id
int32
0
252k
repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
12,100
nschloe/optimesh
optimesh/cvt/lloyd.py
quasi_newton_uniform_lloyd
def quasi_newton_uniform_lloyd(points, cells, *args, omega=1.0, **kwargs): """Relaxed Lloyd's algorithm. omega=1 leads to Lloyd's algorithm, overrelaxation omega=2 gives good results. Check out Xiao Xiao, Over-Relaxation Lloyd Method For Computing Centroidal Voronoi Tessellations, Master's thesis, <https://scholarcommons.sc.edu/etd/295/>. Everything above omega=2 can lead to flickering, i.e., rapidly alternating updates and bad meshes. """ def get_new_points(mesh): x = ( mesh.node_coords - omega / 2 * jac_uniform(mesh) / mesh.control_volumes[:, None] ) # update boundary and ghosts idx = mesh.is_boundary_node & ~ghosted_mesh.is_ghost_point x[idx] = mesh.node_coords[idx] x[ghosted_mesh.is_ghost_point] = ghosted_mesh.reflect_ghost( x[ghosted_mesh.mirrors] ) return x ghosted_mesh = GhostedMesh(points, cells) runner( get_new_points, ghosted_mesh, *args, **kwargs, update_topology=lambda mesh: ghosted_mesh.update_topology(), # get_stats_mesh=lambda mesh: ghosted_mesh.get_unghosted_mesh(), ) mesh = ghosted_mesh.get_unghosted_mesh() return mesh.node_coords, mesh.cells["nodes"]
python
def quasi_newton_uniform_lloyd(points, cells, *args, omega=1.0, **kwargs): """Relaxed Lloyd's algorithm. omega=1 leads to Lloyd's algorithm, overrelaxation omega=2 gives good results. Check out Xiao Xiao, Over-Relaxation Lloyd Method For Computing Centroidal Voronoi Tessellations, Master's thesis, <https://scholarcommons.sc.edu/etd/295/>. Everything above omega=2 can lead to flickering, i.e., rapidly alternating updates and bad meshes. """ def get_new_points(mesh): x = ( mesh.node_coords - omega / 2 * jac_uniform(mesh) / mesh.control_volumes[:, None] ) # update boundary and ghosts idx = mesh.is_boundary_node & ~ghosted_mesh.is_ghost_point x[idx] = mesh.node_coords[idx] x[ghosted_mesh.is_ghost_point] = ghosted_mesh.reflect_ghost( x[ghosted_mesh.mirrors] ) return x ghosted_mesh = GhostedMesh(points, cells) runner( get_new_points, ghosted_mesh, *args, **kwargs, update_topology=lambda mesh: ghosted_mesh.update_topology(), # get_stats_mesh=lambda mesh: ghosted_mesh.get_unghosted_mesh(), ) mesh = ghosted_mesh.get_unghosted_mesh() return mesh.node_coords, mesh.cells["nodes"]
[ "def", "quasi_newton_uniform_lloyd", "(", "points", ",", "cells", ",", "*", "args", ",", "omega", "=", "1.0", ",", "*", "*", "kwargs", ")", ":", "def", "get_new_points", "(", "mesh", ")", ":", "x", "=", "(", "mesh", ".", "node_coords", "-", "omega", "/", "2", "*", "jac_uniform", "(", "mesh", ")", "/", "mesh", ".", "control_volumes", "[", ":", ",", "None", "]", ")", "# update boundary and ghosts", "idx", "=", "mesh", ".", "is_boundary_node", "&", "~", "ghosted_mesh", ".", "is_ghost_point", "x", "[", "idx", "]", "=", "mesh", ".", "node_coords", "[", "idx", "]", "x", "[", "ghosted_mesh", ".", "is_ghost_point", "]", "=", "ghosted_mesh", ".", "reflect_ghost", "(", "x", "[", "ghosted_mesh", ".", "mirrors", "]", ")", "return", "x", "ghosted_mesh", "=", "GhostedMesh", "(", "points", ",", "cells", ")", "runner", "(", "get_new_points", ",", "ghosted_mesh", ",", "*", "args", ",", "*", "*", "kwargs", ",", "update_topology", "=", "lambda", "mesh", ":", "ghosted_mesh", ".", "update_topology", "(", ")", ",", "# get_stats_mesh=lambda mesh: ghosted_mesh.get_unghosted_mesh(),", ")", "mesh", "=", "ghosted_mesh", ".", "get_unghosted_mesh", "(", ")", "return", "mesh", ".", "node_coords", ",", "mesh", ".", "cells", "[", "\"nodes\"", "]" ]
Relaxed Lloyd's algorithm. omega=1 leads to Lloyd's algorithm, overrelaxation omega=2 gives good results. Check out Xiao Xiao, Over-Relaxation Lloyd Method For Computing Centroidal Voronoi Tessellations, Master's thesis, <https://scholarcommons.sc.edu/etd/295/>. Everything above omega=2 can lead to flickering, i.e., rapidly alternating updates and bad meshes.
[ "Relaxed", "Lloyd", "s", "algorithm", ".", "omega", "=", "1", "leads", "to", "Lloyd", "s", "algorithm", "overrelaxation", "omega", "=", "2", "gives", "good", "results", ".", "Check", "out" ]
b85f48d1559a51a01cc3df6214c61ca8ad5ed786
https://github.com/nschloe/optimesh/blob/b85f48d1559a51a01cc3df6214c61ca8ad5ed786/optimesh/cvt/lloyd.py#L8-L46
12,101
nschloe/optimesh
optimesh/cpt.py
_energy_uniform_per_node
def _energy_uniform_per_node(X, cells): """The CPT mesh energy is defined as sum_i E_i, E_i = 1/(d+1) * sum int_{omega_i} ||x - x_i||^2 rho(x) dx, see Chen-Holst. This method gives the E_i and assumes uniform density, rho(x) = 1. """ dim = 2 mesh = MeshTri(X, cells) star_integrals = numpy.zeros(mesh.node_coords.shape[0]) # Python loop over the cells... slow! for cell, cell_volume in zip(mesh.cells["nodes"], mesh.cell_volumes): for idx in cell: xi = mesh.node_coords[idx] tri = mesh.node_coords[cell] val = quadpy.triangle.integrate( lambda x: numpy.einsum("ij,ij->i", x.T - xi, x.T - xi), tri, # Take any scheme with order 2 quadpy.triangle.Dunavant(2), ) star_integrals[idx] += val return star_integrals / (dim + 1)
python
def _energy_uniform_per_node(X, cells): """The CPT mesh energy is defined as sum_i E_i, E_i = 1/(d+1) * sum int_{omega_i} ||x - x_i||^2 rho(x) dx, see Chen-Holst. This method gives the E_i and assumes uniform density, rho(x) = 1. """ dim = 2 mesh = MeshTri(X, cells) star_integrals = numpy.zeros(mesh.node_coords.shape[0]) # Python loop over the cells... slow! for cell, cell_volume in zip(mesh.cells["nodes"], mesh.cell_volumes): for idx in cell: xi = mesh.node_coords[idx] tri = mesh.node_coords[cell] val = quadpy.triangle.integrate( lambda x: numpy.einsum("ij,ij->i", x.T - xi, x.T - xi), tri, # Take any scheme with order 2 quadpy.triangle.Dunavant(2), ) star_integrals[idx] += val return star_integrals / (dim + 1)
[ "def", "_energy_uniform_per_node", "(", "X", ",", "cells", ")", ":", "dim", "=", "2", "mesh", "=", "MeshTri", "(", "X", ",", "cells", ")", "star_integrals", "=", "numpy", ".", "zeros", "(", "mesh", ".", "node_coords", ".", "shape", "[", "0", "]", ")", "# Python loop over the cells... slow!", "for", "cell", ",", "cell_volume", "in", "zip", "(", "mesh", ".", "cells", "[", "\"nodes\"", "]", ",", "mesh", ".", "cell_volumes", ")", ":", "for", "idx", "in", "cell", ":", "xi", "=", "mesh", ".", "node_coords", "[", "idx", "]", "tri", "=", "mesh", ".", "node_coords", "[", "cell", "]", "val", "=", "quadpy", ".", "triangle", ".", "integrate", "(", "lambda", "x", ":", "numpy", ".", "einsum", "(", "\"ij,ij->i\"", ",", "x", ".", "T", "-", "xi", ",", "x", ".", "T", "-", "xi", ")", ",", "tri", ",", "# Take any scheme with order 2", "quadpy", ".", "triangle", ".", "Dunavant", "(", "2", ")", ",", ")", "star_integrals", "[", "idx", "]", "+=", "val", "return", "star_integrals", "/", "(", "dim", "+", "1", ")" ]
The CPT mesh energy is defined as sum_i E_i, E_i = 1/(d+1) * sum int_{omega_i} ||x - x_i||^2 rho(x) dx, see Chen-Holst. This method gives the E_i and assumes uniform density, rho(x) = 1.
[ "The", "CPT", "mesh", "energy", "is", "defined", "as" ]
b85f48d1559a51a01cc3df6214c61ca8ad5ed786
https://github.com/nschloe/optimesh/blob/b85f48d1559a51a01cc3df6214c61ca8ad5ed786/optimesh/cpt.py#L91-L116
12,102
nschloe/optimesh
optimesh/cpt.py
jac_uniform
def jac_uniform(X, cells): """The approximated Jacobian is partial_i E = 2/(d+1) (x_i int_{omega_i} rho(x) dx - int_{omega_i} x rho(x) dx) = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_{j, rho}) int_{tau_j} rho, see Chen-Holst. This method here assumes uniform density, rho(x) = 1, such that partial_i E = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_j) |tau_j| with b_j being the ordinary barycenter. """ dim = 2 mesh = MeshTri(X, cells) jac = numpy.zeros(X.shape) for k in range(mesh.cells["nodes"].shape[1]): i = mesh.cells["nodes"][:, k] fastfunc.add.at( jac, i, ((mesh.node_coords[i] - mesh.cell_barycenters).T * mesh.cell_volumes).T, ) return 2 / (dim + 1) * jac
python
def jac_uniform(X, cells): """The approximated Jacobian is partial_i E = 2/(d+1) (x_i int_{omega_i} rho(x) dx - int_{omega_i} x rho(x) dx) = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_{j, rho}) int_{tau_j} rho, see Chen-Holst. This method here assumes uniform density, rho(x) = 1, such that partial_i E = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_j) |tau_j| with b_j being the ordinary barycenter. """ dim = 2 mesh = MeshTri(X, cells) jac = numpy.zeros(X.shape) for k in range(mesh.cells["nodes"].shape[1]): i = mesh.cells["nodes"][:, k] fastfunc.add.at( jac, i, ((mesh.node_coords[i] - mesh.cell_barycenters).T * mesh.cell_volumes).T, ) return 2 / (dim + 1) * jac
[ "def", "jac_uniform", "(", "X", ",", "cells", ")", ":", "dim", "=", "2", "mesh", "=", "MeshTri", "(", "X", ",", "cells", ")", "jac", "=", "numpy", ".", "zeros", "(", "X", ".", "shape", ")", "for", "k", "in", "range", "(", "mesh", ".", "cells", "[", "\"nodes\"", "]", ".", "shape", "[", "1", "]", ")", ":", "i", "=", "mesh", ".", "cells", "[", "\"nodes\"", "]", "[", ":", ",", "k", "]", "fastfunc", ".", "add", ".", "at", "(", "jac", ",", "i", ",", "(", "(", "mesh", ".", "node_coords", "[", "i", "]", "-", "mesh", ".", "cell_barycenters", ")", ".", "T", "*", "mesh", ".", "cell_volumes", ")", ".", "T", ",", ")", "return", "2", "/", "(", "dim", "+", "1", ")", "*", "jac" ]
The approximated Jacobian is partial_i E = 2/(d+1) (x_i int_{omega_i} rho(x) dx - int_{omega_i} x rho(x) dx) = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_{j, rho}) int_{tau_j} rho, see Chen-Holst. This method here assumes uniform density, rho(x) = 1, such that partial_i E = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_j) |tau_j| with b_j being the ordinary barycenter.
[ "The", "approximated", "Jacobian", "is" ]
b85f48d1559a51a01cc3df6214c61ca8ad5ed786
https://github.com/nschloe/optimesh/blob/b85f48d1559a51a01cc3df6214c61ca8ad5ed786/optimesh/cpt.py#L123-L147
12,103
nschloe/optimesh
optimesh/cpt.py
solve_hessian_approx_uniform
def solve_hessian_approx_uniform(X, cells, rhs): """As discussed above, the approximated Jacobian is partial_i E = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_j) |tau_j|. To get the Hessian, we have to form its derivative. As a simplifications, let us assume again that |tau_j| is independent of the node positions. Then we get partial_ii E = 2/(d+1) |omega_i| - 2/(d+1)**2 |omega_i|, partial_ij E = -2/(d+1)**2 |tau_j|. The terms with (d+1)**2 are from the barycenter in `partial_i E`. It turns out from numerical experiments that the negative term in `partial_ii E` is detrimental to the convergence. Hence, this approximated Hessian solver only considers the off-diagonal contributions from the barycentric terms. """ dim = 2 mesh = MeshTri(X, cells) # Create matrix in IJV format row_idx = [] col_idx = [] val = [] cells = mesh.cells["nodes"].T n = X.shape[0] # Main diagonal, 2/(d+1) |omega_i| x_i a = mesh.cell_volumes * (2 / (dim + 1)) for i in [0, 1, 2]: row_idx += [cells[i]] col_idx += [cells[i]] val += [a] # terms corresponding to -2/(d+1) * b_j |tau_j| a = mesh.cell_volumes * (2 / (dim + 1) ** 2) for i in [[0, 1, 2], [1, 2, 0], [2, 0, 1]]: edges = cells[i] # Leads to funny osciilatory movements # row_idx += [edges[0], edges[0], edges[0]] # col_idx += [edges[0], edges[1], edges[2]] # val += [-a, -a, -a] # Best so far row_idx += [edges[0], edges[0]] col_idx += [edges[1], edges[2]] val += [-a, -a] row_idx = numpy.concatenate(row_idx) col_idx = numpy.concatenate(col_idx) val = numpy.concatenate(val) # Set Dirichlet conditions on the boundary matrix = scipy.sparse.coo_matrix((val, (row_idx, col_idx)), shape=(n, n)) # Transform to CSR format for efficiency matrix = matrix.tocsr() # Apply Dirichlet conditions. # Set all Dirichlet rows to 0. for i in numpy.where(mesh.is_boundary_node)[0]: matrix.data[matrix.indptr[i] : matrix.indptr[i + 1]] = 0.0 # Set the diagonal and RHS. d = matrix.diagonal() d[mesh.is_boundary_node] = 1.0 matrix.setdiag(d) rhs[mesh.is_boundary_node] = 0.0 out = scipy.sparse.linalg.spsolve(matrix, rhs) # PyAMG fails on circleci. # ml = pyamg.ruge_stuben_solver(matrix) # # Keep an eye on multiple rhs-solves in pyamg, # # <https://github.com/pyamg/pyamg/issues/215>. # tol = 1.0e-10 # out = numpy.column_stack( # [ml.solve(rhs[:, 0], tol=tol), ml.solve(rhs[:, 1], tol=tol)] # ) return out
python
def solve_hessian_approx_uniform(X, cells, rhs): """As discussed above, the approximated Jacobian is partial_i E = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_j) |tau_j|. To get the Hessian, we have to form its derivative. As a simplifications, let us assume again that |tau_j| is independent of the node positions. Then we get partial_ii E = 2/(d+1) |omega_i| - 2/(d+1)**2 |omega_i|, partial_ij E = -2/(d+1)**2 |tau_j|. The terms with (d+1)**2 are from the barycenter in `partial_i E`. It turns out from numerical experiments that the negative term in `partial_ii E` is detrimental to the convergence. Hence, this approximated Hessian solver only considers the off-diagonal contributions from the barycentric terms. """ dim = 2 mesh = MeshTri(X, cells) # Create matrix in IJV format row_idx = [] col_idx = [] val = [] cells = mesh.cells["nodes"].T n = X.shape[0] # Main diagonal, 2/(d+1) |omega_i| x_i a = mesh.cell_volumes * (2 / (dim + 1)) for i in [0, 1, 2]: row_idx += [cells[i]] col_idx += [cells[i]] val += [a] # terms corresponding to -2/(d+1) * b_j |tau_j| a = mesh.cell_volumes * (2 / (dim + 1) ** 2) for i in [[0, 1, 2], [1, 2, 0], [2, 0, 1]]: edges = cells[i] # Leads to funny osciilatory movements # row_idx += [edges[0], edges[0], edges[0]] # col_idx += [edges[0], edges[1], edges[2]] # val += [-a, -a, -a] # Best so far row_idx += [edges[0], edges[0]] col_idx += [edges[1], edges[2]] val += [-a, -a] row_idx = numpy.concatenate(row_idx) col_idx = numpy.concatenate(col_idx) val = numpy.concatenate(val) # Set Dirichlet conditions on the boundary matrix = scipy.sparse.coo_matrix((val, (row_idx, col_idx)), shape=(n, n)) # Transform to CSR format for efficiency matrix = matrix.tocsr() # Apply Dirichlet conditions. # Set all Dirichlet rows to 0. for i in numpy.where(mesh.is_boundary_node)[0]: matrix.data[matrix.indptr[i] : matrix.indptr[i + 1]] = 0.0 # Set the diagonal and RHS. d = matrix.diagonal() d[mesh.is_boundary_node] = 1.0 matrix.setdiag(d) rhs[mesh.is_boundary_node] = 0.0 out = scipy.sparse.linalg.spsolve(matrix, rhs) # PyAMG fails on circleci. # ml = pyamg.ruge_stuben_solver(matrix) # # Keep an eye on multiple rhs-solves in pyamg, # # <https://github.com/pyamg/pyamg/issues/215>. # tol = 1.0e-10 # out = numpy.column_stack( # [ml.solve(rhs[:, 0], tol=tol), ml.solve(rhs[:, 1], tol=tol)] # ) return out
[ "def", "solve_hessian_approx_uniform", "(", "X", ",", "cells", ",", "rhs", ")", ":", "dim", "=", "2", "mesh", "=", "MeshTri", "(", "X", ",", "cells", ")", "# Create matrix in IJV format", "row_idx", "=", "[", "]", "col_idx", "=", "[", "]", "val", "=", "[", "]", "cells", "=", "mesh", ".", "cells", "[", "\"nodes\"", "]", ".", "T", "n", "=", "X", ".", "shape", "[", "0", "]", "# Main diagonal, 2/(d+1) |omega_i| x_i", "a", "=", "mesh", ".", "cell_volumes", "*", "(", "2", "/", "(", "dim", "+", "1", ")", ")", "for", "i", "in", "[", "0", ",", "1", ",", "2", "]", ":", "row_idx", "+=", "[", "cells", "[", "i", "]", "]", "col_idx", "+=", "[", "cells", "[", "i", "]", "]", "val", "+=", "[", "a", "]", "# terms corresponding to -2/(d+1) * b_j |tau_j|", "a", "=", "mesh", ".", "cell_volumes", "*", "(", "2", "/", "(", "dim", "+", "1", ")", "**", "2", ")", "for", "i", "in", "[", "[", "0", ",", "1", ",", "2", "]", ",", "[", "1", ",", "2", ",", "0", "]", ",", "[", "2", ",", "0", ",", "1", "]", "]", ":", "edges", "=", "cells", "[", "i", "]", "# Leads to funny osciilatory movements", "# row_idx += [edges[0], edges[0], edges[0]]", "# col_idx += [edges[0], edges[1], edges[2]]", "# val += [-a, -a, -a]", "# Best so far", "row_idx", "+=", "[", "edges", "[", "0", "]", ",", "edges", "[", "0", "]", "]", "col_idx", "+=", "[", "edges", "[", "1", "]", ",", "edges", "[", "2", "]", "]", "val", "+=", "[", "-", "a", ",", "-", "a", "]", "row_idx", "=", "numpy", ".", "concatenate", "(", "row_idx", ")", "col_idx", "=", "numpy", ".", "concatenate", "(", "col_idx", ")", "val", "=", "numpy", ".", "concatenate", "(", "val", ")", "# Set Dirichlet conditions on the boundary", "matrix", "=", "scipy", ".", "sparse", ".", "coo_matrix", "(", "(", "val", ",", "(", "row_idx", ",", "col_idx", ")", ")", ",", "shape", "=", "(", "n", ",", "n", ")", ")", "# Transform to CSR format for efficiency", "matrix", "=", "matrix", ".", "tocsr", "(", ")", "# Apply Dirichlet conditions.", "# Set all Dirichlet rows to 0.", "for", "i", "in", "numpy", ".", "where", "(", "mesh", ".", "is_boundary_node", ")", "[", "0", "]", ":", "matrix", ".", "data", "[", "matrix", ".", "indptr", "[", "i", "]", ":", "matrix", ".", "indptr", "[", "i", "+", "1", "]", "]", "=", "0.0", "# Set the diagonal and RHS.", "d", "=", "matrix", ".", "diagonal", "(", ")", "d", "[", "mesh", ".", "is_boundary_node", "]", "=", "1.0", "matrix", ".", "setdiag", "(", "d", ")", "rhs", "[", "mesh", ".", "is_boundary_node", "]", "=", "0.0", "out", "=", "scipy", ".", "sparse", ".", "linalg", ".", "spsolve", "(", "matrix", ",", "rhs", ")", "# PyAMG fails on circleci.", "# ml = pyamg.ruge_stuben_solver(matrix)", "# # Keep an eye on multiple rhs-solves in pyamg,", "# # <https://github.com/pyamg/pyamg/issues/215>.", "# tol = 1.0e-10", "# out = numpy.column_stack(", "# [ml.solve(rhs[:, 0], tol=tol), ml.solve(rhs[:, 1], tol=tol)]", "# )", "return", "out" ]
As discussed above, the approximated Jacobian is partial_i E = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_j) |tau_j|. To get the Hessian, we have to form its derivative. As a simplifications, let us assume again that |tau_j| is independent of the node positions. Then we get partial_ii E = 2/(d+1) |omega_i| - 2/(d+1)**2 |omega_i|, partial_ij E = -2/(d+1)**2 |tau_j|. The terms with (d+1)**2 are from the barycenter in `partial_i E`. It turns out from numerical experiments that the negative term in `partial_ii E` is detrimental to the convergence. Hence, this approximated Hessian solver only considers the off-diagonal contributions from the barycentric terms.
[ "As", "discussed", "above", "the", "approximated", "Jacobian", "is" ]
b85f48d1559a51a01cc3df6214c61ca8ad5ed786
https://github.com/nschloe/optimesh/blob/b85f48d1559a51a01cc3df6214c61ca8ad5ed786/optimesh/cpt.py#L150-L227
12,104
nschloe/optimesh
optimesh/cpt.py
quasi_newton_uniform
def quasi_newton_uniform(points, cells, *args, **kwargs): """Like linear_solve above, but assuming rho==1. Note that the energy gradient \\partial E_i = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_j) \\int_{tau_j} rho becomes \\partial E_i = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_j) |tau_j|. Because of the dependence of |tau_j| on the point coordinates, this is a nonlinear problem. This method makes the simplifying assumption that |tau_j| does in fact _not_ depend on the point coordinates. With this, one still only needs to solve a linear system. """ def get_new_points(mesh): # do one Newton step # TODO need copy? x = mesh.node_coords.copy() cells = mesh.cells["nodes"] jac_x = jac_uniform(x, cells) x -= solve_hessian_approx_uniform(x, cells, jac_x) return x mesh = MeshTri(points, cells) runner(get_new_points, mesh, *args, **kwargs) return mesh.node_coords, mesh.cells["nodes"]
python
def quasi_newton_uniform(points, cells, *args, **kwargs): """Like linear_solve above, but assuming rho==1. Note that the energy gradient \\partial E_i = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_j) \\int_{tau_j} rho becomes \\partial E_i = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_j) |tau_j|. Because of the dependence of |tau_j| on the point coordinates, this is a nonlinear problem. This method makes the simplifying assumption that |tau_j| does in fact _not_ depend on the point coordinates. With this, one still only needs to solve a linear system. """ def get_new_points(mesh): # do one Newton step # TODO need copy? x = mesh.node_coords.copy() cells = mesh.cells["nodes"] jac_x = jac_uniform(x, cells) x -= solve_hessian_approx_uniform(x, cells, jac_x) return x mesh = MeshTri(points, cells) runner(get_new_points, mesh, *args, **kwargs) return mesh.node_coords, mesh.cells["nodes"]
[ "def", "quasi_newton_uniform", "(", "points", ",", "cells", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "def", "get_new_points", "(", "mesh", ")", ":", "# do one Newton step", "# TODO need copy?", "x", "=", "mesh", ".", "node_coords", ".", "copy", "(", ")", "cells", "=", "mesh", ".", "cells", "[", "\"nodes\"", "]", "jac_x", "=", "jac_uniform", "(", "x", ",", "cells", ")", "x", "-=", "solve_hessian_approx_uniform", "(", "x", ",", "cells", ",", "jac_x", ")", "return", "x", "mesh", "=", "MeshTri", "(", "points", ",", "cells", ")", "runner", "(", "get_new_points", ",", "mesh", ",", "*", "args", ",", "*", "*", "kwargs", ")", "return", "mesh", ".", "node_coords", ",", "mesh", ".", "cells", "[", "\"nodes\"", "]" ]
Like linear_solve above, but assuming rho==1. Note that the energy gradient \\partial E_i = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_j) \\int_{tau_j} rho becomes \\partial E_i = 2/(d+1) sum_{tau_j in omega_i} (x_i - b_j) |tau_j|. Because of the dependence of |tau_j| on the point coordinates, this is a nonlinear problem. This method makes the simplifying assumption that |tau_j| does in fact _not_ depend on the point coordinates. With this, one still only needs to solve a linear system.
[ "Like", "linear_solve", "above", "but", "assuming", "rho", "==", "1", ".", "Note", "that", "the", "energy", "gradient" ]
b85f48d1559a51a01cc3df6214c61ca8ad5ed786
https://github.com/nschloe/optimesh/blob/b85f48d1559a51a01cc3df6214c61ca8ad5ed786/optimesh/cpt.py#L230-L257
12,105
nschloe/optimesh
optimesh/laplace.py
fixed_point
def fixed_point(points, cells, *args, **kwargs): """Perform k steps of Laplacian smoothing to the mesh, i.e., moving each interior vertex to the arithmetic average of its neighboring points. """ def get_new_points(mesh): # move interior points into average of their neighbors num_neighbors = numpy.zeros(len(mesh.node_coords), dtype=int) idx = mesh.edges["nodes"] fastfunc.add.at(num_neighbors, idx, numpy.ones(idx.shape, dtype=int)) new_points = numpy.zeros(mesh.node_coords.shape) fastfunc.add.at(new_points, idx[:, 0], mesh.node_coords[idx[:, 1]]) fastfunc.add.at(new_points, idx[:, 1], mesh.node_coords[idx[:, 0]]) new_points /= num_neighbors[:, None] idx = mesh.is_boundary_node new_points[idx] = mesh.node_coords[idx] return new_points mesh = MeshTri(points, cells) runner(get_new_points, mesh, *args, **kwargs) return mesh.node_coords, mesh.cells["nodes"]
python
def fixed_point(points, cells, *args, **kwargs): """Perform k steps of Laplacian smoothing to the mesh, i.e., moving each interior vertex to the arithmetic average of its neighboring points. """ def get_new_points(mesh): # move interior points into average of their neighbors num_neighbors = numpy.zeros(len(mesh.node_coords), dtype=int) idx = mesh.edges["nodes"] fastfunc.add.at(num_neighbors, idx, numpy.ones(idx.shape, dtype=int)) new_points = numpy.zeros(mesh.node_coords.shape) fastfunc.add.at(new_points, idx[:, 0], mesh.node_coords[idx[:, 1]]) fastfunc.add.at(new_points, idx[:, 1], mesh.node_coords[idx[:, 0]]) new_points /= num_neighbors[:, None] idx = mesh.is_boundary_node new_points[idx] = mesh.node_coords[idx] return new_points mesh = MeshTri(points, cells) runner(get_new_points, mesh, *args, **kwargs) return mesh.node_coords, mesh.cells["nodes"]
[ "def", "fixed_point", "(", "points", ",", "cells", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "def", "get_new_points", "(", "mesh", ")", ":", "# move interior points into average of their neighbors", "num_neighbors", "=", "numpy", ".", "zeros", "(", "len", "(", "mesh", ".", "node_coords", ")", ",", "dtype", "=", "int", ")", "idx", "=", "mesh", ".", "edges", "[", "\"nodes\"", "]", "fastfunc", ".", "add", ".", "at", "(", "num_neighbors", ",", "idx", ",", "numpy", ".", "ones", "(", "idx", ".", "shape", ",", "dtype", "=", "int", ")", ")", "new_points", "=", "numpy", ".", "zeros", "(", "mesh", ".", "node_coords", ".", "shape", ")", "fastfunc", ".", "add", ".", "at", "(", "new_points", ",", "idx", "[", ":", ",", "0", "]", ",", "mesh", ".", "node_coords", "[", "idx", "[", ":", ",", "1", "]", "]", ")", "fastfunc", ".", "add", ".", "at", "(", "new_points", ",", "idx", "[", ":", ",", "1", "]", ",", "mesh", ".", "node_coords", "[", "idx", "[", ":", ",", "0", "]", "]", ")", "new_points", "/=", "num_neighbors", "[", ":", ",", "None", "]", "idx", "=", "mesh", ".", "is_boundary_node", "new_points", "[", "idx", "]", "=", "mesh", ".", "node_coords", "[", "idx", "]", "return", "new_points", "mesh", "=", "MeshTri", "(", "points", ",", "cells", ")", "runner", "(", "get_new_points", ",", "mesh", ",", "*", "args", ",", "*", "*", "kwargs", ")", "return", "mesh", ".", "node_coords", ",", "mesh", ".", "cells", "[", "\"nodes\"", "]" ]
Perform k steps of Laplacian smoothing to the mesh, i.e., moving each interior vertex to the arithmetic average of its neighboring points.
[ "Perform", "k", "steps", "of", "Laplacian", "smoothing", "to", "the", "mesh", "i", ".", "e", ".", "moving", "each", "interior", "vertex", "to", "the", "arithmetic", "average", "of", "its", "neighboring", "points", "." ]
b85f48d1559a51a01cc3df6214c61ca8ad5ed786
https://github.com/nschloe/optimesh/blob/b85f48d1559a51a01cc3df6214c61ca8ad5ed786/optimesh/laplace.py#L12-L34
12,106
nschloe/optimesh
optimesh/odt.py
energy
def energy(mesh, uniform_density=False): """The mesh energy is defined as E = int_Omega |u_l(x) - u(x)| rho(x) dx where u(x) = ||x||^2 and u_l is its piecewise linearization on the mesh. """ # E = 1/(d+1) sum_i ||x_i||^2 |omega_i| - int_Omega_i ||x||^2 dim = mesh.cells["nodes"].shape[1] - 1 star_volume = numpy.zeros(mesh.node_coords.shape[0]) for i in range(3): idx = mesh.cells["nodes"][:, i] if uniform_density: # rho = 1, # int_{star} phi_i * rho = 1/(d+1) sum_{triangles in star} |triangle| fastfunc.add.at(star_volume, idx, mesh.cell_volumes) else: # rho = 1 / tau_j, # int_{star} phi_i * rho = 1/(d+1) |num triangles in star| fastfunc.add.at(star_volume, idx, numpy.ones(idx.shape, dtype=float)) x2 = numpy.einsum("ij,ij->i", mesh.node_coords, mesh.node_coords) out = 1 / (dim + 1) * numpy.dot(star_volume, x2) # could be cached assert dim == 2 x = mesh.node_coords[:, :2] triangles = numpy.moveaxis(x[mesh.cells["nodes"]], 0, 1) val = quadpy.triangle.integrate( lambda x: x[0] ** 2 + x[1] ** 2, triangles, # Take any scheme with order 2 quadpy.triangle.Dunavant(2), ) if uniform_density: val = numpy.sum(val) else: rho = 1.0 / mesh.cell_volumes val = numpy.dot(val, rho) assert out >= val return out - val
python
def energy(mesh, uniform_density=False): """The mesh energy is defined as E = int_Omega |u_l(x) - u(x)| rho(x) dx where u(x) = ||x||^2 and u_l is its piecewise linearization on the mesh. """ # E = 1/(d+1) sum_i ||x_i||^2 |omega_i| - int_Omega_i ||x||^2 dim = mesh.cells["nodes"].shape[1] - 1 star_volume = numpy.zeros(mesh.node_coords.shape[0]) for i in range(3): idx = mesh.cells["nodes"][:, i] if uniform_density: # rho = 1, # int_{star} phi_i * rho = 1/(d+1) sum_{triangles in star} |triangle| fastfunc.add.at(star_volume, idx, mesh.cell_volumes) else: # rho = 1 / tau_j, # int_{star} phi_i * rho = 1/(d+1) |num triangles in star| fastfunc.add.at(star_volume, idx, numpy.ones(idx.shape, dtype=float)) x2 = numpy.einsum("ij,ij->i", mesh.node_coords, mesh.node_coords) out = 1 / (dim + 1) * numpy.dot(star_volume, x2) # could be cached assert dim == 2 x = mesh.node_coords[:, :2] triangles = numpy.moveaxis(x[mesh.cells["nodes"]], 0, 1) val = quadpy.triangle.integrate( lambda x: x[0] ** 2 + x[1] ** 2, triangles, # Take any scheme with order 2 quadpy.triangle.Dunavant(2), ) if uniform_density: val = numpy.sum(val) else: rho = 1.0 / mesh.cell_volumes val = numpy.dot(val, rho) assert out >= val return out - val
[ "def", "energy", "(", "mesh", ",", "uniform_density", "=", "False", ")", ":", "# E = 1/(d+1) sum_i ||x_i||^2 |omega_i| - int_Omega_i ||x||^2", "dim", "=", "mesh", ".", "cells", "[", "\"nodes\"", "]", ".", "shape", "[", "1", "]", "-", "1", "star_volume", "=", "numpy", ".", "zeros", "(", "mesh", ".", "node_coords", ".", "shape", "[", "0", "]", ")", "for", "i", "in", "range", "(", "3", ")", ":", "idx", "=", "mesh", ".", "cells", "[", "\"nodes\"", "]", "[", ":", ",", "i", "]", "if", "uniform_density", ":", "# rho = 1,", "# int_{star} phi_i * rho = 1/(d+1) sum_{triangles in star} |triangle|", "fastfunc", ".", "add", ".", "at", "(", "star_volume", ",", "idx", ",", "mesh", ".", "cell_volumes", ")", "else", ":", "# rho = 1 / tau_j,", "# int_{star} phi_i * rho = 1/(d+1) |num triangles in star|", "fastfunc", ".", "add", ".", "at", "(", "star_volume", ",", "idx", ",", "numpy", ".", "ones", "(", "idx", ".", "shape", ",", "dtype", "=", "float", ")", ")", "x2", "=", "numpy", ".", "einsum", "(", "\"ij,ij->i\"", ",", "mesh", ".", "node_coords", ",", "mesh", ".", "node_coords", ")", "out", "=", "1", "/", "(", "dim", "+", "1", ")", "*", "numpy", ".", "dot", "(", "star_volume", ",", "x2", ")", "# could be cached", "assert", "dim", "==", "2", "x", "=", "mesh", ".", "node_coords", "[", ":", ",", ":", "2", "]", "triangles", "=", "numpy", ".", "moveaxis", "(", "x", "[", "mesh", ".", "cells", "[", "\"nodes\"", "]", "]", ",", "0", ",", "1", ")", "val", "=", "quadpy", ".", "triangle", ".", "integrate", "(", "lambda", "x", ":", "x", "[", "0", "]", "**", "2", "+", "x", "[", "1", "]", "**", "2", ",", "triangles", ",", "# Take any scheme with order 2", "quadpy", ".", "triangle", ".", "Dunavant", "(", "2", ")", ",", ")", "if", "uniform_density", ":", "val", "=", "numpy", ".", "sum", "(", "val", ")", "else", ":", "rho", "=", "1.0", "/", "mesh", ".", "cell_volumes", "val", "=", "numpy", ".", "dot", "(", "val", ",", "rho", ")", "assert", "out", ">=", "val", "return", "out", "-", "val" ]
The mesh energy is defined as E = int_Omega |u_l(x) - u(x)| rho(x) dx where u(x) = ||x||^2 and u_l is its piecewise linearization on the mesh.
[ "The", "mesh", "energy", "is", "defined", "as" ]
b85f48d1559a51a01cc3df6214c61ca8ad5ed786
https://github.com/nschloe/optimesh/blob/b85f48d1559a51a01cc3df6214c61ca8ad5ed786/optimesh/odt.py#L28-L70
12,107
nschloe/optimesh
optimesh/cvt/block_diagonal.py
quasi_newton_uniform_blocks
def quasi_newton_uniform_blocks(points, cells, *args, **kwargs): """Lloyd's algorithm can be though of a diagonal-only Hessian; this method incorporates the diagonal blocks, too. """ def get_new_points(mesh): # TODO need copy? x = mesh.node_coords.copy() x += update(mesh) # update ghosts x[ghosted_mesh.is_ghost_point] = ghosted_mesh.reflect_ghost( x[ghosted_mesh.mirrors] ) return x ghosted_mesh = GhostedMesh(points, cells) runner( get_new_points, ghosted_mesh, *args, **kwargs, update_topology=lambda mesh: ghosted_mesh.update_topology(), # get_stats_mesh=lambda mesh: ghosted_mesh.get_unghosted_mesh(), ) mesh = ghosted_mesh.get_unghosted_mesh() return mesh.node_coords, mesh.cells["nodes"]
python
def quasi_newton_uniform_blocks(points, cells, *args, **kwargs): """Lloyd's algorithm can be though of a diagonal-only Hessian; this method incorporates the diagonal blocks, too. """ def get_new_points(mesh): # TODO need copy? x = mesh.node_coords.copy() x += update(mesh) # update ghosts x[ghosted_mesh.is_ghost_point] = ghosted_mesh.reflect_ghost( x[ghosted_mesh.mirrors] ) return x ghosted_mesh = GhostedMesh(points, cells) runner( get_new_points, ghosted_mesh, *args, **kwargs, update_topology=lambda mesh: ghosted_mesh.update_topology(), # get_stats_mesh=lambda mesh: ghosted_mesh.get_unghosted_mesh(), ) mesh = ghosted_mesh.get_unghosted_mesh() return mesh.node_coords, mesh.cells["nodes"]
[ "def", "quasi_newton_uniform_blocks", "(", "points", ",", "cells", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "def", "get_new_points", "(", "mesh", ")", ":", "# TODO need copy?", "x", "=", "mesh", ".", "node_coords", ".", "copy", "(", ")", "x", "+=", "update", "(", "mesh", ")", "# update ghosts", "x", "[", "ghosted_mesh", ".", "is_ghost_point", "]", "=", "ghosted_mesh", ".", "reflect_ghost", "(", "x", "[", "ghosted_mesh", ".", "mirrors", "]", ")", "return", "x", "ghosted_mesh", "=", "GhostedMesh", "(", "points", ",", "cells", ")", "runner", "(", "get_new_points", ",", "ghosted_mesh", ",", "*", "args", ",", "*", "*", "kwargs", ",", "update_topology", "=", "lambda", "mesh", ":", "ghosted_mesh", ".", "update_topology", "(", ")", ",", "# get_stats_mesh=lambda mesh: ghosted_mesh.get_unghosted_mesh(),", ")", "mesh", "=", "ghosted_mesh", ".", "get_unghosted_mesh", "(", ")", "return", "mesh", ".", "node_coords", ",", "mesh", ".", "cells", "[", "\"nodes\"", "]" ]
Lloyd's algorithm can be though of a diagonal-only Hessian; this method incorporates the diagonal blocks, too.
[ "Lloyd", "s", "algorithm", "can", "be", "though", "of", "a", "diagonal", "-", "only", "Hessian", ";", "this", "method", "incorporates", "the", "diagonal", "blocks", "too", "." ]
b85f48d1559a51a01cc3df6214c61ca8ad5ed786
https://github.com/nschloe/optimesh/blob/b85f48d1559a51a01cc3df6214c61ca8ad5ed786/optimesh/cvt/block_diagonal.py#L12-L39
12,108
linnarsson-lab/loompy
loompy/loompy.py
new
def new(filename: str, *, file_attrs: Optional[Dict[str, str]] = None) -> LoomConnection: """ Create an empty Loom file, and return it as a context manager. """ if filename.startswith("~/"): filename = os.path.expanduser(filename) if file_attrs is None: file_attrs = {} # Create the file (empty). # Yes, this might cause an exception, which we prefer to send to the caller f = h5py.File(name=filename, mode='w') f.create_group('/layers') f.create_group('/row_attrs') f.create_group('/col_attrs') f.create_group('/row_graphs') f.create_group('/col_graphs') f.flush() f.close() ds = connect(filename, validate=False) for vals in file_attrs: ds.attrs[vals] = file_attrs[vals] # store creation date currentTime = time.localtime(time.time()) ds.attrs['CreationDate'] = timestamp() ds.attrs["LOOM_SPEC_VERSION"] = loompy.loom_spec_version return ds
python
def new(filename: str, *, file_attrs: Optional[Dict[str, str]] = None) -> LoomConnection: """ Create an empty Loom file, and return it as a context manager. """ if filename.startswith("~/"): filename = os.path.expanduser(filename) if file_attrs is None: file_attrs = {} # Create the file (empty). # Yes, this might cause an exception, which we prefer to send to the caller f = h5py.File(name=filename, mode='w') f.create_group('/layers') f.create_group('/row_attrs') f.create_group('/col_attrs') f.create_group('/row_graphs') f.create_group('/col_graphs') f.flush() f.close() ds = connect(filename, validate=False) for vals in file_attrs: ds.attrs[vals] = file_attrs[vals] # store creation date currentTime = time.localtime(time.time()) ds.attrs['CreationDate'] = timestamp() ds.attrs["LOOM_SPEC_VERSION"] = loompy.loom_spec_version return ds
[ "def", "new", "(", "filename", ":", "str", ",", "*", ",", "file_attrs", ":", "Optional", "[", "Dict", "[", "str", ",", "str", "]", "]", "=", "None", ")", "->", "LoomConnection", ":", "if", "filename", ".", "startswith", "(", "\"~/\"", ")", ":", "filename", "=", "os", ".", "path", ".", "expanduser", "(", "filename", ")", "if", "file_attrs", "is", "None", ":", "file_attrs", "=", "{", "}", "# Create the file (empty).", "# Yes, this might cause an exception, which we prefer to send to the caller", "f", "=", "h5py", ".", "File", "(", "name", "=", "filename", ",", "mode", "=", "'w'", ")", "f", ".", "create_group", "(", "'/layers'", ")", "f", ".", "create_group", "(", "'/row_attrs'", ")", "f", ".", "create_group", "(", "'/col_attrs'", ")", "f", ".", "create_group", "(", "'/row_graphs'", ")", "f", ".", "create_group", "(", "'/col_graphs'", ")", "f", ".", "flush", "(", ")", "f", ".", "close", "(", ")", "ds", "=", "connect", "(", "filename", ",", "validate", "=", "False", ")", "for", "vals", "in", "file_attrs", ":", "ds", ".", "attrs", "[", "vals", "]", "=", "file_attrs", "[", "vals", "]", "# store creation date", "currentTime", "=", "time", ".", "localtime", "(", "time", ".", "time", "(", ")", ")", "ds", ".", "attrs", "[", "'CreationDate'", "]", "=", "timestamp", "(", ")", "ds", ".", "attrs", "[", "\"LOOM_SPEC_VERSION\"", "]", "=", "loompy", ".", "loom_spec_version", "return", "ds" ]
Create an empty Loom file, and return it as a context manager.
[ "Create", "an", "empty", "Loom", "file", "and", "return", "it", "as", "a", "context", "manager", "." ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/loompy.py#L993-L1020
12,109
linnarsson-lab/loompy
loompy/loompy.py
create
def create(filename: str, layers: Union[np.ndarray, Dict[str, np.ndarray], loompy.LayerManager], row_attrs: Union[loompy.AttributeManager, Dict[str, np.ndarray]], col_attrs: Union[loompy.AttributeManager, Dict[str, np.ndarray]], *, file_attrs: Dict[str, str] = None) -> None: """ Create a new Loom file from the given data. Args: filename (str): The filename (typically using a ``.loom`` file extension) layers: One of the following: * Two-dimensional (N-by-M) numpy ndarray of float values * Sparse matrix (e.g. :class:`scipy.sparse.csr_matrix`) * Dictionary of named layers, each an N-by-M ndarray or sparse matrix * A :class:`.LayerManager`, with each layer an N-by-M ndarray row_attrs (dict): Row attributes, where keys are attribute names and values are numpy arrays (float or string) of length N col_attrs (dict): Column attributes, where keys are attribute names and values are numpy arrays (float or string) of length M file_attrs (dict): Global attributes, where keys are attribute names and values are strings Returns: Nothing Remarks: If the file exists, it will be overwritten. """ if isinstance(row_attrs, loompy.AttributeManager): row_attrs = {k: v[:] for k, v in row_attrs.items()} if isinstance(col_attrs, loompy.AttributeManager): col_attrs = {k: v[:] for k, v in col_attrs.items()} if isinstance(layers, np.ndarray) or scipy.sparse.issparse(layers): layers = {"": layers} elif isinstance(layers, loompy.LayerManager): layers = {k: v[:, :] for k, v in layers.items()} if "" not in layers: raise ValueError("Data for default layer must be provided") # Sanity checks shape = layers[""].shape # type: ignore if shape[0] == 0 or shape[1] == 0: raise ValueError("Main matrix cannot be empty") for name, layer in layers.items(): if layer.shape != shape: # type: ignore raise ValueError(f"Layer '{name}' is not the same shape as the main matrix") for name, ra in row_attrs.items(): if ra.shape[0] != shape[0]: raise ValueError(f"Row attribute '{name}' is not the same length ({ra.shape[0]}) as number of rows in main matrix ({shape[0]})") for name, ca in col_attrs.items(): if ca.shape[0] != shape[1]: raise ValueError(f"Column attribute '{name}' is not the same length ({ca.shape[0]}) as number of columns in main matrix ({shape[1]})") try: with new(filename, file_attrs=file_attrs) as ds: for key, vals in layers.items(): ds.layer[key] = vals for key, vals in row_attrs.items(): ds.ra[key] = vals for key, vals in col_attrs.items(): ds.ca[key] = vals except ValueError as ve: #ds.close(suppress_warning=True) # ds does not exist here if os.path.exists(filename): os.remove(filename) raise ve
python
def create(filename: str, layers: Union[np.ndarray, Dict[str, np.ndarray], loompy.LayerManager], row_attrs: Union[loompy.AttributeManager, Dict[str, np.ndarray]], col_attrs: Union[loompy.AttributeManager, Dict[str, np.ndarray]], *, file_attrs: Dict[str, str] = None) -> None: """ Create a new Loom file from the given data. Args: filename (str): The filename (typically using a ``.loom`` file extension) layers: One of the following: * Two-dimensional (N-by-M) numpy ndarray of float values * Sparse matrix (e.g. :class:`scipy.sparse.csr_matrix`) * Dictionary of named layers, each an N-by-M ndarray or sparse matrix * A :class:`.LayerManager`, with each layer an N-by-M ndarray row_attrs (dict): Row attributes, where keys are attribute names and values are numpy arrays (float or string) of length N col_attrs (dict): Column attributes, where keys are attribute names and values are numpy arrays (float or string) of length M file_attrs (dict): Global attributes, where keys are attribute names and values are strings Returns: Nothing Remarks: If the file exists, it will be overwritten. """ if isinstance(row_attrs, loompy.AttributeManager): row_attrs = {k: v[:] for k, v in row_attrs.items()} if isinstance(col_attrs, loompy.AttributeManager): col_attrs = {k: v[:] for k, v in col_attrs.items()} if isinstance(layers, np.ndarray) or scipy.sparse.issparse(layers): layers = {"": layers} elif isinstance(layers, loompy.LayerManager): layers = {k: v[:, :] for k, v in layers.items()} if "" not in layers: raise ValueError("Data for default layer must be provided") # Sanity checks shape = layers[""].shape # type: ignore if shape[0] == 0 or shape[1] == 0: raise ValueError("Main matrix cannot be empty") for name, layer in layers.items(): if layer.shape != shape: # type: ignore raise ValueError(f"Layer '{name}' is not the same shape as the main matrix") for name, ra in row_attrs.items(): if ra.shape[0] != shape[0]: raise ValueError(f"Row attribute '{name}' is not the same length ({ra.shape[0]}) as number of rows in main matrix ({shape[0]})") for name, ca in col_attrs.items(): if ca.shape[0] != shape[1]: raise ValueError(f"Column attribute '{name}' is not the same length ({ca.shape[0]}) as number of columns in main matrix ({shape[1]})") try: with new(filename, file_attrs=file_attrs) as ds: for key, vals in layers.items(): ds.layer[key] = vals for key, vals in row_attrs.items(): ds.ra[key] = vals for key, vals in col_attrs.items(): ds.ca[key] = vals except ValueError as ve: #ds.close(suppress_warning=True) # ds does not exist here if os.path.exists(filename): os.remove(filename) raise ve
[ "def", "create", "(", "filename", ":", "str", ",", "layers", ":", "Union", "[", "np", ".", "ndarray", ",", "Dict", "[", "str", ",", "np", ".", "ndarray", "]", ",", "loompy", ".", "LayerManager", "]", ",", "row_attrs", ":", "Union", "[", "loompy", ".", "AttributeManager", ",", "Dict", "[", "str", ",", "np", ".", "ndarray", "]", "]", ",", "col_attrs", ":", "Union", "[", "loompy", ".", "AttributeManager", ",", "Dict", "[", "str", ",", "np", ".", "ndarray", "]", "]", ",", "*", ",", "file_attrs", ":", "Dict", "[", "str", ",", "str", "]", "=", "None", ")", "->", "None", ":", "if", "isinstance", "(", "row_attrs", ",", "loompy", ".", "AttributeManager", ")", ":", "row_attrs", "=", "{", "k", ":", "v", "[", ":", "]", "for", "k", ",", "v", "in", "row_attrs", ".", "items", "(", ")", "}", "if", "isinstance", "(", "col_attrs", ",", "loompy", ".", "AttributeManager", ")", ":", "col_attrs", "=", "{", "k", ":", "v", "[", ":", "]", "for", "k", ",", "v", "in", "col_attrs", ".", "items", "(", ")", "}", "if", "isinstance", "(", "layers", ",", "np", ".", "ndarray", ")", "or", "scipy", ".", "sparse", ".", "issparse", "(", "layers", ")", ":", "layers", "=", "{", "\"\"", ":", "layers", "}", "elif", "isinstance", "(", "layers", ",", "loompy", ".", "LayerManager", ")", ":", "layers", "=", "{", "k", ":", "v", "[", ":", ",", ":", "]", "for", "k", ",", "v", "in", "layers", ".", "items", "(", ")", "}", "if", "\"\"", "not", "in", "layers", ":", "raise", "ValueError", "(", "\"Data for default layer must be provided\"", ")", "# Sanity checks", "shape", "=", "layers", "[", "\"\"", "]", ".", "shape", "# type: ignore", "if", "shape", "[", "0", "]", "==", "0", "or", "shape", "[", "1", "]", "==", "0", ":", "raise", "ValueError", "(", "\"Main matrix cannot be empty\"", ")", "for", "name", ",", "layer", "in", "layers", ".", "items", "(", ")", ":", "if", "layer", ".", "shape", "!=", "shape", ":", "# type: ignore", "raise", "ValueError", "(", "f\"Layer '{name}' is not the same shape as the main matrix\"", ")", "for", "name", ",", "ra", "in", "row_attrs", ".", "items", "(", ")", ":", "if", "ra", ".", "shape", "[", "0", "]", "!=", "shape", "[", "0", "]", ":", "raise", "ValueError", "(", "f\"Row attribute '{name}' is not the same length ({ra.shape[0]}) as number of rows in main matrix ({shape[0]})\"", ")", "for", "name", ",", "ca", "in", "col_attrs", ".", "items", "(", ")", ":", "if", "ca", ".", "shape", "[", "0", "]", "!=", "shape", "[", "1", "]", ":", "raise", "ValueError", "(", "f\"Column attribute '{name}' is not the same length ({ca.shape[0]}) as number of columns in main matrix ({shape[1]})\"", ")", "try", ":", "with", "new", "(", "filename", ",", "file_attrs", "=", "file_attrs", ")", "as", "ds", ":", "for", "key", ",", "vals", "in", "layers", ".", "items", "(", ")", ":", "ds", ".", "layer", "[", "key", "]", "=", "vals", "for", "key", ",", "vals", "in", "row_attrs", ".", "items", "(", ")", ":", "ds", ".", "ra", "[", "key", "]", "=", "vals", "for", "key", ",", "vals", "in", "col_attrs", ".", "items", "(", ")", ":", "ds", ".", "ca", "[", "key", "]", "=", "vals", "except", "ValueError", "as", "ve", ":", "#ds.close(suppress_warning=True) # ds does not exist here", "if", "os", ".", "path", ".", "exists", "(", "filename", ")", ":", "os", ".", "remove", "(", "filename", ")", "raise", "ve" ]
Create a new Loom file from the given data. Args: filename (str): The filename (typically using a ``.loom`` file extension) layers: One of the following: * Two-dimensional (N-by-M) numpy ndarray of float values * Sparse matrix (e.g. :class:`scipy.sparse.csr_matrix`) * Dictionary of named layers, each an N-by-M ndarray or sparse matrix * A :class:`.LayerManager`, with each layer an N-by-M ndarray row_attrs (dict): Row attributes, where keys are attribute names and values are numpy arrays (float or string) of length N col_attrs (dict): Column attributes, where keys are attribute names and values are numpy arrays (float or string) of length M file_attrs (dict): Global attributes, where keys are attribute names and values are strings Returns: Nothing Remarks: If the file exists, it will be overwritten.
[ "Create", "a", "new", "Loom", "file", "from", "the", "given", "data", "." ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/loompy.py#L1023-L1089
12,110
linnarsson-lab/loompy
loompy/loompy.py
connect
def connect(filename: str, mode: str = 'r+', *, validate: bool = True, spec_version: str = "2.0.1") -> LoomConnection: """ Establish a connection to a .loom file. Args: filename: Path to the Loom file to open mode: Read/write mode, 'r+' (read/write) or 'r' (read-only), defaults to 'r+' validate: Validate the file structure against the Loom file format specification spec_version: The loom file spec version to validate against (e.g. "2.0.1" or "old") Returns: A LoomConnection instance. Remarks: This function should typically be used as a context manager (i.e. inside a ``with``-block): .. highlight:: python .. code-block:: python import loompy with loompy.connect("mydata.loom") as ds: print(ds.ca.keys()) This ensures that the file will be closed automatically when the context block ends Note: if validation is requested, an exception is raised if validation fails. """ return LoomConnection(filename, mode, validate=validate, spec_version=spec_version)
python
def connect(filename: str, mode: str = 'r+', *, validate: bool = True, spec_version: str = "2.0.1") -> LoomConnection: """ Establish a connection to a .loom file. Args: filename: Path to the Loom file to open mode: Read/write mode, 'r+' (read/write) or 'r' (read-only), defaults to 'r+' validate: Validate the file structure against the Loom file format specification spec_version: The loom file spec version to validate against (e.g. "2.0.1" or "old") Returns: A LoomConnection instance. Remarks: This function should typically be used as a context manager (i.e. inside a ``with``-block): .. highlight:: python .. code-block:: python import loompy with loompy.connect("mydata.loom") as ds: print(ds.ca.keys()) This ensures that the file will be closed automatically when the context block ends Note: if validation is requested, an exception is raised if validation fails. """ return LoomConnection(filename, mode, validate=validate, spec_version=spec_version)
[ "def", "connect", "(", "filename", ":", "str", ",", "mode", ":", "str", "=", "'r+'", ",", "*", ",", "validate", ":", "bool", "=", "True", ",", "spec_version", ":", "str", "=", "\"2.0.1\"", ")", "->", "LoomConnection", ":", "return", "LoomConnection", "(", "filename", ",", "mode", ",", "validate", "=", "validate", ",", "spec_version", "=", "spec_version", ")" ]
Establish a connection to a .loom file. Args: filename: Path to the Loom file to open mode: Read/write mode, 'r+' (read/write) or 'r' (read-only), defaults to 'r+' validate: Validate the file structure against the Loom file format specification spec_version: The loom file spec version to validate against (e.g. "2.0.1" or "old") Returns: A LoomConnection instance. Remarks: This function should typically be used as a context manager (i.e. inside a ``with``-block): .. highlight:: python .. code-block:: python import loompy with loompy.connect("mydata.loom") as ds: print(ds.ca.keys()) This ensures that the file will be closed automatically when the context block ends Note: if validation is requested, an exception is raised if validation fails.
[ "Establish", "a", "connection", "to", "a", ".", "loom", "file", "." ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/loompy.py#L1290-L1316
12,111
linnarsson-lab/loompy
loompy/loompy.py
LoomConnection.last_modified
def last_modified(self) -> str: """ Return an ISO8601 timestamp indicating when the file was last modified Returns: An ISO8601 timestamp indicating when the file was last modified Remarks: If the file has no timestamp, and mode is 'r+', a new timestamp is created and returned. Otherwise, the current time in UTC is returned """ if "last_modified" in self.attrs: return self.attrs["last_modified"] elif self.mode == "r+": # Make sure the file has modification timestamps self.attrs["last_modified"] = timestamp() return self.attrs["last_modified"] return timestamp()
python
def last_modified(self) -> str: """ Return an ISO8601 timestamp indicating when the file was last modified Returns: An ISO8601 timestamp indicating when the file was last modified Remarks: If the file has no timestamp, and mode is 'r+', a new timestamp is created and returned. Otherwise, the current time in UTC is returned """ if "last_modified" in self.attrs: return self.attrs["last_modified"] elif self.mode == "r+": # Make sure the file has modification timestamps self.attrs["last_modified"] = timestamp() return self.attrs["last_modified"] return timestamp()
[ "def", "last_modified", "(", "self", ")", "->", "str", ":", "if", "\"last_modified\"", "in", "self", ".", "attrs", ":", "return", "self", ".", "attrs", "[", "\"last_modified\"", "]", "elif", "self", ".", "mode", "==", "\"r+\"", ":", "# Make sure the file has modification timestamps", "self", ".", "attrs", "[", "\"last_modified\"", "]", "=", "timestamp", "(", ")", "return", "self", ".", "attrs", "[", "\"last_modified\"", "]", "return", "timestamp", "(", ")" ]
Return an ISO8601 timestamp indicating when the file was last modified Returns: An ISO8601 timestamp indicating when the file was last modified Remarks: If the file has no timestamp, and mode is 'r+', a new timestamp is created and returned. Otherwise, the current time in UTC is returned
[ "Return", "an", "ISO8601", "timestamp", "indicating", "when", "the", "file", "was", "last", "modified" ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/loompy.py#L115-L132
12,112
linnarsson-lab/loompy
loompy/loompy.py
LoomConnection.get_changes_since
def get_changes_since(self, timestamp: str) -> Dict[str, List]: """ Get a summary of the parts of the file that changed since the given time Args: timestamp: ISO8601 timestamp Return: dict: Dictionary like ``{"row_graphs": rg, "col_graphs": cg, "row_attrs": ra, "col_attrs": ca, "layers": layers}`` listing the names of objects that were modified since the given time """ rg = [] cg = [] ra = [] ca = [] layers = [] if self.last_modified() > timestamp: if self.row_graphs.last_modified() > timestamp: for name in self.row_graphs.keys(): if self.row_graphs.last_modified(name) > timestamp: rg.append(name) if self.col_graphs.last_modified() > timestamp: for name in self.col_graphs.keys(): if self.col_graphs.last_modified(name) > timestamp: cg.append(name) if self.ra.last_modified() > timestamp: for name in self.ra.keys(): if self.ra.last_modified(name) > timestamp: ra.append(name) if self.ca.last_modified() > timestamp: for name in self.ca.keys(): if self.ca.last_modified(name) > timestamp: ca.append(name) if self.layers.last_modified() > timestamp: for name in self.layers.keys(): if self.layers.last_modified(name) > timestamp: layers.append(name) return {"row_graphs": rg, "col_graphs": cg, "row_attrs": ra, "col_attrs": ca, "layers": layers}
python
def get_changes_since(self, timestamp: str) -> Dict[str, List]: """ Get a summary of the parts of the file that changed since the given time Args: timestamp: ISO8601 timestamp Return: dict: Dictionary like ``{"row_graphs": rg, "col_graphs": cg, "row_attrs": ra, "col_attrs": ca, "layers": layers}`` listing the names of objects that were modified since the given time """ rg = [] cg = [] ra = [] ca = [] layers = [] if self.last_modified() > timestamp: if self.row_graphs.last_modified() > timestamp: for name in self.row_graphs.keys(): if self.row_graphs.last_modified(name) > timestamp: rg.append(name) if self.col_graphs.last_modified() > timestamp: for name in self.col_graphs.keys(): if self.col_graphs.last_modified(name) > timestamp: cg.append(name) if self.ra.last_modified() > timestamp: for name in self.ra.keys(): if self.ra.last_modified(name) > timestamp: ra.append(name) if self.ca.last_modified() > timestamp: for name in self.ca.keys(): if self.ca.last_modified(name) > timestamp: ca.append(name) if self.layers.last_modified() > timestamp: for name in self.layers.keys(): if self.layers.last_modified(name) > timestamp: layers.append(name) return {"row_graphs": rg, "col_graphs": cg, "row_attrs": ra, "col_attrs": ca, "layers": layers}
[ "def", "get_changes_since", "(", "self", ",", "timestamp", ":", "str", ")", "->", "Dict", "[", "str", ",", "List", "]", ":", "rg", "=", "[", "]", "cg", "=", "[", "]", "ra", "=", "[", "]", "ca", "=", "[", "]", "layers", "=", "[", "]", "if", "self", ".", "last_modified", "(", ")", ">", "timestamp", ":", "if", "self", ".", "row_graphs", ".", "last_modified", "(", ")", ">", "timestamp", ":", "for", "name", "in", "self", ".", "row_graphs", ".", "keys", "(", ")", ":", "if", "self", ".", "row_graphs", ".", "last_modified", "(", "name", ")", ">", "timestamp", ":", "rg", ".", "append", "(", "name", ")", "if", "self", ".", "col_graphs", ".", "last_modified", "(", ")", ">", "timestamp", ":", "for", "name", "in", "self", ".", "col_graphs", ".", "keys", "(", ")", ":", "if", "self", ".", "col_graphs", ".", "last_modified", "(", "name", ")", ">", "timestamp", ":", "cg", ".", "append", "(", "name", ")", "if", "self", ".", "ra", ".", "last_modified", "(", ")", ">", "timestamp", ":", "for", "name", "in", "self", ".", "ra", ".", "keys", "(", ")", ":", "if", "self", ".", "ra", ".", "last_modified", "(", "name", ")", ">", "timestamp", ":", "ra", ".", "append", "(", "name", ")", "if", "self", ".", "ca", ".", "last_modified", "(", ")", ">", "timestamp", ":", "for", "name", "in", "self", ".", "ca", ".", "keys", "(", ")", ":", "if", "self", ".", "ca", ".", "last_modified", "(", "name", ")", ">", "timestamp", ":", "ca", ".", "append", "(", "name", ")", "if", "self", ".", "layers", ".", "last_modified", "(", ")", ">", "timestamp", ":", "for", "name", "in", "self", ".", "layers", ".", "keys", "(", ")", ":", "if", "self", ".", "layers", ".", "last_modified", "(", "name", ")", ">", "timestamp", ":", "layers", ".", "append", "(", "name", ")", "return", "{", "\"row_graphs\"", ":", "rg", ",", "\"col_graphs\"", ":", "cg", ",", "\"row_attrs\"", ":", "ra", ",", "\"col_attrs\"", ":", "ca", ",", "\"layers\"", ":", "layers", "}" ]
Get a summary of the parts of the file that changed since the given time Args: timestamp: ISO8601 timestamp Return: dict: Dictionary like ``{"row_graphs": rg, "col_graphs": cg, "row_attrs": ra, "col_attrs": ca, "layers": layers}`` listing the names of objects that were modified since the given time
[ "Get", "a", "summary", "of", "the", "parts", "of", "the", "file", "that", "changed", "since", "the", "given", "time" ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/loompy.py#L134-L171
12,113
linnarsson-lab/loompy
loompy/loompy.py
LoomConnection.sparse
def sparse(self, rows: np.ndarray = None, cols: np.ndarray = None, layer: str = None) -> scipy.sparse.coo_matrix: """ Return the main matrix or specified layer as a scipy.sparse.coo_matrix, without loading dense matrix in RAM Args: rows: Rows to include, or None to include all cols: Columns to include, or None to include all layer: Layer to return, or None to return the default layer Returns: Sparse matrix (:class:`scipy.sparse.coo_matrix`) """ if layer is None: return self.layers[""].sparse(rows=rows, cols=cols) else: return self.layers[layer].sparse(rows=rows, cols=cols)
python
def sparse(self, rows: np.ndarray = None, cols: np.ndarray = None, layer: str = None) -> scipy.sparse.coo_matrix: """ Return the main matrix or specified layer as a scipy.sparse.coo_matrix, without loading dense matrix in RAM Args: rows: Rows to include, or None to include all cols: Columns to include, or None to include all layer: Layer to return, or None to return the default layer Returns: Sparse matrix (:class:`scipy.sparse.coo_matrix`) """ if layer is None: return self.layers[""].sparse(rows=rows, cols=cols) else: return self.layers[layer].sparse(rows=rows, cols=cols)
[ "def", "sparse", "(", "self", ",", "rows", ":", "np", ".", "ndarray", "=", "None", ",", "cols", ":", "np", ".", "ndarray", "=", "None", ",", "layer", ":", "str", "=", "None", ")", "->", "scipy", ".", "sparse", ".", "coo_matrix", ":", "if", "layer", "is", "None", ":", "return", "self", ".", "layers", "[", "\"\"", "]", ".", "sparse", "(", "rows", "=", "rows", ",", "cols", "=", "cols", ")", "else", ":", "return", "self", ".", "layers", "[", "layer", "]", ".", "sparse", "(", "rows", "=", "rows", ",", "cols", "=", "cols", ")" ]
Return the main matrix or specified layer as a scipy.sparse.coo_matrix, without loading dense matrix in RAM Args: rows: Rows to include, or None to include all cols: Columns to include, or None to include all layer: Layer to return, or None to return the default layer Returns: Sparse matrix (:class:`scipy.sparse.coo_matrix`)
[ "Return", "the", "main", "matrix", "or", "specified", "layer", "as", "a", "scipy", ".", "sparse", ".", "coo_matrix", "without", "loading", "dense", "matrix", "in", "RAM" ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/loompy.py#L229-L244
12,114
linnarsson-lab/loompy
loompy/loompy.py
LoomConnection.close
def close(self, suppress_warning: bool = False) -> None: """ Close the connection. After this, the connection object becomes invalid. Warns user if called after closing. Args: suppress_warning: Suppresses warning message if True (defaults to false) """ if self._file is None: if not suppress_warning: # Warn user that they're being paranoid # and should clean up their code logging.warn("Connection to %s is already closed", self.filename) else: self._file.close() self._file = None self.layers = None # type: ignore self.ra = None # type: ignore self.row_attrs = None # type: ignore self.ca = None # type: ignore self.col_attrs = None # type: ignore self.row_graphs = None # type: ignore self.col_graphs = None # type: ignore self.shape = (0, 0) self._closed = True
python
def close(self, suppress_warning: bool = False) -> None: """ Close the connection. After this, the connection object becomes invalid. Warns user if called after closing. Args: suppress_warning: Suppresses warning message if True (defaults to false) """ if self._file is None: if not suppress_warning: # Warn user that they're being paranoid # and should clean up their code logging.warn("Connection to %s is already closed", self.filename) else: self._file.close() self._file = None self.layers = None # type: ignore self.ra = None # type: ignore self.row_attrs = None # type: ignore self.ca = None # type: ignore self.col_attrs = None # type: ignore self.row_graphs = None # type: ignore self.col_graphs = None # type: ignore self.shape = (0, 0) self._closed = True
[ "def", "close", "(", "self", ",", "suppress_warning", ":", "bool", "=", "False", ")", "->", "None", ":", "if", "self", ".", "_file", "is", "None", ":", "if", "not", "suppress_warning", ":", "# Warn user that they're being paranoid", "# and should clean up their code", "logging", ".", "warn", "(", "\"Connection to %s is already closed\"", ",", "self", ".", "filename", ")", "else", ":", "self", ".", "_file", ".", "close", "(", ")", "self", ".", "_file", "=", "None", "self", ".", "layers", "=", "None", "# type: ignore", "self", ".", "ra", "=", "None", "# type: ignore", "self", ".", "row_attrs", "=", "None", "# type: ignore", "self", ".", "ca", "=", "None", "# type: ignore", "self", ".", "col_attrs", "=", "None", "# type: ignore", "self", ".", "row_graphs", "=", "None", "# type: ignore", "self", ".", "col_graphs", "=", "None", "# type: ignore", "self", ".", "shape", "=", "(", "0", ",", "0", ")", "self", ".", "_closed", "=", "True" ]
Close the connection. After this, the connection object becomes invalid. Warns user if called after closing. Args: suppress_warning: Suppresses warning message if True (defaults to false)
[ "Close", "the", "connection", ".", "After", "this", "the", "connection", "object", "becomes", "invalid", ".", "Warns", "user", "if", "called", "after", "closing", "." ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/loompy.py#L246-L269
12,115
linnarsson-lab/loompy
loompy/loompy.py
LoomConnection.permute
def permute(self, ordering: np.ndarray, axis: int) -> None: """ Permute the dataset along the indicated axis. Args: ordering (list of int): The desired order along the axis axis (int): The axis along which to permute Returns: Nothing. """ if self._file.__contains__("tiles"): del self._file['tiles'] ordering = list(np.array(ordering).flatten()) # Flatten the ordering, in case we got a column vector self.layers._permute(ordering, axis=axis) if axis == 0: self.row_attrs._permute(ordering) self.row_graphs._permute(ordering) if axis == 1: self.col_attrs._permute(ordering) self.col_graphs._permute(ordering)
python
def permute(self, ordering: np.ndarray, axis: int) -> None: """ Permute the dataset along the indicated axis. Args: ordering (list of int): The desired order along the axis axis (int): The axis along which to permute Returns: Nothing. """ if self._file.__contains__("tiles"): del self._file['tiles'] ordering = list(np.array(ordering).flatten()) # Flatten the ordering, in case we got a column vector self.layers._permute(ordering, axis=axis) if axis == 0: self.row_attrs._permute(ordering) self.row_graphs._permute(ordering) if axis == 1: self.col_attrs._permute(ordering) self.col_graphs._permute(ordering)
[ "def", "permute", "(", "self", ",", "ordering", ":", "np", ".", "ndarray", ",", "axis", ":", "int", ")", "->", "None", ":", "if", "self", ".", "_file", ".", "__contains__", "(", "\"tiles\"", ")", ":", "del", "self", ".", "_file", "[", "'tiles'", "]", "ordering", "=", "list", "(", "np", ".", "array", "(", "ordering", ")", ".", "flatten", "(", ")", ")", "# Flatten the ordering, in case we got a column vector", "self", ".", "layers", ".", "_permute", "(", "ordering", ",", "axis", "=", "axis", ")", "if", "axis", "==", "0", ":", "self", ".", "row_attrs", ".", "_permute", "(", "ordering", ")", "self", ".", "row_graphs", ".", "_permute", "(", "ordering", ")", "if", "axis", "==", "1", ":", "self", ".", "col_attrs", ".", "_permute", "(", "ordering", ")", "self", ".", "col_graphs", ".", "_permute", "(", "ordering", ")" ]
Permute the dataset along the indicated axis. Args: ordering (list of int): The desired order along the axis axis (int): The axis along which to permute Returns: Nothing.
[ "Permute", "the", "dataset", "along", "the", "indicated", "axis", "." ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/loompy.py#L784-L806
12,116
linnarsson-lab/loompy
loompy/loompy.py
LoomConnection.aggregate
def aggregate(self, out_file: str = None, select: np.ndarray = None, group_by: Union[str, np.ndarray] = "Clusters", aggr_by: str = "mean", aggr_ca_by: Dict[str, str] = None) -> np.ndarray: """ Aggregate the Loom file by applying aggregation functions to the main matrix as well as to the column attributes Args: out_file The name of the output Loom file (will be appended to if it exists) select Bool array giving the columns to include (or None, to include all) group_by The column attribute to group by, or an np.ndarray of integer group labels aggr_by The aggregation function for the main matrix aggr_ca_by A dictionary of aggregation functions for the column attributes (or None to skip) Returns: m Aggregated main matrix Remarks: aggr_by gives the aggregation function for the main matrix aggr_ca_by is a dictionary with column attributes as keys and aggregation functionas as values Aggregation functions can be any valid aggregation function from here: https://github.com/ml31415/numpy-groupies In addition, you can specify: "tally" to count the number of occurences of each value of a categorical attribute """ ca = {} # type: Dict[str, np.ndarray] if select is not None: raise ValueError("The 'select' argument is deprecated") if isinstance(group_by, np.ndarray): labels = group_by else: labels = (self.ca[group_by]).astype('int') _, zero_strt_sort_noholes_lbls = np.unique(labels, return_inverse=True) n_groups = len(set(labels)) if aggr_ca_by is not None: for key in self.ca.keys(): if key not in aggr_ca_by: continue func = aggr_ca_by[key] if func == "tally": for val in set(self.ca[key]): if np.issubdtype(type(val), np.str_): valnew = val.replace("/", "-") # Slashes are not allowed in attribute names valnew = valnew.replace(".", "_") # Nor are periods ca[key + "_" + str(valnew)] = npg.aggregate(zero_strt_sort_noholes_lbls, (self.ca[key] == val).astype('int'), func="sum", fill_value=0) elif func == "mode": def mode(x): # type: ignore return scipy.stats.mode(x)[0][0] ca[key] = npg.aggregate(zero_strt_sort_noholes_lbls, self.ca[key], func=mode, fill_value=0).astype('str') elif func == "mean": ca[key] = npg.aggregate(zero_strt_sort_noholes_lbls, self.ca[key], func=func, fill_value=0) elif func == "first": ca[key] = npg.aggregate(zero_strt_sort_noholes_lbls, self.ca[key], func=func, fill_value=self.ca[key][0]) m = np.empty((self.shape[0], n_groups)) for (_, selection, view) in self.scan(axis=0, layers=[""]): vals_aggr = npg.aggregate(zero_strt_sort_noholes_lbls, view[:, :], func=aggr_by, axis=1, fill_value=0) m[selection, :] = vals_aggr if out_file is not None: loompy.create(out_file, m, self.ra, ca) return m
python
def aggregate(self, out_file: str = None, select: np.ndarray = None, group_by: Union[str, np.ndarray] = "Clusters", aggr_by: str = "mean", aggr_ca_by: Dict[str, str] = None) -> np.ndarray: """ Aggregate the Loom file by applying aggregation functions to the main matrix as well as to the column attributes Args: out_file The name of the output Loom file (will be appended to if it exists) select Bool array giving the columns to include (or None, to include all) group_by The column attribute to group by, or an np.ndarray of integer group labels aggr_by The aggregation function for the main matrix aggr_ca_by A dictionary of aggregation functions for the column attributes (or None to skip) Returns: m Aggregated main matrix Remarks: aggr_by gives the aggregation function for the main matrix aggr_ca_by is a dictionary with column attributes as keys and aggregation functionas as values Aggregation functions can be any valid aggregation function from here: https://github.com/ml31415/numpy-groupies In addition, you can specify: "tally" to count the number of occurences of each value of a categorical attribute """ ca = {} # type: Dict[str, np.ndarray] if select is not None: raise ValueError("The 'select' argument is deprecated") if isinstance(group_by, np.ndarray): labels = group_by else: labels = (self.ca[group_by]).astype('int') _, zero_strt_sort_noholes_lbls = np.unique(labels, return_inverse=True) n_groups = len(set(labels)) if aggr_ca_by is not None: for key in self.ca.keys(): if key not in aggr_ca_by: continue func = aggr_ca_by[key] if func == "tally": for val in set(self.ca[key]): if np.issubdtype(type(val), np.str_): valnew = val.replace("/", "-") # Slashes are not allowed in attribute names valnew = valnew.replace(".", "_") # Nor are periods ca[key + "_" + str(valnew)] = npg.aggregate(zero_strt_sort_noholes_lbls, (self.ca[key] == val).astype('int'), func="sum", fill_value=0) elif func == "mode": def mode(x): # type: ignore return scipy.stats.mode(x)[0][0] ca[key] = npg.aggregate(zero_strt_sort_noholes_lbls, self.ca[key], func=mode, fill_value=0).astype('str') elif func == "mean": ca[key] = npg.aggregate(zero_strt_sort_noholes_lbls, self.ca[key], func=func, fill_value=0) elif func == "first": ca[key] = npg.aggregate(zero_strt_sort_noholes_lbls, self.ca[key], func=func, fill_value=self.ca[key][0]) m = np.empty((self.shape[0], n_groups)) for (_, selection, view) in self.scan(axis=0, layers=[""]): vals_aggr = npg.aggregate(zero_strt_sort_noholes_lbls, view[:, :], func=aggr_by, axis=1, fill_value=0) m[selection, :] = vals_aggr if out_file is not None: loompy.create(out_file, m, self.ra, ca) return m
[ "def", "aggregate", "(", "self", ",", "out_file", ":", "str", "=", "None", ",", "select", ":", "np", ".", "ndarray", "=", "None", ",", "group_by", ":", "Union", "[", "str", ",", "np", ".", "ndarray", "]", "=", "\"Clusters\"", ",", "aggr_by", ":", "str", "=", "\"mean\"", ",", "aggr_ca_by", ":", "Dict", "[", "str", ",", "str", "]", "=", "None", ")", "->", "np", ".", "ndarray", ":", "ca", "=", "{", "}", "# type: Dict[str, np.ndarray]", "if", "select", "is", "not", "None", ":", "raise", "ValueError", "(", "\"The 'select' argument is deprecated\"", ")", "if", "isinstance", "(", "group_by", ",", "np", ".", "ndarray", ")", ":", "labels", "=", "group_by", "else", ":", "labels", "=", "(", "self", ".", "ca", "[", "group_by", "]", ")", ".", "astype", "(", "'int'", ")", "_", ",", "zero_strt_sort_noholes_lbls", "=", "np", ".", "unique", "(", "labels", ",", "return_inverse", "=", "True", ")", "n_groups", "=", "len", "(", "set", "(", "labels", ")", ")", "if", "aggr_ca_by", "is", "not", "None", ":", "for", "key", "in", "self", ".", "ca", ".", "keys", "(", ")", ":", "if", "key", "not", "in", "aggr_ca_by", ":", "continue", "func", "=", "aggr_ca_by", "[", "key", "]", "if", "func", "==", "\"tally\"", ":", "for", "val", "in", "set", "(", "self", ".", "ca", "[", "key", "]", ")", ":", "if", "np", ".", "issubdtype", "(", "type", "(", "val", ")", ",", "np", ".", "str_", ")", ":", "valnew", "=", "val", ".", "replace", "(", "\"/\"", ",", "\"-\"", ")", "# Slashes are not allowed in attribute names", "valnew", "=", "valnew", ".", "replace", "(", "\".\"", ",", "\"_\"", ")", "# Nor are periods", "ca", "[", "key", "+", "\"_\"", "+", "str", "(", "valnew", ")", "]", "=", "npg", ".", "aggregate", "(", "zero_strt_sort_noholes_lbls", ",", "(", "self", ".", "ca", "[", "key", "]", "==", "val", ")", ".", "astype", "(", "'int'", ")", ",", "func", "=", "\"sum\"", ",", "fill_value", "=", "0", ")", "elif", "func", "==", "\"mode\"", ":", "def", "mode", "(", "x", ")", ":", "# type: ignore", "return", "scipy", ".", "stats", ".", "mode", "(", "x", ")", "[", "0", "]", "[", "0", "]", "ca", "[", "key", "]", "=", "npg", ".", "aggregate", "(", "zero_strt_sort_noholes_lbls", ",", "self", ".", "ca", "[", "key", "]", ",", "func", "=", "mode", ",", "fill_value", "=", "0", ")", ".", "astype", "(", "'str'", ")", "elif", "func", "==", "\"mean\"", ":", "ca", "[", "key", "]", "=", "npg", ".", "aggregate", "(", "zero_strt_sort_noholes_lbls", ",", "self", ".", "ca", "[", "key", "]", ",", "func", "=", "func", ",", "fill_value", "=", "0", ")", "elif", "func", "==", "\"first\"", ":", "ca", "[", "key", "]", "=", "npg", ".", "aggregate", "(", "zero_strt_sort_noholes_lbls", ",", "self", ".", "ca", "[", "key", "]", ",", "func", "=", "func", ",", "fill_value", "=", "self", ".", "ca", "[", "key", "]", "[", "0", "]", ")", "m", "=", "np", ".", "empty", "(", "(", "self", ".", "shape", "[", "0", "]", ",", "n_groups", ")", ")", "for", "(", "_", ",", "selection", ",", "view", ")", "in", "self", ".", "scan", "(", "axis", "=", "0", ",", "layers", "=", "[", "\"\"", "]", ")", ":", "vals_aggr", "=", "npg", ".", "aggregate", "(", "zero_strt_sort_noholes_lbls", ",", "view", "[", ":", ",", ":", "]", ",", "func", "=", "aggr_by", ",", "axis", "=", "1", ",", "fill_value", "=", "0", ")", "m", "[", "selection", ",", ":", "]", "=", "vals_aggr", "if", "out_file", "is", "not", "None", ":", "loompy", ".", "create", "(", "out_file", ",", "m", ",", "self", ".", "ra", ",", "ca", ")", "return", "m" ]
Aggregate the Loom file by applying aggregation functions to the main matrix as well as to the column attributes Args: out_file The name of the output Loom file (will be appended to if it exists) select Bool array giving the columns to include (or None, to include all) group_by The column attribute to group by, or an np.ndarray of integer group labels aggr_by The aggregation function for the main matrix aggr_ca_by A dictionary of aggregation functions for the column attributes (or None to skip) Returns: m Aggregated main matrix Remarks: aggr_by gives the aggregation function for the main matrix aggr_ca_by is a dictionary with column attributes as keys and aggregation functionas as values Aggregation functions can be any valid aggregation function from here: https://github.com/ml31415/numpy-groupies In addition, you can specify: "tally" to count the number of occurences of each value of a categorical attribute
[ "Aggregate", "the", "Loom", "file", "by", "applying", "aggregation", "functions", "to", "the", "main", "matrix", "as", "well", "as", "to", "the", "column", "attributes" ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/loompy.py#L873-L934
12,117
linnarsson-lab/loompy
loompy/file_attribute_manager.py
FileAttributeManager.get
def get(self, name: str, default: Any = None) -> np.ndarray: """ Return the value for a named attribute if it exists, else default. If default is not given, it defaults to None, so that this method never raises a KeyError. """ if name in self: return self[name] else: return default
python
def get(self, name: str, default: Any = None) -> np.ndarray: """ Return the value for a named attribute if it exists, else default. If default is not given, it defaults to None, so that this method never raises a KeyError. """ if name in self: return self[name] else: return default
[ "def", "get", "(", "self", ",", "name", ":", "str", ",", "default", ":", "Any", "=", "None", ")", "->", "np", ".", "ndarray", ":", "if", "name", "in", "self", ":", "return", "self", "[", "name", "]", "else", ":", "return", "default" ]
Return the value for a named attribute if it exists, else default. If default is not given, it defaults to None, so that this method never raises a KeyError.
[ "Return", "the", "value", "for", "a", "named", "attribute", "if", "it", "exists", "else", "default", ".", "If", "default", "is", "not", "given", "it", "defaults", "to", "None", "so", "that", "this", "method", "never", "raises", "a", "KeyError", "." ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/file_attribute_manager.py#L78-L86
12,118
linnarsson-lab/loompy
loompy/color.py
cat_colors
def cat_colors(N: int = 1, *, hue: str = None, luminosity: str = None, bgvalue: int = None, loop: bool = False, seed: str = "cat") -> Union[List[Any], colors.LinearSegmentedColormap]: """ Return a colormap suitable for N categorical values, optimized to be both aesthetically pleasing and perceptually distinct. Args: N The number of colors requested. hue Controls the hue of the generated color. You can pass a string representing a color name: "red", "orange", "yellow", "green", "blue", "purple", "pink" and "monochrome" are currently supported. If you pass a hexidecimal color string such as "#00FFFF", its hue value will be used to generate colors. luminosity Controls the luminosity of the generated color: "bright", "light" or "dark". bgvalue If not None, then the corresponding index color will be set to light gray loop If True, loop the color alphabet instead of generating random colors seed If not None, use as the random seed (default: "cat") Returns: A set of colors in the requested format, either a list of values or a matplotlib LinearSegmentedColormap (when format="cmap") If N <= 25 and hue and luminosity are both None, a subset of the optimally perceptually distinct "color alphabet" is returned. Else, a pleasing set of random colors is returned. Colors are designed to be displayed on a white background. """ c: List[str] = [] if N <= 25 and hue is None and luminosity is None: c = _color_alphabet[:N] elif not loop: c = RandomColor(seed=seed).generate(count=N, hue=hue, luminosity=luminosity, format_="hex") else: n = N while n > 0: c += _color_alphabet[:n] n -= 25 if bgvalue is not None: c[bgvalue] = "#aaaaaa" return colors.LinearSegmentedColormap.from_list("", c, N)
python
def cat_colors(N: int = 1, *, hue: str = None, luminosity: str = None, bgvalue: int = None, loop: bool = False, seed: str = "cat") -> Union[List[Any], colors.LinearSegmentedColormap]: """ Return a colormap suitable for N categorical values, optimized to be both aesthetically pleasing and perceptually distinct. Args: N The number of colors requested. hue Controls the hue of the generated color. You can pass a string representing a color name: "red", "orange", "yellow", "green", "blue", "purple", "pink" and "monochrome" are currently supported. If you pass a hexidecimal color string such as "#00FFFF", its hue value will be used to generate colors. luminosity Controls the luminosity of the generated color: "bright", "light" or "dark". bgvalue If not None, then the corresponding index color will be set to light gray loop If True, loop the color alphabet instead of generating random colors seed If not None, use as the random seed (default: "cat") Returns: A set of colors in the requested format, either a list of values or a matplotlib LinearSegmentedColormap (when format="cmap") If N <= 25 and hue and luminosity are both None, a subset of the optimally perceptually distinct "color alphabet" is returned. Else, a pleasing set of random colors is returned. Colors are designed to be displayed on a white background. """ c: List[str] = [] if N <= 25 and hue is None and luminosity is None: c = _color_alphabet[:N] elif not loop: c = RandomColor(seed=seed).generate(count=N, hue=hue, luminosity=luminosity, format_="hex") else: n = N while n > 0: c += _color_alphabet[:n] n -= 25 if bgvalue is not None: c[bgvalue] = "#aaaaaa" return colors.LinearSegmentedColormap.from_list("", c, N)
[ "def", "cat_colors", "(", "N", ":", "int", "=", "1", ",", "*", ",", "hue", ":", "str", "=", "None", ",", "luminosity", ":", "str", "=", "None", ",", "bgvalue", ":", "int", "=", "None", ",", "loop", ":", "bool", "=", "False", ",", "seed", ":", "str", "=", "\"cat\"", ")", "->", "Union", "[", "List", "[", "Any", "]", ",", "colors", ".", "LinearSegmentedColormap", "]", ":", "c", ":", "List", "[", "str", "]", "=", "[", "]", "if", "N", "<=", "25", "and", "hue", "is", "None", "and", "luminosity", "is", "None", ":", "c", "=", "_color_alphabet", "[", ":", "N", "]", "elif", "not", "loop", ":", "c", "=", "RandomColor", "(", "seed", "=", "seed", ")", ".", "generate", "(", "count", "=", "N", ",", "hue", "=", "hue", ",", "luminosity", "=", "luminosity", ",", "format_", "=", "\"hex\"", ")", "else", ":", "n", "=", "N", "while", "n", ">", "0", ":", "c", "+=", "_color_alphabet", "[", ":", "n", "]", "n", "-=", "25", "if", "bgvalue", "is", "not", "None", ":", "c", "[", "bgvalue", "]", "=", "\"#aaaaaa\"", "return", "colors", ".", "LinearSegmentedColormap", ".", "from_list", "(", "\"\"", ",", "c", ",", "N", ")" ]
Return a colormap suitable for N categorical values, optimized to be both aesthetically pleasing and perceptually distinct. Args: N The number of colors requested. hue Controls the hue of the generated color. You can pass a string representing a color name: "red", "orange", "yellow", "green", "blue", "purple", "pink" and "monochrome" are currently supported. If you pass a hexidecimal color string such as "#00FFFF", its hue value will be used to generate colors. luminosity Controls the luminosity of the generated color: "bright", "light" or "dark". bgvalue If not None, then the corresponding index color will be set to light gray loop If True, loop the color alphabet instead of generating random colors seed If not None, use as the random seed (default: "cat") Returns: A set of colors in the requested format, either a list of values or a matplotlib LinearSegmentedColormap (when format="cmap") If N <= 25 and hue and luminosity are both None, a subset of the optimally perceptually distinct "color alphabet" is returned. Else, a pleasing set of random colors is returned. Colors are designed to be displayed on a white background.
[ "Return", "a", "colormap", "suitable", "for", "N", "categorical", "values", "optimized", "to", "be", "both", "aesthetically", "pleasing", "and", "perceptually", "distinct", "." ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/color.py#L336-L367
12,119
linnarsson-lab/loompy
loompy/graph_manager.py
_renumber
def _renumber(a: np.ndarray, keys: np.ndarray, values: np.ndarray) -> np.ndarray: """ Renumber 'a' by replacing any occurrence of 'keys' by the corresponding 'values' """ ordering = np.argsort(keys) keys = keys[ordering] values = keys[ordering] index = np.digitize(a.ravel(), keys, right=True) return(values[index].reshape(a.shape))
python
def _renumber(a: np.ndarray, keys: np.ndarray, values: np.ndarray) -> np.ndarray: """ Renumber 'a' by replacing any occurrence of 'keys' by the corresponding 'values' """ ordering = np.argsort(keys) keys = keys[ordering] values = keys[ordering] index = np.digitize(a.ravel(), keys, right=True) return(values[index].reshape(a.shape))
[ "def", "_renumber", "(", "a", ":", "np", ".", "ndarray", ",", "keys", ":", "np", ".", "ndarray", ",", "values", ":", "np", ".", "ndarray", ")", "->", "np", ".", "ndarray", ":", "ordering", "=", "np", ".", "argsort", "(", "keys", ")", "keys", "=", "keys", "[", "ordering", "]", "values", "=", "keys", "[", "ordering", "]", "index", "=", "np", ".", "digitize", "(", "a", ".", "ravel", "(", ")", ",", "keys", ",", "right", "=", "True", ")", "return", "(", "values", "[", "index", "]", ".", "reshape", "(", "a", ".", "shape", ")", ")" ]
Renumber 'a' by replacing any occurrence of 'keys' by the corresponding 'values'
[ "Renumber", "a", "by", "replacing", "any", "occurrence", "of", "keys", "by", "the", "corresponding", "values" ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/graph_manager.py#L7-L15
12,120
linnarsson-lab/loompy
loompy/loom_validator.py
LoomValidator.validate
def validate(self, path: str, strictness: str = "speconly") -> bool: """ Validate a file for conformance to the Loom specification Args: path: Full path to the file to be validated strictness: "speconly" or "conventions" Remarks: In "speconly" mode, conformance is assessed relative to the file format specification at http://linnarssonlab.org/loompy/format/. In "conventions" mode, conformance is additionally assessed relative to attribute name and data type conventions given at http://linnarssonlab.org/loompy/conventions/. """ valid1 = True with h5py.File(path, mode="r") as f: valid1 = self.validate_spec(f) if not valid1: self.errors.append("For help, see http://linnarssonlab.org/loompy/format/") valid2 = True if strictness == "conventions": with loompy.connect(path, mode="r") as ds: valid2 = self.validate_conventions(ds) if not valid2: self.errors.append("For help, see http://linnarssonlab.org/loompy/conventions/") return valid1 and valid2
python
def validate(self, path: str, strictness: str = "speconly") -> bool: """ Validate a file for conformance to the Loom specification Args: path: Full path to the file to be validated strictness: "speconly" or "conventions" Remarks: In "speconly" mode, conformance is assessed relative to the file format specification at http://linnarssonlab.org/loompy/format/. In "conventions" mode, conformance is additionally assessed relative to attribute name and data type conventions given at http://linnarssonlab.org/loompy/conventions/. """ valid1 = True with h5py.File(path, mode="r") as f: valid1 = self.validate_spec(f) if not valid1: self.errors.append("For help, see http://linnarssonlab.org/loompy/format/") valid2 = True if strictness == "conventions": with loompy.connect(path, mode="r") as ds: valid2 = self.validate_conventions(ds) if not valid2: self.errors.append("For help, see http://linnarssonlab.org/loompy/conventions/") return valid1 and valid2
[ "def", "validate", "(", "self", ",", "path", ":", "str", ",", "strictness", ":", "str", "=", "\"speconly\"", ")", "->", "bool", ":", "valid1", "=", "True", "with", "h5py", ".", "File", "(", "path", ",", "mode", "=", "\"r\"", ")", "as", "f", ":", "valid1", "=", "self", ".", "validate_spec", "(", "f", ")", "if", "not", "valid1", ":", "self", ".", "errors", ".", "append", "(", "\"For help, see http://linnarssonlab.org/loompy/format/\"", ")", "valid2", "=", "True", "if", "strictness", "==", "\"conventions\"", ":", "with", "loompy", ".", "connect", "(", "path", ",", "mode", "=", "\"r\"", ")", "as", "ds", ":", "valid2", "=", "self", ".", "validate_conventions", "(", "ds", ")", "if", "not", "valid2", ":", "self", ".", "errors", ".", "append", "(", "\"For help, see http://linnarssonlab.org/loompy/conventions/\"", ")", "return", "valid1", "and", "valid2" ]
Validate a file for conformance to the Loom specification Args: path: Full path to the file to be validated strictness: "speconly" or "conventions" Remarks: In "speconly" mode, conformance is assessed relative to the file format specification at http://linnarssonlab.org/loompy/format/. In "conventions" mode, conformance is additionally assessed relative to attribute name and data type conventions given at http://linnarssonlab.org/loompy/conventions/.
[ "Validate", "a", "file", "for", "conformance", "to", "the", "Loom", "specification" ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/loom_validator.py#L34-L60
12,121
linnarsson-lab/loompy
loompy/attribute_manager.py
AttributeManager._permute
def _permute(self, ordering: np.ndarray) -> None: """ Permute all the attributes in the collection Remarks: This permutes the order of the values for each attribute in the file """ for key in self.keys(): self[key] = self[key][ordering]
python
def _permute(self, ordering: np.ndarray) -> None: """ Permute all the attributes in the collection Remarks: This permutes the order of the values for each attribute in the file """ for key in self.keys(): self[key] = self[key][ordering]
[ "def", "_permute", "(", "self", ",", "ordering", ":", "np", ".", "ndarray", ")", "->", "None", ":", "for", "key", "in", "self", ".", "keys", "(", ")", ":", "self", "[", "key", "]", "=", "self", "[", "key", "]", "[", "ordering", "]" ]
Permute all the attributes in the collection Remarks: This permutes the order of the values for each attribute in the file
[ "Permute", "all", "the", "attributes", "in", "the", "collection" ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/attribute_manager.py#L180-L188
12,122
linnarsson-lab/loompy
loompy/attribute_manager.py
AttributeManager.get
def get(self, name: str, default: np.ndarray) -> np.ndarray: """ Return the value for a named attribute if it exists, else default. Default has to be a numpy array of correct size. """ if name in self: return self[name] else: if not isinstance(default, np.ndarray): raise ValueError(f"Default must be an np.ndarray with exactly {self.ds.shape[self.axis]} values") if default.shape[0] != self.ds.shape[self.axis]: raise ValueError(f"Default must be an np.ndarray with exactly {self.ds.shape[self.axis]} values but {len(default)} were given") return default
python
def get(self, name: str, default: np.ndarray) -> np.ndarray: """ Return the value for a named attribute if it exists, else default. Default has to be a numpy array of correct size. """ if name in self: return self[name] else: if not isinstance(default, np.ndarray): raise ValueError(f"Default must be an np.ndarray with exactly {self.ds.shape[self.axis]} values") if default.shape[0] != self.ds.shape[self.axis]: raise ValueError(f"Default must be an np.ndarray with exactly {self.ds.shape[self.axis]} values but {len(default)} were given") return default
[ "def", "get", "(", "self", ",", "name", ":", "str", ",", "default", ":", "np", ".", "ndarray", ")", "->", "np", ".", "ndarray", ":", "if", "name", "in", "self", ":", "return", "self", "[", "name", "]", "else", ":", "if", "not", "isinstance", "(", "default", ",", "np", ".", "ndarray", ")", ":", "raise", "ValueError", "(", "f\"Default must be an np.ndarray with exactly {self.ds.shape[self.axis]} values\"", ")", "if", "default", ".", "shape", "[", "0", "]", "!=", "self", ".", "ds", ".", "shape", "[", "self", ".", "axis", "]", ":", "raise", "ValueError", "(", "f\"Default must be an np.ndarray with exactly {self.ds.shape[self.axis]} values but {len(default)} were given\"", ")", "return", "default" ]
Return the value for a named attribute if it exists, else default. Default has to be a numpy array of correct size.
[ "Return", "the", "value", "for", "a", "named", "attribute", "if", "it", "exists", "else", "default", ".", "Default", "has", "to", "be", "a", "numpy", "array", "of", "correct", "size", "." ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/attribute_manager.py#L190-L205
12,123
linnarsson-lab/loompy
loompy/normalize.py
normalize_attr_array
def normalize_attr_array(a: Any) -> np.ndarray: """ Take all kinds of array-like inputs and normalize to a one-dimensional np.ndarray """ if type(a) is np.ndarray: return a elif type(a) is np.matrix: if a.shape[0] == 1: return np.array(a)[0, :] elif a.shape[1] == 1: return np.array(a)[:, 0] else: raise ValueError("Attribute values must be 1-dimensional.") elif type(a) is list or type(a) is tuple: return np.array(a) elif sparse.issparse(a): return normalize_attr_array(a.todense()) else: raise ValueError("Argument must be a list, tuple, numpy matrix, numpy ndarray or sparse matrix.")
python
def normalize_attr_array(a: Any) -> np.ndarray: """ Take all kinds of array-like inputs and normalize to a one-dimensional np.ndarray """ if type(a) is np.ndarray: return a elif type(a) is np.matrix: if a.shape[0] == 1: return np.array(a)[0, :] elif a.shape[1] == 1: return np.array(a)[:, 0] else: raise ValueError("Attribute values must be 1-dimensional.") elif type(a) is list or type(a) is tuple: return np.array(a) elif sparse.issparse(a): return normalize_attr_array(a.todense()) else: raise ValueError("Argument must be a list, tuple, numpy matrix, numpy ndarray or sparse matrix.")
[ "def", "normalize_attr_array", "(", "a", ":", "Any", ")", "->", "np", ".", "ndarray", ":", "if", "type", "(", "a", ")", "is", "np", ".", "ndarray", ":", "return", "a", "elif", "type", "(", "a", ")", "is", "np", ".", "matrix", ":", "if", "a", ".", "shape", "[", "0", "]", "==", "1", ":", "return", "np", ".", "array", "(", "a", ")", "[", "0", ",", ":", "]", "elif", "a", ".", "shape", "[", "1", "]", "==", "1", ":", "return", "np", ".", "array", "(", "a", ")", "[", ":", ",", "0", "]", "else", ":", "raise", "ValueError", "(", "\"Attribute values must be 1-dimensional.\"", ")", "elif", "type", "(", "a", ")", "is", "list", "or", "type", "(", "a", ")", "is", "tuple", ":", "return", "np", ".", "array", "(", "a", ")", "elif", "sparse", ".", "issparse", "(", "a", ")", ":", "return", "normalize_attr_array", "(", "a", ".", "todense", "(", ")", ")", "else", ":", "raise", "ValueError", "(", "\"Argument must be a list, tuple, numpy matrix, numpy ndarray or sparse matrix.\"", ")" ]
Take all kinds of array-like inputs and normalize to a one-dimensional np.ndarray
[ "Take", "all", "kinds", "of", "array", "-", "like", "inputs", "and", "normalize", "to", "a", "one", "-", "dimensional", "np", ".", "ndarray" ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/normalize.py#L29-L47
12,124
linnarsson-lab/loompy
loompy/to_html.py
to_html
def to_html(ds: Any) -> str: """ Return an HTML representation of the loom file or view, showing the upper-left 10x10 corner. """ rm = min(10, ds.shape[0]) cm = min(10, ds.shape[1]) html = "<p>" if ds.attrs.__contains__("title"): html += "<strong>" + ds.attrs["title"] + "</strong> " html += f"{ds.shape[0]} rows, {ds.shape[1]} columns, {len(ds.layers)} layer{'s' if len(ds.layers) > 1 else ''}<br/>(showing up to 10x10)<br/>" html += ds.filename + "<br/>" for (name, val) in ds.attrs.items(): html += f"name: <em>{val}</em><br/>" html += "<table>" # Emit column attributes for ca in ds.col_attrs.keys(): html += "<tr>" for ra in ds.row_attrs.keys(): html += "<td>&nbsp;</td>" # Space for row attrs html += "<td><strong>" + ca + "</strong></td>" # Col attr name for v in ds.col_attrs[ca][:cm]: html += "<td>" + str(v) + "</td>" if ds.shape[1] > cm: html += "<td>...</td>" html += "</tr>" # Emit row attribute names html += "<tr>" for ra in ds.row_attrs.keys(): html += "<td><strong>" + ra + "</strong></td>" # Row attr name html += "<td>&nbsp;</td>" # Space for col attrs for v in range(cm): html += "<td>&nbsp;</td>" if ds.shape[1] > cm: html += "<td>...</td>" html += "</tr>" # Emit row attr values and matrix values for row in range(rm): html += "<tr>" for ra in ds.row_attrs.keys(): html += "<td>" + str(ds.row_attrs[ra][row]) + "</td>" html += "<td>&nbsp;</td>" # Space for col attrs for v in ds[row, :cm]: html += "<td>" + str(v) + "</td>" if ds.shape[1] > cm: html += "<td>...</td>" html += "</tr>" # Emit ellipses if ds.shape[0] > rm: html += "<tr>" for v in range(rm + 1 + len(ds.row_attrs.keys())): html += "<td>...</td>" if ds.shape[1] > cm: html += "<td>...</td>" html += "</tr>" html += "</table>" return html
python
def to_html(ds: Any) -> str: """ Return an HTML representation of the loom file or view, showing the upper-left 10x10 corner. """ rm = min(10, ds.shape[0]) cm = min(10, ds.shape[1]) html = "<p>" if ds.attrs.__contains__("title"): html += "<strong>" + ds.attrs["title"] + "</strong> " html += f"{ds.shape[0]} rows, {ds.shape[1]} columns, {len(ds.layers)} layer{'s' if len(ds.layers) > 1 else ''}<br/>(showing up to 10x10)<br/>" html += ds.filename + "<br/>" for (name, val) in ds.attrs.items(): html += f"name: <em>{val}</em><br/>" html += "<table>" # Emit column attributes for ca in ds.col_attrs.keys(): html += "<tr>" for ra in ds.row_attrs.keys(): html += "<td>&nbsp;</td>" # Space for row attrs html += "<td><strong>" + ca + "</strong></td>" # Col attr name for v in ds.col_attrs[ca][:cm]: html += "<td>" + str(v) + "</td>" if ds.shape[1] > cm: html += "<td>...</td>" html += "</tr>" # Emit row attribute names html += "<tr>" for ra in ds.row_attrs.keys(): html += "<td><strong>" + ra + "</strong></td>" # Row attr name html += "<td>&nbsp;</td>" # Space for col attrs for v in range(cm): html += "<td>&nbsp;</td>" if ds.shape[1] > cm: html += "<td>...</td>" html += "</tr>" # Emit row attr values and matrix values for row in range(rm): html += "<tr>" for ra in ds.row_attrs.keys(): html += "<td>" + str(ds.row_attrs[ra][row]) + "</td>" html += "<td>&nbsp;</td>" # Space for col attrs for v in ds[row, :cm]: html += "<td>" + str(v) + "</td>" if ds.shape[1] > cm: html += "<td>...</td>" html += "</tr>" # Emit ellipses if ds.shape[0] > rm: html += "<tr>" for v in range(rm + 1 + len(ds.row_attrs.keys())): html += "<td>...</td>" if ds.shape[1] > cm: html += "<td>...</td>" html += "</tr>" html += "</table>" return html
[ "def", "to_html", "(", "ds", ":", "Any", ")", "->", "str", ":", "rm", "=", "min", "(", "10", ",", "ds", ".", "shape", "[", "0", "]", ")", "cm", "=", "min", "(", "10", ",", "ds", ".", "shape", "[", "1", "]", ")", "html", "=", "\"<p>\"", "if", "ds", ".", "attrs", ".", "__contains__", "(", "\"title\"", ")", ":", "html", "+=", "\"<strong>\"", "+", "ds", ".", "attrs", "[", "\"title\"", "]", "+", "\"</strong> \"", "html", "+=", "f\"{ds.shape[0]} rows, {ds.shape[1]} columns, {len(ds.layers)} layer{'s' if len(ds.layers) > 1 else ''}<br/>(showing up to 10x10)<br/>\"", "html", "+=", "ds", ".", "filename", "+", "\"<br/>\"", "for", "(", "name", ",", "val", ")", "in", "ds", ".", "attrs", ".", "items", "(", ")", ":", "html", "+=", "f\"name: <em>{val}</em><br/>\"", "html", "+=", "\"<table>\"", "# Emit column attributes", "for", "ca", "in", "ds", ".", "col_attrs", ".", "keys", "(", ")", ":", "html", "+=", "\"<tr>\"", "for", "ra", "in", "ds", ".", "row_attrs", ".", "keys", "(", ")", ":", "html", "+=", "\"<td>&nbsp;</td>\"", "# Space for row attrs", "html", "+=", "\"<td><strong>\"", "+", "ca", "+", "\"</strong></td>\"", "# Col attr name", "for", "v", "in", "ds", ".", "col_attrs", "[", "ca", "]", "[", ":", "cm", "]", ":", "html", "+=", "\"<td>\"", "+", "str", "(", "v", ")", "+", "\"</td>\"", "if", "ds", ".", "shape", "[", "1", "]", ">", "cm", ":", "html", "+=", "\"<td>...</td>\"", "html", "+=", "\"</tr>\"", "# Emit row attribute names", "html", "+=", "\"<tr>\"", "for", "ra", "in", "ds", ".", "row_attrs", ".", "keys", "(", ")", ":", "html", "+=", "\"<td><strong>\"", "+", "ra", "+", "\"</strong></td>\"", "# Row attr name", "html", "+=", "\"<td>&nbsp;</td>\"", "# Space for col attrs", "for", "v", "in", "range", "(", "cm", ")", ":", "html", "+=", "\"<td>&nbsp;</td>\"", "if", "ds", ".", "shape", "[", "1", "]", ">", "cm", ":", "html", "+=", "\"<td>...</td>\"", "html", "+=", "\"</tr>\"", "# Emit row attr values and matrix values", "for", "row", "in", "range", "(", "rm", ")", ":", "html", "+=", "\"<tr>\"", "for", "ra", "in", "ds", ".", "row_attrs", ".", "keys", "(", ")", ":", "html", "+=", "\"<td>\"", "+", "str", "(", "ds", ".", "row_attrs", "[", "ra", "]", "[", "row", "]", ")", "+", "\"</td>\"", "html", "+=", "\"<td>&nbsp;</td>\"", "# Space for col attrs", "for", "v", "in", "ds", "[", "row", ",", ":", "cm", "]", ":", "html", "+=", "\"<td>\"", "+", "str", "(", "v", ")", "+", "\"</td>\"", "if", "ds", ".", "shape", "[", "1", "]", ">", "cm", ":", "html", "+=", "\"<td>...</td>\"", "html", "+=", "\"</tr>\"", "# Emit ellipses", "if", "ds", ".", "shape", "[", "0", "]", ">", "rm", ":", "html", "+=", "\"<tr>\"", "for", "v", "in", "range", "(", "rm", "+", "1", "+", "len", "(", "ds", ".", "row_attrs", ".", "keys", "(", ")", ")", ")", ":", "html", "+=", "\"<td>...</td>\"", "if", "ds", ".", "shape", "[", "1", "]", ">", "cm", ":", "html", "+=", "\"<td>...</td>\"", "html", "+=", "\"</tr>\"", "html", "+=", "\"</table>\"", "return", "html" ]
Return an HTML representation of the loom file or view, showing the upper-left 10x10 corner.
[ "Return", "an", "HTML", "representation", "of", "the", "loom", "file", "or", "view", "showing", "the", "upper", "-", "left", "10x10", "corner", "." ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/to_html.py#L4-L62
12,125
linnarsson-lab/loompy
loompy/loom_view.py
LoomView.permute
def permute(self, ordering: np.ndarray, *, axis: int) -> None: """ Permute the view, by permuting its layers, attributes and graphs Args: ordering (np.ndarray): The desired ordering along the axis axis (int): 0, permute rows; 1, permute columns """ if axis not in (0, 1): raise ValueError("Axis must be 0 (rows) or 1 (columns)") for layer in self.layers.values(): layer._permute(ordering, axis=axis) if axis == 0: if self.row_graphs is not None: for g in self.row_graphs.values(): g._permute(ordering) for a in self.row_attrs.values(): a._permute(ordering) elif axis == 1: if self.col_graphs is not None: for g in self.col_graphs.values(): g._permute(ordering) for a in self.col_attrs.values(): a._permute(ordering)
python
def permute(self, ordering: np.ndarray, *, axis: int) -> None: """ Permute the view, by permuting its layers, attributes and graphs Args: ordering (np.ndarray): The desired ordering along the axis axis (int): 0, permute rows; 1, permute columns """ if axis not in (0, 1): raise ValueError("Axis must be 0 (rows) or 1 (columns)") for layer in self.layers.values(): layer._permute(ordering, axis=axis) if axis == 0: if self.row_graphs is not None: for g in self.row_graphs.values(): g._permute(ordering) for a in self.row_attrs.values(): a._permute(ordering) elif axis == 1: if self.col_graphs is not None: for g in self.col_graphs.values(): g._permute(ordering) for a in self.col_attrs.values(): a._permute(ordering)
[ "def", "permute", "(", "self", ",", "ordering", ":", "np", ".", "ndarray", ",", "*", ",", "axis", ":", "int", ")", "->", "None", ":", "if", "axis", "not", "in", "(", "0", ",", "1", ")", ":", "raise", "ValueError", "(", "\"Axis must be 0 (rows) or 1 (columns)\"", ")", "for", "layer", "in", "self", ".", "layers", ".", "values", "(", ")", ":", "layer", ".", "_permute", "(", "ordering", ",", "axis", "=", "axis", ")", "if", "axis", "==", "0", ":", "if", "self", ".", "row_graphs", "is", "not", "None", ":", "for", "g", "in", "self", ".", "row_graphs", ".", "values", "(", ")", ":", "g", ".", "_permute", "(", "ordering", ")", "for", "a", "in", "self", ".", "row_attrs", ".", "values", "(", ")", ":", "a", ".", "_permute", "(", "ordering", ")", "elif", "axis", "==", "1", ":", "if", "self", ".", "col_graphs", "is", "not", "None", ":", "for", "g", "in", "self", ".", "col_graphs", ".", "values", "(", ")", ":", "g", ".", "_permute", "(", "ordering", ")", "for", "a", "in", "self", ".", "col_attrs", ".", "values", "(", ")", ":", "a", ".", "_permute", "(", "ordering", ")" ]
Permute the view, by permuting its layers, attributes and graphs Args: ordering (np.ndarray): The desired ordering along the axis axis (int): 0, permute rows; 1, permute columns
[ "Permute", "the", "view", "by", "permuting", "its", "layers", "attributes", "and", "graphs" ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/loom_view.py#L45-L68
12,126
linnarsson-lab/loompy
loompy/loom_layer.py
MemoryLoomLayer.permute
def permute(self, ordering: np.ndarray, *, axis: int) -> None: """ Permute the layer along an axis Args: axis: The axis to permute (0, permute the rows; 1, permute the columns) ordering: The permutation vector """ if axis == 0: self.values = self.values[ordering, :] elif axis == 1: self.values = self.values[:, ordering] else: raise ValueError("axis must be 0 or 1")
python
def permute(self, ordering: np.ndarray, *, axis: int) -> None: """ Permute the layer along an axis Args: axis: The axis to permute (0, permute the rows; 1, permute the columns) ordering: The permutation vector """ if axis == 0: self.values = self.values[ordering, :] elif axis == 1: self.values = self.values[:, ordering] else: raise ValueError("axis must be 0 or 1")
[ "def", "permute", "(", "self", ",", "ordering", ":", "np", ".", "ndarray", ",", "*", ",", "axis", ":", "int", ")", "->", "None", ":", "if", "axis", "==", "0", ":", "self", ".", "values", "=", "self", ".", "values", "[", "ordering", ",", ":", "]", "elif", "axis", "==", "1", ":", "self", ".", "values", "=", "self", ".", "values", "[", ":", ",", "ordering", "]", "else", ":", "raise", "ValueError", "(", "\"axis must be 0 or 1\"", ")" ]
Permute the layer along an axis Args: axis: The axis to permute (0, permute the rows; 1, permute the columns) ordering: The permutation vector
[ "Permute", "the", "layer", "along", "an", "axis" ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/loom_layer.py#L30-L43
12,127
linnarsson-lab/loompy
loompy/loom_layer.py
LoomLayer._resize
def _resize(self, size: Tuple[int, int], axis: int = None) -> None: """Resize the dataset, or the specified axis. The dataset must be stored in chunked format; it can be resized up to the "maximum shape" (keyword maxshape) specified at creation time. The rank of the dataset cannot be changed. "Size" should be a shape tuple, or if an axis is specified, an integer. BEWARE: This functions differently than the NumPy resize() method! The data is not "reshuffled" to fit in the new shape; each axis is grown or shrunk independently. The coordinates of existing data are fixed. """ if self.name == "": self.ds._file['/matrix'].resize(size, axis) else: self.ds._file['/layers/' + self.name].resize(size, axis)
python
def _resize(self, size: Tuple[int, int], axis: int = None) -> None: """Resize the dataset, or the specified axis. The dataset must be stored in chunked format; it can be resized up to the "maximum shape" (keyword maxshape) specified at creation time. The rank of the dataset cannot be changed. "Size" should be a shape tuple, or if an axis is specified, an integer. BEWARE: This functions differently than the NumPy resize() method! The data is not "reshuffled" to fit in the new shape; each axis is grown or shrunk independently. The coordinates of existing data are fixed. """ if self.name == "": self.ds._file['/matrix'].resize(size, axis) else: self.ds._file['/layers/' + self.name].resize(size, axis)
[ "def", "_resize", "(", "self", ",", "size", ":", "Tuple", "[", "int", ",", "int", "]", ",", "axis", ":", "int", "=", "None", ")", "->", "None", ":", "if", "self", ".", "name", "==", "\"\"", ":", "self", ".", "ds", ".", "_file", "[", "'/matrix'", "]", ".", "resize", "(", "size", ",", "axis", ")", "else", ":", "self", ".", "ds", ".", "_file", "[", "'/layers/'", "+", "self", ".", "name", "]", ".", "resize", "(", "size", ",", "axis", ")" ]
Resize the dataset, or the specified axis. The dataset must be stored in chunked format; it can be resized up to the "maximum shape" (keyword maxshape) specified at creation time. The rank of the dataset cannot be changed. "Size" should be a shape tuple, or if an axis is specified, an integer. BEWARE: This functions differently than the NumPy resize() method! The data is not "reshuffled" to fit in the new shape; each axis is grown or shrunk independently. The coordinates of existing data are fixed.
[ "Resize", "the", "dataset", "or", "the", "specified", "axis", "." ]
62c8373a92b058753baa3a95331fb541f560f599
https://github.com/linnarsson-lab/loompy/blob/62c8373a92b058753baa3a95331fb541f560f599/loompy/loom_layer.py#L130-L144
12,128
optimizely/python-sdk
optimizely/helpers/validator.py
is_datafile_valid
def is_datafile_valid(datafile): """ Given a datafile determine if it is valid or not. Args: datafile: JSON string representing the project. Returns: Boolean depending upon whether datafile is valid or not. """ try: datafile_json = json.loads(datafile) except: return False try: jsonschema.Draft4Validator(constants.JSON_SCHEMA).validate(datafile_json) except: return False return True
python
def is_datafile_valid(datafile): """ Given a datafile determine if it is valid or not. Args: datafile: JSON string representing the project. Returns: Boolean depending upon whether datafile is valid or not. """ try: datafile_json = json.loads(datafile) except: return False try: jsonschema.Draft4Validator(constants.JSON_SCHEMA).validate(datafile_json) except: return False return True
[ "def", "is_datafile_valid", "(", "datafile", ")", ":", "try", ":", "datafile_json", "=", "json", ".", "loads", "(", "datafile", ")", "except", ":", "return", "False", "try", ":", "jsonschema", ".", "Draft4Validator", "(", "constants", ".", "JSON_SCHEMA", ")", ".", "validate", "(", "datafile_json", ")", "except", ":", "return", "False", "return", "True" ]
Given a datafile determine if it is valid or not. Args: datafile: JSON string representing the project. Returns: Boolean depending upon whether datafile is valid or not.
[ "Given", "a", "datafile", "determine", "if", "it", "is", "valid", "or", "not", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/helpers/validator.py#L24-L44
12,129
optimizely/python-sdk
optimizely/helpers/validator.py
is_user_profile_valid
def is_user_profile_valid(user_profile): """ Determine if provided user profile is valid or not. Args: user_profile: User's profile which needs to be validated. Returns: Boolean depending upon whether profile is valid or not. """ if not user_profile: return False if not type(user_profile) is dict: return False if UserProfile.USER_ID_KEY not in user_profile: return False if UserProfile.EXPERIMENT_BUCKET_MAP_KEY not in user_profile: return False experiment_bucket_map = user_profile.get(UserProfile.EXPERIMENT_BUCKET_MAP_KEY) if not type(experiment_bucket_map) is dict: return False for decision in experiment_bucket_map.values(): if type(decision) is not dict or UserProfile.VARIATION_ID_KEY not in decision: return False return True
python
def is_user_profile_valid(user_profile): """ Determine if provided user profile is valid or not. Args: user_profile: User's profile which needs to be validated. Returns: Boolean depending upon whether profile is valid or not. """ if not user_profile: return False if not type(user_profile) is dict: return False if UserProfile.USER_ID_KEY not in user_profile: return False if UserProfile.EXPERIMENT_BUCKET_MAP_KEY not in user_profile: return False experiment_bucket_map = user_profile.get(UserProfile.EXPERIMENT_BUCKET_MAP_KEY) if not type(experiment_bucket_map) is dict: return False for decision in experiment_bucket_map.values(): if type(decision) is not dict or UserProfile.VARIATION_ID_KEY not in decision: return False return True
[ "def", "is_user_profile_valid", "(", "user_profile", ")", ":", "if", "not", "user_profile", ":", "return", "False", "if", "not", "type", "(", "user_profile", ")", "is", "dict", ":", "return", "False", "if", "UserProfile", ".", "USER_ID_KEY", "not", "in", "user_profile", ":", "return", "False", "if", "UserProfile", ".", "EXPERIMENT_BUCKET_MAP_KEY", "not", "in", "user_profile", ":", "return", "False", "experiment_bucket_map", "=", "user_profile", ".", "get", "(", "UserProfile", ".", "EXPERIMENT_BUCKET_MAP_KEY", ")", "if", "not", "type", "(", "experiment_bucket_map", ")", "is", "dict", ":", "return", "False", "for", "decision", "in", "experiment_bucket_map", ".", "values", "(", ")", ":", "if", "type", "(", "decision", ")", "is", "not", "dict", "or", "UserProfile", ".", "VARIATION_ID_KEY", "not", "in", "decision", ":", "return", "False", "return", "True" ]
Determine if provided user profile is valid or not. Args: user_profile: User's profile which needs to be validated. Returns: Boolean depending upon whether profile is valid or not.
[ "Determine", "if", "provided", "user", "profile", "is", "valid", "or", "not", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/helpers/validator.py#L126-L156
12,130
optimizely/python-sdk
optimizely/helpers/validator.py
is_attribute_valid
def is_attribute_valid(attribute_key, attribute_value): """ Determine if given attribute is valid. Args: attribute_key: Variable which needs to be validated attribute_value: Variable which needs to be validated Returns: False if attribute_key is not a string False if attribute_value is not one of the supported attribute types True otherwise """ if not isinstance(attribute_key, string_types): return False if isinstance(attribute_value, (string_types, bool)): return True if isinstance(attribute_value, (numbers.Integral, float)): return is_finite_number(attribute_value) return False
python
def is_attribute_valid(attribute_key, attribute_value): """ Determine if given attribute is valid. Args: attribute_key: Variable which needs to be validated attribute_value: Variable which needs to be validated Returns: False if attribute_key is not a string False if attribute_value is not one of the supported attribute types True otherwise """ if not isinstance(attribute_key, string_types): return False if isinstance(attribute_value, (string_types, bool)): return True if isinstance(attribute_value, (numbers.Integral, float)): return is_finite_number(attribute_value) return False
[ "def", "is_attribute_valid", "(", "attribute_key", ",", "attribute_value", ")", ":", "if", "not", "isinstance", "(", "attribute_key", ",", "string_types", ")", ":", "return", "False", "if", "isinstance", "(", "attribute_value", ",", "(", "string_types", ",", "bool", ")", ")", ":", "return", "True", "if", "isinstance", "(", "attribute_value", ",", "(", "numbers", ".", "Integral", ",", "float", ")", ")", ":", "return", "is_finite_number", "(", "attribute_value", ")", "return", "False" ]
Determine if given attribute is valid. Args: attribute_key: Variable which needs to be validated attribute_value: Variable which needs to be validated Returns: False if attribute_key is not a string False if attribute_value is not one of the supported attribute types True otherwise
[ "Determine", "if", "given", "attribute", "is", "valid", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/helpers/validator.py#L174-L196
12,131
optimizely/python-sdk
optimizely/helpers/validator.py
is_finite_number
def is_finite_number(value): """ Validates if the given value is a number, enforces absolute limit of 2^53 and restricts NAN, INF, -INF. Args: value: Value to be validated. Returns: Boolean: True if value is a number and not NAN, INF, -INF or greater than absolute limit of 2^53 else False. """ if not isinstance(value, (numbers.Integral, float)): # numbers.Integral instead of int to accomodate long integer in python 2 return False if isinstance(value, bool): # bool is a subclass of int return False if isinstance(value, float): if math.isnan(value) or math.isinf(value): return False if abs(value) > (2**53): return False return True
python
def is_finite_number(value): """ Validates if the given value is a number, enforces absolute limit of 2^53 and restricts NAN, INF, -INF. Args: value: Value to be validated. Returns: Boolean: True if value is a number and not NAN, INF, -INF or greater than absolute limit of 2^53 else False. """ if not isinstance(value, (numbers.Integral, float)): # numbers.Integral instead of int to accomodate long integer in python 2 return False if isinstance(value, bool): # bool is a subclass of int return False if isinstance(value, float): if math.isnan(value) or math.isinf(value): return False if abs(value) > (2**53): return False return True
[ "def", "is_finite_number", "(", "value", ")", ":", "if", "not", "isinstance", "(", "value", ",", "(", "numbers", ".", "Integral", ",", "float", ")", ")", ":", "# numbers.Integral instead of int to accomodate long integer in python 2", "return", "False", "if", "isinstance", "(", "value", ",", "bool", ")", ":", "# bool is a subclass of int", "return", "False", "if", "isinstance", "(", "value", ",", "float", ")", ":", "if", "math", ".", "isnan", "(", "value", ")", "or", "math", ".", "isinf", "(", "value", ")", ":", "return", "False", "if", "abs", "(", "value", ")", ">", "(", "2", "**", "53", ")", ":", "return", "False", "return", "True" ]
Validates if the given value is a number, enforces absolute limit of 2^53 and restricts NAN, INF, -INF. Args: value: Value to be validated. Returns: Boolean: True if value is a number and not NAN, INF, -INF or greater than absolute limit of 2^53 else False.
[ "Validates", "if", "the", "given", "value", "is", "a", "number", "enforces", "absolute", "limit", "of", "2^53", "and", "restricts", "NAN", "INF", "-", "INF", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/helpers/validator.py#L199-L225
12,132
optimizely/python-sdk
optimizely/helpers/validator.py
are_values_same_type
def are_values_same_type(first_val, second_val): """ Method to verify that both values belong to same type. Float and integer are considered as same type. Args: first_val: Value to validate. second_Val: Value to validate. Returns: Boolean: True if both values belong to same type. Otherwise False. """ first_val_type = type(first_val) second_val_type = type(second_val) # use isinstance to accomodate Python 2 unicode and str types. if isinstance(first_val, string_types) and isinstance(second_val, string_types): return True # Compare types if one of the values is bool because bool is a subclass on Integer. if isinstance(first_val, bool) or isinstance(second_val, bool): return first_val_type == second_val_type # Treat ints and floats as same type. if isinstance(first_val, (numbers.Integral, float)) and isinstance(second_val, (numbers.Integral, float)): return True return False
python
def are_values_same_type(first_val, second_val): """ Method to verify that both values belong to same type. Float and integer are considered as same type. Args: first_val: Value to validate. second_Val: Value to validate. Returns: Boolean: True if both values belong to same type. Otherwise False. """ first_val_type = type(first_val) second_val_type = type(second_val) # use isinstance to accomodate Python 2 unicode and str types. if isinstance(first_val, string_types) and isinstance(second_val, string_types): return True # Compare types if one of the values is bool because bool is a subclass on Integer. if isinstance(first_val, bool) or isinstance(second_val, bool): return first_val_type == second_val_type # Treat ints and floats as same type. if isinstance(first_val, (numbers.Integral, float)) and isinstance(second_val, (numbers.Integral, float)): return True return False
[ "def", "are_values_same_type", "(", "first_val", ",", "second_val", ")", ":", "first_val_type", "=", "type", "(", "first_val", ")", "second_val_type", "=", "type", "(", "second_val", ")", "# use isinstance to accomodate Python 2 unicode and str types.", "if", "isinstance", "(", "first_val", ",", "string_types", ")", "and", "isinstance", "(", "second_val", ",", "string_types", ")", ":", "return", "True", "# Compare types if one of the values is bool because bool is a subclass on Integer.", "if", "isinstance", "(", "first_val", ",", "bool", ")", "or", "isinstance", "(", "second_val", ",", "bool", ")", ":", "return", "first_val_type", "==", "second_val_type", "# Treat ints and floats as same type.", "if", "isinstance", "(", "first_val", ",", "(", "numbers", ".", "Integral", ",", "float", ")", ")", "and", "isinstance", "(", "second_val", ",", "(", "numbers", ".", "Integral", ",", "float", ")", ")", ":", "return", "True", "return", "False" ]
Method to verify that both values belong to same type. Float and integer are considered as same type. Args: first_val: Value to validate. second_Val: Value to validate. Returns: Boolean: True if both values belong to same type. Otherwise False.
[ "Method", "to", "verify", "that", "both", "values", "belong", "to", "same", "type", ".", "Float", "and", "integer", "are", "considered", "as", "same", "type", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/helpers/validator.py#L228-L255
12,133
optimizely/python-sdk
optimizely/logger.py
reset_logger
def reset_logger(name, level=None, handler=None): """ Make a standard python logger object with default formatter, handler, etc. Defaults are: - level == logging.INFO - handler == logging.StreamHandler() Args: name: a logger name. level: an optional initial log level for this logger. handler: an optional initial handler for this logger. Returns: a standard python logger with a single handler. """ # Make the logger and set its level. if level is None: level = logging.INFO logger = logging.getLogger(name) logger.setLevel(level) # Make the handler and attach it. handler = handler or logging.StreamHandler() handler.setFormatter(logging.Formatter(_DEFAULT_LOG_FORMAT)) # We don't use ``.addHandler``, since this logger may have already been # instantiated elsewhere with a different handler. It should only ever # have one, not many. logger.handlers = [handler] return logger
python
def reset_logger(name, level=None, handler=None): """ Make a standard python logger object with default formatter, handler, etc. Defaults are: - level == logging.INFO - handler == logging.StreamHandler() Args: name: a logger name. level: an optional initial log level for this logger. handler: an optional initial handler for this logger. Returns: a standard python logger with a single handler. """ # Make the logger and set its level. if level is None: level = logging.INFO logger = logging.getLogger(name) logger.setLevel(level) # Make the handler and attach it. handler = handler or logging.StreamHandler() handler.setFormatter(logging.Formatter(_DEFAULT_LOG_FORMAT)) # We don't use ``.addHandler``, since this logger may have already been # instantiated elsewhere with a different handler. It should only ever # have one, not many. logger.handlers = [handler] return logger
[ "def", "reset_logger", "(", "name", ",", "level", "=", "None", ",", "handler", "=", "None", ")", ":", "# Make the logger and set its level.", "if", "level", "is", "None", ":", "level", "=", "logging", ".", "INFO", "logger", "=", "logging", ".", "getLogger", "(", "name", ")", "logger", ".", "setLevel", "(", "level", ")", "# Make the handler and attach it.", "handler", "=", "handler", "or", "logging", ".", "StreamHandler", "(", ")", "handler", ".", "setFormatter", "(", "logging", ".", "Formatter", "(", "_DEFAULT_LOG_FORMAT", ")", ")", "# We don't use ``.addHandler``, since this logger may have already been", "# instantiated elsewhere with a different handler. It should only ever", "# have one, not many.", "logger", ".", "handlers", "=", "[", "handler", "]", "return", "logger" ]
Make a standard python logger object with default formatter, handler, etc. Defaults are: - level == logging.INFO - handler == logging.StreamHandler() Args: name: a logger name. level: an optional initial log level for this logger. handler: an optional initial handler for this logger. Returns: a standard python logger with a single handler.
[ "Make", "a", "standard", "python", "logger", "object", "with", "default", "formatter", "handler", "etc", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/logger.py#L22-L52
12,134
optimizely/python-sdk
optimizely/logger.py
adapt_logger
def adapt_logger(logger): """ Adapt our custom logger.BaseLogger object into a standard logging.Logger object. Adaptations are: - NoOpLogger turns into a logger with a single NullHandler. - SimpleLogger turns into a logger with a StreamHandler and level. Args: logger: Possibly a logger.BaseLogger, or a standard python logging.Logger. Returns: a standard python logging.Logger. """ if isinstance(logger, logging.Logger): return logger # Use the standard python logger created by these classes. if isinstance(logger, (SimpleLogger, NoOpLogger)): return logger.logger # Otherwise, return whatever we were given because we can't adapt. return logger
python
def adapt_logger(logger): """ Adapt our custom logger.BaseLogger object into a standard logging.Logger object. Adaptations are: - NoOpLogger turns into a logger with a single NullHandler. - SimpleLogger turns into a logger with a StreamHandler and level. Args: logger: Possibly a logger.BaseLogger, or a standard python logging.Logger. Returns: a standard python logging.Logger. """ if isinstance(logger, logging.Logger): return logger # Use the standard python logger created by these classes. if isinstance(logger, (SimpleLogger, NoOpLogger)): return logger.logger # Otherwise, return whatever we were given because we can't adapt. return logger
[ "def", "adapt_logger", "(", "logger", ")", ":", "if", "isinstance", "(", "logger", ",", "logging", ".", "Logger", ")", ":", "return", "logger", "# Use the standard python logger created by these classes.", "if", "isinstance", "(", "logger", ",", "(", "SimpleLogger", ",", "NoOpLogger", ")", ")", ":", "return", "logger", ".", "logger", "# Otherwise, return whatever we were given because we can't adapt.", "return", "logger" ]
Adapt our custom logger.BaseLogger object into a standard logging.Logger object. Adaptations are: - NoOpLogger turns into a logger with a single NullHandler. - SimpleLogger turns into a logger with a StreamHandler and level. Args: logger: Possibly a logger.BaseLogger, or a standard python logging.Logger. Returns: a standard python logging.Logger.
[ "Adapt", "our", "custom", "logger", ".", "BaseLogger", "object", "into", "a", "standard", "logging", ".", "Logger", "object", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/logger.py#L95-L117
12,135
optimizely/python-sdk
optimizely/user_profile.py
UserProfile.get_variation_for_experiment
def get_variation_for_experiment(self, experiment_id): """ Helper method to retrieve variation ID for given experiment. Args: experiment_id: ID for experiment for which variation needs to be looked up for. Returns: Variation ID corresponding to the experiment. None if no decision available. """ return self.experiment_bucket_map.get(experiment_id, {self.VARIATION_ID_KEY: None}).get(self.VARIATION_ID_KEY)
python
def get_variation_for_experiment(self, experiment_id): """ Helper method to retrieve variation ID for given experiment. Args: experiment_id: ID for experiment for which variation needs to be looked up for. Returns: Variation ID corresponding to the experiment. None if no decision available. """ return self.experiment_bucket_map.get(experiment_id, {self.VARIATION_ID_KEY: None}).get(self.VARIATION_ID_KEY)
[ "def", "get_variation_for_experiment", "(", "self", ",", "experiment_id", ")", ":", "return", "self", ".", "experiment_bucket_map", ".", "get", "(", "experiment_id", ",", "{", "self", ".", "VARIATION_ID_KEY", ":", "None", "}", ")", ".", "get", "(", "self", ".", "VARIATION_ID_KEY", ")" ]
Helper method to retrieve variation ID for given experiment. Args: experiment_id: ID for experiment for which variation needs to be looked up for. Returns: Variation ID corresponding to the experiment. None if no decision available.
[ "Helper", "method", "to", "retrieve", "variation", "ID", "for", "given", "experiment", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/user_profile.py#L34-L44
12,136
optimizely/python-sdk
optimizely/helpers/event_tag_utils.py
get_numeric_value
def get_numeric_value(event_tags, logger=None): """ A smart getter of the numeric value from the event tags. Args: event_tags: A dictionary of event tags. logger: Optional logger. Returns: A float numeric metric value is returned when the provided numeric metric value is in the following format: - A string (properly formatted, e.g., no commas) - An integer - A float or double None is returned when the provided numeric metric values is in the following format: - None - A boolean - inf, -inf, nan - A string not properly formatted (e.g., '1,234') - Any values that cannot be cast to a float (e.g., an array or dictionary) """ logger_message_debug = None numeric_metric_value = None if event_tags is None: logger_message_debug = 'Event tags is undefined.' elif not isinstance(event_tags, dict): logger_message_debug = 'Event tags is not a dictionary.' elif NUMERIC_METRIC_TYPE not in event_tags: logger_message_debug = 'The numeric metric key is not in event tags.' else: numeric_metric_value = event_tags[NUMERIC_METRIC_TYPE] try: if isinstance(numeric_metric_value, (numbers.Integral, float, str)): # Attempt to convert the numeric metric value to a float # (if it isn't already a float). cast_numeric_metric_value = float(numeric_metric_value) # If not a float after casting, then make everything else a None. # Other potential values are nan, inf, and -inf. if not isinstance(cast_numeric_metric_value, float) \ or math.isnan(cast_numeric_metric_value) \ or math.isinf(cast_numeric_metric_value): logger_message_debug = 'Provided numeric value {} is in an invalid format.'\ .format(numeric_metric_value) numeric_metric_value = None else: # Handle booleans as a special case. # They are treated like an integer in the cast, but we do not want to cast this. if isinstance(numeric_metric_value, bool): logger_message_debug = 'Provided numeric value is a boolean, which is an invalid format.' numeric_metric_value = None else: numeric_metric_value = cast_numeric_metric_value else: logger_message_debug = 'Numeric metric value is not in integer, float, or string form.' numeric_metric_value = None except ValueError: logger_message_debug = 'Value error while casting numeric metric value to a float.' numeric_metric_value = None # Log all potential debug messages while converting the numeric value to a float. if logger and logger_message_debug: logger.log(enums.LogLevels.DEBUG, logger_message_debug) # Log the final numeric metric value if numeric_metric_value is not None: if logger: logger.log(enums.LogLevels.INFO, 'The numeric metric value {} will be sent to results.' .format(numeric_metric_value)) else: if logger: logger.log(enums.LogLevels.WARNING, 'The provided numeric metric value {} is in an invalid format and will not be sent to results.' .format(numeric_metric_value)) return numeric_metric_value
python
def get_numeric_value(event_tags, logger=None): """ A smart getter of the numeric value from the event tags. Args: event_tags: A dictionary of event tags. logger: Optional logger. Returns: A float numeric metric value is returned when the provided numeric metric value is in the following format: - A string (properly formatted, e.g., no commas) - An integer - A float or double None is returned when the provided numeric metric values is in the following format: - None - A boolean - inf, -inf, nan - A string not properly formatted (e.g., '1,234') - Any values that cannot be cast to a float (e.g., an array or dictionary) """ logger_message_debug = None numeric_metric_value = None if event_tags is None: logger_message_debug = 'Event tags is undefined.' elif not isinstance(event_tags, dict): logger_message_debug = 'Event tags is not a dictionary.' elif NUMERIC_METRIC_TYPE not in event_tags: logger_message_debug = 'The numeric metric key is not in event tags.' else: numeric_metric_value = event_tags[NUMERIC_METRIC_TYPE] try: if isinstance(numeric_metric_value, (numbers.Integral, float, str)): # Attempt to convert the numeric metric value to a float # (if it isn't already a float). cast_numeric_metric_value = float(numeric_metric_value) # If not a float after casting, then make everything else a None. # Other potential values are nan, inf, and -inf. if not isinstance(cast_numeric_metric_value, float) \ or math.isnan(cast_numeric_metric_value) \ or math.isinf(cast_numeric_metric_value): logger_message_debug = 'Provided numeric value {} is in an invalid format.'\ .format(numeric_metric_value) numeric_metric_value = None else: # Handle booleans as a special case. # They are treated like an integer in the cast, but we do not want to cast this. if isinstance(numeric_metric_value, bool): logger_message_debug = 'Provided numeric value is a boolean, which is an invalid format.' numeric_metric_value = None else: numeric_metric_value = cast_numeric_metric_value else: logger_message_debug = 'Numeric metric value is not in integer, float, or string form.' numeric_metric_value = None except ValueError: logger_message_debug = 'Value error while casting numeric metric value to a float.' numeric_metric_value = None # Log all potential debug messages while converting the numeric value to a float. if logger and logger_message_debug: logger.log(enums.LogLevels.DEBUG, logger_message_debug) # Log the final numeric metric value if numeric_metric_value is not None: if logger: logger.log(enums.LogLevels.INFO, 'The numeric metric value {} will be sent to results.' .format(numeric_metric_value)) else: if logger: logger.log(enums.LogLevels.WARNING, 'The provided numeric metric value {} is in an invalid format and will not be sent to results.' .format(numeric_metric_value)) return numeric_metric_value
[ "def", "get_numeric_value", "(", "event_tags", ",", "logger", "=", "None", ")", ":", "logger_message_debug", "=", "None", "numeric_metric_value", "=", "None", "if", "event_tags", "is", "None", ":", "logger_message_debug", "=", "'Event tags is undefined.'", "elif", "not", "isinstance", "(", "event_tags", ",", "dict", ")", ":", "logger_message_debug", "=", "'Event tags is not a dictionary.'", "elif", "NUMERIC_METRIC_TYPE", "not", "in", "event_tags", ":", "logger_message_debug", "=", "'The numeric metric key is not in event tags.'", "else", ":", "numeric_metric_value", "=", "event_tags", "[", "NUMERIC_METRIC_TYPE", "]", "try", ":", "if", "isinstance", "(", "numeric_metric_value", ",", "(", "numbers", ".", "Integral", ",", "float", ",", "str", ")", ")", ":", "# Attempt to convert the numeric metric value to a float", "# (if it isn't already a float).", "cast_numeric_metric_value", "=", "float", "(", "numeric_metric_value", ")", "# If not a float after casting, then make everything else a None.", "# Other potential values are nan, inf, and -inf.", "if", "not", "isinstance", "(", "cast_numeric_metric_value", ",", "float", ")", "or", "math", ".", "isnan", "(", "cast_numeric_metric_value", ")", "or", "math", ".", "isinf", "(", "cast_numeric_metric_value", ")", ":", "logger_message_debug", "=", "'Provided numeric value {} is in an invalid format.'", ".", "format", "(", "numeric_metric_value", ")", "numeric_metric_value", "=", "None", "else", ":", "# Handle booleans as a special case.", "# They are treated like an integer in the cast, but we do not want to cast this.", "if", "isinstance", "(", "numeric_metric_value", ",", "bool", ")", ":", "logger_message_debug", "=", "'Provided numeric value is a boolean, which is an invalid format.'", "numeric_metric_value", "=", "None", "else", ":", "numeric_metric_value", "=", "cast_numeric_metric_value", "else", ":", "logger_message_debug", "=", "'Numeric metric value is not in integer, float, or string form.'", "numeric_metric_value", "=", "None", "except", "ValueError", ":", "logger_message_debug", "=", "'Value error while casting numeric metric value to a float.'", "numeric_metric_value", "=", "None", "# Log all potential debug messages while converting the numeric value to a float.", "if", "logger", "and", "logger_message_debug", ":", "logger", ".", "log", "(", "enums", ".", "LogLevels", ".", "DEBUG", ",", "logger_message_debug", ")", "# Log the final numeric metric value", "if", "numeric_metric_value", "is", "not", "None", ":", "if", "logger", ":", "logger", ".", "log", "(", "enums", ".", "LogLevels", ".", "INFO", ",", "'The numeric metric value {} will be sent to results.'", ".", "format", "(", "numeric_metric_value", ")", ")", "else", ":", "if", "logger", ":", "logger", ".", "log", "(", "enums", ".", "LogLevels", ".", "WARNING", ",", "'The provided numeric metric value {} is in an invalid format and will not be sent to results.'", ".", "format", "(", "numeric_metric_value", ")", ")", "return", "numeric_metric_value" ]
A smart getter of the numeric value from the event tags. Args: event_tags: A dictionary of event tags. logger: Optional logger. Returns: A float numeric metric value is returned when the provided numeric metric value is in the following format: - A string (properly formatted, e.g., no commas) - An integer - A float or double None is returned when the provided numeric metric values is in the following format: - None - A boolean - inf, -inf, nan - A string not properly formatted (e.g., '1,234') - Any values that cannot be cast to a float (e.g., an array or dictionary)
[ "A", "smart", "getter", "of", "the", "numeric", "value", "from", "the", "event", "tags", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/helpers/event_tag_utils.py#L43-L123
12,137
optimizely/python-sdk
optimizely/lib/pymmh3.py
hash
def hash( key, seed = 0x0 ): ''' Implements 32bit murmur3 hash. ''' key = bytearray( xencode(key) ) def fmix( h ): h ^= h >> 16 h = ( h * 0x85ebca6b ) & 0xFFFFFFFF h ^= h >> 13 h = ( h * 0xc2b2ae35 ) & 0xFFFFFFFF h ^= h >> 16 return h length = len( key ) nblocks = int( length / 4 ) h1 = seed c1 = 0xcc9e2d51 c2 = 0x1b873593 # body for block_start in xrange( 0, nblocks * 4, 4 ): # ??? big endian? k1 = key[ block_start + 3 ] << 24 | \ key[ block_start + 2 ] << 16 | \ key[ block_start + 1 ] << 8 | \ key[ block_start + 0 ] k1 = ( c1 * k1 ) & 0xFFFFFFFF k1 = ( k1 << 15 | k1 >> 17 ) & 0xFFFFFFFF # inlined ROTL32 k1 = ( c2 * k1 ) & 0xFFFFFFFF h1 ^= k1 h1 = ( h1 << 13 | h1 >> 19 ) & 0xFFFFFFFF # inlined ROTL32 h1 = ( h1 * 5 + 0xe6546b64 ) & 0xFFFFFFFF # tail tail_index = nblocks * 4 k1 = 0 tail_size = length & 3 if tail_size >= 3: k1 ^= key[ tail_index + 2 ] << 16 if tail_size >= 2: k1 ^= key[ tail_index + 1 ] << 8 if tail_size >= 1: k1 ^= key[ tail_index + 0 ] if tail_size > 0: k1 = ( k1 * c1 ) & 0xFFFFFFFF k1 = ( k1 << 15 | k1 >> 17 ) & 0xFFFFFFFF # inlined ROTL32 k1 = ( k1 * c2 ) & 0xFFFFFFFF h1 ^= k1 #finalization unsigned_val = fmix( h1 ^ length ) if unsigned_val & 0x80000000 == 0: return unsigned_val else: return -( (unsigned_val ^ 0xFFFFFFFF) + 1 )
python
def hash( key, seed = 0x0 ): ''' Implements 32bit murmur3 hash. ''' key = bytearray( xencode(key) ) def fmix( h ): h ^= h >> 16 h = ( h * 0x85ebca6b ) & 0xFFFFFFFF h ^= h >> 13 h = ( h * 0xc2b2ae35 ) & 0xFFFFFFFF h ^= h >> 16 return h length = len( key ) nblocks = int( length / 4 ) h1 = seed c1 = 0xcc9e2d51 c2 = 0x1b873593 # body for block_start in xrange( 0, nblocks * 4, 4 ): # ??? big endian? k1 = key[ block_start + 3 ] << 24 | \ key[ block_start + 2 ] << 16 | \ key[ block_start + 1 ] << 8 | \ key[ block_start + 0 ] k1 = ( c1 * k1 ) & 0xFFFFFFFF k1 = ( k1 << 15 | k1 >> 17 ) & 0xFFFFFFFF # inlined ROTL32 k1 = ( c2 * k1 ) & 0xFFFFFFFF h1 ^= k1 h1 = ( h1 << 13 | h1 >> 19 ) & 0xFFFFFFFF # inlined ROTL32 h1 = ( h1 * 5 + 0xe6546b64 ) & 0xFFFFFFFF # tail tail_index = nblocks * 4 k1 = 0 tail_size = length & 3 if tail_size >= 3: k1 ^= key[ tail_index + 2 ] << 16 if tail_size >= 2: k1 ^= key[ tail_index + 1 ] << 8 if tail_size >= 1: k1 ^= key[ tail_index + 0 ] if tail_size > 0: k1 = ( k1 * c1 ) & 0xFFFFFFFF k1 = ( k1 << 15 | k1 >> 17 ) & 0xFFFFFFFF # inlined ROTL32 k1 = ( k1 * c2 ) & 0xFFFFFFFF h1 ^= k1 #finalization unsigned_val = fmix( h1 ^ length ) if unsigned_val & 0x80000000 == 0: return unsigned_val else: return -( (unsigned_val ^ 0xFFFFFFFF) + 1 )
[ "def", "hash", "(", "key", ",", "seed", "=", "0x0", ")", ":", "key", "=", "bytearray", "(", "xencode", "(", "key", ")", ")", "def", "fmix", "(", "h", ")", ":", "h", "^=", "h", ">>", "16", "h", "=", "(", "h", "*", "0x85ebca6b", ")", "&", "0xFFFFFFFF", "h", "^=", "h", ">>", "13", "h", "=", "(", "h", "*", "0xc2b2ae35", ")", "&", "0xFFFFFFFF", "h", "^=", "h", ">>", "16", "return", "h", "length", "=", "len", "(", "key", ")", "nblocks", "=", "int", "(", "length", "/", "4", ")", "h1", "=", "seed", "c1", "=", "0xcc9e2d51", "c2", "=", "0x1b873593", "# body", "for", "block_start", "in", "xrange", "(", "0", ",", "nblocks", "*", "4", ",", "4", ")", ":", "# ??? big endian?", "k1", "=", "key", "[", "block_start", "+", "3", "]", "<<", "24", "|", "key", "[", "block_start", "+", "2", "]", "<<", "16", "|", "key", "[", "block_start", "+", "1", "]", "<<", "8", "|", "key", "[", "block_start", "+", "0", "]", "k1", "=", "(", "c1", "*", "k1", ")", "&", "0xFFFFFFFF", "k1", "=", "(", "k1", "<<", "15", "|", "k1", ">>", "17", ")", "&", "0xFFFFFFFF", "# inlined ROTL32", "k1", "=", "(", "c2", "*", "k1", ")", "&", "0xFFFFFFFF", "h1", "^=", "k1", "h1", "=", "(", "h1", "<<", "13", "|", "h1", ">>", "19", ")", "&", "0xFFFFFFFF", "# inlined ROTL32", "h1", "=", "(", "h1", "*", "5", "+", "0xe6546b64", ")", "&", "0xFFFFFFFF", "# tail", "tail_index", "=", "nblocks", "*", "4", "k1", "=", "0", "tail_size", "=", "length", "&", "3", "if", "tail_size", ">=", "3", ":", "k1", "^=", "key", "[", "tail_index", "+", "2", "]", "<<", "16", "if", "tail_size", ">=", "2", ":", "k1", "^=", "key", "[", "tail_index", "+", "1", "]", "<<", "8", "if", "tail_size", ">=", "1", ":", "k1", "^=", "key", "[", "tail_index", "+", "0", "]", "if", "tail_size", ">", "0", ":", "k1", "=", "(", "k1", "*", "c1", ")", "&", "0xFFFFFFFF", "k1", "=", "(", "k1", "<<", "15", "|", "k1", ">>", "17", ")", "&", "0xFFFFFFFF", "# inlined ROTL32", "k1", "=", "(", "k1", "*", "c2", ")", "&", "0xFFFFFFFF", "h1", "^=", "k1", "#finalization", "unsigned_val", "=", "fmix", "(", "h1", "^", "length", ")", "if", "unsigned_val", "&", "0x80000000", "==", "0", ":", "return", "unsigned_val", "else", ":", "return", "-", "(", "(", "unsigned_val", "^", "0xFFFFFFFF", ")", "+", "1", ")" ]
Implements 32bit murmur3 hash.
[ "Implements", "32bit", "murmur3", "hash", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/lib/pymmh3.py#L34-L94
12,138
optimizely/python-sdk
optimizely/lib/pymmh3.py
hash64
def hash64( key, seed = 0x0, x64arch = True ): ''' Implements 64bit murmur3 hash. Returns a tuple. ''' hash_128 = hash128( key, seed, x64arch ) unsigned_val1 = hash_128 & 0xFFFFFFFFFFFFFFFF if unsigned_val1 & 0x8000000000000000 == 0: signed_val1 = unsigned_val1 else: signed_val1 = -( (unsigned_val1 ^ 0xFFFFFFFFFFFFFFFF) + 1 ) unsigned_val2 = ( hash_128 >> 64 ) & 0xFFFFFFFFFFFFFFFF if unsigned_val2 & 0x8000000000000000 == 0: signed_val2 = unsigned_val2 else: signed_val2 = -( (unsigned_val2 ^ 0xFFFFFFFFFFFFFFFF) + 1 ) return ( int( signed_val1 ), int( signed_val2 ) )
python
def hash64( key, seed = 0x0, x64arch = True ): ''' Implements 64bit murmur3 hash. Returns a tuple. ''' hash_128 = hash128( key, seed, x64arch ) unsigned_val1 = hash_128 & 0xFFFFFFFFFFFFFFFF if unsigned_val1 & 0x8000000000000000 == 0: signed_val1 = unsigned_val1 else: signed_val1 = -( (unsigned_val1 ^ 0xFFFFFFFFFFFFFFFF) + 1 ) unsigned_val2 = ( hash_128 >> 64 ) & 0xFFFFFFFFFFFFFFFF if unsigned_val2 & 0x8000000000000000 == 0: signed_val2 = unsigned_val2 else: signed_val2 = -( (unsigned_val2 ^ 0xFFFFFFFFFFFFFFFF) + 1 ) return ( int( signed_val1 ), int( signed_val2 ) )
[ "def", "hash64", "(", "key", ",", "seed", "=", "0x0", ",", "x64arch", "=", "True", ")", ":", "hash_128", "=", "hash128", "(", "key", ",", "seed", ",", "x64arch", ")", "unsigned_val1", "=", "hash_128", "&", "0xFFFFFFFFFFFFFFFF", "if", "unsigned_val1", "&", "0x8000000000000000", "==", "0", ":", "signed_val1", "=", "unsigned_val1", "else", ":", "signed_val1", "=", "-", "(", "(", "unsigned_val1", "^", "0xFFFFFFFFFFFFFFFF", ")", "+", "1", ")", "unsigned_val2", "=", "(", "hash_128", ">>", "64", ")", "&", "0xFFFFFFFFFFFFFFFF", "if", "unsigned_val2", "&", "0x8000000000000000", "==", "0", ":", "signed_val2", "=", "unsigned_val2", "else", ":", "signed_val2", "=", "-", "(", "(", "unsigned_val2", "^", "0xFFFFFFFFFFFFFFFF", ")", "+", "1", ")", "return", "(", "int", "(", "signed_val1", ")", ",", "int", "(", "signed_val2", ")", ")" ]
Implements 64bit murmur3 hash. Returns a tuple.
[ "Implements", "64bit", "murmur3", "hash", ".", "Returns", "a", "tuple", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/lib/pymmh3.py#L406-L423
12,139
optimizely/python-sdk
optimizely/lib/pymmh3.py
hash_bytes
def hash_bytes( key, seed = 0x0, x64arch = True ): ''' Implements 128bit murmur3 hash. Returns a byte string. ''' hash_128 = hash128( key, seed, x64arch ) bytestring = '' for i in xrange(0, 16, 1): lsbyte = hash_128 & 0xFF bytestring = bytestring + str( chr( lsbyte ) ) hash_128 = hash_128 >> 8 return bytestring
python
def hash_bytes( key, seed = 0x0, x64arch = True ): ''' Implements 128bit murmur3 hash. Returns a byte string. ''' hash_128 = hash128( key, seed, x64arch ) bytestring = '' for i in xrange(0, 16, 1): lsbyte = hash_128 & 0xFF bytestring = bytestring + str( chr( lsbyte ) ) hash_128 = hash_128 >> 8 return bytestring
[ "def", "hash_bytes", "(", "key", ",", "seed", "=", "0x0", ",", "x64arch", "=", "True", ")", ":", "hash_128", "=", "hash128", "(", "key", ",", "seed", ",", "x64arch", ")", "bytestring", "=", "''", "for", "i", "in", "xrange", "(", "0", ",", "16", ",", "1", ")", ":", "lsbyte", "=", "hash_128", "&", "0xFF", "bytestring", "=", "bytestring", "+", "str", "(", "chr", "(", "lsbyte", ")", ")", "hash_128", "=", "hash_128", ">>", "8", "return", "bytestring" ]
Implements 128bit murmur3 hash. Returns a byte string.
[ "Implements", "128bit", "murmur3", "hash", ".", "Returns", "a", "byte", "string", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/lib/pymmh3.py#L426-L438
12,140
optimizely/python-sdk
optimizely/bucketer.py
Bucketer._generate_bucket_value
def _generate_bucket_value(self, bucketing_id): """ Helper function to generate bucket value in half-closed interval [0, MAX_TRAFFIC_VALUE). Args: bucketing_id: ID for bucketing. Returns: Bucket value corresponding to the provided bucketing ID. """ ratio = float(self._generate_unsigned_hash_code_32_bit(bucketing_id)) / MAX_HASH_VALUE return math.floor(ratio * MAX_TRAFFIC_VALUE)
python
def _generate_bucket_value(self, bucketing_id): """ Helper function to generate bucket value in half-closed interval [0, MAX_TRAFFIC_VALUE). Args: bucketing_id: ID for bucketing. Returns: Bucket value corresponding to the provided bucketing ID. """ ratio = float(self._generate_unsigned_hash_code_32_bit(bucketing_id)) / MAX_HASH_VALUE return math.floor(ratio * MAX_TRAFFIC_VALUE)
[ "def", "_generate_bucket_value", "(", "self", ",", "bucketing_id", ")", ":", "ratio", "=", "float", "(", "self", ".", "_generate_unsigned_hash_code_32_bit", "(", "bucketing_id", ")", ")", "/", "MAX_HASH_VALUE", "return", "math", ".", "floor", "(", "ratio", "*", "MAX_TRAFFIC_VALUE", ")" ]
Helper function to generate bucket value in half-closed interval [0, MAX_TRAFFIC_VALUE). Args: bucketing_id: ID for bucketing. Returns: Bucket value corresponding to the provided bucketing ID.
[ "Helper", "function", "to", "generate", "bucket", "value", "in", "half", "-", "closed", "interval", "[", "0", "MAX_TRAFFIC_VALUE", ")", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/bucketer.py#L55-L66
12,141
optimizely/python-sdk
optimizely/bucketer.py
Bucketer.find_bucket
def find_bucket(self, bucketing_id, parent_id, traffic_allocations): """ Determine entity based on bucket value and traffic allocations. Args: bucketing_id: ID to be used for bucketing the user. parent_id: ID representing group or experiment. traffic_allocations: Traffic allocations representing traffic allotted to experiments or variations. Returns: Entity ID which may represent experiment or variation. """ bucketing_key = BUCKETING_ID_TEMPLATE.format(bucketing_id=bucketing_id, parent_id=parent_id) bucketing_number = self._generate_bucket_value(bucketing_key) self.config.logger.debug('Assigned bucket %s to user with bucketing ID "%s".' % ( bucketing_number, bucketing_id )) for traffic_allocation in traffic_allocations: current_end_of_range = traffic_allocation.get('endOfRange') if bucketing_number < current_end_of_range: return traffic_allocation.get('entityId') return None
python
def find_bucket(self, bucketing_id, parent_id, traffic_allocations): """ Determine entity based on bucket value and traffic allocations. Args: bucketing_id: ID to be used for bucketing the user. parent_id: ID representing group or experiment. traffic_allocations: Traffic allocations representing traffic allotted to experiments or variations. Returns: Entity ID which may represent experiment or variation. """ bucketing_key = BUCKETING_ID_TEMPLATE.format(bucketing_id=bucketing_id, parent_id=parent_id) bucketing_number = self._generate_bucket_value(bucketing_key) self.config.logger.debug('Assigned bucket %s to user with bucketing ID "%s".' % ( bucketing_number, bucketing_id )) for traffic_allocation in traffic_allocations: current_end_of_range = traffic_allocation.get('endOfRange') if bucketing_number < current_end_of_range: return traffic_allocation.get('entityId') return None
[ "def", "find_bucket", "(", "self", ",", "bucketing_id", ",", "parent_id", ",", "traffic_allocations", ")", ":", "bucketing_key", "=", "BUCKETING_ID_TEMPLATE", ".", "format", "(", "bucketing_id", "=", "bucketing_id", ",", "parent_id", "=", "parent_id", ")", "bucketing_number", "=", "self", ".", "_generate_bucket_value", "(", "bucketing_key", ")", "self", ".", "config", ".", "logger", ".", "debug", "(", "'Assigned bucket %s to user with bucketing ID \"%s\".'", "%", "(", "bucketing_number", ",", "bucketing_id", ")", ")", "for", "traffic_allocation", "in", "traffic_allocations", ":", "current_end_of_range", "=", "traffic_allocation", ".", "get", "(", "'endOfRange'", ")", "if", "bucketing_number", "<", "current_end_of_range", ":", "return", "traffic_allocation", ".", "get", "(", "'entityId'", ")", "return", "None" ]
Determine entity based on bucket value and traffic allocations. Args: bucketing_id: ID to be used for bucketing the user. parent_id: ID representing group or experiment. traffic_allocations: Traffic allocations representing traffic allotted to experiments or variations. Returns: Entity ID which may represent experiment or variation.
[ "Determine", "entity", "based", "on", "bucket", "value", "and", "traffic", "allocations", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/bucketer.py#L68-L92
12,142
optimizely/python-sdk
optimizely/bucketer.py
Bucketer.bucket
def bucket(self, experiment, user_id, bucketing_id): """ For a given experiment and bucketing ID determines variation to be shown to user. Args: experiment: Object representing the experiment for which user is to be bucketed. user_id: ID for user. bucketing_id: ID to be used for bucketing the user. Returns: Variation in which user with ID user_id will be put in. None if no variation. """ if not experiment: return None # Determine if experiment is in a mutually exclusive group if experiment.groupPolicy in GROUP_POLICIES: group = self.config.get_group(experiment.groupId) if not group: return None user_experiment_id = self.find_bucket(bucketing_id, experiment.groupId, group.trafficAllocation) if not user_experiment_id: self.config.logger.info('User "%s" is in no experiment.' % user_id) return None if user_experiment_id != experiment.id: self.config.logger.info('User "%s" is not in experiment "%s" of group %s.' % ( user_id, experiment.key, experiment.groupId )) return None self.config.logger.info('User "%s" is in experiment %s of group %s.' % ( user_id, experiment.key, experiment.groupId )) # Bucket user if not in white-list and in group (if any) variation_id = self.find_bucket(bucketing_id, experiment.id, experiment.trafficAllocation) if variation_id: variation = self.config.get_variation_from_id(experiment.key, variation_id) self.config.logger.info('User "%s" is in variation "%s" of experiment %s.' % ( user_id, variation.key, experiment.key )) return variation self.config.logger.info('User "%s" is in no variation.' % user_id) return None
python
def bucket(self, experiment, user_id, bucketing_id): """ For a given experiment and bucketing ID determines variation to be shown to user. Args: experiment: Object representing the experiment for which user is to be bucketed. user_id: ID for user. bucketing_id: ID to be used for bucketing the user. Returns: Variation in which user with ID user_id will be put in. None if no variation. """ if not experiment: return None # Determine if experiment is in a mutually exclusive group if experiment.groupPolicy in GROUP_POLICIES: group = self.config.get_group(experiment.groupId) if not group: return None user_experiment_id = self.find_bucket(bucketing_id, experiment.groupId, group.trafficAllocation) if not user_experiment_id: self.config.logger.info('User "%s" is in no experiment.' % user_id) return None if user_experiment_id != experiment.id: self.config.logger.info('User "%s" is not in experiment "%s" of group %s.' % ( user_id, experiment.key, experiment.groupId )) return None self.config.logger.info('User "%s" is in experiment %s of group %s.' % ( user_id, experiment.key, experiment.groupId )) # Bucket user if not in white-list and in group (if any) variation_id = self.find_bucket(bucketing_id, experiment.id, experiment.trafficAllocation) if variation_id: variation = self.config.get_variation_from_id(experiment.key, variation_id) self.config.logger.info('User "%s" is in variation "%s" of experiment %s.' % ( user_id, variation.key, experiment.key )) return variation self.config.logger.info('User "%s" is in no variation.' % user_id) return None
[ "def", "bucket", "(", "self", ",", "experiment", ",", "user_id", ",", "bucketing_id", ")", ":", "if", "not", "experiment", ":", "return", "None", "# Determine if experiment is in a mutually exclusive group", "if", "experiment", ".", "groupPolicy", "in", "GROUP_POLICIES", ":", "group", "=", "self", ".", "config", ".", "get_group", "(", "experiment", ".", "groupId", ")", "if", "not", "group", ":", "return", "None", "user_experiment_id", "=", "self", ".", "find_bucket", "(", "bucketing_id", ",", "experiment", ".", "groupId", ",", "group", ".", "trafficAllocation", ")", "if", "not", "user_experiment_id", ":", "self", ".", "config", ".", "logger", ".", "info", "(", "'User \"%s\" is in no experiment.'", "%", "user_id", ")", "return", "None", "if", "user_experiment_id", "!=", "experiment", ".", "id", ":", "self", ".", "config", ".", "logger", ".", "info", "(", "'User \"%s\" is not in experiment \"%s\" of group %s.'", "%", "(", "user_id", ",", "experiment", ".", "key", ",", "experiment", ".", "groupId", ")", ")", "return", "None", "self", ".", "config", ".", "logger", ".", "info", "(", "'User \"%s\" is in experiment %s of group %s.'", "%", "(", "user_id", ",", "experiment", ".", "key", ",", "experiment", ".", "groupId", ")", ")", "# Bucket user if not in white-list and in group (if any)", "variation_id", "=", "self", ".", "find_bucket", "(", "bucketing_id", ",", "experiment", ".", "id", ",", "experiment", ".", "trafficAllocation", ")", "if", "variation_id", ":", "variation", "=", "self", ".", "config", ".", "get_variation_from_id", "(", "experiment", ".", "key", ",", "variation_id", ")", "self", ".", "config", ".", "logger", ".", "info", "(", "'User \"%s\" is in variation \"%s\" of experiment %s.'", "%", "(", "user_id", ",", "variation", ".", "key", ",", "experiment", ".", "key", ")", ")", "return", "variation", "self", ".", "config", ".", "logger", ".", "info", "(", "'User \"%s\" is in no variation.'", "%", "user_id", ")", "return", "None" ]
For a given experiment and bucketing ID determines variation to be shown to user. Args: experiment: Object representing the experiment for which user is to be bucketed. user_id: ID for user. bucketing_id: ID to be used for bucketing the user. Returns: Variation in which user with ID user_id will be put in. None if no variation.
[ "For", "a", "given", "experiment", "and", "bucketing", "ID", "determines", "variation", "to", "be", "shown", "to", "user", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/bucketer.py#L94-L147
12,143
optimizely/python-sdk
optimizely/project_config.py
ProjectConfig._generate_key_map
def _generate_key_map(entity_list, key, entity_class): """ Helper method to generate map from key to entity object for given list of dicts. Args: entity_list: List consisting of dict. key: Key in each dict which will be key in the map. entity_class: Class representing the entity. Returns: Map mapping key to entity object. """ key_map = {} for obj in entity_list: key_map[obj[key]] = entity_class(**obj) return key_map
python
def _generate_key_map(entity_list, key, entity_class): """ Helper method to generate map from key to entity object for given list of dicts. Args: entity_list: List consisting of dict. key: Key in each dict which will be key in the map. entity_class: Class representing the entity. Returns: Map mapping key to entity object. """ key_map = {} for obj in entity_list: key_map[obj[key]] = entity_class(**obj) return key_map
[ "def", "_generate_key_map", "(", "entity_list", ",", "key", ",", "entity_class", ")", ":", "key_map", "=", "{", "}", "for", "obj", "in", "entity_list", ":", "key_map", "[", "obj", "[", "key", "]", "]", "=", "entity_class", "(", "*", "*", "obj", ")", "return", "key_map" ]
Helper method to generate map from key to entity object for given list of dicts. Args: entity_list: List consisting of dict. key: Key in each dict which will be key in the map. entity_class: Class representing the entity. Returns: Map mapping key to entity object.
[ "Helper", "method", "to", "generate", "map", "from", "key", "to", "entity", "object", "for", "given", "list", "of", "dicts", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/project_config.py#L134-L150
12,144
optimizely/python-sdk
optimizely/project_config.py
ProjectConfig._deserialize_audience
def _deserialize_audience(audience_map): """ Helper method to de-serialize and populate audience map with the condition list and structure. Args: audience_map: Dict mapping audience ID to audience object. Returns: Dict additionally consisting of condition list and structure on every audience object. """ for audience in audience_map.values(): condition_structure, condition_list = condition_helper.loads(audience.conditions) audience.__dict__.update({ 'conditionStructure': condition_structure, 'conditionList': condition_list }) return audience_map
python
def _deserialize_audience(audience_map): """ Helper method to de-serialize and populate audience map with the condition list and structure. Args: audience_map: Dict mapping audience ID to audience object. Returns: Dict additionally consisting of condition list and structure on every audience object. """ for audience in audience_map.values(): condition_structure, condition_list = condition_helper.loads(audience.conditions) audience.__dict__.update({ 'conditionStructure': condition_structure, 'conditionList': condition_list }) return audience_map
[ "def", "_deserialize_audience", "(", "audience_map", ")", ":", "for", "audience", "in", "audience_map", ".", "values", "(", ")", ":", "condition_structure", ",", "condition_list", "=", "condition_helper", ".", "loads", "(", "audience", ".", "conditions", ")", "audience", ".", "__dict__", ".", "update", "(", "{", "'conditionStructure'", ":", "condition_structure", ",", "'conditionList'", ":", "condition_list", "}", ")", "return", "audience_map" ]
Helper method to de-serialize and populate audience map with the condition list and structure. Args: audience_map: Dict mapping audience ID to audience object. Returns: Dict additionally consisting of condition list and structure on every audience object.
[ "Helper", "method", "to", "de", "-", "serialize", "and", "populate", "audience", "map", "with", "the", "condition", "list", "and", "structure", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/project_config.py#L153-L170
12,145
optimizely/python-sdk
optimizely/project_config.py
ProjectConfig.get_typecast_value
def get_typecast_value(self, value, type): """ Helper method to determine actual value based on type of feature variable. Args: value: Value in string form as it was parsed from datafile. type: Type denoting the feature flag type. Return: Value type-casted based on type of feature variable. """ if type == entities.Variable.Type.BOOLEAN: return value == 'true' elif type == entities.Variable.Type.INTEGER: return int(value) elif type == entities.Variable.Type.DOUBLE: return float(value) else: return value
python
def get_typecast_value(self, value, type): """ Helper method to determine actual value based on type of feature variable. Args: value: Value in string form as it was parsed from datafile. type: Type denoting the feature flag type. Return: Value type-casted based on type of feature variable. """ if type == entities.Variable.Type.BOOLEAN: return value == 'true' elif type == entities.Variable.Type.INTEGER: return int(value) elif type == entities.Variable.Type.DOUBLE: return float(value) else: return value
[ "def", "get_typecast_value", "(", "self", ",", "value", ",", "type", ")", ":", "if", "type", "==", "entities", ".", "Variable", ".", "Type", ".", "BOOLEAN", ":", "return", "value", "==", "'true'", "elif", "type", "==", "entities", ".", "Variable", ".", "Type", ".", "INTEGER", ":", "return", "int", "(", "value", ")", "elif", "type", "==", "entities", ".", "Variable", ".", "Type", ".", "DOUBLE", ":", "return", "float", "(", "value", ")", "else", ":", "return", "value" ]
Helper method to determine actual value based on type of feature variable. Args: value: Value in string form as it was parsed from datafile. type: Type denoting the feature flag type. Return: Value type-casted based on type of feature variable.
[ "Helper", "method", "to", "determine", "actual", "value", "based", "on", "type", "of", "feature", "variable", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/project_config.py#L172-L190
12,146
optimizely/python-sdk
optimizely/project_config.py
ProjectConfig.get_experiment_from_key
def get_experiment_from_key(self, experiment_key): """ Get experiment for the provided experiment key. Args: experiment_key: Experiment key for which experiment is to be determined. Returns: Experiment corresponding to the provided experiment key. """ experiment = self.experiment_key_map.get(experiment_key) if experiment: return experiment self.logger.error('Experiment key "%s" is not in datafile.' % experiment_key) self.error_handler.handle_error(exceptions.InvalidExperimentException(enums.Errors.INVALID_EXPERIMENT_KEY_ERROR)) return None
python
def get_experiment_from_key(self, experiment_key): """ Get experiment for the provided experiment key. Args: experiment_key: Experiment key for which experiment is to be determined. Returns: Experiment corresponding to the provided experiment key. """ experiment = self.experiment_key_map.get(experiment_key) if experiment: return experiment self.logger.error('Experiment key "%s" is not in datafile.' % experiment_key) self.error_handler.handle_error(exceptions.InvalidExperimentException(enums.Errors.INVALID_EXPERIMENT_KEY_ERROR)) return None
[ "def", "get_experiment_from_key", "(", "self", ",", "experiment_key", ")", ":", "experiment", "=", "self", ".", "experiment_key_map", ".", "get", "(", "experiment_key", ")", "if", "experiment", ":", "return", "experiment", "self", ".", "logger", ".", "error", "(", "'Experiment key \"%s\" is not in datafile.'", "%", "experiment_key", ")", "self", ".", "error_handler", ".", "handle_error", "(", "exceptions", ".", "InvalidExperimentException", "(", "enums", ".", "Errors", ".", "INVALID_EXPERIMENT_KEY_ERROR", ")", ")", "return", "None" ]
Get experiment for the provided experiment key. Args: experiment_key: Experiment key for which experiment is to be determined. Returns: Experiment corresponding to the provided experiment key.
[ "Get", "experiment", "for", "the", "provided", "experiment", "key", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/project_config.py#L228-L245
12,147
optimizely/python-sdk
optimizely/project_config.py
ProjectConfig.get_experiment_from_id
def get_experiment_from_id(self, experiment_id): """ Get experiment for the provided experiment ID. Args: experiment_id: Experiment ID for which experiment is to be determined. Returns: Experiment corresponding to the provided experiment ID. """ experiment = self.experiment_id_map.get(experiment_id) if experiment: return experiment self.logger.error('Experiment ID "%s" is not in datafile.' % experiment_id) self.error_handler.handle_error(exceptions.InvalidExperimentException(enums.Errors.INVALID_EXPERIMENT_KEY_ERROR)) return None
python
def get_experiment_from_id(self, experiment_id): """ Get experiment for the provided experiment ID. Args: experiment_id: Experiment ID for which experiment is to be determined. Returns: Experiment corresponding to the provided experiment ID. """ experiment = self.experiment_id_map.get(experiment_id) if experiment: return experiment self.logger.error('Experiment ID "%s" is not in datafile.' % experiment_id) self.error_handler.handle_error(exceptions.InvalidExperimentException(enums.Errors.INVALID_EXPERIMENT_KEY_ERROR)) return None
[ "def", "get_experiment_from_id", "(", "self", ",", "experiment_id", ")", ":", "experiment", "=", "self", ".", "experiment_id_map", ".", "get", "(", "experiment_id", ")", "if", "experiment", ":", "return", "experiment", "self", ".", "logger", ".", "error", "(", "'Experiment ID \"%s\" is not in datafile.'", "%", "experiment_id", ")", "self", ".", "error_handler", ".", "handle_error", "(", "exceptions", ".", "InvalidExperimentException", "(", "enums", ".", "Errors", ".", "INVALID_EXPERIMENT_KEY_ERROR", ")", ")", "return", "None" ]
Get experiment for the provided experiment ID. Args: experiment_id: Experiment ID for which experiment is to be determined. Returns: Experiment corresponding to the provided experiment ID.
[ "Get", "experiment", "for", "the", "provided", "experiment", "ID", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/project_config.py#L247-L264
12,148
optimizely/python-sdk
optimizely/project_config.py
ProjectConfig.get_group
def get_group(self, group_id): """ Get group for the provided group ID. Args: group_id: Group ID for which group is to be determined. Returns: Group corresponding to the provided group ID. """ group = self.group_id_map.get(group_id) if group: return group self.logger.error('Group ID "%s" is not in datafile.' % group_id) self.error_handler.handle_error(exceptions.InvalidGroupException(enums.Errors.INVALID_GROUP_ID_ERROR)) return None
python
def get_group(self, group_id): """ Get group for the provided group ID. Args: group_id: Group ID for which group is to be determined. Returns: Group corresponding to the provided group ID. """ group = self.group_id_map.get(group_id) if group: return group self.logger.error('Group ID "%s" is not in datafile.' % group_id) self.error_handler.handle_error(exceptions.InvalidGroupException(enums.Errors.INVALID_GROUP_ID_ERROR)) return None
[ "def", "get_group", "(", "self", ",", "group_id", ")", ":", "group", "=", "self", ".", "group_id_map", ".", "get", "(", "group_id", ")", "if", "group", ":", "return", "group", "self", ".", "logger", ".", "error", "(", "'Group ID \"%s\" is not in datafile.'", "%", "group_id", ")", "self", ".", "error_handler", ".", "handle_error", "(", "exceptions", ".", "InvalidGroupException", "(", "enums", ".", "Errors", ".", "INVALID_GROUP_ID_ERROR", ")", ")", "return", "None" ]
Get group for the provided group ID. Args: group_id: Group ID for which group is to be determined. Returns: Group corresponding to the provided group ID.
[ "Get", "group", "for", "the", "provided", "group", "ID", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/project_config.py#L266-L283
12,149
optimizely/python-sdk
optimizely/project_config.py
ProjectConfig.get_audience
def get_audience(self, audience_id): """ Get audience object for the provided audience ID. Args: audience_id: ID of the audience. Returns: Dict representing the audience. """ audience = self.audience_id_map.get(audience_id) if audience: return audience self.logger.error('Audience ID "%s" is not in datafile.' % audience_id) self.error_handler.handle_error(exceptions.InvalidAudienceException((enums.Errors.INVALID_AUDIENCE_ERROR)))
python
def get_audience(self, audience_id): """ Get audience object for the provided audience ID. Args: audience_id: ID of the audience. Returns: Dict representing the audience. """ audience = self.audience_id_map.get(audience_id) if audience: return audience self.logger.error('Audience ID "%s" is not in datafile.' % audience_id) self.error_handler.handle_error(exceptions.InvalidAudienceException((enums.Errors.INVALID_AUDIENCE_ERROR)))
[ "def", "get_audience", "(", "self", ",", "audience_id", ")", ":", "audience", "=", "self", ".", "audience_id_map", ".", "get", "(", "audience_id", ")", "if", "audience", ":", "return", "audience", "self", ".", "logger", ".", "error", "(", "'Audience ID \"%s\" is not in datafile.'", "%", "audience_id", ")", "self", ".", "error_handler", ".", "handle_error", "(", "exceptions", ".", "InvalidAudienceException", "(", "(", "enums", ".", "Errors", ".", "INVALID_AUDIENCE_ERROR", ")", ")", ")" ]
Get audience object for the provided audience ID. Args: audience_id: ID of the audience. Returns: Dict representing the audience.
[ "Get", "audience", "object", "for", "the", "provided", "audience", "ID", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/project_config.py#L285-L300
12,150
optimizely/python-sdk
optimizely/project_config.py
ProjectConfig.get_variation_from_key
def get_variation_from_key(self, experiment_key, variation_key): """ Get variation given experiment and variation key. Args: experiment: Key representing parent experiment of variation. variation_key: Key representing the variation. Returns Object representing the variation. """ variation_map = self.variation_key_map.get(experiment_key) if variation_map: variation = variation_map.get(variation_key) if variation: return variation else: self.logger.error('Variation key "%s" is not in datafile.' % variation_key) self.error_handler.handle_error(exceptions.InvalidVariationException(enums.Errors.INVALID_VARIATION_ERROR)) return None self.logger.error('Experiment key "%s" is not in datafile.' % experiment_key) self.error_handler.handle_error(exceptions.InvalidExperimentException(enums.Errors.INVALID_EXPERIMENT_KEY_ERROR)) return None
python
def get_variation_from_key(self, experiment_key, variation_key): """ Get variation given experiment and variation key. Args: experiment: Key representing parent experiment of variation. variation_key: Key representing the variation. Returns Object representing the variation. """ variation_map = self.variation_key_map.get(experiment_key) if variation_map: variation = variation_map.get(variation_key) if variation: return variation else: self.logger.error('Variation key "%s" is not in datafile.' % variation_key) self.error_handler.handle_error(exceptions.InvalidVariationException(enums.Errors.INVALID_VARIATION_ERROR)) return None self.logger.error('Experiment key "%s" is not in datafile.' % experiment_key) self.error_handler.handle_error(exceptions.InvalidExperimentException(enums.Errors.INVALID_EXPERIMENT_KEY_ERROR)) return None
[ "def", "get_variation_from_key", "(", "self", ",", "experiment_key", ",", "variation_key", ")", ":", "variation_map", "=", "self", ".", "variation_key_map", ".", "get", "(", "experiment_key", ")", "if", "variation_map", ":", "variation", "=", "variation_map", ".", "get", "(", "variation_key", ")", "if", "variation", ":", "return", "variation", "else", ":", "self", ".", "logger", ".", "error", "(", "'Variation key \"%s\" is not in datafile.'", "%", "variation_key", ")", "self", ".", "error_handler", ".", "handle_error", "(", "exceptions", ".", "InvalidVariationException", "(", "enums", ".", "Errors", ".", "INVALID_VARIATION_ERROR", ")", ")", "return", "None", "self", ".", "logger", ".", "error", "(", "'Experiment key \"%s\" is not in datafile.'", "%", "experiment_key", ")", "self", ".", "error_handler", ".", "handle_error", "(", "exceptions", ".", "InvalidExperimentException", "(", "enums", ".", "Errors", ".", "INVALID_EXPERIMENT_KEY_ERROR", ")", ")", "return", "None" ]
Get variation given experiment and variation key. Args: experiment: Key representing parent experiment of variation. variation_key: Key representing the variation. Returns Object representing the variation.
[ "Get", "variation", "given", "experiment", "and", "variation", "key", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/project_config.py#L302-L326
12,151
optimizely/python-sdk
optimizely/project_config.py
ProjectConfig.get_variation_from_id
def get_variation_from_id(self, experiment_key, variation_id): """ Get variation given experiment and variation ID. Args: experiment: Key representing parent experiment of variation. variation_id: ID representing the variation. Returns Object representing the variation. """ variation_map = self.variation_id_map.get(experiment_key) if variation_map: variation = variation_map.get(variation_id) if variation: return variation else: self.logger.error('Variation ID "%s" is not in datafile.' % variation_id) self.error_handler.handle_error(exceptions.InvalidVariationException(enums.Errors.INVALID_VARIATION_ERROR)) return None self.logger.error('Experiment key "%s" is not in datafile.' % experiment_key) self.error_handler.handle_error(exceptions.InvalidExperimentException(enums.Errors.INVALID_EXPERIMENT_KEY_ERROR)) return None
python
def get_variation_from_id(self, experiment_key, variation_id): """ Get variation given experiment and variation ID. Args: experiment: Key representing parent experiment of variation. variation_id: ID representing the variation. Returns Object representing the variation. """ variation_map = self.variation_id_map.get(experiment_key) if variation_map: variation = variation_map.get(variation_id) if variation: return variation else: self.logger.error('Variation ID "%s" is not in datafile.' % variation_id) self.error_handler.handle_error(exceptions.InvalidVariationException(enums.Errors.INVALID_VARIATION_ERROR)) return None self.logger.error('Experiment key "%s" is not in datafile.' % experiment_key) self.error_handler.handle_error(exceptions.InvalidExperimentException(enums.Errors.INVALID_EXPERIMENT_KEY_ERROR)) return None
[ "def", "get_variation_from_id", "(", "self", ",", "experiment_key", ",", "variation_id", ")", ":", "variation_map", "=", "self", ".", "variation_id_map", ".", "get", "(", "experiment_key", ")", "if", "variation_map", ":", "variation", "=", "variation_map", ".", "get", "(", "variation_id", ")", "if", "variation", ":", "return", "variation", "else", ":", "self", ".", "logger", ".", "error", "(", "'Variation ID \"%s\" is not in datafile.'", "%", "variation_id", ")", "self", ".", "error_handler", ".", "handle_error", "(", "exceptions", ".", "InvalidVariationException", "(", "enums", ".", "Errors", ".", "INVALID_VARIATION_ERROR", ")", ")", "return", "None", "self", ".", "logger", ".", "error", "(", "'Experiment key \"%s\" is not in datafile.'", "%", "experiment_key", ")", "self", ".", "error_handler", ".", "handle_error", "(", "exceptions", ".", "InvalidExperimentException", "(", "enums", ".", "Errors", ".", "INVALID_EXPERIMENT_KEY_ERROR", ")", ")", "return", "None" ]
Get variation given experiment and variation ID. Args: experiment: Key representing parent experiment of variation. variation_id: ID representing the variation. Returns Object representing the variation.
[ "Get", "variation", "given", "experiment", "and", "variation", "ID", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/project_config.py#L328-L352
12,152
optimizely/python-sdk
optimizely/project_config.py
ProjectConfig.get_event
def get_event(self, event_key): """ Get event for the provided event key. Args: event_key: Event key for which event is to be determined. Returns: Event corresponding to the provided event key. """ event = self.event_key_map.get(event_key) if event: return event self.logger.error('Event "%s" is not in datafile.' % event_key) self.error_handler.handle_error(exceptions.InvalidEventException(enums.Errors.INVALID_EVENT_KEY_ERROR)) return None
python
def get_event(self, event_key): """ Get event for the provided event key. Args: event_key: Event key for which event is to be determined. Returns: Event corresponding to the provided event key. """ event = self.event_key_map.get(event_key) if event: return event self.logger.error('Event "%s" is not in datafile.' % event_key) self.error_handler.handle_error(exceptions.InvalidEventException(enums.Errors.INVALID_EVENT_KEY_ERROR)) return None
[ "def", "get_event", "(", "self", ",", "event_key", ")", ":", "event", "=", "self", ".", "event_key_map", ".", "get", "(", "event_key", ")", "if", "event", ":", "return", "event", "self", ".", "logger", ".", "error", "(", "'Event \"%s\" is not in datafile.'", "%", "event_key", ")", "self", ".", "error_handler", ".", "handle_error", "(", "exceptions", ".", "InvalidEventException", "(", "enums", ".", "Errors", ".", "INVALID_EVENT_KEY_ERROR", ")", ")", "return", "None" ]
Get event for the provided event key. Args: event_key: Event key for which event is to be determined. Returns: Event corresponding to the provided event key.
[ "Get", "event", "for", "the", "provided", "event", "key", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/project_config.py#L354-L371
12,153
optimizely/python-sdk
optimizely/project_config.py
ProjectConfig.get_attribute_id
def get_attribute_id(self, attribute_key): """ Get attribute ID for the provided attribute key. Args: attribute_key: Attribute key for which attribute is to be fetched. Returns: Attribute ID corresponding to the provided attribute key. """ attribute = self.attribute_key_map.get(attribute_key) has_reserved_prefix = attribute_key.startswith(RESERVED_ATTRIBUTE_PREFIX) if attribute: if has_reserved_prefix: self.logger.warning(('Attribute %s unexpectedly has reserved prefix %s; using attribute ID ' 'instead of reserved attribute name.' % (attribute_key, RESERVED_ATTRIBUTE_PREFIX))) return attribute.id if has_reserved_prefix: return attribute_key self.logger.error('Attribute "%s" is not in datafile.' % attribute_key) self.error_handler.handle_error(exceptions.InvalidAttributeException(enums.Errors.INVALID_ATTRIBUTE_ERROR)) return None
python
def get_attribute_id(self, attribute_key): """ Get attribute ID for the provided attribute key. Args: attribute_key: Attribute key for which attribute is to be fetched. Returns: Attribute ID corresponding to the provided attribute key. """ attribute = self.attribute_key_map.get(attribute_key) has_reserved_prefix = attribute_key.startswith(RESERVED_ATTRIBUTE_PREFIX) if attribute: if has_reserved_prefix: self.logger.warning(('Attribute %s unexpectedly has reserved prefix %s; using attribute ID ' 'instead of reserved attribute name.' % (attribute_key, RESERVED_ATTRIBUTE_PREFIX))) return attribute.id if has_reserved_prefix: return attribute_key self.logger.error('Attribute "%s" is not in datafile.' % attribute_key) self.error_handler.handle_error(exceptions.InvalidAttributeException(enums.Errors.INVALID_ATTRIBUTE_ERROR)) return None
[ "def", "get_attribute_id", "(", "self", ",", "attribute_key", ")", ":", "attribute", "=", "self", ".", "attribute_key_map", ".", "get", "(", "attribute_key", ")", "has_reserved_prefix", "=", "attribute_key", ".", "startswith", "(", "RESERVED_ATTRIBUTE_PREFIX", ")", "if", "attribute", ":", "if", "has_reserved_prefix", ":", "self", ".", "logger", ".", "warning", "(", "(", "'Attribute %s unexpectedly has reserved prefix %s; using attribute ID '", "'instead of reserved attribute name.'", "%", "(", "attribute_key", ",", "RESERVED_ATTRIBUTE_PREFIX", ")", ")", ")", "return", "attribute", ".", "id", "if", "has_reserved_prefix", ":", "return", "attribute_key", "self", ".", "logger", ".", "error", "(", "'Attribute \"%s\" is not in datafile.'", "%", "attribute_key", ")", "self", ".", "error_handler", ".", "handle_error", "(", "exceptions", ".", "InvalidAttributeException", "(", "enums", ".", "Errors", ".", "INVALID_ATTRIBUTE_ERROR", ")", ")", "return", "None" ]
Get attribute ID for the provided attribute key. Args: attribute_key: Attribute key for which attribute is to be fetched. Returns: Attribute ID corresponding to the provided attribute key.
[ "Get", "attribute", "ID", "for", "the", "provided", "attribute", "key", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/project_config.py#L373-L398
12,154
optimizely/python-sdk
optimizely/project_config.py
ProjectConfig.get_feature_from_key
def get_feature_from_key(self, feature_key): """ Get feature for the provided feature key. Args: feature_key: Feature key for which feature is to be fetched. Returns: Feature corresponding to the provided feature key. """ feature = self.feature_key_map.get(feature_key) if feature: return feature self.logger.error('Feature "%s" is not in datafile.' % feature_key) return None
python
def get_feature_from_key(self, feature_key): """ Get feature for the provided feature key. Args: feature_key: Feature key for which feature is to be fetched. Returns: Feature corresponding to the provided feature key. """ feature = self.feature_key_map.get(feature_key) if feature: return feature self.logger.error('Feature "%s" is not in datafile.' % feature_key) return None
[ "def", "get_feature_from_key", "(", "self", ",", "feature_key", ")", ":", "feature", "=", "self", ".", "feature_key_map", ".", "get", "(", "feature_key", ")", "if", "feature", ":", "return", "feature", "self", ".", "logger", ".", "error", "(", "'Feature \"%s\" is not in datafile.'", "%", "feature_key", ")", "return", "None" ]
Get feature for the provided feature key. Args: feature_key: Feature key for which feature is to be fetched. Returns: Feature corresponding to the provided feature key.
[ "Get", "feature", "for", "the", "provided", "feature", "key", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/project_config.py#L400-L415
12,155
optimizely/python-sdk
optimizely/project_config.py
ProjectConfig.get_rollout_from_id
def get_rollout_from_id(self, rollout_id): """ Get rollout for the provided ID. Args: rollout_id: ID of the rollout to be fetched. Returns: Rollout corresponding to the provided ID. """ layer = self.rollout_id_map.get(rollout_id) if layer: return layer self.logger.error('Rollout with ID "%s" is not in datafile.' % rollout_id) return None
python
def get_rollout_from_id(self, rollout_id): """ Get rollout for the provided ID. Args: rollout_id: ID of the rollout to be fetched. Returns: Rollout corresponding to the provided ID. """ layer = self.rollout_id_map.get(rollout_id) if layer: return layer self.logger.error('Rollout with ID "%s" is not in datafile.' % rollout_id) return None
[ "def", "get_rollout_from_id", "(", "self", ",", "rollout_id", ")", ":", "layer", "=", "self", ".", "rollout_id_map", ".", "get", "(", "rollout_id", ")", "if", "layer", ":", "return", "layer", "self", ".", "logger", ".", "error", "(", "'Rollout with ID \"%s\" is not in datafile.'", "%", "rollout_id", ")", "return", "None" ]
Get rollout for the provided ID. Args: rollout_id: ID of the rollout to be fetched. Returns: Rollout corresponding to the provided ID.
[ "Get", "rollout", "for", "the", "provided", "ID", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/project_config.py#L417-L432
12,156
optimizely/python-sdk
optimizely/project_config.py
ProjectConfig.get_variable_value_for_variation
def get_variable_value_for_variation(self, variable, variation): """ Get the variable value for the given variation. Args: variable: The Variable for which we are getting the value. variation: The Variation for which we are getting the variable value. Returns: The variable value or None if any of the inputs are invalid. """ if not variable or not variation: return None if variation.id not in self.variation_variable_usage_map: self.logger.error('Variation with ID "%s" is not in the datafile.' % variation.id) return None # Get all variable usages for the given variation variable_usages = self.variation_variable_usage_map[variation.id] # Find usage in given variation variable_usage = None if variable_usages: variable_usage = variable_usages.get(variable.id) if variable_usage: variable_value = variable_usage.value self.logger.info('Value for variable "%s" for variation "%s" is "%s".' % ( variable.key, variation.key, variable_value )) else: variable_value = variable.defaultValue self.logger.info('Variable "%s" is not used in variation "%s". Assigning default value "%s".' % ( variable.key, variation.key, variable_value )) return variable_value
python
def get_variable_value_for_variation(self, variable, variation): """ Get the variable value for the given variation. Args: variable: The Variable for which we are getting the value. variation: The Variation for which we are getting the variable value. Returns: The variable value or None if any of the inputs are invalid. """ if not variable or not variation: return None if variation.id not in self.variation_variable_usage_map: self.logger.error('Variation with ID "%s" is not in the datafile.' % variation.id) return None # Get all variable usages for the given variation variable_usages = self.variation_variable_usage_map[variation.id] # Find usage in given variation variable_usage = None if variable_usages: variable_usage = variable_usages.get(variable.id) if variable_usage: variable_value = variable_usage.value self.logger.info('Value for variable "%s" for variation "%s" is "%s".' % ( variable.key, variation.key, variable_value )) else: variable_value = variable.defaultValue self.logger.info('Variable "%s" is not used in variation "%s". Assigning default value "%s".' % ( variable.key, variation.key, variable_value )) return variable_value
[ "def", "get_variable_value_for_variation", "(", "self", ",", "variable", ",", "variation", ")", ":", "if", "not", "variable", "or", "not", "variation", ":", "return", "None", "if", "variation", ".", "id", "not", "in", "self", ".", "variation_variable_usage_map", ":", "self", ".", "logger", ".", "error", "(", "'Variation with ID \"%s\" is not in the datafile.'", "%", "variation", ".", "id", ")", "return", "None", "# Get all variable usages for the given variation", "variable_usages", "=", "self", ".", "variation_variable_usage_map", "[", "variation", ".", "id", "]", "# Find usage in given variation", "variable_usage", "=", "None", "if", "variable_usages", ":", "variable_usage", "=", "variable_usages", ".", "get", "(", "variable", ".", "id", ")", "if", "variable_usage", ":", "variable_value", "=", "variable_usage", ".", "value", "self", ".", "logger", ".", "info", "(", "'Value for variable \"%s\" for variation \"%s\" is \"%s\".'", "%", "(", "variable", ".", "key", ",", "variation", ".", "key", ",", "variable_value", ")", ")", "else", ":", "variable_value", "=", "variable", ".", "defaultValue", "self", ".", "logger", ".", "info", "(", "'Variable \"%s\" is not used in variation \"%s\". Assigning default value \"%s\".'", "%", "(", "variable", ".", "key", ",", "variation", ".", "key", ",", "variable_value", ")", ")", "return", "variable_value" ]
Get the variable value for the given variation. Args: variable: The Variable for which we are getting the value. variation: The Variation for which we are getting the variable value. Returns: The variable value or None if any of the inputs are invalid.
[ "Get", "the", "variable", "value", "for", "the", "given", "variation", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/project_config.py#L434-L476
12,157
optimizely/python-sdk
optimizely/project_config.py
ProjectConfig.get_variable_for_feature
def get_variable_for_feature(self, feature_key, variable_key): """ Get the variable with the given variable key for the given feature. Args: feature_key: The key of the feature for which we are getting the variable. variable_key: The key of the variable we are getting. Returns: Variable with the given key in the given variation. """ feature = self.feature_key_map.get(feature_key) if not feature: self.logger.error('Feature with key "%s" not found in the datafile.' % feature_key) return None if variable_key not in feature.variables: self.logger.error('Variable with key "%s" not found in the datafile.' % variable_key) return None return feature.variables.get(variable_key)
python
def get_variable_for_feature(self, feature_key, variable_key): """ Get the variable with the given variable key for the given feature. Args: feature_key: The key of the feature for which we are getting the variable. variable_key: The key of the variable we are getting. Returns: Variable with the given key in the given variation. """ feature = self.feature_key_map.get(feature_key) if not feature: self.logger.error('Feature with key "%s" not found in the datafile.' % feature_key) return None if variable_key not in feature.variables: self.logger.error('Variable with key "%s" not found in the datafile.' % variable_key) return None return feature.variables.get(variable_key)
[ "def", "get_variable_for_feature", "(", "self", ",", "feature_key", ",", "variable_key", ")", ":", "feature", "=", "self", ".", "feature_key_map", ".", "get", "(", "feature_key", ")", "if", "not", "feature", ":", "self", ".", "logger", ".", "error", "(", "'Feature with key \"%s\" not found in the datafile.'", "%", "feature_key", ")", "return", "None", "if", "variable_key", "not", "in", "feature", ".", "variables", ":", "self", ".", "logger", ".", "error", "(", "'Variable with key \"%s\" not found in the datafile.'", "%", "variable_key", ")", "return", "None", "return", "feature", ".", "variables", ".", "get", "(", "variable_key", ")" ]
Get the variable with the given variable key for the given feature. Args: feature_key: The key of the feature for which we are getting the variable. variable_key: The key of the variable we are getting. Returns: Variable with the given key in the given variation.
[ "Get", "the", "variable", "with", "the", "given", "variable", "key", "for", "the", "given", "feature", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/project_config.py#L478-L497
12,158
optimizely/python-sdk
optimizely/project_config.py
ProjectConfig.set_forced_variation
def set_forced_variation(self, experiment_key, user_id, variation_key): """ Sets users to a map of experiments to forced variations. Args: experiment_key: Key for experiment. user_id: The user ID. variation_key: Key for variation. If None, then clear the existing experiment-to-variation mapping. Returns: A boolean value that indicates if the set completed successfully. """ experiment = self.get_experiment_from_key(experiment_key) if not experiment: # The invalid experiment key will be logged inside this call. return False experiment_id = experiment.id if variation_key is None: if user_id in self.forced_variation_map: experiment_to_variation_map = self.forced_variation_map.get(user_id) if experiment_id in experiment_to_variation_map: del(self.forced_variation_map[user_id][experiment_id]) self.logger.debug('Variation mapped to experiment "%s" has been removed for user "%s".' % ( experiment_key, user_id )) else: self.logger.debug('Nothing to remove. Variation mapped to experiment "%s" for user "%s" does not exist.' % ( experiment_key, user_id )) else: self.logger.debug('Nothing to remove. User "%s" does not exist in the forced variation map.' % user_id) return True if not validator.is_non_empty_string(variation_key): self.logger.debug('Variation key is invalid.') return False forced_variation = self.get_variation_from_key(experiment_key, variation_key) if not forced_variation: # The invalid variation key will be logged inside this call. return False variation_id = forced_variation.id if user_id not in self.forced_variation_map: self.forced_variation_map[user_id] = {experiment_id: variation_id} else: self.forced_variation_map[user_id][experiment_id] = variation_id self.logger.debug('Set variation "%s" for experiment "%s" and user "%s" in the forced variation map.' % ( variation_id, experiment_id, user_id )) return True
python
def set_forced_variation(self, experiment_key, user_id, variation_key): """ Sets users to a map of experiments to forced variations. Args: experiment_key: Key for experiment. user_id: The user ID. variation_key: Key for variation. If None, then clear the existing experiment-to-variation mapping. Returns: A boolean value that indicates if the set completed successfully. """ experiment = self.get_experiment_from_key(experiment_key) if not experiment: # The invalid experiment key will be logged inside this call. return False experiment_id = experiment.id if variation_key is None: if user_id in self.forced_variation_map: experiment_to_variation_map = self.forced_variation_map.get(user_id) if experiment_id in experiment_to_variation_map: del(self.forced_variation_map[user_id][experiment_id]) self.logger.debug('Variation mapped to experiment "%s" has been removed for user "%s".' % ( experiment_key, user_id )) else: self.logger.debug('Nothing to remove. Variation mapped to experiment "%s" for user "%s" does not exist.' % ( experiment_key, user_id )) else: self.logger.debug('Nothing to remove. User "%s" does not exist in the forced variation map.' % user_id) return True if not validator.is_non_empty_string(variation_key): self.logger.debug('Variation key is invalid.') return False forced_variation = self.get_variation_from_key(experiment_key, variation_key) if not forced_variation: # The invalid variation key will be logged inside this call. return False variation_id = forced_variation.id if user_id not in self.forced_variation_map: self.forced_variation_map[user_id] = {experiment_id: variation_id} else: self.forced_variation_map[user_id][experiment_id] = variation_id self.logger.debug('Set variation "%s" for experiment "%s" and user "%s" in the forced variation map.' % ( variation_id, experiment_id, user_id )) return True
[ "def", "set_forced_variation", "(", "self", ",", "experiment_key", ",", "user_id", ",", "variation_key", ")", ":", "experiment", "=", "self", ".", "get_experiment_from_key", "(", "experiment_key", ")", "if", "not", "experiment", ":", "# The invalid experiment key will be logged inside this call.", "return", "False", "experiment_id", "=", "experiment", ".", "id", "if", "variation_key", "is", "None", ":", "if", "user_id", "in", "self", ".", "forced_variation_map", ":", "experiment_to_variation_map", "=", "self", ".", "forced_variation_map", ".", "get", "(", "user_id", ")", "if", "experiment_id", "in", "experiment_to_variation_map", ":", "del", "(", "self", ".", "forced_variation_map", "[", "user_id", "]", "[", "experiment_id", "]", ")", "self", ".", "logger", ".", "debug", "(", "'Variation mapped to experiment \"%s\" has been removed for user \"%s\".'", "%", "(", "experiment_key", ",", "user_id", ")", ")", "else", ":", "self", ".", "logger", ".", "debug", "(", "'Nothing to remove. Variation mapped to experiment \"%s\" for user \"%s\" does not exist.'", "%", "(", "experiment_key", ",", "user_id", ")", ")", "else", ":", "self", ".", "logger", ".", "debug", "(", "'Nothing to remove. User \"%s\" does not exist in the forced variation map.'", "%", "user_id", ")", "return", "True", "if", "not", "validator", ".", "is_non_empty_string", "(", "variation_key", ")", ":", "self", ".", "logger", ".", "debug", "(", "'Variation key is invalid.'", ")", "return", "False", "forced_variation", "=", "self", ".", "get_variation_from_key", "(", "experiment_key", ",", "variation_key", ")", "if", "not", "forced_variation", ":", "# The invalid variation key will be logged inside this call.", "return", "False", "variation_id", "=", "forced_variation", ".", "id", "if", "user_id", "not", "in", "self", ".", "forced_variation_map", ":", "self", ".", "forced_variation_map", "[", "user_id", "]", "=", "{", "experiment_id", ":", "variation_id", "}", "else", ":", "self", ".", "forced_variation_map", "[", "user_id", "]", "[", "experiment_id", "]", "=", "variation_id", "self", ".", "logger", ".", "debug", "(", "'Set variation \"%s\" for experiment \"%s\" and user \"%s\" in the forced variation map.'", "%", "(", "variation_id", ",", "experiment_id", ",", "user_id", ")", ")", "return", "True" ]
Sets users to a map of experiments to forced variations. Args: experiment_key: Key for experiment. user_id: The user ID. variation_key: Key for variation. If None, then clear the existing experiment-to-variation mapping. Returns: A boolean value that indicates if the set completed successfully.
[ "Sets", "users", "to", "a", "map", "of", "experiments", "to", "forced", "variations", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/project_config.py#L499-L555
12,159
optimizely/python-sdk
optimizely/project_config.py
ProjectConfig.get_forced_variation
def get_forced_variation(self, experiment_key, user_id): """ Gets the forced variation key for the given user and experiment. Args: experiment_key: Key for experiment. user_id: The user ID. Returns: The variation which the given user and experiment should be forced into. """ if user_id not in self.forced_variation_map: self.logger.debug('User "%s" is not in the forced variation map.' % user_id) return None experiment = self.get_experiment_from_key(experiment_key) if not experiment: # The invalid experiment key will be logged inside this call. return None experiment_to_variation_map = self.forced_variation_map.get(user_id) if not experiment_to_variation_map: self.logger.debug('No experiment "%s" mapped to user "%s" in the forced variation map.' % ( experiment_key, user_id )) return None variation_id = experiment_to_variation_map.get(experiment.id) if variation_id is None: self.logger.debug( 'No variation mapped to experiment "%s" in the forced variation map.' % experiment_key ) return None variation = self.get_variation_from_id(experiment_key, variation_id) self.logger.debug('Variation "%s" is mapped to experiment "%s" and user "%s" in the forced variation map' % ( variation.key, experiment_key, user_id )) return variation
python
def get_forced_variation(self, experiment_key, user_id): """ Gets the forced variation key for the given user and experiment. Args: experiment_key: Key for experiment. user_id: The user ID. Returns: The variation which the given user and experiment should be forced into. """ if user_id not in self.forced_variation_map: self.logger.debug('User "%s" is not in the forced variation map.' % user_id) return None experiment = self.get_experiment_from_key(experiment_key) if not experiment: # The invalid experiment key will be logged inside this call. return None experiment_to_variation_map = self.forced_variation_map.get(user_id) if not experiment_to_variation_map: self.logger.debug('No experiment "%s" mapped to user "%s" in the forced variation map.' % ( experiment_key, user_id )) return None variation_id = experiment_to_variation_map.get(experiment.id) if variation_id is None: self.logger.debug( 'No variation mapped to experiment "%s" in the forced variation map.' % experiment_key ) return None variation = self.get_variation_from_id(experiment_key, variation_id) self.logger.debug('Variation "%s" is mapped to experiment "%s" and user "%s" in the forced variation map' % ( variation.key, experiment_key, user_id )) return variation
[ "def", "get_forced_variation", "(", "self", ",", "experiment_key", ",", "user_id", ")", ":", "if", "user_id", "not", "in", "self", ".", "forced_variation_map", ":", "self", ".", "logger", ".", "debug", "(", "'User \"%s\" is not in the forced variation map.'", "%", "user_id", ")", "return", "None", "experiment", "=", "self", ".", "get_experiment_from_key", "(", "experiment_key", ")", "if", "not", "experiment", ":", "# The invalid experiment key will be logged inside this call.", "return", "None", "experiment_to_variation_map", "=", "self", ".", "forced_variation_map", ".", "get", "(", "user_id", ")", "if", "not", "experiment_to_variation_map", ":", "self", ".", "logger", ".", "debug", "(", "'No experiment \"%s\" mapped to user \"%s\" in the forced variation map.'", "%", "(", "experiment_key", ",", "user_id", ")", ")", "return", "None", "variation_id", "=", "experiment_to_variation_map", ".", "get", "(", "experiment", ".", "id", ")", "if", "variation_id", "is", "None", ":", "self", ".", "logger", ".", "debug", "(", "'No variation mapped to experiment \"%s\" in the forced variation map.'", "%", "experiment_key", ")", "return", "None", "variation", "=", "self", ".", "get_variation_from_id", "(", "experiment_key", ",", "variation_id", ")", "self", ".", "logger", ".", "debug", "(", "'Variation \"%s\" is mapped to experiment \"%s\" and user \"%s\" in the forced variation map'", "%", "(", "variation", ".", "key", ",", "experiment_key", ",", "user_id", ")", ")", "return", "variation" ]
Gets the forced variation key for the given user and experiment. Args: experiment_key: Key for experiment. user_id: The user ID. Returns: The variation which the given user and experiment should be forced into.
[ "Gets", "the", "forced", "variation", "key", "for", "the", "given", "user", "and", "experiment", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/project_config.py#L557-L600
12,160
optimizely/python-sdk
optimizely/event_dispatcher.py
EventDispatcher.dispatch_event
def dispatch_event(event): """ Dispatch the event being represented by the Event object. Args: event: Object holding information about the request to be dispatched to the Optimizely backend. """ try: if event.http_verb == enums.HTTPVerbs.GET: requests.get(event.url, params=event.params, timeout=REQUEST_TIMEOUT).raise_for_status() elif event.http_verb == enums.HTTPVerbs.POST: requests.post( event.url, data=json.dumps(event.params), headers=event.headers, timeout=REQUEST_TIMEOUT ).raise_for_status() except request_exception.RequestException as error: logging.error('Dispatch event failed. Error: %s' % str(error))
python
def dispatch_event(event): """ Dispatch the event being represented by the Event object. Args: event: Object holding information about the request to be dispatched to the Optimizely backend. """ try: if event.http_verb == enums.HTTPVerbs.GET: requests.get(event.url, params=event.params, timeout=REQUEST_TIMEOUT).raise_for_status() elif event.http_verb == enums.HTTPVerbs.POST: requests.post( event.url, data=json.dumps(event.params), headers=event.headers, timeout=REQUEST_TIMEOUT ).raise_for_status() except request_exception.RequestException as error: logging.error('Dispatch event failed. Error: %s' % str(error))
[ "def", "dispatch_event", "(", "event", ")", ":", "try", ":", "if", "event", ".", "http_verb", "==", "enums", ".", "HTTPVerbs", ".", "GET", ":", "requests", ".", "get", "(", "event", ".", "url", ",", "params", "=", "event", ".", "params", ",", "timeout", "=", "REQUEST_TIMEOUT", ")", ".", "raise_for_status", "(", ")", "elif", "event", ".", "http_verb", "==", "enums", ".", "HTTPVerbs", ".", "POST", ":", "requests", ".", "post", "(", "event", ".", "url", ",", "data", "=", "json", ".", "dumps", "(", "event", ".", "params", ")", ",", "headers", "=", "event", ".", "headers", ",", "timeout", "=", "REQUEST_TIMEOUT", ")", ".", "raise_for_status", "(", ")", "except", "request_exception", ".", "RequestException", "as", "error", ":", "logging", ".", "error", "(", "'Dispatch event failed. Error: %s'", "%", "str", "(", "error", ")", ")" ]
Dispatch the event being represented by the Event object. Args: event: Object holding information about the request to be dispatched to the Optimizely backend.
[ "Dispatch", "the", "event", "being", "represented", "by", "the", "Event", "object", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/event_dispatcher.py#L28-L44
12,161
optimizely/python-sdk
optimizely/optimizely.py
Optimizely._validate_instantiation_options
def _validate_instantiation_options(self, datafile, skip_json_validation): """ Helper method to validate all instantiation parameters. Args: datafile: JSON string representing the project. skip_json_validation: Boolean representing whether JSON schema validation needs to be skipped or not. Raises: Exception if provided instantiation options are valid. """ if not skip_json_validation and not validator.is_datafile_valid(datafile): raise exceptions.InvalidInputException(enums.Errors.INVALID_INPUT_ERROR.format('datafile')) if not validator.is_event_dispatcher_valid(self.event_dispatcher): raise exceptions.InvalidInputException(enums.Errors.INVALID_INPUT_ERROR.format('event_dispatcher')) if not validator.is_logger_valid(self.logger): raise exceptions.InvalidInputException(enums.Errors.INVALID_INPUT_ERROR.format('logger')) if not validator.is_error_handler_valid(self.error_handler): raise exceptions.InvalidInputException(enums.Errors.INVALID_INPUT_ERROR.format('error_handler'))
python
def _validate_instantiation_options(self, datafile, skip_json_validation): """ Helper method to validate all instantiation parameters. Args: datafile: JSON string representing the project. skip_json_validation: Boolean representing whether JSON schema validation needs to be skipped or not. Raises: Exception if provided instantiation options are valid. """ if not skip_json_validation and not validator.is_datafile_valid(datafile): raise exceptions.InvalidInputException(enums.Errors.INVALID_INPUT_ERROR.format('datafile')) if not validator.is_event_dispatcher_valid(self.event_dispatcher): raise exceptions.InvalidInputException(enums.Errors.INVALID_INPUT_ERROR.format('event_dispatcher')) if not validator.is_logger_valid(self.logger): raise exceptions.InvalidInputException(enums.Errors.INVALID_INPUT_ERROR.format('logger')) if not validator.is_error_handler_valid(self.error_handler): raise exceptions.InvalidInputException(enums.Errors.INVALID_INPUT_ERROR.format('error_handler'))
[ "def", "_validate_instantiation_options", "(", "self", ",", "datafile", ",", "skip_json_validation", ")", ":", "if", "not", "skip_json_validation", "and", "not", "validator", ".", "is_datafile_valid", "(", "datafile", ")", ":", "raise", "exceptions", ".", "InvalidInputException", "(", "enums", ".", "Errors", ".", "INVALID_INPUT_ERROR", ".", "format", "(", "'datafile'", ")", ")", "if", "not", "validator", ".", "is_event_dispatcher_valid", "(", "self", ".", "event_dispatcher", ")", ":", "raise", "exceptions", ".", "InvalidInputException", "(", "enums", ".", "Errors", ".", "INVALID_INPUT_ERROR", ".", "format", "(", "'event_dispatcher'", ")", ")", "if", "not", "validator", ".", "is_logger_valid", "(", "self", ".", "logger", ")", ":", "raise", "exceptions", ".", "InvalidInputException", "(", "enums", ".", "Errors", ".", "INVALID_INPUT_ERROR", ".", "format", "(", "'logger'", ")", ")", "if", "not", "validator", ".", "is_error_handler_valid", "(", "self", ".", "error_handler", ")", ":", "raise", "exceptions", ".", "InvalidInputException", "(", "enums", ".", "Errors", ".", "INVALID_INPUT_ERROR", ".", "format", "(", "'error_handler'", ")", ")" ]
Helper method to validate all instantiation parameters. Args: datafile: JSON string representing the project. skip_json_validation: Boolean representing whether JSON schema validation needs to be skipped or not. Raises: Exception if provided instantiation options are valid.
[ "Helper", "method", "to", "validate", "all", "instantiation", "parameters", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/optimizely.py#L89-L110
12,162
optimizely/python-sdk
optimizely/optimizely.py
Optimizely._validate_user_inputs
def _validate_user_inputs(self, attributes=None, event_tags=None): """ Helper method to validate user inputs. Args: attributes: Dict representing user attributes. event_tags: Dict representing metadata associated with an event. Returns: Boolean True if inputs are valid. False otherwise. """ if attributes and not validator.are_attributes_valid(attributes): self.logger.error('Provided attributes are in an invalid format.') self.error_handler.handle_error(exceptions.InvalidAttributeException(enums.Errors.INVALID_ATTRIBUTE_FORMAT)) return False if event_tags and not validator.are_event_tags_valid(event_tags): self.logger.error('Provided event tags are in an invalid format.') self.error_handler.handle_error(exceptions.InvalidEventTagException(enums.Errors.INVALID_EVENT_TAG_FORMAT)) return False return True
python
def _validate_user_inputs(self, attributes=None, event_tags=None): """ Helper method to validate user inputs. Args: attributes: Dict representing user attributes. event_tags: Dict representing metadata associated with an event. Returns: Boolean True if inputs are valid. False otherwise. """ if attributes and not validator.are_attributes_valid(attributes): self.logger.error('Provided attributes are in an invalid format.') self.error_handler.handle_error(exceptions.InvalidAttributeException(enums.Errors.INVALID_ATTRIBUTE_FORMAT)) return False if event_tags and not validator.are_event_tags_valid(event_tags): self.logger.error('Provided event tags are in an invalid format.') self.error_handler.handle_error(exceptions.InvalidEventTagException(enums.Errors.INVALID_EVENT_TAG_FORMAT)) return False return True
[ "def", "_validate_user_inputs", "(", "self", ",", "attributes", "=", "None", ",", "event_tags", "=", "None", ")", ":", "if", "attributes", "and", "not", "validator", ".", "are_attributes_valid", "(", "attributes", ")", ":", "self", ".", "logger", ".", "error", "(", "'Provided attributes are in an invalid format.'", ")", "self", ".", "error_handler", ".", "handle_error", "(", "exceptions", ".", "InvalidAttributeException", "(", "enums", ".", "Errors", ".", "INVALID_ATTRIBUTE_FORMAT", ")", ")", "return", "False", "if", "event_tags", "and", "not", "validator", ".", "are_event_tags_valid", "(", "event_tags", ")", ":", "self", ".", "logger", ".", "error", "(", "'Provided event tags are in an invalid format.'", ")", "self", ".", "error_handler", ".", "handle_error", "(", "exceptions", ".", "InvalidEventTagException", "(", "enums", ".", "Errors", ".", "INVALID_EVENT_TAG_FORMAT", ")", ")", "return", "False", "return", "True" ]
Helper method to validate user inputs. Args: attributes: Dict representing user attributes. event_tags: Dict representing metadata associated with an event. Returns: Boolean True if inputs are valid. False otherwise.
[ "Helper", "method", "to", "validate", "user", "inputs", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/optimizely.py#L112-L134
12,163
optimizely/python-sdk
optimizely/optimizely.py
Optimizely._send_impression_event
def _send_impression_event(self, experiment, variation, user_id, attributes): """ Helper method to send impression event. Args: experiment: Experiment for which impression event is being sent. variation: Variation picked for user for the given experiment. user_id: ID for user. attributes: Dict representing user attributes and values which need to be recorded. """ impression_event = self.event_builder.create_impression_event(experiment, variation.id, user_id, attributes) self.logger.debug('Dispatching impression event to URL %s with params %s.' % ( impression_event.url, impression_event.params )) try: self.event_dispatcher.dispatch_event(impression_event) except: self.logger.exception('Unable to dispatch impression event!') self.notification_center.send_notifications(enums.NotificationTypes.ACTIVATE, experiment, user_id, attributes, variation, impression_event)
python
def _send_impression_event(self, experiment, variation, user_id, attributes): """ Helper method to send impression event. Args: experiment: Experiment for which impression event is being sent. variation: Variation picked for user for the given experiment. user_id: ID for user. attributes: Dict representing user attributes and values which need to be recorded. """ impression_event = self.event_builder.create_impression_event(experiment, variation.id, user_id, attributes) self.logger.debug('Dispatching impression event to URL %s with params %s.' % ( impression_event.url, impression_event.params )) try: self.event_dispatcher.dispatch_event(impression_event) except: self.logger.exception('Unable to dispatch impression event!') self.notification_center.send_notifications(enums.NotificationTypes.ACTIVATE, experiment, user_id, attributes, variation, impression_event)
[ "def", "_send_impression_event", "(", "self", ",", "experiment", ",", "variation", ",", "user_id", ",", "attributes", ")", ":", "impression_event", "=", "self", ".", "event_builder", ".", "create_impression_event", "(", "experiment", ",", "variation", ".", "id", ",", "user_id", ",", "attributes", ")", "self", ".", "logger", ".", "debug", "(", "'Dispatching impression event to URL %s with params %s.'", "%", "(", "impression_event", ".", "url", ",", "impression_event", ".", "params", ")", ")", "try", ":", "self", ".", "event_dispatcher", ".", "dispatch_event", "(", "impression_event", ")", "except", ":", "self", ".", "logger", ".", "exception", "(", "'Unable to dispatch impression event!'", ")", "self", ".", "notification_center", ".", "send_notifications", "(", "enums", ".", "NotificationTypes", ".", "ACTIVATE", ",", "experiment", ",", "user_id", ",", "attributes", ",", "variation", ",", "impression_event", ")" ]
Helper method to send impression event. Args: experiment: Experiment for which impression event is being sent. variation: Variation picked for user for the given experiment. user_id: ID for user. attributes: Dict representing user attributes and values which need to be recorded.
[ "Helper", "method", "to", "send", "impression", "event", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/optimizely.py#L136-L162
12,164
optimizely/python-sdk
optimizely/optimizely.py
Optimizely._get_feature_variable_for_type
def _get_feature_variable_for_type(self, feature_key, variable_key, variable_type, user_id, attributes): """ Helper method to determine value for a certain variable attached to a feature flag based on type of variable. Args: feature_key: Key of the feature whose variable's value is being accessed. variable_key: Key of the variable whose value is to be accessed. variable_type: Type of variable which could be one of boolean/double/integer/string. user_id: ID for user. attributes: Dict representing user attributes. Returns: Value of the variable. None if: - Feature key is invalid. - Variable key is invalid. - Mismatch with type of variable. """ if not validator.is_non_empty_string(feature_key): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('feature_key')) return None if not validator.is_non_empty_string(variable_key): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('variable_key')) return None if not isinstance(user_id, string_types): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('user_id')) return None if not self._validate_user_inputs(attributes): return None feature_flag = self.config.get_feature_from_key(feature_key) if not feature_flag: return None variable = self.config.get_variable_for_feature(feature_key, variable_key) if not variable: return None # Return None if type differs if variable.type != variable_type: self.logger.warning( 'Requested variable type "%s", but variable is of type "%s". ' 'Use correct API to retrieve value. Returning None.' % (variable_type, variable.type) ) return None feature_enabled = False source_info = {} variable_value = variable.defaultValue decision = self.decision_service.get_variation_for_feature(feature_flag, user_id, attributes) if decision.variation: feature_enabled = decision.variation.featureEnabled if feature_enabled: variable_value = self.config.get_variable_value_for_variation(variable, decision.variation) self.logger.info( 'Got variable value "%s" for variable "%s" of feature flag "%s".' % ( variable_value, variable_key, feature_key ) ) else: self.logger.info( 'Feature "%s" for variation "%s" is not enabled. ' 'Returning the default variable value "%s".' % (feature_key, decision.variation.key, variable_value) ) else: self.logger.info( 'User "%s" is not in any variation or rollout rule. ' 'Returning default value for variable "%s" of feature flag "%s".' % (user_id, variable_key, feature_key) ) if decision.source == enums.DecisionSources.FEATURE_TEST: source_info = { 'experiment_key': decision.experiment.key, 'variation_key': decision.variation.key } try: actual_value = self.config.get_typecast_value(variable_value, variable_type) except: self.logger.error('Unable to cast value. Returning None.') actual_value = None self.notification_center.send_notifications( enums.NotificationTypes.DECISION, enums.DecisionNotificationTypes.FEATURE_VARIABLE, user_id, attributes or {}, { 'feature_key': feature_key, 'feature_enabled': feature_enabled, 'source': decision.source, 'variable_key': variable_key, 'variable_value': actual_value, 'variable_type': variable_type, 'source_info': source_info } ) return actual_value
python
def _get_feature_variable_for_type(self, feature_key, variable_key, variable_type, user_id, attributes): """ Helper method to determine value for a certain variable attached to a feature flag based on type of variable. Args: feature_key: Key of the feature whose variable's value is being accessed. variable_key: Key of the variable whose value is to be accessed. variable_type: Type of variable which could be one of boolean/double/integer/string. user_id: ID for user. attributes: Dict representing user attributes. Returns: Value of the variable. None if: - Feature key is invalid. - Variable key is invalid. - Mismatch with type of variable. """ if not validator.is_non_empty_string(feature_key): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('feature_key')) return None if not validator.is_non_empty_string(variable_key): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('variable_key')) return None if not isinstance(user_id, string_types): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('user_id')) return None if not self._validate_user_inputs(attributes): return None feature_flag = self.config.get_feature_from_key(feature_key) if not feature_flag: return None variable = self.config.get_variable_for_feature(feature_key, variable_key) if not variable: return None # Return None if type differs if variable.type != variable_type: self.logger.warning( 'Requested variable type "%s", but variable is of type "%s". ' 'Use correct API to retrieve value. Returning None.' % (variable_type, variable.type) ) return None feature_enabled = False source_info = {} variable_value = variable.defaultValue decision = self.decision_service.get_variation_for_feature(feature_flag, user_id, attributes) if decision.variation: feature_enabled = decision.variation.featureEnabled if feature_enabled: variable_value = self.config.get_variable_value_for_variation(variable, decision.variation) self.logger.info( 'Got variable value "%s" for variable "%s" of feature flag "%s".' % ( variable_value, variable_key, feature_key ) ) else: self.logger.info( 'Feature "%s" for variation "%s" is not enabled. ' 'Returning the default variable value "%s".' % (feature_key, decision.variation.key, variable_value) ) else: self.logger.info( 'User "%s" is not in any variation or rollout rule. ' 'Returning default value for variable "%s" of feature flag "%s".' % (user_id, variable_key, feature_key) ) if decision.source == enums.DecisionSources.FEATURE_TEST: source_info = { 'experiment_key': decision.experiment.key, 'variation_key': decision.variation.key } try: actual_value = self.config.get_typecast_value(variable_value, variable_type) except: self.logger.error('Unable to cast value. Returning None.') actual_value = None self.notification_center.send_notifications( enums.NotificationTypes.DECISION, enums.DecisionNotificationTypes.FEATURE_VARIABLE, user_id, attributes or {}, { 'feature_key': feature_key, 'feature_enabled': feature_enabled, 'source': decision.source, 'variable_key': variable_key, 'variable_value': actual_value, 'variable_type': variable_type, 'source_info': source_info } ) return actual_value
[ "def", "_get_feature_variable_for_type", "(", "self", ",", "feature_key", ",", "variable_key", ",", "variable_type", ",", "user_id", ",", "attributes", ")", ":", "if", "not", "validator", ".", "is_non_empty_string", "(", "feature_key", ")", ":", "self", ".", "logger", ".", "error", "(", "enums", ".", "Errors", ".", "INVALID_INPUT_ERROR", ".", "format", "(", "'feature_key'", ")", ")", "return", "None", "if", "not", "validator", ".", "is_non_empty_string", "(", "variable_key", ")", ":", "self", ".", "logger", ".", "error", "(", "enums", ".", "Errors", ".", "INVALID_INPUT_ERROR", ".", "format", "(", "'variable_key'", ")", ")", "return", "None", "if", "not", "isinstance", "(", "user_id", ",", "string_types", ")", ":", "self", ".", "logger", ".", "error", "(", "enums", ".", "Errors", ".", "INVALID_INPUT_ERROR", ".", "format", "(", "'user_id'", ")", ")", "return", "None", "if", "not", "self", ".", "_validate_user_inputs", "(", "attributes", ")", ":", "return", "None", "feature_flag", "=", "self", ".", "config", ".", "get_feature_from_key", "(", "feature_key", ")", "if", "not", "feature_flag", ":", "return", "None", "variable", "=", "self", ".", "config", ".", "get_variable_for_feature", "(", "feature_key", ",", "variable_key", ")", "if", "not", "variable", ":", "return", "None", "# Return None if type differs", "if", "variable", ".", "type", "!=", "variable_type", ":", "self", ".", "logger", ".", "warning", "(", "'Requested variable type \"%s\", but variable is of type \"%s\". '", "'Use correct API to retrieve value. Returning None.'", "%", "(", "variable_type", ",", "variable", ".", "type", ")", ")", "return", "None", "feature_enabled", "=", "False", "source_info", "=", "{", "}", "variable_value", "=", "variable", ".", "defaultValue", "decision", "=", "self", ".", "decision_service", ".", "get_variation_for_feature", "(", "feature_flag", ",", "user_id", ",", "attributes", ")", "if", "decision", ".", "variation", ":", "feature_enabled", "=", "decision", ".", "variation", ".", "featureEnabled", "if", "feature_enabled", ":", "variable_value", "=", "self", ".", "config", ".", "get_variable_value_for_variation", "(", "variable", ",", "decision", ".", "variation", ")", "self", ".", "logger", ".", "info", "(", "'Got variable value \"%s\" for variable \"%s\" of feature flag \"%s\".'", "%", "(", "variable_value", ",", "variable_key", ",", "feature_key", ")", ")", "else", ":", "self", ".", "logger", ".", "info", "(", "'Feature \"%s\" for variation \"%s\" is not enabled. '", "'Returning the default variable value \"%s\".'", "%", "(", "feature_key", ",", "decision", ".", "variation", ".", "key", ",", "variable_value", ")", ")", "else", ":", "self", ".", "logger", ".", "info", "(", "'User \"%s\" is not in any variation or rollout rule. '", "'Returning default value for variable \"%s\" of feature flag \"%s\".'", "%", "(", "user_id", ",", "variable_key", ",", "feature_key", ")", ")", "if", "decision", ".", "source", "==", "enums", ".", "DecisionSources", ".", "FEATURE_TEST", ":", "source_info", "=", "{", "'experiment_key'", ":", "decision", ".", "experiment", ".", "key", ",", "'variation_key'", ":", "decision", ".", "variation", ".", "key", "}", "try", ":", "actual_value", "=", "self", ".", "config", ".", "get_typecast_value", "(", "variable_value", ",", "variable_type", ")", "except", ":", "self", ".", "logger", ".", "error", "(", "'Unable to cast value. Returning None.'", ")", "actual_value", "=", "None", "self", ".", "notification_center", ".", "send_notifications", "(", "enums", ".", "NotificationTypes", ".", "DECISION", ",", "enums", ".", "DecisionNotificationTypes", ".", "FEATURE_VARIABLE", ",", "user_id", ",", "attributes", "or", "{", "}", ",", "{", "'feature_key'", ":", "feature_key", ",", "'feature_enabled'", ":", "feature_enabled", ",", "'source'", ":", "decision", ".", "source", ",", "'variable_key'", ":", "variable_key", ",", "'variable_value'", ":", "actual_value", ",", "'variable_type'", ":", "variable_type", ",", "'source_info'", ":", "source_info", "}", ")", "return", "actual_value" ]
Helper method to determine value for a certain variable attached to a feature flag based on type of variable. Args: feature_key: Key of the feature whose variable's value is being accessed. variable_key: Key of the variable whose value is to be accessed. variable_type: Type of variable which could be one of boolean/double/integer/string. user_id: ID for user. attributes: Dict representing user attributes. Returns: Value of the variable. None if: - Feature key is invalid. - Variable key is invalid. - Mismatch with type of variable.
[ "Helper", "method", "to", "determine", "value", "for", "a", "certain", "variable", "attached", "to", "a", "feature", "flag", "based", "on", "type", "of", "variable", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/optimizely.py#L164-L263
12,165
optimizely/python-sdk
optimizely/optimizely.py
Optimizely.activate
def activate(self, experiment_key, user_id, attributes=None): """ Buckets visitor and sends impression event to Optimizely. Args: experiment_key: Experiment which needs to be activated. user_id: ID for user. attributes: Dict representing user attributes and values which need to be recorded. Returns: Variation key representing the variation the user will be bucketed in. None if user is not in experiment or if experiment is not Running. """ if not self.is_valid: self.logger.error(enums.Errors.INVALID_DATAFILE.format('activate')) return None if not validator.is_non_empty_string(experiment_key): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('experiment_key')) return None if not isinstance(user_id, string_types): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('user_id')) return None variation_key = self.get_variation(experiment_key, user_id, attributes) if not variation_key: self.logger.info('Not activating user "%s".' % user_id) return None experiment = self.config.get_experiment_from_key(experiment_key) variation = self.config.get_variation_from_key(experiment_key, variation_key) # Create and dispatch impression event self.logger.info('Activating user "%s" in experiment "%s".' % (user_id, experiment.key)) self._send_impression_event(experiment, variation, user_id, attributes) return variation.key
python
def activate(self, experiment_key, user_id, attributes=None): """ Buckets visitor and sends impression event to Optimizely. Args: experiment_key: Experiment which needs to be activated. user_id: ID for user. attributes: Dict representing user attributes and values which need to be recorded. Returns: Variation key representing the variation the user will be bucketed in. None if user is not in experiment or if experiment is not Running. """ if not self.is_valid: self.logger.error(enums.Errors.INVALID_DATAFILE.format('activate')) return None if not validator.is_non_empty_string(experiment_key): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('experiment_key')) return None if not isinstance(user_id, string_types): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('user_id')) return None variation_key = self.get_variation(experiment_key, user_id, attributes) if not variation_key: self.logger.info('Not activating user "%s".' % user_id) return None experiment = self.config.get_experiment_from_key(experiment_key) variation = self.config.get_variation_from_key(experiment_key, variation_key) # Create and dispatch impression event self.logger.info('Activating user "%s" in experiment "%s".' % (user_id, experiment.key)) self._send_impression_event(experiment, variation, user_id, attributes) return variation.key
[ "def", "activate", "(", "self", ",", "experiment_key", ",", "user_id", ",", "attributes", "=", "None", ")", ":", "if", "not", "self", ".", "is_valid", ":", "self", ".", "logger", ".", "error", "(", "enums", ".", "Errors", ".", "INVALID_DATAFILE", ".", "format", "(", "'activate'", ")", ")", "return", "None", "if", "not", "validator", ".", "is_non_empty_string", "(", "experiment_key", ")", ":", "self", ".", "logger", ".", "error", "(", "enums", ".", "Errors", ".", "INVALID_INPUT_ERROR", ".", "format", "(", "'experiment_key'", ")", ")", "return", "None", "if", "not", "isinstance", "(", "user_id", ",", "string_types", ")", ":", "self", ".", "logger", ".", "error", "(", "enums", ".", "Errors", ".", "INVALID_INPUT_ERROR", ".", "format", "(", "'user_id'", ")", ")", "return", "None", "variation_key", "=", "self", ".", "get_variation", "(", "experiment_key", ",", "user_id", ",", "attributes", ")", "if", "not", "variation_key", ":", "self", ".", "logger", ".", "info", "(", "'Not activating user \"%s\".'", "%", "user_id", ")", "return", "None", "experiment", "=", "self", ".", "config", ".", "get_experiment_from_key", "(", "experiment_key", ")", "variation", "=", "self", ".", "config", ".", "get_variation_from_key", "(", "experiment_key", ",", "variation_key", ")", "# Create and dispatch impression event", "self", ".", "logger", ".", "info", "(", "'Activating user \"%s\" in experiment \"%s\".'", "%", "(", "user_id", ",", "experiment", ".", "key", ")", ")", "self", ".", "_send_impression_event", "(", "experiment", ",", "variation", ",", "user_id", ",", "attributes", ")", "return", "variation", ".", "key" ]
Buckets visitor and sends impression event to Optimizely. Args: experiment_key: Experiment which needs to be activated. user_id: ID for user. attributes: Dict representing user attributes and values which need to be recorded. Returns: Variation key representing the variation the user will be bucketed in. None if user is not in experiment or if experiment is not Running.
[ "Buckets", "visitor", "and", "sends", "impression", "event", "to", "Optimizely", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/optimizely.py#L265-L303
12,166
optimizely/python-sdk
optimizely/optimizely.py
Optimizely.track
def track(self, event_key, user_id, attributes=None, event_tags=None): """ Send conversion event to Optimizely. Args: event_key: Event key representing the event which needs to be recorded. user_id: ID for user. attributes: Dict representing visitor attributes and values which need to be recorded. event_tags: Dict representing metadata associated with the event. """ if not self.is_valid: self.logger.error(enums.Errors.INVALID_DATAFILE.format('track')) return if not validator.is_non_empty_string(event_key): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('event_key')) return if not isinstance(user_id, string_types): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('user_id')) return if not self._validate_user_inputs(attributes, event_tags): return event = self.config.get_event(event_key) if not event: self.logger.info('Not tracking user "%s" for event "%s".' % (user_id, event_key)) return conversion_event = self.event_builder.create_conversion_event(event_key, user_id, attributes, event_tags) self.logger.info('Tracking event "%s" for user "%s".' % (event_key, user_id)) self.logger.debug('Dispatching conversion event to URL %s with params %s.' % ( conversion_event.url, conversion_event.params )) try: self.event_dispatcher.dispatch_event(conversion_event) except: self.logger.exception('Unable to dispatch conversion event!') self.notification_center.send_notifications(enums.NotificationTypes.TRACK, event_key, user_id, attributes, event_tags, conversion_event)
python
def track(self, event_key, user_id, attributes=None, event_tags=None): """ Send conversion event to Optimizely. Args: event_key: Event key representing the event which needs to be recorded. user_id: ID for user. attributes: Dict representing visitor attributes and values which need to be recorded. event_tags: Dict representing metadata associated with the event. """ if not self.is_valid: self.logger.error(enums.Errors.INVALID_DATAFILE.format('track')) return if not validator.is_non_empty_string(event_key): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('event_key')) return if not isinstance(user_id, string_types): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('user_id')) return if not self._validate_user_inputs(attributes, event_tags): return event = self.config.get_event(event_key) if not event: self.logger.info('Not tracking user "%s" for event "%s".' % (user_id, event_key)) return conversion_event = self.event_builder.create_conversion_event(event_key, user_id, attributes, event_tags) self.logger.info('Tracking event "%s" for user "%s".' % (event_key, user_id)) self.logger.debug('Dispatching conversion event to URL %s with params %s.' % ( conversion_event.url, conversion_event.params )) try: self.event_dispatcher.dispatch_event(conversion_event) except: self.logger.exception('Unable to dispatch conversion event!') self.notification_center.send_notifications(enums.NotificationTypes.TRACK, event_key, user_id, attributes, event_tags, conversion_event)
[ "def", "track", "(", "self", ",", "event_key", ",", "user_id", ",", "attributes", "=", "None", ",", "event_tags", "=", "None", ")", ":", "if", "not", "self", ".", "is_valid", ":", "self", ".", "logger", ".", "error", "(", "enums", ".", "Errors", ".", "INVALID_DATAFILE", ".", "format", "(", "'track'", ")", ")", "return", "if", "not", "validator", ".", "is_non_empty_string", "(", "event_key", ")", ":", "self", ".", "logger", ".", "error", "(", "enums", ".", "Errors", ".", "INVALID_INPUT_ERROR", ".", "format", "(", "'event_key'", ")", ")", "return", "if", "not", "isinstance", "(", "user_id", ",", "string_types", ")", ":", "self", ".", "logger", ".", "error", "(", "enums", ".", "Errors", ".", "INVALID_INPUT_ERROR", ".", "format", "(", "'user_id'", ")", ")", "return", "if", "not", "self", ".", "_validate_user_inputs", "(", "attributes", ",", "event_tags", ")", ":", "return", "event", "=", "self", ".", "config", ".", "get_event", "(", "event_key", ")", "if", "not", "event", ":", "self", ".", "logger", ".", "info", "(", "'Not tracking user \"%s\" for event \"%s\".'", "%", "(", "user_id", ",", "event_key", ")", ")", "return", "conversion_event", "=", "self", ".", "event_builder", ".", "create_conversion_event", "(", "event_key", ",", "user_id", ",", "attributes", ",", "event_tags", ")", "self", ".", "logger", ".", "info", "(", "'Tracking event \"%s\" for user \"%s\".'", "%", "(", "event_key", ",", "user_id", ")", ")", "self", ".", "logger", ".", "debug", "(", "'Dispatching conversion event to URL %s with params %s.'", "%", "(", "conversion_event", ".", "url", ",", "conversion_event", ".", "params", ")", ")", "try", ":", "self", ".", "event_dispatcher", ".", "dispatch_event", "(", "conversion_event", ")", "except", ":", "self", ".", "logger", ".", "exception", "(", "'Unable to dispatch conversion event!'", ")", "self", ".", "notification_center", ".", "send_notifications", "(", "enums", ".", "NotificationTypes", ".", "TRACK", ",", "event_key", ",", "user_id", ",", "attributes", ",", "event_tags", ",", "conversion_event", ")" ]
Send conversion event to Optimizely. Args: event_key: Event key representing the event which needs to be recorded. user_id: ID for user. attributes: Dict representing visitor attributes and values which need to be recorded. event_tags: Dict representing metadata associated with the event.
[ "Send", "conversion", "event", "to", "Optimizely", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/optimizely.py#L305-L346
12,167
optimizely/python-sdk
optimizely/optimizely.py
Optimizely.get_variation
def get_variation(self, experiment_key, user_id, attributes=None): """ Gets variation where user will be bucketed. Args: experiment_key: Experiment for which user variation needs to be determined. user_id: ID for user. attributes: Dict representing user attributes. Returns: Variation key representing the variation the user will be bucketed in. None if user is not in experiment or if experiment is not Running. """ if not self.is_valid: self.logger.error(enums.Errors.INVALID_DATAFILE.format('get_variation')) return None if not validator.is_non_empty_string(experiment_key): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('experiment_key')) return None if not isinstance(user_id, string_types): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('user_id')) return None experiment = self.config.get_experiment_from_key(experiment_key) variation_key = None if not experiment: self.logger.info('Experiment key "%s" is invalid. Not activating user "%s".' % ( experiment_key, user_id )) return None if not self._validate_user_inputs(attributes): return None variation = self.decision_service.get_variation(experiment, user_id, attributes) if variation: variation_key = variation.key if self.config.is_feature_experiment(experiment.id): decision_notification_type = enums.DecisionNotificationTypes.FEATURE_TEST else: decision_notification_type = enums.DecisionNotificationTypes.AB_TEST self.notification_center.send_notifications( enums.NotificationTypes.DECISION, decision_notification_type, user_id, attributes or {}, { 'experiment_key': experiment_key, 'variation_key': variation_key } ) return variation_key
python
def get_variation(self, experiment_key, user_id, attributes=None): """ Gets variation where user will be bucketed. Args: experiment_key: Experiment for which user variation needs to be determined. user_id: ID for user. attributes: Dict representing user attributes. Returns: Variation key representing the variation the user will be bucketed in. None if user is not in experiment or if experiment is not Running. """ if not self.is_valid: self.logger.error(enums.Errors.INVALID_DATAFILE.format('get_variation')) return None if not validator.is_non_empty_string(experiment_key): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('experiment_key')) return None if not isinstance(user_id, string_types): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('user_id')) return None experiment = self.config.get_experiment_from_key(experiment_key) variation_key = None if not experiment: self.logger.info('Experiment key "%s" is invalid. Not activating user "%s".' % ( experiment_key, user_id )) return None if not self._validate_user_inputs(attributes): return None variation = self.decision_service.get_variation(experiment, user_id, attributes) if variation: variation_key = variation.key if self.config.is_feature_experiment(experiment.id): decision_notification_type = enums.DecisionNotificationTypes.FEATURE_TEST else: decision_notification_type = enums.DecisionNotificationTypes.AB_TEST self.notification_center.send_notifications( enums.NotificationTypes.DECISION, decision_notification_type, user_id, attributes or {}, { 'experiment_key': experiment_key, 'variation_key': variation_key } ) return variation_key
[ "def", "get_variation", "(", "self", ",", "experiment_key", ",", "user_id", ",", "attributes", "=", "None", ")", ":", "if", "not", "self", ".", "is_valid", ":", "self", ".", "logger", ".", "error", "(", "enums", ".", "Errors", ".", "INVALID_DATAFILE", ".", "format", "(", "'get_variation'", ")", ")", "return", "None", "if", "not", "validator", ".", "is_non_empty_string", "(", "experiment_key", ")", ":", "self", ".", "logger", ".", "error", "(", "enums", ".", "Errors", ".", "INVALID_INPUT_ERROR", ".", "format", "(", "'experiment_key'", ")", ")", "return", "None", "if", "not", "isinstance", "(", "user_id", ",", "string_types", ")", ":", "self", ".", "logger", ".", "error", "(", "enums", ".", "Errors", ".", "INVALID_INPUT_ERROR", ".", "format", "(", "'user_id'", ")", ")", "return", "None", "experiment", "=", "self", ".", "config", ".", "get_experiment_from_key", "(", "experiment_key", ")", "variation_key", "=", "None", "if", "not", "experiment", ":", "self", ".", "logger", ".", "info", "(", "'Experiment key \"%s\" is invalid. Not activating user \"%s\".'", "%", "(", "experiment_key", ",", "user_id", ")", ")", "return", "None", "if", "not", "self", ".", "_validate_user_inputs", "(", "attributes", ")", ":", "return", "None", "variation", "=", "self", ".", "decision_service", ".", "get_variation", "(", "experiment", ",", "user_id", ",", "attributes", ")", "if", "variation", ":", "variation_key", "=", "variation", ".", "key", "if", "self", ".", "config", ".", "is_feature_experiment", "(", "experiment", ".", "id", ")", ":", "decision_notification_type", "=", "enums", ".", "DecisionNotificationTypes", ".", "FEATURE_TEST", "else", ":", "decision_notification_type", "=", "enums", ".", "DecisionNotificationTypes", ".", "AB_TEST", "self", ".", "notification_center", ".", "send_notifications", "(", "enums", ".", "NotificationTypes", ".", "DECISION", ",", "decision_notification_type", ",", "user_id", ",", "attributes", "or", "{", "}", ",", "{", "'experiment_key'", ":", "experiment_key", ",", "'variation_key'", ":", "variation_key", "}", ")", "return", "variation_key" ]
Gets variation where user will be bucketed. Args: experiment_key: Experiment for which user variation needs to be determined. user_id: ID for user. attributes: Dict representing user attributes. Returns: Variation key representing the variation the user will be bucketed in. None if user is not in experiment or if experiment is not Running.
[ "Gets", "variation", "where", "user", "will", "be", "bucketed", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/optimizely.py#L348-L406
12,168
optimizely/python-sdk
optimizely/optimizely.py
Optimizely.is_feature_enabled
def is_feature_enabled(self, feature_key, user_id, attributes=None): """ Returns true if the feature is enabled for the given user. Args: feature_key: The key of the feature for which we are determining if it is enabled or not for the given user. user_id: ID for user. attributes: Dict representing user attributes. Returns: True if the feature is enabled for the user. False otherwise. """ if not self.is_valid: self.logger.error(enums.Errors.INVALID_DATAFILE.format('is_feature_enabled')) return False if not validator.is_non_empty_string(feature_key): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('feature_key')) return False if not isinstance(user_id, string_types): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('user_id')) return False if not self._validate_user_inputs(attributes): return False feature = self.config.get_feature_from_key(feature_key) if not feature: return False feature_enabled = False source_info = {} decision = self.decision_service.get_variation_for_feature(feature, user_id, attributes) is_source_experiment = decision.source == enums.DecisionSources.FEATURE_TEST if decision.variation: if decision.variation.featureEnabled is True: feature_enabled = True # Send event if Decision came from an experiment. if is_source_experiment: source_info = { 'experiment_key': decision.experiment.key, 'variation_key': decision.variation.key } self._send_impression_event(decision.experiment, decision.variation, user_id, attributes) if feature_enabled: self.logger.info('Feature "%s" is enabled for user "%s".' % (feature_key, user_id)) else: self.logger.info('Feature "%s" is not enabled for user "%s".' % (feature_key, user_id)) self.notification_center.send_notifications( enums.NotificationTypes.DECISION, enums.DecisionNotificationTypes.FEATURE, user_id, attributes or {}, { 'feature_key': feature_key, 'feature_enabled': feature_enabled, 'source': decision.source, 'source_info': source_info } ) return feature_enabled
python
def is_feature_enabled(self, feature_key, user_id, attributes=None): """ Returns true if the feature is enabled for the given user. Args: feature_key: The key of the feature for which we are determining if it is enabled or not for the given user. user_id: ID for user. attributes: Dict representing user attributes. Returns: True if the feature is enabled for the user. False otherwise. """ if not self.is_valid: self.logger.error(enums.Errors.INVALID_DATAFILE.format('is_feature_enabled')) return False if not validator.is_non_empty_string(feature_key): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('feature_key')) return False if not isinstance(user_id, string_types): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('user_id')) return False if not self._validate_user_inputs(attributes): return False feature = self.config.get_feature_from_key(feature_key) if not feature: return False feature_enabled = False source_info = {} decision = self.decision_service.get_variation_for_feature(feature, user_id, attributes) is_source_experiment = decision.source == enums.DecisionSources.FEATURE_TEST if decision.variation: if decision.variation.featureEnabled is True: feature_enabled = True # Send event if Decision came from an experiment. if is_source_experiment: source_info = { 'experiment_key': decision.experiment.key, 'variation_key': decision.variation.key } self._send_impression_event(decision.experiment, decision.variation, user_id, attributes) if feature_enabled: self.logger.info('Feature "%s" is enabled for user "%s".' % (feature_key, user_id)) else: self.logger.info('Feature "%s" is not enabled for user "%s".' % (feature_key, user_id)) self.notification_center.send_notifications( enums.NotificationTypes.DECISION, enums.DecisionNotificationTypes.FEATURE, user_id, attributes or {}, { 'feature_key': feature_key, 'feature_enabled': feature_enabled, 'source': decision.source, 'source_info': source_info } ) return feature_enabled
[ "def", "is_feature_enabled", "(", "self", ",", "feature_key", ",", "user_id", ",", "attributes", "=", "None", ")", ":", "if", "not", "self", ".", "is_valid", ":", "self", ".", "logger", ".", "error", "(", "enums", ".", "Errors", ".", "INVALID_DATAFILE", ".", "format", "(", "'is_feature_enabled'", ")", ")", "return", "False", "if", "not", "validator", ".", "is_non_empty_string", "(", "feature_key", ")", ":", "self", ".", "logger", ".", "error", "(", "enums", ".", "Errors", ".", "INVALID_INPUT_ERROR", ".", "format", "(", "'feature_key'", ")", ")", "return", "False", "if", "not", "isinstance", "(", "user_id", ",", "string_types", ")", ":", "self", ".", "logger", ".", "error", "(", "enums", ".", "Errors", ".", "INVALID_INPUT_ERROR", ".", "format", "(", "'user_id'", ")", ")", "return", "False", "if", "not", "self", ".", "_validate_user_inputs", "(", "attributes", ")", ":", "return", "False", "feature", "=", "self", ".", "config", ".", "get_feature_from_key", "(", "feature_key", ")", "if", "not", "feature", ":", "return", "False", "feature_enabled", "=", "False", "source_info", "=", "{", "}", "decision", "=", "self", ".", "decision_service", ".", "get_variation_for_feature", "(", "feature", ",", "user_id", ",", "attributes", ")", "is_source_experiment", "=", "decision", ".", "source", "==", "enums", ".", "DecisionSources", ".", "FEATURE_TEST", "if", "decision", ".", "variation", ":", "if", "decision", ".", "variation", ".", "featureEnabled", "is", "True", ":", "feature_enabled", "=", "True", "# Send event if Decision came from an experiment.", "if", "is_source_experiment", ":", "source_info", "=", "{", "'experiment_key'", ":", "decision", ".", "experiment", ".", "key", ",", "'variation_key'", ":", "decision", ".", "variation", ".", "key", "}", "self", ".", "_send_impression_event", "(", "decision", ".", "experiment", ",", "decision", ".", "variation", ",", "user_id", ",", "attributes", ")", "if", "feature_enabled", ":", "self", ".", "logger", ".", "info", "(", "'Feature \"%s\" is enabled for user \"%s\".'", "%", "(", "feature_key", ",", "user_id", ")", ")", "else", ":", "self", ".", "logger", ".", "info", "(", "'Feature \"%s\" is not enabled for user \"%s\".'", "%", "(", "feature_key", ",", "user_id", ")", ")", "self", ".", "notification_center", ".", "send_notifications", "(", "enums", ".", "NotificationTypes", ".", "DECISION", ",", "enums", ".", "DecisionNotificationTypes", ".", "FEATURE", ",", "user_id", ",", "attributes", "or", "{", "}", ",", "{", "'feature_key'", ":", "feature_key", ",", "'feature_enabled'", ":", "feature_enabled", ",", "'source'", ":", "decision", ".", "source", ",", "'source_info'", ":", "source_info", "}", ")", "return", "feature_enabled" ]
Returns true if the feature is enabled for the given user. Args: feature_key: The key of the feature for which we are determining if it is enabled or not for the given user. user_id: ID for user. attributes: Dict representing user attributes. Returns: True if the feature is enabled for the user. False otherwise.
[ "Returns", "true", "if", "the", "feature", "is", "enabled", "for", "the", "given", "user", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/optimizely.py#L408-L476
12,169
optimizely/python-sdk
optimizely/optimizely.py
Optimizely.get_enabled_features
def get_enabled_features(self, user_id, attributes=None): """ Returns the list of features that are enabled for the user. Args: user_id: ID for user. attributes: Dict representing user attributes. Returns: A list of the keys of the features that are enabled for the user. """ enabled_features = [] if not self.is_valid: self.logger.error(enums.Errors.INVALID_DATAFILE.format('get_enabled_features')) return enabled_features if not isinstance(user_id, string_types): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('user_id')) return enabled_features if not self._validate_user_inputs(attributes): return enabled_features for feature in self.config.feature_key_map.values(): if self.is_feature_enabled(feature.key, user_id, attributes): enabled_features.append(feature.key) return enabled_features
python
def get_enabled_features(self, user_id, attributes=None): """ Returns the list of features that are enabled for the user. Args: user_id: ID for user. attributes: Dict representing user attributes. Returns: A list of the keys of the features that are enabled for the user. """ enabled_features = [] if not self.is_valid: self.logger.error(enums.Errors.INVALID_DATAFILE.format('get_enabled_features')) return enabled_features if not isinstance(user_id, string_types): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('user_id')) return enabled_features if not self._validate_user_inputs(attributes): return enabled_features for feature in self.config.feature_key_map.values(): if self.is_feature_enabled(feature.key, user_id, attributes): enabled_features.append(feature.key) return enabled_features
[ "def", "get_enabled_features", "(", "self", ",", "user_id", ",", "attributes", "=", "None", ")", ":", "enabled_features", "=", "[", "]", "if", "not", "self", ".", "is_valid", ":", "self", ".", "logger", ".", "error", "(", "enums", ".", "Errors", ".", "INVALID_DATAFILE", ".", "format", "(", "'get_enabled_features'", ")", ")", "return", "enabled_features", "if", "not", "isinstance", "(", "user_id", ",", "string_types", ")", ":", "self", ".", "logger", ".", "error", "(", "enums", ".", "Errors", ".", "INVALID_INPUT_ERROR", ".", "format", "(", "'user_id'", ")", ")", "return", "enabled_features", "if", "not", "self", ".", "_validate_user_inputs", "(", "attributes", ")", ":", "return", "enabled_features", "for", "feature", "in", "self", ".", "config", ".", "feature_key_map", ".", "values", "(", ")", ":", "if", "self", ".", "is_feature_enabled", "(", "feature", ".", "key", ",", "user_id", ",", "attributes", ")", ":", "enabled_features", ".", "append", "(", "feature", ".", "key", ")", "return", "enabled_features" ]
Returns the list of features that are enabled for the user. Args: user_id: ID for user. attributes: Dict representing user attributes. Returns: A list of the keys of the features that are enabled for the user.
[ "Returns", "the", "list", "of", "features", "that", "are", "enabled", "for", "the", "user", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/optimizely.py#L478-L505
12,170
optimizely/python-sdk
optimizely/optimizely.py
Optimizely.get_feature_variable_boolean
def get_feature_variable_boolean(self, feature_key, variable_key, user_id, attributes=None): """ Returns value for a certain boolean variable attached to a feature flag. Args: feature_key: Key of the feature whose variable's value is being accessed. variable_key: Key of the variable whose value is to be accessed. user_id: ID for user. attributes: Dict representing user attributes. Returns: Boolean value of the variable. None if: - Feature key is invalid. - Variable key is invalid. - Mismatch with type of variable. """ variable_type = entities.Variable.Type.BOOLEAN return self._get_feature_variable_for_type(feature_key, variable_key, variable_type, user_id, attributes)
python
def get_feature_variable_boolean(self, feature_key, variable_key, user_id, attributes=None): """ Returns value for a certain boolean variable attached to a feature flag. Args: feature_key: Key of the feature whose variable's value is being accessed. variable_key: Key of the variable whose value is to be accessed. user_id: ID for user. attributes: Dict representing user attributes. Returns: Boolean value of the variable. None if: - Feature key is invalid. - Variable key is invalid. - Mismatch with type of variable. """ variable_type = entities.Variable.Type.BOOLEAN return self._get_feature_variable_for_type(feature_key, variable_key, variable_type, user_id, attributes)
[ "def", "get_feature_variable_boolean", "(", "self", ",", "feature_key", ",", "variable_key", ",", "user_id", ",", "attributes", "=", "None", ")", ":", "variable_type", "=", "entities", ".", "Variable", ".", "Type", ".", "BOOLEAN", "return", "self", ".", "_get_feature_variable_for_type", "(", "feature_key", ",", "variable_key", ",", "variable_type", ",", "user_id", ",", "attributes", ")" ]
Returns value for a certain boolean variable attached to a feature flag. Args: feature_key: Key of the feature whose variable's value is being accessed. variable_key: Key of the variable whose value is to be accessed. user_id: ID for user. attributes: Dict representing user attributes. Returns: Boolean value of the variable. None if: - Feature key is invalid. - Variable key is invalid. - Mismatch with type of variable.
[ "Returns", "value", "for", "a", "certain", "boolean", "variable", "attached", "to", "a", "feature", "flag", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/optimizely.py#L507-L524
12,171
optimizely/python-sdk
optimizely/optimizely.py
Optimizely.get_feature_variable_double
def get_feature_variable_double(self, feature_key, variable_key, user_id, attributes=None): """ Returns value for a certain double variable attached to a feature flag. Args: feature_key: Key of the feature whose variable's value is being accessed. variable_key: Key of the variable whose value is to be accessed. user_id: ID for user. attributes: Dict representing user attributes. Returns: Double value of the variable. None if: - Feature key is invalid. - Variable key is invalid. - Mismatch with type of variable. """ variable_type = entities.Variable.Type.DOUBLE return self._get_feature_variable_for_type(feature_key, variable_key, variable_type, user_id, attributes)
python
def get_feature_variable_double(self, feature_key, variable_key, user_id, attributes=None): """ Returns value for a certain double variable attached to a feature flag. Args: feature_key: Key of the feature whose variable's value is being accessed. variable_key: Key of the variable whose value is to be accessed. user_id: ID for user. attributes: Dict representing user attributes. Returns: Double value of the variable. None if: - Feature key is invalid. - Variable key is invalid. - Mismatch with type of variable. """ variable_type = entities.Variable.Type.DOUBLE return self._get_feature_variable_for_type(feature_key, variable_key, variable_type, user_id, attributes)
[ "def", "get_feature_variable_double", "(", "self", ",", "feature_key", ",", "variable_key", ",", "user_id", ",", "attributes", "=", "None", ")", ":", "variable_type", "=", "entities", ".", "Variable", ".", "Type", ".", "DOUBLE", "return", "self", ".", "_get_feature_variable_for_type", "(", "feature_key", ",", "variable_key", ",", "variable_type", ",", "user_id", ",", "attributes", ")" ]
Returns value for a certain double variable attached to a feature flag. Args: feature_key: Key of the feature whose variable's value is being accessed. variable_key: Key of the variable whose value is to be accessed. user_id: ID for user. attributes: Dict representing user attributes. Returns: Double value of the variable. None if: - Feature key is invalid. - Variable key is invalid. - Mismatch with type of variable.
[ "Returns", "value", "for", "a", "certain", "double", "variable", "attached", "to", "a", "feature", "flag", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/optimizely.py#L526-L543
12,172
optimizely/python-sdk
optimizely/optimizely.py
Optimizely.get_feature_variable_integer
def get_feature_variable_integer(self, feature_key, variable_key, user_id, attributes=None): """ Returns value for a certain integer variable attached to a feature flag. Args: feature_key: Key of the feature whose variable's value is being accessed. variable_key: Key of the variable whose value is to be accessed. user_id: ID for user. attributes: Dict representing user attributes. Returns: Integer value of the variable. None if: - Feature key is invalid. - Variable key is invalid. - Mismatch with type of variable. """ variable_type = entities.Variable.Type.INTEGER return self._get_feature_variable_for_type(feature_key, variable_key, variable_type, user_id, attributes)
python
def get_feature_variable_integer(self, feature_key, variable_key, user_id, attributes=None): """ Returns value for a certain integer variable attached to a feature flag. Args: feature_key: Key of the feature whose variable's value is being accessed. variable_key: Key of the variable whose value is to be accessed. user_id: ID for user. attributes: Dict representing user attributes. Returns: Integer value of the variable. None if: - Feature key is invalid. - Variable key is invalid. - Mismatch with type of variable. """ variable_type = entities.Variable.Type.INTEGER return self._get_feature_variable_for_type(feature_key, variable_key, variable_type, user_id, attributes)
[ "def", "get_feature_variable_integer", "(", "self", ",", "feature_key", ",", "variable_key", ",", "user_id", ",", "attributes", "=", "None", ")", ":", "variable_type", "=", "entities", ".", "Variable", ".", "Type", ".", "INTEGER", "return", "self", ".", "_get_feature_variable_for_type", "(", "feature_key", ",", "variable_key", ",", "variable_type", ",", "user_id", ",", "attributes", ")" ]
Returns value for a certain integer variable attached to a feature flag. Args: feature_key: Key of the feature whose variable's value is being accessed. variable_key: Key of the variable whose value is to be accessed. user_id: ID for user. attributes: Dict representing user attributes. Returns: Integer value of the variable. None if: - Feature key is invalid. - Variable key is invalid. - Mismatch with type of variable.
[ "Returns", "value", "for", "a", "certain", "integer", "variable", "attached", "to", "a", "feature", "flag", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/optimizely.py#L545-L562
12,173
optimizely/python-sdk
optimizely/optimizely.py
Optimizely.get_feature_variable_string
def get_feature_variable_string(self, feature_key, variable_key, user_id, attributes=None): """ Returns value for a certain string variable attached to a feature. Args: feature_key: Key of the feature whose variable's value is being accessed. variable_key: Key of the variable whose value is to be accessed. user_id: ID for user. attributes: Dict representing user attributes. Returns: String value of the variable. None if: - Feature key is invalid. - Variable key is invalid. - Mismatch with type of variable. """ variable_type = entities.Variable.Type.STRING return self._get_feature_variable_for_type(feature_key, variable_key, variable_type, user_id, attributes)
python
def get_feature_variable_string(self, feature_key, variable_key, user_id, attributes=None): """ Returns value for a certain string variable attached to a feature. Args: feature_key: Key of the feature whose variable's value is being accessed. variable_key: Key of the variable whose value is to be accessed. user_id: ID for user. attributes: Dict representing user attributes. Returns: String value of the variable. None if: - Feature key is invalid. - Variable key is invalid. - Mismatch with type of variable. """ variable_type = entities.Variable.Type.STRING return self._get_feature_variable_for_type(feature_key, variable_key, variable_type, user_id, attributes)
[ "def", "get_feature_variable_string", "(", "self", ",", "feature_key", ",", "variable_key", ",", "user_id", ",", "attributes", "=", "None", ")", ":", "variable_type", "=", "entities", ".", "Variable", ".", "Type", ".", "STRING", "return", "self", ".", "_get_feature_variable_for_type", "(", "feature_key", ",", "variable_key", ",", "variable_type", ",", "user_id", ",", "attributes", ")" ]
Returns value for a certain string variable attached to a feature. Args: feature_key: Key of the feature whose variable's value is being accessed. variable_key: Key of the variable whose value is to be accessed. user_id: ID for user. attributes: Dict representing user attributes. Returns: String value of the variable. None if: - Feature key is invalid. - Variable key is invalid. - Mismatch with type of variable.
[ "Returns", "value", "for", "a", "certain", "string", "variable", "attached", "to", "a", "feature", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/optimizely.py#L564-L581
12,174
optimizely/python-sdk
optimizely/optimizely.py
Optimizely.set_forced_variation
def set_forced_variation(self, experiment_key, user_id, variation_key): """ Force a user into a variation for a given experiment. Args: experiment_key: A string key identifying the experiment. user_id: The user ID. variation_key: A string variation key that specifies the variation which the user. will be forced into. If null, then clear the existing experiment-to-variation mapping. Returns: A boolean value that indicates if the set completed successfully. """ if not self.is_valid: self.logger.error(enums.Errors.INVALID_DATAFILE.format('set_forced_variation')) return False if not validator.is_non_empty_string(experiment_key): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('experiment_key')) return False if not isinstance(user_id, string_types): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('user_id')) return False return self.config.set_forced_variation(experiment_key, user_id, variation_key)
python
def set_forced_variation(self, experiment_key, user_id, variation_key): """ Force a user into a variation for a given experiment. Args: experiment_key: A string key identifying the experiment. user_id: The user ID. variation_key: A string variation key that specifies the variation which the user. will be forced into. If null, then clear the existing experiment-to-variation mapping. Returns: A boolean value that indicates if the set completed successfully. """ if not self.is_valid: self.logger.error(enums.Errors.INVALID_DATAFILE.format('set_forced_variation')) return False if not validator.is_non_empty_string(experiment_key): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('experiment_key')) return False if not isinstance(user_id, string_types): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('user_id')) return False return self.config.set_forced_variation(experiment_key, user_id, variation_key)
[ "def", "set_forced_variation", "(", "self", ",", "experiment_key", ",", "user_id", ",", "variation_key", ")", ":", "if", "not", "self", ".", "is_valid", ":", "self", ".", "logger", ".", "error", "(", "enums", ".", "Errors", ".", "INVALID_DATAFILE", ".", "format", "(", "'set_forced_variation'", ")", ")", "return", "False", "if", "not", "validator", ".", "is_non_empty_string", "(", "experiment_key", ")", ":", "self", ".", "logger", ".", "error", "(", "enums", ".", "Errors", ".", "INVALID_INPUT_ERROR", ".", "format", "(", "'experiment_key'", ")", ")", "return", "False", "if", "not", "isinstance", "(", "user_id", ",", "string_types", ")", ":", "self", ".", "logger", ".", "error", "(", "enums", ".", "Errors", ".", "INVALID_INPUT_ERROR", ".", "format", "(", "'user_id'", ")", ")", "return", "False", "return", "self", ".", "config", ".", "set_forced_variation", "(", "experiment_key", ",", "user_id", ",", "variation_key", ")" ]
Force a user into a variation for a given experiment. Args: experiment_key: A string key identifying the experiment. user_id: The user ID. variation_key: A string variation key that specifies the variation which the user. will be forced into. If null, then clear the existing experiment-to-variation mapping. Returns: A boolean value that indicates if the set completed successfully.
[ "Force", "a", "user", "into", "a", "variation", "for", "a", "given", "experiment", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/optimizely.py#L583-L608
12,175
optimizely/python-sdk
optimizely/optimizely.py
Optimizely.get_forced_variation
def get_forced_variation(self, experiment_key, user_id): """ Gets the forced variation for a given user and experiment. Args: experiment_key: A string key identifying the experiment. user_id: The user ID. Returns: The forced variation key. None if no forced variation key. """ if not self.is_valid: self.logger.error(enums.Errors.INVALID_DATAFILE.format('get_forced_variation')) return None if not validator.is_non_empty_string(experiment_key): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('experiment_key')) return None if not isinstance(user_id, string_types): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('user_id')) return None forced_variation = self.config.get_forced_variation(experiment_key, user_id) return forced_variation.key if forced_variation else None
python
def get_forced_variation(self, experiment_key, user_id): """ Gets the forced variation for a given user and experiment. Args: experiment_key: A string key identifying the experiment. user_id: The user ID. Returns: The forced variation key. None if no forced variation key. """ if not self.is_valid: self.logger.error(enums.Errors.INVALID_DATAFILE.format('get_forced_variation')) return None if not validator.is_non_empty_string(experiment_key): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('experiment_key')) return None if not isinstance(user_id, string_types): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('user_id')) return None forced_variation = self.config.get_forced_variation(experiment_key, user_id) return forced_variation.key if forced_variation else None
[ "def", "get_forced_variation", "(", "self", ",", "experiment_key", ",", "user_id", ")", ":", "if", "not", "self", ".", "is_valid", ":", "self", ".", "logger", ".", "error", "(", "enums", ".", "Errors", ".", "INVALID_DATAFILE", ".", "format", "(", "'get_forced_variation'", ")", ")", "return", "None", "if", "not", "validator", ".", "is_non_empty_string", "(", "experiment_key", ")", ":", "self", ".", "logger", ".", "error", "(", "enums", ".", "Errors", ".", "INVALID_INPUT_ERROR", ".", "format", "(", "'experiment_key'", ")", ")", "return", "None", "if", "not", "isinstance", "(", "user_id", ",", "string_types", ")", ":", "self", ".", "logger", ".", "error", "(", "enums", ".", "Errors", ".", "INVALID_INPUT_ERROR", ".", "format", "(", "'user_id'", ")", ")", "return", "None", "forced_variation", "=", "self", ".", "config", ".", "get_forced_variation", "(", "experiment_key", ",", "user_id", ")", "return", "forced_variation", ".", "key", "if", "forced_variation", "else", "None" ]
Gets the forced variation for a given user and experiment. Args: experiment_key: A string key identifying the experiment. user_id: The user ID. Returns: The forced variation key. None if no forced variation key.
[ "Gets", "the", "forced", "variation", "for", "a", "given", "user", "and", "experiment", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/optimizely.py#L610-L634
12,176
optimizely/python-sdk
optimizely/helpers/audience.py
is_user_in_experiment
def is_user_in_experiment(config, experiment, attributes, logger): """ Determine for given experiment if user satisfies the audiences for the experiment. Args: config: project_config.ProjectConfig object representing the project. experiment: Object representing the experiment. attributes: Dict representing user attributes which will be used in determining if the audience conditions are met. If not provided, default to an empty dict. logger: Provides a logger to send log messages to. Returns: Boolean representing if user satisfies audience conditions for any of the audiences or not. """ audience_conditions = experiment.getAudienceConditionsOrIds() logger.debug(audience_logs.EVALUATING_AUDIENCES_COMBINED.format( experiment.key, json.dumps(audience_conditions) )) # Return True in case there are no audiences if audience_conditions is None or audience_conditions == []: logger.info(audience_logs.AUDIENCE_EVALUATION_RESULT_COMBINED.format( experiment.key, 'TRUE' )) return True if attributes is None: attributes = {} def evaluate_custom_attr(audienceId, index): audience = config.get_audience(audienceId) custom_attr_condition_evaluator = condition_helper.CustomAttributeConditionEvaluator( audience.conditionList, attributes, logger) return custom_attr_condition_evaluator.evaluate(index) def evaluate_audience(audienceId): audience = config.get_audience(audienceId) if audience is None: return None logger.debug(audience_logs.EVALUATING_AUDIENCE.format(audienceId, audience.conditions)) result = condition_tree_evaluator.evaluate( audience.conditionStructure, lambda index: evaluate_custom_attr(audienceId, index) ) result_str = str(result).upper() if result is not None else 'UNKNOWN' logger.info(audience_logs.AUDIENCE_EVALUATION_RESULT.format(audienceId, result_str)) return result eval_result = condition_tree_evaluator.evaluate( audience_conditions, evaluate_audience ) eval_result = eval_result or False logger.info(audience_logs.AUDIENCE_EVALUATION_RESULT_COMBINED.format( experiment.key, str(eval_result).upper() )) return eval_result
python
def is_user_in_experiment(config, experiment, attributes, logger): """ Determine for given experiment if user satisfies the audiences for the experiment. Args: config: project_config.ProjectConfig object representing the project. experiment: Object representing the experiment. attributes: Dict representing user attributes which will be used in determining if the audience conditions are met. If not provided, default to an empty dict. logger: Provides a logger to send log messages to. Returns: Boolean representing if user satisfies audience conditions for any of the audiences or not. """ audience_conditions = experiment.getAudienceConditionsOrIds() logger.debug(audience_logs.EVALUATING_AUDIENCES_COMBINED.format( experiment.key, json.dumps(audience_conditions) )) # Return True in case there are no audiences if audience_conditions is None or audience_conditions == []: logger.info(audience_logs.AUDIENCE_EVALUATION_RESULT_COMBINED.format( experiment.key, 'TRUE' )) return True if attributes is None: attributes = {} def evaluate_custom_attr(audienceId, index): audience = config.get_audience(audienceId) custom_attr_condition_evaluator = condition_helper.CustomAttributeConditionEvaluator( audience.conditionList, attributes, logger) return custom_attr_condition_evaluator.evaluate(index) def evaluate_audience(audienceId): audience = config.get_audience(audienceId) if audience is None: return None logger.debug(audience_logs.EVALUATING_AUDIENCE.format(audienceId, audience.conditions)) result = condition_tree_evaluator.evaluate( audience.conditionStructure, lambda index: evaluate_custom_attr(audienceId, index) ) result_str = str(result).upper() if result is not None else 'UNKNOWN' logger.info(audience_logs.AUDIENCE_EVALUATION_RESULT.format(audienceId, result_str)) return result eval_result = condition_tree_evaluator.evaluate( audience_conditions, evaluate_audience ) eval_result = eval_result or False logger.info(audience_logs.AUDIENCE_EVALUATION_RESULT_COMBINED.format( experiment.key, str(eval_result).upper() )) return eval_result
[ "def", "is_user_in_experiment", "(", "config", ",", "experiment", ",", "attributes", ",", "logger", ")", ":", "audience_conditions", "=", "experiment", ".", "getAudienceConditionsOrIds", "(", ")", "logger", ".", "debug", "(", "audience_logs", ".", "EVALUATING_AUDIENCES_COMBINED", ".", "format", "(", "experiment", ".", "key", ",", "json", ".", "dumps", "(", "audience_conditions", ")", ")", ")", "# Return True in case there are no audiences", "if", "audience_conditions", "is", "None", "or", "audience_conditions", "==", "[", "]", ":", "logger", ".", "info", "(", "audience_logs", ".", "AUDIENCE_EVALUATION_RESULT_COMBINED", ".", "format", "(", "experiment", ".", "key", ",", "'TRUE'", ")", ")", "return", "True", "if", "attributes", "is", "None", ":", "attributes", "=", "{", "}", "def", "evaluate_custom_attr", "(", "audienceId", ",", "index", ")", ":", "audience", "=", "config", ".", "get_audience", "(", "audienceId", ")", "custom_attr_condition_evaluator", "=", "condition_helper", ".", "CustomAttributeConditionEvaluator", "(", "audience", ".", "conditionList", ",", "attributes", ",", "logger", ")", "return", "custom_attr_condition_evaluator", ".", "evaluate", "(", "index", ")", "def", "evaluate_audience", "(", "audienceId", ")", ":", "audience", "=", "config", ".", "get_audience", "(", "audienceId", ")", "if", "audience", "is", "None", ":", "return", "None", "logger", ".", "debug", "(", "audience_logs", ".", "EVALUATING_AUDIENCE", ".", "format", "(", "audienceId", ",", "audience", ".", "conditions", ")", ")", "result", "=", "condition_tree_evaluator", ".", "evaluate", "(", "audience", ".", "conditionStructure", ",", "lambda", "index", ":", "evaluate_custom_attr", "(", "audienceId", ",", "index", ")", ")", "result_str", "=", "str", "(", "result", ")", ".", "upper", "(", ")", "if", "result", "is", "not", "None", "else", "'UNKNOWN'", "logger", ".", "info", "(", "audience_logs", ".", "AUDIENCE_EVALUATION_RESULT", ".", "format", "(", "audienceId", ",", "result_str", ")", ")", "return", "result", "eval_result", "=", "condition_tree_evaluator", ".", "evaluate", "(", "audience_conditions", ",", "evaluate_audience", ")", "eval_result", "=", "eval_result", "or", "False", "logger", ".", "info", "(", "audience_logs", ".", "AUDIENCE_EVALUATION_RESULT_COMBINED", ".", "format", "(", "experiment", ".", "key", ",", "str", "(", "eval_result", ")", ".", "upper", "(", ")", ")", ")", "return", "eval_result" ]
Determine for given experiment if user satisfies the audiences for the experiment. Args: config: project_config.ProjectConfig object representing the project. experiment: Object representing the experiment. attributes: Dict representing user attributes which will be used in determining if the audience conditions are met. If not provided, default to an empty dict. logger: Provides a logger to send log messages to. Returns: Boolean representing if user satisfies audience conditions for any of the audiences or not.
[ "Determine", "for", "given", "experiment", "if", "user", "satisfies", "the", "audiences", "for", "the", "experiment", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/helpers/audience.py#L21-L91
12,177
optimizely/python-sdk
optimizely/event_builder.py
BaseEventBuilder._get_common_params
def _get_common_params(self, user_id, attributes): """ Get params which are used same in both conversion and impression events. Args: user_id: ID for user. attributes: Dict representing user attributes and values which need to be recorded. Returns: Dict consisting of parameters common to both impression and conversion events. """ commonParams = {} commonParams[self.EventParams.PROJECT_ID] = self._get_project_id() commonParams[self.EventParams.ACCOUNT_ID] = self._get_account_id() visitor = {} visitor[self.EventParams.END_USER_ID] = user_id visitor[self.EventParams.SNAPSHOTS] = [] commonParams[self.EventParams.USERS] = [] commonParams[self.EventParams.USERS].append(visitor) commonParams[self.EventParams.USERS][0][self.EventParams.ATTRIBUTES] = self._get_attributes(attributes) commonParams[self.EventParams.SOURCE_SDK_TYPE] = 'python-sdk' commonParams[self.EventParams.ENRICH_DECISIONS] = True commonParams[self.EventParams.SOURCE_SDK_VERSION] = version.__version__ commonParams[self.EventParams.ANONYMIZE_IP] = self._get_anonymize_ip() commonParams[self.EventParams.REVISION] = self._get_revision() return commonParams
python
def _get_common_params(self, user_id, attributes): """ Get params which are used same in both conversion and impression events. Args: user_id: ID for user. attributes: Dict representing user attributes and values which need to be recorded. Returns: Dict consisting of parameters common to both impression and conversion events. """ commonParams = {} commonParams[self.EventParams.PROJECT_ID] = self._get_project_id() commonParams[self.EventParams.ACCOUNT_ID] = self._get_account_id() visitor = {} visitor[self.EventParams.END_USER_ID] = user_id visitor[self.EventParams.SNAPSHOTS] = [] commonParams[self.EventParams.USERS] = [] commonParams[self.EventParams.USERS].append(visitor) commonParams[self.EventParams.USERS][0][self.EventParams.ATTRIBUTES] = self._get_attributes(attributes) commonParams[self.EventParams.SOURCE_SDK_TYPE] = 'python-sdk' commonParams[self.EventParams.ENRICH_DECISIONS] = True commonParams[self.EventParams.SOURCE_SDK_VERSION] = version.__version__ commonParams[self.EventParams.ANONYMIZE_IP] = self._get_anonymize_ip() commonParams[self.EventParams.REVISION] = self._get_revision() return commonParams
[ "def", "_get_common_params", "(", "self", ",", "user_id", ",", "attributes", ")", ":", "commonParams", "=", "{", "}", "commonParams", "[", "self", ".", "EventParams", ".", "PROJECT_ID", "]", "=", "self", ".", "_get_project_id", "(", ")", "commonParams", "[", "self", ".", "EventParams", ".", "ACCOUNT_ID", "]", "=", "self", ".", "_get_account_id", "(", ")", "visitor", "=", "{", "}", "visitor", "[", "self", ".", "EventParams", ".", "END_USER_ID", "]", "=", "user_id", "visitor", "[", "self", ".", "EventParams", ".", "SNAPSHOTS", "]", "=", "[", "]", "commonParams", "[", "self", ".", "EventParams", ".", "USERS", "]", "=", "[", "]", "commonParams", "[", "self", ".", "EventParams", ".", "USERS", "]", ".", "append", "(", "visitor", ")", "commonParams", "[", "self", ".", "EventParams", ".", "USERS", "]", "[", "0", "]", "[", "self", ".", "EventParams", ".", "ATTRIBUTES", "]", "=", "self", ".", "_get_attributes", "(", "attributes", ")", "commonParams", "[", "self", ".", "EventParams", ".", "SOURCE_SDK_TYPE", "]", "=", "'python-sdk'", "commonParams", "[", "self", ".", "EventParams", ".", "ENRICH_DECISIONS", "]", "=", "True", "commonParams", "[", "self", ".", "EventParams", ".", "SOURCE_SDK_VERSION", "]", "=", "version", ".", "__version__", "commonParams", "[", "self", ".", "EventParams", ".", "ANONYMIZE_IP", "]", "=", "self", ".", "_get_anonymize_ip", "(", ")", "commonParams", "[", "self", ".", "EventParams", ".", "REVISION", "]", "=", "self", ".", "_get_revision", "(", ")", "return", "commonParams" ]
Get params which are used same in both conversion and impression events. Args: user_id: ID for user. attributes: Dict representing user attributes and values which need to be recorded. Returns: Dict consisting of parameters common to both impression and conversion events.
[ "Get", "params", "which", "are", "used", "same", "in", "both", "conversion", "and", "impression", "events", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/event_builder.py#L109-L138
12,178
optimizely/python-sdk
optimizely/event_builder.py
EventBuilder._get_required_params_for_impression
def _get_required_params_for_impression(self, experiment, variation_id): """ Get parameters that are required for the impression event to register. Args: experiment: Experiment for which impression needs to be recorded. variation_id: ID for variation which would be presented to user. Returns: Dict consisting of decisions and events info for impression event. """ snapshot = {} snapshot[self.EventParams.DECISIONS] = [{ self.EventParams.EXPERIMENT_ID: experiment.id, self.EventParams.VARIATION_ID: variation_id, self.EventParams.CAMPAIGN_ID: experiment.layerId }] snapshot[self.EventParams.EVENTS] = [{ self.EventParams.EVENT_ID: experiment.layerId, self.EventParams.TIME: self._get_time(), self.EventParams.KEY: 'campaign_activated', self.EventParams.UUID: str(uuid.uuid4()) }] return snapshot
python
def _get_required_params_for_impression(self, experiment, variation_id): """ Get parameters that are required for the impression event to register. Args: experiment: Experiment for which impression needs to be recorded. variation_id: ID for variation which would be presented to user. Returns: Dict consisting of decisions and events info for impression event. """ snapshot = {} snapshot[self.EventParams.DECISIONS] = [{ self.EventParams.EXPERIMENT_ID: experiment.id, self.EventParams.VARIATION_ID: variation_id, self.EventParams.CAMPAIGN_ID: experiment.layerId }] snapshot[self.EventParams.EVENTS] = [{ self.EventParams.EVENT_ID: experiment.layerId, self.EventParams.TIME: self._get_time(), self.EventParams.KEY: 'campaign_activated', self.EventParams.UUID: str(uuid.uuid4()) }] return snapshot
[ "def", "_get_required_params_for_impression", "(", "self", ",", "experiment", ",", "variation_id", ")", ":", "snapshot", "=", "{", "}", "snapshot", "[", "self", ".", "EventParams", ".", "DECISIONS", "]", "=", "[", "{", "self", ".", "EventParams", ".", "EXPERIMENT_ID", ":", "experiment", ".", "id", ",", "self", ".", "EventParams", ".", "VARIATION_ID", ":", "variation_id", ",", "self", ".", "EventParams", ".", "CAMPAIGN_ID", ":", "experiment", ".", "layerId", "}", "]", "snapshot", "[", "self", ".", "EventParams", ".", "EVENTS", "]", "=", "[", "{", "self", ".", "EventParams", ".", "EVENT_ID", ":", "experiment", ".", "layerId", ",", "self", ".", "EventParams", ".", "TIME", ":", "self", ".", "_get_time", "(", ")", ",", "self", ".", "EventParams", ".", "KEY", ":", "'campaign_activated'", ",", "self", ".", "EventParams", ".", "UUID", ":", "str", "(", "uuid", ".", "uuid4", "(", ")", ")", "}", "]", "return", "snapshot" ]
Get parameters that are required for the impression event to register. Args: experiment: Experiment for which impression needs to be recorded. variation_id: ID for variation which would be presented to user. Returns: Dict consisting of decisions and events info for impression event.
[ "Get", "parameters", "that", "are", "required", "for", "the", "impression", "event", "to", "register", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/event_builder.py#L211-L236
12,179
optimizely/python-sdk
optimizely/event_builder.py
EventBuilder._get_required_params_for_conversion
def _get_required_params_for_conversion(self, event_key, event_tags): """ Get parameters that are required for the conversion event to register. Args: event_key: Key representing the event which needs to be recorded. event_tags: Dict representing metadata associated with the event. Returns: Dict consisting of the decisions and events info for conversion event. """ snapshot = {} event_dict = { self.EventParams.EVENT_ID: self.config.get_event(event_key).id, self.EventParams.TIME: self._get_time(), self.EventParams.KEY: event_key, self.EventParams.UUID: str(uuid.uuid4()) } if event_tags: revenue_value = event_tag_utils.get_revenue_value(event_tags) if revenue_value is not None: event_dict[event_tag_utils.REVENUE_METRIC_TYPE] = revenue_value numeric_value = event_tag_utils.get_numeric_value(event_tags, self.config.logger) if numeric_value is not None: event_dict[event_tag_utils.NUMERIC_METRIC_TYPE] = numeric_value if len(event_tags) > 0: event_dict[self.EventParams.TAGS] = event_tags snapshot[self.EventParams.EVENTS] = [event_dict] return snapshot
python
def _get_required_params_for_conversion(self, event_key, event_tags): """ Get parameters that are required for the conversion event to register. Args: event_key: Key representing the event which needs to be recorded. event_tags: Dict representing metadata associated with the event. Returns: Dict consisting of the decisions and events info for conversion event. """ snapshot = {} event_dict = { self.EventParams.EVENT_ID: self.config.get_event(event_key).id, self.EventParams.TIME: self._get_time(), self.EventParams.KEY: event_key, self.EventParams.UUID: str(uuid.uuid4()) } if event_tags: revenue_value = event_tag_utils.get_revenue_value(event_tags) if revenue_value is not None: event_dict[event_tag_utils.REVENUE_METRIC_TYPE] = revenue_value numeric_value = event_tag_utils.get_numeric_value(event_tags, self.config.logger) if numeric_value is not None: event_dict[event_tag_utils.NUMERIC_METRIC_TYPE] = numeric_value if len(event_tags) > 0: event_dict[self.EventParams.TAGS] = event_tags snapshot[self.EventParams.EVENTS] = [event_dict] return snapshot
[ "def", "_get_required_params_for_conversion", "(", "self", ",", "event_key", ",", "event_tags", ")", ":", "snapshot", "=", "{", "}", "event_dict", "=", "{", "self", ".", "EventParams", ".", "EVENT_ID", ":", "self", ".", "config", ".", "get_event", "(", "event_key", ")", ".", "id", ",", "self", ".", "EventParams", ".", "TIME", ":", "self", ".", "_get_time", "(", ")", ",", "self", ".", "EventParams", ".", "KEY", ":", "event_key", ",", "self", ".", "EventParams", ".", "UUID", ":", "str", "(", "uuid", ".", "uuid4", "(", ")", ")", "}", "if", "event_tags", ":", "revenue_value", "=", "event_tag_utils", ".", "get_revenue_value", "(", "event_tags", ")", "if", "revenue_value", "is", "not", "None", ":", "event_dict", "[", "event_tag_utils", ".", "REVENUE_METRIC_TYPE", "]", "=", "revenue_value", "numeric_value", "=", "event_tag_utils", ".", "get_numeric_value", "(", "event_tags", ",", "self", ".", "config", ".", "logger", ")", "if", "numeric_value", "is", "not", "None", ":", "event_dict", "[", "event_tag_utils", ".", "NUMERIC_METRIC_TYPE", "]", "=", "numeric_value", "if", "len", "(", "event_tags", ")", ">", "0", ":", "event_dict", "[", "self", ".", "EventParams", ".", "TAGS", "]", "=", "event_tags", "snapshot", "[", "self", ".", "EventParams", ".", "EVENTS", "]", "=", "[", "event_dict", "]", "return", "snapshot" ]
Get parameters that are required for the conversion event to register. Args: event_key: Key representing the event which needs to be recorded. event_tags: Dict representing metadata associated with the event. Returns: Dict consisting of the decisions and events info for conversion event.
[ "Get", "parameters", "that", "are", "required", "for", "the", "conversion", "event", "to", "register", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/event_builder.py#L238-L270
12,180
optimizely/python-sdk
optimizely/event_builder.py
EventBuilder.create_impression_event
def create_impression_event(self, experiment, variation_id, user_id, attributes): """ Create impression Event to be sent to the logging endpoint. Args: experiment: Experiment for which impression needs to be recorded. variation_id: ID for variation which would be presented to user. user_id: ID for user. attributes: Dict representing user attributes and values which need to be recorded. Returns: Event object encapsulating the impression event. """ params = self._get_common_params(user_id, attributes) impression_params = self._get_required_params_for_impression(experiment, variation_id) params[self.EventParams.USERS][0][self.EventParams.SNAPSHOTS].append(impression_params) return Event(self.EVENTS_URL, params, http_verb=self.HTTP_VERB, headers=self.HTTP_HEADERS)
python
def create_impression_event(self, experiment, variation_id, user_id, attributes): """ Create impression Event to be sent to the logging endpoint. Args: experiment: Experiment for which impression needs to be recorded. variation_id: ID for variation which would be presented to user. user_id: ID for user. attributes: Dict representing user attributes and values which need to be recorded. Returns: Event object encapsulating the impression event. """ params = self._get_common_params(user_id, attributes) impression_params = self._get_required_params_for_impression(experiment, variation_id) params[self.EventParams.USERS][0][self.EventParams.SNAPSHOTS].append(impression_params) return Event(self.EVENTS_URL, params, http_verb=self.HTTP_VERB, headers=self.HTTP_HEADERS)
[ "def", "create_impression_event", "(", "self", ",", "experiment", ",", "variation_id", ",", "user_id", ",", "attributes", ")", ":", "params", "=", "self", ".", "_get_common_params", "(", "user_id", ",", "attributes", ")", "impression_params", "=", "self", ".", "_get_required_params_for_impression", "(", "experiment", ",", "variation_id", ")", "params", "[", "self", ".", "EventParams", ".", "USERS", "]", "[", "0", "]", "[", "self", ".", "EventParams", ".", "SNAPSHOTS", "]", ".", "append", "(", "impression_params", ")", "return", "Event", "(", "self", ".", "EVENTS_URL", ",", "params", ",", "http_verb", "=", "self", ".", "HTTP_VERB", ",", "headers", "=", "self", ".", "HTTP_HEADERS", ")" ]
Create impression Event to be sent to the logging endpoint. Args: experiment: Experiment for which impression needs to be recorded. variation_id: ID for variation which would be presented to user. user_id: ID for user. attributes: Dict representing user attributes and values which need to be recorded. Returns: Event object encapsulating the impression event.
[ "Create", "impression", "Event", "to", "be", "sent", "to", "the", "logging", "endpoint", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/event_builder.py#L272-L293
12,181
optimizely/python-sdk
optimizely/event_builder.py
EventBuilder.create_conversion_event
def create_conversion_event(self, event_key, user_id, attributes, event_tags): """ Create conversion Event to be sent to the logging endpoint. Args: event_key: Key representing the event which needs to be recorded. user_id: ID for user. attributes: Dict representing user attributes and values. event_tags: Dict representing metadata associated with the event. Returns: Event object encapsulating the conversion event. """ params = self._get_common_params(user_id, attributes) conversion_params = self._get_required_params_for_conversion(event_key, event_tags) params[self.EventParams.USERS][0][self.EventParams.SNAPSHOTS].append(conversion_params) return Event(self.EVENTS_URL, params, http_verb=self.HTTP_VERB, headers=self.HTTP_HEADERS)
python
def create_conversion_event(self, event_key, user_id, attributes, event_tags): """ Create conversion Event to be sent to the logging endpoint. Args: event_key: Key representing the event which needs to be recorded. user_id: ID for user. attributes: Dict representing user attributes and values. event_tags: Dict representing metadata associated with the event. Returns: Event object encapsulating the conversion event. """ params = self._get_common_params(user_id, attributes) conversion_params = self._get_required_params_for_conversion(event_key, event_tags) params[self.EventParams.USERS][0][self.EventParams.SNAPSHOTS].append(conversion_params) return Event(self.EVENTS_URL, params, http_verb=self.HTTP_VERB, headers=self.HTTP_HEADERS)
[ "def", "create_conversion_event", "(", "self", ",", "event_key", ",", "user_id", ",", "attributes", ",", "event_tags", ")", ":", "params", "=", "self", ".", "_get_common_params", "(", "user_id", ",", "attributes", ")", "conversion_params", "=", "self", ".", "_get_required_params_for_conversion", "(", "event_key", ",", "event_tags", ")", "params", "[", "self", ".", "EventParams", ".", "USERS", "]", "[", "0", "]", "[", "self", ".", "EventParams", ".", "SNAPSHOTS", "]", ".", "append", "(", "conversion_params", ")", "return", "Event", "(", "self", ".", "EVENTS_URL", ",", "params", ",", "http_verb", "=", "self", ".", "HTTP_VERB", ",", "headers", "=", "self", ".", "HTTP_HEADERS", ")" ]
Create conversion Event to be sent to the logging endpoint. Args: event_key: Key representing the event which needs to be recorded. user_id: ID for user. attributes: Dict representing user attributes and values. event_tags: Dict representing metadata associated with the event. Returns: Event object encapsulating the conversion event.
[ "Create", "conversion", "Event", "to", "be", "sent", "to", "the", "logging", "endpoint", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/event_builder.py#L295-L315
12,182
optimizely/python-sdk
optimizely/helpers/condition.py
_audience_condition_deserializer
def _audience_condition_deserializer(obj_dict): """ Deserializer defining how dict objects need to be decoded for audience conditions. Args: obj_dict: Dict representing one audience condition. Returns: List consisting of condition key with corresponding value, type and match. """ return [ obj_dict.get('name'), obj_dict.get('value'), obj_dict.get('type'), obj_dict.get('match') ]
python
def _audience_condition_deserializer(obj_dict): """ Deserializer defining how dict objects need to be decoded for audience conditions. Args: obj_dict: Dict representing one audience condition. Returns: List consisting of condition key with corresponding value, type and match. """ return [ obj_dict.get('name'), obj_dict.get('value'), obj_dict.get('type'), obj_dict.get('match') ]
[ "def", "_audience_condition_deserializer", "(", "obj_dict", ")", ":", "return", "[", "obj_dict", ".", "get", "(", "'name'", ")", ",", "obj_dict", ".", "get", "(", "'value'", ")", ",", "obj_dict", ".", "get", "(", "'type'", ")", ",", "obj_dict", ".", "get", "(", "'match'", ")", "]" ]
Deserializer defining how dict objects need to be decoded for audience conditions. Args: obj_dict: Dict representing one audience condition. Returns: List consisting of condition key with corresponding value, type and match.
[ "Deserializer", "defining", "how", "dict", "objects", "need", "to", "be", "decoded", "for", "audience", "conditions", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/helpers/condition.py#L328-L342
12,183
optimizely/python-sdk
optimizely/helpers/condition.py
CustomAttributeConditionEvaluator._get_condition_json
def _get_condition_json(self, index): """ Method to generate json for logging audience condition. Args: index: Index of the condition. Returns: String: Audience condition JSON. """ condition = self.condition_data[index] condition_log = { 'name': condition[0], 'value': condition[1], 'type': condition[2], 'match': condition[3] } return json.dumps(condition_log)
python
def _get_condition_json(self, index): """ Method to generate json for logging audience condition. Args: index: Index of the condition. Returns: String: Audience condition JSON. """ condition = self.condition_data[index] condition_log = { 'name': condition[0], 'value': condition[1], 'type': condition[2], 'match': condition[3] } return json.dumps(condition_log)
[ "def", "_get_condition_json", "(", "self", ",", "index", ")", ":", "condition", "=", "self", ".", "condition_data", "[", "index", "]", "condition_log", "=", "{", "'name'", ":", "condition", "[", "0", "]", ",", "'value'", ":", "condition", "[", "1", "]", ",", "'type'", ":", "condition", "[", "2", "]", ",", "'match'", ":", "condition", "[", "3", "]", "}", "return", "json", ".", "dumps", "(", "condition_log", ")" ]
Method to generate json for logging audience condition. Args: index: Index of the condition. Returns: String: Audience condition JSON.
[ "Method", "to", "generate", "json", "for", "logging", "audience", "condition", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/helpers/condition.py#L47-L64
12,184
optimizely/python-sdk
optimizely/helpers/condition.py
CustomAttributeConditionEvaluator.is_value_type_valid_for_exact_conditions
def is_value_type_valid_for_exact_conditions(self, value): """ Method to validate if the value is valid for exact match type evaluation. Args: value: Value to validate. Returns: Boolean: True if value is a string, boolean, or number. Otherwise False. """ # No need to check for bool since bool is a subclass of int if isinstance(value, string_types) or isinstance(value, (numbers.Integral, float)): return True return False
python
def is_value_type_valid_for_exact_conditions(self, value): """ Method to validate if the value is valid for exact match type evaluation. Args: value: Value to validate. Returns: Boolean: True if value is a string, boolean, or number. Otherwise False. """ # No need to check for bool since bool is a subclass of int if isinstance(value, string_types) or isinstance(value, (numbers.Integral, float)): return True return False
[ "def", "is_value_type_valid_for_exact_conditions", "(", "self", ",", "value", ")", ":", "# No need to check for bool since bool is a subclass of int", "if", "isinstance", "(", "value", ",", "string_types", ")", "or", "isinstance", "(", "value", ",", "(", "numbers", ".", "Integral", ",", "float", ")", ")", ":", "return", "True", "return", "False" ]
Method to validate if the value is valid for exact match type evaluation. Args: value: Value to validate. Returns: Boolean: True if value is a string, boolean, or number. Otherwise False.
[ "Method", "to", "validate", "if", "the", "value", "is", "valid", "for", "exact", "match", "type", "evaluation", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/helpers/condition.py#L66-L79
12,185
optimizely/python-sdk
optimizely/helpers/condition.py
CustomAttributeConditionEvaluator.exists_evaluator
def exists_evaluator(self, index): """ Evaluate the given exists match condition for the user attributes. Args: index: Index of the condition to be evaluated. Returns: Boolean: True if the user attributes have a non-null value for the given condition, otherwise False. """ attr_name = self.condition_data[index][0] return self.attributes.get(attr_name) is not None
python
def exists_evaluator(self, index): """ Evaluate the given exists match condition for the user attributes. Args: index: Index of the condition to be evaluated. Returns: Boolean: True if the user attributes have a non-null value for the given condition, otherwise False. """ attr_name = self.condition_data[index][0] return self.attributes.get(attr_name) is not None
[ "def", "exists_evaluator", "(", "self", ",", "index", ")", ":", "attr_name", "=", "self", ".", "condition_data", "[", "index", "]", "[", "0", "]", "return", "self", ".", "attributes", ".", "get", "(", "attr_name", ")", "is", "not", "None" ]
Evaluate the given exists match condition for the user attributes. Args: index: Index of the condition to be evaluated. Returns: Boolean: True if the user attributes have a non-null value for the given condition, otherwise False.
[ "Evaluate", "the", "given", "exists", "match", "condition", "for", "the", "user", "attributes", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/helpers/condition.py#L131-L142
12,186
optimizely/python-sdk
optimizely/helpers/condition.py
CustomAttributeConditionEvaluator.greater_than_evaluator
def greater_than_evaluator(self, index): """ Evaluate the given greater than match condition for the user attributes. Args: index: Index of the condition to be evaluated. Returns: Boolean: - True if the user attribute value is greater than the condition value. - False if the user attribute value is less than or equal to the condition value. None: if the condition value isn't finite or the user attribute value isn't finite. """ condition_name = self.condition_data[index][0] condition_value = self.condition_data[index][1] user_value = self.attributes.get(condition_name) if not validator.is_finite_number(condition_value): self.logger.warning(audience_logs.UNKNOWN_CONDITION_VALUE.format( self._get_condition_json(index) )) return None if not self.is_value_a_number(user_value): self.logger.warning(audience_logs.UNEXPECTED_TYPE.format( self._get_condition_json(index), type(user_value), condition_name )) return None if not validator.is_finite_number(user_value): self.logger.warning(audience_logs.INFINITE_ATTRIBUTE_VALUE.format( self._get_condition_json(index), condition_name )) return None return user_value > condition_value
python
def greater_than_evaluator(self, index): """ Evaluate the given greater than match condition for the user attributes. Args: index: Index of the condition to be evaluated. Returns: Boolean: - True if the user attribute value is greater than the condition value. - False if the user attribute value is less than or equal to the condition value. None: if the condition value isn't finite or the user attribute value isn't finite. """ condition_name = self.condition_data[index][0] condition_value = self.condition_data[index][1] user_value = self.attributes.get(condition_name) if not validator.is_finite_number(condition_value): self.logger.warning(audience_logs.UNKNOWN_CONDITION_VALUE.format( self._get_condition_json(index) )) return None if not self.is_value_a_number(user_value): self.logger.warning(audience_logs.UNEXPECTED_TYPE.format( self._get_condition_json(index), type(user_value), condition_name )) return None if not validator.is_finite_number(user_value): self.logger.warning(audience_logs.INFINITE_ATTRIBUTE_VALUE.format( self._get_condition_json(index), condition_name )) return None return user_value > condition_value
[ "def", "greater_than_evaluator", "(", "self", ",", "index", ")", ":", "condition_name", "=", "self", ".", "condition_data", "[", "index", "]", "[", "0", "]", "condition_value", "=", "self", ".", "condition_data", "[", "index", "]", "[", "1", "]", "user_value", "=", "self", ".", "attributes", ".", "get", "(", "condition_name", ")", "if", "not", "validator", ".", "is_finite_number", "(", "condition_value", ")", ":", "self", ".", "logger", ".", "warning", "(", "audience_logs", ".", "UNKNOWN_CONDITION_VALUE", ".", "format", "(", "self", ".", "_get_condition_json", "(", "index", ")", ")", ")", "return", "None", "if", "not", "self", ".", "is_value_a_number", "(", "user_value", ")", ":", "self", ".", "logger", ".", "warning", "(", "audience_logs", ".", "UNEXPECTED_TYPE", ".", "format", "(", "self", ".", "_get_condition_json", "(", "index", ")", ",", "type", "(", "user_value", ")", ",", "condition_name", ")", ")", "return", "None", "if", "not", "validator", ".", "is_finite_number", "(", "user_value", ")", ":", "self", ".", "logger", ".", "warning", "(", "audience_logs", ".", "INFINITE_ATTRIBUTE_VALUE", ".", "format", "(", "self", ".", "_get_condition_json", "(", "index", ")", ",", "condition_name", ")", ")", "return", "None", "return", "user_value", ">", "condition_value" ]
Evaluate the given greater than match condition for the user attributes. Args: index: Index of the condition to be evaluated. Returns: Boolean: - True if the user attribute value is greater than the condition value. - False if the user attribute value is less than or equal to the condition value. None: if the condition value isn't finite or the user attribute value isn't finite.
[ "Evaluate", "the", "given", "greater", "than", "match", "condition", "for", "the", "user", "attributes", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/helpers/condition.py#L144-L181
12,187
optimizely/python-sdk
optimizely/helpers/condition.py
CustomAttributeConditionEvaluator.substring_evaluator
def substring_evaluator(self, index): """ Evaluate the given substring match condition for the given user attributes. Args: index: Index of the condition to be evaluated. Returns: Boolean: - True if the condition value is a substring of the user attribute value. - False if the condition value is not a substring of the user attribute value. None: if the condition value isn't a string or the user attribute value isn't a string. """ condition_name = self.condition_data[index][0] condition_value = self.condition_data[index][1] user_value = self.attributes.get(condition_name) if not isinstance(condition_value, string_types): self.logger.warning(audience_logs.UNKNOWN_CONDITION_VALUE.format( self._get_condition_json(index), )) return None if not isinstance(user_value, string_types): self.logger.warning(audience_logs.UNEXPECTED_TYPE.format( self._get_condition_json(index), type(user_value), condition_name )) return None return condition_value in user_value
python
def substring_evaluator(self, index): """ Evaluate the given substring match condition for the given user attributes. Args: index: Index of the condition to be evaluated. Returns: Boolean: - True if the condition value is a substring of the user attribute value. - False if the condition value is not a substring of the user attribute value. None: if the condition value isn't a string or the user attribute value isn't a string. """ condition_name = self.condition_data[index][0] condition_value = self.condition_data[index][1] user_value = self.attributes.get(condition_name) if not isinstance(condition_value, string_types): self.logger.warning(audience_logs.UNKNOWN_CONDITION_VALUE.format( self._get_condition_json(index), )) return None if not isinstance(user_value, string_types): self.logger.warning(audience_logs.UNEXPECTED_TYPE.format( self._get_condition_json(index), type(user_value), condition_name )) return None return condition_value in user_value
[ "def", "substring_evaluator", "(", "self", ",", "index", ")", ":", "condition_name", "=", "self", ".", "condition_data", "[", "index", "]", "[", "0", "]", "condition_value", "=", "self", ".", "condition_data", "[", "index", "]", "[", "1", "]", "user_value", "=", "self", ".", "attributes", ".", "get", "(", "condition_name", ")", "if", "not", "isinstance", "(", "condition_value", ",", "string_types", ")", ":", "self", ".", "logger", ".", "warning", "(", "audience_logs", ".", "UNKNOWN_CONDITION_VALUE", ".", "format", "(", "self", ".", "_get_condition_json", "(", "index", ")", ",", ")", ")", "return", "None", "if", "not", "isinstance", "(", "user_value", ",", "string_types", ")", ":", "self", ".", "logger", ".", "warning", "(", "audience_logs", ".", "UNEXPECTED_TYPE", ".", "format", "(", "self", ".", "_get_condition_json", "(", "index", ")", ",", "type", "(", "user_value", ")", ",", "condition_name", ")", ")", "return", "None", "return", "condition_value", "in", "user_value" ]
Evaluate the given substring match condition for the given user attributes. Args: index: Index of the condition to be evaluated. Returns: Boolean: - True if the condition value is a substring of the user attribute value. - False if the condition value is not a substring of the user attribute value. None: if the condition value isn't a string or the user attribute value isn't a string.
[ "Evaluate", "the", "given", "substring", "match", "condition", "for", "the", "given", "user", "attributes", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/helpers/condition.py#L222-L252
12,188
optimizely/python-sdk
optimizely/helpers/condition.py
CustomAttributeConditionEvaluator.evaluate
def evaluate(self, index): """ Given a custom attribute audience condition and user attributes, evaluate the condition against the attributes. Args: index: Index of the condition to be evaluated. Returns: Boolean: - True if the user attributes match the given condition. - False if the user attributes don't match the given condition. None: if the user attributes and condition can't be evaluated. """ if self.condition_data[index][2] != self.CUSTOM_ATTRIBUTE_CONDITION_TYPE: self.logger.warning(audience_logs.UNKNOWN_CONDITION_TYPE.format(self._get_condition_json(index))) return None condition_match = self.condition_data[index][3] if condition_match is None: condition_match = ConditionMatchTypes.EXACT if condition_match not in self.EVALUATORS_BY_MATCH_TYPE: self.logger.warning(audience_logs.UNKNOWN_MATCH_TYPE.format(self._get_condition_json(index))) return None if condition_match != ConditionMatchTypes.EXISTS: attribute_key = self.condition_data[index][0] if attribute_key not in self.attributes: self.logger.debug(audience_logs.MISSING_ATTRIBUTE_VALUE.format(self._get_condition_json(index), attribute_key)) return None if self.attributes.get(attribute_key) is None: self.logger.debug(audience_logs.NULL_ATTRIBUTE_VALUE.format(self._get_condition_json(index), attribute_key)) return None return self.EVALUATORS_BY_MATCH_TYPE[condition_match](self, index)
python
def evaluate(self, index): """ Given a custom attribute audience condition and user attributes, evaluate the condition against the attributes. Args: index: Index of the condition to be evaluated. Returns: Boolean: - True if the user attributes match the given condition. - False if the user attributes don't match the given condition. None: if the user attributes and condition can't be evaluated. """ if self.condition_data[index][2] != self.CUSTOM_ATTRIBUTE_CONDITION_TYPE: self.logger.warning(audience_logs.UNKNOWN_CONDITION_TYPE.format(self._get_condition_json(index))) return None condition_match = self.condition_data[index][3] if condition_match is None: condition_match = ConditionMatchTypes.EXACT if condition_match not in self.EVALUATORS_BY_MATCH_TYPE: self.logger.warning(audience_logs.UNKNOWN_MATCH_TYPE.format(self._get_condition_json(index))) return None if condition_match != ConditionMatchTypes.EXISTS: attribute_key = self.condition_data[index][0] if attribute_key not in self.attributes: self.logger.debug(audience_logs.MISSING_ATTRIBUTE_VALUE.format(self._get_condition_json(index), attribute_key)) return None if self.attributes.get(attribute_key) is None: self.logger.debug(audience_logs.NULL_ATTRIBUTE_VALUE.format(self._get_condition_json(index), attribute_key)) return None return self.EVALUATORS_BY_MATCH_TYPE[condition_match](self, index)
[ "def", "evaluate", "(", "self", ",", "index", ")", ":", "if", "self", ".", "condition_data", "[", "index", "]", "[", "2", "]", "!=", "self", ".", "CUSTOM_ATTRIBUTE_CONDITION_TYPE", ":", "self", ".", "logger", ".", "warning", "(", "audience_logs", ".", "UNKNOWN_CONDITION_TYPE", ".", "format", "(", "self", ".", "_get_condition_json", "(", "index", ")", ")", ")", "return", "None", "condition_match", "=", "self", ".", "condition_data", "[", "index", "]", "[", "3", "]", "if", "condition_match", "is", "None", ":", "condition_match", "=", "ConditionMatchTypes", ".", "EXACT", "if", "condition_match", "not", "in", "self", ".", "EVALUATORS_BY_MATCH_TYPE", ":", "self", ".", "logger", ".", "warning", "(", "audience_logs", ".", "UNKNOWN_MATCH_TYPE", ".", "format", "(", "self", ".", "_get_condition_json", "(", "index", ")", ")", ")", "return", "None", "if", "condition_match", "!=", "ConditionMatchTypes", ".", "EXISTS", ":", "attribute_key", "=", "self", ".", "condition_data", "[", "index", "]", "[", "0", "]", "if", "attribute_key", "not", "in", "self", ".", "attributes", ":", "self", ".", "logger", ".", "debug", "(", "audience_logs", ".", "MISSING_ATTRIBUTE_VALUE", ".", "format", "(", "self", ".", "_get_condition_json", "(", "index", ")", ",", "attribute_key", ")", ")", "return", "None", "if", "self", ".", "attributes", ".", "get", "(", "attribute_key", ")", "is", "None", ":", "self", ".", "logger", ".", "debug", "(", "audience_logs", ".", "NULL_ATTRIBUTE_VALUE", ".", "format", "(", "self", ".", "_get_condition_json", "(", "index", ")", ",", "attribute_key", ")", ")", "return", "None", "return", "self", ".", "EVALUATORS_BY_MATCH_TYPE", "[", "condition_match", "]", "(", "self", ",", "index", ")" ]
Given a custom attribute audience condition and user attributes, evaluate the condition against the attributes. Args: index: Index of the condition to be evaluated. Returns: Boolean: - True if the user attributes match the given condition. - False if the user attributes don't match the given condition. None: if the user attributes and condition can't be evaluated.
[ "Given", "a", "custom", "attribute", "audience", "condition", "and", "user", "attributes", "evaluate", "the", "condition", "against", "the", "attributes", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/helpers/condition.py#L262-L298
12,189
optimizely/python-sdk
optimizely/helpers/condition.py
ConditionDecoder.object_hook
def object_hook(self, object_dict): """ Hook which when passed into a json.JSONDecoder will replace each dict in a json string with its index and convert the dict to an object as defined by the passed in condition_decoder. The newly created condition object is appended to the conditions_list. Args: object_dict: Dict representing an object. Returns: An index which will be used as the placeholder in the condition_structure """ instance = self.decoder(object_dict) self.condition_list.append(instance) self.index += 1 return self.index
python
def object_hook(self, object_dict): """ Hook which when passed into a json.JSONDecoder will replace each dict in a json string with its index and convert the dict to an object as defined by the passed in condition_decoder. The newly created condition object is appended to the conditions_list. Args: object_dict: Dict representing an object. Returns: An index which will be used as the placeholder in the condition_structure """ instance = self.decoder(object_dict) self.condition_list.append(instance) self.index += 1 return self.index
[ "def", "object_hook", "(", "self", ",", "object_dict", ")", ":", "instance", "=", "self", ".", "decoder", "(", "object_dict", ")", "self", ".", "condition_list", ".", "append", "(", "instance", ")", "self", ".", "index", "+=", "1", "return", "self", ".", "index" ]
Hook which when passed into a json.JSONDecoder will replace each dict in a json string with its index and convert the dict to an object as defined by the passed in condition_decoder. The newly created condition object is appended to the conditions_list. Args: object_dict: Dict representing an object. Returns: An index which will be used as the placeholder in the condition_structure
[ "Hook", "which", "when", "passed", "into", "a", "json", ".", "JSONDecoder", "will", "replace", "each", "dict", "in", "a", "json", "string", "with", "its", "index", "and", "convert", "the", "dict", "to", "an", "object", "as", "defined", "by", "the", "passed", "in", "condition_decoder", ".", "The", "newly", "created", "condition", "object", "is", "appended", "to", "the", "conditions_list", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/helpers/condition.py#L310-L325
12,190
optimizely/python-sdk
optimizely/decision_service.py
DecisionService._get_bucketing_id
def _get_bucketing_id(self, user_id, attributes): """ Helper method to determine bucketing ID for the user. Args: user_id: ID for user. attributes: Dict representing user attributes. May consist of bucketing ID to be used. Returns: String representing bucketing ID if it is a String type in attributes else return user ID. """ attributes = attributes or {} bucketing_id = attributes.get(enums.ControlAttributes.BUCKETING_ID) if bucketing_id is not None: if isinstance(bucketing_id, string_types): return bucketing_id self.logger.warning('Bucketing ID attribute is not a string. Defaulted to user_id.') return user_id
python
def _get_bucketing_id(self, user_id, attributes): """ Helper method to determine bucketing ID for the user. Args: user_id: ID for user. attributes: Dict representing user attributes. May consist of bucketing ID to be used. Returns: String representing bucketing ID if it is a String type in attributes else return user ID. """ attributes = attributes or {} bucketing_id = attributes.get(enums.ControlAttributes.BUCKETING_ID) if bucketing_id is not None: if isinstance(bucketing_id, string_types): return bucketing_id self.logger.warning('Bucketing ID attribute is not a string. Defaulted to user_id.') return user_id
[ "def", "_get_bucketing_id", "(", "self", ",", "user_id", ",", "attributes", ")", ":", "attributes", "=", "attributes", "or", "{", "}", "bucketing_id", "=", "attributes", ".", "get", "(", "enums", ".", "ControlAttributes", ".", "BUCKETING_ID", ")", "if", "bucketing_id", "is", "not", "None", ":", "if", "isinstance", "(", "bucketing_id", ",", "string_types", ")", ":", "return", "bucketing_id", "self", ".", "logger", ".", "warning", "(", "'Bucketing ID attribute is not a string. Defaulted to user_id.'", ")", "return", "user_id" ]
Helper method to determine bucketing ID for the user. Args: user_id: ID for user. attributes: Dict representing user attributes. May consist of bucketing ID to be used. Returns: String representing bucketing ID if it is a String type in attributes else return user ID.
[ "Helper", "method", "to", "determine", "bucketing", "ID", "for", "the", "user", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/decision_service.py#L36-L56
12,191
optimizely/python-sdk
optimizely/decision_service.py
DecisionService.get_forced_variation
def get_forced_variation(self, experiment, user_id): """ Determine if a user is forced into a variation for the given experiment and return that variation. Args: experiment: Object representing the experiment for which user is to be bucketed. user_id: ID for the user. Returns: Variation in which the user with ID user_id is forced into. None if no variation. """ forced_variations = experiment.forcedVariations if forced_variations and user_id in forced_variations: variation_key = forced_variations.get(user_id) variation = self.config.get_variation_from_key(experiment.key, variation_key) if variation: self.logger.info('User "%s" is forced in variation "%s".' % (user_id, variation_key)) return variation return None
python
def get_forced_variation(self, experiment, user_id): """ Determine if a user is forced into a variation for the given experiment and return that variation. Args: experiment: Object representing the experiment for which user is to be bucketed. user_id: ID for the user. Returns: Variation in which the user with ID user_id is forced into. None if no variation. """ forced_variations = experiment.forcedVariations if forced_variations and user_id in forced_variations: variation_key = forced_variations.get(user_id) variation = self.config.get_variation_from_key(experiment.key, variation_key) if variation: self.logger.info('User "%s" is forced in variation "%s".' % (user_id, variation_key)) return variation return None
[ "def", "get_forced_variation", "(", "self", ",", "experiment", ",", "user_id", ")", ":", "forced_variations", "=", "experiment", ".", "forcedVariations", "if", "forced_variations", "and", "user_id", "in", "forced_variations", ":", "variation_key", "=", "forced_variations", ".", "get", "(", "user_id", ")", "variation", "=", "self", ".", "config", ".", "get_variation_from_key", "(", "experiment", ".", "key", ",", "variation_key", ")", "if", "variation", ":", "self", ".", "logger", ".", "info", "(", "'User \"%s\" is forced in variation \"%s\".'", "%", "(", "user_id", ",", "variation_key", ")", ")", "return", "variation", "return", "None" ]
Determine if a user is forced into a variation for the given experiment and return that variation. Args: experiment: Object representing the experiment for which user is to be bucketed. user_id: ID for the user. Returns: Variation in which the user with ID user_id is forced into. None if no variation.
[ "Determine", "if", "a", "user", "is", "forced", "into", "a", "variation", "for", "the", "given", "experiment", "and", "return", "that", "variation", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/decision_service.py#L58-L77
12,192
optimizely/python-sdk
optimizely/decision_service.py
DecisionService.get_stored_variation
def get_stored_variation(self, experiment, user_profile): """ Determine if the user has a stored variation available for the given experiment and return that. Args: experiment: Object representing the experiment for which user is to be bucketed. user_profile: UserProfile object representing the user's profile. Returns: Variation if available. None otherwise. """ user_id = user_profile.user_id variation_id = user_profile.get_variation_for_experiment(experiment.id) if variation_id: variation = self.config.get_variation_from_id(experiment.key, variation_id) if variation: self.logger.info('Found a stored decision. User "%s" is in variation "%s" of experiment "%s".' % ( user_id, variation.key, experiment.key )) return variation return None
python
def get_stored_variation(self, experiment, user_profile): """ Determine if the user has a stored variation available for the given experiment and return that. Args: experiment: Object representing the experiment for which user is to be bucketed. user_profile: UserProfile object representing the user's profile. Returns: Variation if available. None otherwise. """ user_id = user_profile.user_id variation_id = user_profile.get_variation_for_experiment(experiment.id) if variation_id: variation = self.config.get_variation_from_id(experiment.key, variation_id) if variation: self.logger.info('Found a stored decision. User "%s" is in variation "%s" of experiment "%s".' % ( user_id, variation.key, experiment.key )) return variation return None
[ "def", "get_stored_variation", "(", "self", ",", "experiment", ",", "user_profile", ")", ":", "user_id", "=", "user_profile", ".", "user_id", "variation_id", "=", "user_profile", ".", "get_variation_for_experiment", "(", "experiment", ".", "id", ")", "if", "variation_id", ":", "variation", "=", "self", ".", "config", ".", "get_variation_from_id", "(", "experiment", ".", "key", ",", "variation_id", ")", "if", "variation", ":", "self", ".", "logger", ".", "info", "(", "'Found a stored decision. User \"%s\" is in variation \"%s\" of experiment \"%s\".'", "%", "(", "user_id", ",", "variation", ".", "key", ",", "experiment", ".", "key", ")", ")", "return", "variation", "return", "None" ]
Determine if the user has a stored variation available for the given experiment and return that. Args: experiment: Object representing the experiment for which user is to be bucketed. user_profile: UserProfile object representing the user's profile. Returns: Variation if available. None otherwise.
[ "Determine", "if", "the", "user", "has", "a", "stored", "variation", "available", "for", "the", "given", "experiment", "and", "return", "that", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/decision_service.py#L79-L103
12,193
optimizely/python-sdk
optimizely/decision_service.py
DecisionService.get_variation
def get_variation(self, experiment, user_id, attributes, ignore_user_profile=False): """ Top-level function to help determine variation user should be put in. First, check if experiment is running. Second, check if user is forced in a variation. Third, check if there is a stored decision for the user and return the corresponding variation. Fourth, figure out if user is in the experiment by evaluating audience conditions if any. Fifth, bucket the user and return the variation. Args: experiment: Experiment for which user variation needs to be determined. user_id: ID for user. attributes: Dict representing user attributes. ignore_user_profile: True to ignore the user profile lookup. Defaults to False. Returns: Variation user should see. None if user is not in experiment or experiment is not running. """ # Check if experiment is running if not experiment_helper.is_experiment_running(experiment): self.logger.info('Experiment "%s" is not running.' % experiment.key) return None # Check if the user is forced into a variation variation = self.config.get_forced_variation(experiment.key, user_id) if variation: return variation # Check to see if user is white-listed for a certain variation variation = self.get_forced_variation(experiment, user_id) if variation: return variation # Check to see if user has a decision available for the given experiment user_profile = UserProfile(user_id) if not ignore_user_profile and self.user_profile_service: try: retrieved_profile = self.user_profile_service.lookup(user_id) except: self.logger.exception('Unable to retrieve user profile for user "%s" as lookup failed.' % user_id) retrieved_profile = None if validator.is_user_profile_valid(retrieved_profile): user_profile = UserProfile(**retrieved_profile) variation = self.get_stored_variation(experiment, user_profile) if variation: return variation else: self.logger.warning('User profile has invalid format.') # Bucket user and store the new decision if not audience_helper.is_user_in_experiment(self.config, experiment, attributes, self.logger): self.logger.info('User "%s" does not meet conditions to be in experiment "%s".' % ( user_id, experiment.key )) return None # Determine bucketing ID to be used bucketing_id = self._get_bucketing_id(user_id, attributes) variation = self.bucketer.bucket(experiment, user_id, bucketing_id) if variation: # Store this new decision and return the variation for the user if not ignore_user_profile and self.user_profile_service: try: user_profile.save_variation_for_experiment(experiment.id, variation.id) self.user_profile_service.save(user_profile.__dict__) except: self.logger.exception('Unable to save user profile for user "%s".' % user_id) return variation return None
python
def get_variation(self, experiment, user_id, attributes, ignore_user_profile=False): """ Top-level function to help determine variation user should be put in. First, check if experiment is running. Second, check if user is forced in a variation. Third, check if there is a stored decision for the user and return the corresponding variation. Fourth, figure out if user is in the experiment by evaluating audience conditions if any. Fifth, bucket the user and return the variation. Args: experiment: Experiment for which user variation needs to be determined. user_id: ID for user. attributes: Dict representing user attributes. ignore_user_profile: True to ignore the user profile lookup. Defaults to False. Returns: Variation user should see. None if user is not in experiment or experiment is not running. """ # Check if experiment is running if not experiment_helper.is_experiment_running(experiment): self.logger.info('Experiment "%s" is not running.' % experiment.key) return None # Check if the user is forced into a variation variation = self.config.get_forced_variation(experiment.key, user_id) if variation: return variation # Check to see if user is white-listed for a certain variation variation = self.get_forced_variation(experiment, user_id) if variation: return variation # Check to see if user has a decision available for the given experiment user_profile = UserProfile(user_id) if not ignore_user_profile and self.user_profile_service: try: retrieved_profile = self.user_profile_service.lookup(user_id) except: self.logger.exception('Unable to retrieve user profile for user "%s" as lookup failed.' % user_id) retrieved_profile = None if validator.is_user_profile_valid(retrieved_profile): user_profile = UserProfile(**retrieved_profile) variation = self.get_stored_variation(experiment, user_profile) if variation: return variation else: self.logger.warning('User profile has invalid format.') # Bucket user and store the new decision if not audience_helper.is_user_in_experiment(self.config, experiment, attributes, self.logger): self.logger.info('User "%s" does not meet conditions to be in experiment "%s".' % ( user_id, experiment.key )) return None # Determine bucketing ID to be used bucketing_id = self._get_bucketing_id(user_id, attributes) variation = self.bucketer.bucket(experiment, user_id, bucketing_id) if variation: # Store this new decision and return the variation for the user if not ignore_user_profile and self.user_profile_service: try: user_profile.save_variation_for_experiment(experiment.id, variation.id) self.user_profile_service.save(user_profile.__dict__) except: self.logger.exception('Unable to save user profile for user "%s".' % user_id) return variation return None
[ "def", "get_variation", "(", "self", ",", "experiment", ",", "user_id", ",", "attributes", ",", "ignore_user_profile", "=", "False", ")", ":", "# Check if experiment is running", "if", "not", "experiment_helper", ".", "is_experiment_running", "(", "experiment", ")", ":", "self", ".", "logger", ".", "info", "(", "'Experiment \"%s\" is not running.'", "%", "experiment", ".", "key", ")", "return", "None", "# Check if the user is forced into a variation", "variation", "=", "self", ".", "config", ".", "get_forced_variation", "(", "experiment", ".", "key", ",", "user_id", ")", "if", "variation", ":", "return", "variation", "# Check to see if user is white-listed for a certain variation", "variation", "=", "self", ".", "get_forced_variation", "(", "experiment", ",", "user_id", ")", "if", "variation", ":", "return", "variation", "# Check to see if user has a decision available for the given experiment", "user_profile", "=", "UserProfile", "(", "user_id", ")", "if", "not", "ignore_user_profile", "and", "self", ".", "user_profile_service", ":", "try", ":", "retrieved_profile", "=", "self", ".", "user_profile_service", ".", "lookup", "(", "user_id", ")", "except", ":", "self", ".", "logger", ".", "exception", "(", "'Unable to retrieve user profile for user \"%s\" as lookup failed.'", "%", "user_id", ")", "retrieved_profile", "=", "None", "if", "validator", ".", "is_user_profile_valid", "(", "retrieved_profile", ")", ":", "user_profile", "=", "UserProfile", "(", "*", "*", "retrieved_profile", ")", "variation", "=", "self", ".", "get_stored_variation", "(", "experiment", ",", "user_profile", ")", "if", "variation", ":", "return", "variation", "else", ":", "self", ".", "logger", ".", "warning", "(", "'User profile has invalid format.'", ")", "# Bucket user and store the new decision", "if", "not", "audience_helper", ".", "is_user_in_experiment", "(", "self", ".", "config", ",", "experiment", ",", "attributes", ",", "self", ".", "logger", ")", ":", "self", ".", "logger", ".", "info", "(", "'User \"%s\" does not meet conditions to be in experiment \"%s\".'", "%", "(", "user_id", ",", "experiment", ".", "key", ")", ")", "return", "None", "# Determine bucketing ID to be used", "bucketing_id", "=", "self", ".", "_get_bucketing_id", "(", "user_id", ",", "attributes", ")", "variation", "=", "self", ".", "bucketer", ".", "bucket", "(", "experiment", ",", "user_id", ",", "bucketing_id", ")", "if", "variation", ":", "# Store this new decision and return the variation for the user", "if", "not", "ignore_user_profile", "and", "self", ".", "user_profile_service", ":", "try", ":", "user_profile", ".", "save_variation_for_experiment", "(", "experiment", ".", "id", ",", "variation", ".", "id", ")", "self", ".", "user_profile_service", ".", "save", "(", "user_profile", ".", "__dict__", ")", "except", ":", "self", ".", "logger", ".", "exception", "(", "'Unable to save user profile for user \"%s\".'", "%", "user_id", ")", "return", "variation", "return", "None" ]
Top-level function to help determine variation user should be put in. First, check if experiment is running. Second, check if user is forced in a variation. Third, check if there is a stored decision for the user and return the corresponding variation. Fourth, figure out if user is in the experiment by evaluating audience conditions if any. Fifth, bucket the user and return the variation. Args: experiment: Experiment for which user variation needs to be determined. user_id: ID for user. attributes: Dict representing user attributes. ignore_user_profile: True to ignore the user profile lookup. Defaults to False. Returns: Variation user should see. None if user is not in experiment or experiment is not running.
[ "Top", "-", "level", "function", "to", "help", "determine", "variation", "user", "should", "be", "put", "in", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/decision_service.py#L105-L178
12,194
optimizely/python-sdk
optimizely/decision_service.py
DecisionService.get_experiment_in_group
def get_experiment_in_group(self, group, bucketing_id): """ Determine which experiment in the group the user is bucketed into. Args: group: The group to bucket the user into. bucketing_id: ID to be used for bucketing the user. Returns: Experiment if the user is bucketed into an experiment in the specified group. None otherwise. """ experiment_id = self.bucketer.find_bucket(bucketing_id, group.id, group.trafficAllocation) if experiment_id: experiment = self.config.get_experiment_from_id(experiment_id) if experiment: self.logger.info('User with bucketing ID "%s" is in experiment %s of group %s.' % ( bucketing_id, experiment.key, group.id )) return experiment self.logger.info('User with bucketing ID "%s" is not in any experiments of group %s.' % ( bucketing_id, group.id )) return None
python
def get_experiment_in_group(self, group, bucketing_id): """ Determine which experiment in the group the user is bucketed into. Args: group: The group to bucket the user into. bucketing_id: ID to be used for bucketing the user. Returns: Experiment if the user is bucketed into an experiment in the specified group. None otherwise. """ experiment_id = self.bucketer.find_bucket(bucketing_id, group.id, group.trafficAllocation) if experiment_id: experiment = self.config.get_experiment_from_id(experiment_id) if experiment: self.logger.info('User with bucketing ID "%s" is in experiment %s of group %s.' % ( bucketing_id, experiment.key, group.id )) return experiment self.logger.info('User with bucketing ID "%s" is not in any experiments of group %s.' % ( bucketing_id, group.id )) return None
[ "def", "get_experiment_in_group", "(", "self", ",", "group", ",", "bucketing_id", ")", ":", "experiment_id", "=", "self", ".", "bucketer", ".", "find_bucket", "(", "bucketing_id", ",", "group", ".", "id", ",", "group", ".", "trafficAllocation", ")", "if", "experiment_id", ":", "experiment", "=", "self", ".", "config", ".", "get_experiment_from_id", "(", "experiment_id", ")", "if", "experiment", ":", "self", ".", "logger", ".", "info", "(", "'User with bucketing ID \"%s\" is in experiment %s of group %s.'", "%", "(", "bucketing_id", ",", "experiment", ".", "key", ",", "group", ".", "id", ")", ")", "return", "experiment", "self", ".", "logger", ".", "info", "(", "'User with bucketing ID \"%s\" is not in any experiments of group %s.'", "%", "(", "bucketing_id", ",", "group", ".", "id", ")", ")", "return", "None" ]
Determine which experiment in the group the user is bucketed into. Args: group: The group to bucket the user into. bucketing_id: ID to be used for bucketing the user. Returns: Experiment if the user is bucketed into an experiment in the specified group. None otherwise.
[ "Determine", "which", "experiment", "in", "the", "group", "the", "user", "is", "bucketed", "into", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/decision_service.py#L238-L265
12,195
optimizely/python-sdk
optimizely/notification_center.py
NotificationCenter.add_notification_listener
def add_notification_listener(self, notification_type, notification_callback): """ Add a notification callback to the notification center. Args: notification_type: A string representing the notification type from .helpers.enums.NotificationTypes notification_callback: closure of function to call when event is triggered. Returns: Integer notification id used to remove the notification or -1 if the notification has already been added. """ if notification_type not in self.notifications: self.notifications[notification_type] = [(self.notification_id, notification_callback)] else: if reduce(lambda a, b: a + 1, filter(lambda tup: tup[1] == notification_callback, self.notifications[notification_type]), 0) > 0: return -1 self.notifications[notification_type].append((self.notification_id, notification_callback)) ret_val = self.notification_id self.notification_id += 1 return ret_val
python
def add_notification_listener(self, notification_type, notification_callback): """ Add a notification callback to the notification center. Args: notification_type: A string representing the notification type from .helpers.enums.NotificationTypes notification_callback: closure of function to call when event is triggered. Returns: Integer notification id used to remove the notification or -1 if the notification has already been added. """ if notification_type not in self.notifications: self.notifications[notification_type] = [(self.notification_id, notification_callback)] else: if reduce(lambda a, b: a + 1, filter(lambda tup: tup[1] == notification_callback, self.notifications[notification_type]), 0) > 0: return -1 self.notifications[notification_type].append((self.notification_id, notification_callback)) ret_val = self.notification_id self.notification_id += 1 return ret_val
[ "def", "add_notification_listener", "(", "self", ",", "notification_type", ",", "notification_callback", ")", ":", "if", "notification_type", "not", "in", "self", ".", "notifications", ":", "self", ".", "notifications", "[", "notification_type", "]", "=", "[", "(", "self", ".", "notification_id", ",", "notification_callback", ")", "]", "else", ":", "if", "reduce", "(", "lambda", "a", ",", "b", ":", "a", "+", "1", ",", "filter", "(", "lambda", "tup", ":", "tup", "[", "1", "]", "==", "notification_callback", ",", "self", ".", "notifications", "[", "notification_type", "]", ")", ",", "0", ")", ">", "0", ":", "return", "-", "1", "self", ".", "notifications", "[", "notification_type", "]", ".", "append", "(", "(", "self", ".", "notification_id", ",", "notification_callback", ")", ")", "ret_val", "=", "self", ".", "notification_id", "self", ".", "notification_id", "+=", "1", "return", "ret_val" ]
Add a notification callback to the notification center. Args: notification_type: A string representing the notification type from .helpers.enums.NotificationTypes notification_callback: closure of function to call when event is triggered. Returns: Integer notification id used to remove the notification or -1 if the notification has already been added.
[ "Add", "a", "notification", "callback", "to", "the", "notification", "center", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/notification_center.py#L29-L53
12,196
optimizely/python-sdk
optimizely/notification_center.py
NotificationCenter.remove_notification_listener
def remove_notification_listener(self, notification_id): """ Remove a previously added notification callback. Args: notification_id: The numeric id passed back from add_notification_listener Returns: The function returns boolean true if found and removed, false otherwise. """ for v in self.notifications.values(): toRemove = list(filter(lambda tup: tup[0] == notification_id, v)) if len(toRemove) > 0: v.remove(toRemove[0]) return True return False
python
def remove_notification_listener(self, notification_id): """ Remove a previously added notification callback. Args: notification_id: The numeric id passed back from add_notification_listener Returns: The function returns boolean true if found and removed, false otherwise. """ for v in self.notifications.values(): toRemove = list(filter(lambda tup: tup[0] == notification_id, v)) if len(toRemove) > 0: v.remove(toRemove[0]) return True return False
[ "def", "remove_notification_listener", "(", "self", ",", "notification_id", ")", ":", "for", "v", "in", "self", ".", "notifications", ".", "values", "(", ")", ":", "toRemove", "=", "list", "(", "filter", "(", "lambda", "tup", ":", "tup", "[", "0", "]", "==", "notification_id", ",", "v", ")", ")", "if", "len", "(", "toRemove", ")", ">", "0", ":", "v", ".", "remove", "(", "toRemove", "[", "0", "]", ")", "return", "True", "return", "False" ]
Remove a previously added notification callback. Args: notification_id: The numeric id passed back from add_notification_listener Returns: The function returns boolean true if found and removed, false otherwise.
[ "Remove", "a", "previously", "added", "notification", "callback", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/notification_center.py#L55-L71
12,197
optimizely/python-sdk
optimizely/notification_center.py
NotificationCenter.send_notifications
def send_notifications(self, notification_type, *args): """ Fires off the notification for the specific event. Uses var args to pass in a arbitrary list of parameter according to which notification type was fired. Args: notification_type: Type of notification to fire (String from .helpers.enums.NotificationTypes) args: variable list of arguments to the callback. """ if notification_type in self.notifications: for notification_id, callback in self.notifications[notification_type]: try: callback(*args) except: self.logger.exception('Problem calling notify callback!')
python
def send_notifications(self, notification_type, *args): """ Fires off the notification for the specific event. Uses var args to pass in a arbitrary list of parameter according to which notification type was fired. Args: notification_type: Type of notification to fire (String from .helpers.enums.NotificationTypes) args: variable list of arguments to the callback. """ if notification_type in self.notifications: for notification_id, callback in self.notifications[notification_type]: try: callback(*args) except: self.logger.exception('Problem calling notify callback!')
[ "def", "send_notifications", "(", "self", ",", "notification_type", ",", "*", "args", ")", ":", "if", "notification_type", "in", "self", ".", "notifications", ":", "for", "notification_id", ",", "callback", "in", "self", ".", "notifications", "[", "notification_type", "]", ":", "try", ":", "callback", "(", "*", "args", ")", "except", ":", "self", ".", "logger", ".", "exception", "(", "'Problem calling notify callback!'", ")" ]
Fires off the notification for the specific event. Uses var args to pass in a arbitrary list of parameter according to which notification type was fired. Args: notification_type: Type of notification to fire (String from .helpers.enums.NotificationTypes) args: variable list of arguments to the callback.
[ "Fires", "off", "the", "notification", "for", "the", "specific", "event", ".", "Uses", "var", "args", "to", "pass", "in", "a", "arbitrary", "list", "of", "parameter", "according", "to", "which", "notification", "type", "was", "fired", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/notification_center.py#L87-L101
12,198
optimizely/python-sdk
optimizely/helpers/condition_tree_evaluator.py
and_evaluator
def and_evaluator(conditions, leaf_evaluator): """ Evaluates a list of conditions as if the evaluator had been applied to each entry and the results AND-ed together. Args: conditions: List of conditions ex: [operand_1, operand_2]. leaf_evaluator: Function which will be called to evaluate leaf condition values. Returns: Boolean: - True if all operands evaluate to True. - False if a single operand evaluates to False. None: if conditions couldn't be evaluated. """ saw_null_result = False for condition in conditions: result = evaluate(condition, leaf_evaluator) if result is False: return False if result is None: saw_null_result = True return None if saw_null_result else True
python
def and_evaluator(conditions, leaf_evaluator): """ Evaluates a list of conditions as if the evaluator had been applied to each entry and the results AND-ed together. Args: conditions: List of conditions ex: [operand_1, operand_2]. leaf_evaluator: Function which will be called to evaluate leaf condition values. Returns: Boolean: - True if all operands evaluate to True. - False if a single operand evaluates to False. None: if conditions couldn't be evaluated. """ saw_null_result = False for condition in conditions: result = evaluate(condition, leaf_evaluator) if result is False: return False if result is None: saw_null_result = True return None if saw_null_result else True
[ "def", "and_evaluator", "(", "conditions", ",", "leaf_evaluator", ")", ":", "saw_null_result", "=", "False", "for", "condition", "in", "conditions", ":", "result", "=", "evaluate", "(", "condition", ",", "leaf_evaluator", ")", "if", "result", "is", "False", ":", "return", "False", "if", "result", "is", "None", ":", "saw_null_result", "=", "True", "return", "None", "if", "saw_null_result", "else", "True" ]
Evaluates a list of conditions as if the evaluator had been applied to each entry and the results AND-ed together. Args: conditions: List of conditions ex: [operand_1, operand_2]. leaf_evaluator: Function which will be called to evaluate leaf condition values. Returns: Boolean: - True if all operands evaluate to True. - False if a single operand evaluates to False. None: if conditions couldn't be evaluated.
[ "Evaluates", "a", "list", "of", "conditions", "as", "if", "the", "evaluator", "had", "been", "applied", "to", "each", "entry", "and", "the", "results", "AND", "-", "ed", "together", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/helpers/condition_tree_evaluator.py#L17-L40
12,199
optimizely/python-sdk
optimizely/helpers/condition_tree_evaluator.py
not_evaluator
def not_evaluator(conditions, leaf_evaluator): """ Evaluates a list of conditions as if the evaluator had been applied to a single entry and NOT was applied to the result. Args: conditions: List of conditions ex: [operand_1, operand_2]. leaf_evaluator: Function which will be called to evaluate leaf condition values. Returns: Boolean: - True if the operand evaluates to False. - False if the operand evaluates to True. None: if conditions is empty or condition couldn't be evaluated. """ if not len(conditions) > 0: return None result = evaluate(conditions[0], leaf_evaluator) return None if result is None else not result
python
def not_evaluator(conditions, leaf_evaluator): """ Evaluates a list of conditions as if the evaluator had been applied to a single entry and NOT was applied to the result. Args: conditions: List of conditions ex: [operand_1, operand_2]. leaf_evaluator: Function which will be called to evaluate leaf condition values. Returns: Boolean: - True if the operand evaluates to False. - False if the operand evaluates to True. None: if conditions is empty or condition couldn't be evaluated. """ if not len(conditions) > 0: return None result = evaluate(conditions[0], leaf_evaluator) return None if result is None else not result
[ "def", "not_evaluator", "(", "conditions", ",", "leaf_evaluator", ")", ":", "if", "not", "len", "(", "conditions", ")", ">", "0", ":", "return", "None", "result", "=", "evaluate", "(", "conditions", "[", "0", "]", ",", "leaf_evaluator", ")", "return", "None", "if", "result", "is", "None", "else", "not", "result" ]
Evaluates a list of conditions as if the evaluator had been applied to a single entry and NOT was applied to the result. Args: conditions: List of conditions ex: [operand_1, operand_2]. leaf_evaluator: Function which will be called to evaluate leaf condition values. Returns: Boolean: - True if the operand evaluates to False. - False if the operand evaluates to True. None: if conditions is empty or condition couldn't be evaluated.
[ "Evaluates", "a", "list", "of", "conditions", "as", "if", "the", "evaluator", "had", "been", "applied", "to", "a", "single", "entry", "and", "NOT", "was", "applied", "to", "the", "result", "." ]
ec028d9efcf22498c3820f2650fa10f5c30bec90
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/helpers/condition_tree_evaluator.py#L69-L87