id
int32
0
252k
repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
21,800
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
linear_interpolate_rank
def linear_interpolate_rank(tensor1, tensor2, coeffs, rank=1): """Linearly interpolate channel at "rank" between two tensors. The channels are ranked according to their L2 norm between tensor1[channel] and tensor2[channel]. Args: tensor1: 4-D Tensor, NHWC tensor2: 4-D Tensor, NHWC coeffs: list of floats. rank: integer. Returns: interp_latents: list of interpolated 4-D Tensors, shape=(NHWC) """ # sum across space, max across channels. _, _, _, num_channels = common_layers.shape_list(tensor1) diff_sq_sum = tf.reduce_sum((tensor1 - tensor2)**2, axis=(0, 1, 2)) _, feature_ranks = tf.math.top_k(diff_sq_sum, k=rank) feature_rank = feature_ranks[-1] channel_inds = tf.range(num_channels, dtype=tf.int32) channel_mask = tf.equal(channel_inds, feature_rank) ones_t = tf.ones(num_channels, dtype=tf.float32) zeros_t = tf.zeros(num_channels, dtype=tf.float32) interp_tensors = [] for coeff in coeffs: curr_coeff = tf.where(channel_mask, coeff * ones_t, zeros_t) interp_tensor = tensor1 + curr_coeff * (tensor2 - tensor1) interp_tensors.append(interp_tensor) return tf.concat(interp_tensors, axis=0)
python
def linear_interpolate_rank(tensor1, tensor2, coeffs, rank=1): """Linearly interpolate channel at "rank" between two tensors. The channels are ranked according to their L2 norm between tensor1[channel] and tensor2[channel]. Args: tensor1: 4-D Tensor, NHWC tensor2: 4-D Tensor, NHWC coeffs: list of floats. rank: integer. Returns: interp_latents: list of interpolated 4-D Tensors, shape=(NHWC) """ # sum across space, max across channels. _, _, _, num_channels = common_layers.shape_list(tensor1) diff_sq_sum = tf.reduce_sum((tensor1 - tensor2)**2, axis=(0, 1, 2)) _, feature_ranks = tf.math.top_k(diff_sq_sum, k=rank) feature_rank = feature_ranks[-1] channel_inds = tf.range(num_channels, dtype=tf.int32) channel_mask = tf.equal(channel_inds, feature_rank) ones_t = tf.ones(num_channels, dtype=tf.float32) zeros_t = tf.zeros(num_channels, dtype=tf.float32) interp_tensors = [] for coeff in coeffs: curr_coeff = tf.where(channel_mask, coeff * ones_t, zeros_t) interp_tensor = tensor1 + curr_coeff * (tensor2 - tensor1) interp_tensors.append(interp_tensor) return tf.concat(interp_tensors, axis=0)
[ "def", "linear_interpolate_rank", "(", "tensor1", ",", "tensor2", ",", "coeffs", ",", "rank", "=", "1", ")", ":", "# sum across space, max across channels.", "_", ",", "_", ",", "_", ",", "num_channels", "=", "common_layers", ".", "shape_list", "(", "tensor1", ")", "diff_sq_sum", "=", "tf", ".", "reduce_sum", "(", "(", "tensor1", "-", "tensor2", ")", "**", "2", ",", "axis", "=", "(", "0", ",", "1", ",", "2", ")", ")", "_", ",", "feature_ranks", "=", "tf", ".", "math", ".", "top_k", "(", "diff_sq_sum", ",", "k", "=", "rank", ")", "feature_rank", "=", "feature_ranks", "[", "-", "1", "]", "channel_inds", "=", "tf", ".", "range", "(", "num_channels", ",", "dtype", "=", "tf", ".", "int32", ")", "channel_mask", "=", "tf", ".", "equal", "(", "channel_inds", ",", "feature_rank", ")", "ones_t", "=", "tf", ".", "ones", "(", "num_channels", ",", "dtype", "=", "tf", ".", "float32", ")", "zeros_t", "=", "tf", ".", "zeros", "(", "num_channels", ",", "dtype", "=", "tf", ".", "float32", ")", "interp_tensors", "=", "[", "]", "for", "coeff", "in", "coeffs", ":", "curr_coeff", "=", "tf", ".", "where", "(", "channel_mask", ",", "coeff", "*", "ones_t", ",", "zeros_t", ")", "interp_tensor", "=", "tensor1", "+", "curr_coeff", "*", "(", "tensor2", "-", "tensor1", ")", "interp_tensors", ".", "append", "(", "interp_tensor", ")", "return", "tf", ".", "concat", "(", "interp_tensors", ",", "axis", "=", "0", ")" ]
Linearly interpolate channel at "rank" between two tensors. The channels are ranked according to their L2 norm between tensor1[channel] and tensor2[channel]. Args: tensor1: 4-D Tensor, NHWC tensor2: 4-D Tensor, NHWC coeffs: list of floats. rank: integer. Returns: interp_latents: list of interpolated 4-D Tensors, shape=(NHWC)
[ "Linearly", "interpolate", "channel", "at", "rank", "between", "two", "tensors", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L53-L82
21,801
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
get_cond_latents_at_level
def get_cond_latents_at_level(cond_latents, level, hparams): """Returns a single or list of conditional latents at level 'level'.""" if cond_latents: if hparams.latent_dist_encoder in ["conv_net", "conv3d_net"]: return [cond_latent[level] for cond_latent in cond_latents] elif hparams.latent_dist_encoder in ["pointwise", "conv_lstm"]: return cond_latents[level]
python
def get_cond_latents_at_level(cond_latents, level, hparams): """Returns a single or list of conditional latents at level 'level'.""" if cond_latents: if hparams.latent_dist_encoder in ["conv_net", "conv3d_net"]: return [cond_latent[level] for cond_latent in cond_latents] elif hparams.latent_dist_encoder in ["pointwise", "conv_lstm"]: return cond_latents[level]
[ "def", "get_cond_latents_at_level", "(", "cond_latents", ",", "level", ",", "hparams", ")", ":", "if", "cond_latents", ":", "if", "hparams", ".", "latent_dist_encoder", "in", "[", "\"conv_net\"", ",", "\"conv3d_net\"", "]", ":", "return", "[", "cond_latent", "[", "level", "]", "for", "cond_latent", "in", "cond_latents", "]", "elif", "hparams", ".", "latent_dist_encoder", "in", "[", "\"pointwise\"", ",", "\"conv_lstm\"", "]", ":", "return", "cond_latents", "[", "level", "]" ]
Returns a single or list of conditional latents at level 'level'.
[ "Returns", "a", "single", "or", "list", "of", "conditional", "latents", "at", "level", "level", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L141-L147
21,802
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
check_cond_latents
def check_cond_latents(cond_latents, hparams): """Shape checking for cond_latents.""" if cond_latents is None: return if not isinstance(cond_latents[0], list): cond_latents = [cond_latents] exp_num_latents = hparams.num_cond_latents if hparams.latent_dist_encoder == "conv_net": exp_num_latents += int(hparams.cond_first_frame) if len(cond_latents) != exp_num_latents: raise ValueError("Expected number of cond_latents: %d, got %d" % (exp_num_latents, len(cond_latents))) for cond_latent in cond_latents: if len(cond_latent) != hparams.n_levels - 1: raise ValueError("Expected level_latents to be %d, got %d" % (hparams.n_levels - 1, len(cond_latent)))
python
def check_cond_latents(cond_latents, hparams): """Shape checking for cond_latents.""" if cond_latents is None: return if not isinstance(cond_latents[0], list): cond_latents = [cond_latents] exp_num_latents = hparams.num_cond_latents if hparams.latent_dist_encoder == "conv_net": exp_num_latents += int(hparams.cond_first_frame) if len(cond_latents) != exp_num_latents: raise ValueError("Expected number of cond_latents: %d, got %d" % (exp_num_latents, len(cond_latents))) for cond_latent in cond_latents: if len(cond_latent) != hparams.n_levels - 1: raise ValueError("Expected level_latents to be %d, got %d" % (hparams.n_levels - 1, len(cond_latent)))
[ "def", "check_cond_latents", "(", "cond_latents", ",", "hparams", ")", ":", "if", "cond_latents", "is", "None", ":", "return", "if", "not", "isinstance", "(", "cond_latents", "[", "0", "]", ",", "list", ")", ":", "cond_latents", "=", "[", "cond_latents", "]", "exp_num_latents", "=", "hparams", ".", "num_cond_latents", "if", "hparams", ".", "latent_dist_encoder", "==", "\"conv_net\"", ":", "exp_num_latents", "+=", "int", "(", "hparams", ".", "cond_first_frame", ")", "if", "len", "(", "cond_latents", ")", "!=", "exp_num_latents", ":", "raise", "ValueError", "(", "\"Expected number of cond_latents: %d, got %d\"", "%", "(", "exp_num_latents", ",", "len", "(", "cond_latents", ")", ")", ")", "for", "cond_latent", "in", "cond_latents", ":", "if", "len", "(", "cond_latent", ")", "!=", "hparams", ".", "n_levels", "-", "1", ":", "raise", "ValueError", "(", "\"Expected level_latents to be %d, got %d\"", "%", "(", "hparams", ".", "n_levels", "-", "1", ",", "len", "(", "cond_latent", ")", ")", ")" ]
Shape checking for cond_latents.
[ "Shape", "checking", "for", "cond_latents", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L150-L165
21,803
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
get_variable_ddi
def get_variable_ddi(name, shape, initial_value, dtype=tf.float32, init=False, trainable=True): """Wrapper for data-dependent initialization.""" # If init is a tf bool: w is assigned dynamically at runtime. # If init is a python bool: then w is determined during graph construction. w = tf.get_variable(name, shape, dtype, None, trainable=trainable) if isinstance(init, bool): if init: return assign(w, initial_value) return w else: return tf.cond(init, lambda: assign(w, initial_value), lambda: w)
python
def get_variable_ddi(name, shape, initial_value, dtype=tf.float32, init=False, trainable=True): """Wrapper for data-dependent initialization.""" # If init is a tf bool: w is assigned dynamically at runtime. # If init is a python bool: then w is determined during graph construction. w = tf.get_variable(name, shape, dtype, None, trainable=trainable) if isinstance(init, bool): if init: return assign(w, initial_value) return w else: return tf.cond(init, lambda: assign(w, initial_value), lambda: w)
[ "def", "get_variable_ddi", "(", "name", ",", "shape", ",", "initial_value", ",", "dtype", "=", "tf", ".", "float32", ",", "init", "=", "False", ",", "trainable", "=", "True", ")", ":", "# If init is a tf bool: w is assigned dynamically at runtime.", "# If init is a python bool: then w is determined during graph construction.", "w", "=", "tf", ".", "get_variable", "(", "name", ",", "shape", ",", "dtype", ",", "None", ",", "trainable", "=", "trainable", ")", "if", "isinstance", "(", "init", ",", "bool", ")", ":", "if", "init", ":", "return", "assign", "(", "w", ",", "initial_value", ")", "return", "w", "else", ":", "return", "tf", ".", "cond", "(", "init", ",", "lambda", ":", "assign", "(", "w", ",", "initial_value", ")", ",", "lambda", ":", "w", ")" ]
Wrapper for data-dependent initialization.
[ "Wrapper", "for", "data", "-", "dependent", "initialization", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L169-L180
21,804
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
get_dropout
def get_dropout(x, rate=0.0, init=True): """Dropout x with dropout_rate = rate. Apply zero dropout during init or prediction time. Args: x: 4-D Tensor, shape=(NHWC). rate: Dropout rate. init: Initialization. Returns: x: activations after dropout. """ if init or rate == 0: return x return tf.layers.dropout(x, rate=rate, training=True)
python
def get_dropout(x, rate=0.0, init=True): """Dropout x with dropout_rate = rate. Apply zero dropout during init or prediction time. Args: x: 4-D Tensor, shape=(NHWC). rate: Dropout rate. init: Initialization. Returns: x: activations after dropout. """ if init or rate == 0: return x return tf.layers.dropout(x, rate=rate, training=True)
[ "def", "get_dropout", "(", "x", ",", "rate", "=", "0.0", ",", "init", "=", "True", ")", ":", "if", "init", "or", "rate", "==", "0", ":", "return", "x", "return", "tf", ".", "layers", ".", "dropout", "(", "x", ",", "rate", "=", "rate", ",", "training", "=", "True", ")" ]
Dropout x with dropout_rate = rate. Apply zero dropout during init or prediction time. Args: x: 4-D Tensor, shape=(NHWC). rate: Dropout rate. init: Initialization. Returns: x: activations after dropout.
[ "Dropout", "x", "with", "dropout_rate", "=", "rate", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L184-L198
21,805
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
actnorm_3d
def actnorm_3d(name, x, logscale_factor=3.): """Applies actnorm to each time-step independently. There are a total of 2*n_channels*n_steps parameters learnt. Args: name: variable scope. x: 5-D Tensor, (NTHWC) logscale_factor: Increases the learning rate of the scale by logscale_factor. Returns: x: 5-D Tensor, (NTHWC) with the per-timestep, per-channel normalization. """ with tf.variable_scope(name, reuse=tf.AUTO_REUSE): x = tf.unstack(x, axis=1) x_normed = [] for ind, x_step in enumerate(x): x_step, _ = actnorm("actnorm_%d" % ind, x_step, logscale_factor=logscale_factor) x_normed.append(x_step) return tf.stack(x_normed, axis=1), None
python
def actnorm_3d(name, x, logscale_factor=3.): """Applies actnorm to each time-step independently. There are a total of 2*n_channels*n_steps parameters learnt. Args: name: variable scope. x: 5-D Tensor, (NTHWC) logscale_factor: Increases the learning rate of the scale by logscale_factor. Returns: x: 5-D Tensor, (NTHWC) with the per-timestep, per-channel normalization. """ with tf.variable_scope(name, reuse=tf.AUTO_REUSE): x = tf.unstack(x, axis=1) x_normed = [] for ind, x_step in enumerate(x): x_step, _ = actnorm("actnorm_%d" % ind, x_step, logscale_factor=logscale_factor) x_normed.append(x_step) return tf.stack(x_normed, axis=1), None
[ "def", "actnorm_3d", "(", "name", ",", "x", ",", "logscale_factor", "=", "3.", ")", ":", "with", "tf", ".", "variable_scope", "(", "name", ",", "reuse", "=", "tf", ".", "AUTO_REUSE", ")", ":", "x", "=", "tf", ".", "unstack", "(", "x", ",", "axis", "=", "1", ")", "x_normed", "=", "[", "]", "for", "ind", ",", "x_step", "in", "enumerate", "(", "x", ")", ":", "x_step", ",", "_", "=", "actnorm", "(", "\"actnorm_%d\"", "%", "ind", ",", "x_step", ",", "logscale_factor", "=", "logscale_factor", ")", "x_normed", ".", "append", "(", "x_step", ")", "return", "tf", ".", "stack", "(", "x_normed", ",", "axis", "=", "1", ")", ",", "None" ]
Applies actnorm to each time-step independently. There are a total of 2*n_channels*n_steps parameters learnt. Args: name: variable scope. x: 5-D Tensor, (NTHWC) logscale_factor: Increases the learning rate of the scale by logscale_factor. Returns: x: 5-D Tensor, (NTHWC) with the per-timestep, per-channel normalization.
[ "Applies", "actnorm", "to", "each", "time", "-", "step", "independently", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L202-L222
21,806
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
actnorm_center
def actnorm_center(name, x, reverse=False, init=False): """Add a bias to x. Initialize such that the output of the first minibatch is zero centered per channel. Args: name: scope x: 2-D or 4-D Tensor. reverse: Forward or backward operation. init: data-dependent initialization. Returns: x_center: (x + b), if reverse is True and (x - b) otherwise. """ shape = common_layers.shape_list(x) with tf.variable_scope(name, reuse=tf.AUTO_REUSE): assert len(shape) == 2 or len(shape) == 4 if len(shape) == 2: x_mean = tf.reduce_mean(x, [0], keepdims=True) b = get_variable_ddi("b", (1, shape[1]), initial_value=-x_mean, init=init) elif len(shape) == 4: x_mean = tf.reduce_mean(x, [0, 1, 2], keepdims=True) b = get_variable_ddi( "b", (1, 1, 1, shape[3]), initial_value=-x_mean, init=init) if not reverse: x += b else: x -= b return x
python
def actnorm_center(name, x, reverse=False, init=False): """Add a bias to x. Initialize such that the output of the first minibatch is zero centered per channel. Args: name: scope x: 2-D or 4-D Tensor. reverse: Forward or backward operation. init: data-dependent initialization. Returns: x_center: (x + b), if reverse is True and (x - b) otherwise. """ shape = common_layers.shape_list(x) with tf.variable_scope(name, reuse=tf.AUTO_REUSE): assert len(shape) == 2 or len(shape) == 4 if len(shape) == 2: x_mean = tf.reduce_mean(x, [0], keepdims=True) b = get_variable_ddi("b", (1, shape[1]), initial_value=-x_mean, init=init) elif len(shape) == 4: x_mean = tf.reduce_mean(x, [0, 1, 2], keepdims=True) b = get_variable_ddi( "b", (1, 1, 1, shape[3]), initial_value=-x_mean, init=init) if not reverse: x += b else: x -= b return x
[ "def", "actnorm_center", "(", "name", ",", "x", ",", "reverse", "=", "False", ",", "init", "=", "False", ")", ":", "shape", "=", "common_layers", ".", "shape_list", "(", "x", ")", "with", "tf", ".", "variable_scope", "(", "name", ",", "reuse", "=", "tf", ".", "AUTO_REUSE", ")", ":", "assert", "len", "(", "shape", ")", "==", "2", "or", "len", "(", "shape", ")", "==", "4", "if", "len", "(", "shape", ")", "==", "2", ":", "x_mean", "=", "tf", ".", "reduce_mean", "(", "x", ",", "[", "0", "]", ",", "keepdims", "=", "True", ")", "b", "=", "get_variable_ddi", "(", "\"b\"", ",", "(", "1", ",", "shape", "[", "1", "]", ")", ",", "initial_value", "=", "-", "x_mean", ",", "init", "=", "init", ")", "elif", "len", "(", "shape", ")", "==", "4", ":", "x_mean", "=", "tf", ".", "reduce_mean", "(", "x", ",", "[", "0", ",", "1", ",", "2", "]", ",", "keepdims", "=", "True", ")", "b", "=", "get_variable_ddi", "(", "\"b\"", ",", "(", "1", ",", "1", ",", "1", ",", "shape", "[", "3", "]", ")", ",", "initial_value", "=", "-", "x_mean", ",", "init", "=", "init", ")", "if", "not", "reverse", ":", "x", "+=", "b", "else", ":", "x", "-=", "b", "return", "x" ]
Add a bias to x. Initialize such that the output of the first minibatch is zero centered per channel. Args: name: scope x: 2-D or 4-D Tensor. reverse: Forward or backward operation. init: data-dependent initialization. Returns: x_center: (x + b), if reverse is True and (x - b) otherwise.
[ "Add", "a", "bias", "to", "x", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L265-L296
21,807
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
actnorm_scale
def actnorm_scale(name, x, logscale_factor=3., reverse=False, init=False): """Per-channel scaling of x.""" x_shape = common_layers.shape_list(x) with tf.variable_scope(name, reuse=tf.AUTO_REUSE): # Variance initialization logic. assert len(x_shape) == 2 or len(x_shape) == 4 if len(x_shape) == 2: x_var = tf.reduce_mean(x**2, [0], keepdims=True) logdet_factor = 1 var_shape = (1, x_shape[1]) elif len(x_shape) == 4: x_var = tf.reduce_mean(x**2, [0, 1, 2], keepdims=True) logdet_factor = x_shape[1]*x_shape[2] var_shape = (1, 1, 1, x_shape[3]) init_value = tf.log(1.0 / (tf.sqrt(x_var) + 1e-6)) / logscale_factor logs = get_variable_ddi("logs", var_shape, initial_value=init_value, init=init) logs = logs * logscale_factor # Function and reverse function. if not reverse: x = x * tf.exp(logs) else: x = x * tf.exp(-logs) # Objective calculation, h * w * sum(log|s|) dlogdet = tf.reduce_sum(logs) * logdet_factor if reverse: dlogdet *= -1 return x, dlogdet
python
def actnorm_scale(name, x, logscale_factor=3., reverse=False, init=False): """Per-channel scaling of x.""" x_shape = common_layers.shape_list(x) with tf.variable_scope(name, reuse=tf.AUTO_REUSE): # Variance initialization logic. assert len(x_shape) == 2 or len(x_shape) == 4 if len(x_shape) == 2: x_var = tf.reduce_mean(x**2, [0], keepdims=True) logdet_factor = 1 var_shape = (1, x_shape[1]) elif len(x_shape) == 4: x_var = tf.reduce_mean(x**2, [0, 1, 2], keepdims=True) logdet_factor = x_shape[1]*x_shape[2] var_shape = (1, 1, 1, x_shape[3]) init_value = tf.log(1.0 / (tf.sqrt(x_var) + 1e-6)) / logscale_factor logs = get_variable_ddi("logs", var_shape, initial_value=init_value, init=init) logs = logs * logscale_factor # Function and reverse function. if not reverse: x = x * tf.exp(logs) else: x = x * tf.exp(-logs) # Objective calculation, h * w * sum(log|s|) dlogdet = tf.reduce_sum(logs) * logdet_factor if reverse: dlogdet *= -1 return x, dlogdet
[ "def", "actnorm_scale", "(", "name", ",", "x", ",", "logscale_factor", "=", "3.", ",", "reverse", "=", "False", ",", "init", "=", "False", ")", ":", "x_shape", "=", "common_layers", ".", "shape_list", "(", "x", ")", "with", "tf", ".", "variable_scope", "(", "name", ",", "reuse", "=", "tf", ".", "AUTO_REUSE", ")", ":", "# Variance initialization logic.", "assert", "len", "(", "x_shape", ")", "==", "2", "or", "len", "(", "x_shape", ")", "==", "4", "if", "len", "(", "x_shape", ")", "==", "2", ":", "x_var", "=", "tf", ".", "reduce_mean", "(", "x", "**", "2", ",", "[", "0", "]", ",", "keepdims", "=", "True", ")", "logdet_factor", "=", "1", "var_shape", "=", "(", "1", ",", "x_shape", "[", "1", "]", ")", "elif", "len", "(", "x_shape", ")", "==", "4", ":", "x_var", "=", "tf", ".", "reduce_mean", "(", "x", "**", "2", ",", "[", "0", ",", "1", ",", "2", "]", ",", "keepdims", "=", "True", ")", "logdet_factor", "=", "x_shape", "[", "1", "]", "*", "x_shape", "[", "2", "]", "var_shape", "=", "(", "1", ",", "1", ",", "1", ",", "x_shape", "[", "3", "]", ")", "init_value", "=", "tf", ".", "log", "(", "1.0", "/", "(", "tf", ".", "sqrt", "(", "x_var", ")", "+", "1e-6", ")", ")", "/", "logscale_factor", "logs", "=", "get_variable_ddi", "(", "\"logs\"", ",", "var_shape", ",", "initial_value", "=", "init_value", ",", "init", "=", "init", ")", "logs", "=", "logs", "*", "logscale_factor", "# Function and reverse function.", "if", "not", "reverse", ":", "x", "=", "x", "*", "tf", ".", "exp", "(", "logs", ")", "else", ":", "x", "=", "x", "*", "tf", ".", "exp", "(", "-", "logs", ")", "# Objective calculation, h * w * sum(log|s|)", "dlogdet", "=", "tf", ".", "reduce_sum", "(", "logs", ")", "*", "logdet_factor", "if", "reverse", ":", "dlogdet", "*=", "-", "1", "return", "x", ",", "dlogdet" ]
Per-channel scaling of x.
[ "Per", "-", "channel", "scaling", "of", "x", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L300-L331
21,808
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
invertible_1x1_conv
def invertible_1x1_conv(name, x, reverse=False): """1X1 convolution on x. The 1X1 convolution is parametrized as P*L*(U + sign(s)*exp(log(s))) where 1. P is a permutation matrix. 2. L is a lower triangular matrix with diagonal entries unity. 3. U is a upper triangular matrix where the diagonal entries zero. 4. s is a vector. sign(s) and P are fixed and the remaining are optimized. P, L, U and s are initialized by the PLU decomposition of a random rotation matrix. Args: name: scope x: Input Tensor. reverse: whether the pass is from z -> x or x -> z. Returns: x_conv: x after a 1X1 convolution is applied on x. objective: sum(log(s)) """ _, height, width, channels = common_layers.shape_list(x) w_shape = [channels, channels] # Random rotation-matrix Q random_matrix = np.random.rand(channels, channels) np_w = scipy.linalg.qr(random_matrix)[0].astype("float32") # Initialize P,L,U and s from the LU decomposition of a random rotation matrix np_p, np_l, np_u = scipy.linalg.lu(np_w) np_s = np.diag(np_u) np_sign_s = np.sign(np_s) np_log_s = np.log(np.abs(np_s)) np_u = np.triu(np_u, k=1) with tf.variable_scope(name, reuse=tf.AUTO_REUSE): p = tf.get_variable("P", initializer=np_p, trainable=False) l = tf.get_variable("L", initializer=np_l) sign_s = tf.get_variable( "sign_S", initializer=np_sign_s, trainable=False) log_s = tf.get_variable("log_S", initializer=np_log_s) u = tf.get_variable("U", initializer=np_u) # W = P * L * (U + sign_s * exp(log_s)) l_mask = np.tril(np.ones([channels, channels], dtype=np.float32), -1) l = l * l_mask + tf.eye(channels, channels) u = u * np.transpose(l_mask) + tf.diag(sign_s * tf.exp(log_s)) w = tf.matmul(p, tf.matmul(l, u)) # If height or width cannot be statically determined then they end up as # tf.int32 tensors, which cannot be directly multiplied with a floating # point tensor without a cast. objective = tf.reduce_sum(log_s) * tf.cast(height * width, log_s.dtype) if not reverse: w = tf.reshape(w, [1, 1] + w_shape) x = tf.nn.conv2d(x, w, [1, 1, 1, 1], "SAME", data_format="NHWC") else: # TODO(b/111271662): Remove when supported. def tpu_inv(m): """tf.linalg.inv workaround until it is supported on TPU.""" q, r = tf.linalg.qr(m) return tf.linalg.triangular_solve(r, tf.transpose(q), lower=False) w_inv = tf.reshape(tpu_inv(w), [1, 1]+w_shape) x = tf.nn.conv2d( x, w_inv, [1, 1, 1, 1], "SAME", data_format="NHWC") objective *= -1 return x, objective
python
def invertible_1x1_conv(name, x, reverse=False): """1X1 convolution on x. The 1X1 convolution is parametrized as P*L*(U + sign(s)*exp(log(s))) where 1. P is a permutation matrix. 2. L is a lower triangular matrix with diagonal entries unity. 3. U is a upper triangular matrix where the diagonal entries zero. 4. s is a vector. sign(s) and P are fixed and the remaining are optimized. P, L, U and s are initialized by the PLU decomposition of a random rotation matrix. Args: name: scope x: Input Tensor. reverse: whether the pass is from z -> x or x -> z. Returns: x_conv: x after a 1X1 convolution is applied on x. objective: sum(log(s)) """ _, height, width, channels = common_layers.shape_list(x) w_shape = [channels, channels] # Random rotation-matrix Q random_matrix = np.random.rand(channels, channels) np_w = scipy.linalg.qr(random_matrix)[0].astype("float32") # Initialize P,L,U and s from the LU decomposition of a random rotation matrix np_p, np_l, np_u = scipy.linalg.lu(np_w) np_s = np.diag(np_u) np_sign_s = np.sign(np_s) np_log_s = np.log(np.abs(np_s)) np_u = np.triu(np_u, k=1) with tf.variable_scope(name, reuse=tf.AUTO_REUSE): p = tf.get_variable("P", initializer=np_p, trainable=False) l = tf.get_variable("L", initializer=np_l) sign_s = tf.get_variable( "sign_S", initializer=np_sign_s, trainable=False) log_s = tf.get_variable("log_S", initializer=np_log_s) u = tf.get_variable("U", initializer=np_u) # W = P * L * (U + sign_s * exp(log_s)) l_mask = np.tril(np.ones([channels, channels], dtype=np.float32), -1) l = l * l_mask + tf.eye(channels, channels) u = u * np.transpose(l_mask) + tf.diag(sign_s * tf.exp(log_s)) w = tf.matmul(p, tf.matmul(l, u)) # If height or width cannot be statically determined then they end up as # tf.int32 tensors, which cannot be directly multiplied with a floating # point tensor without a cast. objective = tf.reduce_sum(log_s) * tf.cast(height * width, log_s.dtype) if not reverse: w = tf.reshape(w, [1, 1] + w_shape) x = tf.nn.conv2d(x, w, [1, 1, 1, 1], "SAME", data_format="NHWC") else: # TODO(b/111271662): Remove when supported. def tpu_inv(m): """tf.linalg.inv workaround until it is supported on TPU.""" q, r = tf.linalg.qr(m) return tf.linalg.triangular_solve(r, tf.transpose(q), lower=False) w_inv = tf.reshape(tpu_inv(w), [1, 1]+w_shape) x = tf.nn.conv2d( x, w_inv, [1, 1, 1, 1], "SAME", data_format="NHWC") objective *= -1 return x, objective
[ "def", "invertible_1x1_conv", "(", "name", ",", "x", ",", "reverse", "=", "False", ")", ":", "_", ",", "height", ",", "width", ",", "channels", "=", "common_layers", ".", "shape_list", "(", "x", ")", "w_shape", "=", "[", "channels", ",", "channels", "]", "# Random rotation-matrix Q", "random_matrix", "=", "np", ".", "random", ".", "rand", "(", "channels", ",", "channels", ")", "np_w", "=", "scipy", ".", "linalg", ".", "qr", "(", "random_matrix", ")", "[", "0", "]", ".", "astype", "(", "\"float32\"", ")", "# Initialize P,L,U and s from the LU decomposition of a random rotation matrix", "np_p", ",", "np_l", ",", "np_u", "=", "scipy", ".", "linalg", ".", "lu", "(", "np_w", ")", "np_s", "=", "np", ".", "diag", "(", "np_u", ")", "np_sign_s", "=", "np", ".", "sign", "(", "np_s", ")", "np_log_s", "=", "np", ".", "log", "(", "np", ".", "abs", "(", "np_s", ")", ")", "np_u", "=", "np", ".", "triu", "(", "np_u", ",", "k", "=", "1", ")", "with", "tf", ".", "variable_scope", "(", "name", ",", "reuse", "=", "tf", ".", "AUTO_REUSE", ")", ":", "p", "=", "tf", ".", "get_variable", "(", "\"P\"", ",", "initializer", "=", "np_p", ",", "trainable", "=", "False", ")", "l", "=", "tf", ".", "get_variable", "(", "\"L\"", ",", "initializer", "=", "np_l", ")", "sign_s", "=", "tf", ".", "get_variable", "(", "\"sign_S\"", ",", "initializer", "=", "np_sign_s", ",", "trainable", "=", "False", ")", "log_s", "=", "tf", ".", "get_variable", "(", "\"log_S\"", ",", "initializer", "=", "np_log_s", ")", "u", "=", "tf", ".", "get_variable", "(", "\"U\"", ",", "initializer", "=", "np_u", ")", "# W = P * L * (U + sign_s * exp(log_s))", "l_mask", "=", "np", ".", "tril", "(", "np", ".", "ones", "(", "[", "channels", ",", "channels", "]", ",", "dtype", "=", "np", ".", "float32", ")", ",", "-", "1", ")", "l", "=", "l", "*", "l_mask", "+", "tf", ".", "eye", "(", "channels", ",", "channels", ")", "u", "=", "u", "*", "np", ".", "transpose", "(", "l_mask", ")", "+", "tf", ".", "diag", "(", "sign_s", "*", "tf", ".", "exp", "(", "log_s", ")", ")", "w", "=", "tf", ".", "matmul", "(", "p", ",", "tf", ".", "matmul", "(", "l", ",", "u", ")", ")", "# If height or width cannot be statically determined then they end up as", "# tf.int32 tensors, which cannot be directly multiplied with a floating", "# point tensor without a cast.", "objective", "=", "tf", ".", "reduce_sum", "(", "log_s", ")", "*", "tf", ".", "cast", "(", "height", "*", "width", ",", "log_s", ".", "dtype", ")", "if", "not", "reverse", ":", "w", "=", "tf", ".", "reshape", "(", "w", ",", "[", "1", ",", "1", "]", "+", "w_shape", ")", "x", "=", "tf", ".", "nn", ".", "conv2d", "(", "x", ",", "w", ",", "[", "1", ",", "1", ",", "1", ",", "1", "]", ",", "\"SAME\"", ",", "data_format", "=", "\"NHWC\"", ")", "else", ":", "# TODO(b/111271662): Remove when supported.", "def", "tpu_inv", "(", "m", ")", ":", "\"\"\"tf.linalg.inv workaround until it is supported on TPU.\"\"\"", "q", ",", "r", "=", "tf", ".", "linalg", ".", "qr", "(", "m", ")", "return", "tf", ".", "linalg", ".", "triangular_solve", "(", "r", ",", "tf", ".", "transpose", "(", "q", ")", ",", "lower", "=", "False", ")", "w_inv", "=", "tf", ".", "reshape", "(", "tpu_inv", "(", "w", ")", ",", "[", "1", ",", "1", "]", "+", "w_shape", ")", "x", "=", "tf", ".", "nn", ".", "conv2d", "(", "x", ",", "w_inv", ",", "[", "1", ",", "1", ",", "1", ",", "1", "]", ",", "\"SAME\"", ",", "data_format", "=", "\"NHWC\"", ")", "objective", "*=", "-", "1", "return", "x", ",", "objective" ]
1X1 convolution on x. The 1X1 convolution is parametrized as P*L*(U + sign(s)*exp(log(s))) where 1. P is a permutation matrix. 2. L is a lower triangular matrix with diagonal entries unity. 3. U is a upper triangular matrix where the diagonal entries zero. 4. s is a vector. sign(s) and P are fixed and the remaining are optimized. P, L, U and s are initialized by the PLU decomposition of a random rotation matrix. Args: name: scope x: Input Tensor. reverse: whether the pass is from z -> x or x -> z. Returns: x_conv: x after a 1X1 convolution is applied on x. objective: sum(log(s))
[ "1X1", "convolution", "on", "x", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L335-L401
21,809
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
add_edge_bias
def add_edge_bias(x, filter_size): """Pad x and concatenates an edge bias across the depth of x. The edge bias can be thought of as a binary feature which is unity when the filter is being convolved over an edge and zero otherwise. Args: x: Input tensor, shape (NHWC) filter_size: filter_size to determine padding. Returns: x_pad: Input tensor, shape (NHW(c+1)) """ x_shape = common_layers.shape_list(x) if filter_size[0] == 1 and filter_size[1] == 1: return x a = (filter_size[0] - 1) // 2 # vertical padding size b = (filter_size[1] - 1) // 2 # horizontal padding size padding = [[0, 0], [a, a], [b, b], [0, 0]] x_bias = tf.zeros(x_shape[:-1] + [1]) x = tf.pad(x, padding) x_pad = tf.pad(x_bias, padding, constant_values=1) return tf.concat([x, x_pad], axis=3)
python
def add_edge_bias(x, filter_size): """Pad x and concatenates an edge bias across the depth of x. The edge bias can be thought of as a binary feature which is unity when the filter is being convolved over an edge and zero otherwise. Args: x: Input tensor, shape (NHWC) filter_size: filter_size to determine padding. Returns: x_pad: Input tensor, shape (NHW(c+1)) """ x_shape = common_layers.shape_list(x) if filter_size[0] == 1 and filter_size[1] == 1: return x a = (filter_size[0] - 1) // 2 # vertical padding size b = (filter_size[1] - 1) // 2 # horizontal padding size padding = [[0, 0], [a, a], [b, b], [0, 0]] x_bias = tf.zeros(x_shape[:-1] + [1]) x = tf.pad(x, padding) x_pad = tf.pad(x_bias, padding, constant_values=1) return tf.concat([x, x_pad], axis=3)
[ "def", "add_edge_bias", "(", "x", ",", "filter_size", ")", ":", "x_shape", "=", "common_layers", ".", "shape_list", "(", "x", ")", "if", "filter_size", "[", "0", "]", "==", "1", "and", "filter_size", "[", "1", "]", "==", "1", ":", "return", "x", "a", "=", "(", "filter_size", "[", "0", "]", "-", "1", ")", "//", "2", "# vertical padding size", "b", "=", "(", "filter_size", "[", "1", "]", "-", "1", ")", "//", "2", "# horizontal padding size", "padding", "=", "[", "[", "0", ",", "0", "]", ",", "[", "a", ",", "a", "]", ",", "[", "b", ",", "b", "]", ",", "[", "0", ",", "0", "]", "]", "x_bias", "=", "tf", ".", "zeros", "(", "x_shape", "[", ":", "-", "1", "]", "+", "[", "1", "]", ")", "x", "=", "tf", ".", "pad", "(", "x", ",", "padding", ")", "x_pad", "=", "tf", ".", "pad", "(", "x_bias", ",", "padding", ",", "constant_values", "=", "1", ")", "return", "tf", ".", "concat", "(", "[", "x", ",", "x_pad", "]", ",", "axis", "=", "3", ")" ]
Pad x and concatenates an edge bias across the depth of x. The edge bias can be thought of as a binary feature which is unity when the filter is being convolved over an edge and zero otherwise. Args: x: Input tensor, shape (NHWC) filter_size: filter_size to determine padding. Returns: x_pad: Input tensor, shape (NHW(c+1))
[ "Pad", "x", "and", "concatenates", "an", "edge", "bias", "across", "the", "depth", "of", "x", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L404-L426
21,810
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
time_pad
def time_pad(x, filter_size, dilations): """Pad left across time and pad valid across the spatial components. Also concats a binary feature that indicates if a feature is padded or not. Args: x: 5-D Tensor, (NTHWC) filter_size: list of ints dilations: list of ints, dilations - 1 specifies the number of holes between two filter elements. Returns: x_pad: 5-D Tensor. """ x_shape = common_layers.shape_list(x) if filter_size == [1, 1, 1]: return x _, h, w = filter_size eff_h = h + (h - 1)*(dilations[2] - 1) eff_w = w + (w - 1)*(dilations[3] - 1) a = (eff_h - 1) // 2 # vertical padding size b = (eff_w - 1) // 2 # horizontal padding size c = filter_size[0] - 1 # pad across edges. padding = [[0, 0], [c, 0], [a, a], [b, b], [0, 0]] # concat a binary feature across channels to indicate a padding. # 1 indicates that the feature is a padding. x_bias = tf.zeros(x_shape[:-1] + [1]) x_bias = tf.pad(x_bias, padding, constant_values=1) x_pad = tf.pad(x, padding) x_pad = tf.concat((x_bias, x_pad), axis=-1) return x_pad
python
def time_pad(x, filter_size, dilations): """Pad left across time and pad valid across the spatial components. Also concats a binary feature that indicates if a feature is padded or not. Args: x: 5-D Tensor, (NTHWC) filter_size: list of ints dilations: list of ints, dilations - 1 specifies the number of holes between two filter elements. Returns: x_pad: 5-D Tensor. """ x_shape = common_layers.shape_list(x) if filter_size == [1, 1, 1]: return x _, h, w = filter_size eff_h = h + (h - 1)*(dilations[2] - 1) eff_w = w + (w - 1)*(dilations[3] - 1) a = (eff_h - 1) // 2 # vertical padding size b = (eff_w - 1) // 2 # horizontal padding size c = filter_size[0] - 1 # pad across edges. padding = [[0, 0], [c, 0], [a, a], [b, b], [0, 0]] # concat a binary feature across channels to indicate a padding. # 1 indicates that the feature is a padding. x_bias = tf.zeros(x_shape[:-1] + [1]) x_bias = tf.pad(x_bias, padding, constant_values=1) x_pad = tf.pad(x, padding) x_pad = tf.concat((x_bias, x_pad), axis=-1) return x_pad
[ "def", "time_pad", "(", "x", ",", "filter_size", ",", "dilations", ")", ":", "x_shape", "=", "common_layers", ".", "shape_list", "(", "x", ")", "if", "filter_size", "==", "[", "1", ",", "1", ",", "1", "]", ":", "return", "x", "_", ",", "h", ",", "w", "=", "filter_size", "eff_h", "=", "h", "+", "(", "h", "-", "1", ")", "*", "(", "dilations", "[", "2", "]", "-", "1", ")", "eff_w", "=", "w", "+", "(", "w", "-", "1", ")", "*", "(", "dilations", "[", "3", "]", "-", "1", ")", "a", "=", "(", "eff_h", "-", "1", ")", "//", "2", "# vertical padding size", "b", "=", "(", "eff_w", "-", "1", ")", "//", "2", "# horizontal padding size", "c", "=", "filter_size", "[", "0", "]", "-", "1", "# pad across edges.", "padding", "=", "[", "[", "0", ",", "0", "]", ",", "[", "c", ",", "0", "]", ",", "[", "a", ",", "a", "]", ",", "[", "b", ",", "b", "]", ",", "[", "0", ",", "0", "]", "]", "# concat a binary feature across channels to indicate a padding.", "# 1 indicates that the feature is a padding.", "x_bias", "=", "tf", ".", "zeros", "(", "x_shape", "[", ":", "-", "1", "]", "+", "[", "1", "]", ")", "x_bias", "=", "tf", ".", "pad", "(", "x_bias", ",", "padding", ",", "constant_values", "=", "1", ")", "x_pad", "=", "tf", ".", "pad", "(", "x", ",", "padding", ")", "x_pad", "=", "tf", ".", "concat", "(", "(", "x_bias", ",", "x_pad", ")", ",", "axis", "=", "-", "1", ")", "return", "x_pad" ]
Pad left across time and pad valid across the spatial components. Also concats a binary feature that indicates if a feature is padded or not. Args: x: 5-D Tensor, (NTHWC) filter_size: list of ints dilations: list of ints, dilations - 1 specifies the number of holes between two filter elements. Returns: x_pad: 5-D Tensor.
[ "Pad", "left", "across", "time", "and", "pad", "valid", "across", "the", "spatial", "components", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L429-L461
21,811
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
conv
def conv(name, x, output_channels, filter_size=None, stride=None, logscale_factor=3.0, apply_actnorm=True, conv_init="default", dilations=None): """Convolutional layer with edge bias padding and optional actnorm. If x is 5-dimensional, actnorm is applied independently across every time-step. Args: name: variable scope. x: 4-D Tensor or 5-D Tensor of shape NHWC or NTHWC output_channels: Number of output channels. filter_size: list of ints, if None [3, 3] and [2, 3, 3] are defaults for 4-D and 5-D input tensors respectively. stride: list of ints, default stride: 1 logscale_factor: see actnorm for parameter meaning. apply_actnorm: if apply_actnorm the activations of the first minibatch have zero mean and unit variance. Else, there is no scaling applied. conv_init: default or zeros. default is a normal distribution with 0.05 std. dilations: List of integers, apply dilations. Returns: x: actnorm(conv2d(x)) Raises: ValueError: if init is set to "zeros" and apply_actnorm is set to True. """ if conv_init == "zeros" and apply_actnorm: raise ValueError("apply_actnorm is unstable when init is set to zeros.") x_shape = common_layers.shape_list(x) is_2d = len(x_shape) == 4 num_steps = x_shape[1] # set filter_size, stride and in_channels if is_2d: if filter_size is None: filter_size = [3, 3] if stride is None: stride = [1, 1] if dilations is None: dilations = [1, 1, 1, 1] actnorm_func = actnorm x = add_edge_bias(x, filter_size=filter_size) conv_filter = tf.nn.conv2d else: if filter_size is None: if num_steps == 1: filter_size = [1, 3, 3] else: filter_size = [2, 3, 3] if stride is None: stride = [1, 1, 1] if dilations is None: dilations = [1, 1, 1, 1, 1] actnorm_func = actnorm_3d x = time_pad(x, filter_size=filter_size, dilations=dilations) conv_filter = tf.nn.conv3d in_channels = common_layers.shape_list(x)[-1] filter_shape = filter_size + [in_channels, output_channels] stride_shape = [1] + stride + [1] with tf.variable_scope(name, reuse=tf.AUTO_REUSE): if conv_init == "default": initializer = default_initializer() elif conv_init == "zeros": initializer = tf.zeros_initializer() w = tf.get_variable("W", filter_shape, tf.float32, initializer=initializer) x = conv_filter(x, w, stride_shape, padding="VALID", dilations=dilations) if apply_actnorm: x, _ = actnorm_func("actnorm", x, logscale_factor=logscale_factor) else: x += tf.get_variable("b", [1, 1, 1, output_channels], initializer=tf.zeros_initializer()) logs = tf.get_variable("logs", [1, output_channels], initializer=tf.zeros_initializer()) x *= tf.exp(logs * logscale_factor) return x
python
def conv(name, x, output_channels, filter_size=None, stride=None, logscale_factor=3.0, apply_actnorm=True, conv_init="default", dilations=None): """Convolutional layer with edge bias padding and optional actnorm. If x is 5-dimensional, actnorm is applied independently across every time-step. Args: name: variable scope. x: 4-D Tensor or 5-D Tensor of shape NHWC or NTHWC output_channels: Number of output channels. filter_size: list of ints, if None [3, 3] and [2, 3, 3] are defaults for 4-D and 5-D input tensors respectively. stride: list of ints, default stride: 1 logscale_factor: see actnorm for parameter meaning. apply_actnorm: if apply_actnorm the activations of the first minibatch have zero mean and unit variance. Else, there is no scaling applied. conv_init: default or zeros. default is a normal distribution with 0.05 std. dilations: List of integers, apply dilations. Returns: x: actnorm(conv2d(x)) Raises: ValueError: if init is set to "zeros" and apply_actnorm is set to True. """ if conv_init == "zeros" and apply_actnorm: raise ValueError("apply_actnorm is unstable when init is set to zeros.") x_shape = common_layers.shape_list(x) is_2d = len(x_shape) == 4 num_steps = x_shape[1] # set filter_size, stride and in_channels if is_2d: if filter_size is None: filter_size = [3, 3] if stride is None: stride = [1, 1] if dilations is None: dilations = [1, 1, 1, 1] actnorm_func = actnorm x = add_edge_bias(x, filter_size=filter_size) conv_filter = tf.nn.conv2d else: if filter_size is None: if num_steps == 1: filter_size = [1, 3, 3] else: filter_size = [2, 3, 3] if stride is None: stride = [1, 1, 1] if dilations is None: dilations = [1, 1, 1, 1, 1] actnorm_func = actnorm_3d x = time_pad(x, filter_size=filter_size, dilations=dilations) conv_filter = tf.nn.conv3d in_channels = common_layers.shape_list(x)[-1] filter_shape = filter_size + [in_channels, output_channels] stride_shape = [1] + stride + [1] with tf.variable_scope(name, reuse=tf.AUTO_REUSE): if conv_init == "default": initializer = default_initializer() elif conv_init == "zeros": initializer = tf.zeros_initializer() w = tf.get_variable("W", filter_shape, tf.float32, initializer=initializer) x = conv_filter(x, w, stride_shape, padding="VALID", dilations=dilations) if apply_actnorm: x, _ = actnorm_func("actnorm", x, logscale_factor=logscale_factor) else: x += tf.get_variable("b", [1, 1, 1, output_channels], initializer=tf.zeros_initializer()) logs = tf.get_variable("logs", [1, output_channels], initializer=tf.zeros_initializer()) x *= tf.exp(logs * logscale_factor) return x
[ "def", "conv", "(", "name", ",", "x", ",", "output_channels", ",", "filter_size", "=", "None", ",", "stride", "=", "None", ",", "logscale_factor", "=", "3.0", ",", "apply_actnorm", "=", "True", ",", "conv_init", "=", "\"default\"", ",", "dilations", "=", "None", ")", ":", "if", "conv_init", "==", "\"zeros\"", "and", "apply_actnorm", ":", "raise", "ValueError", "(", "\"apply_actnorm is unstable when init is set to zeros.\"", ")", "x_shape", "=", "common_layers", ".", "shape_list", "(", "x", ")", "is_2d", "=", "len", "(", "x_shape", ")", "==", "4", "num_steps", "=", "x_shape", "[", "1", "]", "# set filter_size, stride and in_channels", "if", "is_2d", ":", "if", "filter_size", "is", "None", ":", "filter_size", "=", "[", "3", ",", "3", "]", "if", "stride", "is", "None", ":", "stride", "=", "[", "1", ",", "1", "]", "if", "dilations", "is", "None", ":", "dilations", "=", "[", "1", ",", "1", ",", "1", ",", "1", "]", "actnorm_func", "=", "actnorm", "x", "=", "add_edge_bias", "(", "x", ",", "filter_size", "=", "filter_size", ")", "conv_filter", "=", "tf", ".", "nn", ".", "conv2d", "else", ":", "if", "filter_size", "is", "None", ":", "if", "num_steps", "==", "1", ":", "filter_size", "=", "[", "1", ",", "3", ",", "3", "]", "else", ":", "filter_size", "=", "[", "2", ",", "3", ",", "3", "]", "if", "stride", "is", "None", ":", "stride", "=", "[", "1", ",", "1", ",", "1", "]", "if", "dilations", "is", "None", ":", "dilations", "=", "[", "1", ",", "1", ",", "1", ",", "1", ",", "1", "]", "actnorm_func", "=", "actnorm_3d", "x", "=", "time_pad", "(", "x", ",", "filter_size", "=", "filter_size", ",", "dilations", "=", "dilations", ")", "conv_filter", "=", "tf", ".", "nn", ".", "conv3d", "in_channels", "=", "common_layers", ".", "shape_list", "(", "x", ")", "[", "-", "1", "]", "filter_shape", "=", "filter_size", "+", "[", "in_channels", ",", "output_channels", "]", "stride_shape", "=", "[", "1", "]", "+", "stride", "+", "[", "1", "]", "with", "tf", ".", "variable_scope", "(", "name", ",", "reuse", "=", "tf", ".", "AUTO_REUSE", ")", ":", "if", "conv_init", "==", "\"default\"", ":", "initializer", "=", "default_initializer", "(", ")", "elif", "conv_init", "==", "\"zeros\"", ":", "initializer", "=", "tf", ".", "zeros_initializer", "(", ")", "w", "=", "tf", ".", "get_variable", "(", "\"W\"", ",", "filter_shape", ",", "tf", ".", "float32", ",", "initializer", "=", "initializer", ")", "x", "=", "conv_filter", "(", "x", ",", "w", ",", "stride_shape", ",", "padding", "=", "\"VALID\"", ",", "dilations", "=", "dilations", ")", "if", "apply_actnorm", ":", "x", ",", "_", "=", "actnorm_func", "(", "\"actnorm\"", ",", "x", ",", "logscale_factor", "=", "logscale_factor", ")", "else", ":", "x", "+=", "tf", ".", "get_variable", "(", "\"b\"", ",", "[", "1", ",", "1", ",", "1", ",", "output_channels", "]", ",", "initializer", "=", "tf", ".", "zeros_initializer", "(", ")", ")", "logs", "=", "tf", ".", "get_variable", "(", "\"logs\"", ",", "[", "1", ",", "output_channels", "]", ",", "initializer", "=", "tf", ".", "zeros_initializer", "(", ")", ")", "x", "*=", "tf", ".", "exp", "(", "logs", "*", "logscale_factor", ")", "return", "x" ]
Convolutional layer with edge bias padding and optional actnorm. If x is 5-dimensional, actnorm is applied independently across every time-step. Args: name: variable scope. x: 4-D Tensor or 5-D Tensor of shape NHWC or NTHWC output_channels: Number of output channels. filter_size: list of ints, if None [3, 3] and [2, 3, 3] are defaults for 4-D and 5-D input tensors respectively. stride: list of ints, default stride: 1 logscale_factor: see actnorm for parameter meaning. apply_actnorm: if apply_actnorm the activations of the first minibatch have zero mean and unit variance. Else, there is no scaling applied. conv_init: default or zeros. default is a normal distribution with 0.05 std. dilations: List of integers, apply dilations. Returns: x: actnorm(conv2d(x)) Raises: ValueError: if init is set to "zeros" and apply_actnorm is set to True.
[ "Convolutional", "layer", "with", "edge", "bias", "padding", "and", "optional", "actnorm", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L465-L544
21,812
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
conv_block
def conv_block(name, x, mid_channels, dilations=None, activation="relu", dropout=0.0): """2 layer conv block used in the affine coupling layer. Args: name: variable scope. x: 4-D or 5-D Tensor. mid_channels: Output channels of the second layer. dilations: Optional, list of integers. activation: relu or gatu. If relu, the second layer is relu(W*x) If gatu, the second layer is tanh(W1*x) * sigmoid(W2*x) dropout: Dropout probability. Returns: x: 4-D Tensor: Output activations. """ with tf.variable_scope(name, reuse=tf.AUTO_REUSE): x_shape = common_layers.shape_list(x) is_2d = len(x_shape) == 4 num_steps = x_shape[1] if is_2d: first_filter = [3, 3] second_filter = [1, 1] else: # special case when number of steps equal 1 to avoid # padding. if num_steps == 1: first_filter = [1, 3, 3] else: first_filter = [2, 3, 3] second_filter = [1, 1, 1] # Edge Padding + conv2d + actnorm + relu: # [output: 512 channels] x = conv("1_1", x, output_channels=mid_channels, filter_size=first_filter, dilations=dilations) x = tf.nn.relu(x) x = get_dropout(x, rate=dropout) # Padding + conv2d + actnorm + activation. # [input, output: 512 channels] if activation == "relu": x = conv("1_2", x, output_channels=mid_channels, filter_size=second_filter, dilations=dilations) x = tf.nn.relu(x) elif activation == "gatu": # x = tanh(w1*x) * sigm(w2*x) x_tanh = conv("1_tanh", x, output_channels=mid_channels, filter_size=second_filter, dilations=dilations) x_sigm = conv("1_sigm", x, output_channels=mid_channels, filter_size=second_filter, dilations=dilations) x = tf.nn.tanh(x_tanh) * tf.nn.sigmoid(x_sigm) x = get_dropout(x, rate=dropout) return x
python
def conv_block(name, x, mid_channels, dilations=None, activation="relu", dropout=0.0): """2 layer conv block used in the affine coupling layer. Args: name: variable scope. x: 4-D or 5-D Tensor. mid_channels: Output channels of the second layer. dilations: Optional, list of integers. activation: relu or gatu. If relu, the second layer is relu(W*x) If gatu, the second layer is tanh(W1*x) * sigmoid(W2*x) dropout: Dropout probability. Returns: x: 4-D Tensor: Output activations. """ with tf.variable_scope(name, reuse=tf.AUTO_REUSE): x_shape = common_layers.shape_list(x) is_2d = len(x_shape) == 4 num_steps = x_shape[1] if is_2d: first_filter = [3, 3] second_filter = [1, 1] else: # special case when number of steps equal 1 to avoid # padding. if num_steps == 1: first_filter = [1, 3, 3] else: first_filter = [2, 3, 3] second_filter = [1, 1, 1] # Edge Padding + conv2d + actnorm + relu: # [output: 512 channels] x = conv("1_1", x, output_channels=mid_channels, filter_size=first_filter, dilations=dilations) x = tf.nn.relu(x) x = get_dropout(x, rate=dropout) # Padding + conv2d + actnorm + activation. # [input, output: 512 channels] if activation == "relu": x = conv("1_2", x, output_channels=mid_channels, filter_size=second_filter, dilations=dilations) x = tf.nn.relu(x) elif activation == "gatu": # x = tanh(w1*x) * sigm(w2*x) x_tanh = conv("1_tanh", x, output_channels=mid_channels, filter_size=second_filter, dilations=dilations) x_sigm = conv("1_sigm", x, output_channels=mid_channels, filter_size=second_filter, dilations=dilations) x = tf.nn.tanh(x_tanh) * tf.nn.sigmoid(x_sigm) x = get_dropout(x, rate=dropout) return x
[ "def", "conv_block", "(", "name", ",", "x", ",", "mid_channels", ",", "dilations", "=", "None", ",", "activation", "=", "\"relu\"", ",", "dropout", "=", "0.0", ")", ":", "with", "tf", ".", "variable_scope", "(", "name", ",", "reuse", "=", "tf", ".", "AUTO_REUSE", ")", ":", "x_shape", "=", "common_layers", ".", "shape_list", "(", "x", ")", "is_2d", "=", "len", "(", "x_shape", ")", "==", "4", "num_steps", "=", "x_shape", "[", "1", "]", "if", "is_2d", ":", "first_filter", "=", "[", "3", ",", "3", "]", "second_filter", "=", "[", "1", ",", "1", "]", "else", ":", "# special case when number of steps equal 1 to avoid", "# padding.", "if", "num_steps", "==", "1", ":", "first_filter", "=", "[", "1", ",", "3", ",", "3", "]", "else", ":", "first_filter", "=", "[", "2", ",", "3", ",", "3", "]", "second_filter", "=", "[", "1", ",", "1", ",", "1", "]", "# Edge Padding + conv2d + actnorm + relu:", "# [output: 512 channels]", "x", "=", "conv", "(", "\"1_1\"", ",", "x", ",", "output_channels", "=", "mid_channels", ",", "filter_size", "=", "first_filter", ",", "dilations", "=", "dilations", ")", "x", "=", "tf", ".", "nn", ".", "relu", "(", "x", ")", "x", "=", "get_dropout", "(", "x", ",", "rate", "=", "dropout", ")", "# Padding + conv2d + actnorm + activation.", "# [input, output: 512 channels]", "if", "activation", "==", "\"relu\"", ":", "x", "=", "conv", "(", "\"1_2\"", ",", "x", ",", "output_channels", "=", "mid_channels", ",", "filter_size", "=", "second_filter", ",", "dilations", "=", "dilations", ")", "x", "=", "tf", ".", "nn", ".", "relu", "(", "x", ")", "elif", "activation", "==", "\"gatu\"", ":", "# x = tanh(w1*x) * sigm(w2*x)", "x_tanh", "=", "conv", "(", "\"1_tanh\"", ",", "x", ",", "output_channels", "=", "mid_channels", ",", "filter_size", "=", "second_filter", ",", "dilations", "=", "dilations", ")", "x_sigm", "=", "conv", "(", "\"1_sigm\"", ",", "x", ",", "output_channels", "=", "mid_channels", ",", "filter_size", "=", "second_filter", ",", "dilations", "=", "dilations", ")", "x", "=", "tf", ".", "nn", ".", "tanh", "(", "x_tanh", ")", "*", "tf", ".", "nn", ".", "sigmoid", "(", "x_sigm", ")", "x", "=", "get_dropout", "(", "x", ",", "rate", "=", "dropout", ")", "return", "x" ]
2 layer conv block used in the affine coupling layer. Args: name: variable scope. x: 4-D or 5-D Tensor. mid_channels: Output channels of the second layer. dilations: Optional, list of integers. activation: relu or gatu. If relu, the second layer is relu(W*x) If gatu, the second layer is tanh(W1*x) * sigmoid(W2*x) dropout: Dropout probability. Returns: x: 4-D Tensor: Output activations.
[ "2", "layer", "conv", "block", "used", "in", "the", "affine", "coupling", "layer", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L548-L603
21,813
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
dilated_conv_stack
def dilated_conv_stack(name, x, mid_channels, output_channels, dilation_rates, activation="relu", dropout=0.0): """Dilated convolutional stack. Features at different rates are computed independently using a 3 layer convolutional stack and added. Args: name: variable scope. x: 5-D Tensor. mid_channels: Number of output channels of the first layer in the conv stack. output_channels: Number of output channels of the last layer. dilation_rates: A list of dilation rates. activation: Can be either "relu" or "gatu" dropout: dropout. Returns: output: 5-D Tensor. """ with tf.variable_scope(name, reuse=tf.AUTO_REUSE): output = 0.0 for dil_ind, dil_rate in enumerate(dilation_rates): # TODO(mechcoder) try (concat across channels + 1x1) modulo memory issues. curr_out = conv_stack("dil_%d" % dil_ind, x, mid_channels=mid_channels, output_channels=output_channels, dilations=dil_rate, activation=activation, dropout=dropout) output += curr_out return output
python
def dilated_conv_stack(name, x, mid_channels, output_channels, dilation_rates, activation="relu", dropout=0.0): """Dilated convolutional stack. Features at different rates are computed independently using a 3 layer convolutional stack and added. Args: name: variable scope. x: 5-D Tensor. mid_channels: Number of output channels of the first layer in the conv stack. output_channels: Number of output channels of the last layer. dilation_rates: A list of dilation rates. activation: Can be either "relu" or "gatu" dropout: dropout. Returns: output: 5-D Tensor. """ with tf.variable_scope(name, reuse=tf.AUTO_REUSE): output = 0.0 for dil_ind, dil_rate in enumerate(dilation_rates): # TODO(mechcoder) try (concat across channels + 1x1) modulo memory issues. curr_out = conv_stack("dil_%d" % dil_ind, x, mid_channels=mid_channels, output_channels=output_channels, dilations=dil_rate, activation=activation, dropout=dropout) output += curr_out return output
[ "def", "dilated_conv_stack", "(", "name", ",", "x", ",", "mid_channels", ",", "output_channels", ",", "dilation_rates", ",", "activation", "=", "\"relu\"", ",", "dropout", "=", "0.0", ")", ":", "with", "tf", ".", "variable_scope", "(", "name", ",", "reuse", "=", "tf", ".", "AUTO_REUSE", ")", ":", "output", "=", "0.0", "for", "dil_ind", ",", "dil_rate", "in", "enumerate", "(", "dilation_rates", ")", ":", "# TODO(mechcoder) try (concat across channels + 1x1) modulo memory issues.", "curr_out", "=", "conv_stack", "(", "\"dil_%d\"", "%", "dil_ind", ",", "x", ",", "mid_channels", "=", "mid_channels", ",", "output_channels", "=", "output_channels", ",", "dilations", "=", "dil_rate", ",", "activation", "=", "activation", ",", "dropout", "=", "dropout", ")", "output", "+=", "curr_out", "return", "output" ]
Dilated convolutional stack. Features at different rates are computed independently using a 3 layer convolutional stack and added. Args: name: variable scope. x: 5-D Tensor. mid_channels: Number of output channels of the first layer in the conv stack. output_channels: Number of output channels of the last layer. dilation_rates: A list of dilation rates. activation: Can be either "relu" or "gatu" dropout: dropout. Returns: output: 5-D Tensor.
[ "Dilated", "convolutional", "stack", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L606-L634
21,814
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
conv_stack
def conv_stack(name, x, mid_channels, output_channels, dilations=None, activation="relu", dropout=0.0): """3-layer convolutional stack. Args: name: variable scope. x: 5-D Tensor. mid_channels: Number of output channels of the first layer. output_channels: Number of output channels. dilations: Dilations to apply in the first 3x3 layer and the last 3x3 layer. By default, apply no dilations. activation: relu or gatu. If relu, the second layer is relu(W*x) If gatu, the second layer is tanh(W1*x) * sigmoid(W2*x) dropout: float, 0.0 Returns: output: output of 3 layer conv network. """ with tf.variable_scope(name, reuse=tf.AUTO_REUSE): x = conv_block("conv_block", x, mid_channels=mid_channels, dilations=dilations, activation=activation, dropout=dropout) # Final layer. x = conv("zeros", x, apply_actnorm=False, conv_init="zeros", output_channels=output_channels, dilations=dilations) return x
python
def conv_stack(name, x, mid_channels, output_channels, dilations=None, activation="relu", dropout=0.0): """3-layer convolutional stack. Args: name: variable scope. x: 5-D Tensor. mid_channels: Number of output channels of the first layer. output_channels: Number of output channels. dilations: Dilations to apply in the first 3x3 layer and the last 3x3 layer. By default, apply no dilations. activation: relu or gatu. If relu, the second layer is relu(W*x) If gatu, the second layer is tanh(W1*x) * sigmoid(W2*x) dropout: float, 0.0 Returns: output: output of 3 layer conv network. """ with tf.variable_scope(name, reuse=tf.AUTO_REUSE): x = conv_block("conv_block", x, mid_channels=mid_channels, dilations=dilations, activation=activation, dropout=dropout) # Final layer. x = conv("zeros", x, apply_actnorm=False, conv_init="zeros", output_channels=output_channels, dilations=dilations) return x
[ "def", "conv_stack", "(", "name", ",", "x", ",", "mid_channels", ",", "output_channels", ",", "dilations", "=", "None", ",", "activation", "=", "\"relu\"", ",", "dropout", "=", "0.0", ")", ":", "with", "tf", ".", "variable_scope", "(", "name", ",", "reuse", "=", "tf", ".", "AUTO_REUSE", ")", ":", "x", "=", "conv_block", "(", "\"conv_block\"", ",", "x", ",", "mid_channels", "=", "mid_channels", ",", "dilations", "=", "dilations", ",", "activation", "=", "activation", ",", "dropout", "=", "dropout", ")", "# Final layer.", "x", "=", "conv", "(", "\"zeros\"", ",", "x", ",", "apply_actnorm", "=", "False", ",", "conv_init", "=", "\"zeros\"", ",", "output_channels", "=", "output_channels", ",", "dilations", "=", "dilations", ")", "return", "x" ]
3-layer convolutional stack. Args: name: variable scope. x: 5-D Tensor. mid_channels: Number of output channels of the first layer. output_channels: Number of output channels. dilations: Dilations to apply in the first 3x3 layer and the last 3x3 layer. By default, apply no dilations. activation: relu or gatu. If relu, the second layer is relu(W*x) If gatu, the second layer is tanh(W1*x) * sigmoid(W2*x) dropout: float, 0.0 Returns: output: output of 3 layer conv network.
[ "3", "-", "layer", "convolutional", "stack", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L638-L665
21,815
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
additive_coupling
def additive_coupling(name, x, mid_channels=512, reverse=False, activation="relu", dropout=0.0): """Reversible additive coupling layer. Args: name: variable scope. x: 4-D Tensor, shape=(NHWC). mid_channels: number of channels in the coupling layer. reverse: Forward or reverse operation. activation: "relu" or "gatu" dropout: default, 0.0 Returns: output: 4-D Tensor, shape=(NHWC) objective: 0.0 """ with tf.variable_scope(name, reuse=tf.AUTO_REUSE): output_channels = common_layers.shape_list(x)[-1] // 2 x1, x2 = tf.split(x, num_or_size_splits=2, axis=-1) z1 = x1 shift = conv_stack("nn", x1, mid_channels, output_channels=output_channels, activation=activation, dropout=dropout) if not reverse: z2 = x2 + shift else: z2 = x2 - shift return tf.concat([z1, z2], axis=3), 0.0
python
def additive_coupling(name, x, mid_channels=512, reverse=False, activation="relu", dropout=0.0): """Reversible additive coupling layer. Args: name: variable scope. x: 4-D Tensor, shape=(NHWC). mid_channels: number of channels in the coupling layer. reverse: Forward or reverse operation. activation: "relu" or "gatu" dropout: default, 0.0 Returns: output: 4-D Tensor, shape=(NHWC) objective: 0.0 """ with tf.variable_scope(name, reuse=tf.AUTO_REUSE): output_channels = common_layers.shape_list(x)[-1] // 2 x1, x2 = tf.split(x, num_or_size_splits=2, axis=-1) z1 = x1 shift = conv_stack("nn", x1, mid_channels, output_channels=output_channels, activation=activation, dropout=dropout) if not reverse: z2 = x2 + shift else: z2 = x2 - shift return tf.concat([z1, z2], axis=3), 0.0
[ "def", "additive_coupling", "(", "name", ",", "x", ",", "mid_channels", "=", "512", ",", "reverse", "=", "False", ",", "activation", "=", "\"relu\"", ",", "dropout", "=", "0.0", ")", ":", "with", "tf", ".", "variable_scope", "(", "name", ",", "reuse", "=", "tf", ".", "AUTO_REUSE", ")", ":", "output_channels", "=", "common_layers", ".", "shape_list", "(", "x", ")", "[", "-", "1", "]", "//", "2", "x1", ",", "x2", "=", "tf", ".", "split", "(", "x", ",", "num_or_size_splits", "=", "2", ",", "axis", "=", "-", "1", ")", "z1", "=", "x1", "shift", "=", "conv_stack", "(", "\"nn\"", ",", "x1", ",", "mid_channels", ",", "output_channels", "=", "output_channels", ",", "activation", "=", "activation", ",", "dropout", "=", "dropout", ")", "if", "not", "reverse", ":", "z2", "=", "x2", "+", "shift", "else", ":", "z2", "=", "x2", "-", "shift", "return", "tf", ".", "concat", "(", "[", "z1", ",", "z2", "]", ",", "axis", "=", "3", ")", ",", "0.0" ]
Reversible additive coupling layer. Args: name: variable scope. x: 4-D Tensor, shape=(NHWC). mid_channels: number of channels in the coupling layer. reverse: Forward or reverse operation. activation: "relu" or "gatu" dropout: default, 0.0 Returns: output: 4-D Tensor, shape=(NHWC) objective: 0.0
[ "Reversible", "additive", "coupling", "layer", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L669-L696
21,816
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
affine_coupling
def affine_coupling(name, x, mid_channels=512, activation="relu", reverse=False, dropout=0.0): """Reversible affine coupling layer. Args: name: variable scope. x: 4-D Tensor. mid_channels: number of channels in the coupling layer. activation: Can be either "relu" or "gatu". reverse: Forward or reverse operation. dropout: default, 0.0 Returns: output: x shifted and scaled by an affine transformation. objective: log-determinant of the jacobian """ with tf.variable_scope(name, reuse=tf.AUTO_REUSE): x_shape = common_layers.shape_list(x) x1, x2 = tf.split(x, num_or_size_splits=2, axis=-1) # scale, shift = NN(x1) # If reverse: # z2 = scale * (x2 + shift) # Else: # z2 = (x2 / scale) - shift z1 = x1 log_scale_and_shift = conv_stack( "nn", x1, mid_channels, x_shape[-1], activation=activation, dropout=dropout) shift = log_scale_and_shift[:, :, :, 0::2] scale = tf.nn.sigmoid(log_scale_and_shift[:, :, :, 1::2] + 2.0) if not reverse: z2 = (x2 + shift) * scale else: z2 = x2 / scale - shift objective = tf.reduce_sum(tf.log(scale), axis=[1, 2, 3]) if reverse: objective *= -1 return tf.concat([z1, z2], axis=3), objective
python
def affine_coupling(name, x, mid_channels=512, activation="relu", reverse=False, dropout=0.0): """Reversible affine coupling layer. Args: name: variable scope. x: 4-D Tensor. mid_channels: number of channels in the coupling layer. activation: Can be either "relu" or "gatu". reverse: Forward or reverse operation. dropout: default, 0.0 Returns: output: x shifted and scaled by an affine transformation. objective: log-determinant of the jacobian """ with tf.variable_scope(name, reuse=tf.AUTO_REUSE): x_shape = common_layers.shape_list(x) x1, x2 = tf.split(x, num_or_size_splits=2, axis=-1) # scale, shift = NN(x1) # If reverse: # z2 = scale * (x2 + shift) # Else: # z2 = (x2 / scale) - shift z1 = x1 log_scale_and_shift = conv_stack( "nn", x1, mid_channels, x_shape[-1], activation=activation, dropout=dropout) shift = log_scale_and_shift[:, :, :, 0::2] scale = tf.nn.sigmoid(log_scale_and_shift[:, :, :, 1::2] + 2.0) if not reverse: z2 = (x2 + shift) * scale else: z2 = x2 / scale - shift objective = tf.reduce_sum(tf.log(scale), axis=[1, 2, 3]) if reverse: objective *= -1 return tf.concat([z1, z2], axis=3), objective
[ "def", "affine_coupling", "(", "name", ",", "x", ",", "mid_channels", "=", "512", ",", "activation", "=", "\"relu\"", ",", "reverse", "=", "False", ",", "dropout", "=", "0.0", ")", ":", "with", "tf", ".", "variable_scope", "(", "name", ",", "reuse", "=", "tf", ".", "AUTO_REUSE", ")", ":", "x_shape", "=", "common_layers", ".", "shape_list", "(", "x", ")", "x1", ",", "x2", "=", "tf", ".", "split", "(", "x", ",", "num_or_size_splits", "=", "2", ",", "axis", "=", "-", "1", ")", "# scale, shift = NN(x1)", "# If reverse:", "# z2 = scale * (x2 + shift)", "# Else:", "# z2 = (x2 / scale) - shift", "z1", "=", "x1", "log_scale_and_shift", "=", "conv_stack", "(", "\"nn\"", ",", "x1", ",", "mid_channels", ",", "x_shape", "[", "-", "1", "]", ",", "activation", "=", "activation", ",", "dropout", "=", "dropout", ")", "shift", "=", "log_scale_and_shift", "[", ":", ",", ":", ",", ":", ",", "0", ":", ":", "2", "]", "scale", "=", "tf", ".", "nn", ".", "sigmoid", "(", "log_scale_and_shift", "[", ":", ",", ":", ",", ":", ",", "1", ":", ":", "2", "]", "+", "2.0", ")", "if", "not", "reverse", ":", "z2", "=", "(", "x2", "+", "shift", ")", "*", "scale", "else", ":", "z2", "=", "x2", "/", "scale", "-", "shift", "objective", "=", "tf", ".", "reduce_sum", "(", "tf", ".", "log", "(", "scale", ")", ",", "axis", "=", "[", "1", ",", "2", ",", "3", "]", ")", "if", "reverse", ":", "objective", "*=", "-", "1", "return", "tf", ".", "concat", "(", "[", "z1", ",", "z2", "]", ",", "axis", "=", "3", ")", ",", "objective" ]
Reversible affine coupling layer. Args: name: variable scope. x: 4-D Tensor. mid_channels: number of channels in the coupling layer. activation: Can be either "relu" or "gatu". reverse: Forward or reverse operation. dropout: default, 0.0 Returns: output: x shifted and scaled by an affine transformation. objective: log-determinant of the jacobian
[ "Reversible", "affine", "coupling", "layer", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L700-L738
21,817
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
squeeze
def squeeze(name, x, factor=2, reverse=True): """Block-wise spatial squeezing of x to increase the number of channels. Args: name: Used for variable scoping. x: 4-D Tensor of shape (batch_size X H X W X C) factor: Factor by which the spatial dimensions should be squeezed. reverse: Squueze or unsqueeze operation. Returns: x: 4-D Tensor of shape (batch_size X (H//factor) X (W//factor) X (cXfactor^2). If reverse is True, then it is factor = (1 / factor) """ with tf.variable_scope(name, reuse=tf.AUTO_REUSE): shape = common_layers.shape_list(x) if factor == 1: return x height = int(shape[1]) width = int(shape[2]) n_channels = int(shape[3]) if not reverse: assert height % factor == 0 and width % factor == 0 x = tf.reshape(x, [-1, height//factor, factor, width//factor, factor, n_channels]) x = tf.transpose(x, [0, 1, 3, 5, 2, 4]) x = tf.reshape(x, [-1, height//factor, width // factor, n_channels*factor*factor]) else: x = tf.reshape( x, (-1, height, width, int(n_channels/factor**2), factor, factor)) x = tf.transpose(x, [0, 1, 4, 2, 5, 3]) x = tf.reshape(x, (-1, int(height*factor), int(width*factor), int(n_channels/factor**2))) return x
python
def squeeze(name, x, factor=2, reverse=True): """Block-wise spatial squeezing of x to increase the number of channels. Args: name: Used for variable scoping. x: 4-D Tensor of shape (batch_size X H X W X C) factor: Factor by which the spatial dimensions should be squeezed. reverse: Squueze or unsqueeze operation. Returns: x: 4-D Tensor of shape (batch_size X (H//factor) X (W//factor) X (cXfactor^2). If reverse is True, then it is factor = (1 / factor) """ with tf.variable_scope(name, reuse=tf.AUTO_REUSE): shape = common_layers.shape_list(x) if factor == 1: return x height = int(shape[1]) width = int(shape[2]) n_channels = int(shape[3]) if not reverse: assert height % factor == 0 and width % factor == 0 x = tf.reshape(x, [-1, height//factor, factor, width//factor, factor, n_channels]) x = tf.transpose(x, [0, 1, 3, 5, 2, 4]) x = tf.reshape(x, [-1, height//factor, width // factor, n_channels*factor*factor]) else: x = tf.reshape( x, (-1, height, width, int(n_channels/factor**2), factor, factor)) x = tf.transpose(x, [0, 1, 4, 2, 5, 3]) x = tf.reshape(x, (-1, int(height*factor), int(width*factor), int(n_channels/factor**2))) return x
[ "def", "squeeze", "(", "name", ",", "x", ",", "factor", "=", "2", ",", "reverse", "=", "True", ")", ":", "with", "tf", ".", "variable_scope", "(", "name", ",", "reuse", "=", "tf", ".", "AUTO_REUSE", ")", ":", "shape", "=", "common_layers", ".", "shape_list", "(", "x", ")", "if", "factor", "==", "1", ":", "return", "x", "height", "=", "int", "(", "shape", "[", "1", "]", ")", "width", "=", "int", "(", "shape", "[", "2", "]", ")", "n_channels", "=", "int", "(", "shape", "[", "3", "]", ")", "if", "not", "reverse", ":", "assert", "height", "%", "factor", "==", "0", "and", "width", "%", "factor", "==", "0", "x", "=", "tf", ".", "reshape", "(", "x", ",", "[", "-", "1", ",", "height", "//", "factor", ",", "factor", ",", "width", "//", "factor", ",", "factor", ",", "n_channels", "]", ")", "x", "=", "tf", ".", "transpose", "(", "x", ",", "[", "0", ",", "1", ",", "3", ",", "5", ",", "2", ",", "4", "]", ")", "x", "=", "tf", ".", "reshape", "(", "x", ",", "[", "-", "1", ",", "height", "//", "factor", ",", "width", "//", "factor", ",", "n_channels", "*", "factor", "*", "factor", "]", ")", "else", ":", "x", "=", "tf", ".", "reshape", "(", "x", ",", "(", "-", "1", ",", "height", ",", "width", ",", "int", "(", "n_channels", "/", "factor", "**", "2", ")", ",", "factor", ",", "factor", ")", ")", "x", "=", "tf", ".", "transpose", "(", "x", ",", "[", "0", ",", "1", ",", "4", ",", "2", ",", "5", ",", "3", "]", ")", "x", "=", "tf", ".", "reshape", "(", "x", ",", "(", "-", "1", ",", "int", "(", "height", "*", "factor", ")", ",", "int", "(", "width", "*", "factor", ")", ",", "int", "(", "n_channels", "/", "factor", "**", "2", ")", ")", ")", "return", "x" ]
Block-wise spatial squeezing of x to increase the number of channels. Args: name: Used for variable scoping. x: 4-D Tensor of shape (batch_size X H X W X C) factor: Factor by which the spatial dimensions should be squeezed. reverse: Squueze or unsqueeze operation. Returns: x: 4-D Tensor of shape (batch_size X (H//factor) X (W//factor) X (cXfactor^2). If reverse is True, then it is factor = (1 / factor)
[ "Block", "-", "wise", "spatial", "squeezing", "of", "x", "to", "increase", "the", "number", "of", "channels", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L742-L776
21,818
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
get_dilation_rates
def get_dilation_rates(hparams, width): """Get a list of valid dilation rates. Args: hparams: HParams. width: spatial dimension. Ensures that the effective filter size is not larger than the spatial dimension. Returns: allowed_dilations: A list of dilation rates. """ # dil_rate=1 means no dilation. allowed_dilations = [[1]*5] apply_dilations = hparams.get("latent_apply_dilations", False) dilation_rates = hparams.get("latent_dilation_rates", [1, 3]) if apply_dilations: for rate in dilation_rates: # k + (k - 1) * rate but k is harcoded to be 3 everywhere. filter_size = 3 + 2 * rate if filter_size <= width: curr_dilation = [1, 1, rate+1, rate+1, 1] allowed_dilations.append(curr_dilation) return allowed_dilations
python
def get_dilation_rates(hparams, width): """Get a list of valid dilation rates. Args: hparams: HParams. width: spatial dimension. Ensures that the effective filter size is not larger than the spatial dimension. Returns: allowed_dilations: A list of dilation rates. """ # dil_rate=1 means no dilation. allowed_dilations = [[1]*5] apply_dilations = hparams.get("latent_apply_dilations", False) dilation_rates = hparams.get("latent_dilation_rates", [1, 3]) if apply_dilations: for rate in dilation_rates: # k + (k - 1) * rate but k is harcoded to be 3 everywhere. filter_size = 3 + 2 * rate if filter_size <= width: curr_dilation = [1, 1, rate+1, rate+1, 1] allowed_dilations.append(curr_dilation) return allowed_dilations
[ "def", "get_dilation_rates", "(", "hparams", ",", "width", ")", ":", "# dil_rate=1 means no dilation.", "allowed_dilations", "=", "[", "[", "1", "]", "*", "5", "]", "apply_dilations", "=", "hparams", ".", "get", "(", "\"latent_apply_dilations\"", ",", "False", ")", "dilation_rates", "=", "hparams", ".", "get", "(", "\"latent_dilation_rates\"", ",", "[", "1", ",", "3", "]", ")", "if", "apply_dilations", ":", "for", "rate", "in", "dilation_rates", ":", "# k + (k - 1) * rate but k is harcoded to be 3 everywhere.", "filter_size", "=", "3", "+", "2", "*", "rate", "if", "filter_size", "<=", "width", ":", "curr_dilation", "=", "[", "1", ",", "1", ",", "rate", "+", "1", ",", "rate", "+", "1", ",", "1", "]", "allowed_dilations", ".", "append", "(", "curr_dilation", ")", "return", "allowed_dilations" ]
Get a list of valid dilation rates. Args: hparams: HParams. width: spatial dimension. Ensures that the effective filter size is not larger than the spatial dimension. Returns: allowed_dilations: A list of dilation rates.
[ "Get", "a", "list", "of", "valid", "dilation", "rates", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L779-L800
21,819
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
temporal_latent_to_dist
def temporal_latent_to_dist(name, x, hparams, output_channels=None): """Network that maps a time-indexed list of 3-D latents to a gaussian. Args: name: variable scope. x: List of 4-D Tensors indexed by time, (NHWC) hparams: tf.contrib.training.Hparams. output_channels: int, Number of channels of the output gaussian mean. Returns: dist: tfp.distributions.Normal """ _, _, width, _, res_channels = common_layers.shape_list(x) if output_channels is None: output_channels = res_channels dilation_rates = get_dilation_rates(hparams, width) with tf.variable_scope(name, reuse=tf.AUTO_REUSE): h = x for i in range(hparams.latent_encoder_depth): if hparams.latent_apply_dilations: h2 = dilated_conv_stack("dil_latent_3d_res_%d" % i, h, mid_channels=hparams.latent_encoder_width, output_channels=res_channels, dilation_rates=dilation_rates, activation=hparams.latent_activation, dropout=hparams.latent_dropout) else: h2 = conv_stack("latent_3d_res_%d" % i, h, mid_channels=hparams.latent_encoder_width, output_channels=res_channels, activation=hparams.latent_activation, dropout=hparams.latent_dropout) h += h2 # take last activation that should capture all context since padding is # on left. h = h[:, -1, :, :, :] h = conv("res_final", h, apply_actnorm=False, conv_init="zeros", output_channels=2*output_channels, filter_size=[1, 1]) mean, log_scale = h[:, :, :, 0::2], h[:, :, :, 1::2] return tfp.distributions.Normal(mean, tf.exp(log_scale))
python
def temporal_latent_to_dist(name, x, hparams, output_channels=None): """Network that maps a time-indexed list of 3-D latents to a gaussian. Args: name: variable scope. x: List of 4-D Tensors indexed by time, (NHWC) hparams: tf.contrib.training.Hparams. output_channels: int, Number of channels of the output gaussian mean. Returns: dist: tfp.distributions.Normal """ _, _, width, _, res_channels = common_layers.shape_list(x) if output_channels is None: output_channels = res_channels dilation_rates = get_dilation_rates(hparams, width) with tf.variable_scope(name, reuse=tf.AUTO_REUSE): h = x for i in range(hparams.latent_encoder_depth): if hparams.latent_apply_dilations: h2 = dilated_conv_stack("dil_latent_3d_res_%d" % i, h, mid_channels=hparams.latent_encoder_width, output_channels=res_channels, dilation_rates=dilation_rates, activation=hparams.latent_activation, dropout=hparams.latent_dropout) else: h2 = conv_stack("latent_3d_res_%d" % i, h, mid_channels=hparams.latent_encoder_width, output_channels=res_channels, activation=hparams.latent_activation, dropout=hparams.latent_dropout) h += h2 # take last activation that should capture all context since padding is # on left. h = h[:, -1, :, :, :] h = conv("res_final", h, apply_actnorm=False, conv_init="zeros", output_channels=2*output_channels, filter_size=[1, 1]) mean, log_scale = h[:, :, :, 0::2], h[:, :, :, 1::2] return tfp.distributions.Normal(mean, tf.exp(log_scale))
[ "def", "temporal_latent_to_dist", "(", "name", ",", "x", ",", "hparams", ",", "output_channels", "=", "None", ")", ":", "_", ",", "_", ",", "width", ",", "_", ",", "res_channels", "=", "common_layers", ".", "shape_list", "(", "x", ")", "if", "output_channels", "is", "None", ":", "output_channels", "=", "res_channels", "dilation_rates", "=", "get_dilation_rates", "(", "hparams", ",", "width", ")", "with", "tf", ".", "variable_scope", "(", "name", ",", "reuse", "=", "tf", ".", "AUTO_REUSE", ")", ":", "h", "=", "x", "for", "i", "in", "range", "(", "hparams", ".", "latent_encoder_depth", ")", ":", "if", "hparams", ".", "latent_apply_dilations", ":", "h2", "=", "dilated_conv_stack", "(", "\"dil_latent_3d_res_%d\"", "%", "i", ",", "h", ",", "mid_channels", "=", "hparams", ".", "latent_encoder_width", ",", "output_channels", "=", "res_channels", ",", "dilation_rates", "=", "dilation_rates", ",", "activation", "=", "hparams", ".", "latent_activation", ",", "dropout", "=", "hparams", ".", "latent_dropout", ")", "else", ":", "h2", "=", "conv_stack", "(", "\"latent_3d_res_%d\"", "%", "i", ",", "h", ",", "mid_channels", "=", "hparams", ".", "latent_encoder_width", ",", "output_channels", "=", "res_channels", ",", "activation", "=", "hparams", ".", "latent_activation", ",", "dropout", "=", "hparams", ".", "latent_dropout", ")", "h", "+=", "h2", "# take last activation that should capture all context since padding is", "# on left.", "h", "=", "h", "[", ":", ",", "-", "1", ",", ":", ",", ":", ",", ":", "]", "h", "=", "conv", "(", "\"res_final\"", ",", "h", ",", "apply_actnorm", "=", "False", ",", "conv_init", "=", "\"zeros\"", ",", "output_channels", "=", "2", "*", "output_channels", ",", "filter_size", "=", "[", "1", ",", "1", "]", ")", "mean", ",", "log_scale", "=", "h", "[", ":", ",", ":", ",", ":", ",", "0", ":", ":", "2", "]", ",", "h", "[", ":", ",", ":", ",", ":", ",", "1", ":", ":", "2", "]", "return", "tfp", ".", "distributions", ".", "Normal", "(", "mean", ",", "tf", ".", "exp", "(", "log_scale", ")", ")" ]
Network that maps a time-indexed list of 3-D latents to a gaussian. Args: name: variable scope. x: List of 4-D Tensors indexed by time, (NHWC) hparams: tf.contrib.training.Hparams. output_channels: int, Number of channels of the output gaussian mean. Returns: dist: tfp.distributions.Normal
[ "Network", "that", "maps", "a", "time", "-", "indexed", "list", "of", "3", "-", "D", "latents", "to", "a", "gaussian", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L804-L843
21,820
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
single_conv_dist
def single_conv_dist(name, x, output_channels=None): """A 3x3 convolution mapping x to a standard normal distribution at init. Args: name: variable scope. x: 4-D Tensor. output_channels: number of channels of the mean and std. """ with tf.variable_scope(name, reuse=tf.AUTO_REUSE): x_shape = common_layers.shape_list(x) if output_channels is None: output_channels = x_shape[-1] mean_log_scale = conv("conv2d", x, output_channels=2*output_channels, conv_init="zeros", apply_actnorm=False) mean = mean_log_scale[:, :, :, 0::2] log_scale = mean_log_scale[:, :, :, 1::2] return tf.distributions.Normal(mean, tf.exp(log_scale))
python
def single_conv_dist(name, x, output_channels=None): """A 3x3 convolution mapping x to a standard normal distribution at init. Args: name: variable scope. x: 4-D Tensor. output_channels: number of channels of the mean and std. """ with tf.variable_scope(name, reuse=tf.AUTO_REUSE): x_shape = common_layers.shape_list(x) if output_channels is None: output_channels = x_shape[-1] mean_log_scale = conv("conv2d", x, output_channels=2*output_channels, conv_init="zeros", apply_actnorm=False) mean = mean_log_scale[:, :, :, 0::2] log_scale = mean_log_scale[:, :, :, 1::2] return tf.distributions.Normal(mean, tf.exp(log_scale))
[ "def", "single_conv_dist", "(", "name", ",", "x", ",", "output_channels", "=", "None", ")", ":", "with", "tf", ".", "variable_scope", "(", "name", ",", "reuse", "=", "tf", ".", "AUTO_REUSE", ")", ":", "x_shape", "=", "common_layers", ".", "shape_list", "(", "x", ")", "if", "output_channels", "is", "None", ":", "output_channels", "=", "x_shape", "[", "-", "1", "]", "mean_log_scale", "=", "conv", "(", "\"conv2d\"", ",", "x", ",", "output_channels", "=", "2", "*", "output_channels", ",", "conv_init", "=", "\"zeros\"", ",", "apply_actnorm", "=", "False", ")", "mean", "=", "mean_log_scale", "[", ":", ",", ":", ",", ":", ",", "0", ":", ":", "2", "]", "log_scale", "=", "mean_log_scale", "[", ":", ",", ":", ",", ":", ",", "1", ":", ":", "2", "]", "return", "tf", ".", "distributions", ".", "Normal", "(", "mean", ",", "tf", ".", "exp", "(", "log_scale", ")", ")" ]
A 3x3 convolution mapping x to a standard normal distribution at init. Args: name: variable scope. x: 4-D Tensor. output_channels: number of channels of the mean and std.
[ "A", "3x3", "convolution", "mapping", "x", "to", "a", "standard", "normal", "distribution", "at", "init", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L847-L863
21,821
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
latent_to_dist
def latent_to_dist(name, x, hparams, output_channels=None): """Map latent to the mean and log-scale of a Gaussian. Args: name: variable scope. x: 4-D Tensor of shape (NHWC) hparams: HParams. latent_architecture - can be "single_conv", "glow_nn" or "glow_resnet", default = single_conv latent_encoder_depth - int, depth of architecture, valid if latent_architecture is "glow_nn" or "glow_resnet". latent_pre_output_channels - 512, valid only when latent_architecture is "glow_nn". latent_encoder_width - 512, maximum width of the network output_channels: int, number of output channels of the mean (and std). if not provided, set it to be the output channels of x. Returns: dist: instance of tfp.distributions.Normal Raises: ValueError: If architecture not in ["single_conv", "glow_nn"] """ architecture = hparams.get("latent_architecture", "single_conv") depth = hparams.get("latent_encoder_depth", 1) pre_output_channels = hparams.get("latent_pre_output_channels", 512) width = hparams.get("latent_encoder_width", 512) with tf.variable_scope(name, reuse=tf.AUTO_REUSE): x_shape = common_layers.shape_list(x) if output_channels is None: output_channels = x_shape[-1] if architecture == "single_conv": return single_conv_dist("single_conv", x, output_channels) if architecture == "glow_nn": mean_log_scale = x for layer in range(1, depth + 1): mid_channels = pre_output_channels // 2**(depth - layer) mean_log_scale = conv_block("glow_nn_%d" % layer, mean_log_scale, mid_channels=mid_channels) mean_log_scale = conv("glow_nn_zeros", mean_log_scale, filter_size=[3, 3], stride=[1, 1], output_channels=2*output_channels, apply_actnorm=False, conv_init="zeros") elif architecture == "glow_resnet": h = x for layer in range(depth): h3 = conv_stack("latent_resnet_%d" % layer, h, mid_channels=width, output_channels=x_shape[-1], dropout=hparams.coupling_dropout) h += h3 mean_log_scale = conv("glow_res_final", h, conv_init="zeros", output_channels=2*output_channels, apply_actnorm=False) else: raise ValueError("expected architecture to be single_conv or glow_nn " "got %s" % architecture) mean = mean_log_scale[:, :, :, 0::2] log_scale = mean_log_scale[:, :, :, 1::2] return tfp.distributions.Normal(mean, tf.exp(log_scale))
python
def latent_to_dist(name, x, hparams, output_channels=None): """Map latent to the mean and log-scale of a Gaussian. Args: name: variable scope. x: 4-D Tensor of shape (NHWC) hparams: HParams. latent_architecture - can be "single_conv", "glow_nn" or "glow_resnet", default = single_conv latent_encoder_depth - int, depth of architecture, valid if latent_architecture is "glow_nn" or "glow_resnet". latent_pre_output_channels - 512, valid only when latent_architecture is "glow_nn". latent_encoder_width - 512, maximum width of the network output_channels: int, number of output channels of the mean (and std). if not provided, set it to be the output channels of x. Returns: dist: instance of tfp.distributions.Normal Raises: ValueError: If architecture not in ["single_conv", "glow_nn"] """ architecture = hparams.get("latent_architecture", "single_conv") depth = hparams.get("latent_encoder_depth", 1) pre_output_channels = hparams.get("latent_pre_output_channels", 512) width = hparams.get("latent_encoder_width", 512) with tf.variable_scope(name, reuse=tf.AUTO_REUSE): x_shape = common_layers.shape_list(x) if output_channels is None: output_channels = x_shape[-1] if architecture == "single_conv": return single_conv_dist("single_conv", x, output_channels) if architecture == "glow_nn": mean_log_scale = x for layer in range(1, depth + 1): mid_channels = pre_output_channels // 2**(depth - layer) mean_log_scale = conv_block("glow_nn_%d" % layer, mean_log_scale, mid_channels=mid_channels) mean_log_scale = conv("glow_nn_zeros", mean_log_scale, filter_size=[3, 3], stride=[1, 1], output_channels=2*output_channels, apply_actnorm=False, conv_init="zeros") elif architecture == "glow_resnet": h = x for layer in range(depth): h3 = conv_stack("latent_resnet_%d" % layer, h, mid_channels=width, output_channels=x_shape[-1], dropout=hparams.coupling_dropout) h += h3 mean_log_scale = conv("glow_res_final", h, conv_init="zeros", output_channels=2*output_channels, apply_actnorm=False) else: raise ValueError("expected architecture to be single_conv or glow_nn " "got %s" % architecture) mean = mean_log_scale[:, :, :, 0::2] log_scale = mean_log_scale[:, :, :, 1::2] return tfp.distributions.Normal(mean, tf.exp(log_scale))
[ "def", "latent_to_dist", "(", "name", ",", "x", ",", "hparams", ",", "output_channels", "=", "None", ")", ":", "architecture", "=", "hparams", ".", "get", "(", "\"latent_architecture\"", ",", "\"single_conv\"", ")", "depth", "=", "hparams", ".", "get", "(", "\"latent_encoder_depth\"", ",", "1", ")", "pre_output_channels", "=", "hparams", ".", "get", "(", "\"latent_pre_output_channels\"", ",", "512", ")", "width", "=", "hparams", ".", "get", "(", "\"latent_encoder_width\"", ",", "512", ")", "with", "tf", ".", "variable_scope", "(", "name", ",", "reuse", "=", "tf", ".", "AUTO_REUSE", ")", ":", "x_shape", "=", "common_layers", ".", "shape_list", "(", "x", ")", "if", "output_channels", "is", "None", ":", "output_channels", "=", "x_shape", "[", "-", "1", "]", "if", "architecture", "==", "\"single_conv\"", ":", "return", "single_conv_dist", "(", "\"single_conv\"", ",", "x", ",", "output_channels", ")", "if", "architecture", "==", "\"glow_nn\"", ":", "mean_log_scale", "=", "x", "for", "layer", "in", "range", "(", "1", ",", "depth", "+", "1", ")", ":", "mid_channels", "=", "pre_output_channels", "//", "2", "**", "(", "depth", "-", "layer", ")", "mean_log_scale", "=", "conv_block", "(", "\"glow_nn_%d\"", "%", "layer", ",", "mean_log_scale", ",", "mid_channels", "=", "mid_channels", ")", "mean_log_scale", "=", "conv", "(", "\"glow_nn_zeros\"", ",", "mean_log_scale", ",", "filter_size", "=", "[", "3", ",", "3", "]", ",", "stride", "=", "[", "1", ",", "1", "]", ",", "output_channels", "=", "2", "*", "output_channels", ",", "apply_actnorm", "=", "False", ",", "conv_init", "=", "\"zeros\"", ")", "elif", "architecture", "==", "\"glow_resnet\"", ":", "h", "=", "x", "for", "layer", "in", "range", "(", "depth", ")", ":", "h3", "=", "conv_stack", "(", "\"latent_resnet_%d\"", "%", "layer", ",", "h", ",", "mid_channels", "=", "width", ",", "output_channels", "=", "x_shape", "[", "-", "1", "]", ",", "dropout", "=", "hparams", ".", "coupling_dropout", ")", "h", "+=", "h3", "mean_log_scale", "=", "conv", "(", "\"glow_res_final\"", ",", "h", ",", "conv_init", "=", "\"zeros\"", ",", "output_channels", "=", "2", "*", "output_channels", ",", "apply_actnorm", "=", "False", ")", "else", ":", "raise", "ValueError", "(", "\"expected architecture to be single_conv or glow_nn \"", "\"got %s\"", "%", "architecture", ")", "mean", "=", "mean_log_scale", "[", ":", ",", ":", ",", ":", ",", "0", ":", ":", "2", "]", "log_scale", "=", "mean_log_scale", "[", ":", ",", ":", ",", ":", ",", "1", ":", ":", "2", "]", "return", "tfp", ".", "distributions", ".", "Normal", "(", "mean", ",", "tf", ".", "exp", "(", "log_scale", ")", ")" ]
Map latent to the mean and log-scale of a Gaussian. Args: name: variable scope. x: 4-D Tensor of shape (NHWC) hparams: HParams. latent_architecture - can be "single_conv", "glow_nn" or "glow_resnet", default = single_conv latent_encoder_depth - int, depth of architecture, valid if latent_architecture is "glow_nn" or "glow_resnet". latent_pre_output_channels - 512, valid only when latent_architecture is "glow_nn". latent_encoder_width - 512, maximum width of the network output_channels: int, number of output channels of the mean (and std). if not provided, set it to be the output channels of x. Returns: dist: instance of tfp.distributions.Normal Raises: ValueError: If architecture not in ["single_conv", "glow_nn"]
[ "Map", "latent", "to", "the", "mean", "and", "log", "-", "scale", "of", "a", "Gaussian", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L867-L925
21,822
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
noise_op
def noise_op(latents, hparams): """Adds isotropic gaussian-noise to each latent. Args: latents: 4-D or 5-D tensor, shape=(NTHWC) or (NHWC). hparams: HParams. Returns: latents: latents with isotropic gaussian noise appended. """ if hparams.latent_noise == 0 or hparams.mode != tf.estimator.ModeKeys.TRAIN: return latents latent_shape = common_layers.shape_list(latents) return latents + tf.random_normal(latent_shape, stddev=hparams.latent_noise)
python
def noise_op(latents, hparams): """Adds isotropic gaussian-noise to each latent. Args: latents: 4-D or 5-D tensor, shape=(NTHWC) or (NHWC). hparams: HParams. Returns: latents: latents with isotropic gaussian noise appended. """ if hparams.latent_noise == 0 or hparams.mode != tf.estimator.ModeKeys.TRAIN: return latents latent_shape = common_layers.shape_list(latents) return latents + tf.random_normal(latent_shape, stddev=hparams.latent_noise)
[ "def", "noise_op", "(", "latents", ",", "hparams", ")", ":", "if", "hparams", ".", "latent_noise", "==", "0", "or", "hparams", ".", "mode", "!=", "tf", ".", "estimator", ".", "ModeKeys", ".", "TRAIN", ":", "return", "latents", "latent_shape", "=", "common_layers", ".", "shape_list", "(", "latents", ")", "return", "latents", "+", "tf", ".", "random_normal", "(", "latent_shape", ",", "stddev", "=", "hparams", ".", "latent_noise", ")" ]
Adds isotropic gaussian-noise to each latent. Args: latents: 4-D or 5-D tensor, shape=(NTHWC) or (NHWC). hparams: HParams. Returns: latents: latents with isotropic gaussian noise appended.
[ "Adds", "isotropic", "gaussian", "-", "noise", "to", "each", "latent", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L929-L941
21,823
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
merge_level_and_latent_dist
def merge_level_and_latent_dist(level_dist, latent_dist, merge_std="prev_level"): """Merge level_dist and latent_dist. new_dist ~ N(level_dist.mean + latent_dis.mean, std) where std is determined according to merge_std. Args: level_dist: instance of tfp.distributions.Normal latent_dist: instance of tfp.distributions.Normal merge_std: can be "prev_level", "prev_step" or "normal". Returns: merged_dist: instance of tfp.distributions.Normal """ level_mean, level_std = level_dist.loc, level_dist.scale latent_mean, latent_std = latent_dist.loc, latent_dist.scale new_mean = level_mean + latent_mean if merge_std == "normal": z_shape = common_layers.shape_list(latent_mean) log_scale = tf.get_variable( "merge_std", shape=z_shape, dtype=tf.float32, initializer=tf.zeros_initializer(), trainable=False) scale = tf.exp(log_scale * 3.0) elif merge_std == "prev_level": scale = level_std elif merge_std == "prev_step": scale = latent_std return tfp.distributions.Normal(loc=new_mean, scale=scale)
python
def merge_level_and_latent_dist(level_dist, latent_dist, merge_std="prev_level"): """Merge level_dist and latent_dist. new_dist ~ N(level_dist.mean + latent_dis.mean, std) where std is determined according to merge_std. Args: level_dist: instance of tfp.distributions.Normal latent_dist: instance of tfp.distributions.Normal merge_std: can be "prev_level", "prev_step" or "normal". Returns: merged_dist: instance of tfp.distributions.Normal """ level_mean, level_std = level_dist.loc, level_dist.scale latent_mean, latent_std = latent_dist.loc, latent_dist.scale new_mean = level_mean + latent_mean if merge_std == "normal": z_shape = common_layers.shape_list(latent_mean) log_scale = tf.get_variable( "merge_std", shape=z_shape, dtype=tf.float32, initializer=tf.zeros_initializer(), trainable=False) scale = tf.exp(log_scale * 3.0) elif merge_std == "prev_level": scale = level_std elif merge_std == "prev_step": scale = latent_std return tfp.distributions.Normal(loc=new_mean, scale=scale)
[ "def", "merge_level_and_latent_dist", "(", "level_dist", ",", "latent_dist", ",", "merge_std", "=", "\"prev_level\"", ")", ":", "level_mean", ",", "level_std", "=", "level_dist", ".", "loc", ",", "level_dist", ".", "scale", "latent_mean", ",", "latent_std", "=", "latent_dist", ".", "loc", ",", "latent_dist", ".", "scale", "new_mean", "=", "level_mean", "+", "latent_mean", "if", "merge_std", "==", "\"normal\"", ":", "z_shape", "=", "common_layers", ".", "shape_list", "(", "latent_mean", ")", "log_scale", "=", "tf", ".", "get_variable", "(", "\"merge_std\"", ",", "shape", "=", "z_shape", ",", "dtype", "=", "tf", ".", "float32", ",", "initializer", "=", "tf", ".", "zeros_initializer", "(", ")", ",", "trainable", "=", "False", ")", "scale", "=", "tf", ".", "exp", "(", "log_scale", "*", "3.0", ")", "elif", "merge_std", "==", "\"prev_level\"", ":", "scale", "=", "level_std", "elif", "merge_std", "==", "\"prev_step\"", ":", "scale", "=", "latent_std", "return", "tfp", ".", "distributions", ".", "Normal", "(", "loc", "=", "new_mean", ",", "scale", "=", "scale", ")" ]
Merge level_dist and latent_dist. new_dist ~ N(level_dist.mean + latent_dis.mean, std) where std is determined according to merge_std. Args: level_dist: instance of tfp.distributions.Normal latent_dist: instance of tfp.distributions.Normal merge_std: can be "prev_level", "prev_step" or "normal". Returns: merged_dist: instance of tfp.distributions.Normal
[ "Merge", "level_dist", "and", "latent_dist", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L945-L972
21,824
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
level_cond_prior
def level_cond_prior(prior_dist, z, latent, hparams, state): """Returns a conditional prior for each level. Args: prior_dist: Distribution conditioned on the previous levels. z: Tensor, output of the previous levels. latent: Tensor or a list of tensors to condition the latent_distribution. hparams: next_frame_glow hparams. state: Current LSTM state. Used only if hparams.latent_dist_encoder is a lstm. Raises: ValueError: If hparams.latent_dist_encoder is "pointwise" and if the shape of latent is different from z. """ latent_dist_encoder = hparams.get("latent_dist_encoder", None) latent_skip = hparams.get("latent_skip", False) if latent_dist_encoder == "pointwise": last_latent = latent merge_std = hparams.level_scale latent_shape = common_layers.shape_list(latent) z_shape = common_layers.shape_list(z) if latent_shape != z_shape: raise ValueError("Expected latent_shape to be %s, got %s" % (latent_shape, z_shape)) latent_dist = scale_gaussian_prior( "latent_prior", latent, logscale_factor=3.0) cond_dist = merge_level_and_latent_dist(prior_dist, latent_dist, merge_std=merge_std) elif latent_dist_encoder == "conv_net": output_channels = common_layers.shape_list(z)[-1] last_latent = latent[-1] latent_stack = tf.concat([prior_dist.loc] + latent, axis=-1) latent_stack = noise_op(latent_stack, hparams) cond_dist = latent_to_dist( "latent_stack", latent_stack, hparams=hparams, output_channels=output_channels) elif latent_dist_encoder == "conv3d_net": last_latent = latent[-1] output_channels = common_layers.shape_list(last_latent)[-1] num_steps = len(latent) # Stack across time. cond_latents = tf.stack(latent, axis=1) # Concat latents from previous levels across channels. prev_latents = tf.tile(tf.expand_dims(prior_dist.loc, axis=1), [1, num_steps, 1, 1, 1]) cond_latents = tf.concat((cond_latents, prev_latents), axis=-1) cond_latents = noise_op(cond_latents, hparams) cond_dist = temporal_latent_to_dist( "latent_stack", cond_latents, hparams, output_channels=output_channels) elif latent_dist_encoder == "conv_lstm": last_latent = latent output_channels = common_layers.shape_list(z)[-1] latent_stack = tf.concat((prior_dist.loc, latent), axis=-1) latent_stack = noise_op(latent_stack, hparams) _, state = common_video.conv_lstm_2d( latent_stack, state, hparams.latent_encoder_width, kernel_size=3, name="conv_lstm") cond_dist = single_conv_dist( "state_to_dist", state.h, output_channels=output_channels) if latent_skip: new_mean = cond_dist.loc + last_latent cond_dist = tfp.distributions.Normal(new_mean, cond_dist.scale) return cond_dist.loc, cond_dist.scale, state
python
def level_cond_prior(prior_dist, z, latent, hparams, state): """Returns a conditional prior for each level. Args: prior_dist: Distribution conditioned on the previous levels. z: Tensor, output of the previous levels. latent: Tensor or a list of tensors to condition the latent_distribution. hparams: next_frame_glow hparams. state: Current LSTM state. Used only if hparams.latent_dist_encoder is a lstm. Raises: ValueError: If hparams.latent_dist_encoder is "pointwise" and if the shape of latent is different from z. """ latent_dist_encoder = hparams.get("latent_dist_encoder", None) latent_skip = hparams.get("latent_skip", False) if latent_dist_encoder == "pointwise": last_latent = latent merge_std = hparams.level_scale latent_shape = common_layers.shape_list(latent) z_shape = common_layers.shape_list(z) if latent_shape != z_shape: raise ValueError("Expected latent_shape to be %s, got %s" % (latent_shape, z_shape)) latent_dist = scale_gaussian_prior( "latent_prior", latent, logscale_factor=3.0) cond_dist = merge_level_and_latent_dist(prior_dist, latent_dist, merge_std=merge_std) elif latent_dist_encoder == "conv_net": output_channels = common_layers.shape_list(z)[-1] last_latent = latent[-1] latent_stack = tf.concat([prior_dist.loc] + latent, axis=-1) latent_stack = noise_op(latent_stack, hparams) cond_dist = latent_to_dist( "latent_stack", latent_stack, hparams=hparams, output_channels=output_channels) elif latent_dist_encoder == "conv3d_net": last_latent = latent[-1] output_channels = common_layers.shape_list(last_latent)[-1] num_steps = len(latent) # Stack across time. cond_latents = tf.stack(latent, axis=1) # Concat latents from previous levels across channels. prev_latents = tf.tile(tf.expand_dims(prior_dist.loc, axis=1), [1, num_steps, 1, 1, 1]) cond_latents = tf.concat((cond_latents, prev_latents), axis=-1) cond_latents = noise_op(cond_latents, hparams) cond_dist = temporal_latent_to_dist( "latent_stack", cond_latents, hparams, output_channels=output_channels) elif latent_dist_encoder == "conv_lstm": last_latent = latent output_channels = common_layers.shape_list(z)[-1] latent_stack = tf.concat((prior_dist.loc, latent), axis=-1) latent_stack = noise_op(latent_stack, hparams) _, state = common_video.conv_lstm_2d( latent_stack, state, hparams.latent_encoder_width, kernel_size=3, name="conv_lstm") cond_dist = single_conv_dist( "state_to_dist", state.h, output_channels=output_channels) if latent_skip: new_mean = cond_dist.loc + last_latent cond_dist = tfp.distributions.Normal(new_mean, cond_dist.scale) return cond_dist.loc, cond_dist.scale, state
[ "def", "level_cond_prior", "(", "prior_dist", ",", "z", ",", "latent", ",", "hparams", ",", "state", ")", ":", "latent_dist_encoder", "=", "hparams", ".", "get", "(", "\"latent_dist_encoder\"", ",", "None", ")", "latent_skip", "=", "hparams", ".", "get", "(", "\"latent_skip\"", ",", "False", ")", "if", "latent_dist_encoder", "==", "\"pointwise\"", ":", "last_latent", "=", "latent", "merge_std", "=", "hparams", ".", "level_scale", "latent_shape", "=", "common_layers", ".", "shape_list", "(", "latent", ")", "z_shape", "=", "common_layers", ".", "shape_list", "(", "z", ")", "if", "latent_shape", "!=", "z_shape", ":", "raise", "ValueError", "(", "\"Expected latent_shape to be %s, got %s\"", "%", "(", "latent_shape", ",", "z_shape", ")", ")", "latent_dist", "=", "scale_gaussian_prior", "(", "\"latent_prior\"", ",", "latent", ",", "logscale_factor", "=", "3.0", ")", "cond_dist", "=", "merge_level_and_latent_dist", "(", "prior_dist", ",", "latent_dist", ",", "merge_std", "=", "merge_std", ")", "elif", "latent_dist_encoder", "==", "\"conv_net\"", ":", "output_channels", "=", "common_layers", ".", "shape_list", "(", "z", ")", "[", "-", "1", "]", "last_latent", "=", "latent", "[", "-", "1", "]", "latent_stack", "=", "tf", ".", "concat", "(", "[", "prior_dist", ".", "loc", "]", "+", "latent", ",", "axis", "=", "-", "1", ")", "latent_stack", "=", "noise_op", "(", "latent_stack", ",", "hparams", ")", "cond_dist", "=", "latent_to_dist", "(", "\"latent_stack\"", ",", "latent_stack", ",", "hparams", "=", "hparams", ",", "output_channels", "=", "output_channels", ")", "elif", "latent_dist_encoder", "==", "\"conv3d_net\"", ":", "last_latent", "=", "latent", "[", "-", "1", "]", "output_channels", "=", "common_layers", ".", "shape_list", "(", "last_latent", ")", "[", "-", "1", "]", "num_steps", "=", "len", "(", "latent", ")", "# Stack across time.", "cond_latents", "=", "tf", ".", "stack", "(", "latent", ",", "axis", "=", "1", ")", "# Concat latents from previous levels across channels.", "prev_latents", "=", "tf", ".", "tile", "(", "tf", ".", "expand_dims", "(", "prior_dist", ".", "loc", ",", "axis", "=", "1", ")", ",", "[", "1", ",", "num_steps", ",", "1", ",", "1", ",", "1", "]", ")", "cond_latents", "=", "tf", ".", "concat", "(", "(", "cond_latents", ",", "prev_latents", ")", ",", "axis", "=", "-", "1", ")", "cond_latents", "=", "noise_op", "(", "cond_latents", ",", "hparams", ")", "cond_dist", "=", "temporal_latent_to_dist", "(", "\"latent_stack\"", ",", "cond_latents", ",", "hparams", ",", "output_channels", "=", "output_channels", ")", "elif", "latent_dist_encoder", "==", "\"conv_lstm\"", ":", "last_latent", "=", "latent", "output_channels", "=", "common_layers", ".", "shape_list", "(", "z", ")", "[", "-", "1", "]", "latent_stack", "=", "tf", ".", "concat", "(", "(", "prior_dist", ".", "loc", ",", "latent", ")", ",", "axis", "=", "-", "1", ")", "latent_stack", "=", "noise_op", "(", "latent_stack", ",", "hparams", ")", "_", ",", "state", "=", "common_video", ".", "conv_lstm_2d", "(", "latent_stack", ",", "state", ",", "hparams", ".", "latent_encoder_width", ",", "kernel_size", "=", "3", ",", "name", "=", "\"conv_lstm\"", ")", "cond_dist", "=", "single_conv_dist", "(", "\"state_to_dist\"", ",", "state", ".", "h", ",", "output_channels", "=", "output_channels", ")", "if", "latent_skip", ":", "new_mean", "=", "cond_dist", ".", "loc", "+", "last_latent", "cond_dist", "=", "tfp", ".", "distributions", ".", "Normal", "(", "new_mean", ",", "cond_dist", ".", "scale", ")", "return", "cond_dist", ".", "loc", ",", "cond_dist", ".", "scale", ",", "state" ]
Returns a conditional prior for each level. Args: prior_dist: Distribution conditioned on the previous levels. z: Tensor, output of the previous levels. latent: Tensor or a list of tensors to condition the latent_distribution. hparams: next_frame_glow hparams. state: Current LSTM state. Used only if hparams.latent_dist_encoder is a lstm. Raises: ValueError: If hparams.latent_dist_encoder is "pointwise" and if the shape of latent is different from z.
[ "Returns", "a", "conditional", "prior", "for", "each", "level", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L976-L1044
21,825
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
revnet_step
def revnet_step(name, x, hparams, reverse=True): """One step of glow generative flow. Actnorm + invertible 1X1 conv + affine_coupling. Args: name: used for variable scope. x: input hparams: coupling_width is the only hparam that is being used in this function. reverse: forward or reverse pass. Returns: z: Output of one step of reversible flow. """ with tf.variable_scope(name, reuse=tf.AUTO_REUSE): if hparams.coupling == "additive": coupling_layer = functools.partial( additive_coupling, name="additive", reverse=reverse, mid_channels=hparams.coupling_width, activation=hparams.activation, dropout=hparams.coupling_dropout) else: coupling_layer = functools.partial( affine_coupling, name="affine", reverse=reverse, mid_channels=hparams.coupling_width, activation=hparams.activation, dropout=hparams.coupling_dropout) ops = [ functools.partial(actnorm, name="actnorm", reverse=reverse), functools.partial(invertible_1x1_conv, name="invertible", reverse=reverse), coupling_layer] if reverse: ops = ops[::-1] objective = 0.0 for op in ops: x, curr_obj = op(x=x) objective += curr_obj return x, objective
python
def revnet_step(name, x, hparams, reverse=True): """One step of glow generative flow. Actnorm + invertible 1X1 conv + affine_coupling. Args: name: used for variable scope. x: input hparams: coupling_width is the only hparam that is being used in this function. reverse: forward or reverse pass. Returns: z: Output of one step of reversible flow. """ with tf.variable_scope(name, reuse=tf.AUTO_REUSE): if hparams.coupling == "additive": coupling_layer = functools.partial( additive_coupling, name="additive", reverse=reverse, mid_channels=hparams.coupling_width, activation=hparams.activation, dropout=hparams.coupling_dropout) else: coupling_layer = functools.partial( affine_coupling, name="affine", reverse=reverse, mid_channels=hparams.coupling_width, activation=hparams.activation, dropout=hparams.coupling_dropout) ops = [ functools.partial(actnorm, name="actnorm", reverse=reverse), functools.partial(invertible_1x1_conv, name="invertible", reverse=reverse), coupling_layer] if reverse: ops = ops[::-1] objective = 0.0 for op in ops: x, curr_obj = op(x=x) objective += curr_obj return x, objective
[ "def", "revnet_step", "(", "name", ",", "x", ",", "hparams", ",", "reverse", "=", "True", ")", ":", "with", "tf", ".", "variable_scope", "(", "name", ",", "reuse", "=", "tf", ".", "AUTO_REUSE", ")", ":", "if", "hparams", ".", "coupling", "==", "\"additive\"", ":", "coupling_layer", "=", "functools", ".", "partial", "(", "additive_coupling", ",", "name", "=", "\"additive\"", ",", "reverse", "=", "reverse", ",", "mid_channels", "=", "hparams", ".", "coupling_width", ",", "activation", "=", "hparams", ".", "activation", ",", "dropout", "=", "hparams", ".", "coupling_dropout", ")", "else", ":", "coupling_layer", "=", "functools", ".", "partial", "(", "affine_coupling", ",", "name", "=", "\"affine\"", ",", "reverse", "=", "reverse", ",", "mid_channels", "=", "hparams", ".", "coupling_width", ",", "activation", "=", "hparams", ".", "activation", ",", "dropout", "=", "hparams", ".", "coupling_dropout", ")", "ops", "=", "[", "functools", ".", "partial", "(", "actnorm", ",", "name", "=", "\"actnorm\"", ",", "reverse", "=", "reverse", ")", ",", "functools", ".", "partial", "(", "invertible_1x1_conv", ",", "name", "=", "\"invertible\"", ",", "reverse", "=", "reverse", ")", ",", "coupling_layer", "]", "if", "reverse", ":", "ops", "=", "ops", "[", ":", ":", "-", "1", "]", "objective", "=", "0.0", "for", "op", "in", "ops", ":", "x", ",", "curr_obj", "=", "op", "(", "x", "=", "x", ")", "objective", "+=", "curr_obj", "return", "x", ",", "objective" ]
One step of glow generative flow. Actnorm + invertible 1X1 conv + affine_coupling. Args: name: used for variable scope. x: input hparams: coupling_width is the only hparam that is being used in this function. reverse: forward or reverse pass. Returns: z: Output of one step of reversible flow.
[ "One", "step", "of", "glow", "generative", "flow", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L1156-L1193
21,826
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
revnet
def revnet(name, x, hparams, reverse=True): """'hparams.depth' steps of generative flow. Args: name: variable scope for the revnet block. x: 4-D Tensor, shape=(NHWC). hparams: HParams. reverse: bool, forward or backward pass. Returns: x: 4-D Tensor, shape=(NHWC). objective: float. """ with tf.variable_scope(name, reuse=tf.AUTO_REUSE): steps = np.arange(hparams.depth) if reverse: steps = steps[::-1] objective = 0.0 for step in steps: x, curr_obj = revnet_step( "revnet_step_%d" % step, x, hparams, reverse=reverse) objective += curr_obj return x, objective
python
def revnet(name, x, hparams, reverse=True): """'hparams.depth' steps of generative flow. Args: name: variable scope for the revnet block. x: 4-D Tensor, shape=(NHWC). hparams: HParams. reverse: bool, forward or backward pass. Returns: x: 4-D Tensor, shape=(NHWC). objective: float. """ with tf.variable_scope(name, reuse=tf.AUTO_REUSE): steps = np.arange(hparams.depth) if reverse: steps = steps[::-1] objective = 0.0 for step in steps: x, curr_obj = revnet_step( "revnet_step_%d" % step, x, hparams, reverse=reverse) objective += curr_obj return x, objective
[ "def", "revnet", "(", "name", ",", "x", ",", "hparams", ",", "reverse", "=", "True", ")", ":", "with", "tf", ".", "variable_scope", "(", "name", ",", "reuse", "=", "tf", ".", "AUTO_REUSE", ")", ":", "steps", "=", "np", ".", "arange", "(", "hparams", ".", "depth", ")", "if", "reverse", ":", "steps", "=", "steps", "[", ":", ":", "-", "1", "]", "objective", "=", "0.0", "for", "step", "in", "steps", ":", "x", ",", "curr_obj", "=", "revnet_step", "(", "\"revnet_step_%d\"", "%", "step", ",", "x", ",", "hparams", ",", "reverse", "=", "reverse", ")", "objective", "+=", "curr_obj", "return", "x", ",", "objective" ]
hparams.depth' steps of generative flow. Args: name: variable scope for the revnet block. x: 4-D Tensor, shape=(NHWC). hparams: HParams. reverse: bool, forward or backward pass. Returns: x: 4-D Tensor, shape=(NHWC). objective: float.
[ "hparams", ".", "depth", "steps", "of", "generative", "flow", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L1196-L1218
21,827
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
top_prior
def top_prior(name, z_shape, learn_prior="normal", temperature=1.0): """Unconditional prior distribution. Args: name: variable scope z_shape: Shape of the mean / scale of the prior distribution. learn_prior: Possible options are "normal" and "single_conv". If set to "single_conv", the gaussian is parametrized by a single convolutional layer whose input are an array of zeros and initialized such that the mean and std are zero and one. If set to "normal", the prior is just a Gaussian with zero mean and unit variance. temperature: Temperature with which to sample from the Gaussian. Returns: objective: 1-D Tensor shape=(batch_size,) summed across spatial components. Raises: ValueError: If learn_prior not in "normal" or "single_conv" """ with tf.variable_scope(name, reuse=tf.AUTO_REUSE): h = tf.zeros(z_shape, dtype=tf.float32) if learn_prior == "normal": prior_dist = tfp.distributions.Normal(h, tf.exp(h)) elif learn_prior == "single_conv": prior_dist = single_conv_dist("top_learn_prior", h) else: raise ValueError("Expected learn_prior to be normal or single_conv " "got %s" % learn_prior) return TemperedNormal(prior_dist.loc, prior_dist.scale, temperature)
python
def top_prior(name, z_shape, learn_prior="normal", temperature=1.0): """Unconditional prior distribution. Args: name: variable scope z_shape: Shape of the mean / scale of the prior distribution. learn_prior: Possible options are "normal" and "single_conv". If set to "single_conv", the gaussian is parametrized by a single convolutional layer whose input are an array of zeros and initialized such that the mean and std are zero and one. If set to "normal", the prior is just a Gaussian with zero mean and unit variance. temperature: Temperature with which to sample from the Gaussian. Returns: objective: 1-D Tensor shape=(batch_size,) summed across spatial components. Raises: ValueError: If learn_prior not in "normal" or "single_conv" """ with tf.variable_scope(name, reuse=tf.AUTO_REUSE): h = tf.zeros(z_shape, dtype=tf.float32) if learn_prior == "normal": prior_dist = tfp.distributions.Normal(h, tf.exp(h)) elif learn_prior == "single_conv": prior_dist = single_conv_dist("top_learn_prior", h) else: raise ValueError("Expected learn_prior to be normal or single_conv " "got %s" % learn_prior) return TemperedNormal(prior_dist.loc, prior_dist.scale, temperature)
[ "def", "top_prior", "(", "name", ",", "z_shape", ",", "learn_prior", "=", "\"normal\"", ",", "temperature", "=", "1.0", ")", ":", "with", "tf", ".", "variable_scope", "(", "name", ",", "reuse", "=", "tf", ".", "AUTO_REUSE", ")", ":", "h", "=", "tf", ".", "zeros", "(", "z_shape", ",", "dtype", "=", "tf", ".", "float32", ")", "if", "learn_prior", "==", "\"normal\"", ":", "prior_dist", "=", "tfp", ".", "distributions", ".", "Normal", "(", "h", ",", "tf", ".", "exp", "(", "h", ")", ")", "elif", "learn_prior", "==", "\"single_conv\"", ":", "prior_dist", "=", "single_conv_dist", "(", "\"top_learn_prior\"", ",", "h", ")", "else", ":", "raise", "ValueError", "(", "\"Expected learn_prior to be normal or single_conv \"", "\"got %s\"", "%", "learn_prior", ")", "return", "TemperedNormal", "(", "prior_dist", ".", "loc", ",", "prior_dist", ".", "scale", ",", "temperature", ")" ]
Unconditional prior distribution. Args: name: variable scope z_shape: Shape of the mean / scale of the prior distribution. learn_prior: Possible options are "normal" and "single_conv". If set to "single_conv", the gaussian is parametrized by a single convolutional layer whose input are an array of zeros and initialized such that the mean and std are zero and one. If set to "normal", the prior is just a Gaussian with zero mean and unit variance. temperature: Temperature with which to sample from the Gaussian. Returns: objective: 1-D Tensor shape=(batch_size,) summed across spatial components. Raises: ValueError: If learn_prior not in "normal" or "single_conv"
[ "Unconditional", "prior", "distribution", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L1249-L1276
21,828
tensorflow/tensor2tensor
tensor2tensor/utils/quantization.py
bfloat16_activations_var_getter
def bfloat16_activations_var_getter(getter, *args, **kwargs): """A custom getter function for float32 parameters and bfloat16 activations. Args: getter: custom getter *args: arguments **kwargs: keyword arguments Returns: variables with the correct dtype. Raises: KeyError: if "dtype" is not provided as a kwarg. """ requested_dtype = kwargs["dtype"] if requested_dtype == tf.bfloat16: kwargs["dtype"] = tf.float32 var = getter(*args, **kwargs) # This if statement is needed to guard the cast, because batch norm # assigns directly to the return value of this custom getter. The cast # makes the return value not a variable so it cannot be assigned. Batch # norm variables are always in fp32 so this if statement is never # triggered for them. if var.dtype.base_dtype != requested_dtype: var = tf.cast(var, requested_dtype) return var
python
def bfloat16_activations_var_getter(getter, *args, **kwargs): """A custom getter function for float32 parameters and bfloat16 activations. Args: getter: custom getter *args: arguments **kwargs: keyword arguments Returns: variables with the correct dtype. Raises: KeyError: if "dtype" is not provided as a kwarg. """ requested_dtype = kwargs["dtype"] if requested_dtype == tf.bfloat16: kwargs["dtype"] = tf.float32 var = getter(*args, **kwargs) # This if statement is needed to guard the cast, because batch norm # assigns directly to the return value of this custom getter. The cast # makes the return value not a variable so it cannot be assigned. Batch # norm variables are always in fp32 so this if statement is never # triggered for them. if var.dtype.base_dtype != requested_dtype: var = tf.cast(var, requested_dtype) return var
[ "def", "bfloat16_activations_var_getter", "(", "getter", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "requested_dtype", "=", "kwargs", "[", "\"dtype\"", "]", "if", "requested_dtype", "==", "tf", ".", "bfloat16", ":", "kwargs", "[", "\"dtype\"", "]", "=", "tf", ".", "float32", "var", "=", "getter", "(", "*", "args", ",", "*", "*", "kwargs", ")", "# This if statement is needed to guard the cast, because batch norm", "# assigns directly to the return value of this custom getter. The cast", "# makes the return value not a variable so it cannot be assigned. Batch", "# norm variables are always in fp32 so this if statement is never", "# triggered for them.", "if", "var", ".", "dtype", ".", "base_dtype", "!=", "requested_dtype", ":", "var", "=", "tf", ".", "cast", "(", "var", ",", "requested_dtype", ")", "return", "var" ]
A custom getter function for float32 parameters and bfloat16 activations. Args: getter: custom getter *args: arguments **kwargs: keyword arguments Returns: variables with the correct dtype. Raises: KeyError: if "dtype" is not provided as a kwarg.
[ "A", "custom", "getter", "function", "for", "float32", "parameters", "and", "bfloat16", "activations", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/utils/quantization.py#L25-L48
21,829
tensorflow/tensor2tensor
tensor2tensor/utils/quantization.py
float16_activations_var_getter
def float16_activations_var_getter(getter, *args, **kwargs): """A custom getter function for float32 parameters and float16 activations. This function ensures the following: 1. All variables requested with type fp16 are stored as type fp32. 2. All variables requested with type fp32 are returned as type fp16. See https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/ #training_tensorflow for more information on this strategy. Args: getter: custom getter *args: arguments **kwargs: keyword arguments Returns: variables with the correct dtype. Raises: KeyError: if "dtype" is not provided as a kwarg. """ requested_dtype = kwargs["dtype"] if requested_dtype == tf.float16: kwargs["dtype"] = tf.float32 if requested_dtype == tf.float32: requested_dtype = tf.float16 var = getter(*args, **kwargs) # This if statement is needed to guard the cast, because batch norm # assigns directly to the return value of this custom getter. The cast # makes the return value not a variable so it cannot be assigned. Batch # norm variables are always in fp32 so this if statement is never # triggered for them. if var.dtype.base_dtype != requested_dtype: var = tf.cast(var, requested_dtype) return var
python
def float16_activations_var_getter(getter, *args, **kwargs): """A custom getter function for float32 parameters and float16 activations. This function ensures the following: 1. All variables requested with type fp16 are stored as type fp32. 2. All variables requested with type fp32 are returned as type fp16. See https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/ #training_tensorflow for more information on this strategy. Args: getter: custom getter *args: arguments **kwargs: keyword arguments Returns: variables with the correct dtype. Raises: KeyError: if "dtype" is not provided as a kwarg. """ requested_dtype = kwargs["dtype"] if requested_dtype == tf.float16: kwargs["dtype"] = tf.float32 if requested_dtype == tf.float32: requested_dtype = tf.float16 var = getter(*args, **kwargs) # This if statement is needed to guard the cast, because batch norm # assigns directly to the return value of this custom getter. The cast # makes the return value not a variable so it cannot be assigned. Batch # norm variables are always in fp32 so this if statement is never # triggered for them. if var.dtype.base_dtype != requested_dtype: var = tf.cast(var, requested_dtype) return var
[ "def", "float16_activations_var_getter", "(", "getter", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "requested_dtype", "=", "kwargs", "[", "\"dtype\"", "]", "if", "requested_dtype", "==", "tf", ".", "float16", ":", "kwargs", "[", "\"dtype\"", "]", "=", "tf", ".", "float32", "if", "requested_dtype", "==", "tf", ".", "float32", ":", "requested_dtype", "=", "tf", ".", "float16", "var", "=", "getter", "(", "*", "args", ",", "*", "*", "kwargs", ")", "# This if statement is needed to guard the cast, because batch norm", "# assigns directly to the return value of this custom getter. The cast", "# makes the return value not a variable so it cannot be assigned. Batch", "# norm variables are always in fp32 so this if statement is never", "# triggered for them.", "if", "var", ".", "dtype", ".", "base_dtype", "!=", "requested_dtype", ":", "var", "=", "tf", ".", "cast", "(", "var", ",", "requested_dtype", ")", "return", "var" ]
A custom getter function for float32 parameters and float16 activations. This function ensures the following: 1. All variables requested with type fp16 are stored as type fp32. 2. All variables requested with type fp32 are returned as type fp16. See https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/ #training_tensorflow for more information on this strategy. Args: getter: custom getter *args: arguments **kwargs: keyword arguments Returns: variables with the correct dtype. Raises: KeyError: if "dtype" is not provided as a kwarg.
[ "A", "custom", "getter", "function", "for", "float32", "parameters", "and", "float16", "activations", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/utils/quantization.py#L51-L86
21,830
tensorflow/tensor2tensor
tensor2tensor/utils/quantization.py
simulated_quantize
def simulated_quantize(x, num_bits, noise): """Simulate quantization to num_bits bits, with externally-stored scale. num_bits is the number of bits used to store each value. noise is a float32 Tensor containing values in [0, 1). Each value in noise should take different values across different steps, approximating a uniform distribution over [0, 1). In the case of replicated TPU training, noise should be identical across replicas in order to keep the parameters identical across replicas. The natural choice for noise would be tf.random_uniform(), but this is not possible for TPU, since there is currently no way to seed the different cores to produce identical values across replicas. Instead we use noise_from_step_num() (see below). The quantization scheme is as follows: Compute the maximum absolute value by row (call this max_abs). Store this either in an auxiliary variable or in an extra column. Divide the parameters by (max_abs / (2^(num_bits-1)-1)). This gives a float32 value in the range [-2^(num_bits-1)-1, 2^(num_bits-1)-1] Unbiased randomized roundoff by adding noise and rounding down. This produces a signed integer with num_bits bits which can then be stored. Args: x: a float32 Tensor num_bits: an integer between 1 and 22 noise: a float Tensor broadcastable to the shape of x. Returns: a float32 Tensor """ shape = x.get_shape().as_list() if not (len(shape) >= 2 and shape[-1] > 1): return x max_abs = tf.reduce_max(tf.abs(x), -1, keepdims=True) + 1e-9 max_int = 2 ** (num_bits - 1) - 1 scale = max_abs / max_int x /= scale x = tf.floor(x + noise) # dequantize before storing (since this is a simulation) x *= scale return x
python
def simulated_quantize(x, num_bits, noise): """Simulate quantization to num_bits bits, with externally-stored scale. num_bits is the number of bits used to store each value. noise is a float32 Tensor containing values in [0, 1). Each value in noise should take different values across different steps, approximating a uniform distribution over [0, 1). In the case of replicated TPU training, noise should be identical across replicas in order to keep the parameters identical across replicas. The natural choice for noise would be tf.random_uniform(), but this is not possible for TPU, since there is currently no way to seed the different cores to produce identical values across replicas. Instead we use noise_from_step_num() (see below). The quantization scheme is as follows: Compute the maximum absolute value by row (call this max_abs). Store this either in an auxiliary variable or in an extra column. Divide the parameters by (max_abs / (2^(num_bits-1)-1)). This gives a float32 value in the range [-2^(num_bits-1)-1, 2^(num_bits-1)-1] Unbiased randomized roundoff by adding noise and rounding down. This produces a signed integer with num_bits bits which can then be stored. Args: x: a float32 Tensor num_bits: an integer between 1 and 22 noise: a float Tensor broadcastable to the shape of x. Returns: a float32 Tensor """ shape = x.get_shape().as_list() if not (len(shape) >= 2 and shape[-1] > 1): return x max_abs = tf.reduce_max(tf.abs(x), -1, keepdims=True) + 1e-9 max_int = 2 ** (num_bits - 1) - 1 scale = max_abs / max_int x /= scale x = tf.floor(x + noise) # dequantize before storing (since this is a simulation) x *= scale return x
[ "def", "simulated_quantize", "(", "x", ",", "num_bits", ",", "noise", ")", ":", "shape", "=", "x", ".", "get_shape", "(", ")", ".", "as_list", "(", ")", "if", "not", "(", "len", "(", "shape", ")", ">=", "2", "and", "shape", "[", "-", "1", "]", ">", "1", ")", ":", "return", "x", "max_abs", "=", "tf", ".", "reduce_max", "(", "tf", ".", "abs", "(", "x", ")", ",", "-", "1", ",", "keepdims", "=", "True", ")", "+", "1e-9", "max_int", "=", "2", "**", "(", "num_bits", "-", "1", ")", "-", "1", "scale", "=", "max_abs", "/", "max_int", "x", "/=", "scale", "x", "=", "tf", ".", "floor", "(", "x", "+", "noise", ")", "# dequantize before storing (since this is a simulation)", "x", "*=", "scale", "return", "x" ]
Simulate quantization to num_bits bits, with externally-stored scale. num_bits is the number of bits used to store each value. noise is a float32 Tensor containing values in [0, 1). Each value in noise should take different values across different steps, approximating a uniform distribution over [0, 1). In the case of replicated TPU training, noise should be identical across replicas in order to keep the parameters identical across replicas. The natural choice for noise would be tf.random_uniform(), but this is not possible for TPU, since there is currently no way to seed the different cores to produce identical values across replicas. Instead we use noise_from_step_num() (see below). The quantization scheme is as follows: Compute the maximum absolute value by row (call this max_abs). Store this either in an auxiliary variable or in an extra column. Divide the parameters by (max_abs / (2^(num_bits-1)-1)). This gives a float32 value in the range [-2^(num_bits-1)-1, 2^(num_bits-1)-1] Unbiased randomized roundoff by adding noise and rounding down. This produces a signed integer with num_bits bits which can then be stored. Args: x: a float32 Tensor num_bits: an integer between 1 and 22 noise: a float Tensor broadcastable to the shape of x. Returns: a float32 Tensor
[ "Simulate", "quantization", "to", "num_bits", "bits", "with", "externally", "-", "stored", "scale", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/utils/quantization.py#L89-L134
21,831
tensorflow/tensor2tensor
tensor2tensor/utils/quantization.py
_randomized_roundoff_to_bfloat16
def _randomized_roundoff_to_bfloat16(x, noise, cand1, cand2): """Round-off x to cand1 or to cand2 in an unbiased way. Cand1 and cand2 are the same shape as x. For every element of x, the corresponding elements of cand1 and cand2 should be the two closest bfloat16 values to x. Order does not matter. cand1 and cand2 must differ from each other. Args: x: A float32 Tensor. noise: A Tensor broadcastable to the shape of x containing random uniform values in [0.0, 1.0]. cand1: A bfloat16 Tensor the same shape as x. cand2: A bfloat16 Tensor the same shape as x. Returns: A bfloat16 Tensor. """ cand1_f = tf.to_float(cand1) cand2_f = tf.to_float(cand2) step_size = cand2_f - cand1_f fpart = (x - cand1_f) / step_size ret = tf.where(tf.greater(fpart, noise), cand2, cand1) return ret
python
def _randomized_roundoff_to_bfloat16(x, noise, cand1, cand2): """Round-off x to cand1 or to cand2 in an unbiased way. Cand1 and cand2 are the same shape as x. For every element of x, the corresponding elements of cand1 and cand2 should be the two closest bfloat16 values to x. Order does not matter. cand1 and cand2 must differ from each other. Args: x: A float32 Tensor. noise: A Tensor broadcastable to the shape of x containing random uniform values in [0.0, 1.0]. cand1: A bfloat16 Tensor the same shape as x. cand2: A bfloat16 Tensor the same shape as x. Returns: A bfloat16 Tensor. """ cand1_f = tf.to_float(cand1) cand2_f = tf.to_float(cand2) step_size = cand2_f - cand1_f fpart = (x - cand1_f) / step_size ret = tf.where(tf.greater(fpart, noise), cand2, cand1) return ret
[ "def", "_randomized_roundoff_to_bfloat16", "(", "x", ",", "noise", ",", "cand1", ",", "cand2", ")", ":", "cand1_f", "=", "tf", ".", "to_float", "(", "cand1", ")", "cand2_f", "=", "tf", ".", "to_float", "(", "cand2", ")", "step_size", "=", "cand2_f", "-", "cand1_f", "fpart", "=", "(", "x", "-", "cand1_f", ")", "/", "step_size", "ret", "=", "tf", ".", "where", "(", "tf", ".", "greater", "(", "fpart", ",", "noise", ")", ",", "cand2", ",", "cand1", ")", "return", "ret" ]
Round-off x to cand1 or to cand2 in an unbiased way. Cand1 and cand2 are the same shape as x. For every element of x, the corresponding elements of cand1 and cand2 should be the two closest bfloat16 values to x. Order does not matter. cand1 and cand2 must differ from each other. Args: x: A float32 Tensor. noise: A Tensor broadcastable to the shape of x containing random uniform values in [0.0, 1.0]. cand1: A bfloat16 Tensor the same shape as x. cand2: A bfloat16 Tensor the same shape as x. Returns: A bfloat16 Tensor.
[ "Round", "-", "off", "x", "to", "cand1", "or", "to", "cand2", "in", "an", "unbiased", "way", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/utils/quantization.py#L160-L183
21,832
tensorflow/tensor2tensor
tensor2tensor/utils/quantization.py
_to_bfloat16_unbiased
def _to_bfloat16_unbiased(x, noise): """Convert a float32 to a bfloat16 using randomized roundoff. Args: x: A float32 Tensor. noise: a float32 Tensor with values in [0, 1), broadcastable to tf.shape(x) Returns: A float32 Tensor. """ x_sign = tf.sign(x) # Make sure x is positive. If it is zero, the two candidates are identical. x = x * x_sign + 1e-30 cand1 = tf.to_bfloat16(x) cand1_f = tf.to_float(cand1) # This relies on the fact that for a positive bfloat16 b, # b * 1.005 gives you the next higher bfloat16 and b*0.995 gives you the # next lower one. Both 1.005 and 0.995 are ballpark estimation. cand2 = tf.to_bfloat16( tf.where(tf.greater(x, cand1_f), cand1_f * 1.005, cand1_f * 0.995)) ret = _randomized_roundoff_to_bfloat16(x, noise, cand1, cand2) return ret * tf.to_bfloat16(x_sign)
python
def _to_bfloat16_unbiased(x, noise): """Convert a float32 to a bfloat16 using randomized roundoff. Args: x: A float32 Tensor. noise: a float32 Tensor with values in [0, 1), broadcastable to tf.shape(x) Returns: A float32 Tensor. """ x_sign = tf.sign(x) # Make sure x is positive. If it is zero, the two candidates are identical. x = x * x_sign + 1e-30 cand1 = tf.to_bfloat16(x) cand1_f = tf.to_float(cand1) # This relies on the fact that for a positive bfloat16 b, # b * 1.005 gives you the next higher bfloat16 and b*0.995 gives you the # next lower one. Both 1.005 and 0.995 are ballpark estimation. cand2 = tf.to_bfloat16( tf.where(tf.greater(x, cand1_f), cand1_f * 1.005, cand1_f * 0.995)) ret = _randomized_roundoff_to_bfloat16(x, noise, cand1, cand2) return ret * tf.to_bfloat16(x_sign)
[ "def", "_to_bfloat16_unbiased", "(", "x", ",", "noise", ")", ":", "x_sign", "=", "tf", ".", "sign", "(", "x", ")", "# Make sure x is positive. If it is zero, the two candidates are identical.", "x", "=", "x", "*", "x_sign", "+", "1e-30", "cand1", "=", "tf", ".", "to_bfloat16", "(", "x", ")", "cand1_f", "=", "tf", ".", "to_float", "(", "cand1", ")", "# This relies on the fact that for a positive bfloat16 b,", "# b * 1.005 gives you the next higher bfloat16 and b*0.995 gives you the", "# next lower one. Both 1.005 and 0.995 are ballpark estimation.", "cand2", "=", "tf", ".", "to_bfloat16", "(", "tf", ".", "where", "(", "tf", ".", "greater", "(", "x", ",", "cand1_f", ")", ",", "cand1_f", "*", "1.005", ",", "cand1_f", "*", "0.995", ")", ")", "ret", "=", "_randomized_roundoff_to_bfloat16", "(", "x", ",", "noise", ",", "cand1", ",", "cand2", ")", "return", "ret", "*", "tf", ".", "to_bfloat16", "(", "x_sign", ")" ]
Convert a float32 to a bfloat16 using randomized roundoff. Args: x: A float32 Tensor. noise: a float32 Tensor with values in [0, 1), broadcastable to tf.shape(x) Returns: A float32 Tensor.
[ "Convert", "a", "float32", "to", "a", "bfloat16", "using", "randomized", "roundoff", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/utils/quantization.py#L186-L206
21,833
tensorflow/tensor2tensor
tensor2tensor/utils/quantization.py
ParameterEncoding.custom_getter
def custom_getter(self, activation_dtype=tf.bfloat16): """A custom getter that uses the encoding for bfloat16 and float32 vars. When a bfloat16 or float32 variable is requsted, an encoded float16 varaible is created, which is then decoded and cast to a bfloat16 activation. Args: activation_dtype: a dtype to which to convert the decoded value. Returns: a function. """ def getter_fn(getter, *args, **kwargs): requested_dtype = kwargs["dtype"] if requested_dtype in (tf.bfloat16, tf.float32): kwargs["dtype"] = tf.bfloat16 kwargs["initializer"] = _EncodingInitializer( kwargs["initializer"], self) ret = self._decode_with_identity_gradient(getter(*args, **kwargs)) return tf.cast(ret, activation_dtype) return getter(*args, **kwargs) return getter_fn
python
def custom_getter(self, activation_dtype=tf.bfloat16): """A custom getter that uses the encoding for bfloat16 and float32 vars. When a bfloat16 or float32 variable is requsted, an encoded float16 varaible is created, which is then decoded and cast to a bfloat16 activation. Args: activation_dtype: a dtype to which to convert the decoded value. Returns: a function. """ def getter_fn(getter, *args, **kwargs): requested_dtype = kwargs["dtype"] if requested_dtype in (tf.bfloat16, tf.float32): kwargs["dtype"] = tf.bfloat16 kwargs["initializer"] = _EncodingInitializer( kwargs["initializer"], self) ret = self._decode_with_identity_gradient(getter(*args, **kwargs)) return tf.cast(ret, activation_dtype) return getter(*args, **kwargs) return getter_fn
[ "def", "custom_getter", "(", "self", ",", "activation_dtype", "=", "tf", ".", "bfloat16", ")", ":", "def", "getter_fn", "(", "getter", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "requested_dtype", "=", "kwargs", "[", "\"dtype\"", "]", "if", "requested_dtype", "in", "(", "tf", ".", "bfloat16", ",", "tf", ".", "float32", ")", ":", "kwargs", "[", "\"dtype\"", "]", "=", "tf", ".", "bfloat16", "kwargs", "[", "\"initializer\"", "]", "=", "_EncodingInitializer", "(", "kwargs", "[", "\"initializer\"", "]", ",", "self", ")", "ret", "=", "self", ".", "_decode_with_identity_gradient", "(", "getter", "(", "*", "args", ",", "*", "*", "kwargs", ")", ")", "return", "tf", ".", "cast", "(", "ret", ",", "activation_dtype", ")", "return", "getter", "(", "*", "args", ",", "*", "*", "kwargs", ")", "return", "getter_fn" ]
A custom getter that uses the encoding for bfloat16 and float32 vars. When a bfloat16 or float32 variable is requsted, an encoded float16 varaible is created, which is then decoded and cast to a bfloat16 activation. Args: activation_dtype: a dtype to which to convert the decoded value. Returns: a function.
[ "A", "custom", "getter", "that", "uses", "the", "encoding", "for", "bfloat16", "and", "float32", "vars", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/utils/quantization.py#L246-L268
21,834
tensorflow/tensor2tensor
tensor2tensor/utils/video_metrics.py
load_videos
def load_videos(template, video_length, frame_shape): """Loads videos from files. Args: template: template string for listing the image files. video_length: length of the video. frame_shape: shape of each frame. Returns: dataset: the tf dataset frame by frame. dataset_len: number of the items which is the number of image files. Raises: ValueError: if no files found. """ filenames = tf.gfile.Glob(template) if not filenames: raise ValueError("no files found.") filenames = sorted(filenames) dataset_len = len(filenames) filenames = tf.constant(filenames) dataset = tf.data.Dataset.from_tensor_slices(filenames) dataset = dataset.apply(tf.data.experimental.map_and_batch( lambda filename: load_image_map_function(filename, frame_shape), video_length, drop_remainder=True)) return dataset, dataset_len
python
def load_videos(template, video_length, frame_shape): """Loads videos from files. Args: template: template string for listing the image files. video_length: length of the video. frame_shape: shape of each frame. Returns: dataset: the tf dataset frame by frame. dataset_len: number of the items which is the number of image files. Raises: ValueError: if no files found. """ filenames = tf.gfile.Glob(template) if not filenames: raise ValueError("no files found.") filenames = sorted(filenames) dataset_len = len(filenames) filenames = tf.constant(filenames) dataset = tf.data.Dataset.from_tensor_slices(filenames) dataset = dataset.apply(tf.data.experimental.map_and_batch( lambda filename: load_image_map_function(filename, frame_shape), video_length, drop_remainder=True)) return dataset, dataset_len
[ "def", "load_videos", "(", "template", ",", "video_length", ",", "frame_shape", ")", ":", "filenames", "=", "tf", ".", "gfile", ".", "Glob", "(", "template", ")", "if", "not", "filenames", ":", "raise", "ValueError", "(", "\"no files found.\"", ")", "filenames", "=", "sorted", "(", "filenames", ")", "dataset_len", "=", "len", "(", "filenames", ")", "filenames", "=", "tf", ".", "constant", "(", "filenames", ")", "dataset", "=", "tf", ".", "data", ".", "Dataset", ".", "from_tensor_slices", "(", "filenames", ")", "dataset", "=", "dataset", ".", "apply", "(", "tf", ".", "data", ".", "experimental", ".", "map_and_batch", "(", "lambda", "filename", ":", "load_image_map_function", "(", "filename", ",", "frame_shape", ")", ",", "video_length", ",", "drop_remainder", "=", "True", ")", ")", "return", "dataset", ",", "dataset_len" ]
Loads videos from files. Args: template: template string for listing the image files. video_length: length of the video. frame_shape: shape of each frame. Returns: dataset: the tf dataset frame by frame. dataset_len: number of the items which is the number of image files. Raises: ValueError: if no files found.
[ "Loads", "videos", "from", "files", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/utils/video_metrics.py#L38-L63
21,835
tensorflow/tensor2tensor
tensor2tensor/utils/video_metrics.py
psnr_and_ssim
def psnr_and_ssim(output, target): """Compute the PSNR and SSIM. Args: output: 4-D Tensor, shape=(num_frames, height, width, num_channels) target: 4-D Tensor, shape=(num_frames, height, width, num_channels) Returns: psnr: 1-D Tensor, shape=(num_frames,) ssim: 1-D Tensor, shape=(num_frames,) """ output = tf.cast(output, dtype=tf.int32) target = tf.cast(target, dtype=tf.int32) psnr = tf.image.psnr(output, target, max_val=255) ssim = tf.image.ssim(output, target, max_val=255) return psnr, ssim
python
def psnr_and_ssim(output, target): """Compute the PSNR and SSIM. Args: output: 4-D Tensor, shape=(num_frames, height, width, num_channels) target: 4-D Tensor, shape=(num_frames, height, width, num_channels) Returns: psnr: 1-D Tensor, shape=(num_frames,) ssim: 1-D Tensor, shape=(num_frames,) """ output = tf.cast(output, dtype=tf.int32) target = tf.cast(target, dtype=tf.int32) psnr = tf.image.psnr(output, target, max_val=255) ssim = tf.image.ssim(output, target, max_val=255) return psnr, ssim
[ "def", "psnr_and_ssim", "(", "output", ",", "target", ")", ":", "output", "=", "tf", ".", "cast", "(", "output", ",", "dtype", "=", "tf", ".", "int32", ")", "target", "=", "tf", ".", "cast", "(", "target", ",", "dtype", "=", "tf", ".", "int32", ")", "psnr", "=", "tf", ".", "image", ".", "psnr", "(", "output", ",", "target", ",", "max_val", "=", "255", ")", "ssim", "=", "tf", ".", "image", ".", "ssim", "(", "output", ",", "target", ",", "max_val", "=", "255", ")", "return", "psnr", ",", "ssim" ]
Compute the PSNR and SSIM. Args: output: 4-D Tensor, shape=(num_frames, height, width, num_channels) target: 4-D Tensor, shape=(num_frames, height, width, num_channels) Returns: psnr: 1-D Tensor, shape=(num_frames,) ssim: 1-D Tensor, shape=(num_frames,)
[ "Compute", "the", "PSNR", "and", "SSIM", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/utils/video_metrics.py#L93-L107
21,836
tensorflow/tensor2tensor
tensor2tensor/utils/video_metrics.py
get_zipped_dataset_from_predictions
def get_zipped_dataset_from_predictions(predictions): """Creates dataset from in-memory predictions.""" targets = stack_data_given_key(predictions, "targets") outputs = stack_data_given_key(predictions, "outputs") num_videos, num_steps = targets.shape[:2] # Truncate output time-steps to match target time-steps outputs = outputs[:, :num_steps] targets_placeholder = tf.placeholder(targets.dtype, targets.shape) outputs_placeholder = tf.placeholder(outputs.dtype, outputs.shape) dataset = tf.data.Dataset.from_tensor_slices( (targets_placeholder, outputs_placeholder)) iterator = dataset.make_initializable_iterator() feed_dict = {targets_placeholder: targets, outputs_placeholder: outputs} return iterator, feed_dict, num_videos
python
def get_zipped_dataset_from_predictions(predictions): """Creates dataset from in-memory predictions.""" targets = stack_data_given_key(predictions, "targets") outputs = stack_data_given_key(predictions, "outputs") num_videos, num_steps = targets.shape[:2] # Truncate output time-steps to match target time-steps outputs = outputs[:, :num_steps] targets_placeholder = tf.placeholder(targets.dtype, targets.shape) outputs_placeholder = tf.placeholder(outputs.dtype, outputs.shape) dataset = tf.data.Dataset.from_tensor_slices( (targets_placeholder, outputs_placeholder)) iterator = dataset.make_initializable_iterator() feed_dict = {targets_placeholder: targets, outputs_placeholder: outputs} return iterator, feed_dict, num_videos
[ "def", "get_zipped_dataset_from_predictions", "(", "predictions", ")", ":", "targets", "=", "stack_data_given_key", "(", "predictions", ",", "\"targets\"", ")", "outputs", "=", "stack_data_given_key", "(", "predictions", ",", "\"outputs\"", ")", "num_videos", ",", "num_steps", "=", "targets", ".", "shape", "[", ":", "2", "]", "# Truncate output time-steps to match target time-steps", "outputs", "=", "outputs", "[", ":", ",", ":", "num_steps", "]", "targets_placeholder", "=", "tf", ".", "placeholder", "(", "targets", ".", "dtype", ",", "targets", ".", "shape", ")", "outputs_placeholder", "=", "tf", ".", "placeholder", "(", "outputs", ".", "dtype", ",", "outputs", ".", "shape", ")", "dataset", "=", "tf", ".", "data", ".", "Dataset", ".", "from_tensor_slices", "(", "(", "targets_placeholder", ",", "outputs_placeholder", ")", ")", "iterator", "=", "dataset", ".", "make_initializable_iterator", "(", ")", "feed_dict", "=", "{", "targets_placeholder", ":", "targets", ",", "outputs_placeholder", ":", "outputs", "}", "return", "iterator", ",", "feed_dict", ",", "num_videos" ]
Creates dataset from in-memory predictions.
[ "Creates", "dataset", "from", "in", "-", "memory", "predictions", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/utils/video_metrics.py#L116-L132
21,837
tensorflow/tensor2tensor
tensor2tensor/utils/video_metrics.py
reduce_to_best_decode
def reduce_to_best_decode(metrics, reduce_func): """Extracts the best-decode from the metrics according to reduce_func. Args: metrics: 3-D numpy array, shape=(num_decodes, num_samples, num_frames) reduce_func: callable, np.argmax or np.argmin. Returns: best_metrics: 2-D numpy array, shape=(num_samples, num_frames). best_decode_ind: 1-D numpy array, shape=(num_samples,) """ num_videos = metrics.shape[1] # Take mean of the metric across the frames to approximate the video # closest to the ground truth. mean_across_frames = np.mean(metrics, axis=-1) # For every sample, use the decode that has a maximum mean-metric. best_decode_ind = reduce_func(mean_across_frames, axis=0) best_metrics = metrics[best_decode_ind, np.arange(num_videos), :] return best_metrics, best_decode_ind
python
def reduce_to_best_decode(metrics, reduce_func): """Extracts the best-decode from the metrics according to reduce_func. Args: metrics: 3-D numpy array, shape=(num_decodes, num_samples, num_frames) reduce_func: callable, np.argmax or np.argmin. Returns: best_metrics: 2-D numpy array, shape=(num_samples, num_frames). best_decode_ind: 1-D numpy array, shape=(num_samples,) """ num_videos = metrics.shape[1] # Take mean of the metric across the frames to approximate the video # closest to the ground truth. mean_across_frames = np.mean(metrics, axis=-1) # For every sample, use the decode that has a maximum mean-metric. best_decode_ind = reduce_func(mean_across_frames, axis=0) best_metrics = metrics[best_decode_ind, np.arange(num_videos), :] return best_metrics, best_decode_ind
[ "def", "reduce_to_best_decode", "(", "metrics", ",", "reduce_func", ")", ":", "num_videos", "=", "metrics", ".", "shape", "[", "1", "]", "# Take mean of the metric across the frames to approximate the video", "# closest to the ground truth.", "mean_across_frames", "=", "np", ".", "mean", "(", "metrics", ",", "axis", "=", "-", "1", ")", "# For every sample, use the decode that has a maximum mean-metric.", "best_decode_ind", "=", "reduce_func", "(", "mean_across_frames", ",", "axis", "=", "0", ")", "best_metrics", "=", "metrics", "[", "best_decode_ind", ",", "np", ".", "arange", "(", "num_videos", ")", ",", ":", "]", "return", "best_metrics", ",", "best_decode_ind" ]
Extracts the best-decode from the metrics according to reduce_func. Args: metrics: 3-D numpy array, shape=(num_decodes, num_samples, num_frames) reduce_func: callable, np.argmax or np.argmin. Returns: best_metrics: 2-D numpy array, shape=(num_samples, num_frames). best_decode_ind: 1-D numpy array, shape=(num_samples,)
[ "Extracts", "the", "best", "-", "decode", "from", "the", "metrics", "according", "to", "reduce_func", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/utils/video_metrics.py#L167-L185
21,838
tensorflow/tensor2tensor
tensor2tensor/utils/video_metrics.py
compute_all_metrics_statistics
def compute_all_metrics_statistics(all_results): """Computes statistics of metrics across multiple decodings. Args: all_results: dict of 3-D numpy arrays. Each array has shape=(num_decodes, num_samples, num_frames). Returns: statistics: dict of 1-D numpy arrays, shape=(num_frames). First the statistic (max/mean/std) is computed across the decodes, then the mean is taken across num_samples. decode_inds: dict of 1-D numpy arrays, shape=(num_samples,) Each element represents the index of the decode corresponding to the best statistic. """ statistics = {} decode_inds = {} all_metrics = all_results.keys() for key in all_metrics: values = all_results[key] statistics[key + "_MEAN"] = np.mean(values, axis=0) statistics[key + "_STD"] = np.std(values, axis=0) min_stats, min_decode_ind = reduce_to_best_decode(values, np.argmin) statistics[key + "_MIN"] = min_stats decode_inds[key + "_MIN_DECODE"] = min_decode_ind max_stats, max_decode_ind = reduce_to_best_decode(values, np.argmax) statistics[key + "_MAX"] = max_stats decode_inds[key + "_MAX_DECODE"] = max_decode_ind # Computes mean of each statistic across the dataset. for key in statistics: statistics[key] = np.mean(statistics[key], axis=0) return statistics, decode_inds
python
def compute_all_metrics_statistics(all_results): """Computes statistics of metrics across multiple decodings. Args: all_results: dict of 3-D numpy arrays. Each array has shape=(num_decodes, num_samples, num_frames). Returns: statistics: dict of 1-D numpy arrays, shape=(num_frames). First the statistic (max/mean/std) is computed across the decodes, then the mean is taken across num_samples. decode_inds: dict of 1-D numpy arrays, shape=(num_samples,) Each element represents the index of the decode corresponding to the best statistic. """ statistics = {} decode_inds = {} all_metrics = all_results.keys() for key in all_metrics: values = all_results[key] statistics[key + "_MEAN"] = np.mean(values, axis=0) statistics[key + "_STD"] = np.std(values, axis=0) min_stats, min_decode_ind = reduce_to_best_decode(values, np.argmin) statistics[key + "_MIN"] = min_stats decode_inds[key + "_MIN_DECODE"] = min_decode_ind max_stats, max_decode_ind = reduce_to_best_decode(values, np.argmax) statistics[key + "_MAX"] = max_stats decode_inds[key + "_MAX_DECODE"] = max_decode_ind # Computes mean of each statistic across the dataset. for key in statistics: statistics[key] = np.mean(statistics[key], axis=0) return statistics, decode_inds
[ "def", "compute_all_metrics_statistics", "(", "all_results", ")", ":", "statistics", "=", "{", "}", "decode_inds", "=", "{", "}", "all_metrics", "=", "all_results", ".", "keys", "(", ")", "for", "key", "in", "all_metrics", ":", "values", "=", "all_results", "[", "key", "]", "statistics", "[", "key", "+", "\"_MEAN\"", "]", "=", "np", ".", "mean", "(", "values", ",", "axis", "=", "0", ")", "statistics", "[", "key", "+", "\"_STD\"", "]", "=", "np", ".", "std", "(", "values", ",", "axis", "=", "0", ")", "min_stats", ",", "min_decode_ind", "=", "reduce_to_best_decode", "(", "values", ",", "np", ".", "argmin", ")", "statistics", "[", "key", "+", "\"_MIN\"", "]", "=", "min_stats", "decode_inds", "[", "key", "+", "\"_MIN_DECODE\"", "]", "=", "min_decode_ind", "max_stats", ",", "max_decode_ind", "=", "reduce_to_best_decode", "(", "values", ",", "np", ".", "argmax", ")", "statistics", "[", "key", "+", "\"_MAX\"", "]", "=", "max_stats", "decode_inds", "[", "key", "+", "\"_MAX_DECODE\"", "]", "=", "max_decode_ind", "# Computes mean of each statistic across the dataset.", "for", "key", "in", "statistics", ":", "statistics", "[", "key", "]", "=", "np", ".", "mean", "(", "statistics", "[", "key", "]", ",", "axis", "=", "0", ")", "return", "statistics", ",", "decode_inds" ]
Computes statistics of metrics across multiple decodings. Args: all_results: dict of 3-D numpy arrays. Each array has shape=(num_decodes, num_samples, num_frames). Returns: statistics: dict of 1-D numpy arrays, shape=(num_frames). First the statistic (max/mean/std) is computed across the decodes, then the mean is taken across num_samples. decode_inds: dict of 1-D numpy arrays, shape=(num_samples,) Each element represents the index of the decode corresponding to the best statistic.
[ "Computes", "statistics", "of", "metrics", "across", "multiple", "decodings", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/utils/video_metrics.py#L188-L220
21,839
tensorflow/tensor2tensor
tensor2tensor/utils/video_metrics.py
compute_video_metrics_from_predictions
def compute_video_metrics_from_predictions(predictions, decode_hparams): """Computes metrics from predictions. Args: predictions: list of list of dicts. outer length: num_decodes, inner_length: num_samples decode_hparams: Decode hparams. instance of HParams. Returns: statistics: dict of Tensors, key being the metric with each Tensor having the shape (num_samples, num_frames). """ all_results = {} ssim_all_decodes, psnr_all_decodes = [], [] for single_decode in predictions: args = get_zipped_dataset_from_predictions(single_decode) psnr_single, ssim_single = compute_one_decoding_video_metrics(*args) psnr_all_decodes.append(psnr_single) ssim_all_decodes.append(ssim_single) psnr_all_decodes = np.array(psnr_all_decodes) ssim_all_decodes = np.array(ssim_all_decodes) all_results.update({"PSNR": psnr_all_decodes, "SSIM": ssim_all_decodes}) return compute_all_metrics_statistics(all_results)
python
def compute_video_metrics_from_predictions(predictions, decode_hparams): """Computes metrics from predictions. Args: predictions: list of list of dicts. outer length: num_decodes, inner_length: num_samples decode_hparams: Decode hparams. instance of HParams. Returns: statistics: dict of Tensors, key being the metric with each Tensor having the shape (num_samples, num_frames). """ all_results = {} ssim_all_decodes, psnr_all_decodes = [], [] for single_decode in predictions: args = get_zipped_dataset_from_predictions(single_decode) psnr_single, ssim_single = compute_one_decoding_video_metrics(*args) psnr_all_decodes.append(psnr_single) ssim_all_decodes.append(ssim_single) psnr_all_decodes = np.array(psnr_all_decodes) ssim_all_decodes = np.array(ssim_all_decodes) all_results.update({"PSNR": psnr_all_decodes, "SSIM": ssim_all_decodes}) return compute_all_metrics_statistics(all_results)
[ "def", "compute_video_metrics_from_predictions", "(", "predictions", ",", "decode_hparams", ")", ":", "all_results", "=", "{", "}", "ssim_all_decodes", ",", "psnr_all_decodes", "=", "[", "]", ",", "[", "]", "for", "single_decode", "in", "predictions", ":", "args", "=", "get_zipped_dataset_from_predictions", "(", "single_decode", ")", "psnr_single", ",", "ssim_single", "=", "compute_one_decoding_video_metrics", "(", "*", "args", ")", "psnr_all_decodes", ".", "append", "(", "psnr_single", ")", "ssim_all_decodes", ".", "append", "(", "ssim_single", ")", "psnr_all_decodes", "=", "np", ".", "array", "(", "psnr_all_decodes", ")", "ssim_all_decodes", "=", "np", ".", "array", "(", "ssim_all_decodes", ")", "all_results", ".", "update", "(", "{", "\"PSNR\"", ":", "psnr_all_decodes", ",", "\"SSIM\"", ":", "ssim_all_decodes", "}", ")", "return", "compute_all_metrics_statistics", "(", "all_results", ")" ]
Computes metrics from predictions. Args: predictions: list of list of dicts. outer length: num_decodes, inner_length: num_samples decode_hparams: Decode hparams. instance of HParams. Returns: statistics: dict of Tensors, key being the metric with each Tensor having the shape (num_samples, num_frames).
[ "Computes", "metrics", "from", "predictions", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/utils/video_metrics.py#L223-L246
21,840
tensorflow/tensor2tensor
tensor2tensor/utils/video_metrics.py
compute_and_save_video_metrics
def compute_and_save_video_metrics( output_dirs, problem_name, video_length, frame_shape): """Compute and saves the video metrics.""" statistics, all_results = compute_video_metrics_from_png_files( output_dirs, problem_name, video_length, frame_shape) for results, output_dir in zip(all_results, output_dirs): save_results(results, output_dir, problem_name) parent_dir = os.path.join(output_dirs[0], os.pardir) final_dir = os.path.join(parent_dir, "decode") tf.gfile.MakeDirs(parent_dir) save_results(statistics, final_dir, problem_name)
python
def compute_and_save_video_metrics( output_dirs, problem_name, video_length, frame_shape): """Compute and saves the video metrics.""" statistics, all_results = compute_video_metrics_from_png_files( output_dirs, problem_name, video_length, frame_shape) for results, output_dir in zip(all_results, output_dirs): save_results(results, output_dir, problem_name) parent_dir = os.path.join(output_dirs[0], os.pardir) final_dir = os.path.join(parent_dir, "decode") tf.gfile.MakeDirs(parent_dir) save_results(statistics, final_dir, problem_name)
[ "def", "compute_and_save_video_metrics", "(", "output_dirs", ",", "problem_name", ",", "video_length", ",", "frame_shape", ")", ":", "statistics", ",", "all_results", "=", "compute_video_metrics_from_png_files", "(", "output_dirs", ",", "problem_name", ",", "video_length", ",", "frame_shape", ")", "for", "results", ",", "output_dir", "in", "zip", "(", "all_results", ",", "output_dirs", ")", ":", "save_results", "(", "results", ",", "output_dir", ",", "problem_name", ")", "parent_dir", "=", "os", ".", "path", ".", "join", "(", "output_dirs", "[", "0", "]", ",", "os", ".", "pardir", ")", "final_dir", "=", "os", ".", "path", ".", "join", "(", "parent_dir", ",", "\"decode\"", ")", "tf", ".", "gfile", ".", "MakeDirs", "(", "parent_dir", ")", "save_results", "(", "statistics", ",", "final_dir", ",", "problem_name", ")" ]
Compute and saves the video metrics.
[ "Compute", "and", "saves", "the", "video", "metrics", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/utils/video_metrics.py#L282-L294
21,841
tensorflow/tensor2tensor
tensor2tensor/layers/common_video.py
basic_lstm
def basic_lstm(inputs, state, num_units, name=None): """Basic LSTM.""" input_shape = common_layers.shape_list(inputs) # reuse parameters across time-steps. cell = tf.nn.rnn_cell.BasicLSTMCell( num_units, name=name, reuse=tf.AUTO_REUSE) if state is None: state = cell.zero_state(input_shape[0], tf.float32) outputs, new_state = cell(inputs, state) return outputs, new_state
python
def basic_lstm(inputs, state, num_units, name=None): """Basic LSTM.""" input_shape = common_layers.shape_list(inputs) # reuse parameters across time-steps. cell = tf.nn.rnn_cell.BasicLSTMCell( num_units, name=name, reuse=tf.AUTO_REUSE) if state is None: state = cell.zero_state(input_shape[0], tf.float32) outputs, new_state = cell(inputs, state) return outputs, new_state
[ "def", "basic_lstm", "(", "inputs", ",", "state", ",", "num_units", ",", "name", "=", "None", ")", ":", "input_shape", "=", "common_layers", ".", "shape_list", "(", "inputs", ")", "# reuse parameters across time-steps.", "cell", "=", "tf", ".", "nn", ".", "rnn_cell", ".", "BasicLSTMCell", "(", "num_units", ",", "name", "=", "name", ",", "reuse", "=", "tf", ".", "AUTO_REUSE", ")", "if", "state", "is", "None", ":", "state", "=", "cell", ".", "zero_state", "(", "input_shape", "[", "0", "]", ",", "tf", ".", "float32", ")", "outputs", ",", "new_state", "=", "cell", "(", "inputs", ",", "state", ")", "return", "outputs", ",", "new_state" ]
Basic LSTM.
[ "Basic", "LSTM", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/layers/common_video.py#L68-L77
21,842
tensorflow/tensor2tensor
tensor2tensor/layers/common_video.py
lstm_cell
def lstm_cell(inputs, state, num_units, use_peepholes=False, cell_clip=0.0, initializer=None, num_proj=None, num_unit_shards=None, num_proj_shards=None, reuse=None, name=None): """Full LSTM cell.""" input_shape = common_layers.shape_list(inputs) cell = tf.nn.rnn_cell.LSTMCell(num_units, use_peepholes=use_peepholes, cell_clip=cell_clip, initializer=initializer, num_proj=num_proj, num_unit_shards=num_unit_shards, num_proj_shards=num_proj_shards, reuse=reuse, name=name, state_is_tuple=False) if state is None: state = cell.zero_state(input_shape[0], tf.float32) outputs, new_state = cell(inputs, state) return outputs, new_state
python
def lstm_cell(inputs, state, num_units, use_peepholes=False, cell_clip=0.0, initializer=None, num_proj=None, num_unit_shards=None, num_proj_shards=None, reuse=None, name=None): """Full LSTM cell.""" input_shape = common_layers.shape_list(inputs) cell = tf.nn.rnn_cell.LSTMCell(num_units, use_peepholes=use_peepholes, cell_clip=cell_clip, initializer=initializer, num_proj=num_proj, num_unit_shards=num_unit_shards, num_proj_shards=num_proj_shards, reuse=reuse, name=name, state_is_tuple=False) if state is None: state = cell.zero_state(input_shape[0], tf.float32) outputs, new_state = cell(inputs, state) return outputs, new_state
[ "def", "lstm_cell", "(", "inputs", ",", "state", ",", "num_units", ",", "use_peepholes", "=", "False", ",", "cell_clip", "=", "0.0", ",", "initializer", "=", "None", ",", "num_proj", "=", "None", ",", "num_unit_shards", "=", "None", ",", "num_proj_shards", "=", "None", ",", "reuse", "=", "None", ",", "name", "=", "None", ")", ":", "input_shape", "=", "common_layers", ".", "shape_list", "(", "inputs", ")", "cell", "=", "tf", ".", "nn", ".", "rnn_cell", ".", "LSTMCell", "(", "num_units", ",", "use_peepholes", "=", "use_peepholes", ",", "cell_clip", "=", "cell_clip", ",", "initializer", "=", "initializer", ",", "num_proj", "=", "num_proj", ",", "num_unit_shards", "=", "num_unit_shards", ",", "num_proj_shards", "=", "num_proj_shards", ",", "reuse", "=", "reuse", ",", "name", "=", "name", ",", "state_is_tuple", "=", "False", ")", "if", "state", "is", "None", ":", "state", "=", "cell", ".", "zero_state", "(", "input_shape", "[", "0", "]", ",", "tf", ".", "float32", ")", "outputs", ",", "new_state", "=", "cell", "(", "inputs", ",", "state", ")", "return", "outputs", ",", "new_state" ]
Full LSTM cell.
[ "Full", "LSTM", "cell", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/layers/common_video.py#L80-L106
21,843
tensorflow/tensor2tensor
tensor2tensor/layers/common_video.py
conv_lstm_2d
def conv_lstm_2d(inputs, state, output_channels, kernel_size=5, name=None, spatial_dims=None): """2D Convolutional LSTM.""" input_shape = common_layers.shape_list(inputs) batch_size, input_channels = input_shape[0], input_shape[-1] if spatial_dims is None: input_shape = input_shape[1:] else: input_shape = spatial_dims + [input_channels] cell = tf.contrib.rnn.ConvLSTMCell( 2, input_shape, output_channels, [kernel_size, kernel_size], name=name) if state is None: state = cell.zero_state(batch_size, tf.float32) outputs, new_state = cell(inputs, state) return outputs, new_state
python
def conv_lstm_2d(inputs, state, output_channels, kernel_size=5, name=None, spatial_dims=None): """2D Convolutional LSTM.""" input_shape = common_layers.shape_list(inputs) batch_size, input_channels = input_shape[0], input_shape[-1] if spatial_dims is None: input_shape = input_shape[1:] else: input_shape = spatial_dims + [input_channels] cell = tf.contrib.rnn.ConvLSTMCell( 2, input_shape, output_channels, [kernel_size, kernel_size], name=name) if state is None: state = cell.zero_state(batch_size, tf.float32) outputs, new_state = cell(inputs, state) return outputs, new_state
[ "def", "conv_lstm_2d", "(", "inputs", ",", "state", ",", "output_channels", ",", "kernel_size", "=", "5", ",", "name", "=", "None", ",", "spatial_dims", "=", "None", ")", ":", "input_shape", "=", "common_layers", ".", "shape_list", "(", "inputs", ")", "batch_size", ",", "input_channels", "=", "input_shape", "[", "0", "]", ",", "input_shape", "[", "-", "1", "]", "if", "spatial_dims", "is", "None", ":", "input_shape", "=", "input_shape", "[", "1", ":", "]", "else", ":", "input_shape", "=", "spatial_dims", "+", "[", "input_channels", "]", "cell", "=", "tf", ".", "contrib", ".", "rnn", ".", "ConvLSTMCell", "(", "2", ",", "input_shape", ",", "output_channels", ",", "[", "kernel_size", ",", "kernel_size", "]", ",", "name", "=", "name", ")", "if", "state", "is", "None", ":", "state", "=", "cell", ".", "zero_state", "(", "batch_size", ",", "tf", ".", "float32", ")", "outputs", ",", "new_state", "=", "cell", "(", "inputs", ",", "state", ")", "return", "outputs", ",", "new_state" ]
2D Convolutional LSTM.
[ "2D", "Convolutional", "LSTM", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/layers/common_video.py#L109-L125
21,844
tensorflow/tensor2tensor
tensor2tensor/layers/common_video.py
scheduled_sample_count
def scheduled_sample_count(ground_truth_x, generated_x, batch_size, scheduled_sample_var): """Sample batch with specified mix of groundtruth and generated data points. Args: ground_truth_x: tensor of ground-truth data points. generated_x: tensor of generated data points. batch_size: batch size scheduled_sample_var: number of ground-truth examples to include in batch. Returns: New batch with num_ground_truth sampled from ground_truth_x and the rest from generated_x. """ num_ground_truth = scheduled_sample_var idx = tf.random_shuffle(tf.range(batch_size)) ground_truth_idx = tf.gather(idx, tf.range(num_ground_truth)) generated_idx = tf.gather(idx, tf.range(num_ground_truth, batch_size)) ground_truth_examps = tf.gather(ground_truth_x, ground_truth_idx) generated_examps = tf.gather(generated_x, generated_idx) output = tf.dynamic_stitch([ground_truth_idx, generated_idx], [ground_truth_examps, generated_examps]) # if batch size is known set it. if isinstance(batch_size, int): output.set_shape([batch_size] + common_layers.shape_list(output)[1:]) return output
python
def scheduled_sample_count(ground_truth_x, generated_x, batch_size, scheduled_sample_var): """Sample batch with specified mix of groundtruth and generated data points. Args: ground_truth_x: tensor of ground-truth data points. generated_x: tensor of generated data points. batch_size: batch size scheduled_sample_var: number of ground-truth examples to include in batch. Returns: New batch with num_ground_truth sampled from ground_truth_x and the rest from generated_x. """ num_ground_truth = scheduled_sample_var idx = tf.random_shuffle(tf.range(batch_size)) ground_truth_idx = tf.gather(idx, tf.range(num_ground_truth)) generated_idx = tf.gather(idx, tf.range(num_ground_truth, batch_size)) ground_truth_examps = tf.gather(ground_truth_x, ground_truth_idx) generated_examps = tf.gather(generated_x, generated_idx) output = tf.dynamic_stitch([ground_truth_idx, generated_idx], [ground_truth_examps, generated_examps]) # if batch size is known set it. if isinstance(batch_size, int): output.set_shape([batch_size] + common_layers.shape_list(output)[1:]) return output
[ "def", "scheduled_sample_count", "(", "ground_truth_x", ",", "generated_x", ",", "batch_size", ",", "scheduled_sample_var", ")", ":", "num_ground_truth", "=", "scheduled_sample_var", "idx", "=", "tf", ".", "random_shuffle", "(", "tf", ".", "range", "(", "batch_size", ")", ")", "ground_truth_idx", "=", "tf", ".", "gather", "(", "idx", ",", "tf", ".", "range", "(", "num_ground_truth", ")", ")", "generated_idx", "=", "tf", ".", "gather", "(", "idx", ",", "tf", ".", "range", "(", "num_ground_truth", ",", "batch_size", ")", ")", "ground_truth_examps", "=", "tf", ".", "gather", "(", "ground_truth_x", ",", "ground_truth_idx", ")", "generated_examps", "=", "tf", ".", "gather", "(", "generated_x", ",", "generated_idx", ")", "output", "=", "tf", ".", "dynamic_stitch", "(", "[", "ground_truth_idx", ",", "generated_idx", "]", ",", "[", "ground_truth_examps", ",", "generated_examps", "]", ")", "# if batch size is known set it.", "if", "isinstance", "(", "batch_size", ",", "int", ")", ":", "output", ".", "set_shape", "(", "[", "batch_size", "]", "+", "common_layers", ".", "shape_list", "(", "output", ")", "[", "1", ":", "]", ")", "return", "output" ]
Sample batch with specified mix of groundtruth and generated data points. Args: ground_truth_x: tensor of ground-truth data points. generated_x: tensor of generated data points. batch_size: batch size scheduled_sample_var: number of ground-truth examples to include in batch. Returns: New batch with num_ground_truth sampled from ground_truth_x and the rest from generated_x.
[ "Sample", "batch", "with", "specified", "mix", "of", "groundtruth", "and", "generated", "data", "points", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/layers/common_video.py#L128-L156
21,845
tensorflow/tensor2tensor
tensor2tensor/layers/common_video.py
inject_additional_input
def inject_additional_input(layer, inputs, name, mode="concat"): """Injects the additional input into the layer. Args: layer: layer that the input should be injected to. inputs: inputs to be injected. name: TF scope name. mode: how the infor should be added to the layer: "concat" concats as additional channels. "multiplicative" broadcasts inputs and multiply them to the channels. "multi_additive" broadcasts inputs and multiply and add to the channels. Returns: updated layer. Raises: ValueError: in case of unknown mode. """ layer_shape = common_layers.shape_list(layer) input_shape = common_layers.shape_list(inputs) zeros_mask = tf.zeros(layer_shape, dtype=tf.float32) if mode == "concat": emb = encode_to_shape(inputs, layer_shape, name) layer = tf.concat(values=[layer, emb], axis=-1) elif mode == "multiplicative": filters = layer_shape[-1] input_reshaped = tf.reshape(inputs, [-1, 1, 1, input_shape[-1]]) input_mask = tf.layers.dense(input_reshaped, filters, name=name) input_broad = input_mask + zeros_mask layer *= input_broad elif mode == "multi_additive": filters = layer_shape[-1] input_reshaped = tf.reshape(inputs, [-1, 1, 1, input_shape[-1]]) input_mul = tf.layers.dense(input_reshaped, filters, name=name + "_mul") layer *= tf.nn.sigmoid(input_mul) input_add = tf.layers.dense(input_reshaped, filters, name=name + "_add") layer += input_add else: raise ValueError("Unknown injection mode: %s" % mode) return layer
python
def inject_additional_input(layer, inputs, name, mode="concat"): """Injects the additional input into the layer. Args: layer: layer that the input should be injected to. inputs: inputs to be injected. name: TF scope name. mode: how the infor should be added to the layer: "concat" concats as additional channels. "multiplicative" broadcasts inputs and multiply them to the channels. "multi_additive" broadcasts inputs and multiply and add to the channels. Returns: updated layer. Raises: ValueError: in case of unknown mode. """ layer_shape = common_layers.shape_list(layer) input_shape = common_layers.shape_list(inputs) zeros_mask = tf.zeros(layer_shape, dtype=tf.float32) if mode == "concat": emb = encode_to_shape(inputs, layer_shape, name) layer = tf.concat(values=[layer, emb], axis=-1) elif mode == "multiplicative": filters = layer_shape[-1] input_reshaped = tf.reshape(inputs, [-1, 1, 1, input_shape[-1]]) input_mask = tf.layers.dense(input_reshaped, filters, name=name) input_broad = input_mask + zeros_mask layer *= input_broad elif mode == "multi_additive": filters = layer_shape[-1] input_reshaped = tf.reshape(inputs, [-1, 1, 1, input_shape[-1]]) input_mul = tf.layers.dense(input_reshaped, filters, name=name + "_mul") layer *= tf.nn.sigmoid(input_mul) input_add = tf.layers.dense(input_reshaped, filters, name=name + "_add") layer += input_add else: raise ValueError("Unknown injection mode: %s" % mode) return layer
[ "def", "inject_additional_input", "(", "layer", ",", "inputs", ",", "name", ",", "mode", "=", "\"concat\"", ")", ":", "layer_shape", "=", "common_layers", ".", "shape_list", "(", "layer", ")", "input_shape", "=", "common_layers", ".", "shape_list", "(", "inputs", ")", "zeros_mask", "=", "tf", ".", "zeros", "(", "layer_shape", ",", "dtype", "=", "tf", ".", "float32", ")", "if", "mode", "==", "\"concat\"", ":", "emb", "=", "encode_to_shape", "(", "inputs", ",", "layer_shape", ",", "name", ")", "layer", "=", "tf", ".", "concat", "(", "values", "=", "[", "layer", ",", "emb", "]", ",", "axis", "=", "-", "1", ")", "elif", "mode", "==", "\"multiplicative\"", ":", "filters", "=", "layer_shape", "[", "-", "1", "]", "input_reshaped", "=", "tf", ".", "reshape", "(", "inputs", ",", "[", "-", "1", ",", "1", ",", "1", ",", "input_shape", "[", "-", "1", "]", "]", ")", "input_mask", "=", "tf", ".", "layers", ".", "dense", "(", "input_reshaped", ",", "filters", ",", "name", "=", "name", ")", "input_broad", "=", "input_mask", "+", "zeros_mask", "layer", "*=", "input_broad", "elif", "mode", "==", "\"multi_additive\"", ":", "filters", "=", "layer_shape", "[", "-", "1", "]", "input_reshaped", "=", "tf", ".", "reshape", "(", "inputs", ",", "[", "-", "1", ",", "1", ",", "1", ",", "input_shape", "[", "-", "1", "]", "]", ")", "input_mul", "=", "tf", ".", "layers", ".", "dense", "(", "input_reshaped", ",", "filters", ",", "name", "=", "name", "+", "\"_mul\"", ")", "layer", "*=", "tf", ".", "nn", ".", "sigmoid", "(", "input_mul", ")", "input_add", "=", "tf", ".", "layers", ".", "dense", "(", "input_reshaped", ",", "filters", ",", "name", "=", "name", "+", "\"_add\"", ")", "layer", "+=", "input_add", "else", ":", "raise", "ValueError", "(", "\"Unknown injection mode: %s\"", "%", "mode", ")", "return", "layer" ]
Injects the additional input into the layer. Args: layer: layer that the input should be injected to. inputs: inputs to be injected. name: TF scope name. mode: how the infor should be added to the layer: "concat" concats as additional channels. "multiplicative" broadcasts inputs and multiply them to the channels. "multi_additive" broadcasts inputs and multiply and add to the channels. Returns: updated layer. Raises: ValueError: in case of unknown mode.
[ "Injects", "the", "additional", "input", "into", "the", "layer", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/layers/common_video.py#L159-L199
21,846
tensorflow/tensor2tensor
tensor2tensor/layers/common_video.py
scheduled_sample_prob
def scheduled_sample_prob(ground_truth_x, generated_x, batch_size, scheduled_sample_var): """Probability based scheduled sampling. Args: ground_truth_x: tensor of ground-truth data points. generated_x: tensor of generated data points. batch_size: batch size scheduled_sample_var: probability of choosing from ground_truth. Returns: New batch with randomly selected data points. """ probability_threshold = scheduled_sample_var probability_of_generated = tf.random_uniform([batch_size]) return tf.where(probability_of_generated > probability_threshold, generated_x, ground_truth_x)
python
def scheduled_sample_prob(ground_truth_x, generated_x, batch_size, scheduled_sample_var): """Probability based scheduled sampling. Args: ground_truth_x: tensor of ground-truth data points. generated_x: tensor of generated data points. batch_size: batch size scheduled_sample_var: probability of choosing from ground_truth. Returns: New batch with randomly selected data points. """ probability_threshold = scheduled_sample_var probability_of_generated = tf.random_uniform([batch_size]) return tf.where(probability_of_generated > probability_threshold, generated_x, ground_truth_x)
[ "def", "scheduled_sample_prob", "(", "ground_truth_x", ",", "generated_x", ",", "batch_size", ",", "scheduled_sample_var", ")", ":", "probability_threshold", "=", "scheduled_sample_var", "probability_of_generated", "=", "tf", ".", "random_uniform", "(", "[", "batch_size", "]", ")", "return", "tf", ".", "where", "(", "probability_of_generated", ">", "probability_threshold", ",", "generated_x", ",", "ground_truth_x", ")" ]
Probability based scheduled sampling. Args: ground_truth_x: tensor of ground-truth data points. generated_x: tensor of generated data points. batch_size: batch size scheduled_sample_var: probability of choosing from ground_truth. Returns: New batch with randomly selected data points.
[ "Probability", "based", "scheduled", "sampling", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/layers/common_video.py#L202-L219
21,847
tensorflow/tensor2tensor
tensor2tensor/layers/common_video.py
dna_transformation
def dna_transformation(prev_image, dna_input, dna_kernel_size, relu_shift): """Apply dynamic neural advection to previous image. Args: prev_image: previous image to be transformed. dna_input: hidden lyaer to be used for computing DNA transformation. dna_kernel_size: dna kernel size. relu_shift: shift for ReLU function. Returns: List of images transformed by the predicted CDNA kernels. """ # Construct translated images. prev_image_pad = tf.pad(prev_image, [[0, 0], [2, 2], [2, 2], [0, 0]]) image_height = int(prev_image.get_shape()[1]) image_width = int(prev_image.get_shape()[2]) inputs = [] for xkern in range(dna_kernel_size): for ykern in range(dna_kernel_size): inputs.append( tf.expand_dims( tf.slice(prev_image_pad, [0, xkern, ykern, 0], [-1, image_height, image_width, -1]), [3])) inputs = tf.concat(axis=3, values=inputs) # Normalize channels to 1. kernel = tf.nn.relu(dna_input - relu_shift) + relu_shift kernel = tf.expand_dims( kernel / tf.reduce_sum(kernel, [3], keep_dims=True), [4]) return tf.reduce_sum(kernel * inputs, [3], keep_dims=False)
python
def dna_transformation(prev_image, dna_input, dna_kernel_size, relu_shift): """Apply dynamic neural advection to previous image. Args: prev_image: previous image to be transformed. dna_input: hidden lyaer to be used for computing DNA transformation. dna_kernel_size: dna kernel size. relu_shift: shift for ReLU function. Returns: List of images transformed by the predicted CDNA kernels. """ # Construct translated images. prev_image_pad = tf.pad(prev_image, [[0, 0], [2, 2], [2, 2], [0, 0]]) image_height = int(prev_image.get_shape()[1]) image_width = int(prev_image.get_shape()[2]) inputs = [] for xkern in range(dna_kernel_size): for ykern in range(dna_kernel_size): inputs.append( tf.expand_dims( tf.slice(prev_image_pad, [0, xkern, ykern, 0], [-1, image_height, image_width, -1]), [3])) inputs = tf.concat(axis=3, values=inputs) # Normalize channels to 1. kernel = tf.nn.relu(dna_input - relu_shift) + relu_shift kernel = tf.expand_dims( kernel / tf.reduce_sum(kernel, [3], keep_dims=True), [4]) return tf.reduce_sum(kernel * inputs, [3], keep_dims=False)
[ "def", "dna_transformation", "(", "prev_image", ",", "dna_input", ",", "dna_kernel_size", ",", "relu_shift", ")", ":", "# Construct translated images.", "prev_image_pad", "=", "tf", ".", "pad", "(", "prev_image", ",", "[", "[", "0", ",", "0", "]", ",", "[", "2", ",", "2", "]", ",", "[", "2", ",", "2", "]", ",", "[", "0", ",", "0", "]", "]", ")", "image_height", "=", "int", "(", "prev_image", ".", "get_shape", "(", ")", "[", "1", "]", ")", "image_width", "=", "int", "(", "prev_image", ".", "get_shape", "(", ")", "[", "2", "]", ")", "inputs", "=", "[", "]", "for", "xkern", "in", "range", "(", "dna_kernel_size", ")", ":", "for", "ykern", "in", "range", "(", "dna_kernel_size", ")", ":", "inputs", ".", "append", "(", "tf", ".", "expand_dims", "(", "tf", ".", "slice", "(", "prev_image_pad", ",", "[", "0", ",", "xkern", ",", "ykern", ",", "0", "]", ",", "[", "-", "1", ",", "image_height", ",", "image_width", ",", "-", "1", "]", ")", ",", "[", "3", "]", ")", ")", "inputs", "=", "tf", ".", "concat", "(", "axis", "=", "3", ",", "values", "=", "inputs", ")", "# Normalize channels to 1.", "kernel", "=", "tf", ".", "nn", ".", "relu", "(", "dna_input", "-", "relu_shift", ")", "+", "relu_shift", "kernel", "=", "tf", ".", "expand_dims", "(", "kernel", "/", "tf", ".", "reduce_sum", "(", "kernel", ",", "[", "3", "]", ",", "keep_dims", "=", "True", ")", ",", "[", "4", "]", ")", "return", "tf", ".", "reduce_sum", "(", "kernel", "*", "inputs", ",", "[", "3", "]", ",", "keep_dims", "=", "False", ")" ]
Apply dynamic neural advection to previous image. Args: prev_image: previous image to be transformed. dna_input: hidden lyaer to be used for computing DNA transformation. dna_kernel_size: dna kernel size. relu_shift: shift for ReLU function. Returns: List of images transformed by the predicted CDNA kernels.
[ "Apply", "dynamic", "neural", "advection", "to", "previous", "image", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/layers/common_video.py#L222-L251
21,848
tensorflow/tensor2tensor
tensor2tensor/layers/common_video.py
cdna_transformation
def cdna_transformation(prev_image, cdna_input, num_masks, color_channels, dna_kernel_size, relu_shift): """Apply convolutional dynamic neural advection to previous image. Args: prev_image: previous image to be transformed. cdna_input: hidden lyaer to be used for computing CDNA kernels. num_masks: number of masks and hence the number of CDNA transformations. color_channels: the number of color channels in the images. dna_kernel_size: dna kernel size. relu_shift: shift for ReLU function. Returns: List of images transformed by the predicted CDNA kernels. """ batch_size = tf.shape(cdna_input)[0] height = int(prev_image.get_shape()[1]) width = int(prev_image.get_shape()[2]) # Predict kernels using linear function of last hidden layer. cdna_kerns = tfl.dense( cdna_input, dna_kernel_size * dna_kernel_size * num_masks, name="cdna_params", activation=None) # Reshape and normalize. cdna_kerns = tf.reshape( cdna_kerns, [batch_size, dna_kernel_size, dna_kernel_size, 1, num_masks]) cdna_kerns = (tf.nn.relu(cdna_kerns - relu_shift) + relu_shift) norm_factor = tf.reduce_sum(cdna_kerns, [1, 2, 3], keep_dims=True) cdna_kerns /= norm_factor # Treat the color channel dimension as the batch dimension since the same # transformation is applied to each color channel. # Treat the batch dimension as the channel dimension so that # depthwise_conv2d can apply a different transformation to each sample. cdna_kerns = tf.transpose(cdna_kerns, [1, 2, 0, 4, 3]) cdna_kerns = tf.reshape( cdna_kerns, [dna_kernel_size, dna_kernel_size, batch_size, num_masks]) # Swap the batch and channel dimensions. prev_image = tf.transpose(prev_image, [3, 1, 2, 0]) # Transform image. transformed = tf.nn.depthwise_conv2d( prev_image, cdna_kerns, [1, 1, 1, 1], "SAME") # Transpose the dimensions to where they belong. transformed = tf.reshape( transformed, [color_channels, height, width, batch_size, num_masks]) transformed = tf.transpose(transformed, [3, 1, 2, 0, 4]) transformed = tf.unstack(transformed, axis=-1) return transformed
python
def cdna_transformation(prev_image, cdna_input, num_masks, color_channels, dna_kernel_size, relu_shift): """Apply convolutional dynamic neural advection to previous image. Args: prev_image: previous image to be transformed. cdna_input: hidden lyaer to be used for computing CDNA kernels. num_masks: number of masks and hence the number of CDNA transformations. color_channels: the number of color channels in the images. dna_kernel_size: dna kernel size. relu_shift: shift for ReLU function. Returns: List of images transformed by the predicted CDNA kernels. """ batch_size = tf.shape(cdna_input)[0] height = int(prev_image.get_shape()[1]) width = int(prev_image.get_shape()[2]) # Predict kernels using linear function of last hidden layer. cdna_kerns = tfl.dense( cdna_input, dna_kernel_size * dna_kernel_size * num_masks, name="cdna_params", activation=None) # Reshape and normalize. cdna_kerns = tf.reshape( cdna_kerns, [batch_size, dna_kernel_size, dna_kernel_size, 1, num_masks]) cdna_kerns = (tf.nn.relu(cdna_kerns - relu_shift) + relu_shift) norm_factor = tf.reduce_sum(cdna_kerns, [1, 2, 3], keep_dims=True) cdna_kerns /= norm_factor # Treat the color channel dimension as the batch dimension since the same # transformation is applied to each color channel. # Treat the batch dimension as the channel dimension so that # depthwise_conv2d can apply a different transformation to each sample. cdna_kerns = tf.transpose(cdna_kerns, [1, 2, 0, 4, 3]) cdna_kerns = tf.reshape( cdna_kerns, [dna_kernel_size, dna_kernel_size, batch_size, num_masks]) # Swap the batch and channel dimensions. prev_image = tf.transpose(prev_image, [3, 1, 2, 0]) # Transform image. transformed = tf.nn.depthwise_conv2d( prev_image, cdna_kerns, [1, 1, 1, 1], "SAME") # Transpose the dimensions to where they belong. transformed = tf.reshape( transformed, [color_channels, height, width, batch_size, num_masks]) transformed = tf.transpose(transformed, [3, 1, 2, 0, 4]) transformed = tf.unstack(transformed, axis=-1) return transformed
[ "def", "cdna_transformation", "(", "prev_image", ",", "cdna_input", ",", "num_masks", ",", "color_channels", ",", "dna_kernel_size", ",", "relu_shift", ")", ":", "batch_size", "=", "tf", ".", "shape", "(", "cdna_input", ")", "[", "0", "]", "height", "=", "int", "(", "prev_image", ".", "get_shape", "(", ")", "[", "1", "]", ")", "width", "=", "int", "(", "prev_image", ".", "get_shape", "(", ")", "[", "2", "]", ")", "# Predict kernels using linear function of last hidden layer.", "cdna_kerns", "=", "tfl", ".", "dense", "(", "cdna_input", ",", "dna_kernel_size", "*", "dna_kernel_size", "*", "num_masks", ",", "name", "=", "\"cdna_params\"", ",", "activation", "=", "None", ")", "# Reshape and normalize.", "cdna_kerns", "=", "tf", ".", "reshape", "(", "cdna_kerns", ",", "[", "batch_size", ",", "dna_kernel_size", ",", "dna_kernel_size", ",", "1", ",", "num_masks", "]", ")", "cdna_kerns", "=", "(", "tf", ".", "nn", ".", "relu", "(", "cdna_kerns", "-", "relu_shift", ")", "+", "relu_shift", ")", "norm_factor", "=", "tf", ".", "reduce_sum", "(", "cdna_kerns", ",", "[", "1", ",", "2", ",", "3", "]", ",", "keep_dims", "=", "True", ")", "cdna_kerns", "/=", "norm_factor", "# Treat the color channel dimension as the batch dimension since the same", "# transformation is applied to each color channel.", "# Treat the batch dimension as the channel dimension so that", "# depthwise_conv2d can apply a different transformation to each sample.", "cdna_kerns", "=", "tf", ".", "transpose", "(", "cdna_kerns", ",", "[", "1", ",", "2", ",", "0", ",", "4", ",", "3", "]", ")", "cdna_kerns", "=", "tf", ".", "reshape", "(", "cdna_kerns", ",", "[", "dna_kernel_size", ",", "dna_kernel_size", ",", "batch_size", ",", "num_masks", "]", ")", "# Swap the batch and channel dimensions.", "prev_image", "=", "tf", ".", "transpose", "(", "prev_image", ",", "[", "3", ",", "1", ",", "2", ",", "0", "]", ")", "# Transform image.", "transformed", "=", "tf", ".", "nn", ".", "depthwise_conv2d", "(", "prev_image", ",", "cdna_kerns", ",", "[", "1", ",", "1", ",", "1", ",", "1", "]", ",", "\"SAME\"", ")", "# Transpose the dimensions to where they belong.", "transformed", "=", "tf", ".", "reshape", "(", "transformed", ",", "[", "color_channels", ",", "height", ",", "width", ",", "batch_size", ",", "num_masks", "]", ")", "transformed", "=", "tf", ".", "transpose", "(", "transformed", ",", "[", "3", ",", "1", ",", "2", ",", "0", ",", "4", "]", ")", "transformed", "=", "tf", ".", "unstack", "(", "transformed", ",", "axis", "=", "-", "1", ")", "return", "transformed" ]
Apply convolutional dynamic neural advection to previous image. Args: prev_image: previous image to be transformed. cdna_input: hidden lyaer to be used for computing CDNA kernels. num_masks: number of masks and hence the number of CDNA transformations. color_channels: the number of color channels in the images. dna_kernel_size: dna kernel size. relu_shift: shift for ReLU function. Returns: List of images transformed by the predicted CDNA kernels.
[ "Apply", "convolutional", "dynamic", "neural", "advection", "to", "previous", "image", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/layers/common_video.py#L254-L304
21,849
tensorflow/tensor2tensor
tensor2tensor/layers/common_video.py
vgg_layer
def vgg_layer(inputs, nout, kernel_size=3, activation=tf.nn.leaky_relu, padding="SAME", is_training=True, has_batchnorm=False, scope=None): """A layer of VGG network with batch norm. Args: inputs: image tensor nout: number of output channels kernel_size: size of the kernel activation: activation function padding: padding of the image is_training: whether it is training mode or not has_batchnorm: whether batchnorm is applied or not scope: variable scope of the op Returns: net: output of layer """ with tf.variable_scope(scope): net = tfl.conv2d(inputs, nout, kernel_size=kernel_size, padding=padding, activation=None, name="conv") if has_batchnorm: net = tfl.batch_normalization(net, training=is_training, name="bn") net = activation(net) return net
python
def vgg_layer(inputs, nout, kernel_size=3, activation=tf.nn.leaky_relu, padding="SAME", is_training=True, has_batchnorm=False, scope=None): """A layer of VGG network with batch norm. Args: inputs: image tensor nout: number of output channels kernel_size: size of the kernel activation: activation function padding: padding of the image is_training: whether it is training mode or not has_batchnorm: whether batchnorm is applied or not scope: variable scope of the op Returns: net: output of layer """ with tf.variable_scope(scope): net = tfl.conv2d(inputs, nout, kernel_size=kernel_size, padding=padding, activation=None, name="conv") if has_batchnorm: net = tfl.batch_normalization(net, training=is_training, name="bn") net = activation(net) return net
[ "def", "vgg_layer", "(", "inputs", ",", "nout", ",", "kernel_size", "=", "3", ",", "activation", "=", "tf", ".", "nn", ".", "leaky_relu", ",", "padding", "=", "\"SAME\"", ",", "is_training", "=", "True", ",", "has_batchnorm", "=", "False", ",", "scope", "=", "None", ")", ":", "with", "tf", ".", "variable_scope", "(", "scope", ")", ":", "net", "=", "tfl", ".", "conv2d", "(", "inputs", ",", "nout", ",", "kernel_size", "=", "kernel_size", ",", "padding", "=", "padding", ",", "activation", "=", "None", ",", "name", "=", "\"conv\"", ")", "if", "has_batchnorm", ":", "net", "=", "tfl", ".", "batch_normalization", "(", "net", ",", "training", "=", "is_training", ",", "name", "=", "\"bn\"", ")", "net", "=", "activation", "(", "net", ")", "return", "net" ]
A layer of VGG network with batch norm. Args: inputs: image tensor nout: number of output channels kernel_size: size of the kernel activation: activation function padding: padding of the image is_training: whether it is training mode or not has_batchnorm: whether batchnorm is applied or not scope: variable scope of the op Returns: net: output of layer
[ "A", "layer", "of", "VGG", "network", "with", "batch", "norm", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/layers/common_video.py#L307-L335
21,850
tensorflow/tensor2tensor
tensor2tensor/layers/common_video.py
tile_and_concat
def tile_and_concat(image, latent, concat_latent=True): """Tile latent and concatenate to image across depth. Args: image: 4-D Tensor, (batch_size X height X width X channels) latent: 2-D Tensor, (batch_size X latent_dims) concat_latent: If set to False, the image is returned as is. Returns: concat_latent: 4-D Tensor, (batch_size X height X width X channels+1) latent tiled and concatenated to the image across the channels. """ if not concat_latent: return image image_shape = common_layers.shape_list(image) latent_shape = common_layers.shape_list(latent) height, width = image_shape[1], image_shape[2] latent_dims = latent_shape[1] height_multiples = height // latent_dims pad = height - (height_multiples * latent_dims) latent = tf.reshape(latent, (-1, latent_dims, 1, 1)) latent = tf.tile(latent, (1, height_multiples, width, 1)) latent = tf.pad(latent, [[0, 0], [pad // 2, pad // 2], [0, 0], [0, 0]]) return tf.concat([image, latent], axis=-1)
python
def tile_and_concat(image, latent, concat_latent=True): """Tile latent and concatenate to image across depth. Args: image: 4-D Tensor, (batch_size X height X width X channels) latent: 2-D Tensor, (batch_size X latent_dims) concat_latent: If set to False, the image is returned as is. Returns: concat_latent: 4-D Tensor, (batch_size X height X width X channels+1) latent tiled and concatenated to the image across the channels. """ if not concat_latent: return image image_shape = common_layers.shape_list(image) latent_shape = common_layers.shape_list(latent) height, width = image_shape[1], image_shape[2] latent_dims = latent_shape[1] height_multiples = height // latent_dims pad = height - (height_multiples * latent_dims) latent = tf.reshape(latent, (-1, latent_dims, 1, 1)) latent = tf.tile(latent, (1, height_multiples, width, 1)) latent = tf.pad(latent, [[0, 0], [pad // 2, pad // 2], [0, 0], [0, 0]]) return tf.concat([image, latent], axis=-1)
[ "def", "tile_and_concat", "(", "image", ",", "latent", ",", "concat_latent", "=", "True", ")", ":", "if", "not", "concat_latent", ":", "return", "image", "image_shape", "=", "common_layers", ".", "shape_list", "(", "image", ")", "latent_shape", "=", "common_layers", ".", "shape_list", "(", "latent", ")", "height", ",", "width", "=", "image_shape", "[", "1", "]", ",", "image_shape", "[", "2", "]", "latent_dims", "=", "latent_shape", "[", "1", "]", "height_multiples", "=", "height", "//", "latent_dims", "pad", "=", "height", "-", "(", "height_multiples", "*", "latent_dims", ")", "latent", "=", "tf", ".", "reshape", "(", "latent", ",", "(", "-", "1", ",", "latent_dims", ",", "1", ",", "1", ")", ")", "latent", "=", "tf", ".", "tile", "(", "latent", ",", "(", "1", ",", "height_multiples", ",", "width", ",", "1", ")", ")", "latent", "=", "tf", ".", "pad", "(", "latent", ",", "[", "[", "0", ",", "0", "]", ",", "[", "pad", "//", "2", ",", "pad", "//", "2", "]", ",", "[", "0", ",", "0", "]", ",", "[", "0", ",", "0", "]", "]", ")", "return", "tf", ".", "concat", "(", "[", "image", ",", "latent", "]", ",", "axis", "=", "-", "1", ")" ]
Tile latent and concatenate to image across depth. Args: image: 4-D Tensor, (batch_size X height X width X channels) latent: 2-D Tensor, (batch_size X latent_dims) concat_latent: If set to False, the image is returned as is. Returns: concat_latent: 4-D Tensor, (batch_size X height X width X channels+1) latent tiled and concatenated to the image across the channels.
[ "Tile", "latent", "and", "concatenate", "to", "image", "across", "depth", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/layers/common_video.py#L338-L361
21,851
tensorflow/tensor2tensor
tensor2tensor/layers/common_video.py
_encode_gif
def _encode_gif(images, fps): """Encodes numpy images into gif string. Args: images: A 4-D `uint8` `np.array` (or a list of 3-D images) of shape `[time, height, width, channels]` where `channels` is 1 or 3. fps: frames per second of the animation Returns: The encoded gif string. Raises: IOError: If the ffmpeg command returns an error. """ writer = WholeVideoWriter(fps) writer.write_multi(images) return writer.finish()
python
def _encode_gif(images, fps): """Encodes numpy images into gif string. Args: images: A 4-D `uint8` `np.array` (or a list of 3-D images) of shape `[time, height, width, channels]` where `channels` is 1 or 3. fps: frames per second of the animation Returns: The encoded gif string. Raises: IOError: If the ffmpeg command returns an error. """ writer = WholeVideoWriter(fps) writer.write_multi(images) return writer.finish()
[ "def", "_encode_gif", "(", "images", ",", "fps", ")", ":", "writer", "=", "WholeVideoWriter", "(", "fps", ")", "writer", ".", "write_multi", "(", "images", ")", "return", "writer", ".", "finish", "(", ")" ]
Encodes numpy images into gif string. Args: images: A 4-D `uint8` `np.array` (or a list of 3-D images) of shape `[time, height, width, channels]` where `channels` is 1 or 3. fps: frames per second of the animation Returns: The encoded gif string. Raises: IOError: If the ffmpeg command returns an error.
[ "Encodes", "numpy", "images", "into", "gif", "string", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/layers/common_video.py#L364-L380
21,852
tensorflow/tensor2tensor
tensor2tensor/layers/common_video.py
ffmpeg_works
def ffmpeg_works(): """Tries to encode images with ffmpeg to check if it works.""" images = np.zeros((2, 32, 32, 3), dtype=np.uint8) try: _encode_gif(images, 2) return True except (IOError, OSError): return False
python
def ffmpeg_works(): """Tries to encode images with ffmpeg to check if it works.""" images = np.zeros((2, 32, 32, 3), dtype=np.uint8) try: _encode_gif(images, 2) return True except (IOError, OSError): return False
[ "def", "ffmpeg_works", "(", ")", ":", "images", "=", "np", ".", "zeros", "(", "(", "2", ",", "32", ",", "32", ",", "3", ")", ",", "dtype", "=", "np", ".", "uint8", ")", "try", ":", "_encode_gif", "(", "images", ",", "2", ")", "return", "True", "except", "(", "IOError", ",", "OSError", ")", ":", "return", "False" ]
Tries to encode images with ffmpeg to check if it works.
[ "Tries", "to", "encode", "images", "with", "ffmpeg", "to", "check", "if", "it", "works", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/layers/common_video.py#L383-L390
21,853
tensorflow/tensor2tensor
tensor2tensor/layers/common_video.py
conv_latent_tower
def conv_latent_tower(images, time_axis, latent_channels=1, min_logvar=-5, is_training=False, random_latent=False, tiny_mode=False, small_mode=False): """Builds convolutional latent tower for stochastic model. At training time this tower generates a latent distribution (mean and std) conditioned on the entire video. This latent variable will be fed to the main tower as an extra variable to be used for future frames prediction. At inference time, the tower is disabled and only returns latents sampled from N(0,1). If the multi_latent flag is on, a different latent for every timestep would be generated. Args: images: tensor of ground truth image sequences time_axis: the time axis in images tensor latent_channels: number of latent channels min_logvar: minimum value for log_var is_training: whether or not it is training mode random_latent: whether or not generate random latents tiny_mode: whether or not it is tiny_mode. tiny_mode sets the number of conv channels to 1 at each layer. useful for testing the integration tests. small_mode: whether or not it is small_mode. small mode is the same model with less conv and lstm layers and also lower number of channels. suitable for videos with less complexity and testing. Returns: latent_mean: predicted latent mean latent_logvar: predicted latent log variance """ conv_size = tinyify([32, 64, 64], tiny_mode, small_mode) with tf.variable_scope("latent", reuse=tf.AUTO_REUSE): images = tf.to_float(images) images = tf.unstack(images, axis=time_axis) images = tf.concat(images, axis=3) x = images x = common_layers.make_even_size(x) x = tfl.conv2d(x, conv_size[0], [3, 3], strides=(2, 2), padding="SAME", activation=tf.nn.relu, name="latent_conv1") x = tfcl.layer_norm(x) if not small_mode: x = tfl.conv2d(x, conv_size[1], [3, 3], strides=(2, 2), padding="SAME", activation=tf.nn.relu, name="latent_conv2") x = tfcl.layer_norm(x) x = tfl.conv2d(x, conv_size[2], [3, 3], strides=(1, 1), padding="SAME", activation=tf.nn.relu, name="latent_conv3") x = tfcl.layer_norm(x) nc = latent_channels mean = tfl.conv2d(x, nc, [3, 3], strides=(2, 2), padding="SAME", activation=None, name="latent_mean") logv = tfl.conv2d(x, nc, [3, 3], strides=(2, 2), padding="SAME", activation=tf.nn.relu, name="latent_std") logvar = logv + min_logvar # No latent tower at inference time, just standard gaussian. if not is_training: return tf.zeros_like(mean), tf.zeros_like(logvar) # No latent in the first phase ret_mean, ret_logvar = tf.cond( random_latent, lambda: (tf.zeros_like(mean), tf.zeros_like(logvar)), lambda: (mean, logvar)) return ret_mean, ret_logvar
python
def conv_latent_tower(images, time_axis, latent_channels=1, min_logvar=-5, is_training=False, random_latent=False, tiny_mode=False, small_mode=False): """Builds convolutional latent tower for stochastic model. At training time this tower generates a latent distribution (mean and std) conditioned on the entire video. This latent variable will be fed to the main tower as an extra variable to be used for future frames prediction. At inference time, the tower is disabled and only returns latents sampled from N(0,1). If the multi_latent flag is on, a different latent for every timestep would be generated. Args: images: tensor of ground truth image sequences time_axis: the time axis in images tensor latent_channels: number of latent channels min_logvar: minimum value for log_var is_training: whether or not it is training mode random_latent: whether or not generate random latents tiny_mode: whether or not it is tiny_mode. tiny_mode sets the number of conv channels to 1 at each layer. useful for testing the integration tests. small_mode: whether or not it is small_mode. small mode is the same model with less conv and lstm layers and also lower number of channels. suitable for videos with less complexity and testing. Returns: latent_mean: predicted latent mean latent_logvar: predicted latent log variance """ conv_size = tinyify([32, 64, 64], tiny_mode, small_mode) with tf.variable_scope("latent", reuse=tf.AUTO_REUSE): images = tf.to_float(images) images = tf.unstack(images, axis=time_axis) images = tf.concat(images, axis=3) x = images x = common_layers.make_even_size(x) x = tfl.conv2d(x, conv_size[0], [3, 3], strides=(2, 2), padding="SAME", activation=tf.nn.relu, name="latent_conv1") x = tfcl.layer_norm(x) if not small_mode: x = tfl.conv2d(x, conv_size[1], [3, 3], strides=(2, 2), padding="SAME", activation=tf.nn.relu, name="latent_conv2") x = tfcl.layer_norm(x) x = tfl.conv2d(x, conv_size[2], [3, 3], strides=(1, 1), padding="SAME", activation=tf.nn.relu, name="latent_conv3") x = tfcl.layer_norm(x) nc = latent_channels mean = tfl.conv2d(x, nc, [3, 3], strides=(2, 2), padding="SAME", activation=None, name="latent_mean") logv = tfl.conv2d(x, nc, [3, 3], strides=(2, 2), padding="SAME", activation=tf.nn.relu, name="latent_std") logvar = logv + min_logvar # No latent tower at inference time, just standard gaussian. if not is_training: return tf.zeros_like(mean), tf.zeros_like(logvar) # No latent in the first phase ret_mean, ret_logvar = tf.cond( random_latent, lambda: (tf.zeros_like(mean), tf.zeros_like(logvar)), lambda: (mean, logvar)) return ret_mean, ret_logvar
[ "def", "conv_latent_tower", "(", "images", ",", "time_axis", ",", "latent_channels", "=", "1", ",", "min_logvar", "=", "-", "5", ",", "is_training", "=", "False", ",", "random_latent", "=", "False", ",", "tiny_mode", "=", "False", ",", "small_mode", "=", "False", ")", ":", "conv_size", "=", "tinyify", "(", "[", "32", ",", "64", ",", "64", "]", ",", "tiny_mode", ",", "small_mode", ")", "with", "tf", ".", "variable_scope", "(", "\"latent\"", ",", "reuse", "=", "tf", ".", "AUTO_REUSE", ")", ":", "images", "=", "tf", ".", "to_float", "(", "images", ")", "images", "=", "tf", ".", "unstack", "(", "images", ",", "axis", "=", "time_axis", ")", "images", "=", "tf", ".", "concat", "(", "images", ",", "axis", "=", "3", ")", "x", "=", "images", "x", "=", "common_layers", ".", "make_even_size", "(", "x", ")", "x", "=", "tfl", ".", "conv2d", "(", "x", ",", "conv_size", "[", "0", "]", ",", "[", "3", ",", "3", "]", ",", "strides", "=", "(", "2", ",", "2", ")", ",", "padding", "=", "\"SAME\"", ",", "activation", "=", "tf", ".", "nn", ".", "relu", ",", "name", "=", "\"latent_conv1\"", ")", "x", "=", "tfcl", ".", "layer_norm", "(", "x", ")", "if", "not", "small_mode", ":", "x", "=", "tfl", ".", "conv2d", "(", "x", ",", "conv_size", "[", "1", "]", ",", "[", "3", ",", "3", "]", ",", "strides", "=", "(", "2", ",", "2", ")", ",", "padding", "=", "\"SAME\"", ",", "activation", "=", "tf", ".", "nn", ".", "relu", ",", "name", "=", "\"latent_conv2\"", ")", "x", "=", "tfcl", ".", "layer_norm", "(", "x", ")", "x", "=", "tfl", ".", "conv2d", "(", "x", ",", "conv_size", "[", "2", "]", ",", "[", "3", ",", "3", "]", ",", "strides", "=", "(", "1", ",", "1", ")", ",", "padding", "=", "\"SAME\"", ",", "activation", "=", "tf", ".", "nn", ".", "relu", ",", "name", "=", "\"latent_conv3\"", ")", "x", "=", "tfcl", ".", "layer_norm", "(", "x", ")", "nc", "=", "latent_channels", "mean", "=", "tfl", ".", "conv2d", "(", "x", ",", "nc", ",", "[", "3", ",", "3", "]", ",", "strides", "=", "(", "2", ",", "2", ")", ",", "padding", "=", "\"SAME\"", ",", "activation", "=", "None", ",", "name", "=", "\"latent_mean\"", ")", "logv", "=", "tfl", ".", "conv2d", "(", "x", ",", "nc", ",", "[", "3", ",", "3", "]", ",", "strides", "=", "(", "2", ",", "2", ")", ",", "padding", "=", "\"SAME\"", ",", "activation", "=", "tf", ".", "nn", ".", "relu", ",", "name", "=", "\"latent_std\"", ")", "logvar", "=", "logv", "+", "min_logvar", "# No latent tower at inference time, just standard gaussian.", "if", "not", "is_training", ":", "return", "tf", ".", "zeros_like", "(", "mean", ")", ",", "tf", ".", "zeros_like", "(", "logvar", ")", "# No latent in the first phase", "ret_mean", ",", "ret_logvar", "=", "tf", ".", "cond", "(", "random_latent", ",", "lambda", ":", "(", "tf", ".", "zeros_like", "(", "mean", ")", ",", "tf", ".", "zeros_like", "(", "logvar", ")", ")", ",", "lambda", ":", "(", "mean", ",", "logvar", ")", ")", "return", "ret_mean", ",", "ret_logvar" ]
Builds convolutional latent tower for stochastic model. At training time this tower generates a latent distribution (mean and std) conditioned on the entire video. This latent variable will be fed to the main tower as an extra variable to be used for future frames prediction. At inference time, the tower is disabled and only returns latents sampled from N(0,1). If the multi_latent flag is on, a different latent for every timestep would be generated. Args: images: tensor of ground truth image sequences time_axis: the time axis in images tensor latent_channels: number of latent channels min_logvar: minimum value for log_var is_training: whether or not it is training mode random_latent: whether or not generate random latents tiny_mode: whether or not it is tiny_mode. tiny_mode sets the number of conv channels to 1 at each layer. useful for testing the integration tests. small_mode: whether or not it is small_mode. small mode is the same model with less conv and lstm layers and also lower number of channels. suitable for videos with less complexity and testing. Returns: latent_mean: predicted latent mean latent_logvar: predicted latent log variance
[ "Builds", "convolutional", "latent", "tower", "for", "stochastic", "model", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/layers/common_video.py#L516-L582
21,854
tensorflow/tensor2tensor
tensor2tensor/layers/common_video.py
extract_random_video_patch
def extract_random_video_patch(videos, num_frames=-1): """For every video, extract a random consecutive patch of num_frames. Args: videos: 5-D Tensor, (NTHWC) num_frames: Integer, if -1 then the entire video is returned. Returns: video_patch: 5-D Tensor, (NTHWC) with T = num_frames. Raises: ValueError: If num_frames is greater than the number of total frames in the video. """ if num_frames == -1: return videos batch_size, num_total_frames, h, w, c = common_layers.shape_list(videos) if num_total_frames < num_frames: raise ValueError("Expected num_frames <= %d, got %d" % (num_total_frames, num_frames)) # Randomly choose start_inds for each video. frame_start = tf.random_uniform( shape=(batch_size,), minval=0, maxval=num_total_frames - num_frames + 1, dtype=tf.int32) # [start[0], start[0] + 1, ... start[0] + num_frames - 1] + ... # [start[batch_size-1], ... start[batch_size-1] + num_frames - 1] range_inds = tf.expand_dims(tf.range(num_frames), axis=0) frame_inds = range_inds + tf.expand_dims(frame_start, axis=1) frame_inds = tf.reshape(frame_inds, [-1]) # [0]*num_frames + [1]*num_frames + ... [batch_size-1]*num_frames batch_inds = tf.expand_dims(tf.range(batch_size), axis=1) batch_inds = tf.tile(batch_inds, [1, num_frames]) batch_inds = tf.reshape(batch_inds, [-1]) gather_inds = tf.stack((batch_inds, frame_inds), axis=1) video_patches = tf.gather_nd(videos, gather_inds) return tf.reshape(video_patches, (batch_size, num_frames, h, w, c))
python
def extract_random_video_patch(videos, num_frames=-1): """For every video, extract a random consecutive patch of num_frames. Args: videos: 5-D Tensor, (NTHWC) num_frames: Integer, if -1 then the entire video is returned. Returns: video_patch: 5-D Tensor, (NTHWC) with T = num_frames. Raises: ValueError: If num_frames is greater than the number of total frames in the video. """ if num_frames == -1: return videos batch_size, num_total_frames, h, w, c = common_layers.shape_list(videos) if num_total_frames < num_frames: raise ValueError("Expected num_frames <= %d, got %d" % (num_total_frames, num_frames)) # Randomly choose start_inds for each video. frame_start = tf.random_uniform( shape=(batch_size,), minval=0, maxval=num_total_frames - num_frames + 1, dtype=tf.int32) # [start[0], start[0] + 1, ... start[0] + num_frames - 1] + ... # [start[batch_size-1], ... start[batch_size-1] + num_frames - 1] range_inds = tf.expand_dims(tf.range(num_frames), axis=0) frame_inds = range_inds + tf.expand_dims(frame_start, axis=1) frame_inds = tf.reshape(frame_inds, [-1]) # [0]*num_frames + [1]*num_frames + ... [batch_size-1]*num_frames batch_inds = tf.expand_dims(tf.range(batch_size), axis=1) batch_inds = tf.tile(batch_inds, [1, num_frames]) batch_inds = tf.reshape(batch_inds, [-1]) gather_inds = tf.stack((batch_inds, frame_inds), axis=1) video_patches = tf.gather_nd(videos, gather_inds) return tf.reshape(video_patches, (batch_size, num_frames, h, w, c))
[ "def", "extract_random_video_patch", "(", "videos", ",", "num_frames", "=", "-", "1", ")", ":", "if", "num_frames", "==", "-", "1", ":", "return", "videos", "batch_size", ",", "num_total_frames", ",", "h", ",", "w", ",", "c", "=", "common_layers", ".", "shape_list", "(", "videos", ")", "if", "num_total_frames", "<", "num_frames", ":", "raise", "ValueError", "(", "\"Expected num_frames <= %d, got %d\"", "%", "(", "num_total_frames", ",", "num_frames", ")", ")", "# Randomly choose start_inds for each video.", "frame_start", "=", "tf", ".", "random_uniform", "(", "shape", "=", "(", "batch_size", ",", ")", ",", "minval", "=", "0", ",", "maxval", "=", "num_total_frames", "-", "num_frames", "+", "1", ",", "dtype", "=", "tf", ".", "int32", ")", "# [start[0], start[0] + 1, ... start[0] + num_frames - 1] + ...", "# [start[batch_size-1], ... start[batch_size-1] + num_frames - 1]", "range_inds", "=", "tf", ".", "expand_dims", "(", "tf", ".", "range", "(", "num_frames", ")", ",", "axis", "=", "0", ")", "frame_inds", "=", "range_inds", "+", "tf", ".", "expand_dims", "(", "frame_start", ",", "axis", "=", "1", ")", "frame_inds", "=", "tf", ".", "reshape", "(", "frame_inds", ",", "[", "-", "1", "]", ")", "# [0]*num_frames + [1]*num_frames + ... [batch_size-1]*num_frames", "batch_inds", "=", "tf", ".", "expand_dims", "(", "tf", ".", "range", "(", "batch_size", ")", ",", "axis", "=", "1", ")", "batch_inds", "=", "tf", ".", "tile", "(", "batch_inds", ",", "[", "1", ",", "num_frames", "]", ")", "batch_inds", "=", "tf", ".", "reshape", "(", "batch_inds", ",", "[", "-", "1", "]", ")", "gather_inds", "=", "tf", ".", "stack", "(", "(", "batch_inds", ",", "frame_inds", ")", ",", "axis", "=", "1", ")", "video_patches", "=", "tf", ".", "gather_nd", "(", "videos", ",", "gather_inds", ")", "return", "tf", ".", "reshape", "(", "video_patches", ",", "(", "batch_size", ",", "num_frames", ",", "h", ",", "w", ",", "c", ")", ")" ]
For every video, extract a random consecutive patch of num_frames. Args: videos: 5-D Tensor, (NTHWC) num_frames: Integer, if -1 then the entire video is returned. Returns: video_patch: 5-D Tensor, (NTHWC) with T = num_frames. Raises: ValueError: If num_frames is greater than the number of total frames in the video.
[ "For", "every", "video", "extract", "a", "random", "consecutive", "patch", "of", "num_frames", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/layers/common_video.py#L621-L658
21,855
tensorflow/tensor2tensor
tensor2tensor/layers/common_video.py
VideoWriter.write_multi
def write_multi(self, frames, encoded_frames=None): """Writes multiple video frames.""" if encoded_frames is None: # Infinite iterator. encoded_frames = iter(lambda: None, 1) for (frame, encoded_frame) in zip(frames, encoded_frames): self.write(frame, encoded_frame)
python
def write_multi(self, frames, encoded_frames=None): """Writes multiple video frames.""" if encoded_frames is None: # Infinite iterator. encoded_frames = iter(lambda: None, 1) for (frame, encoded_frame) in zip(frames, encoded_frames): self.write(frame, encoded_frame)
[ "def", "write_multi", "(", "self", ",", "frames", ",", "encoded_frames", "=", "None", ")", ":", "if", "encoded_frames", "is", "None", ":", "# Infinite iterator.", "encoded_frames", "=", "iter", "(", "lambda", ":", "None", ",", "1", ")", "for", "(", "frame", ",", "encoded_frame", ")", "in", "zip", "(", "frames", ",", "encoded_frames", ")", ":", "self", ".", "write", "(", "frame", ",", "encoded_frame", ")" ]
Writes multiple video frames.
[ "Writes", "multiple", "video", "frames", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/layers/common_video.py#L668-L674
21,856
tensorflow/tensor2tensor
tensor2tensor/layers/common_video.py
WholeVideoWriter.__init_ffmpeg
def __init_ffmpeg(self, image_shape): """Initializes ffmpeg to write frames.""" import itertools # pylint: disable=g-import-not-at-top from subprocess import Popen, PIPE # pylint: disable=g-import-not-at-top,g-multiple-import,g-importing-member ffmpeg = "ffmpeg" height, width, channels = image_shape self.cmd = [ ffmpeg, "-y", "-f", "rawvideo", "-vcodec", "rawvideo", "-r", "%.02f" % self.fps, "-s", "%dx%d" % (width, height), "-pix_fmt", {1: "gray", 3: "rgb24"}[channels], "-i", "-", "-filter_complex", "[0:v]split[x][z];[x]fifo[w];[z]palettegen,fifo[y];" "[w][y]paletteuse,fifo", "-r", "%.02f" % self.fps, "-f", self.file_format, "-qscale", "0", "-" ] self.proc = Popen( self.cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE, bufsize=-1 ) (self._out_thread, self._err_thread) = itertools.starmap( self._start_reader_thread, [ (self.proc.stdout, self._out_chunks), (self.proc.stderr, self._err_chunks) ] )
python
def __init_ffmpeg(self, image_shape): """Initializes ffmpeg to write frames.""" import itertools # pylint: disable=g-import-not-at-top from subprocess import Popen, PIPE # pylint: disable=g-import-not-at-top,g-multiple-import,g-importing-member ffmpeg = "ffmpeg" height, width, channels = image_shape self.cmd = [ ffmpeg, "-y", "-f", "rawvideo", "-vcodec", "rawvideo", "-r", "%.02f" % self.fps, "-s", "%dx%d" % (width, height), "-pix_fmt", {1: "gray", 3: "rgb24"}[channels], "-i", "-", "-filter_complex", "[0:v]split[x][z];[x]fifo[w];[z]palettegen,fifo[y];" "[w][y]paletteuse,fifo", "-r", "%.02f" % self.fps, "-f", self.file_format, "-qscale", "0", "-" ] self.proc = Popen( self.cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE, bufsize=-1 ) (self._out_thread, self._err_thread) = itertools.starmap( self._start_reader_thread, [ (self.proc.stdout, self._out_chunks), (self.proc.stderr, self._err_chunks) ] )
[ "def", "__init_ffmpeg", "(", "self", ",", "image_shape", ")", ":", "import", "itertools", "# pylint: disable=g-import-not-at-top", "from", "subprocess", "import", "Popen", ",", "PIPE", "# pylint: disable=g-import-not-at-top,g-multiple-import,g-importing-member", "ffmpeg", "=", "\"ffmpeg\"", "height", ",", "width", ",", "channels", "=", "image_shape", "self", ".", "cmd", "=", "[", "ffmpeg", ",", "\"-y\"", ",", "\"-f\"", ",", "\"rawvideo\"", ",", "\"-vcodec\"", ",", "\"rawvideo\"", ",", "\"-r\"", ",", "\"%.02f\"", "%", "self", ".", "fps", ",", "\"-s\"", ",", "\"%dx%d\"", "%", "(", "width", ",", "height", ")", ",", "\"-pix_fmt\"", ",", "{", "1", ":", "\"gray\"", ",", "3", ":", "\"rgb24\"", "}", "[", "channels", "]", ",", "\"-i\"", ",", "\"-\"", ",", "\"-filter_complex\"", ",", "\"[0:v]split[x][z];[x]fifo[w];[z]palettegen,fifo[y];\"", "\"[w][y]paletteuse,fifo\"", ",", "\"-r\"", ",", "\"%.02f\"", "%", "self", ".", "fps", ",", "\"-f\"", ",", "self", ".", "file_format", ",", "\"-qscale\"", ",", "\"0\"", ",", "\"-\"", "]", "self", ".", "proc", "=", "Popen", "(", "self", ".", "cmd", ",", "stdin", "=", "PIPE", ",", "stdout", "=", "PIPE", ",", "stderr", "=", "PIPE", ",", "bufsize", "=", "-", "1", ")", "(", "self", ".", "_out_thread", ",", "self", ".", "_err_thread", ")", "=", "itertools", ".", "starmap", "(", "self", ".", "_start_reader_thread", ",", "[", "(", "self", ".", "proc", ".", "stdout", ",", "self", ".", "_out_chunks", ")", ",", "(", "self", ".", "proc", ".", "stderr", ",", "self", ".", "_err_chunks", ")", "]", ")" ]
Initializes ffmpeg to write frames.
[ "Initializes", "ffmpeg", "to", "write", "frames", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/layers/common_video.py#L715-L744
21,857
tensorflow/tensor2tensor
tensor2tensor/layers/common_video.py
WholeVideoWriter._start_reader_thread
def _start_reader_thread(self, stream, chunks): """Starts a thread for reading output from FFMPEG. The thread reads consecutive chunks from the stream and saves them in the given list. Args: stream: output stream of the FFMPEG process. chunks: list to save output chunks to. Returns: Thread """ import io # pylint: disable=g-import-not-at-top import threading # pylint: disable=g-import-not-at-top def target(): while True: chunk = stream.read(io.DEFAULT_BUFFER_SIZE) if not chunk: break chunks.append(chunk) thread = threading.Thread(target=target) thread.start() return thread
python
def _start_reader_thread(self, stream, chunks): """Starts a thread for reading output from FFMPEG. The thread reads consecutive chunks from the stream and saves them in the given list. Args: stream: output stream of the FFMPEG process. chunks: list to save output chunks to. Returns: Thread """ import io # pylint: disable=g-import-not-at-top import threading # pylint: disable=g-import-not-at-top def target(): while True: chunk = stream.read(io.DEFAULT_BUFFER_SIZE) if not chunk: break chunks.append(chunk) thread = threading.Thread(target=target) thread.start() return thread
[ "def", "_start_reader_thread", "(", "self", ",", "stream", ",", "chunks", ")", ":", "import", "io", "# pylint: disable=g-import-not-at-top", "import", "threading", "# pylint: disable=g-import-not-at-top", "def", "target", "(", ")", ":", "while", "True", ":", "chunk", "=", "stream", ".", "read", "(", "io", ".", "DEFAULT_BUFFER_SIZE", ")", "if", "not", "chunk", ":", "break", "chunks", ".", "append", "(", "chunk", ")", "thread", "=", "threading", ".", "Thread", "(", "target", "=", "target", ")", "thread", ".", "start", "(", ")", "return", "thread" ]
Starts a thread for reading output from FFMPEG. The thread reads consecutive chunks from the stream and saves them in the given list. Args: stream: output stream of the FFMPEG process. chunks: list to save output chunks to. Returns: Thread
[ "Starts", "a", "thread", "for", "reading", "output", "from", "FFMPEG", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/layers/common_video.py#L746-L769
21,858
tensorflow/tensor2tensor
tensor2tensor/layers/common_video.py
WholeVideoWriter.finish
def finish(self): """Finishes transconding and returns the video. Returns: bytes Raises: IOError: in case of transcoding error. """ if self.proc is None: return None self.proc.stdin.close() for thread in (self._out_thread, self._err_thread): thread.join() (out, err) = [ b"".join(chunks) for chunks in (self._out_chunks, self._err_chunks) ] self.proc.stdout.close() self.proc.stderr.close() if self.proc.returncode: err = "\n".join([" ".join(self.cmd), err.decode("utf8")]) raise IOError(err) del self.proc self.proc = None return out
python
def finish(self): """Finishes transconding and returns the video. Returns: bytes Raises: IOError: in case of transcoding error. """ if self.proc is None: return None self.proc.stdin.close() for thread in (self._out_thread, self._err_thread): thread.join() (out, err) = [ b"".join(chunks) for chunks in (self._out_chunks, self._err_chunks) ] self.proc.stdout.close() self.proc.stderr.close() if self.proc.returncode: err = "\n".join([" ".join(self.cmd), err.decode("utf8")]) raise IOError(err) del self.proc self.proc = None return out
[ "def", "finish", "(", "self", ")", ":", "if", "self", ".", "proc", "is", "None", ":", "return", "None", "self", ".", "proc", ".", "stdin", ".", "close", "(", ")", "for", "thread", "in", "(", "self", ".", "_out_thread", ",", "self", ".", "_err_thread", ")", ":", "thread", ".", "join", "(", ")", "(", "out", ",", "err", ")", "=", "[", "b\"\"", ".", "join", "(", "chunks", ")", "for", "chunks", "in", "(", "self", ".", "_out_chunks", ",", "self", ".", "_err_chunks", ")", "]", "self", ".", "proc", ".", "stdout", ".", "close", "(", ")", "self", ".", "proc", ".", "stderr", ".", "close", "(", ")", "if", "self", ".", "proc", ".", "returncode", ":", "err", "=", "\"\\n\"", ".", "join", "(", "[", "\" \"", ".", "join", "(", "self", ".", "cmd", ")", ",", "err", ".", "decode", "(", "\"utf8\"", ")", "]", ")", "raise", "IOError", "(", "err", ")", "del", "self", ".", "proc", "self", ".", "proc", "=", "None", "return", "out" ]
Finishes transconding and returns the video. Returns: bytes Raises: IOError: in case of transcoding error.
[ "Finishes", "transconding", "and", "returns", "the", "video", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/layers/common_video.py#L776-L800
21,859
tensorflow/tensor2tensor
tensor2tensor/serving/query.py
validate_flags
def validate_flags(): """Validates flags are set to acceptable values.""" if FLAGS.cloud_mlengine_model_name: assert not FLAGS.server assert not FLAGS.servable_name else: assert FLAGS.server assert FLAGS.servable_name
python
def validate_flags(): """Validates flags are set to acceptable values.""" if FLAGS.cloud_mlengine_model_name: assert not FLAGS.server assert not FLAGS.servable_name else: assert FLAGS.server assert FLAGS.servable_name
[ "def", "validate_flags", "(", ")", ":", "if", "FLAGS", ".", "cloud_mlengine_model_name", ":", "assert", "not", "FLAGS", ".", "server", "assert", "not", "FLAGS", ".", "servable_name", "else", ":", "assert", "FLAGS", ".", "server", "assert", "FLAGS", ".", "servable_name" ]
Validates flags are set to acceptable values.
[ "Validates", "flags", "are", "set", "to", "acceptable", "values", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/serving/query.py#L53-L60
21,860
tensorflow/tensor2tensor
tensor2tensor/serving/query.py
make_request_fn
def make_request_fn(): """Returns a request function.""" if FLAGS.cloud_mlengine_model_name: request_fn = serving_utils.make_cloud_mlengine_request_fn( credentials=GoogleCredentials.get_application_default(), model_name=FLAGS.cloud_mlengine_model_name, version=FLAGS.cloud_mlengine_model_version) else: request_fn = serving_utils.make_grpc_request_fn( servable_name=FLAGS.servable_name, server=FLAGS.server, timeout_secs=FLAGS.timeout_secs) return request_fn
python
def make_request_fn(): """Returns a request function.""" if FLAGS.cloud_mlengine_model_name: request_fn = serving_utils.make_cloud_mlengine_request_fn( credentials=GoogleCredentials.get_application_default(), model_name=FLAGS.cloud_mlengine_model_name, version=FLAGS.cloud_mlengine_model_version) else: request_fn = serving_utils.make_grpc_request_fn( servable_name=FLAGS.servable_name, server=FLAGS.server, timeout_secs=FLAGS.timeout_secs) return request_fn
[ "def", "make_request_fn", "(", ")", ":", "if", "FLAGS", ".", "cloud_mlengine_model_name", ":", "request_fn", "=", "serving_utils", ".", "make_cloud_mlengine_request_fn", "(", "credentials", "=", "GoogleCredentials", ".", "get_application_default", "(", ")", ",", "model_name", "=", "FLAGS", ".", "cloud_mlengine_model_name", ",", "version", "=", "FLAGS", ".", "cloud_mlengine_model_version", ")", "else", ":", "request_fn", "=", "serving_utils", ".", "make_grpc_request_fn", "(", "servable_name", "=", "FLAGS", ".", "servable_name", ",", "server", "=", "FLAGS", ".", "server", ",", "timeout_secs", "=", "FLAGS", ".", "timeout_secs", ")", "return", "request_fn" ]
Returns a request function.
[ "Returns", "a", "request", "function", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/serving/query.py#L63-L76
21,861
tensorflow/tensor2tensor
tensor2tensor/models/video/savp.py
NextFrameSavpBase.encoder
def encoder(self, inputs, n_layers=3): """Convnet that encodes inputs into mean and std of a gaussian. Args: inputs: 5-D Tensor, shape (batch_size, num_frames, width, height, channels) n_layers: Number of layers. Returns: z_mu: Mean of the latent gaussians. z_log_var: log(var) of the latent gaussians. Raises: ValueError: If inputs is not a 5-D tensor or not float32. """ latent_dims = self.hparams.z_dim shape_as_list = inputs.shape.as_list() if len(shape_as_list) != 5: raise ValueError("Expected inputs to be a 5-D, got %d" % len(shape_as_list)) if inputs.dtype != tf.float32: raise ValueError("Expected dtype tf.float32, got %s" % inputs.dtype) # Flatten (N,T,W,H,C) into (NT,W,H,C) batch_size, _ = shape_as_list[:2] inputs = tf.reshape(inputs, [-1] + list(inputs.shape)[2:]) n_filters = 64 rectified = None # Applies 3 layer conv-net with padding, instance normalization # and leaky relu as per the encoder in # https://github.com/alexlee-gk/video_prediction padding = [[0, 0], [1, 1], [1, 1], [0, 0]] for i in range(n_layers): with tf.variable_scope("layer_%d" % (i + 1)): n_filters *= 2**i if i: padded = tf.pad(rectified, padding) else: padded = tf.pad(inputs, padding) convolved = tf.layers.conv2d(padded, filters=n_filters, kernel_size=4, strides=2, padding="VALID") normalized = tf.contrib.layers.instance_norm(convolved) rectified = tf.nn.leaky_relu(normalized, alpha=0.2) # Mean pooling across all spatial dimensions. pooled = tf.nn.avg_pool( rectified, [1] + rectified.shape[1:3].as_list() + [1], strides=[1, 1, 1, 1], padding="VALID") squeezed = tf.squeeze(pooled, [1, 2]) # Down-project and output the mean and log of the standard deviation of # the latents. with tf.variable_scope("z_mu"): z_mu = tf.layers.dense(squeezed, latent_dims) with tf.variable_scope("z_log_sigma_sq"): z_log_var = tf.layers.dense(squeezed, latent_dims) z_log_var = tf.clip_by_value(z_log_var, -10, 10) # Reshape to (batch_size X num_frames X latent_dims) z_mu = tf.reshape(z_mu, (batch_size, -1, latent_dims)) z_log_var = tf.reshape( z_log_var, (batch_size, -1, latent_dims)) return z_mu, z_log_var
python
def encoder(self, inputs, n_layers=3): """Convnet that encodes inputs into mean and std of a gaussian. Args: inputs: 5-D Tensor, shape (batch_size, num_frames, width, height, channels) n_layers: Number of layers. Returns: z_mu: Mean of the latent gaussians. z_log_var: log(var) of the latent gaussians. Raises: ValueError: If inputs is not a 5-D tensor or not float32. """ latent_dims = self.hparams.z_dim shape_as_list = inputs.shape.as_list() if len(shape_as_list) != 5: raise ValueError("Expected inputs to be a 5-D, got %d" % len(shape_as_list)) if inputs.dtype != tf.float32: raise ValueError("Expected dtype tf.float32, got %s" % inputs.dtype) # Flatten (N,T,W,H,C) into (NT,W,H,C) batch_size, _ = shape_as_list[:2] inputs = tf.reshape(inputs, [-1] + list(inputs.shape)[2:]) n_filters = 64 rectified = None # Applies 3 layer conv-net with padding, instance normalization # and leaky relu as per the encoder in # https://github.com/alexlee-gk/video_prediction padding = [[0, 0], [1, 1], [1, 1], [0, 0]] for i in range(n_layers): with tf.variable_scope("layer_%d" % (i + 1)): n_filters *= 2**i if i: padded = tf.pad(rectified, padding) else: padded = tf.pad(inputs, padding) convolved = tf.layers.conv2d(padded, filters=n_filters, kernel_size=4, strides=2, padding="VALID") normalized = tf.contrib.layers.instance_norm(convolved) rectified = tf.nn.leaky_relu(normalized, alpha=0.2) # Mean pooling across all spatial dimensions. pooled = tf.nn.avg_pool( rectified, [1] + rectified.shape[1:3].as_list() + [1], strides=[1, 1, 1, 1], padding="VALID") squeezed = tf.squeeze(pooled, [1, 2]) # Down-project and output the mean and log of the standard deviation of # the latents. with tf.variable_scope("z_mu"): z_mu = tf.layers.dense(squeezed, latent_dims) with tf.variable_scope("z_log_sigma_sq"): z_log_var = tf.layers.dense(squeezed, latent_dims) z_log_var = tf.clip_by_value(z_log_var, -10, 10) # Reshape to (batch_size X num_frames X latent_dims) z_mu = tf.reshape(z_mu, (batch_size, -1, latent_dims)) z_log_var = tf.reshape( z_log_var, (batch_size, -1, latent_dims)) return z_mu, z_log_var
[ "def", "encoder", "(", "self", ",", "inputs", ",", "n_layers", "=", "3", ")", ":", "latent_dims", "=", "self", ".", "hparams", ".", "z_dim", "shape_as_list", "=", "inputs", ".", "shape", ".", "as_list", "(", ")", "if", "len", "(", "shape_as_list", ")", "!=", "5", ":", "raise", "ValueError", "(", "\"Expected inputs to be a 5-D, got %d\"", "%", "len", "(", "shape_as_list", ")", ")", "if", "inputs", ".", "dtype", "!=", "tf", ".", "float32", ":", "raise", "ValueError", "(", "\"Expected dtype tf.float32, got %s\"", "%", "inputs", ".", "dtype", ")", "# Flatten (N,T,W,H,C) into (NT,W,H,C)", "batch_size", ",", "_", "=", "shape_as_list", "[", ":", "2", "]", "inputs", "=", "tf", ".", "reshape", "(", "inputs", ",", "[", "-", "1", "]", "+", "list", "(", "inputs", ".", "shape", ")", "[", "2", ":", "]", ")", "n_filters", "=", "64", "rectified", "=", "None", "# Applies 3 layer conv-net with padding, instance normalization", "# and leaky relu as per the encoder in", "# https://github.com/alexlee-gk/video_prediction", "padding", "=", "[", "[", "0", ",", "0", "]", ",", "[", "1", ",", "1", "]", ",", "[", "1", ",", "1", "]", ",", "[", "0", ",", "0", "]", "]", "for", "i", "in", "range", "(", "n_layers", ")", ":", "with", "tf", ".", "variable_scope", "(", "\"layer_%d\"", "%", "(", "i", "+", "1", ")", ")", ":", "n_filters", "*=", "2", "**", "i", "if", "i", ":", "padded", "=", "tf", ".", "pad", "(", "rectified", ",", "padding", ")", "else", ":", "padded", "=", "tf", ".", "pad", "(", "inputs", ",", "padding", ")", "convolved", "=", "tf", ".", "layers", ".", "conv2d", "(", "padded", ",", "filters", "=", "n_filters", ",", "kernel_size", "=", "4", ",", "strides", "=", "2", ",", "padding", "=", "\"VALID\"", ")", "normalized", "=", "tf", ".", "contrib", ".", "layers", ".", "instance_norm", "(", "convolved", ")", "rectified", "=", "tf", ".", "nn", ".", "leaky_relu", "(", "normalized", ",", "alpha", "=", "0.2", ")", "# Mean pooling across all spatial dimensions.", "pooled", "=", "tf", ".", "nn", ".", "avg_pool", "(", "rectified", ",", "[", "1", "]", "+", "rectified", ".", "shape", "[", "1", ":", "3", "]", ".", "as_list", "(", ")", "+", "[", "1", "]", ",", "strides", "=", "[", "1", ",", "1", ",", "1", ",", "1", "]", ",", "padding", "=", "\"VALID\"", ")", "squeezed", "=", "tf", ".", "squeeze", "(", "pooled", ",", "[", "1", ",", "2", "]", ")", "# Down-project and output the mean and log of the standard deviation of", "# the latents.", "with", "tf", ".", "variable_scope", "(", "\"z_mu\"", ")", ":", "z_mu", "=", "tf", ".", "layers", ".", "dense", "(", "squeezed", ",", "latent_dims", ")", "with", "tf", ".", "variable_scope", "(", "\"z_log_sigma_sq\"", ")", ":", "z_log_var", "=", "tf", ".", "layers", ".", "dense", "(", "squeezed", ",", "latent_dims", ")", "z_log_var", "=", "tf", ".", "clip_by_value", "(", "z_log_var", ",", "-", "10", ",", "10", ")", "# Reshape to (batch_size X num_frames X latent_dims)", "z_mu", "=", "tf", ".", "reshape", "(", "z_mu", ",", "(", "batch_size", ",", "-", "1", ",", "latent_dims", ")", ")", "z_log_var", "=", "tf", ".", "reshape", "(", "z_log_var", ",", "(", "batch_size", ",", "-", "1", ",", "latent_dims", ")", ")", "return", "z_mu", ",", "z_log_var" ]
Convnet that encodes inputs into mean and std of a gaussian. Args: inputs: 5-D Tensor, shape (batch_size, num_frames, width, height, channels) n_layers: Number of layers. Returns: z_mu: Mean of the latent gaussians. z_log_var: log(var) of the latent gaussians. Raises: ValueError: If inputs is not a 5-D tensor or not float32.
[ "Convnet", "that", "encodes", "inputs", "into", "mean", "and", "std", "of", "a", "gaussian", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/video/savp.py#L42-L105
21,862
tensorflow/tensor2tensor
tensor2tensor/models/video/savp.py
NextFrameSavpBase.get_fc_dimensions
def get_fc_dimensions(self, strides, kernel_sizes): """Get expected fully connected shape after a series of convolutions.""" output_height, output_width, _ = self.hparams.problem.frame_shape output_steps = self.hparams.video_num_target_frames output_shape = np.array([output_steps, output_height, output_width]) for curr_stride, kernel_size in zip(strides, kernel_sizes): output_shape = self.expected_output_shape( output_shape, np.array(curr_stride), 1, kernel_size) return np.prod(output_shape) * self.hparams.num_discriminator_filters * 8
python
def get_fc_dimensions(self, strides, kernel_sizes): """Get expected fully connected shape after a series of convolutions.""" output_height, output_width, _ = self.hparams.problem.frame_shape output_steps = self.hparams.video_num_target_frames output_shape = np.array([output_steps, output_height, output_width]) for curr_stride, kernel_size in zip(strides, kernel_sizes): output_shape = self.expected_output_shape( output_shape, np.array(curr_stride), 1, kernel_size) return np.prod(output_shape) * self.hparams.num_discriminator_filters * 8
[ "def", "get_fc_dimensions", "(", "self", ",", "strides", ",", "kernel_sizes", ")", ":", "output_height", ",", "output_width", ",", "_", "=", "self", ".", "hparams", ".", "problem", ".", "frame_shape", "output_steps", "=", "self", ".", "hparams", ".", "video_num_target_frames", "output_shape", "=", "np", ".", "array", "(", "[", "output_steps", ",", "output_height", ",", "output_width", "]", ")", "for", "curr_stride", ",", "kernel_size", "in", "zip", "(", "strides", ",", "kernel_sizes", ")", ":", "output_shape", "=", "self", ".", "expected_output_shape", "(", "output_shape", ",", "np", ".", "array", "(", "curr_stride", ")", ",", "1", ",", "kernel_size", ")", "return", "np", ".", "prod", "(", "output_shape", ")", "*", "self", ".", "hparams", ".", "num_discriminator_filters", "*", "8" ]
Get expected fully connected shape after a series of convolutions.
[ "Get", "expected", "fully", "connected", "shape", "after", "a", "series", "of", "convolutions", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/video/savp.py#L110-L118
21,863
tensorflow/tensor2tensor
tensor2tensor/models/video/savp.py
NextFrameSavpBase.discriminator
def discriminator(self, frames): """3-D SNGAN discriminator. Args: frames: a list of batch-major tensors indexed by time. Returns: logits: 1-D Tensor with shape=batch_size. Positive logits imply that the discriminator thinks that it belongs to the true class. """ ndf = self.hparams.num_discriminator_filters frames = tf.stack(frames) # Switch from time-major axis to batch-major axis. frames = common_video.swap_time_and_batch_axes(frames) # 3-D Conv-net mapping inputs to activations. num_outputs = [ndf, ndf*2, ndf*2, ndf*4, ndf*4, ndf*8, ndf*8] kernel_sizes = [3, 4, 3, 4, 3, 4, 3] strides = [[1, 1, 1], [1, 2, 2], [1, 1, 1], [1, 2, 2], [1, 1, 1], [2, 2, 2], [1, 1, 1]] names = ["video_sn_conv0_0", "video_sn_conv0_1", "video_sn_conv1_0", "video_sn_conv1_1", "video_sn_conv2_0", "video_sn_conv2_1", "video_sn_conv3_0"] iterable = zip(num_outputs, kernel_sizes, strides, names) activations = frames for num_filters, kernel_size, stride, name in iterable: activations = self.pad_conv3d_lrelu(activations, num_filters, kernel_size, stride, name) num_fc_dimensions = self.get_fc_dimensions(strides, kernel_sizes) activations = tf.reshape(activations, (-1, num_fc_dimensions)) return tf.squeeze(tf.layers.dense(activations, 1))
python
def discriminator(self, frames): """3-D SNGAN discriminator. Args: frames: a list of batch-major tensors indexed by time. Returns: logits: 1-D Tensor with shape=batch_size. Positive logits imply that the discriminator thinks that it belongs to the true class. """ ndf = self.hparams.num_discriminator_filters frames = tf.stack(frames) # Switch from time-major axis to batch-major axis. frames = common_video.swap_time_and_batch_axes(frames) # 3-D Conv-net mapping inputs to activations. num_outputs = [ndf, ndf*2, ndf*2, ndf*4, ndf*4, ndf*8, ndf*8] kernel_sizes = [3, 4, 3, 4, 3, 4, 3] strides = [[1, 1, 1], [1, 2, 2], [1, 1, 1], [1, 2, 2], [1, 1, 1], [2, 2, 2], [1, 1, 1]] names = ["video_sn_conv0_0", "video_sn_conv0_1", "video_sn_conv1_0", "video_sn_conv1_1", "video_sn_conv2_0", "video_sn_conv2_1", "video_sn_conv3_0"] iterable = zip(num_outputs, kernel_sizes, strides, names) activations = frames for num_filters, kernel_size, stride, name in iterable: activations = self.pad_conv3d_lrelu(activations, num_filters, kernel_size, stride, name) num_fc_dimensions = self.get_fc_dimensions(strides, kernel_sizes) activations = tf.reshape(activations, (-1, num_fc_dimensions)) return tf.squeeze(tf.layers.dense(activations, 1))
[ "def", "discriminator", "(", "self", ",", "frames", ")", ":", "ndf", "=", "self", ".", "hparams", ".", "num_discriminator_filters", "frames", "=", "tf", ".", "stack", "(", "frames", ")", "# Switch from time-major axis to batch-major axis.", "frames", "=", "common_video", ".", "swap_time_and_batch_axes", "(", "frames", ")", "# 3-D Conv-net mapping inputs to activations.", "num_outputs", "=", "[", "ndf", ",", "ndf", "*", "2", ",", "ndf", "*", "2", ",", "ndf", "*", "4", ",", "ndf", "*", "4", ",", "ndf", "*", "8", ",", "ndf", "*", "8", "]", "kernel_sizes", "=", "[", "3", ",", "4", ",", "3", ",", "4", ",", "3", ",", "4", ",", "3", "]", "strides", "=", "[", "[", "1", ",", "1", ",", "1", "]", ",", "[", "1", ",", "2", ",", "2", "]", ",", "[", "1", ",", "1", ",", "1", "]", ",", "[", "1", ",", "2", ",", "2", "]", ",", "[", "1", ",", "1", ",", "1", "]", ",", "[", "2", ",", "2", ",", "2", "]", ",", "[", "1", ",", "1", ",", "1", "]", "]", "names", "=", "[", "\"video_sn_conv0_0\"", ",", "\"video_sn_conv0_1\"", ",", "\"video_sn_conv1_0\"", ",", "\"video_sn_conv1_1\"", ",", "\"video_sn_conv2_0\"", ",", "\"video_sn_conv2_1\"", ",", "\"video_sn_conv3_0\"", "]", "iterable", "=", "zip", "(", "num_outputs", ",", "kernel_sizes", ",", "strides", ",", "names", ")", "activations", "=", "frames", "for", "num_filters", ",", "kernel_size", ",", "stride", ",", "name", "in", "iterable", ":", "activations", "=", "self", ".", "pad_conv3d_lrelu", "(", "activations", ",", "num_filters", ",", "kernel_size", ",", "stride", ",", "name", ")", "num_fc_dimensions", "=", "self", ".", "get_fc_dimensions", "(", "strides", ",", "kernel_sizes", ")", "activations", "=", "tf", ".", "reshape", "(", "activations", ",", "(", "-", "1", ",", "num_fc_dimensions", ")", ")", "return", "tf", ".", "squeeze", "(", "tf", ".", "layers", ".", "dense", "(", "activations", ",", "1", ")", ")" ]
3-D SNGAN discriminator. Args: frames: a list of batch-major tensors indexed by time. Returns: logits: 1-D Tensor with shape=batch_size. Positive logits imply that the discriminator thinks that it belongs to the true class.
[ "3", "-", "D", "SNGAN", "discriminator", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/video/savp.py#L120-L153
21,864
tensorflow/tensor2tensor
tensor2tensor/models/video/savp.py
NextFrameSavpBase.d_step
def d_step(self, true_frames, gen_frames): """Performs the discriminator step in computing the GAN loss. Applies stop-gradient to the generated frames while computing the discriminator loss to make sure that the gradients are not back-propagated to the generator. This makes sure that only the discriminator is updated. Args: true_frames: True outputs gen_frames: Generated frames. Returns: d_loss: Loss component due to the discriminator. """ hparam_to_disc_loss = { "least_squares": gan_losses.least_squares_discriminator_loss, "cross_entropy": gan_losses.modified_discriminator_loss, "wasserstein": gan_losses.wasserstein_discriminator_loss} # Concat across batch-axis. _, batch_size, _, _, _ = common_layers.shape_list(true_frames) all_frames = tf.concat( [true_frames, tf.stop_gradient(gen_frames)], axis=1) all_logits = self.discriminator(all_frames) true_logits, fake_logits_stop = \ all_logits[:batch_size], all_logits[batch_size:] mean_true_logits = tf.reduce_mean(true_logits) tf.summary.scalar("mean_true_logits", mean_true_logits) mean_fake_logits_stop = tf.reduce_mean(fake_logits_stop) tf.summary.scalar("mean_fake_logits_stop", mean_fake_logits_stop) discriminator_loss_func = hparam_to_disc_loss[self.hparams.gan_loss] gan_d_loss = discriminator_loss_func( discriminator_real_outputs=true_logits, discriminator_gen_outputs=fake_logits_stop, add_summaries=True) return gan_d_loss, true_logits, fake_logits_stop
python
def d_step(self, true_frames, gen_frames): """Performs the discriminator step in computing the GAN loss. Applies stop-gradient to the generated frames while computing the discriminator loss to make sure that the gradients are not back-propagated to the generator. This makes sure that only the discriminator is updated. Args: true_frames: True outputs gen_frames: Generated frames. Returns: d_loss: Loss component due to the discriminator. """ hparam_to_disc_loss = { "least_squares": gan_losses.least_squares_discriminator_loss, "cross_entropy": gan_losses.modified_discriminator_loss, "wasserstein": gan_losses.wasserstein_discriminator_loss} # Concat across batch-axis. _, batch_size, _, _, _ = common_layers.shape_list(true_frames) all_frames = tf.concat( [true_frames, tf.stop_gradient(gen_frames)], axis=1) all_logits = self.discriminator(all_frames) true_logits, fake_logits_stop = \ all_logits[:batch_size], all_logits[batch_size:] mean_true_logits = tf.reduce_mean(true_logits) tf.summary.scalar("mean_true_logits", mean_true_logits) mean_fake_logits_stop = tf.reduce_mean(fake_logits_stop) tf.summary.scalar("mean_fake_logits_stop", mean_fake_logits_stop) discriminator_loss_func = hparam_to_disc_loss[self.hparams.gan_loss] gan_d_loss = discriminator_loss_func( discriminator_real_outputs=true_logits, discriminator_gen_outputs=fake_logits_stop, add_summaries=True) return gan_d_loss, true_logits, fake_logits_stop
[ "def", "d_step", "(", "self", ",", "true_frames", ",", "gen_frames", ")", ":", "hparam_to_disc_loss", "=", "{", "\"least_squares\"", ":", "gan_losses", ".", "least_squares_discriminator_loss", ",", "\"cross_entropy\"", ":", "gan_losses", ".", "modified_discriminator_loss", ",", "\"wasserstein\"", ":", "gan_losses", ".", "wasserstein_discriminator_loss", "}", "# Concat across batch-axis.", "_", ",", "batch_size", ",", "_", ",", "_", ",", "_", "=", "common_layers", ".", "shape_list", "(", "true_frames", ")", "all_frames", "=", "tf", ".", "concat", "(", "[", "true_frames", ",", "tf", ".", "stop_gradient", "(", "gen_frames", ")", "]", ",", "axis", "=", "1", ")", "all_logits", "=", "self", ".", "discriminator", "(", "all_frames", ")", "true_logits", ",", "fake_logits_stop", "=", "all_logits", "[", ":", "batch_size", "]", ",", "all_logits", "[", "batch_size", ":", "]", "mean_true_logits", "=", "tf", ".", "reduce_mean", "(", "true_logits", ")", "tf", ".", "summary", ".", "scalar", "(", "\"mean_true_logits\"", ",", "mean_true_logits", ")", "mean_fake_logits_stop", "=", "tf", ".", "reduce_mean", "(", "fake_logits_stop", ")", "tf", ".", "summary", ".", "scalar", "(", "\"mean_fake_logits_stop\"", ",", "mean_fake_logits_stop", ")", "discriminator_loss_func", "=", "hparam_to_disc_loss", "[", "self", ".", "hparams", ".", "gan_loss", "]", "gan_d_loss", "=", "discriminator_loss_func", "(", "discriminator_real_outputs", "=", "true_logits", ",", "discriminator_gen_outputs", "=", "fake_logits_stop", ",", "add_summaries", "=", "True", ")", "return", "gan_d_loss", ",", "true_logits", ",", "fake_logits_stop" ]
Performs the discriminator step in computing the GAN loss. Applies stop-gradient to the generated frames while computing the discriminator loss to make sure that the gradients are not back-propagated to the generator. This makes sure that only the discriminator is updated. Args: true_frames: True outputs gen_frames: Generated frames. Returns: d_loss: Loss component due to the discriminator.
[ "Performs", "the", "discriminator", "step", "in", "computing", "the", "GAN", "loss", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/video/savp.py#L155-L192
21,865
tensorflow/tensor2tensor
tensor2tensor/models/video/savp.py
NextFrameSavpBase.g_step
def g_step(self, gen_frames, fake_logits_stop): """Performs the generator step in computing the GAN loss. Args: gen_frames: Generated frames fake_logits_stop: Logits corresponding to the generated frames as per the discriminator. Assumed to have a stop-gradient term. Returns: gan_g_loss_pos_d: Loss. gan_g_loss_neg_d: -gan_g_loss_pos_d but with a stop gradient on generator. """ hparam_to_gen_loss = { "least_squares": gan_losses.least_squares_generator_loss, "cross_entropy": gan_losses.modified_generator_loss, "wasserstein": gan_losses.wasserstein_generator_loss } fake_logits = self.discriminator(gen_frames) mean_fake_logits = tf.reduce_mean(fake_logits) tf.summary.scalar("mean_fake_logits", mean_fake_logits) # Generator loss. # Using gan_g_loss_pos_d updates the discriminator as well. # To avoid this add gan_g_loss_neg_d = -gan_g_loss_pos_d # but with stop gradient on the generator. # This makes sure that the net gradient on the discriminator is zero and # net-gradient on the generator is just due to the gan_g_loss_pos_d. generator_loss_func = hparam_to_gen_loss[self.hparams.gan_loss] gan_g_loss_pos_d = generator_loss_func( discriminator_gen_outputs=fake_logits, add_summaries=True) gan_g_loss_neg_d = -generator_loss_func( discriminator_gen_outputs=fake_logits_stop, add_summaries=True) return gan_g_loss_pos_d, gan_g_loss_neg_d
python
def g_step(self, gen_frames, fake_logits_stop): """Performs the generator step in computing the GAN loss. Args: gen_frames: Generated frames fake_logits_stop: Logits corresponding to the generated frames as per the discriminator. Assumed to have a stop-gradient term. Returns: gan_g_loss_pos_d: Loss. gan_g_loss_neg_d: -gan_g_loss_pos_d but with a stop gradient on generator. """ hparam_to_gen_loss = { "least_squares": gan_losses.least_squares_generator_loss, "cross_entropy": gan_losses.modified_generator_loss, "wasserstein": gan_losses.wasserstein_generator_loss } fake_logits = self.discriminator(gen_frames) mean_fake_logits = tf.reduce_mean(fake_logits) tf.summary.scalar("mean_fake_logits", mean_fake_logits) # Generator loss. # Using gan_g_loss_pos_d updates the discriminator as well. # To avoid this add gan_g_loss_neg_d = -gan_g_loss_pos_d # but with stop gradient on the generator. # This makes sure that the net gradient on the discriminator is zero and # net-gradient on the generator is just due to the gan_g_loss_pos_d. generator_loss_func = hparam_to_gen_loss[self.hparams.gan_loss] gan_g_loss_pos_d = generator_loss_func( discriminator_gen_outputs=fake_logits, add_summaries=True) gan_g_loss_neg_d = -generator_loss_func( discriminator_gen_outputs=fake_logits_stop, add_summaries=True) return gan_g_loss_pos_d, gan_g_loss_neg_d
[ "def", "g_step", "(", "self", ",", "gen_frames", ",", "fake_logits_stop", ")", ":", "hparam_to_gen_loss", "=", "{", "\"least_squares\"", ":", "gan_losses", ".", "least_squares_generator_loss", ",", "\"cross_entropy\"", ":", "gan_losses", ".", "modified_generator_loss", ",", "\"wasserstein\"", ":", "gan_losses", ".", "wasserstein_generator_loss", "}", "fake_logits", "=", "self", ".", "discriminator", "(", "gen_frames", ")", "mean_fake_logits", "=", "tf", ".", "reduce_mean", "(", "fake_logits", ")", "tf", ".", "summary", ".", "scalar", "(", "\"mean_fake_logits\"", ",", "mean_fake_logits", ")", "# Generator loss.", "# Using gan_g_loss_pos_d updates the discriminator as well.", "# To avoid this add gan_g_loss_neg_d = -gan_g_loss_pos_d", "# but with stop gradient on the generator.", "# This makes sure that the net gradient on the discriminator is zero and", "# net-gradient on the generator is just due to the gan_g_loss_pos_d.", "generator_loss_func", "=", "hparam_to_gen_loss", "[", "self", ".", "hparams", ".", "gan_loss", "]", "gan_g_loss_pos_d", "=", "generator_loss_func", "(", "discriminator_gen_outputs", "=", "fake_logits", ",", "add_summaries", "=", "True", ")", "gan_g_loss_neg_d", "=", "-", "generator_loss_func", "(", "discriminator_gen_outputs", "=", "fake_logits_stop", ",", "add_summaries", "=", "True", ")", "return", "gan_g_loss_pos_d", ",", "gan_g_loss_neg_d" ]
Performs the generator step in computing the GAN loss. Args: gen_frames: Generated frames fake_logits_stop: Logits corresponding to the generated frames as per the discriminator. Assumed to have a stop-gradient term. Returns: gan_g_loss_pos_d: Loss. gan_g_loss_neg_d: -gan_g_loss_pos_d but with a stop gradient on generator.
[ "Performs", "the", "generator", "step", "in", "computing", "the", "GAN", "loss", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/video/savp.py#L194-L226
21,866
tensorflow/tensor2tensor
tensor2tensor/models/video/savp.py
NextFrameSavpBase.get_gan_loss
def get_gan_loss(self, true_frames, gen_frames, name): """Get the discriminator + generator loss at every step. This performs an 1:1 update of the discriminator and generator at every step. Args: true_frames: 5-D Tensor of shape (num_steps, batch_size, H, W, C) Assumed to be ground truth. gen_frames: 5-D Tensor of shape (num_steps, batch_size, H, W, C) Assumed to be fake. name: discriminator scope. Returns: loss: 0-D Tensor, with d_loss + g_loss """ # D - STEP with tf.variable_scope("%s_discriminator" % name, reuse=tf.AUTO_REUSE): gan_d_loss, _, fake_logits_stop = self.d_step( true_frames, gen_frames) # G - STEP with tf.variable_scope("%s_discriminator" % name, reuse=True): gan_g_loss_pos_d, gan_g_loss_neg_d = self.g_step( gen_frames, fake_logits_stop) gan_g_loss = gan_g_loss_pos_d + gan_g_loss_neg_d tf.summary.scalar("gan_loss_%s" % name, gan_g_loss_pos_d + gan_d_loss) if self.hparams.gan_optimization == "joint": gan_loss = gan_g_loss + gan_d_loss else: curr_step = self.get_iteration_num() gan_loss = tf.cond( tf.logical_not(curr_step % 2 == 0), lambda: gan_g_loss, lambda: gan_d_loss) return gan_loss
python
def get_gan_loss(self, true_frames, gen_frames, name): """Get the discriminator + generator loss at every step. This performs an 1:1 update of the discriminator and generator at every step. Args: true_frames: 5-D Tensor of shape (num_steps, batch_size, H, W, C) Assumed to be ground truth. gen_frames: 5-D Tensor of shape (num_steps, batch_size, H, W, C) Assumed to be fake. name: discriminator scope. Returns: loss: 0-D Tensor, with d_loss + g_loss """ # D - STEP with tf.variable_scope("%s_discriminator" % name, reuse=tf.AUTO_REUSE): gan_d_loss, _, fake_logits_stop = self.d_step( true_frames, gen_frames) # G - STEP with tf.variable_scope("%s_discriminator" % name, reuse=True): gan_g_loss_pos_d, gan_g_loss_neg_d = self.g_step( gen_frames, fake_logits_stop) gan_g_loss = gan_g_loss_pos_d + gan_g_loss_neg_d tf.summary.scalar("gan_loss_%s" % name, gan_g_loss_pos_d + gan_d_loss) if self.hparams.gan_optimization == "joint": gan_loss = gan_g_loss + gan_d_loss else: curr_step = self.get_iteration_num() gan_loss = tf.cond( tf.logical_not(curr_step % 2 == 0), lambda: gan_g_loss, lambda: gan_d_loss) return gan_loss
[ "def", "get_gan_loss", "(", "self", ",", "true_frames", ",", "gen_frames", ",", "name", ")", ":", "# D - STEP", "with", "tf", ".", "variable_scope", "(", "\"%s_discriminator\"", "%", "name", ",", "reuse", "=", "tf", ".", "AUTO_REUSE", ")", ":", "gan_d_loss", ",", "_", ",", "fake_logits_stop", "=", "self", ".", "d_step", "(", "true_frames", ",", "gen_frames", ")", "# G - STEP", "with", "tf", ".", "variable_scope", "(", "\"%s_discriminator\"", "%", "name", ",", "reuse", "=", "True", ")", ":", "gan_g_loss_pos_d", ",", "gan_g_loss_neg_d", "=", "self", ".", "g_step", "(", "gen_frames", ",", "fake_logits_stop", ")", "gan_g_loss", "=", "gan_g_loss_pos_d", "+", "gan_g_loss_neg_d", "tf", ".", "summary", ".", "scalar", "(", "\"gan_loss_%s\"", "%", "name", ",", "gan_g_loss_pos_d", "+", "gan_d_loss", ")", "if", "self", ".", "hparams", ".", "gan_optimization", "==", "\"joint\"", ":", "gan_loss", "=", "gan_g_loss", "+", "gan_d_loss", "else", ":", "curr_step", "=", "self", ".", "get_iteration_num", "(", ")", "gan_loss", "=", "tf", ".", "cond", "(", "tf", ".", "logical_not", "(", "curr_step", "%", "2", "==", "0", ")", ",", "lambda", ":", "gan_g_loss", ",", "lambda", ":", "gan_d_loss", ")", "return", "gan_loss" ]
Get the discriminator + generator loss at every step. This performs an 1:1 update of the discriminator and generator at every step. Args: true_frames: 5-D Tensor of shape (num_steps, batch_size, H, W, C) Assumed to be ground truth. gen_frames: 5-D Tensor of shape (num_steps, batch_size, H, W, C) Assumed to be fake. name: discriminator scope. Returns: loss: 0-D Tensor, with d_loss + g_loss
[ "Get", "the", "discriminator", "+", "generator", "loss", "at", "every", "step", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/video/savp.py#L228-L262
21,867
tensorflow/tensor2tensor
tensor2tensor/models/video/savp.py
NextFrameSavpBase.get_extra_loss
def get_extra_loss(self, latent_means=None, latent_stds=None, true_frames=None, gen_frames=None): """Gets extra loss from VAE and GAN.""" if not self.is_training: return 0.0 vae_loss, d_vae_loss, d_gan_loss = 0.0, 0.0, 0.0 # Use sv2p's KL divergence computation. if self.hparams.use_vae: vae_loss = super(NextFrameSavpBase, self).get_extra_loss( latent_means=latent_means, latent_stds=latent_stds) if self.hparams.use_gan: # Strip out the first context_frames for the true_frames # Strip out the first context_frames - 1 for the gen_frames context_frames = self.hparams.video_num_input_frames true_frames = tf.stack( tf.unstack(true_frames, axis=0)[context_frames:]) # discriminator for VAE. if self.hparams.use_vae: gen_enc_frames = tf.stack( tf.unstack(gen_frames, axis=0)[context_frames-1:]) d_vae_loss = self.get_gan_loss(true_frames, gen_enc_frames, name="vae") # discriminator for GAN. gen_prior_frames = tf.stack( tf.unstack(self.gen_prior_video, axis=0)[context_frames-1:]) d_gan_loss = self.get_gan_loss(true_frames, gen_prior_frames, name="gan") return ( vae_loss + self.hparams.gan_loss_multiplier * d_gan_loss + self.hparams.gan_vae_loss_multiplier * d_vae_loss)
python
def get_extra_loss(self, latent_means=None, latent_stds=None, true_frames=None, gen_frames=None): """Gets extra loss from VAE and GAN.""" if not self.is_training: return 0.0 vae_loss, d_vae_loss, d_gan_loss = 0.0, 0.0, 0.0 # Use sv2p's KL divergence computation. if self.hparams.use_vae: vae_loss = super(NextFrameSavpBase, self).get_extra_loss( latent_means=latent_means, latent_stds=latent_stds) if self.hparams.use_gan: # Strip out the first context_frames for the true_frames # Strip out the first context_frames - 1 for the gen_frames context_frames = self.hparams.video_num_input_frames true_frames = tf.stack( tf.unstack(true_frames, axis=0)[context_frames:]) # discriminator for VAE. if self.hparams.use_vae: gen_enc_frames = tf.stack( tf.unstack(gen_frames, axis=0)[context_frames-1:]) d_vae_loss = self.get_gan_loss(true_frames, gen_enc_frames, name="vae") # discriminator for GAN. gen_prior_frames = tf.stack( tf.unstack(self.gen_prior_video, axis=0)[context_frames-1:]) d_gan_loss = self.get_gan_loss(true_frames, gen_prior_frames, name="gan") return ( vae_loss + self.hparams.gan_loss_multiplier * d_gan_loss + self.hparams.gan_vae_loss_multiplier * d_vae_loss)
[ "def", "get_extra_loss", "(", "self", ",", "latent_means", "=", "None", ",", "latent_stds", "=", "None", ",", "true_frames", "=", "None", ",", "gen_frames", "=", "None", ")", ":", "if", "not", "self", ".", "is_training", ":", "return", "0.0", "vae_loss", ",", "d_vae_loss", ",", "d_gan_loss", "=", "0.0", ",", "0.0", ",", "0.0", "# Use sv2p's KL divergence computation.", "if", "self", ".", "hparams", ".", "use_vae", ":", "vae_loss", "=", "super", "(", "NextFrameSavpBase", ",", "self", ")", ".", "get_extra_loss", "(", "latent_means", "=", "latent_means", ",", "latent_stds", "=", "latent_stds", ")", "if", "self", ".", "hparams", ".", "use_gan", ":", "# Strip out the first context_frames for the true_frames", "# Strip out the first context_frames - 1 for the gen_frames", "context_frames", "=", "self", ".", "hparams", ".", "video_num_input_frames", "true_frames", "=", "tf", ".", "stack", "(", "tf", ".", "unstack", "(", "true_frames", ",", "axis", "=", "0", ")", "[", "context_frames", ":", "]", ")", "# discriminator for VAE.", "if", "self", ".", "hparams", ".", "use_vae", ":", "gen_enc_frames", "=", "tf", ".", "stack", "(", "tf", ".", "unstack", "(", "gen_frames", ",", "axis", "=", "0", ")", "[", "context_frames", "-", "1", ":", "]", ")", "d_vae_loss", "=", "self", ".", "get_gan_loss", "(", "true_frames", ",", "gen_enc_frames", ",", "name", "=", "\"vae\"", ")", "# discriminator for GAN.", "gen_prior_frames", "=", "tf", ".", "stack", "(", "tf", ".", "unstack", "(", "self", ".", "gen_prior_video", ",", "axis", "=", "0", ")", "[", "context_frames", "-", "1", ":", "]", ")", "d_gan_loss", "=", "self", ".", "get_gan_loss", "(", "true_frames", ",", "gen_prior_frames", ",", "name", "=", "\"gan\"", ")", "return", "(", "vae_loss", "+", "self", ".", "hparams", ".", "gan_loss_multiplier", "*", "d_gan_loss", "+", "self", ".", "hparams", ".", "gan_vae_loss_multiplier", "*", "d_vae_loss", ")" ]
Gets extra loss from VAE and GAN.
[ "Gets", "extra", "loss", "from", "VAE", "and", "GAN", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/video/savp.py#L264-L296
21,868
tensorflow/tensor2tensor
tensor2tensor/models/video/savp.py
NextFrameSavpBase.pad_conv3d_lrelu
def pad_conv3d_lrelu(self, activations, n_filters, kernel_size, strides, scope): """Pad, apply 3-D convolution and leaky relu.""" padding = [[0, 0], [1, 1], [1, 1], [1, 1], [0, 0]] # tf.nn.conv3d accepts a list of 5 values for strides # with first and last value equal to 1 if isinstance(strides, numbers.Integral): strides = [strides] * 3 strides = [1] + strides + [1] # Filter_shape = [K, K, K, num_input, num_output] filter_shape = ( [kernel_size]*3 + activations.shape[-1:].as_list() + [n_filters]) with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): conv_filter = tf.get_variable( "conv_filter", shape=filter_shape, initializer=tf.truncated_normal_initializer(stddev=0.02)) if self.hparams.use_spectral_norm: conv_filter, assign_op = common_layers.apply_spectral_norm(conv_filter) if self.is_training: tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, assign_op) padded = tf.pad(activations, padding) convolved = tf.nn.conv3d( padded, conv_filter, strides=strides, padding="VALID") rectified = tf.nn.leaky_relu(convolved, alpha=0.2) return rectified
python
def pad_conv3d_lrelu(self, activations, n_filters, kernel_size, strides, scope): """Pad, apply 3-D convolution and leaky relu.""" padding = [[0, 0], [1, 1], [1, 1], [1, 1], [0, 0]] # tf.nn.conv3d accepts a list of 5 values for strides # with first and last value equal to 1 if isinstance(strides, numbers.Integral): strides = [strides] * 3 strides = [1] + strides + [1] # Filter_shape = [K, K, K, num_input, num_output] filter_shape = ( [kernel_size]*3 + activations.shape[-1:].as_list() + [n_filters]) with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): conv_filter = tf.get_variable( "conv_filter", shape=filter_shape, initializer=tf.truncated_normal_initializer(stddev=0.02)) if self.hparams.use_spectral_norm: conv_filter, assign_op = common_layers.apply_spectral_norm(conv_filter) if self.is_training: tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, assign_op) padded = tf.pad(activations, padding) convolved = tf.nn.conv3d( padded, conv_filter, strides=strides, padding="VALID") rectified = tf.nn.leaky_relu(convolved, alpha=0.2) return rectified
[ "def", "pad_conv3d_lrelu", "(", "self", ",", "activations", ",", "n_filters", ",", "kernel_size", ",", "strides", ",", "scope", ")", ":", "padding", "=", "[", "[", "0", ",", "0", "]", ",", "[", "1", ",", "1", "]", ",", "[", "1", ",", "1", "]", ",", "[", "1", ",", "1", "]", ",", "[", "0", ",", "0", "]", "]", "# tf.nn.conv3d accepts a list of 5 values for strides", "# with first and last value equal to 1", "if", "isinstance", "(", "strides", ",", "numbers", ".", "Integral", ")", ":", "strides", "=", "[", "strides", "]", "*", "3", "strides", "=", "[", "1", "]", "+", "strides", "+", "[", "1", "]", "# Filter_shape = [K, K, K, num_input, num_output]", "filter_shape", "=", "(", "[", "kernel_size", "]", "*", "3", "+", "activations", ".", "shape", "[", "-", "1", ":", "]", ".", "as_list", "(", ")", "+", "[", "n_filters", "]", ")", "with", "tf", ".", "variable_scope", "(", "scope", ",", "reuse", "=", "tf", ".", "AUTO_REUSE", ")", ":", "conv_filter", "=", "tf", ".", "get_variable", "(", "\"conv_filter\"", ",", "shape", "=", "filter_shape", ",", "initializer", "=", "tf", ".", "truncated_normal_initializer", "(", "stddev", "=", "0.02", ")", ")", "if", "self", ".", "hparams", ".", "use_spectral_norm", ":", "conv_filter", ",", "assign_op", "=", "common_layers", ".", "apply_spectral_norm", "(", "conv_filter", ")", "if", "self", ".", "is_training", ":", "tf", ".", "add_to_collection", "(", "tf", ".", "GraphKeys", ".", "UPDATE_OPS", ",", "assign_op", ")", "padded", "=", "tf", ".", "pad", "(", "activations", ",", "padding", ")", "convolved", "=", "tf", ".", "nn", ".", "conv3d", "(", "padded", ",", "conv_filter", ",", "strides", "=", "strides", ",", "padding", "=", "\"VALID\"", ")", "rectified", "=", "tf", ".", "nn", ".", "leaky_relu", "(", "convolved", ",", "alpha", "=", "0.2", ")", "return", "rectified" ]
Pad, apply 3-D convolution and leaky relu.
[ "Pad", "apply", "3", "-", "D", "convolution", "and", "leaky", "relu", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/video/savp.py#L298-L327
21,869
tensorflow/tensor2tensor
tensor2tensor/utils/pruning_utils.py
sparsify
def sparsify(sess, eval_model, pruning_strategy, pruning_params): """Prune the weights of a model and evaluate.""" weights = tf.trainable_variables() def should_prune(name): """Whether to prune a weight or not.""" in_whitelist = not pruning_params.white_list or any( e in name for e in pruning_params.white_list) in_blacklist = any(e in name for e in pruning_params.black_list) if pruning_params.white_list and not in_whitelist: return False elif in_blacklist: return False return True weights = [w for w in weights if should_prune(w.name)] tf.logging.info("Pruning weights: %s" % weights) unpruned_weights = sess.run(weights) reset_op = tf.no_op() for w, ow in zip(weights, unpruned_weights): op = tf.assign(w, ow) reset_op = tf.group(reset_op, op) for sparsity in pruning_params.sparsities: set_weights_op = tf.no_op() for w in weights: op = tf.assign(w, pruning_strategy(w, sparsity)) set_weights_op = tf.group(set_weights_op, op) sess.run(set_weights_op) acc = eval_model() tf.logging.info("\tPruning to sparsity = %f: acc = %f" % (sparsity, acc)) sess.run(reset_op)
python
def sparsify(sess, eval_model, pruning_strategy, pruning_params): """Prune the weights of a model and evaluate.""" weights = tf.trainable_variables() def should_prune(name): """Whether to prune a weight or not.""" in_whitelist = not pruning_params.white_list or any( e in name for e in pruning_params.white_list) in_blacklist = any(e in name for e in pruning_params.black_list) if pruning_params.white_list and not in_whitelist: return False elif in_blacklist: return False return True weights = [w for w in weights if should_prune(w.name)] tf.logging.info("Pruning weights: %s" % weights) unpruned_weights = sess.run(weights) reset_op = tf.no_op() for w, ow in zip(weights, unpruned_weights): op = tf.assign(w, ow) reset_op = tf.group(reset_op, op) for sparsity in pruning_params.sparsities: set_weights_op = tf.no_op() for w in weights: op = tf.assign(w, pruning_strategy(w, sparsity)) set_weights_op = tf.group(set_weights_op, op) sess.run(set_weights_op) acc = eval_model() tf.logging.info("\tPruning to sparsity = %f: acc = %f" % (sparsity, acc)) sess.run(reset_op)
[ "def", "sparsify", "(", "sess", ",", "eval_model", ",", "pruning_strategy", ",", "pruning_params", ")", ":", "weights", "=", "tf", ".", "trainable_variables", "(", ")", "def", "should_prune", "(", "name", ")", ":", "\"\"\"Whether to prune a weight or not.\"\"\"", "in_whitelist", "=", "not", "pruning_params", ".", "white_list", "or", "any", "(", "e", "in", "name", "for", "e", "in", "pruning_params", ".", "white_list", ")", "in_blacklist", "=", "any", "(", "e", "in", "name", "for", "e", "in", "pruning_params", ".", "black_list", ")", "if", "pruning_params", ".", "white_list", "and", "not", "in_whitelist", ":", "return", "False", "elif", "in_blacklist", ":", "return", "False", "return", "True", "weights", "=", "[", "w", "for", "w", "in", "weights", "if", "should_prune", "(", "w", ".", "name", ")", "]", "tf", ".", "logging", ".", "info", "(", "\"Pruning weights: %s\"", "%", "weights", ")", "unpruned_weights", "=", "sess", ".", "run", "(", "weights", ")", "reset_op", "=", "tf", ".", "no_op", "(", ")", "for", "w", ",", "ow", "in", "zip", "(", "weights", ",", "unpruned_weights", ")", ":", "op", "=", "tf", ".", "assign", "(", "w", ",", "ow", ")", "reset_op", "=", "tf", ".", "group", "(", "reset_op", ",", "op", ")", "for", "sparsity", "in", "pruning_params", ".", "sparsities", ":", "set_weights_op", "=", "tf", ".", "no_op", "(", ")", "for", "w", "in", "weights", ":", "op", "=", "tf", ".", "assign", "(", "w", ",", "pruning_strategy", "(", "w", ",", "sparsity", ")", ")", "set_weights_op", "=", "tf", ".", "group", "(", "set_weights_op", ",", "op", ")", "sess", ".", "run", "(", "set_weights_op", ")", "acc", "=", "eval_model", "(", ")", "tf", ".", "logging", ".", "info", "(", "\"\\tPruning to sparsity = %f: acc = %f\"", "%", "(", "sparsity", ",", "acc", ")", ")", "sess", ".", "run", "(", "reset_op", ")" ]
Prune the weights of a model and evaluate.
[ "Prune", "the", "weights", "of", "a", "model", "and", "evaluate", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/utils/pruning_utils.py#L45-L80
21,870
tensorflow/tensor2tensor
tensor2tensor/insights/server.py
DebugFrontendApplication.load_config
def load_config(self): """Loads the configuration.""" config = dict([(key, value) for key, value in iteritems(self.options) if key in self.cfg.settings and value is not None]) for key, value in iteritems(config): self.cfg.set(key.lower(), value)
python
def load_config(self): """Loads the configuration.""" config = dict([(key, value) for key, value in iteritems(self.options) if key in self.cfg.settings and value is not None]) for key, value in iteritems(config): self.cfg.set(key.lower(), value)
[ "def", "load_config", "(", "self", ")", ":", "config", "=", "dict", "(", "[", "(", "key", ",", "value", ")", "for", "key", ",", "value", "in", "iteritems", "(", "self", ".", "options", ")", "if", "key", "in", "self", ".", "cfg", ".", "settings", "and", "value", "is", "not", "None", "]", ")", "for", "key", ",", "value", "in", "iteritems", "(", "config", ")", ":", "self", ".", "cfg", ".", "set", "(", "key", ".", "lower", "(", ")", ",", "value", ")" ]
Loads the configuration.
[ "Loads", "the", "configuration", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/insights/server.py#L79-L84
21,871
tensorflow/tensor2tensor
tensor2tensor/models/research/rl.py
ppo_atari_base
def ppo_atari_base(): """Pong base parameters.""" hparams = ppo_discrete_action_base() hparams.learning_rate_constant = 1e-4 hparams.epoch_length = 200 hparams.gae_gamma = 0.985 hparams.gae_lambda = 0.985 hparams.entropy_loss_coef = 0.003 hparams.value_loss_coef = 1 hparams.optimization_epochs = 3 hparams.epochs_num = 1000 hparams.policy_network = "feed_forward_cnn_small_categorical_policy" hparams.clipping_coef = 0.2 hparams.optimization_batch_size = 20 hparams.clip_grad_norm = 0.5 return hparams
python
def ppo_atari_base(): """Pong base parameters.""" hparams = ppo_discrete_action_base() hparams.learning_rate_constant = 1e-4 hparams.epoch_length = 200 hparams.gae_gamma = 0.985 hparams.gae_lambda = 0.985 hparams.entropy_loss_coef = 0.003 hparams.value_loss_coef = 1 hparams.optimization_epochs = 3 hparams.epochs_num = 1000 hparams.policy_network = "feed_forward_cnn_small_categorical_policy" hparams.clipping_coef = 0.2 hparams.optimization_batch_size = 20 hparams.clip_grad_norm = 0.5 return hparams
[ "def", "ppo_atari_base", "(", ")", ":", "hparams", "=", "ppo_discrete_action_base", "(", ")", "hparams", ".", "learning_rate_constant", "=", "1e-4", "hparams", ".", "epoch_length", "=", "200", "hparams", ".", "gae_gamma", "=", "0.985", "hparams", ".", "gae_lambda", "=", "0.985", "hparams", ".", "entropy_loss_coef", "=", "0.003", "hparams", ".", "value_loss_coef", "=", "1", "hparams", ".", "optimization_epochs", "=", "3", "hparams", ".", "epochs_num", "=", "1000", "hparams", ".", "policy_network", "=", "\"feed_forward_cnn_small_categorical_policy\"", "hparams", ".", "clipping_coef", "=", "0.2", "hparams", ".", "optimization_batch_size", "=", "20", "hparams", ".", "clip_grad_norm", "=", "0.5", "return", "hparams" ]
Pong base parameters.
[ "Pong", "base", "parameters", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/rl.py#L100-L115
21,872
tensorflow/tensor2tensor
tensor2tensor/models/research/rl.py
ppo_original_params
def ppo_original_params(): """Parameters based on the original PPO paper.""" hparams = ppo_atari_base() hparams.learning_rate_constant = 2.5e-4 hparams.gae_gamma = 0.99 hparams.gae_lambda = 0.95 hparams.clipping_coef = 0.1 hparams.value_loss_coef = 1 hparams.entropy_loss_coef = 0.01 hparams.eval_every_epochs = 200 hparams.dropout_ppo = 0.1 # The parameters below are modified to accommodate short epoch_length (which # is needed for model based rollouts). hparams.epoch_length = 50 hparams.optimization_batch_size = 20 return hparams
python
def ppo_original_params(): """Parameters based on the original PPO paper.""" hparams = ppo_atari_base() hparams.learning_rate_constant = 2.5e-4 hparams.gae_gamma = 0.99 hparams.gae_lambda = 0.95 hparams.clipping_coef = 0.1 hparams.value_loss_coef = 1 hparams.entropy_loss_coef = 0.01 hparams.eval_every_epochs = 200 hparams.dropout_ppo = 0.1 # The parameters below are modified to accommodate short epoch_length (which # is needed for model based rollouts). hparams.epoch_length = 50 hparams.optimization_batch_size = 20 return hparams
[ "def", "ppo_original_params", "(", ")", ":", "hparams", "=", "ppo_atari_base", "(", ")", "hparams", ".", "learning_rate_constant", "=", "2.5e-4", "hparams", ".", "gae_gamma", "=", "0.99", "hparams", ".", "gae_lambda", "=", "0.95", "hparams", ".", "clipping_coef", "=", "0.1", "hparams", ".", "value_loss_coef", "=", "1", "hparams", ".", "entropy_loss_coef", "=", "0.01", "hparams", ".", "eval_every_epochs", "=", "200", "hparams", ".", "dropout_ppo", "=", "0.1", "# The parameters below are modified to accommodate short epoch_length (which", "# is needed for model based rollouts).", "hparams", ".", "epoch_length", "=", "50", "hparams", ".", "optimization_batch_size", "=", "20", "return", "hparams" ]
Parameters based on the original PPO paper.
[ "Parameters", "based", "on", "the", "original", "PPO", "paper", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/rl.py#L119-L134
21,873
tensorflow/tensor2tensor
tensor2tensor/models/research/rl.py
ppo_original_world_model_stochastic_discrete
def ppo_original_world_model_stochastic_discrete(): """Atari parameters with stochastic discrete world model as policy.""" hparams = ppo_original_params() hparams.policy_network = "next_frame_basic_stochastic_discrete" hparams_keys = hparams.values().keys() video_hparams = basic_stochastic.next_frame_basic_stochastic_discrete() for (name, value) in six.iteritems(video_hparams.values()): if name in hparams_keys: hparams.set_hparam(name, value) else: hparams.add_hparam(name, value) # To avoid OOM. Probably way to small. hparams.optimization_batch_size = 1 hparams.weight_decay = 0 return hparams
python
def ppo_original_world_model_stochastic_discrete(): """Atari parameters with stochastic discrete world model as policy.""" hparams = ppo_original_params() hparams.policy_network = "next_frame_basic_stochastic_discrete" hparams_keys = hparams.values().keys() video_hparams = basic_stochastic.next_frame_basic_stochastic_discrete() for (name, value) in six.iteritems(video_hparams.values()): if name in hparams_keys: hparams.set_hparam(name, value) else: hparams.add_hparam(name, value) # To avoid OOM. Probably way to small. hparams.optimization_batch_size = 1 hparams.weight_decay = 0 return hparams
[ "def", "ppo_original_world_model_stochastic_discrete", "(", ")", ":", "hparams", "=", "ppo_original_params", "(", ")", "hparams", ".", "policy_network", "=", "\"next_frame_basic_stochastic_discrete\"", "hparams_keys", "=", "hparams", ".", "values", "(", ")", ".", "keys", "(", ")", "video_hparams", "=", "basic_stochastic", ".", "next_frame_basic_stochastic_discrete", "(", ")", "for", "(", "name", ",", "value", ")", "in", "six", ".", "iteritems", "(", "video_hparams", ".", "values", "(", ")", ")", ":", "if", "name", "in", "hparams_keys", ":", "hparams", ".", "set_hparam", "(", "name", ",", "value", ")", "else", ":", "hparams", ".", "add_hparam", "(", "name", ",", "value", ")", "# To avoid OOM. Probably way to small.", "hparams", ".", "optimization_batch_size", "=", "1", "hparams", ".", "weight_decay", "=", "0", "return", "hparams" ]
Atari parameters with stochastic discrete world model as policy.
[ "Atari", "parameters", "with", "stochastic", "discrete", "world", "model", "as", "policy", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/rl.py#L205-L219
21,874
tensorflow/tensor2tensor
tensor2tensor/models/research/rl.py
make_simulated_env_fn
def make_simulated_env_fn(**env_kwargs): """Returns a function creating a simulated env, in or out of graph. Args: **env_kwargs: kwargs to pass to the simulated env constructor. Returns: Function in_graph -> env. """ def env_fn(in_graph): class_ = SimulatedBatchEnv if in_graph else SimulatedBatchGymEnv return class_(**env_kwargs) return env_fn
python
def make_simulated_env_fn(**env_kwargs): """Returns a function creating a simulated env, in or out of graph. Args: **env_kwargs: kwargs to pass to the simulated env constructor. Returns: Function in_graph -> env. """ def env_fn(in_graph): class_ = SimulatedBatchEnv if in_graph else SimulatedBatchGymEnv return class_(**env_kwargs) return env_fn
[ "def", "make_simulated_env_fn", "(", "*", "*", "env_kwargs", ")", ":", "def", "env_fn", "(", "in_graph", ")", ":", "class_", "=", "SimulatedBatchEnv", "if", "in_graph", "else", "SimulatedBatchGymEnv", "return", "class_", "(", "*", "*", "env_kwargs", ")", "return", "env_fn" ]
Returns a function creating a simulated env, in or out of graph. Args: **env_kwargs: kwargs to pass to the simulated env constructor. Returns: Function in_graph -> env.
[ "Returns", "a", "function", "creating", "a", "simulated", "env", "in", "or", "out", "of", "graph", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/rl.py#L234-L246
21,875
tensorflow/tensor2tensor
tensor2tensor/models/research/rl.py
make_simulated_env_kwargs
def make_simulated_env_kwargs(real_env, hparams, **extra_kwargs): """Extracts simulated env kwargs from real_env and loop hparams.""" objs_and_attrs = [ (real_env, [ "reward_range", "observation_space", "action_space", "frame_height", "frame_width" ]), (hparams, ["frame_stack_size", "intrinsic_reward_scale"]) ] kwargs = { attr: getattr(obj, attr) # pylint: disable=g-complex-comprehension for (obj, attrs) in objs_and_attrs for attr in attrs } kwargs["model_name"] = hparams.generative_model kwargs["model_hparams"] = trainer_lib.create_hparams( hparams.generative_model_params ) if hparams.wm_policy_param_sharing: kwargs["model_hparams"].optimizer_zero_grads = True kwargs.update(extra_kwargs) return kwargs
python
def make_simulated_env_kwargs(real_env, hparams, **extra_kwargs): """Extracts simulated env kwargs from real_env and loop hparams.""" objs_and_attrs = [ (real_env, [ "reward_range", "observation_space", "action_space", "frame_height", "frame_width" ]), (hparams, ["frame_stack_size", "intrinsic_reward_scale"]) ] kwargs = { attr: getattr(obj, attr) # pylint: disable=g-complex-comprehension for (obj, attrs) in objs_and_attrs for attr in attrs } kwargs["model_name"] = hparams.generative_model kwargs["model_hparams"] = trainer_lib.create_hparams( hparams.generative_model_params ) if hparams.wm_policy_param_sharing: kwargs["model_hparams"].optimizer_zero_grads = True kwargs.update(extra_kwargs) return kwargs
[ "def", "make_simulated_env_kwargs", "(", "real_env", ",", "hparams", ",", "*", "*", "extra_kwargs", ")", ":", "objs_and_attrs", "=", "[", "(", "real_env", ",", "[", "\"reward_range\"", ",", "\"observation_space\"", ",", "\"action_space\"", ",", "\"frame_height\"", ",", "\"frame_width\"", "]", ")", ",", "(", "hparams", ",", "[", "\"frame_stack_size\"", ",", "\"intrinsic_reward_scale\"", "]", ")", "]", "kwargs", "=", "{", "attr", ":", "getattr", "(", "obj", ",", "attr", ")", "# pylint: disable=g-complex-comprehension", "for", "(", "obj", ",", "attrs", ")", "in", "objs_and_attrs", "for", "attr", "in", "attrs", "}", "kwargs", "[", "\"model_name\"", "]", "=", "hparams", ".", "generative_model", "kwargs", "[", "\"model_hparams\"", "]", "=", "trainer_lib", ".", "create_hparams", "(", "hparams", ".", "generative_model_params", ")", "if", "hparams", ".", "wm_policy_param_sharing", ":", "kwargs", "[", "\"model_hparams\"", "]", ".", "optimizer_zero_grads", "=", "True", "kwargs", ".", "update", "(", "extra_kwargs", ")", "return", "kwargs" ]
Extracts simulated env kwargs from real_env and loop hparams.
[ "Extracts", "simulated", "env", "kwargs", "from", "real_env", "and", "loop", "hparams", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/rl.py#L250-L270
21,876
tensorflow/tensor2tensor
tensor2tensor/models/research/rl.py
get_policy
def get_policy(observations, hparams, action_space): """Get a policy network. Args: observations: observations hparams: parameters action_space: action space Returns: Tuple (action logits, value). """ if not isinstance(action_space, gym.spaces.Discrete): raise ValueError("Expecting discrete action space.") obs_shape = common_layers.shape_list(observations) (frame_height, frame_width) = obs_shape[2:4] # TODO(afrozm): We have these dummy problems mainly for hparams, so cleanup # when possible and do this properly. if hparams.policy_problem_name == "dummy_policy_problem_ttt": tf.logging.info("Using DummyPolicyProblemTTT for the policy.") policy_problem = tic_tac_toe_env.DummyPolicyProblemTTT() else: tf.logging.info("Using DummyPolicyProblem for the policy.") policy_problem = DummyPolicyProblem(action_space, frame_height, frame_width) trainer_lib.add_problem_hparams(hparams, policy_problem) hparams.force_full_predict = True model = registry.model(hparams.policy_network)( hparams, tf.estimator.ModeKeys.TRAIN ) try: num_target_frames = hparams.video_num_target_frames except AttributeError: num_target_frames = 1 features = { "inputs": observations, "input_action": tf.zeros(obs_shape[:2] + [1], dtype=tf.int32), "input_reward": tf.zeros(obs_shape[:2] + [1], dtype=tf.int32), "targets": tf.zeros(obs_shape[:1] + [num_target_frames] + obs_shape[2:]), "target_action": tf.zeros( obs_shape[:1] + [num_target_frames, 1], dtype=tf.int32), "target_reward": tf.zeros( obs_shape[:1] + [num_target_frames, 1], dtype=tf.int32), "target_policy": tf.zeros( obs_shape[:1] + [num_target_frames] + [action_space.n]), "target_value": tf.zeros( obs_shape[:1] + [num_target_frames]) } with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE): t2t_model.create_dummy_vars() (targets, _) = model(features) return (targets["target_policy"][:, 0, :], targets["target_value"][:, 0])
python
def get_policy(observations, hparams, action_space): """Get a policy network. Args: observations: observations hparams: parameters action_space: action space Returns: Tuple (action logits, value). """ if not isinstance(action_space, gym.spaces.Discrete): raise ValueError("Expecting discrete action space.") obs_shape = common_layers.shape_list(observations) (frame_height, frame_width) = obs_shape[2:4] # TODO(afrozm): We have these dummy problems mainly for hparams, so cleanup # when possible and do this properly. if hparams.policy_problem_name == "dummy_policy_problem_ttt": tf.logging.info("Using DummyPolicyProblemTTT for the policy.") policy_problem = tic_tac_toe_env.DummyPolicyProblemTTT() else: tf.logging.info("Using DummyPolicyProblem for the policy.") policy_problem = DummyPolicyProblem(action_space, frame_height, frame_width) trainer_lib.add_problem_hparams(hparams, policy_problem) hparams.force_full_predict = True model = registry.model(hparams.policy_network)( hparams, tf.estimator.ModeKeys.TRAIN ) try: num_target_frames = hparams.video_num_target_frames except AttributeError: num_target_frames = 1 features = { "inputs": observations, "input_action": tf.zeros(obs_shape[:2] + [1], dtype=tf.int32), "input_reward": tf.zeros(obs_shape[:2] + [1], dtype=tf.int32), "targets": tf.zeros(obs_shape[:1] + [num_target_frames] + obs_shape[2:]), "target_action": tf.zeros( obs_shape[:1] + [num_target_frames, 1], dtype=tf.int32), "target_reward": tf.zeros( obs_shape[:1] + [num_target_frames, 1], dtype=tf.int32), "target_policy": tf.zeros( obs_shape[:1] + [num_target_frames] + [action_space.n]), "target_value": tf.zeros( obs_shape[:1] + [num_target_frames]) } with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE): t2t_model.create_dummy_vars() (targets, _) = model(features) return (targets["target_policy"][:, 0, :], targets["target_value"][:, 0])
[ "def", "get_policy", "(", "observations", ",", "hparams", ",", "action_space", ")", ":", "if", "not", "isinstance", "(", "action_space", ",", "gym", ".", "spaces", ".", "Discrete", ")", ":", "raise", "ValueError", "(", "\"Expecting discrete action space.\"", ")", "obs_shape", "=", "common_layers", ".", "shape_list", "(", "observations", ")", "(", "frame_height", ",", "frame_width", ")", "=", "obs_shape", "[", "2", ":", "4", "]", "# TODO(afrozm): We have these dummy problems mainly for hparams, so cleanup", "# when possible and do this properly.", "if", "hparams", ".", "policy_problem_name", "==", "\"dummy_policy_problem_ttt\"", ":", "tf", ".", "logging", ".", "info", "(", "\"Using DummyPolicyProblemTTT for the policy.\"", ")", "policy_problem", "=", "tic_tac_toe_env", ".", "DummyPolicyProblemTTT", "(", ")", "else", ":", "tf", ".", "logging", ".", "info", "(", "\"Using DummyPolicyProblem for the policy.\"", ")", "policy_problem", "=", "DummyPolicyProblem", "(", "action_space", ",", "frame_height", ",", "frame_width", ")", "trainer_lib", ".", "add_problem_hparams", "(", "hparams", ",", "policy_problem", ")", "hparams", ".", "force_full_predict", "=", "True", "model", "=", "registry", ".", "model", "(", "hparams", ".", "policy_network", ")", "(", "hparams", ",", "tf", ".", "estimator", ".", "ModeKeys", ".", "TRAIN", ")", "try", ":", "num_target_frames", "=", "hparams", ".", "video_num_target_frames", "except", "AttributeError", ":", "num_target_frames", "=", "1", "features", "=", "{", "\"inputs\"", ":", "observations", ",", "\"input_action\"", ":", "tf", ".", "zeros", "(", "obs_shape", "[", ":", "2", "]", "+", "[", "1", "]", ",", "dtype", "=", "tf", ".", "int32", ")", ",", "\"input_reward\"", ":", "tf", ".", "zeros", "(", "obs_shape", "[", ":", "2", "]", "+", "[", "1", "]", ",", "dtype", "=", "tf", ".", "int32", ")", ",", "\"targets\"", ":", "tf", ".", "zeros", "(", "obs_shape", "[", ":", "1", "]", "+", "[", "num_target_frames", "]", "+", "obs_shape", "[", "2", ":", "]", ")", ",", "\"target_action\"", ":", "tf", ".", "zeros", "(", "obs_shape", "[", ":", "1", "]", "+", "[", "num_target_frames", ",", "1", "]", ",", "dtype", "=", "tf", ".", "int32", ")", ",", "\"target_reward\"", ":", "tf", ".", "zeros", "(", "obs_shape", "[", ":", "1", "]", "+", "[", "num_target_frames", ",", "1", "]", ",", "dtype", "=", "tf", ".", "int32", ")", ",", "\"target_policy\"", ":", "tf", ".", "zeros", "(", "obs_shape", "[", ":", "1", "]", "+", "[", "num_target_frames", "]", "+", "[", "action_space", ".", "n", "]", ")", ",", "\"target_value\"", ":", "tf", ".", "zeros", "(", "obs_shape", "[", ":", "1", "]", "+", "[", "num_target_frames", "]", ")", "}", "with", "tf", ".", "variable_scope", "(", "tf", ".", "get_variable_scope", "(", ")", ",", "reuse", "=", "tf", ".", "AUTO_REUSE", ")", ":", "t2t_model", ".", "create_dummy_vars", "(", ")", "(", "targets", ",", "_", ")", "=", "model", "(", "features", ")", "return", "(", "targets", "[", "\"target_policy\"", "]", "[", ":", ",", "0", ",", ":", "]", ",", "targets", "[", "\"target_value\"", "]", "[", ":", ",", "0", "]", ")" ]
Get a policy network. Args: observations: observations hparams: parameters action_space: action space Returns: Tuple (action logits, value).
[ "Get", "a", "policy", "network", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/rl.py#L280-L332
21,877
tensorflow/tensor2tensor
tensor2tensor/models/research/rl.py
rlmf_tictactoe
def rlmf_tictactoe(): """Base set of hparams for model-free PPO.""" hparams = rlmf_original() hparams.game = "tictactoe" hparams.rl_env_name = "T2TEnv-TicTacToeEnv-v0" # Since we don't have any no-op actions, otherwise we have to have an # attribute called `get_action_meanings`. hparams.eval_max_num_noops = 0 hparams.max_num_noops = 0 hparams.rl_should_derive_observation_space = False hparams.policy_network = "feed_forward_categorical_policy" hparams.base_algo_params = "ppo_ttt_params" # Number of last observations to feed to the agent hparams.frame_stack_size = 1 return hparams
python
def rlmf_tictactoe(): """Base set of hparams for model-free PPO.""" hparams = rlmf_original() hparams.game = "tictactoe" hparams.rl_env_name = "T2TEnv-TicTacToeEnv-v0" # Since we don't have any no-op actions, otherwise we have to have an # attribute called `get_action_meanings`. hparams.eval_max_num_noops = 0 hparams.max_num_noops = 0 hparams.rl_should_derive_observation_space = False hparams.policy_network = "feed_forward_categorical_policy" hparams.base_algo_params = "ppo_ttt_params" # Number of last observations to feed to the agent hparams.frame_stack_size = 1 return hparams
[ "def", "rlmf_tictactoe", "(", ")", ":", "hparams", "=", "rlmf_original", "(", ")", "hparams", ".", "game", "=", "\"tictactoe\"", "hparams", ".", "rl_env_name", "=", "\"T2TEnv-TicTacToeEnv-v0\"", "# Since we don't have any no-op actions, otherwise we have to have an", "# attribute called `get_action_meanings`.", "hparams", ".", "eval_max_num_noops", "=", "0", "hparams", ".", "max_num_noops", "=", "0", "hparams", ".", "rl_should_derive_observation_space", "=", "False", "hparams", ".", "policy_network", "=", "\"feed_forward_categorical_policy\"", "hparams", ".", "base_algo_params", "=", "\"ppo_ttt_params\"", "# Number of last observations to feed to the agent", "hparams", ".", "frame_stack_size", "=", "1", "return", "hparams" ]
Base set of hparams for model-free PPO.
[ "Base", "set", "of", "hparams", "for", "model", "-", "free", "PPO", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/rl.py#L427-L443
21,878
tensorflow/tensor2tensor
tensor2tensor/models/research/rl.py
rlmf_tiny
def rlmf_tiny(): """Tiny set of hparams for model-free PPO.""" hparams = rlmf_original() hparams = hparams.override_from_dict(rlmf_tiny_overrides()) hparams.batch_size = 2 hparams.base_algo_params = "ppo_original_tiny" hparams.add_hparam("ppo_epochs_num", 3) hparams.add_hparam("ppo_epoch_length", 2) return hparams
python
def rlmf_tiny(): """Tiny set of hparams for model-free PPO.""" hparams = rlmf_original() hparams = hparams.override_from_dict(rlmf_tiny_overrides()) hparams.batch_size = 2 hparams.base_algo_params = "ppo_original_tiny" hparams.add_hparam("ppo_epochs_num", 3) hparams.add_hparam("ppo_epoch_length", 2) return hparams
[ "def", "rlmf_tiny", "(", ")", ":", "hparams", "=", "rlmf_original", "(", ")", "hparams", "=", "hparams", ".", "override_from_dict", "(", "rlmf_tiny_overrides", "(", ")", ")", "hparams", ".", "batch_size", "=", "2", "hparams", ".", "base_algo_params", "=", "\"ppo_original_tiny\"", "hparams", ".", "add_hparam", "(", "\"ppo_epochs_num\"", ",", "3", ")", "hparams", ".", "add_hparam", "(", "\"ppo_epoch_length\"", ",", "2", ")", "return", "hparams" ]
Tiny set of hparams for model-free PPO.
[ "Tiny", "set", "of", "hparams", "for", "model", "-", "free", "PPO", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/rl.py#L456-L464
21,879
tensorflow/tensor2tensor
tensor2tensor/models/research/rl.py
rlmf_dqn_tiny
def rlmf_dqn_tiny(): """Tiny DQN params.""" hparams = rlmf_original() hparams = hparams.override_from_dict(rlmf_tiny_overrides()) hparams.batch_size = 1 hparams.base_algo = "dqn" hparams.base_algo_params = "dqn_original_params" hparams.add_hparam("dqn_num_frames", 128) hparams.add_hparam("dqn_save_every_steps", 128) hparams.add_hparam("dqn_replay_buffer_replay_capacity", 100) hparams.add_hparam("dqn_agent_min_replay_history", 10) return hparams
python
def rlmf_dqn_tiny(): """Tiny DQN params.""" hparams = rlmf_original() hparams = hparams.override_from_dict(rlmf_tiny_overrides()) hparams.batch_size = 1 hparams.base_algo = "dqn" hparams.base_algo_params = "dqn_original_params" hparams.add_hparam("dqn_num_frames", 128) hparams.add_hparam("dqn_save_every_steps", 128) hparams.add_hparam("dqn_replay_buffer_replay_capacity", 100) hparams.add_hparam("dqn_agent_min_replay_history", 10) return hparams
[ "def", "rlmf_dqn_tiny", "(", ")", ":", "hparams", "=", "rlmf_original", "(", ")", "hparams", "=", "hparams", ".", "override_from_dict", "(", "rlmf_tiny_overrides", "(", ")", ")", "hparams", ".", "batch_size", "=", "1", "hparams", ".", "base_algo", "=", "\"dqn\"", "hparams", ".", "base_algo_params", "=", "\"dqn_original_params\"", "hparams", ".", "add_hparam", "(", "\"dqn_num_frames\"", ",", "128", ")", "hparams", ".", "add_hparam", "(", "\"dqn_save_every_steps\"", ",", "128", ")", "hparams", ".", "add_hparam", "(", "\"dqn_replay_buffer_replay_capacity\"", ",", "100", ")", "hparams", ".", "add_hparam", "(", "\"dqn_agent_min_replay_history\"", ",", "10", ")", "return", "hparams" ]
Tiny DQN params.
[ "Tiny", "DQN", "params", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/rl.py#L468-L479
21,880
tensorflow/tensor2tensor
tensor2tensor/models/research/rl.py
rlmf_eval
def rlmf_eval(): """Eval set of hparams for model-free PPO.""" hparams = rlmf_original() hparams.batch_size = 8 hparams.eval_sampling_temps = [0.0, 0.5, 1.0] hparams.eval_rl_env_max_episode_steps = -1 hparams.add_hparam("ppo_epoch_length", 128) hparams.add_hparam("ppo_optimization_batch_size", 32) hparams.add_hparam("ppo_epochs_num", 10000) hparams.add_hparam("ppo_eval_every_epochs", 500) hparams.add_hparam("attempt", 0) hparams.add_hparam("moe_loss_coef", 0) return hparams
python
def rlmf_eval(): """Eval set of hparams for model-free PPO.""" hparams = rlmf_original() hparams.batch_size = 8 hparams.eval_sampling_temps = [0.0, 0.5, 1.0] hparams.eval_rl_env_max_episode_steps = -1 hparams.add_hparam("ppo_epoch_length", 128) hparams.add_hparam("ppo_optimization_batch_size", 32) hparams.add_hparam("ppo_epochs_num", 10000) hparams.add_hparam("ppo_eval_every_epochs", 500) hparams.add_hparam("attempt", 0) hparams.add_hparam("moe_loss_coef", 0) return hparams
[ "def", "rlmf_eval", "(", ")", ":", "hparams", "=", "rlmf_original", "(", ")", "hparams", ".", "batch_size", "=", "8", "hparams", ".", "eval_sampling_temps", "=", "[", "0.0", ",", "0.5", ",", "1.0", "]", "hparams", ".", "eval_rl_env_max_episode_steps", "=", "-", "1", "hparams", ".", "add_hparam", "(", "\"ppo_epoch_length\"", ",", "128", ")", "hparams", ".", "add_hparam", "(", "\"ppo_optimization_batch_size\"", ",", "32", ")", "hparams", ".", "add_hparam", "(", "\"ppo_epochs_num\"", ",", "10000", ")", "hparams", ".", "add_hparam", "(", "\"ppo_eval_every_epochs\"", ",", "500", ")", "hparams", ".", "add_hparam", "(", "\"attempt\"", ",", "0", ")", "hparams", ".", "add_hparam", "(", "\"moe_loss_coef\"", ",", "0", ")", "return", "hparams" ]
Eval set of hparams for model-free PPO.
[ "Eval", "set", "of", "hparams", "for", "model", "-", "free", "PPO", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/rl.py#L483-L495
21,881
tensorflow/tensor2tensor
tensor2tensor/models/research/rl.py
feed_forward_gaussian_fun
def feed_forward_gaussian_fun(action_space, config, observations): """Feed-forward Gaussian.""" if not isinstance(action_space, gym.spaces.box.Box): raise ValueError("Expecting continuous action space.") mean_weights_initializer = tf.initializers.variance_scaling( scale=config.init_mean_factor) logstd_initializer = tf.random_normal_initializer(config.init_logstd, 1e-10) flat_observations = tf.reshape(observations, [ tf.shape(observations)[0], tf.shape(observations)[1], functools.reduce(operator.mul, observations.shape.as_list()[2:], 1)]) with tf.variable_scope("network_parameters"): with tf.variable_scope("policy"): x = flat_observations for size in config.policy_layers: x = tf.layers.dense(x, size, activation=tf.nn.relu) mean = tf.layers.dense( x, action_space.shape[0], activation=tf.tanh, kernel_initializer=mean_weights_initializer) logstd = tf.get_variable( "logstd", mean.shape[2:], tf.float32, logstd_initializer) logstd = tf.tile( logstd[None, None], [tf.shape(mean)[0], tf.shape(mean)[1]] + [1] * (mean.shape.ndims - 2)) with tf.variable_scope("value"): x = flat_observations for size in config.value_layers: x = tf.layers.dense(x, size, activation=tf.nn.relu) value = tf.layers.dense(x, 1)[..., 0] mean = tf.check_numerics(mean, "mean") logstd = tf.check_numerics(logstd, "logstd") value = tf.check_numerics(value, "value") policy = tfp.distributions.MultivariateNormalDiag(mean, tf.exp(logstd)) return NetworkOutput(policy, value, lambda a: tf.clip_by_value(a, -2., 2))
python
def feed_forward_gaussian_fun(action_space, config, observations): """Feed-forward Gaussian.""" if not isinstance(action_space, gym.spaces.box.Box): raise ValueError("Expecting continuous action space.") mean_weights_initializer = tf.initializers.variance_scaling( scale=config.init_mean_factor) logstd_initializer = tf.random_normal_initializer(config.init_logstd, 1e-10) flat_observations = tf.reshape(observations, [ tf.shape(observations)[0], tf.shape(observations)[1], functools.reduce(operator.mul, observations.shape.as_list()[2:], 1)]) with tf.variable_scope("network_parameters"): with tf.variable_scope("policy"): x = flat_observations for size in config.policy_layers: x = tf.layers.dense(x, size, activation=tf.nn.relu) mean = tf.layers.dense( x, action_space.shape[0], activation=tf.tanh, kernel_initializer=mean_weights_initializer) logstd = tf.get_variable( "logstd", mean.shape[2:], tf.float32, logstd_initializer) logstd = tf.tile( logstd[None, None], [tf.shape(mean)[0], tf.shape(mean)[1]] + [1] * (mean.shape.ndims - 2)) with tf.variable_scope("value"): x = flat_observations for size in config.value_layers: x = tf.layers.dense(x, size, activation=tf.nn.relu) value = tf.layers.dense(x, 1)[..., 0] mean = tf.check_numerics(mean, "mean") logstd = tf.check_numerics(logstd, "logstd") value = tf.check_numerics(value, "value") policy = tfp.distributions.MultivariateNormalDiag(mean, tf.exp(logstd)) return NetworkOutput(policy, value, lambda a: tf.clip_by_value(a, -2., 2))
[ "def", "feed_forward_gaussian_fun", "(", "action_space", ",", "config", ",", "observations", ")", ":", "if", "not", "isinstance", "(", "action_space", ",", "gym", ".", "spaces", ".", "box", ".", "Box", ")", ":", "raise", "ValueError", "(", "\"Expecting continuous action space.\"", ")", "mean_weights_initializer", "=", "tf", ".", "initializers", ".", "variance_scaling", "(", "scale", "=", "config", ".", "init_mean_factor", ")", "logstd_initializer", "=", "tf", ".", "random_normal_initializer", "(", "config", ".", "init_logstd", ",", "1e-10", ")", "flat_observations", "=", "tf", ".", "reshape", "(", "observations", ",", "[", "tf", ".", "shape", "(", "observations", ")", "[", "0", "]", ",", "tf", ".", "shape", "(", "observations", ")", "[", "1", "]", ",", "functools", ".", "reduce", "(", "operator", ".", "mul", ",", "observations", ".", "shape", ".", "as_list", "(", ")", "[", "2", ":", "]", ",", "1", ")", "]", ")", "with", "tf", ".", "variable_scope", "(", "\"network_parameters\"", ")", ":", "with", "tf", ".", "variable_scope", "(", "\"policy\"", ")", ":", "x", "=", "flat_observations", "for", "size", "in", "config", ".", "policy_layers", ":", "x", "=", "tf", ".", "layers", ".", "dense", "(", "x", ",", "size", ",", "activation", "=", "tf", ".", "nn", ".", "relu", ")", "mean", "=", "tf", ".", "layers", ".", "dense", "(", "x", ",", "action_space", ".", "shape", "[", "0", "]", ",", "activation", "=", "tf", ".", "tanh", ",", "kernel_initializer", "=", "mean_weights_initializer", ")", "logstd", "=", "tf", ".", "get_variable", "(", "\"logstd\"", ",", "mean", ".", "shape", "[", "2", ":", "]", ",", "tf", ".", "float32", ",", "logstd_initializer", ")", "logstd", "=", "tf", ".", "tile", "(", "logstd", "[", "None", ",", "None", "]", ",", "[", "tf", ".", "shape", "(", "mean", ")", "[", "0", "]", ",", "tf", ".", "shape", "(", "mean", ")", "[", "1", "]", "]", "+", "[", "1", "]", "*", "(", "mean", ".", "shape", ".", "ndims", "-", "2", ")", ")", "with", "tf", ".", "variable_scope", "(", "\"value\"", ")", ":", "x", "=", "flat_observations", "for", "size", "in", "config", ".", "value_layers", ":", "x", "=", "tf", ".", "layers", ".", "dense", "(", "x", ",", "size", ",", "activation", "=", "tf", ".", "nn", ".", "relu", ")", "value", "=", "tf", ".", "layers", ".", "dense", "(", "x", ",", "1", ")", "[", "...", ",", "0", "]", "mean", "=", "tf", ".", "check_numerics", "(", "mean", ",", "\"mean\"", ")", "logstd", "=", "tf", ".", "check_numerics", "(", "logstd", ",", "\"logstd\"", ")", "value", "=", "tf", ".", "check_numerics", "(", "value", ",", "\"value\"", ")", "policy", "=", "tfp", ".", "distributions", ".", "MultivariateNormalDiag", "(", "mean", ",", "tf", ".", "exp", "(", "logstd", ")", ")", "return", "NetworkOutput", "(", "policy", ",", "value", ",", "lambda", "a", ":", "tf", ".", "clip_by_value", "(", "a", ",", "-", "2.", ",", "2", ")", ")" ]
Feed-forward Gaussian.
[ "Feed", "-", "forward", "Gaussian", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/rl.py#L559-L596
21,882
tensorflow/tensor2tensor
tensor2tensor/utils/yellowfin.py
YellowFinOptimizer._curvature_range
def _curvature_range(self): """Curvature range. Returns: h_max_t, h_min_t ops """ self._curv_win = tf.get_variable("curv_win", dtype=tf.float32, trainable=False, shape=[self.curvature_window_width,], initializer=tf.zeros_initializer) # We use log smoothing for curvature range self._curv_win = tf.scatter_update(self._curv_win, self._step % self.curvature_window_width, tf.log(self._grad_norm_squared)) # Note here the iterations start from iteration 0 valid_window = tf.slice(self._curv_win, tf.constant([0,]), tf.expand_dims( tf.minimum( tf.constant(self.curvature_window_width), self._step + 1), dim=0)) self._h_min_t = tf.reduce_min(valid_window) self._h_max_t = tf.reduce_max(valid_window) curv_range_ops = [] with tf.control_dependencies([self._h_min_t, self._h_max_t]): avg_op = self._moving_averager.apply([self._h_min_t, self._h_max_t]) with tf.control_dependencies([avg_op]): self._h_min = tf.exp( tf.identity(self._moving_averager.average(self._h_min_t))) self._h_max = tf.exp( tf.identity(self._moving_averager.average(self._h_max_t))) if self._sparsity_debias: self._h_min *= self._sparsity_avg self._h_max *= self._sparsity_avg curv_range_ops.append(avg_op) return curv_range_ops
python
def _curvature_range(self): """Curvature range. Returns: h_max_t, h_min_t ops """ self._curv_win = tf.get_variable("curv_win", dtype=tf.float32, trainable=False, shape=[self.curvature_window_width,], initializer=tf.zeros_initializer) # We use log smoothing for curvature range self._curv_win = tf.scatter_update(self._curv_win, self._step % self.curvature_window_width, tf.log(self._grad_norm_squared)) # Note here the iterations start from iteration 0 valid_window = tf.slice(self._curv_win, tf.constant([0,]), tf.expand_dims( tf.minimum( tf.constant(self.curvature_window_width), self._step + 1), dim=0)) self._h_min_t = tf.reduce_min(valid_window) self._h_max_t = tf.reduce_max(valid_window) curv_range_ops = [] with tf.control_dependencies([self._h_min_t, self._h_max_t]): avg_op = self._moving_averager.apply([self._h_min_t, self._h_max_t]) with tf.control_dependencies([avg_op]): self._h_min = tf.exp( tf.identity(self._moving_averager.average(self._h_min_t))) self._h_max = tf.exp( tf.identity(self._moving_averager.average(self._h_max_t))) if self._sparsity_debias: self._h_min *= self._sparsity_avg self._h_max *= self._sparsity_avg curv_range_ops.append(avg_op) return curv_range_ops
[ "def", "_curvature_range", "(", "self", ")", ":", "self", ".", "_curv_win", "=", "tf", ".", "get_variable", "(", "\"curv_win\"", ",", "dtype", "=", "tf", ".", "float32", ",", "trainable", "=", "False", ",", "shape", "=", "[", "self", ".", "curvature_window_width", ",", "]", ",", "initializer", "=", "tf", ".", "zeros_initializer", ")", "# We use log smoothing for curvature range", "self", ".", "_curv_win", "=", "tf", ".", "scatter_update", "(", "self", ".", "_curv_win", ",", "self", ".", "_step", "%", "self", ".", "curvature_window_width", ",", "tf", ".", "log", "(", "self", ".", "_grad_norm_squared", ")", ")", "# Note here the iterations start from iteration 0", "valid_window", "=", "tf", ".", "slice", "(", "self", ".", "_curv_win", ",", "tf", ".", "constant", "(", "[", "0", ",", "]", ")", ",", "tf", ".", "expand_dims", "(", "tf", ".", "minimum", "(", "tf", ".", "constant", "(", "self", ".", "curvature_window_width", ")", ",", "self", ".", "_step", "+", "1", ")", ",", "dim", "=", "0", ")", ")", "self", ".", "_h_min_t", "=", "tf", ".", "reduce_min", "(", "valid_window", ")", "self", ".", "_h_max_t", "=", "tf", ".", "reduce_max", "(", "valid_window", ")", "curv_range_ops", "=", "[", "]", "with", "tf", ".", "control_dependencies", "(", "[", "self", ".", "_h_min_t", ",", "self", ".", "_h_max_t", "]", ")", ":", "avg_op", "=", "self", ".", "_moving_averager", ".", "apply", "(", "[", "self", ".", "_h_min_t", ",", "self", ".", "_h_max_t", "]", ")", "with", "tf", ".", "control_dependencies", "(", "[", "avg_op", "]", ")", ":", "self", ".", "_h_min", "=", "tf", ".", "exp", "(", "tf", ".", "identity", "(", "self", ".", "_moving_averager", ".", "average", "(", "self", ".", "_h_min_t", ")", ")", ")", "self", ".", "_h_max", "=", "tf", ".", "exp", "(", "tf", ".", "identity", "(", "self", ".", "_moving_averager", ".", "average", "(", "self", ".", "_h_max_t", ")", ")", ")", "if", "self", ".", "_sparsity_debias", ":", "self", ".", "_h_min", "*=", "self", ".", "_sparsity_avg", "self", ".", "_h_max", "*=", "self", ".", "_sparsity_avg", "curv_range_ops", ".", "append", "(", "avg_op", ")", "return", "curv_range_ops" ]
Curvature range. Returns: h_max_t, h_min_t ops
[ "Curvature", "range", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/utils/yellowfin.py#L193-L230
21,883
tensorflow/tensor2tensor
tensor2tensor/utils/yellowfin.py
YellowFinOptimizer._grad_variance
def _grad_variance(self): """Estimate of gradient Variance. Returns: C_t ops. """ grad_var_ops = [] tensor_to_avg = [] for t, g in zip(self._vars, self._grad): if isinstance(g, tf.IndexedSlices): tensor_to_avg.append( tf.reshape(tf.unsorted_segment_sum(g.values, g.indices, g.dense_shape[0]), shape=t.get_shape())) else: tensor_to_avg.append(g) avg_op = self._moving_averager.apply(tensor_to_avg) grad_var_ops.append(avg_op) with tf.control_dependencies([avg_op]): self._grad_avg = [self._moving_averager.average(val) for val in tensor_to_avg] self._grad_avg_squared = [tf.square(val) for val in self._grad_avg] # Compute Variance self._grad_var = tf.maximum( tf.constant(1e-6, dtype=self._grad_norm_squared_avg.dtype), self._grad_norm_squared_avg - tf.add_n([tf.reduce_sum(val) for val in self._grad_avg_squared])) if self._sparsity_debias: self._grad_var *= self._sparsity_avg return grad_var_ops
python
def _grad_variance(self): """Estimate of gradient Variance. Returns: C_t ops. """ grad_var_ops = [] tensor_to_avg = [] for t, g in zip(self._vars, self._grad): if isinstance(g, tf.IndexedSlices): tensor_to_avg.append( tf.reshape(tf.unsorted_segment_sum(g.values, g.indices, g.dense_shape[0]), shape=t.get_shape())) else: tensor_to_avg.append(g) avg_op = self._moving_averager.apply(tensor_to_avg) grad_var_ops.append(avg_op) with tf.control_dependencies([avg_op]): self._grad_avg = [self._moving_averager.average(val) for val in tensor_to_avg] self._grad_avg_squared = [tf.square(val) for val in self._grad_avg] # Compute Variance self._grad_var = tf.maximum( tf.constant(1e-6, dtype=self._grad_norm_squared_avg.dtype), self._grad_norm_squared_avg - tf.add_n([tf.reduce_sum(val) for val in self._grad_avg_squared])) if self._sparsity_debias: self._grad_var *= self._sparsity_avg return grad_var_ops
[ "def", "_grad_variance", "(", "self", ")", ":", "grad_var_ops", "=", "[", "]", "tensor_to_avg", "=", "[", "]", "for", "t", ",", "g", "in", "zip", "(", "self", ".", "_vars", ",", "self", ".", "_grad", ")", ":", "if", "isinstance", "(", "g", ",", "tf", ".", "IndexedSlices", ")", ":", "tensor_to_avg", ".", "append", "(", "tf", ".", "reshape", "(", "tf", ".", "unsorted_segment_sum", "(", "g", ".", "values", ",", "g", ".", "indices", ",", "g", ".", "dense_shape", "[", "0", "]", ")", ",", "shape", "=", "t", ".", "get_shape", "(", ")", ")", ")", "else", ":", "tensor_to_avg", ".", "append", "(", "g", ")", "avg_op", "=", "self", ".", "_moving_averager", ".", "apply", "(", "tensor_to_avg", ")", "grad_var_ops", ".", "append", "(", "avg_op", ")", "with", "tf", ".", "control_dependencies", "(", "[", "avg_op", "]", ")", ":", "self", ".", "_grad_avg", "=", "[", "self", ".", "_moving_averager", ".", "average", "(", "val", ")", "for", "val", "in", "tensor_to_avg", "]", "self", ".", "_grad_avg_squared", "=", "[", "tf", ".", "square", "(", "val", ")", "for", "val", "in", "self", ".", "_grad_avg", "]", "# Compute Variance", "self", ".", "_grad_var", "=", "tf", ".", "maximum", "(", "tf", ".", "constant", "(", "1e-6", ",", "dtype", "=", "self", ".", "_grad_norm_squared_avg", ".", "dtype", ")", ",", "self", ".", "_grad_norm_squared_avg", "-", "tf", ".", "add_n", "(", "[", "tf", ".", "reduce_sum", "(", "val", ")", "for", "val", "in", "self", ".", "_grad_avg_squared", "]", ")", ")", "if", "self", ".", "_sparsity_debias", ":", "self", ".", "_grad_var", "*=", "self", ".", "_sparsity_avg", "return", "grad_var_ops" ]
Estimate of gradient Variance. Returns: C_t ops.
[ "Estimate", "of", "gradient", "Variance", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/utils/yellowfin.py#L232-L263
21,884
tensorflow/tensor2tensor
tensor2tensor/utils/yellowfin.py
YellowFinOptimizer._dist_to_opt
def _dist_to_opt(self): """Distance to optimum. Returns: D_t ops """ dist_to_opt_ops = [] # Running average of the norm of gradient self._grad_norm = tf.sqrt(self._grad_norm_squared) avg_op = self._moving_averager.apply([self._grad_norm,]) dist_to_opt_ops.append(avg_op) with tf.control_dependencies([avg_op]): self._grad_norm_avg = self._moving_averager.average(self._grad_norm) # Single iteration distance estimation, note here # self._grad_norm_avg is per variable self._d_t = self._grad_norm_avg / self._grad_norm_squared_avg # Running average of distance avg_op = self._moving_averager.apply([self._d_t]) dist_to_opt_ops.append(avg_op) with tf.control_dependencies([avg_op]): self._dist_to_opt_avg = tf.identity( self._moving_averager.average(self._d_t)) if self._sparsity_debias: self._dist_to_opt_avg /= tf.sqrt(self._sparsity_avg) return dist_to_opt_ops
python
def _dist_to_opt(self): """Distance to optimum. Returns: D_t ops """ dist_to_opt_ops = [] # Running average of the norm of gradient self._grad_norm = tf.sqrt(self._grad_norm_squared) avg_op = self._moving_averager.apply([self._grad_norm,]) dist_to_opt_ops.append(avg_op) with tf.control_dependencies([avg_op]): self._grad_norm_avg = self._moving_averager.average(self._grad_norm) # Single iteration distance estimation, note here # self._grad_norm_avg is per variable self._d_t = self._grad_norm_avg / self._grad_norm_squared_avg # Running average of distance avg_op = self._moving_averager.apply([self._d_t]) dist_to_opt_ops.append(avg_op) with tf.control_dependencies([avg_op]): self._dist_to_opt_avg = tf.identity( self._moving_averager.average(self._d_t)) if self._sparsity_debias: self._dist_to_opt_avg /= tf.sqrt(self._sparsity_avg) return dist_to_opt_ops
[ "def", "_dist_to_opt", "(", "self", ")", ":", "dist_to_opt_ops", "=", "[", "]", "# Running average of the norm of gradient", "self", ".", "_grad_norm", "=", "tf", ".", "sqrt", "(", "self", ".", "_grad_norm_squared", ")", "avg_op", "=", "self", ".", "_moving_averager", ".", "apply", "(", "[", "self", ".", "_grad_norm", ",", "]", ")", "dist_to_opt_ops", ".", "append", "(", "avg_op", ")", "with", "tf", ".", "control_dependencies", "(", "[", "avg_op", "]", ")", ":", "self", ".", "_grad_norm_avg", "=", "self", ".", "_moving_averager", ".", "average", "(", "self", ".", "_grad_norm", ")", "# Single iteration distance estimation, note here", "# self._grad_norm_avg is per variable", "self", ".", "_d_t", "=", "self", ".", "_grad_norm_avg", "/", "self", ".", "_grad_norm_squared_avg", "# Running average of distance", "avg_op", "=", "self", ".", "_moving_averager", ".", "apply", "(", "[", "self", ".", "_d_t", "]", ")", "dist_to_opt_ops", ".", "append", "(", "avg_op", ")", "with", "tf", ".", "control_dependencies", "(", "[", "avg_op", "]", ")", ":", "self", ".", "_dist_to_opt_avg", "=", "tf", ".", "identity", "(", "self", ".", "_moving_averager", ".", "average", "(", "self", ".", "_d_t", ")", ")", "if", "self", ".", "_sparsity_debias", ":", "self", ".", "_dist_to_opt_avg", "/=", "tf", ".", "sqrt", "(", "self", ".", "_sparsity_avg", ")", "return", "dist_to_opt_ops" ]
Distance to optimum. Returns: D_t ops
[ "Distance", "to", "optimum", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/utils/yellowfin.py#L265-L289
21,885
tensorflow/tensor2tensor
tensor2tensor/utils/yellowfin.py
YellowFinOptimizer._grad_sparsity
def _grad_sparsity(self): """Gradient sparsity.""" # If the sparse minibatch gradient has 10 percent of its entries # non-zero, its sparsity is 0.1. # The norm of dense gradient averaged from full dataset # are roughly estimated norm of minibatch # sparse gradient norm * sqrt(sparsity) # An extension maybe only correct the sparse blob. non_zero_cnt = tf.add_n([tf.count_nonzero(g) for g in self._grad]) all_entry_cnt = tf.add_n([tf.size(g) for g in self._grad]) self._sparsity = tf.cast(non_zero_cnt, self._grad[0].dtype) self._sparsity /= tf.cast(all_entry_cnt, self._grad[0].dtype) avg_op = self._moving_averager.apply([self._sparsity,]) with tf.control_dependencies([avg_op]): self._sparsity_avg = self._moving_averager.average(self._sparsity) return avg_op
python
def _grad_sparsity(self): """Gradient sparsity.""" # If the sparse minibatch gradient has 10 percent of its entries # non-zero, its sparsity is 0.1. # The norm of dense gradient averaged from full dataset # are roughly estimated norm of minibatch # sparse gradient norm * sqrt(sparsity) # An extension maybe only correct the sparse blob. non_zero_cnt = tf.add_n([tf.count_nonzero(g) for g in self._grad]) all_entry_cnt = tf.add_n([tf.size(g) for g in self._grad]) self._sparsity = tf.cast(non_zero_cnt, self._grad[0].dtype) self._sparsity /= tf.cast(all_entry_cnt, self._grad[0].dtype) avg_op = self._moving_averager.apply([self._sparsity,]) with tf.control_dependencies([avg_op]): self._sparsity_avg = self._moving_averager.average(self._sparsity) return avg_op
[ "def", "_grad_sparsity", "(", "self", ")", ":", "# If the sparse minibatch gradient has 10 percent of its entries", "# non-zero, its sparsity is 0.1.", "# The norm of dense gradient averaged from full dataset", "# are roughly estimated norm of minibatch", "# sparse gradient norm * sqrt(sparsity)", "# An extension maybe only correct the sparse blob.", "non_zero_cnt", "=", "tf", ".", "add_n", "(", "[", "tf", ".", "count_nonzero", "(", "g", ")", "for", "g", "in", "self", ".", "_grad", "]", ")", "all_entry_cnt", "=", "tf", ".", "add_n", "(", "[", "tf", ".", "size", "(", "g", ")", "for", "g", "in", "self", ".", "_grad", "]", ")", "self", ".", "_sparsity", "=", "tf", ".", "cast", "(", "non_zero_cnt", ",", "self", ".", "_grad", "[", "0", "]", ".", "dtype", ")", "self", ".", "_sparsity", "/=", "tf", ".", "cast", "(", "all_entry_cnt", ",", "self", ".", "_grad", "[", "0", "]", ".", "dtype", ")", "avg_op", "=", "self", ".", "_moving_averager", ".", "apply", "(", "[", "self", ".", "_sparsity", ",", "]", ")", "with", "tf", ".", "control_dependencies", "(", "[", "avg_op", "]", ")", ":", "self", ".", "_sparsity_avg", "=", "self", ".", "_moving_averager", ".", "average", "(", "self", ".", "_sparsity", ")", "return", "avg_op" ]
Gradient sparsity.
[ "Gradient", "sparsity", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/utils/yellowfin.py#L291-L306
21,886
tensorflow/tensor2tensor
tensor2tensor/utils/yellowfin.py
YellowFinOptimizer._prepare_variables
def _prepare_variables(self): """Prepare Variables for YellowFin. Returns: Grad**2, Norm, Norm**2, Mean(Norm**2) ops """ self._moving_averager = tf.train.ExponentialMovingAverage( decay=self._beta, zero_debias=self._zero_debias) # assert self._grad is not None and len(self._grad) > 0 # List for the returned Operations prepare_variables_op = [] # Get per var g**2 and norm**2 self._grad_squared = [] self._grad_norm_squared = [] # Gradient squared for v, g in zip(self._vars, self._grad): if g is None: continue with tf.colocate_with(v): self._grad_squared.append(tf.square(g)) # Norm squared. self._grad_norm_squared = [tf.reduce_sum(g_sq) for g_sq in self._grad_squared] if self._sparsity_debias: avg_op_sparsity = self._grad_sparsity() prepare_variables_op.append(avg_op_sparsity) # The following running average on squared norm of gradient # is shared by grad_var and dist_to_opt avg_op = self._moving_averager.apply(self._grad_norm_squared) with tf.control_dependencies([avg_op]): self._grad_norm_squared_avg = [self._moving_averager.average(val) for val in self._grad_norm_squared] self._grad_norm_squared = tf.add_n(self._grad_norm_squared) self._grad_norm_squared_avg = tf.add_n(self._grad_norm_squared_avg) prepare_variables_op.append(avg_op) return tf.group(*prepare_variables_op)
python
def _prepare_variables(self): """Prepare Variables for YellowFin. Returns: Grad**2, Norm, Norm**2, Mean(Norm**2) ops """ self._moving_averager = tf.train.ExponentialMovingAverage( decay=self._beta, zero_debias=self._zero_debias) # assert self._grad is not None and len(self._grad) > 0 # List for the returned Operations prepare_variables_op = [] # Get per var g**2 and norm**2 self._grad_squared = [] self._grad_norm_squared = [] # Gradient squared for v, g in zip(self._vars, self._grad): if g is None: continue with tf.colocate_with(v): self._grad_squared.append(tf.square(g)) # Norm squared. self._grad_norm_squared = [tf.reduce_sum(g_sq) for g_sq in self._grad_squared] if self._sparsity_debias: avg_op_sparsity = self._grad_sparsity() prepare_variables_op.append(avg_op_sparsity) # The following running average on squared norm of gradient # is shared by grad_var and dist_to_opt avg_op = self._moving_averager.apply(self._grad_norm_squared) with tf.control_dependencies([avg_op]): self._grad_norm_squared_avg = [self._moving_averager.average(val) for val in self._grad_norm_squared] self._grad_norm_squared = tf.add_n(self._grad_norm_squared) self._grad_norm_squared_avg = tf.add_n(self._grad_norm_squared_avg) prepare_variables_op.append(avg_op) return tf.group(*prepare_variables_op)
[ "def", "_prepare_variables", "(", "self", ")", ":", "self", ".", "_moving_averager", "=", "tf", ".", "train", ".", "ExponentialMovingAverage", "(", "decay", "=", "self", ".", "_beta", ",", "zero_debias", "=", "self", ".", "_zero_debias", ")", "# assert self._grad is not None and len(self._grad) > 0", "# List for the returned Operations", "prepare_variables_op", "=", "[", "]", "# Get per var g**2 and norm**2", "self", ".", "_grad_squared", "=", "[", "]", "self", ".", "_grad_norm_squared", "=", "[", "]", "# Gradient squared", "for", "v", ",", "g", "in", "zip", "(", "self", ".", "_vars", ",", "self", ".", "_grad", ")", ":", "if", "g", "is", "None", ":", "continue", "with", "tf", ".", "colocate_with", "(", "v", ")", ":", "self", ".", "_grad_squared", ".", "append", "(", "tf", ".", "square", "(", "g", ")", ")", "# Norm squared.", "self", ".", "_grad_norm_squared", "=", "[", "tf", ".", "reduce_sum", "(", "g_sq", ")", "for", "g_sq", "in", "self", ".", "_grad_squared", "]", "if", "self", ".", "_sparsity_debias", ":", "avg_op_sparsity", "=", "self", ".", "_grad_sparsity", "(", ")", "prepare_variables_op", ".", "append", "(", "avg_op_sparsity", ")", "# The following running average on squared norm of gradient", "# is shared by grad_var and dist_to_opt", "avg_op", "=", "self", ".", "_moving_averager", ".", "apply", "(", "self", ".", "_grad_norm_squared", ")", "with", "tf", ".", "control_dependencies", "(", "[", "avg_op", "]", ")", ":", "self", ".", "_grad_norm_squared_avg", "=", "[", "self", ".", "_moving_averager", ".", "average", "(", "val", ")", "for", "val", "in", "self", ".", "_grad_norm_squared", "]", "self", ".", "_grad_norm_squared", "=", "tf", ".", "add_n", "(", "self", ".", "_grad_norm_squared", ")", "self", ".", "_grad_norm_squared_avg", "=", "tf", ".", "add_n", "(", "self", ".", "_grad_norm_squared_avg", ")", "prepare_variables_op", ".", "append", "(", "avg_op", ")", "return", "tf", ".", "group", "(", "*", "prepare_variables_op", ")" ]
Prepare Variables for YellowFin. Returns: Grad**2, Norm, Norm**2, Mean(Norm**2) ops
[ "Prepare", "Variables", "for", "YellowFin", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/utils/yellowfin.py#L308-L349
21,887
tensorflow/tensor2tensor
tensor2tensor/utils/yellowfin.py
YellowFinOptimizer._get_cubic_root
def _get_cubic_root(self): """Get the cubic root.""" # We have the equation x^2 D^2 + (1-x)^4 * C / h_min^2 # where x = sqrt(mu). # We substitute x, which is sqrt(mu), with x = y + 1. # It gives y^3 + py = q # where p = (D^2 h_min^2)/(2*C) and q = -p. # We use the Vieta's substitution to compute the root. # There is only one real solution y (which is in [0, 1] ). # http://mathworld.wolfram.com/VietasSubstitution.html assert_array = [ tf.Assert( tf.logical_not(tf.is_nan(self._dist_to_opt_avg)), [self._dist_to_opt_avg,]), tf.Assert( tf.logical_not(tf.is_nan(self._h_min)), [self._h_min,]), tf.Assert( tf.logical_not(tf.is_nan(self._grad_var)), [self._grad_var,]), tf.Assert( tf.logical_not(tf.is_inf(self._dist_to_opt_avg)), [self._dist_to_opt_avg,]), tf.Assert( tf.logical_not(tf.is_inf(self._h_min)), [self._h_min,]), tf.Assert( tf.logical_not(tf.is_inf(self._grad_var)), [self._grad_var,]) ] with tf.control_dependencies(assert_array): p = self._dist_to_opt_avg**2 * self._h_min**2 / 2 / self._grad_var w3 = (-tf.sqrt(p**2 + 4.0 / 27.0 * p**3) - p) / 2.0 w = tf.sign(w3) * tf.pow(tf.abs(w3), 1.0/3.0) y = w - p / 3.0 / w x = y + 1 return x
python
def _get_cubic_root(self): """Get the cubic root.""" # We have the equation x^2 D^2 + (1-x)^4 * C / h_min^2 # where x = sqrt(mu). # We substitute x, which is sqrt(mu), with x = y + 1. # It gives y^3 + py = q # where p = (D^2 h_min^2)/(2*C) and q = -p. # We use the Vieta's substitution to compute the root. # There is only one real solution y (which is in [0, 1] ). # http://mathworld.wolfram.com/VietasSubstitution.html assert_array = [ tf.Assert( tf.logical_not(tf.is_nan(self._dist_to_opt_avg)), [self._dist_to_opt_avg,]), tf.Assert( tf.logical_not(tf.is_nan(self._h_min)), [self._h_min,]), tf.Assert( tf.logical_not(tf.is_nan(self._grad_var)), [self._grad_var,]), tf.Assert( tf.logical_not(tf.is_inf(self._dist_to_opt_avg)), [self._dist_to_opt_avg,]), tf.Assert( tf.logical_not(tf.is_inf(self._h_min)), [self._h_min,]), tf.Assert( tf.logical_not(tf.is_inf(self._grad_var)), [self._grad_var,]) ] with tf.control_dependencies(assert_array): p = self._dist_to_opt_avg**2 * self._h_min**2 / 2 / self._grad_var w3 = (-tf.sqrt(p**2 + 4.0 / 27.0 * p**3) - p) / 2.0 w = tf.sign(w3) * tf.pow(tf.abs(w3), 1.0/3.0) y = w - p / 3.0 / w x = y + 1 return x
[ "def", "_get_cubic_root", "(", "self", ")", ":", "# We have the equation x^2 D^2 + (1-x)^4 * C / h_min^2", "# where x = sqrt(mu).", "# We substitute x, which is sqrt(mu), with x = y + 1.", "# It gives y^3 + py = q", "# where p = (D^2 h_min^2)/(2*C) and q = -p.", "# We use the Vieta's substitution to compute the root.", "# There is only one real solution y (which is in [0, 1] ).", "# http://mathworld.wolfram.com/VietasSubstitution.html", "assert_array", "=", "[", "tf", ".", "Assert", "(", "tf", ".", "logical_not", "(", "tf", ".", "is_nan", "(", "self", ".", "_dist_to_opt_avg", ")", ")", ",", "[", "self", ".", "_dist_to_opt_avg", ",", "]", ")", ",", "tf", ".", "Assert", "(", "tf", ".", "logical_not", "(", "tf", ".", "is_nan", "(", "self", ".", "_h_min", ")", ")", ",", "[", "self", ".", "_h_min", ",", "]", ")", ",", "tf", ".", "Assert", "(", "tf", ".", "logical_not", "(", "tf", ".", "is_nan", "(", "self", ".", "_grad_var", ")", ")", ",", "[", "self", ".", "_grad_var", ",", "]", ")", ",", "tf", ".", "Assert", "(", "tf", ".", "logical_not", "(", "tf", ".", "is_inf", "(", "self", ".", "_dist_to_opt_avg", ")", ")", ",", "[", "self", ".", "_dist_to_opt_avg", ",", "]", ")", ",", "tf", ".", "Assert", "(", "tf", ".", "logical_not", "(", "tf", ".", "is_inf", "(", "self", ".", "_h_min", ")", ")", ",", "[", "self", ".", "_h_min", ",", "]", ")", ",", "tf", ".", "Assert", "(", "tf", ".", "logical_not", "(", "tf", ".", "is_inf", "(", "self", ".", "_grad_var", ")", ")", ",", "[", "self", ".", "_grad_var", ",", "]", ")", "]", "with", "tf", ".", "control_dependencies", "(", "assert_array", ")", ":", "p", "=", "self", ".", "_dist_to_opt_avg", "**", "2", "*", "self", ".", "_h_min", "**", "2", "/", "2", "/", "self", ".", "_grad_var", "w3", "=", "(", "-", "tf", ".", "sqrt", "(", "p", "**", "2", "+", "4.0", "/", "27.0", "*", "p", "**", "3", ")", "-", "p", ")", "/", "2.0", "w", "=", "tf", ".", "sign", "(", "w3", ")", "*", "tf", ".", "pow", "(", "tf", ".", "abs", "(", "w3", ")", ",", "1.0", "/", "3.0", ")", "y", "=", "w", "-", "p", "/", "3.0", "/", "w", "x", "=", "y", "+", "1", "return", "x" ]
Get the cubic root.
[ "Get", "the", "cubic", "root", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/utils/yellowfin.py#L351-L387
21,888
tensorflow/tensor2tensor
tensor2tensor/utils/yellowfin.py
YellowFinOptimizer._get_lr_tensor
def _get_lr_tensor(self): """Get lr minimizing the surrogate. Returns: The lr_t. """ lr = tf.squared_difference(1.0, tf.sqrt(self._mu)) / self._h_min return lr
python
def _get_lr_tensor(self): """Get lr minimizing the surrogate. Returns: The lr_t. """ lr = tf.squared_difference(1.0, tf.sqrt(self._mu)) / self._h_min return lr
[ "def", "_get_lr_tensor", "(", "self", ")", ":", "lr", "=", "tf", ".", "squared_difference", "(", "1.0", ",", "tf", ".", "sqrt", "(", "self", ".", "_mu", ")", ")", "/", "self", ".", "_h_min", "return", "lr" ]
Get lr minimizing the surrogate. Returns: The lr_t.
[ "Get", "lr", "minimizing", "the", "surrogate", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/utils/yellowfin.py#L389-L396
21,889
tensorflow/tensor2tensor
tensor2tensor/utils/yellowfin.py
YellowFinOptimizer._get_mu_tensor
def _get_mu_tensor(self): """Get the min mu which minimize the surrogate. Returns: The mu_t. """ root = self._get_cubic_root() dr = self._h_max / self._h_min mu = tf.maximum( root**2, ((tf.sqrt(dr) - 1) / (tf.sqrt(dr) + 1))**2) return mu
python
def _get_mu_tensor(self): """Get the min mu which minimize the surrogate. Returns: The mu_t. """ root = self._get_cubic_root() dr = self._h_max / self._h_min mu = tf.maximum( root**2, ((tf.sqrt(dr) - 1) / (tf.sqrt(dr) + 1))**2) return mu
[ "def", "_get_mu_tensor", "(", "self", ")", ":", "root", "=", "self", ".", "_get_cubic_root", "(", ")", "dr", "=", "self", ".", "_h_max", "/", "self", ".", "_h_min", "mu", "=", "tf", ".", "maximum", "(", "root", "**", "2", ",", "(", "(", "tf", ".", "sqrt", "(", "dr", ")", "-", "1", ")", "/", "(", "tf", ".", "sqrt", "(", "dr", ")", "+", "1", ")", ")", "**", "2", ")", "return", "mu" ]
Get the min mu which minimize the surrogate. Returns: The mu_t.
[ "Get", "the", "min", "mu", "which", "minimize", "the", "surrogate", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/utils/yellowfin.py#L398-L408
21,890
tensorflow/tensor2tensor
tensor2tensor/utils/yellowfin.py
YellowFinOptimizer._yellowfin
def _yellowfin(self): """YellowFin auto-tuning optimizer based on momentum SGD. Returns: YF ops (Curvature range, Grad_variance, Dist_to_opt, Single-Step, Auto-Tuning) """ # List for the returned Operations. yellowfin_ops = [] # Curvature range ops. curv_range_ops = self._curvature_range() yellowfin_ops += curv_range_ops # Estimate of gradient Variance ops. grad_var_ops = self._grad_variance() yellowfin_ops += grad_var_ops # Distance to optimum ops. dist_to_opt_ops = self._dist_to_opt() yellowfin_ops += dist_to_opt_ops # Single-Step: minimizes the surrogate for the expected # squared distance from the optimum of a local quadratic # approximation after a single step while keeping all directions in the # robust region. self._mu = tf.identity(tf.cond(self._do_tune, self._get_mu_tensor, lambda: self._mu_var)) with tf.control_dependencies([self._mu]): self._lr = tf.identity(tf.cond(self._do_tune, self._get_lr_tensor, lambda: self._lr_var)) # Tune learning rate and momentum. with tf.control_dependencies([self._mu, self._lr]): self._mu = self._beta * self._mu_var + (1 - self._beta) * self._mu self._lr = self._beta * self._lr_var + (1 - self._beta) * self._lr yellowfin_ops.append(tf.assign(self._mu_var, self._mu)) yellowfin_ops.append(tf.assign(self._lr_var, self._lr)) yellowfin_ops = tf.group(*yellowfin_ops) return yellowfin_ops
python
def _yellowfin(self): """YellowFin auto-tuning optimizer based on momentum SGD. Returns: YF ops (Curvature range, Grad_variance, Dist_to_opt, Single-Step, Auto-Tuning) """ # List for the returned Operations. yellowfin_ops = [] # Curvature range ops. curv_range_ops = self._curvature_range() yellowfin_ops += curv_range_ops # Estimate of gradient Variance ops. grad_var_ops = self._grad_variance() yellowfin_ops += grad_var_ops # Distance to optimum ops. dist_to_opt_ops = self._dist_to_opt() yellowfin_ops += dist_to_opt_ops # Single-Step: minimizes the surrogate for the expected # squared distance from the optimum of a local quadratic # approximation after a single step while keeping all directions in the # robust region. self._mu = tf.identity(tf.cond(self._do_tune, self._get_mu_tensor, lambda: self._mu_var)) with tf.control_dependencies([self._mu]): self._lr = tf.identity(tf.cond(self._do_tune, self._get_lr_tensor, lambda: self._lr_var)) # Tune learning rate and momentum. with tf.control_dependencies([self._mu, self._lr]): self._mu = self._beta * self._mu_var + (1 - self._beta) * self._mu self._lr = self._beta * self._lr_var + (1 - self._beta) * self._lr yellowfin_ops.append(tf.assign(self._mu_var, self._mu)) yellowfin_ops.append(tf.assign(self._lr_var, self._lr)) yellowfin_ops = tf.group(*yellowfin_ops) return yellowfin_ops
[ "def", "_yellowfin", "(", "self", ")", ":", "# List for the returned Operations.", "yellowfin_ops", "=", "[", "]", "# Curvature range ops.", "curv_range_ops", "=", "self", ".", "_curvature_range", "(", ")", "yellowfin_ops", "+=", "curv_range_ops", "# Estimate of gradient Variance ops.", "grad_var_ops", "=", "self", ".", "_grad_variance", "(", ")", "yellowfin_ops", "+=", "grad_var_ops", "# Distance to optimum ops.", "dist_to_opt_ops", "=", "self", ".", "_dist_to_opt", "(", ")", "yellowfin_ops", "+=", "dist_to_opt_ops", "# Single-Step: minimizes the surrogate for the expected", "# squared distance from the optimum of a local quadratic", "# approximation after a single step while keeping all directions in the", "# robust region.", "self", ".", "_mu", "=", "tf", ".", "identity", "(", "tf", ".", "cond", "(", "self", ".", "_do_tune", ",", "self", ".", "_get_mu_tensor", ",", "lambda", ":", "self", ".", "_mu_var", ")", ")", "with", "tf", ".", "control_dependencies", "(", "[", "self", ".", "_mu", "]", ")", ":", "self", ".", "_lr", "=", "tf", ".", "identity", "(", "tf", ".", "cond", "(", "self", ".", "_do_tune", ",", "self", ".", "_get_lr_tensor", ",", "lambda", ":", "self", ".", "_lr_var", ")", ")", "# Tune learning rate and momentum.", "with", "tf", ".", "control_dependencies", "(", "[", "self", ".", "_mu", ",", "self", ".", "_lr", "]", ")", ":", "self", ".", "_mu", "=", "self", ".", "_beta", "*", "self", ".", "_mu_var", "+", "(", "1", "-", "self", ".", "_beta", ")", "*", "self", ".", "_mu", "self", ".", "_lr", "=", "self", ".", "_beta", "*", "self", ".", "_lr_var", "+", "(", "1", "-", "self", ".", "_beta", ")", "*", "self", ".", "_lr", "yellowfin_ops", ".", "append", "(", "tf", ".", "assign", "(", "self", ".", "_mu_var", ",", "self", ".", "_mu", ")", ")", "yellowfin_ops", ".", "append", "(", "tf", ".", "assign", "(", "self", ".", "_lr_var", ",", "self", ".", "_lr", ")", ")", "yellowfin_ops", "=", "tf", ".", "group", "(", "*", "yellowfin_ops", ")", "return", "yellowfin_ops" ]
YellowFin auto-tuning optimizer based on momentum SGD. Returns: YF ops (Curvature range, Grad_variance, Dist_to_opt, Single-Step, Auto-Tuning)
[ "YellowFin", "auto", "-", "tuning", "optimizer", "based", "on", "momentum", "SGD", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/utils/yellowfin.py#L410-L454
21,891
tensorflow/tensor2tensor
tensor2tensor/utils/yellowfin.py
YellowFinOptimizer.apply_gradients
def apply_gradients(self, grads_and_vars, global_step=None, name=None): """Applying gradients and tune hyperparams with YellowFin. Args: grads_and_vars: List of (gradient, variable) pairs as returned by compute_gradients(). global_step: Optional Variable to increment by one after the variables have been updated. name: Optional name for the returned operation. Default to the name passed to the Optimizer constructor. Returns: (A group of operations) Variable Update with Momentum ops, YellowFin ops(Curvature, Variance, Distance) ops, SingleStep and lr_mu tuning ops, Step increment ops. """ self._grad, self._vars = zip(*[(g, t) for g, t in grads_and_vars if g is not None]) # Var update with Momentum. with tf.variable_scope("apply_updates"): # Gradient Clipping? if self._clip_thresh_var is not None: self._grad, _ = tf.clip_by_global_norm( self._grad, self._clip_thresh_var) apply_grad_op = self._momentum_optimizer.apply_gradients( zip(self._grad, self._vars), global_step=global_step, name=name) else: apply_grad_op = self._momentum_optimizer.apply_gradients( zip(self._grad, self._vars), global_step=global_step, name=name) # Begin lr and mu tuning. with tf.variable_scope("prepare_yellowFin_variables"): # the dependencies ideally only need to be after clip is done, # i.e. depends on self._grads. However, the control_dependencies # does not support indexed slice for sparse gradients. # The alternative dependencies here might be slightly slower due # to less parallelization. with tf.control_dependencies([apply_grad_op,]): prepare_variables_op = self._prepare_variables() with tf.variable_scope("yellowfin"): with tf.control_dependencies([prepare_variables_op]): yellowfin_op = self._yellowfin() # Update YellowFin step variable. with tf.control_dependencies([yellowfin_op]): self._increment_step_op = tf.assign_add(self._step, 1).op return tf.group(apply_grad_op, prepare_variables_op, yellowfin_op, self._increment_step_op)
python
def apply_gradients(self, grads_and_vars, global_step=None, name=None): """Applying gradients and tune hyperparams with YellowFin. Args: grads_and_vars: List of (gradient, variable) pairs as returned by compute_gradients(). global_step: Optional Variable to increment by one after the variables have been updated. name: Optional name for the returned operation. Default to the name passed to the Optimizer constructor. Returns: (A group of operations) Variable Update with Momentum ops, YellowFin ops(Curvature, Variance, Distance) ops, SingleStep and lr_mu tuning ops, Step increment ops. """ self._grad, self._vars = zip(*[(g, t) for g, t in grads_and_vars if g is not None]) # Var update with Momentum. with tf.variable_scope("apply_updates"): # Gradient Clipping? if self._clip_thresh_var is not None: self._grad, _ = tf.clip_by_global_norm( self._grad, self._clip_thresh_var) apply_grad_op = self._momentum_optimizer.apply_gradients( zip(self._grad, self._vars), global_step=global_step, name=name) else: apply_grad_op = self._momentum_optimizer.apply_gradients( zip(self._grad, self._vars), global_step=global_step, name=name) # Begin lr and mu tuning. with tf.variable_scope("prepare_yellowFin_variables"): # the dependencies ideally only need to be after clip is done, # i.e. depends on self._grads. However, the control_dependencies # does not support indexed slice for sparse gradients. # The alternative dependencies here might be slightly slower due # to less parallelization. with tf.control_dependencies([apply_grad_op,]): prepare_variables_op = self._prepare_variables() with tf.variable_scope("yellowfin"): with tf.control_dependencies([prepare_variables_op]): yellowfin_op = self._yellowfin() # Update YellowFin step variable. with tf.control_dependencies([yellowfin_op]): self._increment_step_op = tf.assign_add(self._step, 1).op return tf.group(apply_grad_op, prepare_variables_op, yellowfin_op, self._increment_step_op)
[ "def", "apply_gradients", "(", "self", ",", "grads_and_vars", ",", "global_step", "=", "None", ",", "name", "=", "None", ")", ":", "self", ".", "_grad", ",", "self", ".", "_vars", "=", "zip", "(", "*", "[", "(", "g", ",", "t", ")", "for", "g", ",", "t", "in", "grads_and_vars", "if", "g", "is", "not", "None", "]", ")", "# Var update with Momentum.", "with", "tf", ".", "variable_scope", "(", "\"apply_updates\"", ")", ":", "# Gradient Clipping?", "if", "self", ".", "_clip_thresh_var", "is", "not", "None", ":", "self", ".", "_grad", ",", "_", "=", "tf", ".", "clip_by_global_norm", "(", "self", ".", "_grad", ",", "self", ".", "_clip_thresh_var", ")", "apply_grad_op", "=", "self", ".", "_momentum_optimizer", ".", "apply_gradients", "(", "zip", "(", "self", ".", "_grad", ",", "self", ".", "_vars", ")", ",", "global_step", "=", "global_step", ",", "name", "=", "name", ")", "else", ":", "apply_grad_op", "=", "self", ".", "_momentum_optimizer", ".", "apply_gradients", "(", "zip", "(", "self", ".", "_grad", ",", "self", ".", "_vars", ")", ",", "global_step", "=", "global_step", ",", "name", "=", "name", ")", "# Begin lr and mu tuning.", "with", "tf", ".", "variable_scope", "(", "\"prepare_yellowFin_variables\"", ")", ":", "# the dependencies ideally only need to be after clip is done,", "# i.e. depends on self._grads. However, the control_dependencies", "# does not support indexed slice for sparse gradients.", "# The alternative dependencies here might be slightly slower due", "# to less parallelization.", "with", "tf", ".", "control_dependencies", "(", "[", "apply_grad_op", ",", "]", ")", ":", "prepare_variables_op", "=", "self", ".", "_prepare_variables", "(", ")", "with", "tf", ".", "variable_scope", "(", "\"yellowfin\"", ")", ":", "with", "tf", ".", "control_dependencies", "(", "[", "prepare_variables_op", "]", ")", ":", "yellowfin_op", "=", "self", ".", "_yellowfin", "(", ")", "# Update YellowFin step variable.", "with", "tf", ".", "control_dependencies", "(", "[", "yellowfin_op", "]", ")", ":", "self", ".", "_increment_step_op", "=", "tf", ".", "assign_add", "(", "self", ".", "_step", ",", "1", ")", ".", "op", "return", "tf", ".", "group", "(", "apply_grad_op", ",", "prepare_variables_op", ",", "yellowfin_op", ",", "self", ".", "_increment_step_op", ")" ]
Applying gradients and tune hyperparams with YellowFin. Args: grads_and_vars: List of (gradient, variable) pairs as returned by compute_gradients(). global_step: Optional Variable to increment by one after the variables have been updated. name: Optional name for the returned operation. Default to the name passed to the Optimizer constructor. Returns: (A group of operations) Variable Update with Momentum ops, YellowFin ops(Curvature, Variance, Distance) ops, SingleStep and lr_mu tuning ops, Step increment ops.
[ "Applying", "gradients", "and", "tune", "hyperparams", "with", "YellowFin", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/utils/yellowfin.py#L460-L519
21,892
tensorflow/tensor2tensor
tensor2tensor/utils/yellowfin.py
YellowFinOptimizer.compute_gradients
def compute_gradients(self, loss, var_list, global_step=None, gate_gradients=GATE_OP, aggregation_method=None, colocate_gradients_with_ops=False, name=None, grad_loss=None): """Compute gradients through momentum optimizer. Args: loss: A Tensor containing the value to minimize. var_list: Optional list or tuple of tf.Variable to update to minimize loss. Defaults to the list of variables collected in the graph under the key GraphKey.TRAINABLE_VARIABLES. global_step: Optional Variable to increment by one after the variables have been updated. gate_gradients: How to gate the computation of gradients. Can be GATE_NONE, GATE_OP, or GATE_GRAPH. aggregation_method: Specifies the method used to combine gradient terms. Valid values are defined in the class AggregationMethod. colocate_gradients_with_ops: If True, try collocating gradients with the corresponding op. name: Optional name for the returned operation. Default to the name passed to the Optimizer constructor. grad_loss: Optional. A Tensor holding the gradient computed for loss. Returns: A list of (gradient, variable) pairs. Variable is always present, but gradient can be None. """ del global_step, name # Unused for now. return self._momentum_optimizer.compute_gradients( loss, var_list=var_list, gate_gradients=gate_gradients, aggregation_method=aggregation_method, colocate_gradients_with_ops=colocate_gradients_with_ops, grad_loss=grad_loss)
python
def compute_gradients(self, loss, var_list, global_step=None, gate_gradients=GATE_OP, aggregation_method=None, colocate_gradients_with_ops=False, name=None, grad_loss=None): """Compute gradients through momentum optimizer. Args: loss: A Tensor containing the value to minimize. var_list: Optional list or tuple of tf.Variable to update to minimize loss. Defaults to the list of variables collected in the graph under the key GraphKey.TRAINABLE_VARIABLES. global_step: Optional Variable to increment by one after the variables have been updated. gate_gradients: How to gate the computation of gradients. Can be GATE_NONE, GATE_OP, or GATE_GRAPH. aggregation_method: Specifies the method used to combine gradient terms. Valid values are defined in the class AggregationMethod. colocate_gradients_with_ops: If True, try collocating gradients with the corresponding op. name: Optional name for the returned operation. Default to the name passed to the Optimizer constructor. grad_loss: Optional. A Tensor holding the gradient computed for loss. Returns: A list of (gradient, variable) pairs. Variable is always present, but gradient can be None. """ del global_step, name # Unused for now. return self._momentum_optimizer.compute_gradients( loss, var_list=var_list, gate_gradients=gate_gradients, aggregation_method=aggregation_method, colocate_gradients_with_ops=colocate_gradients_with_ops, grad_loss=grad_loss)
[ "def", "compute_gradients", "(", "self", ",", "loss", ",", "var_list", ",", "global_step", "=", "None", ",", "gate_gradients", "=", "GATE_OP", ",", "aggregation_method", "=", "None", ",", "colocate_gradients_with_ops", "=", "False", ",", "name", "=", "None", ",", "grad_loss", "=", "None", ")", ":", "del", "global_step", ",", "name", "# Unused for now.", "return", "self", ".", "_momentum_optimizer", ".", "compute_gradients", "(", "loss", ",", "var_list", "=", "var_list", ",", "gate_gradients", "=", "gate_gradients", ",", "aggregation_method", "=", "aggregation_method", ",", "colocate_gradients_with_ops", "=", "colocate_gradients_with_ops", ",", "grad_loss", "=", "grad_loss", ")" ]
Compute gradients through momentum optimizer. Args: loss: A Tensor containing the value to minimize. var_list: Optional list or tuple of tf.Variable to update to minimize loss. Defaults to the list of variables collected in the graph under the key GraphKey.TRAINABLE_VARIABLES. global_step: Optional Variable to increment by one after the variables have been updated. gate_gradients: How to gate the computation of gradients. Can be GATE_NONE, GATE_OP, or GATE_GRAPH. aggregation_method: Specifies the method used to combine gradient terms. Valid values are defined in the class AggregationMethod. colocate_gradients_with_ops: If True, try collocating gradients with the corresponding op. name: Optional name for the returned operation. Default to the name passed to the Optimizer constructor. grad_loss: Optional. A Tensor holding the gradient computed for loss. Returns: A list of (gradient, variable) pairs. Variable is always present, but gradient can be None.
[ "Compute", "gradients", "through", "momentum", "optimizer", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/utils/yellowfin.py#L521-L560
21,893
tensorflow/tensor2tensor
tensor2tensor/utils/yellowfin.py
YellowFinOptimizer.minimize
def minimize(self, loss, global_step=None, var_list=None, gate_gradients=GATE_OP, aggregation_method=None, colocate_gradients_with_ops=False, name=None, grad_loss=None): """Adapted from TensorFlow Optimizer base class member function. Add operations to minimize `loss` by updating `var_list`. This method simply combines calls `compute_gradients()` and `apply_gradients()`. If you want to process the gradient before applying them call `tf.gradients()` and `self.apply_gradients()` explicitly instead of using this function. Args: loss: A Tensor containing the value to minimize. global_step: Optional Variable to increment by one after the variables have been updated. var_list: Optional list or tuple of Variable objects to update to minimize loss. Defaults to the list of variables collected in the graph under the key GraphKeys.TRAINABLE_VARIABLES. gate_gradients: How to gate the computation of gradients. Can be GATE_NONE, GATE_OP, or GATE_GRAPH. aggregation_method: Specifies the method used to combine gradient terms. Valid values are defined in the class AggregationMethod. colocate_gradients_with_ops: If True, try collocating gradients with the corresponding op. name: Optional name for the returned operation. grad_loss: Optional. A Tensor holding the gradient computed for loss. Returns: An Operation that updates the variables in var_list. If global_step was not None, that operation also increments global_step. Raises: ValueError: if no gradients are provided for any variable. """ grads_and_vars = self._momentum_optimizer.compute_gradients( loss, var_list=var_list, gate_gradients=gate_gradients, aggregation_method=aggregation_method, colocate_gradients_with_ops=colocate_gradients_with_ops, grad_loss=grad_loss) vars_with_grad = [v for g, v in grads_and_vars if g is not None] if not vars_with_grad: raise ValueError( "No gradients provided for any variable, check your graph for ops" " that do not support gradients, between variables %s and loss %s." % ([str(v) for _, v in grads_and_vars], loss)) for g, v in grads_and_vars: print("g ", g) print("v ", v) return self.apply_gradients(grads_and_vars, global_step=global_step, name=name)
python
def minimize(self, loss, global_step=None, var_list=None, gate_gradients=GATE_OP, aggregation_method=None, colocate_gradients_with_ops=False, name=None, grad_loss=None): """Adapted from TensorFlow Optimizer base class member function. Add operations to minimize `loss` by updating `var_list`. This method simply combines calls `compute_gradients()` and `apply_gradients()`. If you want to process the gradient before applying them call `tf.gradients()` and `self.apply_gradients()` explicitly instead of using this function. Args: loss: A Tensor containing the value to minimize. global_step: Optional Variable to increment by one after the variables have been updated. var_list: Optional list or tuple of Variable objects to update to minimize loss. Defaults to the list of variables collected in the graph under the key GraphKeys.TRAINABLE_VARIABLES. gate_gradients: How to gate the computation of gradients. Can be GATE_NONE, GATE_OP, or GATE_GRAPH. aggregation_method: Specifies the method used to combine gradient terms. Valid values are defined in the class AggregationMethod. colocate_gradients_with_ops: If True, try collocating gradients with the corresponding op. name: Optional name for the returned operation. grad_loss: Optional. A Tensor holding the gradient computed for loss. Returns: An Operation that updates the variables in var_list. If global_step was not None, that operation also increments global_step. Raises: ValueError: if no gradients are provided for any variable. """ grads_and_vars = self._momentum_optimizer.compute_gradients( loss, var_list=var_list, gate_gradients=gate_gradients, aggregation_method=aggregation_method, colocate_gradients_with_ops=colocate_gradients_with_ops, grad_loss=grad_loss) vars_with_grad = [v for g, v in grads_and_vars if g is not None] if not vars_with_grad: raise ValueError( "No gradients provided for any variable, check your graph for ops" " that do not support gradients, between variables %s and loss %s." % ([str(v) for _, v in grads_and_vars], loss)) for g, v in grads_and_vars: print("g ", g) print("v ", v) return self.apply_gradients(grads_and_vars, global_step=global_step, name=name)
[ "def", "minimize", "(", "self", ",", "loss", ",", "global_step", "=", "None", ",", "var_list", "=", "None", ",", "gate_gradients", "=", "GATE_OP", ",", "aggregation_method", "=", "None", ",", "colocate_gradients_with_ops", "=", "False", ",", "name", "=", "None", ",", "grad_loss", "=", "None", ")", ":", "grads_and_vars", "=", "self", ".", "_momentum_optimizer", ".", "compute_gradients", "(", "loss", ",", "var_list", "=", "var_list", ",", "gate_gradients", "=", "gate_gradients", ",", "aggregation_method", "=", "aggregation_method", ",", "colocate_gradients_with_ops", "=", "colocate_gradients_with_ops", ",", "grad_loss", "=", "grad_loss", ")", "vars_with_grad", "=", "[", "v", "for", "g", ",", "v", "in", "grads_and_vars", "if", "g", "is", "not", "None", "]", "if", "not", "vars_with_grad", ":", "raise", "ValueError", "(", "\"No gradients provided for any variable, check your graph for ops\"", "\" that do not support gradients, between variables %s and loss %s.\"", "%", "(", "[", "str", "(", "v", ")", "for", "_", ",", "v", "in", "grads_and_vars", "]", ",", "loss", ")", ")", "for", "g", ",", "v", "in", "grads_and_vars", ":", "print", "(", "\"g \"", ",", "g", ")", "print", "(", "\"v \"", ",", "v", ")", "return", "self", ".", "apply_gradients", "(", "grads_and_vars", ",", "global_step", "=", "global_step", ",", "name", "=", "name", ")" ]
Adapted from TensorFlow Optimizer base class member function. Add operations to minimize `loss` by updating `var_list`. This method simply combines calls `compute_gradients()` and `apply_gradients()`. If you want to process the gradient before applying them call `tf.gradients()` and `self.apply_gradients()` explicitly instead of using this function. Args: loss: A Tensor containing the value to minimize. global_step: Optional Variable to increment by one after the variables have been updated. var_list: Optional list or tuple of Variable objects to update to minimize loss. Defaults to the list of variables collected in the graph under the key GraphKeys.TRAINABLE_VARIABLES. gate_gradients: How to gate the computation of gradients. Can be GATE_NONE, GATE_OP, or GATE_GRAPH. aggregation_method: Specifies the method used to combine gradient terms. Valid values are defined in the class AggregationMethod. colocate_gradients_with_ops: If True, try collocating gradients with the corresponding op. name: Optional name for the returned operation. grad_loss: Optional. A Tensor holding the gradient computed for loss. Returns: An Operation that updates the variables in var_list. If global_step was not None, that operation also increments global_step. Raises: ValueError: if no gradients are provided for any variable.
[ "Adapted", "from", "TensorFlow", "Optimizer", "base", "class", "member", "function", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/utils/yellowfin.py#L562-L622
21,894
tensorflow/tensor2tensor
tensor2tensor/models/bytenet.py
bytenet_internal
def bytenet_internal(inputs, targets, hparams): """ByteNet, main step used for training.""" with tf.variable_scope("bytenet"): # Flatten inputs and extend length by 50%. inputs = tf.expand_dims(common_layers.flatten4d3d(inputs), axis=2) extend_length = tf.to_int32(0.5 * tf.to_float(tf.shape(inputs)[1])) inputs_shape = inputs.shape.as_list() inputs = tf.pad(inputs, [[0, 0], [0, extend_length], [0, 0], [0, 0]]) inputs_shape[1] = None inputs.set_shape(inputs_shape) # Don't lose the other shapes when padding. # Pad inputs and targets to be the same length, divisible by 50. inputs, targets = common_layers.pad_to_same_length( inputs, targets, final_length_divisible_by=50) final_encoder = residual_dilated_conv(inputs, hparams.num_block_repeat, "SAME", "encoder", hparams) shifted_targets = common_layers.shift_right(targets) kernel = (hparams.kernel_height, hparams.kernel_width) decoder_start = common_layers.conv_block( tf.concat([final_encoder, shifted_targets], axis=3), hparams.hidden_size, [((1, 1), kernel)], padding="LEFT") return residual_dilated_conv(decoder_start, hparams.num_block_repeat, "LEFT", "decoder", hparams)
python
def bytenet_internal(inputs, targets, hparams): """ByteNet, main step used for training.""" with tf.variable_scope("bytenet"): # Flatten inputs and extend length by 50%. inputs = tf.expand_dims(common_layers.flatten4d3d(inputs), axis=2) extend_length = tf.to_int32(0.5 * tf.to_float(tf.shape(inputs)[1])) inputs_shape = inputs.shape.as_list() inputs = tf.pad(inputs, [[0, 0], [0, extend_length], [0, 0], [0, 0]]) inputs_shape[1] = None inputs.set_shape(inputs_shape) # Don't lose the other shapes when padding. # Pad inputs and targets to be the same length, divisible by 50. inputs, targets = common_layers.pad_to_same_length( inputs, targets, final_length_divisible_by=50) final_encoder = residual_dilated_conv(inputs, hparams.num_block_repeat, "SAME", "encoder", hparams) shifted_targets = common_layers.shift_right(targets) kernel = (hparams.kernel_height, hparams.kernel_width) decoder_start = common_layers.conv_block( tf.concat([final_encoder, shifted_targets], axis=3), hparams.hidden_size, [((1, 1), kernel)], padding="LEFT") return residual_dilated_conv(decoder_start, hparams.num_block_repeat, "LEFT", "decoder", hparams)
[ "def", "bytenet_internal", "(", "inputs", ",", "targets", ",", "hparams", ")", ":", "with", "tf", ".", "variable_scope", "(", "\"bytenet\"", ")", ":", "# Flatten inputs and extend length by 50%.", "inputs", "=", "tf", ".", "expand_dims", "(", "common_layers", ".", "flatten4d3d", "(", "inputs", ")", ",", "axis", "=", "2", ")", "extend_length", "=", "tf", ".", "to_int32", "(", "0.5", "*", "tf", ".", "to_float", "(", "tf", ".", "shape", "(", "inputs", ")", "[", "1", "]", ")", ")", "inputs_shape", "=", "inputs", ".", "shape", ".", "as_list", "(", ")", "inputs", "=", "tf", ".", "pad", "(", "inputs", ",", "[", "[", "0", ",", "0", "]", ",", "[", "0", ",", "extend_length", "]", ",", "[", "0", ",", "0", "]", ",", "[", "0", ",", "0", "]", "]", ")", "inputs_shape", "[", "1", "]", "=", "None", "inputs", ".", "set_shape", "(", "inputs_shape", ")", "# Don't lose the other shapes when padding.", "# Pad inputs and targets to be the same length, divisible by 50.", "inputs", ",", "targets", "=", "common_layers", ".", "pad_to_same_length", "(", "inputs", ",", "targets", ",", "final_length_divisible_by", "=", "50", ")", "final_encoder", "=", "residual_dilated_conv", "(", "inputs", ",", "hparams", ".", "num_block_repeat", ",", "\"SAME\"", ",", "\"encoder\"", ",", "hparams", ")", "shifted_targets", "=", "common_layers", ".", "shift_right", "(", "targets", ")", "kernel", "=", "(", "hparams", ".", "kernel_height", ",", "hparams", ".", "kernel_width", ")", "decoder_start", "=", "common_layers", ".", "conv_block", "(", "tf", ".", "concat", "(", "[", "final_encoder", ",", "shifted_targets", "]", ",", "axis", "=", "3", ")", ",", "hparams", ".", "hidden_size", ",", "[", "(", "(", "1", ",", "1", ")", ",", "kernel", ")", "]", ",", "padding", "=", "\"LEFT\"", ")", "return", "residual_dilated_conv", "(", "decoder_start", ",", "hparams", ".", "num_block_repeat", ",", "\"LEFT\"", ",", "\"decoder\"", ",", "hparams", ")" ]
ByteNet, main step used for training.
[ "ByteNet", "main", "step", "used", "for", "training", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/bytenet.py#L50-L74
21,895
tensorflow/tensor2tensor
tensor2tensor/data_generators/snli.py
_download_and_parse_dataset
def _download_and_parse_dataset(tmp_dir, train): """Downloads and prepairs the dataset to be parsed by the data_generator.""" file_path = generator_utils.maybe_download(tmp_dir, _SNLI_ZIP, _SNLI_URL) zip_ref = zipfile.ZipFile(file_path, 'r') zip_ref.extractall(tmp_dir) zip_ref.close() file_name = 'train' if train else 'dev' dataset_file_path = os.path.join(tmp_dir, _SNLI_DATA_PATH % file_name) _parse_dataset(dataset_file_path, tmp_dir, train)
python
def _download_and_parse_dataset(tmp_dir, train): """Downloads and prepairs the dataset to be parsed by the data_generator.""" file_path = generator_utils.maybe_download(tmp_dir, _SNLI_ZIP, _SNLI_URL) zip_ref = zipfile.ZipFile(file_path, 'r') zip_ref.extractall(tmp_dir) zip_ref.close() file_name = 'train' if train else 'dev' dataset_file_path = os.path.join(tmp_dir, _SNLI_DATA_PATH % file_name) _parse_dataset(dataset_file_path, tmp_dir, train)
[ "def", "_download_and_parse_dataset", "(", "tmp_dir", ",", "train", ")", ":", "file_path", "=", "generator_utils", ".", "maybe_download", "(", "tmp_dir", ",", "_SNLI_ZIP", ",", "_SNLI_URL", ")", "zip_ref", "=", "zipfile", ".", "ZipFile", "(", "file_path", ",", "'r'", ")", "zip_ref", ".", "extractall", "(", "tmp_dir", ")", "zip_ref", ".", "close", "(", ")", "file_name", "=", "'train'", "if", "train", "else", "'dev'", "dataset_file_path", "=", "os", ".", "path", ".", "join", "(", "tmp_dir", ",", "_SNLI_DATA_PATH", "%", "file_name", ")", "_parse_dataset", "(", "dataset_file_path", ",", "tmp_dir", ",", "train", ")" ]
Downloads and prepairs the dataset to be parsed by the data_generator.
[ "Downloads", "and", "prepairs", "the", "dataset", "to", "be", "parsed", "by", "the", "data_generator", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/data_generators/snli.py#L51-L60
21,896
tensorflow/tensor2tensor
tensor2tensor/data_generators/snli.py
_get_tokens_and_tags
def _get_tokens_and_tags(parse_str): """Parse str to tokens and pos tags.""" tokens = [] parse_split = parse_str.split(' ') for p in parse_split: assert p.startswith('(') or p.endswith(')') if p.endswith(')'): token = p.replace(')', '') tokens.append(token) return tokens
python
def _get_tokens_and_tags(parse_str): """Parse str to tokens and pos tags.""" tokens = [] parse_split = parse_str.split(' ') for p in parse_split: assert p.startswith('(') or p.endswith(')') if p.endswith(')'): token = p.replace(')', '') tokens.append(token) return tokens
[ "def", "_get_tokens_and_tags", "(", "parse_str", ")", ":", "tokens", "=", "[", "]", "parse_split", "=", "parse_str", ".", "split", "(", "' '", ")", "for", "p", "in", "parse_split", ":", "assert", "p", ".", "startswith", "(", "'('", ")", "or", "p", ".", "endswith", "(", "')'", ")", "if", "p", ".", "endswith", "(", "')'", ")", ":", "token", "=", "p", ".", "replace", "(", "')'", ",", "''", ")", "tokens", ".", "append", "(", "token", ")", "return", "tokens" ]
Parse str to tokens and pos tags.
[ "Parse", "str", "to", "tokens", "and", "pos", "tags", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/data_generators/snli.py#L63-L73
21,897
tensorflow/tensor2tensor
tensor2tensor/data_generators/snli.py
_parse_dataset
def _parse_dataset(file_path, tmp_dir, train): """Convert the dataset in to a simpler format. This function creates two files. One for being processed to produce a vocab and another to generate the data. Args: file_path: string, path to the file to parse. tmp_dir: string, path to the directory to output the files. train: bool, indicating if we are parsing the training set. """ input_path = file_path file_name = 'train' if train else 'dev' gen_output_path = os.path.join(tmp_dir, file_name + '.txt') example_output_path = os.path.join(tmp_dir, _EXAMPLES_FILE) print('input path: ' + input_path) print('gen_output_path: ' + gen_output_path) print('example_output_path: ' + example_output_path) input_file = tf.gfile.Open(input_path, mode='r') examples = [] for counter, line in enumerate(input_file): if counter == 0: # Ignore first line since its a header. continue # Get the token and embedding vector. line_split = line.split('\t') parse1 = line_split[_PARSE1_INDEX] parse2 = line_split[_PARSE2_INDEX] consensus_label = line_split[_LABEL_INDEX] tokens1 = _get_tokens_and_tags(parse1) tokens2 = _get_tokens_and_tags(parse2) tokens1_str = ' '.join(tokens1) tokens2_str = ' '.join(tokens2) if consensus_label != '-': examples.append([tokens1_str, tokens2_str, consensus_label]) input_file.close() # Output tab delimited file of lines of examples (sentence1, sentence2, label) with tf.gfile.GFile(gen_output_path, 'w') as f: for tokens1_str, tokens2_str, consensus_label in examples: f.write('%s\t%s\t%s\n' % (tokens1_str, tokens2_str, consensus_label)) if train: # Output file containing all the sentences for generating the vocab from. with tf.gfile.GFile(example_output_path, 'w') as f: for tokens1_str, tokens2_str, consensus_label in examples: f.write('%s %s\n' % (tokens1_str, tokens2_str))
python
def _parse_dataset(file_path, tmp_dir, train): """Convert the dataset in to a simpler format. This function creates two files. One for being processed to produce a vocab and another to generate the data. Args: file_path: string, path to the file to parse. tmp_dir: string, path to the directory to output the files. train: bool, indicating if we are parsing the training set. """ input_path = file_path file_name = 'train' if train else 'dev' gen_output_path = os.path.join(tmp_dir, file_name + '.txt') example_output_path = os.path.join(tmp_dir, _EXAMPLES_FILE) print('input path: ' + input_path) print('gen_output_path: ' + gen_output_path) print('example_output_path: ' + example_output_path) input_file = tf.gfile.Open(input_path, mode='r') examples = [] for counter, line in enumerate(input_file): if counter == 0: # Ignore first line since its a header. continue # Get the token and embedding vector. line_split = line.split('\t') parse1 = line_split[_PARSE1_INDEX] parse2 = line_split[_PARSE2_INDEX] consensus_label = line_split[_LABEL_INDEX] tokens1 = _get_tokens_and_tags(parse1) tokens2 = _get_tokens_and_tags(parse2) tokens1_str = ' '.join(tokens1) tokens2_str = ' '.join(tokens2) if consensus_label != '-': examples.append([tokens1_str, tokens2_str, consensus_label]) input_file.close() # Output tab delimited file of lines of examples (sentence1, sentence2, label) with tf.gfile.GFile(gen_output_path, 'w') as f: for tokens1_str, tokens2_str, consensus_label in examples: f.write('%s\t%s\t%s\n' % (tokens1_str, tokens2_str, consensus_label)) if train: # Output file containing all the sentences for generating the vocab from. with tf.gfile.GFile(example_output_path, 'w') as f: for tokens1_str, tokens2_str, consensus_label in examples: f.write('%s %s\n' % (tokens1_str, tokens2_str))
[ "def", "_parse_dataset", "(", "file_path", ",", "tmp_dir", ",", "train", ")", ":", "input_path", "=", "file_path", "file_name", "=", "'train'", "if", "train", "else", "'dev'", "gen_output_path", "=", "os", ".", "path", ".", "join", "(", "tmp_dir", ",", "file_name", "+", "'.txt'", ")", "example_output_path", "=", "os", ".", "path", ".", "join", "(", "tmp_dir", ",", "_EXAMPLES_FILE", ")", "print", "(", "'input path: '", "+", "input_path", ")", "print", "(", "'gen_output_path: '", "+", "gen_output_path", ")", "print", "(", "'example_output_path: '", "+", "example_output_path", ")", "input_file", "=", "tf", ".", "gfile", ".", "Open", "(", "input_path", ",", "mode", "=", "'r'", ")", "examples", "=", "[", "]", "for", "counter", ",", "line", "in", "enumerate", "(", "input_file", ")", ":", "if", "counter", "==", "0", ":", "# Ignore first line since its a header.", "continue", "# Get the token and embedding vector.", "line_split", "=", "line", ".", "split", "(", "'\\t'", ")", "parse1", "=", "line_split", "[", "_PARSE1_INDEX", "]", "parse2", "=", "line_split", "[", "_PARSE2_INDEX", "]", "consensus_label", "=", "line_split", "[", "_LABEL_INDEX", "]", "tokens1", "=", "_get_tokens_and_tags", "(", "parse1", ")", "tokens2", "=", "_get_tokens_and_tags", "(", "parse2", ")", "tokens1_str", "=", "' '", ".", "join", "(", "tokens1", ")", "tokens2_str", "=", "' '", ".", "join", "(", "tokens2", ")", "if", "consensus_label", "!=", "'-'", ":", "examples", ".", "append", "(", "[", "tokens1_str", ",", "tokens2_str", ",", "consensus_label", "]", ")", "input_file", ".", "close", "(", ")", "# Output tab delimited file of lines of examples (sentence1, sentence2, label)", "with", "tf", ".", "gfile", ".", "GFile", "(", "gen_output_path", ",", "'w'", ")", "as", "f", ":", "for", "tokens1_str", ",", "tokens2_str", ",", "consensus_label", "in", "examples", ":", "f", ".", "write", "(", "'%s\\t%s\\t%s\\n'", "%", "(", "tokens1_str", ",", "tokens2_str", ",", "consensus_label", ")", ")", "if", "train", ":", "# Output file containing all the sentences for generating the vocab from.", "with", "tf", ".", "gfile", ".", "GFile", "(", "example_output_path", ",", "'w'", ")", "as", "f", ":", "for", "tokens1_str", ",", "tokens2_str", ",", "consensus_label", "in", "examples", ":", "f", ".", "write", "(", "'%s %s\\n'", "%", "(", "tokens1_str", ",", "tokens2_str", ")", ")" ]
Convert the dataset in to a simpler format. This function creates two files. One for being processed to produce a vocab and another to generate the data. Args: file_path: string, path to the file to parse. tmp_dir: string, path to the directory to output the files. train: bool, indicating if we are parsing the training set.
[ "Convert", "the", "dataset", "in", "to", "a", "simpler", "format", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/data_generators/snli.py#L76-L128
21,898
tensorflow/tensor2tensor
tensor2tensor/data_generators/snli.py
_get_or_generate_vocab
def _get_or_generate_vocab(tmp_dir, vocab_filename, vocab_size): """Read or create vocabulary.""" vocab_filepath = os.path.join(tmp_dir, vocab_filename) print('Vocab file written to: ' + vocab_filepath) if tf.gfile.Exists(vocab_filepath): gs = text_encoder.SubwordTextEncoder(vocab_filepath) return gs example_file = os.path.join(tmp_dir, _EXAMPLES_FILE) gs = text_encoder.SubwordTextEncoder() token_counts = tokenizer.corpus_token_counts( example_file, corpus_max_lines=1000000) gs = gs.build_to_target_size( vocab_size, token_counts, min_val=1, max_val=1e3) gs.store_to_file(vocab_filepath) return gs
python
def _get_or_generate_vocab(tmp_dir, vocab_filename, vocab_size): """Read or create vocabulary.""" vocab_filepath = os.path.join(tmp_dir, vocab_filename) print('Vocab file written to: ' + vocab_filepath) if tf.gfile.Exists(vocab_filepath): gs = text_encoder.SubwordTextEncoder(vocab_filepath) return gs example_file = os.path.join(tmp_dir, _EXAMPLES_FILE) gs = text_encoder.SubwordTextEncoder() token_counts = tokenizer.corpus_token_counts( example_file, corpus_max_lines=1000000) gs = gs.build_to_target_size( vocab_size, token_counts, min_val=1, max_val=1e3) gs.store_to_file(vocab_filepath) return gs
[ "def", "_get_or_generate_vocab", "(", "tmp_dir", ",", "vocab_filename", ",", "vocab_size", ")", ":", "vocab_filepath", "=", "os", ".", "path", ".", "join", "(", "tmp_dir", ",", "vocab_filename", ")", "print", "(", "'Vocab file written to: '", "+", "vocab_filepath", ")", "if", "tf", ".", "gfile", ".", "Exists", "(", "vocab_filepath", ")", ":", "gs", "=", "text_encoder", ".", "SubwordTextEncoder", "(", "vocab_filepath", ")", "return", "gs", "example_file", "=", "os", ".", "path", ".", "join", "(", "tmp_dir", ",", "_EXAMPLES_FILE", ")", "gs", "=", "text_encoder", ".", "SubwordTextEncoder", "(", ")", "token_counts", "=", "tokenizer", ".", "corpus_token_counts", "(", "example_file", ",", "corpus_max_lines", "=", "1000000", ")", "gs", "=", "gs", ".", "build_to_target_size", "(", "vocab_size", ",", "token_counts", ",", "min_val", "=", "1", ",", "max_val", "=", "1e3", ")", "gs", ".", "store_to_file", "(", "vocab_filepath", ")", "return", "gs" ]
Read or create vocabulary.
[ "Read", "or", "create", "vocabulary", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/data_generators/snli.py#L131-L146
21,899
tensorflow/tensor2tensor
tensor2tensor/data_generators/wikisum/get_references_web_single_group.py
shard
def shard(items, num_shards): """Split items into num_shards groups.""" sharded = [] num_per_shard = len(items) // num_shards start = 0 for _ in range(num_shards): sharded.append(items[start:start + num_per_shard]) start += num_per_shard remainder = len(items) % num_shards start = len(items) - remainder for i in range(remainder): sharded[i].append(items[start + i]) assert sum([len(fs) for fs in sharded]) == len(items) return sharded
python
def shard(items, num_shards): """Split items into num_shards groups.""" sharded = [] num_per_shard = len(items) // num_shards start = 0 for _ in range(num_shards): sharded.append(items[start:start + num_per_shard]) start += num_per_shard remainder = len(items) % num_shards start = len(items) - remainder for i in range(remainder): sharded[i].append(items[start + i]) assert sum([len(fs) for fs in sharded]) == len(items) return sharded
[ "def", "shard", "(", "items", ",", "num_shards", ")", ":", "sharded", "=", "[", "]", "num_per_shard", "=", "len", "(", "items", ")", "//", "num_shards", "start", "=", "0", "for", "_", "in", "range", "(", "num_shards", ")", ":", "sharded", ".", "append", "(", "items", "[", "start", ":", "start", "+", "num_per_shard", "]", ")", "start", "+=", "num_per_shard", "remainder", "=", "len", "(", "items", ")", "%", "num_shards", "start", "=", "len", "(", "items", ")", "-", "remainder", "for", "i", "in", "range", "(", "remainder", ")", ":", "sharded", "[", "i", "]", ".", "append", "(", "items", "[", "start", "+", "i", "]", ")", "assert", "sum", "(", "[", "len", "(", "fs", ")", "for", "fs", "in", "sharded", "]", ")", "==", "len", "(", "items", ")", "return", "sharded" ]
Split items into num_shards groups.
[ "Split", "items", "into", "num_shards", "groups", "." ]
272500b6efe353aeb638d2745ed56e519462ca31
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/data_generators/wikisum/get_references_web_single_group.py#L87-L102