id
int32
0
252k
repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
16,800
eventbrite/pysoa
pysoa/common/logging.py
SyslogHandler.emit
def emit(self, record): """ Emits a record. The record is sent carefully, according to the following rules, to ensure that data is not lost by exceeding the MTU of the connection. - If the byte-encoded record length plus prefix length plus suffix length plus priority length is less than the maximum allowed length, then a single packet is sent, containing the priority, prefix, full record, and suffix, in that order. - If it's greater than or equal to the maximum allowed length and the overflow behavior is set to "truncate," the record is cleanly truncated (being careful not to split in the middle of a multi-byte character), and then a single packet is sent, containing the priority, prefix, truncated record, and suffix, in that order. - If it's greater than or equal to the maximum allowed length and the overflow behavior is set to "fragment," the record preamble (things like file name, logger name, correlation ID, etc.) is extracted from the start of the record to calculate a new chunk length. The remainder of the record (which should just be the true message and any exception info) is then chunked (being careful not to split in the middle of a multi-byte character) into lengths less than or equal to the chunk length, and then the record is sent as multiple packets, each packet containing the priority, prefix, record preamble, message chunk, and suffix, in that order. """ # noinspection PyBroadException try: formatted_message = self.format(record) encoded_message = formatted_message.encode('utf-8') prefix = suffix = b'' if getattr(self, 'ident', False): prefix = self.ident.encode('utf-8') if isinstance(self.ident, six.text_type) else self.ident if getattr(self, 'append_nul', True): suffix = '\000'.encode('utf-8') priority = '<{:d}>'.format( self.encodePriority(self.facility, self.mapPriority(record.levelname)) ).encode('utf-8') message_length = len(encoded_message) message_length_limit = self.maximum_length - len(prefix) - len(suffix) - len(priority) if message_length < message_length_limit: parts = [priority + prefix + encoded_message + suffix] elif self.overflow == self.OVERFLOW_BEHAVIOR_TRUNCATE: truncated_message, _ = self._cleanly_slice_encoded_string(encoded_message, message_length_limit) parts = [priority + prefix + truncated_message + suffix] else: # This can't work perfectly, but it's pretty unusual for a message to go before machine-parseable parts # in the formatted record. So we split the record on the message part. Everything before the split # becomes the preamble and gets repeated every packet. Everything after the split gets chunked. There's # no reason to match on more than the first 40 characters of the message--the chances of that matching # the wrong part of the record are astronomical. try: index = formatted_message.index(record.getMessage()[:40]) start_of_message, to_chunk = formatted_message[:index], formatted_message[index:] except (TypeError, ValueError): # We can't locate the message in the formatted record? That's unfortunate. Let's make something up. start_of_message, to_chunk = '{} '.format(formatted_message[:30]), formatted_message[30:] start_of_message = start_of_message.encode('utf-8') to_chunk = to_chunk.encode('utf-8') # 12 is the length of "... (cont'd)" in bytes chunk_length_limit = message_length_limit - len(start_of_message) - 12 i = 1 parts = [] remaining_message = to_chunk while remaining_message: message_id = b'' subtractor = 0 if i > 1: # If this is not the first message, we determine message # so that we can subtract that length message_id = '{}'.format(i).encode('utf-8') # 14 is the length of "(cont'd #) ..." in bytes subtractor = 14 + len(message_id) chunk, remaining_message = self._cleanly_slice_encoded_string( remaining_message, chunk_length_limit - subtractor, ) if i > 1: # If this is not the first message, we prepend the chunk to indicate continuation chunk = b"(cont'd #" + message_id + b') ...' + chunk i += 1 if remaining_message: # If this is not the last message, we append the chunk to indicate continuation chunk = chunk + b"... (cont'd)" parts.append(priority + prefix + start_of_message + chunk + suffix) self._send(parts) except Exception: self.handleError(record)
python
def emit(self, record): """ Emits a record. The record is sent carefully, according to the following rules, to ensure that data is not lost by exceeding the MTU of the connection. - If the byte-encoded record length plus prefix length plus suffix length plus priority length is less than the maximum allowed length, then a single packet is sent, containing the priority, prefix, full record, and suffix, in that order. - If it's greater than or equal to the maximum allowed length and the overflow behavior is set to "truncate," the record is cleanly truncated (being careful not to split in the middle of a multi-byte character), and then a single packet is sent, containing the priority, prefix, truncated record, and suffix, in that order. - If it's greater than or equal to the maximum allowed length and the overflow behavior is set to "fragment," the record preamble (things like file name, logger name, correlation ID, etc.) is extracted from the start of the record to calculate a new chunk length. The remainder of the record (which should just be the true message and any exception info) is then chunked (being careful not to split in the middle of a multi-byte character) into lengths less than or equal to the chunk length, and then the record is sent as multiple packets, each packet containing the priority, prefix, record preamble, message chunk, and suffix, in that order. """ # noinspection PyBroadException try: formatted_message = self.format(record) encoded_message = formatted_message.encode('utf-8') prefix = suffix = b'' if getattr(self, 'ident', False): prefix = self.ident.encode('utf-8') if isinstance(self.ident, six.text_type) else self.ident if getattr(self, 'append_nul', True): suffix = '\000'.encode('utf-8') priority = '<{:d}>'.format( self.encodePriority(self.facility, self.mapPriority(record.levelname)) ).encode('utf-8') message_length = len(encoded_message) message_length_limit = self.maximum_length - len(prefix) - len(suffix) - len(priority) if message_length < message_length_limit: parts = [priority + prefix + encoded_message + suffix] elif self.overflow == self.OVERFLOW_BEHAVIOR_TRUNCATE: truncated_message, _ = self._cleanly_slice_encoded_string(encoded_message, message_length_limit) parts = [priority + prefix + truncated_message + suffix] else: # This can't work perfectly, but it's pretty unusual for a message to go before machine-parseable parts # in the formatted record. So we split the record on the message part. Everything before the split # becomes the preamble and gets repeated every packet. Everything after the split gets chunked. There's # no reason to match on more than the first 40 characters of the message--the chances of that matching # the wrong part of the record are astronomical. try: index = formatted_message.index(record.getMessage()[:40]) start_of_message, to_chunk = formatted_message[:index], formatted_message[index:] except (TypeError, ValueError): # We can't locate the message in the formatted record? That's unfortunate. Let's make something up. start_of_message, to_chunk = '{} '.format(formatted_message[:30]), formatted_message[30:] start_of_message = start_of_message.encode('utf-8') to_chunk = to_chunk.encode('utf-8') # 12 is the length of "... (cont'd)" in bytes chunk_length_limit = message_length_limit - len(start_of_message) - 12 i = 1 parts = [] remaining_message = to_chunk while remaining_message: message_id = b'' subtractor = 0 if i > 1: # If this is not the first message, we determine message # so that we can subtract that length message_id = '{}'.format(i).encode('utf-8') # 14 is the length of "(cont'd #) ..." in bytes subtractor = 14 + len(message_id) chunk, remaining_message = self._cleanly_slice_encoded_string( remaining_message, chunk_length_limit - subtractor, ) if i > 1: # If this is not the first message, we prepend the chunk to indicate continuation chunk = b"(cont'd #" + message_id + b') ...' + chunk i += 1 if remaining_message: # If this is not the last message, we append the chunk to indicate continuation chunk = chunk + b"... (cont'd)" parts.append(priority + prefix + start_of_message + chunk + suffix) self._send(parts) except Exception: self.handleError(record)
[ "def", "emit", "(", "self", ",", "record", ")", ":", "# noinspection PyBroadException", "try", ":", "formatted_message", "=", "self", ".", "format", "(", "record", ")", "encoded_message", "=", "formatted_message", ".", "encode", "(", "'utf-8'", ")", "prefix", "=", "suffix", "=", "b''", "if", "getattr", "(", "self", ",", "'ident'", ",", "False", ")", ":", "prefix", "=", "self", ".", "ident", ".", "encode", "(", "'utf-8'", ")", "if", "isinstance", "(", "self", ".", "ident", ",", "six", ".", "text_type", ")", "else", "self", ".", "ident", "if", "getattr", "(", "self", ",", "'append_nul'", ",", "True", ")", ":", "suffix", "=", "'\\000'", ".", "encode", "(", "'utf-8'", ")", "priority", "=", "'<{:d}>'", ".", "format", "(", "self", ".", "encodePriority", "(", "self", ".", "facility", ",", "self", ".", "mapPriority", "(", "record", ".", "levelname", ")", ")", ")", ".", "encode", "(", "'utf-8'", ")", "message_length", "=", "len", "(", "encoded_message", ")", "message_length_limit", "=", "self", ".", "maximum_length", "-", "len", "(", "prefix", ")", "-", "len", "(", "suffix", ")", "-", "len", "(", "priority", ")", "if", "message_length", "<", "message_length_limit", ":", "parts", "=", "[", "priority", "+", "prefix", "+", "encoded_message", "+", "suffix", "]", "elif", "self", ".", "overflow", "==", "self", ".", "OVERFLOW_BEHAVIOR_TRUNCATE", ":", "truncated_message", ",", "_", "=", "self", ".", "_cleanly_slice_encoded_string", "(", "encoded_message", ",", "message_length_limit", ")", "parts", "=", "[", "priority", "+", "prefix", "+", "truncated_message", "+", "suffix", "]", "else", ":", "# This can't work perfectly, but it's pretty unusual for a message to go before machine-parseable parts", "# in the formatted record. So we split the record on the message part. Everything before the split", "# becomes the preamble and gets repeated every packet. Everything after the split gets chunked. There's", "# no reason to match on more than the first 40 characters of the message--the chances of that matching", "# the wrong part of the record are astronomical.", "try", ":", "index", "=", "formatted_message", ".", "index", "(", "record", ".", "getMessage", "(", ")", "[", ":", "40", "]", ")", "start_of_message", ",", "to_chunk", "=", "formatted_message", "[", ":", "index", "]", ",", "formatted_message", "[", "index", ":", "]", "except", "(", "TypeError", ",", "ValueError", ")", ":", "# We can't locate the message in the formatted record? That's unfortunate. Let's make something up.", "start_of_message", ",", "to_chunk", "=", "'{} '", ".", "format", "(", "formatted_message", "[", ":", "30", "]", ")", ",", "formatted_message", "[", "30", ":", "]", "start_of_message", "=", "start_of_message", ".", "encode", "(", "'utf-8'", ")", "to_chunk", "=", "to_chunk", ".", "encode", "(", "'utf-8'", ")", "# 12 is the length of \"... (cont'd)\" in bytes", "chunk_length_limit", "=", "message_length_limit", "-", "len", "(", "start_of_message", ")", "-", "12", "i", "=", "1", "parts", "=", "[", "]", "remaining_message", "=", "to_chunk", "while", "remaining_message", ":", "message_id", "=", "b''", "subtractor", "=", "0", "if", "i", ">", "1", ":", "# If this is not the first message, we determine message # so that we can subtract that length", "message_id", "=", "'{}'", ".", "format", "(", "i", ")", ".", "encode", "(", "'utf-8'", ")", "# 14 is the length of \"(cont'd #) ...\" in bytes", "subtractor", "=", "14", "+", "len", "(", "message_id", ")", "chunk", ",", "remaining_message", "=", "self", ".", "_cleanly_slice_encoded_string", "(", "remaining_message", ",", "chunk_length_limit", "-", "subtractor", ",", ")", "if", "i", ">", "1", ":", "# If this is not the first message, we prepend the chunk to indicate continuation", "chunk", "=", "b\"(cont'd #\"", "+", "message_id", "+", "b') ...'", "+", "chunk", "i", "+=", "1", "if", "remaining_message", ":", "# If this is not the last message, we append the chunk to indicate continuation", "chunk", "=", "chunk", "+", "b\"... (cont'd)\"", "parts", ".", "append", "(", "priority", "+", "prefix", "+", "start_of_message", "+", "chunk", "+", "suffix", ")", "self", ".", "_send", "(", "parts", ")", "except", "Exception", ":", "self", ".", "handleError", "(", "record", ")" ]
Emits a record. The record is sent carefully, according to the following rules, to ensure that data is not lost by exceeding the MTU of the connection. - If the byte-encoded record length plus prefix length plus suffix length plus priority length is less than the maximum allowed length, then a single packet is sent, containing the priority, prefix, full record, and suffix, in that order. - If it's greater than or equal to the maximum allowed length and the overflow behavior is set to "truncate," the record is cleanly truncated (being careful not to split in the middle of a multi-byte character), and then a single packet is sent, containing the priority, prefix, truncated record, and suffix, in that order. - If it's greater than or equal to the maximum allowed length and the overflow behavior is set to "fragment," the record preamble (things like file name, logger name, correlation ID, etc.) is extracted from the start of the record to calculate a new chunk length. The remainder of the record (which should just be the true message and any exception info) is then chunked (being careful not to split in the middle of a multi-byte character) into lengths less than or equal to the chunk length, and then the record is sent as multiple packets, each packet containing the priority, prefix, record preamble, message chunk, and suffix, in that order.
[ "Emits", "a", "record", ".", "The", "record", "is", "sent", "carefully", "according", "to", "the", "following", "rules", "to", "ensure", "that", "data", "is", "not", "lost", "by", "exceeding", "the", "MTU", "of", "the", "connection", "." ]
9c052cae2397d13de3df8ae2c790846a70b53f18
https://github.com/eventbrite/pysoa/blob/9c052cae2397d13de3df8ae2c790846a70b53f18/pysoa/common/logging.py#L270-L359
16,801
eventbrite/pysoa
pysoa/client/expander.py
TypeNode.add_expansion
def add_expansion(self, expansion_node): """ Add a child expansion node to the type node's expansions. If an expansion node with the same name is already present in type node's expansions, the new and existing expansion node's children are merged. :param expansion_node: The expansion node to add :type expansion_node: ExpansionNode """ # Check for existing expansion node with the same name existing_expansion_node = self.get_expansion(expansion_node.name) if existing_expansion_node: # Expansion node exists with the same name, merge child expansions. for child_expansion in expansion_node.expansions: existing_expansion_node.add_expansion(child_expansion) else: # Add the expansion node. self._expansions[expansion_node.name] = expansion_node
python
def add_expansion(self, expansion_node): """ Add a child expansion node to the type node's expansions. If an expansion node with the same name is already present in type node's expansions, the new and existing expansion node's children are merged. :param expansion_node: The expansion node to add :type expansion_node: ExpansionNode """ # Check for existing expansion node with the same name existing_expansion_node = self.get_expansion(expansion_node.name) if existing_expansion_node: # Expansion node exists with the same name, merge child expansions. for child_expansion in expansion_node.expansions: existing_expansion_node.add_expansion(child_expansion) else: # Add the expansion node. self._expansions[expansion_node.name] = expansion_node
[ "def", "add_expansion", "(", "self", ",", "expansion_node", ")", ":", "# Check for existing expansion node with the same name", "existing_expansion_node", "=", "self", ".", "get_expansion", "(", "expansion_node", ".", "name", ")", "if", "existing_expansion_node", ":", "# Expansion node exists with the same name, merge child expansions.", "for", "child_expansion", "in", "expansion_node", ".", "expansions", ":", "existing_expansion_node", ".", "add_expansion", "(", "child_expansion", ")", "else", ":", "# Add the expansion node.", "self", ".", "_expansions", "[", "expansion_node", ".", "name", "]", "=", "expansion_node" ]
Add a child expansion node to the type node's expansions. If an expansion node with the same name is already present in type node's expansions, the new and existing expansion node's children are merged. :param expansion_node: The expansion node to add :type expansion_node: ExpansionNode
[ "Add", "a", "child", "expansion", "node", "to", "the", "type", "node", "s", "expansions", "." ]
9c052cae2397d13de3df8ae2c790846a70b53f18
https://github.com/eventbrite/pysoa/blob/9c052cae2397d13de3df8ae2c790846a70b53f18/pysoa/client/expander.py#L114-L132
16,802
eventbrite/pysoa
pysoa/client/expander.py
TypeNode.find_objects
def find_objects(self, obj): """ Find all objects in obj that match the type of the type node. :param obj: A dictionary or list of dictionaries to search, recursively :type obj: union[dict, list[dict]] :return: a list of dictionary objects that have a "_type" key value that matches the type of this node. :rtype: list[dict] """ objects = [] if isinstance(obj, dict): # obj is a dictionary, so it is a potential match... object_type = obj.get('_type') if object_type == self.type: # Found a match! objects.append(obj) else: # Not a match. Check each value of the dictionary for matches. for sub_object in six.itervalues(obj): objects.extend(self.find_objects(sub_object)) elif isinstance(obj, list): # obj is a list. Check each element of the list for matches. for sub_object in obj: objects.extend(self.find_objects(sub_object)) return objects
python
def find_objects(self, obj): """ Find all objects in obj that match the type of the type node. :param obj: A dictionary or list of dictionaries to search, recursively :type obj: union[dict, list[dict]] :return: a list of dictionary objects that have a "_type" key value that matches the type of this node. :rtype: list[dict] """ objects = [] if isinstance(obj, dict): # obj is a dictionary, so it is a potential match... object_type = obj.get('_type') if object_type == self.type: # Found a match! objects.append(obj) else: # Not a match. Check each value of the dictionary for matches. for sub_object in six.itervalues(obj): objects.extend(self.find_objects(sub_object)) elif isinstance(obj, list): # obj is a list. Check each element of the list for matches. for sub_object in obj: objects.extend(self.find_objects(sub_object)) return objects
[ "def", "find_objects", "(", "self", ",", "obj", ")", ":", "objects", "=", "[", "]", "if", "isinstance", "(", "obj", ",", "dict", ")", ":", "# obj is a dictionary, so it is a potential match...", "object_type", "=", "obj", ".", "get", "(", "'_type'", ")", "if", "object_type", "==", "self", ".", "type", ":", "# Found a match!", "objects", ".", "append", "(", "obj", ")", "else", ":", "# Not a match. Check each value of the dictionary for matches.", "for", "sub_object", "in", "six", ".", "itervalues", "(", "obj", ")", ":", "objects", ".", "extend", "(", "self", ".", "find_objects", "(", "sub_object", ")", ")", "elif", "isinstance", "(", "obj", ",", "list", ")", ":", "# obj is a list. Check each element of the list for matches.", "for", "sub_object", "in", "obj", ":", "objects", ".", "extend", "(", "self", ".", "find_objects", "(", "sub_object", ")", ")", "return", "objects" ]
Find all objects in obj that match the type of the type node. :param obj: A dictionary or list of dictionaries to search, recursively :type obj: union[dict, list[dict]] :return: a list of dictionary objects that have a "_type" key value that matches the type of this node. :rtype: list[dict]
[ "Find", "all", "objects", "in", "obj", "that", "match", "the", "type", "of", "the", "type", "node", "." ]
9c052cae2397d13de3df8ae2c790846a70b53f18
https://github.com/eventbrite/pysoa/blob/9c052cae2397d13de3df8ae2c790846a70b53f18/pysoa/client/expander.py#L147-L174
16,803
eventbrite/pysoa
pysoa/client/expander.py
TypeNode.to_dict
def to_dict(self): """ Convert the tree node to its dictionary representation. :return: an expansion dictionary that represents the type and expansions of this tree node. :rtype dict[list[union[str, unicode]]] """ expansion_strings = [] for expansion in self.expansions: expansion_strings.extend(expansion.to_strings()) return { self.type: expansion_strings, }
python
def to_dict(self): """ Convert the tree node to its dictionary representation. :return: an expansion dictionary that represents the type and expansions of this tree node. :rtype dict[list[union[str, unicode]]] """ expansion_strings = [] for expansion in self.expansions: expansion_strings.extend(expansion.to_strings()) return { self.type: expansion_strings, }
[ "def", "to_dict", "(", "self", ")", ":", "expansion_strings", "=", "[", "]", "for", "expansion", "in", "self", ".", "expansions", ":", "expansion_strings", ".", "extend", "(", "expansion", ".", "to_strings", "(", ")", ")", "return", "{", "self", ".", "type", ":", "expansion_strings", ",", "}" ]
Convert the tree node to its dictionary representation. :return: an expansion dictionary that represents the type and expansions of this tree node. :rtype dict[list[union[str, unicode]]]
[ "Convert", "the", "tree", "node", "to", "its", "dictionary", "representation", "." ]
9c052cae2397d13de3df8ae2c790846a70b53f18
https://github.com/eventbrite/pysoa/blob/9c052cae2397d13de3df8ae2c790846a70b53f18/pysoa/client/expander.py#L183-L197
16,804
eventbrite/pysoa
pysoa/client/expander.py
ExpansionNode.to_strings
def to_strings(self): """ Convert the expansion node to a list of expansion strings. :return: a list of expansion strings that represent the leaf nodes of the expansion tree. :rtype: list[union[str, unicode]] """ result = [] if not self.expansions: result.append(self.name) else: for expansion in self.expansions: result.extend('{}.{}'.format(self.name, es) for es in expansion.to_strings()) return result
python
def to_strings(self): """ Convert the expansion node to a list of expansion strings. :return: a list of expansion strings that represent the leaf nodes of the expansion tree. :rtype: list[union[str, unicode]] """ result = [] if not self.expansions: result.append(self.name) else: for expansion in self.expansions: result.extend('{}.{}'.format(self.name, es) for es in expansion.to_strings()) return result
[ "def", "to_strings", "(", "self", ")", ":", "result", "=", "[", "]", "if", "not", "self", ".", "expansions", ":", "result", ".", "append", "(", "self", ".", "name", ")", "else", ":", "for", "expansion", "in", "self", ".", "expansions", ":", "result", ".", "extend", "(", "'{}.{}'", ".", "format", "(", "self", ".", "name", ",", "es", ")", "for", "es", "in", "expansion", ".", "to_strings", "(", ")", ")", "return", "result" ]
Convert the expansion node to a list of expansion strings. :return: a list of expansion strings that represent the leaf nodes of the expansion tree. :rtype: list[union[str, unicode]]
[ "Convert", "the", "expansion", "node", "to", "a", "list", "of", "expansion", "strings", "." ]
9c052cae2397d13de3df8ae2c790846a70b53f18
https://github.com/eventbrite/pysoa/blob/9c052cae2397d13de3df8ae2c790846a70b53f18/pysoa/client/expander.py#L252-L267
16,805
eventbrite/pysoa
pysoa/client/expander.py
ExpansionConverter.dict_to_trees
def dict_to_trees(self, expansion_dict): """ Convert an expansion dictionary to a list of expansion trees. :param expansion_dict: An expansion dictionary (see below) :type expansion_dict: dict :return: a list of expansion trees (`TreeNode` instances). :rtype: list[TreeNode] Expansion Dictionary Format: { "<type>": ["<expansion string>", ...], ... } <type> is the type of object to expand. <expansion string> is a string with the following format: <expansion string> => <expansion name>[.<expansion string>] """ trees = [] for node_type, expansion_list in six.iteritems(expansion_dict): type_node = TypeNode(node_type=node_type) for expansion_string in expansion_list: expansion_node = type_node for expansion_name in expansion_string.split('.'): child_expansion_node = expansion_node.get_expansion(expansion_name) if not child_expansion_node: type_expansion = self.type_expansions[expansion_node.type][expansion_name] type_route = self.type_routes[type_expansion['route']] if type_expansion['destination_field'] == type_expansion['source_field']: raise ValueError( 'Expansion configuration destination_field error: ' 'destination_field can not have the same name as the source_field: ' '{}'.format(type_expansion['source_field']) ) child_expansion_node = ExpansionNode( node_type=type_expansion['type'], name=expansion_name, source_field=type_expansion['source_field'], destination_field=type_expansion['destination_field'], service=type_route['service'], action=type_route['action'], request_field=type_route['request_field'], response_field=type_route['response_field'], raise_action_errors=type_expansion.get('raise_action_errors', False), ) expansion_node.add_expansion(child_expansion_node) expansion_node = child_expansion_node trees.append(type_node) return trees
python
def dict_to_trees(self, expansion_dict): """ Convert an expansion dictionary to a list of expansion trees. :param expansion_dict: An expansion dictionary (see below) :type expansion_dict: dict :return: a list of expansion trees (`TreeNode` instances). :rtype: list[TreeNode] Expansion Dictionary Format: { "<type>": ["<expansion string>", ...], ... } <type> is the type of object to expand. <expansion string> is a string with the following format: <expansion string> => <expansion name>[.<expansion string>] """ trees = [] for node_type, expansion_list in six.iteritems(expansion_dict): type_node = TypeNode(node_type=node_type) for expansion_string in expansion_list: expansion_node = type_node for expansion_name in expansion_string.split('.'): child_expansion_node = expansion_node.get_expansion(expansion_name) if not child_expansion_node: type_expansion = self.type_expansions[expansion_node.type][expansion_name] type_route = self.type_routes[type_expansion['route']] if type_expansion['destination_field'] == type_expansion['source_field']: raise ValueError( 'Expansion configuration destination_field error: ' 'destination_field can not have the same name as the source_field: ' '{}'.format(type_expansion['source_field']) ) child_expansion_node = ExpansionNode( node_type=type_expansion['type'], name=expansion_name, source_field=type_expansion['source_field'], destination_field=type_expansion['destination_field'], service=type_route['service'], action=type_route['action'], request_field=type_route['request_field'], response_field=type_route['response_field'], raise_action_errors=type_expansion.get('raise_action_errors', False), ) expansion_node.add_expansion(child_expansion_node) expansion_node = child_expansion_node trees.append(type_node) return trees
[ "def", "dict_to_trees", "(", "self", ",", "expansion_dict", ")", ":", "trees", "=", "[", "]", "for", "node_type", ",", "expansion_list", "in", "six", ".", "iteritems", "(", "expansion_dict", ")", ":", "type_node", "=", "TypeNode", "(", "node_type", "=", "node_type", ")", "for", "expansion_string", "in", "expansion_list", ":", "expansion_node", "=", "type_node", "for", "expansion_name", "in", "expansion_string", ".", "split", "(", "'.'", ")", ":", "child_expansion_node", "=", "expansion_node", ".", "get_expansion", "(", "expansion_name", ")", "if", "not", "child_expansion_node", ":", "type_expansion", "=", "self", ".", "type_expansions", "[", "expansion_node", ".", "type", "]", "[", "expansion_name", "]", "type_route", "=", "self", ".", "type_routes", "[", "type_expansion", "[", "'route'", "]", "]", "if", "type_expansion", "[", "'destination_field'", "]", "==", "type_expansion", "[", "'source_field'", "]", ":", "raise", "ValueError", "(", "'Expansion configuration destination_field error: '", "'destination_field can not have the same name as the source_field: '", "'{}'", ".", "format", "(", "type_expansion", "[", "'source_field'", "]", ")", ")", "child_expansion_node", "=", "ExpansionNode", "(", "node_type", "=", "type_expansion", "[", "'type'", "]", ",", "name", "=", "expansion_name", ",", "source_field", "=", "type_expansion", "[", "'source_field'", "]", ",", "destination_field", "=", "type_expansion", "[", "'destination_field'", "]", ",", "service", "=", "type_route", "[", "'service'", "]", ",", "action", "=", "type_route", "[", "'action'", "]", ",", "request_field", "=", "type_route", "[", "'request_field'", "]", ",", "response_field", "=", "type_route", "[", "'response_field'", "]", ",", "raise_action_errors", "=", "type_expansion", ".", "get", "(", "'raise_action_errors'", ",", "False", ")", ",", ")", "expansion_node", ".", "add_expansion", "(", "child_expansion_node", ")", "expansion_node", "=", "child_expansion_node", "trees", ".", "append", "(", "type_node", ")", "return", "trees" ]
Convert an expansion dictionary to a list of expansion trees. :param expansion_dict: An expansion dictionary (see below) :type expansion_dict: dict :return: a list of expansion trees (`TreeNode` instances). :rtype: list[TreeNode] Expansion Dictionary Format: { "<type>": ["<expansion string>", ...], ... } <type> is the type of object to expand. <expansion string> is a string with the following format: <expansion string> => <expansion name>[.<expansion string>]
[ "Convert", "an", "expansion", "dictionary", "to", "a", "list", "of", "expansion", "trees", "." ]
9c052cae2397d13de3df8ae2c790846a70b53f18
https://github.com/eventbrite/pysoa/blob/9c052cae2397d13de3df8ae2c790846a70b53f18/pysoa/client/expander.py#L344-L401
16,806
eventbrite/pysoa
pysoa/client/expander.py
ExpansionConverter.trees_to_dict
def trees_to_dict(trees_list): """ Convert a list of `TreeNode`s to an expansion dictionary. :param trees_list: A list of `TreeNode` instances :type trees_list: list[TreeNode] :return: An expansion dictionary that represents the expansions detailed in the provided expansions tree nodes :rtype: dict[union[str, unicode]] """ result = {} for tree in trees_list: result.update(tree.to_dict()) return result
python
def trees_to_dict(trees_list): """ Convert a list of `TreeNode`s to an expansion dictionary. :param trees_list: A list of `TreeNode` instances :type trees_list: list[TreeNode] :return: An expansion dictionary that represents the expansions detailed in the provided expansions tree nodes :rtype: dict[union[str, unicode]] """ result = {} for tree in trees_list: result.update(tree.to_dict()) return result
[ "def", "trees_to_dict", "(", "trees_list", ")", ":", "result", "=", "{", "}", "for", "tree", "in", "trees_list", ":", "result", ".", "update", "(", "tree", ".", "to_dict", "(", ")", ")", "return", "result" ]
Convert a list of `TreeNode`s to an expansion dictionary. :param trees_list: A list of `TreeNode` instances :type trees_list: list[TreeNode] :return: An expansion dictionary that represents the expansions detailed in the provided expansions tree nodes :rtype: dict[union[str, unicode]]
[ "Convert", "a", "list", "of", "TreeNode", "s", "to", "an", "expansion", "dictionary", "." ]
9c052cae2397d13de3df8ae2c790846a70b53f18
https://github.com/eventbrite/pysoa/blob/9c052cae2397d13de3df8ae2c790846a70b53f18/pysoa/client/expander.py#L404-L419
16,807
eventbrite/pysoa
pysoa/common/transport/redis_gateway/backend/sentinel.py
SentinelRedisClient._get_service_names
def _get_service_names(self): """ Get a list of service names from Sentinel. Tries Sentinel hosts until one succeeds; if none succeed, raises a ConnectionError. :return: the list of service names from Sentinel. """ master_info = None connection_errors = [] for sentinel in self._sentinel.sentinels: # Unfortunately, redis.sentinel.Sentinel does not support sentinel_masters, so we have to step # through all of its connections manually try: master_info = sentinel.sentinel_masters() break except (redis.ConnectionError, redis.TimeoutError) as e: connection_errors.append('Failed to connect to {} due to error: "{}".'.format(sentinel, e)) continue if master_info is None: raise redis.ConnectionError( 'Could not get master info from Sentinel\n{}:'.format('\n'.join(connection_errors)) ) return list(master_info.keys())
python
def _get_service_names(self): """ Get a list of service names from Sentinel. Tries Sentinel hosts until one succeeds; if none succeed, raises a ConnectionError. :return: the list of service names from Sentinel. """ master_info = None connection_errors = [] for sentinel in self._sentinel.sentinels: # Unfortunately, redis.sentinel.Sentinel does not support sentinel_masters, so we have to step # through all of its connections manually try: master_info = sentinel.sentinel_masters() break except (redis.ConnectionError, redis.TimeoutError) as e: connection_errors.append('Failed to connect to {} due to error: "{}".'.format(sentinel, e)) continue if master_info is None: raise redis.ConnectionError( 'Could not get master info from Sentinel\n{}:'.format('\n'.join(connection_errors)) ) return list(master_info.keys())
[ "def", "_get_service_names", "(", "self", ")", ":", "master_info", "=", "None", "connection_errors", "=", "[", "]", "for", "sentinel", "in", "self", ".", "_sentinel", ".", "sentinels", ":", "# Unfortunately, redis.sentinel.Sentinel does not support sentinel_masters, so we have to step", "# through all of its connections manually", "try", ":", "master_info", "=", "sentinel", ".", "sentinel_masters", "(", ")", "break", "except", "(", "redis", ".", "ConnectionError", ",", "redis", ".", "TimeoutError", ")", "as", "e", ":", "connection_errors", ".", "append", "(", "'Failed to connect to {} due to error: \"{}\".'", ".", "format", "(", "sentinel", ",", "e", ")", ")", "continue", "if", "master_info", "is", "None", ":", "raise", "redis", ".", "ConnectionError", "(", "'Could not get master info from Sentinel\\n{}:'", ".", "format", "(", "'\\n'", ".", "join", "(", "connection_errors", ")", ")", ")", "return", "list", "(", "master_info", ".", "keys", "(", ")", ")" ]
Get a list of service names from Sentinel. Tries Sentinel hosts until one succeeds; if none succeed, raises a ConnectionError. :return: the list of service names from Sentinel.
[ "Get", "a", "list", "of", "service", "names", "from", "Sentinel", ".", "Tries", "Sentinel", "hosts", "until", "one", "succeeds", ";", "if", "none", "succeed", "raises", "a", "ConnectionError", "." ]
9c052cae2397d13de3df8ae2c790846a70b53f18
https://github.com/eventbrite/pysoa/blob/9c052cae2397d13de3df8ae2c790846a70b53f18/pysoa/common/transport/redis_gateway/backend/sentinel.py#L92-L114
16,808
Yelp/venv-update
venv_update.py
timid_relpath
def timid_relpath(arg): """convert an argument to a relative path, carefully""" # TODO-TEST: unit tests from os.path import isabs, relpath, sep if isabs(arg): result = relpath(arg) if result.count(sep) + 1 < arg.count(sep): return result return arg
python
def timid_relpath(arg): """convert an argument to a relative path, carefully""" # TODO-TEST: unit tests from os.path import isabs, relpath, sep if isabs(arg): result = relpath(arg) if result.count(sep) + 1 < arg.count(sep): return result return arg
[ "def", "timid_relpath", "(", "arg", ")", ":", "# TODO-TEST: unit tests", "from", "os", ".", "path", "import", "isabs", ",", "relpath", ",", "sep", "if", "isabs", "(", "arg", ")", ":", "result", "=", "relpath", "(", "arg", ")", "if", "result", ".", "count", "(", "sep", ")", "+", "1", "<", "arg", ".", "count", "(", "sep", ")", ":", "return", "result", "return", "arg" ]
convert an argument to a relative path, carefully
[ "convert", "an", "argument", "to", "a", "relative", "path", "carefully" ]
6feae7ab09ee870c582b97443cfa8f0dc8626ba7
https://github.com/Yelp/venv-update/blob/6feae7ab09ee870c582b97443cfa8f0dc8626ba7/venv_update.py#L104-L113
16,809
Yelp/venv-update
venv_update.py
ensure_virtualenv
def ensure_virtualenv(args, return_values): """Ensure we have a valid virtualenv.""" def adjust_options(options, args): # TODO-TEST: proper error message with no arguments venv_path = return_values.venv_path = args[0] if venv_path == DEFAULT_VIRTUALENV_PATH or options.prompt == '<dirname>': from os.path import abspath, basename, dirname options.prompt = '(%s)' % basename(dirname(abspath(venv_path))) # end of option munging. # there are two python interpreters involved here: # 1) the interpreter we're instructing virtualenv to copy if options.python is None: source_python = None else: source_python = virtualenv.resolve_interpreter(options.python) # 2) the interpreter virtualenv will create destination_python = venv_python(venv_path) if exists(destination_python): reason = invalid_virtualenv_reason(venv_path, source_python, destination_python, options) if reason: info('Removing invalidated virtualenv. (%s)' % reason) run(('rm', '-rf', venv_path)) else: info('Keeping valid virtualenv from previous run.') raise SystemExit(0) # looks good! we're done here. # this is actually a documented extension point: # http://virtualenv.readthedocs.org/en/latest/reference.html#adjust_options import virtualenv virtualenv.adjust_options = adjust_options from sys import argv argv[:] = ('virtualenv',) + args info(colorize(argv)) raise_on_failure(virtualenv.main) # There might not be a venv_path if doing something like "venv= --version" # and not actually asking virtualenv to make a venv. if return_values.venv_path is not None: run(('rm', '-rf', join(return_values.venv_path, 'local')))
python
def ensure_virtualenv(args, return_values): """Ensure we have a valid virtualenv.""" def adjust_options(options, args): # TODO-TEST: proper error message with no arguments venv_path = return_values.venv_path = args[0] if venv_path == DEFAULT_VIRTUALENV_PATH or options.prompt == '<dirname>': from os.path import abspath, basename, dirname options.prompt = '(%s)' % basename(dirname(abspath(venv_path))) # end of option munging. # there are two python interpreters involved here: # 1) the interpreter we're instructing virtualenv to copy if options.python is None: source_python = None else: source_python = virtualenv.resolve_interpreter(options.python) # 2) the interpreter virtualenv will create destination_python = venv_python(venv_path) if exists(destination_python): reason = invalid_virtualenv_reason(venv_path, source_python, destination_python, options) if reason: info('Removing invalidated virtualenv. (%s)' % reason) run(('rm', '-rf', venv_path)) else: info('Keeping valid virtualenv from previous run.') raise SystemExit(0) # looks good! we're done here. # this is actually a documented extension point: # http://virtualenv.readthedocs.org/en/latest/reference.html#adjust_options import virtualenv virtualenv.adjust_options = adjust_options from sys import argv argv[:] = ('virtualenv',) + args info(colorize(argv)) raise_on_failure(virtualenv.main) # There might not be a venv_path if doing something like "venv= --version" # and not actually asking virtualenv to make a venv. if return_values.venv_path is not None: run(('rm', '-rf', join(return_values.venv_path, 'local')))
[ "def", "ensure_virtualenv", "(", "args", ",", "return_values", ")", ":", "def", "adjust_options", "(", "options", ",", "args", ")", ":", "# TODO-TEST: proper error message with no arguments", "venv_path", "=", "return_values", ".", "venv_path", "=", "args", "[", "0", "]", "if", "venv_path", "==", "DEFAULT_VIRTUALENV_PATH", "or", "options", ".", "prompt", "==", "'<dirname>'", ":", "from", "os", ".", "path", "import", "abspath", ",", "basename", ",", "dirname", "options", ".", "prompt", "=", "'(%s)'", "%", "basename", "(", "dirname", "(", "abspath", "(", "venv_path", ")", ")", ")", "# end of option munging.", "# there are two python interpreters involved here:", "# 1) the interpreter we're instructing virtualenv to copy", "if", "options", ".", "python", "is", "None", ":", "source_python", "=", "None", "else", ":", "source_python", "=", "virtualenv", ".", "resolve_interpreter", "(", "options", ".", "python", ")", "# 2) the interpreter virtualenv will create", "destination_python", "=", "venv_python", "(", "venv_path", ")", "if", "exists", "(", "destination_python", ")", ":", "reason", "=", "invalid_virtualenv_reason", "(", "venv_path", ",", "source_python", ",", "destination_python", ",", "options", ")", "if", "reason", ":", "info", "(", "'Removing invalidated virtualenv. (%s)'", "%", "reason", ")", "run", "(", "(", "'rm'", ",", "'-rf'", ",", "venv_path", ")", ")", "else", ":", "info", "(", "'Keeping valid virtualenv from previous run.'", ")", "raise", "SystemExit", "(", "0", ")", "# looks good! we're done here.", "# this is actually a documented extension point:", "# http://virtualenv.readthedocs.org/en/latest/reference.html#adjust_options", "import", "virtualenv", "virtualenv", ".", "adjust_options", "=", "adjust_options", "from", "sys", "import", "argv", "argv", "[", ":", "]", "=", "(", "'virtualenv'", ",", ")", "+", "args", "info", "(", "colorize", "(", "argv", ")", ")", "raise_on_failure", "(", "virtualenv", ".", "main", ")", "# There might not be a venv_path if doing something like \"venv= --version\"", "# and not actually asking virtualenv to make a venv.", "if", "return_values", ".", "venv_path", "is", "not", "None", ":", "run", "(", "(", "'rm'", ",", "'-rf'", ",", "join", "(", "return_values", ".", "venv_path", ",", "'local'", ")", ")", ")" ]
Ensure we have a valid virtualenv.
[ "Ensure", "we", "have", "a", "valid", "virtualenv", "." ]
6feae7ab09ee870c582b97443cfa8f0dc8626ba7
https://github.com/Yelp/venv-update/blob/6feae7ab09ee870c582b97443cfa8f0dc8626ba7/venv_update.py#L272-L313
16,810
Yelp/venv-update
venv_update.py
touch
def touch(filename, timestamp): """set the mtime of a file""" if timestamp is not None: timestamp = (timestamp, timestamp) # atime, mtime from os import utime utime(filename, timestamp)
python
def touch(filename, timestamp): """set the mtime of a file""" if timestamp is not None: timestamp = (timestamp, timestamp) # atime, mtime from os import utime utime(filename, timestamp)
[ "def", "touch", "(", "filename", ",", "timestamp", ")", ":", "if", "timestamp", "is", "not", "None", ":", "timestamp", "=", "(", "timestamp", ",", "timestamp", ")", "# atime, mtime", "from", "os", "import", "utime", "utime", "(", "filename", ",", "timestamp", ")" ]
set the mtime of a file
[ "set", "the", "mtime", "of", "a", "file" ]
6feae7ab09ee870c582b97443cfa8f0dc8626ba7
https://github.com/Yelp/venv-update/blob/6feae7ab09ee870c582b97443cfa8f0dc8626ba7/venv_update.py#L328-L334
16,811
Yelp/venv-update
venv_update.py
pip_faster
def pip_faster(venv_path, pip_command, install, bootstrap_deps): """install and run pip-faster""" # activate the virtualenv execfile_(venv_executable(venv_path, 'activate_this.py')) # disable a useless warning # FIXME: ensure a "true SSLContext" is available from os import environ environ['PIP_DISABLE_PIP_VERSION_CHECK'] = '1' # we always have to run the bootstrap, because the presense of an # executable doesn't imply the right version. pip is able to validate the # version in the fastpath case quickly anyway. run(('pip', 'install') + bootstrap_deps) run(pip_command + install)
python
def pip_faster(venv_path, pip_command, install, bootstrap_deps): """install and run pip-faster""" # activate the virtualenv execfile_(venv_executable(venv_path, 'activate_this.py')) # disable a useless warning # FIXME: ensure a "true SSLContext" is available from os import environ environ['PIP_DISABLE_PIP_VERSION_CHECK'] = '1' # we always have to run the bootstrap, because the presense of an # executable doesn't imply the right version. pip is able to validate the # version in the fastpath case quickly anyway. run(('pip', 'install') + bootstrap_deps) run(pip_command + install)
[ "def", "pip_faster", "(", "venv_path", ",", "pip_command", ",", "install", ",", "bootstrap_deps", ")", ":", "# activate the virtualenv", "execfile_", "(", "venv_executable", "(", "venv_path", ",", "'activate_this.py'", ")", ")", "# disable a useless warning", "# FIXME: ensure a \"true SSLContext\" is available", "from", "os", "import", "environ", "environ", "[", "'PIP_DISABLE_PIP_VERSION_CHECK'", "]", "=", "'1'", "# we always have to run the bootstrap, because the presense of an", "# executable doesn't imply the right version. pip is able to validate the", "# version in the fastpath case quickly anyway.", "run", "(", "(", "'pip'", ",", "'install'", ")", "+", "bootstrap_deps", ")", "run", "(", "pip_command", "+", "install", ")" ]
install and run pip-faster
[ "install", "and", "run", "pip", "-", "faster" ]
6feae7ab09ee870c582b97443cfa8f0dc8626ba7
https://github.com/Yelp/venv-update/blob/6feae7ab09ee870c582b97443cfa8f0dc8626ba7/venv_update.py#L408-L423
16,812
Yelp/venv-update
venv_update.py
raise_on_failure
def raise_on_failure(mainfunc): """raise if and only if mainfunc fails""" try: errors = mainfunc() if errors: exit(errors) except CalledProcessError as error: exit(error.returncode) except SystemExit as error: if error.code: raise except KeyboardInterrupt: # I don't plan to test-cover this. :pragma:nocover: exit(1)
python
def raise_on_failure(mainfunc): """raise if and only if mainfunc fails""" try: errors = mainfunc() if errors: exit(errors) except CalledProcessError as error: exit(error.returncode) except SystemExit as error: if error.code: raise except KeyboardInterrupt: # I don't plan to test-cover this. :pragma:nocover: exit(1)
[ "def", "raise_on_failure", "(", "mainfunc", ")", ":", "try", ":", "errors", "=", "mainfunc", "(", ")", "if", "errors", ":", "exit", "(", "errors", ")", "except", "CalledProcessError", "as", "error", ":", "exit", "(", "error", ".", "returncode", ")", "except", "SystemExit", "as", "error", ":", "if", "error", ".", "code", ":", "raise", "except", "KeyboardInterrupt", ":", "# I don't plan to test-cover this. :pragma:nocover:", "exit", "(", "1", ")" ]
raise if and only if mainfunc fails
[ "raise", "if", "and", "only", "if", "mainfunc", "fails" ]
6feae7ab09ee870c582b97443cfa8f0dc8626ba7
https://github.com/Yelp/venv-update/blob/6feae7ab09ee870c582b97443cfa8f0dc8626ba7/venv_update.py#L426-L438
16,813
Yelp/venv-update
pip_faster.py
cache_installed_wheels
def cache_installed_wheels(index_url, installed_packages): """After installation, pip tells us what it installed and from where. We build a structure that looks like .cache/pip-faster/wheelhouse/$index_url/$wheel """ for installed_package in installed_packages: if not _can_be_cached(installed_package): continue _store_wheel_in_cache(installed_package.link.path, index_url)
python
def cache_installed_wheels(index_url, installed_packages): """After installation, pip tells us what it installed and from where. We build a structure that looks like .cache/pip-faster/wheelhouse/$index_url/$wheel """ for installed_package in installed_packages: if not _can_be_cached(installed_package): continue _store_wheel_in_cache(installed_package.link.path, index_url)
[ "def", "cache_installed_wheels", "(", "index_url", ",", "installed_packages", ")", ":", "for", "installed_package", "in", "installed_packages", ":", "if", "not", "_can_be_cached", "(", "installed_package", ")", ":", "continue", "_store_wheel_in_cache", "(", "installed_package", ".", "link", ".", "path", ",", "index_url", ")" ]
After installation, pip tells us what it installed and from where. We build a structure that looks like .cache/pip-faster/wheelhouse/$index_url/$wheel
[ "After", "installation", "pip", "tells", "us", "what", "it", "installed", "and", "from", "where", "." ]
6feae7ab09ee870c582b97443cfa8f0dc8626ba7
https://github.com/Yelp/venv-update/blob/6feae7ab09ee870c582b97443cfa8f0dc8626ba7/pip_faster.py#L171-L181
16,814
Yelp/venv-update
pip_faster.py
pip
def pip(args): """Run pip, in-process.""" from sys import stdout stdout.write(colorize(('pip',) + args)) stdout.write('\n') stdout.flush() return pipmodule._internal.main(list(args))
python
def pip(args): """Run pip, in-process.""" from sys import stdout stdout.write(colorize(('pip',) + args)) stdout.write('\n') stdout.flush() return pipmodule._internal.main(list(args))
[ "def", "pip", "(", "args", ")", ":", "from", "sys", "import", "stdout", "stdout", ".", "write", "(", "colorize", "(", "(", "'pip'", ",", ")", "+", "args", ")", ")", "stdout", ".", "write", "(", "'\\n'", ")", "stdout", ".", "flush", "(", ")", "return", "pipmodule", ".", "_internal", ".", "main", "(", "list", "(", "args", ")", ")" ]
Run pip, in-process.
[ "Run", "pip", "in", "-", "process", "." ]
6feae7ab09ee870c582b97443cfa8f0dc8626ba7
https://github.com/Yelp/venv-update/blob/6feae7ab09ee870c582b97443cfa8f0dc8626ba7/pip_faster.py#L204-L211
16,815
Yelp/venv-update
pip_faster.py
dist_to_req
def dist_to_req(dist): """Make a pip.FrozenRequirement from a pkg_resources distribution object""" try: # :pragma:nocover: (pip>=10) from pip._internal.operations.freeze import FrozenRequirement except ImportError: # :pragma:nocover: (pip<10) from pip import FrozenRequirement # normalize the casing, dashes in the req name orig_name, dist.project_name = dist.project_name, dist.key result = FrozenRequirement.from_dist(dist, []) # put things back the way we found it. dist.project_name = orig_name return result
python
def dist_to_req(dist): """Make a pip.FrozenRequirement from a pkg_resources distribution object""" try: # :pragma:nocover: (pip>=10) from pip._internal.operations.freeze import FrozenRequirement except ImportError: # :pragma:nocover: (pip<10) from pip import FrozenRequirement # normalize the casing, dashes in the req name orig_name, dist.project_name = dist.project_name, dist.key result = FrozenRequirement.from_dist(dist, []) # put things back the way we found it. dist.project_name = orig_name return result
[ "def", "dist_to_req", "(", "dist", ")", ":", "try", ":", "# :pragma:nocover: (pip>=10)", "from", "pip", ".", "_internal", ".", "operations", ".", "freeze", "import", "FrozenRequirement", "except", "ImportError", ":", "# :pragma:nocover: (pip<10)", "from", "pip", "import", "FrozenRequirement", "# normalize the casing, dashes in the req name", "orig_name", ",", "dist", ".", "project_name", "=", "dist", ".", "project_name", ",", "dist", ".", "key", "result", "=", "FrozenRequirement", ".", "from_dist", "(", "dist", ",", "[", "]", ")", "# put things back the way we found it.", "dist", ".", "project_name", "=", "orig_name", "return", "result" ]
Make a pip.FrozenRequirement from a pkg_resources distribution object
[ "Make", "a", "pip", ".", "FrozenRequirement", "from", "a", "pkg_resources", "distribution", "object" ]
6feae7ab09ee870c582b97443cfa8f0dc8626ba7
https://github.com/Yelp/venv-update/blob/6feae7ab09ee870c582b97443cfa8f0dc8626ba7/pip_faster.py#L214-L227
16,816
Yelp/venv-update
pip_faster.py
req_cycle
def req_cycle(req): """is this requirement cyclic?""" cls = req.__class__ seen = {req.name} while isinstance(req.comes_from, cls): req = req.comes_from if req.name in seen: return True else: seen.add(req.name) return False
python
def req_cycle(req): """is this requirement cyclic?""" cls = req.__class__ seen = {req.name} while isinstance(req.comes_from, cls): req = req.comes_from if req.name in seen: return True else: seen.add(req.name) return False
[ "def", "req_cycle", "(", "req", ")", ":", "cls", "=", "req", ".", "__class__", "seen", "=", "{", "req", ".", "name", "}", "while", "isinstance", "(", "req", ".", "comes_from", ",", "cls", ")", ":", "req", "=", "req", ".", "comes_from", "if", "req", ".", "name", "in", "seen", ":", "return", "True", "else", ":", "seen", ".", "add", "(", "req", ".", "name", ")", "return", "False" ]
is this requirement cyclic?
[ "is", "this", "requirement", "cyclic?" ]
6feae7ab09ee870c582b97443cfa8f0dc8626ba7
https://github.com/Yelp/venv-update/blob/6feae7ab09ee870c582b97443cfa8f0dc8626ba7/pip_faster.py#L283-L293
16,817
Yelp/venv-update
pip_faster.py
pretty_req
def pretty_req(req): """ return a copy of a pip requirement that is a bit more readable, at the expense of removing some of its data """ from copy import copy req = copy(req) req.link = None req.satisfied_by = None return req
python
def pretty_req(req): """ return a copy of a pip requirement that is a bit more readable, at the expense of removing some of its data """ from copy import copy req = copy(req) req.link = None req.satisfied_by = None return req
[ "def", "pretty_req", "(", "req", ")", ":", "from", "copy", "import", "copy", "req", "=", "copy", "(", "req", ")", "req", ".", "link", "=", "None", "req", ".", "satisfied_by", "=", "None", "return", "req" ]
return a copy of a pip requirement that is a bit more readable, at the expense of removing some of its data
[ "return", "a", "copy", "of", "a", "pip", "requirement", "that", "is", "a", "bit", "more", "readable", "at", "the", "expense", "of", "removing", "some", "of", "its", "data" ]
6feae7ab09ee870c582b97443cfa8f0dc8626ba7
https://github.com/Yelp/venv-update/blob/6feae7ab09ee870c582b97443cfa8f0dc8626ba7/pip_faster.py#L296-L305
16,818
Yelp/venv-update
pip_faster.py
trace_requirements
def trace_requirements(requirements): """given an iterable of pip InstallRequirements, return the set of required packages, given their transitive requirements. """ requirements = tuple(pretty_req(r) for r in requirements) working_set = fresh_working_set() # breadth-first traversal: from collections import deque queue = deque(requirements) queued = {_package_req_to_pkg_resources_req(req.req) for req in queue} errors = [] result = [] while queue: req = queue.popleft() logger.debug('tracing: %s', req) try: dist = working_set.find_normalized(_package_req_to_pkg_resources_req(req.req)) except pkg_resources.VersionConflict as conflict: dist = conflict.args[0] errors.append('Error: version conflict: {} ({}) <-> {}'.format( dist, timid_relpath(dist.location), req )) assert dist is not None, 'Should be unreachable in pip8+' result.append(dist_to_req(dist)) # TODO: pip does no validation of extras. should we? extras = [extra for extra in req.extras if extra in dist.extras] for sub_req in sorted(dist.requires(extras=extras), key=lambda req: req.key): sub_req = InstallRequirement(sub_req, req) if req_cycle(sub_req): logger.warning('Circular dependency! %s', sub_req) continue elif sub_req.req in queued: logger.debug('already queued: %s', sub_req) continue else: logger.debug('adding sub-requirement %s', sub_req) queue.append(sub_req) queued.add(sub_req.req) if errors: raise InstallationError('\n'.join(errors)) return result
python
def trace_requirements(requirements): """given an iterable of pip InstallRequirements, return the set of required packages, given their transitive requirements. """ requirements = tuple(pretty_req(r) for r in requirements) working_set = fresh_working_set() # breadth-first traversal: from collections import deque queue = deque(requirements) queued = {_package_req_to_pkg_resources_req(req.req) for req in queue} errors = [] result = [] while queue: req = queue.popleft() logger.debug('tracing: %s', req) try: dist = working_set.find_normalized(_package_req_to_pkg_resources_req(req.req)) except pkg_resources.VersionConflict as conflict: dist = conflict.args[0] errors.append('Error: version conflict: {} ({}) <-> {}'.format( dist, timid_relpath(dist.location), req )) assert dist is not None, 'Should be unreachable in pip8+' result.append(dist_to_req(dist)) # TODO: pip does no validation of extras. should we? extras = [extra for extra in req.extras if extra in dist.extras] for sub_req in sorted(dist.requires(extras=extras), key=lambda req: req.key): sub_req = InstallRequirement(sub_req, req) if req_cycle(sub_req): logger.warning('Circular dependency! %s', sub_req) continue elif sub_req.req in queued: logger.debug('already queued: %s', sub_req) continue else: logger.debug('adding sub-requirement %s', sub_req) queue.append(sub_req) queued.add(sub_req.req) if errors: raise InstallationError('\n'.join(errors)) return result
[ "def", "trace_requirements", "(", "requirements", ")", ":", "requirements", "=", "tuple", "(", "pretty_req", "(", "r", ")", "for", "r", "in", "requirements", ")", "working_set", "=", "fresh_working_set", "(", ")", "# breadth-first traversal:", "from", "collections", "import", "deque", "queue", "=", "deque", "(", "requirements", ")", "queued", "=", "{", "_package_req_to_pkg_resources_req", "(", "req", ".", "req", ")", "for", "req", "in", "queue", "}", "errors", "=", "[", "]", "result", "=", "[", "]", "while", "queue", ":", "req", "=", "queue", ".", "popleft", "(", ")", "logger", ".", "debug", "(", "'tracing: %s'", ",", "req", ")", "try", ":", "dist", "=", "working_set", ".", "find_normalized", "(", "_package_req_to_pkg_resources_req", "(", "req", ".", "req", ")", ")", "except", "pkg_resources", ".", "VersionConflict", "as", "conflict", ":", "dist", "=", "conflict", ".", "args", "[", "0", "]", "errors", ".", "append", "(", "'Error: version conflict: {} ({}) <-> {}'", ".", "format", "(", "dist", ",", "timid_relpath", "(", "dist", ".", "location", ")", ",", "req", ")", ")", "assert", "dist", "is", "not", "None", ",", "'Should be unreachable in pip8+'", "result", ".", "append", "(", "dist_to_req", "(", "dist", ")", ")", "# TODO: pip does no validation of extras. should we?", "extras", "=", "[", "extra", "for", "extra", "in", "req", ".", "extras", "if", "extra", "in", "dist", ".", "extras", "]", "for", "sub_req", "in", "sorted", "(", "dist", ".", "requires", "(", "extras", "=", "extras", ")", ",", "key", "=", "lambda", "req", ":", "req", ".", "key", ")", ":", "sub_req", "=", "InstallRequirement", "(", "sub_req", ",", "req", ")", "if", "req_cycle", "(", "sub_req", ")", ":", "logger", ".", "warning", "(", "'Circular dependency! %s'", ",", "sub_req", ")", "continue", "elif", "sub_req", ".", "req", "in", "queued", ":", "logger", ".", "debug", "(", "'already queued: %s'", ",", "sub_req", ")", "continue", "else", ":", "logger", ".", "debug", "(", "'adding sub-requirement %s'", ",", "sub_req", ")", "queue", ".", "append", "(", "sub_req", ")", "queued", ".", "add", "(", "sub_req", ".", "req", ")", "if", "errors", ":", "raise", "InstallationError", "(", "'\\n'", ".", "join", "(", "errors", ")", ")", "return", "result" ]
given an iterable of pip InstallRequirements, return the set of required packages, given their transitive requirements.
[ "given", "an", "iterable", "of", "pip", "InstallRequirements", "return", "the", "set", "of", "required", "packages", "given", "their", "transitive", "requirements", "." ]
6feae7ab09ee870c582b97443cfa8f0dc8626ba7
https://github.com/Yelp/venv-update/blob/6feae7ab09ee870c582b97443cfa8f0dc8626ba7/pip_faster.py#L312-L359
16,819
Yelp/venv-update
pip_faster.py
patch
def patch(attrs, updates): """Perform a set of updates to a attribute dictionary, return the original values.""" orig = {} for attr, value in updates: orig[attr] = attrs[attr] attrs[attr] = value return orig
python
def patch(attrs, updates): """Perform a set of updates to a attribute dictionary, return the original values.""" orig = {} for attr, value in updates: orig[attr] = attrs[attr] attrs[attr] = value return orig
[ "def", "patch", "(", "attrs", ",", "updates", ")", ":", "orig", "=", "{", "}", "for", "attr", ",", "value", "in", "updates", ":", "orig", "[", "attr", "]", "=", "attrs", "[", "attr", "]", "attrs", "[", "attr", "]", "=", "value", "return", "orig" ]
Perform a set of updates to a attribute dictionary, return the original values.
[ "Perform", "a", "set", "of", "updates", "to", "a", "attribute", "dictionary", "return", "the", "original", "values", "." ]
6feae7ab09ee870c582b97443cfa8f0dc8626ba7
https://github.com/Yelp/venv-update/blob/6feae7ab09ee870c582b97443cfa8f0dc8626ba7/pip_faster.py#L430-L436
16,820
Yelp/venv-update
pip_faster.py
patched
def patched(attrs, updates): """A context in which some attributes temporarily have a modified value.""" orig = patch(attrs, updates.items()) try: yield orig finally: patch(attrs, orig.items())
python
def patched(attrs, updates): """A context in which some attributes temporarily have a modified value.""" orig = patch(attrs, updates.items()) try: yield orig finally: patch(attrs, orig.items())
[ "def", "patched", "(", "attrs", ",", "updates", ")", ":", "orig", "=", "patch", "(", "attrs", ",", "updates", ".", "items", "(", ")", ")", "try", ":", "yield", "orig", "finally", ":", "patch", "(", "attrs", ",", "orig", ".", "items", "(", ")", ")" ]
A context in which some attributes temporarily have a modified value.
[ "A", "context", "in", "which", "some", "attributes", "temporarily", "have", "a", "modified", "value", "." ]
6feae7ab09ee870c582b97443cfa8f0dc8626ba7
https://github.com/Yelp/venv-update/blob/6feae7ab09ee870c582b97443cfa8f0dc8626ba7/pip_faster.py#L440-L446
16,821
Yelp/venv-update
pip_faster.py
pipfaster_packagefinder
def pipfaster_packagefinder(): """Provide a short-circuited search when the requirement is pinned and appears on disk. Suggested upstream at: https://github.com/pypa/pip/pull/2114 """ # A poor man's dependency injection: monkeypatch :( try: # :pragma:nocover: pip>=18.1 from pip._internal.cli import base_command except ImportError: # :pragma:nocover: pip<18.1 from pip._internal import basecommand as base_command return patched(vars(base_command), {'PackageFinder': FasterPackageFinder})
python
def pipfaster_packagefinder(): """Provide a short-circuited search when the requirement is pinned and appears on disk. Suggested upstream at: https://github.com/pypa/pip/pull/2114 """ # A poor man's dependency injection: monkeypatch :( try: # :pragma:nocover: pip>=18.1 from pip._internal.cli import base_command except ImportError: # :pragma:nocover: pip<18.1 from pip._internal import basecommand as base_command return patched(vars(base_command), {'PackageFinder': FasterPackageFinder})
[ "def", "pipfaster_packagefinder", "(", ")", ":", "# A poor man's dependency injection: monkeypatch :(", "try", ":", "# :pragma:nocover: pip>=18.1", "from", "pip", ".", "_internal", ".", "cli", "import", "base_command", "except", "ImportError", ":", "# :pragma:nocover: pip<18.1", "from", "pip", ".", "_internal", "import", "basecommand", "as", "base_command", "return", "patched", "(", "vars", "(", "base_command", ")", ",", "{", "'PackageFinder'", ":", "FasterPackageFinder", "}", ")" ]
Provide a short-circuited search when the requirement is pinned and appears on disk. Suggested upstream at: https://github.com/pypa/pip/pull/2114
[ "Provide", "a", "short", "-", "circuited", "search", "when", "the", "requirement", "is", "pinned", "and", "appears", "on", "disk", "." ]
6feae7ab09ee870c582b97443cfa8f0dc8626ba7
https://github.com/Yelp/venv-update/blob/6feae7ab09ee870c582b97443cfa8f0dc8626ba7/pip_faster.py#L454-L464
16,822
Yelp/venv-update
pip_faster.py
pipfaster_download_cacher
def pipfaster_download_cacher(index_urls): """vanilla pip stores a cache of the http session in its cache and not the wheel files. We intercept the download and save those files into our cache """ from pip._internal import download orig = download._download_http_url patched_fn = get_patched_download_http_url(orig, index_urls) return patched(vars(download), {'_download_http_url': patched_fn})
python
def pipfaster_download_cacher(index_urls): """vanilla pip stores a cache of the http session in its cache and not the wheel files. We intercept the download and save those files into our cache """ from pip._internal import download orig = download._download_http_url patched_fn = get_patched_download_http_url(orig, index_urls) return patched(vars(download), {'_download_http_url': patched_fn})
[ "def", "pipfaster_download_cacher", "(", "index_urls", ")", ":", "from", "pip", ".", "_internal", "import", "download", "orig", "=", "download", ".", "_download_http_url", "patched_fn", "=", "get_patched_download_http_url", "(", "orig", ",", "index_urls", ")", "return", "patched", "(", "vars", "(", "download", ")", ",", "{", "'_download_http_url'", ":", "patched_fn", "}", ")" ]
vanilla pip stores a cache of the http session in its cache and not the wheel files. We intercept the download and save those files into our cache
[ "vanilla", "pip", "stores", "a", "cache", "of", "the", "http", "session", "in", "its", "cache", "and", "not", "the", "wheel", "files", ".", "We", "intercept", "the", "download", "and", "save", "those", "files", "into", "our", "cache" ]
6feae7ab09ee870c582b97443cfa8f0dc8626ba7
https://github.com/Yelp/venv-update/blob/6feae7ab09ee870c582b97443cfa8f0dc8626ba7/pip_faster.py#L467-L475
16,823
Yelp/venv-update
pip_faster.py
FasterInstallCommand.run
def run(self, options, args): """update install options with caching values""" if options.prune: previously_installed = pip_get_installed() index_urls = [options.index_url] + options.extra_index_urls with pipfaster_download_cacher(index_urls): requirement_set = super(FasterInstallCommand, self).run( options, args, ) required = requirement_set.requirements.values() # With extra_index_urls we don't know where the wheel is from if not options.extra_index_urls: cache_installed_wheels(options.index_url, requirement_set.successfully_downloaded) if not options.ignore_dependencies: # transitive requirements, previously installed, are also required # this has a side-effect of finding any missing / conflicting requirements required = trace_requirements(required) if not options.prune: return requirement_set extraneous = ( reqnames(previously_installed) - reqnames(required) - # the stage1 bootstrap packages reqnames(trace_requirements([install_req_from_line('venv-update')])) - # See #186 frozenset(('pkg-resources',)) ) if extraneous: extraneous = sorted(extraneous) pip(('uninstall', '--yes') + tuple(extraneous))
python
def run(self, options, args): """update install options with caching values""" if options.prune: previously_installed = pip_get_installed() index_urls = [options.index_url] + options.extra_index_urls with pipfaster_download_cacher(index_urls): requirement_set = super(FasterInstallCommand, self).run( options, args, ) required = requirement_set.requirements.values() # With extra_index_urls we don't know where the wheel is from if not options.extra_index_urls: cache_installed_wheels(options.index_url, requirement_set.successfully_downloaded) if not options.ignore_dependencies: # transitive requirements, previously installed, are also required # this has a side-effect of finding any missing / conflicting requirements required = trace_requirements(required) if not options.prune: return requirement_set extraneous = ( reqnames(previously_installed) - reqnames(required) - # the stage1 bootstrap packages reqnames(trace_requirements([install_req_from_line('venv-update')])) - # See #186 frozenset(('pkg-resources',)) ) if extraneous: extraneous = sorted(extraneous) pip(('uninstall', '--yes') + tuple(extraneous))
[ "def", "run", "(", "self", ",", "options", ",", "args", ")", ":", "if", "options", ".", "prune", ":", "previously_installed", "=", "pip_get_installed", "(", ")", "index_urls", "=", "[", "options", ".", "index_url", "]", "+", "options", ".", "extra_index_urls", "with", "pipfaster_download_cacher", "(", "index_urls", ")", ":", "requirement_set", "=", "super", "(", "FasterInstallCommand", ",", "self", ")", ".", "run", "(", "options", ",", "args", ",", ")", "required", "=", "requirement_set", ".", "requirements", ".", "values", "(", ")", "# With extra_index_urls we don't know where the wheel is from", "if", "not", "options", ".", "extra_index_urls", ":", "cache_installed_wheels", "(", "options", ".", "index_url", ",", "requirement_set", ".", "successfully_downloaded", ")", "if", "not", "options", ".", "ignore_dependencies", ":", "# transitive requirements, previously installed, are also required", "# this has a side-effect of finding any missing / conflicting requirements", "required", "=", "trace_requirements", "(", "required", ")", "if", "not", "options", ".", "prune", ":", "return", "requirement_set", "extraneous", "=", "(", "reqnames", "(", "previously_installed", ")", "-", "reqnames", "(", "required", ")", "-", "# the stage1 bootstrap packages", "reqnames", "(", "trace_requirements", "(", "[", "install_req_from_line", "(", "'venv-update'", ")", "]", ")", ")", "-", "# See #186", "frozenset", "(", "(", "'pkg-resources'", ",", ")", ")", ")", "if", "extraneous", ":", "extraneous", "=", "sorted", "(", "extraneous", ")", "pip", "(", "(", "'uninstall'", ",", "'--yes'", ")", "+", "tuple", "(", "extraneous", ")", ")" ]
update install options with caching values
[ "update", "install", "options", "with", "caching", "values" ]
6feae7ab09ee870c582b97443cfa8f0dc8626ba7
https://github.com/Yelp/venv-update/blob/6feae7ab09ee870c582b97443cfa8f0dc8626ba7/pip_faster.py#L387-L423
16,824
RedisJSON/rejson-py
rejson/client.py
Client.setEncoder
def setEncoder(self, encoder): """ Sets the client's encoder ``encoder`` should be an instance of a ``json.JSONEncoder`` class """ if not encoder: self._encoder = json.JSONEncoder() else: self._encoder = encoder self._encode = self._encoder.encode
python
def setEncoder(self, encoder): """ Sets the client's encoder ``encoder`` should be an instance of a ``json.JSONEncoder`` class """ if not encoder: self._encoder = json.JSONEncoder() else: self._encoder = encoder self._encode = self._encoder.encode
[ "def", "setEncoder", "(", "self", ",", "encoder", ")", ":", "if", "not", "encoder", ":", "self", ".", "_encoder", "=", "json", ".", "JSONEncoder", "(", ")", "else", ":", "self", ".", "_encoder", "=", "encoder", "self", ".", "_encode", "=", "self", ".", "_encoder", ".", "encode" ]
Sets the client's encoder ``encoder`` should be an instance of a ``json.JSONEncoder`` class
[ "Sets", "the", "client", "s", "encoder", "encoder", "should", "be", "an", "instance", "of", "a", "json", ".", "JSONEncoder", "class" ]
55f0adf3adc40f5a769e28e541dbbf5377b90ec6
https://github.com/RedisJSON/rejson-py/blob/55f0adf3adc40f5a769e28e541dbbf5377b90ec6/rejson/client.py#L78-L87
16,825
RedisJSON/rejson-py
rejson/client.py
Client.setDecoder
def setDecoder(self, decoder): """ Sets the client's decoder ``decoder`` should be an instance of a ``json.JSONDecoder`` class """ if not decoder: self._decoder = json.JSONDecoder() else: self._decoder = decoder self._decode = self._decoder.decode
python
def setDecoder(self, decoder): """ Sets the client's decoder ``decoder`` should be an instance of a ``json.JSONDecoder`` class """ if not decoder: self._decoder = json.JSONDecoder() else: self._decoder = decoder self._decode = self._decoder.decode
[ "def", "setDecoder", "(", "self", ",", "decoder", ")", ":", "if", "not", "decoder", ":", "self", ".", "_decoder", "=", "json", ".", "JSONDecoder", "(", ")", "else", ":", "self", ".", "_decoder", "=", "decoder", "self", ".", "_decode", "=", "self", ".", "_decoder", ".", "decode" ]
Sets the client's decoder ``decoder`` should be an instance of a ``json.JSONDecoder`` class
[ "Sets", "the", "client", "s", "decoder", "decoder", "should", "be", "an", "instance", "of", "a", "json", ".", "JSONDecoder", "class" ]
55f0adf3adc40f5a769e28e541dbbf5377b90ec6
https://github.com/RedisJSON/rejson-py/blob/55f0adf3adc40f5a769e28e541dbbf5377b90ec6/rejson/client.py#L89-L98
16,826
RedisJSON/rejson-py
rejson/client.py
Client.jsondel
def jsondel(self, name, path=Path.rootPath()): """ Deletes the JSON value stored at key ``name`` under ``path`` """ return self.execute_command('JSON.DEL', name, str_path(path))
python
def jsondel(self, name, path=Path.rootPath()): """ Deletes the JSON value stored at key ``name`` under ``path`` """ return self.execute_command('JSON.DEL', name, str_path(path))
[ "def", "jsondel", "(", "self", ",", "name", ",", "path", "=", "Path", ".", "rootPath", "(", ")", ")", ":", "return", "self", ".", "execute_command", "(", "'JSON.DEL'", ",", "name", ",", "str_path", "(", "path", ")", ")" ]
Deletes the JSON value stored at key ``name`` under ``path``
[ "Deletes", "the", "JSON", "value", "stored", "at", "key", "name", "under", "path" ]
55f0adf3adc40f5a769e28e541dbbf5377b90ec6
https://github.com/RedisJSON/rejson-py/blob/55f0adf3adc40f5a769e28e541dbbf5377b90ec6/rejson/client.py#L100-L104
16,827
RedisJSON/rejson-py
rejson/client.py
Client.jsonget
def jsonget(self, name, *args): """ Get the object stored as a JSON value at key ``name`` ``args`` is zero or more paths, and defaults to root path """ pieces = [name] if len(args) == 0: pieces.append(Path.rootPath()) else: for p in args: pieces.append(str_path(p)) # Handle case where key doesn't exist. The JSONDecoder would raise a # TypeError exception since it can't decode None try: return self.execute_command('JSON.GET', *pieces) except TypeError: return None
python
def jsonget(self, name, *args): """ Get the object stored as a JSON value at key ``name`` ``args`` is zero or more paths, and defaults to root path """ pieces = [name] if len(args) == 0: pieces.append(Path.rootPath()) else: for p in args: pieces.append(str_path(p)) # Handle case where key doesn't exist. The JSONDecoder would raise a # TypeError exception since it can't decode None try: return self.execute_command('JSON.GET', *pieces) except TypeError: return None
[ "def", "jsonget", "(", "self", ",", "name", ",", "*", "args", ")", ":", "pieces", "=", "[", "name", "]", "if", "len", "(", "args", ")", "==", "0", ":", "pieces", ".", "append", "(", "Path", ".", "rootPath", "(", ")", ")", "else", ":", "for", "p", "in", "args", ":", "pieces", ".", "append", "(", "str_path", "(", "p", ")", ")", "# Handle case where key doesn't exist. The JSONDecoder would raise a", "# TypeError exception since it can't decode None", "try", ":", "return", "self", ".", "execute_command", "(", "'JSON.GET'", ",", "*", "pieces", ")", "except", "TypeError", ":", "return", "None" ]
Get the object stored as a JSON value at key ``name`` ``args`` is zero or more paths, and defaults to root path
[ "Get", "the", "object", "stored", "as", "a", "JSON", "value", "at", "key", "name", "args", "is", "zero", "or", "more", "paths", "and", "defaults", "to", "root", "path" ]
55f0adf3adc40f5a769e28e541dbbf5377b90ec6
https://github.com/RedisJSON/rejson-py/blob/55f0adf3adc40f5a769e28e541dbbf5377b90ec6/rejson/client.py#L106-L123
16,828
RedisJSON/rejson-py
rejson/client.py
Client.jsonmget
def jsonmget(self, path, *args): """ Gets the objects stored as a JSON values under ``path`` from keys ``args`` """ pieces = [] pieces.extend(args) pieces.append(str_path(path)) return self.execute_command('JSON.MGET', *pieces)
python
def jsonmget(self, path, *args): """ Gets the objects stored as a JSON values under ``path`` from keys ``args`` """ pieces = [] pieces.extend(args) pieces.append(str_path(path)) return self.execute_command('JSON.MGET', *pieces)
[ "def", "jsonmget", "(", "self", ",", "path", ",", "*", "args", ")", ":", "pieces", "=", "[", "]", "pieces", ".", "extend", "(", "args", ")", "pieces", ".", "append", "(", "str_path", "(", "path", ")", ")", "return", "self", ".", "execute_command", "(", "'JSON.MGET'", ",", "*", "pieces", ")" ]
Gets the objects stored as a JSON values under ``path`` from keys ``args``
[ "Gets", "the", "objects", "stored", "as", "a", "JSON", "values", "under", "path", "from", "keys", "args" ]
55f0adf3adc40f5a769e28e541dbbf5377b90ec6
https://github.com/RedisJSON/rejson-py/blob/55f0adf3adc40f5a769e28e541dbbf5377b90ec6/rejson/client.py#L125-L133
16,829
RedisJSON/rejson-py
rejson/client.py
Client.jsonset
def jsonset(self, name, path, obj, nx=False, xx=False): """ Set the JSON value at key ``name`` under the ``path`` to ``obj`` ``nx`` if set to True, set ``value`` only if it does not exist ``xx`` if set to True, set ``value`` only if it exists """ pieces = [name, str_path(path), self._encode(obj)] # Handle existential modifiers if nx and xx: raise Exception('nx and xx are mutually exclusive: use one, the ' 'other or neither - but not both') elif nx: pieces.append('NX') elif xx: pieces.append('XX') return self.execute_command('JSON.SET', *pieces)
python
def jsonset(self, name, path, obj, nx=False, xx=False): """ Set the JSON value at key ``name`` under the ``path`` to ``obj`` ``nx`` if set to True, set ``value`` only if it does not exist ``xx`` if set to True, set ``value`` only if it exists """ pieces = [name, str_path(path), self._encode(obj)] # Handle existential modifiers if nx and xx: raise Exception('nx and xx are mutually exclusive: use one, the ' 'other or neither - but not both') elif nx: pieces.append('NX') elif xx: pieces.append('XX') return self.execute_command('JSON.SET', *pieces)
[ "def", "jsonset", "(", "self", ",", "name", ",", "path", ",", "obj", ",", "nx", "=", "False", ",", "xx", "=", "False", ")", ":", "pieces", "=", "[", "name", ",", "str_path", "(", "path", ")", ",", "self", ".", "_encode", "(", "obj", ")", "]", "# Handle existential modifiers", "if", "nx", "and", "xx", ":", "raise", "Exception", "(", "'nx and xx are mutually exclusive: use one, the '", "'other or neither - but not both'", ")", "elif", "nx", ":", "pieces", ".", "append", "(", "'NX'", ")", "elif", "xx", ":", "pieces", ".", "append", "(", "'XX'", ")", "return", "self", ".", "execute_command", "(", "'JSON.SET'", ",", "*", "pieces", ")" ]
Set the JSON value at key ``name`` under the ``path`` to ``obj`` ``nx`` if set to True, set ``value`` only if it does not exist ``xx`` if set to True, set ``value`` only if it exists
[ "Set", "the", "JSON", "value", "at", "key", "name", "under", "the", "path", "to", "obj", "nx", "if", "set", "to", "True", "set", "value", "only", "if", "it", "does", "not", "exist", "xx", "if", "set", "to", "True", "set", "value", "only", "if", "it", "exists" ]
55f0adf3adc40f5a769e28e541dbbf5377b90ec6
https://github.com/RedisJSON/rejson-py/blob/55f0adf3adc40f5a769e28e541dbbf5377b90ec6/rejson/client.py#L135-L151
16,830
RedisJSON/rejson-py
rejson/client.py
Client.jsontype
def jsontype(self, name, path=Path.rootPath()): """ Gets the type of the JSON value under ``path`` from key ``name`` """ return self.execute_command('JSON.TYPE', name, str_path(path))
python
def jsontype(self, name, path=Path.rootPath()): """ Gets the type of the JSON value under ``path`` from key ``name`` """ return self.execute_command('JSON.TYPE', name, str_path(path))
[ "def", "jsontype", "(", "self", ",", "name", ",", "path", "=", "Path", ".", "rootPath", "(", ")", ")", ":", "return", "self", ".", "execute_command", "(", "'JSON.TYPE'", ",", "name", ",", "str_path", "(", "path", ")", ")" ]
Gets the type of the JSON value under ``path`` from key ``name``
[ "Gets", "the", "type", "of", "the", "JSON", "value", "under", "path", "from", "key", "name" ]
55f0adf3adc40f5a769e28e541dbbf5377b90ec6
https://github.com/RedisJSON/rejson-py/blob/55f0adf3adc40f5a769e28e541dbbf5377b90ec6/rejson/client.py#L153-L157
16,831
RedisJSON/rejson-py
rejson/client.py
Client.jsonstrappend
def jsonstrappend(self, name, string, path=Path.rootPath()): """ Appends to the string JSON value under ``path`` at key ``name`` the provided ``string`` """ return self.execute_command('JSON.STRAPPEND', name, str_path(path), self._encode(string))
python
def jsonstrappend(self, name, string, path=Path.rootPath()): """ Appends to the string JSON value under ``path`` at key ``name`` the provided ``string`` """ return self.execute_command('JSON.STRAPPEND', name, str_path(path), self._encode(string))
[ "def", "jsonstrappend", "(", "self", ",", "name", ",", "string", ",", "path", "=", "Path", ".", "rootPath", "(", ")", ")", ":", "return", "self", ".", "execute_command", "(", "'JSON.STRAPPEND'", ",", "name", ",", "str_path", "(", "path", ")", ",", "self", ".", "_encode", "(", "string", ")", ")" ]
Appends to the string JSON value under ``path`` at key ``name`` the provided ``string``
[ "Appends", "to", "the", "string", "JSON", "value", "under", "path", "at", "key", "name", "the", "provided", "string" ]
55f0adf3adc40f5a769e28e541dbbf5377b90ec6
https://github.com/RedisJSON/rejson-py/blob/55f0adf3adc40f5a769e28e541dbbf5377b90ec6/rejson/client.py#L173-L178
16,832
RedisJSON/rejson-py
rejson/client.py
Client.jsonstrlen
def jsonstrlen(self, name, path=Path.rootPath()): """ Returns the length of the string JSON value under ``path`` at key ``name`` """ return self.execute_command('JSON.STRLEN', name, str_path(path))
python
def jsonstrlen(self, name, path=Path.rootPath()): """ Returns the length of the string JSON value under ``path`` at key ``name`` """ return self.execute_command('JSON.STRLEN', name, str_path(path))
[ "def", "jsonstrlen", "(", "self", ",", "name", ",", "path", "=", "Path", ".", "rootPath", "(", ")", ")", ":", "return", "self", ".", "execute_command", "(", "'JSON.STRLEN'", ",", "name", ",", "str_path", "(", "path", ")", ")" ]
Returns the length of the string JSON value under ``path`` at key ``name``
[ "Returns", "the", "length", "of", "the", "string", "JSON", "value", "under", "path", "at", "key", "name" ]
55f0adf3adc40f5a769e28e541dbbf5377b90ec6
https://github.com/RedisJSON/rejson-py/blob/55f0adf3adc40f5a769e28e541dbbf5377b90ec6/rejson/client.py#L180-L185
16,833
RedisJSON/rejson-py
rejson/client.py
Client.jsonarrappend
def jsonarrappend(self, name, path=Path.rootPath(), *args): """ Appends the objects ``args`` to the array under the ``path` in key ``name`` """ pieces = [name, str_path(path)] for o in args: pieces.append(self._encode(o)) return self.execute_command('JSON.ARRAPPEND', *pieces)
python
def jsonarrappend(self, name, path=Path.rootPath(), *args): """ Appends the objects ``args`` to the array under the ``path` in key ``name`` """ pieces = [name, str_path(path)] for o in args: pieces.append(self._encode(o)) return self.execute_command('JSON.ARRAPPEND', *pieces)
[ "def", "jsonarrappend", "(", "self", ",", "name", ",", "path", "=", "Path", ".", "rootPath", "(", ")", ",", "*", "args", ")", ":", "pieces", "=", "[", "name", ",", "str_path", "(", "path", ")", "]", "for", "o", "in", "args", ":", "pieces", ".", "append", "(", "self", ".", "_encode", "(", "o", ")", ")", "return", "self", ".", "execute_command", "(", "'JSON.ARRAPPEND'", ",", "*", "pieces", ")" ]
Appends the objects ``args`` to the array under the ``path` in key ``name``
[ "Appends", "the", "objects", "args", "to", "the", "array", "under", "the", "path", "in", "key", "name" ]
55f0adf3adc40f5a769e28e541dbbf5377b90ec6
https://github.com/RedisJSON/rejson-py/blob/55f0adf3adc40f5a769e28e541dbbf5377b90ec6/rejson/client.py#L187-L195
16,834
RedisJSON/rejson-py
rejson/client.py
Client.jsonarrindex
def jsonarrindex(self, name, path, scalar, start=0, stop=-1): """ Returns the index of ``scalar`` in the JSON array under ``path`` at key ``name``. The search can be limited using the optional inclusive ``start`` and exclusive ``stop`` indices. """ return self.execute_command('JSON.ARRINDEX', name, str_path(path), self._encode(scalar), start, stop)
python
def jsonarrindex(self, name, path, scalar, start=0, stop=-1): """ Returns the index of ``scalar`` in the JSON array under ``path`` at key ``name``. The search can be limited using the optional inclusive ``start`` and exclusive ``stop`` indices. """ return self.execute_command('JSON.ARRINDEX', name, str_path(path), self._encode(scalar), start, stop)
[ "def", "jsonarrindex", "(", "self", ",", "name", ",", "path", ",", "scalar", ",", "start", "=", "0", ",", "stop", "=", "-", "1", ")", ":", "return", "self", ".", "execute_command", "(", "'JSON.ARRINDEX'", ",", "name", ",", "str_path", "(", "path", ")", ",", "self", ".", "_encode", "(", "scalar", ")", ",", "start", ",", "stop", ")" ]
Returns the index of ``scalar`` in the JSON array under ``path`` at key ``name``. The search can be limited using the optional inclusive ``start`` and exclusive ``stop`` indices.
[ "Returns", "the", "index", "of", "scalar", "in", "the", "JSON", "array", "under", "path", "at", "key", "name", ".", "The", "search", "can", "be", "limited", "using", "the", "optional", "inclusive", "start", "and", "exclusive", "stop", "indices", "." ]
55f0adf3adc40f5a769e28e541dbbf5377b90ec6
https://github.com/RedisJSON/rejson-py/blob/55f0adf3adc40f5a769e28e541dbbf5377b90ec6/rejson/client.py#L197-L203
16,835
RedisJSON/rejson-py
rejson/client.py
Client.jsonarrinsert
def jsonarrinsert(self, name, path, index, *args): """ Inserts the objects ``args`` to the array at index ``index`` under the ``path` in key ``name`` """ pieces = [name, str_path(path), index] for o in args: pieces.append(self._encode(o)) return self.execute_command('JSON.ARRINSERT', *pieces)
python
def jsonarrinsert(self, name, path, index, *args): """ Inserts the objects ``args`` to the array at index ``index`` under the ``path` in key ``name`` """ pieces = [name, str_path(path), index] for o in args: pieces.append(self._encode(o)) return self.execute_command('JSON.ARRINSERT', *pieces)
[ "def", "jsonarrinsert", "(", "self", ",", "name", ",", "path", ",", "index", ",", "*", "args", ")", ":", "pieces", "=", "[", "name", ",", "str_path", "(", "path", ")", ",", "index", "]", "for", "o", "in", "args", ":", "pieces", ".", "append", "(", "self", ".", "_encode", "(", "o", ")", ")", "return", "self", ".", "execute_command", "(", "'JSON.ARRINSERT'", ",", "*", "pieces", ")" ]
Inserts the objects ``args`` to the array at index ``index`` under the ``path` in key ``name``
[ "Inserts", "the", "objects", "args", "to", "the", "array", "at", "index", "index", "under", "the", "path", "in", "key", "name" ]
55f0adf3adc40f5a769e28e541dbbf5377b90ec6
https://github.com/RedisJSON/rejson-py/blob/55f0adf3adc40f5a769e28e541dbbf5377b90ec6/rejson/client.py#L205-L213
16,836
RedisJSON/rejson-py
rejson/client.py
Client.jsonarrlen
def jsonarrlen(self, name, path=Path.rootPath()): """ Returns the length of the array JSON value under ``path`` at key ``name`` """ return self.execute_command('JSON.ARRLEN', name, str_path(path))
python
def jsonarrlen(self, name, path=Path.rootPath()): """ Returns the length of the array JSON value under ``path`` at key ``name`` """ return self.execute_command('JSON.ARRLEN', name, str_path(path))
[ "def", "jsonarrlen", "(", "self", ",", "name", ",", "path", "=", "Path", ".", "rootPath", "(", ")", ")", ":", "return", "self", ".", "execute_command", "(", "'JSON.ARRLEN'", ",", "name", ",", "str_path", "(", "path", ")", ")" ]
Returns the length of the array JSON value under ``path`` at key ``name``
[ "Returns", "the", "length", "of", "the", "array", "JSON", "value", "under", "path", "at", "key", "name" ]
55f0adf3adc40f5a769e28e541dbbf5377b90ec6
https://github.com/RedisJSON/rejson-py/blob/55f0adf3adc40f5a769e28e541dbbf5377b90ec6/rejson/client.py#L215-L220
16,837
RedisJSON/rejson-py
rejson/client.py
Client.jsonarrpop
def jsonarrpop(self, name, path=Path.rootPath(), index=-1): """ Pops the element at ``index`` in the array JSON value under ``path`` at key ``name`` """ return self.execute_command('JSON.ARRPOP', name, str_path(path), index)
python
def jsonarrpop(self, name, path=Path.rootPath(), index=-1): """ Pops the element at ``index`` in the array JSON value under ``path`` at key ``name`` """ return self.execute_command('JSON.ARRPOP', name, str_path(path), index)
[ "def", "jsonarrpop", "(", "self", ",", "name", ",", "path", "=", "Path", ".", "rootPath", "(", ")", ",", "index", "=", "-", "1", ")", ":", "return", "self", ".", "execute_command", "(", "'JSON.ARRPOP'", ",", "name", ",", "str_path", "(", "path", ")", ",", "index", ")" ]
Pops the element at ``index`` in the array JSON value under ``path`` at key ``name``
[ "Pops", "the", "element", "at", "index", "in", "the", "array", "JSON", "value", "under", "path", "at", "key", "name" ]
55f0adf3adc40f5a769e28e541dbbf5377b90ec6
https://github.com/RedisJSON/rejson-py/blob/55f0adf3adc40f5a769e28e541dbbf5377b90ec6/rejson/client.py#L222-L227
16,838
RedisJSON/rejson-py
rejson/client.py
Client.jsonarrtrim
def jsonarrtrim(self, name, path, start, stop): """ Trim the array JSON value under ``path`` at key ``name`` to the inclusive range given by ``start`` and ``stop`` """ return self.execute_command('JSON.ARRTRIM', name, str_path(path), start, stop)
python
def jsonarrtrim(self, name, path, start, stop): """ Trim the array JSON value under ``path`` at key ``name`` to the inclusive range given by ``start`` and ``stop`` """ return self.execute_command('JSON.ARRTRIM', name, str_path(path), start, stop)
[ "def", "jsonarrtrim", "(", "self", ",", "name", ",", "path", ",", "start", ",", "stop", ")", ":", "return", "self", ".", "execute_command", "(", "'JSON.ARRTRIM'", ",", "name", ",", "str_path", "(", "path", ")", ",", "start", ",", "stop", ")" ]
Trim the array JSON value under ``path`` at key ``name`` to the inclusive range given by ``start`` and ``stop``
[ "Trim", "the", "array", "JSON", "value", "under", "path", "at", "key", "name", "to", "the", "inclusive", "range", "given", "by", "start", "and", "stop" ]
55f0adf3adc40f5a769e28e541dbbf5377b90ec6
https://github.com/RedisJSON/rejson-py/blob/55f0adf3adc40f5a769e28e541dbbf5377b90ec6/rejson/client.py#L229-L234
16,839
RedisJSON/rejson-py
rejson/client.py
Client.jsonobjkeys
def jsonobjkeys(self, name, path=Path.rootPath()): """ Returns the key names in the dictionary JSON value under ``path`` at key ``name`` """ return self.execute_command('JSON.OBJKEYS', name, str_path(path))
python
def jsonobjkeys(self, name, path=Path.rootPath()): """ Returns the key names in the dictionary JSON value under ``path`` at key ``name`` """ return self.execute_command('JSON.OBJKEYS', name, str_path(path))
[ "def", "jsonobjkeys", "(", "self", ",", "name", ",", "path", "=", "Path", ".", "rootPath", "(", ")", ")", ":", "return", "self", ".", "execute_command", "(", "'JSON.OBJKEYS'", ",", "name", ",", "str_path", "(", "path", ")", ")" ]
Returns the key names in the dictionary JSON value under ``path`` at key ``name``
[ "Returns", "the", "key", "names", "in", "the", "dictionary", "JSON", "value", "under", "path", "at", "key", "name" ]
55f0adf3adc40f5a769e28e541dbbf5377b90ec6
https://github.com/RedisJSON/rejson-py/blob/55f0adf3adc40f5a769e28e541dbbf5377b90ec6/rejson/client.py#L236-L241
16,840
RedisJSON/rejson-py
rejson/client.py
Client.jsonobjlen
def jsonobjlen(self, name, path=Path.rootPath()): """ Returns the length of the dictionary JSON value under ``path`` at key ``name`` """ return self.execute_command('JSON.OBJLEN', name, str_path(path))
python
def jsonobjlen(self, name, path=Path.rootPath()): """ Returns the length of the dictionary JSON value under ``path`` at key ``name`` """ return self.execute_command('JSON.OBJLEN', name, str_path(path))
[ "def", "jsonobjlen", "(", "self", ",", "name", ",", "path", "=", "Path", ".", "rootPath", "(", ")", ")", ":", "return", "self", ".", "execute_command", "(", "'JSON.OBJLEN'", ",", "name", ",", "str_path", "(", "path", ")", ")" ]
Returns the length of the dictionary JSON value under ``path`` at key ``name``
[ "Returns", "the", "length", "of", "the", "dictionary", "JSON", "value", "under", "path", "at", "key", "name" ]
55f0adf3adc40f5a769e28e541dbbf5377b90ec6
https://github.com/RedisJSON/rejson-py/blob/55f0adf3adc40f5a769e28e541dbbf5377b90ec6/rejson/client.py#L243-L248
16,841
mitodl/django-server-status
server_status/views.py
get_pg_info
def get_pg_info(): """Check PostgreSQL connection.""" from psycopg2 import connect, OperationalError log.debug("entered get_pg_info") try: conf = settings.DATABASES['default'] database = conf["NAME"] user = conf["USER"] host = conf["HOST"] port = conf["PORT"] password = conf["PASSWORD"] except (AttributeError, KeyError): log.error("No PostgreSQL connection info found in settings.") return {"status": NO_CONFIG} except TypeError: return {"status": DOWN} log.debug("got past getting conf") try: start = datetime.now() connection = connect( database=database, user=user, host=host, port=port, password=password, connect_timeout=TIMEOUT_SECONDS, ) log.debug("at end of context manager") micro = (datetime.now() - start).microseconds connection.close() except (OperationalError, KeyError) as ex: log.error("No PostgreSQL connection info found in settings. %s Error: %s", conf, ex) return {"status": DOWN} log.debug("got to end of postgres check successfully") return {"status": UP, "response_microseconds": micro}
python
def get_pg_info(): """Check PostgreSQL connection.""" from psycopg2 import connect, OperationalError log.debug("entered get_pg_info") try: conf = settings.DATABASES['default'] database = conf["NAME"] user = conf["USER"] host = conf["HOST"] port = conf["PORT"] password = conf["PASSWORD"] except (AttributeError, KeyError): log.error("No PostgreSQL connection info found in settings.") return {"status": NO_CONFIG} except TypeError: return {"status": DOWN} log.debug("got past getting conf") try: start = datetime.now() connection = connect( database=database, user=user, host=host, port=port, password=password, connect_timeout=TIMEOUT_SECONDS, ) log.debug("at end of context manager") micro = (datetime.now() - start).microseconds connection.close() except (OperationalError, KeyError) as ex: log.error("No PostgreSQL connection info found in settings. %s Error: %s", conf, ex) return {"status": DOWN} log.debug("got to end of postgres check successfully") return {"status": UP, "response_microseconds": micro}
[ "def", "get_pg_info", "(", ")", ":", "from", "psycopg2", "import", "connect", ",", "OperationalError", "log", ".", "debug", "(", "\"entered get_pg_info\"", ")", "try", ":", "conf", "=", "settings", ".", "DATABASES", "[", "'default'", "]", "database", "=", "conf", "[", "\"NAME\"", "]", "user", "=", "conf", "[", "\"USER\"", "]", "host", "=", "conf", "[", "\"HOST\"", "]", "port", "=", "conf", "[", "\"PORT\"", "]", "password", "=", "conf", "[", "\"PASSWORD\"", "]", "except", "(", "AttributeError", ",", "KeyError", ")", ":", "log", ".", "error", "(", "\"No PostgreSQL connection info found in settings.\"", ")", "return", "{", "\"status\"", ":", "NO_CONFIG", "}", "except", "TypeError", ":", "return", "{", "\"status\"", ":", "DOWN", "}", "log", ".", "debug", "(", "\"got past getting conf\"", ")", "try", ":", "start", "=", "datetime", ".", "now", "(", ")", "connection", "=", "connect", "(", "database", "=", "database", ",", "user", "=", "user", ",", "host", "=", "host", ",", "port", "=", "port", ",", "password", "=", "password", ",", "connect_timeout", "=", "TIMEOUT_SECONDS", ",", ")", "log", ".", "debug", "(", "\"at end of context manager\"", ")", "micro", "=", "(", "datetime", ".", "now", "(", ")", "-", "start", ")", ".", "microseconds", "connection", ".", "close", "(", ")", "except", "(", "OperationalError", ",", "KeyError", ")", "as", "ex", ":", "log", ".", "error", "(", "\"No PostgreSQL connection info found in settings. %s Error: %s\"", ",", "conf", ",", "ex", ")", "return", "{", "\"status\"", ":", "DOWN", "}", "log", ".", "debug", "(", "\"got to end of postgres check successfully\"", ")", "return", "{", "\"status\"", ":", "UP", ",", "\"response_microseconds\"", ":", "micro", "}" ]
Check PostgreSQL connection.
[ "Check", "PostgreSQL", "connection", "." ]
99bd29343138f94a08718fdbd9285e551751777b
https://github.com/mitodl/django-server-status/blob/99bd29343138f94a08718fdbd9285e551751777b/server_status/views.py#L30-L61
16,842
mitodl/django-server-status
server_status/views.py
get_redis_info
def get_redis_info(): """Check Redis connection.""" from kombu.utils.url import _parse_url as parse_redis_url from redis import ( StrictRedis, ConnectionError as RedisConnectionError, ResponseError as RedisResponseError, ) for conf_name in ('REDIS_URL', 'BROKER_URL', 'CELERY_BROKER_URL'): if hasattr(settings, conf_name): url = getattr(settings, conf_name) if url.startswith('redis://'): break else: log.error("No redis connection info found in settings.") return {"status": NO_CONFIG} _, host, port, _, password, database, _ = parse_redis_url(url) start = datetime.now() try: rdb = StrictRedis( host=host, port=port, db=database, password=password, socket_timeout=TIMEOUT_SECONDS, ) info = rdb.info() except (RedisConnectionError, TypeError) as ex: log.error("Error making Redis connection: %s", ex.args) return {"status": DOWN} except RedisResponseError as ex: log.error("Bad Redis response: %s", ex.args) return {"status": DOWN, "message": "auth error"} micro = (datetime.now() - start).microseconds del rdb # the redis package does not support Redis's QUIT. ret = { "status": UP, "response_microseconds": micro, } fields = ("uptime_in_seconds", "used_memory", "used_memory_peak") ret.update({x: info[x] for x in fields}) return ret
python
def get_redis_info(): """Check Redis connection.""" from kombu.utils.url import _parse_url as parse_redis_url from redis import ( StrictRedis, ConnectionError as RedisConnectionError, ResponseError as RedisResponseError, ) for conf_name in ('REDIS_URL', 'BROKER_URL', 'CELERY_BROKER_URL'): if hasattr(settings, conf_name): url = getattr(settings, conf_name) if url.startswith('redis://'): break else: log.error("No redis connection info found in settings.") return {"status": NO_CONFIG} _, host, port, _, password, database, _ = parse_redis_url(url) start = datetime.now() try: rdb = StrictRedis( host=host, port=port, db=database, password=password, socket_timeout=TIMEOUT_SECONDS, ) info = rdb.info() except (RedisConnectionError, TypeError) as ex: log.error("Error making Redis connection: %s", ex.args) return {"status": DOWN} except RedisResponseError as ex: log.error("Bad Redis response: %s", ex.args) return {"status": DOWN, "message": "auth error"} micro = (datetime.now() - start).microseconds del rdb # the redis package does not support Redis's QUIT. ret = { "status": UP, "response_microseconds": micro, } fields = ("uptime_in_seconds", "used_memory", "used_memory_peak") ret.update({x: info[x] for x in fields}) return ret
[ "def", "get_redis_info", "(", ")", ":", "from", "kombu", ".", "utils", ".", "url", "import", "_parse_url", "as", "parse_redis_url", "from", "redis", "import", "(", "StrictRedis", ",", "ConnectionError", "as", "RedisConnectionError", ",", "ResponseError", "as", "RedisResponseError", ",", ")", "for", "conf_name", "in", "(", "'REDIS_URL'", ",", "'BROKER_URL'", ",", "'CELERY_BROKER_URL'", ")", ":", "if", "hasattr", "(", "settings", ",", "conf_name", ")", ":", "url", "=", "getattr", "(", "settings", ",", "conf_name", ")", "if", "url", ".", "startswith", "(", "'redis://'", ")", ":", "break", "else", ":", "log", ".", "error", "(", "\"No redis connection info found in settings.\"", ")", "return", "{", "\"status\"", ":", "NO_CONFIG", "}", "_", ",", "host", ",", "port", ",", "_", ",", "password", ",", "database", ",", "_", "=", "parse_redis_url", "(", "url", ")", "start", "=", "datetime", ".", "now", "(", ")", "try", ":", "rdb", "=", "StrictRedis", "(", "host", "=", "host", ",", "port", "=", "port", ",", "db", "=", "database", ",", "password", "=", "password", ",", "socket_timeout", "=", "TIMEOUT_SECONDS", ",", ")", "info", "=", "rdb", ".", "info", "(", ")", "except", "(", "RedisConnectionError", ",", "TypeError", ")", "as", "ex", ":", "log", ".", "error", "(", "\"Error making Redis connection: %s\"", ",", "ex", ".", "args", ")", "return", "{", "\"status\"", ":", "DOWN", "}", "except", "RedisResponseError", "as", "ex", ":", "log", ".", "error", "(", "\"Bad Redis response: %s\"", ",", "ex", ".", "args", ")", "return", "{", "\"status\"", ":", "DOWN", ",", "\"message\"", ":", "\"auth error\"", "}", "micro", "=", "(", "datetime", ".", "now", "(", ")", "-", "start", ")", ".", "microseconds", "del", "rdb", "# the redis package does not support Redis's QUIT.", "ret", "=", "{", "\"status\"", ":", "UP", ",", "\"response_microseconds\"", ":", "micro", ",", "}", "fields", "=", "(", "\"uptime_in_seconds\"", ",", "\"used_memory\"", ",", "\"used_memory_peak\"", ")", "ret", ".", "update", "(", "{", "x", ":", "info", "[", "x", "]", "for", "x", "in", "fields", "}", ")", "return", "ret" ]
Check Redis connection.
[ "Check", "Redis", "connection", "." ]
99bd29343138f94a08718fdbd9285e551751777b
https://github.com/mitodl/django-server-status/blob/99bd29343138f94a08718fdbd9285e551751777b/server_status/views.py#L64-L102
16,843
mitodl/django-server-status
server_status/views.py
get_elasticsearch_info
def get_elasticsearch_info(): """Check Elasticsearch connection.""" from elasticsearch import ( Elasticsearch, ConnectionError as ESConnectionError ) if hasattr(settings, 'ELASTICSEARCH_URL'): url = settings.ELASTICSEARCH_URL else: return {"status": NO_CONFIG} start = datetime.now() try: search = Elasticsearch(url, request_timeout=TIMEOUT_SECONDS) search.info() except ESConnectionError: return {"status": DOWN} del search # The elasticsearch library has no "close" or "disconnect." micro = (datetime.now() - start).microseconds return { "status": UP, "response_microseconds": micro, }
python
def get_elasticsearch_info(): """Check Elasticsearch connection.""" from elasticsearch import ( Elasticsearch, ConnectionError as ESConnectionError ) if hasattr(settings, 'ELASTICSEARCH_URL'): url = settings.ELASTICSEARCH_URL else: return {"status": NO_CONFIG} start = datetime.now() try: search = Elasticsearch(url, request_timeout=TIMEOUT_SECONDS) search.info() except ESConnectionError: return {"status": DOWN} del search # The elasticsearch library has no "close" or "disconnect." micro = (datetime.now() - start).microseconds return { "status": UP, "response_microseconds": micro, }
[ "def", "get_elasticsearch_info", "(", ")", ":", "from", "elasticsearch", "import", "(", "Elasticsearch", ",", "ConnectionError", "as", "ESConnectionError", ")", "if", "hasattr", "(", "settings", ",", "'ELASTICSEARCH_URL'", ")", ":", "url", "=", "settings", ".", "ELASTICSEARCH_URL", "else", ":", "return", "{", "\"status\"", ":", "NO_CONFIG", "}", "start", "=", "datetime", ".", "now", "(", ")", "try", ":", "search", "=", "Elasticsearch", "(", "url", ",", "request_timeout", "=", "TIMEOUT_SECONDS", ")", "search", ".", "info", "(", ")", "except", "ESConnectionError", ":", "return", "{", "\"status\"", ":", "DOWN", "}", "del", "search", "# The elasticsearch library has no \"close\" or \"disconnect.\"", "micro", "=", "(", "datetime", ".", "now", "(", ")", "-", "start", ")", ".", "microseconds", "return", "{", "\"status\"", ":", "UP", ",", "\"response_microseconds\"", ":", "micro", ",", "}" ]
Check Elasticsearch connection.
[ "Check", "Elasticsearch", "connection", "." ]
99bd29343138f94a08718fdbd9285e551751777b
https://github.com/mitodl/django-server-status/blob/99bd29343138f94a08718fdbd9285e551751777b/server_status/views.py#L105-L125
16,844
mitodl/django-server-status
server_status/views.py
get_celery_info
def get_celery_info(): """ Check celery availability """ import celery if not getattr(settings, 'USE_CELERY', False): log.error("No celery config found. Set USE_CELERY in settings to enable.") return {"status": NO_CONFIG} start = datetime.now() try: # pylint: disable=no-member app = celery.Celery('tasks') app.config_from_object('django.conf:settings', namespace='CELERY') # Make sure celery is connected with max_retries=1 # and not the default of max_retries=None if the connection # is made lazily app.connection().ensure_connection(max_retries=1) celery_stats = celery.task.control.inspect().stats() if not celery_stats: log.error("No running Celery workers were found.") return {"status": DOWN, "message": "No running Celery workers"} except Exception as exp: # pylint: disable=broad-except log.error("Error connecting to the backend: %s", exp) return {"status": DOWN, "message": "Error connecting to the backend"} return {"status": UP, "response_microseconds": (datetime.now() - start).microseconds}
python
def get_celery_info(): """ Check celery availability """ import celery if not getattr(settings, 'USE_CELERY', False): log.error("No celery config found. Set USE_CELERY in settings to enable.") return {"status": NO_CONFIG} start = datetime.now() try: # pylint: disable=no-member app = celery.Celery('tasks') app.config_from_object('django.conf:settings', namespace='CELERY') # Make sure celery is connected with max_retries=1 # and not the default of max_retries=None if the connection # is made lazily app.connection().ensure_connection(max_retries=1) celery_stats = celery.task.control.inspect().stats() if not celery_stats: log.error("No running Celery workers were found.") return {"status": DOWN, "message": "No running Celery workers"} except Exception as exp: # pylint: disable=broad-except log.error("Error connecting to the backend: %s", exp) return {"status": DOWN, "message": "Error connecting to the backend"} return {"status": UP, "response_microseconds": (datetime.now() - start).microseconds}
[ "def", "get_celery_info", "(", ")", ":", "import", "celery", "if", "not", "getattr", "(", "settings", ",", "'USE_CELERY'", ",", "False", ")", ":", "log", ".", "error", "(", "\"No celery config found. Set USE_CELERY in settings to enable.\"", ")", "return", "{", "\"status\"", ":", "NO_CONFIG", "}", "start", "=", "datetime", ".", "now", "(", ")", "try", ":", "# pylint: disable=no-member", "app", "=", "celery", ".", "Celery", "(", "'tasks'", ")", "app", ".", "config_from_object", "(", "'django.conf:settings'", ",", "namespace", "=", "'CELERY'", ")", "# Make sure celery is connected with max_retries=1", "# and not the default of max_retries=None if the connection", "# is made lazily", "app", ".", "connection", "(", ")", ".", "ensure_connection", "(", "max_retries", "=", "1", ")", "celery_stats", "=", "celery", ".", "task", ".", "control", ".", "inspect", "(", ")", ".", "stats", "(", ")", "if", "not", "celery_stats", ":", "log", ".", "error", "(", "\"No running Celery workers were found.\"", ")", "return", "{", "\"status\"", ":", "DOWN", ",", "\"message\"", ":", "\"No running Celery workers\"", "}", "except", "Exception", "as", "exp", ":", "# pylint: disable=broad-except", "log", ".", "error", "(", "\"Error connecting to the backend: %s\"", ",", "exp", ")", "return", "{", "\"status\"", ":", "DOWN", ",", "\"message\"", ":", "\"Error connecting to the backend\"", "}", "return", "{", "\"status\"", ":", "UP", ",", "\"response_microseconds\"", ":", "(", "datetime", ".", "now", "(", ")", "-", "start", ")", ".", "microseconds", "}" ]
Check celery availability
[ "Check", "celery", "availability" ]
99bd29343138f94a08718fdbd9285e551751777b
https://github.com/mitodl/django-server-status/blob/99bd29343138f94a08718fdbd9285e551751777b/server_status/views.py#L128-L153
16,845
mitodl/django-server-status
server_status/views.py
get_certificate_info
def get_certificate_info(): """ checks app certificate expiry status """ if hasattr(settings, 'MIT_WS_CERTIFICATE') and settings.MIT_WS_CERTIFICATE: mit_ws_certificate = settings.MIT_WS_CERTIFICATE else: return {"status": NO_CONFIG} app_cert = OpenSSL.crypto.load_certificate( OpenSSL.crypto.FILETYPE_PEM, ( mit_ws_certificate if not isinstance(mit_ws_certificate, str) else mit_ws_certificate.encode().decode('unicode_escape').encode() ) ) app_cert_expiration = datetime.strptime( app_cert.get_notAfter().decode('ascii'), '%Y%m%d%H%M%SZ' ) date_delta = app_cert_expiration - datetime.now() # if more then 30 days left in expiry of certificate then app is safe return { 'app_cert_expires': app_cert_expiration.strftime('%Y-%m-%dT%H:%M:%S'), 'status': UP if date_delta.days > 30 else DOWN }
python
def get_certificate_info(): """ checks app certificate expiry status """ if hasattr(settings, 'MIT_WS_CERTIFICATE') and settings.MIT_WS_CERTIFICATE: mit_ws_certificate = settings.MIT_WS_CERTIFICATE else: return {"status": NO_CONFIG} app_cert = OpenSSL.crypto.load_certificate( OpenSSL.crypto.FILETYPE_PEM, ( mit_ws_certificate if not isinstance(mit_ws_certificate, str) else mit_ws_certificate.encode().decode('unicode_escape').encode() ) ) app_cert_expiration = datetime.strptime( app_cert.get_notAfter().decode('ascii'), '%Y%m%d%H%M%SZ' ) date_delta = app_cert_expiration - datetime.now() # if more then 30 days left in expiry of certificate then app is safe return { 'app_cert_expires': app_cert_expiration.strftime('%Y-%m-%dT%H:%M:%S'), 'status': UP if date_delta.days > 30 else DOWN }
[ "def", "get_certificate_info", "(", ")", ":", "if", "hasattr", "(", "settings", ",", "'MIT_WS_CERTIFICATE'", ")", "and", "settings", ".", "MIT_WS_CERTIFICATE", ":", "mit_ws_certificate", "=", "settings", ".", "MIT_WS_CERTIFICATE", "else", ":", "return", "{", "\"status\"", ":", "NO_CONFIG", "}", "app_cert", "=", "OpenSSL", ".", "crypto", ".", "load_certificate", "(", "OpenSSL", ".", "crypto", ".", "FILETYPE_PEM", ",", "(", "mit_ws_certificate", "if", "not", "isinstance", "(", "mit_ws_certificate", ",", "str", ")", "else", "mit_ws_certificate", ".", "encode", "(", ")", ".", "decode", "(", "'unicode_escape'", ")", ".", "encode", "(", ")", ")", ")", "app_cert_expiration", "=", "datetime", ".", "strptime", "(", "app_cert", ".", "get_notAfter", "(", ")", ".", "decode", "(", "'ascii'", ")", ",", "'%Y%m%d%H%M%SZ'", ")", "date_delta", "=", "app_cert_expiration", "-", "datetime", ".", "now", "(", ")", "# if more then 30 days left in expiry of certificate then app is safe", "return", "{", "'app_cert_expires'", ":", "app_cert_expiration", ".", "strftime", "(", "'%Y-%m-%dT%H:%M:%S'", ")", ",", "'status'", ":", "UP", "if", "date_delta", ".", "days", ">", "30", "else", "DOWN", "}" ]
checks app certificate expiry status
[ "checks", "app", "certificate", "expiry", "status" ]
99bd29343138f94a08718fdbd9285e551751777b
https://github.com/mitodl/django-server-status/blob/99bd29343138f94a08718fdbd9285e551751777b/server_status/views.py#L156-L182
16,846
bitcaster-io/bitcaster
src/telebot/__init__.py
TeleBot._start
def _start(self): '''Requests bot information based on current api_key, and sets self.whoami to dictionary with username, first_name, and id of the configured bot. ''' if self.whoami is None: me = self.get_me() if me.get('ok', False): self.whoami = me['result'] else: raise ValueError('Bot Cannot request information, check ' 'api_key')
python
def _start(self): '''Requests bot information based on current api_key, and sets self.whoami to dictionary with username, first_name, and id of the configured bot. ''' if self.whoami is None: me = self.get_me() if me.get('ok', False): self.whoami = me['result'] else: raise ValueError('Bot Cannot request information, check ' 'api_key')
[ "def", "_start", "(", "self", ")", ":", "if", "self", ".", "whoami", "is", "None", ":", "me", "=", "self", ".", "get_me", "(", ")", "if", "me", ".", "get", "(", "'ok'", ",", "False", ")", ":", "self", ".", "whoami", "=", "me", "[", "'result'", "]", "else", ":", "raise", "ValueError", "(", "'Bot Cannot request information, check '", "'api_key'", ")" ]
Requests bot information based on current api_key, and sets self.whoami to dictionary with username, first_name, and id of the configured bot.
[ "Requests", "bot", "information", "based", "on", "current", "api_key", "and", "sets", "self", ".", "whoami", "to", "dictionary", "with", "username", "first_name", "and", "id", "of", "the", "configured", "bot", "." ]
04625a4b67c1ad01e5d38faa3093828b360d4a98
https://github.com/bitcaster-io/bitcaster/blob/04625a4b67c1ad01e5d38faa3093828b360d4a98/src/telebot/__init__.py#L74-L86
16,847
bitcaster-io/bitcaster
src/telebot/__init__.py
TeleBot.poll
def poll(self, offset=None, poll_timeout=600, cooldown=60, debug=False): '''These should also be in the config section, but some here for overrides ''' if self.config['api_key'] is None: raise ValueError('config api_key is undefined') if offset or self.config.get('offset', None): self.offset = offset or self.config.get('offset', None) self._start() while True: try: response = self.get_updates(poll_timeout, self.offset) if response.get('ok', False) is False: raise ValueError(response['error']) else: self.process_updates(response) except Exception as e: print('Error: Unknown Exception') print(e) if debug: raise e else: time.sleep(cooldown)
python
def poll(self, offset=None, poll_timeout=600, cooldown=60, debug=False): '''These should also be in the config section, but some here for overrides ''' if self.config['api_key'] is None: raise ValueError('config api_key is undefined') if offset or self.config.get('offset', None): self.offset = offset or self.config.get('offset', None) self._start() while True: try: response = self.get_updates(poll_timeout, self.offset) if response.get('ok', False) is False: raise ValueError(response['error']) else: self.process_updates(response) except Exception as e: print('Error: Unknown Exception') print(e) if debug: raise e else: time.sleep(cooldown)
[ "def", "poll", "(", "self", ",", "offset", "=", "None", ",", "poll_timeout", "=", "600", ",", "cooldown", "=", "60", ",", "debug", "=", "False", ")", ":", "if", "self", ".", "config", "[", "'api_key'", "]", "is", "None", ":", "raise", "ValueError", "(", "'config api_key is undefined'", ")", "if", "offset", "or", "self", ".", "config", ".", "get", "(", "'offset'", ",", "None", ")", ":", "self", ".", "offset", "=", "offset", "or", "self", ".", "config", ".", "get", "(", "'offset'", ",", "None", ")", "self", ".", "_start", "(", ")", "while", "True", ":", "try", ":", "response", "=", "self", ".", "get_updates", "(", "poll_timeout", ",", "self", ".", "offset", ")", "if", "response", ".", "get", "(", "'ok'", ",", "False", ")", "is", "False", ":", "raise", "ValueError", "(", "response", "[", "'error'", "]", ")", "else", ":", "self", ".", "process_updates", "(", "response", ")", "except", "Exception", "as", "e", ":", "print", "(", "'Error: Unknown Exception'", ")", "print", "(", "e", ")", "if", "debug", ":", "raise", "e", "else", ":", "time", ".", "sleep", "(", "cooldown", ")" ]
These should also be in the config section, but some here for overrides
[ "These", "should", "also", "be", "in", "the", "config", "section", "but", "some", "here", "for", "overrides" ]
04625a4b67c1ad01e5d38faa3093828b360d4a98
https://github.com/bitcaster-io/bitcaster/blob/04625a4b67c1ad01e5d38faa3093828b360d4a98/src/telebot/__init__.py#L88-L114
16,848
bitcaster-io/bitcaster
src/bitcaster/utils/language.py
get_attr
def get_attr(obj, attr, default=None): """Recursive get object's attribute. May use dot notation. >>> class C(object): pass >>> a = C() >>> a.b = C() >>> a.b.c = 4 >>> get_attr(a, 'b.c') 4 >>> get_attr(a, 'b.c.y', None) >>> get_attr(a, 'b.c.y', 1) 1 """ if '.' not in attr: return getattr(obj, attr, default) else: L = attr.split('.') return get_attr(getattr(obj, L[0], default), '.'.join(L[1:]), default)
python
def get_attr(obj, attr, default=None): """Recursive get object's attribute. May use dot notation. >>> class C(object): pass >>> a = C() >>> a.b = C() >>> a.b.c = 4 >>> get_attr(a, 'b.c') 4 >>> get_attr(a, 'b.c.y', None) >>> get_attr(a, 'b.c.y', 1) 1 """ if '.' not in attr: return getattr(obj, attr, default) else: L = attr.split('.') return get_attr(getattr(obj, L[0], default), '.'.join(L[1:]), default)
[ "def", "get_attr", "(", "obj", ",", "attr", ",", "default", "=", "None", ")", ":", "if", "'.'", "not", "in", "attr", ":", "return", "getattr", "(", "obj", ",", "attr", ",", "default", ")", "else", ":", "L", "=", "attr", ".", "split", "(", "'.'", ")", "return", "get_attr", "(", "getattr", "(", "obj", ",", "L", "[", "0", "]", ",", "default", ")", ",", "'.'", ".", "join", "(", "L", "[", "1", ":", "]", ")", ",", "default", ")" ]
Recursive get object's attribute. May use dot notation. >>> class C(object): pass >>> a = C() >>> a.b = C() >>> a.b.c = 4 >>> get_attr(a, 'b.c') 4 >>> get_attr(a, 'b.c.y', None) >>> get_attr(a, 'b.c.y', 1) 1
[ "Recursive", "get", "object", "s", "attribute", ".", "May", "use", "dot", "notation", "." ]
04625a4b67c1ad01e5d38faa3093828b360d4a98
https://github.com/bitcaster-io/bitcaster/blob/04625a4b67c1ad01e5d38faa3093828b360d4a98/src/bitcaster/utils/language.py#L32-L51
16,849
bitcaster-io/bitcaster
src/bitcaster/web/templatetags/bc_assets.py
asset
def asset(path): """ Join the given path with the STATIC_URL setting. Usage:: {% static path [as varname] %} Examples:: {% static "myapp/css/base.css" %} {% static variable_with_path %} {% static "myapp/css/base.css" as admin_base_css %} {% static variable_with_path as varname %} """ commit = bitcaster.get_full_version() return mark_safe('{0}?{1}'.format(_static(path), commit))
python
def asset(path): """ Join the given path with the STATIC_URL setting. Usage:: {% static path [as varname] %} Examples:: {% static "myapp/css/base.css" %} {% static variable_with_path %} {% static "myapp/css/base.css" as admin_base_css %} {% static variable_with_path as varname %} """ commit = bitcaster.get_full_version() return mark_safe('{0}?{1}'.format(_static(path), commit))
[ "def", "asset", "(", "path", ")", ":", "commit", "=", "bitcaster", ".", "get_full_version", "(", ")", "return", "mark_safe", "(", "'{0}?{1}'", ".", "format", "(", "_static", "(", "path", ")", ",", "commit", ")", ")" ]
Join the given path with the STATIC_URL setting. Usage:: {% static path [as varname] %} Examples:: {% static "myapp/css/base.css" %} {% static variable_with_path %} {% static "myapp/css/base.css" as admin_base_css %} {% static variable_with_path as varname %}
[ "Join", "the", "given", "path", "with", "the", "STATIC_URL", "setting", "." ]
04625a4b67c1ad01e5d38faa3093828b360d4a98
https://github.com/bitcaster-io/bitcaster/blob/04625a4b67c1ad01e5d38faa3093828b360d4a98/src/bitcaster/web/templatetags/bc_assets.py#L19-L35
16,850
bitcaster-io/bitcaster
src/bitcaster/utils/wsgi.py
get_client_ip
def get_client_ip(request): """ Naively yank the first IP address in an X-Forwarded-For header and assume this is correct. Note: Don't use this in security sensitive situations since this value may be forged from a client. """ try: return request.META['HTTP_X_FORWARDED_FOR'].split(',')[0].strip() except (KeyError, IndexError): return request.META.get('REMOTE_ADDR')
python
def get_client_ip(request): """ Naively yank the first IP address in an X-Forwarded-For header and assume this is correct. Note: Don't use this in security sensitive situations since this value may be forged from a client. """ try: return request.META['HTTP_X_FORWARDED_FOR'].split(',')[0].strip() except (KeyError, IndexError): return request.META.get('REMOTE_ADDR')
[ "def", "get_client_ip", "(", "request", ")", ":", "try", ":", "return", "request", ".", "META", "[", "'HTTP_X_FORWARDED_FOR'", "]", ".", "split", "(", "','", ")", "[", "0", "]", ".", "strip", "(", ")", "except", "(", "KeyError", ",", "IndexError", ")", ":", "return", "request", ".", "META", ".", "get", "(", "'REMOTE_ADDR'", ")" ]
Naively yank the first IP address in an X-Forwarded-For header and assume this is correct. Note: Don't use this in security sensitive situations since this value may be forged from a client.
[ "Naively", "yank", "the", "first", "IP", "address", "in", "an", "X", "-", "Forwarded", "-", "For", "header", "and", "assume", "this", "is", "correct", "." ]
04625a4b67c1ad01e5d38faa3093828b360d4a98
https://github.com/bitcaster-io/bitcaster/blob/04625a4b67c1ad01e5d38faa3093828b360d4a98/src/bitcaster/utils/wsgi.py#L6-L17
16,851
bitcaster-io/bitcaster
src/tweepy/api.py
API._pack_image
def _pack_image(filename, max_size, form_field='image', f=None): """Pack image from file into multipart-formdata post body""" # image must be less than 700kb in size if f is None: try: if os.path.getsize(filename) > (max_size * 1024): raise TweepError('File is too big, must be less than %skb.' % max_size) except os.error as e: raise TweepError('Unable to access file: %s' % e.strerror) # build the mulitpart-formdata body fp = open(filename, 'rb') else: f.seek(0, 2) # Seek to end of file if f.tell() > (max_size * 1024): raise TweepError('File is too big, must be less than %skb.' % max_size) f.seek(0) # Reset to beginning of file fp = f # image must be gif, jpeg, or png file_type = mimetypes.guess_type(filename) if file_type is None: raise TweepError('Could not determine file type') file_type = file_type[0] if file_type not in ['image/gif', 'image/jpeg', 'image/png']: raise TweepError('Invalid file type for image: %s' % file_type) if isinstance(filename, six.text_type): filename = filename.encode('utf-8') BOUNDARY = b'Tw3ePy' body = [] body.append(b'--' + BOUNDARY) body.append('Content-Disposition: form-data; name="{0}";' ' filename="{1}"'.format(form_field, filename) .encode('utf-8')) body.append('Content-Type: {0}'.format(file_type).encode('utf-8')) body.append(b'') body.append(fp.read()) body.append(b'--' + BOUNDARY + b'--') body.append(b'') fp.close() body = b'\r\n'.join(body) # build headers headers = { 'Content-Type': 'multipart/form-data; boundary=Tw3ePy', 'Content-Length': str(len(body)) } return headers, body
python
def _pack_image(filename, max_size, form_field='image', f=None): """Pack image from file into multipart-formdata post body""" # image must be less than 700kb in size if f is None: try: if os.path.getsize(filename) > (max_size * 1024): raise TweepError('File is too big, must be less than %skb.' % max_size) except os.error as e: raise TweepError('Unable to access file: %s' % e.strerror) # build the mulitpart-formdata body fp = open(filename, 'rb') else: f.seek(0, 2) # Seek to end of file if f.tell() > (max_size * 1024): raise TweepError('File is too big, must be less than %skb.' % max_size) f.seek(0) # Reset to beginning of file fp = f # image must be gif, jpeg, or png file_type = mimetypes.guess_type(filename) if file_type is None: raise TweepError('Could not determine file type') file_type = file_type[0] if file_type not in ['image/gif', 'image/jpeg', 'image/png']: raise TweepError('Invalid file type for image: %s' % file_type) if isinstance(filename, six.text_type): filename = filename.encode('utf-8') BOUNDARY = b'Tw3ePy' body = [] body.append(b'--' + BOUNDARY) body.append('Content-Disposition: form-data; name="{0}";' ' filename="{1}"'.format(form_field, filename) .encode('utf-8')) body.append('Content-Type: {0}'.format(file_type).encode('utf-8')) body.append(b'') body.append(fp.read()) body.append(b'--' + BOUNDARY + b'--') body.append(b'') fp.close() body = b'\r\n'.join(body) # build headers headers = { 'Content-Type': 'multipart/form-data; boundary=Tw3ePy', 'Content-Length': str(len(body)) } return headers, body
[ "def", "_pack_image", "(", "filename", ",", "max_size", ",", "form_field", "=", "'image'", ",", "f", "=", "None", ")", ":", "# image must be less than 700kb in size", "if", "f", "is", "None", ":", "try", ":", "if", "os", ".", "path", ".", "getsize", "(", "filename", ")", ">", "(", "max_size", "*", "1024", ")", ":", "raise", "TweepError", "(", "'File is too big, must be less than %skb.'", "%", "max_size", ")", "except", "os", ".", "error", "as", "e", ":", "raise", "TweepError", "(", "'Unable to access file: %s'", "%", "e", ".", "strerror", ")", "# build the mulitpart-formdata body", "fp", "=", "open", "(", "filename", ",", "'rb'", ")", "else", ":", "f", ".", "seek", "(", "0", ",", "2", ")", "# Seek to end of file", "if", "f", ".", "tell", "(", ")", ">", "(", "max_size", "*", "1024", ")", ":", "raise", "TweepError", "(", "'File is too big, must be less than %skb.'", "%", "max_size", ")", "f", ".", "seek", "(", "0", ")", "# Reset to beginning of file", "fp", "=", "f", "# image must be gif, jpeg, or png", "file_type", "=", "mimetypes", ".", "guess_type", "(", "filename", ")", "if", "file_type", "is", "None", ":", "raise", "TweepError", "(", "'Could not determine file type'", ")", "file_type", "=", "file_type", "[", "0", "]", "if", "file_type", "not", "in", "[", "'image/gif'", ",", "'image/jpeg'", ",", "'image/png'", "]", ":", "raise", "TweepError", "(", "'Invalid file type for image: %s'", "%", "file_type", ")", "if", "isinstance", "(", "filename", ",", "six", ".", "text_type", ")", ":", "filename", "=", "filename", ".", "encode", "(", "'utf-8'", ")", "BOUNDARY", "=", "b'Tw3ePy'", "body", "=", "[", "]", "body", ".", "append", "(", "b'--'", "+", "BOUNDARY", ")", "body", ".", "append", "(", "'Content-Disposition: form-data; name=\"{0}\";'", "' filename=\"{1}\"'", ".", "format", "(", "form_field", ",", "filename", ")", ".", "encode", "(", "'utf-8'", ")", ")", "body", ".", "append", "(", "'Content-Type: {0}'", ".", "format", "(", "file_type", ")", ".", "encode", "(", "'utf-8'", ")", ")", "body", ".", "append", "(", "b''", ")", "body", ".", "append", "(", "fp", ".", "read", "(", ")", ")", "body", ".", "append", "(", "b'--'", "+", "BOUNDARY", "+", "b'--'", ")", "body", ".", "append", "(", "b''", ")", "fp", ".", "close", "(", ")", "body", "=", "b'\\r\\n'", ".", "join", "(", "body", ")", "# build headers", "headers", "=", "{", "'Content-Type'", ":", "'multipart/form-data; boundary=Tw3ePy'", ",", "'Content-Length'", ":", "str", "(", "len", "(", "body", ")", ")", "}", "return", "headers", ",", "body" ]
Pack image from file into multipart-formdata post body
[ "Pack", "image", "from", "file", "into", "multipart", "-", "formdata", "post", "body" ]
04625a4b67c1ad01e5d38faa3093828b360d4a98
https://github.com/bitcaster-io/bitcaster/blob/04625a4b67c1ad01e5d38faa3093828b360d4a98/src/tweepy/api.py#L1344-L1394
16,852
bitcaster-io/bitcaster
src/bitcaster/web/templatetags/bitcaster.py
channel_submit_row
def channel_submit_row(context): """ Display the row of buttons for delete and save. """ change = context['change'] is_popup = context['is_popup'] save_as = context['save_as'] show_save = context.get('show_save', True) show_save_and_continue = context.get('show_save_and_continue', True) can_delete = context['has_delete_permission'] can_add = context['has_add_permission'] can_change = context['has_change_permission'] ctx = Context(context) ctx.update({ 'show_delete_link': (not is_popup and can_delete and change and context.get('show_delete', True) ), 'show_save_as_new': not is_popup and change and save_as, 'show_save_and_add_another': (can_add and not is_popup and (not save_as or context['add']) ), 'show_save_and_continue': (not is_popup and can_change and show_save_and_continue), 'show_save': show_save, }) return ctx
python
def channel_submit_row(context): """ Display the row of buttons for delete and save. """ change = context['change'] is_popup = context['is_popup'] save_as = context['save_as'] show_save = context.get('show_save', True) show_save_and_continue = context.get('show_save_and_continue', True) can_delete = context['has_delete_permission'] can_add = context['has_add_permission'] can_change = context['has_change_permission'] ctx = Context(context) ctx.update({ 'show_delete_link': (not is_popup and can_delete and change and context.get('show_delete', True) ), 'show_save_as_new': not is_popup and change and save_as, 'show_save_and_add_another': (can_add and not is_popup and (not save_as or context['add']) ), 'show_save_and_continue': (not is_popup and can_change and show_save_and_continue), 'show_save': show_save, }) return ctx
[ "def", "channel_submit_row", "(", "context", ")", ":", "change", "=", "context", "[", "'change'", "]", "is_popup", "=", "context", "[", "'is_popup'", "]", "save_as", "=", "context", "[", "'save_as'", "]", "show_save", "=", "context", ".", "get", "(", "'show_save'", ",", "True", ")", "show_save_and_continue", "=", "context", ".", "get", "(", "'show_save_and_continue'", ",", "True", ")", "can_delete", "=", "context", "[", "'has_delete_permission'", "]", "can_add", "=", "context", "[", "'has_add_permission'", "]", "can_change", "=", "context", "[", "'has_change_permission'", "]", "ctx", "=", "Context", "(", "context", ")", "ctx", ".", "update", "(", "{", "'show_delete_link'", ":", "(", "not", "is_popup", "and", "can_delete", "and", "change", "and", "context", ".", "get", "(", "'show_delete'", ",", "True", ")", ")", ",", "'show_save_as_new'", ":", "not", "is_popup", "and", "change", "and", "save_as", ",", "'show_save_and_add_another'", ":", "(", "can_add", "and", "not", "is_popup", "and", "(", "not", "save_as", "or", "context", "[", "'add'", "]", ")", ")", ",", "'show_save_and_continue'", ":", "(", "not", "is_popup", "and", "can_change", "and", "show_save_and_continue", ")", ",", "'show_save'", ":", "show_save", ",", "}", ")", "return", "ctx" ]
Display the row of buttons for delete and save.
[ "Display", "the", "row", "of", "buttons", "for", "delete", "and", "save", "." ]
04625a4b67c1ad01e5d38faa3093828b360d4a98
https://github.com/bitcaster-io/bitcaster/blob/04625a4b67c1ad01e5d38faa3093828b360d4a98/src/bitcaster/web/templatetags/bitcaster.py#L77-L106
16,853
bitcaster-io/bitcaster
src/bitcaster/social_auth.py
BitcasterStrategy.get_setting
def get_setting(self, name): notfound = object() "get configuration from 'constance.config' first " value = getattr(config, name, notfound) if name.endswith('_WHITELISTED_DOMAINS'): if value: return value.split(',') else: return [] if value is notfound: value = getattr(settings, name) # Force text on URL named settings that are instance of Promise if name.endswith('_URL'): if isinstance(value, Promise): value = force_text(value) value = resolve_url(value) return value
python
def get_setting(self, name): notfound = object() "get configuration from 'constance.config' first " value = getattr(config, name, notfound) if name.endswith('_WHITELISTED_DOMAINS'): if value: return value.split(',') else: return [] if value is notfound: value = getattr(settings, name) # Force text on URL named settings that are instance of Promise if name.endswith('_URL'): if isinstance(value, Promise): value = force_text(value) value = resolve_url(value) return value
[ "def", "get_setting", "(", "self", ",", "name", ")", ":", "notfound", "=", "object", "(", ")", "value", "=", "getattr", "(", "config", ",", "name", ",", "notfound", ")", "if", "name", ".", "endswith", "(", "'_WHITELISTED_DOMAINS'", ")", ":", "if", "value", ":", "return", "value", ".", "split", "(", "','", ")", "else", ":", "return", "[", "]", "if", "value", "is", "notfound", ":", "value", "=", "getattr", "(", "settings", ",", "name", ")", "# Force text on URL named settings that are instance of Promise", "if", "name", ".", "endswith", "(", "'_URL'", ")", ":", "if", "isinstance", "(", "value", ",", "Promise", ")", ":", "value", "=", "force_text", "(", "value", ")", "value", "=", "resolve_url", "(", "value", ")", "return", "value" ]
get configuration from 'constance.config' first
[ "get", "configuration", "from", "constance", ".", "config", "first" ]
04625a4b67c1ad01e5d38faa3093828b360d4a98
https://github.com/bitcaster-io/bitcaster/blob/04625a4b67c1ad01e5d38faa3093828b360d4a98/src/bitcaster/social_auth.py#L78-L95
16,854
bitcaster-io/bitcaster
src/bitcaster/messages.py
Wrapper.debug
def debug(self, request, message, extra_tags='', fail_silently=False): """Add a message with the ``DEBUG`` level.""" add(self.target_name, request, constants.DEBUG, message, extra_tags=extra_tags, fail_silently=fail_silently)
python
def debug(self, request, message, extra_tags='', fail_silently=False): """Add a message with the ``DEBUG`` level.""" add(self.target_name, request, constants.DEBUG, message, extra_tags=extra_tags, fail_silently=fail_silently)
[ "def", "debug", "(", "self", ",", "request", ",", "message", ",", "extra_tags", "=", "''", ",", "fail_silently", "=", "False", ")", ":", "add", "(", "self", ".", "target_name", ",", "request", ",", "constants", ".", "DEBUG", ",", "message", ",", "extra_tags", "=", "extra_tags", ",", "fail_silently", "=", "fail_silently", ")" ]
Add a message with the ``DEBUG`` level.
[ "Add", "a", "message", "with", "the", "DEBUG", "level", "." ]
04625a4b67c1ad01e5d38faa3093828b360d4a98
https://github.com/bitcaster-io/bitcaster/blob/04625a4b67c1ad01e5d38faa3093828b360d4a98/src/bitcaster/messages.py#L54-L57
16,855
bitcaster-io/bitcaster
src/bitcaster/messages.py
Wrapper.info
def info(self, request, message, extra_tags='', fail_silently=False): """Add a message with the ``INFO`` level.""" add(self.target_name, request, constants.INFO, message, extra_tags=extra_tags, fail_silently=fail_silently)
python
def info(self, request, message, extra_tags='', fail_silently=False): """Add a message with the ``INFO`` level.""" add(self.target_name, request, constants.INFO, message, extra_tags=extra_tags, fail_silently=fail_silently)
[ "def", "info", "(", "self", ",", "request", ",", "message", ",", "extra_tags", "=", "''", ",", "fail_silently", "=", "False", ")", ":", "add", "(", "self", ".", "target_name", ",", "request", ",", "constants", ".", "INFO", ",", "message", ",", "extra_tags", "=", "extra_tags", ",", "fail_silently", "=", "fail_silently", ")" ]
Add a message with the ``INFO`` level.
[ "Add", "a", "message", "with", "the", "INFO", "level", "." ]
04625a4b67c1ad01e5d38faa3093828b360d4a98
https://github.com/bitcaster-io/bitcaster/blob/04625a4b67c1ad01e5d38faa3093828b360d4a98/src/bitcaster/messages.py#L59-L63
16,856
bitcaster-io/bitcaster
src/bitcaster/messages.py
Wrapper.success
def success(self, request, message, extra_tags='', fail_silently=False): """Add a message with the ``SUCCESS`` level.""" add(self.target_name, request, constants.SUCCESS, message, extra_tags=extra_tags, fail_silently=fail_silently)
python
def success(self, request, message, extra_tags='', fail_silently=False): """Add a message with the ``SUCCESS`` level.""" add(self.target_name, request, constants.SUCCESS, message, extra_tags=extra_tags, fail_silently=fail_silently)
[ "def", "success", "(", "self", ",", "request", ",", "message", ",", "extra_tags", "=", "''", ",", "fail_silently", "=", "False", ")", ":", "add", "(", "self", ".", "target_name", ",", "request", ",", "constants", ".", "SUCCESS", ",", "message", ",", "extra_tags", "=", "extra_tags", ",", "fail_silently", "=", "fail_silently", ")" ]
Add a message with the ``SUCCESS`` level.
[ "Add", "a", "message", "with", "the", "SUCCESS", "level", "." ]
04625a4b67c1ad01e5d38faa3093828b360d4a98
https://github.com/bitcaster-io/bitcaster/blob/04625a4b67c1ad01e5d38faa3093828b360d4a98/src/bitcaster/messages.py#L65-L68
16,857
bitcaster-io/bitcaster
src/bitcaster/messages.py
Wrapper.warning
def warning(self, request, message, extra_tags='', fail_silently=False): """Add a message with the ``WARNING`` level.""" add(self.target_name, request, constants.WARNING, message, extra_tags=extra_tags, fail_silently=fail_silently)
python
def warning(self, request, message, extra_tags='', fail_silently=False): """Add a message with the ``WARNING`` level.""" add(self.target_name, request, constants.WARNING, message, extra_tags=extra_tags, fail_silently=fail_silently)
[ "def", "warning", "(", "self", ",", "request", ",", "message", ",", "extra_tags", "=", "''", ",", "fail_silently", "=", "False", ")", ":", "add", "(", "self", ".", "target_name", ",", "request", ",", "constants", ".", "WARNING", ",", "message", ",", "extra_tags", "=", "extra_tags", ",", "fail_silently", "=", "fail_silently", ")" ]
Add a message with the ``WARNING`` level.
[ "Add", "a", "message", "with", "the", "WARNING", "level", "." ]
04625a4b67c1ad01e5d38faa3093828b360d4a98
https://github.com/bitcaster-io/bitcaster/blob/04625a4b67c1ad01e5d38faa3093828b360d4a98/src/bitcaster/messages.py#L70-L73
16,858
bitcaster-io/bitcaster
src/bitcaster/messages.py
Wrapper.error
def error(self, request, message, extra_tags='', fail_silently=False): """Add a message with the ``ERROR`` level.""" add(self.target_name, request, constants.ERROR, message, extra_tags=extra_tags, fail_silently=fail_silently)
python
def error(self, request, message, extra_tags='', fail_silently=False): """Add a message with the ``ERROR`` level.""" add(self.target_name, request, constants.ERROR, message, extra_tags=extra_tags, fail_silently=fail_silently)
[ "def", "error", "(", "self", ",", "request", ",", "message", ",", "extra_tags", "=", "''", ",", "fail_silently", "=", "False", ")", ":", "add", "(", "self", ".", "target_name", ",", "request", ",", "constants", ".", "ERROR", ",", "message", ",", "extra_tags", "=", "extra_tags", ",", "fail_silently", "=", "fail_silently", ")" ]
Add a message with the ``ERROR`` level.
[ "Add", "a", "message", "with", "the", "ERROR", "level", "." ]
04625a4b67c1ad01e5d38faa3093828b360d4a98
https://github.com/bitcaster-io/bitcaster/blob/04625a4b67c1ad01e5d38faa3093828b360d4a98/src/bitcaster/messages.py#L75-L78
16,859
bread-and-pepper/django-userena
userena/views.py
signup
def signup(request, signup_form=SignupForm, template_name='userena/signup_form.html', success_url=None, extra_context=None): """ Signup of an account. Signup requiring a username, email and password. After signup a user gets an email with an activation link used to activate their account. After successful signup redirects to ``success_url``. :param signup_form: Form that will be used to sign a user. Defaults to userena's :class:`SignupForm`. :param template_name: String containing the template name that will be used to display the signup form. Defaults to ``userena/signup_form.html``. :param success_url: String containing the URI which should be redirected to after a successful signup. If not supplied will redirect to ``userena_signup_complete`` view. :param extra_context: Dictionary containing variables which are added to the template context. Defaults to a dictionary with a ``form`` key containing the ``signup_form``. **Context** ``form`` Form supplied by ``signup_form``. """ # If signup is disabled, return 403 if userena_settings.USERENA_DISABLE_SIGNUP: raise PermissionDenied # If no usernames are wanted and the default form is used, fallback to the # default form that doesn't display to enter the username. if userena_settings.USERENA_WITHOUT_USERNAMES and (signup_form == SignupForm): signup_form = SignupFormOnlyEmail form = signup_form() if request.method == 'POST': form = signup_form(request.POST, request.FILES) if form.is_valid(): user = form.save() # Send the signup complete signal userena_signals.signup_complete.send(sender=None, user=user) if success_url: redirect_to = success_url else: redirect_to = reverse('userena_signup_complete', kwargs={'username': user.username}) # A new signed user should logout the old one. if request.user.is_authenticated(): logout(request) if (userena_settings.USERENA_SIGNIN_AFTER_SIGNUP and not userena_settings.USERENA_ACTIVATION_REQUIRED): user = authenticate(identification=user.email, check_password=False) login(request, user) return redirect(redirect_to) if not extra_context: extra_context = dict() extra_context['form'] = form return ExtraContextTemplateView.as_view(template_name=template_name, extra_context=extra_context)(request)
python
def signup(request, signup_form=SignupForm, template_name='userena/signup_form.html', success_url=None, extra_context=None): """ Signup of an account. Signup requiring a username, email and password. After signup a user gets an email with an activation link used to activate their account. After successful signup redirects to ``success_url``. :param signup_form: Form that will be used to sign a user. Defaults to userena's :class:`SignupForm`. :param template_name: String containing the template name that will be used to display the signup form. Defaults to ``userena/signup_form.html``. :param success_url: String containing the URI which should be redirected to after a successful signup. If not supplied will redirect to ``userena_signup_complete`` view. :param extra_context: Dictionary containing variables which are added to the template context. Defaults to a dictionary with a ``form`` key containing the ``signup_form``. **Context** ``form`` Form supplied by ``signup_form``. """ # If signup is disabled, return 403 if userena_settings.USERENA_DISABLE_SIGNUP: raise PermissionDenied # If no usernames are wanted and the default form is used, fallback to the # default form that doesn't display to enter the username. if userena_settings.USERENA_WITHOUT_USERNAMES and (signup_form == SignupForm): signup_form = SignupFormOnlyEmail form = signup_form() if request.method == 'POST': form = signup_form(request.POST, request.FILES) if form.is_valid(): user = form.save() # Send the signup complete signal userena_signals.signup_complete.send(sender=None, user=user) if success_url: redirect_to = success_url else: redirect_to = reverse('userena_signup_complete', kwargs={'username': user.username}) # A new signed user should logout the old one. if request.user.is_authenticated(): logout(request) if (userena_settings.USERENA_SIGNIN_AFTER_SIGNUP and not userena_settings.USERENA_ACTIVATION_REQUIRED): user = authenticate(identification=user.email, check_password=False) login(request, user) return redirect(redirect_to) if not extra_context: extra_context = dict() extra_context['form'] = form return ExtraContextTemplateView.as_view(template_name=template_name, extra_context=extra_context)(request)
[ "def", "signup", "(", "request", ",", "signup_form", "=", "SignupForm", ",", "template_name", "=", "'userena/signup_form.html'", ",", "success_url", "=", "None", ",", "extra_context", "=", "None", ")", ":", "# If signup is disabled, return 403", "if", "userena_settings", ".", "USERENA_DISABLE_SIGNUP", ":", "raise", "PermissionDenied", "# If no usernames are wanted and the default form is used, fallback to the", "# default form that doesn't display to enter the username.", "if", "userena_settings", ".", "USERENA_WITHOUT_USERNAMES", "and", "(", "signup_form", "==", "SignupForm", ")", ":", "signup_form", "=", "SignupFormOnlyEmail", "form", "=", "signup_form", "(", ")", "if", "request", ".", "method", "==", "'POST'", ":", "form", "=", "signup_form", "(", "request", ".", "POST", ",", "request", ".", "FILES", ")", "if", "form", ".", "is_valid", "(", ")", ":", "user", "=", "form", ".", "save", "(", ")", "# Send the signup complete signal", "userena_signals", ".", "signup_complete", ".", "send", "(", "sender", "=", "None", ",", "user", "=", "user", ")", "if", "success_url", ":", "redirect_to", "=", "success_url", "else", ":", "redirect_to", "=", "reverse", "(", "'userena_signup_complete'", ",", "kwargs", "=", "{", "'username'", ":", "user", ".", "username", "}", ")", "# A new signed user should logout the old one.", "if", "request", ".", "user", ".", "is_authenticated", "(", ")", ":", "logout", "(", "request", ")", "if", "(", "userena_settings", ".", "USERENA_SIGNIN_AFTER_SIGNUP", "and", "not", "userena_settings", ".", "USERENA_ACTIVATION_REQUIRED", ")", ":", "user", "=", "authenticate", "(", "identification", "=", "user", ".", "email", ",", "check_password", "=", "False", ")", "login", "(", "request", ",", "user", ")", "return", "redirect", "(", "redirect_to", ")", "if", "not", "extra_context", ":", "extra_context", "=", "dict", "(", ")", "extra_context", "[", "'form'", "]", "=", "form", "return", "ExtraContextTemplateView", ".", "as_view", "(", "template_name", "=", "template_name", ",", "extra_context", "=", "extra_context", ")", "(", "request", ")" ]
Signup of an account. Signup requiring a username, email and password. After signup a user gets an email with an activation link used to activate their account. After successful signup redirects to ``success_url``. :param signup_form: Form that will be used to sign a user. Defaults to userena's :class:`SignupForm`. :param template_name: String containing the template name that will be used to display the signup form. Defaults to ``userena/signup_form.html``. :param success_url: String containing the URI which should be redirected to after a successful signup. If not supplied will redirect to ``userena_signup_complete`` view. :param extra_context: Dictionary containing variables which are added to the template context. Defaults to a dictionary with a ``form`` key containing the ``signup_form``. **Context** ``form`` Form supplied by ``signup_form``.
[ "Signup", "of", "an", "account", "." ]
7dfb3d5d148127e32f217a62096d507266a3a83c
https://github.com/bread-and-pepper/django-userena/blob/7dfb3d5d148127e32f217a62096d507266a3a83c/userena/views.py#L73-L146
16,860
openvax/mhcflurry
mhcflurry/hyperparameters.py
HyperparameterDefaults.extend
def extend(self, other): """ Return a new HyperparameterDefaults instance containing the hyperparameters from the current instance combined with those from other. It is an error if self and other have any hyperparameters in common. """ overlap = [key for key in other.defaults if key in self.defaults] if overlap: raise ValueError( "Duplicate hyperparameter(s): %s" % " ".join(overlap)) new = dict(self.defaults) new.update(other.defaults) return HyperparameterDefaults(**new)
python
def extend(self, other): """ Return a new HyperparameterDefaults instance containing the hyperparameters from the current instance combined with those from other. It is an error if self and other have any hyperparameters in common. """ overlap = [key for key in other.defaults if key in self.defaults] if overlap: raise ValueError( "Duplicate hyperparameter(s): %s" % " ".join(overlap)) new = dict(self.defaults) new.update(other.defaults) return HyperparameterDefaults(**new)
[ "def", "extend", "(", "self", ",", "other", ")", ":", "overlap", "=", "[", "key", "for", "key", "in", "other", ".", "defaults", "if", "key", "in", "self", ".", "defaults", "]", "if", "overlap", ":", "raise", "ValueError", "(", "\"Duplicate hyperparameter(s): %s\"", "%", "\" \"", ".", "join", "(", "overlap", ")", ")", "new", "=", "dict", "(", "self", ".", "defaults", ")", "new", ".", "update", "(", "other", ".", "defaults", ")", "return", "HyperparameterDefaults", "(", "*", "*", "new", ")" ]
Return a new HyperparameterDefaults instance containing the hyperparameters from the current instance combined with those from other. It is an error if self and other have any hyperparameters in common.
[ "Return", "a", "new", "HyperparameterDefaults", "instance", "containing", "the", "hyperparameters", "from", "the", "current", "instance", "combined", "with", "those", "from", "other", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/hyperparameters.py#L22-L37
16,861
openvax/mhcflurry
mhcflurry/hyperparameters.py
HyperparameterDefaults.with_defaults
def with_defaults(self, obj): """ Given a dict of hyperparameter settings, return a dict containing those settings augmented by the defaults for any keys missing from the dict. """ self.check_valid_keys(obj) obj = dict(obj) for (key, value) in self.defaults.items(): if key not in obj: obj[key] = value return obj
python
def with_defaults(self, obj): """ Given a dict of hyperparameter settings, return a dict containing those settings augmented by the defaults for any keys missing from the dict. """ self.check_valid_keys(obj) obj = dict(obj) for (key, value) in self.defaults.items(): if key not in obj: obj[key] = value return obj
[ "def", "with_defaults", "(", "self", ",", "obj", ")", ":", "self", ".", "check_valid_keys", "(", "obj", ")", "obj", "=", "dict", "(", "obj", ")", "for", "(", "key", ",", "value", ")", "in", "self", ".", "defaults", ".", "items", "(", ")", ":", "if", "key", "not", "in", "obj", ":", "obj", "[", "key", "]", "=", "value", "return", "obj" ]
Given a dict of hyperparameter settings, return a dict containing those settings augmented by the defaults for any keys missing from the dict.
[ "Given", "a", "dict", "of", "hyperparameter", "settings", "return", "a", "dict", "containing", "those", "settings", "augmented", "by", "the", "defaults", "for", "any", "keys", "missing", "from", "the", "dict", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/hyperparameters.py#L39-L50
16,862
openvax/mhcflurry
mhcflurry/hyperparameters.py
HyperparameterDefaults.subselect
def subselect(self, obj): """ Filter a dict of hyperparameter settings to only those keys defined in this HyperparameterDefaults . """ return dict( (key, value) for (key, value) in obj.items() if key in self.defaults)
python
def subselect(self, obj): """ Filter a dict of hyperparameter settings to only those keys defined in this HyperparameterDefaults . """ return dict( (key, value) for (key, value) in obj.items() if key in self.defaults)
[ "def", "subselect", "(", "self", ",", "obj", ")", ":", "return", "dict", "(", "(", "key", ",", "value", ")", "for", "(", "key", ",", "value", ")", "in", "obj", ".", "items", "(", ")", "if", "key", "in", "self", ".", "defaults", ")" ]
Filter a dict of hyperparameter settings to only those keys defined in this HyperparameterDefaults .
[ "Filter", "a", "dict", "of", "hyperparameter", "settings", "to", "only", "those", "keys", "defined", "in", "this", "HyperparameterDefaults", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/hyperparameters.py#L52-L60
16,863
openvax/mhcflurry
mhcflurry/hyperparameters.py
HyperparameterDefaults.check_valid_keys
def check_valid_keys(self, obj): """ Given a dict of hyperparameter settings, throw an exception if any keys are not defined in this HyperparameterDefaults instance. """ invalid_keys = [ x for x in obj if x not in self.defaults ] if invalid_keys: raise ValueError( "No such model parameters: %s. Valid parameters are: %s" % (" ".join(invalid_keys), " ".join(self.defaults)))
python
def check_valid_keys(self, obj): """ Given a dict of hyperparameter settings, throw an exception if any keys are not defined in this HyperparameterDefaults instance. """ invalid_keys = [ x for x in obj if x not in self.defaults ] if invalid_keys: raise ValueError( "No such model parameters: %s. Valid parameters are: %s" % (" ".join(invalid_keys), " ".join(self.defaults)))
[ "def", "check_valid_keys", "(", "self", ",", "obj", ")", ":", "invalid_keys", "=", "[", "x", "for", "x", "in", "obj", "if", "x", "not", "in", "self", ".", "defaults", "]", "if", "invalid_keys", ":", "raise", "ValueError", "(", "\"No such model parameters: %s. Valid parameters are: %s\"", "%", "(", "\" \"", ".", "join", "(", "invalid_keys", ")", ",", "\" \"", ".", "join", "(", "self", ".", "defaults", ")", ")", ")" ]
Given a dict of hyperparameter settings, throw an exception if any keys are not defined in this HyperparameterDefaults instance.
[ "Given", "a", "dict", "of", "hyperparameter", "settings", "throw", "an", "exception", "if", "any", "keys", "are", "not", "defined", "in", "this", "HyperparameterDefaults", "instance", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/hyperparameters.py#L62-L74
16,864
openvax/mhcflurry
mhcflurry/hyperparameters.py
HyperparameterDefaults.models_grid
def models_grid(self, **kwargs): ''' Make a grid of models by taking the cartesian product of all specified model parameter lists. Parameters ----------- The valid kwarg parameters are the entries of this HyperparameterDefaults instance. Each parameter must be a list giving the values to search across. Returns ----------- list of dict giving the parameters for each model. The length of the list is the product of the lengths of the input lists. ''' # Check parameters self.check_valid_keys(kwargs) for (key, value) in kwargs.items(): if not isinstance(value, list): raise ValueError( "All parameters must be lists, but %s is %s" % (key, str(type(value)))) # Make models, using defaults. parameters = dict( (key, [value]) for (key, value) in self.defaults.items()) parameters.update(kwargs) parameter_names = list(parameters) parameter_values = [parameters[name] for name in parameter_names] models = [ dict(zip(parameter_names, model_values)) for model_values in itertools.product(*parameter_values) ] return models
python
def models_grid(self, **kwargs): ''' Make a grid of models by taking the cartesian product of all specified model parameter lists. Parameters ----------- The valid kwarg parameters are the entries of this HyperparameterDefaults instance. Each parameter must be a list giving the values to search across. Returns ----------- list of dict giving the parameters for each model. The length of the list is the product of the lengths of the input lists. ''' # Check parameters self.check_valid_keys(kwargs) for (key, value) in kwargs.items(): if not isinstance(value, list): raise ValueError( "All parameters must be lists, but %s is %s" % (key, str(type(value)))) # Make models, using defaults. parameters = dict( (key, [value]) for (key, value) in self.defaults.items()) parameters.update(kwargs) parameter_names = list(parameters) parameter_values = [parameters[name] for name in parameter_names] models = [ dict(zip(parameter_names, model_values)) for model_values in itertools.product(*parameter_values) ] return models
[ "def", "models_grid", "(", "self", ",", "*", "*", "kwargs", ")", ":", "# Check parameters", "self", ".", "check_valid_keys", "(", "kwargs", ")", "for", "(", "key", ",", "value", ")", "in", "kwargs", ".", "items", "(", ")", ":", "if", "not", "isinstance", "(", "value", ",", "list", ")", ":", "raise", "ValueError", "(", "\"All parameters must be lists, but %s is %s\"", "%", "(", "key", ",", "str", "(", "type", "(", "value", ")", ")", ")", ")", "# Make models, using defaults.", "parameters", "=", "dict", "(", "(", "key", ",", "[", "value", "]", ")", "for", "(", "key", ",", "value", ")", "in", "self", ".", "defaults", ".", "items", "(", ")", ")", "parameters", ".", "update", "(", "kwargs", ")", "parameter_names", "=", "list", "(", "parameters", ")", "parameter_values", "=", "[", "parameters", "[", "name", "]", "for", "name", "in", "parameter_names", "]", "models", "=", "[", "dict", "(", "zip", "(", "parameter_names", ",", "model_values", ")", ")", "for", "model_values", "in", "itertools", ".", "product", "(", "*", "parameter_values", ")", "]", "return", "models" ]
Make a grid of models by taking the cartesian product of all specified model parameter lists. Parameters ----------- The valid kwarg parameters are the entries of this HyperparameterDefaults instance. Each parameter must be a list giving the values to search across. Returns ----------- list of dict giving the parameters for each model. The length of the list is the product of the lengths of the input lists.
[ "Make", "a", "grid", "of", "models", "by", "taking", "the", "cartesian", "product", "of", "all", "specified", "model", "parameter", "lists", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/hyperparameters.py#L76-L112
16,865
openvax/mhcflurry
mhcflurry/allele_encoding.py
AlleleEncoding.fixed_length_vector_encoded_sequences
def fixed_length_vector_encoded_sequences(self, vector_encoding_name): """ Encode alleles. Parameters ---------- vector_encoding_name : string How to represent amino acids. One of "BLOSUM62", "one-hot", etc. Full list of supported vector encodings is given by available_vector_encodings() in amino_acid. Returns ------- numpy.array with shape (num sequences, sequence length, m) where m is vector_encoding_length(vector_encoding_name) """ cache_key = ( "fixed_length_vector_encoding", vector_encoding_name) if cache_key not in self.encoding_cache: index_encoded_matrix = amino_acid.index_encoding( self.fixed_length_sequences.values, amino_acid.AMINO_ACID_INDEX) vector_encoded = amino_acid.fixed_vectors_encoding( index_encoded_matrix, amino_acid.ENCODING_DATA_FRAMES[vector_encoding_name]) result = vector_encoded[self.indices] self.encoding_cache[cache_key] = result return self.encoding_cache[cache_key]
python
def fixed_length_vector_encoded_sequences(self, vector_encoding_name): """ Encode alleles. Parameters ---------- vector_encoding_name : string How to represent amino acids. One of "BLOSUM62", "one-hot", etc. Full list of supported vector encodings is given by available_vector_encodings() in amino_acid. Returns ------- numpy.array with shape (num sequences, sequence length, m) where m is vector_encoding_length(vector_encoding_name) """ cache_key = ( "fixed_length_vector_encoding", vector_encoding_name) if cache_key not in self.encoding_cache: index_encoded_matrix = amino_acid.index_encoding( self.fixed_length_sequences.values, amino_acid.AMINO_ACID_INDEX) vector_encoded = amino_acid.fixed_vectors_encoding( index_encoded_matrix, amino_acid.ENCODING_DATA_FRAMES[vector_encoding_name]) result = vector_encoded[self.indices] self.encoding_cache[cache_key] = result return self.encoding_cache[cache_key]
[ "def", "fixed_length_vector_encoded_sequences", "(", "self", ",", "vector_encoding_name", ")", ":", "cache_key", "=", "(", "\"fixed_length_vector_encoding\"", ",", "vector_encoding_name", ")", "if", "cache_key", "not", "in", "self", ".", "encoding_cache", ":", "index_encoded_matrix", "=", "amino_acid", ".", "index_encoding", "(", "self", ".", "fixed_length_sequences", ".", "values", ",", "amino_acid", ".", "AMINO_ACID_INDEX", ")", "vector_encoded", "=", "amino_acid", ".", "fixed_vectors_encoding", "(", "index_encoded_matrix", ",", "amino_acid", ".", "ENCODING_DATA_FRAMES", "[", "vector_encoding_name", "]", ")", "result", "=", "vector_encoded", "[", "self", ".", "indices", "]", "self", ".", "encoding_cache", "[", "cache_key", "]", "=", "result", "return", "self", ".", "encoding_cache", "[", "cache_key", "]" ]
Encode alleles. Parameters ---------- vector_encoding_name : string How to represent amino acids. One of "BLOSUM62", "one-hot", etc. Full list of supported vector encodings is given by available_vector_encodings() in amino_acid. Returns ------- numpy.array with shape (num sequences, sequence length, m) where m is vector_encoding_length(vector_encoding_name)
[ "Encode", "alleles", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/allele_encoding.py#L40-L68
16,866
openvax/mhcflurry
mhcflurry/amino_acid.py
index_encoding
def index_encoding(sequences, letter_to_index_dict): """ Encode a sequence of same-length strings to a matrix of integers of the same shape. The map from characters to integers is given by `letter_to_index_dict`. Given a sequence of `n` strings all of length `k`, return a `k * n` array where the (`i`, `j`)th element is `letter_to_index_dict[sequence[i][j]]`. Parameters ---------- sequences : list of length n of strings of length k letter_to_index_dict : dict : string -> int Returns ------- numpy.array of integers with shape (`k`, `n`) """ df = pandas.DataFrame(iter(s) for s in sequences) result = df.replace(letter_to_index_dict) return result.values
python
def index_encoding(sequences, letter_to_index_dict): """ Encode a sequence of same-length strings to a matrix of integers of the same shape. The map from characters to integers is given by `letter_to_index_dict`. Given a sequence of `n` strings all of length `k`, return a `k * n` array where the (`i`, `j`)th element is `letter_to_index_dict[sequence[i][j]]`. Parameters ---------- sequences : list of length n of strings of length k letter_to_index_dict : dict : string -> int Returns ------- numpy.array of integers with shape (`k`, `n`) """ df = pandas.DataFrame(iter(s) for s in sequences) result = df.replace(letter_to_index_dict) return result.values
[ "def", "index_encoding", "(", "sequences", ",", "letter_to_index_dict", ")", ":", "df", "=", "pandas", ".", "DataFrame", "(", "iter", "(", "s", ")", "for", "s", "in", "sequences", ")", "result", "=", "df", ".", "replace", "(", "letter_to_index_dict", ")", "return", "result", ".", "values" ]
Encode a sequence of same-length strings to a matrix of integers of the same shape. The map from characters to integers is given by `letter_to_index_dict`. Given a sequence of `n` strings all of length `k`, return a `k * n` array where the (`i`, `j`)th element is `letter_to_index_dict[sequence[i][j]]`. Parameters ---------- sequences : list of length n of strings of length k letter_to_index_dict : dict : string -> int Returns ------- numpy.array of integers with shape (`k`, `n`)
[ "Encode", "a", "sequence", "of", "same", "-", "length", "strings", "to", "a", "matrix", "of", "integers", "of", "the", "same", "shape", ".", "The", "map", "from", "characters", "to", "integers", "is", "given", "by", "letter_to_index_dict", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/amino_acid.py#L110-L130
16,867
openvax/mhcflurry
mhcflurry/class1_neural_network.py
Class1NeuralNetwork.apply_hyperparameter_renames
def apply_hyperparameter_renames(cls, hyperparameters): """ Handle hyperparameter renames. Parameters ---------- hyperparameters : dict Returns ------- dict : updated hyperparameters """ for (from_name, to_name) in cls.hyperparameter_renames.items(): if from_name in hyperparameters: value = hyperparameters.pop(from_name) if to_name: hyperparameters[to_name] = value return hyperparameters
python
def apply_hyperparameter_renames(cls, hyperparameters): """ Handle hyperparameter renames. Parameters ---------- hyperparameters : dict Returns ------- dict : updated hyperparameters """ for (from_name, to_name) in cls.hyperparameter_renames.items(): if from_name in hyperparameters: value = hyperparameters.pop(from_name) if to_name: hyperparameters[to_name] = value return hyperparameters
[ "def", "apply_hyperparameter_renames", "(", "cls", ",", "hyperparameters", ")", ":", "for", "(", "from_name", ",", "to_name", ")", "in", "cls", ".", "hyperparameter_renames", ".", "items", "(", ")", ":", "if", "from_name", "in", "hyperparameters", ":", "value", "=", "hyperparameters", ".", "pop", "(", "from_name", ")", "if", "to_name", ":", "hyperparameters", "[", "to_name", "]", "=", "value", "return", "hyperparameters" ]
Handle hyperparameter renames. Parameters ---------- hyperparameters : dict Returns ------- dict : updated hyperparameters
[ "Handle", "hyperparameter", "renames", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/class1_neural_network.py#L136-L154
16,868
openvax/mhcflurry
mhcflurry/class1_neural_network.py
Class1NeuralNetwork.borrow_cached_network
def borrow_cached_network(klass, network_json, network_weights): """ Return a keras Model with the specified architecture and weights. As an optimization, when possible this will reuse architectures from a process-wide cache. The returned object is "borrowed" in the sense that its weights can change later after subsequent calls to this method from other objects. If you're using this from a parallel implementation you'll need to hold a lock while using the returned object. Parameters ---------- network_json : string of JSON network_weights : list of numpy.array Returns ------- keras.models.Model """ assert network_weights is not None key = klass.keras_network_cache_key(network_json) if key not in klass.KERAS_MODELS_CACHE: # Cache miss. import keras.models network = keras.models.model_from_json(network_json) existing_weights = None else: # Cache hit. (network, existing_weights) = klass.KERAS_MODELS_CACHE[key] if existing_weights is not network_weights: network.set_weights(network_weights) klass.KERAS_MODELS_CACHE[key] = (network, network_weights) # As an added safety check we overwrite the fit method on the returned # model to throw an error if it is called. def throw(*args, **kwargs): raise NotImplementedError("Do not call fit on cached model.") network.fit = throw return network
python
def borrow_cached_network(klass, network_json, network_weights): """ Return a keras Model with the specified architecture and weights. As an optimization, when possible this will reuse architectures from a process-wide cache. The returned object is "borrowed" in the sense that its weights can change later after subsequent calls to this method from other objects. If you're using this from a parallel implementation you'll need to hold a lock while using the returned object. Parameters ---------- network_json : string of JSON network_weights : list of numpy.array Returns ------- keras.models.Model """ assert network_weights is not None key = klass.keras_network_cache_key(network_json) if key not in klass.KERAS_MODELS_CACHE: # Cache miss. import keras.models network = keras.models.model_from_json(network_json) existing_weights = None else: # Cache hit. (network, existing_weights) = klass.KERAS_MODELS_CACHE[key] if existing_weights is not network_weights: network.set_weights(network_weights) klass.KERAS_MODELS_CACHE[key] = (network, network_weights) # As an added safety check we overwrite the fit method on the returned # model to throw an error if it is called. def throw(*args, **kwargs): raise NotImplementedError("Do not call fit on cached model.") network.fit = throw return network
[ "def", "borrow_cached_network", "(", "klass", ",", "network_json", ",", "network_weights", ")", ":", "assert", "network_weights", "is", "not", "None", "key", "=", "klass", ".", "keras_network_cache_key", "(", "network_json", ")", "if", "key", "not", "in", "klass", ".", "KERAS_MODELS_CACHE", ":", "# Cache miss.", "import", "keras", ".", "models", "network", "=", "keras", ".", "models", ".", "model_from_json", "(", "network_json", ")", "existing_weights", "=", "None", "else", ":", "# Cache hit.", "(", "network", ",", "existing_weights", ")", "=", "klass", ".", "KERAS_MODELS_CACHE", "[", "key", "]", "if", "existing_weights", "is", "not", "network_weights", ":", "network", ".", "set_weights", "(", "network_weights", ")", "klass", ".", "KERAS_MODELS_CACHE", "[", "key", "]", "=", "(", "network", ",", "network_weights", ")", "# As an added safety check we overwrite the fit method on the returned", "# model to throw an error if it is called.", "def", "throw", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "raise", "NotImplementedError", "(", "\"Do not call fit on cached model.\"", ")", "network", ".", "fit", "=", "throw", "return", "network" ]
Return a keras Model with the specified architecture and weights. As an optimization, when possible this will reuse architectures from a process-wide cache. The returned object is "borrowed" in the sense that its weights can change later after subsequent calls to this method from other objects. If you're using this from a parallel implementation you'll need to hold a lock while using the returned object. Parameters ---------- network_json : string of JSON network_weights : list of numpy.array Returns ------- keras.models.Model
[ "Return", "a", "keras", "Model", "with", "the", "specified", "architecture", "and", "weights", ".", "As", "an", "optimization", "when", "possible", "this", "will", "reuse", "architectures", "from", "a", "process", "-", "wide", "cache", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/class1_neural_network.py#L183-L224
16,869
openvax/mhcflurry
mhcflurry/class1_neural_network.py
Class1NeuralNetwork.network
def network(self, borrow=False): """ Return the keras model associated with this predictor. Parameters ---------- borrow : bool Whether to return a cached model if possible. See borrow_cached_network for details Returns ------- keras.models.Model """ if self._network is None and self.network_json is not None: self.load_weights() if borrow: return self.borrow_cached_network( self.network_json, self.network_weights) else: import keras.models self._network = keras.models.model_from_json(self.network_json) if self.network_weights is not None: self._network.set_weights(self.network_weights) self.network_json = None self.network_weights = None return self._network
python
def network(self, borrow=False): """ Return the keras model associated with this predictor. Parameters ---------- borrow : bool Whether to return a cached model if possible. See borrow_cached_network for details Returns ------- keras.models.Model """ if self._network is None and self.network_json is not None: self.load_weights() if borrow: return self.borrow_cached_network( self.network_json, self.network_weights) else: import keras.models self._network = keras.models.model_from_json(self.network_json) if self.network_weights is not None: self._network.set_weights(self.network_weights) self.network_json = None self.network_weights = None return self._network
[ "def", "network", "(", "self", ",", "borrow", "=", "False", ")", ":", "if", "self", ".", "_network", "is", "None", "and", "self", ".", "network_json", "is", "not", "None", ":", "self", ".", "load_weights", "(", ")", "if", "borrow", ":", "return", "self", ".", "borrow_cached_network", "(", "self", ".", "network_json", ",", "self", ".", "network_weights", ")", "else", ":", "import", "keras", ".", "models", "self", ".", "_network", "=", "keras", ".", "models", ".", "model_from_json", "(", "self", ".", "network_json", ")", "if", "self", ".", "network_weights", "is", "not", "None", ":", "self", ".", "_network", ".", "set_weights", "(", "self", ".", "network_weights", ")", "self", ".", "network_json", "=", "None", "self", ".", "network_weights", "=", "None", "return", "self", ".", "_network" ]
Return the keras model associated with this predictor. Parameters ---------- borrow : bool Whether to return a cached model if possible. See borrow_cached_network for details Returns ------- keras.models.Model
[ "Return", "the", "keras", "model", "associated", "with", "this", "predictor", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/class1_neural_network.py#L226-L253
16,870
openvax/mhcflurry
mhcflurry/class1_neural_network.py
Class1NeuralNetwork.load_weights
def load_weights(self): """ Load weights by evaluating self.network_weights_loader, if needed. After calling this, self.network_weights_loader will be None and self.network_weights will be the weights list, if available. """ if self.network_weights_loader: self.network_weights = self.network_weights_loader() self.network_weights_loader = None
python
def load_weights(self): """ Load weights by evaluating self.network_weights_loader, if needed. After calling this, self.network_weights_loader will be None and self.network_weights will be the weights list, if available. """ if self.network_weights_loader: self.network_weights = self.network_weights_loader() self.network_weights_loader = None
[ "def", "load_weights", "(", "self", ")", ":", "if", "self", ".", "network_weights_loader", ":", "self", ".", "network_weights", "=", "self", ".", "network_weights_loader", "(", ")", "self", ".", "network_weights_loader", "=", "None" ]
Load weights by evaluating self.network_weights_loader, if needed. After calling this, self.network_weights_loader will be None and self.network_weights will be the weights list, if available.
[ "Load", "weights", "by", "evaluating", "self", ".", "network_weights_loader", "if", "needed", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/class1_neural_network.py#L315-L324
16,871
openvax/mhcflurry
mhcflurry/class1_neural_network.py
Class1NeuralNetwork.predict
def predict(self, peptides, allele_encoding=None, batch_size=4096): """ Predict affinities. If peptides are specified as EncodableSequences, then the predictions will be cached for this predictor as long as the EncodableSequences object remains in memory. The cache is keyed in the object identity of the EncodableSequences, not the sequences themselves. Parameters ---------- peptides : EncodableSequences or list of string allele_encoding : AlleleEncoding, optional Only required when this model is a pan-allele model batch_size : int batch_size passed to Keras Returns ------- numpy.array of nM affinity predictions """ assert self.prediction_cache is not None use_cache = ( allele_encoding is None and isinstance(peptides, EncodableSequences)) if use_cache and peptides in self.prediction_cache: return self.prediction_cache[peptides].copy() x_dict = { 'peptide': self.peptides_to_network_input(peptides) } if allele_encoding is not None: allele_input = self.allele_encoding_to_network_input(allele_encoding) x_dict['allele'] = allele_input network = self.network(borrow=True) raw_predictions = network.predict(x_dict, batch_size=batch_size) predictions = numpy.array(raw_predictions, dtype = "float64")[:,0] result = to_ic50(predictions) if use_cache: self.prediction_cache[peptides] = result return result
python
def predict(self, peptides, allele_encoding=None, batch_size=4096): """ Predict affinities. If peptides are specified as EncodableSequences, then the predictions will be cached for this predictor as long as the EncodableSequences object remains in memory. The cache is keyed in the object identity of the EncodableSequences, not the sequences themselves. Parameters ---------- peptides : EncodableSequences or list of string allele_encoding : AlleleEncoding, optional Only required when this model is a pan-allele model batch_size : int batch_size passed to Keras Returns ------- numpy.array of nM affinity predictions """ assert self.prediction_cache is not None use_cache = ( allele_encoding is None and isinstance(peptides, EncodableSequences)) if use_cache and peptides in self.prediction_cache: return self.prediction_cache[peptides].copy() x_dict = { 'peptide': self.peptides_to_network_input(peptides) } if allele_encoding is not None: allele_input = self.allele_encoding_to_network_input(allele_encoding) x_dict['allele'] = allele_input network = self.network(borrow=True) raw_predictions = network.predict(x_dict, batch_size=batch_size) predictions = numpy.array(raw_predictions, dtype = "float64")[:,0] result = to_ic50(predictions) if use_cache: self.prediction_cache[peptides] = result return result
[ "def", "predict", "(", "self", ",", "peptides", ",", "allele_encoding", "=", "None", ",", "batch_size", "=", "4096", ")", ":", "assert", "self", ".", "prediction_cache", "is", "not", "None", "use_cache", "=", "(", "allele_encoding", "is", "None", "and", "isinstance", "(", "peptides", ",", "EncodableSequences", ")", ")", "if", "use_cache", "and", "peptides", "in", "self", ".", "prediction_cache", ":", "return", "self", ".", "prediction_cache", "[", "peptides", "]", ".", "copy", "(", ")", "x_dict", "=", "{", "'peptide'", ":", "self", ".", "peptides_to_network_input", "(", "peptides", ")", "}", "if", "allele_encoding", "is", "not", "None", ":", "allele_input", "=", "self", ".", "allele_encoding_to_network_input", "(", "allele_encoding", ")", "x_dict", "[", "'allele'", "]", "=", "allele_input", "network", "=", "self", ".", "network", "(", "borrow", "=", "True", ")", "raw_predictions", "=", "network", ".", "predict", "(", "x_dict", ",", "batch_size", "=", "batch_size", ")", "predictions", "=", "numpy", ".", "array", "(", "raw_predictions", ",", "dtype", "=", "\"float64\"", ")", "[", ":", ",", "0", "]", "result", "=", "to_ic50", "(", "predictions", ")", "if", "use_cache", ":", "self", ".", "prediction_cache", "[", "peptides", "]", "=", "result", "return", "result" ]
Predict affinities. If peptides are specified as EncodableSequences, then the predictions will be cached for this predictor as long as the EncodableSequences object remains in memory. The cache is keyed in the object identity of the EncodableSequences, not the sequences themselves. Parameters ---------- peptides : EncodableSequences or list of string allele_encoding : AlleleEncoding, optional Only required when this model is a pan-allele model batch_size : int batch_size passed to Keras Returns ------- numpy.array of nM affinity predictions
[ "Predict", "affinities", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/class1_neural_network.py#L739-L782
16,872
openvax/mhcflurry
mhcflurry/scoring.py
make_scores
def make_scores( ic50_y, ic50_y_pred, sample_weight=None, threshold_nm=500, max_ic50=50000): """ Calculate AUC, F1, and Kendall Tau scores. Parameters ----------- ic50_y : float list true IC50s (i.e. affinities) ic50_y_pred : float list predicted IC50s sample_weight : float list [optional] threshold_nm : float [optional] max_ic50 : float [optional] Returns ----------- dict with entries "auc", "f1", "tau" """ y_pred = from_ic50(ic50_y_pred, max_ic50) try: auc = sklearn.metrics.roc_auc_score( ic50_y <= threshold_nm, y_pred, sample_weight=sample_weight) except ValueError as e: logging.warning(e) auc = numpy.nan try: f1 = sklearn.metrics.f1_score( ic50_y <= threshold_nm, ic50_y_pred <= threshold_nm, sample_weight=sample_weight) except ValueError as e: logging.warning(e) f1 = numpy.nan try: tau = scipy.stats.kendalltau(ic50_y_pred, ic50_y)[0] except ValueError as e: logging.warning(e) tau = numpy.nan return dict( auc=auc, f1=f1, tau=tau)
python
def make_scores( ic50_y, ic50_y_pred, sample_weight=None, threshold_nm=500, max_ic50=50000): """ Calculate AUC, F1, and Kendall Tau scores. Parameters ----------- ic50_y : float list true IC50s (i.e. affinities) ic50_y_pred : float list predicted IC50s sample_weight : float list [optional] threshold_nm : float [optional] max_ic50 : float [optional] Returns ----------- dict with entries "auc", "f1", "tau" """ y_pred = from_ic50(ic50_y_pred, max_ic50) try: auc = sklearn.metrics.roc_auc_score( ic50_y <= threshold_nm, y_pred, sample_weight=sample_weight) except ValueError as e: logging.warning(e) auc = numpy.nan try: f1 = sklearn.metrics.f1_score( ic50_y <= threshold_nm, ic50_y_pred <= threshold_nm, sample_weight=sample_weight) except ValueError as e: logging.warning(e) f1 = numpy.nan try: tau = scipy.stats.kendalltau(ic50_y_pred, ic50_y)[0] except ValueError as e: logging.warning(e) tau = numpy.nan return dict( auc=auc, f1=f1, tau=tau)
[ "def", "make_scores", "(", "ic50_y", ",", "ic50_y_pred", ",", "sample_weight", "=", "None", ",", "threshold_nm", "=", "500", ",", "max_ic50", "=", "50000", ")", ":", "y_pred", "=", "from_ic50", "(", "ic50_y_pred", ",", "max_ic50", ")", "try", ":", "auc", "=", "sklearn", ".", "metrics", ".", "roc_auc_score", "(", "ic50_y", "<=", "threshold_nm", ",", "y_pred", ",", "sample_weight", "=", "sample_weight", ")", "except", "ValueError", "as", "e", ":", "logging", ".", "warning", "(", "e", ")", "auc", "=", "numpy", ".", "nan", "try", ":", "f1", "=", "sklearn", ".", "metrics", ".", "f1_score", "(", "ic50_y", "<=", "threshold_nm", ",", "ic50_y_pred", "<=", "threshold_nm", ",", "sample_weight", "=", "sample_weight", ")", "except", "ValueError", "as", "e", ":", "logging", ".", "warning", "(", "e", ")", "f1", "=", "numpy", ".", "nan", "try", ":", "tau", "=", "scipy", ".", "stats", ".", "kendalltau", "(", "ic50_y_pred", ",", "ic50_y", ")", "[", "0", "]", "except", "ValueError", "as", "e", ":", "logging", ".", "warning", "(", "e", ")", "tau", "=", "numpy", ".", "nan", "return", "dict", "(", "auc", "=", "auc", ",", "f1", "=", "f1", ",", "tau", "=", "tau", ")" ]
Calculate AUC, F1, and Kendall Tau scores. Parameters ----------- ic50_y : float list true IC50s (i.e. affinities) ic50_y_pred : float list predicted IC50s sample_weight : float list [optional] threshold_nm : float [optional] max_ic50 : float [optional] Returns ----------- dict with entries "auc", "f1", "tau"
[ "Calculate", "AUC", "F1", "and", "Kendall", "Tau", "scores", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/scoring.py#L14-L68
16,873
openvax/mhcflurry
mhcflurry/encodable_sequences.py
EncodableSequences.variable_length_to_fixed_length_vector_encoding
def variable_length_to_fixed_length_vector_encoding( self, vector_encoding_name, left_edge=4, right_edge=4, max_length=15): """ Encode variable-length sequences using a fixed-length encoding designed for preserving the anchor positions of class I peptides. The sequences must be of length at least left_edge + right_edge, and at most max_length. Parameters ---------- vector_encoding_name : string How to represent amino acids. One of "BLOSUM62", "one-hot", etc. Full list of supported vector encodings is given by available_vector_encodings(). left_edge : int, size of fixed-position left side right_edge : int, size of the fixed-position right side max_length : sequence length of the resulting encoding Returns ------- numpy.array with shape (num sequences, max_length, m) where m is vector_encoding_length(vector_encoding_name) """ cache_key = ( "fixed_length_vector_encoding", vector_encoding_name, left_edge, right_edge, max_length) if cache_key not in self.encoding_cache: fixed_length_sequences = ( self.sequences_to_fixed_length_index_encoded_array( self.sequences, left_edge=left_edge, right_edge=right_edge, max_length=max_length)) result = amino_acid.fixed_vectors_encoding( fixed_length_sequences, amino_acid.ENCODING_DATA_FRAMES[vector_encoding_name]) assert result.shape[0] == len(self.sequences) self.encoding_cache[cache_key] = result return self.encoding_cache[cache_key]
python
def variable_length_to_fixed_length_vector_encoding( self, vector_encoding_name, left_edge=4, right_edge=4, max_length=15): """ Encode variable-length sequences using a fixed-length encoding designed for preserving the anchor positions of class I peptides. The sequences must be of length at least left_edge + right_edge, and at most max_length. Parameters ---------- vector_encoding_name : string How to represent amino acids. One of "BLOSUM62", "one-hot", etc. Full list of supported vector encodings is given by available_vector_encodings(). left_edge : int, size of fixed-position left side right_edge : int, size of the fixed-position right side max_length : sequence length of the resulting encoding Returns ------- numpy.array with shape (num sequences, max_length, m) where m is vector_encoding_length(vector_encoding_name) """ cache_key = ( "fixed_length_vector_encoding", vector_encoding_name, left_edge, right_edge, max_length) if cache_key not in self.encoding_cache: fixed_length_sequences = ( self.sequences_to_fixed_length_index_encoded_array( self.sequences, left_edge=left_edge, right_edge=right_edge, max_length=max_length)) result = amino_acid.fixed_vectors_encoding( fixed_length_sequences, amino_acid.ENCODING_DATA_FRAMES[vector_encoding_name]) assert result.shape[0] == len(self.sequences) self.encoding_cache[cache_key] = result return self.encoding_cache[cache_key]
[ "def", "variable_length_to_fixed_length_vector_encoding", "(", "self", ",", "vector_encoding_name", ",", "left_edge", "=", "4", ",", "right_edge", "=", "4", ",", "max_length", "=", "15", ")", ":", "cache_key", "=", "(", "\"fixed_length_vector_encoding\"", ",", "vector_encoding_name", ",", "left_edge", ",", "right_edge", ",", "max_length", ")", "if", "cache_key", "not", "in", "self", ".", "encoding_cache", ":", "fixed_length_sequences", "=", "(", "self", ".", "sequences_to_fixed_length_index_encoded_array", "(", "self", ".", "sequences", ",", "left_edge", "=", "left_edge", ",", "right_edge", "=", "right_edge", ",", "max_length", "=", "max_length", ")", ")", "result", "=", "amino_acid", ".", "fixed_vectors_encoding", "(", "fixed_length_sequences", ",", "amino_acid", ".", "ENCODING_DATA_FRAMES", "[", "vector_encoding_name", "]", ")", "assert", "result", ".", "shape", "[", "0", "]", "==", "len", "(", "self", ".", "sequences", ")", "self", ".", "encoding_cache", "[", "cache_key", "]", "=", "result", "return", "self", ".", "encoding_cache", "[", "cache_key", "]" ]
Encode variable-length sequences using a fixed-length encoding designed for preserving the anchor positions of class I peptides. The sequences must be of length at least left_edge + right_edge, and at most max_length. Parameters ---------- vector_encoding_name : string How to represent amino acids. One of "BLOSUM62", "one-hot", etc. Full list of supported vector encodings is given by available_vector_encodings(). left_edge : int, size of fixed-position left side right_edge : int, size of the fixed-position right side max_length : sequence length of the resulting encoding Returns ------- numpy.array with shape (num sequences, max_length, m) where m is vector_encoding_length(vector_encoding_name)
[ "Encode", "variable", "-", "length", "sequences", "using", "a", "fixed", "-", "length", "encoding", "designed", "for", "preserving", "the", "anchor", "positions", "of", "class", "I", "peptides", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/encodable_sequences.py#L89-L131
16,874
openvax/mhcflurry
mhcflurry/encodable_sequences.py
EncodableSequences.sequences_to_fixed_length_index_encoded_array
def sequences_to_fixed_length_index_encoded_array( klass, sequences, left_edge=4, right_edge=4, max_length=15): """ Transform a sequence of strings, where each string is of length at least left_edge + right_edge and at most max_length into strings of length max_length using a scheme designed to preserve the anchor positions of class I peptides. The first left_edge characters in the input always map to the first left_edge characters in the output. Similarly for the last right_edge characters. The middle characters are filled in based on the length, with the X character filling in the blanks. For example, using defaults: AAAACDDDD -> AAAAXXXCXXXDDDD The strings are also converted to int categorical amino acid indices. Parameters ---------- sequence : string left_edge : int right_edge : int max_length : int Returns ------- numpy array of shape (len(sequences), max_length) and dtype int """ # Result array is int32, filled with X (null amino acid) value. result = numpy.full( fill_value=amino_acid.AMINO_ACID_INDEX['X'], shape=(len(sequences), max_length), dtype="int32") df = pandas.DataFrame({"peptide": sequences}) df["length"] = df.peptide.str.len() middle_length = max_length - left_edge - right_edge # For efficiency we handle each supported peptide length using bulk # array operations. for (length, sub_df) in df.groupby("length"): if length < left_edge + right_edge: raise ValueError( "Sequence '%s' (length %d) unsupported: length must be at " "least %d. There are %d total peptides with this length." % ( sub_df.iloc[0].peptide, length, left_edge + right_edge, len(sub_df))) if length > max_length: raise ValueError( "Sequence '%s' (length %d) unsupported: length must be at " "most %d. There are %d total peptides with this length." % ( sub_df.iloc[0].peptide, length, max_length, len(sub_df))) # Array of shape (num peptides, length) giving fixed-length amino # acid encoding each peptide of the current length. fixed_length_sequences = numpy.stack( sub_df.peptide.map( lambda s: numpy.array([ amino_acid.AMINO_ACID_INDEX[char] for char in s ])).values) num_null = max_length - length num_null_left = int(math.ceil(num_null / 2)) num_middle_filled = middle_length - num_null middle_start = left_edge + num_null_left # Set left edge result[sub_df.index, :left_edge] = fixed_length_sequences[ :, :left_edge ] # Set middle. result[ sub_df.index, middle_start : middle_start + num_middle_filled ] = fixed_length_sequences[ :, left_edge : left_edge + num_middle_filled ] # Set right edge. result[ sub_df.index, -right_edge: ] = fixed_length_sequences[:, -right_edge:] return result
python
def sequences_to_fixed_length_index_encoded_array( klass, sequences, left_edge=4, right_edge=4, max_length=15): """ Transform a sequence of strings, where each string is of length at least left_edge + right_edge and at most max_length into strings of length max_length using a scheme designed to preserve the anchor positions of class I peptides. The first left_edge characters in the input always map to the first left_edge characters in the output. Similarly for the last right_edge characters. The middle characters are filled in based on the length, with the X character filling in the blanks. For example, using defaults: AAAACDDDD -> AAAAXXXCXXXDDDD The strings are also converted to int categorical amino acid indices. Parameters ---------- sequence : string left_edge : int right_edge : int max_length : int Returns ------- numpy array of shape (len(sequences), max_length) and dtype int """ # Result array is int32, filled with X (null amino acid) value. result = numpy.full( fill_value=amino_acid.AMINO_ACID_INDEX['X'], shape=(len(sequences), max_length), dtype="int32") df = pandas.DataFrame({"peptide": sequences}) df["length"] = df.peptide.str.len() middle_length = max_length - left_edge - right_edge # For efficiency we handle each supported peptide length using bulk # array operations. for (length, sub_df) in df.groupby("length"): if length < left_edge + right_edge: raise ValueError( "Sequence '%s' (length %d) unsupported: length must be at " "least %d. There are %d total peptides with this length." % ( sub_df.iloc[0].peptide, length, left_edge + right_edge, len(sub_df))) if length > max_length: raise ValueError( "Sequence '%s' (length %d) unsupported: length must be at " "most %d. There are %d total peptides with this length." % ( sub_df.iloc[0].peptide, length, max_length, len(sub_df))) # Array of shape (num peptides, length) giving fixed-length amino # acid encoding each peptide of the current length. fixed_length_sequences = numpy.stack( sub_df.peptide.map( lambda s: numpy.array([ amino_acid.AMINO_ACID_INDEX[char] for char in s ])).values) num_null = max_length - length num_null_left = int(math.ceil(num_null / 2)) num_middle_filled = middle_length - num_null middle_start = left_edge + num_null_left # Set left edge result[sub_df.index, :left_edge] = fixed_length_sequences[ :, :left_edge ] # Set middle. result[ sub_df.index, middle_start : middle_start + num_middle_filled ] = fixed_length_sequences[ :, left_edge : left_edge + num_middle_filled ] # Set right edge. result[ sub_df.index, -right_edge: ] = fixed_length_sequences[:, -right_edge:] return result
[ "def", "sequences_to_fixed_length_index_encoded_array", "(", "klass", ",", "sequences", ",", "left_edge", "=", "4", ",", "right_edge", "=", "4", ",", "max_length", "=", "15", ")", ":", "# Result array is int32, filled with X (null amino acid) value.", "result", "=", "numpy", ".", "full", "(", "fill_value", "=", "amino_acid", ".", "AMINO_ACID_INDEX", "[", "'X'", "]", ",", "shape", "=", "(", "len", "(", "sequences", ")", ",", "max_length", ")", ",", "dtype", "=", "\"int32\"", ")", "df", "=", "pandas", ".", "DataFrame", "(", "{", "\"peptide\"", ":", "sequences", "}", ")", "df", "[", "\"length\"", "]", "=", "df", ".", "peptide", ".", "str", ".", "len", "(", ")", "middle_length", "=", "max_length", "-", "left_edge", "-", "right_edge", "# For efficiency we handle each supported peptide length using bulk", "# array operations.", "for", "(", "length", ",", "sub_df", ")", "in", "df", ".", "groupby", "(", "\"length\"", ")", ":", "if", "length", "<", "left_edge", "+", "right_edge", ":", "raise", "ValueError", "(", "\"Sequence '%s' (length %d) unsupported: length must be at \"", "\"least %d. There are %d total peptides with this length.\"", "%", "(", "sub_df", ".", "iloc", "[", "0", "]", ".", "peptide", ",", "length", ",", "left_edge", "+", "right_edge", ",", "len", "(", "sub_df", ")", ")", ")", "if", "length", ">", "max_length", ":", "raise", "ValueError", "(", "\"Sequence '%s' (length %d) unsupported: length must be at \"", "\"most %d. There are %d total peptides with this length.\"", "%", "(", "sub_df", ".", "iloc", "[", "0", "]", ".", "peptide", ",", "length", ",", "max_length", ",", "len", "(", "sub_df", ")", ")", ")", "# Array of shape (num peptides, length) giving fixed-length amino", "# acid encoding each peptide of the current length.", "fixed_length_sequences", "=", "numpy", ".", "stack", "(", "sub_df", ".", "peptide", ".", "map", "(", "lambda", "s", ":", "numpy", ".", "array", "(", "[", "amino_acid", ".", "AMINO_ACID_INDEX", "[", "char", "]", "for", "char", "in", "s", "]", ")", ")", ".", "values", ")", "num_null", "=", "max_length", "-", "length", "num_null_left", "=", "int", "(", "math", ".", "ceil", "(", "num_null", "/", "2", ")", ")", "num_middle_filled", "=", "middle_length", "-", "num_null", "middle_start", "=", "left_edge", "+", "num_null_left", "# Set left edge", "result", "[", "sub_df", ".", "index", ",", ":", "left_edge", "]", "=", "fixed_length_sequences", "[", ":", ",", ":", "left_edge", "]", "# Set middle.", "result", "[", "sub_df", ".", "index", ",", "middle_start", ":", "middle_start", "+", "num_middle_filled", "]", "=", "fixed_length_sequences", "[", ":", ",", "left_edge", ":", "left_edge", "+", "num_middle_filled", "]", "# Set right edge.", "result", "[", "sub_df", ".", "index", ",", "-", "right_edge", ":", "]", "=", "fixed_length_sequences", "[", ":", ",", "-", "right_edge", ":", "]", "return", "result" ]
Transform a sequence of strings, where each string is of length at least left_edge + right_edge and at most max_length into strings of length max_length using a scheme designed to preserve the anchor positions of class I peptides. The first left_edge characters in the input always map to the first left_edge characters in the output. Similarly for the last right_edge characters. The middle characters are filled in based on the length, with the X character filling in the blanks. For example, using defaults: AAAACDDDD -> AAAAXXXCXXXDDDD The strings are also converted to int categorical amino acid indices. Parameters ---------- sequence : string left_edge : int right_edge : int max_length : int Returns ------- numpy array of shape (len(sequences), max_length) and dtype int
[ "Transform", "a", "sequence", "of", "strings", "where", "each", "string", "is", "of", "length", "at", "least", "left_edge", "+", "right_edge", "and", "at", "most", "max_length", "into", "strings", "of", "length", "max_length", "using", "a", "scheme", "designed", "to", "preserve", "the", "anchor", "positions", "of", "class", "I", "peptides", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/encodable_sequences.py#L134-L223
16,875
openvax/mhcflurry
mhcflurry/ensemble_centrality.py
robust_mean
def robust_mean(log_values): """ Mean of values falling within the 25-75 percentiles. Parameters ---------- log_values : 2-d numpy.array Center is computed along the second axis (i.e. per row). Returns ------- center : numpy.array of length log_values.shape[1] """ if log_values.shape[1] <= 3: # Too few values to use robust mean. return numpy.nanmean(log_values, axis=1) without_nans = numpy.nan_to_num(log_values) # replace nan with 0 mask = ( (~numpy.isnan(log_values)) & (without_nans <= numpy.nanpercentile(log_values, 75, axis=1).reshape((-1, 1))) & (without_nans >= numpy.nanpercentile(log_values, 25, axis=1).reshape((-1, 1)))) return (without_nans * mask.astype(float)).sum(1) / mask.sum(1)
python
def robust_mean(log_values): """ Mean of values falling within the 25-75 percentiles. Parameters ---------- log_values : 2-d numpy.array Center is computed along the second axis (i.e. per row). Returns ------- center : numpy.array of length log_values.shape[1] """ if log_values.shape[1] <= 3: # Too few values to use robust mean. return numpy.nanmean(log_values, axis=1) without_nans = numpy.nan_to_num(log_values) # replace nan with 0 mask = ( (~numpy.isnan(log_values)) & (without_nans <= numpy.nanpercentile(log_values, 75, axis=1).reshape((-1, 1))) & (without_nans >= numpy.nanpercentile(log_values, 25, axis=1).reshape((-1, 1)))) return (without_nans * mask.astype(float)).sum(1) / mask.sum(1)
[ "def", "robust_mean", "(", "log_values", ")", ":", "if", "log_values", ".", "shape", "[", "1", "]", "<=", "3", ":", "# Too few values to use robust mean.", "return", "numpy", ".", "nanmean", "(", "log_values", ",", "axis", "=", "1", ")", "without_nans", "=", "numpy", ".", "nan_to_num", "(", "log_values", ")", "# replace nan with 0", "mask", "=", "(", "(", "~", "numpy", ".", "isnan", "(", "log_values", ")", ")", "&", "(", "without_nans", "<=", "numpy", ".", "nanpercentile", "(", "log_values", ",", "75", ",", "axis", "=", "1", ")", ".", "reshape", "(", "(", "-", "1", ",", "1", ")", ")", ")", "&", "(", "without_nans", ">=", "numpy", ".", "nanpercentile", "(", "log_values", ",", "25", ",", "axis", "=", "1", ")", ".", "reshape", "(", "(", "-", "1", ",", "1", ")", ")", ")", ")", "return", "(", "without_nans", "*", "mask", ".", "astype", "(", "float", ")", ")", ".", "sum", "(", "1", ")", "/", "mask", ".", "sum", "(", "1", ")" ]
Mean of values falling within the 25-75 percentiles. Parameters ---------- log_values : 2-d numpy.array Center is computed along the second axis (i.e. per row). Returns ------- center : numpy.array of length log_values.shape[1]
[ "Mean", "of", "values", "falling", "within", "the", "25", "-", "75", "percentiles", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/ensemble_centrality.py#L11-L33
16,876
openvax/mhcflurry
mhcflurry/class1_affinity_predictor.py
Class1AffinityPredictor.neural_networks
def neural_networks(self): """ List of the neural networks in the ensemble. Returns ------- list of `Class1NeuralNetwork` """ result = [] for models in self.allele_to_allele_specific_models.values(): result.extend(models) result.extend(self.class1_pan_allele_models) return result
python
def neural_networks(self): """ List of the neural networks in the ensemble. Returns ------- list of `Class1NeuralNetwork` """ result = [] for models in self.allele_to_allele_specific_models.values(): result.extend(models) result.extend(self.class1_pan_allele_models) return result
[ "def", "neural_networks", "(", "self", ")", ":", "result", "=", "[", "]", "for", "models", "in", "self", ".", "allele_to_allele_specific_models", ".", "values", "(", ")", ":", "result", ".", "extend", "(", "models", ")", "result", ".", "extend", "(", "self", ".", "class1_pan_allele_models", ")", "return", "result" ]
List of the neural networks in the ensemble. Returns ------- list of `Class1NeuralNetwork`
[ "List", "of", "the", "neural", "networks", "in", "the", "ensemble", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/class1_affinity_predictor.py#L140-L152
16,877
openvax/mhcflurry
mhcflurry/class1_affinity_predictor.py
Class1AffinityPredictor.merge
def merge(cls, predictors): """ Merge the ensembles of two or more `Class1AffinityPredictor` instances. Note: the resulting merged predictor will NOT have calibrated percentile ranks. Call `calibrate_percentile_ranks` on it if these are needed. Parameters ---------- predictors : sequence of `Class1AffinityPredictor` Returns ------- `Class1AffinityPredictor` instance """ assert len(predictors) > 0 if len(predictors) == 1: return predictors[0] allele_to_allele_specific_models = collections.defaultdict(list) class1_pan_allele_models = [] allele_to_fixed_length_sequence = predictors[0].allele_to_fixed_length_sequence for predictor in predictors: for (allele, networks) in ( predictor.allele_to_allele_specific_models.items()): allele_to_allele_specific_models[allele].extend(networks) class1_pan_allele_models.extend( predictor.class1_pan_allele_models) return Class1AffinityPredictor( allele_to_allele_specific_models=allele_to_allele_specific_models, class1_pan_allele_models=class1_pan_allele_models, allele_to_fixed_length_sequence=allele_to_fixed_length_sequence )
python
def merge(cls, predictors): """ Merge the ensembles of two or more `Class1AffinityPredictor` instances. Note: the resulting merged predictor will NOT have calibrated percentile ranks. Call `calibrate_percentile_ranks` on it if these are needed. Parameters ---------- predictors : sequence of `Class1AffinityPredictor` Returns ------- `Class1AffinityPredictor` instance """ assert len(predictors) > 0 if len(predictors) == 1: return predictors[0] allele_to_allele_specific_models = collections.defaultdict(list) class1_pan_allele_models = [] allele_to_fixed_length_sequence = predictors[0].allele_to_fixed_length_sequence for predictor in predictors: for (allele, networks) in ( predictor.allele_to_allele_specific_models.items()): allele_to_allele_specific_models[allele].extend(networks) class1_pan_allele_models.extend( predictor.class1_pan_allele_models) return Class1AffinityPredictor( allele_to_allele_specific_models=allele_to_allele_specific_models, class1_pan_allele_models=class1_pan_allele_models, allele_to_fixed_length_sequence=allele_to_fixed_length_sequence )
[ "def", "merge", "(", "cls", ",", "predictors", ")", ":", "assert", "len", "(", "predictors", ")", ">", "0", "if", "len", "(", "predictors", ")", "==", "1", ":", "return", "predictors", "[", "0", "]", "allele_to_allele_specific_models", "=", "collections", ".", "defaultdict", "(", "list", ")", "class1_pan_allele_models", "=", "[", "]", "allele_to_fixed_length_sequence", "=", "predictors", "[", "0", "]", ".", "allele_to_fixed_length_sequence", "for", "predictor", "in", "predictors", ":", "for", "(", "allele", ",", "networks", ")", "in", "(", "predictor", ".", "allele_to_allele_specific_models", ".", "items", "(", ")", ")", ":", "allele_to_allele_specific_models", "[", "allele", "]", ".", "extend", "(", "networks", ")", "class1_pan_allele_models", ".", "extend", "(", "predictor", ".", "class1_pan_allele_models", ")", "return", "Class1AffinityPredictor", "(", "allele_to_allele_specific_models", "=", "allele_to_allele_specific_models", ",", "class1_pan_allele_models", "=", "class1_pan_allele_models", ",", "allele_to_fixed_length_sequence", "=", "allele_to_fixed_length_sequence", ")" ]
Merge the ensembles of two or more `Class1AffinityPredictor` instances. Note: the resulting merged predictor will NOT have calibrated percentile ranks. Call `calibrate_percentile_ranks` on it if these are needed. Parameters ---------- predictors : sequence of `Class1AffinityPredictor` Returns ------- `Class1AffinityPredictor` instance
[ "Merge", "the", "ensembles", "of", "two", "or", "more", "Class1AffinityPredictor", "instances", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/class1_affinity_predictor.py#L155-L190
16,878
openvax/mhcflurry
mhcflurry/class1_affinity_predictor.py
Class1AffinityPredictor.merge_in_place
def merge_in_place(self, others): """ Add the models present other predictors into the current predictor. Parameters ---------- others : list of Class1AffinityPredictor Other predictors to merge into the current predictor. Returns ------- list of string : names of newly added models """ new_model_names = [] for predictor in others: for model in predictor.class1_pan_allele_models: model_name = self.model_name( "pan-class1", len(self.class1_pan_allele_models)) self.class1_pan_allele_models.append(model) row = pandas.Series(collections.OrderedDict([ ("model_name", model_name), ("allele", "pan-class1"), ("config_json", json.dumps(model.get_config())), ("model", model), ])).to_frame().T self._manifest_df = pandas.concat( [self.manifest_df, row], ignore_index=True) new_model_names.append(model_name) for allele in predictor.allele_to_allele_specific_models: if allele not in self.allele_to_allele_specific_models: self.allele_to_allele_specific_models[allele] = [] current_models = self.allele_to_allele_specific_models[allele] for model in predictor.allele_to_allele_specific_models[allele]: model_name = self.model_name(allele, len(current_models)) row = pandas.Series(collections.OrderedDict([ ("model_name", model_name), ("allele", allele), ("config_json", json.dumps(model.get_config())), ("model", model), ])).to_frame().T self._manifest_df = pandas.concat( [self.manifest_df, row], ignore_index=True) current_models.append(model) new_model_names.append(model_name) self.clear_cache() return new_model_names
python
def merge_in_place(self, others): """ Add the models present other predictors into the current predictor. Parameters ---------- others : list of Class1AffinityPredictor Other predictors to merge into the current predictor. Returns ------- list of string : names of newly added models """ new_model_names = [] for predictor in others: for model in predictor.class1_pan_allele_models: model_name = self.model_name( "pan-class1", len(self.class1_pan_allele_models)) self.class1_pan_allele_models.append(model) row = pandas.Series(collections.OrderedDict([ ("model_name", model_name), ("allele", "pan-class1"), ("config_json", json.dumps(model.get_config())), ("model", model), ])).to_frame().T self._manifest_df = pandas.concat( [self.manifest_df, row], ignore_index=True) new_model_names.append(model_name) for allele in predictor.allele_to_allele_specific_models: if allele not in self.allele_to_allele_specific_models: self.allele_to_allele_specific_models[allele] = [] current_models = self.allele_to_allele_specific_models[allele] for model in predictor.allele_to_allele_specific_models[allele]: model_name = self.model_name(allele, len(current_models)) row = pandas.Series(collections.OrderedDict([ ("model_name", model_name), ("allele", allele), ("config_json", json.dumps(model.get_config())), ("model", model), ])).to_frame().T self._manifest_df = pandas.concat( [self.manifest_df, row], ignore_index=True) current_models.append(model) new_model_names.append(model_name) self.clear_cache() return new_model_names
[ "def", "merge_in_place", "(", "self", ",", "others", ")", ":", "new_model_names", "=", "[", "]", "for", "predictor", "in", "others", ":", "for", "model", "in", "predictor", ".", "class1_pan_allele_models", ":", "model_name", "=", "self", ".", "model_name", "(", "\"pan-class1\"", ",", "len", "(", "self", ".", "class1_pan_allele_models", ")", ")", "self", ".", "class1_pan_allele_models", ".", "append", "(", "model", ")", "row", "=", "pandas", ".", "Series", "(", "collections", ".", "OrderedDict", "(", "[", "(", "\"model_name\"", ",", "model_name", ")", ",", "(", "\"allele\"", ",", "\"pan-class1\"", ")", ",", "(", "\"config_json\"", ",", "json", ".", "dumps", "(", "model", ".", "get_config", "(", ")", ")", ")", ",", "(", "\"model\"", ",", "model", ")", ",", "]", ")", ")", ".", "to_frame", "(", ")", ".", "T", "self", ".", "_manifest_df", "=", "pandas", ".", "concat", "(", "[", "self", ".", "manifest_df", ",", "row", "]", ",", "ignore_index", "=", "True", ")", "new_model_names", ".", "append", "(", "model_name", ")", "for", "allele", "in", "predictor", ".", "allele_to_allele_specific_models", ":", "if", "allele", "not", "in", "self", ".", "allele_to_allele_specific_models", ":", "self", ".", "allele_to_allele_specific_models", "[", "allele", "]", "=", "[", "]", "current_models", "=", "self", ".", "allele_to_allele_specific_models", "[", "allele", "]", "for", "model", "in", "predictor", ".", "allele_to_allele_specific_models", "[", "allele", "]", ":", "model_name", "=", "self", ".", "model_name", "(", "allele", ",", "len", "(", "current_models", ")", ")", "row", "=", "pandas", ".", "Series", "(", "collections", ".", "OrderedDict", "(", "[", "(", "\"model_name\"", ",", "model_name", ")", ",", "(", "\"allele\"", ",", "allele", ")", ",", "(", "\"config_json\"", ",", "json", ".", "dumps", "(", "model", ".", "get_config", "(", ")", ")", ")", ",", "(", "\"model\"", ",", "model", ")", ",", "]", ")", ")", ".", "to_frame", "(", ")", ".", "T", "self", ".", "_manifest_df", "=", "pandas", ".", "concat", "(", "[", "self", ".", "manifest_df", ",", "row", "]", ",", "ignore_index", "=", "True", ")", "current_models", ".", "append", "(", "model", ")", "new_model_names", ".", "append", "(", "model_name", ")", "self", ".", "clear_cache", "(", ")", "return", "new_model_names" ]
Add the models present other predictors into the current predictor. Parameters ---------- others : list of Class1AffinityPredictor Other predictors to merge into the current predictor. Returns ------- list of string : names of newly added models
[ "Add", "the", "models", "present", "other", "predictors", "into", "the", "current", "predictor", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/class1_affinity_predictor.py#L192-L241
16,879
openvax/mhcflurry
mhcflurry/class1_affinity_predictor.py
Class1AffinityPredictor.percentile_ranks
def percentile_ranks(self, affinities, allele=None, alleles=None, throw=True): """ Return percentile ranks for the given ic50 affinities and alleles. The 'allele' and 'alleles' argument are as in the `predict` method. Specify one of these. Parameters ---------- affinities : sequence of float nM affinities allele : string alleles : sequence of string throw : boolean If True, a ValueError will be raised in the case of unsupported alleles. If False, a warning will be logged and NaN will be returned for those percentile ranks. Returns ------- numpy.array of float """ if allele is not None: try: transform = self.allele_to_percent_rank_transform[allele] return transform.transform(affinities) except KeyError: msg = "Allele %s has no percentile rank information" % allele if throw: raise ValueError(msg) else: warnings.warn(msg) # Return NaNs return numpy.ones(len(affinities)) * numpy.nan if alleles is None: raise ValueError("Specify allele or alleles") df = pandas.DataFrame({"affinity": affinities}) df["allele"] = alleles df["result"] = numpy.nan for (allele, sub_df) in df.groupby("allele"): df.loc[sub_df.index, "result"] = self.percentile_ranks( sub_df.affinity, allele=allele, throw=throw) return df.result.values
python
def percentile_ranks(self, affinities, allele=None, alleles=None, throw=True): """ Return percentile ranks for the given ic50 affinities and alleles. The 'allele' and 'alleles' argument are as in the `predict` method. Specify one of these. Parameters ---------- affinities : sequence of float nM affinities allele : string alleles : sequence of string throw : boolean If True, a ValueError will be raised in the case of unsupported alleles. If False, a warning will be logged and NaN will be returned for those percentile ranks. Returns ------- numpy.array of float """ if allele is not None: try: transform = self.allele_to_percent_rank_transform[allele] return transform.transform(affinities) except KeyError: msg = "Allele %s has no percentile rank information" % allele if throw: raise ValueError(msg) else: warnings.warn(msg) # Return NaNs return numpy.ones(len(affinities)) * numpy.nan if alleles is None: raise ValueError("Specify allele or alleles") df = pandas.DataFrame({"affinity": affinities}) df["allele"] = alleles df["result"] = numpy.nan for (allele, sub_df) in df.groupby("allele"): df.loc[sub_df.index, "result"] = self.percentile_ranks( sub_df.affinity, allele=allele, throw=throw) return df.result.values
[ "def", "percentile_ranks", "(", "self", ",", "affinities", ",", "allele", "=", "None", ",", "alleles", "=", "None", ",", "throw", "=", "True", ")", ":", "if", "allele", "is", "not", "None", ":", "try", ":", "transform", "=", "self", ".", "allele_to_percent_rank_transform", "[", "allele", "]", "return", "transform", ".", "transform", "(", "affinities", ")", "except", "KeyError", ":", "msg", "=", "\"Allele %s has no percentile rank information\"", "%", "allele", "if", "throw", ":", "raise", "ValueError", "(", "msg", ")", "else", ":", "warnings", ".", "warn", "(", "msg", ")", "# Return NaNs", "return", "numpy", ".", "ones", "(", "len", "(", "affinities", ")", ")", "*", "numpy", ".", "nan", "if", "alleles", "is", "None", ":", "raise", "ValueError", "(", "\"Specify allele or alleles\"", ")", "df", "=", "pandas", ".", "DataFrame", "(", "{", "\"affinity\"", ":", "affinities", "}", ")", "df", "[", "\"allele\"", "]", "=", "alleles", "df", "[", "\"result\"", "]", "=", "numpy", ".", "nan", "for", "(", "allele", ",", "sub_df", ")", "in", "df", ".", "groupby", "(", "\"allele\"", ")", ":", "df", ".", "loc", "[", "sub_df", ".", "index", ",", "\"result\"", "]", "=", "self", ".", "percentile_ranks", "(", "sub_df", ".", "affinity", ",", "allele", "=", "allele", ",", "throw", "=", "throw", ")", "return", "df", ".", "result", ".", "values" ]
Return percentile ranks for the given ic50 affinities and alleles. The 'allele' and 'alleles' argument are as in the `predict` method. Specify one of these. Parameters ---------- affinities : sequence of float nM affinities allele : string alleles : sequence of string throw : boolean If True, a ValueError will be raised in the case of unsupported alleles. If False, a warning will be logged and NaN will be returned for those percentile ranks. Returns ------- numpy.array of float
[ "Return", "percentile", "ranks", "for", "the", "given", "ic50", "affinities", "and", "alleles", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/class1_affinity_predictor.py#L722-L766
16,880
openvax/mhcflurry
mhcflurry/class1_affinity_predictor.py
Class1AffinityPredictor.calibrate_percentile_ranks
def calibrate_percentile_ranks( self, peptides=None, num_peptides_per_length=int(1e5), alleles=None, bins=None): """ Compute the cumulative distribution of ic50 values for a set of alleles over a large universe of random peptides, to enable computing quantiles in this distribution later. Parameters ---------- peptides : sequence of string or EncodableSequences, optional Peptides to use num_peptides_per_length : int, optional If peptides argument is not specified, then num_peptides_per_length peptides are randomly sampled from a uniform distribution for each supported length alleles : sequence of string, optional Alleles to perform calibration for. If not specified all supported alleles will be calibrated. bins : object Anything that can be passed to numpy.histogram's "bins" argument can be used here, i.e. either an integer or a sequence giving bin edges. This is in ic50 space. Returns ---------- EncodableSequences : peptides used for calibration """ if bins is None: bins = to_ic50(numpy.linspace(1, 0, 1000)) if alleles is None: alleles = self.supported_alleles if peptides is None: peptides = [] lengths = range( self.supported_peptide_lengths[0], self.supported_peptide_lengths[1] + 1) for length in lengths: peptides.extend( random_peptides(num_peptides_per_length, length)) encoded_peptides = EncodableSequences.create(peptides) for (i, allele) in enumerate(alleles): predictions = self.predict(encoded_peptides, allele=allele) transform = PercentRankTransform() transform.fit(predictions, bins=bins) self.allele_to_percent_rank_transform[allele] = transform return encoded_peptides
python
def calibrate_percentile_ranks( self, peptides=None, num_peptides_per_length=int(1e5), alleles=None, bins=None): """ Compute the cumulative distribution of ic50 values for a set of alleles over a large universe of random peptides, to enable computing quantiles in this distribution later. Parameters ---------- peptides : sequence of string or EncodableSequences, optional Peptides to use num_peptides_per_length : int, optional If peptides argument is not specified, then num_peptides_per_length peptides are randomly sampled from a uniform distribution for each supported length alleles : sequence of string, optional Alleles to perform calibration for. If not specified all supported alleles will be calibrated. bins : object Anything that can be passed to numpy.histogram's "bins" argument can be used here, i.e. either an integer or a sequence giving bin edges. This is in ic50 space. Returns ---------- EncodableSequences : peptides used for calibration """ if bins is None: bins = to_ic50(numpy.linspace(1, 0, 1000)) if alleles is None: alleles = self.supported_alleles if peptides is None: peptides = [] lengths = range( self.supported_peptide_lengths[0], self.supported_peptide_lengths[1] + 1) for length in lengths: peptides.extend( random_peptides(num_peptides_per_length, length)) encoded_peptides = EncodableSequences.create(peptides) for (i, allele) in enumerate(alleles): predictions = self.predict(encoded_peptides, allele=allele) transform = PercentRankTransform() transform.fit(predictions, bins=bins) self.allele_to_percent_rank_transform[allele] = transform return encoded_peptides
[ "def", "calibrate_percentile_ranks", "(", "self", ",", "peptides", "=", "None", ",", "num_peptides_per_length", "=", "int", "(", "1e5", ")", ",", "alleles", "=", "None", ",", "bins", "=", "None", ")", ":", "if", "bins", "is", "None", ":", "bins", "=", "to_ic50", "(", "numpy", ".", "linspace", "(", "1", ",", "0", ",", "1000", ")", ")", "if", "alleles", "is", "None", ":", "alleles", "=", "self", ".", "supported_alleles", "if", "peptides", "is", "None", ":", "peptides", "=", "[", "]", "lengths", "=", "range", "(", "self", ".", "supported_peptide_lengths", "[", "0", "]", ",", "self", ".", "supported_peptide_lengths", "[", "1", "]", "+", "1", ")", "for", "length", "in", "lengths", ":", "peptides", ".", "extend", "(", "random_peptides", "(", "num_peptides_per_length", ",", "length", ")", ")", "encoded_peptides", "=", "EncodableSequences", ".", "create", "(", "peptides", ")", "for", "(", "i", ",", "allele", ")", "in", "enumerate", "(", "alleles", ")", ":", "predictions", "=", "self", ".", "predict", "(", "encoded_peptides", ",", "allele", "=", "allele", ")", "transform", "=", "PercentRankTransform", "(", ")", "transform", ".", "fit", "(", "predictions", ",", "bins", "=", "bins", ")", "self", ".", "allele_to_percent_rank_transform", "[", "allele", "]", "=", "transform", "return", "encoded_peptides" ]
Compute the cumulative distribution of ic50 values for a set of alleles over a large universe of random peptides, to enable computing quantiles in this distribution later. Parameters ---------- peptides : sequence of string or EncodableSequences, optional Peptides to use num_peptides_per_length : int, optional If peptides argument is not specified, then num_peptides_per_length peptides are randomly sampled from a uniform distribution for each supported length alleles : sequence of string, optional Alleles to perform calibration for. If not specified all supported alleles will be calibrated. bins : object Anything that can be passed to numpy.histogram's "bins" argument can be used here, i.e. either an integer or a sequence giving bin edges. This is in ic50 space. Returns ---------- EncodableSequences : peptides used for calibration
[ "Compute", "the", "cumulative", "distribution", "of", "ic50", "values", "for", "a", "set", "of", "alleles", "over", "a", "large", "universe", "of", "random", "peptides", "to", "enable", "computing", "quantiles", "in", "this", "distribution", "later", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/class1_affinity_predictor.py#L1074-L1128
16,881
openvax/mhcflurry
mhcflurry/class1_affinity_predictor.py
Class1AffinityPredictor.filter_networks
def filter_networks(self, predicate): """ Return a new Class1AffinityPredictor containing a subset of this predictor's neural networks. Parameters ---------- predicate : Class1NeuralNetwork -> boolean Function specifying which neural networks to include Returns ------- Class1AffinityPredictor """ allele_to_allele_specific_models = {} for (allele, models) in self.allele_to_allele_specific_models.items(): allele_to_allele_specific_models[allele] = [ m for m in models if predicate(m) ] class1_pan_allele_models = [ m for m in self.class1_pan_allele_models if predicate(m) ] return Class1AffinityPredictor( allele_to_allele_specific_models=allele_to_allele_specific_models, class1_pan_allele_models=class1_pan_allele_models, allele_to_fixed_length_sequence=self.allele_to_fixed_length_sequence, )
python
def filter_networks(self, predicate): """ Return a new Class1AffinityPredictor containing a subset of this predictor's neural networks. Parameters ---------- predicate : Class1NeuralNetwork -> boolean Function specifying which neural networks to include Returns ------- Class1AffinityPredictor """ allele_to_allele_specific_models = {} for (allele, models) in self.allele_to_allele_specific_models.items(): allele_to_allele_specific_models[allele] = [ m for m in models if predicate(m) ] class1_pan_allele_models = [ m for m in self.class1_pan_allele_models if predicate(m) ] return Class1AffinityPredictor( allele_to_allele_specific_models=allele_to_allele_specific_models, class1_pan_allele_models=class1_pan_allele_models, allele_to_fixed_length_sequence=self.allele_to_fixed_length_sequence, )
[ "def", "filter_networks", "(", "self", ",", "predicate", ")", ":", "allele_to_allele_specific_models", "=", "{", "}", "for", "(", "allele", ",", "models", ")", "in", "self", ".", "allele_to_allele_specific_models", ".", "items", "(", ")", ":", "allele_to_allele_specific_models", "[", "allele", "]", "=", "[", "m", "for", "m", "in", "models", "if", "predicate", "(", "m", ")", "]", "class1_pan_allele_models", "=", "[", "m", "for", "m", "in", "self", ".", "class1_pan_allele_models", "if", "predicate", "(", "m", ")", "]", "return", "Class1AffinityPredictor", "(", "allele_to_allele_specific_models", "=", "allele_to_allele_specific_models", ",", "class1_pan_allele_models", "=", "class1_pan_allele_models", ",", "allele_to_fixed_length_sequence", "=", "self", ".", "allele_to_fixed_length_sequence", ",", ")" ]
Return a new Class1AffinityPredictor containing a subset of this predictor's neural networks. Parameters ---------- predicate : Class1NeuralNetwork -> boolean Function specifying which neural networks to include Returns ------- Class1AffinityPredictor
[ "Return", "a", "new", "Class1AffinityPredictor", "containing", "a", "subset", "of", "this", "predictor", "s", "neural", "networks", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/class1_affinity_predictor.py#L1130-L1157
16,882
openvax/mhcflurry
mhcflurry/class1_affinity_predictor.py
Class1AffinityPredictor.model_select
def model_select( self, score_function, alleles=None, min_models=1, max_models=10000): """ Perform model selection using a user-specified scoring function. Model selection is done using a "step up" variable selection procedure, in which models are repeatedly added to an ensemble until the score stops improving. Parameters ---------- score_function : Class1AffinityPredictor -> float function Scoring function alleles : list of string, optional If not specified, model selection is performed for all alleles. min_models : int, optional Min models to select per allele max_models : int, optional Max models to select per allele Returns ------- Class1AffinityPredictor : predictor containing the selected models """ if alleles is None: alleles = self.supported_alleles dfs = [] allele_to_allele_specific_models = {} for allele in alleles: df = pandas.DataFrame({ 'model': self.allele_to_allele_specific_models[allele] }) df["model_num"] = df.index df["allele"] = allele df["selected"] = False round_num = 1 while not df.selected.all() and sum(df.selected) < max_models: score_col = "score_%2d" % round_num prev_score_col = "score_%2d" % (round_num - 1) existing_selected = list(df[df.selected].model) df[score_col] = [ numpy.nan if row.selected else score_function( Class1AffinityPredictor( allele_to_allele_specific_models={ allele: [row.model] + existing_selected } ) ) for (_, row) in df.iterrows() ] if round_num > min_models and ( df[score_col].max() < df[prev_score_col].max()): break # In case of a tie, pick a model at random. (best_model_index,) = df.loc[ (df[score_col] == df[score_col].max()) ].sample(1).index df.loc[best_model_index, "selected"] = True round_num += 1 dfs.append(df) allele_to_allele_specific_models[allele] = list( df.loc[df.selected].model) df = pandas.concat(dfs, ignore_index=True) new_predictor = Class1AffinityPredictor( allele_to_allele_specific_models, metadata_dataframes={ "model_selection": df, }) return new_predictor
python
def model_select( self, score_function, alleles=None, min_models=1, max_models=10000): """ Perform model selection using a user-specified scoring function. Model selection is done using a "step up" variable selection procedure, in which models are repeatedly added to an ensemble until the score stops improving. Parameters ---------- score_function : Class1AffinityPredictor -> float function Scoring function alleles : list of string, optional If not specified, model selection is performed for all alleles. min_models : int, optional Min models to select per allele max_models : int, optional Max models to select per allele Returns ------- Class1AffinityPredictor : predictor containing the selected models """ if alleles is None: alleles = self.supported_alleles dfs = [] allele_to_allele_specific_models = {} for allele in alleles: df = pandas.DataFrame({ 'model': self.allele_to_allele_specific_models[allele] }) df["model_num"] = df.index df["allele"] = allele df["selected"] = False round_num = 1 while not df.selected.all() and sum(df.selected) < max_models: score_col = "score_%2d" % round_num prev_score_col = "score_%2d" % (round_num - 1) existing_selected = list(df[df.selected].model) df[score_col] = [ numpy.nan if row.selected else score_function( Class1AffinityPredictor( allele_to_allele_specific_models={ allele: [row.model] + existing_selected } ) ) for (_, row) in df.iterrows() ] if round_num > min_models and ( df[score_col].max() < df[prev_score_col].max()): break # In case of a tie, pick a model at random. (best_model_index,) = df.loc[ (df[score_col] == df[score_col].max()) ].sample(1).index df.loc[best_model_index, "selected"] = True round_num += 1 dfs.append(df) allele_to_allele_specific_models[allele] = list( df.loc[df.selected].model) df = pandas.concat(dfs, ignore_index=True) new_predictor = Class1AffinityPredictor( allele_to_allele_specific_models, metadata_dataframes={ "model_selection": df, }) return new_predictor
[ "def", "model_select", "(", "self", ",", "score_function", ",", "alleles", "=", "None", ",", "min_models", "=", "1", ",", "max_models", "=", "10000", ")", ":", "if", "alleles", "is", "None", ":", "alleles", "=", "self", ".", "supported_alleles", "dfs", "=", "[", "]", "allele_to_allele_specific_models", "=", "{", "}", "for", "allele", "in", "alleles", ":", "df", "=", "pandas", ".", "DataFrame", "(", "{", "'model'", ":", "self", ".", "allele_to_allele_specific_models", "[", "allele", "]", "}", ")", "df", "[", "\"model_num\"", "]", "=", "df", ".", "index", "df", "[", "\"allele\"", "]", "=", "allele", "df", "[", "\"selected\"", "]", "=", "False", "round_num", "=", "1", "while", "not", "df", ".", "selected", ".", "all", "(", ")", "and", "sum", "(", "df", ".", "selected", ")", "<", "max_models", ":", "score_col", "=", "\"score_%2d\"", "%", "round_num", "prev_score_col", "=", "\"score_%2d\"", "%", "(", "round_num", "-", "1", ")", "existing_selected", "=", "list", "(", "df", "[", "df", ".", "selected", "]", ".", "model", ")", "df", "[", "score_col", "]", "=", "[", "numpy", ".", "nan", "if", "row", ".", "selected", "else", "score_function", "(", "Class1AffinityPredictor", "(", "allele_to_allele_specific_models", "=", "{", "allele", ":", "[", "row", ".", "model", "]", "+", "existing_selected", "}", ")", ")", "for", "(", "_", ",", "row", ")", "in", "df", ".", "iterrows", "(", ")", "]", "if", "round_num", ">", "min_models", "and", "(", "df", "[", "score_col", "]", ".", "max", "(", ")", "<", "df", "[", "prev_score_col", "]", ".", "max", "(", ")", ")", ":", "break", "# In case of a tie, pick a model at random.", "(", "best_model_index", ",", ")", "=", "df", ".", "loc", "[", "(", "df", "[", "score_col", "]", "==", "df", "[", "score_col", "]", ".", "max", "(", ")", ")", "]", ".", "sample", "(", "1", ")", ".", "index", "df", ".", "loc", "[", "best_model_index", ",", "\"selected\"", "]", "=", "True", "round_num", "+=", "1", "dfs", ".", "append", "(", "df", ")", "allele_to_allele_specific_models", "[", "allele", "]", "=", "list", "(", "df", ".", "loc", "[", "df", ".", "selected", "]", ".", "model", ")", "df", "=", "pandas", ".", "concat", "(", "dfs", ",", "ignore_index", "=", "True", ")", "new_predictor", "=", "Class1AffinityPredictor", "(", "allele_to_allele_specific_models", ",", "metadata_dataframes", "=", "{", "\"model_selection\"", ":", "df", ",", "}", ")", "return", "new_predictor" ]
Perform model selection using a user-specified scoring function. Model selection is done using a "step up" variable selection procedure, in which models are repeatedly added to an ensemble until the score stops improving. Parameters ---------- score_function : Class1AffinityPredictor -> float function Scoring function alleles : list of string, optional If not specified, model selection is performed for all alleles. min_models : int, optional Min models to select per allele max_models : int, optional Max models to select per allele Returns ------- Class1AffinityPredictor : predictor containing the selected models
[ "Perform", "model", "selection", "using", "a", "user", "-", "specified", "scoring", "function", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/class1_affinity_predictor.py#L1159-L1245
16,883
openvax/mhcflurry
mhcflurry/percent_rank_transform.py
PercentRankTransform.to_series
def to_series(self): """ Serialize the fit to a pandas.Series. The index on the series gives the bin edges and the valeus give the CDF. Returns ------- pandas.Series """ return pandas.Series( self.cdf, index=[numpy.nan] + list(self.bin_edges) + [numpy.nan])
python
def to_series(self): """ Serialize the fit to a pandas.Series. The index on the series gives the bin edges and the valeus give the CDF. Returns ------- pandas.Series """ return pandas.Series( self.cdf, index=[numpy.nan] + list(self.bin_edges) + [numpy.nan])
[ "def", "to_series", "(", "self", ")", ":", "return", "pandas", ".", "Series", "(", "self", ".", "cdf", ",", "index", "=", "[", "numpy", ".", "nan", "]", "+", "list", "(", "self", ".", "bin_edges", ")", "+", "[", "numpy", ".", "nan", "]", ")" ]
Serialize the fit to a pandas.Series. The index on the series gives the bin edges and the valeus give the CDF. Returns ------- pandas.Series
[ "Serialize", "the", "fit", "to", "a", "pandas", ".", "Series", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/percent_rank_transform.py#L46-L58
16,884
openvax/mhcflurry
mhcflurry/downloads.py
get_default_class1_models_dir
def get_default_class1_models_dir(test_exists=True): """ Return the absolute path to the default class1 models dir. If environment variable MHCFLURRY_DEFAULT_CLASS1_MODELS is set to an absolute path, return that path. If it's set to a relative path (i.e. does not start with /) then return that path taken to be relative to the mhcflurry downloads dir. If environment variable MHCFLURRY_DEFAULT_CLASS1_MODELS is NOT set, then return the path to downloaded models in the "models_class1" download. Parameters ---------- test_exists : boolean, optional Whether to raise an exception of the path does not exist Returns ------- string : absolute path """ if _MHCFLURRY_DEFAULT_CLASS1_MODELS_DIR: result = join(get_downloads_dir(), _MHCFLURRY_DEFAULT_CLASS1_MODELS_DIR) if test_exists and not exists(result): raise IOError("No such directory: %s" % result) return result else: return get_path("models_class1", "models", test_exists=test_exists)
python
def get_default_class1_models_dir(test_exists=True): """ Return the absolute path to the default class1 models dir. If environment variable MHCFLURRY_DEFAULT_CLASS1_MODELS is set to an absolute path, return that path. If it's set to a relative path (i.e. does not start with /) then return that path taken to be relative to the mhcflurry downloads dir. If environment variable MHCFLURRY_DEFAULT_CLASS1_MODELS is NOT set, then return the path to downloaded models in the "models_class1" download. Parameters ---------- test_exists : boolean, optional Whether to raise an exception of the path does not exist Returns ------- string : absolute path """ if _MHCFLURRY_DEFAULT_CLASS1_MODELS_DIR: result = join(get_downloads_dir(), _MHCFLURRY_DEFAULT_CLASS1_MODELS_DIR) if test_exists and not exists(result): raise IOError("No such directory: %s" % result) return result else: return get_path("models_class1", "models", test_exists=test_exists)
[ "def", "get_default_class1_models_dir", "(", "test_exists", "=", "True", ")", ":", "if", "_MHCFLURRY_DEFAULT_CLASS1_MODELS_DIR", ":", "result", "=", "join", "(", "get_downloads_dir", "(", ")", ",", "_MHCFLURRY_DEFAULT_CLASS1_MODELS_DIR", ")", "if", "test_exists", "and", "not", "exists", "(", "result", ")", ":", "raise", "IOError", "(", "\"No such directory: %s\"", "%", "result", ")", "return", "result", "else", ":", "return", "get_path", "(", "\"models_class1\"", ",", "\"models\"", ",", "test_exists", "=", "test_exists", ")" ]
Return the absolute path to the default class1 models dir. If environment variable MHCFLURRY_DEFAULT_CLASS1_MODELS is set to an absolute path, return that path. If it's set to a relative path (i.e. does not start with /) then return that path taken to be relative to the mhcflurry downloads dir. If environment variable MHCFLURRY_DEFAULT_CLASS1_MODELS is NOT set, then return the path to downloaded models in the "models_class1" download. Parameters ---------- test_exists : boolean, optional Whether to raise an exception of the path does not exist Returns ------- string : absolute path
[ "Return", "the", "absolute", "path", "to", "the", "default", "class1", "models", "dir", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/downloads.py#L57-L85
16,885
openvax/mhcflurry
mhcflurry/downloads.py
get_current_release_downloads
def get_current_release_downloads(): """ Return a dict of all available downloads in the current release. The dict keys are the names of the downloads. The values are a dict with two entries: downloaded : bool Whether the download is currently available locally metadata : dict Info about the download from downloads.yml such as URL """ downloads = ( get_downloads_metadata() ['releases'] [get_current_release()] ['downloads']) return OrderedDict( (download["name"], { 'downloaded': exists(join(get_downloads_dir(), download["name"])), 'metadata': download, }) for download in downloads )
python
def get_current_release_downloads(): """ Return a dict of all available downloads in the current release. The dict keys are the names of the downloads. The values are a dict with two entries: downloaded : bool Whether the download is currently available locally metadata : dict Info about the download from downloads.yml such as URL """ downloads = ( get_downloads_metadata() ['releases'] [get_current_release()] ['downloads']) return OrderedDict( (download["name"], { 'downloaded': exists(join(get_downloads_dir(), download["name"])), 'metadata': download, }) for download in downloads )
[ "def", "get_current_release_downloads", "(", ")", ":", "downloads", "=", "(", "get_downloads_metadata", "(", ")", "[", "'releases'", "]", "[", "get_current_release", "(", ")", "]", "[", "'downloads'", "]", ")", "return", "OrderedDict", "(", "(", "download", "[", "\"name\"", "]", ",", "{", "'downloaded'", ":", "exists", "(", "join", "(", "get_downloads_dir", "(", ")", ",", "download", "[", "\"name\"", "]", ")", ")", ",", "'metadata'", ":", "download", ",", "}", ")", "for", "download", "in", "downloads", ")" ]
Return a dict of all available downloads in the current release. The dict keys are the names of the downloads. The values are a dict with two entries: downloaded : bool Whether the download is currently available locally metadata : dict Info about the download from downloads.yml such as URL
[ "Return", "a", "dict", "of", "all", "available", "downloads", "in", "the", "current", "release", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/downloads.py#L88-L111
16,886
openvax/mhcflurry
mhcflurry/downloads.py
get_path
def get_path(download_name, filename='', test_exists=True): """ Get the local path to a file in a MHCflurry download Parameters ----------- download_name : string filename : string Relative path within the download to the file of interest test_exists : boolean If True (default) throw an error telling the user how to download the data if the file does not exist Returns ----------- string giving local absolute path """ assert '/' not in download_name, "Invalid download: %s" % download_name path = join(get_downloads_dir(), download_name, filename) if test_exists and not exists(path): raise RuntimeError( "Missing MHCflurry downloadable file: %s. " "To download this data, run:\n\tmhcflurry-downloads fetch %s\n" "in a shell." % (quote(path), download_name)) return path
python
def get_path(download_name, filename='', test_exists=True): """ Get the local path to a file in a MHCflurry download Parameters ----------- download_name : string filename : string Relative path within the download to the file of interest test_exists : boolean If True (default) throw an error telling the user how to download the data if the file does not exist Returns ----------- string giving local absolute path """ assert '/' not in download_name, "Invalid download: %s" % download_name path = join(get_downloads_dir(), download_name, filename) if test_exists and not exists(path): raise RuntimeError( "Missing MHCflurry downloadable file: %s. " "To download this data, run:\n\tmhcflurry-downloads fetch %s\n" "in a shell." % (quote(path), download_name)) return path
[ "def", "get_path", "(", "download_name", ",", "filename", "=", "''", ",", "test_exists", "=", "True", ")", ":", "assert", "'/'", "not", "in", "download_name", ",", "\"Invalid download: %s\"", "%", "download_name", "path", "=", "join", "(", "get_downloads_dir", "(", ")", ",", "download_name", ",", "filename", ")", "if", "test_exists", "and", "not", "exists", "(", "path", ")", ":", "raise", "RuntimeError", "(", "\"Missing MHCflurry downloadable file: %s. \"", "\"To download this data, run:\\n\\tmhcflurry-downloads fetch %s\\n\"", "\"in a shell.\"", "%", "(", "quote", "(", "path", ")", ",", "download_name", ")", ")", "return", "path" ]
Get the local path to a file in a MHCflurry download Parameters ----------- download_name : string filename : string Relative path within the download to the file of interest test_exists : boolean If True (default) throw an error telling the user how to download the data if the file does not exist Returns ----------- string giving local absolute path
[ "Get", "the", "local", "path", "to", "a", "file", "in", "a", "MHCflurry", "download" ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/downloads.py#L114-L141
16,887
openvax/mhcflurry
mhcflurry/downloads.py
configure
def configure(): """ Setup various global variables based on environment variables. """ global _DOWNLOADS_DIR global _CURRENT_RELEASE _CURRENT_RELEASE = None _DOWNLOADS_DIR = environ.get("MHCFLURRY_DOWNLOADS_DIR") if not _DOWNLOADS_DIR: metadata = get_downloads_metadata() _CURRENT_RELEASE = environ.get("MHCFLURRY_DOWNLOADS_CURRENT_RELEASE") if not _CURRENT_RELEASE: _CURRENT_RELEASE = metadata['current-release'] current_release_compatability = ( metadata["releases"][_CURRENT_RELEASE]["compatibility-version"]) current_compatability = metadata["current-compatibility-version"] if current_release_compatability != current_compatability: logging.warn( "The specified downloads are not compatible with this version " "of the MHCflurry codebase. Downloads: release %s, " "compatability version: %d. Code compatability version: %d" % ( _CURRENT_RELEASE, current_release_compatability, current_compatability)) data_dir = environ.get("MHCFLURRY_DATA_DIR") if not data_dir: # increase the version every time we make a breaking change in # how the data is organized. For changes to e.g. just model # serialization, the downloads release numbers should be used. data_dir = user_data_dir("mhcflurry", version="4") _DOWNLOADS_DIR = join(data_dir, _CURRENT_RELEASE) logging.debug("Configured MHCFLURRY_DOWNLOADS_DIR: %s" % _DOWNLOADS_DIR)
python
def configure(): """ Setup various global variables based on environment variables. """ global _DOWNLOADS_DIR global _CURRENT_RELEASE _CURRENT_RELEASE = None _DOWNLOADS_DIR = environ.get("MHCFLURRY_DOWNLOADS_DIR") if not _DOWNLOADS_DIR: metadata = get_downloads_metadata() _CURRENT_RELEASE = environ.get("MHCFLURRY_DOWNLOADS_CURRENT_RELEASE") if not _CURRENT_RELEASE: _CURRENT_RELEASE = metadata['current-release'] current_release_compatability = ( metadata["releases"][_CURRENT_RELEASE]["compatibility-version"]) current_compatability = metadata["current-compatibility-version"] if current_release_compatability != current_compatability: logging.warn( "The specified downloads are not compatible with this version " "of the MHCflurry codebase. Downloads: release %s, " "compatability version: %d. Code compatability version: %d" % ( _CURRENT_RELEASE, current_release_compatability, current_compatability)) data_dir = environ.get("MHCFLURRY_DATA_DIR") if not data_dir: # increase the version every time we make a breaking change in # how the data is organized. For changes to e.g. just model # serialization, the downloads release numbers should be used. data_dir = user_data_dir("mhcflurry", version="4") _DOWNLOADS_DIR = join(data_dir, _CURRENT_RELEASE) logging.debug("Configured MHCFLURRY_DOWNLOADS_DIR: %s" % _DOWNLOADS_DIR)
[ "def", "configure", "(", ")", ":", "global", "_DOWNLOADS_DIR", "global", "_CURRENT_RELEASE", "_CURRENT_RELEASE", "=", "None", "_DOWNLOADS_DIR", "=", "environ", ".", "get", "(", "\"MHCFLURRY_DOWNLOADS_DIR\"", ")", "if", "not", "_DOWNLOADS_DIR", ":", "metadata", "=", "get_downloads_metadata", "(", ")", "_CURRENT_RELEASE", "=", "environ", ".", "get", "(", "\"MHCFLURRY_DOWNLOADS_CURRENT_RELEASE\"", ")", "if", "not", "_CURRENT_RELEASE", ":", "_CURRENT_RELEASE", "=", "metadata", "[", "'current-release'", "]", "current_release_compatability", "=", "(", "metadata", "[", "\"releases\"", "]", "[", "_CURRENT_RELEASE", "]", "[", "\"compatibility-version\"", "]", ")", "current_compatability", "=", "metadata", "[", "\"current-compatibility-version\"", "]", "if", "current_release_compatability", "!=", "current_compatability", ":", "logging", ".", "warn", "(", "\"The specified downloads are not compatible with this version \"", "\"of the MHCflurry codebase. Downloads: release %s, \"", "\"compatability version: %d. Code compatability version: %d\"", "%", "(", "_CURRENT_RELEASE", ",", "current_release_compatability", ",", "current_compatability", ")", ")", "data_dir", "=", "environ", ".", "get", "(", "\"MHCFLURRY_DATA_DIR\"", ")", "if", "not", "data_dir", ":", "# increase the version every time we make a breaking change in", "# how the data is organized. For changes to e.g. just model", "# serialization, the downloads release numbers should be used.", "data_dir", "=", "user_data_dir", "(", "\"mhcflurry\"", ",", "version", "=", "\"4\"", ")", "_DOWNLOADS_DIR", "=", "join", "(", "data_dir", ",", "_CURRENT_RELEASE", ")", "logging", ".", "debug", "(", "\"Configured MHCFLURRY_DOWNLOADS_DIR: %s\"", "%", "_DOWNLOADS_DIR", ")" ]
Setup various global variables based on environment variables.
[ "Setup", "various", "global", "variables", "based", "on", "environment", "variables", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/downloads.py#L144-L179
16,888
openvax/mhcflurry
mhcflurry/parallelism.py
make_worker_pool
def make_worker_pool( processes=None, initializer=None, initializer_kwargs_per_process=None, max_tasks_per_worker=None): """ Convenience wrapper to create a multiprocessing.Pool. This function adds support for per-worker initializer arguments, which are not natively supported by the multiprocessing module. The motivation for this feature is to support allocating each worker to a (different) GPU. IMPLEMENTATION NOTE: The per-worker initializer arguments are implemented using a Queue. Each worker reads its arguments from this queue when it starts. When it terminates, it adds its initializer arguments back to the queue, so a future process can initialize itself using these arguments. There is one issue with this approach, however. If a worker crashes, it never repopulates the queue of initializer arguments. This will prevent any future worker from re-using those arguments. To deal with this issue we add a second 'backup queue'. This queue always contains the full set of initializer arguments: whenever a worker reads from it, it always pushes the pop'd args back to the end of the queue immediately. If the primary arg queue is ever empty, then workers will read from this backup queue. Parameters ---------- processes : int Number of workers. Default: num CPUs. initializer : function, optional Init function to call in each worker initializer_kwargs_per_process : list of dict, optional Arguments to pass to initializer function for each worker. Length of list must equal the number of workers. max_tasks_per_worker : int, optional Restart workers after this many tasks. Requires Python >=3.2. Returns ------- multiprocessing.Pool """ if not processes: processes = cpu_count() pool_kwargs = { 'processes': processes, } if max_tasks_per_worker: pool_kwargs["maxtasksperchild"] = max_tasks_per_worker if initializer: if initializer_kwargs_per_process: assert len(initializer_kwargs_per_process) == processes kwargs_queue = Queue() kwargs_queue_backup = Queue() for kwargs in initializer_kwargs_per_process: kwargs_queue.put(kwargs) kwargs_queue_backup.put(kwargs) pool_kwargs["initializer"] = worker_init_entry_point pool_kwargs["initargs"] = ( initializer, kwargs_queue, kwargs_queue_backup) else: pool_kwargs["initializer"] = initializer worker_pool = Pool(**pool_kwargs) print("Started pool: %s" % str(worker_pool)) pprint(pool_kwargs) return worker_pool
python
def make_worker_pool( processes=None, initializer=None, initializer_kwargs_per_process=None, max_tasks_per_worker=None): """ Convenience wrapper to create a multiprocessing.Pool. This function adds support for per-worker initializer arguments, which are not natively supported by the multiprocessing module. The motivation for this feature is to support allocating each worker to a (different) GPU. IMPLEMENTATION NOTE: The per-worker initializer arguments are implemented using a Queue. Each worker reads its arguments from this queue when it starts. When it terminates, it adds its initializer arguments back to the queue, so a future process can initialize itself using these arguments. There is one issue with this approach, however. If a worker crashes, it never repopulates the queue of initializer arguments. This will prevent any future worker from re-using those arguments. To deal with this issue we add a second 'backup queue'. This queue always contains the full set of initializer arguments: whenever a worker reads from it, it always pushes the pop'd args back to the end of the queue immediately. If the primary arg queue is ever empty, then workers will read from this backup queue. Parameters ---------- processes : int Number of workers. Default: num CPUs. initializer : function, optional Init function to call in each worker initializer_kwargs_per_process : list of dict, optional Arguments to pass to initializer function for each worker. Length of list must equal the number of workers. max_tasks_per_worker : int, optional Restart workers after this many tasks. Requires Python >=3.2. Returns ------- multiprocessing.Pool """ if not processes: processes = cpu_count() pool_kwargs = { 'processes': processes, } if max_tasks_per_worker: pool_kwargs["maxtasksperchild"] = max_tasks_per_worker if initializer: if initializer_kwargs_per_process: assert len(initializer_kwargs_per_process) == processes kwargs_queue = Queue() kwargs_queue_backup = Queue() for kwargs in initializer_kwargs_per_process: kwargs_queue.put(kwargs) kwargs_queue_backup.put(kwargs) pool_kwargs["initializer"] = worker_init_entry_point pool_kwargs["initargs"] = ( initializer, kwargs_queue, kwargs_queue_backup) else: pool_kwargs["initializer"] = initializer worker_pool = Pool(**pool_kwargs) print("Started pool: %s" % str(worker_pool)) pprint(pool_kwargs) return worker_pool
[ "def", "make_worker_pool", "(", "processes", "=", "None", ",", "initializer", "=", "None", ",", "initializer_kwargs_per_process", "=", "None", ",", "max_tasks_per_worker", "=", "None", ")", ":", "if", "not", "processes", ":", "processes", "=", "cpu_count", "(", ")", "pool_kwargs", "=", "{", "'processes'", ":", "processes", ",", "}", "if", "max_tasks_per_worker", ":", "pool_kwargs", "[", "\"maxtasksperchild\"", "]", "=", "max_tasks_per_worker", "if", "initializer", ":", "if", "initializer_kwargs_per_process", ":", "assert", "len", "(", "initializer_kwargs_per_process", ")", "==", "processes", "kwargs_queue", "=", "Queue", "(", ")", "kwargs_queue_backup", "=", "Queue", "(", ")", "for", "kwargs", "in", "initializer_kwargs_per_process", ":", "kwargs_queue", ".", "put", "(", "kwargs", ")", "kwargs_queue_backup", ".", "put", "(", "kwargs", ")", "pool_kwargs", "[", "\"initializer\"", "]", "=", "worker_init_entry_point", "pool_kwargs", "[", "\"initargs\"", "]", "=", "(", "initializer", ",", "kwargs_queue", ",", "kwargs_queue_backup", ")", "else", ":", "pool_kwargs", "[", "\"initializer\"", "]", "=", "initializer", "worker_pool", "=", "Pool", "(", "*", "*", "pool_kwargs", ")", "print", "(", "\"Started pool: %s\"", "%", "str", "(", "worker_pool", ")", ")", "pprint", "(", "pool_kwargs", ")", "return", "worker_pool" ]
Convenience wrapper to create a multiprocessing.Pool. This function adds support for per-worker initializer arguments, which are not natively supported by the multiprocessing module. The motivation for this feature is to support allocating each worker to a (different) GPU. IMPLEMENTATION NOTE: The per-worker initializer arguments are implemented using a Queue. Each worker reads its arguments from this queue when it starts. When it terminates, it adds its initializer arguments back to the queue, so a future process can initialize itself using these arguments. There is one issue with this approach, however. If a worker crashes, it never repopulates the queue of initializer arguments. This will prevent any future worker from re-using those arguments. To deal with this issue we add a second 'backup queue'. This queue always contains the full set of initializer arguments: whenever a worker reads from it, it always pushes the pop'd args back to the end of the queue immediately. If the primary arg queue is ever empty, then workers will read from this backup queue. Parameters ---------- processes : int Number of workers. Default: num CPUs. initializer : function, optional Init function to call in each worker initializer_kwargs_per_process : list of dict, optional Arguments to pass to initializer function for each worker. Length of list must equal the number of workers. max_tasks_per_worker : int, optional Restart workers after this many tasks. Requires Python >=3.2. Returns ------- multiprocessing.Pool
[ "Convenience", "wrapper", "to", "create", "a", "multiprocessing", ".", "Pool", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/parallelism.py#L115-L188
16,889
openvax/mhcflurry
mhcflurry/calibrate_percentile_ranks_command.py
calibrate_percentile_ranks
def calibrate_percentile_ranks(allele, predictor, peptides=None): """ Private helper function. """ global GLOBAL_DATA if peptides is None: peptides = GLOBAL_DATA["calibration_peptides"] predictor.calibrate_percentile_ranks( peptides=peptides, alleles=[allele]) return { allele: predictor.allele_to_percent_rank_transform[allele], }
python
def calibrate_percentile_ranks(allele, predictor, peptides=None): """ Private helper function. """ global GLOBAL_DATA if peptides is None: peptides = GLOBAL_DATA["calibration_peptides"] predictor.calibrate_percentile_ranks( peptides=peptides, alleles=[allele]) return { allele: predictor.allele_to_percent_rank_transform[allele], }
[ "def", "calibrate_percentile_ranks", "(", "allele", ",", "predictor", ",", "peptides", "=", "None", ")", ":", "global", "GLOBAL_DATA", "if", "peptides", "is", "None", ":", "peptides", "=", "GLOBAL_DATA", "[", "\"calibration_peptides\"", "]", "predictor", ".", "calibrate_percentile_ranks", "(", "peptides", "=", "peptides", ",", "alleles", "=", "[", "allele", "]", ")", "return", "{", "allele", ":", "predictor", ".", "allele_to_percent_rank_transform", "[", "allele", "]", ",", "}" ]
Private helper function.
[ "Private", "helper", "function", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/calibrate_percentile_ranks_command.py#L140-L152
16,890
openvax/mhcflurry
mhcflurry/common.py
set_keras_backend
def set_keras_backend(backend=None, gpu_device_nums=None, num_threads=None): """ Configure Keras backend to use GPU or CPU. Only tensorflow is supported. Parameters ---------- backend : string, optional one of 'tensorflow-default', 'tensorflow-cpu', 'tensorflow-gpu' gpu_device_nums : list of int, optional GPU devices to potentially use num_threads : int, optional Tensorflow threads to use """ os.environ["KERAS_BACKEND"] = "tensorflow" original_backend = backend if not backend: backend = "tensorflow-default" if gpu_device_nums is not None: os.environ["CUDA_VISIBLE_DEVICES"] = ",".join( [str(i) for i in gpu_device_nums]) if backend == "tensorflow-cpu" or gpu_device_nums == []: print("Forcing tensorflow/CPU backend.") os.environ["CUDA_VISIBLE_DEVICES"] = "" device_count = {'CPU': 1, 'GPU': 0} elif backend == "tensorflow-gpu": print("Forcing tensorflow/GPU backend.") device_count = {'CPU': 0, 'GPU': 1} elif backend == "tensorflow-default": print("Forcing tensorflow backend.") device_count = None else: raise ValueError("Unsupported backend: %s" % backend) import tensorflow from keras import backend as K if K.backend() == 'tensorflow': config = tensorflow.ConfigProto(device_count=device_count) config.gpu_options.allow_growth = True if num_threads: config.inter_op_parallelism_threads = num_threads config.intra_op_parallelism_threads = num_threads session = tensorflow.Session(config=config) K.set_session(session) else: if original_backend or gpu_device_nums or num_threads: warnings.warn( "Only tensorflow backend can be customized. Ignoring " " customization. Backend: %s" % K.backend())
python
def set_keras_backend(backend=None, gpu_device_nums=None, num_threads=None): """ Configure Keras backend to use GPU or CPU. Only tensorflow is supported. Parameters ---------- backend : string, optional one of 'tensorflow-default', 'tensorflow-cpu', 'tensorflow-gpu' gpu_device_nums : list of int, optional GPU devices to potentially use num_threads : int, optional Tensorflow threads to use """ os.environ["KERAS_BACKEND"] = "tensorflow" original_backend = backend if not backend: backend = "tensorflow-default" if gpu_device_nums is not None: os.environ["CUDA_VISIBLE_DEVICES"] = ",".join( [str(i) for i in gpu_device_nums]) if backend == "tensorflow-cpu" or gpu_device_nums == []: print("Forcing tensorflow/CPU backend.") os.environ["CUDA_VISIBLE_DEVICES"] = "" device_count = {'CPU': 1, 'GPU': 0} elif backend == "tensorflow-gpu": print("Forcing tensorflow/GPU backend.") device_count = {'CPU': 0, 'GPU': 1} elif backend == "tensorflow-default": print("Forcing tensorflow backend.") device_count = None else: raise ValueError("Unsupported backend: %s" % backend) import tensorflow from keras import backend as K if K.backend() == 'tensorflow': config = tensorflow.ConfigProto(device_count=device_count) config.gpu_options.allow_growth = True if num_threads: config.inter_op_parallelism_threads = num_threads config.intra_op_parallelism_threads = num_threads session = tensorflow.Session(config=config) K.set_session(session) else: if original_backend or gpu_device_nums or num_threads: warnings.warn( "Only tensorflow backend can be customized. Ignoring " " customization. Backend: %s" % K.backend())
[ "def", "set_keras_backend", "(", "backend", "=", "None", ",", "gpu_device_nums", "=", "None", ",", "num_threads", "=", "None", ")", ":", "os", ".", "environ", "[", "\"KERAS_BACKEND\"", "]", "=", "\"tensorflow\"", "original_backend", "=", "backend", "if", "not", "backend", ":", "backend", "=", "\"tensorflow-default\"", "if", "gpu_device_nums", "is", "not", "None", ":", "os", ".", "environ", "[", "\"CUDA_VISIBLE_DEVICES\"", "]", "=", "\",\"", ".", "join", "(", "[", "str", "(", "i", ")", "for", "i", "in", "gpu_device_nums", "]", ")", "if", "backend", "==", "\"tensorflow-cpu\"", "or", "gpu_device_nums", "==", "[", "]", ":", "print", "(", "\"Forcing tensorflow/CPU backend.\"", ")", "os", ".", "environ", "[", "\"CUDA_VISIBLE_DEVICES\"", "]", "=", "\"\"", "device_count", "=", "{", "'CPU'", ":", "1", ",", "'GPU'", ":", "0", "}", "elif", "backend", "==", "\"tensorflow-gpu\"", ":", "print", "(", "\"Forcing tensorflow/GPU backend.\"", ")", "device_count", "=", "{", "'CPU'", ":", "0", ",", "'GPU'", ":", "1", "}", "elif", "backend", "==", "\"tensorflow-default\"", ":", "print", "(", "\"Forcing tensorflow backend.\"", ")", "device_count", "=", "None", "else", ":", "raise", "ValueError", "(", "\"Unsupported backend: %s\"", "%", "backend", ")", "import", "tensorflow", "from", "keras", "import", "backend", "as", "K", "if", "K", ".", "backend", "(", ")", "==", "'tensorflow'", ":", "config", "=", "tensorflow", ".", "ConfigProto", "(", "device_count", "=", "device_count", ")", "config", ".", "gpu_options", ".", "allow_growth", "=", "True", "if", "num_threads", ":", "config", ".", "inter_op_parallelism_threads", "=", "num_threads", "config", ".", "intra_op_parallelism_threads", "=", "num_threads", "session", "=", "tensorflow", ".", "Session", "(", "config", "=", "config", ")", "K", ".", "set_session", "(", "session", ")", "else", ":", "if", "original_backend", "or", "gpu_device_nums", "or", "num_threads", ":", "warnings", ".", "warn", "(", "\"Only tensorflow backend can be customized. Ignoring \"", "\" customization. Backend: %s\"", "%", "K", ".", "backend", "(", ")", ")" ]
Configure Keras backend to use GPU or CPU. Only tensorflow is supported. Parameters ---------- backend : string, optional one of 'tensorflow-default', 'tensorflow-cpu', 'tensorflow-gpu' gpu_device_nums : list of int, optional GPU devices to potentially use num_threads : int, optional Tensorflow threads to use
[ "Configure", "Keras", "backend", "to", "use", "GPU", "or", "CPU", ".", "Only", "tensorflow", "is", "supported", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/common.py#L14-L68
16,891
JonathanRaiman/pytreebank
pytreebank/labeled_trees.py
LabeledTree.uproot
def uproot(tree): """ Take a subranch of a tree and deep-copy the children of this subbranch into a new LabeledTree """ uprooted = tree.copy() uprooted.parent = None for child in tree.all_children(): uprooted.add_general_child(child) return uprooted
python
def uproot(tree): """ Take a subranch of a tree and deep-copy the children of this subbranch into a new LabeledTree """ uprooted = tree.copy() uprooted.parent = None for child in tree.all_children(): uprooted.add_general_child(child) return uprooted
[ "def", "uproot", "(", "tree", ")", ":", "uprooted", "=", "tree", ".", "copy", "(", ")", "uprooted", ".", "parent", "=", "None", "for", "child", "in", "tree", ".", "all_children", "(", ")", ":", "uprooted", ".", "add_general_child", "(", "child", ")", "return", "uprooted" ]
Take a subranch of a tree and deep-copy the children of this subbranch into a new LabeledTree
[ "Take", "a", "subranch", "of", "a", "tree", "and", "deep", "-", "copy", "the", "children", "of", "this", "subbranch", "into", "a", "new", "LabeledTree" ]
7b4c671d3dff661cc3677e54db817e50c5a1c666
https://github.com/JonathanRaiman/pytreebank/blob/7b4c671d3dff661cc3677e54db817e50c5a1c666/pytreebank/labeled_trees.py#L35-L44
16,892
JonathanRaiman/pytreebank
pytreebank/labeled_trees.py
LabeledTree.copy
def copy(self): """ Deep Copy of a LabeledTree """ return LabeledTree( udepth = self.udepth, depth = self.depth, text = self.text, label = self.label, children = self.children.copy() if self.children != None else [], parent = self.parent)
python
def copy(self): """ Deep Copy of a LabeledTree """ return LabeledTree( udepth = self.udepth, depth = self.depth, text = self.text, label = self.label, children = self.children.copy() if self.children != None else [], parent = self.parent)
[ "def", "copy", "(", "self", ")", ":", "return", "LabeledTree", "(", "udepth", "=", "self", ".", "udepth", ",", "depth", "=", "self", ".", "depth", ",", "text", "=", "self", ".", "text", ",", "label", "=", "self", ".", "label", ",", "children", "=", "self", ".", "children", ".", "copy", "(", ")", "if", "self", ".", "children", "!=", "None", "else", "[", "]", ",", "parent", "=", "self", ".", "parent", ")" ]
Deep Copy of a LabeledTree
[ "Deep", "Copy", "of", "a", "LabeledTree" ]
7b4c671d3dff661cc3677e54db817e50c5a1c666
https://github.com/JonathanRaiman/pytreebank/blob/7b4c671d3dff661cc3677e54db817e50c5a1c666/pytreebank/labeled_trees.py#L60-L70
16,893
JonathanRaiman/pytreebank
pytreebank/labeled_trees.py
LabeledTree.add_child
def add_child(self, child): """ Adds a branch to the current tree. """ self.children.append(child) child.parent = self self.udepth = max([child.udepth for child in self.children]) + 1
python
def add_child(self, child): """ Adds a branch to the current tree. """ self.children.append(child) child.parent = self self.udepth = max([child.udepth for child in self.children]) + 1
[ "def", "add_child", "(", "self", ",", "child", ")", ":", "self", ".", "children", ".", "append", "(", "child", ")", "child", ".", "parent", "=", "self", "self", ".", "udepth", "=", "max", "(", "[", "child", ".", "udepth", "for", "child", "in", "self", ".", "children", "]", ")", "+", "1" ]
Adds a branch to the current tree.
[ "Adds", "a", "branch", "to", "the", "current", "tree", "." ]
7b4c671d3dff661cc3677e54db817e50c5a1c666
https://github.com/JonathanRaiman/pytreebank/blob/7b4c671d3dff661cc3677e54db817e50c5a1c666/pytreebank/labeled_trees.py#L72-L78
16,894
JonathanRaiman/pytreebank
pytreebank/labeled_trees.py
LabeledTree.lowercase
def lowercase(self): """ Lowercase all strings in this tree. Works recursively and in-place. """ if len(self.children) > 0: for child in self.children: child.lowercase() else: self.text = self.text.lower()
python
def lowercase(self): """ Lowercase all strings in this tree. Works recursively and in-place. """ if len(self.children) > 0: for child in self.children: child.lowercase() else: self.text = self.text.lower()
[ "def", "lowercase", "(", "self", ")", ":", "if", "len", "(", "self", ".", "children", ")", ">", "0", ":", "for", "child", "in", "self", ".", "children", ":", "child", ".", "lowercase", "(", ")", "else", ":", "self", ".", "text", "=", "self", ".", "text", ".", "lower", "(", ")" ]
Lowercase all strings in this tree. Works recursively and in-place.
[ "Lowercase", "all", "strings", "in", "this", "tree", ".", "Works", "recursively", "and", "in", "-", "place", "." ]
7b4c671d3dff661cc3677e54db817e50c5a1c666
https://github.com/JonathanRaiman/pytreebank/blob/7b4c671d3dff661cc3677e54db817e50c5a1c666/pytreebank/labeled_trees.py#L92-L101
16,895
JonathanRaiman/pytreebank
pytreebank/labeled_trees.py
LabeledTree.inject_visualization_javascript
def inject_visualization_javascript(tree_width=1200, tree_height=400, tree_node_radius=10): """ In an Ipython notebook, show SST trees using the same Javascript code as used by Jason Chuang's visualisations. """ from .javascript import insert_sentiment_markup insert_sentiment_markup(tree_width=tree_width, tree_height=tree_height, tree_node_radius=tree_node_radius)
python
def inject_visualization_javascript(tree_width=1200, tree_height=400, tree_node_radius=10): """ In an Ipython notebook, show SST trees using the same Javascript code as used by Jason Chuang's visualisations. """ from .javascript import insert_sentiment_markup insert_sentiment_markup(tree_width=tree_width, tree_height=tree_height, tree_node_radius=tree_node_radius)
[ "def", "inject_visualization_javascript", "(", "tree_width", "=", "1200", ",", "tree_height", "=", "400", ",", "tree_node_radius", "=", "10", ")", ":", "from", ".", "javascript", "import", "insert_sentiment_markup", "insert_sentiment_markup", "(", "tree_width", "=", "tree_width", ",", "tree_height", "=", "tree_height", ",", "tree_node_radius", "=", "tree_node_radius", ")" ]
In an Ipython notebook, show SST trees using the same Javascript code as used by Jason Chuang's visualisations.
[ "In", "an", "Ipython", "notebook", "show", "SST", "trees", "using", "the", "same", "Javascript", "code", "as", "used", "by", "Jason", "Chuang", "s", "visualisations", "." ]
7b4c671d3dff661cc3677e54db817e50c5a1c666
https://github.com/JonathanRaiman/pytreebank/blob/7b4c671d3dff661cc3677e54db817e50c5a1c666/pytreebank/labeled_trees.py#L195-L201
16,896
JonathanRaiman/pytreebank
pytreebank/parse.py
create_tree_from_string
def create_tree_from_string(line): """ Parse and convert a string representation of an example into a LabeledTree datastructure. Arguments: ---------- line : str, string version of the tree. Returns: -------- LabeledTree : parsed tree. """ depth = 0 current_word = "" root = None current_node = root for char in line: if char == '(': if current_node is not None and len(current_word) > 0: attribute_text_label(current_node, current_word) current_word = "" depth += 1 if depth > 1: # replace current head node by this node: child = LabeledTree(depth=depth) current_node.add_child(child) current_node = child root.add_general_child(child) else: root = LabeledTree(depth=depth) root.add_general_child(root) current_node = root elif char == ')': # assign current word: if len(current_word) > 0: attribute_text_label(current_node, current_word) current_word = "" # go up a level: depth -= 1 if current_node.parent != None: current_node.parent.udepth = max(current_node.udepth+1, current_node.parent.udepth) current_node = current_node.parent else: # add to current read word current_word += char if depth != 0: raise ParseError("Not an equal amount of closing and opening parentheses") return root
python
def create_tree_from_string(line): """ Parse and convert a string representation of an example into a LabeledTree datastructure. Arguments: ---------- line : str, string version of the tree. Returns: -------- LabeledTree : parsed tree. """ depth = 0 current_word = "" root = None current_node = root for char in line: if char == '(': if current_node is not None and len(current_word) > 0: attribute_text_label(current_node, current_word) current_word = "" depth += 1 if depth > 1: # replace current head node by this node: child = LabeledTree(depth=depth) current_node.add_child(child) current_node = child root.add_general_child(child) else: root = LabeledTree(depth=depth) root.add_general_child(root) current_node = root elif char == ')': # assign current word: if len(current_word) > 0: attribute_text_label(current_node, current_word) current_word = "" # go up a level: depth -= 1 if current_node.parent != None: current_node.parent.udepth = max(current_node.udepth+1, current_node.parent.udepth) current_node = current_node.parent else: # add to current read word current_word += char if depth != 0: raise ParseError("Not an equal amount of closing and opening parentheses") return root
[ "def", "create_tree_from_string", "(", "line", ")", ":", "depth", "=", "0", "current_word", "=", "\"\"", "root", "=", "None", "current_node", "=", "root", "for", "char", "in", "line", ":", "if", "char", "==", "'('", ":", "if", "current_node", "is", "not", "None", "and", "len", "(", "current_word", ")", ">", "0", ":", "attribute_text_label", "(", "current_node", ",", "current_word", ")", "current_word", "=", "\"\"", "depth", "+=", "1", "if", "depth", ">", "1", ":", "# replace current head node by this node:", "child", "=", "LabeledTree", "(", "depth", "=", "depth", ")", "current_node", ".", "add_child", "(", "child", ")", "current_node", "=", "child", "root", ".", "add_general_child", "(", "child", ")", "else", ":", "root", "=", "LabeledTree", "(", "depth", "=", "depth", ")", "root", ".", "add_general_child", "(", "root", ")", "current_node", "=", "root", "elif", "char", "==", "')'", ":", "# assign current word:", "if", "len", "(", "current_word", ")", ">", "0", ":", "attribute_text_label", "(", "current_node", ",", "current_word", ")", "current_word", "=", "\"\"", "# go up a level:", "depth", "-=", "1", "if", "current_node", ".", "parent", "!=", "None", ":", "current_node", ".", "parent", ".", "udepth", "=", "max", "(", "current_node", ".", "udepth", "+", "1", ",", "current_node", ".", "parent", ".", "udepth", ")", "current_node", "=", "current_node", ".", "parent", "else", ":", "# add to current read word", "current_word", "+=", "char", "if", "depth", "!=", "0", ":", "raise", "ParseError", "(", "\"Not an equal amount of closing and opening parentheses\"", ")", "return", "root" ]
Parse and convert a string representation of an example into a LabeledTree datastructure. Arguments: ---------- line : str, string version of the tree. Returns: -------- LabeledTree : parsed tree.
[ "Parse", "and", "convert", "a", "string", "representation", "of", "an", "example", "into", "a", "LabeledTree", "datastructure", "." ]
7b4c671d3dff661cc3677e54db817e50c5a1c666
https://github.com/JonathanRaiman/pytreebank/blob/7b4c671d3dff661cc3677e54db817e50c5a1c666/pytreebank/parse.py#L49-L101
16,897
JonathanRaiman/pytreebank
pytreebank/parse.py
import_tree_corpus
def import_tree_corpus(path): """ Import a text file of treebank trees. Arguments: ---------- path : str, filename for tree corpus. Returns: -------- list<LabeledTree> : loaded examples. """ tree_list = LabeledTreeCorpus() with codecs.open(path, "r", "UTF-8") as f: for line in f: tree_list.append(create_tree_from_string(line)) return tree_list
python
def import_tree_corpus(path): """ Import a text file of treebank trees. Arguments: ---------- path : str, filename for tree corpus. Returns: -------- list<LabeledTree> : loaded examples. """ tree_list = LabeledTreeCorpus() with codecs.open(path, "r", "UTF-8") as f: for line in f: tree_list.append(create_tree_from_string(line)) return tree_list
[ "def", "import_tree_corpus", "(", "path", ")", ":", "tree_list", "=", "LabeledTreeCorpus", "(", ")", "with", "codecs", ".", "open", "(", "path", ",", "\"r\"", ",", "\"UTF-8\"", ")", "as", "f", ":", "for", "line", "in", "f", ":", "tree_list", ".", "append", "(", "create_tree_from_string", "(", "line", ")", ")", "return", "tree_list" ]
Import a text file of treebank trees. Arguments: ---------- path : str, filename for tree corpus. Returns: -------- list<LabeledTree> : loaded examples.
[ "Import", "a", "text", "file", "of", "treebank", "trees", "." ]
7b4c671d3dff661cc3677e54db817e50c5a1c666
https://github.com/JonathanRaiman/pytreebank/blob/7b4c671d3dff661cc3677e54db817e50c5a1c666/pytreebank/parse.py#L144-L160
16,898
JonathanRaiman/pytreebank
pytreebank/parse.py
load_sst
def load_sst(path=None, url='http://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip'): """ Download and read in the Stanford Sentiment Treebank dataset into a dictionary with a 'train', 'dev', and 'test' keys. The dictionary keys point to lists of LabeledTrees. Arguments: ---------- path : str, (optional defaults to ~/stanford_sentiment_treebank), directory where the corpus should be downloaded (and imported from). url : str, where the corpus should be downloaded from (defaults to nlp.stanford.edu address). Returns: -------- dict : loaded dataset """ if path is None: # find a good temporary path path = os.path.expanduser("~/stanford_sentiment_treebank/") makedirs(path, exist_ok=True) fnames = download_sst(path, url) return {key: import_tree_corpus(value) for key, value in fnames.items()}
python
def load_sst(path=None, url='http://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip'): """ Download and read in the Stanford Sentiment Treebank dataset into a dictionary with a 'train', 'dev', and 'test' keys. The dictionary keys point to lists of LabeledTrees. Arguments: ---------- path : str, (optional defaults to ~/stanford_sentiment_treebank), directory where the corpus should be downloaded (and imported from). url : str, where the corpus should be downloaded from (defaults to nlp.stanford.edu address). Returns: -------- dict : loaded dataset """ if path is None: # find a good temporary path path = os.path.expanduser("~/stanford_sentiment_treebank/") makedirs(path, exist_ok=True) fnames = download_sst(path, url) return {key: import_tree_corpus(value) for key, value in fnames.items()}
[ "def", "load_sst", "(", "path", "=", "None", ",", "url", "=", "'http://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip'", ")", ":", "if", "path", "is", "None", ":", "# find a good temporary path", "path", "=", "os", ".", "path", ".", "expanduser", "(", "\"~/stanford_sentiment_treebank/\"", ")", "makedirs", "(", "path", ",", "exist_ok", "=", "True", ")", "fnames", "=", "download_sst", "(", "path", ",", "url", ")", "return", "{", "key", ":", "import_tree_corpus", "(", "value", ")", "for", "key", ",", "value", "in", "fnames", ".", "items", "(", ")", "}" ]
Download and read in the Stanford Sentiment Treebank dataset into a dictionary with a 'train', 'dev', and 'test' keys. The dictionary keys point to lists of LabeledTrees. Arguments: ---------- path : str, (optional defaults to ~/stanford_sentiment_treebank), directory where the corpus should be downloaded (and imported from). url : str, where the corpus should be downloaded from (defaults to nlp.stanford.edu address). Returns: -------- dict : loaded dataset
[ "Download", "and", "read", "in", "the", "Stanford", "Sentiment", "Treebank", "dataset", "into", "a", "dictionary", "with", "a", "train", "dev", "and", "test", "keys", ".", "The", "dictionary", "keys", "point", "to", "lists", "of", "LabeledTrees", "." ]
7b4c671d3dff661cc3677e54db817e50c5a1c666
https://github.com/JonathanRaiman/pytreebank/blob/7b4c671d3dff661cc3677e54db817e50c5a1c666/pytreebank/parse.py#L163-L187
16,899
JonathanRaiman/pytreebank
pytreebank/parse.py
LabeledTreeCorpus.labels
def labels(self): """ Construct a dictionary of string -> labels Returns: -------- OrderedDict<str, int> : string label pairs. """ labelings = OrderedDict() for tree in self: for label, line in tree.to_labeled_lines(): labelings[line] = label return labelings
python
def labels(self): """ Construct a dictionary of string -> labels Returns: -------- OrderedDict<str, int> : string label pairs. """ labelings = OrderedDict() for tree in self: for label, line in tree.to_labeled_lines(): labelings[line] = label return labelings
[ "def", "labels", "(", "self", ")", ":", "labelings", "=", "OrderedDict", "(", ")", "for", "tree", "in", "self", ":", "for", "label", ",", "line", "in", "tree", ".", "to_labeled_lines", "(", ")", ":", "labelings", "[", "line", "]", "=", "label", "return", "labelings" ]
Construct a dictionary of string -> labels Returns: -------- OrderedDict<str, int> : string label pairs.
[ "Construct", "a", "dictionary", "of", "string", "-", ">", "labels" ]
7b4c671d3dff661cc3677e54db817e50c5a1c666
https://github.com/JonathanRaiman/pytreebank/blob/7b4c671d3dff661cc3677e54db817e50c5a1c666/pytreebank/parse.py#L112-L124