_id
stringlengths
2
7
title
stringlengths
1
88
partition
stringclasses
3 values
text
stringlengths
75
19.8k
language
stringclasses
1 value
meta_information
dict
q10100
ClassTracker._track_modify
train
def _track_modify(self, cls, name, detail, keep, trace): """ Modify settings of a tracked class """ self._observers[cls].modify(name, detail, keep, trace)
python
{ "resource": "" }
q10101
ClassTracker._restore_constructor
train
def _restore_constructor(self, cls): """ Restore the original constructor, lose track of class. """ cls.__init__ = self._observers[cls].init del self._observers[cls]
python
{ "resource": "" }
q10102
ClassTracker.track_change
train
def track_change(self, instance, resolution_level=0): """ Change tracking options for the already tracked object 'instance'. If instance is not tracked, a KeyError will be raised. """ tobj = self.objects[id(instance)] tobj.set_resolution_level(resolution_level)
python
{ "resource": "" }
q10103
ClassTracker.track_object
train
def track_object(self, instance, name=None, resolution_level=0, keep=False, trace=False): """ Track object 'instance' and sample size and lifetime information. Not all objects can be tracked; trackable objects are class instances and other objects that can be weakly referenced. When an object cannot be tracked, a `TypeError` is raised. :param resolution_level: The recursion depth up to which referents are sized individually. Resolution level 0 (default) treats the object as an opaque entity, 1 sizes all direct referents individually, 2 also sizes the referents of the referents and so forth. :param keep: Prevent the object's deletion by keeping a (strong) reference to the object. """ # Check if object is already tracked. This happens if track_object is # called multiple times for the same object or if an object inherits # from multiple tracked classes. In the latter case, the most # specialized class wins. To detect id recycling, the weak reference # is checked. If it is 'None' a tracked object is dead and another one # takes the same 'id'. if id(instance) in self.objects and \ self.objects[id(instance)].ref() is not None: return tobj = TrackedObject(instance, resolution_level=resolution_level, trace=trace) if name is None: name = instance.__class__.__name__ if not name in self.index: self.index[name] = [] self.index[name].append(tobj) self.objects[id(instance)] = tobj if keep: self._keepalive.append(instance)
python
{ "resource": "" }
q10104
ClassTracker.detach_all_classes
train
def detach_all_classes(self): """ Detach from all tracked classes. """ classes = list(self._observers.keys()) for cls in classes: self.detach_class(cls)
python
{ "resource": "" }
q10105
ClassTracker.detach_all
train
def detach_all(self): """ Detach from all tracked classes and objects. Restore the original constructors and cleanse the tracking lists. """ self.detach_all_classes() self.objects.clear() self.index.clear() self._keepalive[:] = []
python
{ "resource": "" }
q10106
ClassTracker.start_periodic_snapshots
train
def start_periodic_snapshots(self, interval=1.0): """ Start a thread which takes snapshots periodically. The `interval` specifies the time in seconds the thread waits between taking snapshots. The thread is started as a daemon allowing the program to exit. If periodic snapshots are already active, the interval is updated. """ if not self._periodic_thread: self._periodic_thread = PeriodicThread(self, interval, name='BackgroundMonitor') self._periodic_thread.setDaemon(True) self._periodic_thread.start() else: self._periodic_thread.interval = interval
python
{ "resource": "" }
q10107
ClassTracker.stop_periodic_snapshots
train
def stop_periodic_snapshots(self): """ Post a stop signal to the thread that takes the periodic snapshots. The function waits for the thread to terminate which can take some time depending on the configured interval. """ if self._periodic_thread and self._periodic_thread.isAlive(): self._periodic_thread.stop = True self._periodic_thread.join() self._periodic_thread = None
python
{ "resource": "" }
q10108
ClassTracker.create_snapshot
train
def create_snapshot(self, description='', compute_total=False): """ Collect current per instance statistics and saves total amount of memory associated with the Python process. If `compute_total` is `True`, the total consumption of all objects known to *asizeof* is computed. The latter might be very slow if many objects are mapped into memory at the time the snapshot is taken. Therefore, `compute_total` is set to `False` by default. The overhead of the `ClassTracker` structure is also computed. Snapshots can be taken asynchronously. The function is protected with a lock to prevent race conditions. """ try: # TODO: It is not clear what happens when memory is allocated or # released while this function is executed but it will likely lead # to inconsistencies. Either pause all other threads or don't size # individual objects in asynchronous mode. self.snapshot_lock.acquire() timestamp = _get_time() sizer = asizeof.Asizer() objs = [tobj.ref() for tobj in list(self.objects.values())] sizer.exclude_refs(*objs) # The objects need to be sized in a deterministic order. Sort the # objects by its creation date which should at least work for non-parallel # execution. The "proper" fix would be to handle shared data separately. tracked_objects = list(self.objects.values()) tracked_objects.sort(key=lambda x: x.birth) for tobj in tracked_objects: tobj.track_size(timestamp, sizer) snapshot = Snapshot() snapshot.timestamp = timestamp snapshot.tracked_total = sizer.total if compute_total: snapshot.asizeof_total = asizeof.asizeof(all=True, code=True) snapshot.system_total = pympler.process.ProcessMemoryInfo() snapshot.desc = str(description) # Compute overhead of all structures, use sizer to exclude tracked objects(!) snapshot.overhead = 0 if snapshot.tracked_total: snapshot.overhead = sizer.asizeof(self) if snapshot.asizeof_total: snapshot.asizeof_total -= snapshot.overhead self.snapshots.append(snapshot) finally: self.snapshot_lock.release()
python
{ "resource": "" }
q10109
is_required
train
def is_required(action): '''_actions which are positional or possessing the `required` flag ''' return not action.option_strings and not isinstance(action, _SubParsersAction) or action.required == True
python
{ "resource": "" }
q10110
compute_ecc_hash
train
def compute_ecc_hash(ecc_manager, hasher, buf, max_block_size, rate, message_size=None, as_string=False): '''Split a string in blocks given max_block_size and compute the hash and ecc for each block, and then return a nice list with both for easy processing.''' result = [] # If required parameters were not provided, we compute them if not message_size: ecc_params = compute_ecc_params(max_block_size, rate, hasher) message_size = ecc_params["message_size"] # Split the buffer string in blocks (necessary for Reed-Solomon encoding because it's limited to 255 characters max) for i in xrange(0, len(buf), message_size): # Compute the message block mes = buf[i:i+message_size] # Compute the ecc ecc = ecc_manager.encode(mes) # Compute the hash hash = hasher.hash(mes) #crc = zlib.crc32(mes) # DEPRECATED: CRC is not resilient enough #print("mes %i (%i) - ecc %i (%i) - hash %i (%i)" % (len(mes), message_size, len(ecc), ecc_params["ecc_size"], len(hash), ecc_params["hash_size"])) # DEBUGLINE # Return the result (either in string for easy writing into a file, or in a list for easy post-processing) if as_string: result.append("%s%s" % (str(hash),str(ecc))) else: result.append([hash, ecc]) return result
python
{ "resource": "" }
q10111
ReferenceGraph._eliminate_leafs
train
def _eliminate_leafs(self, graph): """ Eliminate leaf objects - that are objects not referencing any other objects in the list `graph`. Returns the list of objects without the objects identified as leafs. """ result = [] idset = set([id(x) for x in graph]) for n in graph: refset = set([id(x) for x in get_referents(n)]) if refset.intersection(idset): result.append(n) return result
python
{ "resource": "" }
q10112
ReferenceGraph._reduce_to_cycles
train
def _reduce_to_cycles(self): """ Iteratively eliminate leafs to reduce the set of objects to only those that build cycles. Return the number of objects involved in reference cycles. If there are no cycles, `self.objects` will be an empty list and this method returns 0. """ cycles = self.objects[:] cnt = 0 while cnt != len(cycles): cnt = len(cycles) cycles = self._eliminate_leafs(cycles) self.objects = cycles return len(self.objects)
python
{ "resource": "" }
q10113
ReferenceGraph.reduce_to_cycles
train
def reduce_to_cycles(self): """ Iteratively eliminate leafs to reduce the set of objects to only those that build cycles. Return the reduced graph. If there are no cycles, None is returned. """ if not self._reduced: reduced = copy(self) reduced.objects = self.objects[:] reduced.metadata = [] reduced.edges = [] self.num_in_cycles = reduced._reduce_to_cycles() reduced.num_in_cycles = self.num_in_cycles if self.num_in_cycles: reduced._get_edges() reduced._annotate_objects() for meta in reduced.metadata: meta.cycle = True else: reduced = None self._reduced = reduced return self._reduced
python
{ "resource": "" }
q10114
ReferenceGraph._filter_group
train
def _filter_group(self, group): """ Eliminate all objects but those which belong to `group`. ``self.objects``, ``self.metadata`` and ``self.edges`` are modified. Returns `True` if the group is non-empty. Otherwise returns `False`. """ self.metadata = [x for x in self.metadata if x.group == group] group_set = set([x.id for x in self.metadata]) self.objects = [obj for obj in self.objects if id(obj) in group_set] self.count = len(self.metadata) if self.metadata == []: return False self.edges = [e for e in self.edges if e.group == group] del self._max_group return True
python
{ "resource": "" }
q10115
ReferenceGraph.split
train
def split(self): """ Split the graph into sub-graphs. Only connected objects belong to the same graph. `split` yields copies of the Graph object. Shallow copies are used that only replicate the meta-information, but share the same object list ``self.objects``. >>> from pympler.refgraph import ReferenceGraph >>> a = 42 >>> b = 'spam' >>> c = {a: b} >>> t = (1,2,3) >>> rg = ReferenceGraph([a,b,c,t]) >>> for subgraph in rg.split(): ... print subgraph.index 0 1 """ self._annotate_groups() index = 0 for group in range(self._max_group): subgraph = copy(self) subgraph.metadata = self.metadata[:] subgraph.edges = self.edges.copy() if subgraph._filter_group(group): subgraph.total_size = sum([x.size for x in subgraph.metadata]) subgraph.index = index index += 1 yield subgraph
python
{ "resource": "" }
q10116
ReferenceGraph.split_and_sort
train
def split_and_sort(self): """ Split the graphs into sub graphs and return a list of all graphs sorted by the number of nodes. The graph with most nodes is returned first. """ graphs = list(self.split()) graphs.sort(key=lambda x: -len(x.metadata)) for index, graph in enumerate(graphs): graph.index = index return graphs
python
{ "resource": "" }
q10117
ReferenceGraph._annotate_objects
train
def _annotate_objects(self): """ Extract meta-data describing the stored objects. """ self.metadata = [] sizer = Asizer() sizes = sizer.asizesof(*self.objects) self.total_size = sizer.total for obj, sz in zip(self.objects, sizes): md = _MetaObject() md.size = sz md.id = id(obj) try: md.type = obj.__class__.__name__ except (AttributeError, ReferenceError): # pragma: no cover md.type = type(obj).__name__ md.str = safe_repr(obj, clip=128) self.metadata.append(md)
python
{ "resource": "" }
q10118
ReferenceGraph._get_graphviz_data
train
def _get_graphviz_data(self): """ Emit a graph representing the connections between the objects described within the metadata list. The text representation can be transformed to a graph with graphviz. Returns a string. """ s = [] header = '// Process this file with graphviz\n' s.append( header) s.append('digraph G {\n') s.append(' node [shape=box];\n') for md in self.metadata: label = trunc(md.str, 48).replace('"', "'") extra = '' if md.type == 'instancemethod': extra = ', color=red' elif md.type == 'frame': extra = ', color=orange' s.append(' "X%s" [ label = "%s\\n%s" %s ];\n' % \ (hex(md.id)[1:], label, md.type, extra)) for e in self.edges: extra = '' if e.label == '__dict__': extra = ',weight=100' s.append(' X%s -> X%s [label="%s"%s];\n' % \ (hex(e.src)[1:], hex(e.dst)[1:], e.label, extra)) s.append('}\n') return "".join(s)
python
{ "resource": "" }
q10119
ReferenceGraph.write_graph
train
def write_graph(self, filename): """ Write raw graph data which can be post-processed using graphviz. """ f = open(filename, 'w') f.write(self._get_graphviz_data()) f.close()
python
{ "resource": "" }
q10120
Profiler.root_frame
train
def root_frame(self): """ Returns the parsed results in the form of a tree of Frame objects """ if not hasattr(self, '_root_frame'): self._root_frame = Frame() # define a recursive function that builds the hierarchy of frames given the # stack of frame identifiers def frame_for_stack(stack): if len(stack) == 0: return self._root_frame parent = frame_for_stack(stack[:-1]) frame_name = stack[-1] if not frame_name in parent.children_dict: parent.add_child(Frame(frame_name, parent)) return parent.children_dict[frame_name] for stack, self_time in self.stack_self_time.items(): frame_for_stack(stack).self_time = self_time return self._root_frame
python
{ "resource": "" }
q10121
is_module_stdlib
train
def is_module_stdlib(file_name): """Returns True if the file_name is in the lib directory.""" # TODO: Move these calls away from this function so it doesn't have to run # every time. lib_path = sysconfig.get_python_lib() path = os.path.split(lib_path) if path[1] == 'site-packages': lib_path = path[0] return file_name.lower().startswith(lib_path.lower())
python
{ "resource": "" }
q10122
tracer
train
def tracer(frame, event, arg): """This is an internal function that is called every time a call is made during a trace. It keeps track of relationships between calls. """ global func_count_max global func_count global trace_filter global time_filter global call_stack global func_time global func_time_max if event == 'call': keep = True code = frame.f_code # Stores all the parts of a human readable name of the current call. full_name_list = [] # Work out the module name module = inspect.getmodule(code) if module: module_name = module.__name__ module_path = module.__file__ if not settings['include_stdlib'] \ and is_module_stdlib(module_path): keep = False if module_name == '__main__': module_name = '' else: module_name = '' if module_name: full_name_list.append(module_name) # Work out the class name. try: class_name = frame.f_locals['self'].__class__.__name__ full_name_list.append(class_name) except (KeyError, AttributeError): class_name = '' # Work out the current function or method func_name = code.co_name if func_name == '?': func_name = '__main__' full_name_list.append(func_name) # Create a readable representation of the current call full_name = '.'.join(full_name_list) # Load the trace filter, if any. 'keep' determines if we should ignore # this call if keep and trace_filter: keep = trace_filter(call_stack, module_name, class_name, func_name, full_name) # Store the call information if keep: if call_stack: fr = call_stack[-1] else: fr = None if fr not in call_dict: call_dict[fr] = {} if full_name not in call_dict[fr]: call_dict[fr][full_name] = 0 call_dict[fr][full_name] += 1 if full_name not in func_count: func_count[full_name] = 0 func_count[full_name] += 1 if func_count[full_name] > func_count_max: func_count_max = func_count[full_name] call_stack.append(full_name) call_stack_timer.append(time.time()) else: call_stack.append('') call_stack_timer.append(None) if event == 'return': if call_stack: full_name = call_stack.pop(-1) if call_stack_timer: t = call_stack_timer.pop(-1) else: t = None if t and time_filter(stack=call_stack, full_name=full_name): if full_name not in func_time: func_time[full_name] = 0 call_time = (time.time() - t) func_time[full_name] += call_time if func_time[full_name] > func_time_max: func_time_max = func_time[full_name] return tracer
python
{ "resource": "" }
q10123
get_dot
train
def get_dot(stop=True): """Returns a string containing a DOT file. Setting stop to True will cause the trace to stop. """ defaults = [] nodes = [] edges = [] # define default attributes for comp, comp_attr in graph_attributes.items(): attr = ', '.join( '%s = "%s"' % (attr, val) for attr, val in comp_attr.items() ) defaults.append( '\t%(comp)s [ %(attr)s ];\n' % locals() ) # define nodes for func, hits in func_count.items(): calls_frac, total_time_frac, total_time = _frac_calculation(func, hits) col = settings['node_colour'](calls_frac, total_time_frac) attribs = ['%s="%s"' % a for a in settings['node_attributes'].items()] node_str = '"%s" [%s];' % (func, ', '.join(attribs)) nodes.append( node_str % locals() ) # define edges for fr_key, fr_val in call_dict.items(): if not fr_key: continue for to_key, to_val in fr_val.items(): calls_frac, total_time_frac, totla_time = \ _frac_calculation(to_key, to_val) col = settings['edge_colour'](calls_frac, total_time_frac) edge = '[ color = "%s", label="%s" ]' % (col, to_val) edges.append('"%s"->"%s" %s;' % (fr_key, to_key, edge)) defaults = '\n\t'.join( defaults ) nodes = '\n\t'.join( nodes ) edges = '\n\t'.join( edges ) dot_fmt = ("digraph G {\n" " %(defaults)s\n\n" " %(nodes)s\n\n" " %(edges)s\n}\n" ) return dot_fmt % locals()
python
{ "resource": "" }
q10124
get_gdf
train
def get_gdf(stop=True): """Returns a string containing a GDF file. Setting stop to True will cause the trace to stop. """ ret = ['nodedef>name VARCHAR, label VARCHAR, hits INTEGER, ' + \ 'calls_frac DOUBLE, total_time_frac DOUBLE, ' + \ 'total_time DOUBLE, color VARCHAR, width DOUBLE'] for func, hits in func_count.items(): calls_frac, total_time_frac, total_time = _frac_calculation(func, hits) col = settings['node_colour'](calls_frac, total_time_frac) color = ','.join([str(round(float(c) * 255)) for c in col.split()]) ret.append('%s,%s,%s,%s,%s,%s,\'%s\',%s' % (func, func, hits, \ calls_frac, total_time_frac, total_time, color, \ math.log(hits * 10))) ret.append('edgedef>node1 VARCHAR, node2 VARCHAR, color VARCHAR') for fr_key, fr_val in call_dict.items(): if fr_key == '': continue for to_key, to_val in fr_val.items(): calls_frac, total_time_frac, total_time = \ _frac_calculation(to_key, to_val) col = settings['edge_colour'](calls_frac, total_time_frac) color = ','.join([str(round(float(c) * 255)) for c in col.split()]) ret.append('%s,%s,\'%s\'' % (fr_key, to_key, color)) ret = '\n'.join(ret) return ret
python
{ "resource": "" }
q10125
make_dot_graph
train
def make_dot_graph(filename, format='png', tool='dot', stop=True): """Creates a graph using a Graphviz tool that supports the dot language. It will output into a file specified by filename with the format specified. Setting stop to True will stop the current trace. """ if stop: stop_trace() dot_data = get_dot() # normalize filename regex_user_expand = re.compile('\A~') if regex_user_expand.match(filename): filename = os.path.expanduser(filename) else: filename = os.path.expandvars(filename) # expand, just in case if format == 'dot': f = open(filename, 'w') f.write(dot_data) f.close() else: # create a temporary file to be used for the dot data fd, tempname = tempfile.mkstemp() with os.fdopen(fd, 'w') as f: f.write(dot_data) cmd = '%(tool)s -T%(format)s -o%(filename)s %(tempname)s' % locals() try: ret = os.system(cmd) if ret: raise PyCallGraphException( \ 'The command "%(cmd)s" failed with error ' \ 'code %(ret)i.' % locals()) finally: os.unlink(tempname)
python
{ "resource": "" }
q10126
make_gdf_graph
train
def make_gdf_graph(filename, stop=True): """Create a graph in simple GDF format, suitable for feeding into Gephi, or some other graph manipulation and display tool. Setting stop to True will stop the current trace. """ if stop: stop_trace() try: f = open(filename, 'w') f.write(get_gdf()) finally: if f: f.close()
python
{ "resource": "" }
q10127
simple_memoize
train
def simple_memoize(callable_object): """Simple memoization for functions without keyword arguments. This is useful for mapping code objects to module in this context. inspect.getmodule() requires a number of system calls, which may slow down the tracing considerably. Caching the mapping from code objects (there is *one* code object for each function, regardless of how many simultaneous activations records there are). In this context we can ignore keyword arguments, but a generic memoizer ought to take care of that as well. """ cache = dict() def wrapper(*rest): if rest not in cache: cache[rest] = callable_object(*rest) return cache[rest] return wrapper
python
{ "resource": "" }
q10128
macshim
train
def macshim(): """Shim to run 32-bit on 64-bit mac as a sub-process""" import subprocess, sys subprocess.call([ sys.argv[0] + '32' ]+sys.argv[1:], env={"VERSIONER_PYTHON_PREFER_32_BIT":"yes"} )
python
{ "resource": "" }
q10129
ECCMan.check
train
def check(self, message, ecc, k=None): '''Check if there's any error in a message+ecc. Can be used before decoding, in addition to hashes to detect if the message was tampered, or after decoding to check that the message was fully recovered.''' if not k: k = self.k message, _ = self.pad(message, k=k) ecc, _ = self.rpad(ecc, k=k) if self.algo == 1 or self.algo == 2: return self.ecc_manager.check_fast(message + ecc, k=k) elif self.algo == 3 or self.algo == 4: return reedsolo.rs_check(bytearray(message + ecc), self.n-k, fcr=self.fcr, generator=self.gen_nb)
python
{ "resource": "" }
q10130
ECCMan.description
train
def description(self): '''Provide a description for each algorithm available, useful to print in ecc file''' if 0 < self.algo <= 3: return "Reed-Solomon with polynomials in Galois field of characteristic %i (2^%i) with generator=%s, prime poly=%s and first consecutive root=%s." % (self.field_charac, self.c_exp, self.gen_nb, hex(self.prim), self.fcr) elif self.algo == 4: return "Reed-Solomon with polynomials in Galois field of characteristic %i (2^%i) under US FAA ADSB UAT RS FEC standard with generator=%s, prime poly=%s and first consecutive root=%s." % (self.field_charac, self.c_exp, self.gen_nb, hex(self.prim), self.fcr) else: return "No description for this ECC algorithm."
python
{ "resource": "" }
q10131
profile
train
def profile(fn=None, skip=0, filename=None, immediate=False, dirs=False, sort=None, entries=40, profiler=('cProfile', 'profile', 'hotshot')): """Mark `fn` for profiling. If `skip` is > 0, first `skip` calls to `fn` will not be profiled. If `immediate` is False, profiling results will be printed to sys.stdout on program termination. Otherwise results will be printed after each call. If `dirs` is False only the name of the file will be printed. Otherwise the full path is used. `sort` can be a list of sort keys (defaulting to ['cumulative', 'time', 'calls']). The following ones are recognized:: 'calls' -- call count 'cumulative' -- cumulative time 'file' -- file name 'line' -- line number 'module' -- file name 'name' -- function name 'nfl' -- name/file/line 'pcalls' -- call count 'stdname' -- standard name 'time' -- internal time `entries` limits the output to the first N entries. `profiler` can be used to select the preferred profiler, or specify a sequence of them, in order of preference. The default is ('cProfile'. 'profile', 'hotshot'). If `filename` is specified, the profile stats will be stored in the named file. You can load them pstats.Stats(filename). Usage:: def fn(...): ... fn = profile(fn, skip=1) If you are using Python 2.4, you should be able to use the decorator syntax:: @profile(skip=3) def fn(...): ... or just :: @profile def fn(...): ... """ if fn is None: # @profile() syntax -- we are a decorator maker def decorator(fn): return profile(fn, skip=skip, filename=filename, immediate=immediate, dirs=dirs, sort=sort, entries=entries, profiler=profiler) return decorator # @profile syntax -- we are a decorator. if isinstance(profiler, str): profiler = [profiler] for p in profiler: if p in AVAILABLE_PROFILERS: profiler_class = AVAILABLE_PROFILERS[p] break else: raise ValueError('only these profilers are available: %s' % ', '.join(AVAILABLE_PROFILERS)) fp = profiler_class(fn, skip=skip, filename=filename, immediate=immediate, dirs=dirs, sort=sort, entries=entries) # fp = HotShotFuncProfile(fn, skip=skip, filename=filename, ...) # or HotShotFuncProfile # We cannot return fp or fp.__call__ directly as that would break method # definitions, instead we need to return a plain function. def new_fn(*args, **kw): return fp(*args, **kw) new_fn.__doc__ = fn.__doc__ new_fn.__name__ = fn.__name__ new_fn.__dict__ = fn.__dict__ new_fn.__module__ = fn.__module__ return new_fn
python
{ "resource": "" }
q10132
timecall
train
def timecall(fn=None, immediate=True, timer=time.time): """Wrap `fn` and print its execution time. Example:: @timecall def somefunc(x, y): time.sleep(x * y) somefunc(2, 3) will print the time taken by somefunc on every call. If you want just a summary at program termination, use @timecall(immediate=False) You can also choose a timing method other than the default ``time.time()``, e.g.: @timecall(timer=time.clock) """ if fn is None: # @timecall() syntax -- we are a decorator maker def decorator(fn): return timecall(fn, immediate=immediate, timer=timer) return decorator # @timecall syntax -- we are a decorator. fp = FuncTimer(fn, immediate=immediate, timer=timer) # We cannot return fp or fp.__call__ directly as that would break method # definitions, instead we need to return a plain function. def new_fn(*args, **kw): return fp(*args, **kw) new_fn.__doc__ = fn.__doc__ new_fn.__name__ = fn.__name__ new_fn.__dict__ = fn.__dict__ new_fn.__module__ = fn.__module__ return new_fn
python
{ "resource": "" }
q10133
FuncProfile.print_stats
train
def print_stats(self): """Print profile information to sys.stdout.""" funcname = self.fn.__name__ filename = self.fn.__code__.co_filename lineno = self.fn.__code__.co_firstlineno print("") print("*** PROFILER RESULTS ***") print("%s (%s:%s)" % (funcname, filename, lineno)) if self.skipped: skipped = "(%d calls not profiled)" % self.skipped else: skipped = "" print("function called %d times%s" % (self.ncalls, skipped)) print("") stats = self.stats if self.filename: stats.dump_stats(self.filename) if not self.dirs: stats.strip_dirs() stats.sort_stats(*self.sort) stats.print_stats(self.entries)
python
{ "resource": "" }
q10134
FuncProfile.reset_stats
train
def reset_stats(self): """Reset accumulated profiler statistics.""" # Note: not using self.Profile, since pstats.Stats() fails then self.stats = pstats.Stats(Profile()) self.ncalls = 0 self.skipped = 0
python
{ "resource": "" }
q10135
TraceFuncCoverage.atexit
train
def atexit(self): """Stop profiling and print profile information to sys.stderr. This function is registered as an atexit hook. """ funcname = self.fn.__name__ filename = self.fn.__code__.co_filename lineno = self.fn.__code__.co_firstlineno print("") print("*** COVERAGE RESULTS ***") print("%s (%s:%s)" % (funcname, filename, lineno)) print("function called %d times" % self.ncalls) print("") fs = FuncSource(self.fn) for (filename, lineno), count in self.tracer.counts.items(): if filename != fs.filename: continue fs.mark(lineno, count) print(fs) never_executed = fs.count_never_executed() if never_executed: print("%d lines were not executed." % never_executed)
python
{ "resource": "" }
q10136
FuncSource.find_source_lines
train
def find_source_lines(self): """Mark all executable source lines in fn as executed 0 times.""" strs = trace.find_strings(self.filename) lines = trace.find_lines_from_code(self.fn.__code__, strs) self.firstcodelineno = sys.maxint for lineno in lines: self.firstcodelineno = min(self.firstcodelineno, lineno) self.sourcelines.setdefault(lineno, 0) if self.firstcodelineno == sys.maxint: self.firstcodelineno = self.firstlineno
python
{ "resource": "" }
q10137
FuncSource.mark
train
def mark(self, lineno, count=1): """Mark a given source line as executed count times. Multiple calls to mark for the same lineno add up. """ self.sourcelines[lineno] = self.sourcelines.get(lineno, 0) + count
python
{ "resource": "" }
q10138
FuncSource.count_never_executed
train
def count_never_executed(self): """Count statements that were never executed.""" lineno = self.firstlineno counter = 0 for line in self.source: if self.sourcelines.get(lineno) == 0: if not self.blank_rx.match(line): counter += 1 lineno += 1 return counter
python
{ "resource": "" }
q10139
SimpleAudioIndexer._split_audio_by_duration
train
def _split_audio_by_duration(self, audio_abs_path, results_abs_path, duration_seconds): """ Calculates the length of each segment and passes it to self._audio_segment_extractor Parameters ---------- audio_abs_path : str results_abs_path : str A place for adding digits needs to be added prior the the format decleration i.e. name%03.wav. Here, we've added `*` at staging step, which we'll replace. duration_seconds : int """ total_seconds = self._get_audio_duration_seconds(audio_abs_path) current_segment = 0 while current_segment <= total_seconds // duration_seconds + 1: if current_segment + duration_seconds > total_seconds: ending_second = total_seconds else: ending_second = current_segment + duration_seconds self._audio_segment_extractor( audio_abs_path, results_abs_path.replace("*", "{:03d}".format( current_segment)), starting_second=current_segment, duration=(ending_second - current_segment)) current_segment += 1
python
{ "resource": "" }
q10140
SimpleAudioIndexer._filtering_step
train
def _filtering_step(self, basename): """ Moves the audio file if the format is `wav` to `filtered` directory. Parameters ---------- basename : str A basename of `/home/random-guy/some-audio-file.wav` is `some-audio-file.wav` """ name = ''.join(basename.split('.')[:-1]) # May cause problems if wav is not less than 9 channels. if basename.split('.')[-1] == "wav": if self.get_verbosity(): print("Found wave! Copying to {}/filtered/{}".format( self.src_dir, basename)) subprocess.Popen(["cp", "{}/{}.wav".format(self.src_dir, name), "{}/filtered/{}.wav".format(self.src_dir, name)], universal_newlines=True).communicate()
python
{ "resource": "" }
q10141
SimpleAudioIndexer._prepare_audio
train
def _prepare_audio(self, basename, replace_already_indexed=False): """ Prepares and stages the audio file to be indexed. Parameters ---------- basename : str, None A basename of `/home/random-guy/some-audio-file.wav` is `some-audio-file.wav` If basename is `None`, it'll prepare all the audio files. """ if basename is not None: if basename in self.get_timestamps(): if self.get_verbosity(): print("File specified was already indexed. Reindexing...") del self.__timestamps[basename] self._filtering_step(basename) self._staging_step(basename) else: for audio_basename in self._list_audio_files(): if audio_basename in self.__timestamps: if replace_already_indexed: if self.get_verbosity(): print("Already indexed {}. Reindexing...".format( audio_basename)) del self.__timestamps[audio_basename] else: if self.get_verbosity(): print("Already indexed {}. Skipping...".format( audio_basename)) continue self._filtering_step(audio_basename) self._staging_step(audio_basename)
python
{ "resource": "" }
q10142
SimpleAudioIndexer._index_audio_cmu
train
def _index_audio_cmu(self, basename=None, replace_already_indexed=False): """ Indexes audio with pocketsphinx. Beware that the output would not be sufficiently accurate. Use this only if you don't want to upload your files to IBM. Parameters ----------- basename : str, optional A specific basename to be indexed and is placed in src_dir E.g. `audio.wav`. If `None` is selected, all the valid audio files would be indexed. Default is `None`. Raises ------ OSError If the output of pocketsphinx command results in an error. """ self._prepare_audio(basename=basename, replace_already_indexed=replace_already_indexed) for staging_audio_basename in self._list_audio_files( sub_dir="staging"): original_audio_name = ''.join( staging_audio_basename.split('.')[:-1])[:-3] pocketsphinx_command = ''.join([ "pocketsphinx_continuous", "-infile", str("{}/staging/{}".format( self.src_dir, staging_audio_basename)), "-time", "yes", "-logfn", "/dev/null"]) try: if self.get_verbosity(): print("Now indexing {}".format(staging_audio_basename)) output = subprocess.check_output([ "pocketsphinx_continuous", "-infile", str("{}/staging/{}".format( self.src_dir, staging_audio_basename)), "-time", "yes", "-logfn", "/dev/null" ], universal_newlines=True).split('\n') str_timestamps_with_sil_conf = list(map( lambda x: x.split(" "), filter(None, output[1:]))) # Timestamps are putted in a list of a single element. To match # Watson's output. self.__timestamps_unregulated[ original_audio_name + ".wav"] = [( self._timestamp_extractor_cmu( staging_audio_basename, str_timestamps_with_sil_conf))] if self.get_verbosity(): print("Done indexing {}".format(staging_audio_basename)) except OSError as e: if self.get_verbosity(): print(e, "The command was: {}".format( pocketsphinx_command)) self.__errors[(time(), staging_audio_basename)] = e self._timestamp_regulator() if self.get_verbosity(): print("Finished indexing procedure")
python
{ "resource": "" }
q10143
SimpleAudioIndexer._index_audio_ibm
train
def _index_audio_ibm(self, basename=None, replace_already_indexed=False, continuous=True, model="en-US_BroadbandModel", word_confidence=True, word_alternatives_threshold=0.9, profanity_filter_for_US_results=False): """ Implements a search-suitable interface for Watson speech API. Some explaination of the parameters here have been taken from [1]_ Parameters ---------- basename : str, optional A specific basename to be indexed and is placed in src_dir e.g `audio.wav`. If `None` is selected, all the valid audio files would be indexed. Default is `None`. replace_already_indexed : bool `True`, To reindex some audio file that's already in the timestamps. Default is `False`. continuous : bool Indicates whether multiple final results that represent consecutive phrases separated by long pauses are returned. If true, such phrases are returned; if false (the default), recognition ends after the first end-of-speech (EOS) incident is detected. Default is `True`. model : { 'ar-AR_BroadbandModel', 'en-UK_BroadbandModel' 'en-UK_NarrowbandModel', 'en-US_BroadbandModel', (the default) 'en-US_NarrowbandModel', 'es-ES_BroadbandModel', 'es-ES_NarrowbandModel', 'fr-FR_BroadbandModel', 'ja-JP_BroadbandModel', 'ja-JP_NarrowbandModel', 'pt-BR_BroadbandModel', 'pt-BR_NarrowbandModel', 'zh-CN_BroadbandModel', 'zh-CN_NarrowbandModel' } The identifier of the model to be used for the recognition Default is 'en-US_BroadbandModel' word_confidence : bool Indicates whether a confidence measure in the range of 0 to 1 is returned for each word. The default is True. (It's False in the original) word_alternatives_threshold : numeric A confidence value that is the lower bound for identifying a hypothesis as a possible word alternative (also known as "Confusion Networks"). An alternative word is considered if its confidence is greater than or equal to the threshold. Specify a probability between 0 and 1 inclusive. Default is `0.9`. profanity_filter_for_US_results : bool Indicates whether profanity filtering is performed on the transcript. If true, the service filters profanity from all output by replacing inappropriate words with a series of asterisks. If false, the service returns results with no censoring. Applies to US English transcription only. Default is `False`. References ---------- .. [1] : https://ibm.com/watson/developercloud/speech-to-text/api/v1/ """ params = {'continuous': continuous, 'model': model, 'word_alternatives_threshold': word_alternatives_threshold, 'word_confidence': word_confidence, 'timestamps': True, 'inactivity_timeout': str(-1), 'profanity_filter': profanity_filter_for_US_results} self._prepare_audio(basename=basename, replace_already_indexed=replace_already_indexed) for staging_audio_basename in self._list_audio_files( sub_dir="staging"): original_audio_name = ''.join( staging_audio_basename.split('.')[:-1])[:-3] with open("{}/staging/{}".format( self.src_dir, staging_audio_basename), "rb") as f: if self.get_verbosity(): print("Uploading {}...".format(staging_audio_basename)) response = requests.post( url=("https://stream.watsonplatform.net/" "speech-to-text/api/v1/recognize"), auth=(self.get_username_ibm(), self.get_password_ibm()), headers={'content-type': 'audio/wav'}, data=f.read(), params=params) if self.get_verbosity(): print("Indexing {}...".format(staging_audio_basename)) self.__timestamps_unregulated[ original_audio_name + ".wav"].append( self._timestamp_extractor_ibm( staging_audio_basename, json.loads(response.text))) if self.get_verbosity(): print("Done indexing {}".format(staging_audio_basename)) self._timestamp_regulator() if self.get_verbosity(): print("Indexing procedure finished")
python
{ "resource": "" }
q10144
SimpleAudioIndexer.index_audio
train
def index_audio(self, *args, **kwargs): """ Calls the correct indexer function based on the mode. If mode is `ibm`, _indexer_audio_ibm is called which is an interface for Watson. Note that some of the explaination of _indexer_audio_ibm's arguments is from [1]_ If mode is `cmu`, _indexer_audio_cmu is called which is an interface for PocketSphinx Beware that the output would not be sufficiently accurate. Use this only if you don't want to upload your files to IBM. Parameters ---------- mode : {"ibm", "cmu"} basename : str, optional A specific basename to be indexed and is placed in src_dir e.g `audio.wav`. If `None` is selected, all the valid audio files would be indexed. Default is `None`. replace_already_indexed : bool `True`, To reindex some audio file that's already in the timestamps. Default is `False`. continuous : bool Valid Only if mode is `ibm` Indicates whether multiple final results that represent consecutive phrases separated by long pauses are returned. If true, such phrases are returned; if false (the default), recognition ends after the first end-of-speech (EOS) incident is detected. Default is `True`. model : { 'ar-AR_BroadbandModel', 'en-UK_BroadbandModel' 'en-UK_NarrowbandModel', 'en-US_BroadbandModel', (the default) 'en-US_NarrowbandModel', 'es-ES_BroadbandModel', 'es-ES_NarrowbandModel', 'fr-FR_BroadbandModel', 'ja-JP_BroadbandModel', 'ja-JP_NarrowbandModel', 'pt-BR_BroadbandModel', 'pt-BR_NarrowbandModel', 'zh-CN_BroadbandModel', 'zh-CN_NarrowbandModel' } Valid Only if mode is `ibm` The identifier of the model to be used for the recognition Default is 'en-US_BroadbandModel' word_confidence : bool Valid Only if mode is `ibm` Indicates whether a confidence measure in the range of 0 to 1 is returned for each word. The default is True. (It's False in the original) word_alternatives_threshold : numeric Valid Only if mode is `ibm` A confidence value that is the lower bound for identifying a hypothesis as a possible word alternative (also known as "Confusion Networks"). An alternative word is considered if its confidence is greater than or equal to the threshold. Specify a probability between 0 and 1 inclusive. Default is `0.9`. profanity_filter_for_US_results : bool Valid Only if mode is `ibm` Indicates whether profanity filtering is performed on the transcript. If true, the service filters profanity from all output by replacing inappropriate words with a series of asterisks. If false, the service returns results with no censoring. Applies to US English transcription only. Default is `False`. Raises ------ OSError Valid only if mode is `cmu`. If the output of pocketsphinx command results in an error. References ---------- .. [1] : https://ibm.com/watson/developercloud/speech-to-text/api/v1/ Else if mode is `cmu`, then _index_audio_cmu would be called: """ with _Subdirectory_Managing_Decorator( self.src_dir, self._needed_directories): if self.get_mode() == "ibm": self._index_audio_ibm(*args, **kwargs) elif self.get_mode() == "cmu": self._index_audio_cmu(*args, **kwargs)
python
{ "resource": "" }
q10145
SimpleAudioIndexer._timestamp_regulator
train
def _timestamp_regulator(self): """ Makes a dictionary whose keys are audio file basenames and whose values are a list of word blocks from unregulated timestamps and updates the main timestamp attribute. After all done, purges unregulated ones. In case the audio file was large enough to be splitted, it adds seconds to correct timing and in case the timestamp was manually loaded, it leaves it alone. Note that the difference between self.__timestamps and self.__timestamps_unregulated is that in the regulated version, right after the word, a list of word blocks must appear. However in the unregulated version, after a word, a list of individual splits containing word blocks would appear! """ unified_timestamps = _PrettyDefaultDict(list) staged_files = self._list_audio_files(sub_dir="staging") for timestamp_basename in self.__timestamps_unregulated: if len(self.__timestamps_unregulated[timestamp_basename]) > 1: # File has been splitted timestamp_name = ''.join(timestamp_basename.split('.')[:-1]) staged_splitted_files_of_timestamp = list( filter(lambda staged_file: ( timestamp_name == staged_file[:-3] and all([(x in set(map(str, range(10)))) for x in staged_file[-3:]])), staged_files)) if len(staged_splitted_files_of_timestamp) == 0: self.__errors[(time(), timestamp_basename)] = { "reason": "Missing staged file", "current_staged_files": staged_files} continue staged_splitted_files_of_timestamp.sort() unified_timestamp = list() for staging_digits, splitted_file in enumerate( self.__timestamps_unregulated[timestamp_basename]): prev_splits_sec = 0 if int(staging_digits) != 0: prev_splits_sec = self._get_audio_duration_seconds( "{}/staging/{}{:03d}".format( self.src_dir, timestamp_name, staging_digits - 1)) for word_block in splitted_file: unified_timestamp.append( _WordBlock( word=word_block.word, start=round(word_block.start + prev_splits_sec, 2), end=round(word_block.end + prev_splits_sec, 2))) unified_timestamps[ str(timestamp_basename)] += unified_timestamp else: unified_timestamps[ timestamp_basename] += self.__timestamps_unregulated[ timestamp_basename][0] self.__timestamps.update(unified_timestamps) self.__timestamps_unregulated = _PrettyDefaultDict(list)
python
{ "resource": "" }
q10146
SimpleAudioIndexer.save_indexed_audio
train
def save_indexed_audio(self, indexed_audio_file_abs_path): """ Writes the corrected timestamps to a file. Timestamps are a python dictionary. Parameters ---------- indexed_audio_file_abs_path : str """ with open(indexed_audio_file_abs_path, "wb") as f: pickle.dump(self.get_timestamps(), f, pickle.HIGHEST_PROTOCOL)
python
{ "resource": "" }
q10147
SimpleAudioIndexer._partial_search_validator
train
def _partial_search_validator(self, sub, sup, anagram=False, subsequence=False, supersequence=False): """ It's responsible for validating the partial results of `search` method. If it returns True, the search would return its result. Else, search method would discard what it found and look for others. First, checks to see if all elements of `sub` is in `sup` with at least the same frequency and then checks to see if every element `sub` appears in `sup` with the same order (index-wise). If advanced control sturctures are specified, the containment condition won't be checked. The code for index checking is from [1]_. Parameters ---------- sub : list sup : list anagram : bool, optional Default is `False` subsequence : bool, optional Default is `False` supersequence : bool, optional Default is `False` Returns ------- bool References ---------- .. [1] : ` https://stackoverflow.com/questions/35964155/checking-if-list-is-a-sublist` """ def get_all_in(one, another): for element in one: if element in another: yield element def containment_check(sub, sup): return (set(Counter(sub).keys()).issubset( set(Counter(sup).keys()))) def containment_freq_check(sub, sup): return (all([Counter(sub)[element] <= Counter(sup)[element] for element in Counter(sub)])) def extra_freq_check(sub, sup, list_of_tups): # Would be used for matching anagrams, subsequences etc. return (len(list_of_tups) > 0 and all([Counter(sub)[tup[0]] <= Counter(sup)[tup[1]] for tup in list_of_tups])) # Regarding containment checking while having extra conditions, # there's no good way to map each anagram or subseuqnece etc. that was # found to the query word, without making it more complicated than # it already is, because a query word can be anagram/subsequence etc. # to multiple words of the timestamps yet finding the one with the # right index would be the problem. # Therefore we just approximate the solution by just counting # the elements. if len(sub) > len(sup): return False for pred, func in set([(anagram, self._is_anagram_of), (subsequence, self._is_subsequence_of), (supersequence, self._is_supersequence_of)]): if pred: pred_seive = [(sub_key, sup_key) for sub_key in set(Counter(sub).keys()) for sup_key in set(Counter(sup).keys()) if func(sub_key, sup_key)] if not extra_freq_check(sub, sup, pred_seive): return False if ( not any([anagram, subsequence, supersequence]) and (not containment_check(sub, sup) or not containment_freq_check(sub, sup)) ): return False for x1, x2 in zip(get_all_in(sup, sub), get_all_in(sub, sup)): if x1 != x2: return False return True
python
{ "resource": "" }
q10148
SimpleAudioIndexer.search_all
train
def search_all(self, queries, audio_basename=None, case_sensitive=False, subsequence=False, supersequence=False, timing_error=0.0, anagram=False, missing_word_tolerance=0): """ Returns a dictionary of all results of all of the queries for all of the audio files. All the specified parameters work per query. Parameters ---------- queries : [str] or str A list of the strings that'll be searched. If type of queries is `str`, it'll be insterted into a list within the body of the method. audio_basename : str, optional Search only within the given audio_basename. Default is `None`. case_sensitive : bool Default is `False` subsequence : bool, optional `True` if it's not needed for the exact word be detected and larger strings that contain the given one are fine. If the query is a sentences with multiple words, it'll be considered for each word, not the whole sentence. Default is `False`. supersequence : bool, optional `True` if it's not needed for the exact word be detected and smaller strings that are contained within the given one are fine. If the query is a sentences with multiple words, it'll be considered for each word, not the whole sentence. Default is `False`. anagram : bool, optional `True` if it's acceptable for a complete permutation of the word to be found. e.g. "abcde" would be acceptable for "edbac". If the query is a sentences with multiple words, it'll be considered for each word, not the whole sentence. Default is `False`. timing_error : None or float, optional Sometimes other words (almost always very small) would be detected between the words of the `query`. This parameter defines the timing difference/tolerance of the search. Default is 0.0 i.e. No timing error is tolerated. missing_word_tolerance : int, optional The number of words that can be missed within the result. For example, if the query is "Some random text" and the tolerance value is `1`, then "Some text" would be a valid response. Note that the first and last words cannot be missed. Also, there'll be an error if the value is more than the number of available words. For the example above, any value more than 1 would have given an error (since there's only one word i.e. "random" that can be missed) Default is 0. Returns ------- search_results : {str: {str: [(float, float)]}} A dictionary whose keys are queries and whose values are dictionaries whose keys are all the audiofiles in which the query is present and whose values are a list whose elements are 2-tuples whose first element is the starting second of the query and whose values are the ending second. e.g. {"apple": {"fruits.wav" : [(1.1, 1.12)]}} Raises ------ TypeError if `queries` is neither a list nor a str """ search_gen_rest_of_kwargs = { "audio_basename": audio_basename, "case_sensitive": case_sensitive, "subsequence": subsequence, "supersequence": supersequence, "timing_error": timing_error, "anagram": anagram, "missing_word_tolerance": missing_word_tolerance} if not isinstance(queries, (list, str)): raise TypeError("Invalid query type.") if type(queries) is not list: queries = [queries] search_results = _PrettyDefaultDict(lambda: _PrettyDefaultDict(list)) for query in queries: search_gen = self.search_gen(query=query, **search_gen_rest_of_kwargs) for search_result in search_gen: search_results[query][ search_result["File Name"]].append(search_result["Result"]) return search_results
python
{ "resource": "" }
q10149
SimpleAudioIndexer.search_regexp
train
def search_regexp(self, pattern, audio_basename=None): """ First joins the words of the word_blocks of timestamps with space, per audio_basename. Then matches `pattern` and calculates the index of the word_block where the first and last word of the matched result appears in. Then presents the output like `search_all` method. Note that the leading and trailing spaces from the matched results would be removed while determining which word_block they belong to. Parameters ---------- pattern : str A regex pattern. audio_basename : str, optional Search only within the given audio_basename. Default is `False`. Returns ------- search_results : {str: {str: [(float, float)]}} A dictionary whose keys are queries and whose values are dictionaries whose keys are all the audiofiles in which the query is present and whose values are a list whose elements are 2-tuples whose first element is the starting second of the query and whose values are the ending second. e.g. {"apple": {"fruits.wav" : [(1.1, 1.12)]}} """ def indexes_in_transcript_to_start_end_second(index_tup, audio_basename): """ Calculates the word block index by having the beginning and ending index of the matched result from the transcription Parameters ---------- index_tup : (int, tup) index_tup is of the form tuple(index_start, index_end) audio_basename : str Retrun ------ [float, float] The time of the output of the matched result. Derived from two separate word blocks belonging to the beginning and the end of the index_start and index_end. """ space_indexes = [i for i, x in enumerate( transcription[audio_basename]) if x == " "] space_indexes.sort(reverse=True) index_start, index_end = index_tup # re.finditer returns the ending index by one more index_end -= 1 while transcription[audio_basename][index_start] == " ": index_start += 1 while transcription[audio_basename][index_end] == " ": index_end -= 1 block_number_start = 0 block_number_end = len(space_indexes) for block_cursor, space_index in enumerate(space_indexes): if index_start > space_index: block_number_start = (len(space_indexes) - block_cursor) break for block_cursor, space_index in enumerate(space_indexes): if index_end > space_index: block_number_end = (len(space_indexes) - block_cursor) break return (timestamps[audio_basename][block_number_start].start, timestamps[audio_basename][block_number_end].end) timestamps = self.get_timestamps() if audio_basename is not None: timestamps = {audio_basename: timestamps[audio_basename]} transcription = { audio_basename: ' '.join( [word_block.word for word_block in timestamps[audio_basename]] ) for audio_basename in timestamps} match_map = map( lambda audio_basename: tuple(( audio_basename, re.finditer(pattern, transcription[audio_basename]))), transcription.keys()) search_results = _PrettyDefaultDict(lambda: _PrettyDefaultDict(list)) for audio_basename, match_iter in match_map: for match in match_iter: search_results[match.group()][audio_basename].append( tuple(indexes_in_transcript_to_start_end_second( match.span(), audio_basename))) return search_results
python
{ "resource": "" }
q10150
gf_poly_mul_simple
train
def gf_poly_mul_simple(p, q): # simple equivalent way of multiplying two polynomials without precomputation, but thus it's slower '''Multiply two polynomials, inside Galois Field''' # Pre-allocate the result array r = bytearray(len(p) + len(q) - 1) # Compute the polynomial multiplication (just like the outer product of two vectors, we multiply each coefficients of p with all coefficients of q) for j in xrange(len(q)): for i in xrange(len(p)): r[i + j] ^= gf_mul(p[i], q[j]) # equivalent to: r[i + j] = gf_add(r[i+j], gf_mul(p[i], q[j])) -- you can see it's your usual polynomial multiplication return r
python
{ "resource": "" }
q10151
rs_correct_msg
train
def rs_correct_msg(msg_in, nsym, fcr=0, generator=2, erase_pos=None, only_erasures=False): '''Reed-Solomon main decoding function''' global field_charac if len(msg_in) > field_charac: # Note that it is in fact possible to encode/decode messages that are longer than field_charac, but because this will be above the field, this will generate more error positions during Chien Search than it should, because this will generate duplicate values, which should normally be prevented thank's to the prime polynomial reduction (eg, because it can't discriminate between error at position 1 or 256, both being exactly equal under galois field 2^8). So it's really not advised to do it, but it's possible (but then you're not guaranted to be able to correct any error/erasure on symbols with a position above the length of field_charac -- if you really need a bigger message without chunking, then you should better enlarge c_exp so that you get a bigger field). raise ValueError("Message is too long (%i when max is %i)" % (len(msg_in), field_charac)) msg_out = bytearray(msg_in) # copy of message # erasures: set them to null bytes for easier decoding (but this is not necessary, they will be corrected anyway, but debugging will be easier with null bytes because the error locator polynomial values will only depend on the errors locations, not their values) if erase_pos is None: erase_pos = [] else: for e_pos in erase_pos: msg_out[e_pos] = 0 # check if there are too many erasures to correct (beyond the Singleton bound) if len(erase_pos) > nsym: raise ReedSolomonError("Too many erasures to correct") # prepare the syndrome polynomial using only errors (ie: errors = characters that were either replaced by null byte or changed to another character, but we don't know their positions) synd = rs_calc_syndromes(msg_out, nsym, fcr, generator) # check if there's any error/erasure in the input codeword. If not (all syndromes coefficients are 0), then just return the codeword as-is. if max(synd) == 0: return msg_out[:-nsym], msg_out[-nsym:] # no errors # Find errors locations if only_erasures: err_pos = [] else: # compute the Forney syndromes, which hide the erasures from the original syndrome (so that BM will just have to deal with errors, not erasures) fsynd = rs_forney_syndromes(synd, erase_pos, len(msg_out), generator) # compute the error locator polynomial using Berlekamp-Massey err_loc = rs_find_error_locator(fsynd, nsym, erase_count=len(erase_pos)) # locate the message errors using Chien search (or bruteforce search) err_pos = rs_find_errors(err_loc[::-1], len(msg_out), generator) if err_pos is None: raise ReedSolomonError("Could not locate error") # Find errors values and apply them to correct the message # compute errata evaluator and errata magnitude polynomials, then correct errors and erasures msg_out = rs_correct_errata(msg_out, synd, (erase_pos + err_pos), fcr, generator) # note that we here use the original syndrome, not the forney syndrome (because we will correct both errors and erasures, so we need the full syndrome) # check if the final message is fully repaired synd = rs_calc_syndromes(msg_out, nsym, fcr, generator) if max(synd) > 0: raise ReedSolomonError("Could not correct message") # return the successfully decoded message return msg_out[:-nsym], msg_out[-nsym:]
python
{ "resource": "" }
q10152
rs_correct_msg_nofsynd
train
def rs_correct_msg_nofsynd(msg_in, nsym, fcr=0, generator=2, erase_pos=None, only_erasures=False): '''Reed-Solomon main decoding function, without using the modified Forney syndromes''' global field_charac if len(msg_in) > field_charac: raise ValueError("Message is too long (%i when max is %i)" % (len(msg_in), field_charac)) msg_out = bytearray(msg_in) # copy of message # erasures: set them to null bytes for easier decoding (but this is not necessary, they will be corrected anyway, but debugging will be easier with null bytes because the error locator polynomial values will only depend on the errors locations, not their values) if erase_pos is None: erase_pos = [] else: for e_pos in erase_pos: msg_out[e_pos] = 0 # check if there are too many erasures if len(erase_pos) > nsym: raise ReedSolomonError("Too many erasures to correct") # prepare the syndrome polynomial using only errors (ie: errors = characters that were either replaced by null byte or changed to another character, but we don't know their positions) synd = rs_calc_syndromes(msg_out, nsym, fcr, generator) # check if there's any error/erasure in the input codeword. If not (all syndromes coefficients are 0), then just return the codeword as-is. if max(synd) == 0: return msg_out[:-nsym], msg_out[-nsym:] # no errors # prepare erasures locator and evaluator polynomials erase_loc = None #erase_eval = None erase_count = 0 if erase_pos: erase_count = len(erase_pos) erase_pos_reversed = [len(msg_out)-1-eras for eras in erase_pos] erase_loc = rs_find_errata_locator(erase_pos_reversed, generator=generator) #erase_eval = rs_find_error_evaluator(synd[::-1], erase_loc, len(erase_loc)-1) # prepare errors/errata locator polynomial if only_erasures: err_loc = erase_loc[::-1] #err_eval = erase_eval[::-1] else: err_loc = rs_find_error_locator(synd, nsym, erase_loc=erase_loc, erase_count=erase_count) err_loc = err_loc[::-1] #err_eval = rs_find_error_evaluator(synd[::-1], err_loc[::-1], len(err_loc)-1)[::-1] # find error/errata evaluator polynomial (not really necessary since we already compute it at the same time as the error locator poly in BM) # locate the message errors err_pos = rs_find_errors(err_loc, len(msg_out), generator) # find the roots of the errata locator polynomial (ie: the positions of the errors/errata) if err_pos is None: raise ReedSolomonError("Could not locate error") # compute errata evaluator and errata magnitude polynomials, then correct errors and erasures msg_out = rs_correct_errata(msg_out, synd, err_pos, fcr=fcr, generator=generator) # check if the final message is fully repaired synd = rs_calc_syndromes(msg_out, nsym, fcr, generator) if max(synd) > 0: raise ReedSolomonError("Could not correct message") # return the successfully decoded message return msg_out[:-nsym], msg_out[-nsym:]
python
{ "resource": "" }
q10153
RSCodec.decode
train
def decode(self, data, erase_pos=None, only_erasures=False): '''Repair a message, whatever its size is, by using chunking''' # erase_pos is a list of positions where you know (or greatly suspect at least) there is an erasure (ie, wrong character but you know it's at this position). Just input the list of all positions you know there are errors, and this method will automatically split the erasures positions to attach to the corresponding data chunk. if isinstance(data, str): data = bytearray(data, "latin-1") dec = bytearray() for i in xrange(0, len(data), self.nsize): # Split the long message in a chunk chunk = data[i:i+self.nsize] # Extract the erasures for this chunk e_pos = [] if erase_pos: # First extract the erasures for this chunk (all erasures below the maximum chunk length) e_pos = [x for x in erase_pos if x <= self.nsize] # Then remove the extract erasures from the big list and also decrement all subsequent positions values by nsize (the current chunk's size) so as to prepare the correct alignment for the next iteration erase_pos = [x - (self.nsize+1) for x in erase_pos if x > self.nsize] # Decode/repair this chunk! dec.extend(rs_correct_msg(chunk, self.nsym, fcr=self.fcr, generator=self.generator, erase_pos=e_pos, only_erasures=only_erasures)[0]) return dec
python
{ "resource": "" }
q10154
find_loops
train
def find_loops( record, index, stop_types = STOP_TYPES, open=None, seen = None ): """Find all loops within the index and replace with loop records""" if open is None: open = [] if seen is None: seen = set() for child in children( record, index, stop_types = stop_types ): if child['type'] in stop_types or child['type'] == LOOP_TYPE: continue if child['address'] in open: # loop has been found start = open.index( child['address'] ) new = frozenset( open[start:] ) if new not in seen: seen.add(new) yield new elif child['address'] in seen: continue else: seen.add( child['address']) open.append( child['address'] ) for loop in find_loops( child, index, stop_types=stop_types, open=open, seen=seen ): yield loop open.pop( -1 )
python
{ "resource": "" }
q10155
promote_loops
train
def promote_loops( loops, index, shared ): """Turn loops into "objects" that can be processed normally""" for loop in loops: loop = list(loop) members = [index[addr] for addr in loop] external_parents = list(set([ addr for addr in sum([shared.get(addr,[]) for addr in loop],[]) if addr not in loop ])) if external_parents: if len(external_parents) == 1: # potentially a loop that's been looped... parent = index.get( external_parents[0] ) if parent['type'] == LOOP_TYPE: continue # we haven't already been looped... loop_addr = new_address( index ) shared[loop_addr] = external_parents loop_record = index[loop_addr] = { 'address': loop_addr, 'refs': loop, 'parents': external_parents, 'type': LOOP_TYPE, 'size': 0, } for member in members: # member's references must *not* point to loop... member['refs'] = [ ref for ref in member['refs'] if ref not in loop ] # member's parents are *just* the loop member['parents'][:] = [loop_addr] # each referent to loop holds a single reference to the loop rather than many to children for parent in external_parents: parent = index[parent] for member in members: rewrite_references( parent['refs'], member['address'], None ) parent['refs'].append( loop_addr )
python
{ "resource": "" }
q10156
children
train
def children( record, index, key='refs', stop_types=STOP_TYPES ): """Retrieve children records for given record""" result = [] for ref in record.get( key,[]): try: record = index[ref] except KeyError, err: #print 'No record for %s address %s in %s'%(key, ref, record['address'] ) pass # happens when an unreachable references a reachable that has been compressed out... else: if record['type'] not in stop_types: result.append( record ) return result
python
{ "resource": "" }
q10157
children_types
train
def children_types( record, index, key='refs', stop_types=STOP_TYPES ): """Produce dictionary mapping type-key to instances for all children""" types = {} for child in children( record, index, key, stop_types=stop_types ): types.setdefault(child['type'],[]).append( child ) return types
python
{ "resource": "" }
q10158
recurse_module
train
def recurse_module( overall_record, index, shared, stop_types=STOP_TYPES, already_seen=None, min_size=0 ): """Creates a has-a recursive-cost hierarchy Mutates objects in-place to produce a hierarchy of memory usage based on reference-holding cost assignment """ for record in recurse( overall_record, index, stop_types=stop_types, already_seen=already_seen, type_group=True, ): # anything with a totsize we've already processed... if record.get('totsize') is not None: continue rinfo = record rinfo['module'] = overall_record.get('name',NON_MODULE_REFS ) if not record['refs']: rinfo['rsize'] = 0 rinfo['children'] = [] else: # TODO: provide a flag to coalesce based on e.g. type at each level or throughout... rinfo['children'] = rinfo_children = list ( children( record, index, stop_types=stop_types ) ) rinfo['rsize'] = sum([ ( child.get('totsize',0.0)/float(len(shared.get( child['address'], [])) or 1) ) for child in rinfo_children ], 0.0 ) rinfo['totsize'] = record['size'] + rinfo['rsize'] return None
python
{ "resource": "" }
q10159
simple
train
def simple( child, shared, parent ): """Return sub-set of children who are "simple" in the sense of group_children""" return ( not child.get('refs',()) and ( not shared.get(child['address']) or shared.get(child['address']) == [parent['address']] ) )
python
{ "resource": "" }
q10160
deparent_unreachable
train
def deparent_unreachable( reachable, shared ): """Eliminate all parent-links from unreachable objects from reachable objects """ for id,shares in shared.iteritems(): if id in reachable: # child is reachable filtered = [ x for x in shares if x in reachable # only those parents which are reachable ] if len(filtered) != len(shares): shares[:] = filtered
python
{ "resource": "" }
q10161
bind_parents
train
def bind_parents( index, shared ): """Set parents on all items in index""" for v in iterindex( index ): v['parents'] = shared.get( v['address'], [] )
python
{ "resource": "" }
q10162
find_roots
train
def find_roots( disconnected, index, shared ): """Find appropriate "root" objects from which to recurse the hierarchies Will generate a synthetic root for anything which doesn't have any parents... """ log.warn( '%s disconnected objects in %s total objects', len(disconnected), len(index)) natural_roots = [x for x in disconnected if x.get('refs') and not x.get('parents')] log.warn( '%s objects with no parents at all' ,len(natural_roots)) for natural_root in natural_roots: recurse_module( natural_root, index, shared ) yield natural_root rest = [x for x in disconnected if x.get( 'totsize' ) is None] un_found = { 'type': 'module', 'name': '<disconnected objects>', 'children': rest, 'parents': [ ], 'size': 0, 'totsize': sum([x['size'] for x in rest],0), 'address': new_address( index ), } index[un_found['address']] = un_found yield un_found
python
{ "resource": "" }
q10163
Loader.get_root
train
def get_root( self, key ): """Retrieve the given root by type-key""" if key not in self.roots: root,self.rows = load( self.filename, include_interpreter = self.include_interpreter ) self.roots[key] = root return self.roots[key]
python
{ "resource": "" }
q10164
Dinergate.url
train
def url(self): """The fetching target URL. The default behavior of this property is build URL string with the :const:`~brownant.dinergate.Dinergate.URL_TEMPLATE`. The subclasses could override :const:`~brownant.dinergate.Dinergate.URL_TEMPLATE` or use a different implementation. """ if not self.URL_TEMPLATE: raise NotImplementedError return self.URL_TEMPLATE.format(self=self)
python
{ "resource": "" }
q10165
Site.record_action
train
def record_action(self, method_name, *args, **kwargs): """Record the method-calling action. The actions expect to be played on an target object. :param method_name: the name of called method. :param args: the general arguments for calling method. :param kwargs: the keyword arguments for calling method. """ self.actions.append((method_name, args, kwargs))
python
{ "resource": "" }
q10166
Site.play_actions
train
def play_actions(self, target): """Play record actions on the target object. :param target: the target which recive all record actions, is a brown ant app instance normally. :type target: :class:`~brownant.app.Brownant` """ for method_name, args, kwargs in self.actions: method = getattr(target, method_name) method(*args, **kwargs)
python
{ "resource": "" }
q10167
Site.route
train
def route(self, host, rule, **options): """The decorator to register wrapped function as the brown ant app. All optional parameters of this method are compatible with the :meth:`~brownant.app.Brownant.add_url_rule`. Registered functions or classes must be import-able with its qualified name. It is different from the :class:`~flask.Flask`, but like a lazy-loading mode. Registered objects only be loaded before the first using. The right way:: @site.route("www.example.com", "/item/<int:item_id>") def spam(request, item_id): pass The wrong way:: def egg(): # the function could not be imported by its qualified name @site.route("www.example.com", "/item/<int:item_id>") def spam(request, item_id): pass egg() :param host: the limited host name. :param rule: the URL path rule as string. :param options: the options to be forwarded to the :class:`werkzeug.routing.Rule` object. """ def decorator(func): endpoint = "{func.__module__}:{func.__name__}".format(func=func) self.record_action("add_url_rule", host, rule, endpoint, **options) return func return decorator
python
{ "resource": "" }
q10168
to_bytes_safe
train
def to_bytes_safe(text, encoding="utf-8"): """Convert the input value into bytes type. If the input value is string type and could be encode as UTF-8 bytes, the encoded value will be returned. Otherwise, the encoding has failed, the origin value will be returned as well. :param text: the input value which could be string or bytes. :param encoding: the expected encoding be used while converting the string input into bytes. :rtype: :class:`~__builtin__.bytes` """ if not isinstance(text, (bytes, text_type)): raise TypeError("must be string type") if isinstance(text, text_type): return text.encode(encoding) return text
python
{ "resource": "" }
q10169
Brownant.add_url_rule
train
def add_url_rule(self, host, rule_string, endpoint, **options): """Add a url rule to the app instance. The url rule is the same with Flask apps and other Werkzeug apps. :param host: the matched hostname. e.g. "www.python.org" :param rule_string: the matched path pattern. e.g. "/news/<int:id>" :param endpoint: the endpoint name as a dispatching key such as the qualified name of the object. """ rule = Rule(rule_string, host=host, endpoint=endpoint, **options) self.url_map.add(rule)
python
{ "resource": "" }
q10170
Brownant.parse_url
train
def parse_url(self, url_string): """Parse the URL string with the url map of this app instance. :param url_string: the origin URL string. :returns: the tuple as `(url, url_adapter, query_args)`, the url is parsed by the standard library `urlparse`, the url_adapter is from the werkzeug bound URL map, the query_args is a multidict from the werkzeug. """ url = urllib.parse.urlparse(url_string) url = self.validate_url(url) url_adapter = self.url_map.bind(server_name=url.hostname, url_scheme=url.scheme, path_info=url.path) query_args = url_decode(url.query) return url, url_adapter, query_args
python
{ "resource": "" }
q10171
Brownant.dispatch_url
train
def dispatch_url(self, url_string): """Dispatch the URL string to the target endpoint function. :param url_string: the origin URL string. :returns: the return value of calling dispatched function. """ url, url_adapter, query_args = self.parse_url(url_string) try: endpoint, kwargs = url_adapter.match() except NotFound: raise NotSupported(url_string) except RequestRedirect as e: new_url = "{0.new_url}?{1}".format(e, url_encode(query_args)) return self.dispatch_url(new_url) try: handler = import_string(endpoint) request = Request(url=url, args=query_args) return handler(request, **kwargs) except RequestRedirect as e: return self.dispatch_url(e.new_url)
python
{ "resource": "" }
q10172
Brownant.mount_site
train
def mount_site(self, site): """Mount a supported site to this app instance. :param site: the site instance be mounted. """ if isinstance(site, string_types): site = import_string(site) site.play_actions(target=self)
python
{ "resource": "" }
q10173
Github.githubWebHookConsumer
train
def githubWebHookConsumer(self, *args, **kwargs): """ Consume GitHub WebHook Capture a GitHub event and publish it via pulse, if it's a push, release or pull request. This method is ``experimental`` """ return self._makeApiCall(self.funcinfo["githubWebHookConsumer"], *args, **kwargs)
python
{ "resource": "" }
q10174
Github.badge
train
def badge(self, *args, **kwargs): """ Latest Build Status Badge Checks the status of the latest build of a given branch and returns corresponding badge svg. This method is ``experimental`` """ return self._makeApiCall(self.funcinfo["badge"], *args, **kwargs)
python
{ "resource": "" }
q10175
Github.createComment
train
def createComment(self, *args, **kwargs): """ Post a comment on a given GitHub Issue or Pull Request For a given Issue or Pull Request of a repository, this will write a new message. This method takes input: ``v1/create-comment.json#`` This method is ``experimental`` """ return self._makeApiCall(self.funcinfo["createComment"], *args, **kwargs)
python
{ "resource": "" }
q10176
lorem_gotham
train
def lorem_gotham(): """Cheesy Gothic Poetry Generator Uses Python generators to yield eternal angst. When you need to generate random verbiage to test your code or typographic design, let's face it... Lorem Ipsum and "the quick brown fox" are old and boring! What you need is something with *flavor*, the kind of thing a depressed teenager with a lot of black makeup would write. """ w = lambda l: l[random.randrange(len(l))] er = lambda w: w[:-1]+'ier' if w.endswith('y') else (w+'r' if w.endswith('e') else w+'er') s = lambda w: w+'s' punc = lambda c, *l: " ".join(l)+c sentence = lambda *l: lambda: " ".join(l) pick = lambda *l: (l[random.randrange(len(l))])() while True: yield pick( sentence('the',w(adj),w(them),'and the',w(them),w(them_verb)), sentence('delivering me to',w(place)), sentence('they',w(action),'my',w(me_part),'and',w(me_verb),'with all my',w(feeling)), sentence('in the',w(place),'my',w(feeling),'shall',w(me_verb)), sentence(punc(',', er(w(adj)),'than the a petty',w(feeling))), sentence(er(w(adj)),'than',w(them),'in',w(place)), sentence(punc('!','oh my',w(me_part)),punc('!','the',w(feeling))), sentence('no one',s(w(angst)),'why the',w(them),w(them_verb + me_verb)))
python
{ "resource": "" }
q10177
lorem_gotham_title
train
def lorem_gotham_title(): """Names your poem """ w = lambda l: l[random.randrange(len(l))] sentence = lambda *l: lambda: " ".join(l) pick = lambda *l: (l[random.randrange(len(l))])() return pick( sentence('why i',w(me_verb)), sentence(w(place)), sentence('a',w(adj),w(adj),w(place)), sentence('the',w(them)))
python
{ "resource": "" }
q10178
main
train
def main(): """I provide a command-line interface for this module """ print() print("-~*~--~*~--~*~--~*~--~*~--~*~--~*~--~*~--~*~--~*~-") print(lorem_gotham_title().center(50)) print("-~*~--~*~--~*~--~*~--~*~--~*~--~*~--~*~--~*~--~*~-") print() poem = lorem_gotham() for n in range(16): if n in (4, 8, 12): print() print(next(poem)) print()
python
{ "resource": "" }
q10179
EC2Manager.listWorkerTypes
train
async def listWorkerTypes(self, *args, **kwargs): """ See the list of worker types which are known to be managed This method is only for debugging the ec2-manager This method gives output: ``v1/list-worker-types.json#`` This method is ``experimental`` """ return await self._makeApiCall(self.funcinfo["listWorkerTypes"], *args, **kwargs)
python
{ "resource": "" }
q10180
EC2Manager.runInstance
train
async def runInstance(self, *args, **kwargs): """ Run an instance Request an instance of a worker type This method takes input: ``v1/run-instance-request.json#`` This method is ``experimental`` """ return await self._makeApiCall(self.funcinfo["runInstance"], *args, **kwargs)
python
{ "resource": "" }
q10181
EC2Manager.workerTypeStats
train
async def workerTypeStats(self, *args, **kwargs): """ Look up the resource stats for a workerType Return an object which has a generic state description. This only contains counts of instances This method gives output: ``v1/worker-type-resources.json#`` This method is ``experimental`` """ return await self._makeApiCall(self.funcinfo["workerTypeStats"], *args, **kwargs)
python
{ "resource": "" }
q10182
EC2Manager.workerTypeHealth
train
async def workerTypeHealth(self, *args, **kwargs): """ Look up the resource health for a workerType Return a view of the health of a given worker type This method gives output: ``v1/health.json#`` This method is ``experimental`` """ return await self._makeApiCall(self.funcinfo["workerTypeHealth"], *args, **kwargs)
python
{ "resource": "" }
q10183
EC2Manager.workerTypeErrors
train
async def workerTypeErrors(self, *args, **kwargs): """ Look up the most recent errors of a workerType Return a list of the most recent errors encountered by a worker type This method gives output: ``v1/errors.json#`` This method is ``experimental`` """ return await self._makeApiCall(self.funcinfo["workerTypeErrors"], *args, **kwargs)
python
{ "resource": "" }
q10184
EC2Manager.workerTypeState
train
async def workerTypeState(self, *args, **kwargs): """ Look up the resource state for a workerType Return state information for a given worker type This method gives output: ``v1/worker-type-state.json#`` This method is ``experimental`` """ return await self._makeApiCall(self.funcinfo["workerTypeState"], *args, **kwargs)
python
{ "resource": "" }
q10185
EC2Manager.ensureKeyPair
train
async def ensureKeyPair(self, *args, **kwargs): """ Ensure a KeyPair for a given worker type exists Idempotently ensure that a keypair of a given name exists This method takes input: ``v1/create-key-pair.json#`` This method is ``experimental`` """ return await self._makeApiCall(self.funcinfo["ensureKeyPair"], *args, **kwargs)
python
{ "resource": "" }
q10186
EC2Manager.removeKeyPair
train
async def removeKeyPair(self, *args, **kwargs): """ Ensure a KeyPair for a given worker type does not exist Ensure that a keypair of a given name does not exist. This method is ``experimental`` """ return await self._makeApiCall(self.funcinfo["removeKeyPair"], *args, **kwargs)
python
{ "resource": "" }
q10187
EC2Manager.terminateInstance
train
async def terminateInstance(self, *args, **kwargs): """ Terminate an instance Terminate an instance in a specified region This method is ``experimental`` """ return await self._makeApiCall(self.funcinfo["terminateInstance"], *args, **kwargs)
python
{ "resource": "" }
q10188
EC2Manager.getHealth
train
async def getHealth(self, *args, **kwargs): """ Get EC2 account health metrics Give some basic stats on the health of our EC2 account This method gives output: ``v1/health.json#`` This method is ``experimental`` """ return await self._makeApiCall(self.funcinfo["getHealth"], *args, **kwargs)
python
{ "resource": "" }
q10189
EC2Manager.getRecentErrors
train
async def getRecentErrors(self, *args, **kwargs): """ Look up the most recent errors in the provisioner across all worker types Return a list of recent errors encountered This method gives output: ``v1/errors.json#`` This method is ``experimental`` """ return await self._makeApiCall(self.funcinfo["getRecentErrors"], *args, **kwargs)
python
{ "resource": "" }
q10190
EC2Manager.regions
train
async def regions(self, *args, **kwargs): """ See the list of regions managed by this ec2-manager This method is only for debugging the ec2-manager This method is ``experimental`` """ return await self._makeApiCall(self.funcinfo["regions"], *args, **kwargs)
python
{ "resource": "" }
q10191
EC2Manager.amiUsage
train
async def amiUsage(self, *args, **kwargs): """ See the list of AMIs and their usage List AMIs and their usage by returning a list of objects in the form: { region: string volumetype: string lastused: timestamp } This method is ``experimental`` """ return await self._makeApiCall(self.funcinfo["amiUsage"], *args, **kwargs)
python
{ "resource": "" }
q10192
EC2Manager.ebsUsage
train
async def ebsUsage(self, *args, **kwargs): """ See the current EBS volume usage list Lists current EBS volume usage by returning a list of objects that are uniquely defined by {region, volumetype, state} in the form: { region: string, volumetype: string, state: string, totalcount: integer, totalgb: integer, touched: timestamp (last time that information was updated), } This method is ``experimental`` """ return await self._makeApiCall(self.funcinfo["ebsUsage"], *args, **kwargs)
python
{ "resource": "" }
q10193
EC2Manager.dbpoolStats
train
async def dbpoolStats(self, *args, **kwargs): """ Statistics on the Database client pool This method is only for debugging the ec2-manager This method is ``experimental`` """ return await self._makeApiCall(self.funcinfo["dbpoolStats"], *args, **kwargs)
python
{ "resource": "" }
q10194
EC2Manager.sqsStats
train
async def sqsStats(self, *args, **kwargs): """ Statistics on the sqs queues This method is only for debugging the ec2-manager This method is ``experimental`` """ return await self._makeApiCall(self.funcinfo["sqsStats"], *args, **kwargs)
python
{ "resource": "" }
q10195
EC2Manager.purgeQueues
train
async def purgeQueues(self, *args, **kwargs): """ Purge the SQS queues This method is only for debugging the ec2-manager This method is ``experimental`` """ return await self._makeApiCall(self.funcinfo["purgeQueues"], *args, **kwargs)
python
{ "resource": "" }
q10196
GithubEvents.pullRequest
train
def pullRequest(self, *args, **kwargs): """ GitHub Pull Request Event When a GitHub pull request event is posted it will be broadcast on this exchange with the designated `organization` and `repository` in the routing-key along with event specific metadata in the payload. This exchange outputs: ``v1/github-pull-request-message.json#``This exchange takes the following keys: * routingKeyKind: Identifier for the routing-key kind. This is always `"primary"` for the formalized routing key. (required) * organization: The GitHub `organization` which had an event. All periods have been replaced by % - such that foo.bar becomes foo%bar - and all other special characters aside from - and _ have been stripped. (required) * repository: The GitHub `repository` which had an event.All periods have been replaced by % - such that foo.bar becomes foo%bar - and all other special characters aside from - and _ have been stripped. (required) * action: The GitHub `action` which triggered an event. See for possible values see the payload actions property. (required) """ ref = { 'exchange': 'pull-request', 'name': 'pullRequest', 'routingKey': [ { 'constant': 'primary', 'multipleWords': False, 'name': 'routingKeyKind', }, { 'multipleWords': False, 'name': 'organization', }, { 'multipleWords': False, 'name': 'repository', }, { 'multipleWords': False, 'name': 'action', }, ], 'schema': 'v1/github-pull-request-message.json#', } return self._makeTopicExchange(ref, *args, **kwargs)
python
{ "resource": "" }
q10197
GithubEvents.push
train
def push(self, *args, **kwargs): """ GitHub push Event When a GitHub push event is posted it will be broadcast on this exchange with the designated `organization` and `repository` in the routing-key along with event specific metadata in the payload. This exchange outputs: ``v1/github-push-message.json#``This exchange takes the following keys: * routingKeyKind: Identifier for the routing-key kind. This is always `"primary"` for the formalized routing key. (required) * organization: The GitHub `organization` which had an event. All periods have been replaced by % - such that foo.bar becomes foo%bar - and all other special characters aside from - and _ have been stripped. (required) * repository: The GitHub `repository` which had an event.All periods have been replaced by % - such that foo.bar becomes foo%bar - and all other special characters aside from - and _ have been stripped. (required) """ ref = { 'exchange': 'push', 'name': 'push', 'routingKey': [ { 'constant': 'primary', 'multipleWords': False, 'name': 'routingKeyKind', }, { 'multipleWords': False, 'name': 'organization', }, { 'multipleWords': False, 'name': 'repository', }, ], 'schema': 'v1/github-push-message.json#', } return self._makeTopicExchange(ref, *args, **kwargs)
python
{ "resource": "" }
q10198
GithubEvents.release
train
def release(self, *args, **kwargs): """ GitHub release Event When a GitHub release event is posted it will be broadcast on this exchange with the designated `organization` and `repository` in the routing-key along with event specific metadata in the payload. This exchange outputs: ``v1/github-release-message.json#``This exchange takes the following keys: * routingKeyKind: Identifier for the routing-key kind. This is always `"primary"` for the formalized routing key. (required) * organization: The GitHub `organization` which had an event. All periods have been replaced by % - such that foo.bar becomes foo%bar - and all other special characters aside from - and _ have been stripped. (required) * repository: The GitHub `repository` which had an event.All periods have been replaced by % - such that foo.bar becomes foo%bar - and all other special characters aside from - and _ have been stripped. (required) """ ref = { 'exchange': 'release', 'name': 'release', 'routingKey': [ { 'constant': 'primary', 'multipleWords': False, 'name': 'routingKeyKind', }, { 'multipleWords': False, 'name': 'organization', }, { 'multipleWords': False, 'name': 'repository', }, ], 'schema': 'v1/github-release-message.json#', } return self._makeTopicExchange(ref, *args, **kwargs)
python
{ "resource": "" }
q10199
GithubEvents.taskGroupCreationRequested
train
def taskGroupCreationRequested(self, *args, **kwargs): """ tc-gh requested the Queue service to create all the tasks in a group supposed to signal that taskCreate API has been called for every task in the task group for this particular repo and this particular organization currently used for creating initial status indicators in GitHub UI using Statuses API. This particular exchange can also be bound to RabbitMQ queues by custom routes - for that, Pass in the array of routes as a second argument to the publish method. Currently, we do use the statuses routes to bind the handler that creates the initial status. This exchange outputs: ``v1/task-group-creation-requested.json#``This exchange takes the following keys: * routingKeyKind: Identifier for the routing-key kind. This is always `"primary"` for the formalized routing key. (required) * organization: The GitHub `organization` which had an event. All periods have been replaced by % - such that foo.bar becomes foo%bar - and all other special characters aside from - and _ have been stripped. (required) * repository: The GitHub `repository` which had an event.All periods have been replaced by % - such that foo.bar becomes foo%bar - and all other special characters aside from - and _ have been stripped. (required) """ ref = { 'exchange': 'task-group-creation-requested', 'name': 'taskGroupCreationRequested', 'routingKey': [ { 'constant': 'primary', 'multipleWords': False, 'name': 'routingKeyKind', }, { 'multipleWords': False, 'name': 'organization', }, { 'multipleWords': False, 'name': 'repository', }, ], 'schema': 'v1/task-group-creation-requested.json#', } return self._makeTopicExchange(ref, *args, **kwargs)
python
{ "resource": "" }