (stop - start) else: break if timeout < 0.0: raise IOError("recv timed out in {} seconds".format(orig_timeout)) return opcode, data
python
{ "resource": "" }
q10419
WebsocketClient.get_fetch_response
train
def get_fetch_response(self, raw): """This just makes the payload instance more HTTPClient like""" p = Payload(raw) p._body = p.body return p
python
{ "resource": "" }
q10420
WebsocketClient.recv
train
def recv(self, timeout=0, **kwargs): """this will receive data and convert it into a message, really this is more of an internal method, it is used in recv_callback and recv_msg""" opcode, data = self.recv_raw(timeout, [websocket.ABNF.OPCODE_TEXT], **kwargs) return self.get_fetch_response(data)
python
{ "resource": "" }
q10421
WebsocketClient.recv_callback
train
def recv_callback(self, callback, **kwargs): """receive messages and validate them with the callback, if the callback returns True then the message is valid and will be returned, if False then this will try and receive another message until timeout is 0""" payload = None timeout = self.get_timeout(**kwargs) full_timeout = timeout while timeout > 0.0: kwargs['timeout'] = timeout start = time.time() payload = self.recv(**kwargs) if callback(payload): break payload = None stop = time.time() elapsed = stop - start timeout -= elapsed if not payload: raise IOError("recv_callback timed out in {}".format(full_timeout)) return payload
python
{ "resource": "" }
q10422
Call.create_controller
train
def create_controller(self): """Create a controller to handle the request :returns: Controller, this Controller instance should be able to handle the request """ body = None req = self.request res = self.response rou = self.router con = None controller_info = {} try: controller_info = rou.find(req, res) except IOError as e: logger.warning(str(e), exc_info=True) raise CallError( 408, "The client went away before the request body was retrieved." ) except (ImportError, AttributeError, TypeError) as e: exc_info = sys.exc_info() logger.warning(str(e), exc_info=exc_info) raise CallError( 404, "{} not found because of {} \"{}\" on {}:{}".format( req.path, exc_info[0].__name__, str(e), os.path.basename(exc_info[2].tb_frame.f_code.co_filename), exc_info[2].tb_lineno ) ) else: con = controller_info['class_instance'] return con
python
{ "resource": "" }
q10423
Call.handle
train
def handle(self): """Called from the interface to actually handle the request.""" body = None req = self.request res = self.response rou = self.router con = None start = time.time() try: con = self.create_controller() con.call = self self.controller = con if not self.quiet: con.log_start(start) # the controller handle method will manipulate self.response, it first # tries to find a handle_HTTP_METHOD method, if it can't find that it # will default to the handle method (which is implemented on Controller). # method arguments are passed in so child classes can add decorators # just like the HTTP_METHOD that will actually handle the request controller_args, controller_kwargs = con.find_method_params() controller_method = getattr(con, "handle_{}".format(req.method), None) if not controller_method: controller_method = getattr(con, "handle") if not self.quiet: logger.debug("Using handle method: {}.{}".format( con.__class__.__name__, controller_method.__name__ )) controller_method(*controller_args, **controller_kwargs) except Exception as e: self.handle_error(e) # this will manipulate self.response finally: if res.code == 204: res.headers.pop('Content-Type', None) res.body = None # just to be sure since body could've been "" if con: if not self.quiet: con.log_stop(start) return res
python
{ "resource": "" }
q10424
Call.handle_error
train
def handle_error(self, e, **kwargs): """if an exception is raised while trying to handle the request it will go through this method This method will set the response body and then also call Controller.handle_error for further customization if the Controller is available :param e: Exception, the error that was raised :param **kwargs: dict, any other information that might be handy """ req = self.request res = self.response con = self.controller if isinstance(e, CallStop): logger.info(str(e), exc_info=True) res.code = e.code res.add_headers(e.headers) res.body = e.body elif isinstance(e, Redirect): logger.info(str(e), exc_info=True) res.code = e.code res.add_headers(e.headers) res.body = None elif isinstance(e, (AccessDenied, CallError)): logger.warning(str(e), exc_info=True) res.code = e.code res.add_headers(e.headers) res.body = e elif isinstance(e, NotImplementedError): logger.warning(str(e), exc_info=True) res.code = 501 res.body = e elif isinstance(e, TypeError): e_msg = unicode(e) if e_msg.startswith(req.method) and 'argument' in e_msg: logger.debug(e_msg, exc_info=True) logger.warning( " ".join([ "Either the path arguments ({} args) or the keyword arguments", "({} args) for {}.{} do not match the {} handling method's", "definition" ]).format( len(req.controller_info["method_args"]), len(req.controller_info["method_kwargs"]), req.controller_info['module_name'], req.controller_info['class_name'], req.method ) ) res.code = 405 else: logger.exception(e) res.code = 500 res.body = e else: logger.exception(e) res.code = 500 res.body = e if con: error_method = getattr(con, "handle_{}_error".format(req.method), None) if not error_method: error_method = getattr(con, "handle_error") logger.debug("Using error method: {}.{}".format( con.__class__.__name__, error_method.__name__ )) error_method(e, **kwargs)
python
{ "resource": "" }
q10425
Router.module_names
train
def module_names(self): """get all the modules in the controller_prefix :returns: set, a set of string module names """ controller_prefix = self.controller_prefix _module_name_cache = self._module_name_cache if controller_prefix in _module_name_cache: return _module_name_cache[controller_prefix] module = self.get_module(controller_prefix) if hasattr(module, "__path__"): # path attr exists so this is a package modules = self.find_modules(module.__path__[0], controller_prefix) else: # we have a lonely .py file modules = set([controller_prefix]) _module_name_cache.setdefault(controller_prefix, {}) _module_name_cache[controller_prefix] = modules return modules
python
{ "resource": "" }
q10426
Router.modules
train
def modules(self): """Returns an iterator of the actual modules, not just their names :returns: generator, each module under self.controller_prefix """ for modname in self.module_names: module = importlib.import_module(modname) yield module
python
{ "resource": "" }
q10427
Router.find_modules
train
def find_modules(self, path, prefix): """recursive method that will find all the submodules of the given module at prefix with path""" modules = set([prefix]) # https://docs.python.org/2/library/pkgutil.html#pkgutil.iter_modules for module_info in pkgutil.iter_modules([path]): # we want to ignore any "private" modules if module_info[1].startswith('_'): continue module_prefix = ".".join([prefix, module_info[1]]) if module_info[2]: # module is a package submodules = self.find_modules(os.path.join(path, module_info[1]), module_prefix) modules.update(submodules) else: modules.add(module_prefix) return modules
python
{ "resource": "" }
q10428
Router.get_module_name
train
def get_module_name(self, path_args): """returns the module_name and remaining path args. return -- tuple -- (module_name, path_args)""" controller_prefix = self.controller_prefix cset = self.module_names module_name = controller_prefix mod_name = module_name while path_args: mod_name += "." + path_args[0] if mod_name in cset: module_name = mod_name path_args.pop(0) else: break return module_name, path_args
python
{ "resource": "" }
q10429
Router.get_class
train
def get_class(self, module, class_name): """try and get the class_name from the module and make sure it is a valid controller""" # let's get the class class_object = getattr(module, class_name, None) if not class_object or not issubclass(class_object, Controller): class_object = None return class_object
python
{ "resource": "" }
q10430
Controller.OPTIONS
train
def OPTIONS(self, *args, **kwargs): """Handles CORS requests for this controller if self.cors is False then this will raise a 405, otherwise it sets everything necessary to satisfy the request in self.response """ if not self.cors: raise CallError(405) req = self.request origin = req.get_header('origin') if not origin: raise CallError(400, 'Need Origin header') call_headers = [ ('Access-Control-Request-Headers', 'Access-Control-Allow-Headers'), ('Access-Control-Request-Method', 'Access-Control-Allow-Methods') ] for req_header, res_header in call_headers: v = req.get_header(req_header) if v: self.response.set_header(res_header, v) else: raise CallError(400, 'Need {} header'.format(req_header)) other_headers = { 'Access-Control-Allow-Credentials': 'true', 'Access-Control-Max-Age': 3600 } self.response.add_headers(other_headers)
python
{ "resource": "" }
q10431
Controller.handle
train
def handle(self, *controller_args, **controller_kwargs): """handles the request and returns the response This should set any response information directly onto self.response this method has the same signature as the request handling methods (eg, GET, POST) so subclasses can override this method and add decorators :param *controller_args: tuple, the path arguments that will be passed to the request handling method (eg, GET, POST) :param **controller_kwargs: dict, the query and body params merged together """ req = self.request res = self.response res.set_header('Content-Type', "{};charset={}".format( self.content_type, self.encoding )) encoding = req.accept_encoding res.encoding = encoding if encoding else self.encoding res_method_name = "" controller_methods = self.find_methods() #controller_args, controller_kwargs = self.find_method_params() for controller_method_name, controller_method in controller_methods: try: logger.debug("Attempting to handle request with {}.{}.{}".format( req.controller_info['module_name'], req.controller_info['class_name'], controller_method_name )) res.body = controller_method( *controller_args, **controller_kwargs ) res_method_name = controller_method_name break except VersionError as e: logger.debug("Request {}.{}.{} failed version check [{} not in {}]".format( req.controller_info['module_name'], req.controller_info['class_name'], controller_method_name, e.request_version, e.versions )) except RouteError: logger.debug("Request {}.{}.{} failed routing check".format( req.controller_info['module_name'], req.controller_info['class_name'], controller_method_name )) if not res_method_name: # https://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html#sec5.1 # An origin server SHOULD return the status code 405 (Method Not Allowed) # if the method is known by the origin server but not allowed for the # requested resource raise CallError(405, "Could not find a method to satisfy {}".format( req.path ))
python
{ "resource": "" }
q10432
Controller.find_methods
train
def find_methods(self): """Find the methods that could satisfy this request This will go through and find any method that starts with the request.method, so if the request was GET /foo then this would find any methods that start with GET https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html :returns: list of tuples (method_name, method), all the found methods """ methods = [] req = self.request method_name = req.method.upper() method_names = set() members = inspect.getmembers(self) for member_name, member in members: if member_name.startswith(method_name): if member: methods.append((member_name, member)) method_names.add(member_name) if len(methods) == 0: # https://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html#sec5.1 # and 501 (Not Implemented) if the method is unrecognized or not # implemented by the origin server logger.warning("No methods to handle {} found".format(method_name), exc_info=True) raise CallError(501, "{} {} not implemented".format(req.method, req.path)) elif len(methods) > 1 and method_name in method_names: raise ValueError( " ".join([ "A multi method {} request should not have any methods named {}.", "Instead, all {} methods should use use an appropriate decorator", "like @route or @version and have a unique name starting with {}_" ]).format( method_name, method_name, method_name, method_name ) ) return methods
python
{ "resource": "" }
q10433
Controller.find_method_params
train
def find_method_params(self): """Return the method params :returns: tuple (args, kwargs) that will be passed as *args, **kwargs """ req = self.request args = req.controller_info["method_args"] kwargs = req.controller_info["method_kwargs"] return args, kwargs
python
{ "resource": "" }
q10434
Controller.log_start
train
def log_start(self, start): """log all the headers and stuff at the start of the request""" if not logger.isEnabledFor(logging.INFO): return try: req = self.request logger.info("REQUEST {} {}?{}".format(req.method, req.path, req.query)) logger.info(datetime.datetime.strftime(datetime.datetime.utcnow(), "DATE %Y-%m-%dT%H:%M:%S.%f")) ip = req.ip if ip: logger.info("\tIP ADDRESS: {}".format(ip)) if 'authorization' in req.headers: logger.info('AUTH {}'.format(req.headers['authorization'])) ignore_hs = set([ 'accept-language', 'accept-encoding', 'connection', 'authorization', 'host', 'x-forwarded-for' ]) hs = ["Request Headers..."] for k, v in req.headers.items(): if k not in ignore_hs: hs.append("\t{}: {}".format(k, v)) logger.info(os.linesep.join(hs)) except Exception as e: logger.warn(e, exc_info=True)
python
{ "resource": "" }
q10435
Controller.log_stop
train
def log_stop(self, start): """log a summary line on how the request went""" if not logger.isEnabledFor(logging.INFO): return stop = time.time() get_elapsed = lambda start, stop, multiplier, rnd: round(abs(stop - start) * float(multiplier), rnd) elapsed = get_elapsed(start, stop, 1000.00, 1) total = "%0.1f ms" % (elapsed) logger.info("RESPONSE {} {} in {}".format(self.response.code, self.response.status, total))
python
{ "resource": "" }
q10436
build_lane_from_yaml
train
def build_lane_from_yaml(path): """Builds a `sparklanes.Lane` object from a YAML definition file. Parameters ---------- path: str Path to the YAML definition file Returns ------- Lane Lane, built according to definition in YAML file """ # Open with open(path, 'rb') as yaml_definition: definition = yaml.load(yaml_definition) # Validate schema try: validate_schema(definition) except SchemaError as exc: raise LaneSchemaError(**exc.__dict__) def build(lb_def, branch=False): """Function to recursively build the `sparklanes.Lane` object from a YAML definition""" init_kwargs = {k: lb_def[k] for k in (a for a in ('run_parallel', 'name') if a in lb_def)} lane_or_branch = Lane(**init_kwargs) if not branch else Branch(**init_kwargs) for task in lb_def['tasks']: if 'branch' in task: branch_def = task['branch'] lane_or_branch.add(build(branch_def, True)) else: sep = task['class'].rfind('.') if sep == -1: raise LaneImportError('Class must include its parent module') mdl = task['class'][:sep] cls_ = task['class'][sep + 1:] try: cls = getattr(import_module(mdl), cls_) except ImportError: raise LaneImportError('Could not find module %s' % mdl) except AttributeError: raise LaneImportError('Could not find class %s' % cls_) args = task['args'] if 'args' in task else [] args = [args] if not isinstance(args, list) else args kwargs = task['kwargs'] if 'kwargs' in task else {} lane_or_branch.add(cls, *args, **kwargs) return lane_or_branch return build(definition['lane'])
python
{ "resource": "" }
q10437
Lane.add
train
def add(self, cls_or_branch, *args, **kwargs): """Adds a task or branch to the lane. Parameters ---------- cls_or_branch : Class *args Variable length argument list to be passed to `cls_or_branch` during instantiation **kwargs Variable length keyword arguments to be passed to `cls_or_branch` during instantiation Returns ------- self: Returns `self` to allow method chaining """ if isinstance(cls_or_branch, Branch): self.tasks.append(cls_or_branch) # Add branch with already validated tasks else: # Validate self.__validate_task(cls_or_branch, '__init__', args, kwargs) # Append self.tasks.append({'cls_or_branch': cls_or_branch, 'args': args, 'kwargs': kwargs}) return self
python
{ "resource": "" }
q10438
get_historical_data
train
def get_historical_data(nmr_problems): """Get the historical tank data. Args: nmr_problems (int): the number of problems Returns: tuple: (observations, nmr_tanks_ground_truth) """ observations = np.tile(np.array([[10, 256, 202, 97]]), (nmr_problems, 1)) nmr_tanks_ground_truth = np.ones((nmr_problems,)) * 276 return observations, nmr_tanks_ground_truth
python
{ "resource": "" }
q10439
get_simulated_data
train
def get_simulated_data(nmr_problems): """Simulate some data. This returns the simulated tank observations and the corresponding ground truth maximum number of tanks. Args: nmr_problems (int): the number of problems Returns: tuple: (observations, nmr_tanks_ground_truth) """ # The number of tanks we observe per problem nmr_observed_tanks = 10 # Generate some maximum number of tanks. Basically the ground truth of the estimation problem. nmr_tanks_ground_truth = normal(nmr_problems, 1, mean=250, std=30, ctype='uint') # Generate some random tank observations observations = uniform(nmr_problems, nmr_observed_tanks, low=0, high=nmr_tanks_ground_truth, ctype='uint') return observations, nmr_tanks_ground_truth
python
{ "resource": "" }
q10440
_get_initial_step
train
def _get_initial_step(parameters, lower_bounds, upper_bounds, max_step_sizes): """Get an initial step size to use for every parameter. This chooses the step sizes based on the maximum step size and the lower and upper bounds. Args: parameters (ndarray): The parameters at which to evaluate the gradient. A (d, p) matrix with d problems, p parameters and n samples. lower_bounds (list): lower bounds upper_bounds (list): upper bounds max_step_sizes (list or None): the maximum step size, or the maximum step size per parameter. Defaults to 0.1 Returns: ndarray: for every problem instance the vector with the initial step size for each parameter. """ nmr_params = parameters.shape[1] initial_step = np.zeros_like(parameters) if max_step_sizes is None: max_step_sizes = 0.1 if isinstance(max_step_sizes, Number): max_step_sizes = [max_step_sizes] * nmr_params max_step_sizes = np.array(max_step_sizes) for ind in range(parameters.shape[1]): minimum_allowed_step = np.minimum(np.abs(parameters[:, ind] - lower_bounds[ind]), np.abs(upper_bounds[ind] - parameters[:, ind])) initial_step[:, ind] = np.minimum(minimum_allowed_step, max_step_sizes[ind]) return initial_step / 2.
python
{ "resource": "" }
q10441
SimpleConfigAction.apply
train
def apply(self): """Apply the current action to the current runtime configuration.""" self._old_config = {k: v for k, v in _config.items()} self._apply()
python
{ "resource": "" }
q10442
SimpleConfigAction.unapply
train
def unapply(self): """Reset the current configuration to the previous state.""" for key, value in self._old_config.items(): _config[key] = value
python
{ "resource": "" }
q10443
Task
train
def Task(entry): # pylint: disable=invalid-name """ Decorator with which classes, who act as tasks in a `Lane`, must be decorated. When a class is being decorated, it becomes a child of `LaneTask`. Parameters ---------- entry: The name of the task's "main" method, i.e. the method which is executed when task is run Returns ------- wrapper (function): The actual decorator function """ if not isinstance(entry, string_types): # In the event that no argument is supplied to the decorator, python passes the decorated # class itself as an argument. That way, we can detect if no argument (or an argument of # invalid type) was supplied. This allows passing of `entry` as both a named kwarg, and # as an arg. Isn't neat, but for now it suffices. raise TypeError('When decorating a class with `Task`, a single string argument must be ' 'supplied, which specifies the "main" task method, i.e. the class\'s entry ' 'point to the task.') else: def wrapper(cls): """The actual decorator function""" if isclass(cls): if not hasattr(cls, entry): # Check if cls has the specified entry method raise TypeError('Method `%s` not found in class `%s`.' % (entry, cls.__name__)) # We will have to inspect the task class's `__init__` method later (by inspecting # the arg signature, before it is instantiated). In various circumstances, classes # will not have an unbound `__init__` method. Let's deal with that now already, by # assigning an empty, unbound `__init__` method manually, in order to prevent # errors later on during method inspection (not an issue in Python 3): # - Whenever a class is not defined as a new-style class in Python 2.7, i.e. a # sub-class of object, and it does not have a `__init__` method definition, the # class will not have an attribute `__init__` # - If a class misses a `__init__` method definition, but is defined as a # new-style class, attribute `__init__` will be of type `slot wrapper`, which # cannot be inspected (and it also doesn't seem possible to check if a method is of # type `slot wrapper`, which is why we manually define one). if not hasattr(cls, '__init__') or cls.__init__ == object.__init__: init = MethodType(lambda self: None, None, cls) \ if PY2 else MethodType(lambda self: None, cls) setattr(cls, '__init__', init) # Check for attributes that will be overwritten, in order to warn the user reserved_attributes = ('__getattr__', '__call__', '_entry_mtd', 'cache', 'uncache', 'clear_cache', '_log_lock') for attr in dir(cls): if attr in reserved_attributes: make_default_logger(INTERNAL_LOGGER_NAME).warning( 'Attribute `%s` of class `%s` will be overwritten when decorated with ' '`sparklanes.Task`! Avoid assigning any of the following attributes ' '`%s`', attr, cls.__name__, str(reserved_attributes) ) assignments = {'_entry_mtd': entry, '__getattr__': lambda self, name: TaskCache.get(name), '__init__': cls.__init__, '_log_lock': Lock()} for attr in WRAPPER_ASSIGNMENTS: try: assignments[attr] = getattr(cls, attr) except AttributeError: pass # Build task as a subclass of LaneTask return type('Task_%s' % cls.__name__, (LaneTask, cls, object), assignments) else: raise TypeError('Only classes can be decorated with `Task`') return wrapper
python
{ "resource": "" }
q10444
LaneTaskThread.run
train
def run(self): """Overwrites `threading.Thread.run`, to allow handling of exceptions thrown by threads from within the main app.""" self.exc = None try: self.task() except BaseException: self.exc = sys.exc_info()
python
{ "resource": "" }
q10445
LaneTaskThread.join
train
def join(self, timeout=None): """Overwrites `threading.Thread.join`, to allow handling of exceptions thrown by threads from within the main app.""" Thread.join(self, timeout=timeout) if self.exc: msg = "Thread '%s' threw an exception `%s`: %s" \ % (self.getName(), self.exc[0].__name__, self.exc[1]) new_exc = LaneExecutionError(msg) if PY3: raise new_exc.with_traceback(self.exc[2]) # pylint: disable=no-member else: raise (new_exc.__class__, new_exc, self.exc[2])
python
{ "resource": "" }
q10446
mock_decorator
train
def mock_decorator(*args, **kwargs): """Mocked decorator, needed in the case we need to mock a decorator""" def _called_decorator(dec_func): @wraps(dec_func) def _decorator(*args, **kwargs): return dec_func() return _decorator return _called_decorator
python
{ "resource": "" }
q10447
import_mock
train
def import_mock(name, *args, **kwargs): """Mock all modules starting with one of the mock_modules names.""" if any(name.startswith(s) for s in mock_modules): return MockModule() return orig_import(name, *args, **kwargs)
python
{ "resource": "" }
q10448
SimpleCLFunction._get_parameter_signatures
train
def _get_parameter_signatures(self): """Get the signature of the parameters for the CL function declaration. This should return the list of signatures of the parameters for use inside the function signature. Returns: list: the signatures of the parameters for the use in the CL code. """ declarations = [] for p in self.get_parameters(): new_p = p.get_renamed(p.name.replace('.', '_')) declarations.append(new_p.get_declaration()) return declarations
python
{ "resource": "" }
q10449
SimpleCLFunction._get_cl_dependency_code
train
def _get_cl_dependency_code(self): """Get the CL code for all the CL code for all the dependencies. Returns: str: The CL code with the actual code. """ code = '' for d in self._dependencies: code += d.get_cl_code() + "\n" return code
python
{ "resource": "" }
q10450
_ProcedureWorker._build_kernel
train
def _build_kernel(self, kernel_source, compile_flags=()): """Convenience function for building the kernel for this worker. Args: kernel_source (str): the kernel source to use for building the kernel Returns: cl.Program: a compiled CL kernel """ return cl.Program(self._cl_context, kernel_source).build(' '.join(compile_flags))
python
{ "resource": "" }
q10451
_ProcedureWorker._get_kernel_arguments
train
def _get_kernel_arguments(self): """Get the list of kernel arguments for loading the kernel data elements into the kernel. This will use the sorted keys for looping through the kernel input items. Returns: list of str: the list of parameter definitions """ declarations = [] for name, data in self._kernel_data.items(): declarations.extend(data.get_kernel_parameters('_' + name)) return declarations
python
{ "resource": "" }
q10452
_ProcedureWorker.get_scalar_arg_dtypes
train
def get_scalar_arg_dtypes(self): """Get the location and types of the input scalars. Returns: list: for every kernel input element either None if the data is a buffer or the numpy data type if if is a scalar. """ dtypes = [] for name, data in self._kernel_data.items(): dtypes.extend(data.get_scalar_arg_dtypes()) return dtypes
python
{ "resource": "" }
q10453
_package_and_submit
train
def _package_and_submit(args): """ Packages and submits a job, which is defined in a YAML file, to Spark. Parameters ---------- args (List): Command-line arguments """ args = _parse_and_validate_args(args) logging.debug(args) dist = __make_tmp_dir() try: __package_dependencies(dist_dir=dist, additional_reqs=args['requirements'], silent=args['silent']) __package_app(tasks_pkg=args['package'], dist_dir=dist, custom_main=args['main'], extra_data=args['extra_data']) __run_spark_submit(lane_yaml=args['yaml'], dist_dir=dist, spark_home=args['spark_home'], spark_args=args['spark_args'], silent=args['silent']) except Exception as exc: __clean_up(dist) raise exc __clean_up(dist)
python
{ "resource": "" }
q10454
__run_spark_submit
train
def __run_spark_submit(lane_yaml, dist_dir, spark_home, spark_args, silent): """ Submits the packaged application to spark using a `spark-submit` subprocess Parameters ---------- lane_yaml (str): Path to the YAML lane definition file dist_dir (str): Path to the directory where the packaged code is located spark_args (str): String of any additional spark config args to be passed when submitting silent (bool): Flag indicating whether job output should be printed to console """ # spark-submit binary cmd = ['spark-submit' if spark_home is None else os.path.join(spark_home, 'bin/spark-submit')] # Supplied spark arguments if spark_args: cmd += spark_args # Packaged App & lane cmd += ['--py-files', 'libs.zip,_framework.zip,tasks.zip', 'main.py'] cmd += ['--lane', lane_yaml] logging.info('Submitting to Spark') logging.debug(str(cmd)) # Submit devnull = open(os.devnull, 'w') outp = {'stderr': STDOUT, 'stdout': devnull} if silent else {} call(cmd, cwd=dist_dir, env=MY_ENV, **outp) devnull.close()
python
{ "resource": "" }
q10455
ctype_to_dtype
train
def ctype_to_dtype(cl_type, mot_float_type='float'): """Get the numpy dtype of the given cl_type string. Args: cl_type (str): the CL data type to match, for example 'float' or 'float4'. mot_float_type (str): the C name of the ``mot_float_type``. The dtype will be looked up recursively. Returns: dtype: the numpy datatype """ if is_vector_ctype(cl_type): raw_type, vector_length = split_vector_ctype(cl_type) if raw_type == 'mot_float_type': if is_vector_ctype(mot_float_type): raw_type, _ = split_vector_ctype(mot_float_type) else: raw_type = mot_float_type vector_type = raw_type + str(vector_length) return getattr(cl_array.vec, vector_type) else: if cl_type == 'mot_float_type': cl_type = mot_float_type data_types = [ ('char', np.int8), ('uchar', np.uint8), ('short', np.int16), ('ushort', np.uint16), ('int', np.int32), ('uint', np.uint32), ('long', np.int64), ('ulong', np.uint64), ('float', np.float32), ('double', np.float64), ] for ctype, dtype in data_types: if ctype == cl_type: return dtype
python
{ "resource": "" }
q10456
convert_data_to_dtype
train
def convert_data_to_dtype(data, data_type, mot_float_type='float'): """Convert the given input data to the correct numpy type. Args: data (ndarray): The value to convert to the correct numpy type data_type (str): the data type we need to convert the data to mot_float_type (str): the data type of the current ``mot_float_type`` Returns: ndarray: the input data but then converted to the desired numpy data type """ scalar_dtype = ctype_to_dtype(data_type, mot_float_type) if isinstance(data, numbers.Number): data = scalar_dtype(data) if is_vector_ctype(data_type): shape = data.shape dtype = ctype_to_dtype(data_type, mot_float_type) ve = np.zeros(shape[:-1], dtype=dtype) if len(shape) == 1: for vector_ind in range(shape[0]): ve[0][vector_ind] = data[vector_ind] elif len(shape) == 2: for i in range(data.shape[0]): for vector_ind in range(data.shape[1]): ve[i][vector_ind] = data[i, vector_ind] elif len(shape) == 3: for i in range(data.shape[0]): for j in range(data.shape[1]): for vector_ind in range(data.shape[2]): ve[i, j][vector_ind] = data[i, j, vector_ind] return np.require(ve, requirements=['C', 'A', 'O']) return np.require(data, scalar_dtype, ['C', 'A', 'O'])
python
{ "resource": "" }
q10457
split_vector_ctype
train
def split_vector_ctype(ctype): """Split a vector ctype into a raw ctype and the vector length. If the given ctype is not a vector type, we raise an error. I Args: ctype (str): the ctype to possibly split into a raw ctype and the vector length Returns: tuple: the raw ctype and the vector length """ if not is_vector_ctype(ctype): raise ValueError('The given ctype is not a vector type.') for vector_length in [2, 3, 4, 8, 16]: if ctype.endswith(str(vector_length)): vector_str_len = len(str(vector_length)) return ctype[:-vector_str_len], int(ctype[-vector_str_len:])
python
{ "resource": "" }
q10458
device_type_from_string
train
def device_type_from_string(cl_device_type_str): """Converts values like ``gpu`` to a pyopencl device type string. Supported values are: ``accelerator``, ``cpu``, ``custom``, ``gpu``. If ``all`` is given, None is returned. Args: cl_device_type_str (str): The string we want to convert to a device type. Returns: cl.device_type: the pyopencl device type. """ cl_device_type_str = cl_device_type_str.upper() if hasattr(cl.device_type, cl_device_type_str): return getattr(cl.device_type, cl_device_type_str) return None
python
{ "resource": "" }
q10459
topological_sort
train
def topological_sort(data): """Topological sort the given dictionary structure. Args: data (dict); dictionary structure where the value is a list of dependencies for that given key. For example: ``{'a': (), 'b': ('a',)}``, where ``a`` depends on nothing and ``b`` depends on ``a``. Returns: tuple: the dependencies in constructor order """ def check_self_dependencies(input_data): """Check if there are self dependencies within a node. Self dependencies are for example: ``{'a': ('a',)}``. Args: input_data (dict): the input data. Of a structure similar to {key: (list of values), ...}. Raises: ValueError: if there are indeed self dependencies """ for k, v in input_data.items(): if k in v: raise ValueError('Self-dependency, {} depends on itself.'.format(k)) def prepare_input_data(input_data): """Prepares the input data by making sets of the dependencies. This automatically removes redundant items. Args: input_data (dict): the input data. Of a structure similar to {key: (list of values), ...}. Returns: dict: a copy of the input dict but with sets instead of lists for the dependencies. """ return {k: set(v) for k, v in input_data.items()} def find_items_without_dependencies(input_data): """This searches the dependencies of all the items for items that have no dependencies. For example, suppose the input is: ``{'a': ('b',)}``, then ``a`` depends on ``b`` and ``b`` depends on nothing. This class returns ``(b,)`` in this example. Args: input_data (dict): the input data. Of a structure similar to {key: (list of values), ...}. Returns: list: the list of items without any dependency. """ return list(reduce(set.union, input_data.values()) - set(input_data.keys())) def add_empty_dependencies(data): items_without_dependencies = find_items_without_dependencies(data) data.update({item: set() for item in items_without_dependencies}) def get_sorted(input_data): data = input_data while True: ordered = set(item for item, dep in data.items() if len(dep) == 0) if not ordered: break yield ordered data = {item: (dep - ordered) for item, dep in data.items() if item not in ordered} if len(data) != 0: raise ValueError('Cyclic dependencies exist ' 'among these items: {}'.format(', '.join(repr(x) for x in data.items()))) check_self_dependencies(data) if not len(data): return [] data_copy = prepare_input_data(data) add_empty_dependencies(data_copy) result = [] for d in get_sorted(data_copy): try: d = sorted(d) except TypeError: d = list(d) result.extend(d) return result
python
{ "resource": "" }
q10460
is_scalar
train
def is_scalar(value): """Test if the given value is a scalar. This function also works with memory mapped array values, in contrast to the numpy is_scalar method. Args: value: the value to test for being a scalar value Returns: boolean: if the given value is a scalar or not """ return np.isscalar(value) or (isinstance(value, np.ndarray) and (len(np.squeeze(value).shape) == 0))
python
{ "resource": "" }
q10461
all_elements_equal
train
def all_elements_equal(value): """Checks if all elements in the given value are equal to each other. If the input is a single value the result is trivial. If not, we compare all the values to see if they are exactly the same. Args: value (ndarray or number): a numpy array or a single number. Returns: bool: true if all elements are equal to each other, false otherwise """ if is_scalar(value): return True return np.array(value == value.flatten()[0]).all()
python
{ "resource": "" }
q10462
get_single_value
train
def get_single_value(value): """Get a single value out of the given value. This is meant to be used after a call to :func:`all_elements_equal` that returned True. With this function we return a single number from the input value. Args: value (ndarray or number): a numpy array or a single number. Returns: number: a single number from the input Raises: ValueError: if not all elements are equal """ if not all_elements_equal(value): raise ValueError('Not all values are equal to each other.') if is_scalar(value): return value return value.item(0)
python
{ "resource": "" }
q10463
all_logging_disabled
train
def all_logging_disabled(highest_level=logging.CRITICAL): """Disable all logging temporarily. A context manager that will prevent any logging messages triggered during the body from being processed. Args: highest_level: the maximum logging level that is being blocked """ previous_level = logging.root.manager.disable logging.disable(highest_level) try: yield finally: logging.disable(previous_level)
python
{ "resource": "" }
q10464
split_in_batches
train
def split_in_batches(nmr_elements, max_batch_size): """Split the total number of elements into batches of the specified maximum size. Examples:: split_in_batches(30, 8) -> [(0, 8), (8, 15), (16, 23), (24, 29)] for batch_start, batch_end in split_in_batches(2000, 100): array[batch_start:batch_end] Yields: tuple: the start and end point of the next batch """ offset = 0 elements_left = nmr_elements while elements_left > 0: next_batch = (offset, offset + min(elements_left, max_batch_size)) yield next_batch batch_size = min(elements_left, max_batch_size) elements_left -= batch_size offset += batch_size
python
{ "resource": "" }
q10465
covariance_to_correlations
train
def covariance_to_correlations(covariance): """Transform a covariance matrix into a correlations matrix. This can be seen as dividing a covariance matrix by the outer product of the diagonal. As post processing we replace the infinities and the NaNs with zeros and clip the result to [-1, 1]. Args: covariance (ndarray): a matrix of shape (n, p, p) with for n problems the covariance matrix of shape (p, p). Returns: ndarray: the correlations matrix """ diagonal_ind = np.arange(covariance.shape[1]) diagonal_els = covariance[:, diagonal_ind, diagonal_ind] result = covariance / np.sqrt(diagonal_els[:, :, None] * diagonal_els[:, None, :]) result[np.isinf(result)] = 0 return np.clip(np.nan_to_num(result), -1, 1)
python
{ "resource": "" }
q10466
multiprocess_mapping
train
def multiprocess_mapping(func, iterable): """Multiprocess mapping the given function on the given iterable. This only works in Linux and Mac systems since Windows has no forking capability. On Windows we fall back on single processing. Also, if we reach memory limits we fall back on single cpu processing. Args: func (func): the function to apply iterable (iterable): the iterable with the elements we want to apply the function on """ if os.name == 'nt': # In Windows there is no fork. return list(map(func, iterable)) try: p = multiprocessing.Pool() return_data = list(p.imap(func, iterable)) p.close() p.join() return return_data except OSError: return list(map(func, iterable))
python
{ "resource": "" }
q10467
parse_cl_function
train
def parse_cl_function(cl_code, dependencies=()): """Parse the given OpenCL string to a single SimpleCLFunction. If the string contains more than one function, we will return only the last, with all the other added as a dependency. Args: cl_code (str): the input string containing one or more functions. dependencies (Iterable[CLCodeObject]): The list of CL libraries this function depends on Returns: mot.lib.cl_function.SimpleCLFunction: the CL function for the last function in the given strings. """ from mot.lib.cl_function import SimpleCLFunction def separate_cl_functions(input_str): """Separate all the OpenCL functions. This creates a list of strings, with for each function found the OpenCL code. Args: input_str (str): the string containing one or more functions. Returns: list: a list of strings, with one string per found CL function. """ class Semantics: def __init__(self): self._functions = [] def result(self, ast): return self._functions def arglist(self, ast): return '({})'.format(', '.join(ast)) def function(self, ast): def join(items): result = '' for item in items: if isinstance(item, str): result += item else: result += join(item) return result self._functions.append(join(ast).strip()) return ast return _extract_cl_functions_parser.parse(input_str, semantics=Semantics()) functions = separate_cl_functions(cl_code) return SimpleCLFunction.from_string(functions[-1], dependencies=list(dependencies or []) + [ SimpleCLFunction.from_string(s) for s in functions[:-1]])
python
{ "resource": "" }
q10468
split_cl_function
train
def split_cl_function(cl_str): """Split an CL function into a return type, function name, parameters list and the body. Args: cl_str (str): the CL code to parse and plit into components Returns: tuple: string elements for the return type, function name, parameter list and the body """ class Semantics: def __init__(self): self._return_type = '' self._function_name = '' self._parameter_list = [] self._cl_body = '' def result(self, ast): return self._return_type, self._function_name, self._parameter_list, self._cl_body def address_space(self, ast): self._return_type = ast.strip() + ' ' return ast def data_type(self, ast): self._return_type += ''.join(ast).strip() return ast def function_name(self, ast): self._function_name = ast.strip() return ast def arglist(self, ast): if ast != '()': self._parameter_list = ast return ast def body(self, ast): def join(items): result = '' for item in items: if isinstance(item, str): result += item else: result += join(item) return result self._cl_body = join(ast).strip()[1:-1] return ast return _split_cl_function_parser.parse(cl_str, semantics=Semantics())
python
{ "resource": "" }
q10469
make_default_logger
train
def make_default_logger(name=INTERNAL_LOGGER_NAME, level=logging.INFO, fmt='%(asctime)s - %(name)s - %(levelname)s - %(message)s'): """Create a logger with the default configuration""" logger = logging.getLogger(name) logger.setLevel(level) if not logger.handlers: handler = logging.StreamHandler(sys.stderr) handler.setLevel(level) formatter = logging.Formatter(fmt) handler.setFormatter(formatter) logger.addHandler(handler) return logger
python
{ "resource": "" }
q10470
CLEnvironment.is_gpu
train
def is_gpu(self): """Check if the device associated with this environment is a GPU. Returns: boolean: True if the device is an GPU, false otherwise. """ return self._device.get_info(cl.device_info.TYPE) == cl.device_type.GPU
python
{ "resource": "" }
q10471
CLEnvironment.is_cpu
train
def is_cpu(self): """Check if the device associated with this environment is a CPU. Returns: boolean: True if the device is an CPU, false otherwise. """ return self._device.get_info(cl.device_info.TYPE) == cl.device_type.CPU
python
{ "resource": "" }
q10472
CLEnvironmentFactory.single_device
train
def single_device(cl_device_type='GPU', platform=None, fallback_to_any_device_type=False): """Get a list containing a single device environment, for a device of the given type on the given platform. This will only fetch devices that support double (possibly only double with a pragma defined, but still, it should support double). Args: cl_device_type (cl.device_type.* or string): The type of the device we want, can be a opencl device type or a string matching 'GPU', 'CPU' or 'ALL'. platform (opencl platform): The opencl platform to select the devices from fallback_to_any_device_type (boolean): If True, try to fallback to any possible device in the system. Returns: list of CLEnvironment: List with one element, the CL runtime environment requested. """ if isinstance(cl_device_type, str): cl_device_type = device_type_from_string(cl_device_type) device = None if platform is None: platforms = cl.get_platforms() else: platforms = [platform] for platform in platforms: devices = platform.get_devices(device_type=cl_device_type) for dev in devices: if device_supports_double(dev): try: env = CLEnvironment(platform, dev) return [env] except cl.RuntimeError: pass if not device: if fallback_to_any_device_type: return cl.get_platforms()[0].get_devices() else: raise ValueError('No devices of the specified type ({}) found.'.format( cl.device_type.to_string(cl_device_type))) raise ValueError('No suitable OpenCL device found.')
python
{ "resource": "" }
q10473
CLEnvironmentFactory.all_devices
train
def all_devices(cl_device_type=None, platform=None): """Get multiple device environments, optionally only of the indicated type. This will only fetch devices that support double point precision. Args: cl_device_type (cl.device_type.* or string): The type of the device we want, can be a opencl device type or a string matching 'GPU' or 'CPU'. platform (opencl platform): The opencl platform to select the devices from Returns: list of CLEnvironment: List with the CL device environments. """ if isinstance(cl_device_type, str): cl_device_type = device_type_from_string(cl_device_type) runtime_list = [] if platform is None: platforms = cl.get_platforms() else: platforms = [platform] for platform in platforms: if cl_device_type: devices = platform.get_devices(device_type=cl_device_type) else: devices = platform.get_devices() for device in devices: if device_supports_double(device): env = CLEnvironment(platform, device) runtime_list.append(env) return runtime_list
python
{ "resource": "" }
q10474
CLEnvironmentFactory.smart_device_selection
train
def smart_device_selection(preferred_device_type=None): """Get a list of device environments that is suitable for use in MOT. Basically this gets the total list of devices using all_devices() and applies a filter on it. This filter does the following: 1) if the 'AMD Accelerated Parallel Processing' is available remove all environments using the 'Clover' platform. More things may be implemented in the future. Args: preferred_device_type (str): the preferred device type, one of 'CPU', 'GPU' or 'APU'. If no devices of this type can be found, we will use any other device available. Returns: list of CLEnvironment: List with the CL device environments. """ cl_environments = CLEnvironmentFactory.all_devices(cl_device_type=preferred_device_type) platform_names = [env.platform.name for env in cl_environments] has_amd_pro_platform = any('AMD Accelerated Parallel Processing' in name for name in platform_names) if has_amd_pro_platform: return list(filter(lambda env: 'Clover' not in env.platform.name, cl_environments)) if preferred_device_type is not None and not len(cl_environments): return CLEnvironmentFactory.all_devices() return cl_environments
python
{ "resource": "" }
q10475
multivariate_ess
train
def multivariate_ess(samples, batch_size_generator=None): r"""Estimate the multivariate Effective Sample Size for the samples of every problem. This essentially applies :func:`estimate_multivariate_ess` to every problem. Args: samples (ndarray, dict or generator): either a matrix of shape (d, p, n) with d problems, p parameters and n samples, or a dictionary with for every parameter a matrix with shape (d, n) or, finally, a generator function that yields sample arrays of shape (p, n). batch_size_generator (MultiVariateESSBatchSizeGenerator): the batch size generator, tells us how many batches and of which size we use in estimating the minimum ESS. Returns: ndarray: the multivariate ESS per problem """ samples_generator = _get_sample_generator(samples) return np.array(multiprocess_mapping(_MultivariateESSMultiProcessing(batch_size_generator), samples_generator()))
python
{ "resource": "" }
q10476
univariate_ess
train
def univariate_ess(samples, method='standard_error', **kwargs): r"""Estimate the univariate Effective Sample Size for the samples of every problem. This computes the ESS using: .. math:: ESS(X) = n * \frac{\lambda^{2}}{\sigma^{2}} Where :math:`\lambda` is the standard deviation of the chain and :math:`\sigma` is estimated using the monte carlo standard error (which in turn is, by default, estimated using a batch means estimator). Args: samples (ndarray, dict or generator): either a matrix of shape (d, p, n) with d problems, p parameters and n samples, or a dictionary with for every parameter a matrix with shape (d, n) or, finally, a generator function that yields sample arrays of shape (p, n). method (str): one of 'autocorrelation' or 'standard_error' defaults to 'standard_error'. If 'autocorrelation' is chosen we apply the function: :func:`estimate_univariate_ess_autocorrelation`, if 'standard_error` is choosen we apply the function: :func:`estimate_univariate_ess_standard_error`. **kwargs: passed to the chosen compute method Returns: ndarray: a matrix of size (d, p) with for every problem and every parameter an ESS. References: * Flegal, J.M., Haran, M., and Jones, G.L. (2008). "Markov chain Monte Carlo: Can We Trust the Third Significant Figure?". Statistical Science, 23, p. 250-260. * Marc S. Meketon and Bruce Schmeiser. 1984. Overlapping batch means: something for nothing?. In Proceedings of the 16th conference on Winter simulation (WSC '84), Sallie Sheppard (Ed.). IEEE Press, Piscataway, NJ, USA, 226-230. """ samples_generator = _get_sample_generator(samples) return np.array(multiprocess_mapping(_UnivariateESSMultiProcessing(method, **kwargs), samples_generator()))
python
{ "resource": "" }
q10477
_get_sample_generator
train
def _get_sample_generator(samples): """Get a sample generator from the given polymorphic input. Args: samples (ndarray, dict or generator): either an matrix of shape (d, p, n) with d problems, p parameters and n samples, or a dictionary with for every parameter a matrix with shape (d, n) or, finally, a generator function that yields sample arrays of shape (p, n). Returns: generator: a generator that yields a matrix of size (p, n) for every problem in the input. """ if isinstance(samples, Mapping): def samples_generator(): for ind in range(samples[list(samples.keys())[0]].shape[0]): yield np.array([samples[s][ind, :] for s in sorted(samples)]) elif isinstance(samples, np.ndarray): def samples_generator(): for ind in range(samples.shape[0]): yield samples[ind] else: samples_generator = samples return samples_generator
python
{ "resource": "" }
q10478
estimate_univariate_ess_standard_error
train
def estimate_univariate_ess_standard_error(chain, batch_size_generator=None, compute_method=None): r"""Compute the univariate ESS using the standard error method. This computes the ESS using: .. math:: ESS(X) = n * \frac{\lambda^{2}}{\sigma^{2}} Where :math:`\lambda` is the standard deviation of the chain and :math:`\sigma` is estimated using the monte carlo standard error (which in turn is, by default, estimated using a batch means estimator). Args: chain (ndarray): the Markov chain batch_size_generator (UniVariateESSBatchSizeGenerator): the method that generates that batch sizes we will use. Per default it uses the :class:`SquareRootSingleBatch` method. compute_method (ComputeMonteCarloStandardError): the method used to compute the standard error. By default we will use the :class:`BatchMeansMCSE` method Returns: float: the estimated ESS """ sigma = (monte_carlo_standard_error(chain, batch_size_generator=batch_size_generator, compute_method=compute_method) ** 2 * len(chain)) lambda_ = np.var(chain, dtype=np.float64) return len(chain) * (lambda_ / sigma)
python
{ "resource": "" }
q10479
minimum_multivariate_ess
train
def minimum_multivariate_ess(nmr_params, alpha=0.05, epsilon=0.05): r"""Calculate the minimum multivariate Effective Sample Size you will need to obtain the desired precision. This implements the inequality from Vats et al. (2016): .. math:: \widehat{ESS} \geq \frac{2^{2/p}\pi}{(p\Gamma(p/2))^{2/p}} \frac{\chi^{2}_{1-\alpha,p}}{\epsilon^{2}} Where :math:`p` is the number of free parameters. Args: nmr_params (int): the number of free parameters in the model alpha (float): the level of confidence of the confidence region. For example, an alpha of 0.05 means that we want to be in a 95% confidence region. epsilon (float): the level of precision in our multivariate ESS estimate. An epsilon of 0.05 means that we expect that the Monte Carlo error is 5% of the uncertainty in the target distribution. Returns: float: the minimum multivariate Effective Sample Size that one should aim for in MCMC sample to obtain the desired confidence region with the desired precision. References: Vats D, Flegal J, Jones G (2016). Multivariate Output Analysis for Markov Chain Monte Carlo. arXiv:1512.07713v2 [math.ST] """ tmp = 2.0 / nmr_params log_min_ess = tmp * np.log(2) + np.log(np.pi) - tmp * (np.log(nmr_params) + gammaln(nmr_params / 2)) \ + np.log(chi2.ppf(1 - alpha, nmr_params)) - 2 * np.log(epsilon) return int(round(np.exp(log_min_ess)))
python
{ "resource": "" }
q10480
multivariate_ess_precision
train
def multivariate_ess_precision(nmr_params, multi_variate_ess, alpha=0.05): r"""Calculate the precision given your multivariate Effective Sample Size. Given that you obtained :math:`ESS` multivariate effective samples in your estimate you can calculate the precision with which you approximated your desired confidence region. This implements the inequality from Vats et al. (2016), slightly restructured to give :math:`\epsilon` back instead of the minimum ESS. .. math:: \epsilon = \sqrt{\frac{2^{2/p}\pi}{(p\Gamma(p/2))^{2/p}} \frac{\chi^{2}_{1-\alpha,p}}{\widehat{ESS}}} Where :math:`p` is the number of free parameters and ESS is the multivariate ESS from your samples. Args: nmr_params (int): the number of free parameters in the model multi_variate_ess (int): the number of iid samples you obtained in your sample results. alpha (float): the level of confidence of the confidence region. For example, an alpha of 0.05 means that we want to be in a 95% confidence region. Returns: float: the minimum multivariate Effective Sample Size that one should aim for in MCMC sample to obtain the desired confidence region with the desired precision. References: Vats D, Flegal J, Jones G (2016). Multivariate Output Analysis for Markov Chain Monte Carlo. arXiv:1512.07713v2 [math.ST] """ tmp = 2.0 / nmr_params log_min_ess = tmp * np.log(2) + np.log(np.pi) - tmp * (np.log(nmr_params) + gammaln(nmr_params / 2)) \ + np.log(chi2.ppf(1 - alpha, nmr_params)) - np.log(multi_variate_ess) return np.sqrt(np.exp(log_min_ess))
python
{ "resource": "" }
q10481
estimate_multivariate_ess_sigma
train
def estimate_multivariate_ess_sigma(samples, batch_size): r"""Calculates the Sigma matrix which is part of the multivariate ESS calculation. This implementation is based on the Matlab implementation found at: https://github.com/lacerbi/multiESS The Sigma matrix is defined as: .. math:: \Sigma = \Lambda + 2 * \sum_{k=1}^{\infty}{Cov(Y_{1}, Y_{1+k})} Where :math:`Y` are our samples and :math:`\Lambda` is the covariance matrix of the samples. This implementation computes the :math:`\Sigma` matrix using a Batch Mean estimator using the given batch size. The batch size has to be :math:`1 \le b_n \le n` and a typical value is either :math:`\lfloor n^{1/2} \rfloor` for slow mixing chains or :math:`\lfloor n^{1/3} \rfloor` for reasonable mixing chains. If the length of the chain is longer than the sum of the length of all the batches, this implementation calculates :math:`\Sigma` for every offset and returns the average of those offsets. Args: samples (ndarray): the samples for which we compute the sigma matrix. Expects an (p, n) array with p the number of parameters and n the sample size batch_size (int): the batch size used in the approximation of the correlation covariance Returns: ndarray: an pxp array with p the number of parameters in the samples. References: Vats D, Flegal J, Jones G (2016). Multivariate Output Analysis for Markov Chain Monte Carlo. arXiv:1512.07713v2 [math.ST] """ sample_means = np.mean(samples, axis=1, dtype=np.float64) nmr_params, chain_length = samples.shape nmr_batches = int(np.floor(chain_length / batch_size)) sigma = np.zeros((nmr_params, nmr_params)) nmr_offsets = chain_length - nmr_batches * batch_size + 1 for offset in range(nmr_offsets): batches = np.reshape(samples[:, np.array(offset + np.arange(0, nmr_batches * batch_size), dtype=np.int)].T, [batch_size, nmr_batches, nmr_params], order='F') batch_means = np.squeeze(np.mean(batches, axis=0, dtype=np.float64)) Z = batch_means - sample_means for x, y in itertools.product(range(nmr_params), range(nmr_params)): sigma[x, y] += np.sum(Z[:, x] * Z[:, y]) return sigma * batch_size / (nmr_batches - 1) / nmr_offsets
python
{ "resource": "" }
q10482
monte_carlo_standard_error
train
def monte_carlo_standard_error(chain, batch_size_generator=None, compute_method=None): """Compute Monte Carlo standard errors for the expectations This is a convenience function that calls the compute method for each batch size and returns the lowest ESS over the used batch sizes. Args: chain (ndarray): the Markov chain batch_size_generator (UniVariateESSBatchSizeGenerator): the method that generates that batch sizes we will use. Per default it uses the :class:`SquareRootSingleBatch` method. compute_method (ComputeMonteCarloStandardError): the method used to compute the standard error. By default we will use the :class:`BatchMeansMCSE` method """ batch_size_generator = batch_size_generator or SquareRootSingleBatch() compute_method = compute_method or BatchMeansMCSE() batch_sizes = batch_size_generator.get_univariate_ess_batch_sizes(len(chain)) return np.min(list(compute_method.compute_standard_error(chain, b) for b in batch_sizes))
python
{ "resource": "" }
q10483
fit_gaussian
train
def fit_gaussian(samples, ddof=0): """Calculates the mean and the standard deviation of the given samples. Args: samples (ndarray): a one or two dimensional array. If one dimensional we calculate the fit using all values. If two dimensional, we fit the Gaussian for every set of samples over the first dimension. ddof (int): the difference degrees of freedom in the std calculation. See numpy. """ if len(samples.shape) == 1: return np.mean(samples), np.std(samples, ddof=ddof) return np.mean(samples, axis=1), np.std(samples, axis=1, ddof=ddof)
python
{ "resource": "" }
q10484
fit_circular_gaussian
train
def fit_circular_gaussian(samples, high=np.pi, low=0): """Compute the circular mean for samples in a range Args: samples (ndarray): a one or two dimensional array. If one dimensional we calculate the fit using all values. If two dimensional, we fit the Gaussian for every set of samples over the first dimension. high (float): The maximum wrap point low (float): The minimum wrap point """ cl_func = SimpleCLFunction.from_string(''' void compute(global mot_float_type* samples, global mot_float_type* means, global mot_float_type* stds, int nmr_samples, int low, int high){ double cos_mean = 0; double sin_mean = 0; double ang; for(uint i = 0; i < nmr_samples; i++){ ang = (samples[i] - low)*2*M_PI / (high - low); cos_mean += (cos(ang) - cos_mean) / (i + 1); sin_mean += (sin(ang) - sin_mean) / (i + 1); } double R = hypot(cos_mean, sin_mean); if(R > 1){ R = 1; } double stds = 1/2. * sqrt(-2 * log(R)); double res = atan2(sin_mean, cos_mean); if(res < 0){ res += 2 * M_PI; } *(means) = res*(high - low)/2.0/M_PI + low; *(stds) = ((high - low)/2.0/M_PI) * sqrt(-2*log(R)); } ''') def run_cl(samples): data = {'samples': Array(samples, 'mot_float_type'), 'means': Zeros(samples.shape[0], 'mot_float_type'), 'stds': Zeros(samples.shape[0], 'mot_float_type'), 'nmr_samples': Scalar(samples.shape[1]), 'low': Scalar(low), 'high': Scalar(high), } cl_func.evaluate(data, samples.shape[0]) return data['means'].get_data(), data['stds'].get_data() if len(samples.shape) == 1: mean, std = run_cl(samples[None, :]) return mean[0], std[0] return run_cl(samples)
python
{ "resource": "" }
q10485
fit_truncated_gaussian
train
def fit_truncated_gaussian(samples, lower_bounds, upper_bounds): """Fits a truncated gaussian distribution on the given samples. This will do a maximum likelihood estimation of a truncated Gaussian on the provided samples, with the truncation points given by the lower and upper bounds. Args: samples (ndarray): a one or two dimensional array. If one dimensional we fit the truncated Gaussian on all values. If two dimensional, we calculate the truncated Gaussian for every set of samples over the first dimension. lower_bounds (ndarray or float): the lower bound, either a scalar or a lower bound per problem (first index of samples) upper_bounds (ndarray or float): the upper bound, either a scalar or an upper bound per problem (first index of samples) Returns: mean, std: the mean and std of the fitted truncated Gaussian """ if len(samples.shape) == 1: return _TruncatedNormalFitter()((samples, lower_bounds, upper_bounds)) def item_generator(): for ind in range(samples.shape[0]): if is_scalar(lower_bounds): lower_bound = lower_bounds else: lower_bound = lower_bounds[ind] if is_scalar(upper_bounds): upper_bound = upper_bounds else: upper_bound = upper_bounds[ind] yield (samples[ind], lower_bound, upper_bound) results = np.array(multiprocess_mapping(_TruncatedNormalFitter(), item_generator())) return results[:, 0], results[:, 1]
python
{ "resource": "" }
q10486
gaussian_overlapping_coefficient
train
def gaussian_overlapping_coefficient(means_0, stds_0, means_1, stds_1, lower=None, upper=None): """Compute the overlapping coefficient of two Gaussian continuous_distributions. This computes the :math:`\int_{-\infty}^{\infty}{\min(f(x), g(x))\partial x}` where :math:`f \sim \mathcal{N}(\mu_0, \sigma_0^{2})` and :math:`f \sim \mathcal{N}(\mu_1, \sigma_1^{2})` are normally distributed variables. This will compute the overlap for each element in the first dimension. Args: means_0 (ndarray): the set of means of the first distribution stds_0 (ndarray): the set of stds of the fist distribution means_1 (ndarray): the set of means of the second distribution stds_1 (ndarray): the set of stds of the second distribution lower (float): the lower limit of the integration. If not set we set it to -inf. upper (float): the upper limit of the integration. If not set we set it to +inf. """ if lower is None: lower = -np.inf if upper is None: upper = np.inf def point_iterator(): for ind in range(means_0.shape[0]): yield np.squeeze(means_0[ind]), np.squeeze(stds_0[ind]), np.squeeze(means_1[ind]), np.squeeze(stds_1[ind]) return np.array(list(multiprocess_mapping(_ComputeGaussianOverlap(lower, upper), point_iterator())))
python
{ "resource": "" }
q10487
_TruncatedNormalFitter.truncated_normal_log_likelihood
train
def truncated_normal_log_likelihood(params, low, high, data): """Calculate the log likelihood of the truncated normal distribution. Args: params: tuple with (mean, std), the parameters under which we evaluate the model low (float): the lower truncation bound high (float): the upper truncation bound data (ndarray): the one dimension list of data points for which we want to calculate the likelihood Returns: float: the negative log likelihood of observing the given data under the given parameters. This is meant to be used in minimization routines. """ mu = params[0] sigma = params[1] if sigma == 0: return np.inf ll = np.sum(norm.logpdf(data, mu, sigma)) ll -= len(data) * np.log((norm.cdf(high, mu, sigma) - norm.cdf(low, mu, sigma))) return -ll
python
{ "resource": "" }
q10488
_TruncatedNormalFitter.truncated_normal_ll_gradient
train
def truncated_normal_ll_gradient(params, low, high, data): """Return the gradient of the log likelihood of the truncated normal at the given position. Args: params: tuple with (mean, std), the parameters under which we evaluate the model low (float): the lower truncation bound high (float): the upper truncation bound data (ndarray): the one dimension list of data points for which we want to calculate the likelihood Returns: tuple: the gradient of the log likelihood given as a tuple with (mean, std) """ if params[1] == 0: return np.array([np.inf, np.inf]) return np.array([_TruncatedNormalFitter.partial_derivative_mu(params[0], params[1], low, high, data), _TruncatedNormalFitter.partial_derivative_sigma(params[0], params[1], low, high, data)])
python
{ "resource": "" }
q10489
_TruncatedNormalFitter.partial_derivative_mu
train
def partial_derivative_mu(mu, sigma, low, high, data): """The partial derivative with respect to the mean. Args: mu (float): the mean of the truncated normal sigma (float): the std of the truncated normal low (float): the lower truncation bound high (float): the upper truncation bound data (ndarray): the one dimension list of data points for which we want to calculate the likelihood Returns: float: the partial derivative evaluated at the given point """ pd_mu = np.sum(data - mu) / sigma ** 2 pd_mu -= len(data) * ((norm.pdf(low, mu, sigma) - norm.pdf(high, mu, sigma)) / (norm.cdf(high, mu, sigma) - norm.cdf(low, mu, sigma))) return -pd_mu
python
{ "resource": "" }
q10490
_TruncatedNormalFitter.partial_derivative_sigma
train
def partial_derivative_sigma(mu, sigma, low, high, data): """The partial derivative with respect to the standard deviation. Args: mu (float): the mean of the truncated normal sigma (float): the std of the truncated normal low (float): the lower truncation bound high (float): the upper truncation bound data (ndarray): the one dimension list of data points for which we want to calculate the likelihood Returns: float: the partial derivative evaluated at the given point """ pd_sigma = np.sum(-(1 / sigma) + ((data - mu) ** 2 / (sigma ** 3))) pd_sigma -= len(data) * (((low - mu) * norm.pdf(low, mu, sigma) - (high - mu) * norm.pdf(high, mu, sigma)) / (sigma * (norm.cdf(high, mu, sigma) - norm.cdf(low, mu, sigma)))) return -pd_sigma
python
{ "resource": "" }
q10491
minimize
train
def minimize(func, x0, data=None, method=None, lower_bounds=None, upper_bounds=None, constraints_func=None, nmr_observations=None, cl_runtime_info=None, options=None): """Minimization of one or more variables. For an easy wrapper of function maximization, see :func:`maximize`. All boundary conditions are enforced using the penalty method. That is, we optimize the objective function: .. math:: F(x) = f(x) \mu \sum \max(0, g_i(x))^2 where :math:`F(x)` is the new objective function, :math:`f(x)` is the old objective function, :math:`g_i` are the boundary functions defined as :math:`g_i(x) \leq 0` and :math:`\mu` is the penalty weight. The penalty weight is by default :math:`\mu = 1e20` and can be set using the ``options`` dictionary as ``penalty_weight``. Args: func (mot.lib.cl_function.CLFunction): A CL function with the signature: .. code-block:: c double <func_name>(local const mot_float_type* const x, void* data, local mot_float_type* objective_list); The objective list needs to be filled when the provided pointer is not null. It should contain the function values for each observation. This list is used by non-linear least-squares routines, and will be squared by the least-square optimizer. This is only used by the ``Levenberg-Marquardt`` routine. x0 (ndarray): Initial guess. Array of real elements of size (n, p), for 'n' problems and 'p' independent variables. data (mot.lib.kernel_data.KernelData): the kernel data we will load. This is returned to the likelihood function as the ``void* data`` pointer. method (str): Type of solver. Should be one of: - 'Levenberg-Marquardt' - 'Nelder-Mead' - 'Powell' - 'Subplex' If not given, defaults to 'Powell'. lower_bounds (tuple): per parameter a lower bound, if given, the optimizer ensures ``a <= x`` with a the lower bound and x the parameter. If not given, -infinity is assumed for all parameters. Each tuple element can either be a scalar or a vector. If a vector is given the first dimension length should match that of the parameters. upper_bounds (tuple): per parameter an upper bound, if given, the optimizer ensures ``x >= b`` with b the upper bound and x the parameter. If not given, +infinity is assumed for all parameters. Each tuple element can either be a scalar or a vector. If a vector is given the first dimension length should match that of the parameters. constraints_func (mot.optimize.base.ConstraintFunction): function to compute (inequality) constraints. Should hold a CL function with the signature: .. code-block:: c void <func_name>(local const mot_float_type* const x, void* data, local mot_float_type* constraints); Where ``constraints_values`` is filled as: .. code-block:: c constraints[i] = g_i(x) That is, for each constraint function :math:`g_i`, formulated as :math:`g_i(x) <= 0`, we should return the function value of :math:`g_i`. nmr_observations (int): the number of observations returned by the optimization function. This is only needed for the ``Levenberg-Marquardt`` method. cl_runtime_info (mot.configuration.CLRuntimeInfo): the CL runtime information options (dict): A dictionary of solver options. All methods accept the following generic options: - patience (int): Maximum number of iterations to perform. - penalty_weight (float): the weight of the penalty term for the boundary conditions Returns: mot.optimize.base.OptimizeResults: The optimization result represented as a ``OptimizeResult`` object. Important attributes are: ``x`` the solution array. """ if not method: method = 'Powell' cl_runtime_info = cl_runtime_info or CLRuntimeInfo() if len(x0.shape) < 2: x0 = x0[..., None] lower_bounds = _bounds_to_array(lower_bounds or np.ones(x0.shape[1]) * -np.inf) upper_bounds = _bounds_to_array(upper_bounds or np.ones(x0.shape[1]) * np.inf) if method == 'Powell': return _minimize_powell(func, x0, cl_runtime_info, lower_bounds, upper_bounds, constraints_func=constraints_func, data=data, options=options) elif method == 'Nelder-Mead': return _minimize_nmsimplex(func, x0, cl_runtime_info, lower_bounds, upper_bounds, constraints_func=constraints_func, data=data, options=options) elif method == 'Levenberg-Marquardt': return _minimize_levenberg_marquardt(func, x0, nmr_observations, cl_runtime_info, lower_bounds, upper_bounds, constraints_func=constraints_func, data=data, options=options) elif method == 'Subplex': return _minimize_subplex(func, x0, cl_runtime_info, lower_bounds, upper_bounds, constraints_func=constraints_func, data=data, options=options) raise ValueError('Could not find the specified method "{}".'.format(method))
python
{ "resource": "" }
q10492
_bounds_to_array
train
def _bounds_to_array(bounds): """Create a CompositeArray to hold the bounds.""" elements = [] for value in bounds: if all_elements_equal(value): elements.append(Scalar(get_single_value(value), ctype='mot_float_type')) else: elements.append(Array(value, ctype='mot_float_type', as_scalar=True)) return CompositeArray(elements, 'mot_float_type', address_space='local')
python
{ "resource": "" }
q10493
get_minimizer_options
train
def get_minimizer_options(method): """Return a dictionary with the default options for the given minimization method. Args: method (str): the name of the method we want the options off Returns: dict: a dictionary with the default options """ if method == 'Powell': return {'patience': 2, 'patience_line_search': None, 'reset_method': 'EXTRAPOLATED_POINT'} elif method == 'Nelder-Mead': return {'patience': 200, 'alpha': 1.0, 'beta': 0.5, 'gamma': 2.0, 'delta': 0.5, 'scale': 0.1, 'adaptive_scales': True} elif method == 'Levenberg-Marquardt': return {'patience': 250, 'step_bound': 100.0, 'scale_diag': 1, 'usertol_mult': 30} elif method == 'Subplex': return {'patience': 10, 'patience_nmsimplex': 100, 'alpha': 1.0, 'beta': 0.5, 'gamma': 2.0, 'delta': 0.5, 'scale': 1.0, 'psi': 0.0001, 'omega': 0.01, 'adaptive_scales': True, 'min_subspace_length': 'auto', 'max_subspace_length': 'auto'} raise ValueError('Could not find the specified method "{}".'.format(method))
python
{ "resource": "" }
q10494
_clean_options
train
def _clean_options(method, provided_options): """Clean the given input options. This will make sure that all options are present, either with their default values or with the given values, and that no other options are present then those supported. Args: method (str): the method name provided_options (dict): the given options Returns: dict: the resulting options dictionary """ provided_options = provided_options or {} default_options = get_minimizer_options(method) result = {} for name, default in default_options.items(): if name in provided_options: result[name] = provided_options[name] else: result[name] = default_options[name] return result
python
{ "resource": "" }
q10495
validate_schema
train
def validate_schema(yaml_def, branch=False): """Validates the schema of a dict Parameters ---------- yaml_def : dict dict whose schema shall be validated branch : bool Indicates whether `yaml_def` is a dict of a top-level lane, or of a branch inside a lane (needed for recursion) Returns ------- bool True if validation was successful """ schema = Schema({ 'lane' if not branch else 'branch': { Optional('name'): str, Optional('run_parallel'): bool, 'tasks': list } }) schema.validate(yaml_def) from schema import And, Use task_schema = Schema({ 'class': str, Optional('kwargs'): Or({str: object}), Optional('args'): Or([object], And(Use(lambda a: isinstance(a, dict)), False)) }) def validate_tasks(tasks): # pylint: disable=missing-docstring for task in tasks: try: Schema({'branch': dict}).validate(task) validate_schema(task, True) except SchemaError: task_schema.validate(task) return True return validate_tasks(yaml_def['lane']['tasks'] if not branch else yaml_def['branch']['tasks'])
python
{ "resource": "" }
q10496
arg_spec
train
def arg_spec(cls, mtd_name): """Cross-version argument signature inspection Parameters ---------- cls : class mtd_name : str Name of the method to be inspected Returns ------- required_params : list of str List of required, positional parameters optional_params : list of str List of optional parameters, i.e. parameters with a default value """ mtd = getattr(cls, mtd_name) required_params = [] optional_params = [] if hasattr(inspect, 'signature'): # Python 3 params = inspect.signature(mtd).parameters # pylint: disable=no-member for k in params.keys(): if params[k].default == inspect.Parameter.empty: # pylint: disable=no-member # Python 3 does not make a difference between unbound methods and functions, so the # only way to distinguish if the first argument is of a regular method, or a class # method, is to look for the conventional argument name. Yikes. if not (params[k].name == 'self' or params[k].name == 'cls'): required_params.append(k) else: optional_params.append(k) else: # Python 2 params = inspect.getargspec(mtd) # pylint: disable=deprecated-method num = len(params[0]) if params[0] else 0 n_opt = len(params[3]) if params[3] else 0 n_req = (num - n_opt) if n_opt <= num else 0 for i in range(0, n_req): required_params.append(params[0][i]) for i in range(n_req, num): optional_params.append(params[0][i]) if inspect.isroutine(getattr(cls, mtd_name)): bound_mtd = cls.__dict__[mtd_name] if not isinstance(bound_mtd, staticmethod): del required_params[0] return required_params, optional_params
python
{ "resource": "" }
q10497
AbstractSampler.sample
train
def sample(self, nmr_samples, burnin=0, thinning=1): """Take additional samples from the given likelihood and prior, using this sampler. This method can be called multiple times in which the sample state is stored in between. Args: nmr_samples (int): the number of samples to return burnin (int): the number of samples to discard before returning samples thinning (int): how many sample we wait before storing a new one. This will draw extra samples such that the total number of samples generated is ``nmr_samples * (thinning)`` and the number of samples stored is ``nmr_samples``. If set to one or lower we store every sample after the burn in. Returns: SamplingOutput: the sample output object """ if not thinning or thinning < 1: thinning = 1 if not burnin or burnin < 0: burnin = 0 max_samples_per_batch = max(1000 // thinning, 100) with self._logging(nmr_samples, burnin, thinning): if burnin > 0: for batch_start, batch_end in split_in_batches(burnin, max_samples_per_batch): self._sample(batch_end - batch_start, return_output=False) if nmr_samples > 0: outputs = [] for batch_start, batch_end in split_in_batches(nmr_samples, max_samples_per_batch): outputs.append(self._sample(batch_end - batch_start, thinning=thinning)) return SimpleSampleOutput(*[np.concatenate([o[ind] for o in outputs], axis=-1) for ind in range(3)])
python
{ "resource": "" }
q10498
AbstractSampler._sample
train
def _sample(self, nmr_samples, thinning=1, return_output=True): """Sample the given number of samples with the given thinning. If ``return_output`` we will return the samples, log likelihoods and log priors. If not, we will advance the state of the sampler without returning storing the samples. Args: nmr_samples (int): the number of iterations to advance the sampler thinning (int): the thinning to apply return_output (boolean): if we should return the output Returns: None or tuple: if ``return_output`` is True three ndarrays as (samples, log_likelihoods, log_priors) """ kernel_data = self._get_kernel_data(nmr_samples, thinning, return_output) sample_func = self._get_compute_func(nmr_samples, thinning, return_output) sample_func.evaluate(kernel_data, self._nmr_problems, use_local_reduction=all(env.is_gpu for env in self._cl_runtime_info.cl_environments), cl_runtime_info=self._cl_runtime_info) self._sampling_index += nmr_samples * thinning if return_output: return (kernel_data['samples'].get_data(), kernel_data['log_likelihoods'].get_data(), kernel_data['log_priors'].get_data())
python
{ "resource": "" }
q10499
AbstractSampler._get_kernel_data
train
def _get_kernel_data(self, nmr_samples, thinning, return_output): """Get the kernel data we will input to the MCMC sampler. This sets the items: * data: the pointer to the user provided data * method_data: the data specific to the MCMC method * nmr_iterations: the number of iterations to sample * iteration_offset: the current sample index, that is, the offset to the given number of iterations * rng_state: the random number generator state * current_chain_position: the current position of the sampled chain * current_log_likelihood: the log likelihood of the current position on the chain * current_log_prior: the log prior of the current position on the chain Additionally, if ``return_output`` is True, we add to that the arrays: * samples: for the samples * log_likelihoods: for storing the log likelihoods * log_priors: for storing the priors Args: nmr_samples (int): the number of samples we will draw thinning (int): the thinning factor we want to use return_output (boolean): if the kernel should return output Returns: dict[str: mot.lib.utils.KernelData]: the kernel input data """ kernel_data = { 'data': self._data, 'method_data': self._get_mcmc_method_kernel_data(), 'nmr_iterations': Scalar(nmr_samples * thinning, ctype='ulong'), 'iteration_offset': Scalar(self._sampling_index, ctype='ulong'), 'rng_state': Array(self._rng_state, 'uint', mode='rw', ensure_zero_copy=True), 'current_chain_position': Array(self._current_chain_position, 'mot_float_type', mode='rw', ensure_zero_copy=True), 'current_log_likelihood': Array(self._current_log_likelihood, 'mot_float_type', mode='rw', ensure_zero_copy=True), 'current_log_prior': Array(self._current_log_prior, 'mot_float_type', mode='rw', ensure_zero_copy=True), } if return_output: kernel_data.update({ 'samples': Zeros((self._nmr_problems, self._nmr_params, nmr_samples), ctype='mot_float_type'), 'log_likelihoods': Zeros((self._nmr_problems, nmr_samples), ctype='mot_float_type'), 'log_priors': Zeros((self._nmr_problems, nmr_samples), ctype='mot_float_type'), }) return kernel_data
python
{ "resource": "" }