id
int32
0
252k
repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
18,900
basho/riak-python-client
riak/mapreduce.py
RiakMapReduce.reduce_slice
def reduce_slice(self, start, end, options=None): """ Adds the Javascript built-in ``Riak.reduceSlice`` to the query as a reduce phase. :param start: the beginning of the slice :type start: integer :param end: the end of the slice :type end: integer :param options: phase options, containing 'language', 'keep' flag, and/or 'arg'. :type options: dict """ if options is None: options = dict() options['arg'] = [start, end] return self.reduce("Riak.reduceSlice", options=options)
python
def reduce_slice(self, start, end, options=None): """ Adds the Javascript built-in ``Riak.reduceSlice`` to the query as a reduce phase. :param start: the beginning of the slice :type start: integer :param end: the end of the slice :type end: integer :param options: phase options, containing 'language', 'keep' flag, and/or 'arg'. :type options: dict """ if options is None: options = dict() options['arg'] = [start, end] return self.reduce("Riak.reduceSlice", options=options)
[ "def", "reduce_slice", "(", "self", ",", "start", ",", "end", ",", "options", "=", "None", ")", ":", "if", "options", "is", "None", ":", "options", "=", "dict", "(", ")", "options", "[", "'arg'", "]", "=", "[", "start", ",", "end", "]", "return", "self", ".", "reduce", "(", "\"Riak.reduceSlice\"", ",", "options", "=", "options", ")" ]
Adds the Javascript built-in ``Riak.reduceSlice`` to the query as a reduce phase. :param start: the beginning of the slice :type start: integer :param end: the end of the slice :type end: integer :param options: phase options, containing 'language', 'keep' flag, and/or 'arg'. :type options: dict
[ "Adds", "the", "Javascript", "built", "-", "in", "Riak", ".", "reduceSlice", "to", "the", "query", "as", "a", "reduce", "phase", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/mapreduce.py#L500-L517
18,901
basho/riak-python-client
riak/mapreduce.py
RiakMapReducePhase.to_array
def to_array(self): """ Convert the RiakMapReducePhase to a format that can be output into JSON. Used internally. :rtype: dict """ stepdef = {'keep': self._keep, 'language': self._language, 'arg': self._arg} if self._language == 'javascript': if isinstance(self._function, list): stepdef['bucket'] = self._function[0] stepdef['key'] = self._function[1] elif isinstance(self._function, string_types): if ("{" in self._function): stepdef['source'] = self._function else: stepdef['name'] = self._function elif (self._language == 'erlang' and isinstance(self._function, list)): stepdef['module'] = self._function[0] stepdef['function'] = self._function[1] elif (self._language == 'erlang' and isinstance(self._function, string_types)): stepdef['source'] = self._function return {self._type: stepdef}
python
def to_array(self): """ Convert the RiakMapReducePhase to a format that can be output into JSON. Used internally. :rtype: dict """ stepdef = {'keep': self._keep, 'language': self._language, 'arg': self._arg} if self._language == 'javascript': if isinstance(self._function, list): stepdef['bucket'] = self._function[0] stepdef['key'] = self._function[1] elif isinstance(self._function, string_types): if ("{" in self._function): stepdef['source'] = self._function else: stepdef['name'] = self._function elif (self._language == 'erlang' and isinstance(self._function, list)): stepdef['module'] = self._function[0] stepdef['function'] = self._function[1] elif (self._language == 'erlang' and isinstance(self._function, string_types)): stepdef['source'] = self._function return {self._type: stepdef}
[ "def", "to_array", "(", "self", ")", ":", "stepdef", "=", "{", "'keep'", ":", "self", ".", "_keep", ",", "'language'", ":", "self", ".", "_language", ",", "'arg'", ":", "self", ".", "_arg", "}", "if", "self", ".", "_language", "==", "'javascript'", ":", "if", "isinstance", "(", "self", ".", "_function", ",", "list", ")", ":", "stepdef", "[", "'bucket'", "]", "=", "self", ".", "_function", "[", "0", "]", "stepdef", "[", "'key'", "]", "=", "self", ".", "_function", "[", "1", "]", "elif", "isinstance", "(", "self", ".", "_function", ",", "string_types", ")", ":", "if", "(", "\"{\"", "in", "self", ".", "_function", ")", ":", "stepdef", "[", "'source'", "]", "=", "self", ".", "_function", "else", ":", "stepdef", "[", "'name'", "]", "=", "self", ".", "_function", "elif", "(", "self", ".", "_language", "==", "'erlang'", "and", "isinstance", "(", "self", ".", "_function", ",", "list", ")", ")", ":", "stepdef", "[", "'module'", "]", "=", "self", ".", "_function", "[", "0", "]", "stepdef", "[", "'function'", "]", "=", "self", ".", "_function", "[", "1", "]", "elif", "(", "self", ".", "_language", "==", "'erlang'", "and", "isinstance", "(", "self", ".", "_function", ",", "string_types", ")", ")", ":", "stepdef", "[", "'source'", "]", "=", "self", ".", "_function", "return", "{", "self", ".", "_type", ":", "stepdef", "}" ]
Convert the RiakMapReducePhase to a format that can be output into JSON. Used internally. :rtype: dict
[ "Convert", "the", "RiakMapReducePhase", "to", "a", "format", "that", "can", "be", "output", "into", "JSON", ".", "Used", "internally", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/mapreduce.py#L569-L598
18,902
basho/riak-python-client
riak/mapreduce.py
RiakLinkPhase.to_array
def to_array(self): """ Convert the RiakLinkPhase to a format that can be output into JSON. Used internally. """ stepdef = {'bucket': self._bucket, 'tag': self._tag, 'keep': self._keep} return {'link': stepdef}
python
def to_array(self): """ Convert the RiakLinkPhase to a format that can be output into JSON. Used internally. """ stepdef = {'bucket': self._bucket, 'tag': self._tag, 'keep': self._keep} return {'link': stepdef}
[ "def", "to_array", "(", "self", ")", ":", "stepdef", "=", "{", "'bucket'", ":", "self", ".", "_bucket", ",", "'tag'", ":", "self", ".", "_tag", ",", "'keep'", ":", "self", ".", "_keep", "}", "return", "{", "'link'", ":", "stepdef", "}" ]
Convert the RiakLinkPhase to a format that can be output into JSON. Used internally.
[ "Convert", "the", "RiakLinkPhase", "to", "a", "format", "that", "can", "be", "output", "into", "JSON", ".", "Used", "internally", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/mapreduce.py#L626-L634
18,903
basho/riak-python-client
riak/resolver.py
last_written_resolver
def last_written_resolver(riak_object): """ A conflict-resolution function that resolves by selecting the most recently-modified sibling by timestamp. :param riak_object: an object-in-conflict that will be resolved :type riak_object: :class:`RiakObject <riak.riak_object.RiakObject>` """ riak_object.siblings = [max(riak_object.siblings, key=lambda x: x.last_modified), ]
python
def last_written_resolver(riak_object): """ A conflict-resolution function that resolves by selecting the most recently-modified sibling by timestamp. :param riak_object: an object-in-conflict that will be resolved :type riak_object: :class:`RiakObject <riak.riak_object.RiakObject>` """ riak_object.siblings = [max(riak_object.siblings, key=lambda x: x.last_modified), ]
[ "def", "last_written_resolver", "(", "riak_object", ")", ":", "riak_object", ".", "siblings", "=", "[", "max", "(", "riak_object", ".", "siblings", ",", "key", "=", "lambda", "x", ":", "x", ".", "last_modified", ")", ",", "]" ]
A conflict-resolution function that resolves by selecting the most recently-modified sibling by timestamp. :param riak_object: an object-in-conflict that will be resolved :type riak_object: :class:`RiakObject <riak.riak_object.RiakObject>`
[ "A", "conflict", "-", "resolution", "function", "that", "resolves", "by", "selecting", "the", "most", "recently", "-", "modified", "sibling", "by", "timestamp", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/resolver.py#L31-L40
18,904
basho/riak-python-client
riak/transports/security.py
verify_cb
def verify_cb(conn, cert, errnum, depth, ok): """ The default OpenSSL certificate verification callback. """ if not ok: raise SecurityError("Could not verify CA certificate {0}" .format(cert.get_subject())) return ok
python
def verify_cb(conn, cert, errnum, depth, ok): """ The default OpenSSL certificate verification callback. """ if not ok: raise SecurityError("Could not verify CA certificate {0}" .format(cert.get_subject())) return ok
[ "def", "verify_cb", "(", "conn", ",", "cert", ",", "errnum", ",", "depth", ",", "ok", ")", ":", "if", "not", "ok", ":", "raise", "SecurityError", "(", "\"Could not verify CA certificate {0}\"", ".", "format", "(", "cert", ".", "get_subject", "(", ")", ")", ")", "return", "ok" ]
The default OpenSSL certificate verification callback.
[ "The", "default", "OpenSSL", "certificate", "verification", "callback", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/transports/security.py#L27-L34
18,905
basho/riak-python-client
riak/client/index_page.py
IndexPage.next_page
def next_page(self, timeout=None, stream=None): """ Fetches the next page using the same parameters as the original query. Note that if streaming was used before, it will be used again unless overridden. :param stream: whether to enable streaming. `True` enables, `False` disables, `None` uses previous value. :type stream: boolean :param timeout: a timeout value in milliseconds, or 'infinity' :type timeout: int """ if not self.continuation: raise ValueError("Cannot get next index page, no continuation") if stream is not None: self.stream = stream args = {'bucket': self.bucket, 'index': self.index, 'startkey': self.startkey, 'endkey': self.endkey, 'return_terms': self.return_terms, 'max_results': self.max_results, 'continuation': self.continuation, 'timeout': timeout, 'term_regex': self.term_regex} if self.stream: return self.client.stream_index(**args) else: return self.client.get_index(**args)
python
def next_page(self, timeout=None, stream=None): """ Fetches the next page using the same parameters as the original query. Note that if streaming was used before, it will be used again unless overridden. :param stream: whether to enable streaming. `True` enables, `False` disables, `None` uses previous value. :type stream: boolean :param timeout: a timeout value in milliseconds, or 'infinity' :type timeout: int """ if not self.continuation: raise ValueError("Cannot get next index page, no continuation") if stream is not None: self.stream = stream args = {'bucket': self.bucket, 'index': self.index, 'startkey': self.startkey, 'endkey': self.endkey, 'return_terms': self.return_terms, 'max_results': self.max_results, 'continuation': self.continuation, 'timeout': timeout, 'term_regex': self.term_regex} if self.stream: return self.client.stream_index(**args) else: return self.client.get_index(**args)
[ "def", "next_page", "(", "self", ",", "timeout", "=", "None", ",", "stream", "=", "None", ")", ":", "if", "not", "self", ".", "continuation", ":", "raise", "ValueError", "(", "\"Cannot get next index page, no continuation\"", ")", "if", "stream", "is", "not", "None", ":", "self", ".", "stream", "=", "stream", "args", "=", "{", "'bucket'", ":", "self", ".", "bucket", ",", "'index'", ":", "self", ".", "index", ",", "'startkey'", ":", "self", ".", "startkey", ",", "'endkey'", ":", "self", ".", "endkey", ",", "'return_terms'", ":", "self", ".", "return_terms", ",", "'max_results'", ":", "self", ".", "max_results", ",", "'continuation'", ":", "self", ".", "continuation", ",", "'timeout'", ":", "timeout", ",", "'term_regex'", ":", "self", ".", "term_regex", "}", "if", "self", ".", "stream", ":", "return", "self", ".", "client", ".", "stream_index", "(", "*", "*", "args", ")", "else", ":", "return", "self", ".", "client", ".", "get_index", "(", "*", "*", "args", ")" ]
Fetches the next page using the same parameters as the original query. Note that if streaming was used before, it will be used again unless overridden. :param stream: whether to enable streaming. `True` enables, `False` disables, `None` uses previous value. :type stream: boolean :param timeout: a timeout value in milliseconds, or 'infinity' :type timeout: int
[ "Fetches", "the", "next", "page", "using", "the", "same", "parameters", "as", "the", "original", "query", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/client/index_page.py#L117-L150
18,906
basho/riak-python-client
riak/client/operations.py
_validate_timeout
def _validate_timeout(timeout, infinity_ok=False): """ Raises an exception if the given timeout is an invalid value. """ if timeout is None: return if timeout == 'infinity': if infinity_ok: return else: raise ValueError( 'timeout must be a positive integer ' '("infinity" is not valid)') if isinstance(timeout, six.integer_types) and timeout > 0: return raise ValueError('timeout must be a positive integer')
python
def _validate_timeout(timeout, infinity_ok=False): """ Raises an exception if the given timeout is an invalid value. """ if timeout is None: return if timeout == 'infinity': if infinity_ok: return else: raise ValueError( 'timeout must be a positive integer ' '("infinity" is not valid)') if isinstance(timeout, six.integer_types) and timeout > 0: return raise ValueError('timeout must be a positive integer')
[ "def", "_validate_timeout", "(", "timeout", ",", "infinity_ok", "=", "False", ")", ":", "if", "timeout", "is", "None", ":", "return", "if", "timeout", "==", "'infinity'", ":", "if", "infinity_ok", ":", "return", "else", ":", "raise", "ValueError", "(", "'timeout must be a positive integer '", "'(\"infinity\" is not valid)'", ")", "if", "isinstance", "(", "timeout", ",", "six", ".", "integer_types", ")", "and", "timeout", ">", "0", ":", "return", "raise", "ValueError", "(", "'timeout must be a positive integer'", ")" ]
Raises an exception if the given timeout is an invalid value.
[ "Raises", "an", "exception", "if", "the", "given", "timeout", "is", "an", "invalid", "value", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/client/operations.py#L1270-L1288
18,907
basho/riak-python-client
riak/client/operations.py
RiakClientOperations.stream_buckets
def stream_buckets(self, bucket_type=None, timeout=None): """ Streams the list of buckets. This is a generator method that should be iterated over. .. warning:: Do not use this in production, as it requires traversing through all keys stored in a cluster. The caller should explicitly close the returned iterator, either using :func:`contextlib.closing` or calling ``close()`` explicitly. Consuming the entire iterator will also close the stream. If it does not, the associated connection might not be returned to the pool. Example:: from contextlib import closing # Using contextlib.closing with closing(client.stream_buckets()) as buckets: for bucket_list in buckets: do_something(bucket_list) # Explicit close() stream = client.stream_buckets() for bucket_list in stream: do_something(bucket_list) stream.close() :param bucket_type: the optional containing bucket type :type bucket_type: :class:`~riak.bucket.BucketType` :param timeout: a timeout value in milliseconds :type timeout: int :rtype: iterator that yields lists of :class:`RiakBucket <riak.bucket.RiakBucket>` instances """ if not riak.disable_list_exceptions: raise ListError() _validate_timeout(timeout) if bucket_type: bucketfn = self._bucket_type_bucket_builder else: bucketfn = self._default_type_bucket_builder def make_op(transport): return transport.stream_buckets( bucket_type=bucket_type, timeout=timeout) for bucket_list in self._stream_with_retry(make_op): bucket_list = [bucketfn(bytes_to_str(name), bucket_type) for name in bucket_list] if len(bucket_list) > 0: yield bucket_list
python
def stream_buckets(self, bucket_type=None, timeout=None): """ Streams the list of buckets. This is a generator method that should be iterated over. .. warning:: Do not use this in production, as it requires traversing through all keys stored in a cluster. The caller should explicitly close the returned iterator, either using :func:`contextlib.closing` or calling ``close()`` explicitly. Consuming the entire iterator will also close the stream. If it does not, the associated connection might not be returned to the pool. Example:: from contextlib import closing # Using contextlib.closing with closing(client.stream_buckets()) as buckets: for bucket_list in buckets: do_something(bucket_list) # Explicit close() stream = client.stream_buckets() for bucket_list in stream: do_something(bucket_list) stream.close() :param bucket_type: the optional containing bucket type :type bucket_type: :class:`~riak.bucket.BucketType` :param timeout: a timeout value in milliseconds :type timeout: int :rtype: iterator that yields lists of :class:`RiakBucket <riak.bucket.RiakBucket>` instances """ if not riak.disable_list_exceptions: raise ListError() _validate_timeout(timeout) if bucket_type: bucketfn = self._bucket_type_bucket_builder else: bucketfn = self._default_type_bucket_builder def make_op(transport): return transport.stream_buckets( bucket_type=bucket_type, timeout=timeout) for bucket_list in self._stream_with_retry(make_op): bucket_list = [bucketfn(bytes_to_str(name), bucket_type) for name in bucket_list] if len(bucket_list) > 0: yield bucket_list
[ "def", "stream_buckets", "(", "self", ",", "bucket_type", "=", "None", ",", "timeout", "=", "None", ")", ":", "if", "not", "riak", ".", "disable_list_exceptions", ":", "raise", "ListError", "(", ")", "_validate_timeout", "(", "timeout", ")", "if", "bucket_type", ":", "bucketfn", "=", "self", ".", "_bucket_type_bucket_builder", "else", ":", "bucketfn", "=", "self", ".", "_default_type_bucket_builder", "def", "make_op", "(", "transport", ")", ":", "return", "transport", ".", "stream_buckets", "(", "bucket_type", "=", "bucket_type", ",", "timeout", "=", "timeout", ")", "for", "bucket_list", "in", "self", ".", "_stream_with_retry", "(", "make_op", ")", ":", "bucket_list", "=", "[", "bucketfn", "(", "bytes_to_str", "(", "name", ")", ",", "bucket_type", ")", "for", "name", "in", "bucket_list", "]", "if", "len", "(", "bucket_list", ")", ">", "0", ":", "yield", "bucket_list" ]
Streams the list of buckets. This is a generator method that should be iterated over. .. warning:: Do not use this in production, as it requires traversing through all keys stored in a cluster. The caller should explicitly close the returned iterator, either using :func:`contextlib.closing` or calling ``close()`` explicitly. Consuming the entire iterator will also close the stream. If it does not, the associated connection might not be returned to the pool. Example:: from contextlib import closing # Using contextlib.closing with closing(client.stream_buckets()) as buckets: for bucket_list in buckets: do_something(bucket_list) # Explicit close() stream = client.stream_buckets() for bucket_list in stream: do_something(bucket_list) stream.close() :param bucket_type: the optional containing bucket type :type bucket_type: :class:`~riak.bucket.BucketType` :param timeout: a timeout value in milliseconds :type timeout: int :rtype: iterator that yields lists of :class:`RiakBucket <riak.bucket.RiakBucket>` instances
[ "Streams", "the", "list", "of", "buckets", ".", "This", "is", "a", "generator", "method", "that", "should", "be", "iterated", "over", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/client/operations.py#L72-L125
18,908
basho/riak-python-client
riak/client/operations.py
RiakClientOperations.stream_index
def stream_index(self, bucket, index, startkey, endkey=None, return_terms=None, max_results=None, continuation=None, timeout=None, term_regex=None): """ Queries a secondary index, streaming matching keys through an iterator. The caller should explicitly close the returned iterator, either using :func:`contextlib.closing` or calling ``close()`` explicitly. Consuming the entire iterator will also close the stream. If it does not, the associated connection might not be returned to the pool. Example:: from contextlib import closing # Using contextlib.closing with closing(client.stream_index(mybucket, 'name_bin', 'Smith')) as index: for key in index: do_something(key) # Explicit close() stream = client.stream_index(mybucket, 'name_bin', 'Smith') for key in stream: do_something(key) stream.close() :param bucket: the bucket whose index will be queried :type bucket: RiakBucket :param index: the index to query :type index: string :param startkey: the sole key to query, or beginning of the query range :type startkey: string, integer :param endkey: the end of the query range (optional if equality) :type endkey: string, integer :param return_terms: whether to include the secondary index value :type return_terms: boolean :param max_results: the maximum number of results to return (page size) :type max_results: integer :param continuation: the opaque continuation returned from a previous paginated request :type continuation: string :param timeout: a timeout value in milliseconds, or 'infinity' :type timeout: int :param term_regex: a regular expression used to filter index terms :type term_regex: string :rtype: :class:`~riak.client.index_page.IndexPage` """ # TODO FUTURE: implement "retry on connection closed" # as in stream_mapred _validate_timeout(timeout, infinity_ok=True) page = IndexPage(self, bucket, index, startkey, endkey, return_terms, max_results, term_regex) page.stream = True resource = self._acquire() transport = resource.object page.results = transport.stream_index( bucket, index, startkey, endkey, return_terms=return_terms, max_results=max_results, continuation=continuation, timeout=timeout, term_regex=term_regex) page.results.attach(resource) return page
python
def stream_index(self, bucket, index, startkey, endkey=None, return_terms=None, max_results=None, continuation=None, timeout=None, term_regex=None): """ Queries a secondary index, streaming matching keys through an iterator. The caller should explicitly close the returned iterator, either using :func:`contextlib.closing` or calling ``close()`` explicitly. Consuming the entire iterator will also close the stream. If it does not, the associated connection might not be returned to the pool. Example:: from contextlib import closing # Using contextlib.closing with closing(client.stream_index(mybucket, 'name_bin', 'Smith')) as index: for key in index: do_something(key) # Explicit close() stream = client.stream_index(mybucket, 'name_bin', 'Smith') for key in stream: do_something(key) stream.close() :param bucket: the bucket whose index will be queried :type bucket: RiakBucket :param index: the index to query :type index: string :param startkey: the sole key to query, or beginning of the query range :type startkey: string, integer :param endkey: the end of the query range (optional if equality) :type endkey: string, integer :param return_terms: whether to include the secondary index value :type return_terms: boolean :param max_results: the maximum number of results to return (page size) :type max_results: integer :param continuation: the opaque continuation returned from a previous paginated request :type continuation: string :param timeout: a timeout value in milliseconds, or 'infinity' :type timeout: int :param term_regex: a regular expression used to filter index terms :type term_regex: string :rtype: :class:`~riak.client.index_page.IndexPage` """ # TODO FUTURE: implement "retry on connection closed" # as in stream_mapred _validate_timeout(timeout, infinity_ok=True) page = IndexPage(self, bucket, index, startkey, endkey, return_terms, max_results, term_regex) page.stream = True resource = self._acquire() transport = resource.object page.results = transport.stream_index( bucket, index, startkey, endkey, return_terms=return_terms, max_results=max_results, continuation=continuation, timeout=timeout, term_regex=term_regex) page.results.attach(resource) return page
[ "def", "stream_index", "(", "self", ",", "bucket", ",", "index", ",", "startkey", ",", "endkey", "=", "None", ",", "return_terms", "=", "None", ",", "max_results", "=", "None", ",", "continuation", "=", "None", ",", "timeout", "=", "None", ",", "term_regex", "=", "None", ")", ":", "# TODO FUTURE: implement \"retry on connection closed\"", "# as in stream_mapred", "_validate_timeout", "(", "timeout", ",", "infinity_ok", "=", "True", ")", "page", "=", "IndexPage", "(", "self", ",", "bucket", ",", "index", ",", "startkey", ",", "endkey", ",", "return_terms", ",", "max_results", ",", "term_regex", ")", "page", ".", "stream", "=", "True", "resource", "=", "self", ".", "_acquire", "(", ")", "transport", "=", "resource", ".", "object", "page", ".", "results", "=", "transport", ".", "stream_index", "(", "bucket", ",", "index", ",", "startkey", ",", "endkey", ",", "return_terms", "=", "return_terms", ",", "max_results", "=", "max_results", ",", "continuation", "=", "continuation", ",", "timeout", "=", "timeout", ",", "term_regex", "=", "term_regex", ")", "page", ".", "results", ".", "attach", "(", "resource", ")", "return", "page" ]
Queries a secondary index, streaming matching keys through an iterator. The caller should explicitly close the returned iterator, either using :func:`contextlib.closing` or calling ``close()`` explicitly. Consuming the entire iterator will also close the stream. If it does not, the associated connection might not be returned to the pool. Example:: from contextlib import closing # Using contextlib.closing with closing(client.stream_index(mybucket, 'name_bin', 'Smith')) as index: for key in index: do_something(key) # Explicit close() stream = client.stream_index(mybucket, 'name_bin', 'Smith') for key in stream: do_something(key) stream.close() :param bucket: the bucket whose index will be queried :type bucket: RiakBucket :param index: the index to query :type index: string :param startkey: the sole key to query, or beginning of the query range :type startkey: string, integer :param endkey: the end of the query range (optional if equality) :type endkey: string, integer :param return_terms: whether to include the secondary index value :type return_terms: boolean :param max_results: the maximum number of results to return (page size) :type max_results: integer :param continuation: the opaque continuation returned from a previous paginated request :type continuation: string :param timeout: a timeout value in milliseconds, or 'infinity' :type timeout: int :param term_regex: a regular expression used to filter index terms :type term_regex: string :rtype: :class:`~riak.client.index_page.IndexPage`
[ "Queries", "a", "secondary", "index", "streaming", "matching", "keys", "through", "an", "iterator", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/client/operations.py#L238-L301
18,909
basho/riak-python-client
riak/client/operations.py
RiakClientOperations.stream_keys
def stream_keys(self, bucket, timeout=None): """ Lists all keys in a bucket via a stream. This is a generator method which should be iterated over. .. warning:: Do not use this in production, as it requires traversing through all keys stored in a cluster. The caller should explicitly close the returned iterator, either using :func:`contextlib.closing` or calling ``close()`` explicitly. Consuming the entire iterator will also close the stream. If it does not, the associated connection might not be returned to the pool. Example:: from contextlib import closing # Using contextlib.closing with closing(client.stream_keys(mybucket)) as keys: for key_list in keys: do_something(key_list) # Explicit close() stream = client.stream_keys(mybucket) for key_list in stream: do_something(key_list) stream.close() :param bucket: the bucket whose properties will be set :type bucket: RiakBucket :param timeout: a timeout value in milliseconds :type timeout: int :rtype: iterator """ if not riak.disable_list_exceptions: raise ListError() _validate_timeout(timeout) def make_op(transport): return transport.stream_keys(bucket, timeout=timeout) for keylist in self._stream_with_retry(make_op): if len(keylist) > 0: if six.PY2: yield keylist else: yield [bytes_to_str(item) for item in keylist]
python
def stream_keys(self, bucket, timeout=None): """ Lists all keys in a bucket via a stream. This is a generator method which should be iterated over. .. warning:: Do not use this in production, as it requires traversing through all keys stored in a cluster. The caller should explicitly close the returned iterator, either using :func:`contextlib.closing` or calling ``close()`` explicitly. Consuming the entire iterator will also close the stream. If it does not, the associated connection might not be returned to the pool. Example:: from contextlib import closing # Using contextlib.closing with closing(client.stream_keys(mybucket)) as keys: for key_list in keys: do_something(key_list) # Explicit close() stream = client.stream_keys(mybucket) for key_list in stream: do_something(key_list) stream.close() :param bucket: the bucket whose properties will be set :type bucket: RiakBucket :param timeout: a timeout value in milliseconds :type timeout: int :rtype: iterator """ if not riak.disable_list_exceptions: raise ListError() _validate_timeout(timeout) def make_op(transport): return transport.stream_keys(bucket, timeout=timeout) for keylist in self._stream_with_retry(make_op): if len(keylist) > 0: if six.PY2: yield keylist else: yield [bytes_to_str(item) for item in keylist]
[ "def", "stream_keys", "(", "self", ",", "bucket", ",", "timeout", "=", "None", ")", ":", "if", "not", "riak", ".", "disable_list_exceptions", ":", "raise", "ListError", "(", ")", "_validate_timeout", "(", "timeout", ")", "def", "make_op", "(", "transport", ")", ":", "return", "transport", ".", "stream_keys", "(", "bucket", ",", "timeout", "=", "timeout", ")", "for", "keylist", "in", "self", ".", "_stream_with_retry", "(", "make_op", ")", ":", "if", "len", "(", "keylist", ")", ">", "0", ":", "if", "six", ".", "PY2", ":", "yield", "keylist", "else", ":", "yield", "[", "bytes_to_str", "(", "item", ")", "for", "item", "in", "keylist", "]" ]
Lists all keys in a bucket via a stream. This is a generator method which should be iterated over. .. warning:: Do not use this in production, as it requires traversing through all keys stored in a cluster. The caller should explicitly close the returned iterator, either using :func:`contextlib.closing` or calling ``close()`` explicitly. Consuming the entire iterator will also close the stream. If it does not, the associated connection might not be returned to the pool. Example:: from contextlib import closing # Using contextlib.closing with closing(client.stream_keys(mybucket)) as keys: for key_list in keys: do_something(key_list) # Explicit close() stream = client.stream_keys(mybucket) for key_list in stream: do_something(key_list) stream.close() :param bucket: the bucket whose properties will be set :type bucket: RiakBucket :param timeout: a timeout value in milliseconds :type timeout: int :rtype: iterator
[ "Lists", "all", "keys", "in", "a", "bucket", "via", "a", "stream", ".", "This", "is", "a", "generator", "method", "which", "should", "be", "iterated", "over", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/client/operations.py#L484-L530
18,910
basho/riak-python-client
riak/client/operations.py
RiakClientOperations.ts_stream_keys
def ts_stream_keys(self, table, timeout=None): """ Lists all keys in a time series table via a stream. This is a generator method which should be iterated over. The caller should explicitly close the returned iterator, either using :func:`contextlib.closing` or calling ``close()`` explicitly. Consuming the entire iterator will also close the stream. If it does not, the associated connection might not be returned to the pool. Example:: from contextlib import closing # Using contextlib.closing with closing(client.ts_stream_keys(mytable)) as keys: for key_list in keys: do_something(key_list) # Explicit close() stream = client.ts_stream_keys(mytable) for key_list in stream: do_something(key_list) stream.close() :param table: the table from which to stream keys :type table: string or :class:`Table <riak.table.Table>` :param timeout: a timeout value in milliseconds :type timeout: int :rtype: iterator """ if not riak.disable_list_exceptions: raise ListError() t = table if isinstance(t, six.string_types): t = Table(self, table) _validate_timeout(timeout) resource = self._acquire() transport = resource.object stream = transport.ts_stream_keys(t, timeout) stream.attach(resource) try: for keylist in stream: if len(keylist) > 0: yield keylist finally: stream.close()
python
def ts_stream_keys(self, table, timeout=None): """ Lists all keys in a time series table via a stream. This is a generator method which should be iterated over. The caller should explicitly close the returned iterator, either using :func:`contextlib.closing` or calling ``close()`` explicitly. Consuming the entire iterator will also close the stream. If it does not, the associated connection might not be returned to the pool. Example:: from contextlib import closing # Using contextlib.closing with closing(client.ts_stream_keys(mytable)) as keys: for key_list in keys: do_something(key_list) # Explicit close() stream = client.ts_stream_keys(mytable) for key_list in stream: do_something(key_list) stream.close() :param table: the table from which to stream keys :type table: string or :class:`Table <riak.table.Table>` :param timeout: a timeout value in milliseconds :type timeout: int :rtype: iterator """ if not riak.disable_list_exceptions: raise ListError() t = table if isinstance(t, six.string_types): t = Table(self, table) _validate_timeout(timeout) resource = self._acquire() transport = resource.object stream = transport.ts_stream_keys(t, timeout) stream.attach(resource) try: for keylist in stream: if len(keylist) > 0: yield keylist finally: stream.close()
[ "def", "ts_stream_keys", "(", "self", ",", "table", ",", "timeout", "=", "None", ")", ":", "if", "not", "riak", ".", "disable_list_exceptions", ":", "raise", "ListError", "(", ")", "t", "=", "table", "if", "isinstance", "(", "t", ",", "six", ".", "string_types", ")", ":", "t", "=", "Table", "(", "self", ",", "table", ")", "_validate_timeout", "(", "timeout", ")", "resource", "=", "self", ".", "_acquire", "(", ")", "transport", "=", "resource", ".", "object", "stream", "=", "transport", ".", "ts_stream_keys", "(", "t", ",", "timeout", ")", "stream", ".", "attach", "(", "resource", ")", "try", ":", "for", "keylist", "in", "stream", ":", "if", "len", "(", "keylist", ")", ">", "0", ":", "yield", "keylist", "finally", ":", "stream", ".", "close", "(", ")" ]
Lists all keys in a time series table via a stream. This is a generator method which should be iterated over. The caller should explicitly close the returned iterator, either using :func:`contextlib.closing` or calling ``close()`` explicitly. Consuming the entire iterator will also close the stream. If it does not, the associated connection might not be returned to the pool. Example:: from contextlib import closing # Using contextlib.closing with closing(client.ts_stream_keys(mytable)) as keys: for key_list in keys: do_something(key_list) # Explicit close() stream = client.ts_stream_keys(mytable) for key_list in stream: do_something(key_list) stream.close() :param table: the table from which to stream keys :type table: string or :class:`Table <riak.table.Table>` :param timeout: a timeout value in milliseconds :type timeout: int :rtype: iterator
[ "Lists", "all", "keys", "in", "a", "time", "series", "table", "via", "a", "stream", ".", "This", "is", "a", "generator", "method", "which", "should", "be", "iterated", "over", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/client/operations.py#L665-L713
18,911
basho/riak-python-client
riak/client/operations.py
RiakClientOperations.multiget
def multiget(self, pairs, **params): """Fetches many keys in parallel via threads. :param pairs: list of bucket_type/bucket/key tuple triples :type pairs: list :param params: additional request flags, e.g. r, pr :type params: dict :rtype: list of :class:`RiakObjects <riak.riak_object.RiakObject>`, :class:`Datatypes <riak.datatypes.Datatype>`, or tuples of bucket_type, bucket, key, and the exception raised on fetch """ if self._multiget_pool: params['pool'] = self._multiget_pool return riak.client.multi.multiget(self, pairs, **params)
python
def multiget(self, pairs, **params): """Fetches many keys in parallel via threads. :param pairs: list of bucket_type/bucket/key tuple triples :type pairs: list :param params: additional request flags, e.g. r, pr :type params: dict :rtype: list of :class:`RiakObjects <riak.riak_object.RiakObject>`, :class:`Datatypes <riak.datatypes.Datatype>`, or tuples of bucket_type, bucket, key, and the exception raised on fetch """ if self._multiget_pool: params['pool'] = self._multiget_pool return riak.client.multi.multiget(self, pairs, **params)
[ "def", "multiget", "(", "self", ",", "pairs", ",", "*", "*", "params", ")", ":", "if", "self", ".", "_multiget_pool", ":", "params", "[", "'pool'", "]", "=", "self", ".", "_multiget_pool", "return", "riak", ".", "client", ".", "multi", ".", "multiget", "(", "self", ",", "pairs", ",", "*", "*", "params", ")" ]
Fetches many keys in parallel via threads. :param pairs: list of bucket_type/bucket/key tuple triples :type pairs: list :param params: additional request flags, e.g. r, pr :type params: dict :rtype: list of :class:`RiakObjects <riak.riak_object.RiakObject>`, :class:`Datatypes <riak.datatypes.Datatype>`, or tuples of bucket_type, bucket, key, and the exception raised on fetch
[ "Fetches", "many", "keys", "in", "parallel", "via", "threads", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/client/operations.py#L1003-L1016
18,912
basho/riak-python-client
riak/client/operations.py
RiakClientOperations.multiput
def multiput(self, objs, **params): """ Stores objects in parallel via threads. :param objs: the objects to store :type objs: list of `RiakObject <riak.riak_object.RiakObject>` :param params: additional request flags, e.g. w, dw, pw :type params: dict :rtype: list of boolean or :class:`RiakObjects <riak.riak_object.RiakObject>`, """ if self._multiput_pool: params['pool'] = self._multiput_pool return riak.client.multi.multiput(self, objs, **params)
python
def multiput(self, objs, **params): """ Stores objects in parallel via threads. :param objs: the objects to store :type objs: list of `RiakObject <riak.riak_object.RiakObject>` :param params: additional request flags, e.g. w, dw, pw :type params: dict :rtype: list of boolean or :class:`RiakObjects <riak.riak_object.RiakObject>`, """ if self._multiput_pool: params['pool'] = self._multiput_pool return riak.client.multi.multiput(self, objs, **params)
[ "def", "multiput", "(", "self", ",", "objs", ",", "*", "*", "params", ")", ":", "if", "self", ".", "_multiput_pool", ":", "params", "[", "'pool'", "]", "=", "self", ".", "_multiput_pool", "return", "riak", ".", "client", ".", "multi", ".", "multiput", "(", "self", ",", "objs", ",", "*", "*", "params", ")" ]
Stores objects in parallel via threads. :param objs: the objects to store :type objs: list of `RiakObject <riak.riak_object.RiakObject>` :param params: additional request flags, e.g. w, dw, pw :type params: dict :rtype: list of boolean or :class:`RiakObjects <riak.riak_object.RiakObject>`,
[ "Stores", "objects", "in", "parallel", "via", "threads", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/client/operations.py#L1018-L1031
18,913
basho/riak-python-client
riak/client/operations.py
RiakClientOperations.fetch_datatype
def fetch_datatype(self, bucket, key, r=None, pr=None, basic_quorum=None, notfound_ok=None, timeout=None, include_context=None): """ Fetches the value of a Riak Datatype. .. note:: This request is automatically retried :attr:`retries` times if it fails due to network error. :param bucket: the bucket of the datatype, which must belong to a :class:`~riak.bucket.BucketType` :type bucket: :class:`~riak.bucket.RiakBucket` :param key: the key of the datatype :type key: string :param r: the read quorum :type r: integer, string, None :param pr: the primary read quorum :type pr: integer, string, None :param basic_quorum: whether to use the "basic quorum" policy for not-founds :type basic_quorum: bool, None :param notfound_ok: whether to treat not-found responses as successful :type notfound_ok: bool, None :param timeout: a timeout value in milliseconds :type timeout: int, None :param include_context: whether to return the opaque context as well as the value, which is useful for removal operations on sets and maps :type include_context: bool, None :rtype: :class:`~riak.datatypes.Datatype` """ dtype, value, context = self._fetch_datatype( bucket, key, r=r, pr=pr, basic_quorum=basic_quorum, notfound_ok=notfound_ok, timeout=timeout, include_context=include_context) return TYPES[dtype](bucket=bucket, key=key, value=value, context=context)
python
def fetch_datatype(self, bucket, key, r=None, pr=None, basic_quorum=None, notfound_ok=None, timeout=None, include_context=None): """ Fetches the value of a Riak Datatype. .. note:: This request is automatically retried :attr:`retries` times if it fails due to network error. :param bucket: the bucket of the datatype, which must belong to a :class:`~riak.bucket.BucketType` :type bucket: :class:`~riak.bucket.RiakBucket` :param key: the key of the datatype :type key: string :param r: the read quorum :type r: integer, string, None :param pr: the primary read quorum :type pr: integer, string, None :param basic_quorum: whether to use the "basic quorum" policy for not-founds :type basic_quorum: bool, None :param notfound_ok: whether to treat not-found responses as successful :type notfound_ok: bool, None :param timeout: a timeout value in milliseconds :type timeout: int, None :param include_context: whether to return the opaque context as well as the value, which is useful for removal operations on sets and maps :type include_context: bool, None :rtype: :class:`~riak.datatypes.Datatype` """ dtype, value, context = self._fetch_datatype( bucket, key, r=r, pr=pr, basic_quorum=basic_quorum, notfound_ok=notfound_ok, timeout=timeout, include_context=include_context) return TYPES[dtype](bucket=bucket, key=key, value=value, context=context)
[ "def", "fetch_datatype", "(", "self", ",", "bucket", ",", "key", ",", "r", "=", "None", ",", "pr", "=", "None", ",", "basic_quorum", "=", "None", ",", "notfound_ok", "=", "None", ",", "timeout", "=", "None", ",", "include_context", "=", "None", ")", ":", "dtype", ",", "value", ",", "context", "=", "self", ".", "_fetch_datatype", "(", "bucket", ",", "key", ",", "r", "=", "r", ",", "pr", "=", "pr", ",", "basic_quorum", "=", "basic_quorum", ",", "notfound_ok", "=", "notfound_ok", ",", "timeout", "=", "timeout", ",", "include_context", "=", "include_context", ")", "return", "TYPES", "[", "dtype", "]", "(", "bucket", "=", "bucket", ",", "key", "=", "key", ",", "value", "=", "value", ",", "context", "=", "context", ")" ]
Fetches the value of a Riak Datatype. .. note:: This request is automatically retried :attr:`retries` times if it fails due to network error. :param bucket: the bucket of the datatype, which must belong to a :class:`~riak.bucket.BucketType` :type bucket: :class:`~riak.bucket.RiakBucket` :param key: the key of the datatype :type key: string :param r: the read quorum :type r: integer, string, None :param pr: the primary read quorum :type pr: integer, string, None :param basic_quorum: whether to use the "basic quorum" policy for not-founds :type basic_quorum: bool, None :param notfound_ok: whether to treat not-found responses as successful :type notfound_ok: bool, None :param timeout: a timeout value in milliseconds :type timeout: int, None :param include_context: whether to return the opaque context as well as the value, which is useful for removal operations on sets and maps :type include_context: bool, None :rtype: :class:`~riak.datatypes.Datatype`
[ "Fetches", "the", "value", "of", "a", "Riak", "Datatype", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/client/operations.py#L1106-L1143
18,914
basho/riak-python-client
riak/client/operations.py
RiakClientOperations.update_datatype
def update_datatype(self, datatype, w=None, dw=None, pw=None, return_body=None, timeout=None, include_context=None): """ Sends an update to a Riak Datatype to the server. This operation is not idempotent and so will not be retried automatically. :param datatype: the datatype with pending updates :type datatype: :class:`~riak.datatypes.Datatype` :param w: the write quorum :type w: integer, string, None :param dw: the durable write quorum :type dw: integer, string, None :param pw: the primary write quorum :type pw: integer, string, None :param timeout: a timeout value in milliseconds :type timeout: int :param include_context: whether to return the opaque context as well as the value, which is useful for removal operations on sets and maps :type include_context: bool :rtype: tuple of datatype, opaque value and opaque context """ _validate_timeout(timeout) with self._transport() as transport: return transport.update_datatype(datatype, w=w, dw=dw, pw=pw, return_body=return_body, timeout=timeout, include_context=include_context)
python
def update_datatype(self, datatype, w=None, dw=None, pw=None, return_body=None, timeout=None, include_context=None): """ Sends an update to a Riak Datatype to the server. This operation is not idempotent and so will not be retried automatically. :param datatype: the datatype with pending updates :type datatype: :class:`~riak.datatypes.Datatype` :param w: the write quorum :type w: integer, string, None :param dw: the durable write quorum :type dw: integer, string, None :param pw: the primary write quorum :type pw: integer, string, None :param timeout: a timeout value in milliseconds :type timeout: int :param include_context: whether to return the opaque context as well as the value, which is useful for removal operations on sets and maps :type include_context: bool :rtype: tuple of datatype, opaque value and opaque context """ _validate_timeout(timeout) with self._transport() as transport: return transport.update_datatype(datatype, w=w, dw=dw, pw=pw, return_body=return_body, timeout=timeout, include_context=include_context)
[ "def", "update_datatype", "(", "self", ",", "datatype", ",", "w", "=", "None", ",", "dw", "=", "None", ",", "pw", "=", "None", ",", "return_body", "=", "None", ",", "timeout", "=", "None", ",", "include_context", "=", "None", ")", ":", "_validate_timeout", "(", "timeout", ")", "with", "self", ".", "_transport", "(", ")", "as", "transport", ":", "return", "transport", ".", "update_datatype", "(", "datatype", ",", "w", "=", "w", ",", "dw", "=", "dw", ",", "pw", "=", "pw", ",", "return_body", "=", "return_body", ",", "timeout", "=", "timeout", ",", "include_context", "=", "include_context", ")" ]
Sends an update to a Riak Datatype to the server. This operation is not idempotent and so will not be retried automatically. :param datatype: the datatype with pending updates :type datatype: :class:`~riak.datatypes.Datatype` :param w: the write quorum :type w: integer, string, None :param dw: the durable write quorum :type dw: integer, string, None :param pw: the primary write quorum :type pw: integer, string, None :param timeout: a timeout value in milliseconds :type timeout: int :param include_context: whether to return the opaque context as well as the value, which is useful for removal operations on sets and maps :type include_context: bool :rtype: tuple of datatype, opaque value and opaque context
[ "Sends", "an", "update", "to", "a", "Riak", "Datatype", "to", "the", "server", ".", "This", "operation", "is", "not", "idempotent", "and", "so", "will", "not", "be", "retried", "automatically", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/client/operations.py#L1145-L1175
18,915
basho/riak-python-client
riak/transports/tcp/connection.py
TcpConnection._non_connect_send_recv
def _non_connect_send_recv(self, msg_code, data=None): """ Similar to self._send_recv, but doesn't try to initiate a connection, thus preventing an infinite loop. """ self._non_connect_send_msg(msg_code, data) return self._recv_msg()
python
def _non_connect_send_recv(self, msg_code, data=None): """ Similar to self._send_recv, but doesn't try to initiate a connection, thus preventing an infinite loop. """ self._non_connect_send_msg(msg_code, data) return self._recv_msg()
[ "def", "_non_connect_send_recv", "(", "self", ",", "msg_code", ",", "data", "=", "None", ")", ":", "self", ".", "_non_connect_send_msg", "(", "msg_code", ",", "data", ")", "return", "self", ".", "_recv_msg", "(", ")" ]
Similar to self._send_recv, but doesn't try to initiate a connection, thus preventing an infinite loop.
[ "Similar", "to", "self", ".", "_send_recv", "but", "doesn", "t", "try", "to", "initiate", "a", "connection", "thus", "preventing", "an", "infinite", "loop", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/transports/tcp/connection.py#L53-L59
18,916
basho/riak-python-client
riak/transports/tcp/connection.py
TcpConnection._non_connect_send_msg
def _non_connect_send_msg(self, msg_code, data): """ Similar to self._send, but doesn't try to initiate a connection, thus preventing an infinite loop. """ try: self._socket.sendall(self._encode_msg(msg_code, data)) except (IOError, socket.error) as e: if e.errno == errno.EPIPE: raise ConnectionClosed(e) else: raise
python
def _non_connect_send_msg(self, msg_code, data): """ Similar to self._send, but doesn't try to initiate a connection, thus preventing an infinite loop. """ try: self._socket.sendall(self._encode_msg(msg_code, data)) except (IOError, socket.error) as e: if e.errno == errno.EPIPE: raise ConnectionClosed(e) else: raise
[ "def", "_non_connect_send_msg", "(", "self", ",", "msg_code", ",", "data", ")", ":", "try", ":", "self", ".", "_socket", ".", "sendall", "(", "self", ".", "_encode_msg", "(", "msg_code", ",", "data", ")", ")", "except", "(", "IOError", ",", "socket", ".", "error", ")", "as", "e", ":", "if", "e", ".", "errno", "==", "errno", ".", "EPIPE", ":", "raise", "ConnectionClosed", "(", "e", ")", "else", ":", "raise" ]
Similar to self._send, but doesn't try to initiate a connection, thus preventing an infinite loop.
[ "Similar", "to", "self", ".", "_send", "but", "doesn", "t", "try", "to", "initiate", "a", "connection", "thus", "preventing", "an", "infinite", "loop", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/transports/tcp/connection.py#L65-L76
18,917
basho/riak-python-client
riak/transports/tcp/connection.py
TcpConnection._init_security
def _init_security(self): """ Initialize a secure connection to the server. """ if not self._starttls(): raise SecurityError("Could not start TLS connection") # _ssh_handshake() will throw an exception upon failure self._ssl_handshake() if not self._auth(): raise SecurityError("Could not authorize connection")
python
def _init_security(self): """ Initialize a secure connection to the server. """ if not self._starttls(): raise SecurityError("Could not start TLS connection") # _ssh_handshake() will throw an exception upon failure self._ssl_handshake() if not self._auth(): raise SecurityError("Could not authorize connection")
[ "def", "_init_security", "(", "self", ")", ":", "if", "not", "self", ".", "_starttls", "(", ")", ":", "raise", "SecurityError", "(", "\"Could not start TLS connection\"", ")", "# _ssh_handshake() will throw an exception upon failure", "self", ".", "_ssl_handshake", "(", ")", "if", "not", "self", ".", "_auth", "(", ")", ":", "raise", "SecurityError", "(", "\"Could not authorize connection\"", ")" ]
Initialize a secure connection to the server.
[ "Initialize", "a", "secure", "connection", "to", "the", "server", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/transports/tcp/connection.py#L82-L91
18,918
basho/riak-python-client
riak/transports/tcp/connection.py
TcpConnection._starttls
def _starttls(self): """ Exchange a STARTTLS message with Riak to initiate secure communications return True is Riak responds with a STARTTLS response, False otherwise """ resp_code, _ = self._non_connect_send_recv( riak.pb.messages.MSG_CODE_START_TLS) if resp_code == riak.pb.messages.MSG_CODE_START_TLS: return True else: return False
python
def _starttls(self): """ Exchange a STARTTLS message with Riak to initiate secure communications return True is Riak responds with a STARTTLS response, False otherwise """ resp_code, _ = self._non_connect_send_recv( riak.pb.messages.MSG_CODE_START_TLS) if resp_code == riak.pb.messages.MSG_CODE_START_TLS: return True else: return False
[ "def", "_starttls", "(", "self", ")", ":", "resp_code", ",", "_", "=", "self", ".", "_non_connect_send_recv", "(", "riak", ".", "pb", ".", "messages", ".", "MSG_CODE_START_TLS", ")", "if", "resp_code", "==", "riak", ".", "pb", ".", "messages", ".", "MSG_CODE_START_TLS", ":", "return", "True", "else", ":", "return", "False" ]
Exchange a STARTTLS message with Riak to initiate secure communications return True is Riak responds with a STARTTLS response, False otherwise
[ "Exchange", "a", "STARTTLS", "message", "with", "Riak", "to", "initiate", "secure", "communications", "return", "True", "is", "Riak", "responds", "with", "a", "STARTTLS", "response", "False", "otherwise" ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/transports/tcp/connection.py#L93-L103
18,919
basho/riak-python-client
riak/transports/tcp/connection.py
TcpConnection.close
def close(self): """ Closes the underlying socket of the PB connection. """ if self._socket: if USE_STDLIB_SSL: # NB: Python 2.7.8 and earlier does not have a compatible # shutdown() method due to the SSL lib try: self._socket.shutdown(socket.SHUT_RDWR) except EnvironmentError: # NB: sometimes these exceptions are raised if the initial # connection didn't succeed correctly, or if shutdown() is # called after the connection dies logging.debug('Exception occurred while shutting ' 'down socket.', exc_info=True) self._socket.close() del self._socket
python
def close(self): """ Closes the underlying socket of the PB connection. """ if self._socket: if USE_STDLIB_SSL: # NB: Python 2.7.8 and earlier does not have a compatible # shutdown() method due to the SSL lib try: self._socket.shutdown(socket.SHUT_RDWR) except EnvironmentError: # NB: sometimes these exceptions are raised if the initial # connection didn't succeed correctly, or if shutdown() is # called after the connection dies logging.debug('Exception occurred while shutting ' 'down socket.', exc_info=True) self._socket.close() del self._socket
[ "def", "close", "(", "self", ")", ":", "if", "self", ".", "_socket", ":", "if", "USE_STDLIB_SSL", ":", "# NB: Python 2.7.8 and earlier does not have a compatible", "# shutdown() method due to the SSL lib", "try", ":", "self", ".", "_socket", ".", "shutdown", "(", "socket", ".", "SHUT_RDWR", ")", "except", "EnvironmentError", ":", "# NB: sometimes these exceptions are raised if the initial", "# connection didn't succeed correctly, or if shutdown() is", "# called after the connection dies", "logging", ".", "debug", "(", "'Exception occurred while shutting '", "'down socket.'", ",", "exc_info", "=", "True", ")", "self", ".", "_socket", ".", "close", "(", ")", "del", "self", ".", "_socket" ]
Closes the underlying socket of the PB connection.
[ "Closes", "the", "underlying", "socket", "of", "the", "PB", "connection", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/transports/tcp/connection.py#L266-L283
18,920
basho/riak-python-client
riak/riak_object.py
content_property
def content_property(name, doc=None): """ Delegates a property to the first sibling in a RiakObject, raising an error when the object is in conflict. """ def _setter(self, value): if len(self.siblings) == 0: # In this case, assume that what the user wants is to # create a new sibling inside an empty object. self.siblings = [RiakContent(self)] if len(self.siblings) != 1: raise ConflictError() setattr(self.siblings[0], name, value) def _getter(self): if len(self.siblings) == 0: return if len(self.siblings) != 1: raise ConflictError() return getattr(self.siblings[0], name) return property(_getter, _setter, doc=doc)
python
def content_property(name, doc=None): """ Delegates a property to the first sibling in a RiakObject, raising an error when the object is in conflict. """ def _setter(self, value): if len(self.siblings) == 0: # In this case, assume that what the user wants is to # create a new sibling inside an empty object. self.siblings = [RiakContent(self)] if len(self.siblings) != 1: raise ConflictError() setattr(self.siblings[0], name, value) def _getter(self): if len(self.siblings) == 0: return if len(self.siblings) != 1: raise ConflictError() return getattr(self.siblings[0], name) return property(_getter, _setter, doc=doc)
[ "def", "content_property", "(", "name", ",", "doc", "=", "None", ")", ":", "def", "_setter", "(", "self", ",", "value", ")", ":", "if", "len", "(", "self", ".", "siblings", ")", "==", "0", ":", "# In this case, assume that what the user wants is to", "# create a new sibling inside an empty object.", "self", ".", "siblings", "=", "[", "RiakContent", "(", "self", ")", "]", "if", "len", "(", "self", ".", "siblings", ")", "!=", "1", ":", "raise", "ConflictError", "(", ")", "setattr", "(", "self", ".", "siblings", "[", "0", "]", ",", "name", ",", "value", ")", "def", "_getter", "(", "self", ")", ":", "if", "len", "(", "self", ".", "siblings", ")", "==", "0", ":", "return", "if", "len", "(", "self", ".", "siblings", ")", "!=", "1", ":", "raise", "ConflictError", "(", ")", "return", "getattr", "(", "self", ".", "siblings", "[", "0", "]", ",", "name", ")", "return", "property", "(", "_getter", ",", "_setter", ",", "doc", "=", "doc", ")" ]
Delegates a property to the first sibling in a RiakObject, raising an error when the object is in conflict.
[ "Delegates", "a", "property", "to", "the", "first", "sibling", "in", "a", "RiakObject", "raising", "an", "error", "when", "the", "object", "is", "in", "conflict", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/riak_object.py#L22-L43
18,921
basho/riak-python-client
riak/riak_object.py
content_method
def content_method(name): """ Delegates a method to the first sibling in a RiakObject, raising an error when the object is in conflict. """ def _delegate(self, *args, **kwargs): if len(self.siblings) != 1: raise ConflictError() return getattr(self.siblings[0], name).__call__(*args, **kwargs) _delegate.__doc__ = getattr(RiakContent, name).__doc__ return _delegate
python
def content_method(name): """ Delegates a method to the first sibling in a RiakObject, raising an error when the object is in conflict. """ def _delegate(self, *args, **kwargs): if len(self.siblings) != 1: raise ConflictError() return getattr(self.siblings[0], name).__call__(*args, **kwargs) _delegate.__doc__ = getattr(RiakContent, name).__doc__ return _delegate
[ "def", "content_method", "(", "name", ")", ":", "def", "_delegate", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "if", "len", "(", "self", ".", "siblings", ")", "!=", "1", ":", "raise", "ConflictError", "(", ")", "return", "getattr", "(", "self", ".", "siblings", "[", "0", "]", ",", "name", ")", ".", "__call__", "(", "*", "args", ",", "*", "*", "kwargs", ")", "_delegate", ".", "__doc__", "=", "getattr", "(", "RiakContent", ",", "name", ")", ".", "__doc__", "return", "_delegate" ]
Delegates a method to the first sibling in a RiakObject, raising an error when the object is in conflict.
[ "Delegates", "a", "method", "to", "the", "first", "sibling", "in", "a", "RiakObject", "raising", "an", "error", "when", "the", "object", "is", "in", "conflict", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/riak_object.py#L46-L58
18,922
basho/riak-python-client
riak/riak_object.py
RiakObject.store
def store(self, w=None, dw=None, pw=None, return_body=True, if_none_match=False, timeout=None): """ Store the object in Riak. When this operation completes, the object could contain new metadata and possibly new data if Riak contains a newer version of the object according to the object's vector clock. :param w: W-value, wait for this many partitions to respond before returning to client. :type w: integer :param dw: DW-value, wait for this many partitions to confirm the write before returning to client. :type dw: integer :param pw: PW-value, require this many primary partitions to be available before performing the put :type pw: integer :param return_body: if the newly stored object should be retrieved :type return_body: bool :param if_none_match: Should the object be stored only if there is no key previously defined :type if_none_match: bool :param timeout: a timeout value in milliseconds :type timeout: int :rtype: :class:`RiakObject` """ if len(self.siblings) != 1: raise ConflictError("Attempting to store an invalid object, " "resolve the siblings first") self.client.put(self, w=w, dw=dw, pw=pw, return_body=return_body, if_none_match=if_none_match, timeout=timeout) return self
python
def store(self, w=None, dw=None, pw=None, return_body=True, if_none_match=False, timeout=None): """ Store the object in Riak. When this operation completes, the object could contain new metadata and possibly new data if Riak contains a newer version of the object according to the object's vector clock. :param w: W-value, wait for this many partitions to respond before returning to client. :type w: integer :param dw: DW-value, wait for this many partitions to confirm the write before returning to client. :type dw: integer :param pw: PW-value, require this many primary partitions to be available before performing the put :type pw: integer :param return_body: if the newly stored object should be retrieved :type return_body: bool :param if_none_match: Should the object be stored only if there is no key previously defined :type if_none_match: bool :param timeout: a timeout value in milliseconds :type timeout: int :rtype: :class:`RiakObject` """ if len(self.siblings) != 1: raise ConflictError("Attempting to store an invalid object, " "resolve the siblings first") self.client.put(self, w=w, dw=dw, pw=pw, return_body=return_body, if_none_match=if_none_match, timeout=timeout) return self
[ "def", "store", "(", "self", ",", "w", "=", "None", ",", "dw", "=", "None", ",", "pw", "=", "None", ",", "return_body", "=", "True", ",", "if_none_match", "=", "False", ",", "timeout", "=", "None", ")", ":", "if", "len", "(", "self", ".", "siblings", ")", "!=", "1", ":", "raise", "ConflictError", "(", "\"Attempting to store an invalid object, \"", "\"resolve the siblings first\"", ")", "self", ".", "client", ".", "put", "(", "self", ",", "w", "=", "w", ",", "dw", "=", "dw", ",", "pw", "=", "pw", ",", "return_body", "=", "return_body", ",", "if_none_match", "=", "if_none_match", ",", "timeout", "=", "timeout", ")", "return", "self" ]
Store the object in Riak. When this operation completes, the object could contain new metadata and possibly new data if Riak contains a newer version of the object according to the object's vector clock. :param w: W-value, wait for this many partitions to respond before returning to client. :type w: integer :param dw: DW-value, wait for this many partitions to confirm the write before returning to client. :type dw: integer :param pw: PW-value, require this many primary partitions to be available before performing the put :type pw: integer :param return_body: if the newly stored object should be retrieved :type return_body: bool :param if_none_match: Should the object be stored only if there is no key previously defined :type if_none_match: bool :param timeout: a timeout value in milliseconds :type timeout: int :rtype: :class:`RiakObject`
[ "Store", "the", "object", "in", "Riak", ".", "When", "this", "operation", "completes", "the", "object", "could", "contain", "new", "metadata", "and", "possibly", "new", "data", "if", "Riak", "contains", "a", "newer", "version", "of", "the", "object", "according", "to", "the", "object", "s", "vector", "clock", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/riak_object.py#L247-L283
18,923
basho/riak-python-client
riak/riak_object.py
RiakObject.reload
def reload(self, r=None, pr=None, timeout=None, basic_quorum=None, notfound_ok=None, head_only=False): """ Reload the object from Riak. When this operation completes, the object could contain new metadata and a new value, if the object was updated in Riak since it was last retrieved. .. note:: Even if the key is not found in Riak, this will return a :class:`RiakObject`. Check the :attr:`exists` property to see if the key was found. :param r: R-Value, wait for this many partitions to respond before returning to client. :type r: integer :param pr: PR-value, require this many primary partitions to be available before performing the read that precedes the put :type pr: integer :param timeout: a timeout value in milliseconds :type timeout: int :param basic_quorum: whether to use the "basic quorum" policy for not-founds :type basic_quorum: bool :param notfound_ok: whether to treat not-found responses as successful :type notfound_ok: bool :param head_only: whether to fetch without value, so only metadata (only available on PB transport) :type head_only: bool :rtype: :class:`RiakObject` """ self.client.get(self, r=r, pr=pr, timeout=timeout, head_only=head_only) return self
python
def reload(self, r=None, pr=None, timeout=None, basic_quorum=None, notfound_ok=None, head_only=False): """ Reload the object from Riak. When this operation completes, the object could contain new metadata and a new value, if the object was updated in Riak since it was last retrieved. .. note:: Even if the key is not found in Riak, this will return a :class:`RiakObject`. Check the :attr:`exists` property to see if the key was found. :param r: R-Value, wait for this many partitions to respond before returning to client. :type r: integer :param pr: PR-value, require this many primary partitions to be available before performing the read that precedes the put :type pr: integer :param timeout: a timeout value in milliseconds :type timeout: int :param basic_quorum: whether to use the "basic quorum" policy for not-founds :type basic_quorum: bool :param notfound_ok: whether to treat not-found responses as successful :type notfound_ok: bool :param head_only: whether to fetch without value, so only metadata (only available on PB transport) :type head_only: bool :rtype: :class:`RiakObject` """ self.client.get(self, r=r, pr=pr, timeout=timeout, head_only=head_only) return self
[ "def", "reload", "(", "self", ",", "r", "=", "None", ",", "pr", "=", "None", ",", "timeout", "=", "None", ",", "basic_quorum", "=", "None", ",", "notfound_ok", "=", "None", ",", "head_only", "=", "False", ")", ":", "self", ".", "client", ".", "get", "(", "self", ",", "r", "=", "r", ",", "pr", "=", "pr", ",", "timeout", "=", "timeout", ",", "head_only", "=", "head_only", ")", "return", "self" ]
Reload the object from Riak. When this operation completes, the object could contain new metadata and a new value, if the object was updated in Riak since it was last retrieved. .. note:: Even if the key is not found in Riak, this will return a :class:`RiakObject`. Check the :attr:`exists` property to see if the key was found. :param r: R-Value, wait for this many partitions to respond before returning to client. :type r: integer :param pr: PR-value, require this many primary partitions to be available before performing the read that precedes the put :type pr: integer :param timeout: a timeout value in milliseconds :type timeout: int :param basic_quorum: whether to use the "basic quorum" policy for not-founds :type basic_quorum: bool :param notfound_ok: whether to treat not-found responses as successful :type notfound_ok: bool :param head_only: whether to fetch without value, so only metadata (only available on PB transport) :type head_only: bool :rtype: :class:`RiakObject`
[ "Reload", "the", "object", "from", "Riak", ".", "When", "this", "operation", "completes", "the", "object", "could", "contain", "new", "metadata", "and", "a", "new", "value", "if", "the", "object", "was", "updated", "in", "Riak", "since", "it", "was", "last", "retrieved", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/riak_object.py#L285-L317
18,924
basho/riak-python-client
riak/riak_object.py
RiakObject.delete
def delete(self, r=None, w=None, dw=None, pr=None, pw=None, timeout=None): """ Delete this object from Riak. :param r: R-value, wait for this many partitions to read object before performing the put :type r: integer :param w: W-value, wait for this many partitions to respond before returning to client. :type w: integer :param dw: DW-value, wait for this many partitions to confirm the write before returning to client. :type dw: integer :param pr: PR-value, require this many primary partitions to be available before performing the read that precedes the put :type pr: integer :param pw: PW-value, require this many primary partitions to be available before performing the put :type pw: integer :param timeout: a timeout value in milliseconds :type timeout: int :rtype: :class:`RiakObject` """ self.client.delete(self, r=r, w=w, dw=dw, pr=pr, pw=pw, timeout=timeout) self.clear() return self
python
def delete(self, r=None, w=None, dw=None, pr=None, pw=None, timeout=None): """ Delete this object from Riak. :param r: R-value, wait for this many partitions to read object before performing the put :type r: integer :param w: W-value, wait for this many partitions to respond before returning to client. :type w: integer :param dw: DW-value, wait for this many partitions to confirm the write before returning to client. :type dw: integer :param pr: PR-value, require this many primary partitions to be available before performing the read that precedes the put :type pr: integer :param pw: PW-value, require this many primary partitions to be available before performing the put :type pw: integer :param timeout: a timeout value in milliseconds :type timeout: int :rtype: :class:`RiakObject` """ self.client.delete(self, r=r, w=w, dw=dw, pr=pr, pw=pw, timeout=timeout) self.clear() return self
[ "def", "delete", "(", "self", ",", "r", "=", "None", ",", "w", "=", "None", ",", "dw", "=", "None", ",", "pr", "=", "None", ",", "pw", "=", "None", ",", "timeout", "=", "None", ")", ":", "self", ".", "client", ".", "delete", "(", "self", ",", "r", "=", "r", ",", "w", "=", "w", ",", "dw", "=", "dw", ",", "pr", "=", "pr", ",", "pw", "=", "pw", ",", "timeout", "=", "timeout", ")", "self", ".", "clear", "(", ")", "return", "self" ]
Delete this object from Riak. :param r: R-value, wait for this many partitions to read object before performing the put :type r: integer :param w: W-value, wait for this many partitions to respond before returning to client. :type w: integer :param dw: DW-value, wait for this many partitions to confirm the write before returning to client. :type dw: integer :param pr: PR-value, require this many primary partitions to be available before performing the read that precedes the put :type pr: integer :param pw: PW-value, require this many primary partitions to be available before performing the put :type pw: integer :param timeout: a timeout value in milliseconds :type timeout: int :rtype: :class:`RiakObject`
[ "Delete", "this", "object", "from", "Riak", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/riak_object.py#L319-L348
18,925
basho/riak-python-client
riak/bucket.py
RiakBucket.get_encoder
def get_encoder(self, content_type): """ Get the encoding function for the provided content type for this bucket. :param content_type: the requested media type :type content_type: str :param content_type: Content type requested """ if content_type in self._encoders: return self._encoders[content_type] else: return self._client.get_encoder(content_type)
python
def get_encoder(self, content_type): """ Get the encoding function for the provided content type for this bucket. :param content_type: the requested media type :type content_type: str :param content_type: Content type requested """ if content_type in self._encoders: return self._encoders[content_type] else: return self._client.get_encoder(content_type)
[ "def", "get_encoder", "(", "self", ",", "content_type", ")", ":", "if", "content_type", "in", "self", ".", "_encoders", ":", "return", "self", ".", "_encoders", "[", "content_type", "]", "else", ":", "return", "self", ".", "_client", ".", "get_encoder", "(", "content_type", ")" ]
Get the encoding function for the provided content type for this bucket. :param content_type: the requested media type :type content_type: str :param content_type: Content type requested
[ "Get", "the", "encoding", "function", "for", "the", "provided", "content", "type", "for", "this", "bucket", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/bucket.py#L88-L100
18,926
basho/riak-python-client
riak/bucket.py
RiakBucket.get_decoder
def get_decoder(self, content_type): """ Get the decoding function for the provided content type for this bucket. :param content_type: the requested media type :type content_type: str :rtype: function """ if content_type in self._decoders: return self._decoders[content_type] else: return self._client.get_decoder(content_type)
python
def get_decoder(self, content_type): """ Get the decoding function for the provided content type for this bucket. :param content_type: the requested media type :type content_type: str :rtype: function """ if content_type in self._decoders: return self._decoders[content_type] else: return self._client.get_decoder(content_type)
[ "def", "get_decoder", "(", "self", ",", "content_type", ")", ":", "if", "content_type", "in", "self", ".", "_decoders", ":", "return", "self", ".", "_decoders", "[", "content_type", "]", "else", ":", "return", "self", ".", "_client", ".", "get_decoder", "(", "content_type", ")" ]
Get the decoding function for the provided content type for this bucket. :param content_type: the requested media type :type content_type: str :rtype: function
[ "Get", "the", "decoding", "function", "for", "the", "provided", "content", "type", "for", "this", "bucket", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/bucket.py#L116-L128
18,927
basho/riak-python-client
riak/bucket.py
RiakBucket.multiget
def multiget(self, keys, r=None, pr=None, timeout=None, basic_quorum=None, notfound_ok=None, head_only=False): """ Retrieves a list of keys belonging to this bucket in parallel. :param keys: the keys to fetch :type keys: list :param r: R-Value for the requests (defaults to bucket's R) :type r: integer :param pr: PR-Value for the requests (defaults to bucket's PR) :type pr: integer :param timeout: a timeout value in milliseconds :type timeout: int :param basic_quorum: whether to use the "basic quorum" policy for not-founds :type basic_quorum: bool :param notfound_ok: whether to treat not-found responses as successful :type notfound_ok: bool :param head_only: whether to fetch without value, so only metadata (only available on PB transport) :type head_only: bool :rtype: list of :class:`RiakObjects <riak.riak_object.RiakObject>`, :class:`Datatypes <riak.datatypes.Datatype>`, or tuples of bucket_type, bucket, key, and the exception raised on fetch """ bkeys = [(self.bucket_type.name, self.name, key) for key in keys] return self._client.multiget(bkeys, r=r, pr=pr, timeout=timeout, basic_quorum=basic_quorum, notfound_ok=notfound_ok, head_only=head_only)
python
def multiget(self, keys, r=None, pr=None, timeout=None, basic_quorum=None, notfound_ok=None, head_only=False): """ Retrieves a list of keys belonging to this bucket in parallel. :param keys: the keys to fetch :type keys: list :param r: R-Value for the requests (defaults to bucket's R) :type r: integer :param pr: PR-Value for the requests (defaults to bucket's PR) :type pr: integer :param timeout: a timeout value in milliseconds :type timeout: int :param basic_quorum: whether to use the "basic quorum" policy for not-founds :type basic_quorum: bool :param notfound_ok: whether to treat not-found responses as successful :type notfound_ok: bool :param head_only: whether to fetch without value, so only metadata (only available on PB transport) :type head_only: bool :rtype: list of :class:`RiakObjects <riak.riak_object.RiakObject>`, :class:`Datatypes <riak.datatypes.Datatype>`, or tuples of bucket_type, bucket, key, and the exception raised on fetch """ bkeys = [(self.bucket_type.name, self.name, key) for key in keys] return self._client.multiget(bkeys, r=r, pr=pr, timeout=timeout, basic_quorum=basic_quorum, notfound_ok=notfound_ok, head_only=head_only)
[ "def", "multiget", "(", "self", ",", "keys", ",", "r", "=", "None", ",", "pr", "=", "None", ",", "timeout", "=", "None", ",", "basic_quorum", "=", "None", ",", "notfound_ok", "=", "None", ",", "head_only", "=", "False", ")", ":", "bkeys", "=", "[", "(", "self", ".", "bucket_type", ".", "name", ",", "self", ".", "name", ",", "key", ")", "for", "key", "in", "keys", "]", "return", "self", ".", "_client", ".", "multiget", "(", "bkeys", ",", "r", "=", "r", ",", "pr", "=", "pr", ",", "timeout", "=", "timeout", ",", "basic_quorum", "=", "basic_quorum", ",", "notfound_ok", "=", "notfound_ok", ",", "head_only", "=", "head_only", ")" ]
Retrieves a list of keys belonging to this bucket in parallel. :param keys: the keys to fetch :type keys: list :param r: R-Value for the requests (defaults to bucket's R) :type r: integer :param pr: PR-Value for the requests (defaults to bucket's PR) :type pr: integer :param timeout: a timeout value in milliseconds :type timeout: int :param basic_quorum: whether to use the "basic quorum" policy for not-founds :type basic_quorum: bool :param notfound_ok: whether to treat not-found responses as successful :type notfound_ok: bool :param head_only: whether to fetch without value, so only metadata (only available on PB transport) :type head_only: bool :rtype: list of :class:`RiakObjects <riak.riak_object.RiakObject>`, :class:`Datatypes <riak.datatypes.Datatype>`, or tuples of bucket_type, bucket, key, and the exception raised on fetch
[ "Retrieves", "a", "list", "of", "keys", "belonging", "to", "this", "bucket", "in", "parallel", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/bucket.py#L238-L268
18,928
basho/riak-python-client
riak/bucket.py
BucketType.stream_buckets
def stream_buckets(self, timeout=None): """ Streams the list of buckets under this bucket-type. This is a generator method that should be iterated over. The caller must close the stream when finished. See :meth:`RiakClient.stream_buckets() <riak.client.RiakClient.stream_buckets>` for more details. .. warning:: Do not use this in production, as it requires traversing through all keys stored in a cluster. :param timeout: a timeout value in milliseconds :type timeout: int :rtype: iterator that yields lists of :class:`RiakBucket <riak.bucket.RiakBucket>` instances """ return self._client.stream_buckets(bucket_type=self, timeout=timeout)
python
def stream_buckets(self, timeout=None): """ Streams the list of buckets under this bucket-type. This is a generator method that should be iterated over. The caller must close the stream when finished. See :meth:`RiakClient.stream_buckets() <riak.client.RiakClient.stream_buckets>` for more details. .. warning:: Do not use this in production, as it requires traversing through all keys stored in a cluster. :param timeout: a timeout value in milliseconds :type timeout: int :rtype: iterator that yields lists of :class:`RiakBucket <riak.bucket.RiakBucket>` instances """ return self._client.stream_buckets(bucket_type=self, timeout=timeout)
[ "def", "stream_buckets", "(", "self", ",", "timeout", "=", "None", ")", ":", "return", "self", ".", "_client", ".", "stream_buckets", "(", "bucket_type", "=", "self", ",", "timeout", "=", "timeout", ")" ]
Streams the list of buckets under this bucket-type. This is a generator method that should be iterated over. The caller must close the stream when finished. See :meth:`RiakClient.stream_buckets() <riak.client.RiakClient.stream_buckets>` for more details. .. warning:: Do not use this in production, as it requires traversing through all keys stored in a cluster. :param timeout: a timeout value in milliseconds :type timeout: int :rtype: iterator that yields lists of :class:`RiakBucket <riak.bucket.RiakBucket>` instances
[ "Streams", "the", "list", "of", "buckets", "under", "this", "bucket", "-", "type", ".", "This", "is", "a", "generator", "method", "that", "should", "be", "iterated", "over", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/bucket.py#L712-L729
18,929
basho/riak-python-client
riak/node.py
Decaying.incr
def incr(self, d): """ Increases the value by the argument. :param d: the value to increase by :type d: float """ with self.lock: self.p = self.value() + d
python
def incr(self, d): """ Increases the value by the argument. :param d: the value to increase by :type d: float """ with self.lock: self.p = self.value() + d
[ "def", "incr", "(", "self", ",", "d", ")", ":", "with", "self", ".", "lock", ":", "self", ".", "p", "=", "self", ".", "value", "(", ")", "+", "d" ]
Increases the value by the argument. :param d: the value to increase by :type d: float
[ "Increases", "the", "value", "by", "the", "argument", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/node.py#L46-L54
18,930
basho/riak-python-client
riak/transports/transport.py
Transport.make_random_client_id
def make_random_client_id(self): """ Returns a random client identifier """ if PY2: return ('py_%s' % base64.b64encode(str(random.randint(1, 0x40000000)))) else: return ('py_%s' % base64.b64encode(bytes(str(random.randint(1, 0x40000000)), 'ascii')))
python
def make_random_client_id(self): """ Returns a random client identifier """ if PY2: return ('py_%s' % base64.b64encode(str(random.randint(1, 0x40000000)))) else: return ('py_%s' % base64.b64encode(bytes(str(random.randint(1, 0x40000000)), 'ascii')))
[ "def", "make_random_client_id", "(", "self", ")", ":", "if", "PY2", ":", "return", "(", "'py_%s'", "%", "base64", ".", "b64encode", "(", "str", "(", "random", ".", "randint", "(", "1", ",", "0x40000000", ")", ")", ")", ")", "else", ":", "return", "(", "'py_%s'", "%", "base64", ".", "b64encode", "(", "bytes", "(", "str", "(", "random", ".", "randint", "(", "1", ",", "0x40000000", ")", ")", ",", "'ascii'", ")", ")", ")" ]
Returns a random client identifier
[ "Returns", "a", "random", "client", "identifier" ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/transports/transport.py#L42-L52
18,931
basho/riak-python-client
riak/transports/transport.py
Transport.get
def get(self, robj, r=None, pr=None, timeout=None, basic_quorum=None, notfound_ok=None, head_only=False): """ Fetches an object. """ raise NotImplementedError
python
def get(self, robj, r=None, pr=None, timeout=None, basic_quorum=None, notfound_ok=None, head_only=False): """ Fetches an object. """ raise NotImplementedError
[ "def", "get", "(", "self", ",", "robj", ",", "r", "=", "None", ",", "pr", "=", "None", ",", "timeout", "=", "None", ",", "basic_quorum", "=", "None", ",", "notfound_ok", "=", "None", ",", "head_only", "=", "False", ")", ":", "raise", "NotImplementedError" ]
Fetches an object.
[ "Fetches", "an", "object", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/transports/transport.py#L70-L75
18,932
basho/riak-python-client
riak/transports/transport.py
Transport.put
def put(self, robj, w=None, dw=None, pw=None, return_body=None, if_none_match=None, timeout=None): """ Stores an object. """ raise NotImplementedError
python
def put(self, robj, w=None, dw=None, pw=None, return_body=None, if_none_match=None, timeout=None): """ Stores an object. """ raise NotImplementedError
[ "def", "put", "(", "self", ",", "robj", ",", "w", "=", "None", ",", "dw", "=", "None", ",", "pw", "=", "None", ",", "return_body", "=", "None", ",", "if_none_match", "=", "None", ",", "timeout", "=", "None", ")", ":", "raise", "NotImplementedError" ]
Stores an object.
[ "Stores", "an", "object", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/transports/transport.py#L77-L82
18,933
basho/riak-python-client
riak/transports/transport.py
Transport.delete
def delete(self, robj, rw=None, r=None, w=None, dw=None, pr=None, pw=None, timeout=None): """ Deletes an object. """ raise NotImplementedError
python
def delete(self, robj, rw=None, r=None, w=None, dw=None, pr=None, pw=None, timeout=None): """ Deletes an object. """ raise NotImplementedError
[ "def", "delete", "(", "self", ",", "robj", ",", "rw", "=", "None", ",", "r", "=", "None", ",", "w", "=", "None", ",", "dw", "=", "None", ",", "pr", "=", "None", ",", "pw", "=", "None", ",", "timeout", "=", "None", ")", ":", "raise", "NotImplementedError" ]
Deletes an object.
[ "Deletes", "an", "object", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/transports/transport.py#L84-L89
18,934
basho/riak-python-client
riak/transports/transport.py
Transport.update_counter
def update_counter(self, bucket, key, value, w=None, dw=None, pw=None, returnvalue=False): """ Updates a counter by the given value. """ raise NotImplementedError
python
def update_counter(self, bucket, key, value, w=None, dw=None, pw=None, returnvalue=False): """ Updates a counter by the given value. """ raise NotImplementedError
[ "def", "update_counter", "(", "self", ",", "bucket", ",", "key", ",", "value", ",", "w", "=", "None", ",", "dw", "=", "None", ",", "pw", "=", "None", ",", "returnvalue", "=", "False", ")", ":", "raise", "NotImplementedError" ]
Updates a counter by the given value.
[ "Updates", "a", "counter", "by", "the", "given", "value", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/transports/transport.py#L285-L290
18,935
basho/riak-python-client
riak/transports/transport.py
Transport.fetch_datatype
def fetch_datatype(self, bucket, key, r=None, pr=None, basic_quorum=None, notfound_ok=None, timeout=None, include_context=None): """ Fetches a Riak Datatype. """ raise NotImplementedError
python
def fetch_datatype(self, bucket, key, r=None, pr=None, basic_quorum=None, notfound_ok=None, timeout=None, include_context=None): """ Fetches a Riak Datatype. """ raise NotImplementedError
[ "def", "fetch_datatype", "(", "self", ",", "bucket", ",", "key", ",", "r", "=", "None", ",", "pr", "=", "None", ",", "basic_quorum", "=", "None", ",", "notfound_ok", "=", "None", ",", "timeout", "=", "None", ",", "include_context", "=", "None", ")", ":", "raise", "NotImplementedError" ]
Fetches a Riak Datatype.
[ "Fetches", "a", "Riak", "Datatype", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/transports/transport.py#L292-L297
18,936
basho/riak-python-client
riak/transports/transport.py
Transport.update_datatype
def update_datatype(self, datatype, w=None, dw=None, pw=None, return_body=None, timeout=None, include_context=None): """ Updates a Riak Datatype by sending local operations to the server. """ raise NotImplementedError
python
def update_datatype(self, datatype, w=None, dw=None, pw=None, return_body=None, timeout=None, include_context=None): """ Updates a Riak Datatype by sending local operations to the server. """ raise NotImplementedError
[ "def", "update_datatype", "(", "self", ",", "datatype", ",", "w", "=", "None", ",", "dw", "=", "None", ",", "pw", "=", "None", ",", "return_body", "=", "None", ",", "timeout", "=", "None", ",", "include_context", "=", "None", ")", ":", "raise", "NotImplementedError" ]
Updates a Riak Datatype by sending local operations to the server.
[ "Updates", "a", "Riak", "Datatype", "by", "sending", "local", "operations", "to", "the", "server", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/transports/transport.py#L299-L304
18,937
basho/riak-python-client
riak/transports/transport.py
Transport._search_mapred_emu
def _search_mapred_emu(self, index, query): """ Emulates a search request via MapReduce. Used in the case where the transport supports MapReduce but has no native search capability. """ phases = [] if not self.phaseless_mapred(): phases.append({'language': 'erlang', 'module': 'riak_kv_mapreduce', 'function': 'reduce_identity', 'keep': True}) mr_result = self.mapred({'module': 'riak_search', 'function': 'mapred_search', 'arg': [index, query]}, phases) result = {'num_found': len(mr_result), 'max_score': 0.0, 'docs': []} for bucket, key, data in mr_result: if u'score' in data and data[u'score'][0] > result['max_score']: result['max_score'] = data[u'score'][0] result['docs'].append({u'id': key}) return result
python
def _search_mapred_emu(self, index, query): """ Emulates a search request via MapReduce. Used in the case where the transport supports MapReduce but has no native search capability. """ phases = [] if not self.phaseless_mapred(): phases.append({'language': 'erlang', 'module': 'riak_kv_mapreduce', 'function': 'reduce_identity', 'keep': True}) mr_result = self.mapred({'module': 'riak_search', 'function': 'mapred_search', 'arg': [index, query]}, phases) result = {'num_found': len(mr_result), 'max_score': 0.0, 'docs': []} for bucket, key, data in mr_result: if u'score' in data and data[u'score'][0] > result['max_score']: result['max_score'] = data[u'score'][0] result['docs'].append({u'id': key}) return result
[ "def", "_search_mapred_emu", "(", "self", ",", "index", ",", "query", ")", ":", "phases", "=", "[", "]", "if", "not", "self", ".", "phaseless_mapred", "(", ")", ":", "phases", ".", "append", "(", "{", "'language'", ":", "'erlang'", ",", "'module'", ":", "'riak_kv_mapreduce'", ",", "'function'", ":", "'reduce_identity'", ",", "'keep'", ":", "True", "}", ")", "mr_result", "=", "self", ".", "mapred", "(", "{", "'module'", ":", "'riak_search'", ",", "'function'", ":", "'mapred_search'", ",", "'arg'", ":", "[", "index", ",", "query", "]", "}", ",", "phases", ")", "result", "=", "{", "'num_found'", ":", "len", "(", "mr_result", ")", ",", "'max_score'", ":", "0.0", ",", "'docs'", ":", "[", "]", "}", "for", "bucket", ",", "key", ",", "data", "in", "mr_result", ":", "if", "u'score'", "in", "data", "and", "data", "[", "u'score'", "]", "[", "0", "]", ">", "result", "[", "'max_score'", "]", ":", "result", "[", "'max_score'", "]", "=", "data", "[", "u'score'", "]", "[", "0", "]", "result", "[", "'docs'", "]", ".", "append", "(", "{", "u'id'", ":", "key", "}", ")", "return", "result" ]
Emulates a search request via MapReduce. Used in the case where the transport supports MapReduce but has no native search capability.
[ "Emulates", "a", "search", "request", "via", "MapReduce", ".", "Used", "in", "the", "case", "where", "the", "transport", "supports", "MapReduce", "but", "has", "no", "native", "search", "capability", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/transports/transport.py#L313-L336
18,938
basho/riak-python-client
riak/transports/transport.py
Transport._get_index_mapred_emu
def _get_index_mapred_emu(self, bucket, index, startkey, endkey=None): """ Emulates a secondary index request via MapReduce. Used in the case where the transport supports MapReduce but has no native secondary index query capability. """ phases = [] if not self.phaseless_mapred(): phases.append({'language': 'erlang', 'module': 'riak_kv_mapreduce', 'function': 'reduce_identity', 'keep': True}) if endkey: result = self.mapred({'bucket': bucket, 'index': index, 'start': startkey, 'end': endkey}, phases) else: result = self.mapred({'bucket': bucket, 'index': index, 'key': startkey}, phases) return [key for resultbucket, key in result]
python
def _get_index_mapred_emu(self, bucket, index, startkey, endkey=None): """ Emulates a secondary index request via MapReduce. Used in the case where the transport supports MapReduce but has no native secondary index query capability. """ phases = [] if not self.phaseless_mapred(): phases.append({'language': 'erlang', 'module': 'riak_kv_mapreduce', 'function': 'reduce_identity', 'keep': True}) if endkey: result = self.mapred({'bucket': bucket, 'index': index, 'start': startkey, 'end': endkey}, phases) else: result = self.mapred({'bucket': bucket, 'index': index, 'key': startkey}, phases) return [key for resultbucket, key in result]
[ "def", "_get_index_mapred_emu", "(", "self", ",", "bucket", ",", "index", ",", "startkey", ",", "endkey", "=", "None", ")", ":", "phases", "=", "[", "]", "if", "not", "self", ".", "phaseless_mapred", "(", ")", ":", "phases", ".", "append", "(", "{", "'language'", ":", "'erlang'", ",", "'module'", ":", "'riak_kv_mapreduce'", ",", "'function'", ":", "'reduce_identity'", ",", "'keep'", ":", "True", "}", ")", "if", "endkey", ":", "result", "=", "self", ".", "mapred", "(", "{", "'bucket'", ":", "bucket", ",", "'index'", ":", "index", ",", "'start'", ":", "startkey", ",", "'end'", ":", "endkey", "}", ",", "phases", ")", "else", ":", "result", "=", "self", ".", "mapred", "(", "{", "'bucket'", ":", "bucket", ",", "'index'", ":", "index", ",", "'key'", ":", "startkey", "}", ",", "phases", ")", "return", "[", "key", "for", "resultbucket", ",", "key", "in", "result", "]" ]
Emulates a secondary index request via MapReduce. Used in the case where the transport supports MapReduce but has no native secondary index query capability.
[ "Emulates", "a", "secondary", "index", "request", "via", "MapReduce", ".", "Used", "in", "the", "case", "where", "the", "transport", "supports", "MapReduce", "but", "has", "no", "native", "secondary", "index", "query", "capability", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/transports/transport.py#L339-L362
18,939
basho/riak-python-client
riak/codecs/http.py
HttpCodec._parse_body
def _parse_body(self, robj, response, expected_statuses): """ Parse the body of an object response and populate the object. """ # If no response given, then return. if response is None: return None status, headers, data = response # Check if the server is down(status==0) if not status: m = 'Could not contact Riak Server: http://{0}:{1}!'.format( self._node.host, self._node.http_port) raise RiakError(m) # Make sure expected code came back self.check_http_code(status, expected_statuses) if 'x-riak-vclock' in headers: robj.vclock = VClock(headers['x-riak-vclock'], 'base64') # If 404(Not Found), then clear the object. if status == 404: robj.siblings = [] return None # If 201 Created, we need to extract the location and set the # key on the object. elif status == 201: robj.key = headers['location'].strip().split('/')[-1] # If 300(Siblings), apply the siblings to the object elif status == 300: ctype, params = parse_header(headers['content-type']) if ctype == 'multipart/mixed': if six.PY3: data = bytes_to_str(data) boundary = re.compile('\r?\n--%s(?:--)?\r?\n' % re.escape(params['boundary'])) parts = [message_from_string(p) for p in re.split(boundary, data)[1:-1]] robj.siblings = [self._parse_sibling(RiakContent(robj), part.items(), part.get_payload()) for part in parts] # Invoke sibling-resolution logic if robj.resolver is not None: robj.resolver(robj) return robj else: raise Exception('unexpected sibling response format: {0}'. format(ctype)) robj.siblings = [self._parse_sibling(RiakContent(robj), headers.items(), data)] return robj
python
def _parse_body(self, robj, response, expected_statuses): """ Parse the body of an object response and populate the object. """ # If no response given, then return. if response is None: return None status, headers, data = response # Check if the server is down(status==0) if not status: m = 'Could not contact Riak Server: http://{0}:{1}!'.format( self._node.host, self._node.http_port) raise RiakError(m) # Make sure expected code came back self.check_http_code(status, expected_statuses) if 'x-riak-vclock' in headers: robj.vclock = VClock(headers['x-riak-vclock'], 'base64') # If 404(Not Found), then clear the object. if status == 404: robj.siblings = [] return None # If 201 Created, we need to extract the location and set the # key on the object. elif status == 201: robj.key = headers['location'].strip().split('/')[-1] # If 300(Siblings), apply the siblings to the object elif status == 300: ctype, params = parse_header(headers['content-type']) if ctype == 'multipart/mixed': if six.PY3: data = bytes_to_str(data) boundary = re.compile('\r?\n--%s(?:--)?\r?\n' % re.escape(params['boundary'])) parts = [message_from_string(p) for p in re.split(boundary, data)[1:-1]] robj.siblings = [self._parse_sibling(RiakContent(robj), part.items(), part.get_payload()) for part in parts] # Invoke sibling-resolution logic if robj.resolver is not None: robj.resolver(robj) return robj else: raise Exception('unexpected sibling response format: {0}'. format(ctype)) robj.siblings = [self._parse_sibling(RiakContent(robj), headers.items(), data)] return robj
[ "def", "_parse_body", "(", "self", ",", "robj", ",", "response", ",", "expected_statuses", ")", ":", "# If no response given, then return.", "if", "response", "is", "None", ":", "return", "None", "status", ",", "headers", ",", "data", "=", "response", "# Check if the server is down(status==0)", "if", "not", "status", ":", "m", "=", "'Could not contact Riak Server: http://{0}:{1}!'", ".", "format", "(", "self", ".", "_node", ".", "host", ",", "self", ".", "_node", ".", "http_port", ")", "raise", "RiakError", "(", "m", ")", "# Make sure expected code came back", "self", ".", "check_http_code", "(", "status", ",", "expected_statuses", ")", "if", "'x-riak-vclock'", "in", "headers", ":", "robj", ".", "vclock", "=", "VClock", "(", "headers", "[", "'x-riak-vclock'", "]", ",", "'base64'", ")", "# If 404(Not Found), then clear the object.", "if", "status", "==", "404", ":", "robj", ".", "siblings", "=", "[", "]", "return", "None", "# If 201 Created, we need to extract the location and set the", "# key on the object.", "elif", "status", "==", "201", ":", "robj", ".", "key", "=", "headers", "[", "'location'", "]", ".", "strip", "(", ")", ".", "split", "(", "'/'", ")", "[", "-", "1", "]", "# If 300(Siblings), apply the siblings to the object", "elif", "status", "==", "300", ":", "ctype", ",", "params", "=", "parse_header", "(", "headers", "[", "'content-type'", "]", ")", "if", "ctype", "==", "'multipart/mixed'", ":", "if", "six", ".", "PY3", ":", "data", "=", "bytes_to_str", "(", "data", ")", "boundary", "=", "re", ".", "compile", "(", "'\\r?\\n--%s(?:--)?\\r?\\n'", "%", "re", ".", "escape", "(", "params", "[", "'boundary'", "]", ")", ")", "parts", "=", "[", "message_from_string", "(", "p", ")", "for", "p", "in", "re", ".", "split", "(", "boundary", ",", "data", ")", "[", "1", ":", "-", "1", "]", "]", "robj", ".", "siblings", "=", "[", "self", ".", "_parse_sibling", "(", "RiakContent", "(", "robj", ")", ",", "part", ".", "items", "(", ")", ",", "part", ".", "get_payload", "(", ")", ")", "for", "part", "in", "parts", "]", "# Invoke sibling-resolution logic", "if", "robj", ".", "resolver", "is", "not", "None", ":", "robj", ".", "resolver", "(", "robj", ")", "return", "robj", "else", ":", "raise", "Exception", "(", "'unexpected sibling response format: {0}'", ".", "format", "(", "ctype", ")", ")", "robj", ".", "siblings", "=", "[", "self", ".", "_parse_sibling", "(", "RiakContent", "(", "robj", ")", ",", "headers", ".", "items", "(", ")", ",", "data", ")", "]", "return", "robj" ]
Parse the body of an object response and populate the object.
[ "Parse", "the", "body", "of", "an", "object", "response", "and", "populate", "the", "object", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/codecs/http.py#L46-L104
18,940
basho/riak-python-client
riak/codecs/http.py
HttpCodec._parse_sibling
def _parse_sibling(self, sibling, headers, data): """ Parses a single sibling out of a response. """ sibling.exists = True # Parse the headers... for header, value in headers: header = header.lower() if header == 'content-type': sibling.content_type, sibling.charset = \ self._parse_content_type(value) elif header == 'etag': sibling.etag = value elif header == 'link': sibling.links = self._parse_links(value) elif header == 'last-modified': sibling.last_modified = mktime_tz(parsedate_tz(value)) elif header.startswith('x-riak-meta-'): metakey = header.replace('x-riak-meta-', '') sibling.usermeta[metakey] = value elif header.startswith('x-riak-index-'): field = header.replace('x-riak-index-', '') reader = csv.reader([value], skipinitialspace=True) for line in reader: for token in line: token = decode_index_value(field, token) sibling.add_index(field, token) elif header == 'x-riak-deleted': sibling.exists = False sibling.encoded_data = data return sibling
python
def _parse_sibling(self, sibling, headers, data): """ Parses a single sibling out of a response. """ sibling.exists = True # Parse the headers... for header, value in headers: header = header.lower() if header == 'content-type': sibling.content_type, sibling.charset = \ self._parse_content_type(value) elif header == 'etag': sibling.etag = value elif header == 'link': sibling.links = self._parse_links(value) elif header == 'last-modified': sibling.last_modified = mktime_tz(parsedate_tz(value)) elif header.startswith('x-riak-meta-'): metakey = header.replace('x-riak-meta-', '') sibling.usermeta[metakey] = value elif header.startswith('x-riak-index-'): field = header.replace('x-riak-index-', '') reader = csv.reader([value], skipinitialspace=True) for line in reader: for token in line: token = decode_index_value(field, token) sibling.add_index(field, token) elif header == 'x-riak-deleted': sibling.exists = False sibling.encoded_data = data return sibling
[ "def", "_parse_sibling", "(", "self", ",", "sibling", ",", "headers", ",", "data", ")", ":", "sibling", ".", "exists", "=", "True", "# Parse the headers...", "for", "header", ",", "value", "in", "headers", ":", "header", "=", "header", ".", "lower", "(", ")", "if", "header", "==", "'content-type'", ":", "sibling", ".", "content_type", ",", "sibling", ".", "charset", "=", "self", ".", "_parse_content_type", "(", "value", ")", "elif", "header", "==", "'etag'", ":", "sibling", ".", "etag", "=", "value", "elif", "header", "==", "'link'", ":", "sibling", ".", "links", "=", "self", ".", "_parse_links", "(", "value", ")", "elif", "header", "==", "'last-modified'", ":", "sibling", ".", "last_modified", "=", "mktime_tz", "(", "parsedate_tz", "(", "value", ")", ")", "elif", "header", ".", "startswith", "(", "'x-riak-meta-'", ")", ":", "metakey", "=", "header", ".", "replace", "(", "'x-riak-meta-'", ",", "''", ")", "sibling", ".", "usermeta", "[", "metakey", "]", "=", "value", "elif", "header", ".", "startswith", "(", "'x-riak-index-'", ")", ":", "field", "=", "header", ".", "replace", "(", "'x-riak-index-'", ",", "''", ")", "reader", "=", "csv", ".", "reader", "(", "[", "value", "]", ",", "skipinitialspace", "=", "True", ")", "for", "line", "in", "reader", ":", "for", "token", "in", "line", ":", "token", "=", "decode_index_value", "(", "field", ",", "token", ")", "sibling", ".", "add_index", "(", "field", ",", "token", ")", "elif", "header", "==", "'x-riak-deleted'", ":", "sibling", ".", "exists", "=", "False", "sibling", ".", "encoded_data", "=", "data", "return", "sibling" ]
Parses a single sibling out of a response.
[ "Parses", "a", "single", "sibling", "out", "of", "a", "response", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/codecs/http.py#L106-L140
18,941
basho/riak-python-client
riak/codecs/http.py
HttpCodec._to_link_header
def _to_link_header(self, link): """ Convert the link tuple to a link header string. Used internally. """ try: bucket, key, tag = link except ValueError: raise RiakError("Invalid link tuple %s" % link) tag = tag if tag is not None else bucket url = self.object_path(bucket, key) header = '<%s>; riaktag="%s"' % (url, tag) return header
python
def _to_link_header(self, link): """ Convert the link tuple to a link header string. Used internally. """ try: bucket, key, tag = link except ValueError: raise RiakError("Invalid link tuple %s" % link) tag = tag if tag is not None else bucket url = self.object_path(bucket, key) header = '<%s>; riaktag="%s"' % (url, tag) return header
[ "def", "_to_link_header", "(", "self", ",", "link", ")", ":", "try", ":", "bucket", ",", "key", ",", "tag", "=", "link", "except", "ValueError", ":", "raise", "RiakError", "(", "\"Invalid link tuple %s\"", "%", "link", ")", "tag", "=", "tag", "if", "tag", "is", "not", "None", "else", "bucket", "url", "=", "self", ".", "object_path", "(", "bucket", ",", "key", ")", "header", "=", "'<%s>; riaktag=\"%s\"'", "%", "(", "url", ",", "tag", ")", "return", "header" ]
Convert the link tuple to a link header string. Used internally.
[ "Convert", "the", "link", "tuple", "to", "a", "link", "header", "string", ".", "Used", "internally", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/codecs/http.py#L142-L153
18,942
basho/riak-python-client
riak/codecs/http.py
HttpCodec._normalize_json_search_response
def _normalize_json_search_response(self, json): """ Normalizes a JSON search response so that PB and HTTP have the same return value """ result = {} if 'facet_counts' in json: result['facet_counts'] = json[u'facet_counts'] if 'grouped' in json: result['grouped'] = json[u'grouped'] if 'stats' in json: result['stats'] = json[u'stats'] if u'response' in json: result['num_found'] = json[u'response'][u'numFound'] result['max_score'] = float(json[u'response'][u'maxScore']) docs = [] for doc in json[u'response'][u'docs']: resdoc = {} if u'_yz_rk' in doc: # Is this a Riak 2.0 result? resdoc = doc else: # Riak Search 1.0 Legacy assumptions about format resdoc[u'id'] = doc[u'id'] if u'fields' in doc: for k, v in six.iteritems(doc[u'fields']): resdoc[k] = v docs.append(resdoc) result['docs'] = docs return result
python
def _normalize_json_search_response(self, json): """ Normalizes a JSON search response so that PB and HTTP have the same return value """ result = {} if 'facet_counts' in json: result['facet_counts'] = json[u'facet_counts'] if 'grouped' in json: result['grouped'] = json[u'grouped'] if 'stats' in json: result['stats'] = json[u'stats'] if u'response' in json: result['num_found'] = json[u'response'][u'numFound'] result['max_score'] = float(json[u'response'][u'maxScore']) docs = [] for doc in json[u'response'][u'docs']: resdoc = {} if u'_yz_rk' in doc: # Is this a Riak 2.0 result? resdoc = doc else: # Riak Search 1.0 Legacy assumptions about format resdoc[u'id'] = doc[u'id'] if u'fields' in doc: for k, v in six.iteritems(doc[u'fields']): resdoc[k] = v docs.append(resdoc) result['docs'] = docs return result
[ "def", "_normalize_json_search_response", "(", "self", ",", "json", ")", ":", "result", "=", "{", "}", "if", "'facet_counts'", "in", "json", ":", "result", "[", "'facet_counts'", "]", "=", "json", "[", "u'facet_counts'", "]", "if", "'grouped'", "in", "json", ":", "result", "[", "'grouped'", "]", "=", "json", "[", "u'grouped'", "]", "if", "'stats'", "in", "json", ":", "result", "[", "'stats'", "]", "=", "json", "[", "u'stats'", "]", "if", "u'response'", "in", "json", ":", "result", "[", "'num_found'", "]", "=", "json", "[", "u'response'", "]", "[", "u'numFound'", "]", "result", "[", "'max_score'", "]", "=", "float", "(", "json", "[", "u'response'", "]", "[", "u'maxScore'", "]", ")", "docs", "=", "[", "]", "for", "doc", "in", "json", "[", "u'response'", "]", "[", "u'docs'", "]", ":", "resdoc", "=", "{", "}", "if", "u'_yz_rk'", "in", "doc", ":", "# Is this a Riak 2.0 result?", "resdoc", "=", "doc", "else", ":", "# Riak Search 1.0 Legacy assumptions about format", "resdoc", "[", "u'id'", "]", "=", "doc", "[", "u'id'", "]", "if", "u'fields'", "in", "doc", ":", "for", "k", ",", "v", "in", "six", ".", "iteritems", "(", "doc", "[", "u'fields'", "]", ")", ":", "resdoc", "[", "k", "]", "=", "v", "docs", ".", "append", "(", "resdoc", ")", "result", "[", "'docs'", "]", "=", "docs", "return", "result" ]
Normalizes a JSON search response so that PB and HTTP have the same return value
[ "Normalizes", "a", "JSON", "search", "response", "so", "that", "PB", "and", "HTTP", "have", "the", "same", "return", "value" ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/codecs/http.py#L223-L252
18,943
basho/riak-python-client
riak/codecs/http.py
HttpCodec._normalize_xml_search_response
def _normalize_xml_search_response(self, xml): """ Normalizes an XML search response so that PB and HTTP have the same return value """ target = XMLSearchResult() parser = ElementTree.XMLParser(target=target) parser.feed(xml) return parser.close()
python
def _normalize_xml_search_response(self, xml): """ Normalizes an XML search response so that PB and HTTP have the same return value """ target = XMLSearchResult() parser = ElementTree.XMLParser(target=target) parser.feed(xml) return parser.close()
[ "def", "_normalize_xml_search_response", "(", "self", ",", "xml", ")", ":", "target", "=", "XMLSearchResult", "(", ")", "parser", "=", "ElementTree", ".", "XMLParser", "(", "target", "=", "target", ")", "parser", ".", "feed", "(", "xml", ")", "return", "parser", ".", "close", "(", ")" ]
Normalizes an XML search response so that PB and HTTP have the same return value
[ "Normalizes", "an", "XML", "search", "response", "so", "that", "PB", "and", "HTTP", "have", "the", "same", "return", "value" ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/codecs/http.py#L254-L262
18,944
basho/riak-python-client
riak/transports/http/__init__.py
NoNagleHTTPConnection.connect
def connect(self): """ Set TCP_NODELAY on socket """ HTTPConnection.connect(self) self.sock.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1)
python
def connect(self): """ Set TCP_NODELAY on socket """ HTTPConnection.connect(self) self.sock.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1)
[ "def", "connect", "(", "self", ")", ":", "HTTPConnection", ".", "connect", "(", "self", ")", "self", ".", "sock", ".", "setsockopt", "(", "socket", ".", "IPPROTO_TCP", ",", "socket", ".", "TCP_NODELAY", ",", "1", ")" ]
Set TCP_NODELAY on socket
[ "Set", "TCP_NODELAY", "on", "socket" ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/transports/http/__init__.py#L52-L57
18,945
basho/riak-python-client
riak/client/transport.py
RiakClientTransport._with_retries
def _with_retries(self, pool, fn): """ Performs the passed function with retries against the given pool. :param pool: the connection pool to use :type pool: Pool :param fn: the function to pass a transport :type fn: function """ skip_nodes = [] def _skip_bad_nodes(transport): return transport._node not in skip_nodes retry_count = self.retries - 1 first_try = True current_try = 0 while True: try: with pool.transaction( _filter=_skip_bad_nodes, yield_resource=True) as resource: transport = resource.object try: return fn(transport) except (IOError, HTTPException, ConnectionClosed) as e: resource.errored = True if _is_retryable(e): transport._node.error_rate.incr(1) skip_nodes.append(transport._node) if first_try: continue else: raise BadResource(e) else: raise except BadResource as e: if current_try < retry_count: resource.errored = True current_try += 1 continue else: # Re-raise the inner exception raise e.args[0] finally: first_try = False
python
def _with_retries(self, pool, fn): """ Performs the passed function with retries against the given pool. :param pool: the connection pool to use :type pool: Pool :param fn: the function to pass a transport :type fn: function """ skip_nodes = [] def _skip_bad_nodes(transport): return transport._node not in skip_nodes retry_count = self.retries - 1 first_try = True current_try = 0 while True: try: with pool.transaction( _filter=_skip_bad_nodes, yield_resource=True) as resource: transport = resource.object try: return fn(transport) except (IOError, HTTPException, ConnectionClosed) as e: resource.errored = True if _is_retryable(e): transport._node.error_rate.incr(1) skip_nodes.append(transport._node) if first_try: continue else: raise BadResource(e) else: raise except BadResource as e: if current_try < retry_count: resource.errored = True current_try += 1 continue else: # Re-raise the inner exception raise e.args[0] finally: first_try = False
[ "def", "_with_retries", "(", "self", ",", "pool", ",", "fn", ")", ":", "skip_nodes", "=", "[", "]", "def", "_skip_bad_nodes", "(", "transport", ")", ":", "return", "transport", ".", "_node", "not", "in", "skip_nodes", "retry_count", "=", "self", ".", "retries", "-", "1", "first_try", "=", "True", "current_try", "=", "0", "while", "True", ":", "try", ":", "with", "pool", ".", "transaction", "(", "_filter", "=", "_skip_bad_nodes", ",", "yield_resource", "=", "True", ")", "as", "resource", ":", "transport", "=", "resource", ".", "object", "try", ":", "return", "fn", "(", "transport", ")", "except", "(", "IOError", ",", "HTTPException", ",", "ConnectionClosed", ")", "as", "e", ":", "resource", ".", "errored", "=", "True", "if", "_is_retryable", "(", "e", ")", ":", "transport", ".", "_node", ".", "error_rate", ".", "incr", "(", "1", ")", "skip_nodes", ".", "append", "(", "transport", ".", "_node", ")", "if", "first_try", ":", "continue", "else", ":", "raise", "BadResource", "(", "e", ")", "else", ":", "raise", "except", "BadResource", "as", "e", ":", "if", "current_try", "<", "retry_count", ":", "resource", ".", "errored", "=", "True", "current_try", "+=", "1", "continue", "else", ":", "# Re-raise the inner exception", "raise", "e", ".", "args", "[", "0", "]", "finally", ":", "first_try", "=", "False" ]
Performs the passed function with retries against the given pool. :param pool: the connection pool to use :type pool: Pool :param fn: the function to pass a transport :type fn: function
[ "Performs", "the", "passed", "function", "with", "retries", "against", "the", "given", "pool", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/client/transport.py#L143-L188
18,946
basho/riak-python-client
riak/client/transport.py
RiakClientTransport._choose_pool
def _choose_pool(self, protocol=None): """ Selects a connection pool according to the default protocol and the passed one. :param protocol: the protocol to use :type protocol: string :rtype: Pool """ if not protocol: protocol = self.protocol if protocol == 'http': pool = self._http_pool elif protocol == 'tcp' or protocol == 'pbc': pool = self._tcp_pool else: raise ValueError("invalid protocol %s" % protocol) if pool is None or self._closed: # NB: GH-500, this can happen if client is closed raise RuntimeError("Client is closed.") return pool
python
def _choose_pool(self, protocol=None): """ Selects a connection pool according to the default protocol and the passed one. :param protocol: the protocol to use :type protocol: string :rtype: Pool """ if not protocol: protocol = self.protocol if protocol == 'http': pool = self._http_pool elif protocol == 'tcp' or protocol == 'pbc': pool = self._tcp_pool else: raise ValueError("invalid protocol %s" % protocol) if pool is None or self._closed: # NB: GH-500, this can happen if client is closed raise RuntimeError("Client is closed.") return pool
[ "def", "_choose_pool", "(", "self", ",", "protocol", "=", "None", ")", ":", "if", "not", "protocol", ":", "protocol", "=", "self", ".", "protocol", "if", "protocol", "==", "'http'", ":", "pool", "=", "self", ".", "_http_pool", "elif", "protocol", "==", "'tcp'", "or", "protocol", "==", "'pbc'", ":", "pool", "=", "self", ".", "_tcp_pool", "else", ":", "raise", "ValueError", "(", "\"invalid protocol %s\"", "%", "protocol", ")", "if", "pool", "is", "None", "or", "self", ".", "_closed", ":", "# NB: GH-500, this can happen if client is closed", "raise", "RuntimeError", "(", "\"Client is closed.\"", ")", "return", "pool" ]
Selects a connection pool according to the default protocol and the passed one. :param protocol: the protocol to use :type protocol: string :rtype: Pool
[ "Selects", "a", "connection", "pool", "according", "to", "the", "default", "protocol", "and", "the", "passed", "one", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/client/transport.py#L190-L210
18,947
basho/riak-python-client
riak/client/__init__.py
default_encoder
def default_encoder(obj): """ Default encoder for JSON datatypes, which returns UTF-8 encoded json instead of the default bloated backslash u XXXX escaped ASCII strings. """ if isinstance(obj, bytes): return json.dumps(bytes_to_str(obj), ensure_ascii=False).encode("utf-8") else: return json.dumps(obj, ensure_ascii=False).encode("utf-8")
python
def default_encoder(obj): """ Default encoder for JSON datatypes, which returns UTF-8 encoded json instead of the default bloated backslash u XXXX escaped ASCII strings. """ if isinstance(obj, bytes): return json.dumps(bytes_to_str(obj), ensure_ascii=False).encode("utf-8") else: return json.dumps(obj, ensure_ascii=False).encode("utf-8")
[ "def", "default_encoder", "(", "obj", ")", ":", "if", "isinstance", "(", "obj", ",", "bytes", ")", ":", "return", "json", ".", "dumps", "(", "bytes_to_str", "(", "obj", ")", ",", "ensure_ascii", "=", "False", ")", ".", "encode", "(", "\"utf-8\"", ")", "else", ":", "return", "json", ".", "dumps", "(", "obj", ",", "ensure_ascii", "=", "False", ")", ".", "encode", "(", "\"utf-8\"", ")" ]
Default encoder for JSON datatypes, which returns UTF-8 encoded json instead of the default bloated backslash u XXXX escaped ASCII strings.
[ "Default", "encoder", "for", "JSON", "datatypes", "which", "returns", "UTF", "-", "8", "encoded", "json", "instead", "of", "the", "default", "bloated", "backslash", "u", "XXXX", "escaped", "ASCII", "strings", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/client/__init__.py#L37-L46
18,948
basho/riak-python-client
riak/client/__init__.py
RiakClient.close
def close(self): """ Iterate through all of the connections and close each one. """ if not self._closed: self._closed = True self._stop_multi_pools() if self._http_pool is not None: self._http_pool.clear() self._http_pool = None if self._tcp_pool is not None: self._tcp_pool.clear() self._tcp_pool = None
python
def close(self): """ Iterate through all of the connections and close each one. """ if not self._closed: self._closed = True self._stop_multi_pools() if self._http_pool is not None: self._http_pool.clear() self._http_pool = None if self._tcp_pool is not None: self._tcp_pool.clear() self._tcp_pool = None
[ "def", "close", "(", "self", ")", ":", "if", "not", "self", ".", "_closed", ":", "self", ".", "_closed", "=", "True", "self", ".", "_stop_multi_pools", "(", ")", "if", "self", ".", "_http_pool", "is", "not", "None", ":", "self", ".", "_http_pool", ".", "clear", "(", ")", "self", ".", "_http_pool", "=", "None", "if", "self", ".", "_tcp_pool", "is", "not", "None", ":", "self", ".", "_tcp_pool", ".", "clear", "(", ")", "self", ".", "_tcp_pool", "=", "None" ]
Iterate through all of the connections and close each one.
[ "Iterate", "through", "all", "of", "the", "connections", "and", "close", "each", "one", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/client/__init__.py#L319-L331
18,949
basho/riak-python-client
riak/client/__init__.py
RiakClient._create_credentials
def _create_credentials(self, n): """ Create security credentials, if necessary. """ if not n: return n elif isinstance(n, SecurityCreds): return n elif isinstance(n, dict): return SecurityCreds(**n) else: raise TypeError("%s is not a valid security configuration" % repr(n))
python
def _create_credentials(self, n): """ Create security credentials, if necessary. """ if not n: return n elif isinstance(n, SecurityCreds): return n elif isinstance(n, dict): return SecurityCreds(**n) else: raise TypeError("%s is not a valid security configuration" % repr(n))
[ "def", "_create_credentials", "(", "self", ",", "n", ")", ":", "if", "not", "n", ":", "return", "n", "elif", "isinstance", "(", "n", ",", "SecurityCreds", ")", ":", "return", "n", "elif", "isinstance", "(", "n", ",", "dict", ")", ":", "return", "SecurityCreds", "(", "*", "*", "n", ")", "else", ":", "raise", "TypeError", "(", "\"%s is not a valid security configuration\"", "%", "repr", "(", "n", ")", ")" ]
Create security credentials, if necessary.
[ "Create", "security", "credentials", "if", "necessary", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/client/__init__.py#L355-L367
18,950
basho/riak-python-client
riak/transports/http/connection.py
HttpConnection._connect
def _connect(self): """ Use the appropriate connection class; optionally with security. """ timeout = None if self._options is not None and 'timeout' in self._options: timeout = self._options['timeout'] if self._client._credentials: self._connection = self._connection_class( host=self._node.host, port=self._node.http_port, credentials=self._client._credentials, timeout=timeout) else: self._connection = self._connection_class( host=self._node.host, port=self._node.http_port, timeout=timeout) # Forces the population of stats and resources before any # other requests are made. self.server_version
python
def _connect(self): """ Use the appropriate connection class; optionally with security. """ timeout = None if self._options is not None and 'timeout' in self._options: timeout = self._options['timeout'] if self._client._credentials: self._connection = self._connection_class( host=self._node.host, port=self._node.http_port, credentials=self._client._credentials, timeout=timeout) else: self._connection = self._connection_class( host=self._node.host, port=self._node.http_port, timeout=timeout) # Forces the population of stats and resources before any # other requests are made. self.server_version
[ "def", "_connect", "(", "self", ")", ":", "timeout", "=", "None", "if", "self", ".", "_options", "is", "not", "None", "and", "'timeout'", "in", "self", ".", "_options", ":", "timeout", "=", "self", ".", "_options", "[", "'timeout'", "]", "if", "self", ".", "_client", ".", "_credentials", ":", "self", ".", "_connection", "=", "self", ".", "_connection_class", "(", "host", "=", "self", ".", "_node", ".", "host", ",", "port", "=", "self", ".", "_node", ".", "http_port", ",", "credentials", "=", "self", ".", "_client", ".", "_credentials", ",", "timeout", "=", "timeout", ")", "else", ":", "self", ".", "_connection", "=", "self", ".", "_connection_class", "(", "host", "=", "self", ".", "_node", ".", "host", ",", "port", "=", "self", ".", "_node", ".", "http_port", ",", "timeout", "=", "timeout", ")", "# Forces the population of stats and resources before any", "# other requests are made.", "self", ".", "server_version" ]
Use the appropriate connection class; optionally with security.
[ "Use", "the", "appropriate", "connection", "class", ";", "optionally", "with", "security", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/transports/http/connection.py#L65-L86
18,951
basho/riak-python-client
riak/transports/http/connection.py
HttpConnection._security_auth_headers
def _security_auth_headers(self, username, password, headers): """ Add in the requisite HTTP Authentication Headers :param username: Riak Security Username :type str :param password: Riak Security Password :type str :param headers: Dictionary of headers :type dict """ userColonPassword = username + ":" + password b64UserColonPassword = base64. \ b64encode(str_to_bytes(userColonPassword)).decode("ascii") headers['Authorization'] = 'Basic %s' % b64UserColonPassword
python
def _security_auth_headers(self, username, password, headers): """ Add in the requisite HTTP Authentication Headers :param username: Riak Security Username :type str :param password: Riak Security Password :type str :param headers: Dictionary of headers :type dict """ userColonPassword = username + ":" + password b64UserColonPassword = base64. \ b64encode(str_to_bytes(userColonPassword)).decode("ascii") headers['Authorization'] = 'Basic %s' % b64UserColonPassword
[ "def", "_security_auth_headers", "(", "self", ",", "username", ",", "password", ",", "headers", ")", ":", "userColonPassword", "=", "username", "+", "\":\"", "+", "password", "b64UserColonPassword", "=", "base64", ".", "b64encode", "(", "str_to_bytes", "(", "userColonPassword", ")", ")", ".", "decode", "(", "\"ascii\"", ")", "headers", "[", "'Authorization'", "]", "=", "'Basic %s'", "%", "b64UserColonPassword" ]
Add in the requisite HTTP Authentication Headers :param username: Riak Security Username :type str :param password: Riak Security Password :type str :param headers: Dictionary of headers :type dict
[ "Add", "in", "the", "requisite", "HTTP", "Authentication", "Headers" ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/transports/http/connection.py#L101-L115
18,952
basho/riak-python-client
riak/table.py
Table.query
def query(self, query, interpolations=None): """ Queries a timeseries table. :param query: The timeseries query. :type query: string :rtype: :class:`TsObject <riak.ts_object.TsObject>` """ return self._client.ts_query(self, query, interpolations)
python
def query(self, query, interpolations=None): """ Queries a timeseries table. :param query: The timeseries query. :type query: string :rtype: :class:`TsObject <riak.ts_object.TsObject>` """ return self._client.ts_query(self, query, interpolations)
[ "def", "query", "(", "self", ",", "query", ",", "interpolations", "=", "None", ")", ":", "return", "self", ".", "_client", ".", "ts_query", "(", "self", ",", "query", ",", "interpolations", ")" ]
Queries a timeseries table. :param query: The timeseries query. :type query: string :rtype: :class:`TsObject <riak.ts_object.TsObject>`
[ "Queries", "a", "timeseries", "table", "." ]
91de13a16607cdf553d1a194e762734e3bec4231
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/table.py#L94-L102
18,953
adamrehn/ue4cli
ue4cli/ConfigurationManager.py
ConfigurationManager.getConfigDirectory
def getConfigDirectory(): """ Determines the platform-specific config directory location for ue4cli """ if platform.system() == 'Windows': return os.path.join(os.environ['APPDATA'], 'ue4cli') else: return os.path.join(os.environ['HOME'], '.config', 'ue4cli')
python
def getConfigDirectory(): """ Determines the platform-specific config directory location for ue4cli """ if platform.system() == 'Windows': return os.path.join(os.environ['APPDATA'], 'ue4cli') else: return os.path.join(os.environ['HOME'], '.config', 'ue4cli')
[ "def", "getConfigDirectory", "(", ")", ":", "if", "platform", ".", "system", "(", ")", "==", "'Windows'", ":", "return", "os", ".", "path", ".", "join", "(", "os", ".", "environ", "[", "'APPDATA'", "]", ",", "'ue4cli'", ")", "else", ":", "return", "os", ".", "path", ".", "join", "(", "os", ".", "environ", "[", "'HOME'", "]", ",", "'.config'", ",", "'ue4cli'", ")" ]
Determines the platform-specific config directory location for ue4cli
[ "Determines", "the", "platform", "-", "specific", "config", "directory", "location", "for", "ue4cli" ]
f1c34502c96059e36757b7433da7e98760a75a6f
https://github.com/adamrehn/ue4cli/blob/f1c34502c96059e36757b7433da7e98760a75a6f/ue4cli/ConfigurationManager.py#L10-L17
18,954
adamrehn/ue4cli
ue4cli/ConfigurationManager.py
ConfigurationManager.setConfigKey
def setConfigKey(key, value): """ Sets the config data value for the specified dictionary key """ configFile = ConfigurationManager._configFile() return JsonDataManager(configFile).setKey(key, value)
python
def setConfigKey(key, value): """ Sets the config data value for the specified dictionary key """ configFile = ConfigurationManager._configFile() return JsonDataManager(configFile).setKey(key, value)
[ "def", "setConfigKey", "(", "key", ",", "value", ")", ":", "configFile", "=", "ConfigurationManager", ".", "_configFile", "(", ")", "return", "JsonDataManager", "(", "configFile", ")", ".", "setKey", "(", "key", ",", "value", ")" ]
Sets the config data value for the specified dictionary key
[ "Sets", "the", "config", "data", "value", "for", "the", "specified", "dictionary", "key" ]
f1c34502c96059e36757b7433da7e98760a75a6f
https://github.com/adamrehn/ue4cli/blob/f1c34502c96059e36757b7433da7e98760a75a6f/ue4cli/ConfigurationManager.py#L28-L33
18,955
adamrehn/ue4cli
ue4cli/CachedDataManager.py
CachedDataManager.clearCache
def clearCache(): """ Clears any cached data we have stored about specific engine versions """ if os.path.exists(CachedDataManager._cacheDir()) == True: shutil.rmtree(CachedDataManager._cacheDir())
python
def clearCache(): """ Clears any cached data we have stored about specific engine versions """ if os.path.exists(CachedDataManager._cacheDir()) == True: shutil.rmtree(CachedDataManager._cacheDir())
[ "def", "clearCache", "(", ")", ":", "if", "os", ".", "path", ".", "exists", "(", "CachedDataManager", ".", "_cacheDir", "(", ")", ")", "==", "True", ":", "shutil", ".", "rmtree", "(", "CachedDataManager", ".", "_cacheDir", "(", ")", ")" ]
Clears any cached data we have stored about specific engine versions
[ "Clears", "any", "cached", "data", "we", "have", "stored", "about", "specific", "engine", "versions" ]
f1c34502c96059e36757b7433da7e98760a75a6f
https://github.com/adamrehn/ue4cli/blob/f1c34502c96059e36757b7433da7e98760a75a6f/ue4cli/CachedDataManager.py#L11-L16
18,956
adamrehn/ue4cli
ue4cli/CachedDataManager.py
CachedDataManager.getCachedDataKey
def getCachedDataKey(engineVersionHash, key): """ Retrieves the cached data value for the specified engine version hash and dictionary key """ cacheFile = CachedDataManager._cacheFileForHash(engineVersionHash) return JsonDataManager(cacheFile).getKey(key)
python
def getCachedDataKey(engineVersionHash, key): """ Retrieves the cached data value for the specified engine version hash and dictionary key """ cacheFile = CachedDataManager._cacheFileForHash(engineVersionHash) return JsonDataManager(cacheFile).getKey(key)
[ "def", "getCachedDataKey", "(", "engineVersionHash", ",", "key", ")", ":", "cacheFile", "=", "CachedDataManager", ".", "_cacheFileForHash", "(", "engineVersionHash", ")", "return", "JsonDataManager", "(", "cacheFile", ")", ".", "getKey", "(", "key", ")" ]
Retrieves the cached data value for the specified engine version hash and dictionary key
[ "Retrieves", "the", "cached", "data", "value", "for", "the", "specified", "engine", "version", "hash", "and", "dictionary", "key" ]
f1c34502c96059e36757b7433da7e98760a75a6f
https://github.com/adamrehn/ue4cli/blob/f1c34502c96059e36757b7433da7e98760a75a6f/ue4cli/CachedDataManager.py#L19-L24
18,957
adamrehn/ue4cli
ue4cli/CachedDataManager.py
CachedDataManager.setCachedDataKey
def setCachedDataKey(engineVersionHash, key, value): """ Sets the cached data value for the specified engine version hash and dictionary key """ cacheFile = CachedDataManager._cacheFileForHash(engineVersionHash) return JsonDataManager(cacheFile).setKey(key, value)
python
def setCachedDataKey(engineVersionHash, key, value): """ Sets the cached data value for the specified engine version hash and dictionary key """ cacheFile = CachedDataManager._cacheFileForHash(engineVersionHash) return JsonDataManager(cacheFile).setKey(key, value)
[ "def", "setCachedDataKey", "(", "engineVersionHash", ",", "key", ",", "value", ")", ":", "cacheFile", "=", "CachedDataManager", ".", "_cacheFileForHash", "(", "engineVersionHash", ")", "return", "JsonDataManager", "(", "cacheFile", ")", ".", "setKey", "(", "key", ",", "value", ")" ]
Sets the cached data value for the specified engine version hash and dictionary key
[ "Sets", "the", "cached", "data", "value", "for", "the", "specified", "engine", "version", "hash", "and", "dictionary", "key" ]
f1c34502c96059e36757b7433da7e98760a75a6f
https://github.com/adamrehn/ue4cli/blob/f1c34502c96059e36757b7433da7e98760a75a6f/ue4cli/CachedDataManager.py#L27-L32
18,958
adamrehn/ue4cli
ue4cli/Utility.py
Utility.writeFile
def writeFile(filename, data): """ Writes data to a file """ with open(filename, 'wb') as f: f.write(data.encode('utf-8'))
python
def writeFile(filename, data): """ Writes data to a file """ with open(filename, 'wb') as f: f.write(data.encode('utf-8'))
[ "def", "writeFile", "(", "filename", ",", "data", ")", ":", "with", "open", "(", "filename", ",", "'wb'", ")", "as", "f", ":", "f", ".", "write", "(", "data", ".", "encode", "(", "'utf-8'", ")", ")" ]
Writes data to a file
[ "Writes", "data", "to", "a", "file" ]
f1c34502c96059e36757b7433da7e98760a75a6f
https://github.com/adamrehn/ue4cli/blob/f1c34502c96059e36757b7433da7e98760a75a6f/ue4cli/Utility.py#L34-L39
18,959
adamrehn/ue4cli
ue4cli/Utility.py
Utility.patchFile
def patchFile(filename, replacements): """ Applies the supplied list of replacements to a file """ patched = Utility.readFile(filename) # Perform each of the replacements in the supplied dictionary for key in replacements: patched = patched.replace(key, replacements[key]) Utility.writeFile(filename, patched)
python
def patchFile(filename, replacements): """ Applies the supplied list of replacements to a file """ patched = Utility.readFile(filename) # Perform each of the replacements in the supplied dictionary for key in replacements: patched = patched.replace(key, replacements[key]) Utility.writeFile(filename, patched)
[ "def", "patchFile", "(", "filename", ",", "replacements", ")", ":", "patched", "=", "Utility", ".", "readFile", "(", "filename", ")", "# Perform each of the replacements in the supplied dictionary", "for", "key", "in", "replacements", ":", "patched", "=", "patched", ".", "replace", "(", "key", ",", "replacements", "[", "key", "]", ")", "Utility", ".", "writeFile", "(", "filename", ",", "patched", ")" ]
Applies the supplied list of replacements to a file
[ "Applies", "the", "supplied", "list", "of", "replacements", "to", "a", "file" ]
f1c34502c96059e36757b7433da7e98760a75a6f
https://github.com/adamrehn/ue4cli/blob/f1c34502c96059e36757b7433da7e98760a75a6f/ue4cli/Utility.py#L42-L52
18,960
adamrehn/ue4cli
ue4cli/Utility.py
Utility.escapePathForShell
def escapePathForShell(path): """ Escapes a filesystem path for use as a command-line argument """ if platform.system() == 'Windows': return '"{}"'.format(path.replace('"', '""')) else: return shellescape.quote(path)
python
def escapePathForShell(path): """ Escapes a filesystem path for use as a command-line argument """ if platform.system() == 'Windows': return '"{}"'.format(path.replace('"', '""')) else: return shellescape.quote(path)
[ "def", "escapePathForShell", "(", "path", ")", ":", "if", "platform", ".", "system", "(", ")", "==", "'Windows'", ":", "return", "'\"{}\"'", ".", "format", "(", "path", ".", "replace", "(", "'\"'", ",", "'\"\"'", ")", ")", "else", ":", "return", "shellescape", ".", "quote", "(", "path", ")" ]
Escapes a filesystem path for use as a command-line argument
[ "Escapes", "a", "filesystem", "path", "for", "use", "as", "a", "command", "-", "line", "argument" ]
f1c34502c96059e36757b7433da7e98760a75a6f
https://github.com/adamrehn/ue4cli/blob/f1c34502c96059e36757b7433da7e98760a75a6f/ue4cli/Utility.py#L62-L69
18,961
adamrehn/ue4cli
ue4cli/Utility.py
Utility.join
def join(delim, items, quotes=False): """ Joins the supplied list of strings after removing any empty strings from the list """ transform = lambda s: s if quotes == True: transform = lambda s: s if ' ' not in s else '"{}"'.format(s) stripped = list([transform(i) for i in items if len(i) > 0]) if len(stripped) > 0: return delim.join(stripped) return ''
python
def join(delim, items, quotes=False): """ Joins the supplied list of strings after removing any empty strings from the list """ transform = lambda s: s if quotes == True: transform = lambda s: s if ' ' not in s else '"{}"'.format(s) stripped = list([transform(i) for i in items if len(i) > 0]) if len(stripped) > 0: return delim.join(stripped) return ''
[ "def", "join", "(", "delim", ",", "items", ",", "quotes", "=", "False", ")", ":", "transform", "=", "lambda", "s", ":", "s", "if", "quotes", "==", "True", ":", "transform", "=", "lambda", "s", ":", "s", "if", "' '", "not", "in", "s", "else", "'\"{}\"'", ".", "format", "(", "s", ")", "stripped", "=", "list", "(", "[", "transform", "(", "i", ")", "for", "i", "in", "items", "if", "len", "(", "i", ")", ">", "0", "]", ")", "if", "len", "(", "stripped", ")", ">", "0", ":", "return", "delim", ".", "join", "(", "stripped", ")", "return", "''" ]
Joins the supplied list of strings after removing any empty strings from the list
[ "Joins", "the", "supplied", "list", "of", "strings", "after", "removing", "any", "empty", "strings", "from", "the", "list" ]
f1c34502c96059e36757b7433da7e98760a75a6f
https://github.com/adamrehn/ue4cli/blob/f1c34502c96059e36757b7433da7e98760a75a6f/ue4cli/Utility.py#L72-L83
18,962
ageitgey/face_recognition
examples/face_recognition_knn.py
train
def train(train_dir, model_save_path=None, n_neighbors=None, knn_algo='ball_tree', verbose=False): """ Trains a k-nearest neighbors classifier for face recognition. :param train_dir: directory that contains a sub-directory for each known person, with its name. (View in source code to see train_dir example tree structure) Structure: <train_dir>/ ├── <person1>/ │ ├── <somename1>.jpeg │ ├── <somename2>.jpeg │ ├── ... ├── <person2>/ │ ├── <somename1>.jpeg │ └── <somename2>.jpeg └── ... :param model_save_path: (optional) path to save model on disk :param n_neighbors: (optional) number of neighbors to weigh in classification. Chosen automatically if not specified :param knn_algo: (optional) underlying data structure to support knn.default is ball_tree :param verbose: verbosity of training :return: returns knn classifier that was trained on the given data. """ X = [] y = [] # Loop through each person in the training set for class_dir in os.listdir(train_dir): if not os.path.isdir(os.path.join(train_dir, class_dir)): continue # Loop through each training image for the current person for img_path in image_files_in_folder(os.path.join(train_dir, class_dir)): image = face_recognition.load_image_file(img_path) face_bounding_boxes = face_recognition.face_locations(image) if len(face_bounding_boxes) != 1: # If there are no people (or too many people) in a training image, skip the image. if verbose: print("Image {} not suitable for training: {}".format(img_path, "Didn't find a face" if len(face_bounding_boxes) < 1 else "Found more than one face")) else: # Add face encoding for current image to the training set X.append(face_recognition.face_encodings(image, known_face_locations=face_bounding_boxes)[0]) y.append(class_dir) # Determine how many neighbors to use for weighting in the KNN classifier if n_neighbors is None: n_neighbors = int(round(math.sqrt(len(X)))) if verbose: print("Chose n_neighbors automatically:", n_neighbors) # Create and train the KNN classifier knn_clf = neighbors.KNeighborsClassifier(n_neighbors=n_neighbors, algorithm=knn_algo, weights='distance') knn_clf.fit(X, y) # Save the trained KNN classifier if model_save_path is not None: with open(model_save_path, 'wb') as f: pickle.dump(knn_clf, f) return knn_clf
python
def train(train_dir, model_save_path=None, n_neighbors=None, knn_algo='ball_tree', verbose=False): """ Trains a k-nearest neighbors classifier for face recognition. :param train_dir: directory that contains a sub-directory for each known person, with its name. (View in source code to see train_dir example tree structure) Structure: <train_dir>/ ├── <person1>/ │ ├── <somename1>.jpeg │ ├── <somename2>.jpeg │ ├── ... ├── <person2>/ │ ├── <somename1>.jpeg │ └── <somename2>.jpeg └── ... :param model_save_path: (optional) path to save model on disk :param n_neighbors: (optional) number of neighbors to weigh in classification. Chosen automatically if not specified :param knn_algo: (optional) underlying data structure to support knn.default is ball_tree :param verbose: verbosity of training :return: returns knn classifier that was trained on the given data. """ X = [] y = [] # Loop through each person in the training set for class_dir in os.listdir(train_dir): if not os.path.isdir(os.path.join(train_dir, class_dir)): continue # Loop through each training image for the current person for img_path in image_files_in_folder(os.path.join(train_dir, class_dir)): image = face_recognition.load_image_file(img_path) face_bounding_boxes = face_recognition.face_locations(image) if len(face_bounding_boxes) != 1: # If there are no people (or too many people) in a training image, skip the image. if verbose: print("Image {} not suitable for training: {}".format(img_path, "Didn't find a face" if len(face_bounding_boxes) < 1 else "Found more than one face")) else: # Add face encoding for current image to the training set X.append(face_recognition.face_encodings(image, known_face_locations=face_bounding_boxes)[0]) y.append(class_dir) # Determine how many neighbors to use for weighting in the KNN classifier if n_neighbors is None: n_neighbors = int(round(math.sqrt(len(X)))) if verbose: print("Chose n_neighbors automatically:", n_neighbors) # Create and train the KNN classifier knn_clf = neighbors.KNeighborsClassifier(n_neighbors=n_neighbors, algorithm=knn_algo, weights='distance') knn_clf.fit(X, y) # Save the trained KNN classifier if model_save_path is not None: with open(model_save_path, 'wb') as f: pickle.dump(knn_clf, f) return knn_clf
[ "def", "train", "(", "train_dir", ",", "model_save_path", "=", "None", ",", "n_neighbors", "=", "None", ",", "knn_algo", "=", "'ball_tree'", ",", "verbose", "=", "False", ")", ":", "X", "=", "[", "]", "y", "=", "[", "]", "# Loop through each person in the training set", "for", "class_dir", "in", "os", ".", "listdir", "(", "train_dir", ")", ":", "if", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "train_dir", ",", "class_dir", ")", ")", ":", "continue", "# Loop through each training image for the current person", "for", "img_path", "in", "image_files_in_folder", "(", "os", ".", "path", ".", "join", "(", "train_dir", ",", "class_dir", ")", ")", ":", "image", "=", "face_recognition", ".", "load_image_file", "(", "img_path", ")", "face_bounding_boxes", "=", "face_recognition", ".", "face_locations", "(", "image", ")", "if", "len", "(", "face_bounding_boxes", ")", "!=", "1", ":", "# If there are no people (or too many people) in a training image, skip the image.", "if", "verbose", ":", "print", "(", "\"Image {} not suitable for training: {}\"", ".", "format", "(", "img_path", ",", "\"Didn't find a face\"", "if", "len", "(", "face_bounding_boxes", ")", "<", "1", "else", "\"Found more than one face\"", ")", ")", "else", ":", "# Add face encoding for current image to the training set", "X", ".", "append", "(", "face_recognition", ".", "face_encodings", "(", "image", ",", "known_face_locations", "=", "face_bounding_boxes", ")", "[", "0", "]", ")", "y", ".", "append", "(", "class_dir", ")", "# Determine how many neighbors to use for weighting in the KNN classifier", "if", "n_neighbors", "is", "None", ":", "n_neighbors", "=", "int", "(", "round", "(", "math", ".", "sqrt", "(", "len", "(", "X", ")", ")", ")", ")", "if", "verbose", ":", "print", "(", "\"Chose n_neighbors automatically:\"", ",", "n_neighbors", ")", "# Create and train the KNN classifier", "knn_clf", "=", "neighbors", ".", "KNeighborsClassifier", "(", "n_neighbors", "=", "n_neighbors", ",", "algorithm", "=", "knn_algo", ",", "weights", "=", "'distance'", ")", "knn_clf", ".", "fit", "(", "X", ",", "y", ")", "# Save the trained KNN classifier", "if", "model_save_path", "is", "not", "None", ":", "with", "open", "(", "model_save_path", ",", "'wb'", ")", "as", "f", ":", "pickle", ".", "dump", "(", "knn_clf", ",", "f", ")", "return", "knn_clf" ]
Trains a k-nearest neighbors classifier for face recognition. :param train_dir: directory that contains a sub-directory for each known person, with its name. (View in source code to see train_dir example tree structure) Structure: <train_dir>/ ├── <person1>/ │ ├── <somename1>.jpeg │ ├── <somename2>.jpeg │ ├── ... ├── <person2>/ │ ├── <somename1>.jpeg │ └── <somename2>.jpeg └── ... :param model_save_path: (optional) path to save model on disk :param n_neighbors: (optional) number of neighbors to weigh in classification. Chosen automatically if not specified :param knn_algo: (optional) underlying data structure to support knn.default is ball_tree :param verbose: verbosity of training :return: returns knn classifier that was trained on the given data.
[ "Trains", "a", "k", "-", "nearest", "neighbors", "classifier", "for", "face", "recognition", "." ]
c96b010c02f15e8eeb0f71308c641179ac1f19bb
https://github.com/ageitgey/face_recognition/blob/c96b010c02f15e8eeb0f71308c641179ac1f19bb/examples/face_recognition_knn.py#L46-L108
18,963
ageitgey/face_recognition
examples/face_recognition_knn.py
predict
def predict(X_img_path, knn_clf=None, model_path=None, distance_threshold=0.6): """ Recognizes faces in given image using a trained KNN classifier :param X_img_path: path to image to be recognized :param knn_clf: (optional) a knn classifier object. if not specified, model_save_path must be specified. :param model_path: (optional) path to a pickled knn classifier. if not specified, model_save_path must be knn_clf. :param distance_threshold: (optional) distance threshold for face classification. the larger it is, the more chance of mis-classifying an unknown person as a known one. :return: a list of names and face locations for the recognized faces in the image: [(name, bounding box), ...]. For faces of unrecognized persons, the name 'unknown' will be returned. """ if not os.path.isfile(X_img_path) or os.path.splitext(X_img_path)[1][1:] not in ALLOWED_EXTENSIONS: raise Exception("Invalid image path: {}".format(X_img_path)) if knn_clf is None and model_path is None: raise Exception("Must supply knn classifier either thourgh knn_clf or model_path") # Load a trained KNN model (if one was passed in) if knn_clf is None: with open(model_path, 'rb') as f: knn_clf = pickle.load(f) # Load image file and find face locations X_img = face_recognition.load_image_file(X_img_path) X_face_locations = face_recognition.face_locations(X_img) # If no faces are found in the image, return an empty result. if len(X_face_locations) == 0: return [] # Find encodings for faces in the test iamge faces_encodings = face_recognition.face_encodings(X_img, known_face_locations=X_face_locations) # Use the KNN model to find the best matches for the test face closest_distances = knn_clf.kneighbors(faces_encodings, n_neighbors=1) are_matches = [closest_distances[0][i][0] <= distance_threshold for i in range(len(X_face_locations))] # Predict classes and remove classifications that aren't within the threshold return [(pred, loc) if rec else ("unknown", loc) for pred, loc, rec in zip(knn_clf.predict(faces_encodings), X_face_locations, are_matches)]
python
def predict(X_img_path, knn_clf=None, model_path=None, distance_threshold=0.6): """ Recognizes faces in given image using a trained KNN classifier :param X_img_path: path to image to be recognized :param knn_clf: (optional) a knn classifier object. if not specified, model_save_path must be specified. :param model_path: (optional) path to a pickled knn classifier. if not specified, model_save_path must be knn_clf. :param distance_threshold: (optional) distance threshold for face classification. the larger it is, the more chance of mis-classifying an unknown person as a known one. :return: a list of names and face locations for the recognized faces in the image: [(name, bounding box), ...]. For faces of unrecognized persons, the name 'unknown' will be returned. """ if not os.path.isfile(X_img_path) or os.path.splitext(X_img_path)[1][1:] not in ALLOWED_EXTENSIONS: raise Exception("Invalid image path: {}".format(X_img_path)) if knn_clf is None and model_path is None: raise Exception("Must supply knn classifier either thourgh knn_clf or model_path") # Load a trained KNN model (if one was passed in) if knn_clf is None: with open(model_path, 'rb') as f: knn_clf = pickle.load(f) # Load image file and find face locations X_img = face_recognition.load_image_file(X_img_path) X_face_locations = face_recognition.face_locations(X_img) # If no faces are found in the image, return an empty result. if len(X_face_locations) == 0: return [] # Find encodings for faces in the test iamge faces_encodings = face_recognition.face_encodings(X_img, known_face_locations=X_face_locations) # Use the KNN model to find the best matches for the test face closest_distances = knn_clf.kneighbors(faces_encodings, n_neighbors=1) are_matches = [closest_distances[0][i][0] <= distance_threshold for i in range(len(X_face_locations))] # Predict classes and remove classifications that aren't within the threshold return [(pred, loc) if rec else ("unknown", loc) for pred, loc, rec in zip(knn_clf.predict(faces_encodings), X_face_locations, are_matches)]
[ "def", "predict", "(", "X_img_path", ",", "knn_clf", "=", "None", ",", "model_path", "=", "None", ",", "distance_threshold", "=", "0.6", ")", ":", "if", "not", "os", ".", "path", ".", "isfile", "(", "X_img_path", ")", "or", "os", ".", "path", ".", "splitext", "(", "X_img_path", ")", "[", "1", "]", "[", "1", ":", "]", "not", "in", "ALLOWED_EXTENSIONS", ":", "raise", "Exception", "(", "\"Invalid image path: {}\"", ".", "format", "(", "X_img_path", ")", ")", "if", "knn_clf", "is", "None", "and", "model_path", "is", "None", ":", "raise", "Exception", "(", "\"Must supply knn classifier either thourgh knn_clf or model_path\"", ")", "# Load a trained KNN model (if one was passed in)", "if", "knn_clf", "is", "None", ":", "with", "open", "(", "model_path", ",", "'rb'", ")", "as", "f", ":", "knn_clf", "=", "pickle", ".", "load", "(", "f", ")", "# Load image file and find face locations", "X_img", "=", "face_recognition", ".", "load_image_file", "(", "X_img_path", ")", "X_face_locations", "=", "face_recognition", ".", "face_locations", "(", "X_img", ")", "# If no faces are found in the image, return an empty result.", "if", "len", "(", "X_face_locations", ")", "==", "0", ":", "return", "[", "]", "# Find encodings for faces in the test iamge", "faces_encodings", "=", "face_recognition", ".", "face_encodings", "(", "X_img", ",", "known_face_locations", "=", "X_face_locations", ")", "# Use the KNN model to find the best matches for the test face", "closest_distances", "=", "knn_clf", ".", "kneighbors", "(", "faces_encodings", ",", "n_neighbors", "=", "1", ")", "are_matches", "=", "[", "closest_distances", "[", "0", "]", "[", "i", "]", "[", "0", "]", "<=", "distance_threshold", "for", "i", "in", "range", "(", "len", "(", "X_face_locations", ")", ")", "]", "# Predict classes and remove classifications that aren't within the threshold", "return", "[", "(", "pred", ",", "loc", ")", "if", "rec", "else", "(", "\"unknown\"", ",", "loc", ")", "for", "pred", ",", "loc", ",", "rec", "in", "zip", "(", "knn_clf", ".", "predict", "(", "faces_encodings", ")", ",", "X_face_locations", ",", "are_matches", ")", "]" ]
Recognizes faces in given image using a trained KNN classifier :param X_img_path: path to image to be recognized :param knn_clf: (optional) a knn classifier object. if not specified, model_save_path must be specified. :param model_path: (optional) path to a pickled knn classifier. if not specified, model_save_path must be knn_clf. :param distance_threshold: (optional) distance threshold for face classification. the larger it is, the more chance of mis-classifying an unknown person as a known one. :return: a list of names and face locations for the recognized faces in the image: [(name, bounding box), ...]. For faces of unrecognized persons, the name 'unknown' will be returned.
[ "Recognizes", "faces", "in", "given", "image", "using", "a", "trained", "KNN", "classifier" ]
c96b010c02f15e8eeb0f71308c641179ac1f19bb
https://github.com/ageitgey/face_recognition/blob/c96b010c02f15e8eeb0f71308c641179ac1f19bb/examples/face_recognition_knn.py#L111-L150
18,964
ageitgey/face_recognition
examples/face_recognition_knn.py
show_prediction_labels_on_image
def show_prediction_labels_on_image(img_path, predictions): """ Shows the face recognition results visually. :param img_path: path to image to be recognized :param predictions: results of the predict function :return: """ pil_image = Image.open(img_path).convert("RGB") draw = ImageDraw.Draw(pil_image) for name, (top, right, bottom, left) in predictions: # Draw a box around the face using the Pillow module draw.rectangle(((left, top), (right, bottom)), outline=(0, 0, 255)) # There's a bug in Pillow where it blows up with non-UTF-8 text # when using the default bitmap font name = name.encode("UTF-8") # Draw a label with a name below the face text_width, text_height = draw.textsize(name) draw.rectangle(((left, bottom - text_height - 10), (right, bottom)), fill=(0, 0, 255), outline=(0, 0, 255)) draw.text((left + 6, bottom - text_height - 5), name, fill=(255, 255, 255, 255)) # Remove the drawing library from memory as per the Pillow docs del draw # Display the resulting image pil_image.show()
python
def show_prediction_labels_on_image(img_path, predictions): """ Shows the face recognition results visually. :param img_path: path to image to be recognized :param predictions: results of the predict function :return: """ pil_image = Image.open(img_path).convert("RGB") draw = ImageDraw.Draw(pil_image) for name, (top, right, bottom, left) in predictions: # Draw a box around the face using the Pillow module draw.rectangle(((left, top), (right, bottom)), outline=(0, 0, 255)) # There's a bug in Pillow where it blows up with non-UTF-8 text # when using the default bitmap font name = name.encode("UTF-8") # Draw a label with a name below the face text_width, text_height = draw.textsize(name) draw.rectangle(((left, bottom - text_height - 10), (right, bottom)), fill=(0, 0, 255), outline=(0, 0, 255)) draw.text((left + 6, bottom - text_height - 5), name, fill=(255, 255, 255, 255)) # Remove the drawing library from memory as per the Pillow docs del draw # Display the resulting image pil_image.show()
[ "def", "show_prediction_labels_on_image", "(", "img_path", ",", "predictions", ")", ":", "pil_image", "=", "Image", ".", "open", "(", "img_path", ")", ".", "convert", "(", "\"RGB\"", ")", "draw", "=", "ImageDraw", ".", "Draw", "(", "pil_image", ")", "for", "name", ",", "(", "top", ",", "right", ",", "bottom", ",", "left", ")", "in", "predictions", ":", "# Draw a box around the face using the Pillow module", "draw", ".", "rectangle", "(", "(", "(", "left", ",", "top", ")", ",", "(", "right", ",", "bottom", ")", ")", ",", "outline", "=", "(", "0", ",", "0", ",", "255", ")", ")", "# There's a bug in Pillow where it blows up with non-UTF-8 text", "# when using the default bitmap font", "name", "=", "name", ".", "encode", "(", "\"UTF-8\"", ")", "# Draw a label with a name below the face", "text_width", ",", "text_height", "=", "draw", ".", "textsize", "(", "name", ")", "draw", ".", "rectangle", "(", "(", "(", "left", ",", "bottom", "-", "text_height", "-", "10", ")", ",", "(", "right", ",", "bottom", ")", ")", ",", "fill", "=", "(", "0", ",", "0", ",", "255", ")", ",", "outline", "=", "(", "0", ",", "0", ",", "255", ")", ")", "draw", ".", "text", "(", "(", "left", "+", "6", ",", "bottom", "-", "text_height", "-", "5", ")", ",", "name", ",", "fill", "=", "(", "255", ",", "255", ",", "255", ",", "255", ")", ")", "# Remove the drawing library from memory as per the Pillow docs", "del", "draw", "# Display the resulting image", "pil_image", ".", "show", "(", ")" ]
Shows the face recognition results visually. :param img_path: path to image to be recognized :param predictions: results of the predict function :return:
[ "Shows", "the", "face", "recognition", "results", "visually", "." ]
c96b010c02f15e8eeb0f71308c641179ac1f19bb
https://github.com/ageitgey/face_recognition/blob/c96b010c02f15e8eeb0f71308c641179ac1f19bb/examples/face_recognition_knn.py#L153-L181
18,965
ageitgey/face_recognition
face_recognition/api.py
face_distance
def face_distance(face_encodings, face_to_compare): """ Given a list of face encodings, compare them to a known face encoding and get a euclidean distance for each comparison face. The distance tells you how similar the faces are. :param faces: List of face encodings to compare :param face_to_compare: A face encoding to compare against :return: A numpy ndarray with the distance for each face in the same order as the 'faces' array """ if len(face_encodings) == 0: return np.empty((0)) return np.linalg.norm(face_encodings - face_to_compare, axis=1)
python
def face_distance(face_encodings, face_to_compare): """ Given a list of face encodings, compare them to a known face encoding and get a euclidean distance for each comparison face. The distance tells you how similar the faces are. :param faces: List of face encodings to compare :param face_to_compare: A face encoding to compare against :return: A numpy ndarray with the distance for each face in the same order as the 'faces' array """ if len(face_encodings) == 0: return np.empty((0)) return np.linalg.norm(face_encodings - face_to_compare, axis=1)
[ "def", "face_distance", "(", "face_encodings", ",", "face_to_compare", ")", ":", "if", "len", "(", "face_encodings", ")", "==", "0", ":", "return", "np", ".", "empty", "(", "(", "0", ")", ")", "return", "np", ".", "linalg", ".", "norm", "(", "face_encodings", "-", "face_to_compare", ",", "axis", "=", "1", ")" ]
Given a list of face encodings, compare them to a known face encoding and get a euclidean distance for each comparison face. The distance tells you how similar the faces are. :param faces: List of face encodings to compare :param face_to_compare: A face encoding to compare against :return: A numpy ndarray with the distance for each face in the same order as the 'faces' array
[ "Given", "a", "list", "of", "face", "encodings", "compare", "them", "to", "a", "known", "face", "encoding", "and", "get", "a", "euclidean", "distance", "for", "each", "comparison", "face", ".", "The", "distance", "tells", "you", "how", "similar", "the", "faces", "are", "." ]
c96b010c02f15e8eeb0f71308c641179ac1f19bb
https://github.com/ageitgey/face_recognition/blob/c96b010c02f15e8eeb0f71308c641179ac1f19bb/face_recognition/api.py#L63-L75
18,966
ageitgey/face_recognition
face_recognition/api.py
batch_face_locations
def batch_face_locations(images, number_of_times_to_upsample=1, batch_size=128): """ Returns an 2d array of bounding boxes of human faces in a image using the cnn face detector If you are using a GPU, this can give you much faster results since the GPU can process batches of images at once. If you aren't using a GPU, you don't need this function. :param img: A list of images (each as a numpy array) :param number_of_times_to_upsample: How many times to upsample the image looking for faces. Higher numbers find smaller faces. :param batch_size: How many images to include in each GPU processing batch. :return: A list of tuples of found face locations in css (top, right, bottom, left) order """ def convert_cnn_detections_to_css(detections): return [_trim_css_to_bounds(_rect_to_css(face.rect), images[0].shape) for face in detections] raw_detections_batched = _raw_face_locations_batched(images, number_of_times_to_upsample, batch_size) return list(map(convert_cnn_detections_to_css, raw_detections_batched))
python
def batch_face_locations(images, number_of_times_to_upsample=1, batch_size=128): """ Returns an 2d array of bounding boxes of human faces in a image using the cnn face detector If you are using a GPU, this can give you much faster results since the GPU can process batches of images at once. If you aren't using a GPU, you don't need this function. :param img: A list of images (each as a numpy array) :param number_of_times_to_upsample: How many times to upsample the image looking for faces. Higher numbers find smaller faces. :param batch_size: How many images to include in each GPU processing batch. :return: A list of tuples of found face locations in css (top, right, bottom, left) order """ def convert_cnn_detections_to_css(detections): return [_trim_css_to_bounds(_rect_to_css(face.rect), images[0].shape) for face in detections] raw_detections_batched = _raw_face_locations_batched(images, number_of_times_to_upsample, batch_size) return list(map(convert_cnn_detections_to_css, raw_detections_batched))
[ "def", "batch_face_locations", "(", "images", ",", "number_of_times_to_upsample", "=", "1", ",", "batch_size", "=", "128", ")", ":", "def", "convert_cnn_detections_to_css", "(", "detections", ")", ":", "return", "[", "_trim_css_to_bounds", "(", "_rect_to_css", "(", "face", ".", "rect", ")", ",", "images", "[", "0", "]", ".", "shape", ")", "for", "face", "in", "detections", "]", "raw_detections_batched", "=", "_raw_face_locations_batched", "(", "images", ",", "number_of_times_to_upsample", ",", "batch_size", ")", "return", "list", "(", "map", "(", "convert_cnn_detections_to_css", ",", "raw_detections_batched", ")", ")" ]
Returns an 2d array of bounding boxes of human faces in a image using the cnn face detector If you are using a GPU, this can give you much faster results since the GPU can process batches of images at once. If you aren't using a GPU, you don't need this function. :param img: A list of images (each as a numpy array) :param number_of_times_to_upsample: How many times to upsample the image looking for faces. Higher numbers find smaller faces. :param batch_size: How many images to include in each GPU processing batch. :return: A list of tuples of found face locations in css (top, right, bottom, left) order
[ "Returns", "an", "2d", "array", "of", "bounding", "boxes", "of", "human", "faces", "in", "a", "image", "using", "the", "cnn", "face", "detector", "If", "you", "are", "using", "a", "GPU", "this", "can", "give", "you", "much", "faster", "results", "since", "the", "GPU", "can", "process", "batches", "of", "images", "at", "once", ".", "If", "you", "aren", "t", "using", "a", "GPU", "you", "don", "t", "need", "this", "function", "." ]
c96b010c02f15e8eeb0f71308c641179ac1f19bb
https://github.com/ageitgey/face_recognition/blob/c96b010c02f15e8eeb0f71308c641179ac1f19bb/face_recognition/api.py#L135-L151
18,967
ageitgey/face_recognition
face_recognition/api.py
face_encodings
def face_encodings(face_image, known_face_locations=None, num_jitters=1): """ Given an image, return the 128-dimension face encoding for each face in the image. :param face_image: The image that contains one or more faces :param known_face_locations: Optional - the bounding boxes of each face if you already know them. :param num_jitters: How many times to re-sample the face when calculating encoding. Higher is more accurate, but slower (i.e. 100 is 100x slower) :return: A list of 128-dimensional face encodings (one for each face in the image) """ raw_landmarks = _raw_face_landmarks(face_image, known_face_locations, model="small") return [np.array(face_encoder.compute_face_descriptor(face_image, raw_landmark_set, num_jitters)) for raw_landmark_set in raw_landmarks]
python
def face_encodings(face_image, known_face_locations=None, num_jitters=1): """ Given an image, return the 128-dimension face encoding for each face in the image. :param face_image: The image that contains one or more faces :param known_face_locations: Optional - the bounding boxes of each face if you already know them. :param num_jitters: How many times to re-sample the face when calculating encoding. Higher is more accurate, but slower (i.e. 100 is 100x slower) :return: A list of 128-dimensional face encodings (one for each face in the image) """ raw_landmarks = _raw_face_landmarks(face_image, known_face_locations, model="small") return [np.array(face_encoder.compute_face_descriptor(face_image, raw_landmark_set, num_jitters)) for raw_landmark_set in raw_landmarks]
[ "def", "face_encodings", "(", "face_image", ",", "known_face_locations", "=", "None", ",", "num_jitters", "=", "1", ")", ":", "raw_landmarks", "=", "_raw_face_landmarks", "(", "face_image", ",", "known_face_locations", ",", "model", "=", "\"small\"", ")", "return", "[", "np", ".", "array", "(", "face_encoder", ".", "compute_face_descriptor", "(", "face_image", ",", "raw_landmark_set", ",", "num_jitters", ")", ")", "for", "raw_landmark_set", "in", "raw_landmarks", "]" ]
Given an image, return the 128-dimension face encoding for each face in the image. :param face_image: The image that contains one or more faces :param known_face_locations: Optional - the bounding boxes of each face if you already know them. :param num_jitters: How many times to re-sample the face when calculating encoding. Higher is more accurate, but slower (i.e. 100 is 100x slower) :return: A list of 128-dimensional face encodings (one for each face in the image)
[ "Given", "an", "image", "return", "the", "128", "-", "dimension", "face", "encoding", "for", "each", "face", "in", "the", "image", "." ]
c96b010c02f15e8eeb0f71308c641179ac1f19bb
https://github.com/ageitgey/face_recognition/blob/c96b010c02f15e8eeb0f71308c641179ac1f19bb/face_recognition/api.py#L203-L213
18,968
apache/spark
python/pyspark/sql/types.py
_int_size_to_type
def _int_size_to_type(size): """ Return the Catalyst datatype from the size of integers. """ if size <= 8: return ByteType if size <= 16: return ShortType if size <= 32: return IntegerType if size <= 64: return LongType
python
def _int_size_to_type(size): """ Return the Catalyst datatype from the size of integers. """ if size <= 8: return ByteType if size <= 16: return ShortType if size <= 32: return IntegerType if size <= 64: return LongType
[ "def", "_int_size_to_type", "(", "size", ")", ":", "if", "size", "<=", "8", ":", "return", "ByteType", "if", "size", "<=", "16", ":", "return", "ShortType", "if", "size", "<=", "32", ":", "return", "IntegerType", "if", "size", "<=", "64", ":", "return", "LongType" ]
Return the Catalyst datatype from the size of integers.
[ "Return", "the", "Catalyst", "datatype", "from", "the", "size", "of", "integers", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/types.py#L944-L955
18,969
apache/spark
python/pyspark/sql/types.py
_infer_type
def _infer_type(obj): """Infer the DataType from obj """ if obj is None: return NullType() if hasattr(obj, '__UDT__'): return obj.__UDT__ dataType = _type_mappings.get(type(obj)) if dataType is DecimalType: # the precision and scale of `obj` may be different from row to row. return DecimalType(38, 18) elif dataType is not None: return dataType() if isinstance(obj, dict): for key, value in obj.items(): if key is not None and value is not None: return MapType(_infer_type(key), _infer_type(value), True) return MapType(NullType(), NullType(), True) elif isinstance(obj, list): for v in obj: if v is not None: return ArrayType(_infer_type(obj[0]), True) return ArrayType(NullType(), True) elif isinstance(obj, array): if obj.typecode in _array_type_mappings: return ArrayType(_array_type_mappings[obj.typecode](), False) else: raise TypeError("not supported type: array(%s)" % obj.typecode) else: try: return _infer_schema(obj) except TypeError: raise TypeError("not supported type: %s" % type(obj))
python
def _infer_type(obj): """Infer the DataType from obj """ if obj is None: return NullType() if hasattr(obj, '__UDT__'): return obj.__UDT__ dataType = _type_mappings.get(type(obj)) if dataType is DecimalType: # the precision and scale of `obj` may be different from row to row. return DecimalType(38, 18) elif dataType is not None: return dataType() if isinstance(obj, dict): for key, value in obj.items(): if key is not None and value is not None: return MapType(_infer_type(key), _infer_type(value), True) return MapType(NullType(), NullType(), True) elif isinstance(obj, list): for v in obj: if v is not None: return ArrayType(_infer_type(obj[0]), True) return ArrayType(NullType(), True) elif isinstance(obj, array): if obj.typecode in _array_type_mappings: return ArrayType(_array_type_mappings[obj.typecode](), False) else: raise TypeError("not supported type: array(%s)" % obj.typecode) else: try: return _infer_schema(obj) except TypeError: raise TypeError("not supported type: %s" % type(obj))
[ "def", "_infer_type", "(", "obj", ")", ":", "if", "obj", "is", "None", ":", "return", "NullType", "(", ")", "if", "hasattr", "(", "obj", ",", "'__UDT__'", ")", ":", "return", "obj", ".", "__UDT__", "dataType", "=", "_type_mappings", ".", "get", "(", "type", "(", "obj", ")", ")", "if", "dataType", "is", "DecimalType", ":", "# the precision and scale of `obj` may be different from row to row.", "return", "DecimalType", "(", "38", ",", "18", ")", "elif", "dataType", "is", "not", "None", ":", "return", "dataType", "(", ")", "if", "isinstance", "(", "obj", ",", "dict", ")", ":", "for", "key", ",", "value", "in", "obj", ".", "items", "(", ")", ":", "if", "key", "is", "not", "None", "and", "value", "is", "not", "None", ":", "return", "MapType", "(", "_infer_type", "(", "key", ")", ",", "_infer_type", "(", "value", ")", ",", "True", ")", "return", "MapType", "(", "NullType", "(", ")", ",", "NullType", "(", ")", ",", "True", ")", "elif", "isinstance", "(", "obj", ",", "list", ")", ":", "for", "v", "in", "obj", ":", "if", "v", "is", "not", "None", ":", "return", "ArrayType", "(", "_infer_type", "(", "obj", "[", "0", "]", ")", ",", "True", ")", "return", "ArrayType", "(", "NullType", "(", ")", ",", "True", ")", "elif", "isinstance", "(", "obj", ",", "array", ")", ":", "if", "obj", ".", "typecode", "in", "_array_type_mappings", ":", "return", "ArrayType", "(", "_array_type_mappings", "[", "obj", ".", "typecode", "]", "(", ")", ",", "False", ")", "else", ":", "raise", "TypeError", "(", "\"not supported type: array(%s)\"", "%", "obj", ".", "typecode", ")", "else", ":", "try", ":", "return", "_infer_schema", "(", "obj", ")", "except", "TypeError", ":", "raise", "TypeError", "(", "\"not supported type: %s\"", "%", "type", "(", "obj", ")", ")" ]
Infer the DataType from obj
[ "Infer", "the", "DataType", "from", "obj" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/types.py#L1003-L1038
18,970
apache/spark
python/pyspark/sql/types.py
_has_nulltype
def _has_nulltype(dt): """ Return whether there is NullType in `dt` or not """ if isinstance(dt, StructType): return any(_has_nulltype(f.dataType) for f in dt.fields) elif isinstance(dt, ArrayType): return _has_nulltype((dt.elementType)) elif isinstance(dt, MapType): return _has_nulltype(dt.keyType) or _has_nulltype(dt.valueType) else: return isinstance(dt, NullType)
python
def _has_nulltype(dt): """ Return whether there is NullType in `dt` or not """ if isinstance(dt, StructType): return any(_has_nulltype(f.dataType) for f in dt.fields) elif isinstance(dt, ArrayType): return _has_nulltype((dt.elementType)) elif isinstance(dt, MapType): return _has_nulltype(dt.keyType) or _has_nulltype(dt.valueType) else: return isinstance(dt, NullType)
[ "def", "_has_nulltype", "(", "dt", ")", ":", "if", "isinstance", "(", "dt", ",", "StructType", ")", ":", "return", "any", "(", "_has_nulltype", "(", "f", ".", "dataType", ")", "for", "f", "in", "dt", ".", "fields", ")", "elif", "isinstance", "(", "dt", ",", "ArrayType", ")", ":", "return", "_has_nulltype", "(", "(", "dt", ".", "elementType", ")", ")", "elif", "isinstance", "(", "dt", ",", "MapType", ")", ":", "return", "_has_nulltype", "(", "dt", ".", "keyType", ")", "or", "_has_nulltype", "(", "dt", ".", "valueType", ")", "else", ":", "return", "isinstance", "(", "dt", ",", "NullType", ")" ]
Return whether there is NullType in `dt` or not
[ "Return", "whether", "there", "is", "NullType", "in", "dt", "or", "not" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/types.py#L1068-L1077
18,971
apache/spark
python/pyspark/sql/types.py
_create_converter
def _create_converter(dataType): """Create a converter to drop the names of fields in obj """ if not _need_converter(dataType): return lambda x: x if isinstance(dataType, ArrayType): conv = _create_converter(dataType.elementType) return lambda row: [conv(v) for v in row] elif isinstance(dataType, MapType): kconv = _create_converter(dataType.keyType) vconv = _create_converter(dataType.valueType) return lambda row: dict((kconv(k), vconv(v)) for k, v in row.items()) elif isinstance(dataType, NullType): return lambda x: None elif not isinstance(dataType, StructType): return lambda x: x # dataType must be StructType names = [f.name for f in dataType.fields] converters = [_create_converter(f.dataType) for f in dataType.fields] convert_fields = any(_need_converter(f.dataType) for f in dataType.fields) def convert_struct(obj): if obj is None: return if isinstance(obj, (tuple, list)): if convert_fields: return tuple(conv(v) for v, conv in zip(obj, converters)) else: return tuple(obj) if isinstance(obj, dict): d = obj elif hasattr(obj, "__dict__"): # object d = obj.__dict__ else: raise TypeError("Unexpected obj type: %s" % type(obj)) if convert_fields: return tuple([conv(d.get(name)) for name, conv in zip(names, converters)]) else: return tuple([d.get(name) for name in names]) return convert_struct
python
def _create_converter(dataType): """Create a converter to drop the names of fields in obj """ if not _need_converter(dataType): return lambda x: x if isinstance(dataType, ArrayType): conv = _create_converter(dataType.elementType) return lambda row: [conv(v) for v in row] elif isinstance(dataType, MapType): kconv = _create_converter(dataType.keyType) vconv = _create_converter(dataType.valueType) return lambda row: dict((kconv(k), vconv(v)) for k, v in row.items()) elif isinstance(dataType, NullType): return lambda x: None elif not isinstance(dataType, StructType): return lambda x: x # dataType must be StructType names = [f.name for f in dataType.fields] converters = [_create_converter(f.dataType) for f in dataType.fields] convert_fields = any(_need_converter(f.dataType) for f in dataType.fields) def convert_struct(obj): if obj is None: return if isinstance(obj, (tuple, list)): if convert_fields: return tuple(conv(v) for v, conv in zip(obj, converters)) else: return tuple(obj) if isinstance(obj, dict): d = obj elif hasattr(obj, "__dict__"): # object d = obj.__dict__ else: raise TypeError("Unexpected obj type: %s" % type(obj)) if convert_fields: return tuple([conv(d.get(name)) for name, conv in zip(names, converters)]) else: return tuple([d.get(name) for name in names]) return convert_struct
[ "def", "_create_converter", "(", "dataType", ")", ":", "if", "not", "_need_converter", "(", "dataType", ")", ":", "return", "lambda", "x", ":", "x", "if", "isinstance", "(", "dataType", ",", "ArrayType", ")", ":", "conv", "=", "_create_converter", "(", "dataType", ".", "elementType", ")", "return", "lambda", "row", ":", "[", "conv", "(", "v", ")", "for", "v", "in", "row", "]", "elif", "isinstance", "(", "dataType", ",", "MapType", ")", ":", "kconv", "=", "_create_converter", "(", "dataType", ".", "keyType", ")", "vconv", "=", "_create_converter", "(", "dataType", ".", "valueType", ")", "return", "lambda", "row", ":", "dict", "(", "(", "kconv", "(", "k", ")", ",", "vconv", "(", "v", ")", ")", "for", "k", ",", "v", "in", "row", ".", "items", "(", ")", ")", "elif", "isinstance", "(", "dataType", ",", "NullType", ")", ":", "return", "lambda", "x", ":", "None", "elif", "not", "isinstance", "(", "dataType", ",", "StructType", ")", ":", "return", "lambda", "x", ":", "x", "# dataType must be StructType", "names", "=", "[", "f", ".", "name", "for", "f", "in", "dataType", ".", "fields", "]", "converters", "=", "[", "_create_converter", "(", "f", ".", "dataType", ")", "for", "f", "in", "dataType", ".", "fields", "]", "convert_fields", "=", "any", "(", "_need_converter", "(", "f", ".", "dataType", ")", "for", "f", "in", "dataType", ".", "fields", ")", "def", "convert_struct", "(", "obj", ")", ":", "if", "obj", "is", "None", ":", "return", "if", "isinstance", "(", "obj", ",", "(", "tuple", ",", "list", ")", ")", ":", "if", "convert_fields", ":", "return", "tuple", "(", "conv", "(", "v", ")", "for", "v", ",", "conv", "in", "zip", "(", "obj", ",", "converters", ")", ")", "else", ":", "return", "tuple", "(", "obj", ")", "if", "isinstance", "(", "obj", ",", "dict", ")", ":", "d", "=", "obj", "elif", "hasattr", "(", "obj", ",", "\"__dict__\"", ")", ":", "# object", "d", "=", "obj", ".", "__dict__", "else", ":", "raise", "TypeError", "(", "\"Unexpected obj type: %s\"", "%", "type", "(", "obj", ")", ")", "if", "convert_fields", ":", "return", "tuple", "(", "[", "conv", "(", "d", ".", "get", "(", "name", ")", ")", "for", "name", ",", "conv", "in", "zip", "(", "names", ",", "converters", ")", "]", ")", "else", ":", "return", "tuple", "(", "[", "d", ".", "get", "(", "name", ")", "for", "name", "in", "names", "]", ")", "return", "convert_struct" ]
Create a converter to drop the names of fields in obj
[ "Create", "a", "converter", "to", "drop", "the", "names", "of", "fields", "in", "obj" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/types.py#L1133-L1180
18,972
apache/spark
python/pyspark/sql/types.py
to_arrow_type
def to_arrow_type(dt): """ Convert Spark data type to pyarrow type """ import pyarrow as pa if type(dt) == BooleanType: arrow_type = pa.bool_() elif type(dt) == ByteType: arrow_type = pa.int8() elif type(dt) == ShortType: arrow_type = pa.int16() elif type(dt) == IntegerType: arrow_type = pa.int32() elif type(dt) == LongType: arrow_type = pa.int64() elif type(dt) == FloatType: arrow_type = pa.float32() elif type(dt) == DoubleType: arrow_type = pa.float64() elif type(dt) == DecimalType: arrow_type = pa.decimal128(dt.precision, dt.scale) elif type(dt) == StringType: arrow_type = pa.string() elif type(dt) == BinaryType: arrow_type = pa.binary() elif type(dt) == DateType: arrow_type = pa.date32() elif type(dt) == TimestampType: # Timestamps should be in UTC, JVM Arrow timestamps require a timezone to be read arrow_type = pa.timestamp('us', tz='UTC') elif type(dt) == ArrayType: if type(dt.elementType) in [StructType, TimestampType]: raise TypeError("Unsupported type in conversion to Arrow: " + str(dt)) arrow_type = pa.list_(to_arrow_type(dt.elementType)) elif type(dt) == StructType: if any(type(field.dataType) == StructType for field in dt): raise TypeError("Nested StructType not supported in conversion to Arrow") fields = [pa.field(field.name, to_arrow_type(field.dataType), nullable=field.nullable) for field in dt] arrow_type = pa.struct(fields) else: raise TypeError("Unsupported type in conversion to Arrow: " + str(dt)) return arrow_type
python
def to_arrow_type(dt): """ Convert Spark data type to pyarrow type """ import pyarrow as pa if type(dt) == BooleanType: arrow_type = pa.bool_() elif type(dt) == ByteType: arrow_type = pa.int8() elif type(dt) == ShortType: arrow_type = pa.int16() elif type(dt) == IntegerType: arrow_type = pa.int32() elif type(dt) == LongType: arrow_type = pa.int64() elif type(dt) == FloatType: arrow_type = pa.float32() elif type(dt) == DoubleType: arrow_type = pa.float64() elif type(dt) == DecimalType: arrow_type = pa.decimal128(dt.precision, dt.scale) elif type(dt) == StringType: arrow_type = pa.string() elif type(dt) == BinaryType: arrow_type = pa.binary() elif type(dt) == DateType: arrow_type = pa.date32() elif type(dt) == TimestampType: # Timestamps should be in UTC, JVM Arrow timestamps require a timezone to be read arrow_type = pa.timestamp('us', tz='UTC') elif type(dt) == ArrayType: if type(dt.elementType) in [StructType, TimestampType]: raise TypeError("Unsupported type in conversion to Arrow: " + str(dt)) arrow_type = pa.list_(to_arrow_type(dt.elementType)) elif type(dt) == StructType: if any(type(field.dataType) == StructType for field in dt): raise TypeError("Nested StructType not supported in conversion to Arrow") fields = [pa.field(field.name, to_arrow_type(field.dataType), nullable=field.nullable) for field in dt] arrow_type = pa.struct(fields) else: raise TypeError("Unsupported type in conversion to Arrow: " + str(dt)) return arrow_type
[ "def", "to_arrow_type", "(", "dt", ")", ":", "import", "pyarrow", "as", "pa", "if", "type", "(", "dt", ")", "==", "BooleanType", ":", "arrow_type", "=", "pa", ".", "bool_", "(", ")", "elif", "type", "(", "dt", ")", "==", "ByteType", ":", "arrow_type", "=", "pa", ".", "int8", "(", ")", "elif", "type", "(", "dt", ")", "==", "ShortType", ":", "arrow_type", "=", "pa", ".", "int16", "(", ")", "elif", "type", "(", "dt", ")", "==", "IntegerType", ":", "arrow_type", "=", "pa", ".", "int32", "(", ")", "elif", "type", "(", "dt", ")", "==", "LongType", ":", "arrow_type", "=", "pa", ".", "int64", "(", ")", "elif", "type", "(", "dt", ")", "==", "FloatType", ":", "arrow_type", "=", "pa", ".", "float32", "(", ")", "elif", "type", "(", "dt", ")", "==", "DoubleType", ":", "arrow_type", "=", "pa", ".", "float64", "(", ")", "elif", "type", "(", "dt", ")", "==", "DecimalType", ":", "arrow_type", "=", "pa", ".", "decimal128", "(", "dt", ".", "precision", ",", "dt", ".", "scale", ")", "elif", "type", "(", "dt", ")", "==", "StringType", ":", "arrow_type", "=", "pa", ".", "string", "(", ")", "elif", "type", "(", "dt", ")", "==", "BinaryType", ":", "arrow_type", "=", "pa", ".", "binary", "(", ")", "elif", "type", "(", "dt", ")", "==", "DateType", ":", "arrow_type", "=", "pa", ".", "date32", "(", ")", "elif", "type", "(", "dt", ")", "==", "TimestampType", ":", "# Timestamps should be in UTC, JVM Arrow timestamps require a timezone to be read", "arrow_type", "=", "pa", ".", "timestamp", "(", "'us'", ",", "tz", "=", "'UTC'", ")", "elif", "type", "(", "dt", ")", "==", "ArrayType", ":", "if", "type", "(", "dt", ".", "elementType", ")", "in", "[", "StructType", ",", "TimestampType", "]", ":", "raise", "TypeError", "(", "\"Unsupported type in conversion to Arrow: \"", "+", "str", "(", "dt", ")", ")", "arrow_type", "=", "pa", ".", "list_", "(", "to_arrow_type", "(", "dt", ".", "elementType", ")", ")", "elif", "type", "(", "dt", ")", "==", "StructType", ":", "if", "any", "(", "type", "(", "field", ".", "dataType", ")", "==", "StructType", "for", "field", "in", "dt", ")", ":", "raise", "TypeError", "(", "\"Nested StructType not supported in conversion to Arrow\"", ")", "fields", "=", "[", "pa", ".", "field", "(", "field", ".", "name", ",", "to_arrow_type", "(", "field", ".", "dataType", ")", ",", "nullable", "=", "field", ".", "nullable", ")", "for", "field", "in", "dt", "]", "arrow_type", "=", "pa", ".", "struct", "(", "fields", ")", "else", ":", "raise", "TypeError", "(", "\"Unsupported type in conversion to Arrow: \"", "+", "str", "(", "dt", ")", ")", "return", "arrow_type" ]
Convert Spark data type to pyarrow type
[ "Convert", "Spark", "data", "type", "to", "pyarrow", "type" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/types.py#L1581-L1622
18,973
apache/spark
python/pyspark/sql/types.py
to_arrow_schema
def to_arrow_schema(schema): """ Convert a schema from Spark to Arrow """ import pyarrow as pa fields = [pa.field(field.name, to_arrow_type(field.dataType), nullable=field.nullable) for field in schema] return pa.schema(fields)
python
def to_arrow_schema(schema): """ Convert a schema from Spark to Arrow """ import pyarrow as pa fields = [pa.field(field.name, to_arrow_type(field.dataType), nullable=field.nullable) for field in schema] return pa.schema(fields)
[ "def", "to_arrow_schema", "(", "schema", ")", ":", "import", "pyarrow", "as", "pa", "fields", "=", "[", "pa", ".", "field", "(", "field", ".", "name", ",", "to_arrow_type", "(", "field", ".", "dataType", ")", ",", "nullable", "=", "field", ".", "nullable", ")", "for", "field", "in", "schema", "]", "return", "pa", ".", "schema", "(", "fields", ")" ]
Convert a schema from Spark to Arrow
[ "Convert", "a", "schema", "from", "Spark", "to", "Arrow" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/types.py#L1625-L1631
18,974
apache/spark
python/pyspark/sql/types.py
from_arrow_type
def from_arrow_type(at): """ Convert pyarrow type to Spark data type. """ import pyarrow.types as types if types.is_boolean(at): spark_type = BooleanType() elif types.is_int8(at): spark_type = ByteType() elif types.is_int16(at): spark_type = ShortType() elif types.is_int32(at): spark_type = IntegerType() elif types.is_int64(at): spark_type = LongType() elif types.is_float32(at): spark_type = FloatType() elif types.is_float64(at): spark_type = DoubleType() elif types.is_decimal(at): spark_type = DecimalType(precision=at.precision, scale=at.scale) elif types.is_string(at): spark_type = StringType() elif types.is_binary(at): spark_type = BinaryType() elif types.is_date32(at): spark_type = DateType() elif types.is_timestamp(at): spark_type = TimestampType() elif types.is_list(at): if types.is_timestamp(at.value_type): raise TypeError("Unsupported type in conversion from Arrow: " + str(at)) spark_type = ArrayType(from_arrow_type(at.value_type)) elif types.is_struct(at): if any(types.is_struct(field.type) for field in at): raise TypeError("Nested StructType not supported in conversion from Arrow: " + str(at)) return StructType( [StructField(field.name, from_arrow_type(field.type), nullable=field.nullable) for field in at]) else: raise TypeError("Unsupported type in conversion from Arrow: " + str(at)) return spark_type
python
def from_arrow_type(at): """ Convert pyarrow type to Spark data type. """ import pyarrow.types as types if types.is_boolean(at): spark_type = BooleanType() elif types.is_int8(at): spark_type = ByteType() elif types.is_int16(at): spark_type = ShortType() elif types.is_int32(at): spark_type = IntegerType() elif types.is_int64(at): spark_type = LongType() elif types.is_float32(at): spark_type = FloatType() elif types.is_float64(at): spark_type = DoubleType() elif types.is_decimal(at): spark_type = DecimalType(precision=at.precision, scale=at.scale) elif types.is_string(at): spark_type = StringType() elif types.is_binary(at): spark_type = BinaryType() elif types.is_date32(at): spark_type = DateType() elif types.is_timestamp(at): spark_type = TimestampType() elif types.is_list(at): if types.is_timestamp(at.value_type): raise TypeError("Unsupported type in conversion from Arrow: " + str(at)) spark_type = ArrayType(from_arrow_type(at.value_type)) elif types.is_struct(at): if any(types.is_struct(field.type) for field in at): raise TypeError("Nested StructType not supported in conversion from Arrow: " + str(at)) return StructType( [StructField(field.name, from_arrow_type(field.type), nullable=field.nullable) for field in at]) else: raise TypeError("Unsupported type in conversion from Arrow: " + str(at)) return spark_type
[ "def", "from_arrow_type", "(", "at", ")", ":", "import", "pyarrow", ".", "types", "as", "types", "if", "types", ".", "is_boolean", "(", "at", ")", ":", "spark_type", "=", "BooleanType", "(", ")", "elif", "types", ".", "is_int8", "(", "at", ")", ":", "spark_type", "=", "ByteType", "(", ")", "elif", "types", ".", "is_int16", "(", "at", ")", ":", "spark_type", "=", "ShortType", "(", ")", "elif", "types", ".", "is_int32", "(", "at", ")", ":", "spark_type", "=", "IntegerType", "(", ")", "elif", "types", ".", "is_int64", "(", "at", ")", ":", "spark_type", "=", "LongType", "(", ")", "elif", "types", ".", "is_float32", "(", "at", ")", ":", "spark_type", "=", "FloatType", "(", ")", "elif", "types", ".", "is_float64", "(", "at", ")", ":", "spark_type", "=", "DoubleType", "(", ")", "elif", "types", ".", "is_decimal", "(", "at", ")", ":", "spark_type", "=", "DecimalType", "(", "precision", "=", "at", ".", "precision", ",", "scale", "=", "at", ".", "scale", ")", "elif", "types", ".", "is_string", "(", "at", ")", ":", "spark_type", "=", "StringType", "(", ")", "elif", "types", ".", "is_binary", "(", "at", ")", ":", "spark_type", "=", "BinaryType", "(", ")", "elif", "types", ".", "is_date32", "(", "at", ")", ":", "spark_type", "=", "DateType", "(", ")", "elif", "types", ".", "is_timestamp", "(", "at", ")", ":", "spark_type", "=", "TimestampType", "(", ")", "elif", "types", ".", "is_list", "(", "at", ")", ":", "if", "types", ".", "is_timestamp", "(", "at", ".", "value_type", ")", ":", "raise", "TypeError", "(", "\"Unsupported type in conversion from Arrow: \"", "+", "str", "(", "at", ")", ")", "spark_type", "=", "ArrayType", "(", "from_arrow_type", "(", "at", ".", "value_type", ")", ")", "elif", "types", ".", "is_struct", "(", "at", ")", ":", "if", "any", "(", "types", ".", "is_struct", "(", "field", ".", "type", ")", "for", "field", "in", "at", ")", ":", "raise", "TypeError", "(", "\"Nested StructType not supported in conversion from Arrow: \"", "+", "str", "(", "at", ")", ")", "return", "StructType", "(", "[", "StructField", "(", "field", ".", "name", ",", "from_arrow_type", "(", "field", ".", "type", ")", ",", "nullable", "=", "field", ".", "nullable", ")", "for", "field", "in", "at", "]", ")", "else", ":", "raise", "TypeError", "(", "\"Unsupported type in conversion from Arrow: \"", "+", "str", "(", "at", ")", ")", "return", "spark_type" ]
Convert pyarrow type to Spark data type.
[ "Convert", "pyarrow", "type", "to", "Spark", "data", "type", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/types.py#L1634-L1674
18,975
apache/spark
python/pyspark/sql/types.py
from_arrow_schema
def from_arrow_schema(arrow_schema): """ Convert schema from Arrow to Spark. """ return StructType( [StructField(field.name, from_arrow_type(field.type), nullable=field.nullable) for field in arrow_schema])
python
def from_arrow_schema(arrow_schema): """ Convert schema from Arrow to Spark. """ return StructType( [StructField(field.name, from_arrow_type(field.type), nullable=field.nullable) for field in arrow_schema])
[ "def", "from_arrow_schema", "(", "arrow_schema", ")", ":", "return", "StructType", "(", "[", "StructField", "(", "field", ".", "name", ",", "from_arrow_type", "(", "field", ".", "type", ")", ",", "nullable", "=", "field", ".", "nullable", ")", "for", "field", "in", "arrow_schema", "]", ")" ]
Convert schema from Arrow to Spark.
[ "Convert", "schema", "from", "Arrow", "to", "Spark", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/types.py#L1677-L1682
18,976
apache/spark
python/pyspark/sql/types.py
_check_series_localize_timestamps
def _check_series_localize_timestamps(s, timezone): """ Convert timezone aware timestamps to timezone-naive in the specified timezone or local timezone. If the input series is not a timestamp series, then the same series is returned. If the input series is a timestamp series, then a converted series is returned. :param s: pandas.Series :param timezone: the timezone to convert. if None then use local timezone :return pandas.Series that have been converted to tz-naive """ from pyspark.sql.utils import require_minimum_pandas_version require_minimum_pandas_version() from pandas.api.types import is_datetime64tz_dtype tz = timezone or _get_local_timezone() # TODO: handle nested timestamps, such as ArrayType(TimestampType())? if is_datetime64tz_dtype(s.dtype): return s.dt.tz_convert(tz).dt.tz_localize(None) else: return s
python
def _check_series_localize_timestamps(s, timezone): """ Convert timezone aware timestamps to timezone-naive in the specified timezone or local timezone. If the input series is not a timestamp series, then the same series is returned. If the input series is a timestamp series, then a converted series is returned. :param s: pandas.Series :param timezone: the timezone to convert. if None then use local timezone :return pandas.Series that have been converted to tz-naive """ from pyspark.sql.utils import require_minimum_pandas_version require_minimum_pandas_version() from pandas.api.types import is_datetime64tz_dtype tz = timezone or _get_local_timezone() # TODO: handle nested timestamps, such as ArrayType(TimestampType())? if is_datetime64tz_dtype(s.dtype): return s.dt.tz_convert(tz).dt.tz_localize(None) else: return s
[ "def", "_check_series_localize_timestamps", "(", "s", ",", "timezone", ")", ":", "from", "pyspark", ".", "sql", ".", "utils", "import", "require_minimum_pandas_version", "require_minimum_pandas_version", "(", ")", "from", "pandas", ".", "api", ".", "types", "import", "is_datetime64tz_dtype", "tz", "=", "timezone", "or", "_get_local_timezone", "(", ")", "# TODO: handle nested timestamps, such as ArrayType(TimestampType())?", "if", "is_datetime64tz_dtype", "(", "s", ".", "dtype", ")", ":", "return", "s", ".", "dt", ".", "tz_convert", "(", "tz", ")", ".", "dt", ".", "tz_localize", "(", "None", ")", "else", ":", "return", "s" ]
Convert timezone aware timestamps to timezone-naive in the specified timezone or local timezone. If the input series is not a timestamp series, then the same series is returned. If the input series is a timestamp series, then a converted series is returned. :param s: pandas.Series :param timezone: the timezone to convert. if None then use local timezone :return pandas.Series that have been converted to tz-naive
[ "Convert", "timezone", "aware", "timestamps", "to", "timezone", "-", "naive", "in", "the", "specified", "timezone", "or", "local", "timezone", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/types.py#L1700-L1720
18,977
apache/spark
python/pyspark/sql/types.py
_check_dataframe_localize_timestamps
def _check_dataframe_localize_timestamps(pdf, timezone): """ Convert timezone aware timestamps to timezone-naive in the specified timezone or local timezone :param pdf: pandas.DataFrame :param timezone: the timezone to convert. if None then use local timezone :return pandas.DataFrame where any timezone aware columns have been converted to tz-naive """ from pyspark.sql.utils import require_minimum_pandas_version require_minimum_pandas_version() for column, series in pdf.iteritems(): pdf[column] = _check_series_localize_timestamps(series, timezone) return pdf
python
def _check_dataframe_localize_timestamps(pdf, timezone): """ Convert timezone aware timestamps to timezone-naive in the specified timezone or local timezone :param pdf: pandas.DataFrame :param timezone: the timezone to convert. if None then use local timezone :return pandas.DataFrame where any timezone aware columns have been converted to tz-naive """ from pyspark.sql.utils import require_minimum_pandas_version require_minimum_pandas_version() for column, series in pdf.iteritems(): pdf[column] = _check_series_localize_timestamps(series, timezone) return pdf
[ "def", "_check_dataframe_localize_timestamps", "(", "pdf", ",", "timezone", ")", ":", "from", "pyspark", ".", "sql", ".", "utils", "import", "require_minimum_pandas_version", "require_minimum_pandas_version", "(", ")", "for", "column", ",", "series", "in", "pdf", ".", "iteritems", "(", ")", ":", "pdf", "[", "column", "]", "=", "_check_series_localize_timestamps", "(", "series", ",", "timezone", ")", "return", "pdf" ]
Convert timezone aware timestamps to timezone-naive in the specified timezone or local timezone :param pdf: pandas.DataFrame :param timezone: the timezone to convert. if None then use local timezone :return pandas.DataFrame where any timezone aware columns have been converted to tz-naive
[ "Convert", "timezone", "aware", "timestamps", "to", "timezone", "-", "naive", "in", "the", "specified", "timezone", "or", "local", "timezone" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/types.py#L1723-L1736
18,978
apache/spark
python/pyspark/sql/types.py
_check_series_convert_timestamps_internal
def _check_series_convert_timestamps_internal(s, timezone): """ Convert a tz-naive timestamp in the specified timezone or local timezone to UTC normalized for Spark internal storage :param s: a pandas.Series :param timezone: the timezone to convert. if None then use local timezone :return pandas.Series where if it is a timestamp, has been UTC normalized without a time zone """ from pyspark.sql.utils import require_minimum_pandas_version require_minimum_pandas_version() from pandas.api.types import is_datetime64_dtype, is_datetime64tz_dtype # TODO: handle nested timestamps, such as ArrayType(TimestampType())? if is_datetime64_dtype(s.dtype): # When tz_localize a tz-naive timestamp, the result is ambiguous if the tz-naive # timestamp is during the hour when the clock is adjusted backward during due to # daylight saving time (dst). # E.g., for America/New_York, the clock is adjusted backward on 2015-11-01 2:00 to # 2015-11-01 1:00 from dst-time to standard time, and therefore, when tz_localize # a tz-naive timestamp 2015-11-01 1:30 with America/New_York timezone, it can be either # dst time (2015-01-01 1:30-0400) or standard time (2015-11-01 1:30-0500). # # Here we explicit choose to use standard time. This matches the default behavior of # pytz. # # Here are some code to help understand this behavior: # >>> import datetime # >>> import pandas as pd # >>> import pytz # >>> # >>> t = datetime.datetime(2015, 11, 1, 1, 30) # >>> ts = pd.Series([t]) # >>> tz = pytz.timezone('America/New_York') # >>> # >>> ts.dt.tz_localize(tz, ambiguous=True) # 0 2015-11-01 01:30:00-04:00 # dtype: datetime64[ns, America/New_York] # >>> # >>> ts.dt.tz_localize(tz, ambiguous=False) # 0 2015-11-01 01:30:00-05:00 # dtype: datetime64[ns, America/New_York] # >>> # >>> str(tz.localize(t)) # '2015-11-01 01:30:00-05:00' tz = timezone or _get_local_timezone() return s.dt.tz_localize(tz, ambiguous=False).dt.tz_convert('UTC') elif is_datetime64tz_dtype(s.dtype): return s.dt.tz_convert('UTC') else: return s
python
def _check_series_convert_timestamps_internal(s, timezone): """ Convert a tz-naive timestamp in the specified timezone or local timezone to UTC normalized for Spark internal storage :param s: a pandas.Series :param timezone: the timezone to convert. if None then use local timezone :return pandas.Series where if it is a timestamp, has been UTC normalized without a time zone """ from pyspark.sql.utils import require_minimum_pandas_version require_minimum_pandas_version() from pandas.api.types import is_datetime64_dtype, is_datetime64tz_dtype # TODO: handle nested timestamps, such as ArrayType(TimestampType())? if is_datetime64_dtype(s.dtype): # When tz_localize a tz-naive timestamp, the result is ambiguous if the tz-naive # timestamp is during the hour when the clock is adjusted backward during due to # daylight saving time (dst). # E.g., for America/New_York, the clock is adjusted backward on 2015-11-01 2:00 to # 2015-11-01 1:00 from dst-time to standard time, and therefore, when tz_localize # a tz-naive timestamp 2015-11-01 1:30 with America/New_York timezone, it can be either # dst time (2015-01-01 1:30-0400) or standard time (2015-11-01 1:30-0500). # # Here we explicit choose to use standard time. This matches the default behavior of # pytz. # # Here are some code to help understand this behavior: # >>> import datetime # >>> import pandas as pd # >>> import pytz # >>> # >>> t = datetime.datetime(2015, 11, 1, 1, 30) # >>> ts = pd.Series([t]) # >>> tz = pytz.timezone('America/New_York') # >>> # >>> ts.dt.tz_localize(tz, ambiguous=True) # 0 2015-11-01 01:30:00-04:00 # dtype: datetime64[ns, America/New_York] # >>> # >>> ts.dt.tz_localize(tz, ambiguous=False) # 0 2015-11-01 01:30:00-05:00 # dtype: datetime64[ns, America/New_York] # >>> # >>> str(tz.localize(t)) # '2015-11-01 01:30:00-05:00' tz = timezone or _get_local_timezone() return s.dt.tz_localize(tz, ambiguous=False).dt.tz_convert('UTC') elif is_datetime64tz_dtype(s.dtype): return s.dt.tz_convert('UTC') else: return s
[ "def", "_check_series_convert_timestamps_internal", "(", "s", ",", "timezone", ")", ":", "from", "pyspark", ".", "sql", ".", "utils", "import", "require_minimum_pandas_version", "require_minimum_pandas_version", "(", ")", "from", "pandas", ".", "api", ".", "types", "import", "is_datetime64_dtype", ",", "is_datetime64tz_dtype", "# TODO: handle nested timestamps, such as ArrayType(TimestampType())?", "if", "is_datetime64_dtype", "(", "s", ".", "dtype", ")", ":", "# When tz_localize a tz-naive timestamp, the result is ambiguous if the tz-naive", "# timestamp is during the hour when the clock is adjusted backward during due to", "# daylight saving time (dst).", "# E.g., for America/New_York, the clock is adjusted backward on 2015-11-01 2:00 to", "# 2015-11-01 1:00 from dst-time to standard time, and therefore, when tz_localize", "# a tz-naive timestamp 2015-11-01 1:30 with America/New_York timezone, it can be either", "# dst time (2015-01-01 1:30-0400) or standard time (2015-11-01 1:30-0500).", "#", "# Here we explicit choose to use standard time. This matches the default behavior of", "# pytz.", "#", "# Here are some code to help understand this behavior:", "# >>> import datetime", "# >>> import pandas as pd", "# >>> import pytz", "# >>>", "# >>> t = datetime.datetime(2015, 11, 1, 1, 30)", "# >>> ts = pd.Series([t])", "# >>> tz = pytz.timezone('America/New_York')", "# >>>", "# >>> ts.dt.tz_localize(tz, ambiguous=True)", "# 0 2015-11-01 01:30:00-04:00", "# dtype: datetime64[ns, America/New_York]", "# >>>", "# >>> ts.dt.tz_localize(tz, ambiguous=False)", "# 0 2015-11-01 01:30:00-05:00", "# dtype: datetime64[ns, America/New_York]", "# >>>", "# >>> str(tz.localize(t))", "# '2015-11-01 01:30:00-05:00'", "tz", "=", "timezone", "or", "_get_local_timezone", "(", ")", "return", "s", ".", "dt", ".", "tz_localize", "(", "tz", ",", "ambiguous", "=", "False", ")", ".", "dt", ".", "tz_convert", "(", "'UTC'", ")", "elif", "is_datetime64tz_dtype", "(", "s", ".", "dtype", ")", ":", "return", "s", ".", "dt", ".", "tz_convert", "(", "'UTC'", ")", "else", ":", "return", "s" ]
Convert a tz-naive timestamp in the specified timezone or local timezone to UTC normalized for Spark internal storage :param s: a pandas.Series :param timezone: the timezone to convert. if None then use local timezone :return pandas.Series where if it is a timestamp, has been UTC normalized without a time zone
[ "Convert", "a", "tz", "-", "naive", "timestamp", "in", "the", "specified", "timezone", "or", "local", "timezone", "to", "UTC", "normalized", "for", "Spark", "internal", "storage" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/types.py#L1739-L1789
18,979
apache/spark
python/pyspark/sql/types.py
_check_series_convert_timestamps_localize
def _check_series_convert_timestamps_localize(s, from_timezone, to_timezone): """ Convert timestamp to timezone-naive in the specified timezone or local timezone :param s: a pandas.Series :param from_timezone: the timezone to convert from. if None then use local timezone :param to_timezone: the timezone to convert to. if None then use local timezone :return pandas.Series where if it is a timestamp, has been converted to tz-naive """ from pyspark.sql.utils import require_minimum_pandas_version require_minimum_pandas_version() import pandas as pd from pandas.api.types import is_datetime64tz_dtype, is_datetime64_dtype from_tz = from_timezone or _get_local_timezone() to_tz = to_timezone or _get_local_timezone() # TODO: handle nested timestamps, such as ArrayType(TimestampType())? if is_datetime64tz_dtype(s.dtype): return s.dt.tz_convert(to_tz).dt.tz_localize(None) elif is_datetime64_dtype(s.dtype) and from_tz != to_tz: # `s.dt.tz_localize('tzlocal()')` doesn't work properly when including NaT. return s.apply( lambda ts: ts.tz_localize(from_tz, ambiguous=False).tz_convert(to_tz).tz_localize(None) if ts is not pd.NaT else pd.NaT) else: return s
python
def _check_series_convert_timestamps_localize(s, from_timezone, to_timezone): """ Convert timestamp to timezone-naive in the specified timezone or local timezone :param s: a pandas.Series :param from_timezone: the timezone to convert from. if None then use local timezone :param to_timezone: the timezone to convert to. if None then use local timezone :return pandas.Series where if it is a timestamp, has been converted to tz-naive """ from pyspark.sql.utils import require_minimum_pandas_version require_minimum_pandas_version() import pandas as pd from pandas.api.types import is_datetime64tz_dtype, is_datetime64_dtype from_tz = from_timezone or _get_local_timezone() to_tz = to_timezone or _get_local_timezone() # TODO: handle nested timestamps, such as ArrayType(TimestampType())? if is_datetime64tz_dtype(s.dtype): return s.dt.tz_convert(to_tz).dt.tz_localize(None) elif is_datetime64_dtype(s.dtype) and from_tz != to_tz: # `s.dt.tz_localize('tzlocal()')` doesn't work properly when including NaT. return s.apply( lambda ts: ts.tz_localize(from_tz, ambiguous=False).tz_convert(to_tz).tz_localize(None) if ts is not pd.NaT else pd.NaT) else: return s
[ "def", "_check_series_convert_timestamps_localize", "(", "s", ",", "from_timezone", ",", "to_timezone", ")", ":", "from", "pyspark", ".", "sql", ".", "utils", "import", "require_minimum_pandas_version", "require_minimum_pandas_version", "(", ")", "import", "pandas", "as", "pd", "from", "pandas", ".", "api", ".", "types", "import", "is_datetime64tz_dtype", ",", "is_datetime64_dtype", "from_tz", "=", "from_timezone", "or", "_get_local_timezone", "(", ")", "to_tz", "=", "to_timezone", "or", "_get_local_timezone", "(", ")", "# TODO: handle nested timestamps, such as ArrayType(TimestampType())?", "if", "is_datetime64tz_dtype", "(", "s", ".", "dtype", ")", ":", "return", "s", ".", "dt", ".", "tz_convert", "(", "to_tz", ")", ".", "dt", ".", "tz_localize", "(", "None", ")", "elif", "is_datetime64_dtype", "(", "s", ".", "dtype", ")", "and", "from_tz", "!=", "to_tz", ":", "# `s.dt.tz_localize('tzlocal()')` doesn't work properly when including NaT.", "return", "s", ".", "apply", "(", "lambda", "ts", ":", "ts", ".", "tz_localize", "(", "from_tz", ",", "ambiguous", "=", "False", ")", ".", "tz_convert", "(", "to_tz", ")", ".", "tz_localize", "(", "None", ")", "if", "ts", "is", "not", "pd", ".", "NaT", "else", "pd", ".", "NaT", ")", "else", ":", "return", "s" ]
Convert timestamp to timezone-naive in the specified timezone or local timezone :param s: a pandas.Series :param from_timezone: the timezone to convert from. if None then use local timezone :param to_timezone: the timezone to convert to. if None then use local timezone :return pandas.Series where if it is a timestamp, has been converted to tz-naive
[ "Convert", "timestamp", "to", "timezone", "-", "naive", "in", "the", "specified", "timezone", "or", "local", "timezone" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/types.py#L1792-L1817
18,980
apache/spark
python/pyspark/sql/types.py
Row.asDict
def asDict(self, recursive=False): """ Return as an dict :param recursive: turns the nested Row as dict (default: False). >>> Row(name="Alice", age=11).asDict() == {'name': 'Alice', 'age': 11} True >>> row = Row(key=1, value=Row(name='a', age=2)) >>> row.asDict() == {'key': 1, 'value': Row(age=2, name='a')} True >>> row.asDict(True) == {'key': 1, 'value': {'name': 'a', 'age': 2}} True """ if not hasattr(self, "__fields__"): raise TypeError("Cannot convert a Row class into dict") if recursive: def conv(obj): if isinstance(obj, Row): return obj.asDict(True) elif isinstance(obj, list): return [conv(o) for o in obj] elif isinstance(obj, dict): return dict((k, conv(v)) for k, v in obj.items()) else: return obj return dict(zip(self.__fields__, (conv(o) for o in self))) else: return dict(zip(self.__fields__, self))
python
def asDict(self, recursive=False): """ Return as an dict :param recursive: turns the nested Row as dict (default: False). >>> Row(name="Alice", age=11).asDict() == {'name': 'Alice', 'age': 11} True >>> row = Row(key=1, value=Row(name='a', age=2)) >>> row.asDict() == {'key': 1, 'value': Row(age=2, name='a')} True >>> row.asDict(True) == {'key': 1, 'value': {'name': 'a', 'age': 2}} True """ if not hasattr(self, "__fields__"): raise TypeError("Cannot convert a Row class into dict") if recursive: def conv(obj): if isinstance(obj, Row): return obj.asDict(True) elif isinstance(obj, list): return [conv(o) for o in obj] elif isinstance(obj, dict): return dict((k, conv(v)) for k, v in obj.items()) else: return obj return dict(zip(self.__fields__, (conv(o) for o in self))) else: return dict(zip(self.__fields__, self))
[ "def", "asDict", "(", "self", ",", "recursive", "=", "False", ")", ":", "if", "not", "hasattr", "(", "self", ",", "\"__fields__\"", ")", ":", "raise", "TypeError", "(", "\"Cannot convert a Row class into dict\"", ")", "if", "recursive", ":", "def", "conv", "(", "obj", ")", ":", "if", "isinstance", "(", "obj", ",", "Row", ")", ":", "return", "obj", ".", "asDict", "(", "True", ")", "elif", "isinstance", "(", "obj", ",", "list", ")", ":", "return", "[", "conv", "(", "o", ")", "for", "o", "in", "obj", "]", "elif", "isinstance", "(", "obj", ",", "dict", ")", ":", "return", "dict", "(", "(", "k", ",", "conv", "(", "v", ")", ")", "for", "k", ",", "v", "in", "obj", ".", "items", "(", ")", ")", "else", ":", "return", "obj", "return", "dict", "(", "zip", "(", "self", ".", "__fields__", ",", "(", "conv", "(", "o", ")", "for", "o", "in", "self", ")", ")", ")", "else", ":", "return", "dict", "(", "zip", "(", "self", ".", "__fields__", ",", "self", ")", ")" ]
Return as an dict :param recursive: turns the nested Row as dict (default: False). >>> Row(name="Alice", age=11).asDict() == {'name': 'Alice', 'age': 11} True >>> row = Row(key=1, value=Row(name='a', age=2)) >>> row.asDict() == {'key': 1, 'value': Row(age=2, name='a')} True >>> row.asDict(True) == {'key': 1, 'value': {'name': 'a', 'age': 2}} True
[ "Return", "as", "an", "dict" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/types.py#L1463-L1492
18,981
apache/spark
python/pyspark/shuffle.py
_get_local_dirs
def _get_local_dirs(sub): """ Get all the directories """ path = os.environ.get("SPARK_LOCAL_DIRS", "/tmp") dirs = path.split(",") if len(dirs) > 1: # different order in different processes and instances rnd = random.Random(os.getpid() + id(dirs)) random.shuffle(dirs, rnd.random) return [os.path.join(d, "python", str(os.getpid()), sub) for d in dirs]
python
def _get_local_dirs(sub): """ Get all the directories """ path = os.environ.get("SPARK_LOCAL_DIRS", "/tmp") dirs = path.split(",") if len(dirs) > 1: # different order in different processes and instances rnd = random.Random(os.getpid() + id(dirs)) random.shuffle(dirs, rnd.random) return [os.path.join(d, "python", str(os.getpid()), sub) for d in dirs]
[ "def", "_get_local_dirs", "(", "sub", ")", ":", "path", "=", "os", ".", "environ", ".", "get", "(", "\"SPARK_LOCAL_DIRS\"", ",", "\"/tmp\"", ")", "dirs", "=", "path", ".", "split", "(", "\",\"", ")", "if", "len", "(", "dirs", ")", ">", "1", ":", "# different order in different processes and instances", "rnd", "=", "random", ".", "Random", "(", "os", ".", "getpid", "(", ")", "+", "id", "(", "dirs", ")", ")", "random", ".", "shuffle", "(", "dirs", ",", "rnd", ".", "random", ")", "return", "[", "os", ".", "path", ".", "join", "(", "d", ",", "\"python\"", ",", "str", "(", "os", ".", "getpid", "(", ")", ")", ",", "sub", ")", "for", "d", "in", "dirs", "]" ]
Get all the directories
[ "Get", "all", "the", "directories" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/shuffle.py#L71-L79
18,982
apache/spark
python/pyspark/shuffle.py
ExternalMerger.mergeValues
def mergeValues(self, iterator): """ Combine the items by creator and combiner """ # speedup attribute lookup creator, comb = self.agg.createCombiner, self.agg.mergeValue c, data, pdata, hfun, batch = 0, self.data, self.pdata, self._partition, self.batch limit = self.memory_limit for k, v in iterator: d = pdata[hfun(k)] if pdata else data d[k] = comb(d[k], v) if k in d else creator(v) c += 1 if c >= batch: if get_used_memory() >= limit: self._spill() limit = self._next_limit() batch /= 2 c = 0 else: batch *= 1.5 if get_used_memory() >= limit: self._spill()
python
def mergeValues(self, iterator): """ Combine the items by creator and combiner """ # speedup attribute lookup creator, comb = self.agg.createCombiner, self.agg.mergeValue c, data, pdata, hfun, batch = 0, self.data, self.pdata, self._partition, self.batch limit = self.memory_limit for k, v in iterator: d = pdata[hfun(k)] if pdata else data d[k] = comb(d[k], v) if k in d else creator(v) c += 1 if c >= batch: if get_used_memory() >= limit: self._spill() limit = self._next_limit() batch /= 2 c = 0 else: batch *= 1.5 if get_used_memory() >= limit: self._spill()
[ "def", "mergeValues", "(", "self", ",", "iterator", ")", ":", "# speedup attribute lookup", "creator", ",", "comb", "=", "self", ".", "agg", ".", "createCombiner", ",", "self", ".", "agg", ".", "mergeValue", "c", ",", "data", ",", "pdata", ",", "hfun", ",", "batch", "=", "0", ",", "self", ".", "data", ",", "self", ".", "pdata", ",", "self", ".", "_partition", ",", "self", ".", "batch", "limit", "=", "self", ".", "memory_limit", "for", "k", ",", "v", "in", "iterator", ":", "d", "=", "pdata", "[", "hfun", "(", "k", ")", "]", "if", "pdata", "else", "data", "d", "[", "k", "]", "=", "comb", "(", "d", "[", "k", "]", ",", "v", ")", "if", "k", "in", "d", "else", "creator", "(", "v", ")", "c", "+=", "1", "if", "c", ">=", "batch", ":", "if", "get_used_memory", "(", ")", ">=", "limit", ":", "self", ".", "_spill", "(", ")", "limit", "=", "self", ".", "_next_limit", "(", ")", "batch", "/=", "2", "c", "=", "0", "else", ":", "batch", "*=", "1.5", "if", "get_used_memory", "(", ")", ">=", "limit", ":", "self", ".", "_spill", "(", ")" ]
Combine the items by creator and combiner
[ "Combine", "the", "items", "by", "creator", "and", "combiner" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/shuffle.py#L231-L253
18,983
apache/spark
python/pyspark/shuffle.py
ExternalMerger.items
def items(self): """ Return all merged items as iterator """ if not self.pdata and not self.spills: return iter(self.data.items()) return self._external_items()
python
def items(self): """ Return all merged items as iterator """ if not self.pdata and not self.spills: return iter(self.data.items()) return self._external_items()
[ "def", "items", "(", "self", ")", ":", "if", "not", "self", ".", "pdata", "and", "not", "self", ".", "spills", ":", "return", "iter", "(", "self", ".", "data", ".", "items", "(", ")", ")", "return", "self", ".", "_external_items", "(", ")" ]
Return all merged items as iterator
[ "Return", "all", "merged", "items", "as", "iterator" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/shuffle.py#L339-L343
18,984
apache/spark
python/pyspark/shuffle.py
ExternalMerger._external_items
def _external_items(self): """ Return all partitioned items as iterator """ assert not self.data if any(self.pdata): self._spill() # disable partitioning and spilling when merge combiners from disk self.pdata = [] try: for i in range(self.partitions): for v in self._merged_items(i): yield v self.data.clear() # remove the merged partition for j in range(self.spills): path = self._get_spill_dir(j) os.remove(os.path.join(path, str(i))) finally: self._cleanup()
python
def _external_items(self): """ Return all partitioned items as iterator """ assert not self.data if any(self.pdata): self._spill() # disable partitioning and spilling when merge combiners from disk self.pdata = [] try: for i in range(self.partitions): for v in self._merged_items(i): yield v self.data.clear() # remove the merged partition for j in range(self.spills): path = self._get_spill_dir(j) os.remove(os.path.join(path, str(i))) finally: self._cleanup()
[ "def", "_external_items", "(", "self", ")", ":", "assert", "not", "self", ".", "data", "if", "any", "(", "self", ".", "pdata", ")", ":", "self", ".", "_spill", "(", ")", "# disable partitioning and spilling when merge combiners from disk", "self", ".", "pdata", "=", "[", "]", "try", ":", "for", "i", "in", "range", "(", "self", ".", "partitions", ")", ":", "for", "v", "in", "self", ".", "_merged_items", "(", "i", ")", ":", "yield", "v", "self", ".", "data", ".", "clear", "(", ")", "# remove the merged partition", "for", "j", "in", "range", "(", "self", ".", "spills", ")", ":", "path", "=", "self", ".", "_get_spill_dir", "(", "j", ")", "os", ".", "remove", "(", "os", ".", "path", ".", "join", "(", "path", ",", "str", "(", "i", ")", ")", ")", "finally", ":", "self", ".", "_cleanup", "(", ")" ]
Return all partitioned items as iterator
[ "Return", "all", "partitioned", "items", "as", "iterator" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/shuffle.py#L345-L364
18,985
apache/spark
python/pyspark/shuffle.py
ExternalMerger._recursive_merged_items
def _recursive_merged_items(self, index): """ merge the partitioned items and return the as iterator If one partition can not be fit in memory, then them will be partitioned and merged recursively. """ subdirs = [os.path.join(d, "parts", str(index)) for d in self.localdirs] m = ExternalMerger(self.agg, self.memory_limit, self.serializer, subdirs, self.scale * self.partitions, self.partitions, self.batch) m.pdata = [{} for _ in range(self.partitions)] limit = self._next_limit() for j in range(self.spills): path = self._get_spill_dir(j) p = os.path.join(path, str(index)) with open(p, 'rb') as f: m.mergeCombiners(self.serializer.load_stream(f), 0) if get_used_memory() > limit: m._spill() limit = self._next_limit() return m._external_items()
python
def _recursive_merged_items(self, index): """ merge the partitioned items and return the as iterator If one partition can not be fit in memory, then them will be partitioned and merged recursively. """ subdirs = [os.path.join(d, "parts", str(index)) for d in self.localdirs] m = ExternalMerger(self.agg, self.memory_limit, self.serializer, subdirs, self.scale * self.partitions, self.partitions, self.batch) m.pdata = [{} for _ in range(self.partitions)] limit = self._next_limit() for j in range(self.spills): path = self._get_spill_dir(j) p = os.path.join(path, str(index)) with open(p, 'rb') as f: m.mergeCombiners(self.serializer.load_stream(f), 0) if get_used_memory() > limit: m._spill() limit = self._next_limit() return m._external_items()
[ "def", "_recursive_merged_items", "(", "self", ",", "index", ")", ":", "subdirs", "=", "[", "os", ".", "path", ".", "join", "(", "d", ",", "\"parts\"", ",", "str", "(", "index", ")", ")", "for", "d", "in", "self", ".", "localdirs", "]", "m", "=", "ExternalMerger", "(", "self", ".", "agg", ",", "self", ".", "memory_limit", ",", "self", ".", "serializer", ",", "subdirs", ",", "self", ".", "scale", "*", "self", ".", "partitions", ",", "self", ".", "partitions", ",", "self", ".", "batch", ")", "m", ".", "pdata", "=", "[", "{", "}", "for", "_", "in", "range", "(", "self", ".", "partitions", ")", "]", "limit", "=", "self", ".", "_next_limit", "(", ")", "for", "j", "in", "range", "(", "self", ".", "spills", ")", ":", "path", "=", "self", ".", "_get_spill_dir", "(", "j", ")", "p", "=", "os", ".", "path", ".", "join", "(", "path", ",", "str", "(", "index", ")", ")", "with", "open", "(", "p", ",", "'rb'", ")", "as", "f", ":", "m", ".", "mergeCombiners", "(", "self", ".", "serializer", ".", "load_stream", "(", "f", ")", ",", "0", ")", "if", "get_used_memory", "(", ")", ">", "limit", ":", "m", ".", "_spill", "(", ")", "limit", "=", "self", ".", "_next_limit", "(", ")", "return", "m", ".", "_external_items", "(", ")" ]
merge the partitioned items and return the as iterator If one partition can not be fit in memory, then them will be partitioned and merged recursively.
[ "merge", "the", "partitioned", "items", "and", "return", "the", "as", "iterator" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/shuffle.py#L386-L409
18,986
apache/spark
python/pyspark/shuffle.py
ExternalSorter.sorted
def sorted(self, iterator, key=None, reverse=False): """ Sort the elements in iterator, do external sort when the memory goes above the limit. """ global MemoryBytesSpilled, DiskBytesSpilled batch, limit = 100, self._next_limit() chunks, current_chunk = [], [] iterator = iter(iterator) while True: # pick elements in batch chunk = list(itertools.islice(iterator, batch)) current_chunk.extend(chunk) if len(chunk) < batch: break used_memory = get_used_memory() if used_memory > limit: # sort them inplace will save memory current_chunk.sort(key=key, reverse=reverse) path = self._get_path(len(chunks)) with open(path, 'wb') as f: self.serializer.dump_stream(current_chunk, f) def load(f): for v in self.serializer.load_stream(f): yield v # close the file explicit once we consume all the items # to avoid ResourceWarning in Python3 f.close() chunks.append(load(open(path, 'rb'))) current_chunk = [] MemoryBytesSpilled += max(used_memory - get_used_memory(), 0) << 20 DiskBytesSpilled += os.path.getsize(path) os.unlink(path) # data will be deleted after close elif not chunks: batch = min(int(batch * 1.5), 10000) current_chunk.sort(key=key, reverse=reverse) if not chunks: return current_chunk if current_chunk: chunks.append(iter(current_chunk)) return heapq.merge(chunks, key=key, reverse=reverse)
python
def sorted(self, iterator, key=None, reverse=False): """ Sort the elements in iterator, do external sort when the memory goes above the limit. """ global MemoryBytesSpilled, DiskBytesSpilled batch, limit = 100, self._next_limit() chunks, current_chunk = [], [] iterator = iter(iterator) while True: # pick elements in batch chunk = list(itertools.islice(iterator, batch)) current_chunk.extend(chunk) if len(chunk) < batch: break used_memory = get_used_memory() if used_memory > limit: # sort them inplace will save memory current_chunk.sort(key=key, reverse=reverse) path = self._get_path(len(chunks)) with open(path, 'wb') as f: self.serializer.dump_stream(current_chunk, f) def load(f): for v in self.serializer.load_stream(f): yield v # close the file explicit once we consume all the items # to avoid ResourceWarning in Python3 f.close() chunks.append(load(open(path, 'rb'))) current_chunk = [] MemoryBytesSpilled += max(used_memory - get_used_memory(), 0) << 20 DiskBytesSpilled += os.path.getsize(path) os.unlink(path) # data will be deleted after close elif not chunks: batch = min(int(batch * 1.5), 10000) current_chunk.sort(key=key, reverse=reverse) if not chunks: return current_chunk if current_chunk: chunks.append(iter(current_chunk)) return heapq.merge(chunks, key=key, reverse=reverse)
[ "def", "sorted", "(", "self", ",", "iterator", ",", "key", "=", "None", ",", "reverse", "=", "False", ")", ":", "global", "MemoryBytesSpilled", ",", "DiskBytesSpilled", "batch", ",", "limit", "=", "100", ",", "self", ".", "_next_limit", "(", ")", "chunks", ",", "current_chunk", "=", "[", "]", ",", "[", "]", "iterator", "=", "iter", "(", "iterator", ")", "while", "True", ":", "# pick elements in batch", "chunk", "=", "list", "(", "itertools", ".", "islice", "(", "iterator", ",", "batch", ")", ")", "current_chunk", ".", "extend", "(", "chunk", ")", "if", "len", "(", "chunk", ")", "<", "batch", ":", "break", "used_memory", "=", "get_used_memory", "(", ")", "if", "used_memory", ">", "limit", ":", "# sort them inplace will save memory", "current_chunk", ".", "sort", "(", "key", "=", "key", ",", "reverse", "=", "reverse", ")", "path", "=", "self", ".", "_get_path", "(", "len", "(", "chunks", ")", ")", "with", "open", "(", "path", ",", "'wb'", ")", "as", "f", ":", "self", ".", "serializer", ".", "dump_stream", "(", "current_chunk", ",", "f", ")", "def", "load", "(", "f", ")", ":", "for", "v", "in", "self", ".", "serializer", ".", "load_stream", "(", "f", ")", ":", "yield", "v", "# close the file explicit once we consume all the items", "# to avoid ResourceWarning in Python3", "f", ".", "close", "(", ")", "chunks", ".", "append", "(", "load", "(", "open", "(", "path", ",", "'rb'", ")", ")", ")", "current_chunk", "=", "[", "]", "MemoryBytesSpilled", "+=", "max", "(", "used_memory", "-", "get_used_memory", "(", ")", ",", "0", ")", "<<", "20", "DiskBytesSpilled", "+=", "os", ".", "path", ".", "getsize", "(", "path", ")", "os", ".", "unlink", "(", "path", ")", "# data will be deleted after close", "elif", "not", "chunks", ":", "batch", "=", "min", "(", "int", "(", "batch", "*", "1.5", ")", ",", "10000", ")", "current_chunk", ".", "sort", "(", "key", "=", "key", ",", "reverse", "=", "reverse", ")", "if", "not", "chunks", ":", "return", "current_chunk", "if", "current_chunk", ":", "chunks", ".", "append", "(", "iter", "(", "current_chunk", ")", ")", "return", "heapq", ".", "merge", "(", "chunks", ",", "key", "=", "key", ",", "reverse", "=", "reverse", ")" ]
Sort the elements in iterator, do external sort when the memory goes above the limit.
[ "Sort", "the", "elements", "in", "iterator", "do", "external", "sort", "when", "the", "memory", "goes", "above", "the", "limit", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/shuffle.py#L455-L501
18,987
apache/spark
python/pyspark/shuffle.py
ExternalList._spill
def _spill(self): """ dump the values into disk """ global MemoryBytesSpilled, DiskBytesSpilled if self._file is None: self._open_file() used_memory = get_used_memory() pos = self._file.tell() self._ser.dump_stream(self.values, self._file) self.values = [] gc.collect() DiskBytesSpilled += self._file.tell() - pos MemoryBytesSpilled += max(used_memory - get_used_memory(), 0) << 20
python
def _spill(self): """ dump the values into disk """ global MemoryBytesSpilled, DiskBytesSpilled if self._file is None: self._open_file() used_memory = get_used_memory() pos = self._file.tell() self._ser.dump_stream(self.values, self._file) self.values = [] gc.collect() DiskBytesSpilled += self._file.tell() - pos MemoryBytesSpilled += max(used_memory - get_used_memory(), 0) << 20
[ "def", "_spill", "(", "self", ")", ":", "global", "MemoryBytesSpilled", ",", "DiskBytesSpilled", "if", "self", ".", "_file", "is", "None", ":", "self", ".", "_open_file", "(", ")", "used_memory", "=", "get_used_memory", "(", ")", "pos", "=", "self", ".", "_file", ".", "tell", "(", ")", "self", ".", "_ser", ".", "dump_stream", "(", "self", ".", "values", ",", "self", ".", "_file", ")", "self", ".", "values", "=", "[", "]", "gc", ".", "collect", "(", ")", "DiskBytesSpilled", "+=", "self", ".", "_file", ".", "tell", "(", ")", "-", "pos", "MemoryBytesSpilled", "+=", "max", "(", "used_memory", "-", "get_used_memory", "(", ")", ",", "0", ")", "<<", "20" ]
dump the values into disk
[ "dump", "the", "values", "into", "disk" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/shuffle.py#L590-L602
18,988
apache/spark
python/pyspark/shuffle.py
ExternalGroupBy._merge_sorted_items
def _merge_sorted_items(self, index): """ load a partition from disk, then sort and group by key """ def load_partition(j): path = self._get_spill_dir(j) p = os.path.join(path, str(index)) with open(p, 'rb', 65536) as f: for v in self.serializer.load_stream(f): yield v disk_items = [load_partition(j) for j in range(self.spills)] if self._sorted: # all the partitions are already sorted sorted_items = heapq.merge(disk_items, key=operator.itemgetter(0)) else: # Flatten the combined values, so it will not consume huge # memory during merging sort. ser = self.flattened_serializer() sorter = ExternalSorter(self.memory_limit, ser) sorted_items = sorter.sorted(itertools.chain(*disk_items), key=operator.itemgetter(0)) return ((k, vs) for k, vs in GroupByKey(sorted_items))
python
def _merge_sorted_items(self, index): """ load a partition from disk, then sort and group by key """ def load_partition(j): path = self._get_spill_dir(j) p = os.path.join(path, str(index)) with open(p, 'rb', 65536) as f: for v in self.serializer.load_stream(f): yield v disk_items = [load_partition(j) for j in range(self.spills)] if self._sorted: # all the partitions are already sorted sorted_items = heapq.merge(disk_items, key=operator.itemgetter(0)) else: # Flatten the combined values, so it will not consume huge # memory during merging sort. ser = self.flattened_serializer() sorter = ExternalSorter(self.memory_limit, ser) sorted_items = sorter.sorted(itertools.chain(*disk_items), key=operator.itemgetter(0)) return ((k, vs) for k, vs in GroupByKey(sorted_items))
[ "def", "_merge_sorted_items", "(", "self", ",", "index", ")", ":", "def", "load_partition", "(", "j", ")", ":", "path", "=", "self", ".", "_get_spill_dir", "(", "j", ")", "p", "=", "os", ".", "path", ".", "join", "(", "path", ",", "str", "(", "index", ")", ")", "with", "open", "(", "p", ",", "'rb'", ",", "65536", ")", "as", "f", ":", "for", "v", "in", "self", ".", "serializer", ".", "load_stream", "(", "f", ")", ":", "yield", "v", "disk_items", "=", "[", "load_partition", "(", "j", ")", "for", "j", "in", "range", "(", "self", ".", "spills", ")", "]", "if", "self", ".", "_sorted", ":", "# all the partitions are already sorted", "sorted_items", "=", "heapq", ".", "merge", "(", "disk_items", ",", "key", "=", "operator", ".", "itemgetter", "(", "0", ")", ")", "else", ":", "# Flatten the combined values, so it will not consume huge", "# memory during merging sort.", "ser", "=", "self", ".", "flattened_serializer", "(", ")", "sorter", "=", "ExternalSorter", "(", "self", ".", "memory_limit", ",", "ser", ")", "sorted_items", "=", "sorter", ".", "sorted", "(", "itertools", ".", "chain", "(", "*", "disk_items", ")", ",", "key", "=", "operator", ".", "itemgetter", "(", "0", ")", ")", "return", "(", "(", "k", ",", "vs", ")", "for", "k", ",", "vs", "in", "GroupByKey", "(", "sorted_items", ")", ")" ]
load a partition from disk, then sort and group by key
[ "load", "a", "partition", "from", "disk", "then", "sort", "and", "group", "by", "key" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/shuffle.py#L786-L808
18,989
apache/spark
python/pyspark/rdd.py
portable_hash
def portable_hash(x): """ This function returns consistent hash code for builtin types, especially for None and tuple with None. The algorithm is similar to that one used by CPython 2.7 >>> portable_hash(None) 0 >>> portable_hash((None, 1)) & 0xffffffff 219750521 """ if sys.version_info >= (3, 2, 3) and 'PYTHONHASHSEED' not in os.environ: raise Exception("Randomness of hash of string should be disabled via PYTHONHASHSEED") if x is None: return 0 if isinstance(x, tuple): h = 0x345678 for i in x: h ^= portable_hash(i) h *= 1000003 h &= sys.maxsize h ^= len(x) if h == -1: h = -2 return int(h) return hash(x)
python
def portable_hash(x): """ This function returns consistent hash code for builtin types, especially for None and tuple with None. The algorithm is similar to that one used by CPython 2.7 >>> portable_hash(None) 0 >>> portable_hash((None, 1)) & 0xffffffff 219750521 """ if sys.version_info >= (3, 2, 3) and 'PYTHONHASHSEED' not in os.environ: raise Exception("Randomness of hash of string should be disabled via PYTHONHASHSEED") if x is None: return 0 if isinstance(x, tuple): h = 0x345678 for i in x: h ^= portable_hash(i) h *= 1000003 h &= sys.maxsize h ^= len(x) if h == -1: h = -2 return int(h) return hash(x)
[ "def", "portable_hash", "(", "x", ")", ":", "if", "sys", ".", "version_info", ">=", "(", "3", ",", "2", ",", "3", ")", "and", "'PYTHONHASHSEED'", "not", "in", "os", ".", "environ", ":", "raise", "Exception", "(", "\"Randomness of hash of string should be disabled via PYTHONHASHSEED\"", ")", "if", "x", "is", "None", ":", "return", "0", "if", "isinstance", "(", "x", ",", "tuple", ")", ":", "h", "=", "0x345678", "for", "i", "in", "x", ":", "h", "^=", "portable_hash", "(", "i", ")", "h", "*=", "1000003", "h", "&=", "sys", ".", "maxsize", "h", "^=", "len", "(", "x", ")", "if", "h", "==", "-", "1", ":", "h", "=", "-", "2", "return", "int", "(", "h", ")", "return", "hash", "(", "x", ")" ]
This function returns consistent hash code for builtin types, especially for None and tuple with None. The algorithm is similar to that one used by CPython 2.7 >>> portable_hash(None) 0 >>> portable_hash((None, 1)) & 0xffffffff 219750521
[ "This", "function", "returns", "consistent", "hash", "code", "for", "builtin", "types", "especially", "for", "None", "and", "tuple", "with", "None", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/rdd.py#L78-L106
18,990
apache/spark
python/pyspark/rdd.py
ignore_unicode_prefix
def ignore_unicode_prefix(f): """ Ignore the 'u' prefix of string in doc tests, to make it works in both python 2 and 3 """ if sys.version >= '3': # the representation of unicode string in Python 3 does not have prefix 'u', # so remove the prefix 'u' for doc tests literal_re = re.compile(r"(\W|^)[uU](['])", re.UNICODE) f.__doc__ = literal_re.sub(r'\1\2', f.__doc__) return f
python
def ignore_unicode_prefix(f): """ Ignore the 'u' prefix of string in doc tests, to make it works in both python 2 and 3 """ if sys.version >= '3': # the representation of unicode string in Python 3 does not have prefix 'u', # so remove the prefix 'u' for doc tests literal_re = re.compile(r"(\W|^)[uU](['])", re.UNICODE) f.__doc__ = literal_re.sub(r'\1\2', f.__doc__) return f
[ "def", "ignore_unicode_prefix", "(", "f", ")", ":", "if", "sys", ".", "version", ">=", "'3'", ":", "# the representation of unicode string in Python 3 does not have prefix 'u',", "# so remove the prefix 'u' for doc tests", "literal_re", "=", "re", ".", "compile", "(", "r\"(\\W|^)[uU](['])\"", ",", "re", ".", "UNICODE", ")", "f", ".", "__doc__", "=", "literal_re", ".", "sub", "(", "r'\\1\\2'", ",", "f", ".", "__doc__", ")", "return", "f" ]
Ignore the 'u' prefix of string in doc tests, to make it works in both python 2 and 3
[ "Ignore", "the", "u", "prefix", "of", "string", "in", "doc", "tests", "to", "make", "it", "works", "in", "both", "python", "2", "and", "3" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/rdd.py#L150-L160
18,991
apache/spark
python/pyspark/rdd.py
RDD.unpersist
def unpersist(self, blocking=False): """ Mark the RDD as non-persistent, and remove all blocks for it from memory and disk. .. versionchanged:: 3.0.0 Added optional argument `blocking` to specify whether to block until all blocks are deleted. """ self.is_cached = False self._jrdd.unpersist(blocking) return self
python
def unpersist(self, blocking=False): """ Mark the RDD as non-persistent, and remove all blocks for it from memory and disk. .. versionchanged:: 3.0.0 Added optional argument `blocking` to specify whether to block until all blocks are deleted. """ self.is_cached = False self._jrdd.unpersist(blocking) return self
[ "def", "unpersist", "(", "self", ",", "blocking", "=", "False", ")", ":", "self", ".", "is_cached", "=", "False", "self", ".", "_jrdd", ".", "unpersist", "(", "blocking", ")", "return", "self" ]
Mark the RDD as non-persistent, and remove all blocks for it from memory and disk. .. versionchanged:: 3.0.0 Added optional argument `blocking` to specify whether to block until all blocks are deleted.
[ "Mark", "the", "RDD", "as", "non", "-", "persistent", "and", "remove", "all", "blocks", "for", "it", "from", "memory", "and", "disk", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/rdd.py#L247-L258
18,992
apache/spark
python/pyspark/rdd.py
RDD.getCheckpointFile
def getCheckpointFile(self): """ Gets the name of the file to which this RDD was checkpointed Not defined if RDD is checkpointed locally. """ checkpointFile = self._jrdd.rdd().getCheckpointFile() if checkpointFile.isDefined(): return checkpointFile.get()
python
def getCheckpointFile(self): """ Gets the name of the file to which this RDD was checkpointed Not defined if RDD is checkpointed locally. """ checkpointFile = self._jrdd.rdd().getCheckpointFile() if checkpointFile.isDefined(): return checkpointFile.get()
[ "def", "getCheckpointFile", "(", "self", ")", ":", "checkpointFile", "=", "self", ".", "_jrdd", ".", "rdd", "(", ")", ".", "getCheckpointFile", "(", ")", "if", "checkpointFile", ".", "isDefined", "(", ")", ":", "return", "checkpointFile", ".", "get", "(", ")" ]
Gets the name of the file to which this RDD was checkpointed Not defined if RDD is checkpointed locally.
[ "Gets", "the", "name", "of", "the", "file", "to", "which", "this", "RDD", "was", "checkpointed" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/rdd.py#L307-L315
18,993
apache/spark
python/pyspark/rdd.py
RDD.map
def map(self, f, preservesPartitioning=False): """ Return a new RDD by applying a function to each element of this RDD. >>> rdd = sc.parallelize(["b", "a", "c"]) >>> sorted(rdd.map(lambda x: (x, 1)).collect()) [('a', 1), ('b', 1), ('c', 1)] """ def func(_, iterator): return map(fail_on_stopiteration(f), iterator) return self.mapPartitionsWithIndex(func, preservesPartitioning)
python
def map(self, f, preservesPartitioning=False): """ Return a new RDD by applying a function to each element of this RDD. >>> rdd = sc.parallelize(["b", "a", "c"]) >>> sorted(rdd.map(lambda x: (x, 1)).collect()) [('a', 1), ('b', 1), ('c', 1)] """ def func(_, iterator): return map(fail_on_stopiteration(f), iterator) return self.mapPartitionsWithIndex(func, preservesPartitioning)
[ "def", "map", "(", "self", ",", "f", ",", "preservesPartitioning", "=", "False", ")", ":", "def", "func", "(", "_", ",", "iterator", ")", ":", "return", "map", "(", "fail_on_stopiteration", "(", "f", ")", ",", "iterator", ")", "return", "self", ".", "mapPartitionsWithIndex", "(", "func", ",", "preservesPartitioning", ")" ]
Return a new RDD by applying a function to each element of this RDD. >>> rdd = sc.parallelize(["b", "a", "c"]) >>> sorted(rdd.map(lambda x: (x, 1)).collect()) [('a', 1), ('b', 1), ('c', 1)]
[ "Return", "a", "new", "RDD", "by", "applying", "a", "function", "to", "each", "element", "of", "this", "RDD", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/rdd.py#L317-L327
18,994
apache/spark
python/pyspark/rdd.py
RDD.flatMap
def flatMap(self, f, preservesPartitioning=False): """ Return a new RDD by first applying a function to all elements of this RDD, and then flattening the results. >>> rdd = sc.parallelize([2, 3, 4]) >>> sorted(rdd.flatMap(lambda x: range(1, x)).collect()) [1, 1, 1, 2, 2, 3] >>> sorted(rdd.flatMap(lambda x: [(x, x), (x, x)]).collect()) [(2, 2), (2, 2), (3, 3), (3, 3), (4, 4), (4, 4)] """ def func(s, iterator): return chain.from_iterable(map(fail_on_stopiteration(f), iterator)) return self.mapPartitionsWithIndex(func, preservesPartitioning)
python
def flatMap(self, f, preservesPartitioning=False): """ Return a new RDD by first applying a function to all elements of this RDD, and then flattening the results. >>> rdd = sc.parallelize([2, 3, 4]) >>> sorted(rdd.flatMap(lambda x: range(1, x)).collect()) [1, 1, 1, 2, 2, 3] >>> sorted(rdd.flatMap(lambda x: [(x, x), (x, x)]).collect()) [(2, 2), (2, 2), (3, 3), (3, 3), (4, 4), (4, 4)] """ def func(s, iterator): return chain.from_iterable(map(fail_on_stopiteration(f), iterator)) return self.mapPartitionsWithIndex(func, preservesPartitioning)
[ "def", "flatMap", "(", "self", ",", "f", ",", "preservesPartitioning", "=", "False", ")", ":", "def", "func", "(", "s", ",", "iterator", ")", ":", "return", "chain", ".", "from_iterable", "(", "map", "(", "fail_on_stopiteration", "(", "f", ")", ",", "iterator", ")", ")", "return", "self", ".", "mapPartitionsWithIndex", "(", "func", ",", "preservesPartitioning", ")" ]
Return a new RDD by first applying a function to all elements of this RDD, and then flattening the results. >>> rdd = sc.parallelize([2, 3, 4]) >>> sorted(rdd.flatMap(lambda x: range(1, x)).collect()) [1, 1, 1, 2, 2, 3] >>> sorted(rdd.flatMap(lambda x: [(x, x), (x, x)]).collect()) [(2, 2), (2, 2), (3, 3), (3, 3), (4, 4), (4, 4)]
[ "Return", "a", "new", "RDD", "by", "first", "applying", "a", "function", "to", "all", "elements", "of", "this", "RDD", "and", "then", "flattening", "the", "results", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/rdd.py#L329-L342
18,995
apache/spark
python/pyspark/rdd.py
RDD.mapPartitions
def mapPartitions(self, f, preservesPartitioning=False): """ Return a new RDD by applying a function to each partition of this RDD. >>> rdd = sc.parallelize([1, 2, 3, 4], 2) >>> def f(iterator): yield sum(iterator) >>> rdd.mapPartitions(f).collect() [3, 7] """ def func(s, iterator): return f(iterator) return self.mapPartitionsWithIndex(func, preservesPartitioning)
python
def mapPartitions(self, f, preservesPartitioning=False): """ Return a new RDD by applying a function to each partition of this RDD. >>> rdd = sc.parallelize([1, 2, 3, 4], 2) >>> def f(iterator): yield sum(iterator) >>> rdd.mapPartitions(f).collect() [3, 7] """ def func(s, iterator): return f(iterator) return self.mapPartitionsWithIndex(func, preservesPartitioning)
[ "def", "mapPartitions", "(", "self", ",", "f", ",", "preservesPartitioning", "=", "False", ")", ":", "def", "func", "(", "s", ",", "iterator", ")", ":", "return", "f", "(", "iterator", ")", "return", "self", ".", "mapPartitionsWithIndex", "(", "func", ",", "preservesPartitioning", ")" ]
Return a new RDD by applying a function to each partition of this RDD. >>> rdd = sc.parallelize([1, 2, 3, 4], 2) >>> def f(iterator): yield sum(iterator) >>> rdd.mapPartitions(f).collect() [3, 7]
[ "Return", "a", "new", "RDD", "by", "applying", "a", "function", "to", "each", "partition", "of", "this", "RDD", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/rdd.py#L344-L355
18,996
apache/spark
python/pyspark/rdd.py
RDD.distinct
def distinct(self, numPartitions=None): """ Return a new RDD containing the distinct elements in this RDD. >>> sorted(sc.parallelize([1, 1, 2, 3]).distinct().collect()) [1, 2, 3] """ return self.map(lambda x: (x, None)) \ .reduceByKey(lambda x, _: x, numPartitions) \ .map(lambda x: x[0])
python
def distinct(self, numPartitions=None): """ Return a new RDD containing the distinct elements in this RDD. >>> sorted(sc.parallelize([1, 1, 2, 3]).distinct().collect()) [1, 2, 3] """ return self.map(lambda x: (x, None)) \ .reduceByKey(lambda x, _: x, numPartitions) \ .map(lambda x: x[0])
[ "def", "distinct", "(", "self", ",", "numPartitions", "=", "None", ")", ":", "return", "self", ".", "map", "(", "lambda", "x", ":", "(", "x", ",", "None", ")", ")", ".", "reduceByKey", "(", "lambda", "x", ",", "_", ":", "x", ",", "numPartitions", ")", ".", "map", "(", "lambda", "x", ":", "x", "[", "0", "]", ")" ]
Return a new RDD containing the distinct elements in this RDD. >>> sorted(sc.parallelize([1, 1, 2, 3]).distinct().collect()) [1, 2, 3]
[ "Return", "a", "new", "RDD", "containing", "the", "distinct", "elements", "in", "this", "RDD", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/rdd.py#L407-L416
18,997
apache/spark
python/pyspark/rdd.py
RDD.sample
def sample(self, withReplacement, fraction, seed=None): """ Return a sampled subset of this RDD. :param withReplacement: can elements be sampled multiple times (replaced when sampled out) :param fraction: expected size of the sample as a fraction of this RDD's size without replacement: probability that each element is chosen; fraction must be [0, 1] with replacement: expected number of times each element is chosen; fraction must be >= 0 :param seed: seed for the random number generator .. note:: This is not guaranteed to provide exactly the fraction specified of the total count of the given :class:`DataFrame`. >>> rdd = sc.parallelize(range(100), 4) >>> 6 <= rdd.sample(False, 0.1, 81).count() <= 14 True """ assert fraction >= 0.0, "Negative fraction value: %s" % fraction return self.mapPartitionsWithIndex(RDDSampler(withReplacement, fraction, seed).func, True)
python
def sample(self, withReplacement, fraction, seed=None): """ Return a sampled subset of this RDD. :param withReplacement: can elements be sampled multiple times (replaced when sampled out) :param fraction: expected size of the sample as a fraction of this RDD's size without replacement: probability that each element is chosen; fraction must be [0, 1] with replacement: expected number of times each element is chosen; fraction must be >= 0 :param seed: seed for the random number generator .. note:: This is not guaranteed to provide exactly the fraction specified of the total count of the given :class:`DataFrame`. >>> rdd = sc.parallelize(range(100), 4) >>> 6 <= rdd.sample(False, 0.1, 81).count() <= 14 True """ assert fraction >= 0.0, "Negative fraction value: %s" % fraction return self.mapPartitionsWithIndex(RDDSampler(withReplacement, fraction, seed).func, True)
[ "def", "sample", "(", "self", ",", "withReplacement", ",", "fraction", ",", "seed", "=", "None", ")", ":", "assert", "fraction", ">=", "0.0", ",", "\"Negative fraction value: %s\"", "%", "fraction", "return", "self", ".", "mapPartitionsWithIndex", "(", "RDDSampler", "(", "withReplacement", ",", "fraction", ",", "seed", ")", ".", "func", ",", "True", ")" ]
Return a sampled subset of this RDD. :param withReplacement: can elements be sampled multiple times (replaced when sampled out) :param fraction: expected size of the sample as a fraction of this RDD's size without replacement: probability that each element is chosen; fraction must be [0, 1] with replacement: expected number of times each element is chosen; fraction must be >= 0 :param seed: seed for the random number generator .. note:: This is not guaranteed to provide exactly the fraction specified of the total count of the given :class:`DataFrame`. >>> rdd = sc.parallelize(range(100), 4) >>> 6 <= rdd.sample(False, 0.1, 81).count() <= 14 True
[ "Return", "a", "sampled", "subset", "of", "this", "RDD", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/rdd.py#L418-L436
18,998
apache/spark
python/pyspark/rdd.py
RDD.randomSplit
def randomSplit(self, weights, seed=None): """ Randomly splits this RDD with the provided weights. :param weights: weights for splits, will be normalized if they don't sum to 1 :param seed: random seed :return: split RDDs in a list >>> rdd = sc.parallelize(range(500), 1) >>> rdd1, rdd2 = rdd.randomSplit([2, 3], 17) >>> len(rdd1.collect() + rdd2.collect()) 500 >>> 150 < rdd1.count() < 250 True >>> 250 < rdd2.count() < 350 True """ s = float(sum(weights)) cweights = [0.0] for w in weights: cweights.append(cweights[-1] + w / s) if seed is None: seed = random.randint(0, 2 ** 32 - 1) return [self.mapPartitionsWithIndex(RDDRangeSampler(lb, ub, seed).func, True) for lb, ub in zip(cweights, cweights[1:])]
python
def randomSplit(self, weights, seed=None): """ Randomly splits this RDD with the provided weights. :param weights: weights for splits, will be normalized if they don't sum to 1 :param seed: random seed :return: split RDDs in a list >>> rdd = sc.parallelize(range(500), 1) >>> rdd1, rdd2 = rdd.randomSplit([2, 3], 17) >>> len(rdd1.collect() + rdd2.collect()) 500 >>> 150 < rdd1.count() < 250 True >>> 250 < rdd2.count() < 350 True """ s = float(sum(weights)) cweights = [0.0] for w in weights: cweights.append(cweights[-1] + w / s) if seed is None: seed = random.randint(0, 2 ** 32 - 1) return [self.mapPartitionsWithIndex(RDDRangeSampler(lb, ub, seed).func, True) for lb, ub in zip(cweights, cweights[1:])]
[ "def", "randomSplit", "(", "self", ",", "weights", ",", "seed", "=", "None", ")", ":", "s", "=", "float", "(", "sum", "(", "weights", ")", ")", "cweights", "=", "[", "0.0", "]", "for", "w", "in", "weights", ":", "cweights", ".", "append", "(", "cweights", "[", "-", "1", "]", "+", "w", "/", "s", ")", "if", "seed", "is", "None", ":", "seed", "=", "random", ".", "randint", "(", "0", ",", "2", "**", "32", "-", "1", ")", "return", "[", "self", ".", "mapPartitionsWithIndex", "(", "RDDRangeSampler", "(", "lb", ",", "ub", ",", "seed", ")", ".", "func", ",", "True", ")", "for", "lb", ",", "ub", "in", "zip", "(", "cweights", ",", "cweights", "[", "1", ":", "]", ")", "]" ]
Randomly splits this RDD with the provided weights. :param weights: weights for splits, will be normalized if they don't sum to 1 :param seed: random seed :return: split RDDs in a list >>> rdd = sc.parallelize(range(500), 1) >>> rdd1, rdd2 = rdd.randomSplit([2, 3], 17) >>> len(rdd1.collect() + rdd2.collect()) 500 >>> 150 < rdd1.count() < 250 True >>> 250 < rdd2.count() < 350 True
[ "Randomly", "splits", "this", "RDD", "with", "the", "provided", "weights", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/rdd.py#L438-L462
18,999
apache/spark
python/pyspark/rdd.py
RDD.takeSample
def takeSample(self, withReplacement, num, seed=None): """ Return a fixed-size sampled subset of this RDD. .. note:: This method should only be used if the resulting array is expected to be small, as all the data is loaded into the driver's memory. >>> rdd = sc.parallelize(range(0, 10)) >>> len(rdd.takeSample(True, 20, 1)) 20 >>> len(rdd.takeSample(False, 5, 2)) 5 >>> len(rdd.takeSample(False, 15, 3)) 10 """ numStDev = 10.0 if num < 0: raise ValueError("Sample size cannot be negative.") elif num == 0: return [] initialCount = self.count() if initialCount == 0: return [] rand = random.Random(seed) if (not withReplacement) and num >= initialCount: # shuffle current RDD and return samples = self.collect() rand.shuffle(samples) return samples maxSampleSize = sys.maxsize - int(numStDev * sqrt(sys.maxsize)) if num > maxSampleSize: raise ValueError( "Sample size cannot be greater than %d." % maxSampleSize) fraction = RDD._computeFractionForSampleSize( num, initialCount, withReplacement) samples = self.sample(withReplacement, fraction, seed).collect() # If the first sample didn't turn out large enough, keep trying to take samples; # this shouldn't happen often because we use a big multiplier for their initial size. # See: scala/spark/RDD.scala while len(samples) < num: # TODO: add log warning for when more than one iteration was run seed = rand.randint(0, sys.maxsize) samples = self.sample(withReplacement, fraction, seed).collect() rand.shuffle(samples) return samples[0:num]
python
def takeSample(self, withReplacement, num, seed=None): """ Return a fixed-size sampled subset of this RDD. .. note:: This method should only be used if the resulting array is expected to be small, as all the data is loaded into the driver's memory. >>> rdd = sc.parallelize(range(0, 10)) >>> len(rdd.takeSample(True, 20, 1)) 20 >>> len(rdd.takeSample(False, 5, 2)) 5 >>> len(rdd.takeSample(False, 15, 3)) 10 """ numStDev = 10.0 if num < 0: raise ValueError("Sample size cannot be negative.") elif num == 0: return [] initialCount = self.count() if initialCount == 0: return [] rand = random.Random(seed) if (not withReplacement) and num >= initialCount: # shuffle current RDD and return samples = self.collect() rand.shuffle(samples) return samples maxSampleSize = sys.maxsize - int(numStDev * sqrt(sys.maxsize)) if num > maxSampleSize: raise ValueError( "Sample size cannot be greater than %d." % maxSampleSize) fraction = RDD._computeFractionForSampleSize( num, initialCount, withReplacement) samples = self.sample(withReplacement, fraction, seed).collect() # If the first sample didn't turn out large enough, keep trying to take samples; # this shouldn't happen often because we use a big multiplier for their initial size. # See: scala/spark/RDD.scala while len(samples) < num: # TODO: add log warning for when more than one iteration was run seed = rand.randint(0, sys.maxsize) samples = self.sample(withReplacement, fraction, seed).collect() rand.shuffle(samples) return samples[0:num]
[ "def", "takeSample", "(", "self", ",", "withReplacement", ",", "num", ",", "seed", "=", "None", ")", ":", "numStDev", "=", "10.0", "if", "num", "<", "0", ":", "raise", "ValueError", "(", "\"Sample size cannot be negative.\"", ")", "elif", "num", "==", "0", ":", "return", "[", "]", "initialCount", "=", "self", ".", "count", "(", ")", "if", "initialCount", "==", "0", ":", "return", "[", "]", "rand", "=", "random", ".", "Random", "(", "seed", ")", "if", "(", "not", "withReplacement", ")", "and", "num", ">=", "initialCount", ":", "# shuffle current RDD and return", "samples", "=", "self", ".", "collect", "(", ")", "rand", ".", "shuffle", "(", "samples", ")", "return", "samples", "maxSampleSize", "=", "sys", ".", "maxsize", "-", "int", "(", "numStDev", "*", "sqrt", "(", "sys", ".", "maxsize", ")", ")", "if", "num", ">", "maxSampleSize", ":", "raise", "ValueError", "(", "\"Sample size cannot be greater than %d.\"", "%", "maxSampleSize", ")", "fraction", "=", "RDD", ".", "_computeFractionForSampleSize", "(", "num", ",", "initialCount", ",", "withReplacement", ")", "samples", "=", "self", ".", "sample", "(", "withReplacement", ",", "fraction", ",", "seed", ")", ".", "collect", "(", ")", "# If the first sample didn't turn out large enough, keep trying to take samples;", "# this shouldn't happen often because we use a big multiplier for their initial size.", "# See: scala/spark/RDD.scala", "while", "len", "(", "samples", ")", "<", "num", ":", "# TODO: add log warning for when more than one iteration was run", "seed", "=", "rand", ".", "randint", "(", "0", ",", "sys", ".", "maxsize", ")", "samples", "=", "self", ".", "sample", "(", "withReplacement", ",", "fraction", ",", "seed", ")", ".", "collect", "(", ")", "rand", ".", "shuffle", "(", "samples", ")", "return", "samples", "[", "0", ":", "num", "]" ]
Return a fixed-size sampled subset of this RDD. .. note:: This method should only be used if the resulting array is expected to be small, as all the data is loaded into the driver's memory. >>> rdd = sc.parallelize(range(0, 10)) >>> len(rdd.takeSample(True, 20, 1)) 20 >>> len(rdd.takeSample(False, 5, 2)) 5 >>> len(rdd.takeSample(False, 15, 3)) 10
[ "Return", "a", "fixed", "-", "size", "sampled", "subset", "of", "this", "RDD", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/rdd.py#L465-L518