id
int32
0
252k
repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
14,500
opendatateam/udata
udata/search/fields.py
TermsFacet.add_filter
def add_filter(self, filter_values): """Improve the original one to deal with OR cases.""" field = self._params['field'] # Build a `AND` query on values wihtout the OR operator. # and a `OR` query for each value containing the OR operator. filters = [ Q('bool', should=[ Q('term', **{field: v}) for v in value.split(OR_SEPARATOR) ]) if OR_SEPARATOR in value else Q('term', **{field: value}) for value in filter_values ] return Q('bool', must=filters) if len(filters) > 1 else filters[0]
python
def add_filter(self, filter_values): """Improve the original one to deal with OR cases.""" field = self._params['field'] # Build a `AND` query on values wihtout the OR operator. # and a `OR` query for each value containing the OR operator. filters = [ Q('bool', should=[ Q('term', **{field: v}) for v in value.split(OR_SEPARATOR) ]) if OR_SEPARATOR in value else Q('term', **{field: value}) for value in filter_values ] return Q('bool', must=filters) if len(filters) > 1 else filters[0]
[ "def", "add_filter", "(", "self", ",", "filter_values", ")", ":", "field", "=", "self", ".", "_params", "[", "'field'", "]", "# Build a `AND` query on values wihtout the OR operator.", "# and a `OR` query for each value containing the OR operator.", "filters", "=", "[", "Q", "(", "'bool'", ",", "should", "=", "[", "Q", "(", "'term'", ",", "*", "*", "{", "field", ":", "v", "}", ")", "for", "v", "in", "value", ".", "split", "(", "OR_SEPARATOR", ")", "]", ")", "if", "OR_SEPARATOR", "in", "value", "else", "Q", "(", "'term'", ",", "*", "*", "{", "field", ":", "value", "}", ")", "for", "value", "in", "filter_values", "]", "return", "Q", "(", "'bool'", ",", "must", "=", "filters", ")", "if", "len", "(", "filters", ")", ">", "1", "else", "filters", "[", "0", "]" ]
Improve the original one to deal with OR cases.
[ "Improve", "the", "original", "one", "to", "deal", "with", "OR", "cases", "." ]
f016585af94b0ff6bd73738c700324adc8ba7f8f
https://github.com/opendatateam/udata/blob/f016585af94b0ff6bd73738c700324adc8ba7f8f/udata/search/fields.py#L87-L100
14,501
opendatateam/udata
udata/search/fields.py
ModelTermsFacet.get_values
def get_values(self, data, filter_values): """ Turn the raw bucket data into a list of tuples containing the object, number of documents and a flag indicating whether this value has been selected or not. """ values = super(ModelTermsFacet, self).get_values(data, filter_values) ids = [key for (key, doc_count, selected) in values] # Perform a model resolution: models are feched from DB # We use model field to cast IDs ids = [self.model_field.to_mongo(id) for id in ids] objects = self.model.objects.in_bulk(ids) return [ (objects.get(self.model_field.to_mongo(key)), doc_count, selected) for (key, doc_count, selected) in values ]
python
def get_values(self, data, filter_values): """ Turn the raw bucket data into a list of tuples containing the object, number of documents and a flag indicating whether this value has been selected or not. """ values = super(ModelTermsFacet, self).get_values(data, filter_values) ids = [key for (key, doc_count, selected) in values] # Perform a model resolution: models are feched from DB # We use model field to cast IDs ids = [self.model_field.to_mongo(id) for id in ids] objects = self.model.objects.in_bulk(ids) return [ (objects.get(self.model_field.to_mongo(key)), doc_count, selected) for (key, doc_count, selected) in values ]
[ "def", "get_values", "(", "self", ",", "data", ",", "filter_values", ")", ":", "values", "=", "super", "(", "ModelTermsFacet", ",", "self", ")", ".", "get_values", "(", "data", ",", "filter_values", ")", "ids", "=", "[", "key", "for", "(", "key", ",", "doc_count", ",", "selected", ")", "in", "values", "]", "# Perform a model resolution: models are feched from DB", "# We use model field to cast IDs", "ids", "=", "[", "self", ".", "model_field", ".", "to_mongo", "(", "id", ")", "for", "id", "in", "ids", "]", "objects", "=", "self", ".", "model", ".", "objects", ".", "in_bulk", "(", "ids", ")", "return", "[", "(", "objects", ".", "get", "(", "self", ".", "model_field", ".", "to_mongo", "(", "key", ")", ")", ",", "doc_count", ",", "selected", ")", "for", "(", "key", ",", "doc_count", ",", "selected", ")", "in", "values", "]" ]
Turn the raw bucket data into a list of tuples containing the object, number of documents and a flag indicating whether this value has been selected or not.
[ "Turn", "the", "raw", "bucket", "data", "into", "a", "list", "of", "tuples", "containing", "the", "object", "number", "of", "documents", "and", "a", "flag", "indicating", "whether", "this", "value", "has", "been", "selected", "or", "not", "." ]
f016585af94b0ff6bd73738c700324adc8ba7f8f
https://github.com/opendatateam/udata/blob/f016585af94b0ff6bd73738c700324adc8ba7f8f/udata/search/fields.py#L135-L151
14,502
opendatateam/udata
udata/core/organization/forms.py
OrganizationForm.save
def save(self, commit=True, **kwargs): '''Register the current user as admin on creation''' org = super(OrganizationForm, self).save(commit=False, **kwargs) if not org.id: user = current_user._get_current_object() member = Member(user=user, role='admin') org.members.append(member) if commit: org.save() return org
python
def save(self, commit=True, **kwargs): '''Register the current user as admin on creation''' org = super(OrganizationForm, self).save(commit=False, **kwargs) if not org.id: user = current_user._get_current_object() member = Member(user=user, role='admin') org.members.append(member) if commit: org.save() return org
[ "def", "save", "(", "self", ",", "commit", "=", "True", ",", "*", "*", "kwargs", ")", ":", "org", "=", "super", "(", "OrganizationForm", ",", "self", ")", ".", "save", "(", "commit", "=", "False", ",", "*", "*", "kwargs", ")", "if", "not", "org", ".", "id", ":", "user", "=", "current_user", ".", "_get_current_object", "(", ")", "member", "=", "Member", "(", "user", "=", "user", ",", "role", "=", "'admin'", ")", "org", ".", "members", ".", "append", "(", "member", ")", "if", "commit", ":", "org", ".", "save", "(", ")", "return", "org" ]
Register the current user as admin on creation
[ "Register", "the", "current", "user", "as", "admin", "on", "creation" ]
f016585af94b0ff6bd73738c700324adc8ba7f8f
https://github.com/opendatateam/udata/blob/f016585af94b0ff6bd73738c700324adc8ba7f8f/udata/core/organization/forms.py#L36-L48
14,503
antonagestam/collectfast
collectfast/etag.py
get_cache_key
def get_cache_key(path): """ Create a cache key by concatenating the prefix with a hash of the path. """ # Python 2/3 support for path hashing try: path_hash = hashlib.md5(path).hexdigest() except TypeError: path_hash = hashlib.md5(path.encode('utf-8')).hexdigest() return settings.cache_key_prefix + path_hash
python
def get_cache_key(path): """ Create a cache key by concatenating the prefix with a hash of the path. """ # Python 2/3 support for path hashing try: path_hash = hashlib.md5(path).hexdigest() except TypeError: path_hash = hashlib.md5(path.encode('utf-8')).hexdigest() return settings.cache_key_prefix + path_hash
[ "def", "get_cache_key", "(", "path", ")", ":", "# Python 2/3 support for path hashing", "try", ":", "path_hash", "=", "hashlib", ".", "md5", "(", "path", ")", ".", "hexdigest", "(", ")", "except", "TypeError", ":", "path_hash", "=", "hashlib", ".", "md5", "(", "path", ".", "encode", "(", "'utf-8'", ")", ")", ".", "hexdigest", "(", ")", "return", "settings", ".", "cache_key_prefix", "+", "path_hash" ]
Create a cache key by concatenating the prefix with a hash of the path.
[ "Create", "a", "cache", "key", "by", "concatenating", "the", "prefix", "with", "a", "hash", "of", "the", "path", "." ]
fb9d7976da2a2578528fa6f3bbd053ee87475ecb
https://github.com/antonagestam/collectfast/blob/fb9d7976da2a2578528fa6f3bbd053ee87475ecb/collectfast/etag.py#L28-L37
14,504
antonagestam/collectfast
collectfast/etag.py
get_remote_etag
def get_remote_etag(storage, prefixed_path): """ Get etag of path from S3 using boto or boto3. """ normalized_path = safe_join(storage.location, prefixed_path).replace( '\\', '/') try: return storage.bucket.get_key(normalized_path).etag except AttributeError: pass try: return storage.bucket.Object(normalized_path).e_tag except: pass return None
python
def get_remote_etag(storage, prefixed_path): """ Get etag of path from S3 using boto or boto3. """ normalized_path = safe_join(storage.location, prefixed_path).replace( '\\', '/') try: return storage.bucket.get_key(normalized_path).etag except AttributeError: pass try: return storage.bucket.Object(normalized_path).e_tag except: pass return None
[ "def", "get_remote_etag", "(", "storage", ",", "prefixed_path", ")", ":", "normalized_path", "=", "safe_join", "(", "storage", ".", "location", ",", "prefixed_path", ")", ".", "replace", "(", "'\\\\'", ",", "'/'", ")", "try", ":", "return", "storage", ".", "bucket", ".", "get_key", "(", "normalized_path", ")", ".", "etag", "except", "AttributeError", ":", "pass", "try", ":", "return", "storage", ".", "bucket", ".", "Object", "(", "normalized_path", ")", ".", "e_tag", "except", ":", "pass", "return", "None" ]
Get etag of path from S3 using boto or boto3.
[ "Get", "etag", "of", "path", "from", "S3", "using", "boto", "or", "boto3", "." ]
fb9d7976da2a2578528fa6f3bbd053ee87475ecb
https://github.com/antonagestam/collectfast/blob/fb9d7976da2a2578528fa6f3bbd053ee87475ecb/collectfast/etag.py#L40-L54
14,505
antonagestam/collectfast
collectfast/etag.py
get_etag
def get_etag(storage, path, prefixed_path): """ Get etag of path from cache or S3 - in that order. """ cache_key = get_cache_key(path) etag = cache.get(cache_key, False) if etag is False: etag = get_remote_etag(storage, prefixed_path) cache.set(cache_key, etag) return etag
python
def get_etag(storage, path, prefixed_path): """ Get etag of path from cache or S3 - in that order. """ cache_key = get_cache_key(path) etag = cache.get(cache_key, False) if etag is False: etag = get_remote_etag(storage, prefixed_path) cache.set(cache_key, etag) return etag
[ "def", "get_etag", "(", "storage", ",", "path", ",", "prefixed_path", ")", ":", "cache_key", "=", "get_cache_key", "(", "path", ")", "etag", "=", "cache", ".", "get", "(", "cache_key", ",", "False", ")", "if", "etag", "is", "False", ":", "etag", "=", "get_remote_etag", "(", "storage", ",", "prefixed_path", ")", "cache", ".", "set", "(", "cache_key", ",", "etag", ")", "return", "etag" ]
Get etag of path from cache or S3 - in that order.
[ "Get", "etag", "of", "path", "from", "cache", "or", "S3", "-", "in", "that", "order", "." ]
fb9d7976da2a2578528fa6f3bbd053ee87475ecb
https://github.com/antonagestam/collectfast/blob/fb9d7976da2a2578528fa6f3bbd053ee87475ecb/collectfast/etag.py#L57-L66
14,506
antonagestam/collectfast
collectfast/etag.py
get_file_hash
def get_file_hash(storage, path): """ Create md5 hash from file contents. """ contents = storage.open(path).read() file_hash = hashlib.md5(contents).hexdigest() # Check if content should be gzipped and hash gzipped content content_type = mimetypes.guess_type(path)[0] or 'application/octet-stream' if settings.is_gzipped and content_type in settings.gzip_content_types: cache_key = get_cache_key('gzip_hash_%s' % file_hash) file_hash = cache.get(cache_key, False) if file_hash is False: buffer = BytesIO() zf = gzip.GzipFile( mode='wb', compresslevel=6, fileobj=buffer, mtime=0.0) zf.write(force_bytes(contents)) zf.close() file_hash = hashlib.md5(buffer.getvalue()).hexdigest() cache.set(cache_key, file_hash) return '"%s"' % file_hash
python
def get_file_hash(storage, path): """ Create md5 hash from file contents. """ contents = storage.open(path).read() file_hash = hashlib.md5(contents).hexdigest() # Check if content should be gzipped and hash gzipped content content_type = mimetypes.guess_type(path)[0] or 'application/octet-stream' if settings.is_gzipped and content_type in settings.gzip_content_types: cache_key = get_cache_key('gzip_hash_%s' % file_hash) file_hash = cache.get(cache_key, False) if file_hash is False: buffer = BytesIO() zf = gzip.GzipFile( mode='wb', compresslevel=6, fileobj=buffer, mtime=0.0) zf.write(force_bytes(contents)) zf.close() file_hash = hashlib.md5(buffer.getvalue()).hexdigest() cache.set(cache_key, file_hash) return '"%s"' % file_hash
[ "def", "get_file_hash", "(", "storage", ",", "path", ")", ":", "contents", "=", "storage", ".", "open", "(", "path", ")", ".", "read", "(", ")", "file_hash", "=", "hashlib", ".", "md5", "(", "contents", ")", ".", "hexdigest", "(", ")", "# Check if content should be gzipped and hash gzipped content", "content_type", "=", "mimetypes", ".", "guess_type", "(", "path", ")", "[", "0", "]", "or", "'application/octet-stream'", "if", "settings", ".", "is_gzipped", "and", "content_type", "in", "settings", ".", "gzip_content_types", ":", "cache_key", "=", "get_cache_key", "(", "'gzip_hash_%s'", "%", "file_hash", ")", "file_hash", "=", "cache", ".", "get", "(", "cache_key", ",", "False", ")", "if", "file_hash", "is", "False", ":", "buffer", "=", "BytesIO", "(", ")", "zf", "=", "gzip", ".", "GzipFile", "(", "mode", "=", "'wb'", ",", "compresslevel", "=", "6", ",", "fileobj", "=", "buffer", ",", "mtime", "=", "0.0", ")", "zf", ".", "write", "(", "force_bytes", "(", "contents", ")", ")", "zf", ".", "close", "(", ")", "file_hash", "=", "hashlib", ".", "md5", "(", "buffer", ".", "getvalue", "(", ")", ")", ".", "hexdigest", "(", ")", "cache", ".", "set", "(", "cache_key", ",", "file_hash", ")", "return", "'\"%s\"'", "%", "file_hash" ]
Create md5 hash from file contents.
[ "Create", "md5", "hash", "from", "file", "contents", "." ]
fb9d7976da2a2578528fa6f3bbd053ee87475ecb
https://github.com/antonagestam/collectfast/blob/fb9d7976da2a2578528fa6f3bbd053ee87475ecb/collectfast/etag.py#L76-L97
14,507
antonagestam/collectfast
collectfast/etag.py
has_matching_etag
def has_matching_etag(remote_storage, source_storage, path, prefixed_path): """ Compare etag of path in source storage with remote. """ storage_etag = get_etag(remote_storage, path, prefixed_path) local_etag = get_file_hash(source_storage, path) return storage_etag == local_etag
python
def has_matching_etag(remote_storage, source_storage, path, prefixed_path): """ Compare etag of path in source storage with remote. """ storage_etag = get_etag(remote_storage, path, prefixed_path) local_etag = get_file_hash(source_storage, path) return storage_etag == local_etag
[ "def", "has_matching_etag", "(", "remote_storage", ",", "source_storage", ",", "path", ",", "prefixed_path", ")", ":", "storage_etag", "=", "get_etag", "(", "remote_storage", ",", "path", ",", "prefixed_path", ")", "local_etag", "=", "get_file_hash", "(", "source_storage", ",", "path", ")", "return", "storage_etag", "==", "local_etag" ]
Compare etag of path in source storage with remote.
[ "Compare", "etag", "of", "path", "in", "source", "storage", "with", "remote", "." ]
fb9d7976da2a2578528fa6f3bbd053ee87475ecb
https://github.com/antonagestam/collectfast/blob/fb9d7976da2a2578528fa6f3bbd053ee87475ecb/collectfast/etag.py#L100-L106
14,508
antonagestam/collectfast
collectfast/etag.py
should_copy_file
def should_copy_file(remote_storage, path, prefixed_path, source_storage): """ Returns True if the file should be copied, otherwise False. """ if has_matching_etag( remote_storage, source_storage, path, prefixed_path): logger.info("%s: Skipping based on matching file hashes" % path) return False # Invalidate cached versions of lookup before copy destroy_etag(path) logger.info("%s: Hashes did not match" % path) return True
python
def should_copy_file(remote_storage, path, prefixed_path, source_storage): """ Returns True if the file should be copied, otherwise False. """ if has_matching_etag( remote_storage, source_storage, path, prefixed_path): logger.info("%s: Skipping based on matching file hashes" % path) return False # Invalidate cached versions of lookup before copy destroy_etag(path) logger.info("%s: Hashes did not match" % path) return True
[ "def", "should_copy_file", "(", "remote_storage", ",", "path", ",", "prefixed_path", ",", "source_storage", ")", ":", "if", "has_matching_etag", "(", "remote_storage", ",", "source_storage", ",", "path", ",", "prefixed_path", ")", ":", "logger", ".", "info", "(", "\"%s: Skipping based on matching file hashes\"", "%", "path", ")", "return", "False", "# Invalidate cached versions of lookup before copy", "destroy_etag", "(", "path", ")", "logger", ".", "info", "(", "\"%s: Hashes did not match\"", "%", "path", ")", "return", "True" ]
Returns True if the file should be copied, otherwise False.
[ "Returns", "True", "if", "the", "file", "should", "be", "copied", "otherwise", "False", "." ]
fb9d7976da2a2578528fa6f3bbd053ee87475ecb
https://github.com/antonagestam/collectfast/blob/fb9d7976da2a2578528fa6f3bbd053ee87475ecb/collectfast/etag.py#L109-L121
14,509
antonagestam/collectfast
collectfast/management/commands/collectstatic.py
Command.set_options
def set_options(self, **options): """ Set options and handle deprecation. """ ignore_etag = options.pop('ignore_etag', False) disable = options.pop('disable_collectfast', False) if ignore_etag: warnings.warn( "--ignore-etag is deprecated since 0.5.0, use " "--disable-collectfast instead.") if ignore_etag or disable: self.collectfast_enabled = False super(Command, self).set_options(**options)
python
def set_options(self, **options): """ Set options and handle deprecation. """ ignore_etag = options.pop('ignore_etag', False) disable = options.pop('disable_collectfast', False) if ignore_etag: warnings.warn( "--ignore-etag is deprecated since 0.5.0, use " "--disable-collectfast instead.") if ignore_etag or disable: self.collectfast_enabled = False super(Command, self).set_options(**options)
[ "def", "set_options", "(", "self", ",", "*", "*", "options", ")", ":", "ignore_etag", "=", "options", ".", "pop", "(", "'ignore_etag'", ",", "False", ")", "disable", "=", "options", ".", "pop", "(", "'disable_collectfast'", ",", "False", ")", "if", "ignore_etag", ":", "warnings", ".", "warn", "(", "\"--ignore-etag is deprecated since 0.5.0, use \"", "\"--disable-collectfast instead.\"", ")", "if", "ignore_etag", "or", "disable", ":", "self", ".", "collectfast_enabled", "=", "False", "super", "(", "Command", ",", "self", ")", ".", "set_options", "(", "*", "*", "options", ")" ]
Set options and handle deprecation.
[ "Set", "options", "and", "handle", "deprecation", "." ]
fb9d7976da2a2578528fa6f3bbd053ee87475ecb
https://github.com/antonagestam/collectfast/blob/fb9d7976da2a2578528fa6f3bbd053ee87475ecb/collectfast/management/commands/collectstatic.py#L44-L56
14,510
antonagestam/collectfast
collectfast/management/commands/collectstatic.py
Command.handle
def handle(self, **options): """ Override handle to supress summary output """ super(Command, self).handle(**options) return "{} static file{} copied.".format( self.num_copied_files, '' if self.num_copied_files == 1 else 's')
python
def handle(self, **options): """ Override handle to supress summary output """ super(Command, self).handle(**options) return "{} static file{} copied.".format( self.num_copied_files, '' if self.num_copied_files == 1 else 's')
[ "def", "handle", "(", "self", ",", "*", "*", "options", ")", ":", "super", "(", "Command", ",", "self", ")", ".", "handle", "(", "*", "*", "options", ")", "return", "\"{} static file{} copied.\"", ".", "format", "(", "self", ".", "num_copied_files", ",", "''", "if", "self", ".", "num_copied_files", "==", "1", "else", "'s'", ")" ]
Override handle to supress summary output
[ "Override", "handle", "to", "supress", "summary", "output" ]
fb9d7976da2a2578528fa6f3bbd053ee87475ecb
https://github.com/antonagestam/collectfast/blob/fb9d7976da2a2578528fa6f3bbd053ee87475ecb/collectfast/management/commands/collectstatic.py#L68-L75
14,511
antonagestam/collectfast
collectfast/management/commands/collectstatic.py
Command.do_copy_file
def do_copy_file(self, args): """ Determine if file should be copied or not and handle exceptions. """ path, prefixed_path, source_storage = args reset_connection(self.storage) if self.collectfast_enabled and not self.dry_run: try: if not should_copy_file( self.storage, path, prefixed_path, source_storage): return False except Exception as e: if settings.debug: raise # Ignore errors and let default collectstatic handle copy self.stdout.write(smart_str( "Ignored error in Collectfast:\n%s\n--> Continuing using " "default collectstatic." % e)) self.num_copied_files += 1 return super(Command, self).copy_file( path, prefixed_path, source_storage)
python
def do_copy_file(self, args): """ Determine if file should be copied or not and handle exceptions. """ path, prefixed_path, source_storage = args reset_connection(self.storage) if self.collectfast_enabled and not self.dry_run: try: if not should_copy_file( self.storage, path, prefixed_path, source_storage): return False except Exception as e: if settings.debug: raise # Ignore errors and let default collectstatic handle copy self.stdout.write(smart_str( "Ignored error in Collectfast:\n%s\n--> Continuing using " "default collectstatic." % e)) self.num_copied_files += 1 return super(Command, self).copy_file( path, prefixed_path, source_storage)
[ "def", "do_copy_file", "(", "self", ",", "args", ")", ":", "path", ",", "prefixed_path", ",", "source_storage", "=", "args", "reset_connection", "(", "self", ".", "storage", ")", "if", "self", ".", "collectfast_enabled", "and", "not", "self", ".", "dry_run", ":", "try", ":", "if", "not", "should_copy_file", "(", "self", ".", "storage", ",", "path", ",", "prefixed_path", ",", "source_storage", ")", ":", "return", "False", "except", "Exception", "as", "e", ":", "if", "settings", ".", "debug", ":", "raise", "# Ignore errors and let default collectstatic handle copy", "self", ".", "stdout", ".", "write", "(", "smart_str", "(", "\"Ignored error in Collectfast:\\n%s\\n--> Continuing using \"", "\"default collectstatic.\"", "%", "e", ")", ")", "self", ".", "num_copied_files", "+=", "1", "return", "super", "(", "Command", ",", "self", ")", ".", "copy_file", "(", "path", ",", "prefixed_path", ",", "source_storage", ")" ]
Determine if file should be copied or not and handle exceptions.
[ "Determine", "if", "file", "should", "be", "copied", "or", "not", "and", "handle", "exceptions", "." ]
fb9d7976da2a2578528fa6f3bbd053ee87475ecb
https://github.com/antonagestam/collectfast/blob/fb9d7976da2a2578528fa6f3bbd053ee87475ecb/collectfast/management/commands/collectstatic.py#L77-L100
14,512
antonagestam/collectfast
collectfast/management/commands/collectstatic.py
Command.copy_file
def copy_file(self, path, prefixed_path, source_storage): """ Appends path to task queue if threads are enabled, otherwise copies the file with a blocking call. """ args = (path, prefixed_path, source_storage) if settings.threads: self.tasks.append(args) else: self.do_copy_file(args)
python
def copy_file(self, path, prefixed_path, source_storage): """ Appends path to task queue if threads are enabled, otherwise copies the file with a blocking call. """ args = (path, prefixed_path, source_storage) if settings.threads: self.tasks.append(args) else: self.do_copy_file(args)
[ "def", "copy_file", "(", "self", ",", "path", ",", "prefixed_path", ",", "source_storage", ")", ":", "args", "=", "(", "path", ",", "prefixed_path", ",", "source_storage", ")", "if", "settings", ".", "threads", ":", "self", ".", "tasks", ".", "append", "(", "args", ")", "else", ":", "self", ".", "do_copy_file", "(", "args", ")" ]
Appends path to task queue if threads are enabled, otherwise copies the file with a blocking call.
[ "Appends", "path", "to", "task", "queue", "if", "threads", "are", "enabled", "otherwise", "copies", "the", "file", "with", "a", "blocking", "call", "." ]
fb9d7976da2a2578528fa6f3bbd053ee87475ecb
https://github.com/antonagestam/collectfast/blob/fb9d7976da2a2578528fa6f3bbd053ee87475ecb/collectfast/management/commands/collectstatic.py#L102-L111
14,513
antonagestam/collectfast
collectfast/management/commands/collectstatic.py
Command.delete_file
def delete_file(self, path, prefixed_path, source_storage): """ Override delete_file to skip modified time and exists lookups. """ if not self.collectfast_enabled: return super(Command, self).delete_file( path, prefixed_path, source_storage) if not self.dry_run: self.log("Deleting '%s'" % path) self.storage.delete(prefixed_path) else: self.log("Pretending to delete '%s'" % path) return True
python
def delete_file(self, path, prefixed_path, source_storage): """ Override delete_file to skip modified time and exists lookups. """ if not self.collectfast_enabled: return super(Command, self).delete_file( path, prefixed_path, source_storage) if not self.dry_run: self.log("Deleting '%s'" % path) self.storage.delete(prefixed_path) else: self.log("Pretending to delete '%s'" % path) return True
[ "def", "delete_file", "(", "self", ",", "path", ",", "prefixed_path", ",", "source_storage", ")", ":", "if", "not", "self", ".", "collectfast_enabled", ":", "return", "super", "(", "Command", ",", "self", ")", ".", "delete_file", "(", "path", ",", "prefixed_path", ",", "source_storage", ")", "if", "not", "self", ".", "dry_run", ":", "self", ".", "log", "(", "\"Deleting '%s'\"", "%", "path", ")", "self", ".", "storage", ".", "delete", "(", "prefixed_path", ")", "else", ":", "self", ".", "log", "(", "\"Pretending to delete '%s'\"", "%", "path", ")", "return", "True" ]
Override delete_file to skip modified time and exists lookups.
[ "Override", "delete_file", "to", "skip", "modified", "time", "and", "exists", "lookups", "." ]
fb9d7976da2a2578528fa6f3bbd053ee87475ecb
https://github.com/antonagestam/collectfast/blob/fb9d7976da2a2578528fa6f3bbd053ee87475ecb/collectfast/management/commands/collectstatic.py#L113-L125
14,514
satellogic/telluric
telluric/georaster.py
join
def join(rasters): """ This method takes a list of rasters and returns a raster that is constructed of all of them """ raster = rasters[0] # using the first raster to understand what is the type of data we have mask_band = None nodata = None with raster._raster_opener(raster.source_file) as r: nodata = r.nodata mask_flags = r.mask_flag_enums per_dataset_mask = all([rasterio.enums.MaskFlags.per_dataset in flags for flags in mask_flags]) if per_dataset_mask and nodata is None: mask_band = 0 return GeoRaster2.from_rasters(rasters, relative_to_vrt=False, nodata=nodata, mask_band=mask_band)
python
def join(rasters): """ This method takes a list of rasters and returns a raster that is constructed of all of them """ raster = rasters[0] # using the first raster to understand what is the type of data we have mask_band = None nodata = None with raster._raster_opener(raster.source_file) as r: nodata = r.nodata mask_flags = r.mask_flag_enums per_dataset_mask = all([rasterio.enums.MaskFlags.per_dataset in flags for flags in mask_flags]) if per_dataset_mask and nodata is None: mask_band = 0 return GeoRaster2.from_rasters(rasters, relative_to_vrt=False, nodata=nodata, mask_band=mask_band)
[ "def", "join", "(", "rasters", ")", ":", "raster", "=", "rasters", "[", "0", "]", "# using the first raster to understand what is the type of data we have", "mask_band", "=", "None", "nodata", "=", "None", "with", "raster", ".", "_raster_opener", "(", "raster", ".", "source_file", ")", "as", "r", ":", "nodata", "=", "r", ".", "nodata", "mask_flags", "=", "r", ".", "mask_flag_enums", "per_dataset_mask", "=", "all", "(", "[", "rasterio", ".", "enums", ".", "MaskFlags", ".", "per_dataset", "in", "flags", "for", "flags", "in", "mask_flags", "]", ")", "if", "per_dataset_mask", "and", "nodata", "is", "None", ":", "mask_band", "=", "0", "return", "GeoRaster2", ".", "from_rasters", "(", "rasters", ",", "relative_to_vrt", "=", "False", ",", "nodata", "=", "nodata", ",", "mask_band", "=", "mask_band", ")" ]
This method takes a list of rasters and returns a raster that is constructed of all of them
[ "This", "method", "takes", "a", "list", "of", "rasters", "and", "returns", "a", "raster", "that", "is", "constructed", "of", "all", "of", "them" ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L95-L109
14,515
satellogic/telluric
telluric/georaster.py
merge_all
def merge_all(rasters, roi=None, dest_resolution=None, merge_strategy=MergeStrategy.UNION, shape=None, ul_corner=None, crs=None, pixel_strategy=PixelStrategy.FIRST, resampling=Resampling.nearest): """Merge a list of rasters, cropping by a region of interest. There are cases that the roi is not precise enough for this cases one can use, the upper left corner the shape and crs to precisely define the roi. When roi is provided the ul_corner, shape and crs are ignored """ first_raster = rasters[0] if roi: crs = crs or roi.crs dest_resolution = dest_resolution or _dest_resolution(first_raster, crs) # Create empty raster empty = GeoRaster2.empty_from_roi( roi, resolution=dest_resolution, band_names=first_raster.band_names, dtype=first_raster.dtype, shape=shape, ul_corner=ul_corner, crs=crs) # Create a list of single band rasters all_band_names, projected_rasters = _prepare_rasters(rasters, merge_strategy, empty, resampling=resampling) assert len(projected_rasters) == len(rasters) prepared_rasters = _apply_pixel_strategy(projected_rasters, pixel_strategy) # Extend the rasters list with only those that have the requested bands prepared_rasters = _explode_rasters(prepared_rasters, all_band_names) if all_band_names: # Merge common bands prepared_rasters = _merge_common_bands(prepared_rasters) # Merge all bands raster = reduce(_stack_bands, prepared_rasters) return empty.copy_with(image=raster.image, band_names=raster.band_names) else: raise ValueError("result contains no bands, use another merge strategy")
python
def merge_all(rasters, roi=None, dest_resolution=None, merge_strategy=MergeStrategy.UNION, shape=None, ul_corner=None, crs=None, pixel_strategy=PixelStrategy.FIRST, resampling=Resampling.nearest): """Merge a list of rasters, cropping by a region of interest. There are cases that the roi is not precise enough for this cases one can use, the upper left corner the shape and crs to precisely define the roi. When roi is provided the ul_corner, shape and crs are ignored """ first_raster = rasters[0] if roi: crs = crs or roi.crs dest_resolution = dest_resolution or _dest_resolution(first_raster, crs) # Create empty raster empty = GeoRaster2.empty_from_roi( roi, resolution=dest_resolution, band_names=first_raster.band_names, dtype=first_raster.dtype, shape=shape, ul_corner=ul_corner, crs=crs) # Create a list of single band rasters all_band_names, projected_rasters = _prepare_rasters(rasters, merge_strategy, empty, resampling=resampling) assert len(projected_rasters) == len(rasters) prepared_rasters = _apply_pixel_strategy(projected_rasters, pixel_strategy) # Extend the rasters list with only those that have the requested bands prepared_rasters = _explode_rasters(prepared_rasters, all_band_names) if all_band_names: # Merge common bands prepared_rasters = _merge_common_bands(prepared_rasters) # Merge all bands raster = reduce(_stack_bands, prepared_rasters) return empty.copy_with(image=raster.image, band_names=raster.band_names) else: raise ValueError("result contains no bands, use another merge strategy")
[ "def", "merge_all", "(", "rasters", ",", "roi", "=", "None", ",", "dest_resolution", "=", "None", ",", "merge_strategy", "=", "MergeStrategy", ".", "UNION", ",", "shape", "=", "None", ",", "ul_corner", "=", "None", ",", "crs", "=", "None", ",", "pixel_strategy", "=", "PixelStrategy", ".", "FIRST", ",", "resampling", "=", "Resampling", ".", "nearest", ")", ":", "first_raster", "=", "rasters", "[", "0", "]", "if", "roi", ":", "crs", "=", "crs", "or", "roi", ".", "crs", "dest_resolution", "=", "dest_resolution", "or", "_dest_resolution", "(", "first_raster", ",", "crs", ")", "# Create empty raster", "empty", "=", "GeoRaster2", ".", "empty_from_roi", "(", "roi", ",", "resolution", "=", "dest_resolution", ",", "band_names", "=", "first_raster", ".", "band_names", ",", "dtype", "=", "first_raster", ".", "dtype", ",", "shape", "=", "shape", ",", "ul_corner", "=", "ul_corner", ",", "crs", "=", "crs", ")", "# Create a list of single band rasters", "all_band_names", ",", "projected_rasters", "=", "_prepare_rasters", "(", "rasters", ",", "merge_strategy", ",", "empty", ",", "resampling", "=", "resampling", ")", "assert", "len", "(", "projected_rasters", ")", "==", "len", "(", "rasters", ")", "prepared_rasters", "=", "_apply_pixel_strategy", "(", "projected_rasters", ",", "pixel_strategy", ")", "# Extend the rasters list with only those that have the requested bands", "prepared_rasters", "=", "_explode_rasters", "(", "prepared_rasters", ",", "all_band_names", ")", "if", "all_band_names", ":", "# Merge common bands", "prepared_rasters", "=", "_merge_common_bands", "(", "prepared_rasters", ")", "# Merge all bands", "raster", "=", "reduce", "(", "_stack_bands", ",", "prepared_rasters", ")", "return", "empty", ".", "copy_with", "(", "image", "=", "raster", ".", "image", ",", "band_names", "=", "raster", ".", "band_names", ")", "else", ":", "raise", "ValueError", "(", "\"result contains no bands, use another merge strategy\"", ")" ]
Merge a list of rasters, cropping by a region of interest. There are cases that the roi is not precise enough for this cases one can use, the upper left corner the shape and crs to precisely define the roi. When roi is provided the ul_corner, shape and crs are ignored
[ "Merge", "a", "list", "of", "rasters", "cropping", "by", "a", "region", "of", "interest", ".", "There", "are", "cases", "that", "the", "roi", "is", "not", "precise", "enough", "for", "this", "cases", "one", "can", "use", "the", "upper", "left", "corner", "the", "shape", "and", "crs", "to", "precisely", "define", "the", "roi", ".", "When", "roi", "is", "provided", "the", "ul_corner", "shape", "and", "crs", "are", "ignored" ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L120-L161
14,516
satellogic/telluric
telluric/georaster.py
_merge_common_bands
def _merge_common_bands(rasters): # type: (List[_Raster]) -> List[_Raster] """Combine the common bands. """ # Compute band order all_bands = IndexedSet([rs.band_names[0] for rs in rasters]) def key(rs): return all_bands.index(rs.band_names[0]) rasters_final = [] # type: List[_Raster] for band_name, rasters_group in groupby(sorted(rasters, key=key), key=key): rasters_final.append(reduce(_fill_pixels, rasters_group)) return rasters_final
python
def _merge_common_bands(rasters): # type: (List[_Raster]) -> List[_Raster] """Combine the common bands. """ # Compute band order all_bands = IndexedSet([rs.band_names[0] for rs in rasters]) def key(rs): return all_bands.index(rs.band_names[0]) rasters_final = [] # type: List[_Raster] for band_name, rasters_group in groupby(sorted(rasters, key=key), key=key): rasters_final.append(reduce(_fill_pixels, rasters_group)) return rasters_final
[ "def", "_merge_common_bands", "(", "rasters", ")", ":", "# type: (List[_Raster]) -> List[_Raster]", "# Compute band order", "all_bands", "=", "IndexedSet", "(", "[", "rs", ".", "band_names", "[", "0", "]", "for", "rs", "in", "rasters", "]", ")", "def", "key", "(", "rs", ")", ":", "return", "all_bands", ".", "index", "(", "rs", ".", "band_names", "[", "0", "]", ")", "rasters_final", "=", "[", "]", "# type: List[_Raster]", "for", "band_name", ",", "rasters_group", "in", "groupby", "(", "sorted", "(", "rasters", ",", "key", "=", "key", ")", ",", "key", "=", "key", ")", ":", "rasters_final", ".", "append", "(", "reduce", "(", "_fill_pixels", ",", "rasters_group", ")", ")", "return", "rasters_final" ]
Combine the common bands.
[ "Combine", "the", "common", "bands", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L197-L212
14,517
satellogic/telluric
telluric/georaster.py
_explode_raster
def _explode_raster(raster, band_names=[]): # type: (_Raster, Iterable[str]) -> List[_Raster] """Splits a raster into multiband rasters. """ # Using band_names=[] does no harm because we are not mutating it in place # and it makes MyPy happy if not band_names: band_names = raster.band_names else: band_names = list(IndexedSet(raster.band_names).intersection(band_names)) return [_Raster(image=raster.bands_data([band_name]), band_names=[band_name]) for band_name in band_names]
python
def _explode_raster(raster, band_names=[]): # type: (_Raster, Iterable[str]) -> List[_Raster] """Splits a raster into multiband rasters. """ # Using band_names=[] does no harm because we are not mutating it in place # and it makes MyPy happy if not band_names: band_names = raster.band_names else: band_names = list(IndexedSet(raster.band_names).intersection(band_names)) return [_Raster(image=raster.bands_data([band_name]), band_names=[band_name]) for band_name in band_names]
[ "def", "_explode_raster", "(", "raster", ",", "band_names", "=", "[", "]", ")", ":", "# type: (_Raster, Iterable[str]) -> List[_Raster]", "# Using band_names=[] does no harm because we are not mutating it in place", "# and it makes MyPy happy", "if", "not", "band_names", ":", "band_names", "=", "raster", ".", "band_names", "else", ":", "band_names", "=", "list", "(", "IndexedSet", "(", "raster", ".", "band_names", ")", ".", "intersection", "(", "band_names", ")", ")", "return", "[", "_Raster", "(", "image", "=", "raster", ".", "bands_data", "(", "[", "band_name", "]", ")", ",", "band_names", "=", "[", "band_name", "]", ")", "for", "band_name", "in", "band_names", "]" ]
Splits a raster into multiband rasters.
[ "Splits", "a", "raster", "into", "multiband", "rasters", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L244-L256
14,518
satellogic/telluric
telluric/georaster.py
_fill_pixels
def _fill_pixels(one, other): # type: (_Raster, _Raster) -> _Raster """Merges two single band rasters with the same band by filling the pixels according to depth. """ assert len(one.band_names) == len(other.band_names) == 1, "Rasters are not single band" # We raise an error in the intersection is empty. # Other options include returning an "empty" raster or just None. # The problem with the former is that GeoRaster2 expects a 2D or 3D # numpy array, so there is no obvious way to signal that this raster # has no bands. Also, returning a (1, 1, 0) numpy array is useless # for future concatenation, so the expected shape should be used # instead. The problem with the latter is that it breaks concatenation # anyway and requires special attention. Suggestions welcome. if one.band_names != other.band_names: raise ValueError("rasters have no bands in common, use another merge strategy") new_image = one.image.copy() other_image = other.image # The values that I want to mask are the ones that: # * Were already masked in the other array, _or_ # * Were already unmasked in the one array, so I don't overwrite them other_values_mask = (np.ma.getmaskarray(other_image)[0] | (~np.ma.getmaskarray(one.image)[0])) # Reshape the mask to fit the future array other_values_mask = other_values_mask[None, ...] # Overwrite the values that I don't want to mask new_image[~other_values_mask] = other_image[~other_values_mask] # In other words, the values that I wanted to write are the ones that: # * Were already masked in the one array, _and_ # * Were not masked in the other array # The reason for using the inverted form is to retain the semantics # of "masked=True" that apply for masked arrays. The same logic # could be written, using the De Morgan's laws, as # other_values_mask = (one.image.mask[0] & (~other_image.mask[0]) # other_values_mask = other_values_mask[None, ...] # new_image[other_values_mask] = other_image[other_values_mask] # but here the word "mask" does not mean the same as in masked arrays. return _Raster(image=new_image, band_names=one.band_names)
python
def _fill_pixels(one, other): # type: (_Raster, _Raster) -> _Raster """Merges two single band rasters with the same band by filling the pixels according to depth. """ assert len(one.band_names) == len(other.band_names) == 1, "Rasters are not single band" # We raise an error in the intersection is empty. # Other options include returning an "empty" raster or just None. # The problem with the former is that GeoRaster2 expects a 2D or 3D # numpy array, so there is no obvious way to signal that this raster # has no bands. Also, returning a (1, 1, 0) numpy array is useless # for future concatenation, so the expected shape should be used # instead. The problem with the latter is that it breaks concatenation # anyway and requires special attention. Suggestions welcome. if one.band_names != other.band_names: raise ValueError("rasters have no bands in common, use another merge strategy") new_image = one.image.copy() other_image = other.image # The values that I want to mask are the ones that: # * Were already masked in the other array, _or_ # * Were already unmasked in the one array, so I don't overwrite them other_values_mask = (np.ma.getmaskarray(other_image)[0] | (~np.ma.getmaskarray(one.image)[0])) # Reshape the mask to fit the future array other_values_mask = other_values_mask[None, ...] # Overwrite the values that I don't want to mask new_image[~other_values_mask] = other_image[~other_values_mask] # In other words, the values that I wanted to write are the ones that: # * Were already masked in the one array, _and_ # * Were not masked in the other array # The reason for using the inverted form is to retain the semantics # of "masked=True" that apply for masked arrays. The same logic # could be written, using the De Morgan's laws, as # other_values_mask = (one.image.mask[0] & (~other_image.mask[0]) # other_values_mask = other_values_mask[None, ...] # new_image[other_values_mask] = other_image[other_values_mask] # but here the word "mask" does not mean the same as in masked arrays. return _Raster(image=new_image, band_names=one.band_names)
[ "def", "_fill_pixels", "(", "one", ",", "other", ")", ":", "# type: (_Raster, _Raster) -> _Raster", "assert", "len", "(", "one", ".", "band_names", ")", "==", "len", "(", "other", ".", "band_names", ")", "==", "1", ",", "\"Rasters are not single band\"", "# We raise an error in the intersection is empty.", "# Other options include returning an \"empty\" raster or just None.", "# The problem with the former is that GeoRaster2 expects a 2D or 3D", "# numpy array, so there is no obvious way to signal that this raster", "# has no bands. Also, returning a (1, 1, 0) numpy array is useless", "# for future concatenation, so the expected shape should be used", "# instead. The problem with the latter is that it breaks concatenation", "# anyway and requires special attention. Suggestions welcome.", "if", "one", ".", "band_names", "!=", "other", ".", "band_names", ":", "raise", "ValueError", "(", "\"rasters have no bands in common, use another merge strategy\"", ")", "new_image", "=", "one", ".", "image", ".", "copy", "(", ")", "other_image", "=", "other", ".", "image", "# The values that I want to mask are the ones that:", "# * Were already masked in the other array, _or_", "# * Were already unmasked in the one array, so I don't overwrite them", "other_values_mask", "=", "(", "np", ".", "ma", ".", "getmaskarray", "(", "other_image", ")", "[", "0", "]", "|", "(", "~", "np", ".", "ma", ".", "getmaskarray", "(", "one", ".", "image", ")", "[", "0", "]", ")", ")", "# Reshape the mask to fit the future array", "other_values_mask", "=", "other_values_mask", "[", "None", ",", "...", "]", "# Overwrite the values that I don't want to mask", "new_image", "[", "~", "other_values_mask", "]", "=", "other_image", "[", "~", "other_values_mask", "]", "# In other words, the values that I wanted to write are the ones that:", "# * Were already masked in the one array, _and_", "# * Were not masked in the other array", "# The reason for using the inverted form is to retain the semantics", "# of \"masked=True\" that apply for masked arrays. The same logic", "# could be written, using the De Morgan's laws, as", "# other_values_mask = (one.image.mask[0] & (~other_image.mask[0])", "# other_values_mask = other_values_mask[None, ...]", "# new_image[other_values_mask] = other_image[other_values_mask]", "# but here the word \"mask\" does not mean the same as in masked arrays.", "return", "_Raster", "(", "image", "=", "new_image", ",", "band_names", "=", "one", ".", "band_names", ")" ]
Merges two single band rasters with the same band by filling the pixels according to depth.
[ "Merges", "two", "single", "band", "rasters", "with", "the", "same", "band", "by", "filling", "the", "pixels", "according", "to", "depth", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L286-L329
14,519
satellogic/telluric
telluric/georaster.py
_stack_bands
def _stack_bands(one, other): # type: (_Raster, _Raster) -> _Raster """Merges two rasters with non overlapping bands by stacking the bands. """ assert set(one.band_names).intersection(set(other.band_names)) == set() # We raise an error in the bands are the same. See above. if one.band_names == other.band_names: raise ValueError("rasters have the same bands, use another merge strategy") # Apply "or" to the mask in the same way rasterio does, see # https://mapbox.github.io/rasterio/topics/masks.html#dataset-masks # In other words, mask the values that are already masked in either # of the two rasters, since one mask per band is not supported new_mask = np.ma.getmaskarray(one.image)[0] | np.ma.getmaskarray(other.image)[0] # Concatenate the data along the band axis and apply the mask new_image = np.ma.masked_array( np.concatenate([ one.image.data, other.image.data ]), mask=[new_mask] * (one.image.shape[0] + other.image.shape[0]) ) new_bands = one.band_names + other.band_names # We don't copy image and mask here, due to performance issues, # this output should not use without eventually being copied # In this context we are copying the object in the end of merge_all merge_first and merge return _Raster(image=new_image, band_names=new_bands)
python
def _stack_bands(one, other): # type: (_Raster, _Raster) -> _Raster """Merges two rasters with non overlapping bands by stacking the bands. """ assert set(one.band_names).intersection(set(other.band_names)) == set() # We raise an error in the bands are the same. See above. if one.band_names == other.band_names: raise ValueError("rasters have the same bands, use another merge strategy") # Apply "or" to the mask in the same way rasterio does, see # https://mapbox.github.io/rasterio/topics/masks.html#dataset-masks # In other words, mask the values that are already masked in either # of the two rasters, since one mask per band is not supported new_mask = np.ma.getmaskarray(one.image)[0] | np.ma.getmaskarray(other.image)[0] # Concatenate the data along the band axis and apply the mask new_image = np.ma.masked_array( np.concatenate([ one.image.data, other.image.data ]), mask=[new_mask] * (one.image.shape[0] + other.image.shape[0]) ) new_bands = one.band_names + other.band_names # We don't copy image and mask here, due to performance issues, # this output should not use without eventually being copied # In this context we are copying the object in the end of merge_all merge_first and merge return _Raster(image=new_image, band_names=new_bands)
[ "def", "_stack_bands", "(", "one", ",", "other", ")", ":", "# type: (_Raster, _Raster) -> _Raster", "assert", "set", "(", "one", ".", "band_names", ")", ".", "intersection", "(", "set", "(", "other", ".", "band_names", ")", ")", "==", "set", "(", ")", "# We raise an error in the bands are the same. See above.", "if", "one", ".", "band_names", "==", "other", ".", "band_names", ":", "raise", "ValueError", "(", "\"rasters have the same bands, use another merge strategy\"", ")", "# Apply \"or\" to the mask in the same way rasterio does, see", "# https://mapbox.github.io/rasterio/topics/masks.html#dataset-masks", "# In other words, mask the values that are already masked in either", "# of the two rasters, since one mask per band is not supported", "new_mask", "=", "np", ".", "ma", ".", "getmaskarray", "(", "one", ".", "image", ")", "[", "0", "]", "|", "np", ".", "ma", ".", "getmaskarray", "(", "other", ".", "image", ")", "[", "0", "]", "# Concatenate the data along the band axis and apply the mask", "new_image", "=", "np", ".", "ma", ".", "masked_array", "(", "np", ".", "concatenate", "(", "[", "one", ".", "image", ".", "data", ",", "other", ".", "image", ".", "data", "]", ")", ",", "mask", "=", "[", "new_mask", "]", "*", "(", "one", ".", "image", ".", "shape", "[", "0", "]", "+", "other", ".", "image", ".", "shape", "[", "0", "]", ")", ")", "new_bands", "=", "one", ".", "band_names", "+", "other", ".", "band_names", "# We don't copy image and mask here, due to performance issues,", "# this output should not use without eventually being copied", "# In this context we are copying the object in the end of merge_all merge_first and merge", "return", "_Raster", "(", "image", "=", "new_image", ",", "band_names", "=", "new_bands", ")" ]
Merges two rasters with non overlapping bands by stacking the bands.
[ "Merges", "two", "rasters", "with", "non", "overlapping", "bands", "by", "stacking", "the", "bands", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L332-L362
14,520
satellogic/telluric
telluric/georaster.py
merge_two
def merge_two(one, other, merge_strategy=MergeStrategy.UNION, silent=False, pixel_strategy=PixelStrategy.FIRST): # type: (GeoRaster2, GeoRaster2, MergeStrategy, bool, PixelStrategy) -> GeoRaster2 """Merge two rasters into one. Parameters ---------- one : GeoRaster2 Left raster to merge. other : GeoRaster2 Right raster to merge. merge_strategy : MergeStrategy, optional Merge strategy, from :py:data:`telluric.georaster.MergeStrategy` (default to "union"). silent : bool, optional Whether to raise errors or return some result, default to False (raise errors). pixel_strategy: PixelStrategy, optional Pixel strategy, from :py:data:`telluric.georaster.PixelStrategy` (default to "top"). Returns ------- GeoRaster2 """ other_res = _prepare_other_raster(one, other) if other_res is None: if silent: return one else: raise ValueError("rasters do not intersect") else: other = other.copy_with(image=other_res.image, band_names=other_res.band_names) # To make MyPy happy # Create a list of single band rasters # Cropping won't happen twice, since other was already cropped all_band_names, projected_rasters = _prepare_rasters([other], merge_strategy, first=one) if not all_band_names and not silent: raise ValueError("rasters have no bands in common, use another merge strategy") prepared_rasters = _apply_pixel_strategy(projected_rasters, pixel_strategy) prepared_rasters = _explode_rasters(prepared_rasters, all_band_names) # Merge common bands prepared_rasters = _merge_common_bands(_explode_raster(one, all_band_names) + prepared_rasters) # Merge all bands raster = reduce(_stack_bands, prepared_rasters) return one.copy_with(image=raster.image, band_names=raster.band_names)
python
def merge_two(one, other, merge_strategy=MergeStrategy.UNION, silent=False, pixel_strategy=PixelStrategy.FIRST): # type: (GeoRaster2, GeoRaster2, MergeStrategy, bool, PixelStrategy) -> GeoRaster2 """Merge two rasters into one. Parameters ---------- one : GeoRaster2 Left raster to merge. other : GeoRaster2 Right raster to merge. merge_strategy : MergeStrategy, optional Merge strategy, from :py:data:`telluric.georaster.MergeStrategy` (default to "union"). silent : bool, optional Whether to raise errors or return some result, default to False (raise errors). pixel_strategy: PixelStrategy, optional Pixel strategy, from :py:data:`telluric.georaster.PixelStrategy` (default to "top"). Returns ------- GeoRaster2 """ other_res = _prepare_other_raster(one, other) if other_res is None: if silent: return one else: raise ValueError("rasters do not intersect") else: other = other.copy_with(image=other_res.image, band_names=other_res.band_names) # To make MyPy happy # Create a list of single band rasters # Cropping won't happen twice, since other was already cropped all_band_names, projected_rasters = _prepare_rasters([other], merge_strategy, first=one) if not all_band_names and not silent: raise ValueError("rasters have no bands in common, use another merge strategy") prepared_rasters = _apply_pixel_strategy(projected_rasters, pixel_strategy) prepared_rasters = _explode_rasters(prepared_rasters, all_band_names) # Merge common bands prepared_rasters = _merge_common_bands(_explode_raster(one, all_band_names) + prepared_rasters) # Merge all bands raster = reduce(_stack_bands, prepared_rasters) return one.copy_with(image=raster.image, band_names=raster.band_names)
[ "def", "merge_two", "(", "one", ",", "other", ",", "merge_strategy", "=", "MergeStrategy", ".", "UNION", ",", "silent", "=", "False", ",", "pixel_strategy", "=", "PixelStrategy", ".", "FIRST", ")", ":", "# type: (GeoRaster2, GeoRaster2, MergeStrategy, bool, PixelStrategy) -> GeoRaster2", "other_res", "=", "_prepare_other_raster", "(", "one", ",", "other", ")", "if", "other_res", "is", "None", ":", "if", "silent", ":", "return", "one", "else", ":", "raise", "ValueError", "(", "\"rasters do not intersect\"", ")", "else", ":", "other", "=", "other", ".", "copy_with", "(", "image", "=", "other_res", ".", "image", ",", "band_names", "=", "other_res", ".", "band_names", ")", "# To make MyPy happy", "# Create a list of single band rasters", "# Cropping won't happen twice, since other was already cropped", "all_band_names", ",", "projected_rasters", "=", "_prepare_rasters", "(", "[", "other", "]", ",", "merge_strategy", ",", "first", "=", "one", ")", "if", "not", "all_band_names", "and", "not", "silent", ":", "raise", "ValueError", "(", "\"rasters have no bands in common, use another merge strategy\"", ")", "prepared_rasters", "=", "_apply_pixel_strategy", "(", "projected_rasters", ",", "pixel_strategy", ")", "prepared_rasters", "=", "_explode_rasters", "(", "prepared_rasters", ",", "all_band_names", ")", "# Merge common bands", "prepared_rasters", "=", "_merge_common_bands", "(", "_explode_raster", "(", "one", ",", "all_band_names", ")", "+", "prepared_rasters", ")", "# Merge all bands", "raster", "=", "reduce", "(", "_stack_bands", ",", "prepared_rasters", ")", "return", "one", ".", "copy_with", "(", "image", "=", "raster", ".", "image", ",", "band_names", "=", "raster", ".", "band_names", ")" ]
Merge two rasters into one. Parameters ---------- one : GeoRaster2 Left raster to merge. other : GeoRaster2 Right raster to merge. merge_strategy : MergeStrategy, optional Merge strategy, from :py:data:`telluric.georaster.MergeStrategy` (default to "union"). silent : bool, optional Whether to raise errors or return some result, default to False (raise errors). pixel_strategy: PixelStrategy, optional Pixel strategy, from :py:data:`telluric.georaster.PixelStrategy` (default to "top"). Returns ------- GeoRaster2
[ "Merge", "two", "rasters", "into", "one", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L365-L414
14,521
satellogic/telluric
telluric/georaster.py
_Raster._set_image
def _set_image(self, image, nodata=None): """ Set self._image. :param image: supported: np.ma.array, np.array, TODO: PIL image :param nodata: if provided image is array (not masked array), treat pixels with value=nodata as nodata :return: """ # convert to masked array: if isinstance(image, np.ma.core.MaskedArray): masked = image elif isinstance(image, np.core.ndarray): masked = self._build_masked_array(image, nodata) else: raise GeoRaster2NotImplementedError('only ndarray or masked array supported, got %s' % type(image)) # make sure array is 3d: if len(masked.shape) == 3: self._image = masked elif len(masked.shape) == 2: self._image = masked[np.newaxis, :, :] else: raise GeoRaster2Error('expected 2d or 3d image, got shape=%s' % masked.shape) # update shape if self._shape is None: self._set_shape(self._image.shape) self._image_after_load_validations() if self._image_readonly: self._image.setflags(write=0)
python
def _set_image(self, image, nodata=None): """ Set self._image. :param image: supported: np.ma.array, np.array, TODO: PIL image :param nodata: if provided image is array (not masked array), treat pixels with value=nodata as nodata :return: """ # convert to masked array: if isinstance(image, np.ma.core.MaskedArray): masked = image elif isinstance(image, np.core.ndarray): masked = self._build_masked_array(image, nodata) else: raise GeoRaster2NotImplementedError('only ndarray or masked array supported, got %s' % type(image)) # make sure array is 3d: if len(masked.shape) == 3: self._image = masked elif len(masked.shape) == 2: self._image = masked[np.newaxis, :, :] else: raise GeoRaster2Error('expected 2d or 3d image, got shape=%s' % masked.shape) # update shape if self._shape is None: self._set_shape(self._image.shape) self._image_after_load_validations() if self._image_readonly: self._image.setflags(write=0)
[ "def", "_set_image", "(", "self", ",", "image", ",", "nodata", "=", "None", ")", ":", "# convert to masked array:", "if", "isinstance", "(", "image", ",", "np", ".", "ma", ".", "core", ".", "MaskedArray", ")", ":", "masked", "=", "image", "elif", "isinstance", "(", "image", ",", "np", ".", "core", ".", "ndarray", ")", ":", "masked", "=", "self", ".", "_build_masked_array", "(", "image", ",", "nodata", ")", "else", ":", "raise", "GeoRaster2NotImplementedError", "(", "'only ndarray or masked array supported, got %s'", "%", "type", "(", "image", ")", ")", "# make sure array is 3d:", "if", "len", "(", "masked", ".", "shape", ")", "==", "3", ":", "self", ".", "_image", "=", "masked", "elif", "len", "(", "masked", ".", "shape", ")", "==", "2", ":", "self", ".", "_image", "=", "masked", "[", "np", ".", "newaxis", ",", ":", ",", ":", "]", "else", ":", "raise", "GeoRaster2Error", "(", "'expected 2d or 3d image, got shape=%s'", "%", "masked", ".", "shape", ")", "# update shape", "if", "self", ".", "_shape", "is", "None", ":", "self", ".", "_set_shape", "(", "self", ".", "_image", ".", "shape", ")", "self", ".", "_image_after_load_validations", "(", ")", "if", "self", ".", "_image_readonly", ":", "self", ".", "_image", ".", "setflags", "(", "write", "=", "0", ")" ]
Set self._image. :param image: supported: np.ma.array, np.array, TODO: PIL image :param nodata: if provided image is array (not masked array), treat pixels with value=nodata as nodata :return:
[ "Set", "self", ".", "_image", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L467-L497
14,522
satellogic/telluric
telluric/georaster.py
GeoRaster2.from_wms
def from_wms(cls, filename, vector, resolution, destination_file=None): """Create georaster from the web service definition file.""" doc = wms_vrt(filename, bounds=vector, resolution=resolution).tostring() filename = cls._save_to_destination_file(doc, destination_file) return GeoRaster2.open(filename)
python
def from_wms(cls, filename, vector, resolution, destination_file=None): """Create georaster from the web service definition file.""" doc = wms_vrt(filename, bounds=vector, resolution=resolution).tostring() filename = cls._save_to_destination_file(doc, destination_file) return GeoRaster2.open(filename)
[ "def", "from_wms", "(", "cls", ",", "filename", ",", "vector", ",", "resolution", ",", "destination_file", "=", "None", ")", ":", "doc", "=", "wms_vrt", "(", "filename", ",", "bounds", "=", "vector", ",", "resolution", "=", "resolution", ")", ".", "tostring", "(", ")", "filename", "=", "cls", ".", "_save_to_destination_file", "(", "doc", ",", "destination_file", ")", "return", "GeoRaster2", ".", "open", "(", "filename", ")" ]
Create georaster from the web service definition file.
[ "Create", "georaster", "from", "the", "web", "service", "definition", "file", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L626-L632
14,523
satellogic/telluric
telluric/georaster.py
GeoRaster2.from_rasters
def from_rasters(cls, rasters, relative_to_vrt=True, destination_file=None, nodata=None, mask_band=None): """Create georaster out of a list of rasters.""" if isinstance(rasters, list): doc = raster_list_vrt(rasters, relative_to_vrt, nodata, mask_band).tostring() else: doc = raster_collection_vrt(rasters, relative_to_vrt, nodata, mask_band).tostring() filename = cls._save_to_destination_file(doc, destination_file) return GeoRaster2.open(filename)
python
def from_rasters(cls, rasters, relative_to_vrt=True, destination_file=None, nodata=None, mask_band=None): """Create georaster out of a list of rasters.""" if isinstance(rasters, list): doc = raster_list_vrt(rasters, relative_to_vrt, nodata, mask_band).tostring() else: doc = raster_collection_vrt(rasters, relative_to_vrt, nodata, mask_band).tostring() filename = cls._save_to_destination_file(doc, destination_file) return GeoRaster2.open(filename)
[ "def", "from_rasters", "(", "cls", ",", "rasters", ",", "relative_to_vrt", "=", "True", ",", "destination_file", "=", "None", ",", "nodata", "=", "None", ",", "mask_band", "=", "None", ")", ":", "if", "isinstance", "(", "rasters", ",", "list", ")", ":", "doc", "=", "raster_list_vrt", "(", "rasters", ",", "relative_to_vrt", ",", "nodata", ",", "mask_band", ")", ".", "tostring", "(", ")", "else", ":", "doc", "=", "raster_collection_vrt", "(", "rasters", ",", "relative_to_vrt", ",", "nodata", ",", "mask_band", ")", ".", "tostring", "(", ")", "filename", "=", "cls", ".", "_save_to_destination_file", "(", "doc", ",", "destination_file", ")", "return", "GeoRaster2", ".", "open", "(", "filename", ")" ]
Create georaster out of a list of rasters.
[ "Create", "georaster", "out", "of", "a", "list", "of", "rasters", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L635-L642
14,524
satellogic/telluric
telluric/georaster.py
GeoRaster2.open
def open(cls, filename, band_names=None, lazy_load=True, mutable=False, **kwargs): """ Read a georaster from a file. :param filename: url :param band_names: list of strings, or string. if None - will try to read from image, otherwise - these will be ['0', ..] :param lazy_load: if True - do not load anything :return: GeoRaster2 """ if mutable: geo_raster = MutableGeoRaster(filename=filename, band_names=band_names, **kwargs) else: geo_raster = cls(filename=filename, band_names=band_names, **kwargs) if not lazy_load: geo_raster._populate_from_rasterio_object(read_image=True) return geo_raster
python
def open(cls, filename, band_names=None, lazy_load=True, mutable=False, **kwargs): """ Read a georaster from a file. :param filename: url :param band_names: list of strings, or string. if None - will try to read from image, otherwise - these will be ['0', ..] :param lazy_load: if True - do not load anything :return: GeoRaster2 """ if mutable: geo_raster = MutableGeoRaster(filename=filename, band_names=band_names, **kwargs) else: geo_raster = cls(filename=filename, band_names=band_names, **kwargs) if not lazy_load: geo_raster._populate_from_rasterio_object(read_image=True) return geo_raster
[ "def", "open", "(", "cls", ",", "filename", ",", "band_names", "=", "None", ",", "lazy_load", "=", "True", ",", "mutable", "=", "False", ",", "*", "*", "kwargs", ")", ":", "if", "mutable", ":", "geo_raster", "=", "MutableGeoRaster", "(", "filename", "=", "filename", ",", "band_names", "=", "band_names", ",", "*", "*", "kwargs", ")", "else", ":", "geo_raster", "=", "cls", "(", "filename", "=", "filename", ",", "band_names", "=", "band_names", ",", "*", "*", "kwargs", ")", "if", "not", "lazy_load", ":", "geo_raster", ".", "_populate_from_rasterio_object", "(", "read_image", "=", "True", ")", "return", "geo_raster" ]
Read a georaster from a file. :param filename: url :param band_names: list of strings, or string. if None - will try to read from image, otherwise - these will be ['0', ..] :param lazy_load: if True - do not load anything :return: GeoRaster2
[ "Read", "a", "georaster", "from", "a", "file", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L645-L661
14,525
satellogic/telluric
telluric/georaster.py
GeoRaster2.tags
def tags(cls, filename, namespace=None): """Extract tags from file.""" return cls._raster_opener(filename).tags(ns=namespace)
python
def tags(cls, filename, namespace=None): """Extract tags from file.""" return cls._raster_opener(filename).tags(ns=namespace)
[ "def", "tags", "(", "cls", ",", "filename", ",", "namespace", "=", "None", ")", ":", "return", "cls", ".", "_raster_opener", "(", "filename", ")", ".", "tags", "(", "ns", "=", "namespace", ")" ]
Extract tags from file.
[ "Extract", "tags", "from", "file", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L724-L726
14,526
satellogic/telluric
telluric/georaster.py
GeoRaster2.image
def image(self): """Raster bitmap in numpy array.""" if self._image is None: self._populate_from_rasterio_object(read_image=True) return self._image
python
def image(self): """Raster bitmap in numpy array.""" if self._image is None: self._populate_from_rasterio_object(read_image=True) return self._image
[ "def", "image", "(", "self", ")", ":", "if", "self", ".", "_image", "is", "None", ":", "self", ".", "_populate_from_rasterio_object", "(", "read_image", "=", "True", ")", "return", "self", ".", "_image" ]
Raster bitmap in numpy array.
[ "Raster", "bitmap", "in", "numpy", "array", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L729-L733
14,527
satellogic/telluric
telluric/georaster.py
GeoRaster2.crs
def crs(self): # type: () -> CRS """Raster crs.""" if self._crs is None: self._populate_from_rasterio_object(read_image=False) return self._crs
python
def crs(self): # type: () -> CRS """Raster crs.""" if self._crs is None: self._populate_from_rasterio_object(read_image=False) return self._crs
[ "def", "crs", "(", "self", ")", ":", "# type: () -> CRS", "if", "self", ".", "_crs", "is", "None", ":", "self", ".", "_populate_from_rasterio_object", "(", "read_image", "=", "False", ")", "return", "self", ".", "_crs" ]
Raster crs.
[ "Raster", "crs", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L758-L762
14,528
satellogic/telluric
telluric/georaster.py
GeoRaster2.shape
def shape(self): """Raster shape.""" if self._shape is None: self._populate_from_rasterio_object(read_image=False) return self._shape
python
def shape(self): """Raster shape.""" if self._shape is None: self._populate_from_rasterio_object(read_image=False) return self._shape
[ "def", "shape", "(", "self", ")", ":", "if", "self", ".", "_shape", "is", "None", ":", "self", ".", "_populate_from_rasterio_object", "(", "read_image", "=", "False", ")", "return", "self", ".", "_shape" ]
Raster shape.
[ "Raster", "shape", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L765-L769
14,529
satellogic/telluric
telluric/georaster.py
GeoRaster2.source_file
def source_file(self): """ When using open, returns the filename used """ if self._filename is None: self._filename = self._as_in_memory_geotiff()._filename return self._filename
python
def source_file(self): """ When using open, returns the filename used """ if self._filename is None: self._filename = self._as_in_memory_geotiff()._filename return self._filename
[ "def", "source_file", "(", "self", ")", ":", "if", "self", ".", "_filename", "is", "None", ":", "self", ".", "_filename", "=", "self", ".", "_as_in_memory_geotiff", "(", ")", ".", "_filename", "return", "self", ".", "_filename" ]
When using open, returns the filename used
[ "When", "using", "open", "returns", "the", "filename", "used" ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L788-L793
14,530
satellogic/telluric
telluric/georaster.py
GeoRaster2.blockshapes
def blockshapes(self): """Raster all bands block shape.""" if self._blockshapes is None: if self._filename: self._populate_from_rasterio_object(read_image=False) else: # if no file is attached to the raster set the shape of each band to be the data array size self._blockshapes = [(self.height, self.width) for z in range(self.num_bands)] return self._blockshapes
python
def blockshapes(self): """Raster all bands block shape.""" if self._blockshapes is None: if self._filename: self._populate_from_rasterio_object(read_image=False) else: # if no file is attached to the raster set the shape of each band to be the data array size self._blockshapes = [(self.height, self.width) for z in range(self.num_bands)] return self._blockshapes
[ "def", "blockshapes", "(", "self", ")", ":", "if", "self", ".", "_blockshapes", "is", "None", ":", "if", "self", ".", "_filename", ":", "self", ".", "_populate_from_rasterio_object", "(", "read_image", "=", "False", ")", "else", ":", "# if no file is attached to the raster set the shape of each band to be the data array size", "self", ".", "_blockshapes", "=", "[", "(", "self", ".", "height", ",", "self", ".", "width", ")", "for", "z", "in", "range", "(", "self", ".", "num_bands", ")", "]", "return", "self", ".", "_blockshapes" ]
Raster all bands block shape.
[ "Raster", "all", "bands", "block", "shape", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L822-L830
14,531
satellogic/telluric
telluric/georaster.py
GeoRaster2.get
def get(self, point): """ Get the pixel values at the requested point. :param point: A GeoVector(POINT) with the coordinates of the values to get :return: numpy array of values """ if not (isinstance(point, GeoVector) and point.type == 'Point'): raise TypeError('expect GeoVector(Point), got %s' % (point,)) target = self.to_raster(point) return self.image[:, int(target.y), int(target.x)]
python
def get(self, point): """ Get the pixel values at the requested point. :param point: A GeoVector(POINT) with the coordinates of the values to get :return: numpy array of values """ if not (isinstance(point, GeoVector) and point.type == 'Point'): raise TypeError('expect GeoVector(Point), got %s' % (point,)) target = self.to_raster(point) return self.image[:, int(target.y), int(target.x)]
[ "def", "get", "(", "self", ",", "point", ")", ":", "if", "not", "(", "isinstance", "(", "point", ",", "GeoVector", ")", "and", "point", ".", "type", "==", "'Point'", ")", ":", "raise", "TypeError", "(", "'expect GeoVector(Point), got %s'", "%", "(", "point", ",", ")", ")", "target", "=", "self", ".", "to_raster", "(", "point", ")", "return", "self", ".", "image", "[", ":", ",", "int", "(", "target", ".", "y", ")", ",", "int", "(", "target", ".", "x", ")", "]" ]
Get the pixel values at the requested point. :param point: A GeoVector(POINT) with the coordinates of the values to get :return: numpy array of values
[ "Get", "the", "pixel", "values", "at", "the", "requested", "point", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L978-L989
14,532
satellogic/telluric
telluric/georaster.py
GeoRaster2.copy
def copy(self, mutable=False): """Return a copy of this GeoRaster with no modifications. Can be use to create a Mutable copy of the GeoRaster""" if self.not_loaded(): _cls = self.__class__ if mutable: _cls = MutableGeoRaster return _cls.open(self._filename) return self.copy_with(mutable=mutable)
python
def copy(self, mutable=False): """Return a copy of this GeoRaster with no modifications. Can be use to create a Mutable copy of the GeoRaster""" if self.not_loaded(): _cls = self.__class__ if mutable: _cls = MutableGeoRaster return _cls.open(self._filename) return self.copy_with(mutable=mutable)
[ "def", "copy", "(", "self", ",", "mutable", "=", "False", ")", ":", "if", "self", ".", "not_loaded", "(", ")", ":", "_cls", "=", "self", ".", "__class__", "if", "mutable", ":", "_cls", "=", "MutableGeoRaster", "return", "_cls", ".", "open", "(", "self", ".", "_filename", ")", "return", "self", ".", "copy_with", "(", "mutable", "=", "mutable", ")" ]
Return a copy of this GeoRaster with no modifications. Can be use to create a Mutable copy of the GeoRaster
[ "Return", "a", "copy", "of", "this", "GeoRaster", "with", "no", "modifications", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L1198-L1209
14,533
satellogic/telluric
telluric/georaster.py
GeoRaster2._resize
def _resize(self, ratio_x, ratio_y, resampling): """Return raster resized by ratio.""" new_width = int(np.ceil(self.width * ratio_x)) new_height = int(np.ceil(self.height * ratio_y)) dest_affine = self.affine * Affine.scale(1 / ratio_x, 1 / ratio_y) if self.not_loaded(): window = rasterio.windows.Window(0, 0, self.width, self.height) resized_raster = self.get_window(window, xsize=new_width, ysize=new_height, resampling=resampling) else: resized_raster = self._reproject(new_width, new_height, dest_affine, resampling=resampling) return resized_raster
python
def _resize(self, ratio_x, ratio_y, resampling): """Return raster resized by ratio.""" new_width = int(np.ceil(self.width * ratio_x)) new_height = int(np.ceil(self.height * ratio_y)) dest_affine = self.affine * Affine.scale(1 / ratio_x, 1 / ratio_y) if self.not_loaded(): window = rasterio.windows.Window(0, 0, self.width, self.height) resized_raster = self.get_window(window, xsize=new_width, ysize=new_height, resampling=resampling) else: resized_raster = self._reproject(new_width, new_height, dest_affine, resampling=resampling) return resized_raster
[ "def", "_resize", "(", "self", ",", "ratio_x", ",", "ratio_y", ",", "resampling", ")", ":", "new_width", "=", "int", "(", "np", ".", "ceil", "(", "self", ".", "width", "*", "ratio_x", ")", ")", "new_height", "=", "int", "(", "np", ".", "ceil", "(", "self", ".", "height", "*", "ratio_y", ")", ")", "dest_affine", "=", "self", ".", "affine", "*", "Affine", ".", "scale", "(", "1", "/", "ratio_x", ",", "1", "/", "ratio_y", ")", "if", "self", ".", "not_loaded", "(", ")", ":", "window", "=", "rasterio", ".", "windows", ".", "Window", "(", "0", ",", "0", ",", "self", ".", "width", ",", "self", ".", "height", ")", "resized_raster", "=", "self", ".", "get_window", "(", "window", ",", "xsize", "=", "new_width", ",", "ysize", "=", "new_height", ",", "resampling", "=", "resampling", ")", "else", ":", "resized_raster", "=", "self", ".", "_reproject", "(", "new_width", ",", "new_height", ",", "dest_affine", ",", "resampling", "=", "resampling", ")", "return", "resized_raster" ]
Return raster resized by ratio.
[ "Return", "raster", "resized", "by", "ratio", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L1277-L1288
14,534
satellogic/telluric
telluric/georaster.py
GeoRaster2.to_pillow_image
def to_pillow_image(self, return_mask=False): """Return Pillow. Image, and optionally also mask.""" img = np.rollaxis(np.rollaxis(self.image.data, 2), 2) img = Image.fromarray(img[:, :, 0]) if img.shape[2] == 1 else Image.fromarray(img) if return_mask: mask = np.ma.getmaskarray(self.image) mask = Image.fromarray(np.rollaxis(np.rollaxis(mask, 2), 2).astype(np.uint8)[:, :, 0]) return img, mask else: return img
python
def to_pillow_image(self, return_mask=False): """Return Pillow. Image, and optionally also mask.""" img = np.rollaxis(np.rollaxis(self.image.data, 2), 2) img = Image.fromarray(img[:, :, 0]) if img.shape[2] == 1 else Image.fromarray(img) if return_mask: mask = np.ma.getmaskarray(self.image) mask = Image.fromarray(np.rollaxis(np.rollaxis(mask, 2), 2).astype(np.uint8)[:, :, 0]) return img, mask else: return img
[ "def", "to_pillow_image", "(", "self", ",", "return_mask", "=", "False", ")", ":", "img", "=", "np", ".", "rollaxis", "(", "np", ".", "rollaxis", "(", "self", ".", "image", ".", "data", ",", "2", ")", ",", "2", ")", "img", "=", "Image", ".", "fromarray", "(", "img", "[", ":", ",", ":", ",", "0", "]", ")", "if", "img", ".", "shape", "[", "2", "]", "==", "1", "else", "Image", ".", "fromarray", "(", "img", ")", "if", "return_mask", ":", "mask", "=", "np", ".", "ma", ".", "getmaskarray", "(", "self", ".", "image", ")", "mask", "=", "Image", ".", "fromarray", "(", "np", ".", "rollaxis", "(", "np", ".", "rollaxis", "(", "mask", ",", "2", ")", ",", "2", ")", ".", "astype", "(", "np", ".", "uint8", ")", "[", ":", ",", ":", ",", "0", "]", ")", "return", "img", ",", "mask", "else", ":", "return", "img" ]
Return Pillow. Image, and optionally also mask.
[ "Return", "Pillow", ".", "Image", "and", "optionally", "also", "mask", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L1290-L1299
14,535
satellogic/telluric
telluric/georaster.py
GeoRaster2.from_bytes
def from_bytes(cls, image_bytes, affine, crs, band_names=None): """Create GeoRaster from image BytesIo object. :param image_bytes: io.BytesIO object :param affine: rasters affine :param crs: rasters crs :param band_names: e.g. ['red', 'blue'] or 'red' """ b = io.BytesIO(image_bytes) image = imageio.imread(b) roll = np.rollaxis(image, 2) if band_names is None: band_names = [0, 1, 2] elif isinstance(band_names, str): band_names = [band_names] return GeoRaster2(image=roll[:3, :, :], affine=affine, crs=crs, band_names=band_names)
python
def from_bytes(cls, image_bytes, affine, crs, band_names=None): """Create GeoRaster from image BytesIo object. :param image_bytes: io.BytesIO object :param affine: rasters affine :param crs: rasters crs :param band_names: e.g. ['red', 'blue'] or 'red' """ b = io.BytesIO(image_bytes) image = imageio.imread(b) roll = np.rollaxis(image, 2) if band_names is None: band_names = [0, 1, 2] elif isinstance(band_names, str): band_names = [band_names] return GeoRaster2(image=roll[:3, :, :], affine=affine, crs=crs, band_names=band_names)
[ "def", "from_bytes", "(", "cls", ",", "image_bytes", ",", "affine", ",", "crs", ",", "band_names", "=", "None", ")", ":", "b", "=", "io", ".", "BytesIO", "(", "image_bytes", ")", "image", "=", "imageio", ".", "imread", "(", "b", ")", "roll", "=", "np", ".", "rollaxis", "(", "image", ",", "2", ")", "if", "band_names", "is", "None", ":", "band_names", "=", "[", "0", ",", "1", ",", "2", "]", "elif", "isinstance", "(", "band_names", ",", "str", ")", ":", "band_names", "=", "[", "band_names", "]", "return", "GeoRaster2", "(", "image", "=", "roll", "[", ":", "3", ",", ":", ",", ":", "]", ",", "affine", "=", "affine", ",", "crs", "=", "crs", ",", "band_names", "=", "band_names", ")" ]
Create GeoRaster from image BytesIo object. :param image_bytes: io.BytesIO object :param affine: rasters affine :param crs: rasters crs :param band_names: e.g. ['red', 'blue'] or 'red'
[ "Create", "GeoRaster", "from", "image", "BytesIo", "object", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L1506-L1522
14,536
satellogic/telluric
telluric/georaster.py
GeoRaster2._repr_html_
def _repr_html_(self): """Required for jupyter notebook to show raster as an interactive map.""" TileServer.run_tileserver(self, self.footprint()) capture = "raster: %s" % self._filename mp = TileServer.folium_client(self, self.footprint(), capture=capture) return mp._repr_html_()
python
def _repr_html_(self): """Required for jupyter notebook to show raster as an interactive map.""" TileServer.run_tileserver(self, self.footprint()) capture = "raster: %s" % self._filename mp = TileServer.folium_client(self, self.footprint(), capture=capture) return mp._repr_html_()
[ "def", "_repr_html_", "(", "self", ")", ":", "TileServer", ".", "run_tileserver", "(", "self", ",", "self", ".", "footprint", "(", ")", ")", "capture", "=", "\"raster: %s\"", "%", "self", ".", "_filename", "mp", "=", "TileServer", ".", "folium_client", "(", "self", ",", "self", ".", "footprint", "(", ")", ",", "capture", "=", "capture", ")", "return", "mp", ".", "_repr_html_", "(", ")" ]
Required for jupyter notebook to show raster as an interactive map.
[ "Required", "for", "jupyter", "notebook", "to", "show", "raster", "as", "an", "interactive", "map", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L1524-L1529
14,537
satellogic/telluric
telluric/georaster.py
GeoRaster2.image_corner
def image_corner(self, corner): """Return image corner in pixels, as shapely.Point.""" if corner not in self.corner_types(): raise GeoRaster2Error('corner %s invalid, expected: %s' % (corner, self.corner_types())) x = 0 if corner[1] == 'l' else self.width y = 0 if corner[0] == 'u' else self.height return Point(x, y)
python
def image_corner(self, corner): """Return image corner in pixels, as shapely.Point.""" if corner not in self.corner_types(): raise GeoRaster2Error('corner %s invalid, expected: %s' % (corner, self.corner_types())) x = 0 if corner[1] == 'l' else self.width y = 0 if corner[0] == 'u' else self.height return Point(x, y)
[ "def", "image_corner", "(", "self", ",", "corner", ")", ":", "if", "corner", "not", "in", "self", ".", "corner_types", "(", ")", ":", "raise", "GeoRaster2Error", "(", "'corner %s invalid, expected: %s'", "%", "(", "corner", ",", "self", ".", "corner_types", "(", ")", ")", ")", "x", "=", "0", "if", "corner", "[", "1", "]", "==", "'l'", "else", "self", ".", "width", "y", "=", "0", "if", "corner", "[", "0", "]", "==", "'u'", "else", "self", ".", "height", "return", "Point", "(", "x", ",", "y", ")" ]
Return image corner in pixels, as shapely.Point.
[ "Return", "image", "corner", "in", "pixels", "as", "shapely", ".", "Point", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L1555-L1562
14,538
satellogic/telluric
telluric/georaster.py
GeoRaster2.center
def center(self): """Return footprint center in world coordinates, as GeoVector.""" image_center = Point(self.width / 2, self.height / 2) return self.to_world(image_center)
python
def center(self): """Return footprint center in world coordinates, as GeoVector.""" image_center = Point(self.width / 2, self.height / 2) return self.to_world(image_center)
[ "def", "center", "(", "self", ")", ":", "image_center", "=", "Point", "(", "self", ".", "width", "/", "2", ",", "self", ".", "height", "/", "2", ")", "return", "self", ".", "to_world", "(", "image_center", ")" ]
Return footprint center in world coordinates, as GeoVector.
[ "Return", "footprint", "center", "in", "world", "coordinates", "as", "GeoVector", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L1576-L1579
14,539
satellogic/telluric
telluric/georaster.py
GeoRaster2.bounds
def bounds(self): """Return image rectangle in pixels, as shapely.Polygon.""" corners = [self.image_corner(corner) for corner in self.corner_types()] return Polygon([[corner.x, corner.y] for corner in corners])
python
def bounds(self): """Return image rectangle in pixels, as shapely.Polygon.""" corners = [self.image_corner(corner) for corner in self.corner_types()] return Polygon([[corner.x, corner.y] for corner in corners])
[ "def", "bounds", "(", "self", ")", ":", "corners", "=", "[", "self", ".", "image_corner", "(", "corner", ")", "for", "corner", "in", "self", ".", "corner_types", "(", ")", "]", "return", "Polygon", "(", "[", "[", "corner", ".", "x", ",", "corner", ".", "y", "]", "for", "corner", "in", "corners", "]", ")" ]
Return image rectangle in pixels, as shapely.Polygon.
[ "Return", "image", "rectangle", "in", "pixels", "as", "shapely", ".", "Polygon", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L1581-L1584
14,540
satellogic/telluric
telluric/georaster.py
GeoRaster2._calc_footprint
def _calc_footprint(self): """Return rectangle in world coordinates, as GeoVector.""" corners = [self.corner(corner) for corner in self.corner_types()] coords = [] for corner in corners: shape = corner.get_shape(corner.crs) coords.append([shape.x, shape.y]) shp = Polygon(coords) # TODO use GeoVector.from_bounds self._footprint = GeoVector(shp, self.crs) return self._footprint
python
def _calc_footprint(self): """Return rectangle in world coordinates, as GeoVector.""" corners = [self.corner(corner) for corner in self.corner_types()] coords = [] for corner in corners: shape = corner.get_shape(corner.crs) coords.append([shape.x, shape.y]) shp = Polygon(coords) # TODO use GeoVector.from_bounds self._footprint = GeoVector(shp, self.crs) return self._footprint
[ "def", "_calc_footprint", "(", "self", ")", ":", "corners", "=", "[", "self", ".", "corner", "(", "corner", ")", "for", "corner", "in", "self", ".", "corner_types", "(", ")", "]", "coords", "=", "[", "]", "for", "corner", "in", "corners", ":", "shape", "=", "corner", ".", "get_shape", "(", "corner", ".", "crs", ")", "coords", ".", "append", "(", "[", "shape", ".", "x", ",", "shape", ".", "y", "]", ")", "shp", "=", "Polygon", "(", "coords", ")", "# TODO use GeoVector.from_bounds", "self", ".", "_footprint", "=", "GeoVector", "(", "shp", ",", "self", ".", "crs", ")", "return", "self", ".", "_footprint" ]
Return rectangle in world coordinates, as GeoVector.
[ "Return", "rectangle", "in", "world", "coordinates", "as", "GeoVector", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L1586-L1597
14,541
satellogic/telluric
telluric/georaster.py
GeoRaster2.to_raster
def to_raster(self, vector): """Return the vector in pixel coordinates, as shapely.Geometry.""" return transform(vector.get_shape(vector.crs), vector.crs, self.crs, dst_affine=~self.affine)
python
def to_raster(self, vector): """Return the vector in pixel coordinates, as shapely.Geometry.""" return transform(vector.get_shape(vector.crs), vector.crs, self.crs, dst_affine=~self.affine)
[ "def", "to_raster", "(", "self", ",", "vector", ")", ":", "return", "transform", "(", "vector", ".", "get_shape", "(", "vector", ".", "crs", ")", ",", "vector", ".", "crs", ",", "self", ".", "crs", ",", "dst_affine", "=", "~", "self", ".", "affine", ")" ]
Return the vector in pixel coordinates, as shapely.Geometry.
[ "Return", "the", "vector", "in", "pixel", "coordinates", "as", "shapely", ".", "Geometry", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L1611-L1613
14,542
satellogic/telluric
telluric/georaster.py
GeoRaster2.reduce
def reduce(self, op): """Reduce the raster to a score, using 'op' operation. nodata pixels are ignored. op is currently limited to numpy.ma, e.g. 'mean', 'std' etc :returns list of per-band values """ per_band = [getattr(np.ma, op)(self.image.data[band, np.ma.getmaskarray(self.image)[band, :, :] == np.False_]) for band in range(self.num_bands)] return per_band
python
def reduce(self, op): """Reduce the raster to a score, using 'op' operation. nodata pixels are ignored. op is currently limited to numpy.ma, e.g. 'mean', 'std' etc :returns list of per-band values """ per_band = [getattr(np.ma, op)(self.image.data[band, np.ma.getmaskarray(self.image)[band, :, :] == np.False_]) for band in range(self.num_bands)] return per_band
[ "def", "reduce", "(", "self", ",", "op", ")", ":", "per_band", "=", "[", "getattr", "(", "np", ".", "ma", ",", "op", ")", "(", "self", ".", "image", ".", "data", "[", "band", ",", "np", ".", "ma", ".", "getmaskarray", "(", "self", ".", "image", ")", "[", "band", ",", ":", ",", ":", "]", "==", "np", ".", "False_", "]", ")", "for", "band", "in", "range", "(", "self", ".", "num_bands", ")", "]", "return", "per_band" ]
Reduce the raster to a score, using 'op' operation. nodata pixels are ignored. op is currently limited to numpy.ma, e.g. 'mean', 'std' etc :returns list of per-band values
[ "Reduce", "the", "raster", "to", "a", "score", "using", "op", "operation", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L1642-L1651
14,543
satellogic/telluric
telluric/georaster.py
GeoRaster2.mask
def mask(self, vector, mask_shape_nodata=False): """ Set pixels outside vector as nodata. :param vector: GeoVector, GeoFeature, FeatureCollection :param mask_shape_nodata: if True - pixels inside shape are set nodata, if False - outside shape is nodata :return: GeoRaster2 """ from telluric.collections import BaseCollection # crop raster to reduce memory footprint cropped = self.crop(vector) if isinstance(vector, BaseCollection): shapes = [cropped.to_raster(feature) for feature in vector] else: shapes = [cropped.to_raster(vector)] mask = geometry_mask(shapes, (cropped.height, cropped.width), Affine.identity(), invert=mask_shape_nodata) masked = cropped.deepcopy_with() masked.image.mask |= mask return masked
python
def mask(self, vector, mask_shape_nodata=False): """ Set pixels outside vector as nodata. :param vector: GeoVector, GeoFeature, FeatureCollection :param mask_shape_nodata: if True - pixels inside shape are set nodata, if False - outside shape is nodata :return: GeoRaster2 """ from telluric.collections import BaseCollection # crop raster to reduce memory footprint cropped = self.crop(vector) if isinstance(vector, BaseCollection): shapes = [cropped.to_raster(feature) for feature in vector] else: shapes = [cropped.to_raster(vector)] mask = geometry_mask(shapes, (cropped.height, cropped.width), Affine.identity(), invert=mask_shape_nodata) masked = cropped.deepcopy_with() masked.image.mask |= mask return masked
[ "def", "mask", "(", "self", ",", "vector", ",", "mask_shape_nodata", "=", "False", ")", ":", "from", "telluric", ".", "collections", "import", "BaseCollection", "# crop raster to reduce memory footprint", "cropped", "=", "self", ".", "crop", "(", "vector", ")", "if", "isinstance", "(", "vector", ",", "BaseCollection", ")", ":", "shapes", "=", "[", "cropped", ".", "to_raster", "(", "feature", ")", "for", "feature", "in", "vector", "]", "else", ":", "shapes", "=", "[", "cropped", ".", "to_raster", "(", "vector", ")", "]", "mask", "=", "geometry_mask", "(", "shapes", ",", "(", "cropped", ".", "height", ",", "cropped", ".", "width", ")", ",", "Affine", ".", "identity", "(", ")", ",", "invert", "=", "mask_shape_nodata", ")", "masked", "=", "cropped", ".", "deepcopy_with", "(", ")", "masked", ".", "image", ".", "mask", "|=", "mask", "return", "masked" ]
Set pixels outside vector as nodata. :param vector: GeoVector, GeoFeature, FeatureCollection :param mask_shape_nodata: if True - pixels inside shape are set nodata, if False - outside shape is nodata :return: GeoRaster2
[ "Set", "pixels", "outside", "vector", "as", "nodata", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L1700-L1721
14,544
satellogic/telluric
telluric/georaster.py
GeoRaster2.mask_by_value
def mask_by_value(self, nodata): """ Return raster with a mask calculated based on provided value. Only pixels with value=nodata will be masked. :param nodata: value of the pixels that should be masked :return: GeoRaster2 """ return self.copy_with(image=np.ma.masked_array(self.image.data, mask=self.image.data == nodata))
python
def mask_by_value(self, nodata): """ Return raster with a mask calculated based on provided value. Only pixels with value=nodata will be masked. :param nodata: value of the pixels that should be masked :return: GeoRaster2 """ return self.copy_with(image=np.ma.masked_array(self.image.data, mask=self.image.data == nodata))
[ "def", "mask_by_value", "(", "self", ",", "nodata", ")", ":", "return", "self", ".", "copy_with", "(", "image", "=", "np", ".", "ma", ".", "masked_array", "(", "self", ".", "image", ".", "data", ",", "mask", "=", "self", ".", "image", ".", "data", "==", "nodata", ")", ")" ]
Return raster with a mask calculated based on provided value. Only pixels with value=nodata will be masked. :param nodata: value of the pixels that should be masked :return: GeoRaster2
[ "Return", "raster", "with", "a", "mask", "calculated", "based", "on", "provided", "value", ".", "Only", "pixels", "with", "value", "=", "nodata", "will", "be", "masked", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L1723-L1731
14,545
satellogic/telluric
telluric/georaster.py
GeoRaster2.save_cloud_optimized
def save_cloud_optimized(self, dest_url, resampling=Resampling.gauss, blocksize=256, overview_blocksize=256, creation_options=None): """Save as Cloud Optimized GeoTiff object to a new file. :param dest_url: path to the new raster :param resampling: which Resampling to use on reading, default Resampling.gauss :param blocksize: the size of the blocks default 256 :param overview_blocksize: the block size of the overviews, default 256 :param creation_options: dict, options that can override the source raster profile, notice that you can't override tiled=True, and the blocksize the list of creation_options can be found here https://www.gdal.org/frmt_gtiff.html :return: new GeoRaster of the tiled object """ src = self # GeoRaster2.open(self._filename) with tempfile.NamedTemporaryFile(suffix='.tif') as tf: src.save(tf.name, overviews=False) convert_to_cog(tf.name, dest_url, resampling, blocksize, overview_blocksize, creation_options) geotiff = GeoRaster2.open(dest_url) return geotiff
python
def save_cloud_optimized(self, dest_url, resampling=Resampling.gauss, blocksize=256, overview_blocksize=256, creation_options=None): """Save as Cloud Optimized GeoTiff object to a new file. :param dest_url: path to the new raster :param resampling: which Resampling to use on reading, default Resampling.gauss :param blocksize: the size of the blocks default 256 :param overview_blocksize: the block size of the overviews, default 256 :param creation_options: dict, options that can override the source raster profile, notice that you can't override tiled=True, and the blocksize the list of creation_options can be found here https://www.gdal.org/frmt_gtiff.html :return: new GeoRaster of the tiled object """ src = self # GeoRaster2.open(self._filename) with tempfile.NamedTemporaryFile(suffix='.tif') as tf: src.save(tf.name, overviews=False) convert_to_cog(tf.name, dest_url, resampling, blocksize, overview_blocksize, creation_options) geotiff = GeoRaster2.open(dest_url) return geotiff
[ "def", "save_cloud_optimized", "(", "self", ",", "dest_url", ",", "resampling", "=", "Resampling", ".", "gauss", ",", "blocksize", "=", "256", ",", "overview_blocksize", "=", "256", ",", "creation_options", "=", "None", ")", ":", "src", "=", "self", "# GeoRaster2.open(self._filename)", "with", "tempfile", ".", "NamedTemporaryFile", "(", "suffix", "=", "'.tif'", ")", "as", "tf", ":", "src", ".", "save", "(", "tf", ".", "name", ",", "overviews", "=", "False", ")", "convert_to_cog", "(", "tf", ".", "name", ",", "dest_url", ",", "resampling", ",", "blocksize", ",", "overview_blocksize", ",", "creation_options", ")", "geotiff", "=", "GeoRaster2", ".", "open", "(", "dest_url", ")", "return", "geotiff" ]
Save as Cloud Optimized GeoTiff object to a new file. :param dest_url: path to the new raster :param resampling: which Resampling to use on reading, default Resampling.gauss :param blocksize: the size of the blocks default 256 :param overview_blocksize: the block size of the overviews, default 256 :param creation_options: dict, options that can override the source raster profile, notice that you can't override tiled=True, and the blocksize the list of creation_options can be found here https://www.gdal.org/frmt_gtiff.html :return: new GeoRaster of the tiled object
[ "Save", "as", "Cloud", "Optimized", "GeoTiff", "object", "to", "a", "new", "file", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L1773-L1794
14,546
satellogic/telluric
telluric/georaster.py
GeoRaster2._get_window_out_shape
def _get_window_out_shape(self, bands, window, xsize, ysize): """Get the outshape of a window. this method is only used inside get_window to calculate the out_shape """ if xsize and ysize is None: ratio = window.width / xsize ysize = math.ceil(window.height / ratio) elif ysize and xsize is None: ratio = window.height / ysize xsize = math.ceil(window.width / ratio) elif xsize is None and ysize is None: ysize = math.ceil(window.height) xsize = math.ceil(window.width) return (len(bands), ysize, xsize)
python
def _get_window_out_shape(self, bands, window, xsize, ysize): """Get the outshape of a window. this method is only used inside get_window to calculate the out_shape """ if xsize and ysize is None: ratio = window.width / xsize ysize = math.ceil(window.height / ratio) elif ysize and xsize is None: ratio = window.height / ysize xsize = math.ceil(window.width / ratio) elif xsize is None and ysize is None: ysize = math.ceil(window.height) xsize = math.ceil(window.width) return (len(bands), ysize, xsize)
[ "def", "_get_window_out_shape", "(", "self", ",", "bands", ",", "window", ",", "xsize", ",", "ysize", ")", ":", "if", "xsize", "and", "ysize", "is", "None", ":", "ratio", "=", "window", ".", "width", "/", "xsize", "ysize", "=", "math", ".", "ceil", "(", "window", ".", "height", "/", "ratio", ")", "elif", "ysize", "and", "xsize", "is", "None", ":", "ratio", "=", "window", ".", "height", "/", "ysize", "xsize", "=", "math", ".", "ceil", "(", "window", ".", "width", "/", "ratio", ")", "elif", "xsize", "is", "None", "and", "ysize", "is", "None", ":", "ysize", "=", "math", ".", "ceil", "(", "window", ".", "height", ")", "xsize", "=", "math", ".", "ceil", "(", "window", ".", "width", ")", "return", "(", "len", "(", "bands", ")", ",", "ysize", ",", "xsize", ")" ]
Get the outshape of a window. this method is only used inside get_window to calculate the out_shape
[ "Get", "the", "outshape", "of", "a", "window", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L1796-L1811
14,547
satellogic/telluric
telluric/georaster.py
GeoRaster2._read_with_mask
def _read_with_mask(raster, masked): """ returns if we should read from rasterio using the masked """ if masked is None: mask_flags = raster.mask_flag_enums per_dataset_mask = all([rasterio.enums.MaskFlags.per_dataset in flags for flags in mask_flags]) masked = per_dataset_mask return masked
python
def _read_with_mask(raster, masked): """ returns if we should read from rasterio using the masked """ if masked is None: mask_flags = raster.mask_flag_enums per_dataset_mask = all([rasterio.enums.MaskFlags.per_dataset in flags for flags in mask_flags]) masked = per_dataset_mask return masked
[ "def", "_read_with_mask", "(", "raster", ",", "masked", ")", ":", "if", "masked", "is", "None", ":", "mask_flags", "=", "raster", ".", "mask_flag_enums", "per_dataset_mask", "=", "all", "(", "[", "rasterio", ".", "enums", ".", "MaskFlags", ".", "per_dataset", "in", "flags", "for", "flags", "in", "mask_flags", "]", ")", "masked", "=", "per_dataset_mask", "return", "masked" ]
returns if we should read from rasterio using the masked
[ "returns", "if", "we", "should", "read", "from", "rasterio", "using", "the", "masked" ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L1814-L1821
14,548
satellogic/telluric
telluric/georaster.py
GeoRaster2.get_window
def get_window(self, window, bands=None, xsize=None, ysize=None, resampling=Resampling.cubic, masked=None, affine=None ): """Get window from raster. :param window: requested window :param bands: list of indices of requested bads, default None which returns all bands :param xsize: tile x size default None, for full resolution pass None :param ysize: tile y size default None, for full resolution pass None :param resampling: which Resampling to use on reading, default Resampling.cubic :param masked: if True uses the maks, if False doesn't use the mask, if None looks to see if there is a mask, if mask exists using it, the default None :return: GeoRaster2 of tile """ bands = bands or list(range(1, self.num_bands + 1)) # requested_out_shape and out_shape are different for out of bounds window out_shape = self._get_window_out_shape(bands, window, xsize, ysize) try: read_params = { "window": window, "resampling": resampling, "boundless": True, "out_shape": out_shape, } # to handle get_window / get_tile of in memory rasters filename = self._raster_backed_by_a_file()._filename with self._raster_opener(filename) as raster: # type: rasterio.io.DatasetReader read_params["masked"] = self._read_with_mask(raster, masked) array = raster.read(bands, **read_params) nodata = 0 if not np.ma.isMaskedArray(array) else None affine = affine or self._calculate_new_affine(window, out_shape[2], out_shape[1]) raster = self.copy_with(image=array, affine=affine, nodata=nodata) return raster except (rasterio.errors.RasterioIOError, rasterio._err.CPLE_HttpResponseError) as e: raise GeoRaster2IOError(e)
python
def get_window(self, window, bands=None, xsize=None, ysize=None, resampling=Resampling.cubic, masked=None, affine=None ): """Get window from raster. :param window: requested window :param bands: list of indices of requested bads, default None which returns all bands :param xsize: tile x size default None, for full resolution pass None :param ysize: tile y size default None, for full resolution pass None :param resampling: which Resampling to use on reading, default Resampling.cubic :param masked: if True uses the maks, if False doesn't use the mask, if None looks to see if there is a mask, if mask exists using it, the default None :return: GeoRaster2 of tile """ bands = bands or list(range(1, self.num_bands + 1)) # requested_out_shape and out_shape are different for out of bounds window out_shape = self._get_window_out_shape(bands, window, xsize, ysize) try: read_params = { "window": window, "resampling": resampling, "boundless": True, "out_shape": out_shape, } # to handle get_window / get_tile of in memory rasters filename = self._raster_backed_by_a_file()._filename with self._raster_opener(filename) as raster: # type: rasterio.io.DatasetReader read_params["masked"] = self._read_with_mask(raster, masked) array = raster.read(bands, **read_params) nodata = 0 if not np.ma.isMaskedArray(array) else None affine = affine or self._calculate_new_affine(window, out_shape[2], out_shape[1]) raster = self.copy_with(image=array, affine=affine, nodata=nodata) return raster except (rasterio.errors.RasterioIOError, rasterio._err.CPLE_HttpResponseError) as e: raise GeoRaster2IOError(e)
[ "def", "get_window", "(", "self", ",", "window", ",", "bands", "=", "None", ",", "xsize", "=", "None", ",", "ysize", "=", "None", ",", "resampling", "=", "Resampling", ".", "cubic", ",", "masked", "=", "None", ",", "affine", "=", "None", ")", ":", "bands", "=", "bands", "or", "list", "(", "range", "(", "1", ",", "self", ".", "num_bands", "+", "1", ")", ")", "# requested_out_shape and out_shape are different for out of bounds window", "out_shape", "=", "self", ".", "_get_window_out_shape", "(", "bands", ",", "window", ",", "xsize", ",", "ysize", ")", "try", ":", "read_params", "=", "{", "\"window\"", ":", "window", ",", "\"resampling\"", ":", "resampling", ",", "\"boundless\"", ":", "True", ",", "\"out_shape\"", ":", "out_shape", ",", "}", "# to handle get_window / get_tile of in memory rasters", "filename", "=", "self", ".", "_raster_backed_by_a_file", "(", ")", ".", "_filename", "with", "self", ".", "_raster_opener", "(", "filename", ")", "as", "raster", ":", "# type: rasterio.io.DatasetReader", "read_params", "[", "\"masked\"", "]", "=", "self", ".", "_read_with_mask", "(", "raster", ",", "masked", ")", "array", "=", "raster", ".", "read", "(", "bands", ",", "*", "*", "read_params", ")", "nodata", "=", "0", "if", "not", "np", ".", "ma", ".", "isMaskedArray", "(", "array", ")", "else", "None", "affine", "=", "affine", "or", "self", ".", "_calculate_new_affine", "(", "window", ",", "out_shape", "[", "2", "]", ",", "out_shape", "[", "1", "]", ")", "raster", "=", "self", ".", "copy_with", "(", "image", "=", "array", ",", "affine", "=", "affine", ",", "nodata", "=", "nodata", ")", "return", "raster", "except", "(", "rasterio", ".", "errors", ".", "RasterioIOError", ",", "rasterio", ".", "_err", ".", "CPLE_HttpResponseError", ")", "as", "e", ":", "raise", "GeoRaster2IOError", "(", "e", ")" ]
Get window from raster. :param window: requested window :param bands: list of indices of requested bads, default None which returns all bands :param xsize: tile x size default None, for full resolution pass None :param ysize: tile y size default None, for full resolution pass None :param resampling: which Resampling to use on reading, default Resampling.cubic :param masked: if True uses the maks, if False doesn't use the mask, if None looks to see if there is a mask, if mask exists using it, the default None :return: GeoRaster2 of tile
[ "Get", "window", "from", "raster", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L1823-L1862
14,549
satellogic/telluric
telluric/georaster.py
GeoRaster2._get_tile_when_web_mercator_crs
def _get_tile_when_web_mercator_crs(self, x_tile, y_tile, zoom, bands=None, masked=None, resampling=Resampling.cubic): """ The reason we want to treat this case in a special way is that there are cases where the rater is aligned so you need to be precise on which raster you want """ roi = GeoVector.from_xyz(x_tile, y_tile, zoom) coordinates = roi.get_bounds(WEB_MERCATOR_CRS) window = self._window(coordinates, to_round=False) bands = bands or list(range(1, self.num_bands + 1)) # we know the affine the result should produce becuase we know where # it is located by the xyz, therefore we calculate it here ratio = MERCATOR_RESOLUTION_MAPPING[zoom] / self.resolution() # the affine should be calculated before rounding the window values affine = self.window_transform(window) affine = affine * Affine.scale(ratio, ratio) window = Window(round(window.col_off), round(window.row_off), round(window.width), round(window.height)) return self.get_window(window, bands=bands, xsize=256, ysize=256, masked=masked, affine=affine)
python
def _get_tile_when_web_mercator_crs(self, x_tile, y_tile, zoom, bands=None, masked=None, resampling=Resampling.cubic): """ The reason we want to treat this case in a special way is that there are cases where the rater is aligned so you need to be precise on which raster you want """ roi = GeoVector.from_xyz(x_tile, y_tile, zoom) coordinates = roi.get_bounds(WEB_MERCATOR_CRS) window = self._window(coordinates, to_round=False) bands = bands or list(range(1, self.num_bands + 1)) # we know the affine the result should produce becuase we know where # it is located by the xyz, therefore we calculate it here ratio = MERCATOR_RESOLUTION_MAPPING[zoom] / self.resolution() # the affine should be calculated before rounding the window values affine = self.window_transform(window) affine = affine * Affine.scale(ratio, ratio) window = Window(round(window.col_off), round(window.row_off), round(window.width), round(window.height)) return self.get_window(window, bands=bands, xsize=256, ysize=256, masked=masked, affine=affine)
[ "def", "_get_tile_when_web_mercator_crs", "(", "self", ",", "x_tile", ",", "y_tile", ",", "zoom", ",", "bands", "=", "None", ",", "masked", "=", "None", ",", "resampling", "=", "Resampling", ".", "cubic", ")", ":", "roi", "=", "GeoVector", ".", "from_xyz", "(", "x_tile", ",", "y_tile", ",", "zoom", ")", "coordinates", "=", "roi", ".", "get_bounds", "(", "WEB_MERCATOR_CRS", ")", "window", "=", "self", ".", "_window", "(", "coordinates", ",", "to_round", "=", "False", ")", "bands", "=", "bands", "or", "list", "(", "range", "(", "1", ",", "self", ".", "num_bands", "+", "1", ")", ")", "# we know the affine the result should produce becuase we know where", "# it is located by the xyz, therefore we calculate it here", "ratio", "=", "MERCATOR_RESOLUTION_MAPPING", "[", "zoom", "]", "/", "self", ".", "resolution", "(", ")", "# the affine should be calculated before rounding the window values", "affine", "=", "self", ".", "window_transform", "(", "window", ")", "affine", "=", "affine", "*", "Affine", ".", "scale", "(", "ratio", ",", "ratio", ")", "window", "=", "Window", "(", "round", "(", "window", ".", "col_off", ")", ",", "round", "(", "window", ".", "row_off", ")", ",", "round", "(", "window", ".", "width", ")", ",", "round", "(", "window", ".", "height", ")", ")", "return", "self", ".", "get_window", "(", "window", ",", "bands", "=", "bands", ",", "xsize", "=", "256", ",", "ysize", "=", "256", ",", "masked", "=", "masked", ",", "affine", "=", "affine", ")" ]
The reason we want to treat this case in a special way is that there are cases where the rater is aligned so you need to be precise on which raster you want
[ "The", "reason", "we", "want", "to", "treat", "this", "case", "in", "a", "special", "way", "is", "that", "there", "are", "cases", "where", "the", "rater", "is", "aligned", "so", "you", "need", "to", "be", "precise", "on", "which", "raster", "you", "want" ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L1864-L1887
14,550
satellogic/telluric
telluric/georaster.py
GeoRaster2.get_tile
def get_tile(self, x_tile, y_tile, zoom, bands=None, masked=None, resampling=Resampling.cubic): """Convert mercator tile to raster window. :param x_tile: x coordinate of tile :param y_tile: y coordinate of tile :param zoom: zoom level :param bands: list of indices of requested bands, default None which returns all bands :param resampling: reprojection resampling method, default `cubic` :return: GeoRaster2 of tile in WEB_MERCATOR_CRS You can use TELLURIC_GET_TILE_BUFFER env variable to control the number of pixels surrounding the vector you should fetch when using this method on a raster that is not in WEB_MERCATOR_CRS default to 10 """ if self.crs == WEB_MERCATOR_CRS: return self._get_tile_when_web_mercator_crs(x_tile, y_tile, zoom, bands, masked, resampling) roi = GeoVector.from_xyz(x_tile, y_tile, zoom) left, bottom, right, top = roi.get_bounds(WEB_MERCATOR_CRS) new_affine = rasterio.warp.calculate_default_transform(WEB_MERCATOR_CRS, self.crs, 256, 256, left, bottom, right, top)[0] new_resolution = resolution_from_affine(new_affine) buffer_ratio = int(os.environ.get("TELLURIC_GET_TILE_BUFFER", 10)) roi_buffer = roi.buffer(math.sqrt(roi.area * buffer_ratio / 100)) raster = self.crop(roi_buffer, resolution=new_resolution, masked=masked, bands=bands, resampling=resampling) raster = raster.reproject(dst_crs=WEB_MERCATOR_CRS, resolution=MERCATOR_RESOLUTION_MAPPING[zoom], dst_bounds=roi_buffer.get_bounds(WEB_MERCATOR_CRS), resampling=Resampling.cubic_spline) # raster = raster.get_tile(x_tile, y_tile, zoom, bands, masked, resampling) raster = raster.crop(roi).resize(dest_width=256, dest_height=256) return raster
python
def get_tile(self, x_tile, y_tile, zoom, bands=None, masked=None, resampling=Resampling.cubic): """Convert mercator tile to raster window. :param x_tile: x coordinate of tile :param y_tile: y coordinate of tile :param zoom: zoom level :param bands: list of indices of requested bands, default None which returns all bands :param resampling: reprojection resampling method, default `cubic` :return: GeoRaster2 of tile in WEB_MERCATOR_CRS You can use TELLURIC_GET_TILE_BUFFER env variable to control the number of pixels surrounding the vector you should fetch when using this method on a raster that is not in WEB_MERCATOR_CRS default to 10 """ if self.crs == WEB_MERCATOR_CRS: return self._get_tile_when_web_mercator_crs(x_tile, y_tile, zoom, bands, masked, resampling) roi = GeoVector.from_xyz(x_tile, y_tile, zoom) left, bottom, right, top = roi.get_bounds(WEB_MERCATOR_CRS) new_affine = rasterio.warp.calculate_default_transform(WEB_MERCATOR_CRS, self.crs, 256, 256, left, bottom, right, top)[0] new_resolution = resolution_from_affine(new_affine) buffer_ratio = int(os.environ.get("TELLURIC_GET_TILE_BUFFER", 10)) roi_buffer = roi.buffer(math.sqrt(roi.area * buffer_ratio / 100)) raster = self.crop(roi_buffer, resolution=new_resolution, masked=masked, bands=bands, resampling=resampling) raster = raster.reproject(dst_crs=WEB_MERCATOR_CRS, resolution=MERCATOR_RESOLUTION_MAPPING[zoom], dst_bounds=roi_buffer.get_bounds(WEB_MERCATOR_CRS), resampling=Resampling.cubic_spline) # raster = raster.get_tile(x_tile, y_tile, zoom, bands, masked, resampling) raster = raster.crop(roi).resize(dest_width=256, dest_height=256) return raster
[ "def", "get_tile", "(", "self", ",", "x_tile", ",", "y_tile", ",", "zoom", ",", "bands", "=", "None", ",", "masked", "=", "None", ",", "resampling", "=", "Resampling", ".", "cubic", ")", ":", "if", "self", ".", "crs", "==", "WEB_MERCATOR_CRS", ":", "return", "self", ".", "_get_tile_when_web_mercator_crs", "(", "x_tile", ",", "y_tile", ",", "zoom", ",", "bands", ",", "masked", ",", "resampling", ")", "roi", "=", "GeoVector", ".", "from_xyz", "(", "x_tile", ",", "y_tile", ",", "zoom", ")", "left", ",", "bottom", ",", "right", ",", "top", "=", "roi", ".", "get_bounds", "(", "WEB_MERCATOR_CRS", ")", "new_affine", "=", "rasterio", ".", "warp", ".", "calculate_default_transform", "(", "WEB_MERCATOR_CRS", ",", "self", ".", "crs", ",", "256", ",", "256", ",", "left", ",", "bottom", ",", "right", ",", "top", ")", "[", "0", "]", "new_resolution", "=", "resolution_from_affine", "(", "new_affine", ")", "buffer_ratio", "=", "int", "(", "os", ".", "environ", ".", "get", "(", "\"TELLURIC_GET_TILE_BUFFER\"", ",", "10", ")", ")", "roi_buffer", "=", "roi", ".", "buffer", "(", "math", ".", "sqrt", "(", "roi", ".", "area", "*", "buffer_ratio", "/", "100", ")", ")", "raster", "=", "self", ".", "crop", "(", "roi_buffer", ",", "resolution", "=", "new_resolution", ",", "masked", "=", "masked", ",", "bands", "=", "bands", ",", "resampling", "=", "resampling", ")", "raster", "=", "raster", ".", "reproject", "(", "dst_crs", "=", "WEB_MERCATOR_CRS", ",", "resolution", "=", "MERCATOR_RESOLUTION_MAPPING", "[", "zoom", "]", ",", "dst_bounds", "=", "roi_buffer", ".", "get_bounds", "(", "WEB_MERCATOR_CRS", ")", ",", "resampling", "=", "Resampling", ".", "cubic_spline", ")", "# raster = raster.get_tile(x_tile, y_tile, zoom, bands, masked, resampling)", "raster", "=", "raster", ".", "crop", "(", "roi", ")", ".", "resize", "(", "dest_width", "=", "256", ",", "dest_height", "=", "256", ")", "return", "raster" ]
Convert mercator tile to raster window. :param x_tile: x coordinate of tile :param y_tile: y coordinate of tile :param zoom: zoom level :param bands: list of indices of requested bands, default None which returns all bands :param resampling: reprojection resampling method, default `cubic` :return: GeoRaster2 of tile in WEB_MERCATOR_CRS You can use TELLURIC_GET_TILE_BUFFER env variable to control the number of pixels surrounding the vector you should fetch when using this method on a raster that is not in WEB_MERCATOR_CRS default to 10
[ "Convert", "mercator", "tile", "to", "raster", "window", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L1889-L1922
14,551
satellogic/telluric
telluric/georaster.py
GeoRaster2.colorize
def colorize(self, colormap, band_name=None, vmin=None, vmax=None): """Apply a colormap on a selected band. colormap list: https://matplotlib.org/examples/color/colormaps_reference.html Parameters ---------- colormap : str Colormap name from this list https://matplotlib.org/examples/color/colormaps_reference.html band_name : str, optional Name of band to colorize, if none the first band will be used vmin, vmax : int, optional minimum and maximum range for normalizing array values, if None actual raster values will be used Returns ------- GeoRaster2 """ vmin = vmin if vmin is not None else min(self.min()) vmax = vmax if vmax is not None else max(self.max()) cmap = matplotlib.cm.get_cmap(colormap) # type: matplotlib.colors.Colormap band_index = 0 if band_name is None: if self.num_bands > 1: warnings.warn("Using the first band to colorize the raster", GeoRaster2Warning) else: band_index = self.band_names.index(band_name) normalized = (self.image[band_index, :, :] - vmin) / (vmax - vmin) # Colormap instances are used to convert data values (floats) # to RGBA color that the respective Colormap # # https://matplotlib.org/_modules/matplotlib/colors.html#Colormap image_data = cmap(normalized) image_data = image_data[:, :, 0:3] # convert floats [0,1] to uint8 [0,255] image_data = image_data * 255 image_data = image_data.astype(np.uint8) image_data = np.rollaxis(image_data, 2) # force nodata where it was in original raster: mask = _join_masks_from_masked_array(self.image) mask = np.stack([mask[0, :, :]] * 3) array = np.ma.array(image_data.data, mask=mask).filled(0) # type: np.ndarray array = np.ma.array(array, mask=mask) return self.copy_with(image=array, band_names=['red', 'green', 'blue'])
python
def colorize(self, colormap, band_name=None, vmin=None, vmax=None): """Apply a colormap on a selected band. colormap list: https://matplotlib.org/examples/color/colormaps_reference.html Parameters ---------- colormap : str Colormap name from this list https://matplotlib.org/examples/color/colormaps_reference.html band_name : str, optional Name of band to colorize, if none the first band will be used vmin, vmax : int, optional minimum and maximum range for normalizing array values, if None actual raster values will be used Returns ------- GeoRaster2 """ vmin = vmin if vmin is not None else min(self.min()) vmax = vmax if vmax is not None else max(self.max()) cmap = matplotlib.cm.get_cmap(colormap) # type: matplotlib.colors.Colormap band_index = 0 if band_name is None: if self.num_bands > 1: warnings.warn("Using the first band to colorize the raster", GeoRaster2Warning) else: band_index = self.band_names.index(band_name) normalized = (self.image[band_index, :, :] - vmin) / (vmax - vmin) # Colormap instances are used to convert data values (floats) # to RGBA color that the respective Colormap # # https://matplotlib.org/_modules/matplotlib/colors.html#Colormap image_data = cmap(normalized) image_data = image_data[:, :, 0:3] # convert floats [0,1] to uint8 [0,255] image_data = image_data * 255 image_data = image_data.astype(np.uint8) image_data = np.rollaxis(image_data, 2) # force nodata where it was in original raster: mask = _join_masks_from_masked_array(self.image) mask = np.stack([mask[0, :, :]] * 3) array = np.ma.array(image_data.data, mask=mask).filled(0) # type: np.ndarray array = np.ma.array(array, mask=mask) return self.copy_with(image=array, band_names=['red', 'green', 'blue'])
[ "def", "colorize", "(", "self", ",", "colormap", ",", "band_name", "=", "None", ",", "vmin", "=", "None", ",", "vmax", "=", "None", ")", ":", "vmin", "=", "vmin", "if", "vmin", "is", "not", "None", "else", "min", "(", "self", ".", "min", "(", ")", ")", "vmax", "=", "vmax", "if", "vmax", "is", "not", "None", "else", "max", "(", "self", ".", "max", "(", ")", ")", "cmap", "=", "matplotlib", ".", "cm", ".", "get_cmap", "(", "colormap", ")", "# type: matplotlib.colors.Colormap", "band_index", "=", "0", "if", "band_name", "is", "None", ":", "if", "self", ".", "num_bands", ">", "1", ":", "warnings", ".", "warn", "(", "\"Using the first band to colorize the raster\"", ",", "GeoRaster2Warning", ")", "else", ":", "band_index", "=", "self", ".", "band_names", ".", "index", "(", "band_name", ")", "normalized", "=", "(", "self", ".", "image", "[", "band_index", ",", ":", ",", ":", "]", "-", "vmin", ")", "/", "(", "vmax", "-", "vmin", ")", "# Colormap instances are used to convert data values (floats)", "# to RGBA color that the respective Colormap", "#", "# https://matplotlib.org/_modules/matplotlib/colors.html#Colormap", "image_data", "=", "cmap", "(", "normalized", ")", "image_data", "=", "image_data", "[", ":", ",", ":", ",", "0", ":", "3", "]", "# convert floats [0,1] to uint8 [0,255]", "image_data", "=", "image_data", "*", "255", "image_data", "=", "image_data", ".", "astype", "(", "np", ".", "uint8", ")", "image_data", "=", "np", ".", "rollaxis", "(", "image_data", ",", "2", ")", "# force nodata where it was in original raster:", "mask", "=", "_join_masks_from_masked_array", "(", "self", ".", "image", ")", "mask", "=", "np", ".", "stack", "(", "[", "mask", "[", "0", ",", ":", ",", ":", "]", "]", "*", "3", ")", "array", "=", "np", ".", "ma", ".", "array", "(", "image_data", ".", "data", ",", "mask", "=", "mask", ")", ".", "filled", "(", "0", ")", "# type: np.ndarray", "array", "=", "np", ".", "ma", ".", "array", "(", "array", ",", "mask", "=", "mask", ")", "return", "self", ".", "copy_with", "(", "image", "=", "array", ",", "band_names", "=", "[", "'red'", ",", "'green'", ",", "'blue'", "]", ")" ]
Apply a colormap on a selected band. colormap list: https://matplotlib.org/examples/color/colormaps_reference.html Parameters ---------- colormap : str Colormap name from this list https://matplotlib.org/examples/color/colormaps_reference.html band_name : str, optional Name of band to colorize, if none the first band will be used vmin, vmax : int, optional minimum and maximum range for normalizing array values, if None actual raster values will be used Returns ------- GeoRaster2
[ "Apply", "a", "colormap", "on", "a", "selected", "band", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L1933-L1986
14,552
satellogic/telluric
telluric/georaster.py
GeoRaster2.chunks
def chunks(self, shape=256, pad=False): """This method returns GeoRaster chunks out of the original raster. The chunck is evaluated only when fetched from the iterator. Useful when you want to iterate over a big rasters. Parameters ---------- shape : int or tuple, optional The shape of the chunk. Default: 256. pad : bool, optional When set to True all rasters will have the same shape, when False the edge rasters will have a shape less than the requested shape, according to what the raster actually had. Defaults to False. Returns ------- out: RasterChunk The iterator that has the raster and the offsets in it. """ _self = self._raster_backed_by_a_file() if isinstance(shape, int): shape = (shape, shape) (width, height) = shape col_steps = int(_self.width / width) row_steps = int(_self.height / height) # when we the raster has an axis in which the shape is multipication # of the requested shape we don't need an extra step with window equal zero # in other cases we do need the extra step to get the reminder of the content col_extra_step = 1 if _self.width % width > 0 else 0 row_extra_step = 1 if _self.height % height > 0 else 0 for col_step in range(0, col_steps + col_extra_step): col_off = col_step * width if not pad and col_step == col_steps: window_width = _self.width % width else: window_width = width for row_step in range(0, row_steps + row_extra_step): row_off = row_step * height if not pad and row_step == row_steps: window_height = _self.height % height else: window_height = height window = Window(col_off=col_off, row_off=row_off, width=window_width, height=window_height) cur_raster = _self.get_window(window) yield RasterChunk(raster=cur_raster, offsets=(col_off, row_off))
python
def chunks(self, shape=256, pad=False): """This method returns GeoRaster chunks out of the original raster. The chunck is evaluated only when fetched from the iterator. Useful when you want to iterate over a big rasters. Parameters ---------- shape : int or tuple, optional The shape of the chunk. Default: 256. pad : bool, optional When set to True all rasters will have the same shape, when False the edge rasters will have a shape less than the requested shape, according to what the raster actually had. Defaults to False. Returns ------- out: RasterChunk The iterator that has the raster and the offsets in it. """ _self = self._raster_backed_by_a_file() if isinstance(shape, int): shape = (shape, shape) (width, height) = shape col_steps = int(_self.width / width) row_steps = int(_self.height / height) # when we the raster has an axis in which the shape is multipication # of the requested shape we don't need an extra step with window equal zero # in other cases we do need the extra step to get the reminder of the content col_extra_step = 1 if _self.width % width > 0 else 0 row_extra_step = 1 if _self.height % height > 0 else 0 for col_step in range(0, col_steps + col_extra_step): col_off = col_step * width if not pad and col_step == col_steps: window_width = _self.width % width else: window_width = width for row_step in range(0, row_steps + row_extra_step): row_off = row_step * height if not pad and row_step == row_steps: window_height = _self.height % height else: window_height = height window = Window(col_off=col_off, row_off=row_off, width=window_width, height=window_height) cur_raster = _self.get_window(window) yield RasterChunk(raster=cur_raster, offsets=(col_off, row_off))
[ "def", "chunks", "(", "self", ",", "shape", "=", "256", ",", "pad", "=", "False", ")", ":", "_self", "=", "self", ".", "_raster_backed_by_a_file", "(", ")", "if", "isinstance", "(", "shape", ",", "int", ")", ":", "shape", "=", "(", "shape", ",", "shape", ")", "(", "width", ",", "height", ")", "=", "shape", "col_steps", "=", "int", "(", "_self", ".", "width", "/", "width", ")", "row_steps", "=", "int", "(", "_self", ".", "height", "/", "height", ")", "# when we the raster has an axis in which the shape is multipication", "# of the requested shape we don't need an extra step with window equal zero", "# in other cases we do need the extra step to get the reminder of the content", "col_extra_step", "=", "1", "if", "_self", ".", "width", "%", "width", ">", "0", "else", "0", "row_extra_step", "=", "1", "if", "_self", ".", "height", "%", "height", ">", "0", "else", "0", "for", "col_step", "in", "range", "(", "0", ",", "col_steps", "+", "col_extra_step", ")", ":", "col_off", "=", "col_step", "*", "width", "if", "not", "pad", "and", "col_step", "==", "col_steps", ":", "window_width", "=", "_self", ".", "width", "%", "width", "else", ":", "window_width", "=", "width", "for", "row_step", "in", "range", "(", "0", ",", "row_steps", "+", "row_extra_step", ")", ":", "row_off", "=", "row_step", "*", "height", "if", "not", "pad", "and", "row_step", "==", "row_steps", ":", "window_height", "=", "_self", ".", "height", "%", "height", "else", ":", "window_height", "=", "height", "window", "=", "Window", "(", "col_off", "=", "col_off", ",", "row_off", "=", "row_off", ",", "width", "=", "window_width", ",", "height", "=", "window_height", ")", "cur_raster", "=", "_self", ".", "get_window", "(", "window", ")", "yield", "RasterChunk", "(", "raster", "=", "cur_raster", ",", "offsets", "=", "(", "col_off", ",", "row_off", ")", ")" ]
This method returns GeoRaster chunks out of the original raster. The chunck is evaluated only when fetched from the iterator. Useful when you want to iterate over a big rasters. Parameters ---------- shape : int or tuple, optional The shape of the chunk. Default: 256. pad : bool, optional When set to True all rasters will have the same shape, when False the edge rasters will have a shape less than the requested shape, according to what the raster actually had. Defaults to False. Returns ------- out: RasterChunk The iterator that has the raster and the offsets in it.
[ "This", "method", "returns", "GeoRaster", "chunks", "out", "of", "the", "original", "raster", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/georaster.py#L1998-L2048
14,553
satellogic/telluric
telluric/collections.py
dissolve
def dissolve(collection, aggfunc=None): # type: (BaseCollection, Optional[Callable[[list], Any]]) -> GeoFeature """Dissolves features contained in a FeatureCollection and applies an aggregation function to its properties. """ new_properties = {} if aggfunc: temp_properties = defaultdict(list) # type: DefaultDict[Any, Any] for feature in collection: for key, value in feature.attributes.items(): temp_properties[key].append(value) for key, values in temp_properties.items(): try: new_properties[key] = aggfunc(values) except Exception: # We just do not use these results pass return GeoFeature(collection.cascaded_union, new_properties)
python
def dissolve(collection, aggfunc=None): # type: (BaseCollection, Optional[Callable[[list], Any]]) -> GeoFeature """Dissolves features contained in a FeatureCollection and applies an aggregation function to its properties. """ new_properties = {} if aggfunc: temp_properties = defaultdict(list) # type: DefaultDict[Any, Any] for feature in collection: for key, value in feature.attributes.items(): temp_properties[key].append(value) for key, values in temp_properties.items(): try: new_properties[key] = aggfunc(values) except Exception: # We just do not use these results pass return GeoFeature(collection.cascaded_union, new_properties)
[ "def", "dissolve", "(", "collection", ",", "aggfunc", "=", "None", ")", ":", "# type: (BaseCollection, Optional[Callable[[list], Any]]) -> GeoFeature", "new_properties", "=", "{", "}", "if", "aggfunc", ":", "temp_properties", "=", "defaultdict", "(", "list", ")", "# type: DefaultDict[Any, Any]", "for", "feature", "in", "collection", ":", "for", "key", ",", "value", "in", "feature", ".", "attributes", ".", "items", "(", ")", ":", "temp_properties", "[", "key", "]", ".", "append", "(", "value", ")", "for", "key", ",", "values", "in", "temp_properties", ".", "items", "(", ")", ":", "try", ":", "new_properties", "[", "key", "]", "=", "aggfunc", "(", "values", ")", "except", "Exception", ":", "# We just do not use these results", "pass", "return", "GeoFeature", "(", "collection", ".", "cascaded_union", ",", "new_properties", ")" ]
Dissolves features contained in a FeatureCollection and applies an aggregation function to its properties.
[ "Dissolves", "features", "contained", "in", "a", "FeatureCollection", "and", "applies", "an", "aggregation", "function", "to", "its", "properties", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/collections.py#L34-L55
14,554
satellogic/telluric
telluric/collections.py
BaseCollection.filter
def filter(self, intersects): """Filter results that intersect a given GeoFeature or Vector. """ try: crs = self.crs vector = intersects.geometry if isinstance(intersects, GeoFeature) else intersects prepared_shape = prep(vector.get_shape(crs)) hits = [] for feature in self: target_shape = feature.geometry.get_shape(crs) if prepared_shape.overlaps(target_shape) or prepared_shape.intersects(target_shape): hits.append(feature) except IndexError: hits = [] return FeatureCollection(hits)
python
def filter(self, intersects): """Filter results that intersect a given GeoFeature or Vector. """ try: crs = self.crs vector = intersects.geometry if isinstance(intersects, GeoFeature) else intersects prepared_shape = prep(vector.get_shape(crs)) hits = [] for feature in self: target_shape = feature.geometry.get_shape(crs) if prepared_shape.overlaps(target_shape) or prepared_shape.intersects(target_shape): hits.append(feature) except IndexError: hits = [] return FeatureCollection(hits)
[ "def", "filter", "(", "self", ",", "intersects", ")", ":", "try", ":", "crs", "=", "self", ".", "crs", "vector", "=", "intersects", ".", "geometry", "if", "isinstance", "(", "intersects", ",", "GeoFeature", ")", "else", "intersects", "prepared_shape", "=", "prep", "(", "vector", ".", "get_shape", "(", "crs", ")", ")", "hits", "=", "[", "]", "for", "feature", "in", "self", ":", "target_shape", "=", "feature", ".", "geometry", ".", "get_shape", "(", "crs", ")", "if", "prepared_shape", ".", "overlaps", "(", "target_shape", ")", "or", "prepared_shape", ".", "intersects", "(", "target_shape", ")", ":", "hits", ".", "append", "(", "feature", ")", "except", "IndexError", ":", "hits", "=", "[", "]", "return", "FeatureCollection", "(", "hits", ")" ]
Filter results that intersect a given GeoFeature or Vector.
[ "Filter", "results", "that", "intersect", "a", "given", "GeoFeature", "or", "Vector", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/collections.py#L137-L155
14,555
satellogic/telluric
telluric/collections.py
BaseCollection.sort
def sort(self, by, desc=False): """Sorts by given property or function, ascending or descending order. Parameters ---------- by : str or callable If string, property by which to sort. If callable, it should receive a GeoFeature a return a value by which to sort. desc : bool, optional Descending sort, default to False (ascending). """ if callable(by): key = by else: def key(feature): return feature[by] sorted_features = sorted(list(self), reverse=desc, key=key) return self.__class__(sorted_features)
python
def sort(self, by, desc=False): """Sorts by given property or function, ascending or descending order. Parameters ---------- by : str or callable If string, property by which to sort. If callable, it should receive a GeoFeature a return a value by which to sort. desc : bool, optional Descending sort, default to False (ascending). """ if callable(by): key = by else: def key(feature): return feature[by] sorted_features = sorted(list(self), reverse=desc, key=key) return self.__class__(sorted_features)
[ "def", "sort", "(", "self", ",", "by", ",", "desc", "=", "False", ")", ":", "if", "callable", "(", "by", ")", ":", "key", "=", "by", "else", ":", "def", "key", "(", "feature", ")", ":", "return", "feature", "[", "by", "]", "sorted_features", "=", "sorted", "(", "list", "(", "self", ")", ",", "reverse", "=", "desc", ",", "key", "=", "key", ")", "return", "self", ".", "__class__", "(", "sorted_features", ")" ]
Sorts by given property or function, ascending or descending order. Parameters ---------- by : str or callable If string, property by which to sort. If callable, it should receive a GeoFeature a return a value by which to sort. desc : bool, optional Descending sort, default to False (ascending).
[ "Sorts", "by", "given", "property", "or", "function", "ascending", "or", "descending", "order", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/collections.py#L157-L176
14,556
satellogic/telluric
telluric/collections.py
BaseCollection.groupby
def groupby(self, by): # type: (Union[str, Callable[[GeoFeature], str]]) -> _CollectionGroupBy """Groups collection using a value of a property. Parameters ---------- by : str or callable If string, name of the property by which to group. If callable, should receive a GeoFeature and return the category. Returns ------- _CollectionGroupBy """ results = OrderedDict() # type: OrderedDict[str, list] for feature in self: if callable(by): value = by(feature) else: value = feature[by] results.setdefault(value, []).append(feature) if hasattr(self, "_schema"): # I am doing this to trick mypy, is there a better way? # calling self._schema generates a mypy problem schema = getattr(self, "_schema") return _CollectionGroupBy(results, schema=schema)
python
def groupby(self, by): # type: (Union[str, Callable[[GeoFeature], str]]) -> _CollectionGroupBy """Groups collection using a value of a property. Parameters ---------- by : str or callable If string, name of the property by which to group. If callable, should receive a GeoFeature and return the category. Returns ------- _CollectionGroupBy """ results = OrderedDict() # type: OrderedDict[str, list] for feature in self: if callable(by): value = by(feature) else: value = feature[by] results.setdefault(value, []).append(feature) if hasattr(self, "_schema"): # I am doing this to trick mypy, is there a better way? # calling self._schema generates a mypy problem schema = getattr(self, "_schema") return _CollectionGroupBy(results, schema=schema)
[ "def", "groupby", "(", "self", ",", "by", ")", ":", "# type: (Union[str, Callable[[GeoFeature], str]]) -> _CollectionGroupBy", "results", "=", "OrderedDict", "(", ")", "# type: OrderedDict[str, list]", "for", "feature", "in", "self", ":", "if", "callable", "(", "by", ")", ":", "value", "=", "by", "(", "feature", ")", "else", ":", "value", "=", "feature", "[", "by", "]", "results", ".", "setdefault", "(", "value", ",", "[", "]", ")", ".", "append", "(", "feature", ")", "if", "hasattr", "(", "self", ",", "\"_schema\"", ")", ":", "# I am doing this to trick mypy, is there a better way?", "# calling self._schema generates a mypy problem", "schema", "=", "getattr", "(", "self", ",", "\"_schema\"", ")", "return", "_CollectionGroupBy", "(", "results", ",", "schema", "=", "schema", ")" ]
Groups collection using a value of a property. Parameters ---------- by : str or callable If string, name of the property by which to group. If callable, should receive a GeoFeature and return the category. Returns ------- _CollectionGroupBy
[ "Groups", "collection", "using", "a", "value", "of", "a", "property", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/collections.py#L178-L207
14,557
satellogic/telluric
telluric/collections.py
BaseCollection.dissolve
def dissolve(self, by=None, aggfunc=None): # type: (Optional[str], Optional[Callable]) -> FeatureCollection """Dissolve geometries and rasters within `groupby`. """ if by: agg = partial(dissolve, aggfunc=aggfunc) # type: Callable[[BaseCollection], GeoFeature] return self.groupby(by).agg(agg) else: return FeatureCollection([dissolve(self, aggfunc)])
python
def dissolve(self, by=None, aggfunc=None): # type: (Optional[str], Optional[Callable]) -> FeatureCollection """Dissolve geometries and rasters within `groupby`. """ if by: agg = partial(dissolve, aggfunc=aggfunc) # type: Callable[[BaseCollection], GeoFeature] return self.groupby(by).agg(agg) else: return FeatureCollection([dissolve(self, aggfunc)])
[ "def", "dissolve", "(", "self", ",", "by", "=", "None", ",", "aggfunc", "=", "None", ")", ":", "# type: (Optional[str], Optional[Callable]) -> FeatureCollection", "if", "by", ":", "agg", "=", "partial", "(", "dissolve", ",", "aggfunc", "=", "aggfunc", ")", "# type: Callable[[BaseCollection], GeoFeature]", "return", "self", ".", "groupby", "(", "by", ")", ".", "agg", "(", "agg", ")", "else", ":", "return", "FeatureCollection", "(", "[", "dissolve", "(", "self", ",", "aggfunc", ")", "]", ")" ]
Dissolve geometries and rasters within `groupby`.
[ "Dissolve", "geometries", "and", "rasters", "within", "groupby", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/collections.py#L209-L219
14,558
satellogic/telluric
telluric/collections.py
BaseCollection.rasterize
def rasterize(self, dest_resolution, *, polygonize_width=0, crs=WEB_MERCATOR_CRS, fill_value=None, bounds=None, dtype=None, **polygonize_kwargs): """Binarize a FeatureCollection and produce a raster with the target resolution. Parameters ---------- dest_resolution: float Resolution in units of the CRS. polygonize_width : int, optional Width for the polygonized features (lines and points) in pixels, default to 0 (they won't appear). crs : ~rasterio.crs.CRS, dict (optional) Coordinate system, default to :py:data:`telluric.constants.WEB_MERCATOR_CRS`. fill_value : float or function, optional Value that represents data, default to None (will default to :py:data:`telluric.rasterization.FILL_VALUE`. If given a function, it must accept a single :py:class:`~telluric.features.GeoFeature` and return a numeric value. nodata_value : float, optional Nodata value, default to None (will default to :py:data:`telluric.rasterization.NODATA_VALUE`. bounds : GeoVector, optional Optional bounds for the target image, default to None (will use the FeatureCollection convex hull). dtype : numpy.dtype, optional dtype of the result, required only if fill_value is a function. polygonize_kwargs : dict Extra parameters to the polygonize function. """ # Avoid circular imports from telluric.georaster import merge_all, MergeStrategy from telluric.rasterization import rasterize, NODATA_DEPRECATION_WARNING # Compute the size in real units and polygonize the features if not isinstance(polygonize_width, int): raise TypeError("The width in pixels must be an integer") if polygonize_kwargs.pop("nodata_value", None): warnings.warn(NODATA_DEPRECATION_WARNING, DeprecationWarning) # If the pixels width is 1, render points as squares to avoid missing data if polygonize_width == 1: polygonize_kwargs.update(cap_style_point=CAP_STYLE.square) # Reproject collection to target CRS if ( self.crs is not None and self.crs != crs ): reprojected = self.reproject(crs) else: reprojected = self width = polygonize_width * dest_resolution polygonized = [feature.polygonize(width, **polygonize_kwargs) for feature in reprojected] # Discard the empty features shapes = [feature.geometry.get_shape(crs) for feature in polygonized if not feature.is_empty] if bounds is None: bounds = self.envelope if bounds.area == 0.0: raise ValueError("Specify non-empty ROI") if not len(self): fill_value = None if callable(fill_value): if dtype is None: raise ValueError("dtype must be specified for multivalue rasterization") rasters = [] for feature in self: rasters.append(feature.geometry.rasterize( dest_resolution, fill_value=fill_value(feature), bounds=bounds, dtype=dtype, crs=crs) ) return merge_all(rasters, bounds.reproject(crs), dest_resolution, merge_strategy=MergeStrategy.INTERSECTION) else: return rasterize(shapes, crs, bounds.get_shape(crs), dest_resolution, fill_value=fill_value, dtype=dtype)
python
def rasterize(self, dest_resolution, *, polygonize_width=0, crs=WEB_MERCATOR_CRS, fill_value=None, bounds=None, dtype=None, **polygonize_kwargs): """Binarize a FeatureCollection and produce a raster with the target resolution. Parameters ---------- dest_resolution: float Resolution in units of the CRS. polygonize_width : int, optional Width for the polygonized features (lines and points) in pixels, default to 0 (they won't appear). crs : ~rasterio.crs.CRS, dict (optional) Coordinate system, default to :py:data:`telluric.constants.WEB_MERCATOR_CRS`. fill_value : float or function, optional Value that represents data, default to None (will default to :py:data:`telluric.rasterization.FILL_VALUE`. If given a function, it must accept a single :py:class:`~telluric.features.GeoFeature` and return a numeric value. nodata_value : float, optional Nodata value, default to None (will default to :py:data:`telluric.rasterization.NODATA_VALUE`. bounds : GeoVector, optional Optional bounds for the target image, default to None (will use the FeatureCollection convex hull). dtype : numpy.dtype, optional dtype of the result, required only if fill_value is a function. polygonize_kwargs : dict Extra parameters to the polygonize function. """ # Avoid circular imports from telluric.georaster import merge_all, MergeStrategy from telluric.rasterization import rasterize, NODATA_DEPRECATION_WARNING # Compute the size in real units and polygonize the features if not isinstance(polygonize_width, int): raise TypeError("The width in pixels must be an integer") if polygonize_kwargs.pop("nodata_value", None): warnings.warn(NODATA_DEPRECATION_WARNING, DeprecationWarning) # If the pixels width is 1, render points as squares to avoid missing data if polygonize_width == 1: polygonize_kwargs.update(cap_style_point=CAP_STYLE.square) # Reproject collection to target CRS if ( self.crs is not None and self.crs != crs ): reprojected = self.reproject(crs) else: reprojected = self width = polygonize_width * dest_resolution polygonized = [feature.polygonize(width, **polygonize_kwargs) for feature in reprojected] # Discard the empty features shapes = [feature.geometry.get_shape(crs) for feature in polygonized if not feature.is_empty] if bounds is None: bounds = self.envelope if bounds.area == 0.0: raise ValueError("Specify non-empty ROI") if not len(self): fill_value = None if callable(fill_value): if dtype is None: raise ValueError("dtype must be specified for multivalue rasterization") rasters = [] for feature in self: rasters.append(feature.geometry.rasterize( dest_resolution, fill_value=fill_value(feature), bounds=bounds, dtype=dtype, crs=crs) ) return merge_all(rasters, bounds.reproject(crs), dest_resolution, merge_strategy=MergeStrategy.INTERSECTION) else: return rasterize(shapes, crs, bounds.get_shape(crs), dest_resolution, fill_value=fill_value, dtype=dtype)
[ "def", "rasterize", "(", "self", ",", "dest_resolution", ",", "*", ",", "polygonize_width", "=", "0", ",", "crs", "=", "WEB_MERCATOR_CRS", ",", "fill_value", "=", "None", ",", "bounds", "=", "None", ",", "dtype", "=", "None", ",", "*", "*", "polygonize_kwargs", ")", ":", "# Avoid circular imports", "from", "telluric", ".", "georaster", "import", "merge_all", ",", "MergeStrategy", "from", "telluric", ".", "rasterization", "import", "rasterize", ",", "NODATA_DEPRECATION_WARNING", "# Compute the size in real units and polygonize the features", "if", "not", "isinstance", "(", "polygonize_width", ",", "int", ")", ":", "raise", "TypeError", "(", "\"The width in pixels must be an integer\"", ")", "if", "polygonize_kwargs", ".", "pop", "(", "\"nodata_value\"", ",", "None", ")", ":", "warnings", ".", "warn", "(", "NODATA_DEPRECATION_WARNING", ",", "DeprecationWarning", ")", "# If the pixels width is 1, render points as squares to avoid missing data", "if", "polygonize_width", "==", "1", ":", "polygonize_kwargs", ".", "update", "(", "cap_style_point", "=", "CAP_STYLE", ".", "square", ")", "# Reproject collection to target CRS", "if", "(", "self", ".", "crs", "is", "not", "None", "and", "self", ".", "crs", "!=", "crs", ")", ":", "reprojected", "=", "self", ".", "reproject", "(", "crs", ")", "else", ":", "reprojected", "=", "self", "width", "=", "polygonize_width", "*", "dest_resolution", "polygonized", "=", "[", "feature", ".", "polygonize", "(", "width", ",", "*", "*", "polygonize_kwargs", ")", "for", "feature", "in", "reprojected", "]", "# Discard the empty features", "shapes", "=", "[", "feature", ".", "geometry", ".", "get_shape", "(", "crs", ")", "for", "feature", "in", "polygonized", "if", "not", "feature", ".", "is_empty", "]", "if", "bounds", "is", "None", ":", "bounds", "=", "self", ".", "envelope", "if", "bounds", ".", "area", "==", "0.0", ":", "raise", "ValueError", "(", "\"Specify non-empty ROI\"", ")", "if", "not", "len", "(", "self", ")", ":", "fill_value", "=", "None", "if", "callable", "(", "fill_value", ")", ":", "if", "dtype", "is", "None", ":", "raise", "ValueError", "(", "\"dtype must be specified for multivalue rasterization\"", ")", "rasters", "=", "[", "]", "for", "feature", "in", "self", ":", "rasters", ".", "append", "(", "feature", ".", "geometry", ".", "rasterize", "(", "dest_resolution", ",", "fill_value", "=", "fill_value", "(", "feature", ")", ",", "bounds", "=", "bounds", ",", "dtype", "=", "dtype", ",", "crs", "=", "crs", ")", ")", "return", "merge_all", "(", "rasters", ",", "bounds", ".", "reproject", "(", "crs", ")", ",", "dest_resolution", ",", "merge_strategy", "=", "MergeStrategy", ".", "INTERSECTION", ")", "else", ":", "return", "rasterize", "(", "shapes", ",", "crs", ",", "bounds", ".", "get_shape", "(", "crs", ")", ",", "dest_resolution", ",", "fill_value", "=", "fill_value", ",", "dtype", "=", "dtype", ")" ]
Binarize a FeatureCollection and produce a raster with the target resolution. Parameters ---------- dest_resolution: float Resolution in units of the CRS. polygonize_width : int, optional Width for the polygonized features (lines and points) in pixels, default to 0 (they won't appear). crs : ~rasterio.crs.CRS, dict (optional) Coordinate system, default to :py:data:`telluric.constants.WEB_MERCATOR_CRS`. fill_value : float or function, optional Value that represents data, default to None (will default to :py:data:`telluric.rasterization.FILL_VALUE`. If given a function, it must accept a single :py:class:`~telluric.features.GeoFeature` and return a numeric value. nodata_value : float, optional Nodata value, default to None (will default to :py:data:`telluric.rasterization.NODATA_VALUE`. bounds : GeoVector, optional Optional bounds for the target image, default to None (will use the FeatureCollection convex hull). dtype : numpy.dtype, optional dtype of the result, required only if fill_value is a function. polygonize_kwargs : dict Extra parameters to the polygonize function.
[ "Binarize", "a", "FeatureCollection", "and", "produce", "a", "raster", "with", "the", "target", "resolution", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/collections.py#L227-L306
14,559
satellogic/telluric
telluric/collections.py
BaseCollection.save
def save(self, filename, driver=None, schema=None): """Saves collection to file. """ if driver is None: driver = DRIVERS.get(os.path.splitext(filename)[-1]) if schema is None: schema = self.schema if driver == "GeoJSON": # Workaround for https://github.com/Toblerity/Fiona/issues/438 # https://stackoverflow.com/a/27045091/554319 with contextlib.suppress(FileNotFoundError): os.remove(filename) crs = WGS84_CRS else: crs = self.crs with fiona.open(filename, 'w', driver=driver, schema=schema, crs=crs) as sink: for feature in self: new_feature = self._adapt_feature_before_write(feature) sink.write(new_feature.to_record(crs))
python
def save(self, filename, driver=None, schema=None): """Saves collection to file. """ if driver is None: driver = DRIVERS.get(os.path.splitext(filename)[-1]) if schema is None: schema = self.schema if driver == "GeoJSON": # Workaround for https://github.com/Toblerity/Fiona/issues/438 # https://stackoverflow.com/a/27045091/554319 with contextlib.suppress(FileNotFoundError): os.remove(filename) crs = WGS84_CRS else: crs = self.crs with fiona.open(filename, 'w', driver=driver, schema=schema, crs=crs) as sink: for feature in self: new_feature = self._adapt_feature_before_write(feature) sink.write(new_feature.to_record(crs))
[ "def", "save", "(", "self", ",", "filename", ",", "driver", "=", "None", ",", "schema", "=", "None", ")", ":", "if", "driver", "is", "None", ":", "driver", "=", "DRIVERS", ".", "get", "(", "os", ".", "path", ".", "splitext", "(", "filename", ")", "[", "-", "1", "]", ")", "if", "schema", "is", "None", ":", "schema", "=", "self", ".", "schema", "if", "driver", "==", "\"GeoJSON\"", ":", "# Workaround for https://github.com/Toblerity/Fiona/issues/438", "# https://stackoverflow.com/a/27045091/554319", "with", "contextlib", ".", "suppress", "(", "FileNotFoundError", ")", ":", "os", ".", "remove", "(", "filename", ")", "crs", "=", "WGS84_CRS", "else", ":", "crs", "=", "self", ".", "crs", "with", "fiona", ".", "open", "(", "filename", ",", "'w'", ",", "driver", "=", "driver", ",", "schema", "=", "schema", ",", "crs", "=", "crs", ")", "as", "sink", ":", "for", "feature", "in", "self", ":", "new_feature", "=", "self", ".", "_adapt_feature_before_write", "(", "feature", ")", "sink", ".", "write", "(", "new_feature", ".", "to_record", "(", "crs", ")", ")" ]
Saves collection to file.
[ "Saves", "collection", "to", "file", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/collections.py#L311-L334
14,560
satellogic/telluric
telluric/collections.py
BaseCollection.apply
def apply(self, **kwargs): """Return a new FeatureCollection with the results of applying the statements in the arguments to each element. """ def _apply(f): properties = copy.deepcopy(f.properties) for prop, value in kwargs.items(): if callable(value): properties[prop] = value(f) else: properties[prop] = value return f.copy_with(properties=properties) new_fc = self.map(_apply) new_schema = self.schema.copy() property_names_set = kwargs.keys() prop_types_map = FeatureCollection.guess_types_by_feature(new_fc[0], property_names_set) for key, value_type in prop_types_map.items(): # already defined attribute that we just override will have the same position as before # new attributes will be appened new_schema["properties"][key] = FIELD_TYPES_MAP_REV.get(value_type, 'str') new_fc._schema = new_schema return new_fc
python
def apply(self, **kwargs): """Return a new FeatureCollection with the results of applying the statements in the arguments to each element. """ def _apply(f): properties = copy.deepcopy(f.properties) for prop, value in kwargs.items(): if callable(value): properties[prop] = value(f) else: properties[prop] = value return f.copy_with(properties=properties) new_fc = self.map(_apply) new_schema = self.schema.copy() property_names_set = kwargs.keys() prop_types_map = FeatureCollection.guess_types_by_feature(new_fc[0], property_names_set) for key, value_type in prop_types_map.items(): # already defined attribute that we just override will have the same position as before # new attributes will be appened new_schema["properties"][key] = FIELD_TYPES_MAP_REV.get(value_type, 'str') new_fc._schema = new_schema return new_fc
[ "def", "apply", "(", "self", ",", "*", "*", "kwargs", ")", ":", "def", "_apply", "(", "f", ")", ":", "properties", "=", "copy", ".", "deepcopy", "(", "f", ".", "properties", ")", "for", "prop", ",", "value", "in", "kwargs", ".", "items", "(", ")", ":", "if", "callable", "(", "value", ")", ":", "properties", "[", "prop", "]", "=", "value", "(", "f", ")", "else", ":", "properties", "[", "prop", "]", "=", "value", "return", "f", ".", "copy_with", "(", "properties", "=", "properties", ")", "new_fc", "=", "self", ".", "map", "(", "_apply", ")", "new_schema", "=", "self", ".", "schema", ".", "copy", "(", ")", "property_names_set", "=", "kwargs", ".", "keys", "(", ")", "prop_types_map", "=", "FeatureCollection", ".", "guess_types_by_feature", "(", "new_fc", "[", "0", "]", ",", "property_names_set", ")", "for", "key", ",", "value_type", "in", "prop_types_map", ".", "items", "(", ")", ":", "# already defined attribute that we just override will have the same position as before", "# new attributes will be appened", "new_schema", "[", "\"properties\"", "]", "[", "key", "]", "=", "FIELD_TYPES_MAP_REV", ".", "get", "(", "value_type", ",", "'str'", ")", "new_fc", ".", "_schema", "=", "new_schema", "return", "new_fc" ]
Return a new FeatureCollection with the results of applying the statements in the arguments to each element.
[ "Return", "a", "new", "FeatureCollection", "with", "the", "results", "of", "applying", "the", "statements", "in", "the", "arguments", "to", "each", "element", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/collections.py#L341-L363
14,561
satellogic/telluric
telluric/collections.py
FeatureCollection.validate
def validate(self): """ if schema exists we run shape file validation code of fiona by trying to save to in MemoryFile """ if self._schema is not None: with MemoryFile() as memfile: with memfile.open(driver="ESRI Shapefile", schema=self.schema) as target: for _item in self._results: # getting rid of the assets that don't behave well becasue of in memroy rasters item = GeoFeature(_item.geometry, _item.properties) target.write(item.to_record(item.crs))
python
def validate(self): """ if schema exists we run shape file validation code of fiona by trying to save to in MemoryFile """ if self._schema is not None: with MemoryFile() as memfile: with memfile.open(driver="ESRI Shapefile", schema=self.schema) as target: for _item in self._results: # getting rid of the assets that don't behave well becasue of in memroy rasters item = GeoFeature(_item.geometry, _item.properties) target.write(item.to_record(item.crs))
[ "def", "validate", "(", "self", ")", ":", "if", "self", ".", "_schema", "is", "not", "None", ":", "with", "MemoryFile", "(", ")", "as", "memfile", ":", "with", "memfile", ".", "open", "(", "driver", "=", "\"ESRI Shapefile\"", ",", "schema", "=", "self", ".", "schema", ")", "as", "target", ":", "for", "_item", "in", "self", ".", "_results", ":", "# getting rid of the assets that don't behave well becasue of in memroy rasters", "item", "=", "GeoFeature", "(", "_item", ".", "geometry", ",", "_item", ".", "properties", ")", "target", ".", "write", "(", "item", ".", "to_record", "(", "item", ".", "crs", ")", ")" ]
if schema exists we run shape file validation code of fiona by trying to save to in MemoryFile
[ "if", "schema", "exists", "we", "run", "shape", "file", "validation", "code", "of", "fiona", "by", "trying", "to", "save", "to", "in", "MemoryFile" ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/collections.py#L386-L396
14,562
satellogic/telluric
telluric/collections.py
FileCollection.open
def open(cls, filename, crs=None): """Creates a FileCollection from a file in disk. Parameters ---------- filename : str Path of the file to read. crs : CRS overrides the crs of the collection, this funtion will not reprojects """ with fiona.Env(): with fiona.open(filename, 'r') as source: original_crs = CRS(source.crs) schema = source.schema length = len(source) crs = crs or original_crs ret_val = cls(filename, crs, schema, length) return ret_val
python
def open(cls, filename, crs=None): """Creates a FileCollection from a file in disk. Parameters ---------- filename : str Path of the file to read. crs : CRS overrides the crs of the collection, this funtion will not reprojects """ with fiona.Env(): with fiona.open(filename, 'r') as source: original_crs = CRS(source.crs) schema = source.schema length = len(source) crs = crs or original_crs ret_val = cls(filename, crs, schema, length) return ret_val
[ "def", "open", "(", "cls", ",", "filename", ",", "crs", "=", "None", ")", ":", "with", "fiona", ".", "Env", "(", ")", ":", "with", "fiona", ".", "open", "(", "filename", ",", "'r'", ")", "as", "source", ":", "original_crs", "=", "CRS", "(", "source", ".", "crs", ")", "schema", "=", "source", ".", "schema", "length", "=", "len", "(", "source", ")", "crs", "=", "crs", "or", "original_crs", "ret_val", "=", "cls", "(", "filename", ",", "crs", ",", "schema", ",", "length", ")", "return", "ret_val" ]
Creates a FileCollection from a file in disk. Parameters ---------- filename : str Path of the file to read. crs : CRS overrides the crs of the collection, this funtion will not reprojects
[ "Creates", "a", "FileCollection", "from", "a", "file", "in", "disk", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/collections.py#L524-L542
14,563
satellogic/telluric
telluric/collections.py
_CollectionGroupBy.filter
def filter(self, func): # type: (Callable[[BaseCollection], bool]) -> _CollectionGroupBy """Filter out Groups based on filtering function. The function should get a FeatureCollection and return True to leave in the Group and False to take it out. """ results = OrderedDict() # type: OrderedDict for name, group in self: if func(group): results[name] = group return self.__class__(results)
python
def filter(self, func): # type: (Callable[[BaseCollection], bool]) -> _CollectionGroupBy """Filter out Groups based on filtering function. The function should get a FeatureCollection and return True to leave in the Group and False to take it out. """ results = OrderedDict() # type: OrderedDict for name, group in self: if func(group): results[name] = group return self.__class__(results)
[ "def", "filter", "(", "self", ",", "func", ")", ":", "# type: (Callable[[BaseCollection], bool]) -> _CollectionGroupBy", "results", "=", "OrderedDict", "(", ")", "# type: OrderedDict", "for", "name", ",", "group", "in", "self", ":", "if", "func", "(", "group", ")", ":", "results", "[", "name", "]", "=", "group", "return", "self", ".", "__class__", "(", "results", ")" ]
Filter out Groups based on filtering function. The function should get a FeatureCollection and return True to leave in the Group and False to take it out.
[ "Filter", "out", "Groups", "based", "on", "filtering", "function", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/collections.py#L636-L647
14,564
satellogic/telluric
telluric/context.py
reset_context
def reset_context(**options): """Reset context to default.""" local_context._options = {} local_context._options.update(options) log.debug("New TelluricContext context %r created", local_context._options)
python
def reset_context(**options): """Reset context to default.""" local_context._options = {} local_context._options.update(options) log.debug("New TelluricContext context %r created", local_context._options)
[ "def", "reset_context", "(", "*", "*", "options", ")", ":", "local_context", ".", "_options", "=", "{", "}", "local_context", ".", "_options", ".", "update", "(", "options", ")", "log", ".", "debug", "(", "\"New TelluricContext context %r created\"", ",", "local_context", ".", "_options", ")" ]
Reset context to default.
[ "Reset", "context", "to", "default", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/context.py#L131-L135
14,565
satellogic/telluric
telluric/context.py
get_context
def get_context(): """Get a mapping of current options.""" if not local_context._options: raise TelluricContextError("TelluricContext context not exists") else: log.debug("Got a copy of context %r options", local_context._options) return local_context._options.copy()
python
def get_context(): """Get a mapping of current options.""" if not local_context._options: raise TelluricContextError("TelluricContext context not exists") else: log.debug("Got a copy of context %r options", local_context._options) return local_context._options.copy()
[ "def", "get_context", "(", ")", ":", "if", "not", "local_context", ".", "_options", ":", "raise", "TelluricContextError", "(", "\"TelluricContext context not exists\"", ")", "else", ":", "log", ".", "debug", "(", "\"Got a copy of context %r options\"", ",", "local_context", ".", "_options", ")", "return", "local_context", ".", "_options", ".", "copy", "(", ")" ]
Get a mapping of current options.
[ "Get", "a", "mapping", "of", "current", "options", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/context.py#L138-L144
14,566
satellogic/telluric
telluric/context.py
set_context
def set_context(**options): """Set options in the existing context.""" if not local_context._options: raise TelluricContextError("TelluricContext context not exists") else: local_context._options.update(options) log.debug("Updated existing %r with options %r", local_context._options, options)
python
def set_context(**options): """Set options in the existing context.""" if not local_context._options: raise TelluricContextError("TelluricContext context not exists") else: local_context._options.update(options) log.debug("Updated existing %r with options %r", local_context._options, options)
[ "def", "set_context", "(", "*", "*", "options", ")", ":", "if", "not", "local_context", ".", "_options", ":", "raise", "TelluricContextError", "(", "\"TelluricContext context not exists\"", ")", "else", ":", "local_context", ".", "_options", ".", "update", "(", "options", ")", "log", ".", "debug", "(", "\"Updated existing %r with options %r\"", ",", "local_context", ".", "_options", ",", "options", ")" ]
Set options in the existing context.
[ "Set", "options", "in", "the", "existing", "context", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/context.py#L147-L153
14,567
satellogic/telluric
telluric/features.py
transform_properties
def transform_properties(properties, schema): """Transform properties types according to a schema. Parameters ---------- properties : dict Properties to transform. schema : dict Fiona schema containing the types. """ new_properties = properties.copy() for prop_value, (prop_name, prop_type) in zip(new_properties.values(), schema["properties"].items()): if prop_value is None: continue elif prop_type == "time": new_properties[prop_name] = parse_date(prop_value).time() elif prop_type == "date": new_properties[prop_name] = parse_date(prop_value).date() elif prop_type == "datetime": new_properties[prop_name] = parse_date(prop_value) return new_properties
python
def transform_properties(properties, schema): """Transform properties types according to a schema. Parameters ---------- properties : dict Properties to transform. schema : dict Fiona schema containing the types. """ new_properties = properties.copy() for prop_value, (prop_name, prop_type) in zip(new_properties.values(), schema["properties"].items()): if prop_value is None: continue elif prop_type == "time": new_properties[prop_name] = parse_date(prop_value).time() elif prop_type == "date": new_properties[prop_name] = parse_date(prop_value).date() elif prop_type == "datetime": new_properties[prop_name] = parse_date(prop_value) return new_properties
[ "def", "transform_properties", "(", "properties", ",", "schema", ")", ":", "new_properties", "=", "properties", ".", "copy", "(", ")", "for", "prop_value", ",", "(", "prop_name", ",", "prop_type", ")", "in", "zip", "(", "new_properties", ".", "values", "(", ")", ",", "schema", "[", "\"properties\"", "]", ".", "items", "(", ")", ")", ":", "if", "prop_value", "is", "None", ":", "continue", "elif", "prop_type", "==", "\"time\"", ":", "new_properties", "[", "prop_name", "]", "=", "parse_date", "(", "prop_value", ")", ".", "time", "(", ")", "elif", "prop_type", "==", "\"date\"", ":", "new_properties", "[", "prop_name", "]", "=", "parse_date", "(", "prop_value", ")", ".", "date", "(", ")", "elif", "prop_type", "==", "\"datetime\"", ":", "new_properties", "[", "prop_name", "]", "=", "parse_date", "(", "prop_value", ")", "return", "new_properties" ]
Transform properties types according to a schema. Parameters ---------- properties : dict Properties to transform. schema : dict Fiona schema containing the types.
[ "Transform", "properties", "types", "according", "to", "a", "schema", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/features.py#L22-L44
14,568
satellogic/telluric
telluric/features.py
serialize_properties
def serialize_properties(properties): """Serialize properties. Parameters ---------- properties : dict Properties to serialize. """ new_properties = properties.copy() for attr_name, attr_value in new_properties.items(): if isinstance(attr_value, datetime): new_properties[attr_name] = attr_value.isoformat() elif not isinstance(attr_value, (dict, list, tuple, str, int, float, bool, type(None))): # Property is not JSON-serializable according to this table # https://docs.python.org/3.4/library/json.html#json.JSONEncoder # so we convert to string new_properties[attr_name] = str(attr_value) return new_properties
python
def serialize_properties(properties): """Serialize properties. Parameters ---------- properties : dict Properties to serialize. """ new_properties = properties.copy() for attr_name, attr_value in new_properties.items(): if isinstance(attr_value, datetime): new_properties[attr_name] = attr_value.isoformat() elif not isinstance(attr_value, (dict, list, tuple, str, int, float, bool, type(None))): # Property is not JSON-serializable according to this table # https://docs.python.org/3.4/library/json.html#json.JSONEncoder # so we convert to string new_properties[attr_name] = str(attr_value) return new_properties
[ "def", "serialize_properties", "(", "properties", ")", ":", "new_properties", "=", "properties", ".", "copy", "(", ")", "for", "attr_name", ",", "attr_value", "in", "new_properties", ".", "items", "(", ")", ":", "if", "isinstance", "(", "attr_value", ",", "datetime", ")", ":", "new_properties", "[", "attr_name", "]", "=", "attr_value", ".", "isoformat", "(", ")", "elif", "not", "isinstance", "(", "attr_value", ",", "(", "dict", ",", "list", ",", "tuple", ",", "str", ",", "int", ",", "float", ",", "bool", ",", "type", "(", "None", ")", ")", ")", ":", "# Property is not JSON-serializable according to this table", "# https://docs.python.org/3.4/library/json.html#json.JSONEncoder", "# so we convert to string", "new_properties", "[", "attr_name", "]", "=", "str", "(", "attr_value", ")", "return", "new_properties" ]
Serialize properties. Parameters ---------- properties : dict Properties to serialize.
[ "Serialize", "properties", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/features.py#L47-L65
14,569
satellogic/telluric
telluric/features.py
GeoFeature.from_record
def from_record(cls, record, crs, schema=None): """Create GeoFeature from a record.""" properties = cls._to_properties(record, schema) vector = GeoVector(shape(record['geometry']), crs) if record.get('raster'): assets = {k: dict(type=RASTER_TYPE, product='visual', **v) for k, v in record.get('raster').items()} else: assets = record.get('assets', {}) return cls(vector, properties, assets)
python
def from_record(cls, record, crs, schema=None): """Create GeoFeature from a record.""" properties = cls._to_properties(record, schema) vector = GeoVector(shape(record['geometry']), crs) if record.get('raster'): assets = {k: dict(type=RASTER_TYPE, product='visual', **v) for k, v in record.get('raster').items()} else: assets = record.get('assets', {}) return cls(vector, properties, assets)
[ "def", "from_record", "(", "cls", ",", "record", ",", "crs", ",", "schema", "=", "None", ")", ":", "properties", "=", "cls", ".", "_to_properties", "(", "record", ",", "schema", ")", "vector", "=", "GeoVector", "(", "shape", "(", "record", "[", "'geometry'", "]", ")", ",", "crs", ")", "if", "record", ".", "get", "(", "'raster'", ")", ":", "assets", "=", "{", "k", ":", "dict", "(", "type", "=", "RASTER_TYPE", ",", "product", "=", "'visual'", ",", "*", "*", "v", ")", "for", "k", ",", "v", "in", "record", ".", "get", "(", "'raster'", ")", ".", "items", "(", ")", "}", "else", ":", "assets", "=", "record", ".", "get", "(", "'assets'", ",", "{", "}", ")", "return", "cls", "(", "vector", ",", "properties", ",", "assets", ")" ]
Create GeoFeature from a record.
[ "Create", "GeoFeature", "from", "a", "record", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/features.py#L126-L134
14,570
satellogic/telluric
telluric/features.py
GeoFeature.copy_with
def copy_with(self, geometry=None, properties=None, assets=None): """Generate a new GeoFeature with different geometry or preperties.""" def copy_assets_object(asset): obj = asset.get("__object") if hasattr("copy", obj): new_obj = obj.copy() if obj: asset["__object"] = new_obj geometry = geometry or self.geometry.copy() new_properties = copy.deepcopy(self.properties) if properties: new_properties.update(properties) if not assets: assets = copy.deepcopy(self.assets) map(copy_assets_object, assets.values()) else: assets = {} return self.__class__(geometry, new_properties, assets)
python
def copy_with(self, geometry=None, properties=None, assets=None): """Generate a new GeoFeature with different geometry or preperties.""" def copy_assets_object(asset): obj = asset.get("__object") if hasattr("copy", obj): new_obj = obj.copy() if obj: asset["__object"] = new_obj geometry = geometry or self.geometry.copy() new_properties = copy.deepcopy(self.properties) if properties: new_properties.update(properties) if not assets: assets = copy.deepcopy(self.assets) map(copy_assets_object, assets.values()) else: assets = {} return self.__class__(geometry, new_properties, assets)
[ "def", "copy_with", "(", "self", ",", "geometry", "=", "None", ",", "properties", "=", "None", ",", "assets", "=", "None", ")", ":", "def", "copy_assets_object", "(", "asset", ")", ":", "obj", "=", "asset", ".", "get", "(", "\"__object\"", ")", "if", "hasattr", "(", "\"copy\"", ",", "obj", ")", ":", "new_obj", "=", "obj", ".", "copy", "(", ")", "if", "obj", ":", "asset", "[", "\"__object\"", "]", "=", "new_obj", "geometry", "=", "geometry", "or", "self", ".", "geometry", ".", "copy", "(", ")", "new_properties", "=", "copy", ".", "deepcopy", "(", "self", ".", "properties", ")", "if", "properties", ":", "new_properties", ".", "update", "(", "properties", ")", "if", "not", "assets", ":", "assets", "=", "copy", ".", "deepcopy", "(", "self", ".", "assets", ")", "map", "(", "copy_assets_object", ",", "assets", ".", "values", "(", ")", ")", "else", ":", "assets", "=", "{", "}", "return", "self", ".", "__class__", "(", "geometry", ",", "new_properties", ",", "assets", ")" ]
Generate a new GeoFeature with different geometry or preperties.
[ "Generate", "a", "new", "GeoFeature", "with", "different", "geometry", "or", "preperties", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/features.py#L262-L280
14,571
satellogic/telluric
telluric/features.py
GeoFeature.from_raster
def from_raster(cls, raster, properties, product='visual'): """Initialize a GeoFeature object with a GeoRaster Parameters ---------- raster : GeoRaster the raster in the feature properties : dict Properties. product : str product associated to the raster """ footprint = raster.footprint() assets = raster.to_assets(product=product) return cls(footprint, properties, assets)
python
def from_raster(cls, raster, properties, product='visual'): """Initialize a GeoFeature object with a GeoRaster Parameters ---------- raster : GeoRaster the raster in the feature properties : dict Properties. product : str product associated to the raster """ footprint = raster.footprint() assets = raster.to_assets(product=product) return cls(footprint, properties, assets)
[ "def", "from_raster", "(", "cls", ",", "raster", ",", "properties", ",", "product", "=", "'visual'", ")", ":", "footprint", "=", "raster", ".", "footprint", "(", ")", "assets", "=", "raster", ".", "to_assets", "(", "product", "=", "product", ")", "return", "cls", "(", "footprint", ",", "properties", ",", "assets", ")" ]
Initialize a GeoFeature object with a GeoRaster Parameters ---------- raster : GeoRaster the raster in the feature properties : dict Properties. product : str product associated to the raster
[ "Initialize", "a", "GeoFeature", "object", "with", "a", "GeoRaster" ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/features.py#L287-L301
14,572
satellogic/telluric
telluric/features.py
GeoFeature.has_raster
def has_raster(self): """True if any of the assets is type 'raster'.""" return any(asset.get('type') == RASTER_TYPE for asset in self.assets.values())
python
def has_raster(self): """True if any of the assets is type 'raster'.""" return any(asset.get('type') == RASTER_TYPE for asset in self.assets.values())
[ "def", "has_raster", "(", "self", ")", ":", "return", "any", "(", "asset", ".", "get", "(", "'type'", ")", "==", "RASTER_TYPE", "for", "asset", "in", "self", ".", "assets", ".", "values", "(", ")", ")" ]
True if any of the assets is type 'raster'.
[ "True", "if", "any", "of", "the", "assets", "is", "type", "raster", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/features.py#L304-L306
14,573
satellogic/telluric
telluric/util/projections.py
transform
def transform(shape, source_crs, destination_crs=None, src_affine=None, dst_affine=None): """Transforms shape from one CRS to another. Parameters ---------- shape : shapely.geometry.base.BaseGeometry Shape to transform. source_crs : dict or str Source CRS in the form of key/value pairs or proj4 string. destination_crs : dict or str, optional Destination CRS, EPSG:4326 if not given. src_affine: Affine, optional. input shape in relative to this affine dst_affine: Affine, optional. output shape in relative to this affine Returns ------- shapely.geometry.base.BaseGeometry Transformed shape. """ if destination_crs is None: destination_crs = WGS84_CRS if src_affine is not None: shape = ops.transform(lambda r, q: ~src_affine * (r, q), shape) shape = generate_transform(source_crs, destination_crs)(shape) if dst_affine is not None: shape = ops.transform(lambda r, q: dst_affine * (r, q), shape) return shape
python
def transform(shape, source_crs, destination_crs=None, src_affine=None, dst_affine=None): """Transforms shape from one CRS to another. Parameters ---------- shape : shapely.geometry.base.BaseGeometry Shape to transform. source_crs : dict or str Source CRS in the form of key/value pairs or proj4 string. destination_crs : dict or str, optional Destination CRS, EPSG:4326 if not given. src_affine: Affine, optional. input shape in relative to this affine dst_affine: Affine, optional. output shape in relative to this affine Returns ------- shapely.geometry.base.BaseGeometry Transformed shape. """ if destination_crs is None: destination_crs = WGS84_CRS if src_affine is not None: shape = ops.transform(lambda r, q: ~src_affine * (r, q), shape) shape = generate_transform(source_crs, destination_crs)(shape) if dst_affine is not None: shape = ops.transform(lambda r, q: dst_affine * (r, q), shape) return shape
[ "def", "transform", "(", "shape", ",", "source_crs", ",", "destination_crs", "=", "None", ",", "src_affine", "=", "None", ",", "dst_affine", "=", "None", ")", ":", "if", "destination_crs", "is", "None", ":", "destination_crs", "=", "WGS84_CRS", "if", "src_affine", "is", "not", "None", ":", "shape", "=", "ops", ".", "transform", "(", "lambda", "r", ",", "q", ":", "~", "src_affine", "*", "(", "r", ",", "q", ")", ",", "shape", ")", "shape", "=", "generate_transform", "(", "source_crs", ",", "destination_crs", ")", "(", "shape", ")", "if", "dst_affine", "is", "not", "None", ":", "shape", "=", "ops", ".", "transform", "(", "lambda", "r", ",", "q", ":", "dst_affine", "*", "(", "r", ",", "q", ")", ",", "shape", ")", "return", "shape" ]
Transforms shape from one CRS to another. Parameters ---------- shape : shapely.geometry.base.BaseGeometry Shape to transform. source_crs : dict or str Source CRS in the form of key/value pairs or proj4 string. destination_crs : dict or str, optional Destination CRS, EPSG:4326 if not given. src_affine: Affine, optional. input shape in relative to this affine dst_affine: Affine, optional. output shape in relative to this affine Returns ------- shapely.geometry.base.BaseGeometry Transformed shape.
[ "Transforms", "shape", "from", "one", "CRS", "to", "another", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/util/projections.py#L24-L57
14,574
satellogic/telluric
telluric/plotting.py
simple_plot
def simple_plot(feature, *, mp=None, **map_kwargs): """Plots a GeoVector in a simple Folium map. For more complex and customizable plots using Jupyter widgets, use the plot function instead. Parameters ---------- feature : telluric.vectors.GeoVector, telluric.features.GeoFeature, telluric.collections.BaseCollection Data to plot. """ # This import is here to avoid cyclic references from telluric.collections import BaseCollection if mp is None: mp = folium.Map(tiles="Stamen Terrain", **map_kwargs) if feature.is_empty: warnings.warn("The geometry is empty.") else: if isinstance(feature, BaseCollection): feature = feature[:SIMPLE_PLOT_MAX_ROWS] folium.GeoJson(mapping(feature), name='geojson', overlay=True).add_to(mp) shape = feature.envelope.get_shape(WGS84_CRS) mp.fit_bounds([shape.bounds[:1:-1], shape.bounds[1::-1]]) return mp
python
def simple_plot(feature, *, mp=None, **map_kwargs): """Plots a GeoVector in a simple Folium map. For more complex and customizable plots using Jupyter widgets, use the plot function instead. Parameters ---------- feature : telluric.vectors.GeoVector, telluric.features.GeoFeature, telluric.collections.BaseCollection Data to plot. """ # This import is here to avoid cyclic references from telluric.collections import BaseCollection if mp is None: mp = folium.Map(tiles="Stamen Terrain", **map_kwargs) if feature.is_empty: warnings.warn("The geometry is empty.") else: if isinstance(feature, BaseCollection): feature = feature[:SIMPLE_PLOT_MAX_ROWS] folium.GeoJson(mapping(feature), name='geojson', overlay=True).add_to(mp) shape = feature.envelope.get_shape(WGS84_CRS) mp.fit_bounds([shape.bounds[:1:-1], shape.bounds[1::-1]]) return mp
[ "def", "simple_plot", "(", "feature", ",", "*", ",", "mp", "=", "None", ",", "*", "*", "map_kwargs", ")", ":", "# This import is here to avoid cyclic references", "from", "telluric", ".", "collections", "import", "BaseCollection", "if", "mp", "is", "None", ":", "mp", "=", "folium", ".", "Map", "(", "tiles", "=", "\"Stamen Terrain\"", ",", "*", "*", "map_kwargs", ")", "if", "feature", ".", "is_empty", ":", "warnings", ".", "warn", "(", "\"The geometry is empty.\"", ")", "else", ":", "if", "isinstance", "(", "feature", ",", "BaseCollection", ")", ":", "feature", "=", "feature", "[", ":", "SIMPLE_PLOT_MAX_ROWS", "]", "folium", ".", "GeoJson", "(", "mapping", "(", "feature", ")", ",", "name", "=", "'geojson'", ",", "overlay", "=", "True", ")", ".", "add_to", "(", "mp", ")", "shape", "=", "feature", ".", "envelope", ".", "get_shape", "(", "WGS84_CRS", ")", "mp", ".", "fit_bounds", "(", "[", "shape", ".", "bounds", "[", ":", "1", ":", "-", "1", "]", ",", "shape", ".", "bounds", "[", "1", ":", ":", "-", "1", "]", "]", ")", "return", "mp" ]
Plots a GeoVector in a simple Folium map. For more complex and customizable plots using Jupyter widgets, use the plot function instead. Parameters ---------- feature : telluric.vectors.GeoVector, telluric.features.GeoFeature, telluric.collections.BaseCollection Data to plot.
[ "Plots", "a", "GeoVector", "in", "a", "simple", "Folium", "map", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/plotting.py#L24-L53
14,575
satellogic/telluric
telluric/plotting.py
zoom_level_from_geometry
def zoom_level_from_geometry(geometry, splits=4): """Generate optimum zoom level for geometry. Notes ----- The obvious solution would be >>> mercantile.bounding_tile(*geometry.get_shape(WGS84_CRS).bounds).z However, if the geometry is split between two or four tiles, the resulting zoom level might be too big. """ # This import is here to avoid cyclic references from telluric.vectors import generate_tile_coordinates # We split the geometry and compute the zoom level for each chunk levels = [] for chunk in generate_tile_coordinates(geometry, (splits, splits)): levels.append(mercantile.bounding_tile(*chunk.get_shape(WGS84_CRS).bounds).z) # We now return the median value using the median_low function, which # always picks the result from the list return median_low(levels)
python
def zoom_level_from_geometry(geometry, splits=4): """Generate optimum zoom level for geometry. Notes ----- The obvious solution would be >>> mercantile.bounding_tile(*geometry.get_shape(WGS84_CRS).bounds).z However, if the geometry is split between two or four tiles, the resulting zoom level might be too big. """ # This import is here to avoid cyclic references from telluric.vectors import generate_tile_coordinates # We split the geometry and compute the zoom level for each chunk levels = [] for chunk in generate_tile_coordinates(geometry, (splits, splits)): levels.append(mercantile.bounding_tile(*chunk.get_shape(WGS84_CRS).bounds).z) # We now return the median value using the median_low function, which # always picks the result from the list return median_low(levels)
[ "def", "zoom_level_from_geometry", "(", "geometry", ",", "splits", "=", "4", ")", ":", "# This import is here to avoid cyclic references", "from", "telluric", ".", "vectors", "import", "generate_tile_coordinates", "# We split the geometry and compute the zoom level for each chunk", "levels", "=", "[", "]", "for", "chunk", "in", "generate_tile_coordinates", "(", "geometry", ",", "(", "splits", ",", "splits", ")", ")", ":", "levels", ".", "append", "(", "mercantile", ".", "bounding_tile", "(", "*", "chunk", ".", "get_shape", "(", "WGS84_CRS", ")", ".", "bounds", ")", ".", "z", ")", "# We now return the median value using the median_low function, which", "# always picks the result from the list", "return", "median_low", "(", "levels", ")" ]
Generate optimum zoom level for geometry. Notes ----- The obvious solution would be >>> mercantile.bounding_tile(*geometry.get_shape(WGS84_CRS).bounds).z However, if the geometry is split between two or four tiles, the resulting zoom level might be too big.
[ "Generate", "optimum", "zoom", "level", "for", "geometry", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/plotting.py#L56-L79
14,576
satellogic/telluric
telluric/plotting.py
layer_from_element
def layer_from_element(element, style_function=None): """Return Leaflet layer from shape. Parameters ---------- element : telluric.vectors.GeoVector, telluric.features.GeoFeature, telluric.collections.BaseCollection Data to plot. """ # This import is here to avoid cyclic references from telluric.collections import BaseCollection if isinstance(element, BaseCollection): styled_element = element.map(lambda feat: style_element(feat, style_function)) else: styled_element = style_element(element, style_function) return GeoJSON(data=mapping(styled_element), name='GeoJSON')
python
def layer_from_element(element, style_function=None): """Return Leaflet layer from shape. Parameters ---------- element : telluric.vectors.GeoVector, telluric.features.GeoFeature, telluric.collections.BaseCollection Data to plot. """ # This import is here to avoid cyclic references from telluric.collections import BaseCollection if isinstance(element, BaseCollection): styled_element = element.map(lambda feat: style_element(feat, style_function)) else: styled_element = style_element(element, style_function) return GeoJSON(data=mapping(styled_element), name='GeoJSON')
[ "def", "layer_from_element", "(", "element", ",", "style_function", "=", "None", ")", ":", "# This import is here to avoid cyclic references", "from", "telluric", ".", "collections", "import", "BaseCollection", "if", "isinstance", "(", "element", ",", "BaseCollection", ")", ":", "styled_element", "=", "element", ".", "map", "(", "lambda", "feat", ":", "style_element", "(", "feat", ",", "style_function", ")", ")", "else", ":", "styled_element", "=", "style_element", "(", "element", ",", "style_function", ")", "return", "GeoJSON", "(", "data", "=", "mapping", "(", "styled_element", ")", ",", "name", "=", "'GeoJSON'", ")" ]
Return Leaflet layer from shape. Parameters ---------- element : telluric.vectors.GeoVector, telluric.features.GeoFeature, telluric.collections.BaseCollection Data to plot.
[ "Return", "Leaflet", "layer", "from", "shape", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/plotting.py#L96-L114
14,577
satellogic/telluric
telluric/plotting.py
plot
def plot(feature, mp=None, style_function=None, **map_kwargs): """Plots a GeoVector in an ipyleaflet map. Parameters ---------- feature : telluric.vectors.GeoVector, telluric.features.GeoFeature, telluric.collections.BaseCollection Data to plot. mp : ipyleaflet.Map, optional Map in which to plot, default to None (creates a new one). style_function : func Function that returns an style dictionary for map_kwargs : kwargs, optional Extra parameters to send to ipyleaflet.Map. """ map_kwargs.setdefault('basemap', basemaps.Stamen.Terrain) if feature.is_empty: warnings.warn("The geometry is empty.") mp = Map(**map_kwargs) if mp is None else mp else: if mp is None: center = feature.envelope.centroid.reproject(WGS84_CRS) zoom = zoom_level_from_geometry(feature.envelope) mp = Map(center=(center.y, center.x), zoom=zoom, **map_kwargs) mp.add_layer(layer_from_element(feature, style_function)) return mp
python
def plot(feature, mp=None, style_function=None, **map_kwargs): """Plots a GeoVector in an ipyleaflet map. Parameters ---------- feature : telluric.vectors.GeoVector, telluric.features.GeoFeature, telluric.collections.BaseCollection Data to plot. mp : ipyleaflet.Map, optional Map in which to plot, default to None (creates a new one). style_function : func Function that returns an style dictionary for map_kwargs : kwargs, optional Extra parameters to send to ipyleaflet.Map. """ map_kwargs.setdefault('basemap', basemaps.Stamen.Terrain) if feature.is_empty: warnings.warn("The geometry is empty.") mp = Map(**map_kwargs) if mp is None else mp else: if mp is None: center = feature.envelope.centroid.reproject(WGS84_CRS) zoom = zoom_level_from_geometry(feature.envelope) mp = Map(center=(center.y, center.x), zoom=zoom, **map_kwargs) mp.add_layer(layer_from_element(feature, style_function)) return mp
[ "def", "plot", "(", "feature", ",", "mp", "=", "None", ",", "style_function", "=", "None", ",", "*", "*", "map_kwargs", ")", ":", "map_kwargs", ".", "setdefault", "(", "'basemap'", ",", "basemaps", ".", "Stamen", ".", "Terrain", ")", "if", "feature", ".", "is_empty", ":", "warnings", ".", "warn", "(", "\"The geometry is empty.\"", ")", "mp", "=", "Map", "(", "*", "*", "map_kwargs", ")", "if", "mp", "is", "None", "else", "mp", "else", ":", "if", "mp", "is", "None", ":", "center", "=", "feature", ".", "envelope", ".", "centroid", ".", "reproject", "(", "WGS84_CRS", ")", "zoom", "=", "zoom_level_from_geometry", "(", "feature", ".", "envelope", ")", "mp", "=", "Map", "(", "center", "=", "(", "center", ".", "y", ",", "center", ".", "x", ")", ",", "zoom", "=", "zoom", ",", "*", "*", "map_kwargs", ")", "mp", ".", "add_layer", "(", "layer_from_element", "(", "feature", ",", "style_function", ")", ")", "return", "mp" ]
Plots a GeoVector in an ipyleaflet map. Parameters ---------- feature : telluric.vectors.GeoVector, telluric.features.GeoFeature, telluric.collections.BaseCollection Data to plot. mp : ipyleaflet.Map, optional Map in which to plot, default to None (creates a new one). style_function : func Function that returns an style dictionary for map_kwargs : kwargs, optional Extra parameters to send to ipyleaflet.Map.
[ "Plots", "a", "GeoVector", "in", "an", "ipyleaflet", "map", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/plotting.py#L117-L146
14,578
satellogic/telluric
telluric/util/tileserver_utils.py
tileserver_optimized_raster
def tileserver_optimized_raster(src, dest): """ This method converts a raster to a tileserver optimized raster. The method will reproject the raster to align to the xyz system, in resolution and projection It will also create overviews And finally it will arragne the raster in a cog way. You could take the dest file upload it to a web server that supports ranges and user GeoRaster.get_tile on it, You are geranteed that you will get as minimal data as possible """ src_raster = tl.GeoRaster2.open(src) bounding_box = src_raster.footprint().get_shape(tl.constants.WGS84_CRS).bounds tile = mercantile.bounding_tile(*bounding_box) dest_resolution = mercator_upper_zoom_level(src_raster) bounds = tl.GeoVector.from_xyz(tile.x, tile.y, tile.z).get_bounds(tl.constants.WEB_MERCATOR_CRS) create_options = { "tiled": "YES", "blocksize": 256, "compress": "DEFLATE", "photometric": "MINISBLACK" } with TemporaryDirectory() as temp_dir: temp_file = os.path.join(temp_dir, 'temp.tif') warp(src, temp_file, dst_crs=tl.constants.WEB_MERCATOR_CRS, resolution=dest_resolution, dst_bounds=bounds, create_options=create_options) with rasterio.Env(GDAL_TIFF_INTERNAL_MASK=True, GDAL_TIFF_OVR_BLOCKSIZE=256): resampling = rasterio.enums.Resampling.gauss with rasterio.open(temp_file, 'r+') as tmp_raster: factors = _calc_overviews_factors(tmp_raster) tmp_raster.build_overviews(factors, resampling=resampling) tmp_raster.update_tags(ns='rio_overview', resampling=resampling.name) telluric_tags = _get_telluric_tags(src) if telluric_tags: tmp_raster.update_tags(**telluric_tags) rasterio_sh.copy(temp_file, dest, COPY_SRC_OVERVIEWS=True, tiled=True, compress='DEFLATE', photometric='MINISBLACK')
python
def tileserver_optimized_raster(src, dest): """ This method converts a raster to a tileserver optimized raster. The method will reproject the raster to align to the xyz system, in resolution and projection It will also create overviews And finally it will arragne the raster in a cog way. You could take the dest file upload it to a web server that supports ranges and user GeoRaster.get_tile on it, You are geranteed that you will get as minimal data as possible """ src_raster = tl.GeoRaster2.open(src) bounding_box = src_raster.footprint().get_shape(tl.constants.WGS84_CRS).bounds tile = mercantile.bounding_tile(*bounding_box) dest_resolution = mercator_upper_zoom_level(src_raster) bounds = tl.GeoVector.from_xyz(tile.x, tile.y, tile.z).get_bounds(tl.constants.WEB_MERCATOR_CRS) create_options = { "tiled": "YES", "blocksize": 256, "compress": "DEFLATE", "photometric": "MINISBLACK" } with TemporaryDirectory() as temp_dir: temp_file = os.path.join(temp_dir, 'temp.tif') warp(src, temp_file, dst_crs=tl.constants.WEB_MERCATOR_CRS, resolution=dest_resolution, dst_bounds=bounds, create_options=create_options) with rasterio.Env(GDAL_TIFF_INTERNAL_MASK=True, GDAL_TIFF_OVR_BLOCKSIZE=256): resampling = rasterio.enums.Resampling.gauss with rasterio.open(temp_file, 'r+') as tmp_raster: factors = _calc_overviews_factors(tmp_raster) tmp_raster.build_overviews(factors, resampling=resampling) tmp_raster.update_tags(ns='rio_overview', resampling=resampling.name) telluric_tags = _get_telluric_tags(src) if telluric_tags: tmp_raster.update_tags(**telluric_tags) rasterio_sh.copy(temp_file, dest, COPY_SRC_OVERVIEWS=True, tiled=True, compress='DEFLATE', photometric='MINISBLACK')
[ "def", "tileserver_optimized_raster", "(", "src", ",", "dest", ")", ":", "src_raster", "=", "tl", ".", "GeoRaster2", ".", "open", "(", "src", ")", "bounding_box", "=", "src_raster", ".", "footprint", "(", ")", ".", "get_shape", "(", "tl", ".", "constants", ".", "WGS84_CRS", ")", ".", "bounds", "tile", "=", "mercantile", ".", "bounding_tile", "(", "*", "bounding_box", ")", "dest_resolution", "=", "mercator_upper_zoom_level", "(", "src_raster", ")", "bounds", "=", "tl", ".", "GeoVector", ".", "from_xyz", "(", "tile", ".", "x", ",", "tile", ".", "y", ",", "tile", ".", "z", ")", ".", "get_bounds", "(", "tl", ".", "constants", ".", "WEB_MERCATOR_CRS", ")", "create_options", "=", "{", "\"tiled\"", ":", "\"YES\"", ",", "\"blocksize\"", ":", "256", ",", "\"compress\"", ":", "\"DEFLATE\"", ",", "\"photometric\"", ":", "\"MINISBLACK\"", "}", "with", "TemporaryDirectory", "(", ")", "as", "temp_dir", ":", "temp_file", "=", "os", ".", "path", ".", "join", "(", "temp_dir", ",", "'temp.tif'", ")", "warp", "(", "src", ",", "temp_file", ",", "dst_crs", "=", "tl", ".", "constants", ".", "WEB_MERCATOR_CRS", ",", "resolution", "=", "dest_resolution", ",", "dst_bounds", "=", "bounds", ",", "create_options", "=", "create_options", ")", "with", "rasterio", ".", "Env", "(", "GDAL_TIFF_INTERNAL_MASK", "=", "True", ",", "GDAL_TIFF_OVR_BLOCKSIZE", "=", "256", ")", ":", "resampling", "=", "rasterio", ".", "enums", ".", "Resampling", ".", "gauss", "with", "rasterio", ".", "open", "(", "temp_file", ",", "'r+'", ")", "as", "tmp_raster", ":", "factors", "=", "_calc_overviews_factors", "(", "tmp_raster", ")", "tmp_raster", ".", "build_overviews", "(", "factors", ",", "resampling", "=", "resampling", ")", "tmp_raster", ".", "update_tags", "(", "ns", "=", "'rio_overview'", ",", "resampling", "=", "resampling", ".", "name", ")", "telluric_tags", "=", "_get_telluric_tags", "(", "src", ")", "if", "telluric_tags", ":", "tmp_raster", ".", "update_tags", "(", "*", "*", "telluric_tags", ")", "rasterio_sh", ".", "copy", "(", "temp_file", ",", "dest", ",", "COPY_SRC_OVERVIEWS", "=", "True", ",", "tiled", "=", "True", ",", "compress", "=", "'DEFLATE'", ",", "photometric", "=", "'MINISBLACK'", ")" ]
This method converts a raster to a tileserver optimized raster. The method will reproject the raster to align to the xyz system, in resolution and projection It will also create overviews And finally it will arragne the raster in a cog way. You could take the dest file upload it to a web server that supports ranges and user GeoRaster.get_tile on it, You are geranteed that you will get as minimal data as possible
[ "This", "method", "converts", "a", "raster", "to", "a", "tileserver", "optimized", "raster", ".", "The", "method", "will", "reproject", "the", "raster", "to", "align", "to", "the", "xyz", "system", "in", "resolution", "and", "projection", "It", "will", "also", "create", "overviews", "And", "finally", "it", "will", "arragne", "the", "raster", "in", "a", "cog", "way", ".", "You", "could", "take", "the", "dest", "file", "upload", "it", "to", "a", "web", "server", "that", "supports", "ranges", "and", "user", "GeoRaster", ".", "get_tile", "on", "it", "You", "are", "geranteed", "that", "you", "will", "get", "as", "minimal", "data", "as", "possible" ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/util/tileserver_utils.py#L20-L58
14,579
satellogic/telluric
telluric/vectors.py
get_dimension
def get_dimension(geometry): """Gets the dimension of a Fiona-like geometry element.""" coordinates = geometry["coordinates"] type_ = geometry["type"] if type_ in ('Point',): return len(coordinates) elif type_ in ('LineString', 'MultiPoint'): return len(coordinates[0]) elif type_ in ('Polygon', 'MultiLineString'): return len(coordinates[0][0]) elif type_ in ('MultiPolygon',): return len(coordinates[0][0][0]) else: raise ValueError("Invalid type '{}'".format(type_))
python
def get_dimension(geometry): """Gets the dimension of a Fiona-like geometry element.""" coordinates = geometry["coordinates"] type_ = geometry["type"] if type_ in ('Point',): return len(coordinates) elif type_ in ('LineString', 'MultiPoint'): return len(coordinates[0]) elif type_ in ('Polygon', 'MultiLineString'): return len(coordinates[0][0]) elif type_ in ('MultiPolygon',): return len(coordinates[0][0][0]) else: raise ValueError("Invalid type '{}'".format(type_))
[ "def", "get_dimension", "(", "geometry", ")", ":", "coordinates", "=", "geometry", "[", "\"coordinates\"", "]", "type_", "=", "geometry", "[", "\"type\"", "]", "if", "type_", "in", "(", "'Point'", ",", ")", ":", "return", "len", "(", "coordinates", ")", "elif", "type_", "in", "(", "'LineString'", ",", "'MultiPoint'", ")", ":", "return", "len", "(", "coordinates", "[", "0", "]", ")", "elif", "type_", "in", "(", "'Polygon'", ",", "'MultiLineString'", ")", ":", "return", "len", "(", "coordinates", "[", "0", "]", "[", "0", "]", ")", "elif", "type_", "in", "(", "'MultiPolygon'", ",", ")", ":", "return", "len", "(", "coordinates", "[", "0", "]", "[", "0", "]", "[", "0", "]", ")", "else", ":", "raise", "ValueError", "(", "\"Invalid type '{}'\"", ".", "format", "(", "type_", ")", ")" ]
Gets the dimension of a Fiona-like geometry element.
[ "Gets", "the", "dimension", "of", "a", "Fiona", "-", "like", "geometry", "element", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/vectors.py#L82-L95
14,580
satellogic/telluric
telluric/vectors.py
GeoVector.from_geojson
def from_geojson(cls, filename): """Load vector from geojson.""" with open(filename) as fd: geometry = json.load(fd) if 'type' not in geometry: raise TypeError("%s is not a valid geojson." % (filename,)) return cls(to_shape(geometry), WGS84_CRS)
python
def from_geojson(cls, filename): """Load vector from geojson.""" with open(filename) as fd: geometry = json.load(fd) if 'type' not in geometry: raise TypeError("%s is not a valid geojson." % (filename,)) return cls(to_shape(geometry), WGS84_CRS)
[ "def", "from_geojson", "(", "cls", ",", "filename", ")", ":", "with", "open", "(", "filename", ")", "as", "fd", ":", "geometry", "=", "json", ".", "load", "(", "fd", ")", "if", "'type'", "not", "in", "geometry", ":", "raise", "TypeError", "(", "\"%s is not a valid geojson.\"", "%", "(", "filename", ",", ")", ")", "return", "cls", "(", "to_shape", "(", "geometry", ")", ",", "WGS84_CRS", ")" ]
Load vector from geojson.
[ "Load", "vector", "from", "geojson", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/vectors.py#L296-L304
14,581
satellogic/telluric
telluric/vectors.py
GeoVector.to_geojson
def to_geojson(self, filename): """Save vector as geojson.""" with open(filename, 'w') as fd: json.dump(self.to_record(WGS84_CRS), fd)
python
def to_geojson(self, filename): """Save vector as geojson.""" with open(filename, 'w') as fd: json.dump(self.to_record(WGS84_CRS), fd)
[ "def", "to_geojson", "(", "self", ",", "filename", ")", ":", "with", "open", "(", "filename", ",", "'w'", ")", "as", "fd", ":", "json", ".", "dump", "(", "self", ".", "to_record", "(", "WGS84_CRS", ")", ",", "fd", ")" ]
Save vector as geojson.
[ "Save", "vector", "as", "geojson", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/vectors.py#L306-L309
14,582
satellogic/telluric
telluric/vectors.py
GeoVector.from_bounds
def from_bounds(cls, xmin, ymin, xmax, ymax, crs=DEFAULT_CRS): """Creates GeoVector object from bounds. Parameters ---------- xmin, ymin, xmax, ymax : float Bounds of the GeoVector. Also (east, south, north, west). crs : ~rasterio.crs.CRS, dict Projection, default to :py:data:`telluric.constants.DEFAULT_CRS`. Examples -------- >>> from telluric import GeoVector >>> GeoVector.from_bounds(xmin=0, ymin=0, xmax=1, ymax=1) GeoVector(shape=POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0)), crs=CRS({'init': 'epsg:4326'})) >>> GeoVector.from_bounds(xmin=0, xmax=1, ymin=0, ymax=1) GeoVector(shape=POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0)), crs=CRS({'init': 'epsg:4326'})) """ return cls(Polygon.from_bounds(xmin, ymin, xmax, ymax), crs)
python
def from_bounds(cls, xmin, ymin, xmax, ymax, crs=DEFAULT_CRS): """Creates GeoVector object from bounds. Parameters ---------- xmin, ymin, xmax, ymax : float Bounds of the GeoVector. Also (east, south, north, west). crs : ~rasterio.crs.CRS, dict Projection, default to :py:data:`telluric.constants.DEFAULT_CRS`. Examples -------- >>> from telluric import GeoVector >>> GeoVector.from_bounds(xmin=0, ymin=0, xmax=1, ymax=1) GeoVector(shape=POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0)), crs=CRS({'init': 'epsg:4326'})) >>> GeoVector.from_bounds(xmin=0, xmax=1, ymin=0, ymax=1) GeoVector(shape=POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0)), crs=CRS({'init': 'epsg:4326'})) """ return cls(Polygon.from_bounds(xmin, ymin, xmax, ymax), crs)
[ "def", "from_bounds", "(", "cls", ",", "xmin", ",", "ymin", ",", "xmax", ",", "ymax", ",", "crs", "=", "DEFAULT_CRS", ")", ":", "return", "cls", "(", "Polygon", ".", "from_bounds", "(", "xmin", ",", "ymin", ",", "xmax", ",", "ymax", ")", ",", "crs", ")" ]
Creates GeoVector object from bounds. Parameters ---------- xmin, ymin, xmax, ymax : float Bounds of the GeoVector. Also (east, south, north, west). crs : ~rasterio.crs.CRS, dict Projection, default to :py:data:`telluric.constants.DEFAULT_CRS`. Examples -------- >>> from telluric import GeoVector >>> GeoVector.from_bounds(xmin=0, ymin=0, xmax=1, ymax=1) GeoVector(shape=POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0)), crs=CRS({'init': 'epsg:4326'})) >>> GeoVector.from_bounds(xmin=0, xmax=1, ymin=0, ymax=1) GeoVector(shape=POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0)), crs=CRS({'init': 'epsg:4326'}))
[ "Creates", "GeoVector", "object", "from", "bounds", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/vectors.py#L328-L347
14,583
satellogic/telluric
telluric/vectors.py
GeoVector.from_xyz
def from_xyz(cls, x, y, z): """Creates GeoVector from Mercator slippy map values. """ bb = xy_bounds(x, y, z) return cls.from_bounds(xmin=bb.left, ymin=bb.bottom, xmax=bb.right, ymax=bb.top, crs=WEB_MERCATOR_CRS)
python
def from_xyz(cls, x, y, z): """Creates GeoVector from Mercator slippy map values. """ bb = xy_bounds(x, y, z) return cls.from_bounds(xmin=bb.left, ymin=bb.bottom, xmax=bb.right, ymax=bb.top, crs=WEB_MERCATOR_CRS)
[ "def", "from_xyz", "(", "cls", ",", "x", ",", "y", ",", "z", ")", ":", "bb", "=", "xy_bounds", "(", "x", ",", "y", ",", "z", ")", "return", "cls", ".", "from_bounds", "(", "xmin", "=", "bb", ".", "left", ",", "ymin", "=", "bb", ".", "bottom", ",", "xmax", "=", "bb", ".", "right", ",", "ymax", "=", "bb", ".", "top", ",", "crs", "=", "WEB_MERCATOR_CRS", ")" ]
Creates GeoVector from Mercator slippy map values.
[ "Creates", "GeoVector", "from", "Mercator", "slippy", "map", "values", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/vectors.py#L350-L357
14,584
satellogic/telluric
telluric/vectors.py
GeoVector.cascaded_union
def cascaded_union(cls, vectors, dst_crs, prevalidate=False): # type: (list, CRS, bool) -> GeoVector """Generate a GeoVector from the cascade union of the impute vectors.""" try: shapes = [geometry.get_shape(dst_crs) for geometry in vectors] if prevalidate: if not all([sh.is_valid for sh in shapes]): warnings.warn( "Some invalid shapes found, discarding them." ) except IndexError: crs = DEFAULT_CRS shapes = [] return cls( cascaded_union([sh for sh in shapes if sh.is_valid]).simplify(0), crs=dst_crs )
python
def cascaded_union(cls, vectors, dst_crs, prevalidate=False): # type: (list, CRS, bool) -> GeoVector """Generate a GeoVector from the cascade union of the impute vectors.""" try: shapes = [geometry.get_shape(dst_crs) for geometry in vectors] if prevalidate: if not all([sh.is_valid for sh in shapes]): warnings.warn( "Some invalid shapes found, discarding them." ) except IndexError: crs = DEFAULT_CRS shapes = [] return cls( cascaded_union([sh for sh in shapes if sh.is_valid]).simplify(0), crs=dst_crs )
[ "def", "cascaded_union", "(", "cls", ",", "vectors", ",", "dst_crs", ",", "prevalidate", "=", "False", ")", ":", "# type: (list, CRS, bool) -> GeoVector", "try", ":", "shapes", "=", "[", "geometry", ".", "get_shape", "(", "dst_crs", ")", "for", "geometry", "in", "vectors", "]", "if", "prevalidate", ":", "if", "not", "all", "(", "[", "sh", ".", "is_valid", "for", "sh", "in", "shapes", "]", ")", ":", "warnings", ".", "warn", "(", "\"Some invalid shapes found, discarding them.\"", ")", "except", "IndexError", ":", "crs", "=", "DEFAULT_CRS", "shapes", "=", "[", "]", "return", "cls", "(", "cascaded_union", "(", "[", "sh", "for", "sh", "in", "shapes", "if", "sh", ".", "is_valid", "]", ")", ".", "simplify", "(", "0", ")", ",", "crs", "=", "dst_crs", ")" ]
Generate a GeoVector from the cascade union of the impute vectors.
[ "Generate", "a", "GeoVector", "from", "the", "cascade", "union", "of", "the", "impute", "vectors", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/vectors.py#L384-L403
14,585
satellogic/telluric
telluric/vectors.py
GeoVector.from_record
def from_record(cls, record, crs): """Load vector from record.""" if 'type' not in record: raise TypeError("The data isn't a valid record.") return cls(to_shape(record), crs)
python
def from_record(cls, record, crs): """Load vector from record.""" if 'type' not in record: raise TypeError("The data isn't a valid record.") return cls(to_shape(record), crs)
[ "def", "from_record", "(", "cls", ",", "record", ",", "crs", ")", ":", "if", "'type'", "not", "in", "record", ":", "raise", "TypeError", "(", "\"The data isn't a valid record.\"", ")", "return", "cls", "(", "to_shape", "(", "record", ")", ",", "crs", ")" ]
Load vector from record.
[ "Load", "vector", "from", "record", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/vectors.py#L444-L449
14,586
satellogic/telluric
telluric/vectors.py
GeoVector.get_bounding_box
def get_bounding_box(self, crs): """Gets bounding box as GeoVector in a specified CRS.""" return self.from_bounds(*self.get_bounds(crs), crs=crs)
python
def get_bounding_box(self, crs): """Gets bounding box as GeoVector in a specified CRS.""" return self.from_bounds(*self.get_bounds(crs), crs=crs)
[ "def", "get_bounding_box", "(", "self", ",", "crs", ")", ":", "return", "self", ".", "from_bounds", "(", "*", "self", ".", "get_bounds", "(", "crs", ")", ",", "crs", "=", "crs", ")" ]
Gets bounding box as GeoVector in a specified CRS.
[ "Gets", "bounding", "box", "as", "GeoVector", "in", "a", "specified", "CRS", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/vectors.py#L464-L466
14,587
satellogic/telluric
telluric/vectors.py
GeoVector.polygonize
def polygonize(self, width, cap_style_line=CAP_STYLE.flat, cap_style_point=CAP_STYLE.round): """Turns line or point into a buffered polygon.""" shape = self._shape if isinstance(shape, (LineString, MultiLineString)): return self.__class__( shape.buffer(width / 2, cap_style=cap_style_line), self.crs ) elif isinstance(shape, (Point, MultiPoint)): return self.__class__( shape.buffer(width / 2, cap_style=cap_style_point), self.crs ) else: return self
python
def polygonize(self, width, cap_style_line=CAP_STYLE.flat, cap_style_point=CAP_STYLE.round): """Turns line or point into a buffered polygon.""" shape = self._shape if isinstance(shape, (LineString, MultiLineString)): return self.__class__( shape.buffer(width / 2, cap_style=cap_style_line), self.crs ) elif isinstance(shape, (Point, MultiPoint)): return self.__class__( shape.buffer(width / 2, cap_style=cap_style_point), self.crs ) else: return self
[ "def", "polygonize", "(", "self", ",", "width", ",", "cap_style_line", "=", "CAP_STYLE", ".", "flat", ",", "cap_style_point", "=", "CAP_STYLE", ".", "round", ")", ":", "shape", "=", "self", ".", "_shape", "if", "isinstance", "(", "shape", ",", "(", "LineString", ",", "MultiLineString", ")", ")", ":", "return", "self", ".", "__class__", "(", "shape", ".", "buffer", "(", "width", "/", "2", ",", "cap_style", "=", "cap_style_line", ")", ",", "self", ".", "crs", ")", "elif", "isinstance", "(", "shape", ",", "(", "Point", ",", "MultiPoint", ")", ")", ":", "return", "self", ".", "__class__", "(", "shape", ".", "buffer", "(", "width", "/", "2", ",", "cap_style", "=", "cap_style_point", ")", ",", "self", ".", "crs", ")", "else", ":", "return", "self" ]
Turns line or point into a buffered polygon.
[ "Turns", "line", "or", "point", "into", "a", "buffered", "polygon", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/vectors.py#L504-L518
14,588
satellogic/telluric
telluric/vectors.py
GeoVector.tiles
def tiles(self, zooms, truncate=False): """ Iterator over the tiles intersecting the bounding box of the vector Parameters ---------- zooms : int or sequence of int One or more zoom levels. truncate : bool, optional Whether or not to truncate inputs to web mercator limits. Yields ------ mercantile.Tile object (`namedtuple` with x, y, z) """ west, south, east, north = self.get_bounds(WGS84_CRS) return tiles(west, south, east, north, zooms, truncate)
python
def tiles(self, zooms, truncate=False): """ Iterator over the tiles intersecting the bounding box of the vector Parameters ---------- zooms : int or sequence of int One or more zoom levels. truncate : bool, optional Whether or not to truncate inputs to web mercator limits. Yields ------ mercantile.Tile object (`namedtuple` with x, y, z) """ west, south, east, north = self.get_bounds(WGS84_CRS) return tiles(west, south, east, north, zooms, truncate)
[ "def", "tiles", "(", "self", ",", "zooms", ",", "truncate", "=", "False", ")", ":", "west", ",", "south", ",", "east", ",", "north", "=", "self", ".", "get_bounds", "(", "WGS84_CRS", ")", "return", "tiles", "(", "west", ",", "south", ",", "east", ",", "north", ",", "zooms", ",", "truncate", ")" ]
Iterator over the tiles intersecting the bounding box of the vector Parameters ---------- zooms : int or sequence of int One or more zoom levels. truncate : bool, optional Whether or not to truncate inputs to web mercator limits. Yields ------ mercantile.Tile object (`namedtuple` with x, y, z)
[ "Iterator", "over", "the", "tiles", "intersecting", "the", "bounding", "box", "of", "the", "vector" ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/vectors.py#L520-L536
14,589
satellogic/telluric
telluric/util/raster_utils.py
_join_masks_from_masked_array
def _join_masks_from_masked_array(data): """Union of masks.""" if not isinstance(data.mask, np.ndarray): # workaround to handle mask compressed to single value mask = np.empty(data.data.shape, dtype=np.bool) mask.fill(data.mask) return mask mask = data.mask[0].copy() for i in range(1, len(data.mask)): mask = np.logical_or(mask, data.mask[i]) return mask[np.newaxis, :, :]
python
def _join_masks_from_masked_array(data): """Union of masks.""" if not isinstance(data.mask, np.ndarray): # workaround to handle mask compressed to single value mask = np.empty(data.data.shape, dtype=np.bool) mask.fill(data.mask) return mask mask = data.mask[0].copy() for i in range(1, len(data.mask)): mask = np.logical_or(mask, data.mask[i]) return mask[np.newaxis, :, :]
[ "def", "_join_masks_from_masked_array", "(", "data", ")", ":", "if", "not", "isinstance", "(", "data", ".", "mask", ",", "np", ".", "ndarray", ")", ":", "# workaround to handle mask compressed to single value", "mask", "=", "np", ".", "empty", "(", "data", ".", "data", ".", "shape", ",", "dtype", "=", "np", ".", "bool", ")", "mask", ".", "fill", "(", "data", ".", "mask", ")", "return", "mask", "mask", "=", "data", ".", "mask", "[", "0", "]", ".", "copy", "(", ")", "for", "i", "in", "range", "(", "1", ",", "len", "(", "data", ".", "mask", ")", ")", ":", "mask", "=", "np", ".", "logical_or", "(", "mask", ",", "data", ".", "mask", "[", "i", "]", ")", "return", "mask", "[", "np", ".", "newaxis", ",", ":", ",", ":", "]" ]
Union of masks.
[ "Union", "of", "masks", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/util/raster_utils.py#L27-L37
14,590
satellogic/telluric
telluric/util/raster_utils.py
_creation_options_for_cog
def _creation_options_for_cog(creation_options, source_profile, blocksize): """ it uses the profile of the source raster, override anything using the creation_options and guarantees we will have tiled raster and blocksize """ if not(creation_options): creation_options = {} creation_options["blocksize"] = blocksize creation_options["tiled"] = True defaults = {"nodata": None, "compress": "lzw"} for key in ["nodata", "compress"]: if key not in creation_options: creation_options[key] = source_profile.get(key, defaults.get(key)) return creation_options
python
def _creation_options_for_cog(creation_options, source_profile, blocksize): """ it uses the profile of the source raster, override anything using the creation_options and guarantees we will have tiled raster and blocksize """ if not(creation_options): creation_options = {} creation_options["blocksize"] = blocksize creation_options["tiled"] = True defaults = {"nodata": None, "compress": "lzw"} for key in ["nodata", "compress"]: if key not in creation_options: creation_options[key] = source_profile.get(key, defaults.get(key)) return creation_options
[ "def", "_creation_options_for_cog", "(", "creation_options", ",", "source_profile", ",", "blocksize", ")", ":", "if", "not", "(", "creation_options", ")", ":", "creation_options", "=", "{", "}", "creation_options", "[", "\"blocksize\"", "]", "=", "blocksize", "creation_options", "[", "\"tiled\"", "]", "=", "True", "defaults", "=", "{", "\"nodata\"", ":", "None", ",", "\"compress\"", ":", "\"lzw\"", "}", "for", "key", "in", "[", "\"nodata\"", ",", "\"compress\"", "]", ":", "if", "key", "not", "in", "creation_options", ":", "creation_options", "[", "key", "]", "=", "source_profile", ".", "get", "(", "key", ",", "defaults", ".", "get", "(", "key", ")", ")", "return", "creation_options" ]
it uses the profile of the source raster, override anything using the creation_options and guarantees we will have tiled raster and blocksize
[ "it", "uses", "the", "profile", "of", "the", "source", "raster", "override", "anything", "using", "the", "creation_options", "and", "guarantees", "we", "will", "have", "tiled", "raster", "and", "blocksize" ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/util/raster_utils.py#L70-L84
14,591
satellogic/telluric
telluric/util/raster_utils.py
convert_to_cog
def convert_to_cog(source_file, destination_file, resampling=rasterio.enums.Resampling.gauss, blocksize=256, overview_blocksize=256, creation_options=None): """Convert source file to a Cloud Optimized GeoTiff new file. :param source_file: path to the original raster :param destination_file: path to the new raster :param resampling: which Resampling to use on reading, default Resampling.gauss :param blocksize: the size of the blocks default 256 :param overview_blocksize: the block size of the overviews, default 256 :param creation_options: <dictioanry>, options that can override the source raster profile, notice that you can't override tiled=True, and the blocksize """ with rasterio.open(source_file) as src: # creation_options overrides proile source_profile = src.profile creation_options = _creation_options_for_cog(creation_options, source_profile, blocksize) with rasterio.Env(GDAL_TIFF_INTERNAL_MASK=True, GDAL_TIFF_OVR_BLOCKSIZE=overview_blocksize): with TemporaryDirectory() as temp_dir: temp_file = os.path.join(temp_dir, 'temp.tif') rasterio_sh.copy(source_file, temp_file, **creation_options) with rasterio.open(temp_file, 'r+') as dest: factors = _calc_overviews_factors(dest) dest.build_overviews(factors, resampling=resampling) dest.update_tags(ns='rio_overview', resampling=resampling.name) telluric_tags = _get_telluric_tags(source_file) if telluric_tags: dest.update_tags(**telluric_tags) rasterio_sh.copy(temp_file, destination_file, COPY_SRC_OVERVIEWS=True, **creation_options)
python
def convert_to_cog(source_file, destination_file, resampling=rasterio.enums.Resampling.gauss, blocksize=256, overview_blocksize=256, creation_options=None): """Convert source file to a Cloud Optimized GeoTiff new file. :param source_file: path to the original raster :param destination_file: path to the new raster :param resampling: which Resampling to use on reading, default Resampling.gauss :param blocksize: the size of the blocks default 256 :param overview_blocksize: the block size of the overviews, default 256 :param creation_options: <dictioanry>, options that can override the source raster profile, notice that you can't override tiled=True, and the blocksize """ with rasterio.open(source_file) as src: # creation_options overrides proile source_profile = src.profile creation_options = _creation_options_for_cog(creation_options, source_profile, blocksize) with rasterio.Env(GDAL_TIFF_INTERNAL_MASK=True, GDAL_TIFF_OVR_BLOCKSIZE=overview_blocksize): with TemporaryDirectory() as temp_dir: temp_file = os.path.join(temp_dir, 'temp.tif') rasterio_sh.copy(source_file, temp_file, **creation_options) with rasterio.open(temp_file, 'r+') as dest: factors = _calc_overviews_factors(dest) dest.build_overviews(factors, resampling=resampling) dest.update_tags(ns='rio_overview', resampling=resampling.name) telluric_tags = _get_telluric_tags(source_file) if telluric_tags: dest.update_tags(**telluric_tags) rasterio_sh.copy(temp_file, destination_file, COPY_SRC_OVERVIEWS=True, **creation_options)
[ "def", "convert_to_cog", "(", "source_file", ",", "destination_file", ",", "resampling", "=", "rasterio", ".", "enums", ".", "Resampling", ".", "gauss", ",", "blocksize", "=", "256", ",", "overview_blocksize", "=", "256", ",", "creation_options", "=", "None", ")", ":", "with", "rasterio", ".", "open", "(", "source_file", ")", "as", "src", ":", "# creation_options overrides proile", "source_profile", "=", "src", ".", "profile", "creation_options", "=", "_creation_options_for_cog", "(", "creation_options", ",", "source_profile", ",", "blocksize", ")", "with", "rasterio", ".", "Env", "(", "GDAL_TIFF_INTERNAL_MASK", "=", "True", ",", "GDAL_TIFF_OVR_BLOCKSIZE", "=", "overview_blocksize", ")", ":", "with", "TemporaryDirectory", "(", ")", "as", "temp_dir", ":", "temp_file", "=", "os", ".", "path", ".", "join", "(", "temp_dir", ",", "'temp.tif'", ")", "rasterio_sh", ".", "copy", "(", "source_file", ",", "temp_file", ",", "*", "*", "creation_options", ")", "with", "rasterio", ".", "open", "(", "temp_file", ",", "'r+'", ")", "as", "dest", ":", "factors", "=", "_calc_overviews_factors", "(", "dest", ")", "dest", ".", "build_overviews", "(", "factors", ",", "resampling", "=", "resampling", ")", "dest", ".", "update_tags", "(", "ns", "=", "'rio_overview'", ",", "resampling", "=", "resampling", ".", "name", ")", "telluric_tags", "=", "_get_telluric_tags", "(", "source_file", ")", "if", "telluric_tags", ":", "dest", ".", "update_tags", "(", "*", "*", "telluric_tags", ")", "rasterio_sh", ".", "copy", "(", "temp_file", ",", "destination_file", ",", "COPY_SRC_OVERVIEWS", "=", "True", ",", "*", "*", "creation_options", ")" ]
Convert source file to a Cloud Optimized GeoTiff new file. :param source_file: path to the original raster :param destination_file: path to the new raster :param resampling: which Resampling to use on reading, default Resampling.gauss :param blocksize: the size of the blocks default 256 :param overview_blocksize: the block size of the overviews, default 256 :param creation_options: <dictioanry>, options that can override the source raster profile, notice that you can't override tiled=True, and the blocksize
[ "Convert", "source", "file", "to", "a", "Cloud", "Optimized", "GeoTiff", "new", "file", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/util/raster_utils.py#L87-L119
14,592
satellogic/telluric
telluric/util/raster_utils.py
warp
def warp(source_file, destination_file, dst_crs=None, resolution=None, dimensions=None, src_bounds=None, dst_bounds=None, src_nodata=None, dst_nodata=None, target_aligned_pixels=False, check_invert_proj=True, creation_options=None, resampling=Resampling.cubic, **kwargs): """Warp a raster dataset. Parameters ------------ source_file: str, file object or pathlib.Path object Source file. destination_file: str, file object or pathlib.Path object Destination file. dst_crs: rasterio.crs.CRS, optional Target coordinate reference system. resolution: tuple (x resolution, y resolution) or float, optional Target resolution, in units of target coordinate reference system. dimensions: tuple (width, height), optional Output file size in pixels and lines. src_bounds: tuple (xmin, ymin, xmax, ymax), optional Georeferenced extent of output file from source bounds (in source georeferenced units). dst_bounds: tuple (xmin, ymin, xmax, ymax), optional Georeferenced extent of output file from destination bounds (in destination georeferenced units). src_nodata: int, float, or nan, optional Manually overridden source nodata. dst_nodata: int, float, or nan, optional Manually overridden destination nodata. target_aligned_pixels: bool, optional Align the output bounds based on the resolution. Default is `False`. check_invert_proj: bool, optional Constrain output to valid coordinate region in dst_crs. Default is `True`. creation_options: dict, optional Custom creation options. resampling: rasterio.enums.Resampling Reprojection resampling method. Default is `cubic`. kwargs: optional Additional arguments passed to transformation function. Returns --------- out: None Output is written to destination. """ with rasterio.Env(CHECK_WITH_INVERT_PROJ=check_invert_proj): with rasterio.open(source_file) as src: out_kwargs = src.profile.copy() dst_crs, dst_transform, dst_width, dst_height = calc_transform( src, dst_crs, resolution, dimensions, src_bounds, dst_bounds, target_aligned_pixels) # If src_nodata is not None, update the dst metadata NODATA # value to src_nodata (will be overridden by dst_nodata if it is not None. if src_nodata is not None: # Update the destination NODATA value out_kwargs.update({ 'nodata': src_nodata }) # Validate a manually set destination NODATA value. if dst_nodata is not None: if src_nodata is None and src.meta['nodata'] is None: raise ValueError('src_nodata must be provided because dst_nodata is not None') else: out_kwargs.update({'nodata': dst_nodata}) out_kwargs.update({ 'crs': dst_crs, 'transform': dst_transform, 'width': dst_width, 'height': dst_height }) # Adjust block size if necessary. if ('blockxsize' in out_kwargs and dst_width < out_kwargs['blockxsize']): del out_kwargs['blockxsize'] if ('blockysize' in out_kwargs and dst_height < out_kwargs['blockysize']): del out_kwargs['blockysize'] if creation_options is not None: out_kwargs.update(**creation_options) with rasterio.open(destination_file, 'w', **out_kwargs) as dst: reproject( source=rasterio.band(src, src.indexes), destination=rasterio.band(dst, dst.indexes), src_transform=src.transform, src_crs=src.crs, src_nodata=src_nodata, dst_transform=out_kwargs['transform'], dst_crs=out_kwargs['crs'], dst_nodata=dst_nodata, resampling=resampling, **kwargs)
python
def warp(source_file, destination_file, dst_crs=None, resolution=None, dimensions=None, src_bounds=None, dst_bounds=None, src_nodata=None, dst_nodata=None, target_aligned_pixels=False, check_invert_proj=True, creation_options=None, resampling=Resampling.cubic, **kwargs): """Warp a raster dataset. Parameters ------------ source_file: str, file object or pathlib.Path object Source file. destination_file: str, file object or pathlib.Path object Destination file. dst_crs: rasterio.crs.CRS, optional Target coordinate reference system. resolution: tuple (x resolution, y resolution) or float, optional Target resolution, in units of target coordinate reference system. dimensions: tuple (width, height), optional Output file size in pixels and lines. src_bounds: tuple (xmin, ymin, xmax, ymax), optional Georeferenced extent of output file from source bounds (in source georeferenced units). dst_bounds: tuple (xmin, ymin, xmax, ymax), optional Georeferenced extent of output file from destination bounds (in destination georeferenced units). src_nodata: int, float, or nan, optional Manually overridden source nodata. dst_nodata: int, float, or nan, optional Manually overridden destination nodata. target_aligned_pixels: bool, optional Align the output bounds based on the resolution. Default is `False`. check_invert_proj: bool, optional Constrain output to valid coordinate region in dst_crs. Default is `True`. creation_options: dict, optional Custom creation options. resampling: rasterio.enums.Resampling Reprojection resampling method. Default is `cubic`. kwargs: optional Additional arguments passed to transformation function. Returns --------- out: None Output is written to destination. """ with rasterio.Env(CHECK_WITH_INVERT_PROJ=check_invert_proj): with rasterio.open(source_file) as src: out_kwargs = src.profile.copy() dst_crs, dst_transform, dst_width, dst_height = calc_transform( src, dst_crs, resolution, dimensions, src_bounds, dst_bounds, target_aligned_pixels) # If src_nodata is not None, update the dst metadata NODATA # value to src_nodata (will be overridden by dst_nodata if it is not None. if src_nodata is not None: # Update the destination NODATA value out_kwargs.update({ 'nodata': src_nodata }) # Validate a manually set destination NODATA value. if dst_nodata is not None: if src_nodata is None and src.meta['nodata'] is None: raise ValueError('src_nodata must be provided because dst_nodata is not None') else: out_kwargs.update({'nodata': dst_nodata}) out_kwargs.update({ 'crs': dst_crs, 'transform': dst_transform, 'width': dst_width, 'height': dst_height }) # Adjust block size if necessary. if ('blockxsize' in out_kwargs and dst_width < out_kwargs['blockxsize']): del out_kwargs['blockxsize'] if ('blockysize' in out_kwargs and dst_height < out_kwargs['blockysize']): del out_kwargs['blockysize'] if creation_options is not None: out_kwargs.update(**creation_options) with rasterio.open(destination_file, 'w', **out_kwargs) as dst: reproject( source=rasterio.band(src, src.indexes), destination=rasterio.band(dst, dst.indexes), src_transform=src.transform, src_crs=src.crs, src_nodata=src_nodata, dst_transform=out_kwargs['transform'], dst_crs=out_kwargs['crs'], dst_nodata=dst_nodata, resampling=resampling, **kwargs)
[ "def", "warp", "(", "source_file", ",", "destination_file", ",", "dst_crs", "=", "None", ",", "resolution", "=", "None", ",", "dimensions", "=", "None", ",", "src_bounds", "=", "None", ",", "dst_bounds", "=", "None", ",", "src_nodata", "=", "None", ",", "dst_nodata", "=", "None", ",", "target_aligned_pixels", "=", "False", ",", "check_invert_proj", "=", "True", ",", "creation_options", "=", "None", ",", "resampling", "=", "Resampling", ".", "cubic", ",", "*", "*", "kwargs", ")", ":", "with", "rasterio", ".", "Env", "(", "CHECK_WITH_INVERT_PROJ", "=", "check_invert_proj", ")", ":", "with", "rasterio", ".", "open", "(", "source_file", ")", "as", "src", ":", "out_kwargs", "=", "src", ".", "profile", ".", "copy", "(", ")", "dst_crs", ",", "dst_transform", ",", "dst_width", ",", "dst_height", "=", "calc_transform", "(", "src", ",", "dst_crs", ",", "resolution", ",", "dimensions", ",", "src_bounds", ",", "dst_bounds", ",", "target_aligned_pixels", ")", "# If src_nodata is not None, update the dst metadata NODATA", "# value to src_nodata (will be overridden by dst_nodata if it is not None.", "if", "src_nodata", "is", "not", "None", ":", "# Update the destination NODATA value", "out_kwargs", ".", "update", "(", "{", "'nodata'", ":", "src_nodata", "}", ")", "# Validate a manually set destination NODATA value.", "if", "dst_nodata", "is", "not", "None", ":", "if", "src_nodata", "is", "None", "and", "src", ".", "meta", "[", "'nodata'", "]", "is", "None", ":", "raise", "ValueError", "(", "'src_nodata must be provided because dst_nodata is not None'", ")", "else", ":", "out_kwargs", ".", "update", "(", "{", "'nodata'", ":", "dst_nodata", "}", ")", "out_kwargs", ".", "update", "(", "{", "'crs'", ":", "dst_crs", ",", "'transform'", ":", "dst_transform", ",", "'width'", ":", "dst_width", ",", "'height'", ":", "dst_height", "}", ")", "# Adjust block size if necessary.", "if", "(", "'blockxsize'", "in", "out_kwargs", "and", "dst_width", "<", "out_kwargs", "[", "'blockxsize'", "]", ")", ":", "del", "out_kwargs", "[", "'blockxsize'", "]", "if", "(", "'blockysize'", "in", "out_kwargs", "and", "dst_height", "<", "out_kwargs", "[", "'blockysize'", "]", ")", ":", "del", "out_kwargs", "[", "'blockysize'", "]", "if", "creation_options", "is", "not", "None", ":", "out_kwargs", ".", "update", "(", "*", "*", "creation_options", ")", "with", "rasterio", ".", "open", "(", "destination_file", ",", "'w'", ",", "*", "*", "out_kwargs", ")", "as", "dst", ":", "reproject", "(", "source", "=", "rasterio", ".", "band", "(", "src", ",", "src", ".", "indexes", ")", ",", "destination", "=", "rasterio", ".", "band", "(", "dst", ",", "dst", ".", "indexes", ")", ",", "src_transform", "=", "src", ".", "transform", ",", "src_crs", "=", "src", ".", "crs", ",", "src_nodata", "=", "src_nodata", ",", "dst_transform", "=", "out_kwargs", "[", "'transform'", "]", ",", "dst_crs", "=", "out_kwargs", "[", "'crs'", "]", ",", "dst_nodata", "=", "dst_nodata", ",", "resampling", "=", "resampling", ",", "*", "*", "kwargs", ")" ]
Warp a raster dataset. Parameters ------------ source_file: str, file object or pathlib.Path object Source file. destination_file: str, file object or pathlib.Path object Destination file. dst_crs: rasterio.crs.CRS, optional Target coordinate reference system. resolution: tuple (x resolution, y resolution) or float, optional Target resolution, in units of target coordinate reference system. dimensions: tuple (width, height), optional Output file size in pixels and lines. src_bounds: tuple (xmin, ymin, xmax, ymax), optional Georeferenced extent of output file from source bounds (in source georeferenced units). dst_bounds: tuple (xmin, ymin, xmax, ymax), optional Georeferenced extent of output file from destination bounds (in destination georeferenced units). src_nodata: int, float, or nan, optional Manually overridden source nodata. dst_nodata: int, float, or nan, optional Manually overridden destination nodata. target_aligned_pixels: bool, optional Align the output bounds based on the resolution. Default is `False`. check_invert_proj: bool, optional Constrain output to valid coordinate region in dst_crs. Default is `True`. creation_options: dict, optional Custom creation options. resampling: rasterio.enums.Resampling Reprojection resampling method. Default is `cubic`. kwargs: optional Additional arguments passed to transformation function. Returns --------- out: None Output is written to destination.
[ "Warp", "a", "raster", "dataset", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/util/raster_utils.py#L261-L360
14,593
satellogic/telluric
telluric/util/raster_utils.py
build_overviews
def build_overviews(source_file, factors=None, minsize=256, external=False, blocksize=256, interleave='pixel', compress='lzw', resampling=Resampling.gauss, **kwargs): """Build overviews at one or more decimation factors for all bands of the dataset. Parameters ------------ source_file : str, file object or pathlib.Path object Source file. factors : list, optional A list of integral overview levels to build. minsize : int, optional Maximum width or height of the smallest overview level. Only taken into account if explicit factors are not specified. Defaults to `256`. external : bool, optional Can be set to `True` to force external overviews in the GeoTIFF (.ovr) format. Default is False. blocksize : int, optional The block size (tile width and height) used for overviews. Should be a power-of-two value between 64 and 4096. Default value is `256`. interleave : str, optional Interleaving. Default value is `pixel`. compress : str, optional Set the compression to use. Default is `lzw`. resampling : rasterio.enums.Resampling Resampling method. Default is `gauss`. kwargs : optional Additional arguments passed to rasterio.Env. Returns --------- out: None Original file is altered or external .ovr can be created. """ with rasterio.open(source_file, 'r+') as dst: if factors is None: factors = _calc_overviews_factors( SimpleNamespace(width=dst.width, height=dst.height), minsize) with rasterio.Env( GDAL_TIFF_OVR_BLOCKSIZE=blocksize, INTERLEAVE_OVERVIEW=interleave, COMPRESS_OVERVIEW=compress, TIFF_USE_OVR=external, **kwargs ): dst.build_overviews(factors, resampling)
python
def build_overviews(source_file, factors=None, minsize=256, external=False, blocksize=256, interleave='pixel', compress='lzw', resampling=Resampling.gauss, **kwargs): """Build overviews at one or more decimation factors for all bands of the dataset. Parameters ------------ source_file : str, file object or pathlib.Path object Source file. factors : list, optional A list of integral overview levels to build. minsize : int, optional Maximum width or height of the smallest overview level. Only taken into account if explicit factors are not specified. Defaults to `256`. external : bool, optional Can be set to `True` to force external overviews in the GeoTIFF (.ovr) format. Default is False. blocksize : int, optional The block size (tile width and height) used for overviews. Should be a power-of-two value between 64 and 4096. Default value is `256`. interleave : str, optional Interleaving. Default value is `pixel`. compress : str, optional Set the compression to use. Default is `lzw`. resampling : rasterio.enums.Resampling Resampling method. Default is `gauss`. kwargs : optional Additional arguments passed to rasterio.Env. Returns --------- out: None Original file is altered or external .ovr can be created. """ with rasterio.open(source_file, 'r+') as dst: if factors is None: factors = _calc_overviews_factors( SimpleNamespace(width=dst.width, height=dst.height), minsize) with rasterio.Env( GDAL_TIFF_OVR_BLOCKSIZE=blocksize, INTERLEAVE_OVERVIEW=interleave, COMPRESS_OVERVIEW=compress, TIFF_USE_OVR=external, **kwargs ): dst.build_overviews(factors, resampling)
[ "def", "build_overviews", "(", "source_file", ",", "factors", "=", "None", ",", "minsize", "=", "256", ",", "external", "=", "False", ",", "blocksize", "=", "256", ",", "interleave", "=", "'pixel'", ",", "compress", "=", "'lzw'", ",", "resampling", "=", "Resampling", ".", "gauss", ",", "*", "*", "kwargs", ")", ":", "with", "rasterio", ".", "open", "(", "source_file", ",", "'r+'", ")", "as", "dst", ":", "if", "factors", "is", "None", ":", "factors", "=", "_calc_overviews_factors", "(", "SimpleNamespace", "(", "width", "=", "dst", ".", "width", ",", "height", "=", "dst", ".", "height", ")", ",", "minsize", ")", "with", "rasterio", ".", "Env", "(", "GDAL_TIFF_OVR_BLOCKSIZE", "=", "blocksize", ",", "INTERLEAVE_OVERVIEW", "=", "interleave", ",", "COMPRESS_OVERVIEW", "=", "compress", ",", "TIFF_USE_OVR", "=", "external", ",", "*", "*", "kwargs", ")", ":", "dst", ".", "build_overviews", "(", "factors", ",", "resampling", ")" ]
Build overviews at one or more decimation factors for all bands of the dataset. Parameters ------------ source_file : str, file object or pathlib.Path object Source file. factors : list, optional A list of integral overview levels to build. minsize : int, optional Maximum width or height of the smallest overview level. Only taken into account if explicit factors are not specified. Defaults to `256`. external : bool, optional Can be set to `True` to force external overviews in the GeoTIFF (.ovr) format. Default is False. blocksize : int, optional The block size (tile width and height) used for overviews. Should be a power-of-two value between 64 and 4096. Default value is `256`. interleave : str, optional Interleaving. Default value is `pixel`. compress : str, optional Set the compression to use. Default is `lzw`. resampling : rasterio.enums.Resampling Resampling method. Default is `gauss`. kwargs : optional Additional arguments passed to rasterio.Env. Returns --------- out: None Original file is altered or external .ovr can be created.
[ "Build", "overviews", "at", "one", "or", "more", "decimation", "factors", "for", "all", "bands", "of", "the", "dataset", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/util/raster_utils.py#L363-L411
14,594
satellogic/telluric
telluric/util/raster_utils.py
build_vrt
def build_vrt(source_file, destination_file, **kwargs): """Make a VRT XML document and write it in file. Parameters ---------- source_file : str, file object or pathlib.Path object Source file. destination_file : str Destination file. kwargs : optional Additional arguments passed to rasterio.vrt._boundless_vrt_doc Returns ------- out : str The path to the destination file. """ with rasterio.open(source_file) as src: vrt_doc = boundless_vrt_doc(src, **kwargs).tostring() with open(destination_file, 'wb') as dst: dst.write(vrt_doc) return destination_file
python
def build_vrt(source_file, destination_file, **kwargs): """Make a VRT XML document and write it in file. Parameters ---------- source_file : str, file object or pathlib.Path object Source file. destination_file : str Destination file. kwargs : optional Additional arguments passed to rasterio.vrt._boundless_vrt_doc Returns ------- out : str The path to the destination file. """ with rasterio.open(source_file) as src: vrt_doc = boundless_vrt_doc(src, **kwargs).tostring() with open(destination_file, 'wb') as dst: dst.write(vrt_doc) return destination_file
[ "def", "build_vrt", "(", "source_file", ",", "destination_file", ",", "*", "*", "kwargs", ")", ":", "with", "rasterio", ".", "open", "(", "source_file", ")", "as", "src", ":", "vrt_doc", "=", "boundless_vrt_doc", "(", "src", ",", "*", "*", "kwargs", ")", ".", "tostring", "(", ")", "with", "open", "(", "destination_file", ",", "'wb'", ")", "as", "dst", ":", "dst", ".", "write", "(", "vrt_doc", ")", "return", "destination_file" ]
Make a VRT XML document and write it in file. Parameters ---------- source_file : str, file object or pathlib.Path object Source file. destination_file : str Destination file. kwargs : optional Additional arguments passed to rasterio.vrt._boundless_vrt_doc Returns ------- out : str The path to the destination file.
[ "Make", "a", "VRT", "XML", "document", "and", "write", "it", "in", "file", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/util/raster_utils.py#L414-L437
14,595
satellogic/telluric
telluric/util/histogram.py
stretch_histogram
def stretch_histogram(img, dark_clip_percentile=None, bright_clip_percentile=None, dark_clip_value=None, bright_clip_value=None, ignore_zero=True): """Stretch img histogram. 2 possible modes: by percentile (pass dark/bright_clip_percentile), or by value (pass dark/bright_clip_value) :param dark_clip_percentile: percent of pixels that will be saturated to min_value :param bright_clip_percentile: percent of pixels that will be saturated to max_value :param dark_clip_value: all values below this will be saturated to min_value :param bright_clip_value: all values above this will be saturated to max_value :param ignore_zero: if true, pixels with value 0 are ignored in stretch calculation :returns image (same shape as 'img') """ # verify stretching method is specified: if (dark_clip_percentile is not None and dark_clip_value is not None) or \ (bright_clip_percentile is not None and bright_clip_value is not None): raise KeyError('Provided parameters for both by-percentile and by-value stretch, need only one of those.') # the default stretching: if dark_clip_percentile is None and dark_clip_value is None: dark_clip_percentile = 0.001 if bright_clip_percentile is None and bright_clip_value is None: bright_clip_percentile = 0.001 if dark_clip_percentile is not None: dark_clip_value = np.percentile(img[img != 0] if ignore_zero else img, 100 * dark_clip_percentile) if bright_clip_percentile is not None: bright_clip_value = np.percentile(img[img != 0] if ignore_zero else img, 100 * (1 - bright_clip_percentile)) dst_min = np.iinfo(img.dtype).min dst_max = np.iinfo(img.dtype).max if bright_clip_value == dark_clip_value: raise HistogramStretchingError gain = (dst_max - dst_min) / (bright_clip_value - dark_clip_value) offset = -gain * dark_clip_value + dst_min stretched = np.empty_like(img, dtype=img.dtype) if len(img.shape) == 2: stretched[:, :] = np.clip(gain * img[:, :].astype(np.float32) + offset, dst_min, dst_max).astype(img.dtype) else: for band in range(img.shape[0]): stretched[band, :, :] = np.clip(gain * img[band, :, :].astype(np.float32) + offset, dst_min, dst_max).astype(img.dtype) return stretched
python
def stretch_histogram(img, dark_clip_percentile=None, bright_clip_percentile=None, dark_clip_value=None, bright_clip_value=None, ignore_zero=True): """Stretch img histogram. 2 possible modes: by percentile (pass dark/bright_clip_percentile), or by value (pass dark/bright_clip_value) :param dark_clip_percentile: percent of pixels that will be saturated to min_value :param bright_clip_percentile: percent of pixels that will be saturated to max_value :param dark_clip_value: all values below this will be saturated to min_value :param bright_clip_value: all values above this will be saturated to max_value :param ignore_zero: if true, pixels with value 0 are ignored in stretch calculation :returns image (same shape as 'img') """ # verify stretching method is specified: if (dark_clip_percentile is not None and dark_clip_value is not None) or \ (bright_clip_percentile is not None and bright_clip_value is not None): raise KeyError('Provided parameters for both by-percentile and by-value stretch, need only one of those.') # the default stretching: if dark_clip_percentile is None and dark_clip_value is None: dark_clip_percentile = 0.001 if bright_clip_percentile is None and bright_clip_value is None: bright_clip_percentile = 0.001 if dark_clip_percentile is not None: dark_clip_value = np.percentile(img[img != 0] if ignore_zero else img, 100 * dark_clip_percentile) if bright_clip_percentile is not None: bright_clip_value = np.percentile(img[img != 0] if ignore_zero else img, 100 * (1 - bright_clip_percentile)) dst_min = np.iinfo(img.dtype).min dst_max = np.iinfo(img.dtype).max if bright_clip_value == dark_clip_value: raise HistogramStretchingError gain = (dst_max - dst_min) / (bright_clip_value - dark_clip_value) offset = -gain * dark_clip_value + dst_min stretched = np.empty_like(img, dtype=img.dtype) if len(img.shape) == 2: stretched[:, :] = np.clip(gain * img[:, :].astype(np.float32) + offset, dst_min, dst_max).astype(img.dtype) else: for band in range(img.shape[0]): stretched[band, :, :] = np.clip(gain * img[band, :, :].astype(np.float32) + offset, dst_min, dst_max).astype(img.dtype) return stretched
[ "def", "stretch_histogram", "(", "img", ",", "dark_clip_percentile", "=", "None", ",", "bright_clip_percentile", "=", "None", ",", "dark_clip_value", "=", "None", ",", "bright_clip_value", "=", "None", ",", "ignore_zero", "=", "True", ")", ":", "# verify stretching method is specified:", "if", "(", "dark_clip_percentile", "is", "not", "None", "and", "dark_clip_value", "is", "not", "None", ")", "or", "(", "bright_clip_percentile", "is", "not", "None", "and", "bright_clip_value", "is", "not", "None", ")", ":", "raise", "KeyError", "(", "'Provided parameters for both by-percentile and by-value stretch, need only one of those.'", ")", "# the default stretching:", "if", "dark_clip_percentile", "is", "None", "and", "dark_clip_value", "is", "None", ":", "dark_clip_percentile", "=", "0.001", "if", "bright_clip_percentile", "is", "None", "and", "bright_clip_value", "is", "None", ":", "bright_clip_percentile", "=", "0.001", "if", "dark_clip_percentile", "is", "not", "None", ":", "dark_clip_value", "=", "np", ".", "percentile", "(", "img", "[", "img", "!=", "0", "]", "if", "ignore_zero", "else", "img", ",", "100", "*", "dark_clip_percentile", ")", "if", "bright_clip_percentile", "is", "not", "None", ":", "bright_clip_value", "=", "np", ".", "percentile", "(", "img", "[", "img", "!=", "0", "]", "if", "ignore_zero", "else", "img", ",", "100", "*", "(", "1", "-", "bright_clip_percentile", ")", ")", "dst_min", "=", "np", ".", "iinfo", "(", "img", ".", "dtype", ")", ".", "min", "dst_max", "=", "np", ".", "iinfo", "(", "img", ".", "dtype", ")", ".", "max", "if", "bright_clip_value", "==", "dark_clip_value", ":", "raise", "HistogramStretchingError", "gain", "=", "(", "dst_max", "-", "dst_min", ")", "/", "(", "bright_clip_value", "-", "dark_clip_value", ")", "offset", "=", "-", "gain", "*", "dark_clip_value", "+", "dst_min", "stretched", "=", "np", ".", "empty_like", "(", "img", ",", "dtype", "=", "img", ".", "dtype", ")", "if", "len", "(", "img", ".", "shape", ")", "==", "2", ":", "stretched", "[", ":", ",", ":", "]", "=", "np", ".", "clip", "(", "gain", "*", "img", "[", ":", ",", ":", "]", ".", "astype", "(", "np", ".", "float32", ")", "+", "offset", ",", "dst_min", ",", "dst_max", ")", ".", "astype", "(", "img", ".", "dtype", ")", "else", ":", "for", "band", "in", "range", "(", "img", ".", "shape", "[", "0", "]", ")", ":", "stretched", "[", "band", ",", ":", ",", ":", "]", "=", "np", ".", "clip", "(", "gain", "*", "img", "[", "band", ",", ":", ",", ":", "]", ".", "astype", "(", "np", ".", "float32", ")", "+", "offset", ",", "dst_min", ",", "dst_max", ")", ".", "astype", "(", "img", ".", "dtype", ")", "return", "stretched" ]
Stretch img histogram. 2 possible modes: by percentile (pass dark/bright_clip_percentile), or by value (pass dark/bright_clip_value) :param dark_clip_percentile: percent of pixels that will be saturated to min_value :param bright_clip_percentile: percent of pixels that will be saturated to max_value :param dark_clip_value: all values below this will be saturated to min_value :param bright_clip_value: all values above this will be saturated to max_value :param ignore_zero: if true, pixels with value 0 are ignored in stretch calculation :returns image (same shape as 'img')
[ "Stretch", "img", "histogram", "." ]
e752cd3ee71e339f79717e526fde362e80055d9e
https://github.com/satellogic/telluric/blob/e752cd3ee71e339f79717e526fde362e80055d9e/telluric/util/histogram.py#L10-L53
14,596
AndrewAnnex/SpiceyPy
getspice.py
GetCSPICE._distribution_info
def _distribution_info(self): """Creates the distribution name and the expected extension for the CSPICE package and returns it. :return (distribution, extension) tuple where distribution is the best guess from the strings available within the platform_urls list of strings, and extension is either "zip" or "tar.Z" depending on whether we are dealing with a Windows platform or else. :rtype: tuple (str, str) :raises: KeyError if the (system, machine) tuple does not correspond to any of the supported SpiceyPy environments. """ print('Gathering information...') system = platform.system() # Cygwin system is CYGWIN-NT-xxx. system = 'cygwin' if 'CYGWIN' in system else system processor = platform.processor() machine = '64bit' if sys.maxsize > 2 ** 32 else '32bit' print('SYSTEM: ', system) print('PROCESSOR:', processor) print('MACHINE: ', machine) return self._dists[(system, machine)]
python
def _distribution_info(self): """Creates the distribution name and the expected extension for the CSPICE package and returns it. :return (distribution, extension) tuple where distribution is the best guess from the strings available within the platform_urls list of strings, and extension is either "zip" or "tar.Z" depending on whether we are dealing with a Windows platform or else. :rtype: tuple (str, str) :raises: KeyError if the (system, machine) tuple does not correspond to any of the supported SpiceyPy environments. """ print('Gathering information...') system = platform.system() # Cygwin system is CYGWIN-NT-xxx. system = 'cygwin' if 'CYGWIN' in system else system processor = platform.processor() machine = '64bit' if sys.maxsize > 2 ** 32 else '32bit' print('SYSTEM: ', system) print('PROCESSOR:', processor) print('MACHINE: ', machine) return self._dists[(system, machine)]
[ "def", "_distribution_info", "(", "self", ")", ":", "print", "(", "'Gathering information...'", ")", "system", "=", "platform", ".", "system", "(", ")", "# Cygwin system is CYGWIN-NT-xxx.", "system", "=", "'cygwin'", "if", "'CYGWIN'", "in", "system", "else", "system", "processor", "=", "platform", ".", "processor", "(", ")", "machine", "=", "'64bit'", "if", "sys", ".", "maxsize", ">", "2", "**", "32", "else", "'32bit'", "print", "(", "'SYSTEM: '", ",", "system", ")", "print", "(", "'PROCESSOR:'", ",", "processor", ")", "print", "(", "'MACHINE: '", ",", "machine", ")", "return", "self", ".", "_dists", "[", "(", "system", ",", "machine", ")", "]" ]
Creates the distribution name and the expected extension for the CSPICE package and returns it. :return (distribution, extension) tuple where distribution is the best guess from the strings available within the platform_urls list of strings, and extension is either "zip" or "tar.Z" depending on whether we are dealing with a Windows platform or else. :rtype: tuple (str, str) :raises: KeyError if the (system, machine) tuple does not correspond to any of the supported SpiceyPy environments.
[ "Creates", "the", "distribution", "name", "and", "the", "expected", "extension", "for", "the", "CSPICE", "package", "and", "returns", "it", "." ]
fc20a9b9de68b58eed5b332f0c051fb343a6e335
https://github.com/AndrewAnnex/SpiceyPy/blob/fc20a9b9de68b58eed5b332f0c051fb343a6e335/getspice.py#L153-L180
14,597
AndrewAnnex/SpiceyPy
getspice.py
GetCSPICE._download
def _download(self): """Support function that encapsulates the OpenSSL transfer of the CSPICE package to the self._local io.ByteIO stream. :raises RuntimeError if there has been any issue with the HTTPS communication .. note:: Handling of CSPICE downloads from HTTPS --------------------------------------- Some Python distributions may be linked to an old version of OpenSSL which will not let you connect to NAIF server due to recent SSL cert upgrades on the JPL servers. Moreover, versions older than OpenSSL 1.0.1g are known to contain the 'the Heartbleed Bug'. Therefore this method provides two different implementations for the HTTPS GET call to the NAIF server to download the required CSPICE distribution package. """ # Use urllib3 (based on PyOpenSSL). if ssl.OPENSSL_VERSION < 'OpenSSL 1.0.1g': # Force urllib3 to use pyOpenSSL import urllib3.contrib.pyopenssl urllib3.contrib.pyopenssl.inject_into_urllib3() import certifi import urllib3 try: # Search proxy in ENV variables proxies = {} for key, value in os.environ.items(): if '_proxy' in key.lower(): proxies[key.lower().replace('_proxy','')] = value # Create a ProolManager if 'https' in proxies: https = urllib3.ProxyManager(proxies['https'], cert_reqs='CERT_REQUIRED', ca_certs=certifi.where()) elif 'http' in proxies: https = urllib3.ProxyManager(proxies['http'], cert_reqs='CERT_REQUIRED', ca_certs=certifi.where()) else: https = urllib3.PoolManager(cert_reqs='CERT_REQUIRED', ca_certs=certifi.where()) # Send the request to get the CSPICE package. response = https.request('GET', self._rcspice, timeout=urllib3.Timeout(10)) except urllib3.exceptions.HTTPError as err: raise RuntimeError(err.message) # Convert the response to io.BytesIO and store it in local memory. self._local = io.BytesIO(response.data) # Use the standard urllib (using system OpenSSL). else: try: # Send the request to get the CSPICE package (proxy auto detected). response = urllib.request.urlopen(self._rcspice, timeout=10) except urllib.error.URLError as err: raise RuntimeError(err.reason) # Convert the response to io.BytesIO and store it in local memory. self._local = io.BytesIO(response.read())
python
def _download(self): """Support function that encapsulates the OpenSSL transfer of the CSPICE package to the self._local io.ByteIO stream. :raises RuntimeError if there has been any issue with the HTTPS communication .. note:: Handling of CSPICE downloads from HTTPS --------------------------------------- Some Python distributions may be linked to an old version of OpenSSL which will not let you connect to NAIF server due to recent SSL cert upgrades on the JPL servers. Moreover, versions older than OpenSSL 1.0.1g are known to contain the 'the Heartbleed Bug'. Therefore this method provides two different implementations for the HTTPS GET call to the NAIF server to download the required CSPICE distribution package. """ # Use urllib3 (based on PyOpenSSL). if ssl.OPENSSL_VERSION < 'OpenSSL 1.0.1g': # Force urllib3 to use pyOpenSSL import urllib3.contrib.pyopenssl urllib3.contrib.pyopenssl.inject_into_urllib3() import certifi import urllib3 try: # Search proxy in ENV variables proxies = {} for key, value in os.environ.items(): if '_proxy' in key.lower(): proxies[key.lower().replace('_proxy','')] = value # Create a ProolManager if 'https' in proxies: https = urllib3.ProxyManager(proxies['https'], cert_reqs='CERT_REQUIRED', ca_certs=certifi.where()) elif 'http' in proxies: https = urllib3.ProxyManager(proxies['http'], cert_reqs='CERT_REQUIRED', ca_certs=certifi.where()) else: https = urllib3.PoolManager(cert_reqs='CERT_REQUIRED', ca_certs=certifi.where()) # Send the request to get the CSPICE package. response = https.request('GET', self._rcspice, timeout=urllib3.Timeout(10)) except urllib3.exceptions.HTTPError as err: raise RuntimeError(err.message) # Convert the response to io.BytesIO and store it in local memory. self._local = io.BytesIO(response.data) # Use the standard urllib (using system OpenSSL). else: try: # Send the request to get the CSPICE package (proxy auto detected). response = urllib.request.urlopen(self._rcspice, timeout=10) except urllib.error.URLError as err: raise RuntimeError(err.reason) # Convert the response to io.BytesIO and store it in local memory. self._local = io.BytesIO(response.read())
[ "def", "_download", "(", "self", ")", ":", "# Use urllib3 (based on PyOpenSSL).", "if", "ssl", ".", "OPENSSL_VERSION", "<", "'OpenSSL 1.0.1g'", ":", "# Force urllib3 to use pyOpenSSL", "import", "urllib3", ".", "contrib", ".", "pyopenssl", "urllib3", ".", "contrib", ".", "pyopenssl", ".", "inject_into_urllib3", "(", ")", "import", "certifi", "import", "urllib3", "try", ":", "# Search proxy in ENV variables", "proxies", "=", "{", "}", "for", "key", ",", "value", "in", "os", ".", "environ", ".", "items", "(", ")", ":", "if", "'_proxy'", "in", "key", ".", "lower", "(", ")", ":", "proxies", "[", "key", ".", "lower", "(", ")", ".", "replace", "(", "'_proxy'", ",", "''", ")", "]", "=", "value", "# Create a ProolManager", "if", "'https'", "in", "proxies", ":", "https", "=", "urllib3", ".", "ProxyManager", "(", "proxies", "[", "'https'", "]", ",", "cert_reqs", "=", "'CERT_REQUIRED'", ",", "ca_certs", "=", "certifi", ".", "where", "(", ")", ")", "elif", "'http'", "in", "proxies", ":", "https", "=", "urllib3", ".", "ProxyManager", "(", "proxies", "[", "'http'", "]", ",", "cert_reqs", "=", "'CERT_REQUIRED'", ",", "ca_certs", "=", "certifi", ".", "where", "(", ")", ")", "else", ":", "https", "=", "urllib3", ".", "PoolManager", "(", "cert_reqs", "=", "'CERT_REQUIRED'", ",", "ca_certs", "=", "certifi", ".", "where", "(", ")", ")", "# Send the request to get the CSPICE package.", "response", "=", "https", ".", "request", "(", "'GET'", ",", "self", ".", "_rcspice", ",", "timeout", "=", "urllib3", ".", "Timeout", "(", "10", ")", ")", "except", "urllib3", ".", "exceptions", ".", "HTTPError", "as", "err", ":", "raise", "RuntimeError", "(", "err", ".", "message", ")", "# Convert the response to io.BytesIO and store it in local memory.", "self", ".", "_local", "=", "io", ".", "BytesIO", "(", "response", ".", "data", ")", "# Use the standard urllib (using system OpenSSL).", "else", ":", "try", ":", "# Send the request to get the CSPICE package (proxy auto detected).", "response", "=", "urllib", ".", "request", ".", "urlopen", "(", "self", ".", "_rcspice", ",", "timeout", "=", "10", ")", "except", "urllib", ".", "error", ".", "URLError", "as", "err", ":", "raise", "RuntimeError", "(", "err", ".", "reason", ")", "# Convert the response to io.BytesIO and store it in local memory.", "self", ".", "_local", "=", "io", ".", "BytesIO", "(", "response", ".", "read", "(", ")", ")" ]
Support function that encapsulates the OpenSSL transfer of the CSPICE package to the self._local io.ByteIO stream. :raises RuntimeError if there has been any issue with the HTTPS communication .. note:: Handling of CSPICE downloads from HTTPS --------------------------------------- Some Python distributions may be linked to an old version of OpenSSL which will not let you connect to NAIF server due to recent SSL cert upgrades on the JPL servers. Moreover, versions older than OpenSSL 1.0.1g are known to contain the 'the Heartbleed Bug'. Therefore this method provides two different implementations for the HTTPS GET call to the NAIF server to download the required CSPICE distribution package.
[ "Support", "function", "that", "encapsulates", "the", "OpenSSL", "transfer", "of", "the", "CSPICE", "package", "to", "the", "self", ".", "_local", "io", ".", "ByteIO", "stream", "." ]
fc20a9b9de68b58eed5b332f0c051fb343a6e335
https://github.com/AndrewAnnex/SpiceyPy/blob/fc20a9b9de68b58eed5b332f0c051fb343a6e335/getspice.py#L182-L247
14,598
AndrewAnnex/SpiceyPy
getspice.py
GetCSPICE._unpack
def _unpack(self): """Unpacks the CSPICE package on the given root directory. Note that Package could either be the zipfile.ZipFile class for Windows platforms or tarfile.TarFile for other platforms. """ if self._ext == 'zip': with ZipFile(self._local, 'r') as archive: archive.extractall(self._root) else: cmd = 'gunzip | tar xC ' + self._root proc = subprocess.Popen(cmd, shell=True, stdin=subprocess.PIPE) proc.stdin.write(self._local.read()) self._local.close()
python
def _unpack(self): """Unpacks the CSPICE package on the given root directory. Note that Package could either be the zipfile.ZipFile class for Windows platforms or tarfile.TarFile for other platforms. """ if self._ext == 'zip': with ZipFile(self._local, 'r') as archive: archive.extractall(self._root) else: cmd = 'gunzip | tar xC ' + self._root proc = subprocess.Popen(cmd, shell=True, stdin=subprocess.PIPE) proc.stdin.write(self._local.read()) self._local.close()
[ "def", "_unpack", "(", "self", ")", ":", "if", "self", ".", "_ext", "==", "'zip'", ":", "with", "ZipFile", "(", "self", ".", "_local", ",", "'r'", ")", "as", "archive", ":", "archive", ".", "extractall", "(", "self", ".", "_root", ")", "else", ":", "cmd", "=", "'gunzip | tar xC '", "+", "self", ".", "_root", "proc", "=", "subprocess", ".", "Popen", "(", "cmd", ",", "shell", "=", "True", ",", "stdin", "=", "subprocess", ".", "PIPE", ")", "proc", ".", "stdin", ".", "write", "(", "self", ".", "_local", ".", "read", "(", ")", ")", "self", ".", "_local", ".", "close", "(", ")" ]
Unpacks the CSPICE package on the given root directory. Note that Package could either be the zipfile.ZipFile class for Windows platforms or tarfile.TarFile for other platforms.
[ "Unpacks", "the", "CSPICE", "package", "on", "the", "given", "root", "directory", ".", "Note", "that", "Package", "could", "either", "be", "the", "zipfile", ".", "ZipFile", "class", "for", "Windows", "platforms", "or", "tarfile", ".", "TarFile", "for", "other", "platforms", "." ]
fc20a9b9de68b58eed5b332f0c051fb343a6e335
https://github.com/AndrewAnnex/SpiceyPy/blob/fc20a9b9de68b58eed5b332f0c051fb343a6e335/getspice.py#L249-L261
14,599
AndrewAnnex/SpiceyPy
spiceypy/spiceypy.py
spiceErrorCheck
def spiceErrorCheck(f): """ Decorator for spiceypy hooking into spice error system. If an error is detected, an output similar to outmsg :type f: builtins.function :return: :rtype: """ @functools.wraps(f) def with_errcheck(*args, **kwargs): try: res = f(*args, **kwargs) checkForSpiceError(f) return res except: raise return with_errcheck
python
def spiceErrorCheck(f): """ Decorator for spiceypy hooking into spice error system. If an error is detected, an output similar to outmsg :type f: builtins.function :return: :rtype: """ @functools.wraps(f) def with_errcheck(*args, **kwargs): try: res = f(*args, **kwargs) checkForSpiceError(f) return res except: raise return with_errcheck
[ "def", "spiceErrorCheck", "(", "f", ")", ":", "@", "functools", ".", "wraps", "(", "f", ")", "def", "with_errcheck", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "try", ":", "res", "=", "f", "(", "*", "args", ",", "*", "*", "kwargs", ")", "checkForSpiceError", "(", "f", ")", "return", "res", "except", ":", "raise", "return", "with_errcheck" ]
Decorator for spiceypy hooking into spice error system. If an error is detected, an output similar to outmsg :type f: builtins.function :return: :rtype:
[ "Decorator", "for", "spiceypy", "hooking", "into", "spice", "error", "system", ".", "If", "an", "error", "is", "detected", "an", "output", "similar", "to", "outmsg" ]
fc20a9b9de68b58eed5b332f0c051fb343a6e335
https://github.com/AndrewAnnex/SpiceyPy/blob/fc20a9b9de68b58eed5b332f0c051fb343a6e335/spiceypy/spiceypy.py#L64-L83