Dataset Viewer
The dataset could not be loaded because the splits use different data file formats, which is not supported. Read more about the splits configuration. Click for more details.
Couldn't infer the same data file format for all splits. Got {NamedSplit('train'): (None, {}), NamedSplit('test'): ('json', {})}
Error code:   FileFormatMismatchBetweenSplitsError

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

SegMamba & GliomaSAM3-MoE: Complete Reproduction Package

This repository contains everything needed to reproduce our brain tumor segmentation experiments on BraTS 2023 dataset, including source code, pre-trained weights, and evaluation results.

Repository Structure

.
├── source_code/
│   ├── gliomasam3_moe/        # GliomaSAM3-MoE source code
│   ├── SegMamba/              # SegMamba source code (with mamba/monai)
│   └── sam3/                  # SAM3 dependency module
│
├── pretrained_weights/
│   └── sam3.pt                # SAM3 pretrained weights (3.3GB)
│
├── gliomasam3_moe/
│   ├── checkpoints/           # GliomaSAM3-MoE trained weights
│   │   ├── ckpt_step2000.pt
│   │   ├── ckpt_step2600.pt
│   │   └── ckpt_step3000.pt   # Best checkpoint
│   ├── configs/
│   │   └── train.yaml         # Training configuration
│   ├── eval_results/
│   │   ├── table4_et_absent.json   # ET presence classification results
│   │   └── table7_boundary_dice.json # Boundary-band Dice results
│   └── vis_res/               # Visualization results
│       ├── method_comparison/ # Side-by-side comparisons
│       ├── boundary/          # Boundary analysis figures
│       ├── moe_routing/       # MoE routing visualizations
│       └── ...
│
├── segmamba/
│   ├── checkpoints/           # SegMamba trained weights
│   │   ├── tmp_model_ep599_0.8295.pt
│   │   └── tmp_model_ep799_0.8498.pt  # Best checkpoint (Dice=0.8498)
│   └── prediction_results/
│       ├── segmamba_brats23_ep799/    # Prediction NIfTI files
│       └── result_metrics/            # Evaluation metrics
│
└── README.md

Model Performance

GliomaSAM3-MoE (ckpt_step3000)

Boundary-band Dice (3-voxel band):

Region Dice
WT 0.789 ± 0.057
TC 0.766 ± 0.154
ET 0.697 ± 0.161
Mean 0.750

ET Presence Classification:

Metric Value
AUROC 0.896
Accuracy 0.795
Sensitivity 0.792
Specificity 1.000

SegMamba (ep799)

  • Mean Dice: 0.8498
  • Trained for 800 epochs on BraTS 2023

Quick Start: Reproduction

1. Download this repository

# Clone the dataset
git clone https://huggingface.co/datasets/ChipYTY/segmamba
cd segmamba

2. Prepare BraTS 2023 Data

Download BraTS 2023 GLI Challenge data from Synapse and preprocess:

cd source_code/SegMamba
python 2_preprocessing_mri.py --input_dir /path/to/BraTS2023 --output_dir /path/to/processed

3. Run GliomaSAM3-MoE Inference

cd source_code/gliomasam3_moe

# Set SAM3 path
export PYTHONPATH=/path/to/source_code/sam3:$PYTHONPATH
export SAM3_CKPT=/path/to/pretrained_weights/sam3.pt

# Run inference
python infer.py \
    --config configs/train.yaml \
    --checkpoint /path/to/gliomasam3_moe/checkpoints/ckpt_step3000.pt \
    --data_dir /path/to/processed \
    --output_dir ./predictions

4. Run SegMamba Inference

cd source_code/SegMamba

python 4_predict.py \
    --checkpoint /path/to/segmamba/checkpoints/tmp_model_ep799_0.8498.pt \
    --data_dir /path/to/processed \
    --output_dir ./predictions

Usage

Loading GliomaSAM3-MoE

import torch

# Load checkpoint
ckpt = torch.load("gliomasam3_moe/checkpoints/ckpt_step3000.pt", map_location="cpu")

# Model state dict is in ckpt["model"]
model.load_state_dict(ckpt["model"])

Loading SegMamba

import torch

# Load checkpoint
ckpt = torch.load("segmamba/checkpoints/tmp_model_ep799_0.8498.pt", map_location="cpu")

# Model state dict
model.load_state_dict(ckpt["model"])

Data

Models were trained and evaluated on BraTS 2023 GLI Challenge dataset.

  • Download: Synapse BraTS 2023
  • Preprocessing: Use source_code/SegMamba/2_preprocessing_mri.py

Requirements

  • Python 3.10+
  • PyTorch 2.0+
  • CUDA 11.8+ (for SegMamba's Mamba CUDA kernels)
  • See source_code/gliomasam3_moe/requirements.txt for full list

Citation

If you use these models, please cite the relevant papers.

License

Please refer to the original model repositories for licensing information.

Downloads last month
20