id
int32
0
252k
repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
10,600
astropy/photutils
photutils/segmentation/core.py
SegmentationImage.remove_masked_labels
def remove_masked_labels(self, mask, partial_overlap=True, relabel=False): """ Remove labeled segments located within a masked region. Parameters ---------- mask : array_like (bool) A boolean mask, with the same shape as the segmentation image, where `True` values indicate masked pixels. partial_overlap : bool, optional If this is set to `True` (default), a segment that partially extends into a masked region will also be removed. Segments that are completely within a masked region are always removed. relabel : bool, optional If `True`, then the segmentation image will be relabeled such that the labels are in consecutive order starting from 1. Examples -------- >>> from photutils import SegmentationImage >>> segm = SegmentationImage([[1, 1, 0, 0, 4, 4], ... [0, 0, 0, 0, 0, 4], ... [0, 0, 3, 3, 0, 0], ... [7, 0, 0, 0, 0, 5], ... [7, 7, 0, 5, 5, 5], ... [7, 7, 0, 0, 5, 5]]) >>> mask = np.zeros_like(segm.data, dtype=np.bool) >>> mask[0, :] = True # mask the first row >>> segm.remove_masked_labels(mask) >>> segm.data array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 3, 3, 0, 0], [7, 0, 0, 0, 0, 5], [7, 7, 0, 5, 5, 5], [7, 7, 0, 0, 5, 5]]) >>> segm = SegmentationImage([[1, 1, 0, 0, 4, 4], ... [0, 0, 0, 0, 0, 4], ... [0, 0, 3, 3, 0, 0], ... [7, 0, 0, 0, 0, 5], ... [7, 7, 0, 5, 5, 5], ... [7, 7, 0, 0, 5, 5]]) >>> segm.remove_masked_labels(mask, partial_overlap=False) >>> segm.data array([[0, 0, 0, 0, 4, 4], [0, 0, 0, 0, 0, 4], [0, 0, 3, 3, 0, 0], [7, 0, 0, 0, 0, 5], [7, 7, 0, 5, 5, 5], [7, 7, 0, 0, 5, 5]]) """ if mask.shape != self.shape: raise ValueError('mask must have the same shape as the ' 'segmentation image') remove_labels = self._get_labels(self.data[mask]) if not partial_overlap: interior_labels = self._get_labels(self.data[~mask]) remove_labels = list(set(remove_labels) - set(interior_labels)) self.remove_labels(remove_labels, relabel=relabel)
python
def remove_masked_labels(self, mask, partial_overlap=True, relabel=False): """ Remove labeled segments located within a masked region. Parameters ---------- mask : array_like (bool) A boolean mask, with the same shape as the segmentation image, where `True` values indicate masked pixels. partial_overlap : bool, optional If this is set to `True` (default), a segment that partially extends into a masked region will also be removed. Segments that are completely within a masked region are always removed. relabel : bool, optional If `True`, then the segmentation image will be relabeled such that the labels are in consecutive order starting from 1. Examples -------- >>> from photutils import SegmentationImage >>> segm = SegmentationImage([[1, 1, 0, 0, 4, 4], ... [0, 0, 0, 0, 0, 4], ... [0, 0, 3, 3, 0, 0], ... [7, 0, 0, 0, 0, 5], ... [7, 7, 0, 5, 5, 5], ... [7, 7, 0, 0, 5, 5]]) >>> mask = np.zeros_like(segm.data, dtype=np.bool) >>> mask[0, :] = True # mask the first row >>> segm.remove_masked_labels(mask) >>> segm.data array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 3, 3, 0, 0], [7, 0, 0, 0, 0, 5], [7, 7, 0, 5, 5, 5], [7, 7, 0, 0, 5, 5]]) >>> segm = SegmentationImage([[1, 1, 0, 0, 4, 4], ... [0, 0, 0, 0, 0, 4], ... [0, 0, 3, 3, 0, 0], ... [7, 0, 0, 0, 0, 5], ... [7, 7, 0, 5, 5, 5], ... [7, 7, 0, 0, 5, 5]]) >>> segm.remove_masked_labels(mask, partial_overlap=False) >>> segm.data array([[0, 0, 0, 0, 4, 4], [0, 0, 0, 0, 0, 4], [0, 0, 3, 3, 0, 0], [7, 0, 0, 0, 0, 5], [7, 7, 0, 5, 5, 5], [7, 7, 0, 0, 5, 5]]) """ if mask.shape != self.shape: raise ValueError('mask must have the same shape as the ' 'segmentation image') remove_labels = self._get_labels(self.data[mask]) if not partial_overlap: interior_labels = self._get_labels(self.data[~mask]) remove_labels = list(set(remove_labels) - set(interior_labels)) self.remove_labels(remove_labels, relabel=relabel)
[ "def", "remove_masked_labels", "(", "self", ",", "mask", ",", "partial_overlap", "=", "True", ",", "relabel", "=", "False", ")", ":", "if", "mask", ".", "shape", "!=", "self", ".", "shape", ":", "raise", "ValueError", "(", "'mask must have the same shape as the '", "'segmentation image'", ")", "remove_labels", "=", "self", ".", "_get_labels", "(", "self", ".", "data", "[", "mask", "]", ")", "if", "not", "partial_overlap", ":", "interior_labels", "=", "self", ".", "_get_labels", "(", "self", ".", "data", "[", "~", "mask", "]", ")", "remove_labels", "=", "list", "(", "set", "(", "remove_labels", ")", "-", "set", "(", "interior_labels", ")", ")", "self", ".", "remove_labels", "(", "remove_labels", ",", "relabel", "=", "relabel", ")" ]
Remove labeled segments located within a masked region. Parameters ---------- mask : array_like (bool) A boolean mask, with the same shape as the segmentation image, where `True` values indicate masked pixels. partial_overlap : bool, optional If this is set to `True` (default), a segment that partially extends into a masked region will also be removed. Segments that are completely within a masked region are always removed. relabel : bool, optional If `True`, then the segmentation image will be relabeled such that the labels are in consecutive order starting from 1. Examples -------- >>> from photutils import SegmentationImage >>> segm = SegmentationImage([[1, 1, 0, 0, 4, 4], ... [0, 0, 0, 0, 0, 4], ... [0, 0, 3, 3, 0, 0], ... [7, 0, 0, 0, 0, 5], ... [7, 7, 0, 5, 5, 5], ... [7, 7, 0, 0, 5, 5]]) >>> mask = np.zeros_like(segm.data, dtype=np.bool) >>> mask[0, :] = True # mask the first row >>> segm.remove_masked_labels(mask) >>> segm.data array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 3, 3, 0, 0], [7, 0, 0, 0, 0, 5], [7, 7, 0, 5, 5, 5], [7, 7, 0, 0, 5, 5]]) >>> segm = SegmentationImage([[1, 1, 0, 0, 4, 4], ... [0, 0, 0, 0, 0, 4], ... [0, 0, 3, 3, 0, 0], ... [7, 0, 0, 0, 0, 5], ... [7, 7, 0, 5, 5, 5], ... [7, 7, 0, 0, 5, 5]]) >>> segm.remove_masked_labels(mask, partial_overlap=False) >>> segm.data array([[0, 0, 0, 0, 4, 4], [0, 0, 0, 0, 0, 4], [0, 0, 3, 3, 0, 0], [7, 0, 0, 0, 0, 5], [7, 7, 0, 5, 5, 5], [7, 7, 0, 0, 5, 5]])
[ "Remove", "labeled", "segments", "located", "within", "a", "masked", "region", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/core.py#L1090-L1155
10,601
astropy/photutils
photutils/segmentation/core.py
SegmentationImage.outline_segments
def outline_segments(self, mask_background=False): """ Outline the labeled segments. The "outlines" represent the pixels *just inside* the segments, leaving the background pixels unmodified. Parameters ---------- mask_background : bool, optional Set to `True` to mask the background pixels (labels = 0) in the returned image. This is useful for overplotting the segment outlines on an image. The default is `False`. Returns ------- boundaries : 2D `~numpy.ndarray` or `~numpy.ma.MaskedArray` An image with the same shape of the segmentation image containing only the outlines of the labeled segments. The pixel values in the outlines correspond to the labels in the segmentation image. If ``mask_background`` is `True`, then a `~numpy.ma.MaskedArray` is returned. Examples -------- >>> from photutils import SegmentationImage >>> segm = SegmentationImage([[0, 0, 0, 0, 0, 0], ... [0, 2, 2, 2, 2, 0], ... [0, 2, 2, 2, 2, 0], ... [0, 2, 2, 2, 2, 0], ... [0, 2, 2, 2, 2, 0], ... [0, 0, 0, 0, 0, 0]]) >>> segm.outline_segments() array([[0, 0, 0, 0, 0, 0], [0, 2, 2, 2, 2, 0], [0, 2, 0, 0, 2, 0], [0, 2, 0, 0, 2, 0], [0, 2, 2, 2, 2, 0], [0, 0, 0, 0, 0, 0]]) """ from scipy.ndimage import grey_erosion, grey_dilation # mode='constant' ensures outline is included on the image borders selem = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) eroded = grey_erosion(self.data, footprint=selem, mode='constant', cval=0.) dilated = grey_dilation(self.data, footprint=selem, mode='constant', cval=0.) outlines = ((dilated != eroded) & (self.data != 0)).astype(int) outlines *= self.data if mask_background: outlines = np.ma.masked_where(outlines == 0, outlines) return outlines
python
def outline_segments(self, mask_background=False): """ Outline the labeled segments. The "outlines" represent the pixels *just inside* the segments, leaving the background pixels unmodified. Parameters ---------- mask_background : bool, optional Set to `True` to mask the background pixels (labels = 0) in the returned image. This is useful for overplotting the segment outlines on an image. The default is `False`. Returns ------- boundaries : 2D `~numpy.ndarray` or `~numpy.ma.MaskedArray` An image with the same shape of the segmentation image containing only the outlines of the labeled segments. The pixel values in the outlines correspond to the labels in the segmentation image. If ``mask_background`` is `True`, then a `~numpy.ma.MaskedArray` is returned. Examples -------- >>> from photutils import SegmentationImage >>> segm = SegmentationImage([[0, 0, 0, 0, 0, 0], ... [0, 2, 2, 2, 2, 0], ... [0, 2, 2, 2, 2, 0], ... [0, 2, 2, 2, 2, 0], ... [0, 2, 2, 2, 2, 0], ... [0, 0, 0, 0, 0, 0]]) >>> segm.outline_segments() array([[0, 0, 0, 0, 0, 0], [0, 2, 2, 2, 2, 0], [0, 2, 0, 0, 2, 0], [0, 2, 0, 0, 2, 0], [0, 2, 2, 2, 2, 0], [0, 0, 0, 0, 0, 0]]) """ from scipy.ndimage import grey_erosion, grey_dilation # mode='constant' ensures outline is included on the image borders selem = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) eroded = grey_erosion(self.data, footprint=selem, mode='constant', cval=0.) dilated = grey_dilation(self.data, footprint=selem, mode='constant', cval=0.) outlines = ((dilated != eroded) & (self.data != 0)).astype(int) outlines *= self.data if mask_background: outlines = np.ma.masked_where(outlines == 0, outlines) return outlines
[ "def", "outline_segments", "(", "self", ",", "mask_background", "=", "False", ")", ":", "from", "scipy", ".", "ndimage", "import", "grey_erosion", ",", "grey_dilation", "# mode='constant' ensures outline is included on the image borders", "selem", "=", "np", ".", "array", "(", "[", "[", "0", ",", "1", ",", "0", "]", ",", "[", "1", ",", "1", ",", "1", "]", ",", "[", "0", ",", "1", ",", "0", "]", "]", ")", "eroded", "=", "grey_erosion", "(", "self", ".", "data", ",", "footprint", "=", "selem", ",", "mode", "=", "'constant'", ",", "cval", "=", "0.", ")", "dilated", "=", "grey_dilation", "(", "self", ".", "data", ",", "footprint", "=", "selem", ",", "mode", "=", "'constant'", ",", "cval", "=", "0.", ")", "outlines", "=", "(", "(", "dilated", "!=", "eroded", ")", "&", "(", "self", ".", "data", "!=", "0", ")", ")", ".", "astype", "(", "int", ")", "outlines", "*=", "self", ".", "data", "if", "mask_background", ":", "outlines", "=", "np", ".", "ma", ".", "masked_where", "(", "outlines", "==", "0", ",", "outlines", ")", "return", "outlines" ]
Outline the labeled segments. The "outlines" represent the pixels *just inside* the segments, leaving the background pixels unmodified. Parameters ---------- mask_background : bool, optional Set to `True` to mask the background pixels (labels = 0) in the returned image. This is useful for overplotting the segment outlines on an image. The default is `False`. Returns ------- boundaries : 2D `~numpy.ndarray` or `~numpy.ma.MaskedArray` An image with the same shape of the segmentation image containing only the outlines of the labeled segments. The pixel values in the outlines correspond to the labels in the segmentation image. If ``mask_background`` is `True`, then a `~numpy.ma.MaskedArray` is returned. Examples -------- >>> from photutils import SegmentationImage >>> segm = SegmentationImage([[0, 0, 0, 0, 0, 0], ... [0, 2, 2, 2, 2, 0], ... [0, 2, 2, 2, 2, 0], ... [0, 2, 2, 2, 2, 0], ... [0, 2, 2, 2, 2, 0], ... [0, 0, 0, 0, 0, 0]]) >>> segm.outline_segments() array([[0, 0, 0, 0, 0, 0], [0, 2, 2, 2, 2, 0], [0, 2, 0, 0, 2, 0], [0, 2, 0, 0, 2, 0], [0, 2, 2, 2, 2, 0], [0, 0, 0, 0, 0, 0]])
[ "Outline", "the", "labeled", "segments", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/core.py#L1157-L1213
10,602
astropy/photutils
photutils/aperture/mask.py
ApertureMask._overlap_slices
def _overlap_slices(self, shape): """ Calculate the slices for the overlapping part of the bounding box and an array of the given shape. Parameters ---------- shape : tuple of int The ``(ny, nx)`` shape of array where the slices are to be applied. Returns ------- slices_large : tuple of slices A tuple of slice objects for each axis of the large array, such that ``large_array[slices_large]`` extracts the region of the large array that overlaps with the small array. slices_small : slice A tuple of slice objects for each axis of the small array, such that ``small_array[slices_small]`` extracts the region of the small array that is inside the large array. """ if len(shape) != 2: raise ValueError('input shape must have 2 elements.') xmin = self.bbox.ixmin xmax = self.bbox.ixmax ymin = self.bbox.iymin ymax = self.bbox.iymax if xmin >= shape[1] or ymin >= shape[0] or xmax <= 0 or ymax <= 0: # no overlap of the aperture with the data return None, None slices_large = (slice(max(ymin, 0), min(ymax, shape[0])), slice(max(xmin, 0), min(xmax, shape[1]))) slices_small = (slice(max(-ymin, 0), min(ymax - ymin, shape[0] - ymin)), slice(max(-xmin, 0), min(xmax - xmin, shape[1] - xmin))) return slices_large, slices_small
python
def _overlap_slices(self, shape): """ Calculate the slices for the overlapping part of the bounding box and an array of the given shape. Parameters ---------- shape : tuple of int The ``(ny, nx)`` shape of array where the slices are to be applied. Returns ------- slices_large : tuple of slices A tuple of slice objects for each axis of the large array, such that ``large_array[slices_large]`` extracts the region of the large array that overlaps with the small array. slices_small : slice A tuple of slice objects for each axis of the small array, such that ``small_array[slices_small]`` extracts the region of the small array that is inside the large array. """ if len(shape) != 2: raise ValueError('input shape must have 2 elements.') xmin = self.bbox.ixmin xmax = self.bbox.ixmax ymin = self.bbox.iymin ymax = self.bbox.iymax if xmin >= shape[1] or ymin >= shape[0] or xmax <= 0 or ymax <= 0: # no overlap of the aperture with the data return None, None slices_large = (slice(max(ymin, 0), min(ymax, shape[0])), slice(max(xmin, 0), min(xmax, shape[1]))) slices_small = (slice(max(-ymin, 0), min(ymax - ymin, shape[0] - ymin)), slice(max(-xmin, 0), min(xmax - xmin, shape[1] - xmin))) return slices_large, slices_small
[ "def", "_overlap_slices", "(", "self", ",", "shape", ")", ":", "if", "len", "(", "shape", ")", "!=", "2", ":", "raise", "ValueError", "(", "'input shape must have 2 elements.'", ")", "xmin", "=", "self", ".", "bbox", ".", "ixmin", "xmax", "=", "self", ".", "bbox", ".", "ixmax", "ymin", "=", "self", ".", "bbox", ".", "iymin", "ymax", "=", "self", ".", "bbox", ".", "iymax", "if", "xmin", ">=", "shape", "[", "1", "]", "or", "ymin", ">=", "shape", "[", "0", "]", "or", "xmax", "<=", "0", "or", "ymax", "<=", "0", ":", "# no overlap of the aperture with the data", "return", "None", ",", "None", "slices_large", "=", "(", "slice", "(", "max", "(", "ymin", ",", "0", ")", ",", "min", "(", "ymax", ",", "shape", "[", "0", "]", ")", ")", ",", "slice", "(", "max", "(", "xmin", ",", "0", ")", ",", "min", "(", "xmax", ",", "shape", "[", "1", "]", ")", ")", ")", "slices_small", "=", "(", "slice", "(", "max", "(", "-", "ymin", ",", "0", ")", ",", "min", "(", "ymax", "-", "ymin", ",", "shape", "[", "0", "]", "-", "ymin", ")", ")", ",", "slice", "(", "max", "(", "-", "xmin", ",", "0", ")", ",", "min", "(", "xmax", "-", "xmin", ",", "shape", "[", "1", "]", "-", "xmin", ")", ")", ")", "return", "slices_large", ",", "slices_small" ]
Calculate the slices for the overlapping part of the bounding box and an array of the given shape. Parameters ---------- shape : tuple of int The ``(ny, nx)`` shape of array where the slices are to be applied. Returns ------- slices_large : tuple of slices A tuple of slice objects for each axis of the large array, such that ``large_array[slices_large]`` extracts the region of the large array that overlaps with the small array. slices_small : slice A tuple of slice objects for each axis of the small array, such that ``small_array[slices_small]`` extracts the region of the small array that is inside the large array.
[ "Calculate", "the", "slices", "for", "the", "overlapping", "part", "of", "the", "bounding", "box", "and", "an", "array", "of", "the", "given", "shape", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/aperture/mask.py#L49-L93
10,603
astropy/photutils
photutils/aperture/mask.py
ApertureMask.to_image
def to_image(self, shape): """ Return an image of the mask in a 2D array of the given shape, taking any edge effects into account. Parameters ---------- shape : tuple of int The ``(ny, nx)`` shape of the output array. Returns ------- result : `~numpy.ndarray` A 2D array of the mask. """ if len(shape) != 2: raise ValueError('input shape must have 2 elements.') image = np.zeros(shape) if self.bbox.ixmin < 0 or self.bbox.iymin < 0: return self._to_image_partial_overlap(image) try: image[self.bbox.slices] = self.data except ValueError: # partial or no overlap image = self._to_image_partial_overlap(image) return image
python
def to_image(self, shape): """ Return an image of the mask in a 2D array of the given shape, taking any edge effects into account. Parameters ---------- shape : tuple of int The ``(ny, nx)`` shape of the output array. Returns ------- result : `~numpy.ndarray` A 2D array of the mask. """ if len(shape) != 2: raise ValueError('input shape must have 2 elements.') image = np.zeros(shape) if self.bbox.ixmin < 0 or self.bbox.iymin < 0: return self._to_image_partial_overlap(image) try: image[self.bbox.slices] = self.data except ValueError: # partial or no overlap image = self._to_image_partial_overlap(image) return image
[ "def", "to_image", "(", "self", ",", "shape", ")", ":", "if", "len", "(", "shape", ")", "!=", "2", ":", "raise", "ValueError", "(", "'input shape must have 2 elements.'", ")", "image", "=", "np", ".", "zeros", "(", "shape", ")", "if", "self", ".", "bbox", ".", "ixmin", "<", "0", "or", "self", ".", "bbox", ".", "iymin", "<", "0", ":", "return", "self", ".", "_to_image_partial_overlap", "(", "image", ")", "try", ":", "image", "[", "self", ".", "bbox", ".", "slices", "]", "=", "self", ".", "data", "except", "ValueError", ":", "# partial or no overlap", "image", "=", "self", ".", "_to_image_partial_overlap", "(", "image", ")", "return", "image" ]
Return an image of the mask in a 2D array of the given shape, taking any edge effects into account. Parameters ---------- shape : tuple of int The ``(ny, nx)`` shape of the output array. Returns ------- result : `~numpy.ndarray` A 2D array of the mask.
[ "Return", "an", "image", "of", "the", "mask", "in", "a", "2D", "array", "of", "the", "given", "shape", "taking", "any", "edge", "effects", "into", "account", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/aperture/mask.py#L112-L141
10,604
astropy/photutils
photutils/aperture/mask.py
ApertureMask.cutout
def cutout(self, data, fill_value=0., copy=False): """ Create a cutout from the input data over the mask bounding box, taking any edge effects into account. Parameters ---------- data : array_like A 2D array on which to apply the aperture mask. fill_value : float, optional The value is used to fill pixels where the aperture mask does not overlap with the input ``data``. The default is 0. copy : bool, optional If `True` then the returned cutout array will always be hold a copy of the input ``data``. If `False` and the mask is fully within the input ``data``, then the returned cutout array will be a view into the input ``data``. In cases where the mask partially overlaps or has no overlap with the input ``data``, the returned cutout array will always hold a copy of the input ``data`` (i.e. this keyword has no effect). Returns ------- result : `~numpy.ndarray` A 2D array cut out from the input ``data`` representing the same cutout region as the aperture mask. If there is a partial overlap of the aperture mask with the input data, pixels outside of the data will be assigned to ``fill_value``. `None` is returned if there is no overlap of the aperture with the input ``data``. """ data = np.asanyarray(data) if data.ndim != 2: raise ValueError('data must be a 2D array.') partial_overlap = False if self.bbox.ixmin < 0 or self.bbox.iymin < 0: partial_overlap = True if not partial_overlap: # try this for speed -- the result may still be a partial # overlap, in which case the next block will be triggered if copy: cutout = np.copy(data[self.bbox.slices]) else: cutout = data[self.bbox.slices] if partial_overlap or (cutout.shape != self.shape): slices_large, slices_small = self._overlap_slices(data.shape) if slices_small is None: return None # no overlap # cutout is a copy cutout = np.zeros(self.shape, dtype=data.dtype) cutout[:] = fill_value cutout[slices_small] = data[slices_large] if isinstance(data, u.Quantity): cutout = u.Quantity(cutout, unit=data.unit) return cutout
python
def cutout(self, data, fill_value=0., copy=False): """ Create a cutout from the input data over the mask bounding box, taking any edge effects into account. Parameters ---------- data : array_like A 2D array on which to apply the aperture mask. fill_value : float, optional The value is used to fill pixels where the aperture mask does not overlap with the input ``data``. The default is 0. copy : bool, optional If `True` then the returned cutout array will always be hold a copy of the input ``data``. If `False` and the mask is fully within the input ``data``, then the returned cutout array will be a view into the input ``data``. In cases where the mask partially overlaps or has no overlap with the input ``data``, the returned cutout array will always hold a copy of the input ``data`` (i.e. this keyword has no effect). Returns ------- result : `~numpy.ndarray` A 2D array cut out from the input ``data`` representing the same cutout region as the aperture mask. If there is a partial overlap of the aperture mask with the input data, pixels outside of the data will be assigned to ``fill_value``. `None` is returned if there is no overlap of the aperture with the input ``data``. """ data = np.asanyarray(data) if data.ndim != 2: raise ValueError('data must be a 2D array.') partial_overlap = False if self.bbox.ixmin < 0 or self.bbox.iymin < 0: partial_overlap = True if not partial_overlap: # try this for speed -- the result may still be a partial # overlap, in which case the next block will be triggered if copy: cutout = np.copy(data[self.bbox.slices]) else: cutout = data[self.bbox.slices] if partial_overlap or (cutout.shape != self.shape): slices_large, slices_small = self._overlap_slices(data.shape) if slices_small is None: return None # no overlap # cutout is a copy cutout = np.zeros(self.shape, dtype=data.dtype) cutout[:] = fill_value cutout[slices_small] = data[slices_large] if isinstance(data, u.Quantity): cutout = u.Quantity(cutout, unit=data.unit) return cutout
[ "def", "cutout", "(", "self", ",", "data", ",", "fill_value", "=", "0.", ",", "copy", "=", "False", ")", ":", "data", "=", "np", ".", "asanyarray", "(", "data", ")", "if", "data", ".", "ndim", "!=", "2", ":", "raise", "ValueError", "(", "'data must be a 2D array.'", ")", "partial_overlap", "=", "False", "if", "self", ".", "bbox", ".", "ixmin", "<", "0", "or", "self", ".", "bbox", ".", "iymin", "<", "0", ":", "partial_overlap", "=", "True", "if", "not", "partial_overlap", ":", "# try this for speed -- the result may still be a partial", "# overlap, in which case the next block will be triggered", "if", "copy", ":", "cutout", "=", "np", ".", "copy", "(", "data", "[", "self", ".", "bbox", ".", "slices", "]", ")", "else", ":", "cutout", "=", "data", "[", "self", ".", "bbox", ".", "slices", "]", "if", "partial_overlap", "or", "(", "cutout", ".", "shape", "!=", "self", ".", "shape", ")", ":", "slices_large", ",", "slices_small", "=", "self", ".", "_overlap_slices", "(", "data", ".", "shape", ")", "if", "slices_small", "is", "None", ":", "return", "None", "# no overlap", "# cutout is a copy", "cutout", "=", "np", ".", "zeros", "(", "self", ".", "shape", ",", "dtype", "=", "data", ".", "dtype", ")", "cutout", "[", ":", "]", "=", "fill_value", "cutout", "[", "slices_small", "]", "=", "data", "[", "slices_large", "]", "if", "isinstance", "(", "data", ",", "u", ".", "Quantity", ")", ":", "cutout", "=", "u", ".", "Quantity", "(", "cutout", ",", "unit", "=", "data", ".", "unit", ")", "return", "cutout" ]
Create a cutout from the input data over the mask bounding box, taking any edge effects into account. Parameters ---------- data : array_like A 2D array on which to apply the aperture mask. fill_value : float, optional The value is used to fill pixels where the aperture mask does not overlap with the input ``data``. The default is 0. copy : bool, optional If `True` then the returned cutout array will always be hold a copy of the input ``data``. If `False` and the mask is fully within the input ``data``, then the returned cutout array will be a view into the input ``data``. In cases where the mask partially overlaps or has no overlap with the input ``data``, the returned cutout array will always hold a copy of the input ``data`` (i.e. this keyword has no effect). Returns ------- result : `~numpy.ndarray` A 2D array cut out from the input ``data`` representing the same cutout region as the aperture mask. If there is a partial overlap of the aperture mask with the input data, pixels outside of the data will be assigned to ``fill_value``. `None` is returned if there is no overlap of the aperture with the input ``data``.
[ "Create", "a", "cutout", "from", "the", "input", "data", "over", "the", "mask", "bounding", "box", "taking", "any", "edge", "effects", "into", "account", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/aperture/mask.py#L143-L208
10,605
astropy/photutils
photutils/aperture/mask.py
ApertureMask.multiply
def multiply(self, data, fill_value=0.): """ Multiply the aperture mask with the input data, taking any edge effects into account. The result is a mask-weighted cutout from the data. Parameters ---------- data : array_like or `~astropy.units.Quantity` The 2D array to multiply with the aperture mask. fill_value : float, optional The value is used to fill pixels where the aperture mask does not overlap with the input ``data``. The default is 0. Returns ------- result : `~numpy.ndarray` A 2D mask-weighted cutout from the input ``data``. If there is a partial overlap of the aperture mask with the input data, pixels outside of the data will be assigned to ``fill_value`` before being multipled with the mask. `None` is returned if there is no overlap of the aperture with the input ``data``. """ cutout = self.cutout(data, fill_value=fill_value) if cutout is None: return None else: return cutout * self.data
python
def multiply(self, data, fill_value=0.): """ Multiply the aperture mask with the input data, taking any edge effects into account. The result is a mask-weighted cutout from the data. Parameters ---------- data : array_like or `~astropy.units.Quantity` The 2D array to multiply with the aperture mask. fill_value : float, optional The value is used to fill pixels where the aperture mask does not overlap with the input ``data``. The default is 0. Returns ------- result : `~numpy.ndarray` A 2D mask-weighted cutout from the input ``data``. If there is a partial overlap of the aperture mask with the input data, pixels outside of the data will be assigned to ``fill_value`` before being multipled with the mask. `None` is returned if there is no overlap of the aperture with the input ``data``. """ cutout = self.cutout(data, fill_value=fill_value) if cutout is None: return None else: return cutout * self.data
[ "def", "multiply", "(", "self", ",", "data", ",", "fill_value", "=", "0.", ")", ":", "cutout", "=", "self", ".", "cutout", "(", "data", ",", "fill_value", "=", "fill_value", ")", "if", "cutout", "is", "None", ":", "return", "None", "else", ":", "return", "cutout", "*", "self", ".", "data" ]
Multiply the aperture mask with the input data, taking any edge effects into account. The result is a mask-weighted cutout from the data. Parameters ---------- data : array_like or `~astropy.units.Quantity` The 2D array to multiply with the aperture mask. fill_value : float, optional The value is used to fill pixels where the aperture mask does not overlap with the input ``data``. The default is 0. Returns ------- result : `~numpy.ndarray` A 2D mask-weighted cutout from the input ``data``. If there is a partial overlap of the aperture mask with the input data, pixels outside of the data will be assigned to ``fill_value`` before being multipled with the mask. `None` is returned if there is no overlap of the aperture with the input ``data``.
[ "Multiply", "the", "aperture", "mask", "with", "the", "input", "data", "taking", "any", "edge", "effects", "into", "account", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/aperture/mask.py#L210-L241
10,606
astropy/photutils
photutils/segmentation/deblend.py
deblend_sources
def deblend_sources(data, segment_img, npixels, filter_kernel=None, labels=None, nlevels=32, contrast=0.001, mode='exponential', connectivity=8, relabel=True): """ Deblend overlapping sources labeled in a segmentation image. Sources are deblended using a combination of multi-thresholding and `watershed segmentation <https://en.wikipedia.org/wiki/Watershed_(image_processing)>`_. In order to deblend sources, they must be separated enough such that there is a saddle between them. Parameters ---------- data : array_like The 2D array of the image. segment_img : `~photutils.segmentation.SegmentationImage` or array_like (int) A 2D segmentation image, either as a `~photutils.segmentation.SegmentationImage` object or an `~numpy.ndarray`, with the same shape as ``data`` where sources are labeled by different positive integer values. A value of zero is reserved for the background. npixels : int The number of connected pixels, each greater than ``threshold``, that an object must have to be detected. ``npixels`` must be a positive integer. filter_kernel : array-like (2D) or `~astropy.convolution.Kernel2D`, optional The 2D array of the kernel used to filter the image before thresholding. Filtering the image will smooth the noise and maximize detectability of objects with a shape similar to the kernel. labels : int or array-like of int, optional The label numbers to deblend. If `None` (default), then all labels in the segmentation image will be deblended. nlevels : int, optional The number of multi-thresholding levels to use. Each source will be re-thresholded at ``nlevels``, spaced exponentially or linearly (see the ``mode`` keyword), between its minimum and maximum values within the source segment. contrast : float, optional The fraction of the total (blended) source flux that a local peak must have to be considered as a separate object. ``contrast`` must be between 0 and 1, inclusive. If ``contrast = 0`` then every local peak will be made a separate object (maximum deblending). If ``contrast = 1`` then no deblending will occur. The default is 0.001, which will deblend sources with a magnitude difference of about 7.5. mode : {'exponential', 'linear'}, optional The mode used in defining the spacing between the multi-thresholding levels (see the ``nlevels`` keyword). The default is 'exponential'. connectivity : {8, 4}, optional The type of pixel connectivity used in determining how pixels are grouped into a detected source. The options are 8 (default) or 4. 8-connected pixels touch along their edges or corners. 4-connected pixels touch along their edges. For reference, SExtractor uses 8-connected pixels. relabel : bool If `True` (default), then the segmentation image will be relabeled such that the labels are in consecutive order starting from 1. Returns ------- segment_image : `~photutils.segmentation.SegmentationImage` A 2D segmentation image, with the same shape as ``data``, where sources are marked by different positive integer values. A value of zero is reserved for the background. See Also -------- :func:`photutils.detect_sources` """ if not isinstance(segment_img, SegmentationImage): segment_img = SegmentationImage(segment_img) if segment_img.shape != data.shape: raise ValueError('The data and segmentation image must have ' 'the same shape') if labels is None: labels = segment_img.labels labels = np.atleast_1d(labels) segment_img.check_labels(labels) data = filter_data(data, filter_kernel, mode='constant', fill_value=0.0) last_label = segment_img.max_label segm_deblended = deepcopy(segment_img) for label in labels: source_slice = segment_img.slices[segment_img.get_index(label)] source_data = data[source_slice] source_segm = SegmentationImage(np.copy( segment_img.data[source_slice])) source_segm.keep_labels(label) # include only one label source_deblended = _deblend_source( source_data, source_segm, npixels, nlevels=nlevels, contrast=contrast, mode=mode, connectivity=connectivity) if not np.array_equal(source_deblended.data.astype(bool), source_segm.data.astype(bool)): raise ValueError('Deblending failed for source "{0}". Please ' 'ensure you used the same pixel connectivity ' 'in detect_sources and deblend_sources. If ' 'this issue persists, then please inform the ' 'developers.'.format(label)) if source_deblended.nlabels > 1: # replace the original source with the deblended source source_mask = (source_deblended.data > 0) segm_tmp = segm_deblended.data segm_tmp[source_slice][source_mask] = ( source_deblended.data[source_mask] + last_label) segm_deblended.data = segm_tmp # needed to call data setter last_label += source_deblended.nlabels if relabel: segm_deblended.relabel_consecutive() return segm_deblended
python
def deblend_sources(data, segment_img, npixels, filter_kernel=None, labels=None, nlevels=32, contrast=0.001, mode='exponential', connectivity=8, relabel=True): """ Deblend overlapping sources labeled in a segmentation image. Sources are deblended using a combination of multi-thresholding and `watershed segmentation <https://en.wikipedia.org/wiki/Watershed_(image_processing)>`_. In order to deblend sources, they must be separated enough such that there is a saddle between them. Parameters ---------- data : array_like The 2D array of the image. segment_img : `~photutils.segmentation.SegmentationImage` or array_like (int) A 2D segmentation image, either as a `~photutils.segmentation.SegmentationImage` object or an `~numpy.ndarray`, with the same shape as ``data`` where sources are labeled by different positive integer values. A value of zero is reserved for the background. npixels : int The number of connected pixels, each greater than ``threshold``, that an object must have to be detected. ``npixels`` must be a positive integer. filter_kernel : array-like (2D) or `~astropy.convolution.Kernel2D`, optional The 2D array of the kernel used to filter the image before thresholding. Filtering the image will smooth the noise and maximize detectability of objects with a shape similar to the kernel. labels : int or array-like of int, optional The label numbers to deblend. If `None` (default), then all labels in the segmentation image will be deblended. nlevels : int, optional The number of multi-thresholding levels to use. Each source will be re-thresholded at ``nlevels``, spaced exponentially or linearly (see the ``mode`` keyword), between its minimum and maximum values within the source segment. contrast : float, optional The fraction of the total (blended) source flux that a local peak must have to be considered as a separate object. ``contrast`` must be between 0 and 1, inclusive. If ``contrast = 0`` then every local peak will be made a separate object (maximum deblending). If ``contrast = 1`` then no deblending will occur. The default is 0.001, which will deblend sources with a magnitude difference of about 7.5. mode : {'exponential', 'linear'}, optional The mode used in defining the spacing between the multi-thresholding levels (see the ``nlevels`` keyword). The default is 'exponential'. connectivity : {8, 4}, optional The type of pixel connectivity used in determining how pixels are grouped into a detected source. The options are 8 (default) or 4. 8-connected pixels touch along their edges or corners. 4-connected pixels touch along their edges. For reference, SExtractor uses 8-connected pixels. relabel : bool If `True` (default), then the segmentation image will be relabeled such that the labels are in consecutive order starting from 1. Returns ------- segment_image : `~photutils.segmentation.SegmentationImage` A 2D segmentation image, with the same shape as ``data``, where sources are marked by different positive integer values. A value of zero is reserved for the background. See Also -------- :func:`photutils.detect_sources` """ if not isinstance(segment_img, SegmentationImage): segment_img = SegmentationImage(segment_img) if segment_img.shape != data.shape: raise ValueError('The data and segmentation image must have ' 'the same shape') if labels is None: labels = segment_img.labels labels = np.atleast_1d(labels) segment_img.check_labels(labels) data = filter_data(data, filter_kernel, mode='constant', fill_value=0.0) last_label = segment_img.max_label segm_deblended = deepcopy(segment_img) for label in labels: source_slice = segment_img.slices[segment_img.get_index(label)] source_data = data[source_slice] source_segm = SegmentationImage(np.copy( segment_img.data[source_slice])) source_segm.keep_labels(label) # include only one label source_deblended = _deblend_source( source_data, source_segm, npixels, nlevels=nlevels, contrast=contrast, mode=mode, connectivity=connectivity) if not np.array_equal(source_deblended.data.astype(bool), source_segm.data.astype(bool)): raise ValueError('Deblending failed for source "{0}". Please ' 'ensure you used the same pixel connectivity ' 'in detect_sources and deblend_sources. If ' 'this issue persists, then please inform the ' 'developers.'.format(label)) if source_deblended.nlabels > 1: # replace the original source with the deblended source source_mask = (source_deblended.data > 0) segm_tmp = segm_deblended.data segm_tmp[source_slice][source_mask] = ( source_deblended.data[source_mask] + last_label) segm_deblended.data = segm_tmp # needed to call data setter last_label += source_deblended.nlabels if relabel: segm_deblended.relabel_consecutive() return segm_deblended
[ "def", "deblend_sources", "(", "data", ",", "segment_img", ",", "npixels", ",", "filter_kernel", "=", "None", ",", "labels", "=", "None", ",", "nlevels", "=", "32", ",", "contrast", "=", "0.001", ",", "mode", "=", "'exponential'", ",", "connectivity", "=", "8", ",", "relabel", "=", "True", ")", ":", "if", "not", "isinstance", "(", "segment_img", ",", "SegmentationImage", ")", ":", "segment_img", "=", "SegmentationImage", "(", "segment_img", ")", "if", "segment_img", ".", "shape", "!=", "data", ".", "shape", ":", "raise", "ValueError", "(", "'The data and segmentation image must have '", "'the same shape'", ")", "if", "labels", "is", "None", ":", "labels", "=", "segment_img", ".", "labels", "labels", "=", "np", ".", "atleast_1d", "(", "labels", ")", "segment_img", ".", "check_labels", "(", "labels", ")", "data", "=", "filter_data", "(", "data", ",", "filter_kernel", ",", "mode", "=", "'constant'", ",", "fill_value", "=", "0.0", ")", "last_label", "=", "segment_img", ".", "max_label", "segm_deblended", "=", "deepcopy", "(", "segment_img", ")", "for", "label", "in", "labels", ":", "source_slice", "=", "segment_img", ".", "slices", "[", "segment_img", ".", "get_index", "(", "label", ")", "]", "source_data", "=", "data", "[", "source_slice", "]", "source_segm", "=", "SegmentationImage", "(", "np", ".", "copy", "(", "segment_img", ".", "data", "[", "source_slice", "]", ")", ")", "source_segm", ".", "keep_labels", "(", "label", ")", "# include only one label", "source_deblended", "=", "_deblend_source", "(", "source_data", ",", "source_segm", ",", "npixels", ",", "nlevels", "=", "nlevels", ",", "contrast", "=", "contrast", ",", "mode", "=", "mode", ",", "connectivity", "=", "connectivity", ")", "if", "not", "np", ".", "array_equal", "(", "source_deblended", ".", "data", ".", "astype", "(", "bool", ")", ",", "source_segm", ".", "data", ".", "astype", "(", "bool", ")", ")", ":", "raise", "ValueError", "(", "'Deblending failed for source \"{0}\". Please '", "'ensure you used the same pixel connectivity '", "'in detect_sources and deblend_sources. If '", "'this issue persists, then please inform the '", "'developers.'", ".", "format", "(", "label", ")", ")", "if", "source_deblended", ".", "nlabels", ">", "1", ":", "# replace the original source with the deblended source", "source_mask", "=", "(", "source_deblended", ".", "data", ">", "0", ")", "segm_tmp", "=", "segm_deblended", ".", "data", "segm_tmp", "[", "source_slice", "]", "[", "source_mask", "]", "=", "(", "source_deblended", ".", "data", "[", "source_mask", "]", "+", "last_label", ")", "segm_deblended", ".", "data", "=", "segm_tmp", "# needed to call data setter", "last_label", "+=", "source_deblended", ".", "nlabels", "if", "relabel", ":", "segm_deblended", ".", "relabel_consecutive", "(", ")", "return", "segm_deblended" ]
Deblend overlapping sources labeled in a segmentation image. Sources are deblended using a combination of multi-thresholding and `watershed segmentation <https://en.wikipedia.org/wiki/Watershed_(image_processing)>`_. In order to deblend sources, they must be separated enough such that there is a saddle between them. Parameters ---------- data : array_like The 2D array of the image. segment_img : `~photutils.segmentation.SegmentationImage` or array_like (int) A 2D segmentation image, either as a `~photutils.segmentation.SegmentationImage` object or an `~numpy.ndarray`, with the same shape as ``data`` where sources are labeled by different positive integer values. A value of zero is reserved for the background. npixels : int The number of connected pixels, each greater than ``threshold``, that an object must have to be detected. ``npixels`` must be a positive integer. filter_kernel : array-like (2D) or `~astropy.convolution.Kernel2D`, optional The 2D array of the kernel used to filter the image before thresholding. Filtering the image will smooth the noise and maximize detectability of objects with a shape similar to the kernel. labels : int or array-like of int, optional The label numbers to deblend. If `None` (default), then all labels in the segmentation image will be deblended. nlevels : int, optional The number of multi-thresholding levels to use. Each source will be re-thresholded at ``nlevels``, spaced exponentially or linearly (see the ``mode`` keyword), between its minimum and maximum values within the source segment. contrast : float, optional The fraction of the total (blended) source flux that a local peak must have to be considered as a separate object. ``contrast`` must be between 0 and 1, inclusive. If ``contrast = 0`` then every local peak will be made a separate object (maximum deblending). If ``contrast = 1`` then no deblending will occur. The default is 0.001, which will deblend sources with a magnitude difference of about 7.5. mode : {'exponential', 'linear'}, optional The mode used in defining the spacing between the multi-thresholding levels (see the ``nlevels`` keyword). The default is 'exponential'. connectivity : {8, 4}, optional The type of pixel connectivity used in determining how pixels are grouped into a detected source. The options are 8 (default) or 4. 8-connected pixels touch along their edges or corners. 4-connected pixels touch along their edges. For reference, SExtractor uses 8-connected pixels. relabel : bool If `True` (default), then the segmentation image will be relabeled such that the labels are in consecutive order starting from 1. Returns ------- segment_image : `~photutils.segmentation.SegmentationImage` A 2D segmentation image, with the same shape as ``data``, where sources are marked by different positive integer values. A value of zero is reserved for the background. See Also -------- :func:`photutils.detect_sources`
[ "Deblend", "overlapping", "sources", "labeled", "in", "a", "segmentation", "image", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/deblend.py#L18-L147
10,607
astropy/photutils
photutils/utils/_moments.py
_moments_central
def _moments_central(data, center=None, order=1): """ Calculate the central image moments up to the specified order. Parameters ---------- data : 2D array-like The input 2D array. center : tuple of two floats or `None`, optional The ``(x, y)`` center position. If `None` it will calculated as the "center of mass" of the input ``data``. order : int, optional The maximum order of the moments to calculate. Returns ------- moments : 2D `~numpy.ndarray` The central image moments. """ data = np.asarray(data).astype(float) if data.ndim != 2: raise ValueError('data must be a 2D array.') if center is None: from ..centroids import centroid_com center = centroid_com(data) indices = np.ogrid[[slice(0, i) for i in data.shape]] ypowers = (indices[0] - center[1]) ** np.arange(order + 1) xpowers = np.transpose(indices[1] - center[0]) ** np.arange(order + 1) return np.dot(np.dot(np.transpose(ypowers), data), xpowers)
python
def _moments_central(data, center=None, order=1): """ Calculate the central image moments up to the specified order. Parameters ---------- data : 2D array-like The input 2D array. center : tuple of two floats or `None`, optional The ``(x, y)`` center position. If `None` it will calculated as the "center of mass" of the input ``data``. order : int, optional The maximum order of the moments to calculate. Returns ------- moments : 2D `~numpy.ndarray` The central image moments. """ data = np.asarray(data).astype(float) if data.ndim != 2: raise ValueError('data must be a 2D array.') if center is None: from ..centroids import centroid_com center = centroid_com(data) indices = np.ogrid[[slice(0, i) for i in data.shape]] ypowers = (indices[0] - center[1]) ** np.arange(order + 1) xpowers = np.transpose(indices[1] - center[0]) ** np.arange(order + 1) return np.dot(np.dot(np.transpose(ypowers), data), xpowers)
[ "def", "_moments_central", "(", "data", ",", "center", "=", "None", ",", "order", "=", "1", ")", ":", "data", "=", "np", ".", "asarray", "(", "data", ")", ".", "astype", "(", "float", ")", "if", "data", ".", "ndim", "!=", "2", ":", "raise", "ValueError", "(", "'data must be a 2D array.'", ")", "if", "center", "is", "None", ":", "from", ".", ".", "centroids", "import", "centroid_com", "center", "=", "centroid_com", "(", "data", ")", "indices", "=", "np", ".", "ogrid", "[", "[", "slice", "(", "0", ",", "i", ")", "for", "i", "in", "data", ".", "shape", "]", "]", "ypowers", "=", "(", "indices", "[", "0", "]", "-", "center", "[", "1", "]", ")", "**", "np", ".", "arange", "(", "order", "+", "1", ")", "xpowers", "=", "np", ".", "transpose", "(", "indices", "[", "1", "]", "-", "center", "[", "0", "]", ")", "**", "np", ".", "arange", "(", "order", "+", "1", ")", "return", "np", ".", "dot", "(", "np", ".", "dot", "(", "np", ".", "transpose", "(", "ypowers", ")", ",", "data", ")", ",", "xpowers", ")" ]
Calculate the central image moments up to the specified order. Parameters ---------- data : 2D array-like The input 2D array. center : tuple of two floats or `None`, optional The ``(x, y)`` center position. If `None` it will calculated as the "center of mass" of the input ``data``. order : int, optional The maximum order of the moments to calculate. Returns ------- moments : 2D `~numpy.ndarray` The central image moments.
[ "Calculate", "the", "central", "image", "moments", "up", "to", "the", "specified", "order", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/utils/_moments.py#L9-L44
10,608
astropy/photutils
photutils/isophote/harmonics.py
first_and_second_harmonic_function
def first_and_second_harmonic_function(phi, c): """ Compute the harmonic function value used to calculate the corrections for ellipse fitting. This function includes simultaneously both the first and second order harmonics: .. math:: f(phi) = c[0] + c[1]*\\sin(phi) + c[2]*\\cos(phi) + c[3]*\\sin(2*phi) + c[4]*\\cos(2*phi) Parameters ---------- phi : float or `~numpy.ndarray` The angle(s) along the elliptical path, going towards the positive y axis, starting coincident with the position angle. That is, the angles are defined from the semimajor axis that lies in the positive x quadrant. c : `~numpy.ndarray` of shape (5,) Array containing the five harmonic coefficients. Returns ------- result : float or `~numpy.ndarray` The function value(s) at the given input angle(s). """ return (c[0] + c[1]*np.sin(phi) + c[2]*np.cos(phi) + c[3]*np.sin(2*phi) + c[4]*np.cos(2*phi))
python
def first_and_second_harmonic_function(phi, c): """ Compute the harmonic function value used to calculate the corrections for ellipse fitting. This function includes simultaneously both the first and second order harmonics: .. math:: f(phi) = c[0] + c[1]*\\sin(phi) + c[2]*\\cos(phi) + c[3]*\\sin(2*phi) + c[4]*\\cos(2*phi) Parameters ---------- phi : float or `~numpy.ndarray` The angle(s) along the elliptical path, going towards the positive y axis, starting coincident with the position angle. That is, the angles are defined from the semimajor axis that lies in the positive x quadrant. c : `~numpy.ndarray` of shape (5,) Array containing the five harmonic coefficients. Returns ------- result : float or `~numpy.ndarray` The function value(s) at the given input angle(s). """ return (c[0] + c[1]*np.sin(phi) + c[2]*np.cos(phi) + c[3]*np.sin(2*phi) + c[4]*np.cos(2*phi))
[ "def", "first_and_second_harmonic_function", "(", "phi", ",", "c", ")", ":", "return", "(", "c", "[", "0", "]", "+", "c", "[", "1", "]", "*", "np", ".", "sin", "(", "phi", ")", "+", "c", "[", "2", "]", "*", "np", ".", "cos", "(", "phi", ")", "+", "c", "[", "3", "]", "*", "np", ".", "sin", "(", "2", "*", "phi", ")", "+", "c", "[", "4", "]", "*", "np", ".", "cos", "(", "2", "*", "phi", ")", ")" ]
Compute the harmonic function value used to calculate the corrections for ellipse fitting. This function includes simultaneously both the first and second order harmonics: .. math:: f(phi) = c[0] + c[1]*\\sin(phi) + c[2]*\\cos(phi) + c[3]*\\sin(2*phi) + c[4]*\\cos(2*phi) Parameters ---------- phi : float or `~numpy.ndarray` The angle(s) along the elliptical path, going towards the positive y axis, starting coincident with the position angle. That is, the angles are defined from the semimajor axis that lies in the positive x quadrant. c : `~numpy.ndarray` of shape (5,) Array containing the five harmonic coefficients. Returns ------- result : float or `~numpy.ndarray` The function value(s) at the given input angle(s).
[ "Compute", "the", "harmonic", "function", "value", "used", "to", "calculate", "the", "corrections", "for", "ellipse", "fitting", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/isophote/harmonics.py#L23-L53
10,609
astropy/photutils
photutils/psf/matching/windows.py
_radial_distance
def _radial_distance(shape): """ Return an array where each value is the Euclidean distance from the array center. Parameters ---------- shape : tuple of int The size of the output array along each axis. Returns ------- result : `~numpy.ndarray` An array containing the Euclidian radial distances from the array center. """ if len(shape) != 2: raise ValueError('shape must have only 2 elements') position = (np.asarray(shape) - 1) / 2. x = np.arange(shape[1]) - position[1] y = np.arange(shape[0]) - position[0] xx, yy = np.meshgrid(x, y) return np.sqrt(xx**2 + yy**2)
python
def _radial_distance(shape): """ Return an array where each value is the Euclidean distance from the array center. Parameters ---------- shape : tuple of int The size of the output array along each axis. Returns ------- result : `~numpy.ndarray` An array containing the Euclidian radial distances from the array center. """ if len(shape) != 2: raise ValueError('shape must have only 2 elements') position = (np.asarray(shape) - 1) / 2. x = np.arange(shape[1]) - position[1] y = np.arange(shape[0]) - position[0] xx, yy = np.meshgrid(x, y) return np.sqrt(xx**2 + yy**2)
[ "def", "_radial_distance", "(", "shape", ")", ":", "if", "len", "(", "shape", ")", "!=", "2", ":", "raise", "ValueError", "(", "'shape must have only 2 elements'", ")", "position", "=", "(", "np", ".", "asarray", "(", "shape", ")", "-", "1", ")", "/", "2.", "x", "=", "np", ".", "arange", "(", "shape", "[", "1", "]", ")", "-", "position", "[", "1", "]", "y", "=", "np", ".", "arange", "(", "shape", "[", "0", "]", ")", "-", "position", "[", "0", "]", "xx", ",", "yy", "=", "np", ".", "meshgrid", "(", "x", ",", "y", ")", "return", "np", ".", "sqrt", "(", "xx", "**", "2", "+", "yy", "**", "2", ")" ]
Return an array where each value is the Euclidean distance from the array center. Parameters ---------- shape : tuple of int The size of the output array along each axis. Returns ------- result : `~numpy.ndarray` An array containing the Euclidian radial distances from the array center.
[ "Return", "an", "array", "where", "each", "value", "is", "the", "Euclidean", "distance", "from", "the", "array", "center", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/psf/matching/windows.py#L13-L36
10,610
astropy/photutils
photutils/datasets/load.py
load_spitzer_image
def load_spitzer_image(show_progress=False): # pragma: no cover """ Load a 4.5 micron Spitzer image. The catalog for this image is returned by :func:`load_spitzer_catalog`. Parameters ---------- show_progress : bool, optional Whether to display a progress bar during the download (default is `False`). Returns ------- hdu : `~astropy.io.fits.ImageHDU` The 4.5 micron Spitzer image in a FITS image HDU. See Also -------- load_spitzer_catalog Examples -------- .. plot:: :include-source: from photutils import datasets hdu = datasets.load_spitzer_image() plt.imshow(hdu.data, origin='lower', vmax=50) """ path = get_path('spitzer_example_image.fits', location='remote', show_progress=show_progress) hdu = fits.open(path)[0] return hdu
python
def load_spitzer_image(show_progress=False): # pragma: no cover """ Load a 4.5 micron Spitzer image. The catalog for this image is returned by :func:`load_spitzer_catalog`. Parameters ---------- show_progress : bool, optional Whether to display a progress bar during the download (default is `False`). Returns ------- hdu : `~astropy.io.fits.ImageHDU` The 4.5 micron Spitzer image in a FITS image HDU. See Also -------- load_spitzer_catalog Examples -------- .. plot:: :include-source: from photutils import datasets hdu = datasets.load_spitzer_image() plt.imshow(hdu.data, origin='lower', vmax=50) """ path = get_path('spitzer_example_image.fits', location='remote', show_progress=show_progress) hdu = fits.open(path)[0] return hdu
[ "def", "load_spitzer_image", "(", "show_progress", "=", "False", ")", ":", "# pragma: no cover", "path", "=", "get_path", "(", "'spitzer_example_image.fits'", ",", "location", "=", "'remote'", ",", "show_progress", "=", "show_progress", ")", "hdu", "=", "fits", ".", "open", "(", "path", ")", "[", "0", "]", "return", "hdu" ]
Load a 4.5 micron Spitzer image. The catalog for this image is returned by :func:`load_spitzer_catalog`. Parameters ---------- show_progress : bool, optional Whether to display a progress bar during the download (default is `False`). Returns ------- hdu : `~astropy.io.fits.ImageHDU` The 4.5 micron Spitzer image in a FITS image HDU. See Also -------- load_spitzer_catalog Examples -------- .. plot:: :include-source: from photutils import datasets hdu = datasets.load_spitzer_image() plt.imshow(hdu.data, origin='lower', vmax=50)
[ "Load", "a", "4", ".", "5", "micron", "Spitzer", "image", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/datasets/load.py#L73-L109
10,611
astropy/photutils
photutils/datasets/load.py
load_spitzer_catalog
def load_spitzer_catalog(show_progress=False): # pragma: no cover """ Load a 4.5 micron Spitzer catalog. The image from which this catalog was derived is returned by :func:`load_spitzer_image`. Parameters ---------- show_progress : bool, optional Whether to display a progress bar during the download (default is `False`). Returns ------- catalog : `~astropy.table.Table` The catalog of sources. See Also -------- load_spitzer_image Examples -------- .. plot:: :include-source: from photutils import datasets catalog = datasets.load_spitzer_catalog() plt.scatter(catalog['l'], catalog['b']) plt.xlabel('Galactic l') plt.ylabel('Galactic b') plt.xlim(18.39, 18.05) plt.ylim(0.13, 0.30) """ path = get_path('spitzer_example_catalog.xml', location='remote', show_progress=show_progress) table = Table.read(path) return table
python
def load_spitzer_catalog(show_progress=False): # pragma: no cover """ Load a 4.5 micron Spitzer catalog. The image from which this catalog was derived is returned by :func:`load_spitzer_image`. Parameters ---------- show_progress : bool, optional Whether to display a progress bar during the download (default is `False`). Returns ------- catalog : `~astropy.table.Table` The catalog of sources. See Also -------- load_spitzer_image Examples -------- .. plot:: :include-source: from photutils import datasets catalog = datasets.load_spitzer_catalog() plt.scatter(catalog['l'], catalog['b']) plt.xlabel('Galactic l') plt.ylabel('Galactic b') plt.xlim(18.39, 18.05) plt.ylim(0.13, 0.30) """ path = get_path('spitzer_example_catalog.xml', location='remote', show_progress=show_progress) table = Table.read(path) return table
[ "def", "load_spitzer_catalog", "(", "show_progress", "=", "False", ")", ":", "# pragma: no cover", "path", "=", "get_path", "(", "'spitzer_example_catalog.xml'", ",", "location", "=", "'remote'", ",", "show_progress", "=", "show_progress", ")", "table", "=", "Table", ".", "read", "(", "path", ")", "return", "table" ]
Load a 4.5 micron Spitzer catalog. The image from which this catalog was derived is returned by :func:`load_spitzer_image`. Parameters ---------- show_progress : bool, optional Whether to display a progress bar during the download (default is `False`). Returns ------- catalog : `~astropy.table.Table` The catalog of sources. See Also -------- load_spitzer_image Examples -------- .. plot:: :include-source: from photutils import datasets catalog = datasets.load_spitzer_catalog() plt.scatter(catalog['l'], catalog['b']) plt.xlabel('Galactic l') plt.ylabel('Galactic b') plt.xlim(18.39, 18.05) plt.ylim(0.13, 0.30)
[ "Load", "a", "4", ".", "5", "micron", "Spitzer", "catalog", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/datasets/load.py#L112-L152
10,612
astropy/photutils
photutils/datasets/load.py
load_irac_psf
def load_irac_psf(channel, show_progress=False): # pragma: no cover """ Load a Spitzer IRAC PSF image. Parameters ---------- channel : int (1-4) The IRAC channel number: * Channel 1: 3.6 microns * Channel 2: 4.5 microns * Channel 3: 5.8 microns * Channel 4: 8.0 microns show_progress : bool, optional Whether to display a progress bar during the download (default is `False`). Returns ------- hdu : `~astropy.io.fits.ImageHDU` The IRAC PSF in a FITS image HDU. Examples -------- .. plot:: :include-source: from astropy.visualization import LogStretch, ImageNormalize from photutils.datasets import load_irac_psf hdu1 = load_irac_psf(1) hdu2 = load_irac_psf(2) hdu3 = load_irac_psf(3) hdu4 = load_irac_psf(4) norm = ImageNormalize(hdu1.data, stretch=LogStretch()) fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2) ax1.imshow(hdu1.data, origin='lower', interpolation='nearest', norm=norm) ax1.set_title('IRAC Ch1 PSF') ax2.imshow(hdu2.data, origin='lower', interpolation='nearest', norm=norm) ax2.set_title('IRAC Ch2 PSF') ax3.imshow(hdu3.data, origin='lower', interpolation='nearest', norm=norm) ax3.set_title('IRAC Ch3 PSF') ax4.imshow(hdu4.data, origin='lower', interpolation='nearest', norm=norm) ax4.set_title('IRAC Ch4 PSF') plt.tight_layout() plt.show() """ channel = int(channel) if channel < 1 or channel > 4: raise ValueError('channel must be 1, 2, 3, or 4') fn = 'irac_ch{0}_flight.fits'.format(channel) path = get_path(fn, location='remote', show_progress=show_progress) hdu = fits.open(path)[0] return hdu
python
def load_irac_psf(channel, show_progress=False): # pragma: no cover """ Load a Spitzer IRAC PSF image. Parameters ---------- channel : int (1-4) The IRAC channel number: * Channel 1: 3.6 microns * Channel 2: 4.5 microns * Channel 3: 5.8 microns * Channel 4: 8.0 microns show_progress : bool, optional Whether to display a progress bar during the download (default is `False`). Returns ------- hdu : `~astropy.io.fits.ImageHDU` The IRAC PSF in a FITS image HDU. Examples -------- .. plot:: :include-source: from astropy.visualization import LogStretch, ImageNormalize from photutils.datasets import load_irac_psf hdu1 = load_irac_psf(1) hdu2 = load_irac_psf(2) hdu3 = load_irac_psf(3) hdu4 = load_irac_psf(4) norm = ImageNormalize(hdu1.data, stretch=LogStretch()) fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2) ax1.imshow(hdu1.data, origin='lower', interpolation='nearest', norm=norm) ax1.set_title('IRAC Ch1 PSF') ax2.imshow(hdu2.data, origin='lower', interpolation='nearest', norm=norm) ax2.set_title('IRAC Ch2 PSF') ax3.imshow(hdu3.data, origin='lower', interpolation='nearest', norm=norm) ax3.set_title('IRAC Ch3 PSF') ax4.imshow(hdu4.data, origin='lower', interpolation='nearest', norm=norm) ax4.set_title('IRAC Ch4 PSF') plt.tight_layout() plt.show() """ channel = int(channel) if channel < 1 or channel > 4: raise ValueError('channel must be 1, 2, 3, or 4') fn = 'irac_ch{0}_flight.fits'.format(channel) path = get_path(fn, location='remote', show_progress=show_progress) hdu = fits.open(path)[0] return hdu
[ "def", "load_irac_psf", "(", "channel", ",", "show_progress", "=", "False", ")", ":", "# pragma: no cover", "channel", "=", "int", "(", "channel", ")", "if", "channel", "<", "1", "or", "channel", ">", "4", ":", "raise", "ValueError", "(", "'channel must be 1, 2, 3, or 4'", ")", "fn", "=", "'irac_ch{0}_flight.fits'", ".", "format", "(", "channel", ")", "path", "=", "get_path", "(", "fn", ",", "location", "=", "'remote'", ",", "show_progress", "=", "show_progress", ")", "hdu", "=", "fits", ".", "open", "(", "path", ")", "[", "0", "]", "return", "hdu" ]
Load a Spitzer IRAC PSF image. Parameters ---------- channel : int (1-4) The IRAC channel number: * Channel 1: 3.6 microns * Channel 2: 4.5 microns * Channel 3: 5.8 microns * Channel 4: 8.0 microns show_progress : bool, optional Whether to display a progress bar during the download (default is `False`). Returns ------- hdu : `~astropy.io.fits.ImageHDU` The IRAC PSF in a FITS image HDU. Examples -------- .. plot:: :include-source: from astropy.visualization import LogStretch, ImageNormalize from photutils.datasets import load_irac_psf hdu1 = load_irac_psf(1) hdu2 = load_irac_psf(2) hdu3 = load_irac_psf(3) hdu4 = load_irac_psf(4) norm = ImageNormalize(hdu1.data, stretch=LogStretch()) fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2) ax1.imshow(hdu1.data, origin='lower', interpolation='nearest', norm=norm) ax1.set_title('IRAC Ch1 PSF') ax2.imshow(hdu2.data, origin='lower', interpolation='nearest', norm=norm) ax2.set_title('IRAC Ch2 PSF') ax3.imshow(hdu3.data, origin='lower', interpolation='nearest', norm=norm) ax3.set_title('IRAC Ch3 PSF') ax4.imshow(hdu4.data, origin='lower', interpolation='nearest', norm=norm) ax4.set_title('IRAC Ch4 PSF') plt.tight_layout() plt.show()
[ "Load", "a", "Spitzer", "IRAC", "PSF", "image", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/datasets/load.py#L155-L217
10,613
astropy/photutils
photutils/isophote/ellipse.py
Ellipse.fit_image
def fit_image(self, sma0=None, minsma=0., maxsma=None, step=0.1, conver=DEFAULT_CONVERGENCE, minit=DEFAULT_MINIT, maxit=DEFAULT_MAXIT, fflag=DEFAULT_FFLAG, maxgerr=DEFAULT_MAXGERR, sclip=3., nclip=0, integrmode=BILINEAR, linear=False, maxrit=None): # This parameter list is quite large and should in principle be # simplified by re-distributing these controls to somewhere else. # We keep this design though because it better mimics the flat # architecture used in the original STSDAS task `ellipse`. """ Fit multiple isophotes to the image array. This method loops over each value of the semimajor axis (sma) length (constructed from the input parameters), fitting a single isophote at each sma. The entire set of isophotes is returned in an `~photutils.isophote.IsophoteList` instance. Parameters ---------- sma0 : float, optional The starting value for the semimajor axis length (pixels). This value must not be the minimum or maximum semimajor axis length, but something in between. The algorithm can't start from the very center of the galaxy image because the modelling of elliptical isophotes on that region is poor and it will diverge very easily if not tied to other previously fit isophotes. It can't start from the maximum value either because the maximum is not known beforehand, depending on signal-to-noise. The ``sma0`` value should be selected such that the corresponding isophote has a good signal-to-noise ratio and a clearly defined geometry. If set to `None` (the default), one of two actions will be taken: if a `~photutils.isophote.EllipseGeometry` instance was input to the `~photutils.isophote.Ellipse` constructor, its ``sma`` value will be used. Otherwise, a default value of 10. will be used. minsma : float, optional The minimum value for the semimajor axis length (pixels). The default is 0. maxsma : float or `None`, optional The maximum value for the semimajor axis length (pixels). When set to `None` (default), the algorithm will increase the semimajor axis until one of several conditions will cause it to stop and revert to fit ellipses with sma < ``sma0``. step : float, optional The step value used to grow/shrink the semimajor axis length (pixels if ``linear=True``, or a relative value if ``linear=False``). See the ``linear`` parameter. The default is 0.1. conver : float, optional The main convergence criterion. Iterations stop when the largest harmonic amplitude becomes smaller (in absolute value) than ``conver`` times the harmonic fit rms. The default is 0.05. minit : int, optional The minimum number of iterations to perform. A minimum of 10 (the default) iterations guarantees that, on average, 2 iterations will be available for fitting each independent parameter (the four harmonic amplitudes and the intensity level). For the first isophote, the minimum number of iterations is 2 * ``minit`` to ensure that, even departing from not-so-good initial values, the algorithm has a better chance to converge to a sensible solution. maxit : int, optional The maximum number of iterations to perform. The default is 50. fflag : float, optional The acceptable fraction of flagged data points in the sample. If the actual fraction of valid data points is smaller than this, the iterations will stop and the current `~photutils.isophote.Isophote` will be returned. Flagged data points are points that either lie outside the image frame, are masked, or were rejected by sigma-clipping. The default is 0.7. maxgerr : float, optional The maximum acceptable relative error in the local radial intensity gradient. This is the main control for preventing ellipses to grow to regions of too low signal-to-noise ratio. It specifies the maximum acceptable relative error in the local radial intensity gradient. `Busko (1996; ASPC 101, 139) <http://adsabs.harvard.edu/abs/1996ASPC..101..139B>`_ showed that the fitting precision relates to that relative error. The usual behavior of the gradient relative error is to increase with semimajor axis, being larger in outer, fainter regions of a galaxy image. In the current implementation, the ``maxgerr`` criterion is triggered only when two consecutive isophotes exceed the value specified by the parameter. This prevents premature stopping caused by contamination such as stars and HII regions. A number of actions may happen when the gradient error exceeds ``maxgerr`` (or becomes non-significant and is set to `None`). If the maximum semimajor axis specified by ``maxsma`` is set to `None`, semimajor axis growth is stopped and the algorithm proceeds inwards to the galaxy center. If ``maxsma`` is set to some finite value, and this value is larger than the current semimajor axis length, the algorithm enters non-iterative mode and proceeds outwards until reaching ``maxsma``. The default is 0.5. sclip : float, optional The sigma-clip sigma value. The default is 3.0. nclip : int, optional The number of sigma-clip interations. The default is 0, which means sigma-clipping is skipped. integrmode : {'bilinear', 'nearest_neighbor', 'mean', 'median'}, optional The area integration mode. The default is 'bilinear'. linear : bool, optional The semimajor axis growing/shrinking mode. If `False` (default), the geometric growing mode is chosen, thus the semimajor axis length is increased by a factor of (1. + ``step``), and the process is repeated until either the semimajor axis value reaches the value of parameter ``maxsma``, or the last fitted ellipse has more than a given fraction of its sampled points flagged out (see ``fflag``). The process then resumes from the first fitted ellipse (at ``sma0``) inwards, in steps of (1./(1. + ``step``)), until the semimajor axis length reaches the value ``minsma``. In case of linear growing, the increment or decrement value is given directly by ``step`` in pixels. If ``maxsma`` is set to `None`, the semimajor axis will grow until a low signal-to-noise criterion is met. See ``maxgerr``. maxrit : float or `None`, optional The maximum value of semimajor axis to perform an actual fit. Whenever the current semimajor axis length is larger than ``maxrit``, the isophotes will be extracted using the current geometry, without being fitted. This non-iterative mode may be useful for sampling regions of very low surface brightness, where the algorithm may become unstable and unable to recover reliable geometry information. Non-iterative mode can also be entered automatically whenever the ellipticity exceeds 1.0 or the ellipse center crosses the image boundaries. If `None` (default), then no maximum value is used. Returns ------- result : `~photutils.isophote.IsophoteList` instance A list-like object of `~photutils.isophote.Isophote` instances, sorted by increasing semimajor axis length. """ # multiple fitted isophotes will be stored here isophote_list = [] # get starting sma from appropriate source: keyword parameter, # internal EllipseGeometry instance, or fixed default value. if not sma0: if self._geometry: sma = self._geometry.sma else: sma = 10. else: sma = sma0 # first, go from initial sma outwards until # hitting one of several stopping criteria. noiter = False first_isophote = True while True: # first isophote runs longer minit_a = 2 * minit if first_isophote else minit first_isophote = False isophote = self.fit_isophote(sma, step, conver, minit_a, maxit, fflag, maxgerr, sclip, nclip, integrmode, linear, maxrit, noniterate=noiter, isophote_list=isophote_list) # check for failed fit. if (isophote.stop_code < 0 or isophote.stop_code == 1): # in case the fit failed right at the outset, return an # empty list. This is the usual case when the user # provides initial guesses that are too way off to enable # the fitting algorithm to find any meaningful solution. if len(isophote_list) == 1: warnings.warn('No meaningful fit was possible.', AstropyUserWarning) return IsophoteList([]) self._fix_last_isophote(isophote_list, -1) # get last isophote from the actual list, since the last # `isophote` instance in this context may no longer be OK. isophote = isophote_list[-1] # if two consecutive isophotes failed to fit, # shut off iterative mode. Or, bail out and # change to go inwards. if len(isophote_list) > 2: if ((isophote.stop_code == 5 and isophote_list[-2].stop_code == 5) or isophote.stop_code == 1): if maxsma and maxsma > isophote.sma: # if a maximum sma value was provided by # user, and the current sma is smaller than # maxsma, keep growing sma in non-iterative # mode until reaching it. noiter = True else: # if no maximum sma, stop growing and change # to go inwards. break # reset variable from the actual list, since the last # `isophote` instance may no longer be OK. isophote = isophote_list[-1] # update sma. If exceeded user-defined # maximum, bail out from this loop. sma = isophote.sample.geometry.update_sma(step) if maxsma and sma >= maxsma: break # reset sma so as to go inwards. first_isophote = isophote_list[0] sma, step = first_isophote.sample.geometry.reset_sma(step) # now, go from initial sma inwards towards center. while True: isophote = self.fit_isophote(sma, step, conver, minit, maxit, fflag, maxgerr, sclip, nclip, integrmode, linear, maxrit, going_inwards=True, isophote_list=isophote_list) # if abnormal condition, fix isophote but keep going. if isophote.stop_code < 0: self._fix_last_isophote(isophote_list, 0) # reset variable from the actual list, since the last # `isophote` instance may no longer be OK. isophote = isophote_list[-1] # figure out next sma; if exceeded user-defined # minimum, or too small, bail out from this loop sma = isophote.sample.geometry.update_sma(step) if sma <= max(minsma, 0.5): break # if user asked for minsma=0, extract special isophote there if minsma == 0.0: isophote = self.fit_isophote(0.0, isophote_list=isophote_list) # sort list of isophotes according to sma isophote_list.sort() return IsophoteList(isophote_list)
python
def fit_image(self, sma0=None, minsma=0., maxsma=None, step=0.1, conver=DEFAULT_CONVERGENCE, minit=DEFAULT_MINIT, maxit=DEFAULT_MAXIT, fflag=DEFAULT_FFLAG, maxgerr=DEFAULT_MAXGERR, sclip=3., nclip=0, integrmode=BILINEAR, linear=False, maxrit=None): # This parameter list is quite large and should in principle be # simplified by re-distributing these controls to somewhere else. # We keep this design though because it better mimics the flat # architecture used in the original STSDAS task `ellipse`. """ Fit multiple isophotes to the image array. This method loops over each value of the semimajor axis (sma) length (constructed from the input parameters), fitting a single isophote at each sma. The entire set of isophotes is returned in an `~photutils.isophote.IsophoteList` instance. Parameters ---------- sma0 : float, optional The starting value for the semimajor axis length (pixels). This value must not be the minimum or maximum semimajor axis length, but something in between. The algorithm can't start from the very center of the galaxy image because the modelling of elliptical isophotes on that region is poor and it will diverge very easily if not tied to other previously fit isophotes. It can't start from the maximum value either because the maximum is not known beforehand, depending on signal-to-noise. The ``sma0`` value should be selected such that the corresponding isophote has a good signal-to-noise ratio and a clearly defined geometry. If set to `None` (the default), one of two actions will be taken: if a `~photutils.isophote.EllipseGeometry` instance was input to the `~photutils.isophote.Ellipse` constructor, its ``sma`` value will be used. Otherwise, a default value of 10. will be used. minsma : float, optional The minimum value for the semimajor axis length (pixels). The default is 0. maxsma : float or `None`, optional The maximum value for the semimajor axis length (pixels). When set to `None` (default), the algorithm will increase the semimajor axis until one of several conditions will cause it to stop and revert to fit ellipses with sma < ``sma0``. step : float, optional The step value used to grow/shrink the semimajor axis length (pixels if ``linear=True``, or a relative value if ``linear=False``). See the ``linear`` parameter. The default is 0.1. conver : float, optional The main convergence criterion. Iterations stop when the largest harmonic amplitude becomes smaller (in absolute value) than ``conver`` times the harmonic fit rms. The default is 0.05. minit : int, optional The minimum number of iterations to perform. A minimum of 10 (the default) iterations guarantees that, on average, 2 iterations will be available for fitting each independent parameter (the four harmonic amplitudes and the intensity level). For the first isophote, the minimum number of iterations is 2 * ``minit`` to ensure that, even departing from not-so-good initial values, the algorithm has a better chance to converge to a sensible solution. maxit : int, optional The maximum number of iterations to perform. The default is 50. fflag : float, optional The acceptable fraction of flagged data points in the sample. If the actual fraction of valid data points is smaller than this, the iterations will stop and the current `~photutils.isophote.Isophote` will be returned. Flagged data points are points that either lie outside the image frame, are masked, or were rejected by sigma-clipping. The default is 0.7. maxgerr : float, optional The maximum acceptable relative error in the local radial intensity gradient. This is the main control for preventing ellipses to grow to regions of too low signal-to-noise ratio. It specifies the maximum acceptable relative error in the local radial intensity gradient. `Busko (1996; ASPC 101, 139) <http://adsabs.harvard.edu/abs/1996ASPC..101..139B>`_ showed that the fitting precision relates to that relative error. The usual behavior of the gradient relative error is to increase with semimajor axis, being larger in outer, fainter regions of a galaxy image. In the current implementation, the ``maxgerr`` criterion is triggered only when two consecutive isophotes exceed the value specified by the parameter. This prevents premature stopping caused by contamination such as stars and HII regions. A number of actions may happen when the gradient error exceeds ``maxgerr`` (or becomes non-significant and is set to `None`). If the maximum semimajor axis specified by ``maxsma`` is set to `None`, semimajor axis growth is stopped and the algorithm proceeds inwards to the galaxy center. If ``maxsma`` is set to some finite value, and this value is larger than the current semimajor axis length, the algorithm enters non-iterative mode and proceeds outwards until reaching ``maxsma``. The default is 0.5. sclip : float, optional The sigma-clip sigma value. The default is 3.0. nclip : int, optional The number of sigma-clip interations. The default is 0, which means sigma-clipping is skipped. integrmode : {'bilinear', 'nearest_neighbor', 'mean', 'median'}, optional The area integration mode. The default is 'bilinear'. linear : bool, optional The semimajor axis growing/shrinking mode. If `False` (default), the geometric growing mode is chosen, thus the semimajor axis length is increased by a factor of (1. + ``step``), and the process is repeated until either the semimajor axis value reaches the value of parameter ``maxsma``, or the last fitted ellipse has more than a given fraction of its sampled points flagged out (see ``fflag``). The process then resumes from the first fitted ellipse (at ``sma0``) inwards, in steps of (1./(1. + ``step``)), until the semimajor axis length reaches the value ``minsma``. In case of linear growing, the increment or decrement value is given directly by ``step`` in pixels. If ``maxsma`` is set to `None`, the semimajor axis will grow until a low signal-to-noise criterion is met. See ``maxgerr``. maxrit : float or `None`, optional The maximum value of semimajor axis to perform an actual fit. Whenever the current semimajor axis length is larger than ``maxrit``, the isophotes will be extracted using the current geometry, without being fitted. This non-iterative mode may be useful for sampling regions of very low surface brightness, where the algorithm may become unstable and unable to recover reliable geometry information. Non-iterative mode can also be entered automatically whenever the ellipticity exceeds 1.0 or the ellipse center crosses the image boundaries. If `None` (default), then no maximum value is used. Returns ------- result : `~photutils.isophote.IsophoteList` instance A list-like object of `~photutils.isophote.Isophote` instances, sorted by increasing semimajor axis length. """ # multiple fitted isophotes will be stored here isophote_list = [] # get starting sma from appropriate source: keyword parameter, # internal EllipseGeometry instance, or fixed default value. if not sma0: if self._geometry: sma = self._geometry.sma else: sma = 10. else: sma = sma0 # first, go from initial sma outwards until # hitting one of several stopping criteria. noiter = False first_isophote = True while True: # first isophote runs longer minit_a = 2 * minit if first_isophote else minit first_isophote = False isophote = self.fit_isophote(sma, step, conver, minit_a, maxit, fflag, maxgerr, sclip, nclip, integrmode, linear, maxrit, noniterate=noiter, isophote_list=isophote_list) # check for failed fit. if (isophote.stop_code < 0 or isophote.stop_code == 1): # in case the fit failed right at the outset, return an # empty list. This is the usual case when the user # provides initial guesses that are too way off to enable # the fitting algorithm to find any meaningful solution. if len(isophote_list) == 1: warnings.warn('No meaningful fit was possible.', AstropyUserWarning) return IsophoteList([]) self._fix_last_isophote(isophote_list, -1) # get last isophote from the actual list, since the last # `isophote` instance in this context may no longer be OK. isophote = isophote_list[-1] # if two consecutive isophotes failed to fit, # shut off iterative mode. Or, bail out and # change to go inwards. if len(isophote_list) > 2: if ((isophote.stop_code == 5 and isophote_list[-2].stop_code == 5) or isophote.stop_code == 1): if maxsma and maxsma > isophote.sma: # if a maximum sma value was provided by # user, and the current sma is smaller than # maxsma, keep growing sma in non-iterative # mode until reaching it. noiter = True else: # if no maximum sma, stop growing and change # to go inwards. break # reset variable from the actual list, since the last # `isophote` instance may no longer be OK. isophote = isophote_list[-1] # update sma. If exceeded user-defined # maximum, bail out from this loop. sma = isophote.sample.geometry.update_sma(step) if maxsma and sma >= maxsma: break # reset sma so as to go inwards. first_isophote = isophote_list[0] sma, step = first_isophote.sample.geometry.reset_sma(step) # now, go from initial sma inwards towards center. while True: isophote = self.fit_isophote(sma, step, conver, minit, maxit, fflag, maxgerr, sclip, nclip, integrmode, linear, maxrit, going_inwards=True, isophote_list=isophote_list) # if abnormal condition, fix isophote but keep going. if isophote.stop_code < 0: self._fix_last_isophote(isophote_list, 0) # reset variable from the actual list, since the last # `isophote` instance may no longer be OK. isophote = isophote_list[-1] # figure out next sma; if exceeded user-defined # minimum, or too small, bail out from this loop sma = isophote.sample.geometry.update_sma(step) if sma <= max(minsma, 0.5): break # if user asked for minsma=0, extract special isophote there if minsma == 0.0: isophote = self.fit_isophote(0.0, isophote_list=isophote_list) # sort list of isophotes according to sma isophote_list.sort() return IsophoteList(isophote_list)
[ "def", "fit_image", "(", "self", ",", "sma0", "=", "None", ",", "minsma", "=", "0.", ",", "maxsma", "=", "None", ",", "step", "=", "0.1", ",", "conver", "=", "DEFAULT_CONVERGENCE", ",", "minit", "=", "DEFAULT_MINIT", ",", "maxit", "=", "DEFAULT_MAXIT", ",", "fflag", "=", "DEFAULT_FFLAG", ",", "maxgerr", "=", "DEFAULT_MAXGERR", ",", "sclip", "=", "3.", ",", "nclip", "=", "0", ",", "integrmode", "=", "BILINEAR", ",", "linear", "=", "False", ",", "maxrit", "=", "None", ")", ":", "# This parameter list is quite large and should in principle be", "# simplified by re-distributing these controls to somewhere else.", "# We keep this design though because it better mimics the flat", "# architecture used in the original STSDAS task `ellipse`.", "# multiple fitted isophotes will be stored here", "isophote_list", "=", "[", "]", "# get starting sma from appropriate source: keyword parameter,", "# internal EllipseGeometry instance, or fixed default value.", "if", "not", "sma0", ":", "if", "self", ".", "_geometry", ":", "sma", "=", "self", ".", "_geometry", ".", "sma", "else", ":", "sma", "=", "10.", "else", ":", "sma", "=", "sma0", "# first, go from initial sma outwards until", "# hitting one of several stopping criteria.", "noiter", "=", "False", "first_isophote", "=", "True", "while", "True", ":", "# first isophote runs longer", "minit_a", "=", "2", "*", "minit", "if", "first_isophote", "else", "minit", "first_isophote", "=", "False", "isophote", "=", "self", ".", "fit_isophote", "(", "sma", ",", "step", ",", "conver", ",", "minit_a", ",", "maxit", ",", "fflag", ",", "maxgerr", ",", "sclip", ",", "nclip", ",", "integrmode", ",", "linear", ",", "maxrit", ",", "noniterate", "=", "noiter", ",", "isophote_list", "=", "isophote_list", ")", "# check for failed fit.", "if", "(", "isophote", ".", "stop_code", "<", "0", "or", "isophote", ".", "stop_code", "==", "1", ")", ":", "# in case the fit failed right at the outset, return an", "# empty list. This is the usual case when the user", "# provides initial guesses that are too way off to enable", "# the fitting algorithm to find any meaningful solution.", "if", "len", "(", "isophote_list", ")", "==", "1", ":", "warnings", ".", "warn", "(", "'No meaningful fit was possible.'", ",", "AstropyUserWarning", ")", "return", "IsophoteList", "(", "[", "]", ")", "self", ".", "_fix_last_isophote", "(", "isophote_list", ",", "-", "1", ")", "# get last isophote from the actual list, since the last", "# `isophote` instance in this context may no longer be OK.", "isophote", "=", "isophote_list", "[", "-", "1", "]", "# if two consecutive isophotes failed to fit,", "# shut off iterative mode. Or, bail out and", "# change to go inwards.", "if", "len", "(", "isophote_list", ")", ">", "2", ":", "if", "(", "(", "isophote", ".", "stop_code", "==", "5", "and", "isophote_list", "[", "-", "2", "]", ".", "stop_code", "==", "5", ")", "or", "isophote", ".", "stop_code", "==", "1", ")", ":", "if", "maxsma", "and", "maxsma", ">", "isophote", ".", "sma", ":", "# if a maximum sma value was provided by", "# user, and the current sma is smaller than", "# maxsma, keep growing sma in non-iterative", "# mode until reaching it.", "noiter", "=", "True", "else", ":", "# if no maximum sma, stop growing and change", "# to go inwards.", "break", "# reset variable from the actual list, since the last", "# `isophote` instance may no longer be OK.", "isophote", "=", "isophote_list", "[", "-", "1", "]", "# update sma. If exceeded user-defined", "# maximum, bail out from this loop.", "sma", "=", "isophote", ".", "sample", ".", "geometry", ".", "update_sma", "(", "step", ")", "if", "maxsma", "and", "sma", ">=", "maxsma", ":", "break", "# reset sma so as to go inwards.", "first_isophote", "=", "isophote_list", "[", "0", "]", "sma", ",", "step", "=", "first_isophote", ".", "sample", ".", "geometry", ".", "reset_sma", "(", "step", ")", "# now, go from initial sma inwards towards center.", "while", "True", ":", "isophote", "=", "self", ".", "fit_isophote", "(", "sma", ",", "step", ",", "conver", ",", "minit", ",", "maxit", ",", "fflag", ",", "maxgerr", ",", "sclip", ",", "nclip", ",", "integrmode", ",", "linear", ",", "maxrit", ",", "going_inwards", "=", "True", ",", "isophote_list", "=", "isophote_list", ")", "# if abnormal condition, fix isophote but keep going.", "if", "isophote", ".", "stop_code", "<", "0", ":", "self", ".", "_fix_last_isophote", "(", "isophote_list", ",", "0", ")", "# reset variable from the actual list, since the last", "# `isophote` instance may no longer be OK.", "isophote", "=", "isophote_list", "[", "-", "1", "]", "# figure out next sma; if exceeded user-defined", "# minimum, or too small, bail out from this loop", "sma", "=", "isophote", ".", "sample", ".", "geometry", ".", "update_sma", "(", "step", ")", "if", "sma", "<=", "max", "(", "minsma", ",", "0.5", ")", ":", "break", "# if user asked for minsma=0, extract special isophote there", "if", "minsma", "==", "0.0", ":", "isophote", "=", "self", ".", "fit_isophote", "(", "0.0", ",", "isophote_list", "=", "isophote_list", ")", "# sort list of isophotes according to sma", "isophote_list", ".", "sort", "(", ")", "return", "IsophoteList", "(", "isophote_list", ")" ]
Fit multiple isophotes to the image array. This method loops over each value of the semimajor axis (sma) length (constructed from the input parameters), fitting a single isophote at each sma. The entire set of isophotes is returned in an `~photutils.isophote.IsophoteList` instance. Parameters ---------- sma0 : float, optional The starting value for the semimajor axis length (pixels). This value must not be the minimum or maximum semimajor axis length, but something in between. The algorithm can't start from the very center of the galaxy image because the modelling of elliptical isophotes on that region is poor and it will diverge very easily if not tied to other previously fit isophotes. It can't start from the maximum value either because the maximum is not known beforehand, depending on signal-to-noise. The ``sma0`` value should be selected such that the corresponding isophote has a good signal-to-noise ratio and a clearly defined geometry. If set to `None` (the default), one of two actions will be taken: if a `~photutils.isophote.EllipseGeometry` instance was input to the `~photutils.isophote.Ellipse` constructor, its ``sma`` value will be used. Otherwise, a default value of 10. will be used. minsma : float, optional The minimum value for the semimajor axis length (pixels). The default is 0. maxsma : float or `None`, optional The maximum value for the semimajor axis length (pixels). When set to `None` (default), the algorithm will increase the semimajor axis until one of several conditions will cause it to stop and revert to fit ellipses with sma < ``sma0``. step : float, optional The step value used to grow/shrink the semimajor axis length (pixels if ``linear=True``, or a relative value if ``linear=False``). See the ``linear`` parameter. The default is 0.1. conver : float, optional The main convergence criterion. Iterations stop when the largest harmonic amplitude becomes smaller (in absolute value) than ``conver`` times the harmonic fit rms. The default is 0.05. minit : int, optional The minimum number of iterations to perform. A minimum of 10 (the default) iterations guarantees that, on average, 2 iterations will be available for fitting each independent parameter (the four harmonic amplitudes and the intensity level). For the first isophote, the minimum number of iterations is 2 * ``minit`` to ensure that, even departing from not-so-good initial values, the algorithm has a better chance to converge to a sensible solution. maxit : int, optional The maximum number of iterations to perform. The default is 50. fflag : float, optional The acceptable fraction of flagged data points in the sample. If the actual fraction of valid data points is smaller than this, the iterations will stop and the current `~photutils.isophote.Isophote` will be returned. Flagged data points are points that either lie outside the image frame, are masked, or were rejected by sigma-clipping. The default is 0.7. maxgerr : float, optional The maximum acceptable relative error in the local radial intensity gradient. This is the main control for preventing ellipses to grow to regions of too low signal-to-noise ratio. It specifies the maximum acceptable relative error in the local radial intensity gradient. `Busko (1996; ASPC 101, 139) <http://adsabs.harvard.edu/abs/1996ASPC..101..139B>`_ showed that the fitting precision relates to that relative error. The usual behavior of the gradient relative error is to increase with semimajor axis, being larger in outer, fainter regions of a galaxy image. In the current implementation, the ``maxgerr`` criterion is triggered only when two consecutive isophotes exceed the value specified by the parameter. This prevents premature stopping caused by contamination such as stars and HII regions. A number of actions may happen when the gradient error exceeds ``maxgerr`` (or becomes non-significant and is set to `None`). If the maximum semimajor axis specified by ``maxsma`` is set to `None`, semimajor axis growth is stopped and the algorithm proceeds inwards to the galaxy center. If ``maxsma`` is set to some finite value, and this value is larger than the current semimajor axis length, the algorithm enters non-iterative mode and proceeds outwards until reaching ``maxsma``. The default is 0.5. sclip : float, optional The sigma-clip sigma value. The default is 3.0. nclip : int, optional The number of sigma-clip interations. The default is 0, which means sigma-clipping is skipped. integrmode : {'bilinear', 'nearest_neighbor', 'mean', 'median'}, optional The area integration mode. The default is 'bilinear'. linear : bool, optional The semimajor axis growing/shrinking mode. If `False` (default), the geometric growing mode is chosen, thus the semimajor axis length is increased by a factor of (1. + ``step``), and the process is repeated until either the semimajor axis value reaches the value of parameter ``maxsma``, or the last fitted ellipse has more than a given fraction of its sampled points flagged out (see ``fflag``). The process then resumes from the first fitted ellipse (at ``sma0``) inwards, in steps of (1./(1. + ``step``)), until the semimajor axis length reaches the value ``minsma``. In case of linear growing, the increment or decrement value is given directly by ``step`` in pixels. If ``maxsma`` is set to `None`, the semimajor axis will grow until a low signal-to-noise criterion is met. See ``maxgerr``. maxrit : float or `None`, optional The maximum value of semimajor axis to perform an actual fit. Whenever the current semimajor axis length is larger than ``maxrit``, the isophotes will be extracted using the current geometry, without being fitted. This non-iterative mode may be useful for sampling regions of very low surface brightness, where the algorithm may become unstable and unable to recover reliable geometry information. Non-iterative mode can also be entered automatically whenever the ellipticity exceeds 1.0 or the ellipse center crosses the image boundaries. If `None` (default), then no maximum value is used. Returns ------- result : `~photutils.isophote.IsophoteList` instance A list-like object of `~photutils.isophote.Isophote` instances, sorted by increasing semimajor axis length.
[ "Fit", "multiple", "isophotes", "to", "the", "image", "array", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/isophote/ellipse.py#L199-L449
10,614
astropy/photutils
photutils/isophote/ellipse.py
Ellipse.fit_isophote
def fit_isophote(self, sma, step=0.1, conver=DEFAULT_CONVERGENCE, minit=DEFAULT_MINIT, maxit=DEFAULT_MAXIT, fflag=DEFAULT_FFLAG, maxgerr=DEFAULT_MAXGERR, sclip=3., nclip=0, integrmode=BILINEAR, linear=False, maxrit=None, noniterate=False, going_inwards=False, isophote_list=None): """ Fit a single isophote with a given semimajor axis length. The ``step`` and ``linear`` parameters are not used to actually grow or shrink the current fitting semimajor axis length. They are necessary so the sampling algorithm can know where to start the gradient computation and also how to compute the elliptical sector areas (when area integration mode is selected). Parameters ---------- sma : float The semimajor axis length (pixels). step : float, optional The step value used to grow/shrink the semimajor axis length (pixels if ``linear=True``, or a relative value if ``linear=False``). See the ``linear`` parameter. The default is 0.1. conver : float, optional The main convergence criterion. Iterations stop when the largest harmonic amplitude becomes smaller (in absolute value) than ``conver`` times the harmonic fit rms. The default is 0.05. minit : int, optional The minimum number of iterations to perform. A minimum of 10 (the default) iterations guarantees that, on average, 2 iterations will be available for fitting each independent parameter (the four harmonic amplitudes and the intensity level). For the first isophote, the minimum number of iterations is 2 * ``minit`` to ensure that, even departing from not-so-good initial values, the algorithm has a better chance to converge to a sensible solution. maxit : int, optional The maximum number of iterations to perform. The default is 50. fflag : float, optional The acceptable fraction of flagged data points in the sample. If the actual fraction of valid data points is smaller than this, the iterations will stop and the current `~photutils.isophote.Isophote` will be returned. Flagged data points are points that either lie outside the image frame, are masked, or were rejected by sigma-clipping. The default is 0.7. maxgerr : float, optional The maximum acceptable relative error in the local radial intensity gradient. When fitting a single isophote by itself this paramter doesn't have any effect on the outcome. sclip : float, optional The sigma-clip sigma value. The default is 3.0. nclip : int, optional The number of sigma-clip interations. The default is 0, which means sigma-clipping is skipped. integrmode : {'bilinear', 'nearest_neighbor', 'mean', 'median'}, optional The area integration mode. The default is 'bilinear'. linear : bool, optional The semimajor axis growing/shrinking mode. When fitting just one isophote, this parameter is used only by the code that define the details of how elliptical arc segments ("sectors") are extracted from the image when using area extraction modes (see the ``integrmode`` parameter). maxrit : float or `None`, optional The maximum value of semimajor axis to perform an actual fit. Whenever the current semimajor axis length is larger than ``maxrit``, the isophotes will be extracted using the current geometry, without being fitted. This non-iterative mode may be useful for sampling regions of very low surface brightness, where the algorithm may become unstable and unable to recover reliable geometry information. Non-iterative mode can also be entered automatically whenever the ellipticity exceeds 1.0 or the ellipse center crosses the image boundaries. If `None` (default), then no maximum value is used. noniterate : bool, optional Whether the fitting algorithm should be bypassed and an isophote should be extracted with the geometry taken directly from the most recent `~photutils.isophote.Isophote` instance stored in the ``isophote_list`` parameter. This parameter is mainly used when running the method in a loop over different values of semimajor axis length, and we want to change from iterative to non-iterative mode somewhere along the sequence of isophotes. When set to `True`, this parameter overrides the behavior associated with parameter ``maxrit``. The default is `False`. going_inwards : bool, optional Parameter to define the sense of SMA growth. When fitting just one isophote, this parameter is used only by the code that defines the details of how elliptical arc segments ("sectors") are extracted from the image, when using area extraction modes (see the ``integrmode`` parameter). The default is `False`. isophote_list : list or `None`, optional If not `None` (the default), the fitted `~photutils.isophote.Isophote` instance is appended to this list. It must be created and managed by the caller. Returns ------- result : `~photutils.isophote.Isophote` instance The fitted isophote. The fitted isophote is also appended to the input list input to the ``isophote_list`` parameter. """ geometry = self._geometry # if available, geometry from last fitted isophote will be # used as initial guess for next isophote. if isophote_list is not None and len(isophote_list) > 0: geometry = isophote_list[-1].sample.geometry # do the fit if noniterate or (maxrit and sma > maxrit): isophote = self._non_iterative(sma, step, linear, geometry, sclip, nclip, integrmode) else: isophote = self._iterative(sma, step, linear, geometry, sclip, nclip, integrmode, conver, minit, maxit, fflag, maxgerr, going_inwards) # store result in list if isophote_list is not None and isophote.valid: isophote_list.append(isophote) return isophote
python
def fit_isophote(self, sma, step=0.1, conver=DEFAULT_CONVERGENCE, minit=DEFAULT_MINIT, maxit=DEFAULT_MAXIT, fflag=DEFAULT_FFLAG, maxgerr=DEFAULT_MAXGERR, sclip=3., nclip=0, integrmode=BILINEAR, linear=False, maxrit=None, noniterate=False, going_inwards=False, isophote_list=None): """ Fit a single isophote with a given semimajor axis length. The ``step`` and ``linear`` parameters are not used to actually grow or shrink the current fitting semimajor axis length. They are necessary so the sampling algorithm can know where to start the gradient computation and also how to compute the elliptical sector areas (when area integration mode is selected). Parameters ---------- sma : float The semimajor axis length (pixels). step : float, optional The step value used to grow/shrink the semimajor axis length (pixels if ``linear=True``, or a relative value if ``linear=False``). See the ``linear`` parameter. The default is 0.1. conver : float, optional The main convergence criterion. Iterations stop when the largest harmonic amplitude becomes smaller (in absolute value) than ``conver`` times the harmonic fit rms. The default is 0.05. minit : int, optional The minimum number of iterations to perform. A minimum of 10 (the default) iterations guarantees that, on average, 2 iterations will be available for fitting each independent parameter (the four harmonic amplitudes and the intensity level). For the first isophote, the minimum number of iterations is 2 * ``minit`` to ensure that, even departing from not-so-good initial values, the algorithm has a better chance to converge to a sensible solution. maxit : int, optional The maximum number of iterations to perform. The default is 50. fflag : float, optional The acceptable fraction of flagged data points in the sample. If the actual fraction of valid data points is smaller than this, the iterations will stop and the current `~photutils.isophote.Isophote` will be returned. Flagged data points are points that either lie outside the image frame, are masked, or were rejected by sigma-clipping. The default is 0.7. maxgerr : float, optional The maximum acceptable relative error in the local radial intensity gradient. When fitting a single isophote by itself this paramter doesn't have any effect on the outcome. sclip : float, optional The sigma-clip sigma value. The default is 3.0. nclip : int, optional The number of sigma-clip interations. The default is 0, which means sigma-clipping is skipped. integrmode : {'bilinear', 'nearest_neighbor', 'mean', 'median'}, optional The area integration mode. The default is 'bilinear'. linear : bool, optional The semimajor axis growing/shrinking mode. When fitting just one isophote, this parameter is used only by the code that define the details of how elliptical arc segments ("sectors") are extracted from the image when using area extraction modes (see the ``integrmode`` parameter). maxrit : float or `None`, optional The maximum value of semimajor axis to perform an actual fit. Whenever the current semimajor axis length is larger than ``maxrit``, the isophotes will be extracted using the current geometry, without being fitted. This non-iterative mode may be useful for sampling regions of very low surface brightness, where the algorithm may become unstable and unable to recover reliable geometry information. Non-iterative mode can also be entered automatically whenever the ellipticity exceeds 1.0 or the ellipse center crosses the image boundaries. If `None` (default), then no maximum value is used. noniterate : bool, optional Whether the fitting algorithm should be bypassed and an isophote should be extracted with the geometry taken directly from the most recent `~photutils.isophote.Isophote` instance stored in the ``isophote_list`` parameter. This parameter is mainly used when running the method in a loop over different values of semimajor axis length, and we want to change from iterative to non-iterative mode somewhere along the sequence of isophotes. When set to `True`, this parameter overrides the behavior associated with parameter ``maxrit``. The default is `False`. going_inwards : bool, optional Parameter to define the sense of SMA growth. When fitting just one isophote, this parameter is used only by the code that defines the details of how elliptical arc segments ("sectors") are extracted from the image, when using area extraction modes (see the ``integrmode`` parameter). The default is `False`. isophote_list : list or `None`, optional If not `None` (the default), the fitted `~photutils.isophote.Isophote` instance is appended to this list. It must be created and managed by the caller. Returns ------- result : `~photutils.isophote.Isophote` instance The fitted isophote. The fitted isophote is also appended to the input list input to the ``isophote_list`` parameter. """ geometry = self._geometry # if available, geometry from last fitted isophote will be # used as initial guess for next isophote. if isophote_list is not None and len(isophote_list) > 0: geometry = isophote_list[-1].sample.geometry # do the fit if noniterate or (maxrit and sma > maxrit): isophote = self._non_iterative(sma, step, linear, geometry, sclip, nclip, integrmode) else: isophote = self._iterative(sma, step, linear, geometry, sclip, nclip, integrmode, conver, minit, maxit, fflag, maxgerr, going_inwards) # store result in list if isophote_list is not None and isophote.valid: isophote_list.append(isophote) return isophote
[ "def", "fit_isophote", "(", "self", ",", "sma", ",", "step", "=", "0.1", ",", "conver", "=", "DEFAULT_CONVERGENCE", ",", "minit", "=", "DEFAULT_MINIT", ",", "maxit", "=", "DEFAULT_MAXIT", ",", "fflag", "=", "DEFAULT_FFLAG", ",", "maxgerr", "=", "DEFAULT_MAXGERR", ",", "sclip", "=", "3.", ",", "nclip", "=", "0", ",", "integrmode", "=", "BILINEAR", ",", "linear", "=", "False", ",", "maxrit", "=", "None", ",", "noniterate", "=", "False", ",", "going_inwards", "=", "False", ",", "isophote_list", "=", "None", ")", ":", "geometry", "=", "self", ".", "_geometry", "# if available, geometry from last fitted isophote will be", "# used as initial guess for next isophote.", "if", "isophote_list", "is", "not", "None", "and", "len", "(", "isophote_list", ")", ">", "0", ":", "geometry", "=", "isophote_list", "[", "-", "1", "]", ".", "sample", ".", "geometry", "# do the fit", "if", "noniterate", "or", "(", "maxrit", "and", "sma", ">", "maxrit", ")", ":", "isophote", "=", "self", ".", "_non_iterative", "(", "sma", ",", "step", ",", "linear", ",", "geometry", ",", "sclip", ",", "nclip", ",", "integrmode", ")", "else", ":", "isophote", "=", "self", ".", "_iterative", "(", "sma", ",", "step", ",", "linear", ",", "geometry", ",", "sclip", ",", "nclip", ",", "integrmode", ",", "conver", ",", "minit", ",", "maxit", ",", "fflag", ",", "maxgerr", ",", "going_inwards", ")", "# store result in list", "if", "isophote_list", "is", "not", "None", "and", "isophote", ".", "valid", ":", "isophote_list", ".", "append", "(", "isophote", ")", "return", "isophote" ]
Fit a single isophote with a given semimajor axis length. The ``step`` and ``linear`` parameters are not used to actually grow or shrink the current fitting semimajor axis length. They are necessary so the sampling algorithm can know where to start the gradient computation and also how to compute the elliptical sector areas (when area integration mode is selected). Parameters ---------- sma : float The semimajor axis length (pixels). step : float, optional The step value used to grow/shrink the semimajor axis length (pixels if ``linear=True``, or a relative value if ``linear=False``). See the ``linear`` parameter. The default is 0.1. conver : float, optional The main convergence criterion. Iterations stop when the largest harmonic amplitude becomes smaller (in absolute value) than ``conver`` times the harmonic fit rms. The default is 0.05. minit : int, optional The minimum number of iterations to perform. A minimum of 10 (the default) iterations guarantees that, on average, 2 iterations will be available for fitting each independent parameter (the four harmonic amplitudes and the intensity level). For the first isophote, the minimum number of iterations is 2 * ``minit`` to ensure that, even departing from not-so-good initial values, the algorithm has a better chance to converge to a sensible solution. maxit : int, optional The maximum number of iterations to perform. The default is 50. fflag : float, optional The acceptable fraction of flagged data points in the sample. If the actual fraction of valid data points is smaller than this, the iterations will stop and the current `~photutils.isophote.Isophote` will be returned. Flagged data points are points that either lie outside the image frame, are masked, or were rejected by sigma-clipping. The default is 0.7. maxgerr : float, optional The maximum acceptable relative error in the local radial intensity gradient. When fitting a single isophote by itself this paramter doesn't have any effect on the outcome. sclip : float, optional The sigma-clip sigma value. The default is 3.0. nclip : int, optional The number of sigma-clip interations. The default is 0, which means sigma-clipping is skipped. integrmode : {'bilinear', 'nearest_neighbor', 'mean', 'median'}, optional The area integration mode. The default is 'bilinear'. linear : bool, optional The semimajor axis growing/shrinking mode. When fitting just one isophote, this parameter is used only by the code that define the details of how elliptical arc segments ("sectors") are extracted from the image when using area extraction modes (see the ``integrmode`` parameter). maxrit : float or `None`, optional The maximum value of semimajor axis to perform an actual fit. Whenever the current semimajor axis length is larger than ``maxrit``, the isophotes will be extracted using the current geometry, without being fitted. This non-iterative mode may be useful for sampling regions of very low surface brightness, where the algorithm may become unstable and unable to recover reliable geometry information. Non-iterative mode can also be entered automatically whenever the ellipticity exceeds 1.0 or the ellipse center crosses the image boundaries. If `None` (default), then no maximum value is used. noniterate : bool, optional Whether the fitting algorithm should be bypassed and an isophote should be extracted with the geometry taken directly from the most recent `~photutils.isophote.Isophote` instance stored in the ``isophote_list`` parameter. This parameter is mainly used when running the method in a loop over different values of semimajor axis length, and we want to change from iterative to non-iterative mode somewhere along the sequence of isophotes. When set to `True`, this parameter overrides the behavior associated with parameter ``maxrit``. The default is `False`. going_inwards : bool, optional Parameter to define the sense of SMA growth. When fitting just one isophote, this parameter is used only by the code that defines the details of how elliptical arc segments ("sectors") are extracted from the image, when using area extraction modes (see the ``integrmode`` parameter). The default is `False`. isophote_list : list or `None`, optional If not `None` (the default), the fitted `~photutils.isophote.Isophote` instance is appended to this list. It must be created and managed by the caller. Returns ------- result : `~photutils.isophote.Isophote` instance The fitted isophote. The fitted isophote is also appended to the input list input to the ``isophote_list`` parameter.
[ "Fit", "a", "single", "isophote", "with", "a", "given", "semimajor", "axis", "length", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/isophote/ellipse.py#L451-L579
10,615
astropy/photutils
photutils/aperture/circle.py
CircularAperture.to_sky
def to_sky(self, wcs, mode='all'): """ Convert the aperture to a `SkyCircularAperture` object defined in celestial coordinates. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- aperture : `SkyCircularAperture` object A `SkyCircularAperture` object. """ sky_params = self._to_sky_params(wcs, mode=mode) return SkyCircularAperture(**sky_params)
python
def to_sky(self, wcs, mode='all'): """ Convert the aperture to a `SkyCircularAperture` object defined in celestial coordinates. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- aperture : `SkyCircularAperture` object A `SkyCircularAperture` object. """ sky_params = self._to_sky_params(wcs, mode=mode) return SkyCircularAperture(**sky_params)
[ "def", "to_sky", "(", "self", ",", "wcs", ",", "mode", "=", "'all'", ")", ":", "sky_params", "=", "self", ".", "_to_sky_params", "(", "wcs", ",", "mode", "=", "mode", ")", "return", "SkyCircularAperture", "(", "*", "*", "sky_params", ")" ]
Convert the aperture to a `SkyCircularAperture` object defined in celestial coordinates. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- aperture : `SkyCircularAperture` object A `SkyCircularAperture` object.
[ "Convert", "the", "aperture", "to", "a", "SkyCircularAperture", "object", "defined", "in", "celestial", "coordinates", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/aperture/circle.py#L157-L179
10,616
astropy/photutils
photutils/aperture/circle.py
CircularAnnulus.to_sky
def to_sky(self, wcs, mode='all'): """ Convert the aperture to a `SkyCircularAnnulus` object defined in celestial coordinates. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- aperture : `SkyCircularAnnulus` object A `SkyCircularAnnulus` object. """ sky_params = self._to_sky_params(wcs, mode=mode) return SkyCircularAnnulus(**sky_params)
python
def to_sky(self, wcs, mode='all'): """ Convert the aperture to a `SkyCircularAnnulus` object defined in celestial coordinates. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- aperture : `SkyCircularAnnulus` object A `SkyCircularAnnulus` object. """ sky_params = self._to_sky_params(wcs, mode=mode) return SkyCircularAnnulus(**sky_params)
[ "def", "to_sky", "(", "self", ",", "wcs", ",", "mode", "=", "'all'", ")", ":", "sky_params", "=", "self", ".", "_to_sky_params", "(", "wcs", ",", "mode", "=", "mode", ")", "return", "SkyCircularAnnulus", "(", "*", "*", "sky_params", ")" ]
Convert the aperture to a `SkyCircularAnnulus` object defined in celestial coordinates. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- aperture : `SkyCircularAnnulus` object A `SkyCircularAnnulus` object.
[ "Convert", "the", "aperture", "to", "a", "SkyCircularAnnulus", "object", "defined", "in", "celestial", "coordinates", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/aperture/circle.py#L254-L276
10,617
astropy/photutils
photutils/aperture/circle.py
SkyCircularAperture.to_pixel
def to_pixel(self, wcs, mode='all'): """ Convert the aperture to a `CircularAperture` object defined in pixel coordinates. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- aperture : `CircularAperture` object A `CircularAperture` object. """ pixel_params = self._to_pixel_params(wcs, mode=mode) return CircularAperture(**pixel_params)
python
def to_pixel(self, wcs, mode='all'): """ Convert the aperture to a `CircularAperture` object defined in pixel coordinates. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- aperture : `CircularAperture` object A `CircularAperture` object. """ pixel_params = self._to_pixel_params(wcs, mode=mode) return CircularAperture(**pixel_params)
[ "def", "to_pixel", "(", "self", ",", "wcs", ",", "mode", "=", "'all'", ")", ":", "pixel_params", "=", "self", ".", "_to_pixel_params", "(", "wcs", ",", "mode", "=", "mode", ")", "return", "CircularAperture", "(", "*", "*", "pixel_params", ")" ]
Convert the aperture to a `CircularAperture` object defined in pixel coordinates. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- aperture : `CircularAperture` object A `CircularAperture` object.
[ "Convert", "the", "aperture", "to", "a", "CircularAperture", "object", "defined", "in", "pixel", "coordinates", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/aperture/circle.py#L303-L325
10,618
astropy/photutils
photutils/aperture/circle.py
SkyCircularAnnulus.to_pixel
def to_pixel(self, wcs, mode='all'): """ Convert the aperture to a `CircularAnnulus` object defined in pixel coordinates. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- aperture : `CircularAnnulus` object A `CircularAnnulus` object. """ pixel_params = self._to_pixel_params(wcs, mode=mode) return CircularAnnulus(**pixel_params)
python
def to_pixel(self, wcs, mode='all'): """ Convert the aperture to a `CircularAnnulus` object defined in pixel coordinates. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- aperture : `CircularAnnulus` object A `CircularAnnulus` object. """ pixel_params = self._to_pixel_params(wcs, mode=mode) return CircularAnnulus(**pixel_params)
[ "def", "to_pixel", "(", "self", ",", "wcs", ",", "mode", "=", "'all'", ")", ":", "pixel_params", "=", "self", ".", "_to_pixel_params", "(", "wcs", ",", "mode", "=", "mode", ")", "return", "CircularAnnulus", "(", "*", "*", "pixel_params", ")" ]
Convert the aperture to a `CircularAnnulus` object defined in pixel coordinates. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- aperture : `CircularAnnulus` object A `CircularAnnulus` object.
[ "Convert", "the", "aperture", "to", "a", "CircularAnnulus", "object", "defined", "in", "pixel", "coordinates", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/aperture/circle.py#L364-L386
10,619
astropy/photutils
photutils/datasets/make.py
apply_poisson_noise
def apply_poisson_noise(data, random_state=None): """ Apply Poisson noise to an array, where the value of each element in the input array represents the expected number of counts. Each pixel in the output array is generated by drawing a random sample from a Poisson distribution whose expectation value is given by the pixel value in the input array. Parameters ---------- data : array-like The array on which to apply Poisson noise. Every pixel in the array must have a positive value (i.e. counts). random_state : int or `~numpy.random.RandomState`, optional Pseudo-random number generator state used for random sampling. Returns ------- result : `~numpy.ndarray` The data array after applying Poisson noise. See Also -------- make_noise_image Examples -------- .. plot:: :include-source: from photutils.datasets import make_4gaussians_image from photutils.datasets import apply_poisson_noise data1 = make_4gaussians_image(noise=False) data2 = apply_poisson_noise(data1, random_state=12345) # plot the images import matplotlib.pyplot as plt fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 8)) ax1.imshow(data1, origin='lower', interpolation='nearest') ax1.set_title('Original image') ax2.imshow(data2, origin='lower', interpolation='nearest') ax2.set_title('Original image with Poisson noise applied') """ data = np.asanyarray(data) if np.any(data < 0): raise ValueError('data must not contain any negative values') prng = check_random_state(random_state) return prng.poisson(data)
python
def apply_poisson_noise(data, random_state=None): """ Apply Poisson noise to an array, where the value of each element in the input array represents the expected number of counts. Each pixel in the output array is generated by drawing a random sample from a Poisson distribution whose expectation value is given by the pixel value in the input array. Parameters ---------- data : array-like The array on which to apply Poisson noise. Every pixel in the array must have a positive value (i.e. counts). random_state : int or `~numpy.random.RandomState`, optional Pseudo-random number generator state used for random sampling. Returns ------- result : `~numpy.ndarray` The data array after applying Poisson noise. See Also -------- make_noise_image Examples -------- .. plot:: :include-source: from photutils.datasets import make_4gaussians_image from photutils.datasets import apply_poisson_noise data1 = make_4gaussians_image(noise=False) data2 = apply_poisson_noise(data1, random_state=12345) # plot the images import matplotlib.pyplot as plt fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 8)) ax1.imshow(data1, origin='lower', interpolation='nearest') ax1.set_title('Original image') ax2.imshow(data2, origin='lower', interpolation='nearest') ax2.set_title('Original image with Poisson noise applied') """ data = np.asanyarray(data) if np.any(data < 0): raise ValueError('data must not contain any negative values') prng = check_random_state(random_state) return prng.poisson(data)
[ "def", "apply_poisson_noise", "(", "data", ",", "random_state", "=", "None", ")", ":", "data", "=", "np", ".", "asanyarray", "(", "data", ")", "if", "np", ".", "any", "(", "data", "<", "0", ")", ":", "raise", "ValueError", "(", "'data must not contain any negative values'", ")", "prng", "=", "check_random_state", "(", "random_state", ")", "return", "prng", ".", "poisson", "(", "data", ")" ]
Apply Poisson noise to an array, where the value of each element in the input array represents the expected number of counts. Each pixel in the output array is generated by drawing a random sample from a Poisson distribution whose expectation value is given by the pixel value in the input array. Parameters ---------- data : array-like The array on which to apply Poisson noise. Every pixel in the array must have a positive value (i.e. counts). random_state : int or `~numpy.random.RandomState`, optional Pseudo-random number generator state used for random sampling. Returns ------- result : `~numpy.ndarray` The data array after applying Poisson noise. See Also -------- make_noise_image Examples -------- .. plot:: :include-source: from photutils.datasets import make_4gaussians_image from photutils.datasets import apply_poisson_noise data1 = make_4gaussians_image(noise=False) data2 = apply_poisson_noise(data1, random_state=12345) # plot the images import matplotlib.pyplot as plt fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 8)) ax1.imshow(data1, origin='lower', interpolation='nearest') ax1.set_title('Original image') ax2.imshow(data2, origin='lower', interpolation='nearest') ax2.set_title('Original image with Poisson noise applied')
[ "Apply", "Poisson", "noise", "to", "an", "array", "where", "the", "value", "of", "each", "element", "in", "the", "input", "array", "represents", "the", "expected", "number", "of", "counts", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/datasets/make.py#L26-L78
10,620
astropy/photutils
photutils/datasets/make.py
make_noise_image
def make_noise_image(shape, type='gaussian', mean=None, stddev=None, random_state=None): """ Make a noise image containing Gaussian or Poisson noise. Parameters ---------- shape : 2-tuple of int The shape of the output 2D image. type : {'gaussian', 'poisson'} The distribution used to generate the random noise: * ``'gaussian'``: Gaussian distributed noise. * ``'poisson'``: Poisson distributed noise. mean : float The mean of the random distribution. Required for both Gaussian and Poisson noise. The default is 0. stddev : float, optional The standard deviation of the Gaussian noise to add to the output image. Required for Gaussian noise and ignored for Poisson noise (the variance of the Poisson distribution is equal to its mean). random_state : int or `~numpy.random.RandomState`, optional Pseudo-random number generator state used for random sampling. Separate function calls with the same noise parameters and ``random_state`` will generate the identical noise image. Returns ------- image : 2D `~numpy.ndarray` Image containing random noise. See Also -------- apply_poisson_noise Examples -------- .. plot:: :include-source: # make Gaussian and Poisson noise images from photutils.datasets import make_noise_image shape = (100, 100) image1 = make_noise_image(shape, type='gaussian', mean=0., stddev=5.) image2 = make_noise_image(shape, type='poisson', mean=5.) # plot the images import matplotlib.pyplot as plt fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4)) ax1.imshow(image1, origin='lower', interpolation='nearest') ax1.set_title('Gaussian noise ($\\mu=0$, $\\sigma=5.$)') ax2.imshow(image2, origin='lower', interpolation='nearest') ax2.set_title('Poisson noise ($\\mu=5$)') """ if mean is None: raise ValueError('"mean" must be input') prng = check_random_state(random_state) if type == 'gaussian': if stddev is None: raise ValueError('"stddev" must be input for Gaussian noise') image = prng.normal(loc=mean, scale=stddev, size=shape) elif type == 'poisson': image = prng.poisson(lam=mean, size=shape) else: raise ValueError('Invalid type: {0}. Use one of ' '{"gaussian", "poisson"}.'.format(type)) return image
python
def make_noise_image(shape, type='gaussian', mean=None, stddev=None, random_state=None): """ Make a noise image containing Gaussian or Poisson noise. Parameters ---------- shape : 2-tuple of int The shape of the output 2D image. type : {'gaussian', 'poisson'} The distribution used to generate the random noise: * ``'gaussian'``: Gaussian distributed noise. * ``'poisson'``: Poisson distributed noise. mean : float The mean of the random distribution. Required for both Gaussian and Poisson noise. The default is 0. stddev : float, optional The standard deviation of the Gaussian noise to add to the output image. Required for Gaussian noise and ignored for Poisson noise (the variance of the Poisson distribution is equal to its mean). random_state : int or `~numpy.random.RandomState`, optional Pseudo-random number generator state used for random sampling. Separate function calls with the same noise parameters and ``random_state`` will generate the identical noise image. Returns ------- image : 2D `~numpy.ndarray` Image containing random noise. See Also -------- apply_poisson_noise Examples -------- .. plot:: :include-source: # make Gaussian and Poisson noise images from photutils.datasets import make_noise_image shape = (100, 100) image1 = make_noise_image(shape, type='gaussian', mean=0., stddev=5.) image2 = make_noise_image(shape, type='poisson', mean=5.) # plot the images import matplotlib.pyplot as plt fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4)) ax1.imshow(image1, origin='lower', interpolation='nearest') ax1.set_title('Gaussian noise ($\\mu=0$, $\\sigma=5.$)') ax2.imshow(image2, origin='lower', interpolation='nearest') ax2.set_title('Poisson noise ($\\mu=5$)') """ if mean is None: raise ValueError('"mean" must be input') prng = check_random_state(random_state) if type == 'gaussian': if stddev is None: raise ValueError('"stddev" must be input for Gaussian noise') image = prng.normal(loc=mean, scale=stddev, size=shape) elif type == 'poisson': image = prng.poisson(lam=mean, size=shape) else: raise ValueError('Invalid type: {0}. Use one of ' '{"gaussian", "poisson"}.'.format(type)) return image
[ "def", "make_noise_image", "(", "shape", ",", "type", "=", "'gaussian'", ",", "mean", "=", "None", ",", "stddev", "=", "None", ",", "random_state", "=", "None", ")", ":", "if", "mean", "is", "None", ":", "raise", "ValueError", "(", "'\"mean\" must be input'", ")", "prng", "=", "check_random_state", "(", "random_state", ")", "if", "type", "==", "'gaussian'", ":", "if", "stddev", "is", "None", ":", "raise", "ValueError", "(", "'\"stddev\" must be input for Gaussian noise'", ")", "image", "=", "prng", ".", "normal", "(", "loc", "=", "mean", ",", "scale", "=", "stddev", ",", "size", "=", "shape", ")", "elif", "type", "==", "'poisson'", ":", "image", "=", "prng", ".", "poisson", "(", "lam", "=", "mean", ",", "size", "=", "shape", ")", "else", ":", "raise", "ValueError", "(", "'Invalid type: {0}. Use one of '", "'{\"gaussian\", \"poisson\"}.'", ".", "format", "(", "type", ")", ")", "return", "image" ]
Make a noise image containing Gaussian or Poisson noise. Parameters ---------- shape : 2-tuple of int The shape of the output 2D image. type : {'gaussian', 'poisson'} The distribution used to generate the random noise: * ``'gaussian'``: Gaussian distributed noise. * ``'poisson'``: Poisson distributed noise. mean : float The mean of the random distribution. Required for both Gaussian and Poisson noise. The default is 0. stddev : float, optional The standard deviation of the Gaussian noise to add to the output image. Required for Gaussian noise and ignored for Poisson noise (the variance of the Poisson distribution is equal to its mean). random_state : int or `~numpy.random.RandomState`, optional Pseudo-random number generator state used for random sampling. Separate function calls with the same noise parameters and ``random_state`` will generate the identical noise image. Returns ------- image : 2D `~numpy.ndarray` Image containing random noise. See Also -------- apply_poisson_noise Examples -------- .. plot:: :include-source: # make Gaussian and Poisson noise images from photutils.datasets import make_noise_image shape = (100, 100) image1 = make_noise_image(shape, type='gaussian', mean=0., stddev=5.) image2 = make_noise_image(shape, type='poisson', mean=5.) # plot the images import matplotlib.pyplot as plt fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4)) ax1.imshow(image1, origin='lower', interpolation='nearest') ax1.set_title('Gaussian noise ($\\mu=0$, $\\sigma=5.$)') ax2.imshow(image2, origin='lower', interpolation='nearest') ax2.set_title('Poisson noise ($\\mu=5$)')
[ "Make", "a", "noise", "image", "containing", "Gaussian", "or", "Poisson", "noise", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/datasets/make.py#L81-L156
10,621
astropy/photutils
photutils/datasets/make.py
make_random_models_table
def make_random_models_table(n_sources, param_ranges, random_state=None): """ Make a `~astropy.table.Table` containing randomly generated parameters for an Astropy model to simulate a set of sources. Each row of the table corresponds to a source whose parameters are defined by the column names. The parameters are drawn from a uniform distribution over the specified input ranges. The output table can be input into :func:`make_model_sources_image` to create an image containing the model sources. Parameters ---------- n_sources : float The number of random model sources to generate. param_ranges : dict The lower and upper boundaries for each of the model parameters as a `dict` mapping the parameter name to its ``(lower, upper)`` bounds. random_state : int or `~numpy.random.RandomState`, optional Pseudo-random number generator state used for random sampling. Returns ------- table : `~astropy.table.Table` A table of parameters for the randomly generated sources. Each row of the table corresponds to a source whose model parameters are defined by the column names. The column names will be the keys of the dictionary ``param_ranges``. See Also -------- make_random_gaussians_table, make_model_sources_image Notes ----- To generate identical parameter values from separate function calls, ``param_ranges`` must be input as an `~collections.OrderedDict` with the same parameter ranges and ``random_state`` must be the same. Examples -------- >>> from collections import OrderedDict >>> from photutils.datasets import make_random_models_table >>> n_sources = 5 >>> param_ranges = [('amplitude', [500, 1000]), ... ('x_mean', [0, 500]), ... ('y_mean', [0, 300]), ... ('x_stddev', [1, 5]), ... ('y_stddev', [1, 5]), ... ('theta', [0, np.pi])] >>> param_ranges = OrderedDict(param_ranges) >>> sources = make_random_models_table(n_sources, param_ranges, ... random_state=12345) >>> for col in sources.colnames: ... sources[col].info.format = '%.8g' # for consistent table output >>> print(sources) amplitude x_mean y_mean x_stddev y_stddev theta --------- --------- --------- --------- --------- ---------- 964.80805 297.77235 224.31444 3.6256447 3.5699013 2.2923859 658.18778 482.25726 288.39202 4.2392502 3.8698145 3.1227889 591.95941 326.58855 2.5164894 4.4887037 2.870396 2.1264615 602.28014 374.45332 31.933313 4.8585904 2.3023387 2.4844422 783.86251 326.78494 89.611114 3.8947414 2.7585784 0.53694298 """ prng = check_random_state(random_state) sources = Table() for param_name, (lower, upper) in param_ranges.items(): # Generate a column for every item in param_ranges, even if it # is not in the model (e.g. flux). However, such columns will # be ignored when rendering the image. sources[param_name] = prng.uniform(lower, upper, n_sources) return sources
python
def make_random_models_table(n_sources, param_ranges, random_state=None): """ Make a `~astropy.table.Table` containing randomly generated parameters for an Astropy model to simulate a set of sources. Each row of the table corresponds to a source whose parameters are defined by the column names. The parameters are drawn from a uniform distribution over the specified input ranges. The output table can be input into :func:`make_model_sources_image` to create an image containing the model sources. Parameters ---------- n_sources : float The number of random model sources to generate. param_ranges : dict The lower and upper boundaries for each of the model parameters as a `dict` mapping the parameter name to its ``(lower, upper)`` bounds. random_state : int or `~numpy.random.RandomState`, optional Pseudo-random number generator state used for random sampling. Returns ------- table : `~astropy.table.Table` A table of parameters for the randomly generated sources. Each row of the table corresponds to a source whose model parameters are defined by the column names. The column names will be the keys of the dictionary ``param_ranges``. See Also -------- make_random_gaussians_table, make_model_sources_image Notes ----- To generate identical parameter values from separate function calls, ``param_ranges`` must be input as an `~collections.OrderedDict` with the same parameter ranges and ``random_state`` must be the same. Examples -------- >>> from collections import OrderedDict >>> from photutils.datasets import make_random_models_table >>> n_sources = 5 >>> param_ranges = [('amplitude', [500, 1000]), ... ('x_mean', [0, 500]), ... ('y_mean', [0, 300]), ... ('x_stddev', [1, 5]), ... ('y_stddev', [1, 5]), ... ('theta', [0, np.pi])] >>> param_ranges = OrderedDict(param_ranges) >>> sources = make_random_models_table(n_sources, param_ranges, ... random_state=12345) >>> for col in sources.colnames: ... sources[col].info.format = '%.8g' # for consistent table output >>> print(sources) amplitude x_mean y_mean x_stddev y_stddev theta --------- --------- --------- --------- --------- ---------- 964.80805 297.77235 224.31444 3.6256447 3.5699013 2.2923859 658.18778 482.25726 288.39202 4.2392502 3.8698145 3.1227889 591.95941 326.58855 2.5164894 4.4887037 2.870396 2.1264615 602.28014 374.45332 31.933313 4.8585904 2.3023387 2.4844422 783.86251 326.78494 89.611114 3.8947414 2.7585784 0.53694298 """ prng = check_random_state(random_state) sources = Table() for param_name, (lower, upper) in param_ranges.items(): # Generate a column for every item in param_ranges, even if it # is not in the model (e.g. flux). However, such columns will # be ignored when rendering the image. sources[param_name] = prng.uniform(lower, upper, n_sources) return sources
[ "def", "make_random_models_table", "(", "n_sources", ",", "param_ranges", ",", "random_state", "=", "None", ")", ":", "prng", "=", "check_random_state", "(", "random_state", ")", "sources", "=", "Table", "(", ")", "for", "param_name", ",", "(", "lower", ",", "upper", ")", "in", "param_ranges", ".", "items", "(", ")", ":", "# Generate a column for every item in param_ranges, even if it", "# is not in the model (e.g. flux). However, such columns will", "# be ignored when rendering the image.", "sources", "[", "param_name", "]", "=", "prng", ".", "uniform", "(", "lower", ",", "upper", ",", "n_sources", ")", "return", "sources" ]
Make a `~astropy.table.Table` containing randomly generated parameters for an Astropy model to simulate a set of sources. Each row of the table corresponds to a source whose parameters are defined by the column names. The parameters are drawn from a uniform distribution over the specified input ranges. The output table can be input into :func:`make_model_sources_image` to create an image containing the model sources. Parameters ---------- n_sources : float The number of random model sources to generate. param_ranges : dict The lower and upper boundaries for each of the model parameters as a `dict` mapping the parameter name to its ``(lower, upper)`` bounds. random_state : int or `~numpy.random.RandomState`, optional Pseudo-random number generator state used for random sampling. Returns ------- table : `~astropy.table.Table` A table of parameters for the randomly generated sources. Each row of the table corresponds to a source whose model parameters are defined by the column names. The column names will be the keys of the dictionary ``param_ranges``. See Also -------- make_random_gaussians_table, make_model_sources_image Notes ----- To generate identical parameter values from separate function calls, ``param_ranges`` must be input as an `~collections.OrderedDict` with the same parameter ranges and ``random_state`` must be the same. Examples -------- >>> from collections import OrderedDict >>> from photutils.datasets import make_random_models_table >>> n_sources = 5 >>> param_ranges = [('amplitude', [500, 1000]), ... ('x_mean', [0, 500]), ... ('y_mean', [0, 300]), ... ('x_stddev', [1, 5]), ... ('y_stddev', [1, 5]), ... ('theta', [0, np.pi])] >>> param_ranges = OrderedDict(param_ranges) >>> sources = make_random_models_table(n_sources, param_ranges, ... random_state=12345) >>> for col in sources.colnames: ... sources[col].info.format = '%.8g' # for consistent table output >>> print(sources) amplitude x_mean y_mean x_stddev y_stddev theta --------- --------- --------- --------- --------- ---------- 964.80805 297.77235 224.31444 3.6256447 3.5699013 2.2923859 658.18778 482.25726 288.39202 4.2392502 3.8698145 3.1227889 591.95941 326.58855 2.5164894 4.4887037 2.870396 2.1264615 602.28014 374.45332 31.933313 4.8585904 2.3023387 2.4844422 783.86251 326.78494 89.611114 3.8947414 2.7585784 0.53694298
[ "Make", "a", "~astropy", ".", "table", ".", "Table", "containing", "randomly", "generated", "parameters", "for", "an", "Astropy", "model", "to", "simulate", "a", "set", "of", "sources", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/datasets/make.py#L159-L237
10,622
astropy/photutils
photutils/datasets/make.py
make_random_gaussians_table
def make_random_gaussians_table(n_sources, param_ranges, random_state=None): """ Make a `~astropy.table.Table` containing randomly generated parameters for 2D Gaussian sources. Each row of the table corresponds to a Gaussian source whose parameters are defined by the column names. The parameters are drawn from a uniform distribution over the specified input ranges. The output table can be input into :func:`make_gaussian_sources_image` to create an image containing the 2D Gaussian sources. Parameters ---------- n_sources : float The number of random Gaussian sources to generate. param_ranges : dict The lower and upper boundaries for each of the `~astropy.modeling.functional_models.Gaussian2D` parameters as a `dict` mapping the parameter name to its ``(lower, upper)`` bounds. The dictionary keys must be valid `~astropy.modeling.functional_models.Gaussian2D` parameter names or ``'flux'``. If ``'flux'`` is specified, but not ``'amplitude'`` then the 2D Gaussian amplitudes will be calculated and placed in the output table. If both ``'flux'`` and ``'amplitude'`` are specified, then ``'flux'`` will be ignored. Model parameters not defined in ``param_ranges`` will be set to the default value. random_state : int or `~numpy.random.RandomState`, optional Pseudo-random number generator state used for random sampling. Returns ------- table : `~astropy.table.Table` A table of parameters for the randomly generated Gaussian sources. Each row of the table corresponds to a Gaussian source whose parameters are defined by the column names. See Also -------- make_random_models_table, make_gaussian_sources_image Notes ----- To generate identical parameter values from separate function calls, ``param_ranges`` must be input as an `~collections.OrderedDict` with the same parameter ranges and ``random_state`` must be the same. Examples -------- >>> from collections import OrderedDict >>> from photutils.datasets import make_random_gaussians_table >>> n_sources = 5 >>> param_ranges = [('amplitude', [500, 1000]), ... ('x_mean', [0, 500]), ... ('y_mean', [0, 300]), ... ('x_stddev', [1, 5]), ... ('y_stddev', [1, 5]), ... ('theta', [0, np.pi])] >>> param_ranges = OrderedDict(param_ranges) >>> sources = make_random_gaussians_table(n_sources, param_ranges, ... random_state=12345) >>> for col in sources.colnames: ... sources[col].info.format = '%.8g' # for consistent table output >>> print(sources) amplitude x_mean y_mean x_stddev y_stddev theta --------- --------- --------- --------- --------- ---------- 964.80805 297.77235 224.31444 3.6256447 3.5699013 2.2923859 658.18778 482.25726 288.39202 4.2392502 3.8698145 3.1227889 591.95941 326.58855 2.5164894 4.4887037 2.870396 2.1264615 602.28014 374.45332 31.933313 4.8585904 2.3023387 2.4844422 783.86251 326.78494 89.611114 3.8947414 2.7585784 0.53694298 To specifying the flux range instead of the amplitude range: >>> param_ranges = [('flux', [500, 1000]), ... ('x_mean', [0, 500]), ... ('y_mean', [0, 300]), ... ('x_stddev', [1, 5]), ... ('y_stddev', [1, 5]), ... ('theta', [0, np.pi])] >>> param_ranges = OrderedDict(param_ranges) >>> sources = make_random_gaussians_table(n_sources, param_ranges, ... random_state=12345) >>> for col in sources.colnames: ... sources[col].info.format = '%.8g' # for consistent table output >>> print(sources) flux x_mean y_mean x_stddev y_stddev theta amplitude --------- --------- --------- --------- --------- ---------- --------- 964.80805 297.77235 224.31444 3.6256447 3.5699013 2.2923859 11.863685 658.18778 482.25726 288.39202 4.2392502 3.8698145 3.1227889 6.3854388 591.95941 326.58855 2.5164894 4.4887037 2.870396 2.1264615 7.3122209 602.28014 374.45332 31.933313 4.8585904 2.3023387 2.4844422 8.5691781 783.86251 326.78494 89.611114 3.8947414 2.7585784 0.53694298 11.611707 Note that in this case the output table contains both a flux and amplitude column. The flux column will be ignored when generating an image of the models using :func:`make_gaussian_sources_image`. """ sources = make_random_models_table(n_sources, param_ranges, random_state=random_state) # convert Gaussian2D flux to amplitude if 'flux' in param_ranges and 'amplitude' not in param_ranges: model = Gaussian2D(x_stddev=1, y_stddev=1) if 'x_stddev' in sources.colnames: xstd = sources['x_stddev'] else: xstd = model.x_stddev.value # default if 'y_stddev' in sources.colnames: ystd = sources['y_stddev'] else: ystd = model.y_stddev.value # default sources = sources.copy() sources['amplitude'] = sources['flux'] / (2. * np.pi * xstd * ystd) return sources
python
def make_random_gaussians_table(n_sources, param_ranges, random_state=None): """ Make a `~astropy.table.Table` containing randomly generated parameters for 2D Gaussian sources. Each row of the table corresponds to a Gaussian source whose parameters are defined by the column names. The parameters are drawn from a uniform distribution over the specified input ranges. The output table can be input into :func:`make_gaussian_sources_image` to create an image containing the 2D Gaussian sources. Parameters ---------- n_sources : float The number of random Gaussian sources to generate. param_ranges : dict The lower and upper boundaries for each of the `~astropy.modeling.functional_models.Gaussian2D` parameters as a `dict` mapping the parameter name to its ``(lower, upper)`` bounds. The dictionary keys must be valid `~astropy.modeling.functional_models.Gaussian2D` parameter names or ``'flux'``. If ``'flux'`` is specified, but not ``'amplitude'`` then the 2D Gaussian amplitudes will be calculated and placed in the output table. If both ``'flux'`` and ``'amplitude'`` are specified, then ``'flux'`` will be ignored. Model parameters not defined in ``param_ranges`` will be set to the default value. random_state : int or `~numpy.random.RandomState`, optional Pseudo-random number generator state used for random sampling. Returns ------- table : `~astropy.table.Table` A table of parameters for the randomly generated Gaussian sources. Each row of the table corresponds to a Gaussian source whose parameters are defined by the column names. See Also -------- make_random_models_table, make_gaussian_sources_image Notes ----- To generate identical parameter values from separate function calls, ``param_ranges`` must be input as an `~collections.OrderedDict` with the same parameter ranges and ``random_state`` must be the same. Examples -------- >>> from collections import OrderedDict >>> from photutils.datasets import make_random_gaussians_table >>> n_sources = 5 >>> param_ranges = [('amplitude', [500, 1000]), ... ('x_mean', [0, 500]), ... ('y_mean', [0, 300]), ... ('x_stddev', [1, 5]), ... ('y_stddev', [1, 5]), ... ('theta', [0, np.pi])] >>> param_ranges = OrderedDict(param_ranges) >>> sources = make_random_gaussians_table(n_sources, param_ranges, ... random_state=12345) >>> for col in sources.colnames: ... sources[col].info.format = '%.8g' # for consistent table output >>> print(sources) amplitude x_mean y_mean x_stddev y_stddev theta --------- --------- --------- --------- --------- ---------- 964.80805 297.77235 224.31444 3.6256447 3.5699013 2.2923859 658.18778 482.25726 288.39202 4.2392502 3.8698145 3.1227889 591.95941 326.58855 2.5164894 4.4887037 2.870396 2.1264615 602.28014 374.45332 31.933313 4.8585904 2.3023387 2.4844422 783.86251 326.78494 89.611114 3.8947414 2.7585784 0.53694298 To specifying the flux range instead of the amplitude range: >>> param_ranges = [('flux', [500, 1000]), ... ('x_mean', [0, 500]), ... ('y_mean', [0, 300]), ... ('x_stddev', [1, 5]), ... ('y_stddev', [1, 5]), ... ('theta', [0, np.pi])] >>> param_ranges = OrderedDict(param_ranges) >>> sources = make_random_gaussians_table(n_sources, param_ranges, ... random_state=12345) >>> for col in sources.colnames: ... sources[col].info.format = '%.8g' # for consistent table output >>> print(sources) flux x_mean y_mean x_stddev y_stddev theta amplitude --------- --------- --------- --------- --------- ---------- --------- 964.80805 297.77235 224.31444 3.6256447 3.5699013 2.2923859 11.863685 658.18778 482.25726 288.39202 4.2392502 3.8698145 3.1227889 6.3854388 591.95941 326.58855 2.5164894 4.4887037 2.870396 2.1264615 7.3122209 602.28014 374.45332 31.933313 4.8585904 2.3023387 2.4844422 8.5691781 783.86251 326.78494 89.611114 3.8947414 2.7585784 0.53694298 11.611707 Note that in this case the output table contains both a flux and amplitude column. The flux column will be ignored when generating an image of the models using :func:`make_gaussian_sources_image`. """ sources = make_random_models_table(n_sources, param_ranges, random_state=random_state) # convert Gaussian2D flux to amplitude if 'flux' in param_ranges and 'amplitude' not in param_ranges: model = Gaussian2D(x_stddev=1, y_stddev=1) if 'x_stddev' in sources.colnames: xstd = sources['x_stddev'] else: xstd = model.x_stddev.value # default if 'y_stddev' in sources.colnames: ystd = sources['y_stddev'] else: ystd = model.y_stddev.value # default sources = sources.copy() sources['amplitude'] = sources['flux'] / (2. * np.pi * xstd * ystd) return sources
[ "def", "make_random_gaussians_table", "(", "n_sources", ",", "param_ranges", ",", "random_state", "=", "None", ")", ":", "sources", "=", "make_random_models_table", "(", "n_sources", ",", "param_ranges", ",", "random_state", "=", "random_state", ")", "# convert Gaussian2D flux to amplitude", "if", "'flux'", "in", "param_ranges", "and", "'amplitude'", "not", "in", "param_ranges", ":", "model", "=", "Gaussian2D", "(", "x_stddev", "=", "1", ",", "y_stddev", "=", "1", ")", "if", "'x_stddev'", "in", "sources", ".", "colnames", ":", "xstd", "=", "sources", "[", "'x_stddev'", "]", "else", ":", "xstd", "=", "model", ".", "x_stddev", ".", "value", "# default", "if", "'y_stddev'", "in", "sources", ".", "colnames", ":", "ystd", "=", "sources", "[", "'y_stddev'", "]", "else", ":", "ystd", "=", "model", ".", "y_stddev", ".", "value", "# default", "sources", "=", "sources", ".", "copy", "(", ")", "sources", "[", "'amplitude'", "]", "=", "sources", "[", "'flux'", "]", "/", "(", "2.", "*", "np", ".", "pi", "*", "xstd", "*", "ystd", ")", "return", "sources" ]
Make a `~astropy.table.Table` containing randomly generated parameters for 2D Gaussian sources. Each row of the table corresponds to a Gaussian source whose parameters are defined by the column names. The parameters are drawn from a uniform distribution over the specified input ranges. The output table can be input into :func:`make_gaussian_sources_image` to create an image containing the 2D Gaussian sources. Parameters ---------- n_sources : float The number of random Gaussian sources to generate. param_ranges : dict The lower and upper boundaries for each of the `~astropy.modeling.functional_models.Gaussian2D` parameters as a `dict` mapping the parameter name to its ``(lower, upper)`` bounds. The dictionary keys must be valid `~astropy.modeling.functional_models.Gaussian2D` parameter names or ``'flux'``. If ``'flux'`` is specified, but not ``'amplitude'`` then the 2D Gaussian amplitudes will be calculated and placed in the output table. If both ``'flux'`` and ``'amplitude'`` are specified, then ``'flux'`` will be ignored. Model parameters not defined in ``param_ranges`` will be set to the default value. random_state : int or `~numpy.random.RandomState`, optional Pseudo-random number generator state used for random sampling. Returns ------- table : `~astropy.table.Table` A table of parameters for the randomly generated Gaussian sources. Each row of the table corresponds to a Gaussian source whose parameters are defined by the column names. See Also -------- make_random_models_table, make_gaussian_sources_image Notes ----- To generate identical parameter values from separate function calls, ``param_ranges`` must be input as an `~collections.OrderedDict` with the same parameter ranges and ``random_state`` must be the same. Examples -------- >>> from collections import OrderedDict >>> from photutils.datasets import make_random_gaussians_table >>> n_sources = 5 >>> param_ranges = [('amplitude', [500, 1000]), ... ('x_mean', [0, 500]), ... ('y_mean', [0, 300]), ... ('x_stddev', [1, 5]), ... ('y_stddev', [1, 5]), ... ('theta', [0, np.pi])] >>> param_ranges = OrderedDict(param_ranges) >>> sources = make_random_gaussians_table(n_sources, param_ranges, ... random_state=12345) >>> for col in sources.colnames: ... sources[col].info.format = '%.8g' # for consistent table output >>> print(sources) amplitude x_mean y_mean x_stddev y_stddev theta --------- --------- --------- --------- --------- ---------- 964.80805 297.77235 224.31444 3.6256447 3.5699013 2.2923859 658.18778 482.25726 288.39202 4.2392502 3.8698145 3.1227889 591.95941 326.58855 2.5164894 4.4887037 2.870396 2.1264615 602.28014 374.45332 31.933313 4.8585904 2.3023387 2.4844422 783.86251 326.78494 89.611114 3.8947414 2.7585784 0.53694298 To specifying the flux range instead of the amplitude range: >>> param_ranges = [('flux', [500, 1000]), ... ('x_mean', [0, 500]), ... ('y_mean', [0, 300]), ... ('x_stddev', [1, 5]), ... ('y_stddev', [1, 5]), ... ('theta', [0, np.pi])] >>> param_ranges = OrderedDict(param_ranges) >>> sources = make_random_gaussians_table(n_sources, param_ranges, ... random_state=12345) >>> for col in sources.colnames: ... sources[col].info.format = '%.8g' # for consistent table output >>> print(sources) flux x_mean y_mean x_stddev y_stddev theta amplitude --------- --------- --------- --------- --------- ---------- --------- 964.80805 297.77235 224.31444 3.6256447 3.5699013 2.2923859 11.863685 658.18778 482.25726 288.39202 4.2392502 3.8698145 3.1227889 6.3854388 591.95941 326.58855 2.5164894 4.4887037 2.870396 2.1264615 7.3122209 602.28014 374.45332 31.933313 4.8585904 2.3023387 2.4844422 8.5691781 783.86251 326.78494 89.611114 3.8947414 2.7585784 0.53694298 11.611707 Note that in this case the output table contains both a flux and amplitude column. The flux column will be ignored when generating an image of the models using :func:`make_gaussian_sources_image`.
[ "Make", "a", "~astropy", ".", "table", ".", "Table", "containing", "randomly", "generated", "parameters", "for", "2D", "Gaussian", "sources", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/datasets/make.py#L240-L363
10,623
astropy/photutils
photutils/datasets/make.py
make_model_sources_image
def make_model_sources_image(shape, model, source_table, oversample=1): """ Make an image containing sources generated from a user-specified model. Parameters ---------- shape : 2-tuple of int The shape of the output 2D image. model : 2D astropy.modeling.models object The model to be used for rendering the sources. source_table : `~astropy.table.Table` Table of parameters for the sources. Each row of the table corresponds to a source whose model parameters are defined by the column names, which must match the model parameter names. Column names that do not match model parameters will be ignored. Model parameters not defined in the table will be set to the ``model`` default value. oversample : float, optional The sampling factor used to discretize the models on a pixel grid. If the value is 1.0 (the default), then the models will be discretized by taking the value at the center of the pixel bin. Note that this method will not preserve the total flux of very small sources. Otherwise, the models will be discretized by taking the average over an oversampled grid. The pixels will be oversampled by the ``oversample`` factor. Returns ------- image : 2D `~numpy.ndarray` Image containing model sources. See Also -------- make_random_models_table, make_gaussian_sources_image Examples -------- .. plot:: :include-source: from collections import OrderedDict from astropy.modeling.models import Moffat2D from photutils.datasets import (make_random_models_table, make_model_sources_image) model = Moffat2D() n_sources = 10 shape = (100, 100) param_ranges = [('amplitude', [100, 200]), ('x_0', [0, shape[1]]), ('y_0', [0, shape[0]]), ('gamma', [5, 10]), ('alpha', [1, 2])] param_ranges = OrderedDict(param_ranges) sources = make_random_models_table(n_sources, param_ranges, random_state=12345) data = make_model_sources_image(shape, model, sources) plt.imshow(data) """ image = np.zeros(shape, dtype=np.float64) y, x = np.indices(shape) params_to_set = [] for param in source_table.colnames: if param in model.param_names: params_to_set.append(param) # Save the initial parameter values so we can set them back when # done with the loop. It's best not to copy a model, because some # models (e.g. PSF models) may have substantial amounts of data in # them. init_params = {param: getattr(model, param) for param in params_to_set} try: for i, source in enumerate(source_table): for param in params_to_set: setattr(model, param, source[param]) if oversample == 1: image += model(x, y) else: image += discretize_model(model, (0, shape[1]), (0, shape[0]), mode='oversample', factor=oversample) finally: for param, value in init_params.items(): setattr(model, param, value) return image
python
def make_model_sources_image(shape, model, source_table, oversample=1): """ Make an image containing sources generated from a user-specified model. Parameters ---------- shape : 2-tuple of int The shape of the output 2D image. model : 2D astropy.modeling.models object The model to be used for rendering the sources. source_table : `~astropy.table.Table` Table of parameters for the sources. Each row of the table corresponds to a source whose model parameters are defined by the column names, which must match the model parameter names. Column names that do not match model parameters will be ignored. Model parameters not defined in the table will be set to the ``model`` default value. oversample : float, optional The sampling factor used to discretize the models on a pixel grid. If the value is 1.0 (the default), then the models will be discretized by taking the value at the center of the pixel bin. Note that this method will not preserve the total flux of very small sources. Otherwise, the models will be discretized by taking the average over an oversampled grid. The pixels will be oversampled by the ``oversample`` factor. Returns ------- image : 2D `~numpy.ndarray` Image containing model sources. See Also -------- make_random_models_table, make_gaussian_sources_image Examples -------- .. plot:: :include-source: from collections import OrderedDict from astropy.modeling.models import Moffat2D from photutils.datasets import (make_random_models_table, make_model_sources_image) model = Moffat2D() n_sources = 10 shape = (100, 100) param_ranges = [('amplitude', [100, 200]), ('x_0', [0, shape[1]]), ('y_0', [0, shape[0]]), ('gamma', [5, 10]), ('alpha', [1, 2])] param_ranges = OrderedDict(param_ranges) sources = make_random_models_table(n_sources, param_ranges, random_state=12345) data = make_model_sources_image(shape, model, sources) plt.imshow(data) """ image = np.zeros(shape, dtype=np.float64) y, x = np.indices(shape) params_to_set = [] for param in source_table.colnames: if param in model.param_names: params_to_set.append(param) # Save the initial parameter values so we can set them back when # done with the loop. It's best not to copy a model, because some # models (e.g. PSF models) may have substantial amounts of data in # them. init_params = {param: getattr(model, param) for param in params_to_set} try: for i, source in enumerate(source_table): for param in params_to_set: setattr(model, param, source[param]) if oversample == 1: image += model(x, y) else: image += discretize_model(model, (0, shape[1]), (0, shape[0]), mode='oversample', factor=oversample) finally: for param, value in init_params.items(): setattr(model, param, value) return image
[ "def", "make_model_sources_image", "(", "shape", ",", "model", ",", "source_table", ",", "oversample", "=", "1", ")", ":", "image", "=", "np", ".", "zeros", "(", "shape", ",", "dtype", "=", "np", ".", "float64", ")", "y", ",", "x", "=", "np", ".", "indices", "(", "shape", ")", "params_to_set", "=", "[", "]", "for", "param", "in", "source_table", ".", "colnames", ":", "if", "param", "in", "model", ".", "param_names", ":", "params_to_set", ".", "append", "(", "param", ")", "# Save the initial parameter values so we can set them back when", "# done with the loop. It's best not to copy a model, because some", "# models (e.g. PSF models) may have substantial amounts of data in", "# them.", "init_params", "=", "{", "param", ":", "getattr", "(", "model", ",", "param", ")", "for", "param", "in", "params_to_set", "}", "try", ":", "for", "i", ",", "source", "in", "enumerate", "(", "source_table", ")", ":", "for", "param", "in", "params_to_set", ":", "setattr", "(", "model", ",", "param", ",", "source", "[", "param", "]", ")", "if", "oversample", "==", "1", ":", "image", "+=", "model", "(", "x", ",", "y", ")", "else", ":", "image", "+=", "discretize_model", "(", "model", ",", "(", "0", ",", "shape", "[", "1", "]", ")", ",", "(", "0", ",", "shape", "[", "0", "]", ")", ",", "mode", "=", "'oversample'", ",", "factor", "=", "oversample", ")", "finally", ":", "for", "param", ",", "value", "in", "init_params", ".", "items", "(", ")", ":", "setattr", "(", "model", ",", "param", ",", "value", ")", "return", "image" ]
Make an image containing sources generated from a user-specified model. Parameters ---------- shape : 2-tuple of int The shape of the output 2D image. model : 2D astropy.modeling.models object The model to be used for rendering the sources. source_table : `~astropy.table.Table` Table of parameters for the sources. Each row of the table corresponds to a source whose model parameters are defined by the column names, which must match the model parameter names. Column names that do not match model parameters will be ignored. Model parameters not defined in the table will be set to the ``model`` default value. oversample : float, optional The sampling factor used to discretize the models on a pixel grid. If the value is 1.0 (the default), then the models will be discretized by taking the value at the center of the pixel bin. Note that this method will not preserve the total flux of very small sources. Otherwise, the models will be discretized by taking the average over an oversampled grid. The pixels will be oversampled by the ``oversample`` factor. Returns ------- image : 2D `~numpy.ndarray` Image containing model sources. See Also -------- make_random_models_table, make_gaussian_sources_image Examples -------- .. plot:: :include-source: from collections import OrderedDict from astropy.modeling.models import Moffat2D from photutils.datasets import (make_random_models_table, make_model_sources_image) model = Moffat2D() n_sources = 10 shape = (100, 100) param_ranges = [('amplitude', [100, 200]), ('x_0', [0, shape[1]]), ('y_0', [0, shape[0]]), ('gamma', [5, 10]), ('alpha', [1, 2])] param_ranges = OrderedDict(param_ranges) sources = make_random_models_table(n_sources, param_ranges, random_state=12345) data = make_model_sources_image(shape, model, sources) plt.imshow(data)
[ "Make", "an", "image", "containing", "sources", "generated", "from", "a", "user", "-", "specified", "model", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/datasets/make.py#L366-L460
10,624
astropy/photutils
photutils/datasets/make.py
make_4gaussians_image
def make_4gaussians_image(noise=True): """ Make an example image containing four 2D Gaussians plus a constant background. The background has a mean of 5. If ``noise`` is `True`, then Gaussian noise with a mean of 0 and a standard deviation of 5 is added to the output image. Parameters ---------- noise : bool, optional Whether to include noise in the output image (default is `True`). Returns ------- image : 2D `~numpy.ndarray` Image containing four 2D Gaussian sources. See Also -------- make_100gaussians_image Examples -------- .. plot:: :include-source: from photutils import datasets image = datasets.make_4gaussians_image() plt.imshow(image, origin='lower', interpolation='nearest') """ table = Table() table['amplitude'] = [50, 70, 150, 210] table['x_mean'] = [160, 25, 150, 90] table['y_mean'] = [70, 40, 25, 60] table['x_stddev'] = [15.2, 5.1, 3., 8.1] table['y_stddev'] = [2.6, 2.5, 3., 4.7] table['theta'] = np.array([145., 20., 0., 60.]) * np.pi / 180. shape = (100, 200) data = make_gaussian_sources_image(shape, table) + 5. if noise: data += make_noise_image(shape, type='gaussian', mean=0., stddev=5., random_state=12345) return data
python
def make_4gaussians_image(noise=True): """ Make an example image containing four 2D Gaussians plus a constant background. The background has a mean of 5. If ``noise`` is `True`, then Gaussian noise with a mean of 0 and a standard deviation of 5 is added to the output image. Parameters ---------- noise : bool, optional Whether to include noise in the output image (default is `True`). Returns ------- image : 2D `~numpy.ndarray` Image containing four 2D Gaussian sources. See Also -------- make_100gaussians_image Examples -------- .. plot:: :include-source: from photutils import datasets image = datasets.make_4gaussians_image() plt.imshow(image, origin='lower', interpolation='nearest') """ table = Table() table['amplitude'] = [50, 70, 150, 210] table['x_mean'] = [160, 25, 150, 90] table['y_mean'] = [70, 40, 25, 60] table['x_stddev'] = [15.2, 5.1, 3., 8.1] table['y_stddev'] = [2.6, 2.5, 3., 4.7] table['theta'] = np.array([145., 20., 0., 60.]) * np.pi / 180. shape = (100, 200) data = make_gaussian_sources_image(shape, table) + 5. if noise: data += make_noise_image(shape, type='gaussian', mean=0., stddev=5., random_state=12345) return data
[ "def", "make_4gaussians_image", "(", "noise", "=", "True", ")", ":", "table", "=", "Table", "(", ")", "table", "[", "'amplitude'", "]", "=", "[", "50", ",", "70", ",", "150", ",", "210", "]", "table", "[", "'x_mean'", "]", "=", "[", "160", ",", "25", ",", "150", ",", "90", "]", "table", "[", "'y_mean'", "]", "=", "[", "70", ",", "40", ",", "25", ",", "60", "]", "table", "[", "'x_stddev'", "]", "=", "[", "15.2", ",", "5.1", ",", "3.", ",", "8.1", "]", "table", "[", "'y_stddev'", "]", "=", "[", "2.6", ",", "2.5", ",", "3.", ",", "4.7", "]", "table", "[", "'theta'", "]", "=", "np", ".", "array", "(", "[", "145.", ",", "20.", ",", "0.", ",", "60.", "]", ")", "*", "np", ".", "pi", "/", "180.", "shape", "=", "(", "100", ",", "200", ")", "data", "=", "make_gaussian_sources_image", "(", "shape", ",", "table", ")", "+", "5.", "if", "noise", ":", "data", "+=", "make_noise_image", "(", "shape", ",", "type", "=", "'gaussian'", ",", "mean", "=", "0.", ",", "stddev", "=", "5.", ",", "random_state", "=", "12345", ")", "return", "data" ]
Make an example image containing four 2D Gaussians plus a constant background. The background has a mean of 5. If ``noise`` is `True`, then Gaussian noise with a mean of 0 and a standard deviation of 5 is added to the output image. Parameters ---------- noise : bool, optional Whether to include noise in the output image (default is `True`). Returns ------- image : 2D `~numpy.ndarray` Image containing four 2D Gaussian sources. See Also -------- make_100gaussians_image Examples -------- .. plot:: :include-source: from photutils import datasets image = datasets.make_4gaussians_image() plt.imshow(image, origin='lower', interpolation='nearest')
[ "Make", "an", "example", "image", "containing", "four", "2D", "Gaussians", "plus", "a", "constant", "background", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/datasets/make.py#L638-L688
10,625
astropy/photutils
photutils/datasets/make.py
make_100gaussians_image
def make_100gaussians_image(noise=True): """ Make an example image containing 100 2D Gaussians plus a constant background. The background has a mean of 5. If ``noise`` is `True`, then Gaussian noise with a mean of 0 and a standard deviation of 2 is added to the output image. Parameters ---------- noise : bool, optional Whether to include noise in the output image (default is `True`). Returns ------- image : 2D `~numpy.ndarray` Image containing 100 2D Gaussian sources. See Also -------- make_4gaussians_image Examples -------- .. plot:: :include-source: from photutils import datasets image = datasets.make_100gaussians_image() plt.imshow(image, origin='lower', interpolation='nearest') """ n_sources = 100 flux_range = [500, 1000] xmean_range = [0, 500] ymean_range = [0, 300] xstddev_range = [1, 5] ystddev_range = [1, 5] params = OrderedDict([('flux', flux_range), ('x_mean', xmean_range), ('y_mean', ymean_range), ('x_stddev', xstddev_range), ('y_stddev', ystddev_range), ('theta', [0, 2*np.pi])]) sources = make_random_gaussians_table(n_sources, params, random_state=12345) shape = (300, 500) data = make_gaussian_sources_image(shape, sources) + 5. if noise: data += make_noise_image(shape, type='gaussian', mean=0., stddev=2., random_state=12345) return data
python
def make_100gaussians_image(noise=True): """ Make an example image containing 100 2D Gaussians plus a constant background. The background has a mean of 5. If ``noise`` is `True`, then Gaussian noise with a mean of 0 and a standard deviation of 2 is added to the output image. Parameters ---------- noise : bool, optional Whether to include noise in the output image (default is `True`). Returns ------- image : 2D `~numpy.ndarray` Image containing 100 2D Gaussian sources. See Also -------- make_4gaussians_image Examples -------- .. plot:: :include-source: from photutils import datasets image = datasets.make_100gaussians_image() plt.imshow(image, origin='lower', interpolation='nearest') """ n_sources = 100 flux_range = [500, 1000] xmean_range = [0, 500] ymean_range = [0, 300] xstddev_range = [1, 5] ystddev_range = [1, 5] params = OrderedDict([('flux', flux_range), ('x_mean', xmean_range), ('y_mean', ymean_range), ('x_stddev', xstddev_range), ('y_stddev', ystddev_range), ('theta', [0, 2*np.pi])]) sources = make_random_gaussians_table(n_sources, params, random_state=12345) shape = (300, 500) data = make_gaussian_sources_image(shape, sources) + 5. if noise: data += make_noise_image(shape, type='gaussian', mean=0., stddev=2., random_state=12345) return data
[ "def", "make_100gaussians_image", "(", "noise", "=", "True", ")", ":", "n_sources", "=", "100", "flux_range", "=", "[", "500", ",", "1000", "]", "xmean_range", "=", "[", "0", ",", "500", "]", "ymean_range", "=", "[", "0", ",", "300", "]", "xstddev_range", "=", "[", "1", ",", "5", "]", "ystddev_range", "=", "[", "1", ",", "5", "]", "params", "=", "OrderedDict", "(", "[", "(", "'flux'", ",", "flux_range", ")", ",", "(", "'x_mean'", ",", "xmean_range", ")", ",", "(", "'y_mean'", ",", "ymean_range", ")", ",", "(", "'x_stddev'", ",", "xstddev_range", ")", ",", "(", "'y_stddev'", ",", "ystddev_range", ")", ",", "(", "'theta'", ",", "[", "0", ",", "2", "*", "np", ".", "pi", "]", ")", "]", ")", "sources", "=", "make_random_gaussians_table", "(", "n_sources", ",", "params", ",", "random_state", "=", "12345", ")", "shape", "=", "(", "300", ",", "500", ")", "data", "=", "make_gaussian_sources_image", "(", "shape", ",", "sources", ")", "+", "5.", "if", "noise", ":", "data", "+=", "make_noise_image", "(", "shape", ",", "type", "=", "'gaussian'", ",", "mean", "=", "0.", ",", "stddev", "=", "2.", ",", "random_state", "=", "12345", ")", "return", "data" ]
Make an example image containing 100 2D Gaussians plus a constant background. The background has a mean of 5. If ``noise`` is `True`, then Gaussian noise with a mean of 0 and a standard deviation of 2 is added to the output image. Parameters ---------- noise : bool, optional Whether to include noise in the output image (default is `True`). Returns ------- image : 2D `~numpy.ndarray` Image containing 100 2D Gaussian sources. See Also -------- make_4gaussians_image Examples -------- .. plot:: :include-source: from photutils import datasets image = datasets.make_100gaussians_image() plt.imshow(image, origin='lower', interpolation='nearest')
[ "Make", "an", "example", "image", "containing", "100", "2D", "Gaussians", "plus", "a", "constant", "background", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/datasets/make.py#L691-L749
10,626
astropy/photutils
photutils/datasets/make.py
make_wcs
def make_wcs(shape, galactic=False): """ Create a simple celestial WCS object in either the ICRS or Galactic coordinate frame. Parameters ---------- shape : 2-tuple of int The shape of the 2D array to be used with the output `~astropy.wcs.WCS` object. galactic : bool, optional If `True`, then the output WCS will be in the Galactic coordinate frame. If `False` (default), then the output WCS will be in the ICRS coordinate frame. Returns ------- wcs : `~astropy.wcs.WCS` object The world coordinate system (WCS) transformation. See Also -------- make_imagehdu Examples -------- >>> from photutils.datasets import make_wcs >>> shape = (100, 100) >>> wcs = make_wcs(shape) >>> print(wcs.wcs.crpix) # doctest: +FLOAT_CMP [50. 50.] >>> print(wcs.wcs.crval) # doctest: +FLOAT_CMP [197.8925 -1.36555556] """ wcs = WCS(naxis=2) rho = np.pi / 3. scale = 0.1 / 3600. if astropy_version < '3.1': wcs._naxis1 = shape[1] # nx wcs._naxis2 = shape[0] # ny else: wcs.pixel_shape = shape wcs.wcs.crpix = [shape[1] / 2, shape[0] / 2] # 1-indexed (x, y) wcs.wcs.crval = [197.8925, -1.36555556] wcs.wcs.cunit = ['deg', 'deg'] wcs.wcs.cd = [[-scale * np.cos(rho), scale * np.sin(rho)], [scale * np.sin(rho), scale * np.cos(rho)]] if not galactic: wcs.wcs.radesys = 'ICRS' wcs.wcs.ctype = ['RA---TAN', 'DEC--TAN'] else: wcs.wcs.ctype = ['GLON-CAR', 'GLAT-CAR'] return wcs
python
def make_wcs(shape, galactic=False): """ Create a simple celestial WCS object in either the ICRS or Galactic coordinate frame. Parameters ---------- shape : 2-tuple of int The shape of the 2D array to be used with the output `~astropy.wcs.WCS` object. galactic : bool, optional If `True`, then the output WCS will be in the Galactic coordinate frame. If `False` (default), then the output WCS will be in the ICRS coordinate frame. Returns ------- wcs : `~astropy.wcs.WCS` object The world coordinate system (WCS) transformation. See Also -------- make_imagehdu Examples -------- >>> from photutils.datasets import make_wcs >>> shape = (100, 100) >>> wcs = make_wcs(shape) >>> print(wcs.wcs.crpix) # doctest: +FLOAT_CMP [50. 50.] >>> print(wcs.wcs.crval) # doctest: +FLOAT_CMP [197.8925 -1.36555556] """ wcs = WCS(naxis=2) rho = np.pi / 3. scale = 0.1 / 3600. if astropy_version < '3.1': wcs._naxis1 = shape[1] # nx wcs._naxis2 = shape[0] # ny else: wcs.pixel_shape = shape wcs.wcs.crpix = [shape[1] / 2, shape[0] / 2] # 1-indexed (x, y) wcs.wcs.crval = [197.8925, -1.36555556] wcs.wcs.cunit = ['deg', 'deg'] wcs.wcs.cd = [[-scale * np.cos(rho), scale * np.sin(rho)], [scale * np.sin(rho), scale * np.cos(rho)]] if not galactic: wcs.wcs.radesys = 'ICRS' wcs.wcs.ctype = ['RA---TAN', 'DEC--TAN'] else: wcs.wcs.ctype = ['GLON-CAR', 'GLAT-CAR'] return wcs
[ "def", "make_wcs", "(", "shape", ",", "galactic", "=", "False", ")", ":", "wcs", "=", "WCS", "(", "naxis", "=", "2", ")", "rho", "=", "np", ".", "pi", "/", "3.", "scale", "=", "0.1", "/", "3600.", "if", "astropy_version", "<", "'3.1'", ":", "wcs", ".", "_naxis1", "=", "shape", "[", "1", "]", "# nx", "wcs", ".", "_naxis2", "=", "shape", "[", "0", "]", "# ny", "else", ":", "wcs", ".", "pixel_shape", "=", "shape", "wcs", ".", "wcs", ".", "crpix", "=", "[", "shape", "[", "1", "]", "/", "2", ",", "shape", "[", "0", "]", "/", "2", "]", "# 1-indexed (x, y)", "wcs", ".", "wcs", ".", "crval", "=", "[", "197.8925", ",", "-", "1.36555556", "]", "wcs", ".", "wcs", ".", "cunit", "=", "[", "'deg'", ",", "'deg'", "]", "wcs", ".", "wcs", ".", "cd", "=", "[", "[", "-", "scale", "*", "np", ".", "cos", "(", "rho", ")", ",", "scale", "*", "np", ".", "sin", "(", "rho", ")", "]", ",", "[", "scale", "*", "np", ".", "sin", "(", "rho", ")", ",", "scale", "*", "np", ".", "cos", "(", "rho", ")", "]", "]", "if", "not", "galactic", ":", "wcs", ".", "wcs", ".", "radesys", "=", "'ICRS'", "wcs", ".", "wcs", ".", "ctype", "=", "[", "'RA---TAN'", ",", "'DEC--TAN'", "]", "else", ":", "wcs", ".", "wcs", ".", "ctype", "=", "[", "'GLON-CAR'", ",", "'GLAT-CAR'", "]", "return", "wcs" ]
Create a simple celestial WCS object in either the ICRS or Galactic coordinate frame. Parameters ---------- shape : 2-tuple of int The shape of the 2D array to be used with the output `~astropy.wcs.WCS` object. galactic : bool, optional If `True`, then the output WCS will be in the Galactic coordinate frame. If `False` (default), then the output WCS will be in the ICRS coordinate frame. Returns ------- wcs : `~astropy.wcs.WCS` object The world coordinate system (WCS) transformation. See Also -------- make_imagehdu Examples -------- >>> from photutils.datasets import make_wcs >>> shape = (100, 100) >>> wcs = make_wcs(shape) >>> print(wcs.wcs.crpix) # doctest: +FLOAT_CMP [50. 50.] >>> print(wcs.wcs.crval) # doctest: +FLOAT_CMP [197.8925 -1.36555556]
[ "Create", "a", "simple", "celestial", "WCS", "object", "in", "either", "the", "ICRS", "or", "Galactic", "coordinate", "frame", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/datasets/make.py#L752-L809
10,627
astropy/photutils
photutils/datasets/make.py
make_imagehdu
def make_imagehdu(data, wcs=None): """ Create a FITS `~astropy.io.fits.ImageHDU` containing the input 2D image. Parameters ---------- data : 2D array-like The input 2D data. wcs : `~astropy.wcs.WCS`, optional The world coordinate system (WCS) transformation to include in the output FITS header. Returns ------- image_hdu : `~astropy.io.fits.ImageHDU` The FITS `~astropy.io.fits.ImageHDU`. See Also -------- make_wcs Examples -------- >>> from photutils.datasets import make_imagehdu, make_wcs >>> shape = (100, 100) >>> data = np.ones(shape) >>> wcs = make_wcs(shape) >>> hdu = make_imagehdu(data, wcs=wcs) >>> print(hdu.data.shape) (100, 100) """ data = np.asanyarray(data) if data.ndim != 2: raise ValueError('data must be a 2D array') if wcs is not None: header = wcs.to_header() else: header = None return fits.ImageHDU(data, header=header)
python
def make_imagehdu(data, wcs=None): """ Create a FITS `~astropy.io.fits.ImageHDU` containing the input 2D image. Parameters ---------- data : 2D array-like The input 2D data. wcs : `~astropy.wcs.WCS`, optional The world coordinate system (WCS) transformation to include in the output FITS header. Returns ------- image_hdu : `~astropy.io.fits.ImageHDU` The FITS `~astropy.io.fits.ImageHDU`. See Also -------- make_wcs Examples -------- >>> from photutils.datasets import make_imagehdu, make_wcs >>> shape = (100, 100) >>> data = np.ones(shape) >>> wcs = make_wcs(shape) >>> hdu = make_imagehdu(data, wcs=wcs) >>> print(hdu.data.shape) (100, 100) """ data = np.asanyarray(data) if data.ndim != 2: raise ValueError('data must be a 2D array') if wcs is not None: header = wcs.to_header() else: header = None return fits.ImageHDU(data, header=header)
[ "def", "make_imagehdu", "(", "data", ",", "wcs", "=", "None", ")", ":", "data", "=", "np", ".", "asanyarray", "(", "data", ")", "if", "data", ".", "ndim", "!=", "2", ":", "raise", "ValueError", "(", "'data must be a 2D array'", ")", "if", "wcs", "is", "not", "None", ":", "header", "=", "wcs", ".", "to_header", "(", ")", "else", ":", "header", "=", "None", "return", "fits", ".", "ImageHDU", "(", "data", ",", "header", "=", "header", ")" ]
Create a FITS `~astropy.io.fits.ImageHDU` containing the input 2D image. Parameters ---------- data : 2D array-like The input 2D data. wcs : `~astropy.wcs.WCS`, optional The world coordinate system (WCS) transformation to include in the output FITS header. Returns ------- image_hdu : `~astropy.io.fits.ImageHDU` The FITS `~astropy.io.fits.ImageHDU`. See Also -------- make_wcs Examples -------- >>> from photutils.datasets import make_imagehdu, make_wcs >>> shape = (100, 100) >>> data = np.ones(shape) >>> wcs = make_wcs(shape) >>> hdu = make_imagehdu(data, wcs=wcs) >>> print(hdu.data.shape) (100, 100)
[ "Create", "a", "FITS", "~astropy", ".", "io", ".", "fits", ".", "ImageHDU", "containing", "the", "input", "2D", "image", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/datasets/make.py#L812-L855
10,628
astropy/photutils
photutils/centroids/core.py
centroid_com
def centroid_com(data, mask=None): """ Calculate the centroid of an n-dimensional array as its "center of mass" determined from moments. Invalid values (e.g. NaNs or infs) in the ``data`` array are automatically masked. Parameters ---------- data : array_like The input n-dimensional array. mask : array_like (bool), optional A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Returns ------- centroid : `~numpy.ndarray` The coordinates of the centroid in pixel order (e.g. ``(x, y)`` or ``(x, y, z)``), not numpy axis order. """ data = data.astype(np.float) if mask is not None and mask is not np.ma.nomask: mask = np.asarray(mask, dtype=bool) if data.shape != mask.shape: raise ValueError('data and mask must have the same shape.') data[mask] = 0. badidx = ~np.isfinite(data) if np.any(badidx): warnings.warn('Input data contains input values (e.g. NaNs or infs), ' 'which were automatically masked.', AstropyUserWarning) data[badidx] = 0. total = np.sum(data) indices = np.ogrid[[slice(0, i) for i in data.shape]] # note the output array is reversed to give (x, y) order return np.array([np.sum(indices[axis] * data) / total for axis in range(data.ndim)])[::-1]
python
def centroid_com(data, mask=None): """ Calculate the centroid of an n-dimensional array as its "center of mass" determined from moments. Invalid values (e.g. NaNs or infs) in the ``data`` array are automatically masked. Parameters ---------- data : array_like The input n-dimensional array. mask : array_like (bool), optional A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Returns ------- centroid : `~numpy.ndarray` The coordinates of the centroid in pixel order (e.g. ``(x, y)`` or ``(x, y, z)``), not numpy axis order. """ data = data.astype(np.float) if mask is not None and mask is not np.ma.nomask: mask = np.asarray(mask, dtype=bool) if data.shape != mask.shape: raise ValueError('data and mask must have the same shape.') data[mask] = 0. badidx = ~np.isfinite(data) if np.any(badidx): warnings.warn('Input data contains input values (e.g. NaNs or infs), ' 'which were automatically masked.', AstropyUserWarning) data[badidx] = 0. total = np.sum(data) indices = np.ogrid[[slice(0, i) for i in data.shape]] # note the output array is reversed to give (x, y) order return np.array([np.sum(indices[axis] * data) / total for axis in range(data.ndim)])[::-1]
[ "def", "centroid_com", "(", "data", ",", "mask", "=", "None", ")", ":", "data", "=", "data", ".", "astype", "(", "np", ".", "float", ")", "if", "mask", "is", "not", "None", "and", "mask", "is", "not", "np", ".", "ma", ".", "nomask", ":", "mask", "=", "np", ".", "asarray", "(", "mask", ",", "dtype", "=", "bool", ")", "if", "data", ".", "shape", "!=", "mask", ".", "shape", ":", "raise", "ValueError", "(", "'data and mask must have the same shape.'", ")", "data", "[", "mask", "]", "=", "0.", "badidx", "=", "~", "np", ".", "isfinite", "(", "data", ")", "if", "np", ".", "any", "(", "badidx", ")", ":", "warnings", ".", "warn", "(", "'Input data contains input values (e.g. NaNs or infs), '", "'which were automatically masked.'", ",", "AstropyUserWarning", ")", "data", "[", "badidx", "]", "=", "0.", "total", "=", "np", ".", "sum", "(", "data", ")", "indices", "=", "np", ".", "ogrid", "[", "[", "slice", "(", "0", ",", "i", ")", "for", "i", "in", "data", ".", "shape", "]", "]", "# note the output array is reversed to give (x, y) order", "return", "np", ".", "array", "(", "[", "np", ".", "sum", "(", "indices", "[", "axis", "]", "*", "data", ")", "/", "total", "for", "axis", "in", "range", "(", "data", ".", "ndim", ")", "]", ")", "[", ":", ":", "-", "1", "]" ]
Calculate the centroid of an n-dimensional array as its "center of mass" determined from moments. Invalid values (e.g. NaNs or infs) in the ``data`` array are automatically masked. Parameters ---------- data : array_like The input n-dimensional array. mask : array_like (bool), optional A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Returns ------- centroid : `~numpy.ndarray` The coordinates of the centroid in pixel order (e.g. ``(x, y)`` or ``(x, y, z)``), not numpy axis order.
[ "Calculate", "the", "centroid", "of", "an", "n", "-", "dimensional", "array", "as", "its", "center", "of", "mass", "determined", "from", "moments", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/centroids/core.py#L74-L117
10,629
astropy/photutils
photutils/centroids/core.py
gaussian1d_moments
def gaussian1d_moments(data, mask=None): """ Estimate 1D Gaussian parameters from the moments of 1D data. This function can be useful for providing initial parameter values when fitting a 1D Gaussian to the ``data``. Parameters ---------- data : array_like (1D) The 1D array. mask : array_like (1D bool), optional A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Returns ------- amplitude, mean, stddev : float The estimated parameters of a 1D Gaussian. """ if np.any(~np.isfinite(data)): data = np.ma.masked_invalid(data) warnings.warn('Input data contains input values (e.g. NaNs or infs), ' 'which were automatically masked.', AstropyUserWarning) else: data = np.ma.array(data) if mask is not None and mask is not np.ma.nomask: mask = np.asanyarray(mask) if data.shape != mask.shape: raise ValueError('data and mask must have the same shape.') data.mask |= mask data.fill_value = 0. data = data.filled() x = np.arange(data.size) x_mean = np.sum(x * data) / np.sum(data) x_stddev = np.sqrt(abs(np.sum(data * (x - x_mean)**2) / np.sum(data))) amplitude = np.ptp(data) return amplitude, x_mean, x_stddev
python
def gaussian1d_moments(data, mask=None): """ Estimate 1D Gaussian parameters from the moments of 1D data. This function can be useful for providing initial parameter values when fitting a 1D Gaussian to the ``data``. Parameters ---------- data : array_like (1D) The 1D array. mask : array_like (1D bool), optional A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Returns ------- amplitude, mean, stddev : float The estimated parameters of a 1D Gaussian. """ if np.any(~np.isfinite(data)): data = np.ma.masked_invalid(data) warnings.warn('Input data contains input values (e.g. NaNs or infs), ' 'which were automatically masked.', AstropyUserWarning) else: data = np.ma.array(data) if mask is not None and mask is not np.ma.nomask: mask = np.asanyarray(mask) if data.shape != mask.shape: raise ValueError('data and mask must have the same shape.') data.mask |= mask data.fill_value = 0. data = data.filled() x = np.arange(data.size) x_mean = np.sum(x * data) / np.sum(data) x_stddev = np.sqrt(abs(np.sum(data * (x - x_mean)**2) / np.sum(data))) amplitude = np.ptp(data) return amplitude, x_mean, x_stddev
[ "def", "gaussian1d_moments", "(", "data", ",", "mask", "=", "None", ")", ":", "if", "np", ".", "any", "(", "~", "np", ".", "isfinite", "(", "data", ")", ")", ":", "data", "=", "np", ".", "ma", ".", "masked_invalid", "(", "data", ")", "warnings", ".", "warn", "(", "'Input data contains input values (e.g. NaNs or infs), '", "'which were automatically masked.'", ",", "AstropyUserWarning", ")", "else", ":", "data", "=", "np", ".", "ma", ".", "array", "(", "data", ")", "if", "mask", "is", "not", "None", "and", "mask", "is", "not", "np", ".", "ma", ".", "nomask", ":", "mask", "=", "np", ".", "asanyarray", "(", "mask", ")", "if", "data", ".", "shape", "!=", "mask", ".", "shape", ":", "raise", "ValueError", "(", "'data and mask must have the same shape.'", ")", "data", ".", "mask", "|=", "mask", "data", ".", "fill_value", "=", "0.", "data", "=", "data", ".", "filled", "(", ")", "x", "=", "np", ".", "arange", "(", "data", ".", "size", ")", "x_mean", "=", "np", ".", "sum", "(", "x", "*", "data", ")", "/", "np", ".", "sum", "(", "data", ")", "x_stddev", "=", "np", ".", "sqrt", "(", "abs", "(", "np", ".", "sum", "(", "data", "*", "(", "x", "-", "x_mean", ")", "**", "2", ")", "/", "np", ".", "sum", "(", "data", ")", ")", ")", "amplitude", "=", "np", ".", "ptp", "(", "data", ")", "return", "amplitude", ",", "x_mean", ",", "x_stddev" ]
Estimate 1D Gaussian parameters from the moments of 1D data. This function can be useful for providing initial parameter values when fitting a 1D Gaussian to the ``data``. Parameters ---------- data : array_like (1D) The 1D array. mask : array_like (1D bool), optional A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Returns ------- amplitude, mean, stddev : float The estimated parameters of a 1D Gaussian.
[ "Estimate", "1D", "Gaussian", "parameters", "from", "the", "moments", "of", "1D", "data", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/centroids/core.py#L120-L163
10,630
astropy/photutils
photutils/centroids/core.py
fit_2dgaussian
def fit_2dgaussian(data, error=None, mask=None): """ Fit a 2D Gaussian plus a constant to a 2D image. Invalid values (e.g. NaNs or infs) in the ``data`` or ``error`` arrays are automatically masked. The mask for invalid values represents the combination of the invalid-value masks for the ``data`` and ``error`` arrays. Parameters ---------- data : array_like The 2D array of the image. error : array_like, optional The 2D array of the 1-sigma errors of the input ``data``. mask : array_like (bool), optional A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Returns ------- result : A `GaussianConst2D` model instance. The best-fitting Gaussian 2D model. """ from ..morphology import data_properties # prevent circular imports data = np.ma.asanyarray(data) if mask is not None and mask is not np.ma.nomask: mask = np.asanyarray(mask) if data.shape != mask.shape: raise ValueError('data and mask must have the same shape.') data.mask |= mask if np.any(~np.isfinite(data)): data = np.ma.masked_invalid(data) warnings.warn('Input data contains input values (e.g. NaNs or infs), ' 'which were automatically masked.', AstropyUserWarning) if error is not None: error = np.ma.masked_invalid(error) if data.shape != error.shape: raise ValueError('data and error must have the same shape.') data.mask |= error.mask weights = 1.0 / error.clip(min=1.e-30) else: weights = np.ones(data.shape) if np.ma.count(data) < 7: raise ValueError('Input data must have a least 7 unmasked values to ' 'fit a 2D Gaussian plus a constant.') # assign zero weight to masked pixels if data.mask is not np.ma.nomask: weights[data.mask] = 0. mask = data.mask data.fill_value = 0.0 data = data.filled() # Subtract the minimum of the data as a crude background estimate. # This will also make the data values positive, preventing issues with # the moment estimation in data_properties (moments from negative data # values can yield undefined Gaussian parameters, e.g. x/y_stddev). props = data_properties(data - np.min(data), mask=mask) init_const = 0. # subtracted data minimum above init_amplitude = np.ptp(data) g_init = GaussianConst2D(constant=init_const, amplitude=init_amplitude, x_mean=props.xcentroid.value, y_mean=props.ycentroid.value, x_stddev=props.semimajor_axis_sigma.value, y_stddev=props.semiminor_axis_sigma.value, theta=props.orientation.value) fitter = LevMarLSQFitter() y, x = np.indices(data.shape) gfit = fitter(g_init, x, y, data, weights=weights) return gfit
python
def fit_2dgaussian(data, error=None, mask=None): """ Fit a 2D Gaussian plus a constant to a 2D image. Invalid values (e.g. NaNs or infs) in the ``data`` or ``error`` arrays are automatically masked. The mask for invalid values represents the combination of the invalid-value masks for the ``data`` and ``error`` arrays. Parameters ---------- data : array_like The 2D array of the image. error : array_like, optional The 2D array of the 1-sigma errors of the input ``data``. mask : array_like (bool), optional A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Returns ------- result : A `GaussianConst2D` model instance. The best-fitting Gaussian 2D model. """ from ..morphology import data_properties # prevent circular imports data = np.ma.asanyarray(data) if mask is not None and mask is not np.ma.nomask: mask = np.asanyarray(mask) if data.shape != mask.shape: raise ValueError('data and mask must have the same shape.') data.mask |= mask if np.any(~np.isfinite(data)): data = np.ma.masked_invalid(data) warnings.warn('Input data contains input values (e.g. NaNs or infs), ' 'which were automatically masked.', AstropyUserWarning) if error is not None: error = np.ma.masked_invalid(error) if data.shape != error.shape: raise ValueError('data and error must have the same shape.') data.mask |= error.mask weights = 1.0 / error.clip(min=1.e-30) else: weights = np.ones(data.shape) if np.ma.count(data) < 7: raise ValueError('Input data must have a least 7 unmasked values to ' 'fit a 2D Gaussian plus a constant.') # assign zero weight to masked pixels if data.mask is not np.ma.nomask: weights[data.mask] = 0. mask = data.mask data.fill_value = 0.0 data = data.filled() # Subtract the minimum of the data as a crude background estimate. # This will also make the data values positive, preventing issues with # the moment estimation in data_properties (moments from negative data # values can yield undefined Gaussian parameters, e.g. x/y_stddev). props = data_properties(data - np.min(data), mask=mask) init_const = 0. # subtracted data minimum above init_amplitude = np.ptp(data) g_init = GaussianConst2D(constant=init_const, amplitude=init_amplitude, x_mean=props.xcentroid.value, y_mean=props.ycentroid.value, x_stddev=props.semimajor_axis_sigma.value, y_stddev=props.semiminor_axis_sigma.value, theta=props.orientation.value) fitter = LevMarLSQFitter() y, x = np.indices(data.shape) gfit = fitter(g_init, x, y, data, weights=weights) return gfit
[ "def", "fit_2dgaussian", "(", "data", ",", "error", "=", "None", ",", "mask", "=", "None", ")", ":", "from", ".", ".", "morphology", "import", "data_properties", "# prevent circular imports", "data", "=", "np", ".", "ma", ".", "asanyarray", "(", "data", ")", "if", "mask", "is", "not", "None", "and", "mask", "is", "not", "np", ".", "ma", ".", "nomask", ":", "mask", "=", "np", ".", "asanyarray", "(", "mask", ")", "if", "data", ".", "shape", "!=", "mask", ".", "shape", ":", "raise", "ValueError", "(", "'data and mask must have the same shape.'", ")", "data", ".", "mask", "|=", "mask", "if", "np", ".", "any", "(", "~", "np", ".", "isfinite", "(", "data", ")", ")", ":", "data", "=", "np", ".", "ma", ".", "masked_invalid", "(", "data", ")", "warnings", ".", "warn", "(", "'Input data contains input values (e.g. NaNs or infs), '", "'which were automatically masked.'", ",", "AstropyUserWarning", ")", "if", "error", "is", "not", "None", ":", "error", "=", "np", ".", "ma", ".", "masked_invalid", "(", "error", ")", "if", "data", ".", "shape", "!=", "error", ".", "shape", ":", "raise", "ValueError", "(", "'data and error must have the same shape.'", ")", "data", ".", "mask", "|=", "error", ".", "mask", "weights", "=", "1.0", "/", "error", ".", "clip", "(", "min", "=", "1.e-30", ")", "else", ":", "weights", "=", "np", ".", "ones", "(", "data", ".", "shape", ")", "if", "np", ".", "ma", ".", "count", "(", "data", ")", "<", "7", ":", "raise", "ValueError", "(", "'Input data must have a least 7 unmasked values to '", "'fit a 2D Gaussian plus a constant.'", ")", "# assign zero weight to masked pixels", "if", "data", ".", "mask", "is", "not", "np", ".", "ma", ".", "nomask", ":", "weights", "[", "data", ".", "mask", "]", "=", "0.", "mask", "=", "data", ".", "mask", "data", ".", "fill_value", "=", "0.0", "data", "=", "data", ".", "filled", "(", ")", "# Subtract the minimum of the data as a crude background estimate.", "# This will also make the data values positive, preventing issues with", "# the moment estimation in data_properties (moments from negative data", "# values can yield undefined Gaussian parameters, e.g. x/y_stddev).", "props", "=", "data_properties", "(", "data", "-", "np", ".", "min", "(", "data", ")", ",", "mask", "=", "mask", ")", "init_const", "=", "0.", "# subtracted data minimum above", "init_amplitude", "=", "np", ".", "ptp", "(", "data", ")", "g_init", "=", "GaussianConst2D", "(", "constant", "=", "init_const", ",", "amplitude", "=", "init_amplitude", ",", "x_mean", "=", "props", ".", "xcentroid", ".", "value", ",", "y_mean", "=", "props", ".", "ycentroid", ".", "value", ",", "x_stddev", "=", "props", ".", "semimajor_axis_sigma", ".", "value", ",", "y_stddev", "=", "props", ".", "semiminor_axis_sigma", ".", "value", ",", "theta", "=", "props", ".", "orientation", ".", "value", ")", "fitter", "=", "LevMarLSQFitter", "(", ")", "y", ",", "x", "=", "np", ".", "indices", "(", "data", ".", "shape", ")", "gfit", "=", "fitter", "(", "g_init", ",", "x", ",", "y", ",", "data", ",", "weights", "=", "weights", ")", "return", "gfit" ]
Fit a 2D Gaussian plus a constant to a 2D image. Invalid values (e.g. NaNs or infs) in the ``data`` or ``error`` arrays are automatically masked. The mask for invalid values represents the combination of the invalid-value masks for the ``data`` and ``error`` arrays. Parameters ---------- data : array_like The 2D array of the image. error : array_like, optional The 2D array of the 1-sigma errors of the input ``data``. mask : array_like (bool), optional A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Returns ------- result : A `GaussianConst2D` model instance. The best-fitting Gaussian 2D model.
[ "Fit", "a", "2D", "Gaussian", "plus", "a", "constant", "to", "a", "2D", "image", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/centroids/core.py#L166-L247
10,631
astropy/photutils
photutils/centroids/core.py
centroid_1dg
def centroid_1dg(data, error=None, mask=None): """ Calculate the centroid of a 2D array by fitting 1D Gaussians to the marginal ``x`` and ``y`` distributions of the array. Invalid values (e.g. NaNs or infs) in the ``data`` or ``error`` arrays are automatically masked. The mask for invalid values represents the combination of the invalid-value masks for the ``data`` and ``error`` arrays. Parameters ---------- data : array_like The 2D data array. error : array_like, optional The 2D array of the 1-sigma errors of the input ``data``. mask : array_like (bool), optional A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Returns ------- centroid : `~numpy.ndarray` The ``x, y`` coordinates of the centroid. """ data = np.ma.asanyarray(data) if mask is not None and mask is not np.ma.nomask: mask = np.asanyarray(mask) if data.shape != mask.shape: raise ValueError('data and mask must have the same shape.') data.mask |= mask if np.any(~np.isfinite(data)): data = np.ma.masked_invalid(data) warnings.warn('Input data contains input values (e.g. NaNs or infs), ' 'which were automatically masked.', AstropyUserWarning) if error is not None: error = np.ma.masked_invalid(error) if data.shape != error.shape: raise ValueError('data and error must have the same shape.') data.mask |= error.mask error.mask = data.mask xy_error = np.array([np.sqrt(np.ma.sum(error**2, axis=i)) for i in [0, 1]]) xy_weights = [(1.0 / xy_error[i].clip(min=1.e-30)) for i in [0, 1]] else: xy_weights = [np.ones(data.shape[i]) for i in [1, 0]] # assign zero weight to masked pixels if data.mask is not np.ma.nomask: bad_idx = [np.all(data.mask, axis=i) for i in [0, 1]] for i in [0, 1]: xy_weights[i][bad_idx[i]] = 0. xy_data = np.array([np.ma.sum(data, axis=i) for i in [0, 1]]) constant_init = np.ma.min(data) centroid = [] for (data_i, weights_i) in zip(xy_data, xy_weights): params_init = gaussian1d_moments(data_i) g_init = Const1D(constant_init) + Gaussian1D(*params_init) fitter = LevMarLSQFitter() x = np.arange(data_i.size) g_fit = fitter(g_init, x, data_i, weights=weights_i) centroid.append(g_fit.mean_1.value) return np.array(centroid)
python
def centroid_1dg(data, error=None, mask=None): """ Calculate the centroid of a 2D array by fitting 1D Gaussians to the marginal ``x`` and ``y`` distributions of the array. Invalid values (e.g. NaNs or infs) in the ``data`` or ``error`` arrays are automatically masked. The mask for invalid values represents the combination of the invalid-value masks for the ``data`` and ``error`` arrays. Parameters ---------- data : array_like The 2D data array. error : array_like, optional The 2D array of the 1-sigma errors of the input ``data``. mask : array_like (bool), optional A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Returns ------- centroid : `~numpy.ndarray` The ``x, y`` coordinates of the centroid. """ data = np.ma.asanyarray(data) if mask is not None and mask is not np.ma.nomask: mask = np.asanyarray(mask) if data.shape != mask.shape: raise ValueError('data and mask must have the same shape.') data.mask |= mask if np.any(~np.isfinite(data)): data = np.ma.masked_invalid(data) warnings.warn('Input data contains input values (e.g. NaNs or infs), ' 'which were automatically masked.', AstropyUserWarning) if error is not None: error = np.ma.masked_invalid(error) if data.shape != error.shape: raise ValueError('data and error must have the same shape.') data.mask |= error.mask error.mask = data.mask xy_error = np.array([np.sqrt(np.ma.sum(error**2, axis=i)) for i in [0, 1]]) xy_weights = [(1.0 / xy_error[i].clip(min=1.e-30)) for i in [0, 1]] else: xy_weights = [np.ones(data.shape[i]) for i in [1, 0]] # assign zero weight to masked pixels if data.mask is not np.ma.nomask: bad_idx = [np.all(data.mask, axis=i) for i in [0, 1]] for i in [0, 1]: xy_weights[i][bad_idx[i]] = 0. xy_data = np.array([np.ma.sum(data, axis=i) for i in [0, 1]]) constant_init = np.ma.min(data) centroid = [] for (data_i, weights_i) in zip(xy_data, xy_weights): params_init = gaussian1d_moments(data_i) g_init = Const1D(constant_init) + Gaussian1D(*params_init) fitter = LevMarLSQFitter() x = np.arange(data_i.size) g_fit = fitter(g_init, x, data_i, weights=weights_i) centroid.append(g_fit.mean_1.value) return np.array(centroid)
[ "def", "centroid_1dg", "(", "data", ",", "error", "=", "None", ",", "mask", "=", "None", ")", ":", "data", "=", "np", ".", "ma", ".", "asanyarray", "(", "data", ")", "if", "mask", "is", "not", "None", "and", "mask", "is", "not", "np", ".", "ma", ".", "nomask", ":", "mask", "=", "np", ".", "asanyarray", "(", "mask", ")", "if", "data", ".", "shape", "!=", "mask", ".", "shape", ":", "raise", "ValueError", "(", "'data and mask must have the same shape.'", ")", "data", ".", "mask", "|=", "mask", "if", "np", ".", "any", "(", "~", "np", ".", "isfinite", "(", "data", ")", ")", ":", "data", "=", "np", ".", "ma", ".", "masked_invalid", "(", "data", ")", "warnings", ".", "warn", "(", "'Input data contains input values (e.g. NaNs or infs), '", "'which were automatically masked.'", ",", "AstropyUserWarning", ")", "if", "error", "is", "not", "None", ":", "error", "=", "np", ".", "ma", ".", "masked_invalid", "(", "error", ")", "if", "data", ".", "shape", "!=", "error", ".", "shape", ":", "raise", "ValueError", "(", "'data and error must have the same shape.'", ")", "data", ".", "mask", "|=", "error", ".", "mask", "error", ".", "mask", "=", "data", ".", "mask", "xy_error", "=", "np", ".", "array", "(", "[", "np", ".", "sqrt", "(", "np", ".", "ma", ".", "sum", "(", "error", "**", "2", ",", "axis", "=", "i", ")", ")", "for", "i", "in", "[", "0", ",", "1", "]", "]", ")", "xy_weights", "=", "[", "(", "1.0", "/", "xy_error", "[", "i", "]", ".", "clip", "(", "min", "=", "1.e-30", ")", ")", "for", "i", "in", "[", "0", ",", "1", "]", "]", "else", ":", "xy_weights", "=", "[", "np", ".", "ones", "(", "data", ".", "shape", "[", "i", "]", ")", "for", "i", "in", "[", "1", ",", "0", "]", "]", "# assign zero weight to masked pixels", "if", "data", ".", "mask", "is", "not", "np", ".", "ma", ".", "nomask", ":", "bad_idx", "=", "[", "np", ".", "all", "(", "data", ".", "mask", ",", "axis", "=", "i", ")", "for", "i", "in", "[", "0", ",", "1", "]", "]", "for", "i", "in", "[", "0", ",", "1", "]", ":", "xy_weights", "[", "i", "]", "[", "bad_idx", "[", "i", "]", "]", "=", "0.", "xy_data", "=", "np", ".", "array", "(", "[", "np", ".", "ma", ".", "sum", "(", "data", ",", "axis", "=", "i", ")", "for", "i", "in", "[", "0", ",", "1", "]", "]", ")", "constant_init", "=", "np", ".", "ma", ".", "min", "(", "data", ")", "centroid", "=", "[", "]", "for", "(", "data_i", ",", "weights_i", ")", "in", "zip", "(", "xy_data", ",", "xy_weights", ")", ":", "params_init", "=", "gaussian1d_moments", "(", "data_i", ")", "g_init", "=", "Const1D", "(", "constant_init", ")", "+", "Gaussian1D", "(", "*", "params_init", ")", "fitter", "=", "LevMarLSQFitter", "(", ")", "x", "=", "np", ".", "arange", "(", "data_i", ".", "size", ")", "g_fit", "=", "fitter", "(", "g_init", ",", "x", ",", "data_i", ",", "weights", "=", "weights_i", ")", "centroid", ".", "append", "(", "g_fit", ".", "mean_1", ".", "value", ")", "return", "np", ".", "array", "(", "centroid", ")" ]
Calculate the centroid of a 2D array by fitting 1D Gaussians to the marginal ``x`` and ``y`` distributions of the array. Invalid values (e.g. NaNs or infs) in the ``data`` or ``error`` arrays are automatically masked. The mask for invalid values represents the combination of the invalid-value masks for the ``data`` and ``error`` arrays. Parameters ---------- data : array_like The 2D data array. error : array_like, optional The 2D array of the 1-sigma errors of the input ``data``. mask : array_like (bool), optional A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Returns ------- centroid : `~numpy.ndarray` The ``x, y`` coordinates of the centroid.
[ "Calculate", "the", "centroid", "of", "a", "2D", "array", "by", "fitting", "1D", "Gaussians", "to", "the", "marginal", "x", "and", "y", "distributions", "of", "the", "array", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/centroids/core.py#L250-L322
10,632
astropy/photutils
photutils/centroids/core.py
centroid_sources
def centroid_sources(data, xpos, ypos, box_size=11, footprint=None, error=None, mask=None, centroid_func=centroid_com): """ Calculate the centroid of sources at the defined positions. A cutout image centered on each input position will be used to calculate the centroid position. The cutout image is defined either using the ``box_size`` or ``footprint`` keyword. The ``footprint`` keyword can be used to create a non-rectangular cutout image. Parameters ---------- data : array_like The 2D array of the image. xpos, ypos : float or array-like of float The initial ``x`` and ``y`` pixel position(s) of the center position. A cutout image centered on this position be used to calculate the centroid. box_size : int or array-like of int, optional The size of the cutout image along each axis. If ``box_size`` is a number, then a square cutout of ``box_size`` will be created. If ``box_size`` has two elements, they should be in ``(ny, nx)`` order. footprint : `~numpy.ndarray` of bools, optional A 2D boolean array where `True` values describe the local footprint region to cutout. ``footprint`` can be used to create a non-rectangular cutout image, in which case the input ``xpos`` and ``ypos`` represent the center of the minimal bounding box for the input ``footprint``. ``box_size=(n, m)`` is equivalent to ``footprint=np.ones((n, m))``. Either ``box_size`` or ``footprint`` must be defined. If they are both defined, then ``footprint`` overrides ``box_size``. mask : array_like, bool, optional A 2D boolean array with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. error : array_like, optional The 2D array of the 1-sigma errors of the input ``data``. ``error`` must have the same shape as ``data``. ``error`` will be used only if supported by the input ``centroid_func``. centroid_func : callable, optional A callable object (e.g. function or class) that is used to calculate the centroid of a 2D array. The ``centroid_func`` must accept a 2D `~numpy.ndarray`, have a ``mask`` keyword and optionally an ``error`` keyword. The callable object must return a tuple of two 1D `~numpy.ndarray`\\s, representing the x and y centroids. The default is `~photutils.centroids.centroid_com`. Returns ------- xcentroid, ycentroid : `~numpy.ndarray` The ``x`` and ``y`` pixel position(s) of the centroids. """ xpos = np.atleast_1d(xpos) ypos = np.atleast_1d(ypos) if xpos.ndim != 1: raise ValueError('xpos must be a 1D array.') if ypos.ndim != 1: raise ValueError('ypos must be a 1D array.') if footprint is None: if box_size is None: raise ValueError('box_size or footprint must be defined.') else: box_size = np.atleast_1d(box_size) if len(box_size) == 1: box_size = np.repeat(box_size, 2) if len(box_size) != 2: raise ValueError('box_size must have 1 or 2 elements.') footprint = np.ones(box_size, dtype=bool) else: footprint = np.asanyarray(footprint, dtype=bool) if footprint.ndim != 2: raise ValueError('footprint must be a 2D array.') use_error = False spec = inspect.getfullargspec(centroid_func) if 'mask' not in spec.args: raise ValueError('The input "centroid_func" must have a "mask" ' 'keyword.') if 'error' in spec.args: use_error = True xcentroids = [] ycentroids = [] for xp, yp in zip(xpos, ypos): slices_large, slices_small = overlap_slices(data.shape, footprint.shape, (yp, xp)) data_cutout = data[slices_large] mask_cutout = None if mask is not None: mask_cutout = mask[slices_large] footprint_mask = ~footprint # trim footprint mask if partial overlap on the data footprint_mask = footprint_mask[slices_small] if mask_cutout is None: mask_cutout = footprint_mask else: # combine the input mask and footprint mask mask_cutout = np.logical_or(mask_cutout, footprint_mask) if error is not None and use_error: error_cutout = error[slices_large] xcen, ycen = centroid_func(data_cutout, mask=mask_cutout, error=error_cutout) else: xcen, ycen = centroid_func(data_cutout, mask=mask_cutout) xcentroids.append(xcen + slices_large[1].start) ycentroids.append(ycen + slices_large[0].start) return np.array(xcentroids), np.array(ycentroids)
python
def centroid_sources(data, xpos, ypos, box_size=11, footprint=None, error=None, mask=None, centroid_func=centroid_com): """ Calculate the centroid of sources at the defined positions. A cutout image centered on each input position will be used to calculate the centroid position. The cutout image is defined either using the ``box_size`` or ``footprint`` keyword. The ``footprint`` keyword can be used to create a non-rectangular cutout image. Parameters ---------- data : array_like The 2D array of the image. xpos, ypos : float or array-like of float The initial ``x`` and ``y`` pixel position(s) of the center position. A cutout image centered on this position be used to calculate the centroid. box_size : int or array-like of int, optional The size of the cutout image along each axis. If ``box_size`` is a number, then a square cutout of ``box_size`` will be created. If ``box_size`` has two elements, they should be in ``(ny, nx)`` order. footprint : `~numpy.ndarray` of bools, optional A 2D boolean array where `True` values describe the local footprint region to cutout. ``footprint`` can be used to create a non-rectangular cutout image, in which case the input ``xpos`` and ``ypos`` represent the center of the minimal bounding box for the input ``footprint``. ``box_size=(n, m)`` is equivalent to ``footprint=np.ones((n, m))``. Either ``box_size`` or ``footprint`` must be defined. If they are both defined, then ``footprint`` overrides ``box_size``. mask : array_like, bool, optional A 2D boolean array with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. error : array_like, optional The 2D array of the 1-sigma errors of the input ``data``. ``error`` must have the same shape as ``data``. ``error`` will be used only if supported by the input ``centroid_func``. centroid_func : callable, optional A callable object (e.g. function or class) that is used to calculate the centroid of a 2D array. The ``centroid_func`` must accept a 2D `~numpy.ndarray`, have a ``mask`` keyword and optionally an ``error`` keyword. The callable object must return a tuple of two 1D `~numpy.ndarray`\\s, representing the x and y centroids. The default is `~photutils.centroids.centroid_com`. Returns ------- xcentroid, ycentroid : `~numpy.ndarray` The ``x`` and ``y`` pixel position(s) of the centroids. """ xpos = np.atleast_1d(xpos) ypos = np.atleast_1d(ypos) if xpos.ndim != 1: raise ValueError('xpos must be a 1D array.') if ypos.ndim != 1: raise ValueError('ypos must be a 1D array.') if footprint is None: if box_size is None: raise ValueError('box_size or footprint must be defined.') else: box_size = np.atleast_1d(box_size) if len(box_size) == 1: box_size = np.repeat(box_size, 2) if len(box_size) != 2: raise ValueError('box_size must have 1 or 2 elements.') footprint = np.ones(box_size, dtype=bool) else: footprint = np.asanyarray(footprint, dtype=bool) if footprint.ndim != 2: raise ValueError('footprint must be a 2D array.') use_error = False spec = inspect.getfullargspec(centroid_func) if 'mask' not in spec.args: raise ValueError('The input "centroid_func" must have a "mask" ' 'keyword.') if 'error' in spec.args: use_error = True xcentroids = [] ycentroids = [] for xp, yp in zip(xpos, ypos): slices_large, slices_small = overlap_slices(data.shape, footprint.shape, (yp, xp)) data_cutout = data[slices_large] mask_cutout = None if mask is not None: mask_cutout = mask[slices_large] footprint_mask = ~footprint # trim footprint mask if partial overlap on the data footprint_mask = footprint_mask[slices_small] if mask_cutout is None: mask_cutout = footprint_mask else: # combine the input mask and footprint mask mask_cutout = np.logical_or(mask_cutout, footprint_mask) if error is not None and use_error: error_cutout = error[slices_large] xcen, ycen = centroid_func(data_cutout, mask=mask_cutout, error=error_cutout) else: xcen, ycen = centroid_func(data_cutout, mask=mask_cutout) xcentroids.append(xcen + slices_large[1].start) ycentroids.append(ycen + slices_large[0].start) return np.array(xcentroids), np.array(ycentroids)
[ "def", "centroid_sources", "(", "data", ",", "xpos", ",", "ypos", ",", "box_size", "=", "11", ",", "footprint", "=", "None", ",", "error", "=", "None", ",", "mask", "=", "None", ",", "centroid_func", "=", "centroid_com", ")", ":", "xpos", "=", "np", ".", "atleast_1d", "(", "xpos", ")", "ypos", "=", "np", ".", "atleast_1d", "(", "ypos", ")", "if", "xpos", ".", "ndim", "!=", "1", ":", "raise", "ValueError", "(", "'xpos must be a 1D array.'", ")", "if", "ypos", ".", "ndim", "!=", "1", ":", "raise", "ValueError", "(", "'ypos must be a 1D array.'", ")", "if", "footprint", "is", "None", ":", "if", "box_size", "is", "None", ":", "raise", "ValueError", "(", "'box_size or footprint must be defined.'", ")", "else", ":", "box_size", "=", "np", ".", "atleast_1d", "(", "box_size", ")", "if", "len", "(", "box_size", ")", "==", "1", ":", "box_size", "=", "np", ".", "repeat", "(", "box_size", ",", "2", ")", "if", "len", "(", "box_size", ")", "!=", "2", ":", "raise", "ValueError", "(", "'box_size must have 1 or 2 elements.'", ")", "footprint", "=", "np", ".", "ones", "(", "box_size", ",", "dtype", "=", "bool", ")", "else", ":", "footprint", "=", "np", ".", "asanyarray", "(", "footprint", ",", "dtype", "=", "bool", ")", "if", "footprint", ".", "ndim", "!=", "2", ":", "raise", "ValueError", "(", "'footprint must be a 2D array.'", ")", "use_error", "=", "False", "spec", "=", "inspect", ".", "getfullargspec", "(", "centroid_func", ")", "if", "'mask'", "not", "in", "spec", ".", "args", ":", "raise", "ValueError", "(", "'The input \"centroid_func\" must have a \"mask\" '", "'keyword.'", ")", "if", "'error'", "in", "spec", ".", "args", ":", "use_error", "=", "True", "xcentroids", "=", "[", "]", "ycentroids", "=", "[", "]", "for", "xp", ",", "yp", "in", "zip", "(", "xpos", ",", "ypos", ")", ":", "slices_large", ",", "slices_small", "=", "overlap_slices", "(", "data", ".", "shape", ",", "footprint", ".", "shape", ",", "(", "yp", ",", "xp", ")", ")", "data_cutout", "=", "data", "[", "slices_large", "]", "mask_cutout", "=", "None", "if", "mask", "is", "not", "None", ":", "mask_cutout", "=", "mask", "[", "slices_large", "]", "footprint_mask", "=", "~", "footprint", "# trim footprint mask if partial overlap on the data", "footprint_mask", "=", "footprint_mask", "[", "slices_small", "]", "if", "mask_cutout", "is", "None", ":", "mask_cutout", "=", "footprint_mask", "else", ":", "# combine the input mask and footprint mask", "mask_cutout", "=", "np", ".", "logical_or", "(", "mask_cutout", ",", "footprint_mask", ")", "if", "error", "is", "not", "None", "and", "use_error", ":", "error_cutout", "=", "error", "[", "slices_large", "]", "xcen", ",", "ycen", "=", "centroid_func", "(", "data_cutout", ",", "mask", "=", "mask_cutout", ",", "error", "=", "error_cutout", ")", "else", ":", "xcen", ",", "ycen", "=", "centroid_func", "(", "data_cutout", ",", "mask", "=", "mask_cutout", ")", "xcentroids", ".", "append", "(", "xcen", "+", "slices_large", "[", "1", "]", ".", "start", ")", "ycentroids", ".", "append", "(", "ycen", "+", "slices_large", "[", "0", "]", ".", "start", ")", "return", "np", ".", "array", "(", "xcentroids", ")", ",", "np", ".", "array", "(", "ycentroids", ")" ]
Calculate the centroid of sources at the defined positions. A cutout image centered on each input position will be used to calculate the centroid position. The cutout image is defined either using the ``box_size`` or ``footprint`` keyword. The ``footprint`` keyword can be used to create a non-rectangular cutout image. Parameters ---------- data : array_like The 2D array of the image. xpos, ypos : float or array-like of float The initial ``x`` and ``y`` pixel position(s) of the center position. A cutout image centered on this position be used to calculate the centroid. box_size : int or array-like of int, optional The size of the cutout image along each axis. If ``box_size`` is a number, then a square cutout of ``box_size`` will be created. If ``box_size`` has two elements, they should be in ``(ny, nx)`` order. footprint : `~numpy.ndarray` of bools, optional A 2D boolean array where `True` values describe the local footprint region to cutout. ``footprint`` can be used to create a non-rectangular cutout image, in which case the input ``xpos`` and ``ypos`` represent the center of the minimal bounding box for the input ``footprint``. ``box_size=(n, m)`` is equivalent to ``footprint=np.ones((n, m))``. Either ``box_size`` or ``footprint`` must be defined. If they are both defined, then ``footprint`` overrides ``box_size``. mask : array_like, bool, optional A 2D boolean array with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. error : array_like, optional The 2D array of the 1-sigma errors of the input ``data``. ``error`` must have the same shape as ``data``. ``error`` will be used only if supported by the input ``centroid_func``. centroid_func : callable, optional A callable object (e.g. function or class) that is used to calculate the centroid of a 2D array. The ``centroid_func`` must accept a 2D `~numpy.ndarray`, have a ``mask`` keyword and optionally an ``error`` keyword. The callable object must return a tuple of two 1D `~numpy.ndarray`\\s, representing the x and y centroids. The default is `~photutils.centroids.centroid_com`. Returns ------- xcentroid, ycentroid : `~numpy.ndarray` The ``x`` and ``y`` pixel position(s) of the centroids.
[ "Calculate", "the", "centroid", "of", "sources", "at", "the", "defined", "positions", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/centroids/core.py#L358-L481
10,633
astropy/photutils
photutils/centroids/core.py
GaussianConst2D.evaluate
def evaluate(x, y, constant, amplitude, x_mean, y_mean, x_stddev, y_stddev, theta): """Two dimensional Gaussian plus constant function.""" model = Const2D(constant)(x, y) + Gaussian2D(amplitude, x_mean, y_mean, x_stddev, y_stddev, theta)(x, y) return model
python
def evaluate(x, y, constant, amplitude, x_mean, y_mean, x_stddev, y_stddev, theta): """Two dimensional Gaussian plus constant function.""" model = Const2D(constant)(x, y) + Gaussian2D(amplitude, x_mean, y_mean, x_stddev, y_stddev, theta)(x, y) return model
[ "def", "evaluate", "(", "x", ",", "y", ",", "constant", ",", "amplitude", ",", "x_mean", ",", "y_mean", ",", "x_stddev", ",", "y_stddev", ",", "theta", ")", ":", "model", "=", "Const2D", "(", "constant", ")", "(", "x", ",", "y", ")", "+", "Gaussian2D", "(", "amplitude", ",", "x_mean", ",", "y_mean", ",", "x_stddev", ",", "y_stddev", ",", "theta", ")", "(", "x", ",", "y", ")", "return", "model" ]
Two dimensional Gaussian plus constant function.
[ "Two", "dimensional", "Gaussian", "plus", "constant", "function", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/centroids/core.py#L61-L68
10,634
astropy/photutils
photutils/psf/sandbox.py
DiscretePRF.evaluate
def evaluate(self, x, y, flux, x_0, y_0): """ Discrete PRF model evaluation. Given a certain position and flux the corresponding image of the PSF is chosen and scaled to the flux. If x and y are outside the boundaries of the image, zero will be returned. Parameters ---------- x : float x coordinate array in pixel coordinates. y : float y coordinate array in pixel coordinates. flux : float Model flux. x_0 : float x position of the center of the PRF. y_0 : float y position of the center of the PRF. """ # Convert x and y to index arrays x = (x - x_0 + 0.5 + self.prf_shape[1] // 2).astype('int') y = (y - y_0 + 0.5 + self.prf_shape[0] // 2).astype('int') # Get subpixel indices y_sub, x_sub = subpixel_indices((y_0, x_0), self.subsampling) # Out of boundary masks x_bound = np.logical_or(x < 0, x >= self.prf_shape[1]) y_bound = np.logical_or(y < 0, y >= self.prf_shape[0]) out_of_bounds = np.logical_or(x_bound, y_bound) # Set out of boundary indices to zero x[x_bound] = 0 y[y_bound] = 0 result = flux * self._prf_array[int(y_sub), int(x_sub)][y, x] # Set out of boundary values to zero result[out_of_bounds] = 0 return result
python
def evaluate(self, x, y, flux, x_0, y_0): """ Discrete PRF model evaluation. Given a certain position and flux the corresponding image of the PSF is chosen and scaled to the flux. If x and y are outside the boundaries of the image, zero will be returned. Parameters ---------- x : float x coordinate array in pixel coordinates. y : float y coordinate array in pixel coordinates. flux : float Model flux. x_0 : float x position of the center of the PRF. y_0 : float y position of the center of the PRF. """ # Convert x and y to index arrays x = (x - x_0 + 0.5 + self.prf_shape[1] // 2).astype('int') y = (y - y_0 + 0.5 + self.prf_shape[0] // 2).astype('int') # Get subpixel indices y_sub, x_sub = subpixel_indices((y_0, x_0), self.subsampling) # Out of boundary masks x_bound = np.logical_or(x < 0, x >= self.prf_shape[1]) y_bound = np.logical_or(y < 0, y >= self.prf_shape[0]) out_of_bounds = np.logical_or(x_bound, y_bound) # Set out of boundary indices to zero x[x_bound] = 0 y[y_bound] = 0 result = flux * self._prf_array[int(y_sub), int(x_sub)][y, x] # Set out of boundary values to zero result[out_of_bounds] = 0 return result
[ "def", "evaluate", "(", "self", ",", "x", ",", "y", ",", "flux", ",", "x_0", ",", "y_0", ")", ":", "# Convert x and y to index arrays", "x", "=", "(", "x", "-", "x_0", "+", "0.5", "+", "self", ".", "prf_shape", "[", "1", "]", "//", "2", ")", ".", "astype", "(", "'int'", ")", "y", "=", "(", "y", "-", "y_0", "+", "0.5", "+", "self", ".", "prf_shape", "[", "0", "]", "//", "2", ")", ".", "astype", "(", "'int'", ")", "# Get subpixel indices", "y_sub", ",", "x_sub", "=", "subpixel_indices", "(", "(", "y_0", ",", "x_0", ")", ",", "self", ".", "subsampling", ")", "# Out of boundary masks", "x_bound", "=", "np", ".", "logical_or", "(", "x", "<", "0", ",", "x", ">=", "self", ".", "prf_shape", "[", "1", "]", ")", "y_bound", "=", "np", ".", "logical_or", "(", "y", "<", "0", ",", "y", ">=", "self", ".", "prf_shape", "[", "0", "]", ")", "out_of_bounds", "=", "np", ".", "logical_or", "(", "x_bound", ",", "y_bound", ")", "# Set out of boundary indices to zero", "x", "[", "x_bound", "]", "=", "0", "y", "[", "y_bound", "]", "=", "0", "result", "=", "flux", "*", "self", ".", "_prf_array", "[", "int", "(", "y_sub", ")", ",", "int", "(", "x_sub", ")", "]", "[", "y", ",", "x", "]", "# Set out of boundary values to zero", "result", "[", "out_of_bounds", "]", "=", "0", "return", "result" ]
Discrete PRF model evaluation. Given a certain position and flux the corresponding image of the PSF is chosen and scaled to the flux. If x and y are outside the boundaries of the image, zero will be returned. Parameters ---------- x : float x coordinate array in pixel coordinates. y : float y coordinate array in pixel coordinates. flux : float Model flux. x_0 : float x position of the center of the PRF. y_0 : float y position of the center of the PRF.
[ "Discrete", "PRF", "model", "evaluation", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/psf/sandbox.py#L104-L145
10,635
astropy/photutils
photutils/psf/sandbox.py
Reproject._reproject
def _reproject(wcs1, wcs2): """ Perform the forward transformation of ``wcs1`` followed by the inverse transformation of ``wcs2``. Parameters ---------- wcs1, wcs2 : `~astropy.wcs.WCS` or `~gwcs.wcs.WCS` The WCS objects. Returns ------- result : func Function to compute the transformations. It takes x, y positions in ``wcs1`` and returns x, y positions in ``wcs2``. The input and output x, y positions are zero indexed. """ import gwcs forward_origin = [] if isinstance(wcs1, fitswcs.WCS): forward = wcs1.all_pix2world forward_origin = [0] elif isinstance(wcs2, gwcs.wcs.WCS): forward = wcs1.forward_transform else: raise ValueError('wcs1 must be an astropy.wcs.WCS or ' 'gwcs.wcs.WCS object.') inverse_origin = [] if isinstance(wcs2, fitswcs.WCS): inverse = wcs2.all_world2pix inverse_origin = [0] elif isinstance(wcs2, gwcs.wcs.WCS): inverse = wcs2.forward_transform.inverse else: raise ValueError('wcs2 must be an astropy.wcs.WCS or ' 'gwcs.wcs.WCS object.') def _reproject_func(x, y): forward_args = [x, y] + forward_origin sky = forward(*forward_args) inverse_args = sky + inverse_origin return inverse(*inverse_args) return _reproject_func
python
def _reproject(wcs1, wcs2): """ Perform the forward transformation of ``wcs1`` followed by the inverse transformation of ``wcs2``. Parameters ---------- wcs1, wcs2 : `~astropy.wcs.WCS` or `~gwcs.wcs.WCS` The WCS objects. Returns ------- result : func Function to compute the transformations. It takes x, y positions in ``wcs1`` and returns x, y positions in ``wcs2``. The input and output x, y positions are zero indexed. """ import gwcs forward_origin = [] if isinstance(wcs1, fitswcs.WCS): forward = wcs1.all_pix2world forward_origin = [0] elif isinstance(wcs2, gwcs.wcs.WCS): forward = wcs1.forward_transform else: raise ValueError('wcs1 must be an astropy.wcs.WCS or ' 'gwcs.wcs.WCS object.') inverse_origin = [] if isinstance(wcs2, fitswcs.WCS): inverse = wcs2.all_world2pix inverse_origin = [0] elif isinstance(wcs2, gwcs.wcs.WCS): inverse = wcs2.forward_transform.inverse else: raise ValueError('wcs2 must be an astropy.wcs.WCS or ' 'gwcs.wcs.WCS object.') def _reproject_func(x, y): forward_args = [x, y] + forward_origin sky = forward(*forward_args) inverse_args = sky + inverse_origin return inverse(*inverse_args) return _reproject_func
[ "def", "_reproject", "(", "wcs1", ",", "wcs2", ")", ":", "import", "gwcs", "forward_origin", "=", "[", "]", "if", "isinstance", "(", "wcs1", ",", "fitswcs", ".", "WCS", ")", ":", "forward", "=", "wcs1", ".", "all_pix2world", "forward_origin", "=", "[", "0", "]", "elif", "isinstance", "(", "wcs2", ",", "gwcs", ".", "wcs", ".", "WCS", ")", ":", "forward", "=", "wcs1", ".", "forward_transform", "else", ":", "raise", "ValueError", "(", "'wcs1 must be an astropy.wcs.WCS or '", "'gwcs.wcs.WCS object.'", ")", "inverse_origin", "=", "[", "]", "if", "isinstance", "(", "wcs2", ",", "fitswcs", ".", "WCS", ")", ":", "inverse", "=", "wcs2", ".", "all_world2pix", "inverse_origin", "=", "[", "0", "]", "elif", "isinstance", "(", "wcs2", ",", "gwcs", ".", "wcs", ".", "WCS", ")", ":", "inverse", "=", "wcs2", ".", "forward_transform", ".", "inverse", "else", ":", "raise", "ValueError", "(", "'wcs2 must be an astropy.wcs.WCS or '", "'gwcs.wcs.WCS object.'", ")", "def", "_reproject_func", "(", "x", ",", "y", ")", ":", "forward_args", "=", "[", "x", ",", "y", "]", "+", "forward_origin", "sky", "=", "forward", "(", "*", "forward_args", ")", "inverse_args", "=", "sky", "+", "inverse_origin", "return", "inverse", "(", "*", "inverse_args", ")", "return", "_reproject_func" ]
Perform the forward transformation of ``wcs1`` followed by the inverse transformation of ``wcs2``. Parameters ---------- wcs1, wcs2 : `~astropy.wcs.WCS` or `~gwcs.wcs.WCS` The WCS objects. Returns ------- result : func Function to compute the transformations. It takes x, y positions in ``wcs1`` and returns x, y positions in ``wcs2``. The input and output x, y positions are zero indexed.
[ "Perform", "the", "forward", "transformation", "of", "wcs1", "followed", "by", "the", "inverse", "transformation", "of", "wcs2", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/psf/sandbox.py#L316-L363
10,636
astropy/photutils
photutils/utils/misc.py
get_version_info
def get_version_info(): """ Return astropy and photutils versions. Returns ------- result : str The astropy and photutils versions. """ from astropy import __version__ astropy_version = __version__ from photutils import __version__ photutils_version = __version__ return 'astropy: {0}, photutils: {1}'.format(astropy_version, photutils_version)
python
def get_version_info(): """ Return astropy and photutils versions. Returns ------- result : str The astropy and photutils versions. """ from astropy import __version__ astropy_version = __version__ from photutils import __version__ photutils_version = __version__ return 'astropy: {0}, photutils: {1}'.format(astropy_version, photutils_version)
[ "def", "get_version_info", "(", ")", ":", "from", "astropy", "import", "__version__", "astropy_version", "=", "__version__", "from", "photutils", "import", "__version__", "photutils_version", "=", "__version__", "return", "'astropy: {0}, photutils: {1}'", ".", "format", "(", "astropy_version", ",", "photutils_version", ")" ]
Return astropy and photutils versions. Returns ------- result : str The astropy and photutils versions.
[ "Return", "astropy", "and", "photutils", "versions", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/utils/misc.py#L15-L32
10,637
astropy/photutils
photutils/utils/errors.py
calc_total_error
def calc_total_error(data, bkg_error, effective_gain): """ Calculate a total error array, combining a background-only error array with the Poisson noise of sources. Parameters ---------- data : array_like or `~astropy.units.Quantity` The data array. bkg_error : array_like or `~astropy.units.Quantity` The pixel-wise Gaussian 1-sigma background-only errors of the input ``data``. ``bkg_error`` should include all sources of "background" error but *exclude* the Poisson error of the sources. ``bkg_error`` must have the same shape as ``data``. If ``data`` and ``bkg_error`` are `~astropy.units.Quantity` objects, then they must have the same units. effective_gain : float, array-like, or `~astropy.units.Quantity` Ratio of counts (e.g., electrons or photons) to the units of ``data`` used to calculate the Poisson error of the sources. Returns ------- total_error : `~numpy.ndarray` or `~astropy.units.Quantity` The total error array. If ``data``, ``bkg_error``, and ``effective_gain`` are all `~astropy.units.Quantity` objects, then ``total_error`` will also be returned as a `~astropy.units.Quantity` object with the same units as the input ``data``. Otherwise, a `~numpy.ndarray` will be returned. Notes ----- To use units, ``data``, ``bkg_error``, and ``effective_gain`` must *all* be `~astropy.units.Quantity` objects. ``data`` and ``bkg_error`` must have the same units. A `ValueError` will be raised if only some of the inputs are `~astropy.units.Quantity` objects or if the ``data`` and ``bkg_error`` units differ. The total error array, :math:`\\sigma_{\\mathrm{tot}}` is: .. math:: \\sigma_{\\mathrm{tot}} = \\sqrt{\\sigma_{\\mathrm{b}}^2 + \\frac{I}{g}} where :math:`\\sigma_b`, :math:`I`, and :math:`g` are the background ``bkg_error`` image, ``data`` image, and ``effective_gain``, respectively. Pixels where ``data`` (:math:`I_i)` is negative do not contribute additional Poisson noise to the total error, i.e. :math:`\\sigma_{\\mathrm{tot}, i} = \\sigma_{\\mathrm{b}, i}`. Note that this is different from `SExtractor`_, which sums the total variance in the segment, including pixels where :math:`I_i` is negative. In such cases, `SExtractor`_ underestimates the total errors. Also note that SExtractor computes Poisson errors from background-subtracted data, which also results in an underestimation of the Poisson noise. ``effective_gain`` can either be a scalar value or a 2D image with the same shape as the ``data``. A 2D image is useful with mosaic images that have variable depths (i.e., exposure times) across the field. For example, one should use an exposure-time map as the ``effective_gain`` for a variable depth mosaic image in count-rate units. As an example, if your input ``data`` are in units of ADU, then ``effective_gain`` should be in units of electrons/ADU (or photons/ADU). If your input ``data`` are in units of electrons/s then ``effective_gain`` should be the exposure time or an exposure time map (e.g., for mosaics with non-uniform exposure times). .. _SExtractor: http://www.astromatic.net/software/sextractor """ data = np.asanyarray(data) bkg_error = np.asanyarray(bkg_error) inputs = [data, bkg_error, effective_gain] has_unit = [hasattr(x, 'unit') for x in inputs] use_units = all(has_unit) if any(has_unit) and not use_units: raise ValueError('If any of data, bkg_error, or effective_gain has ' 'units, then they all must all have units.') if use_units: if data.unit != bkg_error.unit: raise ValueError('data and bkg_error must have the same units.') count_units = [u.electron, u.photon] datagain_unit = data.unit * effective_gain.unit if datagain_unit not in count_units: raise u.UnitsError('(data * effective_gain) has units of "{0}", ' 'but it must have count units (e.g. ' 'u.electron or u.photon).' .format(datagain_unit)) if not isiterable(effective_gain): effective_gain = np.zeros(data.shape) + effective_gain else: effective_gain = np.asanyarray(effective_gain) if effective_gain.shape != data.shape: raise ValueError('If input effective_gain is 2D, then it must ' 'have the same shape as the input data.') if np.any(effective_gain <= 0): raise ValueError('effective_gain must be strictly positive ' 'everywhere.') # This calculation assumes that data and bkg_error have the same # units. source_variance is calculated to have units of # (data.unit)**2 so that it can be added with bkg_error**2 below. The # final returned error will have units of data.unit. np.maximum is # used to ensure that negative data values do not contribute to the # Poisson noise. if use_units: unit = data.unit data = data.value effective_gain = effective_gain.value source_variance = np.maximum(data / effective_gain, 0) * unit**2 else: source_variance = np.maximum(data / effective_gain, 0) return np.sqrt(bkg_error**2 + source_variance)
python
def calc_total_error(data, bkg_error, effective_gain): """ Calculate a total error array, combining a background-only error array with the Poisson noise of sources. Parameters ---------- data : array_like or `~astropy.units.Quantity` The data array. bkg_error : array_like or `~astropy.units.Quantity` The pixel-wise Gaussian 1-sigma background-only errors of the input ``data``. ``bkg_error`` should include all sources of "background" error but *exclude* the Poisson error of the sources. ``bkg_error`` must have the same shape as ``data``. If ``data`` and ``bkg_error`` are `~astropy.units.Quantity` objects, then they must have the same units. effective_gain : float, array-like, or `~astropy.units.Quantity` Ratio of counts (e.g., electrons or photons) to the units of ``data`` used to calculate the Poisson error of the sources. Returns ------- total_error : `~numpy.ndarray` or `~astropy.units.Quantity` The total error array. If ``data``, ``bkg_error``, and ``effective_gain`` are all `~astropy.units.Quantity` objects, then ``total_error`` will also be returned as a `~astropy.units.Quantity` object with the same units as the input ``data``. Otherwise, a `~numpy.ndarray` will be returned. Notes ----- To use units, ``data``, ``bkg_error``, and ``effective_gain`` must *all* be `~astropy.units.Quantity` objects. ``data`` and ``bkg_error`` must have the same units. A `ValueError` will be raised if only some of the inputs are `~astropy.units.Quantity` objects or if the ``data`` and ``bkg_error`` units differ. The total error array, :math:`\\sigma_{\\mathrm{tot}}` is: .. math:: \\sigma_{\\mathrm{tot}} = \\sqrt{\\sigma_{\\mathrm{b}}^2 + \\frac{I}{g}} where :math:`\\sigma_b`, :math:`I`, and :math:`g` are the background ``bkg_error`` image, ``data`` image, and ``effective_gain``, respectively. Pixels where ``data`` (:math:`I_i)` is negative do not contribute additional Poisson noise to the total error, i.e. :math:`\\sigma_{\\mathrm{tot}, i} = \\sigma_{\\mathrm{b}, i}`. Note that this is different from `SExtractor`_, which sums the total variance in the segment, including pixels where :math:`I_i` is negative. In such cases, `SExtractor`_ underestimates the total errors. Also note that SExtractor computes Poisson errors from background-subtracted data, which also results in an underestimation of the Poisson noise. ``effective_gain`` can either be a scalar value or a 2D image with the same shape as the ``data``. A 2D image is useful with mosaic images that have variable depths (i.e., exposure times) across the field. For example, one should use an exposure-time map as the ``effective_gain`` for a variable depth mosaic image in count-rate units. As an example, if your input ``data`` are in units of ADU, then ``effective_gain`` should be in units of electrons/ADU (or photons/ADU). If your input ``data`` are in units of electrons/s then ``effective_gain`` should be the exposure time or an exposure time map (e.g., for mosaics with non-uniform exposure times). .. _SExtractor: http://www.astromatic.net/software/sextractor """ data = np.asanyarray(data) bkg_error = np.asanyarray(bkg_error) inputs = [data, bkg_error, effective_gain] has_unit = [hasattr(x, 'unit') for x in inputs] use_units = all(has_unit) if any(has_unit) and not use_units: raise ValueError('If any of data, bkg_error, or effective_gain has ' 'units, then they all must all have units.') if use_units: if data.unit != bkg_error.unit: raise ValueError('data and bkg_error must have the same units.') count_units = [u.electron, u.photon] datagain_unit = data.unit * effective_gain.unit if datagain_unit not in count_units: raise u.UnitsError('(data * effective_gain) has units of "{0}", ' 'but it must have count units (e.g. ' 'u.electron or u.photon).' .format(datagain_unit)) if not isiterable(effective_gain): effective_gain = np.zeros(data.shape) + effective_gain else: effective_gain = np.asanyarray(effective_gain) if effective_gain.shape != data.shape: raise ValueError('If input effective_gain is 2D, then it must ' 'have the same shape as the input data.') if np.any(effective_gain <= 0): raise ValueError('effective_gain must be strictly positive ' 'everywhere.') # This calculation assumes that data and bkg_error have the same # units. source_variance is calculated to have units of # (data.unit)**2 so that it can be added with bkg_error**2 below. The # final returned error will have units of data.unit. np.maximum is # used to ensure that negative data values do not contribute to the # Poisson noise. if use_units: unit = data.unit data = data.value effective_gain = effective_gain.value source_variance = np.maximum(data / effective_gain, 0) * unit**2 else: source_variance = np.maximum(data / effective_gain, 0) return np.sqrt(bkg_error**2 + source_variance)
[ "def", "calc_total_error", "(", "data", ",", "bkg_error", ",", "effective_gain", ")", ":", "data", "=", "np", ".", "asanyarray", "(", "data", ")", "bkg_error", "=", "np", ".", "asanyarray", "(", "bkg_error", ")", "inputs", "=", "[", "data", ",", "bkg_error", ",", "effective_gain", "]", "has_unit", "=", "[", "hasattr", "(", "x", ",", "'unit'", ")", "for", "x", "in", "inputs", "]", "use_units", "=", "all", "(", "has_unit", ")", "if", "any", "(", "has_unit", ")", "and", "not", "use_units", ":", "raise", "ValueError", "(", "'If any of data, bkg_error, or effective_gain has '", "'units, then they all must all have units.'", ")", "if", "use_units", ":", "if", "data", ".", "unit", "!=", "bkg_error", ".", "unit", ":", "raise", "ValueError", "(", "'data and bkg_error must have the same units.'", ")", "count_units", "=", "[", "u", ".", "electron", ",", "u", ".", "photon", "]", "datagain_unit", "=", "data", ".", "unit", "*", "effective_gain", ".", "unit", "if", "datagain_unit", "not", "in", "count_units", ":", "raise", "u", ".", "UnitsError", "(", "'(data * effective_gain) has units of \"{0}\", '", "'but it must have count units (e.g. '", "'u.electron or u.photon).'", ".", "format", "(", "datagain_unit", ")", ")", "if", "not", "isiterable", "(", "effective_gain", ")", ":", "effective_gain", "=", "np", ".", "zeros", "(", "data", ".", "shape", ")", "+", "effective_gain", "else", ":", "effective_gain", "=", "np", ".", "asanyarray", "(", "effective_gain", ")", "if", "effective_gain", ".", "shape", "!=", "data", ".", "shape", ":", "raise", "ValueError", "(", "'If input effective_gain is 2D, then it must '", "'have the same shape as the input data.'", ")", "if", "np", ".", "any", "(", "effective_gain", "<=", "0", ")", ":", "raise", "ValueError", "(", "'effective_gain must be strictly positive '", "'everywhere.'", ")", "# This calculation assumes that data and bkg_error have the same", "# units. source_variance is calculated to have units of", "# (data.unit)**2 so that it can be added with bkg_error**2 below. The", "# final returned error will have units of data.unit. np.maximum is", "# used to ensure that negative data values do not contribute to the", "# Poisson noise.", "if", "use_units", ":", "unit", "=", "data", ".", "unit", "data", "=", "data", ".", "value", "effective_gain", "=", "effective_gain", ".", "value", "source_variance", "=", "np", ".", "maximum", "(", "data", "/", "effective_gain", ",", "0", ")", "*", "unit", "**", "2", "else", ":", "source_variance", "=", "np", ".", "maximum", "(", "data", "/", "effective_gain", ",", "0", ")", "return", "np", ".", "sqrt", "(", "bkg_error", "**", "2", "+", "source_variance", ")" ]
Calculate a total error array, combining a background-only error array with the Poisson noise of sources. Parameters ---------- data : array_like or `~astropy.units.Quantity` The data array. bkg_error : array_like or `~astropy.units.Quantity` The pixel-wise Gaussian 1-sigma background-only errors of the input ``data``. ``bkg_error`` should include all sources of "background" error but *exclude* the Poisson error of the sources. ``bkg_error`` must have the same shape as ``data``. If ``data`` and ``bkg_error`` are `~astropy.units.Quantity` objects, then they must have the same units. effective_gain : float, array-like, or `~astropy.units.Quantity` Ratio of counts (e.g., electrons or photons) to the units of ``data`` used to calculate the Poisson error of the sources. Returns ------- total_error : `~numpy.ndarray` or `~astropy.units.Quantity` The total error array. If ``data``, ``bkg_error``, and ``effective_gain`` are all `~astropy.units.Quantity` objects, then ``total_error`` will also be returned as a `~astropy.units.Quantity` object with the same units as the input ``data``. Otherwise, a `~numpy.ndarray` will be returned. Notes ----- To use units, ``data``, ``bkg_error``, and ``effective_gain`` must *all* be `~astropy.units.Quantity` objects. ``data`` and ``bkg_error`` must have the same units. A `ValueError` will be raised if only some of the inputs are `~astropy.units.Quantity` objects or if the ``data`` and ``bkg_error`` units differ. The total error array, :math:`\\sigma_{\\mathrm{tot}}` is: .. math:: \\sigma_{\\mathrm{tot}} = \\sqrt{\\sigma_{\\mathrm{b}}^2 + \\frac{I}{g}} where :math:`\\sigma_b`, :math:`I`, and :math:`g` are the background ``bkg_error`` image, ``data`` image, and ``effective_gain``, respectively. Pixels where ``data`` (:math:`I_i)` is negative do not contribute additional Poisson noise to the total error, i.e. :math:`\\sigma_{\\mathrm{tot}, i} = \\sigma_{\\mathrm{b}, i}`. Note that this is different from `SExtractor`_, which sums the total variance in the segment, including pixels where :math:`I_i` is negative. In such cases, `SExtractor`_ underestimates the total errors. Also note that SExtractor computes Poisson errors from background-subtracted data, which also results in an underestimation of the Poisson noise. ``effective_gain`` can either be a scalar value or a 2D image with the same shape as the ``data``. A 2D image is useful with mosaic images that have variable depths (i.e., exposure times) across the field. For example, one should use an exposure-time map as the ``effective_gain`` for a variable depth mosaic image in count-rate units. As an example, if your input ``data`` are in units of ADU, then ``effective_gain`` should be in units of electrons/ADU (or photons/ADU). If your input ``data`` are in units of electrons/s then ``effective_gain`` should be the exposure time or an exposure time map (e.g., for mosaics with non-uniform exposure times). .. _SExtractor: http://www.astromatic.net/software/sextractor
[ "Calculate", "a", "total", "error", "array", "combining", "a", "background", "-", "only", "error", "array", "with", "the", "Poisson", "noise", "of", "sources", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/utils/errors.py#L11-L132
10,638
astropy/photutils
photutils/aperture/rectangle.py
RectangularAperture.to_sky
def to_sky(self, wcs, mode='all'): """ Convert the aperture to a `SkyRectangularAperture` object defined in celestial coordinates. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- aperture : `SkyRectangularAperture` object A `SkyRectangularAperture` object. """ sky_params = self._to_sky_params(wcs, mode=mode) return SkyRectangularAperture(**sky_params)
python
def to_sky(self, wcs, mode='all'): """ Convert the aperture to a `SkyRectangularAperture` object defined in celestial coordinates. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- aperture : `SkyRectangularAperture` object A `SkyRectangularAperture` object. """ sky_params = self._to_sky_params(wcs, mode=mode) return SkyRectangularAperture(**sky_params)
[ "def", "to_sky", "(", "self", ",", "wcs", ",", "mode", "=", "'all'", ")", ":", "sky_params", "=", "self", ".", "_to_sky_params", "(", "wcs", ",", "mode", "=", "mode", ")", "return", "SkyRectangularAperture", "(", "*", "*", "sky_params", ")" ]
Convert the aperture to a `SkyRectangularAperture` object defined in celestial coordinates. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- aperture : `SkyRectangularAperture` object A `SkyRectangularAperture` object.
[ "Convert", "the", "aperture", "to", "a", "SkyRectangularAperture", "object", "defined", "in", "celestial", "coordinates", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/aperture/rectangle.py#L200-L222
10,639
astropy/photutils
photutils/aperture/rectangle.py
RectangularAnnulus.to_sky
def to_sky(self, wcs, mode='all'): """ Convert the aperture to a `SkyRectangularAnnulus` object defined in celestial coordinates. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- aperture : `SkyRectangularAnnulus` object A `SkyRectangularAnnulus` object. """ sky_params = self._to_sky_params(wcs, mode=mode) return SkyRectangularAnnulus(**sky_params)
python
def to_sky(self, wcs, mode='all'): """ Convert the aperture to a `SkyRectangularAnnulus` object defined in celestial coordinates. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- aperture : `SkyRectangularAnnulus` object A `SkyRectangularAnnulus` object. """ sky_params = self._to_sky_params(wcs, mode=mode) return SkyRectangularAnnulus(**sky_params)
[ "def", "to_sky", "(", "self", ",", "wcs", ",", "mode", "=", "'all'", ")", ":", "sky_params", "=", "self", ".", "_to_sky_params", "(", "wcs", ",", "mode", "=", "mode", ")", "return", "SkyRectangularAnnulus", "(", "*", "*", "sky_params", ")" ]
Convert the aperture to a `SkyRectangularAnnulus` object defined in celestial coordinates. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- aperture : `SkyRectangularAnnulus` object A `SkyRectangularAnnulus` object.
[ "Convert", "the", "aperture", "to", "a", "SkyRectangularAnnulus", "object", "defined", "in", "celestial", "coordinates", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/aperture/rectangle.py#L354-L376
10,640
astropy/photutils
photutils/aperture/rectangle.py
SkyRectangularAperture.to_pixel
def to_pixel(self, wcs, mode='all'): """ Convert the aperture to a `RectangularAperture` object defined in pixel coordinates. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- aperture : `RectangularAperture` object A `RectangularAperture` object. """ pixel_params = self._to_pixel_params(wcs, mode=mode) return RectangularAperture(**pixel_params)
python
def to_pixel(self, wcs, mode='all'): """ Convert the aperture to a `RectangularAperture` object defined in pixel coordinates. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- aperture : `RectangularAperture` object A `RectangularAperture` object. """ pixel_params = self._to_pixel_params(wcs, mode=mode) return RectangularAperture(**pixel_params)
[ "def", "to_pixel", "(", "self", ",", "wcs", ",", "mode", "=", "'all'", ")", ":", "pixel_params", "=", "self", ".", "_to_pixel_params", "(", "wcs", ",", "mode", "=", "mode", ")", "return", "RectangularAperture", "(", "*", "*", "pixel_params", ")" ]
Convert the aperture to a `RectangularAperture` object defined in pixel coordinates. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- aperture : `RectangularAperture` object A `RectangularAperture` object.
[ "Convert", "the", "aperture", "to", "a", "RectangularAperture", "object", "defined", "in", "pixel", "coordinates", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/aperture/rectangle.py#L425-L447
10,641
astropy/photutils
photutils/aperture/rectangle.py
SkyRectangularAnnulus.to_pixel
def to_pixel(self, wcs, mode='all'): """ Convert the aperture to a `RectangularAnnulus` object defined in pixel coordinates. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- aperture : `RectangularAnnulus` object A `RectangularAnnulus` object. """ pixel_params = self._to_pixel_params(wcs, mode=mode) return RectangularAnnulus(**pixel_params)
python
def to_pixel(self, wcs, mode='all'): """ Convert the aperture to a `RectangularAnnulus` object defined in pixel coordinates. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- aperture : `RectangularAnnulus` object A `RectangularAnnulus` object. """ pixel_params = self._to_pixel_params(wcs, mode=mode) return RectangularAnnulus(**pixel_params)
[ "def", "to_pixel", "(", "self", ",", "wcs", ",", "mode", "=", "'all'", ")", ":", "pixel_params", "=", "self", ".", "_to_pixel_params", "(", "wcs", ",", "mode", "=", "mode", ")", "return", "RectangularAnnulus", "(", "*", "*", "pixel_params", ")" ]
Convert the aperture to a `RectangularAnnulus` object defined in pixel coordinates. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- aperture : `RectangularAnnulus` object A `RectangularAnnulus` object.
[ "Convert", "the", "aperture", "to", "a", "RectangularAnnulus", "object", "defined", "in", "pixel", "coordinates", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/aperture/rectangle.py#L511-L533
10,642
astropy/photutils
photutils/psf/epsf.py
_py2intround
def _py2intround(a): """ Round the input to the nearest integer. If two integers are equally close, rounding is done away from 0. """ data = np.asanyarray(a) value = np.where(data >= 0, np.floor(data + 0.5), np.ceil(data - 0.5)).astype(int) if not hasattr(a, '__iter__'): value = np.asscalar(value) return value
python
def _py2intround(a): """ Round the input to the nearest integer. If two integers are equally close, rounding is done away from 0. """ data = np.asanyarray(a) value = np.where(data >= 0, np.floor(data + 0.5), np.ceil(data - 0.5)).astype(int) if not hasattr(a, '__iter__'): value = np.asscalar(value) return value
[ "def", "_py2intround", "(", "a", ")", ":", "data", "=", "np", ".", "asanyarray", "(", "a", ")", "value", "=", "np", ".", "where", "(", "data", ">=", "0", ",", "np", ".", "floor", "(", "data", "+", "0.5", ")", ",", "np", ".", "ceil", "(", "data", "-", "0.5", ")", ")", ".", "astype", "(", "int", ")", "if", "not", "hasattr", "(", "a", ",", "'__iter__'", ")", ":", "value", "=", "np", ".", "asscalar", "(", "value", ")", "return", "value" ]
Round the input to the nearest integer. If two integers are equally close, rounding is done away from 0.
[ "Round", "the", "input", "to", "the", "nearest", "integer", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/psf/epsf.py#L845-L859
10,643
astropy/photutils
photutils/psf/epsf.py
_interpolate_missing_data
def _interpolate_missing_data(data, mask, method='cubic'): """ Interpolate missing data as identified by the ``mask`` keyword. Parameters ---------- data : 2D `~numpy.ndarray` An array containing the 2D image. mask : 2D bool `~numpy.ndarray` A 2D booleen mask array with the same shape as the input ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. The masked data points are those that will be interpolated. method : {'cubic', 'nearest'}, optional The method of used to interpolate the missing data: * ``'cubic'``: Masked data are interpolated using 2D cubic splines. This is the default. * ``'nearest'``: Masked data are interpolated using nearest-neighbor interpolation. Returns ------- data_interp : 2D `~numpy.ndarray` The interpolated 2D image. """ from scipy import interpolate data_interp = np.array(data, copy=True) if len(data_interp.shape) != 2: raise ValueError('data must be a 2D array.') if mask.shape != data.shape: raise ValueError('mask and data must have the same shape.') y, x = np.indices(data_interp.shape) xy = np.dstack((x[~mask].ravel(), y[~mask].ravel()))[0] z = data_interp[~mask].ravel() if method == 'nearest': interpol = interpolate.NearestNDInterpolator(xy, z) elif method == 'cubic': interpol = interpolate.CloughTocher2DInterpolator(xy, z) else: raise ValueError('Unsupported interpolation method.') xy_missing = np.dstack((x[mask].ravel(), y[mask].ravel()))[0] data_interp[mask] = interpol(xy_missing) return data_interp
python
def _interpolate_missing_data(data, mask, method='cubic'): """ Interpolate missing data as identified by the ``mask`` keyword. Parameters ---------- data : 2D `~numpy.ndarray` An array containing the 2D image. mask : 2D bool `~numpy.ndarray` A 2D booleen mask array with the same shape as the input ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. The masked data points are those that will be interpolated. method : {'cubic', 'nearest'}, optional The method of used to interpolate the missing data: * ``'cubic'``: Masked data are interpolated using 2D cubic splines. This is the default. * ``'nearest'``: Masked data are interpolated using nearest-neighbor interpolation. Returns ------- data_interp : 2D `~numpy.ndarray` The interpolated 2D image. """ from scipy import interpolate data_interp = np.array(data, copy=True) if len(data_interp.shape) != 2: raise ValueError('data must be a 2D array.') if mask.shape != data.shape: raise ValueError('mask and data must have the same shape.') y, x = np.indices(data_interp.shape) xy = np.dstack((x[~mask].ravel(), y[~mask].ravel()))[0] z = data_interp[~mask].ravel() if method == 'nearest': interpol = interpolate.NearestNDInterpolator(xy, z) elif method == 'cubic': interpol = interpolate.CloughTocher2DInterpolator(xy, z) else: raise ValueError('Unsupported interpolation method.') xy_missing = np.dstack((x[mask].ravel(), y[mask].ravel()))[0] data_interp[mask] = interpol(xy_missing) return data_interp
[ "def", "_interpolate_missing_data", "(", "data", ",", "mask", ",", "method", "=", "'cubic'", ")", ":", "from", "scipy", "import", "interpolate", "data_interp", "=", "np", ".", "array", "(", "data", ",", "copy", "=", "True", ")", "if", "len", "(", "data_interp", ".", "shape", ")", "!=", "2", ":", "raise", "ValueError", "(", "'data must be a 2D array.'", ")", "if", "mask", ".", "shape", "!=", "data", ".", "shape", ":", "raise", "ValueError", "(", "'mask and data must have the same shape.'", ")", "y", ",", "x", "=", "np", ".", "indices", "(", "data_interp", ".", "shape", ")", "xy", "=", "np", ".", "dstack", "(", "(", "x", "[", "~", "mask", "]", ".", "ravel", "(", ")", ",", "y", "[", "~", "mask", "]", ".", "ravel", "(", ")", ")", ")", "[", "0", "]", "z", "=", "data_interp", "[", "~", "mask", "]", ".", "ravel", "(", ")", "if", "method", "==", "'nearest'", ":", "interpol", "=", "interpolate", ".", "NearestNDInterpolator", "(", "xy", ",", "z", ")", "elif", "method", "==", "'cubic'", ":", "interpol", "=", "interpolate", ".", "CloughTocher2DInterpolator", "(", "xy", ",", "z", ")", "else", ":", "raise", "ValueError", "(", "'Unsupported interpolation method.'", ")", "xy_missing", "=", "np", ".", "dstack", "(", "(", "x", "[", "mask", "]", ".", "ravel", "(", ")", ",", "y", "[", "mask", "]", ".", "ravel", "(", ")", ")", ")", "[", "0", "]", "data_interp", "[", "mask", "]", "=", "interpol", "(", "xy_missing", ")", "return", "data_interp" ]
Interpolate missing data as identified by the ``mask`` keyword. Parameters ---------- data : 2D `~numpy.ndarray` An array containing the 2D image. mask : 2D bool `~numpy.ndarray` A 2D booleen mask array with the same shape as the input ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. The masked data points are those that will be interpolated. method : {'cubic', 'nearest'}, optional The method of used to interpolate the missing data: * ``'cubic'``: Masked data are interpolated using 2D cubic splines. This is the default. * ``'nearest'``: Masked data are interpolated using nearest-neighbor interpolation. Returns ------- data_interp : 2D `~numpy.ndarray` The interpolated 2D image.
[ "Interpolate", "missing", "data", "as", "identified", "by", "the", "mask", "keyword", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/psf/epsf.py#L862-L916
10,644
astropy/photutils
photutils/psf/epsf.py
EPSFFitter._fit_star
def _fit_star(self, epsf, star, fitter, fitter_kwargs, fitter_has_fit_info, fit_boxsize): """ Fit an ePSF model to a single star. The input ``epsf`` will usually be modified by the fitting routine in this function. Make a copy before calling this function if the original is needed. """ if fit_boxsize is not None: try: xcenter, ycenter = star.cutout_center large_slc, small_slc = overlap_slices(star.shape, fit_boxsize, (ycenter, xcenter), mode='strict') except (PartialOverlapError, NoOverlapError): warnings.warn('The star at ({0}, {1}) cannot be fit because ' 'its fitting region extends beyond the star ' 'cutout image.'.format(star.center[0], star.center[1]), AstropyUserWarning) star = copy.deepcopy(star) star._fit_error_status = 1 return star data = star.data[large_slc] weights = star.weights[large_slc] # define the origin of the fitting region x0 = large_slc[1].start y0 = large_slc[0].start else: # use the entire cutout image data = star.data weights = star.weights # define the origin of the fitting region x0 = 0 y0 = 0 scaled_data = data / np.prod(epsf._oversampling) # define positions in the ePSF oversampled grid yy, xx = np.indices(data.shape, dtype=np.float) xx = (xx - (star.cutout_center[0] - x0)) * epsf._oversampling[0] yy = (yy - (star.cutout_center[1] - y0)) * epsf._oversampling[1] # define the initial guesses for fitted flux and shifts epsf.flux = star.flux epsf.x_0 = 0.0 epsf.y_0 = 0.0 # create copy to avoid overwriting original oversampling factor _epsf = epsf.copy() _epsf._oversampling = np.array([1., 1.]) try: fitted_epsf = fitter(model=_epsf, x=xx, y=yy, z=scaled_data, weights=weights, **fitter_kwargs) except TypeError: # fitter doesn't support weights fitted_epsf = fitter(model=_epsf, x=xx, y=yy, z=scaled_data, **fitter_kwargs) fit_error_status = 0 if fitter_has_fit_info: fit_info = copy.copy(fitter.fit_info) if 'ierr' in fit_info and fit_info['ierr'] not in [1, 2, 3, 4]: fit_error_status = 2 # fit solution was not found else: fit_info = None # compute the star's fitted position x_center = (star.cutout_center[0] + (fitted_epsf.x_0.value / epsf._oversampling[0])) y_center = (star.cutout_center[1] + (fitted_epsf.y_0.value / epsf._oversampling[1])) star = copy.deepcopy(star) star.cutout_center = (x_center, y_center) # set the star's flux to the ePSF-fitted flux star.flux = fitted_epsf.flux.value star._fit_info = fit_info star._fit_error_status = fit_error_status return star
python
def _fit_star(self, epsf, star, fitter, fitter_kwargs, fitter_has_fit_info, fit_boxsize): """ Fit an ePSF model to a single star. The input ``epsf`` will usually be modified by the fitting routine in this function. Make a copy before calling this function if the original is needed. """ if fit_boxsize is not None: try: xcenter, ycenter = star.cutout_center large_slc, small_slc = overlap_slices(star.shape, fit_boxsize, (ycenter, xcenter), mode='strict') except (PartialOverlapError, NoOverlapError): warnings.warn('The star at ({0}, {1}) cannot be fit because ' 'its fitting region extends beyond the star ' 'cutout image.'.format(star.center[0], star.center[1]), AstropyUserWarning) star = copy.deepcopy(star) star._fit_error_status = 1 return star data = star.data[large_slc] weights = star.weights[large_slc] # define the origin of the fitting region x0 = large_slc[1].start y0 = large_slc[0].start else: # use the entire cutout image data = star.data weights = star.weights # define the origin of the fitting region x0 = 0 y0 = 0 scaled_data = data / np.prod(epsf._oversampling) # define positions in the ePSF oversampled grid yy, xx = np.indices(data.shape, dtype=np.float) xx = (xx - (star.cutout_center[0] - x0)) * epsf._oversampling[0] yy = (yy - (star.cutout_center[1] - y0)) * epsf._oversampling[1] # define the initial guesses for fitted flux and shifts epsf.flux = star.flux epsf.x_0 = 0.0 epsf.y_0 = 0.0 # create copy to avoid overwriting original oversampling factor _epsf = epsf.copy() _epsf._oversampling = np.array([1., 1.]) try: fitted_epsf = fitter(model=_epsf, x=xx, y=yy, z=scaled_data, weights=weights, **fitter_kwargs) except TypeError: # fitter doesn't support weights fitted_epsf = fitter(model=_epsf, x=xx, y=yy, z=scaled_data, **fitter_kwargs) fit_error_status = 0 if fitter_has_fit_info: fit_info = copy.copy(fitter.fit_info) if 'ierr' in fit_info and fit_info['ierr'] not in [1, 2, 3, 4]: fit_error_status = 2 # fit solution was not found else: fit_info = None # compute the star's fitted position x_center = (star.cutout_center[0] + (fitted_epsf.x_0.value / epsf._oversampling[0])) y_center = (star.cutout_center[1] + (fitted_epsf.y_0.value / epsf._oversampling[1])) star = copy.deepcopy(star) star.cutout_center = (x_center, y_center) # set the star's flux to the ePSF-fitted flux star.flux = fitted_epsf.flux.value star._fit_info = fit_info star._fit_error_status = fit_error_status return star
[ "def", "_fit_star", "(", "self", ",", "epsf", ",", "star", ",", "fitter", ",", "fitter_kwargs", ",", "fitter_has_fit_info", ",", "fit_boxsize", ")", ":", "if", "fit_boxsize", "is", "not", "None", ":", "try", ":", "xcenter", ",", "ycenter", "=", "star", ".", "cutout_center", "large_slc", ",", "small_slc", "=", "overlap_slices", "(", "star", ".", "shape", ",", "fit_boxsize", ",", "(", "ycenter", ",", "xcenter", ")", ",", "mode", "=", "'strict'", ")", "except", "(", "PartialOverlapError", ",", "NoOverlapError", ")", ":", "warnings", ".", "warn", "(", "'The star at ({0}, {1}) cannot be fit because '", "'its fitting region extends beyond the star '", "'cutout image.'", ".", "format", "(", "star", ".", "center", "[", "0", "]", ",", "star", ".", "center", "[", "1", "]", ")", ",", "AstropyUserWarning", ")", "star", "=", "copy", ".", "deepcopy", "(", "star", ")", "star", ".", "_fit_error_status", "=", "1", "return", "star", "data", "=", "star", ".", "data", "[", "large_slc", "]", "weights", "=", "star", ".", "weights", "[", "large_slc", "]", "# define the origin of the fitting region", "x0", "=", "large_slc", "[", "1", "]", ".", "start", "y0", "=", "large_slc", "[", "0", "]", ".", "start", "else", ":", "# use the entire cutout image", "data", "=", "star", ".", "data", "weights", "=", "star", ".", "weights", "# define the origin of the fitting region", "x0", "=", "0", "y0", "=", "0", "scaled_data", "=", "data", "/", "np", ".", "prod", "(", "epsf", ".", "_oversampling", ")", "# define positions in the ePSF oversampled grid", "yy", ",", "xx", "=", "np", ".", "indices", "(", "data", ".", "shape", ",", "dtype", "=", "np", ".", "float", ")", "xx", "=", "(", "xx", "-", "(", "star", ".", "cutout_center", "[", "0", "]", "-", "x0", ")", ")", "*", "epsf", ".", "_oversampling", "[", "0", "]", "yy", "=", "(", "yy", "-", "(", "star", ".", "cutout_center", "[", "1", "]", "-", "y0", ")", ")", "*", "epsf", ".", "_oversampling", "[", "1", "]", "# define the initial guesses for fitted flux and shifts", "epsf", ".", "flux", "=", "star", ".", "flux", "epsf", ".", "x_0", "=", "0.0", "epsf", ".", "y_0", "=", "0.0", "# create copy to avoid overwriting original oversampling factor", "_epsf", "=", "epsf", ".", "copy", "(", ")", "_epsf", ".", "_oversampling", "=", "np", ".", "array", "(", "[", "1.", ",", "1.", "]", ")", "try", ":", "fitted_epsf", "=", "fitter", "(", "model", "=", "_epsf", ",", "x", "=", "xx", ",", "y", "=", "yy", ",", "z", "=", "scaled_data", ",", "weights", "=", "weights", ",", "*", "*", "fitter_kwargs", ")", "except", "TypeError", ":", "# fitter doesn't support weights", "fitted_epsf", "=", "fitter", "(", "model", "=", "_epsf", ",", "x", "=", "xx", ",", "y", "=", "yy", ",", "z", "=", "scaled_data", ",", "*", "*", "fitter_kwargs", ")", "fit_error_status", "=", "0", "if", "fitter_has_fit_info", ":", "fit_info", "=", "copy", ".", "copy", "(", "fitter", ".", "fit_info", ")", "if", "'ierr'", "in", "fit_info", "and", "fit_info", "[", "'ierr'", "]", "not", "in", "[", "1", ",", "2", ",", "3", ",", "4", "]", ":", "fit_error_status", "=", "2", "# fit solution was not found", "else", ":", "fit_info", "=", "None", "# compute the star's fitted position", "x_center", "=", "(", "star", ".", "cutout_center", "[", "0", "]", "+", "(", "fitted_epsf", ".", "x_0", ".", "value", "/", "epsf", ".", "_oversampling", "[", "0", "]", ")", ")", "y_center", "=", "(", "star", ".", "cutout_center", "[", "1", "]", "+", "(", "fitted_epsf", ".", "y_0", ".", "value", "/", "epsf", ".", "_oversampling", "[", "1", "]", ")", ")", "star", "=", "copy", ".", "deepcopy", "(", "star", ")", "star", ".", "cutout_center", "=", "(", "x_center", ",", "y_center", ")", "# set the star's flux to the ePSF-fitted flux", "star", ".", "flux", "=", "fitted_epsf", ".", "flux", ".", "value", "star", ".", "_fit_info", "=", "fit_info", "star", ".", "_fit_error_status", "=", "fit_error_status", "return", "star" ]
Fit an ePSF model to a single star. The input ``epsf`` will usually be modified by the fitting routine in this function. Make a copy before calling this function if the original is needed.
[ "Fit", "an", "ePSF", "model", "to", "a", "single", "star", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/psf/epsf.py#L146-L238
10,645
astropy/photutils
photutils/psf/epsf.py
EPSFBuilder._init_img_params
def _init_img_params(param): """ Initialize 2D image-type parameters that can accept either a single or two values. """ if param is not None: param = np.atleast_1d(param) if len(param) == 1: param = np.repeat(param, 2) return param
python
def _init_img_params(param): """ Initialize 2D image-type parameters that can accept either a single or two values. """ if param is not None: param = np.atleast_1d(param) if len(param) == 1: param = np.repeat(param, 2) return param
[ "def", "_init_img_params", "(", "param", ")", ":", "if", "param", "is", "not", "None", ":", "param", "=", "np", ".", "atleast_1d", "(", "param", ")", "if", "len", "(", "param", ")", "==", "1", ":", "param", "=", "np", ".", "repeat", "(", "param", ",", "2", ")", "return", "param" ]
Initialize 2D image-type parameters that can accept either a single or two values.
[ "Initialize", "2D", "image", "-", "type", "parameters", "that", "can", "accept", "either", "a", "single", "or", "two", "values", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/psf/epsf.py#L369-L380
10,646
astropy/photutils
photutils/psf/epsf.py
EPSFBuilder._create_initial_epsf
def _create_initial_epsf(self, stars): """ Create an initial `EPSFModel` object. The initial ePSF data are all zeros. If ``shape`` is not specified, the shape of the ePSF data array is determined from the shape of the input ``stars`` and the oversampling factor. If the size is even along any axis, it will be made odd by adding one. The output ePSF will always have odd sizes along both axes to ensure a central pixel. Parameters ---------- stars : `EPSFStars` object The stars used to build the ePSF. Returns ------- epsf : `EPSFModel` The initial ePSF model. """ oversampling = self.oversampling shape = self.shape # define the ePSF shape if shape is not None: shape = np.atleast_1d(shape).astype(int) if len(shape) == 1: shape = np.repeat(shape, 2) else: x_shape = np.int(np.ceil(stars._max_shape[1] * oversampling[0])) y_shape = np.int(np.ceil(stars._max_shape[0] * oversampling[1])) shape = np.array((y_shape, x_shape)) # ensure odd sizes shape = [(i + 1) if i % 2 == 0 else i for i in shape] data = np.zeros(shape, dtype=np.float) xcenter = (shape[1] - 1) / 2. ycenter = (shape[0] - 1) / 2. epsf = EPSFModel(data=data, origin=(xcenter, ycenter), normalize=False, oversampling=oversampling) return epsf
python
def _create_initial_epsf(self, stars): """ Create an initial `EPSFModel` object. The initial ePSF data are all zeros. If ``shape`` is not specified, the shape of the ePSF data array is determined from the shape of the input ``stars`` and the oversampling factor. If the size is even along any axis, it will be made odd by adding one. The output ePSF will always have odd sizes along both axes to ensure a central pixel. Parameters ---------- stars : `EPSFStars` object The stars used to build the ePSF. Returns ------- epsf : `EPSFModel` The initial ePSF model. """ oversampling = self.oversampling shape = self.shape # define the ePSF shape if shape is not None: shape = np.atleast_1d(shape).astype(int) if len(shape) == 1: shape = np.repeat(shape, 2) else: x_shape = np.int(np.ceil(stars._max_shape[1] * oversampling[0])) y_shape = np.int(np.ceil(stars._max_shape[0] * oversampling[1])) shape = np.array((y_shape, x_shape)) # ensure odd sizes shape = [(i + 1) if i % 2 == 0 else i for i in shape] data = np.zeros(shape, dtype=np.float) xcenter = (shape[1] - 1) / 2. ycenter = (shape[0] - 1) / 2. epsf = EPSFModel(data=data, origin=(xcenter, ycenter), normalize=False, oversampling=oversampling) return epsf
[ "def", "_create_initial_epsf", "(", "self", ",", "stars", ")", ":", "oversampling", "=", "self", ".", "oversampling", "shape", "=", "self", ".", "shape", "# define the ePSF shape", "if", "shape", "is", "not", "None", ":", "shape", "=", "np", ".", "atleast_1d", "(", "shape", ")", ".", "astype", "(", "int", ")", "if", "len", "(", "shape", ")", "==", "1", ":", "shape", "=", "np", ".", "repeat", "(", "shape", ",", "2", ")", "else", ":", "x_shape", "=", "np", ".", "int", "(", "np", ".", "ceil", "(", "stars", ".", "_max_shape", "[", "1", "]", "*", "oversampling", "[", "0", "]", ")", ")", "y_shape", "=", "np", ".", "int", "(", "np", ".", "ceil", "(", "stars", ".", "_max_shape", "[", "0", "]", "*", "oversampling", "[", "1", "]", ")", ")", "shape", "=", "np", ".", "array", "(", "(", "y_shape", ",", "x_shape", ")", ")", "# ensure odd sizes", "shape", "=", "[", "(", "i", "+", "1", ")", "if", "i", "%", "2", "==", "0", "else", "i", "for", "i", "in", "shape", "]", "data", "=", "np", ".", "zeros", "(", "shape", ",", "dtype", "=", "np", ".", "float", ")", "xcenter", "=", "(", "shape", "[", "1", "]", "-", "1", ")", "/", "2.", "ycenter", "=", "(", "shape", "[", "0", "]", "-", "1", ")", "/", "2.", "epsf", "=", "EPSFModel", "(", "data", "=", "data", ",", "origin", "=", "(", "xcenter", ",", "ycenter", ")", ",", "normalize", "=", "False", ",", "oversampling", "=", "oversampling", ")", "return", "epsf" ]
Create an initial `EPSFModel` object. The initial ePSF data are all zeros. If ``shape`` is not specified, the shape of the ePSF data array is determined from the shape of the input ``stars`` and the oversampling factor. If the size is even along any axis, it will be made odd by adding one. The output ePSF will always have odd sizes along both axes to ensure a central pixel. Parameters ---------- stars : `EPSFStars` object The stars used to build the ePSF. Returns ------- epsf : `EPSFModel` The initial ePSF model.
[ "Create", "an", "initial", "EPSFModel", "object", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/psf/epsf.py#L382-L430
10,647
astropy/photutils
photutils/psf/epsf.py
EPSFBuilder._resample_residual
def _resample_residual(self, star, epsf): """ Compute a normalized residual image in the oversampled ePSF grid. A normalized residual image is calculated by subtracting the normalized ePSF model from the normalized star at the location of the star in the undersampled grid. The normalized residual image is then resampled from the undersampled star grid to the oversampled ePSF grid. Parameters ---------- star : `EPSFStar` object A single star object. epsf : `EPSFModel` object The ePSF model. Returns ------- image : 2D `~numpy.ndarray` A 2D image containing the resampled residual image. The image contains NaNs where there is no data. """ # find the integer index of EPSFStar pixels in the oversampled # ePSF grid x = epsf._oversampling[0] * star._xidx_centered y = epsf._oversampling[1] * star._yidx_centered epsf_xcenter, epsf_ycenter = epsf.origin xidx = _py2intround(x + epsf_xcenter) yidx = _py2intround(y + epsf_ycenter) mask = np.logical_and(np.logical_and(xidx >= 0, xidx < epsf.shape[1]), np.logical_and(yidx >= 0, yidx < epsf.shape[0])) xidx = xidx[mask] yidx = yidx[mask] # Compute the normalized residual image by subtracting the # normalized ePSF model from the normalized star at the location # of the star in the undersampled grid. Then, resample the # normalized residual image in the oversampled ePSF grid. # [(star - (epsf * xov * yov)) / (xov * yov)] # --> [(star / (xov * yov)) - epsf] stardata = ((star._data_values_normalized / np.prod(epsf._oversampling)) - epsf.evaluate(x=x, y=y, flux=1.0, x_0=0.0, y_0=0.0, use_oversampling=False)) resampled_img = np.full(epsf.shape, np.nan) resampled_img[yidx, xidx] = stardata[mask] return resampled_img
python
def _resample_residual(self, star, epsf): """ Compute a normalized residual image in the oversampled ePSF grid. A normalized residual image is calculated by subtracting the normalized ePSF model from the normalized star at the location of the star in the undersampled grid. The normalized residual image is then resampled from the undersampled star grid to the oversampled ePSF grid. Parameters ---------- star : `EPSFStar` object A single star object. epsf : `EPSFModel` object The ePSF model. Returns ------- image : 2D `~numpy.ndarray` A 2D image containing the resampled residual image. The image contains NaNs where there is no data. """ # find the integer index of EPSFStar pixels in the oversampled # ePSF grid x = epsf._oversampling[0] * star._xidx_centered y = epsf._oversampling[1] * star._yidx_centered epsf_xcenter, epsf_ycenter = epsf.origin xidx = _py2intround(x + epsf_xcenter) yidx = _py2intround(y + epsf_ycenter) mask = np.logical_and(np.logical_and(xidx >= 0, xidx < epsf.shape[1]), np.logical_and(yidx >= 0, yidx < epsf.shape[0])) xidx = xidx[mask] yidx = yidx[mask] # Compute the normalized residual image by subtracting the # normalized ePSF model from the normalized star at the location # of the star in the undersampled grid. Then, resample the # normalized residual image in the oversampled ePSF grid. # [(star - (epsf * xov * yov)) / (xov * yov)] # --> [(star / (xov * yov)) - epsf] stardata = ((star._data_values_normalized / np.prod(epsf._oversampling)) - epsf.evaluate(x=x, y=y, flux=1.0, x_0=0.0, y_0=0.0, use_oversampling=False)) resampled_img = np.full(epsf.shape, np.nan) resampled_img[yidx, xidx] = stardata[mask] return resampled_img
[ "def", "_resample_residual", "(", "self", ",", "star", ",", "epsf", ")", ":", "# find the integer index of EPSFStar pixels in the oversampled", "# ePSF grid", "x", "=", "epsf", ".", "_oversampling", "[", "0", "]", "*", "star", ".", "_xidx_centered", "y", "=", "epsf", ".", "_oversampling", "[", "1", "]", "*", "star", ".", "_yidx_centered", "epsf_xcenter", ",", "epsf_ycenter", "=", "epsf", ".", "origin", "xidx", "=", "_py2intround", "(", "x", "+", "epsf_xcenter", ")", "yidx", "=", "_py2intround", "(", "y", "+", "epsf_ycenter", ")", "mask", "=", "np", ".", "logical_and", "(", "np", ".", "logical_and", "(", "xidx", ">=", "0", ",", "xidx", "<", "epsf", ".", "shape", "[", "1", "]", ")", ",", "np", ".", "logical_and", "(", "yidx", ">=", "0", ",", "yidx", "<", "epsf", ".", "shape", "[", "0", "]", ")", ")", "xidx", "=", "xidx", "[", "mask", "]", "yidx", "=", "yidx", "[", "mask", "]", "# Compute the normalized residual image by subtracting the", "# normalized ePSF model from the normalized star at the location", "# of the star in the undersampled grid. Then, resample the", "# normalized residual image in the oversampled ePSF grid.", "# [(star - (epsf * xov * yov)) / (xov * yov)]", "# --> [(star / (xov * yov)) - epsf]", "stardata", "=", "(", "(", "star", ".", "_data_values_normalized", "/", "np", ".", "prod", "(", "epsf", ".", "_oversampling", ")", ")", "-", "epsf", ".", "evaluate", "(", "x", "=", "x", ",", "y", "=", "y", ",", "flux", "=", "1.0", ",", "x_0", "=", "0.0", ",", "y_0", "=", "0.0", ",", "use_oversampling", "=", "False", ")", ")", "resampled_img", "=", "np", ".", "full", "(", "epsf", ".", "shape", ",", "np", ".", "nan", ")", "resampled_img", "[", "yidx", ",", "xidx", "]", "=", "stardata", "[", "mask", "]", "return", "resampled_img" ]
Compute a normalized residual image in the oversampled ePSF grid. A normalized residual image is calculated by subtracting the normalized ePSF model from the normalized star at the location of the star in the undersampled grid. The normalized residual image is then resampled from the undersampled star grid to the oversampled ePSF grid. Parameters ---------- star : `EPSFStar` object A single star object. epsf : `EPSFModel` object The ePSF model. Returns ------- image : 2D `~numpy.ndarray` A 2D image containing the resampled residual image. The image contains NaNs where there is no data.
[ "Compute", "a", "normalized", "residual", "image", "in", "the", "oversampled", "ePSF", "grid", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/psf/epsf.py#L432-L484
10,648
astropy/photutils
photutils/psf/epsf.py
EPSFBuilder._resample_residuals
def _resample_residuals(self, stars, epsf): """ Compute normalized residual images for all the input stars. Parameters ---------- stars : `EPSFStars` object The stars used to build the ePSF. epsf : `EPSFModel` object The ePSF model. Returns ------- star_imgs : 3D `~numpy.ndarray` A 3D cube containing the resampled residual images. """ shape = (stars.n_good_stars, epsf.shape[0], epsf.shape[1]) star_imgs = np.zeros(shape) for i, star in enumerate(stars.all_good_stars): star_imgs[i, :, :] = self._resample_residual(star, epsf) return star_imgs
python
def _resample_residuals(self, stars, epsf): """ Compute normalized residual images for all the input stars. Parameters ---------- stars : `EPSFStars` object The stars used to build the ePSF. epsf : `EPSFModel` object The ePSF model. Returns ------- star_imgs : 3D `~numpy.ndarray` A 3D cube containing the resampled residual images. """ shape = (stars.n_good_stars, epsf.shape[0], epsf.shape[1]) star_imgs = np.zeros(shape) for i, star in enumerate(stars.all_good_stars): star_imgs[i, :, :] = self._resample_residual(star, epsf) return star_imgs
[ "def", "_resample_residuals", "(", "self", ",", "stars", ",", "epsf", ")", ":", "shape", "=", "(", "stars", ".", "n_good_stars", ",", "epsf", ".", "shape", "[", "0", "]", ",", "epsf", ".", "shape", "[", "1", "]", ")", "star_imgs", "=", "np", ".", "zeros", "(", "shape", ")", "for", "i", ",", "star", "in", "enumerate", "(", "stars", ".", "all_good_stars", ")", ":", "star_imgs", "[", "i", ",", ":", ",", ":", "]", "=", "self", ".", "_resample_residual", "(", "star", ",", "epsf", ")", "return", "star_imgs" ]
Compute normalized residual images for all the input stars. Parameters ---------- stars : `EPSFStars` object The stars used to build the ePSF. epsf : `EPSFModel` object The ePSF model. Returns ------- star_imgs : 3D `~numpy.ndarray` A 3D cube containing the resampled residual images.
[ "Compute", "normalized", "residual", "images", "for", "all", "the", "input", "stars", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/psf/epsf.py#L486-L509
10,649
astropy/photutils
photutils/psf/epsf.py
EPSFBuilder._smooth_epsf
def _smooth_epsf(self, epsf_data): """ Smooth the ePSF array by convolving it with a kernel. Parameters ---------- epsf_data : 2D `~numpy.ndarray` A 2D array containing the ePSF image. Returns ------- result : 2D `~numpy.ndarray` The smoothed (convolved) ePSF data. """ from scipy.ndimage import convolve if self.smoothing_kernel is None: return epsf_data elif self.smoothing_kernel == 'quartic': # from Polynomial2D fit with degree=4 to 5x5 array of # zeros with 1. at the center # Polynomial2D(4, c0_0=0.04163265, c1_0=-0.76326531, # c2_0=0.99081633, c3_0=-0.4, c4_0=0.05, # c0_1=-0.76326531, c0_2=0.99081633, c0_3=-0.4, # c0_4=0.05, c1_1=0.32653061, c1_2=-0.08163265, # c1_3=0., c2_1=-0.08163265, c2_2=0.02040816, # c3_1=-0.)> kernel = np.array( [[+0.041632, -0.080816, 0.078368, -0.080816, +0.041632], [-0.080816, -0.019592, 0.200816, -0.019592, -0.080816], [+0.078368, +0.200816, 0.441632, +0.200816, +0.078368], [-0.080816, -0.019592, 0.200816, -0.019592, -0.080816], [+0.041632, -0.080816, 0.078368, -0.080816, +0.041632]]) elif self.smoothing_kernel == 'quadratic': # from Polynomial2D fit with degree=2 to 5x5 array of # zeros with 1. at the center # Polynomial2D(2, c0_0=-0.07428571, c1_0=0.11428571, # c2_0=-0.02857143, c0_1=0.11428571, # c0_2=-0.02857143, c1_1=-0.) kernel = np.array( [[-0.07428311, 0.01142786, 0.03999952, 0.01142786, -0.07428311], [+0.01142786, 0.09714283, 0.12571449, 0.09714283, +0.01142786], [+0.03999952, 0.12571449, 0.15428215, 0.12571449, +0.03999952], [+0.01142786, 0.09714283, 0.12571449, 0.09714283, +0.01142786], [-0.07428311, 0.01142786, 0.03999952, 0.01142786, -0.07428311]]) elif isinstance(self.smoothing_kernel, np.ndarray): kernel = self.kernel else: raise TypeError('Unsupported kernel.') return convolve(epsf_data, kernel)
python
def _smooth_epsf(self, epsf_data): """ Smooth the ePSF array by convolving it with a kernel. Parameters ---------- epsf_data : 2D `~numpy.ndarray` A 2D array containing the ePSF image. Returns ------- result : 2D `~numpy.ndarray` The smoothed (convolved) ePSF data. """ from scipy.ndimage import convolve if self.smoothing_kernel is None: return epsf_data elif self.smoothing_kernel == 'quartic': # from Polynomial2D fit with degree=4 to 5x5 array of # zeros with 1. at the center # Polynomial2D(4, c0_0=0.04163265, c1_0=-0.76326531, # c2_0=0.99081633, c3_0=-0.4, c4_0=0.05, # c0_1=-0.76326531, c0_2=0.99081633, c0_3=-0.4, # c0_4=0.05, c1_1=0.32653061, c1_2=-0.08163265, # c1_3=0., c2_1=-0.08163265, c2_2=0.02040816, # c3_1=-0.)> kernel = np.array( [[+0.041632, -0.080816, 0.078368, -0.080816, +0.041632], [-0.080816, -0.019592, 0.200816, -0.019592, -0.080816], [+0.078368, +0.200816, 0.441632, +0.200816, +0.078368], [-0.080816, -0.019592, 0.200816, -0.019592, -0.080816], [+0.041632, -0.080816, 0.078368, -0.080816, +0.041632]]) elif self.smoothing_kernel == 'quadratic': # from Polynomial2D fit with degree=2 to 5x5 array of # zeros with 1. at the center # Polynomial2D(2, c0_0=-0.07428571, c1_0=0.11428571, # c2_0=-0.02857143, c0_1=0.11428571, # c0_2=-0.02857143, c1_1=-0.) kernel = np.array( [[-0.07428311, 0.01142786, 0.03999952, 0.01142786, -0.07428311], [+0.01142786, 0.09714283, 0.12571449, 0.09714283, +0.01142786], [+0.03999952, 0.12571449, 0.15428215, 0.12571449, +0.03999952], [+0.01142786, 0.09714283, 0.12571449, 0.09714283, +0.01142786], [-0.07428311, 0.01142786, 0.03999952, 0.01142786, -0.07428311]]) elif isinstance(self.smoothing_kernel, np.ndarray): kernel = self.kernel else: raise TypeError('Unsupported kernel.') return convolve(epsf_data, kernel)
[ "def", "_smooth_epsf", "(", "self", ",", "epsf_data", ")", ":", "from", "scipy", ".", "ndimage", "import", "convolve", "if", "self", ".", "smoothing_kernel", "is", "None", ":", "return", "epsf_data", "elif", "self", ".", "smoothing_kernel", "==", "'quartic'", ":", "# from Polynomial2D fit with degree=4 to 5x5 array of", "# zeros with 1. at the center", "# Polynomial2D(4, c0_0=0.04163265, c1_0=-0.76326531,", "# c2_0=0.99081633, c3_0=-0.4, c4_0=0.05,", "# c0_1=-0.76326531, c0_2=0.99081633, c0_3=-0.4,", "# c0_4=0.05, c1_1=0.32653061, c1_2=-0.08163265,", "# c1_3=0., c2_1=-0.08163265, c2_2=0.02040816,", "# c3_1=-0.)>", "kernel", "=", "np", ".", "array", "(", "[", "[", "+", "0.041632", ",", "-", "0.080816", ",", "0.078368", ",", "-", "0.080816", ",", "+", "0.041632", "]", ",", "[", "-", "0.080816", ",", "-", "0.019592", ",", "0.200816", ",", "-", "0.019592", ",", "-", "0.080816", "]", ",", "[", "+", "0.078368", ",", "+", "0.200816", ",", "0.441632", ",", "+", "0.200816", ",", "+", "0.078368", "]", ",", "[", "-", "0.080816", ",", "-", "0.019592", ",", "0.200816", ",", "-", "0.019592", ",", "-", "0.080816", "]", ",", "[", "+", "0.041632", ",", "-", "0.080816", ",", "0.078368", ",", "-", "0.080816", ",", "+", "0.041632", "]", "]", ")", "elif", "self", ".", "smoothing_kernel", "==", "'quadratic'", ":", "# from Polynomial2D fit with degree=2 to 5x5 array of", "# zeros with 1. at the center", "# Polynomial2D(2, c0_0=-0.07428571, c1_0=0.11428571,", "# c2_0=-0.02857143, c0_1=0.11428571,", "# c0_2=-0.02857143, c1_1=-0.)", "kernel", "=", "np", ".", "array", "(", "[", "[", "-", "0.07428311", ",", "0.01142786", ",", "0.03999952", ",", "0.01142786", ",", "-", "0.07428311", "]", ",", "[", "+", "0.01142786", ",", "0.09714283", ",", "0.12571449", ",", "0.09714283", ",", "+", "0.01142786", "]", ",", "[", "+", "0.03999952", ",", "0.12571449", ",", "0.15428215", ",", "0.12571449", ",", "+", "0.03999952", "]", ",", "[", "+", "0.01142786", ",", "0.09714283", ",", "0.12571449", ",", "0.09714283", ",", "+", "0.01142786", "]", ",", "[", "-", "0.07428311", ",", "0.01142786", ",", "0.03999952", ",", "0.01142786", ",", "-", "0.07428311", "]", "]", ")", "elif", "isinstance", "(", "self", ".", "smoothing_kernel", ",", "np", ".", "ndarray", ")", ":", "kernel", "=", "self", ".", "kernel", "else", ":", "raise", "TypeError", "(", "'Unsupported kernel.'", ")", "return", "convolve", "(", "epsf_data", ",", "kernel", ")" ]
Smooth the ePSF array by convolving it with a kernel. Parameters ---------- epsf_data : 2D `~numpy.ndarray` A 2D array containing the ePSF image. Returns ------- result : 2D `~numpy.ndarray` The smoothed (convolved) ePSF data.
[ "Smooth", "the", "ePSF", "array", "by", "convolving", "it", "with", "a", "kernel", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/psf/epsf.py#L511-L571
10,650
astropy/photutils
photutils/psf/epsf.py
EPSFBuilder._recenter_epsf
def _recenter_epsf(self, epsf_data, epsf, centroid_func=centroid_com, box_size=5, maxiters=20, center_accuracy=1.0e-4): """ Calculate the center of the ePSF data and shift the data so the ePSF center is at the center of the ePSF data array. Parameters ---------- epsf_data : 2D `~numpy.ndarray` A 2D array containing the ePSF image. epsf : `EPSFModel` object The ePSF model. centroid_func : callable, optional A callable object (e.g. function or class) that is used to calculate the centroid of a 2D array. The callable must accept a 2D `~numpy.ndarray`, have a ``mask`` keyword and optionally an ``error`` keyword. The callable object must return a tuple of two 1D `~numpy.ndarray`\\s, representing the x and y centroids. The default is `~photutils.centroids.centroid_com`. recentering_boxsize : float or tuple of two floats, optional The size (in pixels) of the box used to calculate the centroid of the ePSF during each build iteration. If a single integer number is provided, then a square box will be used. If two values are provided, then they should be in ``(ny, nx)`` order. The default is 5. maxiters : int, optional The maximum number of recentering iterations to perform. The default is 20. center_accuracy : float, optional The desired accuracy for the centers of stars. The building iterations will stop if the center of the ePSF changes by less than ``center_accuracy`` pixels between iterations. The default is 1.0e-4. Returns ------- result : 2D `~numpy.ndarray` The recentered ePSF data. """ # Define an EPSFModel for the input data. This EPSFModel will be # used to evaluate the model on a shifted pixel grid to place the # centroid at the array center. epsf = EPSFModel(data=epsf_data, origin=epsf.origin, normalize=False, oversampling=epsf.oversampling) epsf.fill_value = 0.0 xcenter, ycenter = epsf.origin dx_total = 0 dy_total = 0 y, x = np.indices(epsf_data.shape, dtype=np.float) iter_num = 0 center_accuracy_sq = center_accuracy ** 2 center_dist_sq = center_accuracy_sq + 1.e6 center_dist_sq_prev = center_dist_sq + 1 while (iter_num < maxiters and center_dist_sq >= center_accuracy_sq): iter_num += 1 # extract a cutout from the ePSF slices_large, slices_small = overlap_slices(epsf_data.shape, box_size, (ycenter, xcenter)) epsf_cutout = epsf_data[slices_large] mask = ~np.isfinite(epsf_cutout) # find a new center position xcenter_new, ycenter_new = centroid_func(epsf_cutout, mask=mask) xcenter_new += slices_large[1].start ycenter_new += slices_large[0].start # calculate the shift dx = xcenter - xcenter_new dy = ycenter - ycenter_new center_dist_sq = dx**2 + dy**2 if center_dist_sq >= center_dist_sq_prev: # don't shift break center_dist_sq_prev = center_dist_sq # Resample the ePSF data to a shifted grid to place the # centroid in the center of the central pixel. The shift is # always performed on the input epsf_data. dx_total += dx # accumulated shifts for the input epsf_data dy_total += dy epsf_data = epsf.evaluate(x=x, y=y, flux=1.0, x_0=xcenter + dx_total, y_0=ycenter + dy_total, use_oversampling=False) return epsf_data
python
def _recenter_epsf(self, epsf_data, epsf, centroid_func=centroid_com, box_size=5, maxiters=20, center_accuracy=1.0e-4): """ Calculate the center of the ePSF data and shift the data so the ePSF center is at the center of the ePSF data array. Parameters ---------- epsf_data : 2D `~numpy.ndarray` A 2D array containing the ePSF image. epsf : `EPSFModel` object The ePSF model. centroid_func : callable, optional A callable object (e.g. function or class) that is used to calculate the centroid of a 2D array. The callable must accept a 2D `~numpy.ndarray`, have a ``mask`` keyword and optionally an ``error`` keyword. The callable object must return a tuple of two 1D `~numpy.ndarray`\\s, representing the x and y centroids. The default is `~photutils.centroids.centroid_com`. recentering_boxsize : float or tuple of two floats, optional The size (in pixels) of the box used to calculate the centroid of the ePSF during each build iteration. If a single integer number is provided, then a square box will be used. If two values are provided, then they should be in ``(ny, nx)`` order. The default is 5. maxiters : int, optional The maximum number of recentering iterations to perform. The default is 20. center_accuracy : float, optional The desired accuracy for the centers of stars. The building iterations will stop if the center of the ePSF changes by less than ``center_accuracy`` pixels between iterations. The default is 1.0e-4. Returns ------- result : 2D `~numpy.ndarray` The recentered ePSF data. """ # Define an EPSFModel for the input data. This EPSFModel will be # used to evaluate the model on a shifted pixel grid to place the # centroid at the array center. epsf = EPSFModel(data=epsf_data, origin=epsf.origin, normalize=False, oversampling=epsf.oversampling) epsf.fill_value = 0.0 xcenter, ycenter = epsf.origin dx_total = 0 dy_total = 0 y, x = np.indices(epsf_data.shape, dtype=np.float) iter_num = 0 center_accuracy_sq = center_accuracy ** 2 center_dist_sq = center_accuracy_sq + 1.e6 center_dist_sq_prev = center_dist_sq + 1 while (iter_num < maxiters and center_dist_sq >= center_accuracy_sq): iter_num += 1 # extract a cutout from the ePSF slices_large, slices_small = overlap_slices(epsf_data.shape, box_size, (ycenter, xcenter)) epsf_cutout = epsf_data[slices_large] mask = ~np.isfinite(epsf_cutout) # find a new center position xcenter_new, ycenter_new = centroid_func(epsf_cutout, mask=mask) xcenter_new += slices_large[1].start ycenter_new += slices_large[0].start # calculate the shift dx = xcenter - xcenter_new dy = ycenter - ycenter_new center_dist_sq = dx**2 + dy**2 if center_dist_sq >= center_dist_sq_prev: # don't shift break center_dist_sq_prev = center_dist_sq # Resample the ePSF data to a shifted grid to place the # centroid in the center of the central pixel. The shift is # always performed on the input epsf_data. dx_total += dx # accumulated shifts for the input epsf_data dy_total += dy epsf_data = epsf.evaluate(x=x, y=y, flux=1.0, x_0=xcenter + dx_total, y_0=ycenter + dy_total, use_oversampling=False) return epsf_data
[ "def", "_recenter_epsf", "(", "self", ",", "epsf_data", ",", "epsf", ",", "centroid_func", "=", "centroid_com", ",", "box_size", "=", "5", ",", "maxiters", "=", "20", ",", "center_accuracy", "=", "1.0e-4", ")", ":", "# Define an EPSFModel for the input data. This EPSFModel will be", "# used to evaluate the model on a shifted pixel grid to place the", "# centroid at the array center.", "epsf", "=", "EPSFModel", "(", "data", "=", "epsf_data", ",", "origin", "=", "epsf", ".", "origin", ",", "normalize", "=", "False", ",", "oversampling", "=", "epsf", ".", "oversampling", ")", "epsf", ".", "fill_value", "=", "0.0", "xcenter", ",", "ycenter", "=", "epsf", ".", "origin", "dx_total", "=", "0", "dy_total", "=", "0", "y", ",", "x", "=", "np", ".", "indices", "(", "epsf_data", ".", "shape", ",", "dtype", "=", "np", ".", "float", ")", "iter_num", "=", "0", "center_accuracy_sq", "=", "center_accuracy", "**", "2", "center_dist_sq", "=", "center_accuracy_sq", "+", "1.e6", "center_dist_sq_prev", "=", "center_dist_sq", "+", "1", "while", "(", "iter_num", "<", "maxiters", "and", "center_dist_sq", ">=", "center_accuracy_sq", ")", ":", "iter_num", "+=", "1", "# extract a cutout from the ePSF", "slices_large", ",", "slices_small", "=", "overlap_slices", "(", "epsf_data", ".", "shape", ",", "box_size", ",", "(", "ycenter", ",", "xcenter", ")", ")", "epsf_cutout", "=", "epsf_data", "[", "slices_large", "]", "mask", "=", "~", "np", ".", "isfinite", "(", "epsf_cutout", ")", "# find a new center position", "xcenter_new", ",", "ycenter_new", "=", "centroid_func", "(", "epsf_cutout", ",", "mask", "=", "mask", ")", "xcenter_new", "+=", "slices_large", "[", "1", "]", ".", "start", "ycenter_new", "+=", "slices_large", "[", "0", "]", ".", "start", "# calculate the shift", "dx", "=", "xcenter", "-", "xcenter_new", "dy", "=", "ycenter", "-", "ycenter_new", "center_dist_sq", "=", "dx", "**", "2", "+", "dy", "**", "2", "if", "center_dist_sq", ">=", "center_dist_sq_prev", ":", "# don't shift", "break", "center_dist_sq_prev", "=", "center_dist_sq", "# Resample the ePSF data to a shifted grid to place the", "# centroid in the center of the central pixel. The shift is", "# always performed on the input epsf_data.", "dx_total", "+=", "dx", "# accumulated shifts for the input epsf_data", "dy_total", "+=", "dy", "epsf_data", "=", "epsf", ".", "evaluate", "(", "x", "=", "x", ",", "y", "=", "y", ",", "flux", "=", "1.0", ",", "x_0", "=", "xcenter", "+", "dx_total", ",", "y_0", "=", "ycenter", "+", "dy_total", ",", "use_oversampling", "=", "False", ")", "return", "epsf_data" ]
Calculate the center of the ePSF data and shift the data so the ePSF center is at the center of the ePSF data array. Parameters ---------- epsf_data : 2D `~numpy.ndarray` A 2D array containing the ePSF image. epsf : `EPSFModel` object The ePSF model. centroid_func : callable, optional A callable object (e.g. function or class) that is used to calculate the centroid of a 2D array. The callable must accept a 2D `~numpy.ndarray`, have a ``mask`` keyword and optionally an ``error`` keyword. The callable object must return a tuple of two 1D `~numpy.ndarray`\\s, representing the x and y centroids. The default is `~photutils.centroids.centroid_com`. recentering_boxsize : float or tuple of two floats, optional The size (in pixels) of the box used to calculate the centroid of the ePSF during each build iteration. If a single integer number is provided, then a square box will be used. If two values are provided, then they should be in ``(ny, nx)`` order. The default is 5. maxiters : int, optional The maximum number of recentering iterations to perform. The default is 20. center_accuracy : float, optional The desired accuracy for the centers of stars. The building iterations will stop if the center of the ePSF changes by less than ``center_accuracy`` pixels between iterations. The default is 1.0e-4. Returns ------- result : 2D `~numpy.ndarray` The recentered ePSF data.
[ "Calculate", "the", "center", "of", "the", "ePSF", "data", "and", "shift", "the", "data", "so", "the", "ePSF", "center", "is", "at", "the", "center", "of", "the", "ePSF", "data", "array", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/psf/epsf.py#L573-L671
10,651
astropy/photutils
photutils/psf/epsf.py
EPSFBuilder._build_epsf_step
def _build_epsf_step(self, stars, epsf=None): """ A single iteration of improving an ePSF. Parameters ---------- stars : `EPSFStars` object The stars used to build the ePSF. epsf : `EPSFModel` object, optional The initial ePSF model. If not input, then the ePSF will be built from scratch. Returns ------- epsf : `EPSFModel` object The updated ePSF. """ if len(stars) < 1: raise ValueError('stars must contain at least one EPSFStar or ' 'LinkedEPSFStar object.') if epsf is None: # create an initial ePSF (array of zeros) epsf = self._create_initial_epsf(stars) else: # improve the input ePSF epsf = copy.deepcopy(epsf) # compute a 3D stack of 2D residual images residuals = self._resample_residuals(stars, epsf) self._residuals.append(residuals) # compute the sigma-clipped median along the 3D stack with warnings.catch_warnings(): warnings.simplefilter('ignore', category=RuntimeWarning) warnings.simplefilter('ignore', category=AstropyUserWarning) residuals = self.sigclip(residuals, axis=0, masked=False, return_bounds=False) if HAS_BOTTLENECK: residuals = bottleneck.nanmedian(residuals, axis=0) else: residuals = np.nanmedian(residuals, axis=0) self._residuals_sigclip.append(residuals) # interpolate any missing data (np.nan) mask = ~np.isfinite(residuals) if np.any(mask): residuals = _interpolate_missing_data(residuals, mask, method='cubic') # fill any remaining nans (outer points) with zeros residuals[~np.isfinite(residuals)] = 0. self._residuals_interp.append(residuals) # add the residuals to the previous ePSF image new_epsf = epsf.normalized_data + residuals # smooth the ePSF new_epsf = self._smooth_epsf(new_epsf) # recenter the ePSF new_epsf = self._recenter_epsf(new_epsf, epsf, centroid_func=self.recentering_func, box_size=self.recentering_boxsize, maxiters=self.recentering_maxiters, center_accuracy=1.0e-4) # normalize the ePSF data new_epsf /= np.sum(new_epsf, dtype=np.float64) # return the new ePSF object xcenter = (new_epsf.shape[1] - 1) / 2. ycenter = (new_epsf.shape[0] - 1) / 2. epsf_new = EPSFModel(data=new_epsf, origin=(xcenter, ycenter), normalize=False, oversampling=epsf.oversampling) return epsf_new
python
def _build_epsf_step(self, stars, epsf=None): """ A single iteration of improving an ePSF. Parameters ---------- stars : `EPSFStars` object The stars used to build the ePSF. epsf : `EPSFModel` object, optional The initial ePSF model. If not input, then the ePSF will be built from scratch. Returns ------- epsf : `EPSFModel` object The updated ePSF. """ if len(stars) < 1: raise ValueError('stars must contain at least one EPSFStar or ' 'LinkedEPSFStar object.') if epsf is None: # create an initial ePSF (array of zeros) epsf = self._create_initial_epsf(stars) else: # improve the input ePSF epsf = copy.deepcopy(epsf) # compute a 3D stack of 2D residual images residuals = self._resample_residuals(stars, epsf) self._residuals.append(residuals) # compute the sigma-clipped median along the 3D stack with warnings.catch_warnings(): warnings.simplefilter('ignore', category=RuntimeWarning) warnings.simplefilter('ignore', category=AstropyUserWarning) residuals = self.sigclip(residuals, axis=0, masked=False, return_bounds=False) if HAS_BOTTLENECK: residuals = bottleneck.nanmedian(residuals, axis=0) else: residuals = np.nanmedian(residuals, axis=0) self._residuals_sigclip.append(residuals) # interpolate any missing data (np.nan) mask = ~np.isfinite(residuals) if np.any(mask): residuals = _interpolate_missing_data(residuals, mask, method='cubic') # fill any remaining nans (outer points) with zeros residuals[~np.isfinite(residuals)] = 0. self._residuals_interp.append(residuals) # add the residuals to the previous ePSF image new_epsf = epsf.normalized_data + residuals # smooth the ePSF new_epsf = self._smooth_epsf(new_epsf) # recenter the ePSF new_epsf = self._recenter_epsf(new_epsf, epsf, centroid_func=self.recentering_func, box_size=self.recentering_boxsize, maxiters=self.recentering_maxiters, center_accuracy=1.0e-4) # normalize the ePSF data new_epsf /= np.sum(new_epsf, dtype=np.float64) # return the new ePSF object xcenter = (new_epsf.shape[1] - 1) / 2. ycenter = (new_epsf.shape[0] - 1) / 2. epsf_new = EPSFModel(data=new_epsf, origin=(xcenter, ycenter), normalize=False, oversampling=epsf.oversampling) return epsf_new
[ "def", "_build_epsf_step", "(", "self", ",", "stars", ",", "epsf", "=", "None", ")", ":", "if", "len", "(", "stars", ")", "<", "1", ":", "raise", "ValueError", "(", "'stars must contain at least one EPSFStar or '", "'LinkedEPSFStar object.'", ")", "if", "epsf", "is", "None", ":", "# create an initial ePSF (array of zeros)", "epsf", "=", "self", ".", "_create_initial_epsf", "(", "stars", ")", "else", ":", "# improve the input ePSF", "epsf", "=", "copy", ".", "deepcopy", "(", "epsf", ")", "# compute a 3D stack of 2D residual images", "residuals", "=", "self", ".", "_resample_residuals", "(", "stars", ",", "epsf", ")", "self", ".", "_residuals", ".", "append", "(", "residuals", ")", "# compute the sigma-clipped median along the 3D stack", "with", "warnings", ".", "catch_warnings", "(", ")", ":", "warnings", ".", "simplefilter", "(", "'ignore'", ",", "category", "=", "RuntimeWarning", ")", "warnings", ".", "simplefilter", "(", "'ignore'", ",", "category", "=", "AstropyUserWarning", ")", "residuals", "=", "self", ".", "sigclip", "(", "residuals", ",", "axis", "=", "0", ",", "masked", "=", "False", ",", "return_bounds", "=", "False", ")", "if", "HAS_BOTTLENECK", ":", "residuals", "=", "bottleneck", ".", "nanmedian", "(", "residuals", ",", "axis", "=", "0", ")", "else", ":", "residuals", "=", "np", ".", "nanmedian", "(", "residuals", ",", "axis", "=", "0", ")", "self", ".", "_residuals_sigclip", ".", "append", "(", "residuals", ")", "# interpolate any missing data (np.nan)", "mask", "=", "~", "np", ".", "isfinite", "(", "residuals", ")", "if", "np", ".", "any", "(", "mask", ")", ":", "residuals", "=", "_interpolate_missing_data", "(", "residuals", ",", "mask", ",", "method", "=", "'cubic'", ")", "# fill any remaining nans (outer points) with zeros", "residuals", "[", "~", "np", ".", "isfinite", "(", "residuals", ")", "]", "=", "0.", "self", ".", "_residuals_interp", ".", "append", "(", "residuals", ")", "# add the residuals to the previous ePSF image", "new_epsf", "=", "epsf", ".", "normalized_data", "+", "residuals", "# smooth the ePSF", "new_epsf", "=", "self", ".", "_smooth_epsf", "(", "new_epsf", ")", "# recenter the ePSF", "new_epsf", "=", "self", ".", "_recenter_epsf", "(", "new_epsf", ",", "epsf", ",", "centroid_func", "=", "self", ".", "recentering_func", ",", "box_size", "=", "self", ".", "recentering_boxsize", ",", "maxiters", "=", "self", ".", "recentering_maxiters", ",", "center_accuracy", "=", "1.0e-4", ")", "# normalize the ePSF data", "new_epsf", "/=", "np", ".", "sum", "(", "new_epsf", ",", "dtype", "=", "np", ".", "float64", ")", "# return the new ePSF object", "xcenter", "=", "(", "new_epsf", ".", "shape", "[", "1", "]", "-", "1", ")", "/", "2.", "ycenter", "=", "(", "new_epsf", ".", "shape", "[", "0", "]", "-", "1", ")", "/", "2.", "epsf_new", "=", "EPSFModel", "(", "data", "=", "new_epsf", ",", "origin", "=", "(", "xcenter", ",", "ycenter", ")", ",", "normalize", "=", "False", ",", "oversampling", "=", "epsf", ".", "oversampling", ")", "return", "epsf_new" ]
A single iteration of improving an ePSF. Parameters ---------- stars : `EPSFStars` object The stars used to build the ePSF. epsf : `EPSFModel` object, optional The initial ePSF model. If not input, then the ePSF will be built from scratch. Returns ------- epsf : `EPSFModel` object The updated ePSF.
[ "A", "single", "iteration", "of", "improving", "an", "ePSF", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/psf/epsf.py#L673-L755
10,652
astropy/photutils
photutils/psf/epsf.py
EPSFBuilder.build_epsf
def build_epsf(self, stars, init_epsf=None): """ Iteratively build an ePSF from star cutouts. Parameters ---------- stars : `EPSFStars` object The stars used to build the ePSF. init_epsf : `EPSFModel` object, optional The initial ePSF model. If not input, then the ePSF will be built from scratch. Returns ------- epsf : `EPSFModel` object The constructed ePSF. fitted_stars : `EPSFStars` object The input stars with updated centers and fluxes derived from fitting the output ``epsf``. """ iter_num = 0 center_dist_sq = self.center_accuracy_sq + 1. centers = stars.cutout_center_flat n_stars = stars.n_stars fit_failed = np.zeros(n_stars, dtype=bool) dx_dy = np.zeros((n_stars, 2), dtype=np.float) epsf = init_epsf dt = 0. while (iter_num < self.maxiters and np.max(center_dist_sq) >= self.center_accuracy_sq and not np.all(fit_failed)): t_start = time.time() iter_num += 1 if self.progress_bar: if iter_num == 1: dt_str = ' [? s/iter]' else: dt_str = ' [{:.1f} s/iter]'.format(dt) print('PROGRESS: iteration {0:d} (of max {1}){2}' .format(iter_num, self.maxiters, dt_str), end='\r') # build/improve the ePSF epsf = self._build_epsf_step(stars, epsf=epsf) # fit the new ePSF to the stars to find improved centers # we catch fit warnings here -- stars with unsuccessful fits # are excluded from the ePSF build process with warnings.catch_warnings(): message = '.*The fit may be unsuccessful;.*' warnings.filterwarnings('ignore', message=message, category=AstropyUserWarning) stars = self.fitter(epsf, stars) # find all stars where the fit failed fit_failed = np.array([star._fit_error_status > 0 for star in stars.all_stars]) if np.all(fit_failed): raise ValueError('The ePSF fitting failed for all stars.') # permanently exclude fitting any star where the fit fails # after 3 iterations if iter_num > 3 and np.any(fit_failed): idx = fit_failed.nonzero()[0] for i in idx: stars.all_stars[i]._excluded_from_fit = True dx_dy = stars.cutout_center_flat - centers dx_dy = dx_dy[np.logical_not(fit_failed)] center_dist_sq = np.sum(dx_dy * dx_dy, axis=1, dtype=np.float64) centers = stars.cutout_center_flat self._nfit_failed.append(np.count_nonzero(fit_failed)) self._center_dist_sq.append(center_dist_sq) self._max_center_dist_sq.append(np.max(center_dist_sq)) self._epsf.append(epsf) dt = time.time() - t_start return epsf, stars
python
def build_epsf(self, stars, init_epsf=None): """ Iteratively build an ePSF from star cutouts. Parameters ---------- stars : `EPSFStars` object The stars used to build the ePSF. init_epsf : `EPSFModel` object, optional The initial ePSF model. If not input, then the ePSF will be built from scratch. Returns ------- epsf : `EPSFModel` object The constructed ePSF. fitted_stars : `EPSFStars` object The input stars with updated centers and fluxes derived from fitting the output ``epsf``. """ iter_num = 0 center_dist_sq = self.center_accuracy_sq + 1. centers = stars.cutout_center_flat n_stars = stars.n_stars fit_failed = np.zeros(n_stars, dtype=bool) dx_dy = np.zeros((n_stars, 2), dtype=np.float) epsf = init_epsf dt = 0. while (iter_num < self.maxiters and np.max(center_dist_sq) >= self.center_accuracy_sq and not np.all(fit_failed)): t_start = time.time() iter_num += 1 if self.progress_bar: if iter_num == 1: dt_str = ' [? s/iter]' else: dt_str = ' [{:.1f} s/iter]'.format(dt) print('PROGRESS: iteration {0:d} (of max {1}){2}' .format(iter_num, self.maxiters, dt_str), end='\r') # build/improve the ePSF epsf = self._build_epsf_step(stars, epsf=epsf) # fit the new ePSF to the stars to find improved centers # we catch fit warnings here -- stars with unsuccessful fits # are excluded from the ePSF build process with warnings.catch_warnings(): message = '.*The fit may be unsuccessful;.*' warnings.filterwarnings('ignore', message=message, category=AstropyUserWarning) stars = self.fitter(epsf, stars) # find all stars where the fit failed fit_failed = np.array([star._fit_error_status > 0 for star in stars.all_stars]) if np.all(fit_failed): raise ValueError('The ePSF fitting failed for all stars.') # permanently exclude fitting any star where the fit fails # after 3 iterations if iter_num > 3 and np.any(fit_failed): idx = fit_failed.nonzero()[0] for i in idx: stars.all_stars[i]._excluded_from_fit = True dx_dy = stars.cutout_center_flat - centers dx_dy = dx_dy[np.logical_not(fit_failed)] center_dist_sq = np.sum(dx_dy * dx_dy, axis=1, dtype=np.float64) centers = stars.cutout_center_flat self._nfit_failed.append(np.count_nonzero(fit_failed)) self._center_dist_sq.append(center_dist_sq) self._max_center_dist_sq.append(np.max(center_dist_sq)) self._epsf.append(epsf) dt = time.time() - t_start return epsf, stars
[ "def", "build_epsf", "(", "self", ",", "stars", ",", "init_epsf", "=", "None", ")", ":", "iter_num", "=", "0", "center_dist_sq", "=", "self", ".", "center_accuracy_sq", "+", "1.", "centers", "=", "stars", ".", "cutout_center_flat", "n_stars", "=", "stars", ".", "n_stars", "fit_failed", "=", "np", ".", "zeros", "(", "n_stars", ",", "dtype", "=", "bool", ")", "dx_dy", "=", "np", ".", "zeros", "(", "(", "n_stars", ",", "2", ")", ",", "dtype", "=", "np", ".", "float", ")", "epsf", "=", "init_epsf", "dt", "=", "0.", "while", "(", "iter_num", "<", "self", ".", "maxiters", "and", "np", ".", "max", "(", "center_dist_sq", ")", ">=", "self", ".", "center_accuracy_sq", "and", "not", "np", ".", "all", "(", "fit_failed", ")", ")", ":", "t_start", "=", "time", ".", "time", "(", ")", "iter_num", "+=", "1", "if", "self", ".", "progress_bar", ":", "if", "iter_num", "==", "1", ":", "dt_str", "=", "' [? s/iter]'", "else", ":", "dt_str", "=", "' [{:.1f} s/iter]'", ".", "format", "(", "dt", ")", "print", "(", "'PROGRESS: iteration {0:d} (of max {1}){2}'", ".", "format", "(", "iter_num", ",", "self", ".", "maxiters", ",", "dt_str", ")", ",", "end", "=", "'\\r'", ")", "# build/improve the ePSF", "epsf", "=", "self", ".", "_build_epsf_step", "(", "stars", ",", "epsf", "=", "epsf", ")", "# fit the new ePSF to the stars to find improved centers", "# we catch fit warnings here -- stars with unsuccessful fits", "# are excluded from the ePSF build process", "with", "warnings", ".", "catch_warnings", "(", ")", ":", "message", "=", "'.*The fit may be unsuccessful;.*'", "warnings", ".", "filterwarnings", "(", "'ignore'", ",", "message", "=", "message", ",", "category", "=", "AstropyUserWarning", ")", "stars", "=", "self", ".", "fitter", "(", "epsf", ",", "stars", ")", "# find all stars where the fit failed", "fit_failed", "=", "np", ".", "array", "(", "[", "star", ".", "_fit_error_status", ">", "0", "for", "star", "in", "stars", ".", "all_stars", "]", ")", "if", "np", ".", "all", "(", "fit_failed", ")", ":", "raise", "ValueError", "(", "'The ePSF fitting failed for all stars.'", ")", "# permanently exclude fitting any star where the fit fails", "# after 3 iterations", "if", "iter_num", ">", "3", "and", "np", ".", "any", "(", "fit_failed", ")", ":", "idx", "=", "fit_failed", ".", "nonzero", "(", ")", "[", "0", "]", "for", "i", "in", "idx", ":", "stars", ".", "all_stars", "[", "i", "]", ".", "_excluded_from_fit", "=", "True", "dx_dy", "=", "stars", ".", "cutout_center_flat", "-", "centers", "dx_dy", "=", "dx_dy", "[", "np", ".", "logical_not", "(", "fit_failed", ")", "]", "center_dist_sq", "=", "np", ".", "sum", "(", "dx_dy", "*", "dx_dy", ",", "axis", "=", "1", ",", "dtype", "=", "np", ".", "float64", ")", "centers", "=", "stars", ".", "cutout_center_flat", "self", ".", "_nfit_failed", ".", "append", "(", "np", ".", "count_nonzero", "(", "fit_failed", ")", ")", "self", ".", "_center_dist_sq", ".", "append", "(", "center_dist_sq", ")", "self", ".", "_max_center_dist_sq", ".", "append", "(", "np", ".", "max", "(", "center_dist_sq", ")", ")", "self", ".", "_epsf", ".", "append", "(", "epsf", ")", "dt", "=", "time", ".", "time", "(", ")", "-", "t_start", "return", "epsf", ",", "stars" ]
Iteratively build an ePSF from star cutouts. Parameters ---------- stars : `EPSFStars` object The stars used to build the ePSF. init_epsf : `EPSFModel` object, optional The initial ePSF model. If not input, then the ePSF will be built from scratch. Returns ------- epsf : `EPSFModel` object The constructed ePSF. fitted_stars : `EPSFStars` object The input stars with updated centers and fluxes derived from fitting the output ``epsf``.
[ "Iteratively", "build", "an", "ePSF", "from", "star", "cutouts", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/psf/epsf.py#L757-L842
10,653
astropy/photutils
photutils/psf/models.py
FittableImageModel._set_oversampling
def _set_oversampling(self, value): """ This is a private method because it's used in the initializer by the ``oversampling`` """ try: value = np.atleast_1d(value).astype(float) if len(value) == 1: value = np.repeat(value, 2) except ValueError: raise ValueError('Oversampling factors must be float') if np.any(value <= 0): raise ValueError('Oversampling factors must be greater than 0') self._oversampling = value
python
def _set_oversampling(self, value): """ This is a private method because it's used in the initializer by the ``oversampling`` """ try: value = np.atleast_1d(value).astype(float) if len(value) == 1: value = np.repeat(value, 2) except ValueError: raise ValueError('Oversampling factors must be float') if np.any(value <= 0): raise ValueError('Oversampling factors must be greater than 0') self._oversampling = value
[ "def", "_set_oversampling", "(", "self", ",", "value", ")", ":", "try", ":", "value", "=", "np", ".", "atleast_1d", "(", "value", ")", ".", "astype", "(", "float", ")", "if", "len", "(", "value", ")", "==", "1", ":", "value", "=", "np", ".", "repeat", "(", "value", ",", "2", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'Oversampling factors must be float'", ")", "if", "np", ".", "any", "(", "value", "<=", "0", ")", ":", "raise", "ValueError", "(", "'Oversampling factors must be greater than 0'", ")", "self", ".", "_oversampling", "=", "value" ]
This is a private method because it's used in the initializer by the ``oversampling``
[ "This", "is", "a", "private", "method", "because", "it", "s", "used", "in", "the", "initializer", "by", "the", "oversampling" ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/psf/models.py#L234-L249
10,654
astropy/photutils
photutils/psf/models.py
FittableImageModel.evaluate
def evaluate(self, x, y, flux, x_0, y_0, use_oversampling=True): """ Evaluate the model on some input variables and provided model parameters. Parameters ---------- use_oversampling : bool, optional Whether to use the oversampling factor to calculate the model pixel indices. The default is `True`, which means the input indices will be multipled by this factor. """ if use_oversampling: xi = self._oversampling[0] * (np.asarray(x) - x_0) yi = self._oversampling[1] * (np.asarray(y) - y_0) else: xi = np.asarray(x) - x_0 yi = np.asarray(y) - y_0 xi += self._x_origin yi += self._y_origin f = flux * self._normalization_constant evaluated_model = f * self.interpolator.ev(xi, yi) if self._fill_value is not None: # find indices of pixels that are outside the input pixel grid and # set these pixels to the 'fill_value': invalid = (((xi < 0) | (xi > self._nx - 1)) | ((yi < 0) | (yi > self._ny - 1))) evaluated_model[invalid] = self._fill_value return evaluated_model
python
def evaluate(self, x, y, flux, x_0, y_0, use_oversampling=True): """ Evaluate the model on some input variables and provided model parameters. Parameters ---------- use_oversampling : bool, optional Whether to use the oversampling factor to calculate the model pixel indices. The default is `True`, which means the input indices will be multipled by this factor. """ if use_oversampling: xi = self._oversampling[0] * (np.asarray(x) - x_0) yi = self._oversampling[1] * (np.asarray(y) - y_0) else: xi = np.asarray(x) - x_0 yi = np.asarray(y) - y_0 xi += self._x_origin yi += self._y_origin f = flux * self._normalization_constant evaluated_model = f * self.interpolator.ev(xi, yi) if self._fill_value is not None: # find indices of pixels that are outside the input pixel grid and # set these pixels to the 'fill_value': invalid = (((xi < 0) | (xi > self._nx - 1)) | ((yi < 0) | (yi > self._ny - 1))) evaluated_model[invalid] = self._fill_value return evaluated_model
[ "def", "evaluate", "(", "self", ",", "x", ",", "y", ",", "flux", ",", "x_0", ",", "y_0", ",", "use_oversampling", "=", "True", ")", ":", "if", "use_oversampling", ":", "xi", "=", "self", ".", "_oversampling", "[", "0", "]", "*", "(", "np", ".", "asarray", "(", "x", ")", "-", "x_0", ")", "yi", "=", "self", ".", "_oversampling", "[", "1", "]", "*", "(", "np", ".", "asarray", "(", "y", ")", "-", "y_0", ")", "else", ":", "xi", "=", "np", ".", "asarray", "(", "x", ")", "-", "x_0", "yi", "=", "np", ".", "asarray", "(", "y", ")", "-", "y_0", "xi", "+=", "self", ".", "_x_origin", "yi", "+=", "self", ".", "_y_origin", "f", "=", "flux", "*", "self", ".", "_normalization_constant", "evaluated_model", "=", "f", "*", "self", ".", "interpolator", ".", "ev", "(", "xi", ",", "yi", ")", "if", "self", ".", "_fill_value", "is", "not", "None", ":", "# find indices of pixels that are outside the input pixel grid and", "# set these pixels to the 'fill_value':", "invalid", "=", "(", "(", "(", "xi", "<", "0", ")", "|", "(", "xi", ">", "self", ".", "_nx", "-", "1", ")", ")", "|", "(", "(", "yi", "<", "0", ")", "|", "(", "yi", ">", "self", ".", "_ny", "-", "1", ")", ")", ")", "evaluated_model", "[", "invalid", "]", "=", "self", ".", "_fill_value", "return", "evaluated_model" ]
Evaluate the model on some input variables and provided model parameters. Parameters ---------- use_oversampling : bool, optional Whether to use the oversampling factor to calculate the model pixel indices. The default is `True`, which means the input indices will be multipled by this factor.
[ "Evaluate", "the", "model", "on", "some", "input", "variables", "and", "provided", "model", "parameters", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/psf/models.py#L453-L486
10,655
astropy/photutils
photutils/psf/models.py
GriddedPSFModel._find_bounds_1d
def _find_bounds_1d(data, x): """ Find the index of the lower bound where ``x`` should be inserted into ``a`` to maintain order. The index of the upper bound is the index of the lower bound plus 2. Both bound indices must be within the array. Parameters ---------- data : 1D `~numpy.ndarray` The 1D array to search. x : float The value to insert. Returns ------- index : int The index of the lower bound. """ idx = np.searchsorted(data, x) if idx == 0: idx0 = 0 elif idx == len(data): # pragma: no cover idx0 = idx - 2 else: idx0 = idx - 1 return idx0
python
def _find_bounds_1d(data, x): """ Find the index of the lower bound where ``x`` should be inserted into ``a`` to maintain order. The index of the upper bound is the index of the lower bound plus 2. Both bound indices must be within the array. Parameters ---------- data : 1D `~numpy.ndarray` The 1D array to search. x : float The value to insert. Returns ------- index : int The index of the lower bound. """ idx = np.searchsorted(data, x) if idx == 0: idx0 = 0 elif idx == len(data): # pragma: no cover idx0 = idx - 2 else: idx0 = idx - 1 return idx0
[ "def", "_find_bounds_1d", "(", "data", ",", "x", ")", ":", "idx", "=", "np", ".", "searchsorted", "(", "data", ",", "x", ")", "if", "idx", "==", "0", ":", "idx0", "=", "0", "elif", "idx", "==", "len", "(", "data", ")", ":", "# pragma: no cover", "idx0", "=", "idx", "-", "2", "else", ":", "idx0", "=", "idx", "-", "1", "return", "idx0" ]
Find the index of the lower bound where ``x`` should be inserted into ``a`` to maintain order. The index of the upper bound is the index of the lower bound plus 2. Both bound indices must be within the array. Parameters ---------- data : 1D `~numpy.ndarray` The 1D array to search. x : float The value to insert. Returns ------- index : int The index of the lower bound.
[ "Find", "the", "index", "of", "the", "lower", "bound", "where", "x", "should", "be", "inserted", "into", "a", "to", "maintain", "order", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/psf/models.py#L582-L612
10,656
astropy/photutils
photutils/psf/models.py
GriddedPSFModel._bilinear_interp
def _bilinear_interp(xyref, zref, xi, yi): """ Perform bilinear interpolation of four 2D arrays located at points on a regular grid. Parameters ---------- xyref : list of 4 (x, y) pairs A list of 4 ``(x, y)`` pairs that form a rectangle. refdata : 3D `~numpy.ndarray` A 3D `~numpy.ndarray` of shape ``(4, nx, ny)``. The first axis corresponds to ``xyref``, i.e. ``refdata[0, :, :]`` is the 2D array located at ``xyref[0]``. xi, yi : float The ``(xi, yi)`` point at which to perform the interpolation. The ``(xi, yi)`` point must lie within the rectangle defined by ``xyref``. Returns ------- result : 2D `~numpy.ndarray` The 2D interpolated array. """ if len(xyref) != 4: raise ValueError('xyref must contain only 4 (x, y) pairs') if zref.shape[0] != 4: raise ValueError('zref must have a length of 4 on the first ' 'axis.') xyref = [tuple(i) for i in xyref] idx = sorted(range(len(xyref)), key=xyref.__getitem__) xyref = sorted(xyref) # sort by x, then y (x0, y0), (_x0, y1), (x1, _y0), (_x1, _y1) = xyref if x0 != _x0 or x1 != _x1 or y0 != _y0 or y1 != _y1: raise ValueError('The refxy points do not form a rectangle.') if not np.isscalar(xi): xi = xi[0] if not np.isscalar(yi): yi = yi[0] if not x0 <= xi <= x1 or not y0 <= yi <= y1: raise ValueError('The (x, y) input is not within the rectangle ' 'defined by xyref.') data = np.asarray(zref)[idx] weights = np.array([(x1 - xi) * (y1 - yi), (x1 - xi) * (yi - y0), (xi - x0) * (y1 - yi), (xi - x0) * (yi - y0)]) norm = (x1 - x0) * (y1 - y0) return np.sum(data * weights[:, None, None], axis=0) / norm
python
def _bilinear_interp(xyref, zref, xi, yi): """ Perform bilinear interpolation of four 2D arrays located at points on a regular grid. Parameters ---------- xyref : list of 4 (x, y) pairs A list of 4 ``(x, y)`` pairs that form a rectangle. refdata : 3D `~numpy.ndarray` A 3D `~numpy.ndarray` of shape ``(4, nx, ny)``. The first axis corresponds to ``xyref``, i.e. ``refdata[0, :, :]`` is the 2D array located at ``xyref[0]``. xi, yi : float The ``(xi, yi)`` point at which to perform the interpolation. The ``(xi, yi)`` point must lie within the rectangle defined by ``xyref``. Returns ------- result : 2D `~numpy.ndarray` The 2D interpolated array. """ if len(xyref) != 4: raise ValueError('xyref must contain only 4 (x, y) pairs') if zref.shape[0] != 4: raise ValueError('zref must have a length of 4 on the first ' 'axis.') xyref = [tuple(i) for i in xyref] idx = sorted(range(len(xyref)), key=xyref.__getitem__) xyref = sorted(xyref) # sort by x, then y (x0, y0), (_x0, y1), (x1, _y0), (_x1, _y1) = xyref if x0 != _x0 or x1 != _x1 or y0 != _y0 or y1 != _y1: raise ValueError('The refxy points do not form a rectangle.') if not np.isscalar(xi): xi = xi[0] if not np.isscalar(yi): yi = yi[0] if not x0 <= xi <= x1 or not y0 <= yi <= y1: raise ValueError('The (x, y) input is not within the rectangle ' 'defined by xyref.') data = np.asarray(zref)[idx] weights = np.array([(x1 - xi) * (y1 - yi), (x1 - xi) * (yi - y0), (xi - x0) * (y1 - yi), (xi - x0) * (yi - y0)]) norm = (x1 - x0) * (y1 - y0) return np.sum(data * weights[:, None, None], axis=0) / norm
[ "def", "_bilinear_interp", "(", "xyref", ",", "zref", ",", "xi", ",", "yi", ")", ":", "if", "len", "(", "xyref", ")", "!=", "4", ":", "raise", "ValueError", "(", "'xyref must contain only 4 (x, y) pairs'", ")", "if", "zref", ".", "shape", "[", "0", "]", "!=", "4", ":", "raise", "ValueError", "(", "'zref must have a length of 4 on the first '", "'axis.'", ")", "xyref", "=", "[", "tuple", "(", "i", ")", "for", "i", "in", "xyref", "]", "idx", "=", "sorted", "(", "range", "(", "len", "(", "xyref", ")", ")", ",", "key", "=", "xyref", ".", "__getitem__", ")", "xyref", "=", "sorted", "(", "xyref", ")", "# sort by x, then y", "(", "x0", ",", "y0", ")", ",", "(", "_x0", ",", "y1", ")", ",", "(", "x1", ",", "_y0", ")", ",", "(", "_x1", ",", "_y1", ")", "=", "xyref", "if", "x0", "!=", "_x0", "or", "x1", "!=", "_x1", "or", "y0", "!=", "_y0", "or", "y1", "!=", "_y1", ":", "raise", "ValueError", "(", "'The refxy points do not form a rectangle.'", ")", "if", "not", "np", ".", "isscalar", "(", "xi", ")", ":", "xi", "=", "xi", "[", "0", "]", "if", "not", "np", ".", "isscalar", "(", "yi", ")", ":", "yi", "=", "yi", "[", "0", "]", "if", "not", "x0", "<=", "xi", "<=", "x1", "or", "not", "y0", "<=", "yi", "<=", "y1", ":", "raise", "ValueError", "(", "'The (x, y) input is not within the rectangle '", "'defined by xyref.'", ")", "data", "=", "np", ".", "asarray", "(", "zref", ")", "[", "idx", "]", "weights", "=", "np", ".", "array", "(", "[", "(", "x1", "-", "xi", ")", "*", "(", "y1", "-", "yi", ")", ",", "(", "x1", "-", "xi", ")", "*", "(", "yi", "-", "y0", ")", ",", "(", "xi", "-", "x0", ")", "*", "(", "y1", "-", "yi", ")", ",", "(", "xi", "-", "x0", ")", "*", "(", "yi", "-", "y0", ")", "]", ")", "norm", "=", "(", "x1", "-", "x0", ")", "*", "(", "y1", "-", "y0", ")", "return", "np", ".", "sum", "(", "data", "*", "weights", "[", ":", ",", "None", ",", "None", "]", ",", "axis", "=", "0", ")", "/", "norm" ]
Perform bilinear interpolation of four 2D arrays located at points on a regular grid. Parameters ---------- xyref : list of 4 (x, y) pairs A list of 4 ``(x, y)`` pairs that form a rectangle. refdata : 3D `~numpy.ndarray` A 3D `~numpy.ndarray` of shape ``(4, nx, ny)``. The first axis corresponds to ``xyref``, i.e. ``refdata[0, :, :]`` is the 2D array located at ``xyref[0]``. xi, yi : float The ``(xi, yi)`` point at which to perform the interpolation. The ``(xi, yi)`` point must lie within the rectangle defined by ``xyref``. Returns ------- result : 2D `~numpy.ndarray` The 2D interpolated array.
[ "Perform", "bilinear", "interpolation", "of", "four", "2D", "arrays", "located", "at", "points", "on", "a", "regular", "grid", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/psf/models.py#L651-L706
10,657
astropy/photutils
photutils/psf/models.py
GriddedPSFModel.evaluate
def evaluate(self, x, y, flux, x_0, y_0): """ Evaluate the `GriddedPSFModel` for the input parameters. """ # NOTE: this is needed because the PSF photometry routines input # length-1 values instead of scalars. TODO: fix the photometry # routines. if not np.isscalar(x_0): x_0 = x_0[0] if not np.isscalar(y_0): y_0 = y_0[0] if (x_0 < self._xgrid_min or x_0 > self._xgrid_max or y_0 < self._ygrid_min or y_0 > self._ygrid_max): # position is outside of the grid, so simply use the # closest reference PSF self._ref_indices = np.argsort(np.hypot(self._grid_xpos - x_0, self._grid_ypos - y_0))[0] self._psf_interp = self.data[self._ref_indices, :, :] else: # find the four bounding reference PSFs and interpolate self._ref_indices = self._find_bounding_points(x_0, y_0) xyref = np.array(self.grid_xypos)[self._ref_indices] psfs = self.data[self._ref_indices, :, :] self._psf_interp = self._bilinear_interp(xyref, psfs, x_0, y_0) # now evaluate the PSF at the (x_0, y_0) subpixel position on # the input (x, y) values psfmodel = FittableImageModel(self._psf_interp, oversampling=self.oversampling) return psfmodel.evaluate(x, y, flux, x_0, y_0)
python
def evaluate(self, x, y, flux, x_0, y_0): """ Evaluate the `GriddedPSFModel` for the input parameters. """ # NOTE: this is needed because the PSF photometry routines input # length-1 values instead of scalars. TODO: fix the photometry # routines. if not np.isscalar(x_0): x_0 = x_0[0] if not np.isscalar(y_0): y_0 = y_0[0] if (x_0 < self._xgrid_min or x_0 > self._xgrid_max or y_0 < self._ygrid_min or y_0 > self._ygrid_max): # position is outside of the grid, so simply use the # closest reference PSF self._ref_indices = np.argsort(np.hypot(self._grid_xpos - x_0, self._grid_ypos - y_0))[0] self._psf_interp = self.data[self._ref_indices, :, :] else: # find the four bounding reference PSFs and interpolate self._ref_indices = self._find_bounding_points(x_0, y_0) xyref = np.array(self.grid_xypos)[self._ref_indices] psfs = self.data[self._ref_indices, :, :] self._psf_interp = self._bilinear_interp(xyref, psfs, x_0, y_0) # now evaluate the PSF at the (x_0, y_0) subpixel position on # the input (x, y) values psfmodel = FittableImageModel(self._psf_interp, oversampling=self.oversampling) return psfmodel.evaluate(x, y, flux, x_0, y_0)
[ "def", "evaluate", "(", "self", ",", "x", ",", "y", ",", "flux", ",", "x_0", ",", "y_0", ")", ":", "# NOTE: this is needed because the PSF photometry routines input", "# length-1 values instead of scalars. TODO: fix the photometry", "# routines.", "if", "not", "np", ".", "isscalar", "(", "x_0", ")", ":", "x_0", "=", "x_0", "[", "0", "]", "if", "not", "np", ".", "isscalar", "(", "y_0", ")", ":", "y_0", "=", "y_0", "[", "0", "]", "if", "(", "x_0", "<", "self", ".", "_xgrid_min", "or", "x_0", ">", "self", ".", "_xgrid_max", "or", "y_0", "<", "self", ".", "_ygrid_min", "or", "y_0", ">", "self", ".", "_ygrid_max", ")", ":", "# position is outside of the grid, so simply use the", "# closest reference PSF", "self", ".", "_ref_indices", "=", "np", ".", "argsort", "(", "np", ".", "hypot", "(", "self", ".", "_grid_xpos", "-", "x_0", ",", "self", ".", "_grid_ypos", "-", "y_0", ")", ")", "[", "0", "]", "self", ".", "_psf_interp", "=", "self", ".", "data", "[", "self", ".", "_ref_indices", ",", ":", ",", ":", "]", "else", ":", "# find the four bounding reference PSFs and interpolate", "self", ".", "_ref_indices", "=", "self", ".", "_find_bounding_points", "(", "x_0", ",", "y_0", ")", "xyref", "=", "np", ".", "array", "(", "self", ".", "grid_xypos", ")", "[", "self", ".", "_ref_indices", "]", "psfs", "=", "self", ".", "data", "[", "self", ".", "_ref_indices", ",", ":", ",", ":", "]", "self", ".", "_psf_interp", "=", "self", ".", "_bilinear_interp", "(", "xyref", ",", "psfs", ",", "x_0", ",", "y_0", ")", "# now evaluate the PSF at the (x_0, y_0) subpixel position on", "# the input (x, y) values", "psfmodel", "=", "FittableImageModel", "(", "self", ".", "_psf_interp", ",", "oversampling", "=", "self", ".", "oversampling", ")", "return", "psfmodel", ".", "evaluate", "(", "x", ",", "y", ",", "flux", ",", "x_0", ",", "y_0", ")" ]
Evaluate the `GriddedPSFModel` for the input parameters.
[ "Evaluate", "the", "GriddedPSFModel", "for", "the", "input", "parameters", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/psf/models.py#L708-L742
10,658
astropy/photutils
photutils/psf/models.py
IntegratedGaussianPRF.evaluate
def evaluate(self, x, y, flux, x_0, y_0, sigma): """Model function Gaussian PSF model.""" return (flux / 4 * ((self._erf((x - x_0 + 0.5) / (np.sqrt(2) * sigma)) - self._erf((x - x_0 - 0.5) / (np.sqrt(2) * sigma))) * (self._erf((y - y_0 + 0.5) / (np.sqrt(2) * sigma)) - self._erf((y - y_0 - 0.5) / (np.sqrt(2) * sigma)))))
python
def evaluate(self, x, y, flux, x_0, y_0, sigma): """Model function Gaussian PSF model.""" return (flux / 4 * ((self._erf((x - x_0 + 0.5) / (np.sqrt(2) * sigma)) - self._erf((x - x_0 - 0.5) / (np.sqrt(2) * sigma))) * (self._erf((y - y_0 + 0.5) / (np.sqrt(2) * sigma)) - self._erf((y - y_0 - 0.5) / (np.sqrt(2) * sigma)))))
[ "def", "evaluate", "(", "self", ",", "x", ",", "y", ",", "flux", ",", "x_0", ",", "y_0", ",", "sigma", ")", ":", "return", "(", "flux", "/", "4", "*", "(", "(", "self", ".", "_erf", "(", "(", "x", "-", "x_0", "+", "0.5", ")", "/", "(", "np", ".", "sqrt", "(", "2", ")", "*", "sigma", ")", ")", "-", "self", ".", "_erf", "(", "(", "x", "-", "x_0", "-", "0.5", ")", "/", "(", "np", ".", "sqrt", "(", "2", ")", "*", "sigma", ")", ")", ")", "*", "(", "self", ".", "_erf", "(", "(", "y", "-", "y_0", "+", "0.5", ")", "/", "(", "np", ".", "sqrt", "(", "2", ")", "*", "sigma", ")", ")", "-", "self", ".", "_erf", "(", "(", "y", "-", "y_0", "-", "0.5", ")", "/", "(", "np", ".", "sqrt", "(", "2", ")", "*", "sigma", ")", ")", ")", ")", ")" ]
Model function Gaussian PSF model.
[ "Model", "function", "Gaussian", "PSF", "model", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/psf/models.py#L819-L826
10,659
astropy/photutils
photutils/psf/models.py
PRFAdapter.evaluate
def evaluate(self, x, y, flux, x_0, y_0): """The evaluation function for PRFAdapter.""" if self.xname is None: dx = x - x_0 else: dx = x setattr(self.psfmodel, self.xname, x_0) if self.xname is None: dy = y - y_0 else: dy = y setattr(self.psfmodel, self.yname, y_0) if self.fluxname is None: return (flux * self._psf_scale_factor * self._integrated_psfmodel(dx, dy)) else: setattr(self.psfmodel, self.yname, flux * self._psf_scale_factor) return self._integrated_psfmodel(dx, dy)
python
def evaluate(self, x, y, flux, x_0, y_0): """The evaluation function for PRFAdapter.""" if self.xname is None: dx = x - x_0 else: dx = x setattr(self.psfmodel, self.xname, x_0) if self.xname is None: dy = y - y_0 else: dy = y setattr(self.psfmodel, self.yname, y_0) if self.fluxname is None: return (flux * self._psf_scale_factor * self._integrated_psfmodel(dx, dy)) else: setattr(self.psfmodel, self.yname, flux * self._psf_scale_factor) return self._integrated_psfmodel(dx, dy)
[ "def", "evaluate", "(", "self", ",", "x", ",", "y", ",", "flux", ",", "x_0", ",", "y_0", ")", ":", "if", "self", ".", "xname", "is", "None", ":", "dx", "=", "x", "-", "x_0", "else", ":", "dx", "=", "x", "setattr", "(", "self", ".", "psfmodel", ",", "self", ".", "xname", ",", "x_0", ")", "if", "self", ".", "xname", "is", "None", ":", "dy", "=", "y", "-", "y_0", "else", ":", "dy", "=", "y", "setattr", "(", "self", ".", "psfmodel", ",", "self", ".", "yname", ",", "y_0", ")", "if", "self", ".", "fluxname", "is", "None", ":", "return", "(", "flux", "*", "self", ".", "_psf_scale_factor", "*", "self", ".", "_integrated_psfmodel", "(", "dx", ",", "dy", ")", ")", "else", ":", "setattr", "(", "self", ".", "psfmodel", ",", "self", ".", "yname", ",", "flux", "*", "self", ".", "_psf_scale_factor", ")", "return", "self", ".", "_integrated_psfmodel", "(", "dx", ",", "dy", ")" ]
The evaluation function for PRFAdapter.
[ "The", "evaluation", "function", "for", "PRFAdapter", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/psf/models.py#L895-L915
10,660
astropy/photutils
photutils/isophote/isophote.py
_isophote_list_to_table
def _isophote_list_to_table(isophote_list): """ Convert an `~photutils.isophote.IsophoteList` instance to a `~astropy.table.QTable`. Parameters ---------- isophote_list : list of `~photutils.isophote.Isophote` or a `~photutils.isophote.IsophoteList` instance A list of isophotes. Returns ------- result : `~astropy.table.QTable` An astropy QTable with the main isophote parameters. """ properties = OrderedDict() properties['sma'] = 'sma' properties['intens'] = 'intens' properties['int_err'] = 'intens_err' properties['eps'] = 'ellipticity' properties['ellip_err'] = 'ellipticity_err' properties['pa'] = 'pa' properties['pa_err'] = 'pa_err' properties['grad_r_error'] = 'grad_rerr' properties['ndata'] = 'ndata' properties['nflag'] = 'flag' properties['niter'] = 'niter' properties['stop_code'] = 'stop_code' isotable = QTable() for k, v in properties.items(): isotable[v] = np.array([getattr(iso, k) for iso in isophote_list]) if k in ('pa', 'pa_err'): isotable[v] = isotable[v] * 180. / np.pi * u.deg return isotable
python
def _isophote_list_to_table(isophote_list): """ Convert an `~photutils.isophote.IsophoteList` instance to a `~astropy.table.QTable`. Parameters ---------- isophote_list : list of `~photutils.isophote.Isophote` or a `~photutils.isophote.IsophoteList` instance A list of isophotes. Returns ------- result : `~astropy.table.QTable` An astropy QTable with the main isophote parameters. """ properties = OrderedDict() properties['sma'] = 'sma' properties['intens'] = 'intens' properties['int_err'] = 'intens_err' properties['eps'] = 'ellipticity' properties['ellip_err'] = 'ellipticity_err' properties['pa'] = 'pa' properties['pa_err'] = 'pa_err' properties['grad_r_error'] = 'grad_rerr' properties['ndata'] = 'ndata' properties['nflag'] = 'flag' properties['niter'] = 'niter' properties['stop_code'] = 'stop_code' isotable = QTable() for k, v in properties.items(): isotable[v] = np.array([getattr(iso, k) for iso in isophote_list]) if k in ('pa', 'pa_err'): isotable[v] = isotable[v] * 180. / np.pi * u.deg return isotable
[ "def", "_isophote_list_to_table", "(", "isophote_list", ")", ":", "properties", "=", "OrderedDict", "(", ")", "properties", "[", "'sma'", "]", "=", "'sma'", "properties", "[", "'intens'", "]", "=", "'intens'", "properties", "[", "'int_err'", "]", "=", "'intens_err'", "properties", "[", "'eps'", "]", "=", "'ellipticity'", "properties", "[", "'ellip_err'", "]", "=", "'ellipticity_err'", "properties", "[", "'pa'", "]", "=", "'pa'", "properties", "[", "'pa_err'", "]", "=", "'pa_err'", "properties", "[", "'grad_r_error'", "]", "=", "'grad_rerr'", "properties", "[", "'ndata'", "]", "=", "'ndata'", "properties", "[", "'nflag'", "]", "=", "'flag'", "properties", "[", "'niter'", "]", "=", "'niter'", "properties", "[", "'stop_code'", "]", "=", "'stop_code'", "isotable", "=", "QTable", "(", ")", "for", "k", ",", "v", "in", "properties", ".", "items", "(", ")", ":", "isotable", "[", "v", "]", "=", "np", ".", "array", "(", "[", "getattr", "(", "iso", ",", "k", ")", "for", "iso", "in", "isophote_list", "]", ")", "if", "k", "in", "(", "'pa'", ",", "'pa_err'", ")", ":", "isotable", "[", "v", "]", "=", "isotable", "[", "v", "]", "*", "180.", "/", "np", ".", "pi", "*", "u", ".", "deg", "return", "isotable" ]
Convert an `~photutils.isophote.IsophoteList` instance to a `~astropy.table.QTable`. Parameters ---------- isophote_list : list of `~photutils.isophote.Isophote` or a `~photutils.isophote.IsophoteList` instance A list of isophotes. Returns ------- result : `~astropy.table.QTable` An astropy QTable with the main isophote parameters.
[ "Convert", "an", "~photutils", ".", "isophote", ".", "IsophoteList", "instance", "to", "a", "~astropy", ".", "table", ".", "QTable", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/isophote/isophote.py#L730-L768
10,661
astropy/photutils
photutils/isophote/isophote.py
Isophote._compute_fluxes
def _compute_fluxes(self): """ Compute integrated flux inside ellipse, as well as inside a circle defined with the same semimajor axis. Pixels in a square section enclosing circle are scanned; the distance of each pixel to the isophote center is compared both with the semimajor axis length and with the length of the ellipse radius vector, and integrals are updated if the pixel distance is smaller. """ # Compute limits of square array that encloses circle. sma = self.sample.geometry.sma x0 = self.sample.geometry.x0 y0 = self.sample.geometry.y0 xsize = self.sample.image.shape[1] ysize = self.sample.image.shape[0] imin = max(0, int(x0 - sma - 0.5) - 1) jmin = max(0, int(y0 - sma - 0.5) - 1) imax = min(xsize, int(x0 + sma + 0.5) + 1) jmax = min(ysize, int(y0 + sma + 0.5) + 1) # Integrate if (jmax-jmin > 1) and (imax-imin) > 1: y, x = np.mgrid[jmin:jmax, imin:imax] radius, angle = self.sample.geometry.to_polar(x, y) radius_e = self.sample.geometry.radius(angle) midx = (radius <= sma) values = self.sample.image[y[midx], x[midx]] tflux_c = np.ma.sum(values) npix_c = np.ma.count(values) midx2 = (radius <= radius_e) values = self.sample.image[y[midx2], x[midx2]] tflux_e = np.ma.sum(values) npix_e = np.ma.count(values) else: tflux_e = 0. tflux_c = 0. npix_e = 0 npix_c = 0 return tflux_e, tflux_c, npix_e, npix_c
python
def _compute_fluxes(self): """ Compute integrated flux inside ellipse, as well as inside a circle defined with the same semimajor axis. Pixels in a square section enclosing circle are scanned; the distance of each pixel to the isophote center is compared both with the semimajor axis length and with the length of the ellipse radius vector, and integrals are updated if the pixel distance is smaller. """ # Compute limits of square array that encloses circle. sma = self.sample.geometry.sma x0 = self.sample.geometry.x0 y0 = self.sample.geometry.y0 xsize = self.sample.image.shape[1] ysize = self.sample.image.shape[0] imin = max(0, int(x0 - sma - 0.5) - 1) jmin = max(0, int(y0 - sma - 0.5) - 1) imax = min(xsize, int(x0 + sma + 0.5) + 1) jmax = min(ysize, int(y0 + sma + 0.5) + 1) # Integrate if (jmax-jmin > 1) and (imax-imin) > 1: y, x = np.mgrid[jmin:jmax, imin:imax] radius, angle = self.sample.geometry.to_polar(x, y) radius_e = self.sample.geometry.radius(angle) midx = (radius <= sma) values = self.sample.image[y[midx], x[midx]] tflux_c = np.ma.sum(values) npix_c = np.ma.count(values) midx2 = (radius <= radius_e) values = self.sample.image[y[midx2], x[midx2]] tflux_e = np.ma.sum(values) npix_e = np.ma.count(values) else: tflux_e = 0. tflux_c = 0. npix_e = 0 npix_c = 0 return tflux_e, tflux_c, npix_e, npix_c
[ "def", "_compute_fluxes", "(", "self", ")", ":", "# Compute limits of square array that encloses circle.", "sma", "=", "self", ".", "sample", ".", "geometry", ".", "sma", "x0", "=", "self", ".", "sample", ".", "geometry", ".", "x0", "y0", "=", "self", ".", "sample", ".", "geometry", ".", "y0", "xsize", "=", "self", ".", "sample", ".", "image", ".", "shape", "[", "1", "]", "ysize", "=", "self", ".", "sample", ".", "image", ".", "shape", "[", "0", "]", "imin", "=", "max", "(", "0", ",", "int", "(", "x0", "-", "sma", "-", "0.5", ")", "-", "1", ")", "jmin", "=", "max", "(", "0", ",", "int", "(", "y0", "-", "sma", "-", "0.5", ")", "-", "1", ")", "imax", "=", "min", "(", "xsize", ",", "int", "(", "x0", "+", "sma", "+", "0.5", ")", "+", "1", ")", "jmax", "=", "min", "(", "ysize", ",", "int", "(", "y0", "+", "sma", "+", "0.5", ")", "+", "1", ")", "# Integrate", "if", "(", "jmax", "-", "jmin", ">", "1", ")", "and", "(", "imax", "-", "imin", ")", ">", "1", ":", "y", ",", "x", "=", "np", ".", "mgrid", "[", "jmin", ":", "jmax", ",", "imin", ":", "imax", "]", "radius", ",", "angle", "=", "self", ".", "sample", ".", "geometry", ".", "to_polar", "(", "x", ",", "y", ")", "radius_e", "=", "self", ".", "sample", ".", "geometry", ".", "radius", "(", "angle", ")", "midx", "=", "(", "radius", "<=", "sma", ")", "values", "=", "self", ".", "sample", ".", "image", "[", "y", "[", "midx", "]", ",", "x", "[", "midx", "]", "]", "tflux_c", "=", "np", ".", "ma", ".", "sum", "(", "values", ")", "npix_c", "=", "np", ".", "ma", ".", "count", "(", "values", ")", "midx2", "=", "(", "radius", "<=", "radius_e", ")", "values", "=", "self", ".", "sample", ".", "image", "[", "y", "[", "midx2", "]", ",", "x", "[", "midx2", "]", "]", "tflux_e", "=", "np", ".", "ma", ".", "sum", "(", "values", ")", "npix_e", "=", "np", ".", "ma", ".", "count", "(", "values", ")", "else", ":", "tflux_e", "=", "0.", "tflux_c", "=", "0.", "npix_e", "=", "0", "npix_c", "=", "0", "return", "tflux_e", ",", "tflux_c", ",", "npix_e", ",", "npix_c" ]
Compute integrated flux inside ellipse, as well as inside a circle defined with the same semimajor axis. Pixels in a square section enclosing circle are scanned; the distance of each pixel to the isophote center is compared both with the semimajor axis length and with the length of the ellipse radius vector, and integrals are updated if the pixel distance is smaller.
[ "Compute", "integrated", "flux", "inside", "ellipse", "as", "well", "as", "inside", "a", "circle", "defined", "with", "the", "same", "semimajor", "axis", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/isophote/isophote.py#L176-L221
10,662
astropy/photutils
photutils/isophote/isophote.py
Isophote._compute_deviations
def _compute_deviations(self, sample, n): """ Compute deviations from a perfect ellipse, based on the amplitudes and errors for harmonic "n". Note that we first subtract the first and second harmonics from the raw data. """ try: coeffs = fit_first_and_second_harmonics(self.sample.values[0], self.sample.values[2]) coeffs = coeffs[0] model = first_and_second_harmonic_function(self.sample.values[0], coeffs) residual = self.sample.values[2] - model c = fit_upper_harmonic(residual, sample.values[2], n) covariance = c[1] ce = np.diagonal(covariance) c = c[0] a = c[1] / self.sma / sample.gradient b = c[2] / self.sma / sample.gradient # this comes from the old code. Likely it was based on # empirical experience with the STSDAS task, so we leave # it here without too much thought. gre = self.grad_r_error if self.grad_r_error is not None else 0.64 a_err = abs(a) * np.sqrt((ce[1] / c[1])**2 + gre**2) b_err = abs(b) * np.sqrt((ce[2] / c[2])**2 + gre**2) except Exception: # we want to catch everything a = b = a_err = b_err = None return a, b, a_err, b_err
python
def _compute_deviations(self, sample, n): """ Compute deviations from a perfect ellipse, based on the amplitudes and errors for harmonic "n". Note that we first subtract the first and second harmonics from the raw data. """ try: coeffs = fit_first_and_second_harmonics(self.sample.values[0], self.sample.values[2]) coeffs = coeffs[0] model = first_and_second_harmonic_function(self.sample.values[0], coeffs) residual = self.sample.values[2] - model c = fit_upper_harmonic(residual, sample.values[2], n) covariance = c[1] ce = np.diagonal(covariance) c = c[0] a = c[1] / self.sma / sample.gradient b = c[2] / self.sma / sample.gradient # this comes from the old code. Likely it was based on # empirical experience with the STSDAS task, so we leave # it here without too much thought. gre = self.grad_r_error if self.grad_r_error is not None else 0.64 a_err = abs(a) * np.sqrt((ce[1] / c[1])**2 + gre**2) b_err = abs(b) * np.sqrt((ce[2] / c[2])**2 + gre**2) except Exception: # we want to catch everything a = b = a_err = b_err = None return a, b, a_err, b_err
[ "def", "_compute_deviations", "(", "self", ",", "sample", ",", "n", ")", ":", "try", ":", "coeffs", "=", "fit_first_and_second_harmonics", "(", "self", ".", "sample", ".", "values", "[", "0", "]", ",", "self", ".", "sample", ".", "values", "[", "2", "]", ")", "coeffs", "=", "coeffs", "[", "0", "]", "model", "=", "first_and_second_harmonic_function", "(", "self", ".", "sample", ".", "values", "[", "0", "]", ",", "coeffs", ")", "residual", "=", "self", ".", "sample", ".", "values", "[", "2", "]", "-", "model", "c", "=", "fit_upper_harmonic", "(", "residual", ",", "sample", ".", "values", "[", "2", "]", ",", "n", ")", "covariance", "=", "c", "[", "1", "]", "ce", "=", "np", ".", "diagonal", "(", "covariance", ")", "c", "=", "c", "[", "0", "]", "a", "=", "c", "[", "1", "]", "/", "self", ".", "sma", "/", "sample", ".", "gradient", "b", "=", "c", "[", "2", "]", "/", "self", ".", "sma", "/", "sample", ".", "gradient", "# this comes from the old code. Likely it was based on", "# empirical experience with the STSDAS task, so we leave", "# it here without too much thought.", "gre", "=", "self", ".", "grad_r_error", "if", "self", ".", "grad_r_error", "is", "not", "None", "else", "0.64", "a_err", "=", "abs", "(", "a", ")", "*", "np", ".", "sqrt", "(", "(", "ce", "[", "1", "]", "/", "c", "[", "1", "]", ")", "**", "2", "+", "gre", "**", "2", ")", "b_err", "=", "abs", "(", "b", ")", "*", "np", ".", "sqrt", "(", "(", "ce", "[", "2", "]", "/", "c", "[", "2", "]", ")", "**", "2", "+", "gre", "**", "2", ")", "except", "Exception", ":", "# we want to catch everything", "a", "=", "b", "=", "a_err", "=", "b_err", "=", "None", "return", "a", ",", "b", ",", "a_err", ",", "b_err" ]
Compute deviations from a perfect ellipse, based on the amplitudes and errors for harmonic "n". Note that we first subtract the first and second harmonics from the raw data.
[ "Compute", "deviations", "from", "a", "perfect", "ellipse", "based", "on", "the", "amplitudes", "and", "errors", "for", "harmonic", "n", ".", "Note", "that", "we", "first", "subtract", "the", "first", "and", "second", "harmonics", "from", "the", "raw", "data", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/isophote/isophote.py#L223-L257
10,663
astropy/photutils
photutils/isophote/isophote.py
Isophote._compute_errors
def _compute_errors(self): """ Compute parameter errors based on the diagonal of the covariance matrix of the four harmonic coefficients for harmonics n=1 and n=2. """ try: coeffs = fit_first_and_second_harmonics(self.sample.values[0], self.sample.values[2]) covariance = coeffs[1] coeffs = coeffs[0] model = first_and_second_harmonic_function(self.sample.values[0], coeffs) residual_rms = np.std(self.sample.values[2] - model) errors = np.diagonal(covariance) * residual_rms eps = self.sample.geometry.eps pa = self.sample.geometry.pa # parameter errors result from direct projection of # coefficient errors. These showed to be the error estimators # that best convey the errors measured in Monte Carlo # experiments (see Busko 1996; ASPC 101, 139). ea = abs(errors[2] / self.grad) eb = abs(errors[1] * (1. - eps) / self.grad) self.x0_err = np.sqrt((ea * np.cos(pa))**2 + (eb * np.sin(pa))**2) self.y0_err = np.sqrt((ea * np.sin(pa))**2 + (eb * np.cos(pa))**2) self.ellip_err = (abs(2. * errors[4] * (1. - eps) / self.sma / self.grad)) if (abs(eps) > np.finfo(float).resolution): self.pa_err = (abs(2. * errors[3] * (1. - eps) / self.sma / self.grad / (1. - (1. - eps)**2))) else: self.pa_err = 0. except Exception: # we want to catch everything self.x0_err = self.y0_err = self.pa_err = self.ellip_err = 0.
python
def _compute_errors(self): """ Compute parameter errors based on the diagonal of the covariance matrix of the four harmonic coefficients for harmonics n=1 and n=2. """ try: coeffs = fit_first_and_second_harmonics(self.sample.values[0], self.sample.values[2]) covariance = coeffs[1] coeffs = coeffs[0] model = first_and_second_harmonic_function(self.sample.values[0], coeffs) residual_rms = np.std(self.sample.values[2] - model) errors = np.diagonal(covariance) * residual_rms eps = self.sample.geometry.eps pa = self.sample.geometry.pa # parameter errors result from direct projection of # coefficient errors. These showed to be the error estimators # that best convey the errors measured in Monte Carlo # experiments (see Busko 1996; ASPC 101, 139). ea = abs(errors[2] / self.grad) eb = abs(errors[1] * (1. - eps) / self.grad) self.x0_err = np.sqrt((ea * np.cos(pa))**2 + (eb * np.sin(pa))**2) self.y0_err = np.sqrt((ea * np.sin(pa))**2 + (eb * np.cos(pa))**2) self.ellip_err = (abs(2. * errors[4] * (1. - eps) / self.sma / self.grad)) if (abs(eps) > np.finfo(float).resolution): self.pa_err = (abs(2. * errors[3] * (1. - eps) / self.sma / self.grad / (1. - (1. - eps)**2))) else: self.pa_err = 0. except Exception: # we want to catch everything self.x0_err = self.y0_err = self.pa_err = self.ellip_err = 0.
[ "def", "_compute_errors", "(", "self", ")", ":", "try", ":", "coeffs", "=", "fit_first_and_second_harmonics", "(", "self", ".", "sample", ".", "values", "[", "0", "]", ",", "self", ".", "sample", ".", "values", "[", "2", "]", ")", "covariance", "=", "coeffs", "[", "1", "]", "coeffs", "=", "coeffs", "[", "0", "]", "model", "=", "first_and_second_harmonic_function", "(", "self", ".", "sample", ".", "values", "[", "0", "]", ",", "coeffs", ")", "residual_rms", "=", "np", ".", "std", "(", "self", ".", "sample", ".", "values", "[", "2", "]", "-", "model", ")", "errors", "=", "np", ".", "diagonal", "(", "covariance", ")", "*", "residual_rms", "eps", "=", "self", ".", "sample", ".", "geometry", ".", "eps", "pa", "=", "self", ".", "sample", ".", "geometry", ".", "pa", "# parameter errors result from direct projection of", "# coefficient errors. These showed to be the error estimators", "# that best convey the errors measured in Monte Carlo", "# experiments (see Busko 1996; ASPC 101, 139).", "ea", "=", "abs", "(", "errors", "[", "2", "]", "/", "self", ".", "grad", ")", "eb", "=", "abs", "(", "errors", "[", "1", "]", "*", "(", "1.", "-", "eps", ")", "/", "self", ".", "grad", ")", "self", ".", "x0_err", "=", "np", ".", "sqrt", "(", "(", "ea", "*", "np", ".", "cos", "(", "pa", ")", ")", "**", "2", "+", "(", "eb", "*", "np", ".", "sin", "(", "pa", ")", ")", "**", "2", ")", "self", ".", "y0_err", "=", "np", ".", "sqrt", "(", "(", "ea", "*", "np", ".", "sin", "(", "pa", ")", ")", "**", "2", "+", "(", "eb", "*", "np", ".", "cos", "(", "pa", ")", ")", "**", "2", ")", "self", ".", "ellip_err", "=", "(", "abs", "(", "2.", "*", "errors", "[", "4", "]", "*", "(", "1.", "-", "eps", ")", "/", "self", ".", "sma", "/", "self", ".", "grad", ")", ")", "if", "(", "abs", "(", "eps", ")", ">", "np", ".", "finfo", "(", "float", ")", ".", "resolution", ")", ":", "self", ".", "pa_err", "=", "(", "abs", "(", "2.", "*", "errors", "[", "3", "]", "*", "(", "1.", "-", "eps", ")", "/", "self", ".", "sma", "/", "self", ".", "grad", "/", "(", "1.", "-", "(", "1.", "-", "eps", ")", "**", "2", ")", ")", ")", "else", ":", "self", ".", "pa_err", "=", "0.", "except", "Exception", ":", "# we want to catch everything", "self", ".", "x0_err", "=", "self", ".", "y0_err", "=", "self", ".", "pa_err", "=", "self", ".", "ellip_err", "=", "0." ]
Compute parameter errors based on the diagonal of the covariance matrix of the four harmonic coefficients for harmonics n=1 and n=2.
[ "Compute", "parameter", "errors", "based", "on", "the", "diagonal", "of", "the", "covariance", "matrix", "of", "the", "four", "harmonic", "coefficients", "for", "harmonics", "n", "=", "1", "and", "n", "=", "2", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/isophote/isophote.py#L259-L295
10,664
astropy/photutils
photutils/isophote/isophote.py
Isophote.fix_geometry
def fix_geometry(self, isophote): """ Fix the geometry of a problematic isophote to be identical to the input isophote. This method should be called when the fitting goes berserk and delivers an isophote with bad geometry, such as ellipticity > 1 or another meaningless situation. This is not a problem in itself when fitting any given isophote, but will create an error when the affected isophote is used as starting guess for the next fit. Parameters ---------- isophote : `~photutils.isophote.Isophote` instance The isophote from which to take the geometry information. """ self.sample.geometry.eps = isophote.sample.geometry.eps self.sample.geometry.pa = isophote.sample.geometry.pa self.sample.geometry.x0 = isophote.sample.geometry.x0 self.sample.geometry.y0 = isophote.sample.geometry.y0
python
def fix_geometry(self, isophote): """ Fix the geometry of a problematic isophote to be identical to the input isophote. This method should be called when the fitting goes berserk and delivers an isophote with bad geometry, such as ellipticity > 1 or another meaningless situation. This is not a problem in itself when fitting any given isophote, but will create an error when the affected isophote is used as starting guess for the next fit. Parameters ---------- isophote : `~photutils.isophote.Isophote` instance The isophote from which to take the geometry information. """ self.sample.geometry.eps = isophote.sample.geometry.eps self.sample.geometry.pa = isophote.sample.geometry.pa self.sample.geometry.x0 = isophote.sample.geometry.x0 self.sample.geometry.y0 = isophote.sample.geometry.y0
[ "def", "fix_geometry", "(", "self", ",", "isophote", ")", ":", "self", ".", "sample", ".", "geometry", ".", "eps", "=", "isophote", ".", "sample", ".", "geometry", ".", "eps", "self", ".", "sample", ".", "geometry", ".", "pa", "=", "isophote", ".", "sample", ".", "geometry", ".", "pa", "self", ".", "sample", ".", "geometry", ".", "x0", "=", "isophote", ".", "sample", ".", "geometry", ".", "x0", "self", ".", "sample", ".", "geometry", ".", "y0", "=", "isophote", ".", "sample", ".", "geometry", ".", "y0" ]
Fix the geometry of a problematic isophote to be identical to the input isophote. This method should be called when the fitting goes berserk and delivers an isophote with bad geometry, such as ellipticity > 1 or another meaningless situation. This is not a problem in itself when fitting any given isophote, but will create an error when the affected isophote is used as starting guess for the next fit. Parameters ---------- isophote : `~photutils.isophote.Isophote` instance The isophote from which to take the geometry information.
[ "Fix", "the", "geometry", "of", "a", "problematic", "isophote", "to", "be", "identical", "to", "the", "input", "isophote", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/isophote/isophote.py#L297-L318
10,665
astropy/photutils
photutils/isophote/isophote.py
IsophoteList.get_closest
def get_closest(self, sma): """ Return the `~photutils.isophote.Isophote` instance that has the closest semimajor axis length to the input semimajor axis. Parameters ---------- sma : float The semimajor axis length. Returns ------- isophote : `~photutils.isophote.Isophote` instance The isophote with the closest semimajor axis value. """ index = (np.abs(self.sma - sma)).argmin() return self._list[index]
python
def get_closest(self, sma): """ Return the `~photutils.isophote.Isophote` instance that has the closest semimajor axis length to the input semimajor axis. Parameters ---------- sma : float The semimajor axis length. Returns ------- isophote : `~photutils.isophote.Isophote` instance The isophote with the closest semimajor axis value. """ index = (np.abs(self.sma - sma)).argmin() return self._list[index]
[ "def", "get_closest", "(", "self", ",", "sma", ")", ":", "index", "=", "(", "np", ".", "abs", "(", "self", ".", "sma", "-", "sma", ")", ")", ".", "argmin", "(", ")", "return", "self", ".", "_list", "[", "index", "]" ]
Return the `~photutils.isophote.Isophote` instance that has the closest semimajor axis length to the input semimajor axis. Parameters ---------- sma : float The semimajor axis length. Returns ------- isophote : `~photutils.isophote.Isophote` instance The isophote with the closest semimajor axis value.
[ "Return", "the", "~photutils", ".", "isophote", ".", "Isophote", "instance", "that", "has", "the", "closest", "semimajor", "axis", "length", "to", "the", "input", "semimajor", "axis", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/isophote/isophote.py#L468-L485
10,666
astropy/photutils
photutils/utils/interpolation.py
interpolate_masked_data
def interpolate_masked_data(data, mask, error=None, background=None): """ Interpolate over masked pixels in data and optional error or background images. The value of masked pixels are replaced by the mean value of the connected neighboring non-masked pixels. This function is intended for single, isolated masked pixels (e.g. hot/warm pixels). Parameters ---------- data : array_like or `~astropy.units.Quantity` The data array. mask : array_like (bool) A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. error : array_like or `~astropy.units.Quantity`, optional The pixel-wise Gaussian 1-sigma errors of the input ``data``. ``error`` must have the same shape as ``data``. background : array_like, or `~astropy.units.Quantity`, optional The pixel-wise background level of the input ``data``. ``background`` must have the same shape as ``data``. Returns ------- data : `~numpy.ndarray` or `~astropy.units.Quantity` Input ``data`` with interpolated masked pixels. error : `~numpy.ndarray` or `~astropy.units.Quantity` Input ``error`` with interpolated masked pixels. `None` if input ``error`` is not input. background : `~numpy.ndarray` or `~astropy.units.Quantity` Input ``background`` with interpolated masked pixels. `None` if input ``background`` is not input. """ if data.shape != mask.shape: raise ValueError('data and mask must have the same shape') data_out = np.copy(data) # do not alter input data mask_idx = mask.nonzero() if mask_idx[0].size == 0: raise ValueError('All items in data are masked') for x in zip(*mask_idx): X = np.array([[max(x[i] - 1, 0), min(x[i] + 1, data.shape[i] - 1)] for i in range(len(data.shape))]) goodpix = ~mask[X] if not np.any(goodpix): warnings.warn('The masked pixel at "{}" is completely ' 'surrounded by (connected) masked pixels, ' 'thus unable to interpolate'.format(x,), AstropyUserWarning) continue data_out[x] = np.mean(data[X][goodpix]) if background is not None: if background.shape != data.shape: raise ValueError('background and data must have the same ' 'shape') background_out = np.copy(background) background_out[x] = np.mean(background[X][goodpix]) else: background_out = None if error is not None: if error.shape != data.shape: raise ValueError('error and data must have the same ' 'shape') error_out = np.copy(error) error_out[x] = np.sqrt(np.mean(error[X][goodpix]**2)) else: error_out = None return data_out, error_out, background_out
python
def interpolate_masked_data(data, mask, error=None, background=None): """ Interpolate over masked pixels in data and optional error or background images. The value of masked pixels are replaced by the mean value of the connected neighboring non-masked pixels. This function is intended for single, isolated masked pixels (e.g. hot/warm pixels). Parameters ---------- data : array_like or `~astropy.units.Quantity` The data array. mask : array_like (bool) A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. error : array_like or `~astropy.units.Quantity`, optional The pixel-wise Gaussian 1-sigma errors of the input ``data``. ``error`` must have the same shape as ``data``. background : array_like, or `~astropy.units.Quantity`, optional The pixel-wise background level of the input ``data``. ``background`` must have the same shape as ``data``. Returns ------- data : `~numpy.ndarray` or `~astropy.units.Quantity` Input ``data`` with interpolated masked pixels. error : `~numpy.ndarray` or `~astropy.units.Quantity` Input ``error`` with interpolated masked pixels. `None` if input ``error`` is not input. background : `~numpy.ndarray` or `~astropy.units.Quantity` Input ``background`` with interpolated masked pixels. `None` if input ``background`` is not input. """ if data.shape != mask.shape: raise ValueError('data and mask must have the same shape') data_out = np.copy(data) # do not alter input data mask_idx = mask.nonzero() if mask_idx[0].size == 0: raise ValueError('All items in data are masked') for x in zip(*mask_idx): X = np.array([[max(x[i] - 1, 0), min(x[i] + 1, data.shape[i] - 1)] for i in range(len(data.shape))]) goodpix = ~mask[X] if not np.any(goodpix): warnings.warn('The masked pixel at "{}" is completely ' 'surrounded by (connected) masked pixels, ' 'thus unable to interpolate'.format(x,), AstropyUserWarning) continue data_out[x] = np.mean(data[X][goodpix]) if background is not None: if background.shape != data.shape: raise ValueError('background and data must have the same ' 'shape') background_out = np.copy(background) background_out[x] = np.mean(background[X][goodpix]) else: background_out = None if error is not None: if error.shape != data.shape: raise ValueError('error and data must have the same ' 'shape') error_out = np.copy(error) error_out[x] = np.sqrt(np.mean(error[X][goodpix]**2)) else: error_out = None return data_out, error_out, background_out
[ "def", "interpolate_masked_data", "(", "data", ",", "mask", ",", "error", "=", "None", ",", "background", "=", "None", ")", ":", "if", "data", ".", "shape", "!=", "mask", ".", "shape", ":", "raise", "ValueError", "(", "'data and mask must have the same shape'", ")", "data_out", "=", "np", ".", "copy", "(", "data", ")", "# do not alter input data", "mask_idx", "=", "mask", ".", "nonzero", "(", ")", "if", "mask_idx", "[", "0", "]", ".", "size", "==", "0", ":", "raise", "ValueError", "(", "'All items in data are masked'", ")", "for", "x", "in", "zip", "(", "*", "mask_idx", ")", ":", "X", "=", "np", ".", "array", "(", "[", "[", "max", "(", "x", "[", "i", "]", "-", "1", ",", "0", ")", ",", "min", "(", "x", "[", "i", "]", "+", "1", ",", "data", ".", "shape", "[", "i", "]", "-", "1", ")", "]", "for", "i", "in", "range", "(", "len", "(", "data", ".", "shape", ")", ")", "]", ")", "goodpix", "=", "~", "mask", "[", "X", "]", "if", "not", "np", ".", "any", "(", "goodpix", ")", ":", "warnings", ".", "warn", "(", "'The masked pixel at \"{}\" is completely '", "'surrounded by (connected) masked pixels, '", "'thus unable to interpolate'", ".", "format", "(", "x", ",", ")", ",", "AstropyUserWarning", ")", "continue", "data_out", "[", "x", "]", "=", "np", ".", "mean", "(", "data", "[", "X", "]", "[", "goodpix", "]", ")", "if", "background", "is", "not", "None", ":", "if", "background", ".", "shape", "!=", "data", ".", "shape", ":", "raise", "ValueError", "(", "'background and data must have the same '", "'shape'", ")", "background_out", "=", "np", ".", "copy", "(", "background", ")", "background_out", "[", "x", "]", "=", "np", ".", "mean", "(", "background", "[", "X", "]", "[", "goodpix", "]", ")", "else", ":", "background_out", "=", "None", "if", "error", "is", "not", "None", ":", "if", "error", ".", "shape", "!=", "data", ".", "shape", ":", "raise", "ValueError", "(", "'error and data must have the same '", "'shape'", ")", "error_out", "=", "np", ".", "copy", "(", "error", ")", "error_out", "[", "x", "]", "=", "np", ".", "sqrt", "(", "np", ".", "mean", "(", "error", "[", "X", "]", "[", "goodpix", "]", "**", "2", ")", ")", "else", ":", "error_out", "=", "None", "return", "data_out", ",", "error_out", ",", "background_out" ]
Interpolate over masked pixels in data and optional error or background images. The value of masked pixels are replaced by the mean value of the connected neighboring non-masked pixels. This function is intended for single, isolated masked pixels (e.g. hot/warm pixels). Parameters ---------- data : array_like or `~astropy.units.Quantity` The data array. mask : array_like (bool) A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. error : array_like or `~astropy.units.Quantity`, optional The pixel-wise Gaussian 1-sigma errors of the input ``data``. ``error`` must have the same shape as ``data``. background : array_like, or `~astropy.units.Quantity`, optional The pixel-wise background level of the input ``data``. ``background`` must have the same shape as ``data``. Returns ------- data : `~numpy.ndarray` or `~astropy.units.Quantity` Input ``data`` with interpolated masked pixels. error : `~numpy.ndarray` or `~astropy.units.Quantity` Input ``error`` with interpolated masked pixels. `None` if input ``error`` is not input. background : `~numpy.ndarray` or `~astropy.units.Quantity` Input ``background`` with interpolated masked pixels. `None` if input ``background`` is not input.
[ "Interpolate", "over", "masked", "pixels", "in", "data", "and", "optional", "error", "or", "background", "images", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/utils/interpolation.py#L289-L370
10,667
google/pyringe
pyringe/plugins/inject_sentinel.py
SentinelInjectPlugin.ThreadsWithRunningExecServers
def ThreadsWithRunningExecServers(self): """Returns a list of tids of inferior threads with open exec servers.""" socket_dir = '/tmp/pyringe_%s' % self.inferior.pid if os.path.isdir(socket_dir): return [int(fname[:-9]) for fname in os.listdir(socket_dir) if fname.endswith('.execsock')] return []
python
def ThreadsWithRunningExecServers(self): """Returns a list of tids of inferior threads with open exec servers.""" socket_dir = '/tmp/pyringe_%s' % self.inferior.pid if os.path.isdir(socket_dir): return [int(fname[:-9]) for fname in os.listdir(socket_dir) if fname.endswith('.execsock')] return []
[ "def", "ThreadsWithRunningExecServers", "(", "self", ")", ":", "socket_dir", "=", "'/tmp/pyringe_%s'", "%", "self", ".", "inferior", ".", "pid", "if", "os", ".", "path", ".", "isdir", "(", "socket_dir", ")", ":", "return", "[", "int", "(", "fname", "[", ":", "-", "9", "]", ")", "for", "fname", "in", "os", ".", "listdir", "(", "socket_dir", ")", "if", "fname", ".", "endswith", "(", "'.execsock'", ")", "]", "return", "[", "]" ]
Returns a list of tids of inferior threads with open exec servers.
[ "Returns", "a", "list", "of", "tids", "of", "inferior", "threads", "with", "open", "exec", "servers", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/plugins/inject_sentinel.py#L46-L53
10,668
google/pyringe
pyringe/plugins/inject_sentinel.py
SentinelInjectPlugin.SendToExecSocket
def SendToExecSocket(self, code, tid=None): """Inject python code into exec socket.""" response = self._SendToExecSocketRaw(json.dumps(code), tid) return json.loads(response)
python
def SendToExecSocket(self, code, tid=None): """Inject python code into exec socket.""" response = self._SendToExecSocketRaw(json.dumps(code), tid) return json.loads(response)
[ "def", "SendToExecSocket", "(", "self", ",", "code", ",", "tid", "=", "None", ")", ":", "response", "=", "self", ".", "_SendToExecSocketRaw", "(", "json", ".", "dumps", "(", "code", ")", ",", "tid", ")", "return", "json", ".", "loads", "(", "response", ")" ]
Inject python code into exec socket.
[ "Inject", "python", "code", "into", "exec", "socket", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/plugins/inject_sentinel.py#L55-L58
10,669
google/pyringe
pyringe/plugins/inject_sentinel.py
SentinelInjectPlugin.CloseExecSocket
def CloseExecSocket(self, tid=None): """Send closing request to exec socket.""" response = self._SendToExecSocketRaw('__kill__', tid) if response != '__kill_ack__': logging.warning('May not have succeeded in closing socket, make sure ' 'using execsocks().')
python
def CloseExecSocket(self, tid=None): """Send closing request to exec socket.""" response = self._SendToExecSocketRaw('__kill__', tid) if response != '__kill_ack__': logging.warning('May not have succeeded in closing socket, make sure ' 'using execsocks().')
[ "def", "CloseExecSocket", "(", "self", ",", "tid", "=", "None", ")", ":", "response", "=", "self", ".", "_SendToExecSocketRaw", "(", "'__kill__'", ",", "tid", ")", "if", "response", "!=", "'__kill_ack__'", ":", "logging", ".", "warning", "(", "'May not have succeeded in closing socket, make sure '", "'using execsocks().'", ")" ]
Send closing request to exec socket.
[ "Send", "closing", "request", "to", "exec", "socket", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/plugins/inject_sentinel.py#L79-L84
10,670
google/pyringe
pyringe/plugins/read_only.py
ReadonlyPlugin.Backtrace
def Backtrace(self, to_string=False): """Get a backtrace of the current position.""" if self.inferior.is_running: res = self.inferior.Backtrace() if to_string: return res print res else: logging.error('Not attached to any process.')
python
def Backtrace(self, to_string=False): """Get a backtrace of the current position.""" if self.inferior.is_running: res = self.inferior.Backtrace() if to_string: return res print res else: logging.error('Not attached to any process.')
[ "def", "Backtrace", "(", "self", ",", "to_string", "=", "False", ")", ":", "if", "self", ".", "inferior", ".", "is_running", ":", "res", "=", "self", ".", "inferior", ".", "Backtrace", "(", ")", "if", "to_string", ":", "return", "res", "print", "res", "else", ":", "logging", ".", "error", "(", "'Not attached to any process.'", ")" ]
Get a backtrace of the current position.
[ "Get", "a", "backtrace", "of", "the", "current", "position", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/plugins/read_only.py#L52-L60
10,671
google/pyringe
pyringe/plugins/read_only.py
ReadonlyPlugin.ListThreads
def ListThreads(self): """List the currently running python threads. Returns: A list of the inferior's thread idents, or None if the debugger is not attached to any process. """ if self.inferior.is_running: return self.inferior.threads logging.error('Not attached to any process.') return []
python
def ListThreads(self): """List the currently running python threads. Returns: A list of the inferior's thread idents, or None if the debugger is not attached to any process. """ if self.inferior.is_running: return self.inferior.threads logging.error('Not attached to any process.') return []
[ "def", "ListThreads", "(", "self", ")", ":", "if", "self", ".", "inferior", ".", "is_running", ":", "return", "self", ".", "inferior", ".", "threads", "logging", ".", "error", "(", "'Not attached to any process.'", ")", "return", "[", "]" ]
List the currently running python threads. Returns: A list of the inferior's thread idents, or None if the debugger is not attached to any process.
[ "List", "the", "currently", "running", "python", "threads", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/plugins/read_only.py#L86-L96
10,672
google/pyringe
pyringe/payload/gdb_service.py
PyFrameObjectPtr.extract_filename
def extract_filename(self): """Alternative way of getting the executed file which inspects globals.""" globals_gdbval = self._gdbval['f_globals'].cast(GdbCache.DICT) global_dict = libpython.PyDictObjectPtr(globals_gdbval) for key, value in global_dict.iteritems(): if str(key.proxyval(set())) == '__file__': return str(value.proxyval(set()))
python
def extract_filename(self): """Alternative way of getting the executed file which inspects globals.""" globals_gdbval = self._gdbval['f_globals'].cast(GdbCache.DICT) global_dict = libpython.PyDictObjectPtr(globals_gdbval) for key, value in global_dict.iteritems(): if str(key.proxyval(set())) == '__file__': return str(value.proxyval(set()))
[ "def", "extract_filename", "(", "self", ")", ":", "globals_gdbval", "=", "self", ".", "_gdbval", "[", "'f_globals'", "]", ".", "cast", "(", "GdbCache", ".", "DICT", ")", "global_dict", "=", "libpython", ".", "PyDictObjectPtr", "(", "globals_gdbval", ")", "for", "key", ",", "value", "in", "global_dict", ".", "iteritems", "(", ")", ":", "if", "str", "(", "key", ".", "proxyval", "(", "set", "(", ")", ")", ")", "==", "'__file__'", ":", "return", "str", "(", "value", ".", "proxyval", "(", "set", "(", ")", ")", ")" ]
Alternative way of getting the executed file which inspects globals.
[ "Alternative", "way", "of", "getting", "the", "executed", "file", "which", "inspects", "globals", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/payload/gdb_service.py#L157-L163
10,673
google/pyringe
pyringe/payload/gdb_service.py
GdbService._UnserializableObjectFallback
def _UnserializableObjectFallback(self, obj): """Handles sanitizing of unserializable objects for Json. For instances of heap types, we take the class dict, augment it with the instance's __dict__, tag it and transmit it over to the RPC client to be reconstructed there. (Works with both old and new style classes) Args: obj: The object to Json-serialize Returns: A Json-serializable version of the parameter """ if isinstance(obj, libpython.PyInstanceObjectPtr): # old-style classes use 'classobj'/'instance' # get class attribute dictionary in_class = obj.pyop_field('in_class') result_dict = in_class.pyop_field('cl_dict').proxyval(set()) # let libpython.py do the work of getting the instance dict instanceproxy = obj.proxyval(set()) result_dict.update(instanceproxy.attrdict) result_dict['__pyringe_type_name__'] = instanceproxy.cl_name result_dict['__pyringe_address__'] = instanceproxy.address return result_dict if isinstance(obj, libpython.HeapTypeObjectPtr): # interestingly enough, HeapTypeObjectPtr seems to handle all pointers to # heap type PyObjects, not only pointers to PyHeapTypeObject. This # corresponds to new-style class instances. However, as all instances of # new-style classes are simple PyObject pointers to the interpreter, # libpython.py tends to give us HeapTypeObjectPtrs for things we can't # handle properly. try: # get class attribute dictionary type_ptr = obj.field('ob_type') tp_dict = type_ptr.cast(GdbCache.TYPE)['tp_dict'].cast(GdbCache.DICT) result_dict = libpython.PyDictObjectPtr(tp_dict).proxyval(set()) except gdb.error: # There was probably a type mismatch triggered by wrong assumptions in # libpython.py result_dict = {} try: # get instance attributes result_dict.update(obj.get_attr_dict().proxyval(set())) result_dict['__pyringe_type_name__'] = obj.safe_tp_name() result_dict['__pyringe_address__'] = long(obj._gdbval) # pylint: disable=protected-access return result_dict except TypeError: # This happens in the case where we're not really looking at a heap type # instance. There isn't really anything we can do, so we fall back to # the default handling. pass # Default handler -- this does not result in proxy objects or fancy dicts, # but most of the time, we end up emitting strings of the format # '<object at remote 0x345a235>' try: proxy = obj.proxyval(set()) # json doesn't accept non-strings as keys, so we're helping along if isinstance(proxy, dict): return {str(key): val for key, val in proxy.iteritems()} return proxy except AttributeError: return str(obj)
python
def _UnserializableObjectFallback(self, obj): """Handles sanitizing of unserializable objects for Json. For instances of heap types, we take the class dict, augment it with the instance's __dict__, tag it and transmit it over to the RPC client to be reconstructed there. (Works with both old and new style classes) Args: obj: The object to Json-serialize Returns: A Json-serializable version of the parameter """ if isinstance(obj, libpython.PyInstanceObjectPtr): # old-style classes use 'classobj'/'instance' # get class attribute dictionary in_class = obj.pyop_field('in_class') result_dict = in_class.pyop_field('cl_dict').proxyval(set()) # let libpython.py do the work of getting the instance dict instanceproxy = obj.proxyval(set()) result_dict.update(instanceproxy.attrdict) result_dict['__pyringe_type_name__'] = instanceproxy.cl_name result_dict['__pyringe_address__'] = instanceproxy.address return result_dict if isinstance(obj, libpython.HeapTypeObjectPtr): # interestingly enough, HeapTypeObjectPtr seems to handle all pointers to # heap type PyObjects, not only pointers to PyHeapTypeObject. This # corresponds to new-style class instances. However, as all instances of # new-style classes are simple PyObject pointers to the interpreter, # libpython.py tends to give us HeapTypeObjectPtrs for things we can't # handle properly. try: # get class attribute dictionary type_ptr = obj.field('ob_type') tp_dict = type_ptr.cast(GdbCache.TYPE)['tp_dict'].cast(GdbCache.DICT) result_dict = libpython.PyDictObjectPtr(tp_dict).proxyval(set()) except gdb.error: # There was probably a type mismatch triggered by wrong assumptions in # libpython.py result_dict = {} try: # get instance attributes result_dict.update(obj.get_attr_dict().proxyval(set())) result_dict['__pyringe_type_name__'] = obj.safe_tp_name() result_dict['__pyringe_address__'] = long(obj._gdbval) # pylint: disable=protected-access return result_dict except TypeError: # This happens in the case where we're not really looking at a heap type # instance. There isn't really anything we can do, so we fall back to # the default handling. pass # Default handler -- this does not result in proxy objects or fancy dicts, # but most of the time, we end up emitting strings of the format # '<object at remote 0x345a235>' try: proxy = obj.proxyval(set()) # json doesn't accept non-strings as keys, so we're helping along if isinstance(proxy, dict): return {str(key): val for key, val in proxy.iteritems()} return proxy except AttributeError: return str(obj)
[ "def", "_UnserializableObjectFallback", "(", "self", ",", "obj", ")", ":", "if", "isinstance", "(", "obj", ",", "libpython", ".", "PyInstanceObjectPtr", ")", ":", "# old-style classes use 'classobj'/'instance'", "# get class attribute dictionary", "in_class", "=", "obj", ".", "pyop_field", "(", "'in_class'", ")", "result_dict", "=", "in_class", ".", "pyop_field", "(", "'cl_dict'", ")", ".", "proxyval", "(", "set", "(", ")", ")", "# let libpython.py do the work of getting the instance dict", "instanceproxy", "=", "obj", ".", "proxyval", "(", "set", "(", ")", ")", "result_dict", ".", "update", "(", "instanceproxy", ".", "attrdict", ")", "result_dict", "[", "'__pyringe_type_name__'", "]", "=", "instanceproxy", ".", "cl_name", "result_dict", "[", "'__pyringe_address__'", "]", "=", "instanceproxy", ".", "address", "return", "result_dict", "if", "isinstance", "(", "obj", ",", "libpython", ".", "HeapTypeObjectPtr", ")", ":", "# interestingly enough, HeapTypeObjectPtr seems to handle all pointers to", "# heap type PyObjects, not only pointers to PyHeapTypeObject. This", "# corresponds to new-style class instances. However, as all instances of", "# new-style classes are simple PyObject pointers to the interpreter,", "# libpython.py tends to give us HeapTypeObjectPtrs for things we can't", "# handle properly.", "try", ":", "# get class attribute dictionary", "type_ptr", "=", "obj", ".", "field", "(", "'ob_type'", ")", "tp_dict", "=", "type_ptr", ".", "cast", "(", "GdbCache", ".", "TYPE", ")", "[", "'tp_dict'", "]", ".", "cast", "(", "GdbCache", ".", "DICT", ")", "result_dict", "=", "libpython", ".", "PyDictObjectPtr", "(", "tp_dict", ")", ".", "proxyval", "(", "set", "(", ")", ")", "except", "gdb", ".", "error", ":", "# There was probably a type mismatch triggered by wrong assumptions in", "# libpython.py", "result_dict", "=", "{", "}", "try", ":", "# get instance attributes", "result_dict", ".", "update", "(", "obj", ".", "get_attr_dict", "(", ")", ".", "proxyval", "(", "set", "(", ")", ")", ")", "result_dict", "[", "'__pyringe_type_name__'", "]", "=", "obj", ".", "safe_tp_name", "(", ")", "result_dict", "[", "'__pyringe_address__'", "]", "=", "long", "(", "obj", ".", "_gdbval", ")", "# pylint: disable=protected-access", "return", "result_dict", "except", "TypeError", ":", "# This happens in the case where we're not really looking at a heap type", "# instance. There isn't really anything we can do, so we fall back to", "# the default handling.", "pass", "# Default handler -- this does not result in proxy objects or fancy dicts,", "# but most of the time, we end up emitting strings of the format", "# '<object at remote 0x345a235>'", "try", ":", "proxy", "=", "obj", ".", "proxyval", "(", "set", "(", ")", ")", "# json doesn't accept non-strings as keys, so we're helping along", "if", "isinstance", "(", "proxy", ",", "dict", ")", ":", "return", "{", "str", "(", "key", ")", ":", "val", "for", "key", ",", "val", "in", "proxy", ".", "iteritems", "(", ")", "}", "return", "proxy", "except", "AttributeError", ":", "return", "str", "(", "obj", ")" ]
Handles sanitizing of unserializable objects for Json. For instances of heap types, we take the class dict, augment it with the instance's __dict__, tag it and transmit it over to the RPC client to be reconstructed there. (Works with both old and new style classes) Args: obj: The object to Json-serialize Returns: A Json-serializable version of the parameter
[ "Handles", "sanitizing", "of", "unserializable", "objects", "for", "Json", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/payload/gdb_service.py#L208-L271
10,674
google/pyringe
pyringe/payload/gdb_service.py
GdbService._AcceptRPC
def _AcceptRPC(self): """Reads RPC request from stdin and processes it, writing result to stdout. Returns: True as long as execution is to be continued, False otherwise. Raises: RpcException: if no function was specified in the RPC or no such API function exists. """ request = self._ReadObject() if request['func'] == '__kill__': self.ClearBreakpoints() self._WriteObject('__kill_ack__') return False if 'func' not in request or request['func'].startswith('_'): raise RpcException('Not a valid public API function.') rpc_result = getattr(self, request['func'])(*request['args']) self._WriteObject(rpc_result) return True
python
def _AcceptRPC(self): """Reads RPC request from stdin and processes it, writing result to stdout. Returns: True as long as execution is to be continued, False otherwise. Raises: RpcException: if no function was specified in the RPC or no such API function exists. """ request = self._ReadObject() if request['func'] == '__kill__': self.ClearBreakpoints() self._WriteObject('__kill_ack__') return False if 'func' not in request or request['func'].startswith('_'): raise RpcException('Not a valid public API function.') rpc_result = getattr(self, request['func'])(*request['args']) self._WriteObject(rpc_result) return True
[ "def", "_AcceptRPC", "(", "self", ")", ":", "request", "=", "self", ".", "_ReadObject", "(", ")", "if", "request", "[", "'func'", "]", "==", "'__kill__'", ":", "self", ".", "ClearBreakpoints", "(", ")", "self", ".", "_WriteObject", "(", "'__kill_ack__'", ")", "return", "False", "if", "'func'", "not", "in", "request", "or", "request", "[", "'func'", "]", ".", "startswith", "(", "'_'", ")", ":", "raise", "RpcException", "(", "'Not a valid public API function.'", ")", "rpc_result", "=", "getattr", "(", "self", ",", "request", "[", "'func'", "]", ")", "(", "*", "request", "[", "'args'", "]", ")", "self", ".", "_WriteObject", "(", "rpc_result", ")", "return", "True" ]
Reads RPC request from stdin and processes it, writing result to stdout. Returns: True as long as execution is to be continued, False otherwise. Raises: RpcException: if no function was specified in the RPC or no such API function exists.
[ "Reads", "RPC", "request", "from", "stdin", "and", "processes", "it", "writing", "result", "to", "stdout", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/payload/gdb_service.py#L293-L311
10,675
google/pyringe
pyringe/payload/gdb_service.py
GdbService._UnpackGdbVal
def _UnpackGdbVal(self, gdb_value): """Unpacks gdb.Value objects and returns the best-matched python object.""" val_type = gdb_value.type.code if val_type == gdb.TYPE_CODE_INT or val_type == gdb.TYPE_CODE_ENUM: return int(gdb_value) if val_type == gdb.TYPE_CODE_VOID: return None if val_type == gdb.TYPE_CODE_PTR: return long(gdb_value) if val_type == gdb.TYPE_CODE_ARRAY: # This is probably a string return str(gdb_value) # I'm out of ideas, let's return it as a string return str(gdb_value)
python
def _UnpackGdbVal(self, gdb_value): """Unpacks gdb.Value objects and returns the best-matched python object.""" val_type = gdb_value.type.code if val_type == gdb.TYPE_CODE_INT or val_type == gdb.TYPE_CODE_ENUM: return int(gdb_value) if val_type == gdb.TYPE_CODE_VOID: return None if val_type == gdb.TYPE_CODE_PTR: return long(gdb_value) if val_type == gdb.TYPE_CODE_ARRAY: # This is probably a string return str(gdb_value) # I'm out of ideas, let's return it as a string return str(gdb_value)
[ "def", "_UnpackGdbVal", "(", "self", ",", "gdb_value", ")", ":", "val_type", "=", "gdb_value", ".", "type", ".", "code", "if", "val_type", "==", "gdb", ".", "TYPE_CODE_INT", "or", "val_type", "==", "gdb", ".", "TYPE_CODE_ENUM", ":", "return", "int", "(", "gdb_value", ")", "if", "val_type", "==", "gdb", ".", "TYPE_CODE_VOID", ":", "return", "None", "if", "val_type", "==", "gdb", ".", "TYPE_CODE_PTR", ":", "return", "long", "(", "gdb_value", ")", "if", "val_type", "==", "gdb", ".", "TYPE_CODE_ARRAY", ":", "# This is probably a string", "return", "str", "(", "gdb_value", ")", "# I'm out of ideas, let's return it as a string", "return", "str", "(", "gdb_value", ")" ]
Unpacks gdb.Value objects and returns the best-matched python object.
[ "Unpacks", "gdb", ".", "Value", "objects", "and", "returns", "the", "best", "-", "matched", "python", "object", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/payload/gdb_service.py#L313-L326
10,676
google/pyringe
pyringe/payload/gdb_service.py
GdbService.EnsureGdbPosition
def EnsureGdbPosition(self, pid, tid, frame_depth): """Make sure our position matches the request. Args: pid: The process ID of the target process tid: The python thread ident of the target thread frame_depth: The 'depth' of the requested frame in the frame stack Raises: PositionUnavailableException: If the requested process, thread or frame can't be found or accessed. """ position = [pid, tid, frame_depth] if not pid: return if not self.IsAttached(): try: self.Attach(position) except gdb.error as exc: raise PositionUnavailableException(exc.message) if gdb.selected_inferior().pid != pid: self.Detach() try: self.Attach(position) except gdb.error as exc: raise PositionUnavailableException(exc.message) if tid: tstate_head = GdbCache.INTERP_HEAD['tstate_head'] for tstate in self._IterateChainedList(tstate_head, 'next'): if tid == tstate['thread_id']: self.selected_tstate = tstate break else: raise PositionUnavailableException('Thread %s does not exist.' % str(tid)) stack_head = self.selected_tstate['frame'] if frame_depth is not None: frames = list(self._IterateChainedList(stack_head, 'f_back')) frames.reverse() try: self.selected_frame = frames[frame_depth] except IndexError: raise PositionUnavailableException('Stack is not %s frames deep' % str(frame_depth + 1))
python
def EnsureGdbPosition(self, pid, tid, frame_depth): """Make sure our position matches the request. Args: pid: The process ID of the target process tid: The python thread ident of the target thread frame_depth: The 'depth' of the requested frame in the frame stack Raises: PositionUnavailableException: If the requested process, thread or frame can't be found or accessed. """ position = [pid, tid, frame_depth] if not pid: return if not self.IsAttached(): try: self.Attach(position) except gdb.error as exc: raise PositionUnavailableException(exc.message) if gdb.selected_inferior().pid != pid: self.Detach() try: self.Attach(position) except gdb.error as exc: raise PositionUnavailableException(exc.message) if tid: tstate_head = GdbCache.INTERP_HEAD['tstate_head'] for tstate in self._IterateChainedList(tstate_head, 'next'): if tid == tstate['thread_id']: self.selected_tstate = tstate break else: raise PositionUnavailableException('Thread %s does not exist.' % str(tid)) stack_head = self.selected_tstate['frame'] if frame_depth is not None: frames = list(self._IterateChainedList(stack_head, 'f_back')) frames.reverse() try: self.selected_frame = frames[frame_depth] except IndexError: raise PositionUnavailableException('Stack is not %s frames deep' % str(frame_depth + 1))
[ "def", "EnsureGdbPosition", "(", "self", ",", "pid", ",", "tid", ",", "frame_depth", ")", ":", "position", "=", "[", "pid", ",", "tid", ",", "frame_depth", "]", "if", "not", "pid", ":", "return", "if", "not", "self", ".", "IsAttached", "(", ")", ":", "try", ":", "self", ".", "Attach", "(", "position", ")", "except", "gdb", ".", "error", "as", "exc", ":", "raise", "PositionUnavailableException", "(", "exc", ".", "message", ")", "if", "gdb", ".", "selected_inferior", "(", ")", ".", "pid", "!=", "pid", ":", "self", ".", "Detach", "(", ")", "try", ":", "self", ".", "Attach", "(", "position", ")", "except", "gdb", ".", "error", "as", "exc", ":", "raise", "PositionUnavailableException", "(", "exc", ".", "message", ")", "if", "tid", ":", "tstate_head", "=", "GdbCache", ".", "INTERP_HEAD", "[", "'tstate_head'", "]", "for", "tstate", "in", "self", ".", "_IterateChainedList", "(", "tstate_head", ",", "'next'", ")", ":", "if", "tid", "==", "tstate", "[", "'thread_id'", "]", ":", "self", ".", "selected_tstate", "=", "tstate", "break", "else", ":", "raise", "PositionUnavailableException", "(", "'Thread %s does not exist.'", "%", "str", "(", "tid", ")", ")", "stack_head", "=", "self", ".", "selected_tstate", "[", "'frame'", "]", "if", "frame_depth", "is", "not", "None", ":", "frames", "=", "list", "(", "self", ".", "_IterateChainedList", "(", "stack_head", ",", "'f_back'", ")", ")", "frames", ".", "reverse", "(", ")", "try", ":", "self", ".", "selected_frame", "=", "frames", "[", "frame_depth", "]", "except", "IndexError", ":", "raise", "PositionUnavailableException", "(", "'Stack is not %s frames deep'", "%", "str", "(", "frame_depth", "+", "1", ")", ")" ]
Make sure our position matches the request. Args: pid: The process ID of the target process tid: The python thread ident of the target thread frame_depth: The 'depth' of the requested frame in the frame stack Raises: PositionUnavailableException: If the requested process, thread or frame can't be found or accessed.
[ "Make", "sure", "our", "position", "matches", "the", "request", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/payload/gdb_service.py#L335-L378
10,677
google/pyringe
pyringe/payload/gdb_service.py
GdbService.IsSymbolFileSane
def IsSymbolFileSane(self, position): """Performs basic sanity check by trying to look up a bunch of symbols.""" pos = [position[0], None, None] self.EnsureGdbPosition(*pos) try: if GdbCache.DICT and GdbCache.TYPE and GdbCache.INTERP_HEAD: # pylint: disable=pointless-statement tstate = GdbCache.INTERP_HEAD['tstate_head'] tstate['thread_id'] frame = tstate['frame'] frame_attrs = ['f_back', 'f_locals', 'f_localsplus', 'f_globals', 'f_builtins', 'f_lineno', 'f_lasti'] for attr_name in frame_attrs: # This lookup shouldn't throw an exception frame[attr_name] code = frame['f_code'] code_attrs = ['co_name', 'co_filename', 'co_nlocals', 'co_varnames', 'co_lnotab', 'co_firstlineno'] for attr_name in code_attrs: # Same as above, just checking whether the lookup succeeds. code[attr_name] # if we've gotten this far, we should be fine, as it means gdb managed # to look up values for all of these. They might still be null, the # symbol file might still be bogus, but making gdb check for null values # and letting it run into access violations is the best we can do. We # haven't checked any of the python types (dict, etc.), but this symbol # file seems to be useful for some things, so let's give it our seal of # approval. return True except gdb.error: return False # looks like the initial GdbCache refresh failed. That's no good. return False
python
def IsSymbolFileSane(self, position): """Performs basic sanity check by trying to look up a bunch of symbols.""" pos = [position[0], None, None] self.EnsureGdbPosition(*pos) try: if GdbCache.DICT and GdbCache.TYPE and GdbCache.INTERP_HEAD: # pylint: disable=pointless-statement tstate = GdbCache.INTERP_HEAD['tstate_head'] tstate['thread_id'] frame = tstate['frame'] frame_attrs = ['f_back', 'f_locals', 'f_localsplus', 'f_globals', 'f_builtins', 'f_lineno', 'f_lasti'] for attr_name in frame_attrs: # This lookup shouldn't throw an exception frame[attr_name] code = frame['f_code'] code_attrs = ['co_name', 'co_filename', 'co_nlocals', 'co_varnames', 'co_lnotab', 'co_firstlineno'] for attr_name in code_attrs: # Same as above, just checking whether the lookup succeeds. code[attr_name] # if we've gotten this far, we should be fine, as it means gdb managed # to look up values for all of these. They might still be null, the # symbol file might still be bogus, but making gdb check for null values # and letting it run into access violations is the best we can do. We # haven't checked any of the python types (dict, etc.), but this symbol # file seems to be useful for some things, so let's give it our seal of # approval. return True except gdb.error: return False # looks like the initial GdbCache refresh failed. That's no good. return False
[ "def", "IsSymbolFileSane", "(", "self", ",", "position", ")", ":", "pos", "=", "[", "position", "[", "0", "]", ",", "None", ",", "None", "]", "self", ".", "EnsureGdbPosition", "(", "*", "pos", ")", "try", ":", "if", "GdbCache", ".", "DICT", "and", "GdbCache", ".", "TYPE", "and", "GdbCache", ".", "INTERP_HEAD", ":", "# pylint: disable=pointless-statement", "tstate", "=", "GdbCache", ".", "INTERP_HEAD", "[", "'tstate_head'", "]", "tstate", "[", "'thread_id'", "]", "frame", "=", "tstate", "[", "'frame'", "]", "frame_attrs", "=", "[", "'f_back'", ",", "'f_locals'", ",", "'f_localsplus'", ",", "'f_globals'", ",", "'f_builtins'", ",", "'f_lineno'", ",", "'f_lasti'", "]", "for", "attr_name", "in", "frame_attrs", ":", "# This lookup shouldn't throw an exception", "frame", "[", "attr_name", "]", "code", "=", "frame", "[", "'f_code'", "]", "code_attrs", "=", "[", "'co_name'", ",", "'co_filename'", ",", "'co_nlocals'", ",", "'co_varnames'", ",", "'co_lnotab'", ",", "'co_firstlineno'", "]", "for", "attr_name", "in", "code_attrs", ":", "# Same as above, just checking whether the lookup succeeds.", "code", "[", "attr_name", "]", "# if we've gotten this far, we should be fine, as it means gdb managed", "# to look up values for all of these. They might still be null, the", "# symbol file might still be bogus, but making gdb check for null values", "# and letting it run into access violations is the best we can do. We", "# haven't checked any of the python types (dict, etc.), but this symbol", "# file seems to be useful for some things, so let's give it our seal of", "# approval.", "return", "True", "except", "gdb", ".", "error", ":", "return", "False", "# looks like the initial GdbCache refresh failed. That's no good.", "return", "False" ]
Performs basic sanity check by trying to look up a bunch of symbols.
[ "Performs", "basic", "sanity", "check", "by", "trying", "to", "look", "up", "a", "bunch", "of", "symbols", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/payload/gdb_service.py#L392-L433
10,678
google/pyringe
pyringe/payload/gdb_service.py
GdbService.Detach
def Detach(self): """Detaches from the inferior. If not attached, this is a no-op.""" # We have to work around the python APIs weirdness :\ if not self.IsAttached(): return None # Gdb doesn't drain any pending SIGINTs it may have sent to the inferior # when it simply detaches. We can do this by letting the inferior continue, # and gdb will intercept any SIGINT that's still to-be-delivered; as soon as # we do so however, we may lose control of gdb (if we're running in # synchronous mode). So we queue an interruption and continue gdb right # afterwards, it will waitpid() for its inferior and collect all signals # that may have been queued. pid = gdb.selected_inferior().pid self.Interrupt([pid, None, None]) self.Continue([pid, None, None]) result = gdb.execute('detach', to_string=True) if not result: return None return result
python
def Detach(self): """Detaches from the inferior. If not attached, this is a no-op.""" # We have to work around the python APIs weirdness :\ if not self.IsAttached(): return None # Gdb doesn't drain any pending SIGINTs it may have sent to the inferior # when it simply detaches. We can do this by letting the inferior continue, # and gdb will intercept any SIGINT that's still to-be-delivered; as soon as # we do so however, we may lose control of gdb (if we're running in # synchronous mode). So we queue an interruption and continue gdb right # afterwards, it will waitpid() for its inferior and collect all signals # that may have been queued. pid = gdb.selected_inferior().pid self.Interrupt([pid, None, None]) self.Continue([pid, None, None]) result = gdb.execute('detach', to_string=True) if not result: return None return result
[ "def", "Detach", "(", "self", ")", ":", "# We have to work around the python APIs weirdness :\\", "if", "not", "self", ".", "IsAttached", "(", ")", ":", "return", "None", "# Gdb doesn't drain any pending SIGINTs it may have sent to the inferior", "# when it simply detaches. We can do this by letting the inferior continue,", "# and gdb will intercept any SIGINT that's still to-be-delivered; as soon as", "# we do so however, we may lose control of gdb (if we're running in", "# synchronous mode). So we queue an interruption and continue gdb right", "# afterwards, it will waitpid() for its inferior and collect all signals", "# that may have been queued.", "pid", "=", "gdb", ".", "selected_inferior", "(", ")", ".", "pid", "self", ".", "Interrupt", "(", "[", "pid", ",", "None", ",", "None", "]", ")", "self", ".", "Continue", "(", "[", "pid", ",", "None", ",", "None", "]", ")", "result", "=", "gdb", ".", "execute", "(", "'detach'", ",", "to_string", "=", "True", ")", "if", "not", "result", ":", "return", "None", "return", "result" ]
Detaches from the inferior. If not attached, this is a no-op.
[ "Detaches", "from", "the", "inferior", ".", "If", "not", "attached", "this", "is", "a", "no", "-", "op", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/payload/gdb_service.py#L449-L467
10,679
google/pyringe
pyringe/payload/gdb_service.py
GdbService.Call
def Call(self, position, function_call): """Perform a function call in the inferior. WARNING: Since Gdb's concept of threads can't be directly identified with python threads, the function call will be made from what has to be assumed is an arbitrary thread. This *will* interrupt the inferior. Continuing it after the call is the responsibility of the caller. Args: position: the context of the inferior to call the function from. function_call: A string corresponding to a function call. Format: 'foo(0,0)' Returns: Thre return value of the called function. """ self.EnsureGdbPosition(position[0], None, None) if not gdb.selected_thread().is_stopped(): self.Interrupt(position) result_value = gdb.parse_and_eval(function_call) return self._UnpackGdbVal(result_value)
python
def Call(self, position, function_call): """Perform a function call in the inferior. WARNING: Since Gdb's concept of threads can't be directly identified with python threads, the function call will be made from what has to be assumed is an arbitrary thread. This *will* interrupt the inferior. Continuing it after the call is the responsibility of the caller. Args: position: the context of the inferior to call the function from. function_call: A string corresponding to a function call. Format: 'foo(0,0)' Returns: Thre return value of the called function. """ self.EnsureGdbPosition(position[0], None, None) if not gdb.selected_thread().is_stopped(): self.Interrupt(position) result_value = gdb.parse_and_eval(function_call) return self._UnpackGdbVal(result_value)
[ "def", "Call", "(", "self", ",", "position", ",", "function_call", ")", ":", "self", ".", "EnsureGdbPosition", "(", "position", "[", "0", "]", ",", "None", ",", "None", ")", "if", "not", "gdb", ".", "selected_thread", "(", ")", ".", "is_stopped", "(", ")", ":", "self", ".", "Interrupt", "(", "position", ")", "result_value", "=", "gdb", ".", "parse_and_eval", "(", "function_call", ")", "return", "self", ".", "_UnpackGdbVal", "(", "result_value", ")" ]
Perform a function call in the inferior. WARNING: Since Gdb's concept of threads can't be directly identified with python threads, the function call will be made from what has to be assumed is an arbitrary thread. This *will* interrupt the inferior. Continuing it after the call is the responsibility of the caller. Args: position: the context of the inferior to call the function from. function_call: A string corresponding to a function call. Format: 'foo(0,0)' Returns: Thre return value of the called function.
[ "Perform", "a", "function", "call", "in", "the", "inferior", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/payload/gdb_service.py#L492-L511
10,680
google/pyringe
pyringe/payload/gdb_service.py
GdbService.ExecuteRaw
def ExecuteRaw(self, position, command): """Send a command string to gdb.""" self.EnsureGdbPosition(position[0], None, None) return gdb.execute(command, to_string=True)
python
def ExecuteRaw(self, position, command): """Send a command string to gdb.""" self.EnsureGdbPosition(position[0], None, None) return gdb.execute(command, to_string=True)
[ "def", "ExecuteRaw", "(", "self", ",", "position", ",", "command", ")", ":", "self", ".", "EnsureGdbPosition", "(", "position", "[", "0", "]", ",", "None", ",", "None", ")", "return", "gdb", ".", "execute", "(", "command", ",", "to_string", "=", "True", ")" ]
Send a command string to gdb.
[ "Send", "a", "command", "string", "to", "gdb", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/payload/gdb_service.py#L513-L516
10,681
google/pyringe
pyringe/payload/gdb_service.py
GdbService._GetGdbThreadMapping
def _GetGdbThreadMapping(self, position): """Gets a mapping from python tid to gdb thread num. There's no way to get the thread ident from a gdb thread. We only get the "ID of the thread, as assigned by GDB", which is completely useless for everything except talking to gdb. So in order to translate between these two, we have to execute 'info threads' and parse its output. Note that this may only work on linux, and only when python was compiled to use pthreads. It may work elsewhere, but we won't guarantee it. Args: position: array of pid, tid, framedepth specifying the requested position. Returns: A dictionary of the form {python_tid: gdb_threadnum}. """ if len(gdb.selected_inferior().threads()) == 1: # gdb's output for info threads changes and only displays PID. We cheat. return {position[1]: 1} # example: # 8 Thread 0x7f0a637fe700 (LWP 11894) "test.py" 0x00007f0a69563e63 in # select () from /usr/lib64/libc.so.6 thread_line_regexp = r'\s*\**\s*([0-9]+)\s+[a-zA-Z]+\s+([x0-9a-fA-F]+)\s.*' output = gdb.execute('info threads', to_string=True) matches = [re.match(thread_line_regexp, line) for line in output.split('\n')[1:]] return {int(match.group(2), 16): int(match.group(1)) for match in matches if match}
python
def _GetGdbThreadMapping(self, position): """Gets a mapping from python tid to gdb thread num. There's no way to get the thread ident from a gdb thread. We only get the "ID of the thread, as assigned by GDB", which is completely useless for everything except talking to gdb. So in order to translate between these two, we have to execute 'info threads' and parse its output. Note that this may only work on linux, and only when python was compiled to use pthreads. It may work elsewhere, but we won't guarantee it. Args: position: array of pid, tid, framedepth specifying the requested position. Returns: A dictionary of the form {python_tid: gdb_threadnum}. """ if len(gdb.selected_inferior().threads()) == 1: # gdb's output for info threads changes and only displays PID. We cheat. return {position[1]: 1} # example: # 8 Thread 0x7f0a637fe700 (LWP 11894) "test.py" 0x00007f0a69563e63 in # select () from /usr/lib64/libc.so.6 thread_line_regexp = r'\s*\**\s*([0-9]+)\s+[a-zA-Z]+\s+([x0-9a-fA-F]+)\s.*' output = gdb.execute('info threads', to_string=True) matches = [re.match(thread_line_regexp, line) for line in output.split('\n')[1:]] return {int(match.group(2), 16): int(match.group(1)) for match in matches if match}
[ "def", "_GetGdbThreadMapping", "(", "self", ",", "position", ")", ":", "if", "len", "(", "gdb", ".", "selected_inferior", "(", ")", ".", "threads", "(", ")", ")", "==", "1", ":", "# gdb's output for info threads changes and only displays PID. We cheat.", "return", "{", "position", "[", "1", "]", ":", "1", "}", "# example:", "# 8 Thread 0x7f0a637fe700 (LWP 11894) \"test.py\" 0x00007f0a69563e63 in", "# select () from /usr/lib64/libc.so.6", "thread_line_regexp", "=", "r'\\s*\\**\\s*([0-9]+)\\s+[a-zA-Z]+\\s+([x0-9a-fA-F]+)\\s.*'", "output", "=", "gdb", ".", "execute", "(", "'info threads'", ",", "to_string", "=", "True", ")", "matches", "=", "[", "re", ".", "match", "(", "thread_line_regexp", ",", "line", ")", "for", "line", "in", "output", ".", "split", "(", "'\\n'", ")", "[", "1", ":", "]", "]", "return", "{", "int", "(", "match", ".", "group", "(", "2", ")", ",", "16", ")", ":", "int", "(", "match", ".", "group", "(", "1", ")", ")", "for", "match", "in", "matches", "if", "match", "}" ]
Gets a mapping from python tid to gdb thread num. There's no way to get the thread ident from a gdb thread. We only get the "ID of the thread, as assigned by GDB", which is completely useless for everything except talking to gdb. So in order to translate between these two, we have to execute 'info threads' and parse its output. Note that this may only work on linux, and only when python was compiled to use pthreads. It may work elsewhere, but we won't guarantee it. Args: position: array of pid, tid, framedepth specifying the requested position. Returns: A dictionary of the form {python_tid: gdb_threadnum}.
[ "Gets", "a", "mapping", "from", "python", "tid", "to", "gdb", "thread", "num", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/payload/gdb_service.py#L518-L545
10,682
google/pyringe
pyringe/payload/gdb_service.py
GdbService._Inject
def _Inject(self, position, call): """Injects evaluation of 'call' in a safe location in the inferior. Due to the way these injected function calls work, gdb must not be killed until the call has returned. If that happens, the inferior will be sent SIGTRAP upon attempting to return from the dummy frame gdb constructs for us, and will most probably crash. Args: position: array of pid, tid, framedepth specifying the requested position. call: Any expression gdb can evaluate. Usually a function call. Raises: RuntimeError: if gdb is not being run in synchronous exec mode. """ self.EnsureGdbPosition(position[0], position[1], None) self.ClearBreakpoints() self._AddThreadSpecificBreakpoint(position) gdb.parse_and_eval('%s = 1' % GdbCache.PENDINGCALLS_TO_DO) gdb.parse_and_eval('%s = 1' % GdbCache.PENDINGBUSY) try: # We're "armed", risk the blocking call to Continue self.Continue(position) # Breakpoint was hit! if not gdb.selected_thread().is_stopped(): # This should not happen. Depending on how gdb is being used, the # semantics of self.Continue change, so I'd rather leave this check in # here, in case we ever *do* end up changing to async mode. raise RuntimeError('Gdb is not acting as expected, is it being run in ' 'async mode?') finally: gdb.parse_and_eval('%s = 0' % GdbCache.PENDINGBUSY) self.Call(position, call)
python
def _Inject(self, position, call): """Injects evaluation of 'call' in a safe location in the inferior. Due to the way these injected function calls work, gdb must not be killed until the call has returned. If that happens, the inferior will be sent SIGTRAP upon attempting to return from the dummy frame gdb constructs for us, and will most probably crash. Args: position: array of pid, tid, framedepth specifying the requested position. call: Any expression gdb can evaluate. Usually a function call. Raises: RuntimeError: if gdb is not being run in synchronous exec mode. """ self.EnsureGdbPosition(position[0], position[1], None) self.ClearBreakpoints() self._AddThreadSpecificBreakpoint(position) gdb.parse_and_eval('%s = 1' % GdbCache.PENDINGCALLS_TO_DO) gdb.parse_and_eval('%s = 1' % GdbCache.PENDINGBUSY) try: # We're "armed", risk the blocking call to Continue self.Continue(position) # Breakpoint was hit! if not gdb.selected_thread().is_stopped(): # This should not happen. Depending on how gdb is being used, the # semantics of self.Continue change, so I'd rather leave this check in # here, in case we ever *do* end up changing to async mode. raise RuntimeError('Gdb is not acting as expected, is it being run in ' 'async mode?') finally: gdb.parse_and_eval('%s = 0' % GdbCache.PENDINGBUSY) self.Call(position, call)
[ "def", "_Inject", "(", "self", ",", "position", ",", "call", ")", ":", "self", ".", "EnsureGdbPosition", "(", "position", "[", "0", "]", ",", "position", "[", "1", "]", ",", "None", ")", "self", ".", "ClearBreakpoints", "(", ")", "self", ".", "_AddThreadSpecificBreakpoint", "(", "position", ")", "gdb", ".", "parse_and_eval", "(", "'%s = 1'", "%", "GdbCache", ".", "PENDINGCALLS_TO_DO", ")", "gdb", ".", "parse_and_eval", "(", "'%s = 1'", "%", "GdbCache", ".", "PENDINGBUSY", ")", "try", ":", "# We're \"armed\", risk the blocking call to Continue", "self", ".", "Continue", "(", "position", ")", "# Breakpoint was hit!", "if", "not", "gdb", ".", "selected_thread", "(", ")", ".", "is_stopped", "(", ")", ":", "# This should not happen. Depending on how gdb is being used, the", "# semantics of self.Continue change, so I'd rather leave this check in", "# here, in case we ever *do* end up changing to async mode.", "raise", "RuntimeError", "(", "'Gdb is not acting as expected, is it being run in '", "'async mode?'", ")", "finally", ":", "gdb", ".", "parse_and_eval", "(", "'%s = 0'", "%", "GdbCache", ".", "PENDINGBUSY", ")", "self", ".", "Call", "(", "position", ",", "call", ")" ]
Injects evaluation of 'call' in a safe location in the inferior. Due to the way these injected function calls work, gdb must not be killed until the call has returned. If that happens, the inferior will be sent SIGTRAP upon attempting to return from the dummy frame gdb constructs for us, and will most probably crash. Args: position: array of pid, tid, framedepth specifying the requested position. call: Any expression gdb can evaluate. Usually a function call. Raises: RuntimeError: if gdb is not being run in synchronous exec mode.
[ "Injects", "evaluation", "of", "call", "in", "a", "safe", "location", "in", "the", "inferior", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/payload/gdb_service.py#L557-L587
10,683
google/pyringe
pyringe/payload/gdb_service.py
GdbService._BacktraceFromFramePtr
def _BacktraceFromFramePtr(self, frame_ptr): """Assembles and returns what looks exactly like python's backtraces.""" # expects frame_ptr to be a gdb.Value frame_objs = [PyFrameObjectPtr(frame) for frame in self._IterateChainedList(frame_ptr, 'f_back')] # We want to output tracebacks in the same format python uses, so we have to # reverse the stack frame_objs.reverse() tb_strings = ['Traceback (most recent call last):'] for frame in frame_objs: line_string = (' File "%s", line %s, in %s' % (frame.filename(), str(frame.current_line_num()), frame.co_name.proxyval(set()))) tb_strings.append(line_string) line_string = ' %s' % frame.current_line().strip() tb_strings.append(line_string) return '\n'.join(tb_strings)
python
def _BacktraceFromFramePtr(self, frame_ptr): """Assembles and returns what looks exactly like python's backtraces.""" # expects frame_ptr to be a gdb.Value frame_objs = [PyFrameObjectPtr(frame) for frame in self._IterateChainedList(frame_ptr, 'f_back')] # We want to output tracebacks in the same format python uses, so we have to # reverse the stack frame_objs.reverse() tb_strings = ['Traceback (most recent call last):'] for frame in frame_objs: line_string = (' File "%s", line %s, in %s' % (frame.filename(), str(frame.current_line_num()), frame.co_name.proxyval(set()))) tb_strings.append(line_string) line_string = ' %s' % frame.current_line().strip() tb_strings.append(line_string) return '\n'.join(tb_strings)
[ "def", "_BacktraceFromFramePtr", "(", "self", ",", "frame_ptr", ")", ":", "# expects frame_ptr to be a gdb.Value", "frame_objs", "=", "[", "PyFrameObjectPtr", "(", "frame", ")", "for", "frame", "in", "self", ".", "_IterateChainedList", "(", "frame_ptr", ",", "'f_back'", ")", "]", "# We want to output tracebacks in the same format python uses, so we have to", "# reverse the stack", "frame_objs", ".", "reverse", "(", ")", "tb_strings", "=", "[", "'Traceback (most recent call last):'", "]", "for", "frame", "in", "frame_objs", ":", "line_string", "=", "(", "' File \"%s\", line %s, in %s'", "%", "(", "frame", ".", "filename", "(", ")", ",", "str", "(", "frame", ".", "current_line_num", "(", ")", ")", ",", "frame", ".", "co_name", ".", "proxyval", "(", "set", "(", ")", ")", ")", ")", "tb_strings", ".", "append", "(", "line_string", ")", "line_string", "=", "' %s'", "%", "frame", ".", "current_line", "(", ")", ".", "strip", "(", ")", "tb_strings", ".", "append", "(", "line_string", ")", "return", "'\\n'", ".", "join", "(", "tb_strings", ")" ]
Assembles and returns what looks exactly like python's backtraces.
[ "Assembles", "and", "returns", "what", "looks", "exactly", "like", "python", "s", "backtraces", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/payload/gdb_service.py#L597-L615
10,684
google/pyringe
pyringe/inferior.py
GdbProxy.Kill
def Kill(self): """Send death pill to Gdb and forcefully kill it if that doesn't work.""" try: if self.is_running: self.Detach() if self._Execute('__kill__') == '__kill_ack__': # acknowledged, let's give it some time to die in peace time.sleep(0.1) except (TimeoutError, ProxyError): logging.debug('Termination request not acknowledged, killing gdb.') if self.is_running: # death pill didn't seem to work. We don't want the inferior to get killed # the next time it hits a dangling breakpoint, so we send a SIGINT to gdb, # which makes it disable instruction breakpoints for the time being. os.kill(self._process.pid, signal.SIGINT) # Since SIGINT has higher priority (with signal number 2) than SIGTERM # (signal 15), SIGTERM cannot preempt the signal handler for SIGINT. self._process.terminate() self._process.wait() self._errfile_r.close() self._outfile_r.close()
python
def Kill(self): """Send death pill to Gdb and forcefully kill it if that doesn't work.""" try: if self.is_running: self.Detach() if self._Execute('__kill__') == '__kill_ack__': # acknowledged, let's give it some time to die in peace time.sleep(0.1) except (TimeoutError, ProxyError): logging.debug('Termination request not acknowledged, killing gdb.') if self.is_running: # death pill didn't seem to work. We don't want the inferior to get killed # the next time it hits a dangling breakpoint, so we send a SIGINT to gdb, # which makes it disable instruction breakpoints for the time being. os.kill(self._process.pid, signal.SIGINT) # Since SIGINT has higher priority (with signal number 2) than SIGTERM # (signal 15), SIGTERM cannot preempt the signal handler for SIGINT. self._process.terminate() self._process.wait() self._errfile_r.close() self._outfile_r.close()
[ "def", "Kill", "(", "self", ")", ":", "try", ":", "if", "self", ".", "is_running", ":", "self", ".", "Detach", "(", ")", "if", "self", ".", "_Execute", "(", "'__kill__'", ")", "==", "'__kill_ack__'", ":", "# acknowledged, let's give it some time to die in peace", "time", ".", "sleep", "(", "0.1", ")", "except", "(", "TimeoutError", ",", "ProxyError", ")", ":", "logging", ".", "debug", "(", "'Termination request not acknowledged, killing gdb.'", ")", "if", "self", ".", "is_running", ":", "# death pill didn't seem to work. We don't want the inferior to get killed", "# the next time it hits a dangling breakpoint, so we send a SIGINT to gdb,", "# which makes it disable instruction breakpoints for the time being.", "os", ".", "kill", "(", "self", ".", "_process", ".", "pid", ",", "signal", ".", "SIGINT", ")", "# Since SIGINT has higher priority (with signal number 2) than SIGTERM", "# (signal 15), SIGTERM cannot preempt the signal handler for SIGINT.", "self", ".", "_process", ".", "terminate", "(", ")", "self", ".", "_process", ".", "wait", "(", ")", "self", ".", "_errfile_r", ".", "close", "(", ")", "self", ".", "_outfile_r", ".", "close", "(", ")" ]
Send death pill to Gdb and forcefully kill it if that doesn't work.
[ "Send", "death", "pill", "to", "Gdb", "and", "forcefully", "kill", "it", "if", "that", "doesn", "t", "work", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/inferior.py#L202-L222
10,685
google/pyringe
pyringe/inferior.py
GdbProxy.Version
def Version(): """Gets the version of gdb as a 3-tuple. The gdb devs seem to think it's a good idea to make --version output multiple lines of welcome text instead of just the actual version, so we ignore everything it outputs after the first line. Returns: The installed version of gdb in the form (<major>, <minor or None>, <micro or None>) gdb 7.7 would hence show up as version (7,7) """ output = subprocess.check_output(['gdb', '--version']).split('\n')[0] # Example output (Arch linux): # GNU gdb (GDB) 7.7 # Example output (Debian sid): # GNU gdb (GDB) 7.6.2 (Debian 7.6.2-1) # Example output (Debian wheezy): # GNU gdb (GDB) 7.4.1-debian # Example output (centos 2.6.32): # GNU gdb (GDB) Red Hat Enterprise Linux (7.2-56.el6) # As we've seen in the examples above, versions may be named very liberally # So we assume every part of that string may be the "real" version string # and try to parse them all. This too isn't perfect (later strings will # overwrite information gathered from previous ones), but it should be # flexible enough for everything out there. major = None minor = None micro = None for potential_versionstring in output.split(): version = re.split('[^0-9]', potential_versionstring) try: major = int(version[0]) except (IndexError, ValueError): pass try: minor = int(version[1]) except (IndexError, ValueError): pass try: micro = int(version[2]) except (IndexError, ValueError): pass return (major, minor, micro)
python
def Version(): """Gets the version of gdb as a 3-tuple. The gdb devs seem to think it's a good idea to make --version output multiple lines of welcome text instead of just the actual version, so we ignore everything it outputs after the first line. Returns: The installed version of gdb in the form (<major>, <minor or None>, <micro or None>) gdb 7.7 would hence show up as version (7,7) """ output = subprocess.check_output(['gdb', '--version']).split('\n')[0] # Example output (Arch linux): # GNU gdb (GDB) 7.7 # Example output (Debian sid): # GNU gdb (GDB) 7.6.2 (Debian 7.6.2-1) # Example output (Debian wheezy): # GNU gdb (GDB) 7.4.1-debian # Example output (centos 2.6.32): # GNU gdb (GDB) Red Hat Enterprise Linux (7.2-56.el6) # As we've seen in the examples above, versions may be named very liberally # So we assume every part of that string may be the "real" version string # and try to parse them all. This too isn't perfect (later strings will # overwrite information gathered from previous ones), but it should be # flexible enough for everything out there. major = None minor = None micro = None for potential_versionstring in output.split(): version = re.split('[^0-9]', potential_versionstring) try: major = int(version[0]) except (IndexError, ValueError): pass try: minor = int(version[1]) except (IndexError, ValueError): pass try: micro = int(version[2]) except (IndexError, ValueError): pass return (major, minor, micro)
[ "def", "Version", "(", ")", ":", "output", "=", "subprocess", ".", "check_output", "(", "[", "'gdb'", ",", "'--version'", "]", ")", ".", "split", "(", "'\\n'", ")", "[", "0", "]", "# Example output (Arch linux):", "# GNU gdb (GDB) 7.7", "# Example output (Debian sid):", "# GNU gdb (GDB) 7.6.2 (Debian 7.6.2-1)", "# Example output (Debian wheezy):", "# GNU gdb (GDB) 7.4.1-debian", "# Example output (centos 2.6.32):", "# GNU gdb (GDB) Red Hat Enterprise Linux (7.2-56.el6)", "# As we've seen in the examples above, versions may be named very liberally", "# So we assume every part of that string may be the \"real\" version string", "# and try to parse them all. This too isn't perfect (later strings will", "# overwrite information gathered from previous ones), but it should be", "# flexible enough for everything out there.", "major", "=", "None", "minor", "=", "None", "micro", "=", "None", "for", "potential_versionstring", "in", "output", ".", "split", "(", ")", ":", "version", "=", "re", ".", "split", "(", "'[^0-9]'", ",", "potential_versionstring", ")", "try", ":", "major", "=", "int", "(", "version", "[", "0", "]", ")", "except", "(", "IndexError", ",", "ValueError", ")", ":", "pass", "try", ":", "minor", "=", "int", "(", "version", "[", "1", "]", ")", "except", "(", "IndexError", ",", "ValueError", ")", ":", "pass", "try", ":", "micro", "=", "int", "(", "version", "[", "2", "]", ")", "except", "(", "IndexError", ",", "ValueError", ")", ":", "pass", "return", "(", "major", ",", "minor", ",", "micro", ")" ]
Gets the version of gdb as a 3-tuple. The gdb devs seem to think it's a good idea to make --version output multiple lines of welcome text instead of just the actual version, so we ignore everything it outputs after the first line. Returns: The installed version of gdb in the form (<major>, <minor or None>, <micro or None>) gdb 7.7 would hence show up as version (7,7)
[ "Gets", "the", "version", "of", "gdb", "as", "a", "3", "-", "tuple", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/inferior.py#L229-L272
10,686
google/pyringe
pyringe/inferior.py
GdbProxy._JsonDecodeDict
def _JsonDecodeDict(self, data): """Json object decode hook that automatically converts unicode objects.""" rv = {} for key, value in data.iteritems(): if isinstance(key, unicode): key = self._TryStr(key) if isinstance(value, unicode): value = self._TryStr(value) elif isinstance(value, list): value = self._JsonDecodeList(value) rv[key] = value if '__pyringe_type_name__' in data: # We're looking at a proxyobject rv = ProxyObject(rv) return rv
python
def _JsonDecodeDict(self, data): """Json object decode hook that automatically converts unicode objects.""" rv = {} for key, value in data.iteritems(): if isinstance(key, unicode): key = self._TryStr(key) if isinstance(value, unicode): value = self._TryStr(value) elif isinstance(value, list): value = self._JsonDecodeList(value) rv[key] = value if '__pyringe_type_name__' in data: # We're looking at a proxyobject rv = ProxyObject(rv) return rv
[ "def", "_JsonDecodeDict", "(", "self", ",", "data", ")", ":", "rv", "=", "{", "}", "for", "key", ",", "value", "in", "data", ".", "iteritems", "(", ")", ":", "if", "isinstance", "(", "key", ",", "unicode", ")", ":", "key", "=", "self", ".", "_TryStr", "(", "key", ")", "if", "isinstance", "(", "value", ",", "unicode", ")", ":", "value", "=", "self", ".", "_TryStr", "(", "value", ")", "elif", "isinstance", "(", "value", ",", "list", ")", ":", "value", "=", "self", ".", "_JsonDecodeList", "(", "value", ")", "rv", "[", "key", "]", "=", "value", "if", "'__pyringe_type_name__'", "in", "data", ":", "# We're looking at a proxyobject", "rv", "=", "ProxyObject", "(", "rv", ")", "return", "rv" ]
Json object decode hook that automatically converts unicode objects.
[ "Json", "object", "decode", "hook", "that", "automatically", "converts", "unicode", "objects", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/inferior.py#L305-L319
10,687
google/pyringe
pyringe/inferior.py
GdbProxy._Execute
def _Execute(self, funcname, *args, **kwargs): """Send an RPC request to the gdb-internal python. Blocks for 3 seconds by default and returns any results. Args: funcname: the name of the function to call. *args: the function's arguments. **kwargs: Only the key 'wait_for_completion' is inspected, which decides whether to wait forever for completion or just 3 seconds. Returns: The result of the function call. """ wait_for_completion = kwargs.get('wait_for_completion', False) rpc_dict = {'func': funcname, 'args': args} self._Send(json.dumps(rpc_dict)) timeout = TIMEOUT_FOREVER if wait_for_completion else TIMEOUT_DEFAULT result_string = self._Recv(timeout) try: result = json.loads(result_string, object_hook=self._JsonDecodeDict) if isinstance(result, unicode): result = self._TryStr(result) elif isinstance(result, list): result = self._JsonDecodeList(result) except ValueError: raise ValueError('Response JSON invalid: ' + str(result_string)) except TypeError: raise ValueError('Response JSON invalid: ' + str(result_string)) return result
python
def _Execute(self, funcname, *args, **kwargs): """Send an RPC request to the gdb-internal python. Blocks for 3 seconds by default and returns any results. Args: funcname: the name of the function to call. *args: the function's arguments. **kwargs: Only the key 'wait_for_completion' is inspected, which decides whether to wait forever for completion or just 3 seconds. Returns: The result of the function call. """ wait_for_completion = kwargs.get('wait_for_completion', False) rpc_dict = {'func': funcname, 'args': args} self._Send(json.dumps(rpc_dict)) timeout = TIMEOUT_FOREVER if wait_for_completion else TIMEOUT_DEFAULT result_string = self._Recv(timeout) try: result = json.loads(result_string, object_hook=self._JsonDecodeDict) if isinstance(result, unicode): result = self._TryStr(result) elif isinstance(result, list): result = self._JsonDecodeList(result) except ValueError: raise ValueError('Response JSON invalid: ' + str(result_string)) except TypeError: raise ValueError('Response JSON invalid: ' + str(result_string)) return result
[ "def", "_Execute", "(", "self", ",", "funcname", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "wait_for_completion", "=", "kwargs", ".", "get", "(", "'wait_for_completion'", ",", "False", ")", "rpc_dict", "=", "{", "'func'", ":", "funcname", ",", "'args'", ":", "args", "}", "self", ".", "_Send", "(", "json", ".", "dumps", "(", "rpc_dict", ")", ")", "timeout", "=", "TIMEOUT_FOREVER", "if", "wait_for_completion", "else", "TIMEOUT_DEFAULT", "result_string", "=", "self", ".", "_Recv", "(", "timeout", ")", "try", ":", "result", "=", "json", ".", "loads", "(", "result_string", ",", "object_hook", "=", "self", ".", "_JsonDecodeDict", ")", "if", "isinstance", "(", "result", ",", "unicode", ")", ":", "result", "=", "self", ".", "_TryStr", "(", "result", ")", "elif", "isinstance", "(", "result", ",", "list", ")", ":", "result", "=", "self", ".", "_JsonDecodeList", "(", "result", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'Response JSON invalid: '", "+", "str", "(", "result_string", ")", ")", "except", "TypeError", ":", "raise", "ValueError", "(", "'Response JSON invalid: '", "+", "str", "(", "result_string", ")", ")", "return", "result" ]
Send an RPC request to the gdb-internal python. Blocks for 3 seconds by default and returns any results. Args: funcname: the name of the function to call. *args: the function's arguments. **kwargs: Only the key 'wait_for_completion' is inspected, which decides whether to wait forever for completion or just 3 seconds. Returns: The result of the function call.
[ "Send", "an", "RPC", "request", "to", "the", "gdb", "-", "internal", "python", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/inferior.py#L325-L355
10,688
google/pyringe
pyringe/inferior.py
GdbProxy._Recv
def _Recv(self, timeout): """Receive output from gdb. This reads gdb's stdout and stderr streams, returns a single line of gdb's stdout or rethrows any exceptions thrown from within gdb as well as it can. Args: timeout: floating point number of seconds after which to abort. A value of None or TIMEOUT_FOREVER means "there is no timeout", i.e. this might block forever. Raises: ProxyError: All exceptions received from the gdb service are generically reraised as this. TimeoutError: Raised if no answer is received from gdb in after the specified time. Returns: The current contents of gdb's stdout buffer, read until the next newline, or `None`, should the read fail or timeout. """ buf = '' # The messiness of this stems from the "duck-typiness" of this function. # The timeout parameter of poll has different semantics depending on whether # it's <=0, >0, or None. Yay. wait_for_line = timeout is TIMEOUT_FOREVER deadline = time.time() + (timeout if not wait_for_line else 0) def TimeLeft(): return max(1000 * (deadline - time.time()), 0) continue_reading = True while continue_reading: poll_timeout = None if wait_for_line else TimeLeft() fd_list = [event[0] for event in self._poller.poll(poll_timeout) if event[1] & (select.POLLIN | select.POLLPRI)] if not wait_for_line and TimeLeft() == 0: continue_reading = False if self._outfile_r.fileno() in fd_list: buf += self._outfile_r.readline() if buf.endswith('\n'): return buf # GDB-internal exception passing if self._errfile_r.fileno() in fd_list: exc = self._errfile_r.readline() if exc: exc_text = '\n-----------------------------------\n' exc_text += 'Error occurred within GdbService:\n' try: exc_text += json.loads(exc) except ValueError: # whatever we got back wasn't valid JSON. # This usually means we've run into an exception before the special # exception handling was turned on. The first line we read up there # will have been "Traceback (most recent call last):". Obviously, we # want the rest, too, so we wait a bit and read it. deadline = time.time() + 0.5 while self.is_running and TimeLeft() > 0: exc += self._errfile_r.read() try: exc_text += json.loads(exc) except ValueError: exc_text = exc raise ProxyError(exc_text) # timeout raise TimeoutError()
python
def _Recv(self, timeout): """Receive output from gdb. This reads gdb's stdout and stderr streams, returns a single line of gdb's stdout or rethrows any exceptions thrown from within gdb as well as it can. Args: timeout: floating point number of seconds after which to abort. A value of None or TIMEOUT_FOREVER means "there is no timeout", i.e. this might block forever. Raises: ProxyError: All exceptions received from the gdb service are generically reraised as this. TimeoutError: Raised if no answer is received from gdb in after the specified time. Returns: The current contents of gdb's stdout buffer, read until the next newline, or `None`, should the read fail or timeout. """ buf = '' # The messiness of this stems from the "duck-typiness" of this function. # The timeout parameter of poll has different semantics depending on whether # it's <=0, >0, or None. Yay. wait_for_line = timeout is TIMEOUT_FOREVER deadline = time.time() + (timeout if not wait_for_line else 0) def TimeLeft(): return max(1000 * (deadline - time.time()), 0) continue_reading = True while continue_reading: poll_timeout = None if wait_for_line else TimeLeft() fd_list = [event[0] for event in self._poller.poll(poll_timeout) if event[1] & (select.POLLIN | select.POLLPRI)] if not wait_for_line and TimeLeft() == 0: continue_reading = False if self._outfile_r.fileno() in fd_list: buf += self._outfile_r.readline() if buf.endswith('\n'): return buf # GDB-internal exception passing if self._errfile_r.fileno() in fd_list: exc = self._errfile_r.readline() if exc: exc_text = '\n-----------------------------------\n' exc_text += 'Error occurred within GdbService:\n' try: exc_text += json.loads(exc) except ValueError: # whatever we got back wasn't valid JSON. # This usually means we've run into an exception before the special # exception handling was turned on. The first line we read up there # will have been "Traceback (most recent call last):". Obviously, we # want the rest, too, so we wait a bit and read it. deadline = time.time() + 0.5 while self.is_running and TimeLeft() > 0: exc += self._errfile_r.read() try: exc_text += json.loads(exc) except ValueError: exc_text = exc raise ProxyError(exc_text) # timeout raise TimeoutError()
[ "def", "_Recv", "(", "self", ",", "timeout", ")", ":", "buf", "=", "''", "# The messiness of this stems from the \"duck-typiness\" of this function.", "# The timeout parameter of poll has different semantics depending on whether", "# it's <=0, >0, or None. Yay.", "wait_for_line", "=", "timeout", "is", "TIMEOUT_FOREVER", "deadline", "=", "time", ".", "time", "(", ")", "+", "(", "timeout", "if", "not", "wait_for_line", "else", "0", ")", "def", "TimeLeft", "(", ")", ":", "return", "max", "(", "1000", "*", "(", "deadline", "-", "time", ".", "time", "(", ")", ")", ",", "0", ")", "continue_reading", "=", "True", "while", "continue_reading", ":", "poll_timeout", "=", "None", "if", "wait_for_line", "else", "TimeLeft", "(", ")", "fd_list", "=", "[", "event", "[", "0", "]", "for", "event", "in", "self", ".", "_poller", ".", "poll", "(", "poll_timeout", ")", "if", "event", "[", "1", "]", "&", "(", "select", ".", "POLLIN", "|", "select", ".", "POLLPRI", ")", "]", "if", "not", "wait_for_line", "and", "TimeLeft", "(", ")", "==", "0", ":", "continue_reading", "=", "False", "if", "self", ".", "_outfile_r", ".", "fileno", "(", ")", "in", "fd_list", ":", "buf", "+=", "self", ".", "_outfile_r", ".", "readline", "(", ")", "if", "buf", ".", "endswith", "(", "'\\n'", ")", ":", "return", "buf", "# GDB-internal exception passing", "if", "self", ".", "_errfile_r", ".", "fileno", "(", ")", "in", "fd_list", ":", "exc", "=", "self", ".", "_errfile_r", ".", "readline", "(", ")", "if", "exc", ":", "exc_text", "=", "'\\n-----------------------------------\\n'", "exc_text", "+=", "'Error occurred within GdbService:\\n'", "try", ":", "exc_text", "+=", "json", ".", "loads", "(", "exc", ")", "except", "ValueError", ":", "# whatever we got back wasn't valid JSON.", "# This usually means we've run into an exception before the special", "# exception handling was turned on. The first line we read up there", "# will have been \"Traceback (most recent call last):\". Obviously, we", "# want the rest, too, so we wait a bit and read it.", "deadline", "=", "time", ".", "time", "(", ")", "+", "0.5", "while", "self", ".", "is_running", "and", "TimeLeft", "(", ")", ">", "0", ":", "exc", "+=", "self", ".", "_errfile_r", ".", "read", "(", ")", "try", ":", "exc_text", "+=", "json", ".", "loads", "(", "exc", ")", "except", "ValueError", ":", "exc_text", "=", "exc", "raise", "ProxyError", "(", "exc_text", ")", "# timeout", "raise", "TimeoutError", "(", ")" ]
Receive output from gdb. This reads gdb's stdout and stderr streams, returns a single line of gdb's stdout or rethrows any exceptions thrown from within gdb as well as it can. Args: timeout: floating point number of seconds after which to abort. A value of None or TIMEOUT_FOREVER means "there is no timeout", i.e. this might block forever. Raises: ProxyError: All exceptions received from the gdb service are generically reraised as this. TimeoutError: Raised if no answer is received from gdb in after the specified time. Returns: The current contents of gdb's stdout buffer, read until the next newline, or `None`, should the read fail or timeout.
[ "Receive", "output", "from", "gdb", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/inferior.py#L361-L429
10,689
google/pyringe
pyringe/inferior.py
Inferior.needsattached
def needsattached(func): """Decorator to prevent commands from being used when not attached.""" @functools.wraps(func) def wrap(self, *args, **kwargs): if not self.attached: raise PositionError('Not attached to any process.') return func(self, *args, **kwargs) return wrap
python
def needsattached(func): """Decorator to prevent commands from being used when not attached.""" @functools.wraps(func) def wrap(self, *args, **kwargs): if not self.attached: raise PositionError('Not attached to any process.') return func(self, *args, **kwargs) return wrap
[ "def", "needsattached", "(", "func", ")", ":", "@", "functools", ".", "wraps", "(", "func", ")", "def", "wrap", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "if", "not", "self", ".", "attached", ":", "raise", "PositionError", "(", "'Not attached to any process.'", ")", "return", "func", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", "return", "wrap" ]
Decorator to prevent commands from being used when not attached.
[ "Decorator", "to", "prevent", "commands", "from", "being", "used", "when", "not", "attached", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/inferior.py#L458-L466
10,690
google/pyringe
pyringe/inferior.py
Inferior.Reinit
def Reinit(self, pid, auto_symfile_loading=True): """Reinitializes the object with a new pid. Since all modes might need access to this object at any time, this object needs to be long-lived. To make this clear in the API, this shorthand is supplied. Args: pid: the pid of the target process auto_symfile_loading: whether the symbol file should automatically be loaded by gdb. """ self.ShutDownGdb() self.__init__(pid, auto_symfile_loading, architecture=self.arch)
python
def Reinit(self, pid, auto_symfile_loading=True): """Reinitializes the object with a new pid. Since all modes might need access to this object at any time, this object needs to be long-lived. To make this clear in the API, this shorthand is supplied. Args: pid: the pid of the target process auto_symfile_loading: whether the symbol file should automatically be loaded by gdb. """ self.ShutDownGdb() self.__init__(pid, auto_symfile_loading, architecture=self.arch)
[ "def", "Reinit", "(", "self", ",", "pid", ",", "auto_symfile_loading", "=", "True", ")", ":", "self", ".", "ShutDownGdb", "(", ")", "self", ".", "__init__", "(", "pid", ",", "auto_symfile_loading", ",", "architecture", "=", "self", ".", "arch", ")" ]
Reinitializes the object with a new pid. Since all modes might need access to this object at any time, this object needs to be long-lived. To make this clear in the API, this shorthand is supplied. Args: pid: the pid of the target process auto_symfile_loading: whether the symbol file should automatically be loaded by gdb.
[ "Reinitializes", "the", "object", "with", "a", "new", "pid", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/inferior.py#L472-L484
10,691
google/pyringe
pyringe/plugins/inject.py
InjectPlugin.InjectString
def InjectString(self, codestring, wait_for_completion=True): """Try to inject python code into current thread. Args: codestring: Python snippet to execute in inferior. (may contain newlines) wait_for_completion: Block until execution of snippet has completed. """ if self.inferior.is_running and self.inferior.gdb.IsAttached(): try: self.inferior.gdb.InjectString( self.inferior.position, codestring, wait_for_completion=wait_for_completion) except RuntimeError: exc_type, exc_value, exc_traceback = sys.exc_info() traceback.print_exception(exc_type, exc_value, exc_traceback) else: logging.error('Not attached to any process.')
python
def InjectString(self, codestring, wait_for_completion=True): """Try to inject python code into current thread. Args: codestring: Python snippet to execute in inferior. (may contain newlines) wait_for_completion: Block until execution of snippet has completed. """ if self.inferior.is_running and self.inferior.gdb.IsAttached(): try: self.inferior.gdb.InjectString( self.inferior.position, codestring, wait_for_completion=wait_for_completion) except RuntimeError: exc_type, exc_value, exc_traceback = sys.exc_info() traceback.print_exception(exc_type, exc_value, exc_traceback) else: logging.error('Not attached to any process.')
[ "def", "InjectString", "(", "self", ",", "codestring", ",", "wait_for_completion", "=", "True", ")", ":", "if", "self", ".", "inferior", ".", "is_running", "and", "self", ".", "inferior", ".", "gdb", ".", "IsAttached", "(", ")", ":", "try", ":", "self", ".", "inferior", ".", "gdb", ".", "InjectString", "(", "self", ".", "inferior", ".", "position", ",", "codestring", ",", "wait_for_completion", "=", "wait_for_completion", ")", "except", "RuntimeError", ":", "exc_type", ",", "exc_value", ",", "exc_traceback", "=", "sys", ".", "exc_info", "(", ")", "traceback", ".", "print_exception", "(", "exc_type", ",", "exc_value", ",", "exc_traceback", ")", "else", ":", "logging", ".", "error", "(", "'Not attached to any process.'", ")" ]
Try to inject python code into current thread. Args: codestring: Python snippet to execute in inferior. (may contain newlines) wait_for_completion: Block until execution of snippet has completed.
[ "Try", "to", "inject", "python", "code", "into", "current", "thread", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/plugins/inject.py#L40-L57
10,692
google/pyringe
pyringe/payload/libpython.py
PyObjectPtr.field
def field(self, name): ''' Get the gdb.Value for the given field within the PyObject, coping with some python 2 versus python 3 differences. Various libpython types are defined using the "PyObject_HEAD" and "PyObject_VAR_HEAD" macros. In Python 2, this these are defined so that "ob_type" and (for a var object) "ob_size" are fields of the type in question. In Python 3, this is defined as an embedded PyVarObject type thus: PyVarObject ob_base; so that the "ob_size" field is located insize the "ob_base" field, and the "ob_type" is most easily accessed by casting back to a (PyObject*). ''' if self.is_null(): raise NullPyObjectPtr(self) if name == 'ob_type': pyo_ptr = self._gdbval.cast(PyObjectPtr.get_gdb_type()) return pyo_ptr.dereference()[name] if name == 'ob_size': try: # Python 2: return self._gdbval.dereference()[name] except RuntimeError: # Python 3: return self._gdbval.dereference()['ob_base'][name] # General case: look it up inside the object: return self._gdbval.dereference()[name]
python
def field(self, name): ''' Get the gdb.Value for the given field within the PyObject, coping with some python 2 versus python 3 differences. Various libpython types are defined using the "PyObject_HEAD" and "PyObject_VAR_HEAD" macros. In Python 2, this these are defined so that "ob_type" and (for a var object) "ob_size" are fields of the type in question. In Python 3, this is defined as an embedded PyVarObject type thus: PyVarObject ob_base; so that the "ob_size" field is located insize the "ob_base" field, and the "ob_type" is most easily accessed by casting back to a (PyObject*). ''' if self.is_null(): raise NullPyObjectPtr(self) if name == 'ob_type': pyo_ptr = self._gdbval.cast(PyObjectPtr.get_gdb_type()) return pyo_ptr.dereference()[name] if name == 'ob_size': try: # Python 2: return self._gdbval.dereference()[name] except RuntimeError: # Python 3: return self._gdbval.dereference()['ob_base'][name] # General case: look it up inside the object: return self._gdbval.dereference()[name]
[ "def", "field", "(", "self", ",", "name", ")", ":", "if", "self", ".", "is_null", "(", ")", ":", "raise", "NullPyObjectPtr", "(", "self", ")", "if", "name", "==", "'ob_type'", ":", "pyo_ptr", "=", "self", ".", "_gdbval", ".", "cast", "(", "PyObjectPtr", ".", "get_gdb_type", "(", ")", ")", "return", "pyo_ptr", ".", "dereference", "(", ")", "[", "name", "]", "if", "name", "==", "'ob_size'", ":", "try", ":", "# Python 2:", "return", "self", ".", "_gdbval", ".", "dereference", "(", ")", "[", "name", "]", "except", "RuntimeError", ":", "# Python 3:", "return", "self", ".", "_gdbval", ".", "dereference", "(", ")", "[", "'ob_base'", "]", "[", "name", "]", "# General case: look it up inside the object:", "return", "self", ".", "_gdbval", ".", "dereference", "(", ")", "[", "name", "]" ]
Get the gdb.Value for the given field within the PyObject, coping with some python 2 versus python 3 differences. Various libpython types are defined using the "PyObject_HEAD" and "PyObject_VAR_HEAD" macros. In Python 2, this these are defined so that "ob_type" and (for a var object) "ob_size" are fields of the type in question. In Python 3, this is defined as an embedded PyVarObject type thus: PyVarObject ob_base; so that the "ob_size" field is located insize the "ob_base" field, and the "ob_type" is most easily accessed by casting back to a (PyObject*).
[ "Get", "the", "gdb", ".", "Value", "for", "the", "given", "field", "within", "the", "PyObject", "coping", "with", "some", "python", "2", "versus", "python", "3", "differences", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/payload/libpython.py#L131-L163
10,693
google/pyringe
pyringe/payload/libpython.py
PyObjectPtr.write_repr
def write_repr(self, out, visited): ''' Write a string representation of the value scraped from the inferior process to "out", a file-like object. ''' # Default implementation: generate a proxy value and write its repr # However, this could involve a lot of work for complicated objects, # so for derived classes we specialize this return out.write(repr(self.proxyval(visited)))
python
def write_repr(self, out, visited): ''' Write a string representation of the value scraped from the inferior process to "out", a file-like object. ''' # Default implementation: generate a proxy value and write its repr # However, this could involve a lot of work for complicated objects, # so for derived classes we specialize this return out.write(repr(self.proxyval(visited)))
[ "def", "write_repr", "(", "self", ",", "out", ",", "visited", ")", ":", "# Default implementation: generate a proxy value and write its repr", "# However, this could involve a lot of work for complicated objects,", "# so for derived classes we specialize this", "return", "out", ".", "write", "(", "repr", "(", "self", ".", "proxyval", "(", "visited", ")", ")", ")" ]
Write a string representation of the value scraped from the inferior process to "out", a file-like object.
[ "Write", "a", "string", "representation", "of", "the", "value", "scraped", "from", "the", "inferior", "process", "to", "out", "a", "file", "-", "like", "object", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/payload/libpython.py#L262-L270
10,694
google/pyringe
pyringe/payload/libpython.py
PyObjectPtr.from_pyobject_ptr
def from_pyobject_ptr(cls, gdbval): ''' Try to locate the appropriate derived class dynamically, and cast the pointer accordingly. ''' try: p = PyObjectPtr(gdbval) cls = cls.subclass_from_type(p.type()) return cls(gdbval, cast_to=cls.get_gdb_type()) except RuntimeError: # Handle any kind of error e.g. NULL ptrs by simply using the base # class pass return cls(gdbval)
python
def from_pyobject_ptr(cls, gdbval): ''' Try to locate the appropriate derived class dynamically, and cast the pointer accordingly. ''' try: p = PyObjectPtr(gdbval) cls = cls.subclass_from_type(p.type()) return cls(gdbval, cast_to=cls.get_gdb_type()) except RuntimeError: # Handle any kind of error e.g. NULL ptrs by simply using the base # class pass return cls(gdbval)
[ "def", "from_pyobject_ptr", "(", "cls", ",", "gdbval", ")", ":", "try", ":", "p", "=", "PyObjectPtr", "(", "gdbval", ")", "cls", "=", "cls", ".", "subclass_from_type", "(", "p", ".", "type", "(", ")", ")", "return", "cls", "(", "gdbval", ",", "cast_to", "=", "cls", ".", "get_gdb_type", "(", ")", ")", "except", "RuntimeError", ":", "# Handle any kind of error e.g. NULL ptrs by simply using the base", "# class", "pass", "return", "cls", "(", "gdbval", ")" ]
Try to locate the appropriate derived class dynamically, and cast the pointer accordingly.
[ "Try", "to", "locate", "the", "appropriate", "derived", "class", "dynamically", "and", "cast", "the", "pointer", "accordingly", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/payload/libpython.py#L340-L353
10,695
google/pyringe
pyringe/payload/libpython.py
HeapTypeObjectPtr.proxyval
def proxyval(self, visited): ''' Support for new-style classes. Currently we just locate the dictionary using a transliteration to python of _PyObject_GetDictPtr, ignoring descriptors ''' # Guard against infinite loops: if self.as_address() in visited: return ProxyAlreadyVisited('<...>') visited.add(self.as_address()) pyop_attr_dict = self.get_attr_dict() if pyop_attr_dict: attr_dict = pyop_attr_dict.proxyval(visited) else: attr_dict = {} tp_name = self.safe_tp_name() # New-style class: return InstanceProxy(tp_name, attr_dict, long(self._gdbval))
python
def proxyval(self, visited): ''' Support for new-style classes. Currently we just locate the dictionary using a transliteration to python of _PyObject_GetDictPtr, ignoring descriptors ''' # Guard against infinite loops: if self.as_address() in visited: return ProxyAlreadyVisited('<...>') visited.add(self.as_address()) pyop_attr_dict = self.get_attr_dict() if pyop_attr_dict: attr_dict = pyop_attr_dict.proxyval(visited) else: attr_dict = {} tp_name = self.safe_tp_name() # New-style class: return InstanceProxy(tp_name, attr_dict, long(self._gdbval))
[ "def", "proxyval", "(", "self", ",", "visited", ")", ":", "# Guard against infinite loops:", "if", "self", ".", "as_address", "(", ")", "in", "visited", ":", "return", "ProxyAlreadyVisited", "(", "'<...>'", ")", "visited", ".", "add", "(", "self", ".", "as_address", "(", ")", ")", "pyop_attr_dict", "=", "self", ".", "get_attr_dict", "(", ")", "if", "pyop_attr_dict", ":", "attr_dict", "=", "pyop_attr_dict", ".", "proxyval", "(", "visited", ")", "else", ":", "attr_dict", "=", "{", "}", "tp_name", "=", "self", ".", "safe_tp_name", "(", ")", "# New-style class:", "return", "InstanceProxy", "(", "tp_name", ",", "attr_dict", ",", "long", "(", "self", ".", "_gdbval", ")", ")" ]
Support for new-style classes. Currently we just locate the dictionary using a transliteration to python of _PyObject_GetDictPtr, ignoring descriptors
[ "Support", "for", "new", "-", "style", "classes", "." ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/payload/libpython.py#L459-L479
10,696
google/pyringe
pyringe/payload/libpython.py
PyCodeObjectPtr.addr2line
def addr2line(self, addrq): ''' Get the line number for a given bytecode offset Analogous to PyCode_Addr2Line; translated from pseudocode in Objects/lnotab_notes.txt ''' co_lnotab = self.pyop_field('co_lnotab').proxyval(set()) # Initialize lineno to co_firstlineno as per PyCode_Addr2Line # not 0, as lnotab_notes.txt has it: lineno = int_from_int(self.field('co_firstlineno')) addr = 0 for addr_incr, line_incr in zip(co_lnotab[::2], co_lnotab[1::2]): addr += ord(addr_incr) if addr > addrq: return lineno lineno += ord(line_incr) return lineno
python
def addr2line(self, addrq): ''' Get the line number for a given bytecode offset Analogous to PyCode_Addr2Line; translated from pseudocode in Objects/lnotab_notes.txt ''' co_lnotab = self.pyop_field('co_lnotab').proxyval(set()) # Initialize lineno to co_firstlineno as per PyCode_Addr2Line # not 0, as lnotab_notes.txt has it: lineno = int_from_int(self.field('co_firstlineno')) addr = 0 for addr_incr, line_incr in zip(co_lnotab[::2], co_lnotab[1::2]): addr += ord(addr_incr) if addr > addrq: return lineno lineno += ord(line_incr) return lineno
[ "def", "addr2line", "(", "self", ",", "addrq", ")", ":", "co_lnotab", "=", "self", ".", "pyop_field", "(", "'co_lnotab'", ")", ".", "proxyval", "(", "set", "(", ")", ")", "# Initialize lineno to co_firstlineno as per PyCode_Addr2Line", "# not 0, as lnotab_notes.txt has it:", "lineno", "=", "int_from_int", "(", "self", ".", "field", "(", "'co_firstlineno'", ")", ")", "addr", "=", "0", "for", "addr_incr", ",", "line_incr", "in", "zip", "(", "co_lnotab", "[", ":", ":", "2", "]", ",", "co_lnotab", "[", "1", ":", ":", "2", "]", ")", ":", "addr", "+=", "ord", "(", "addr_incr", ")", "if", "addr", ">", "addrq", ":", "return", "lineno", "lineno", "+=", "ord", "(", "line_incr", ")", "return", "lineno" ]
Get the line number for a given bytecode offset Analogous to PyCode_Addr2Line; translated from pseudocode in Objects/lnotab_notes.txt
[ "Get", "the", "line", "number", "for", "a", "given", "bytecode", "offset" ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/payload/libpython.py#L592-L611
10,697
google/pyringe
pyringe/payload/libpython.py
PyFrameObjectPtr.current_line
def current_line(self): '''Get the text of the current source line as a string, with a trailing newline character''' if self.is_optimized_out(): return '(frame information optimized out)' with open(self.filename(), 'r') as f: all_lines = f.readlines() # Convert from 1-based current_line_num to 0-based list offset: return all_lines[self.current_line_num()-1]
python
def current_line(self): '''Get the text of the current source line as a string, with a trailing newline character''' if self.is_optimized_out(): return '(frame information optimized out)' with open(self.filename(), 'r') as f: all_lines = f.readlines() # Convert from 1-based current_line_num to 0-based list offset: return all_lines[self.current_line_num()-1]
[ "def", "current_line", "(", "self", ")", ":", "if", "self", ".", "is_optimized_out", "(", ")", ":", "return", "'(frame information optimized out)'", "with", "open", "(", "self", ".", "filename", "(", ")", ",", "'r'", ")", "as", "f", ":", "all_lines", "=", "f", ".", "readlines", "(", ")", "# Convert from 1-based current_line_num to 0-based list offset:", "return", "all_lines", "[", "self", ".", "current_line_num", "(", ")", "-", "1", "]" ]
Get the text of the current source line as a string, with a trailing newline character
[ "Get", "the", "text", "of", "the", "current", "source", "line", "as", "a", "string", "with", "a", "trailing", "newline", "character" ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/payload/libpython.py#L889-L897
10,698
google/pyringe
pyringe/payload/libpython.py
Frame.select
def select(self): '''If supported, select this frame and return True; return False if unsupported Not all builds have a gdb.Frame.select method; seems to be present on Fedora 12 onwards, but absent on Ubuntu buildbot''' if not hasattr(self._gdbframe, 'select'): print ('Unable to select frame: ' 'this build of gdb does not expose a gdb.Frame.select method') return False self._gdbframe.select() return True
python
def select(self): '''If supported, select this frame and return True; return False if unsupported Not all builds have a gdb.Frame.select method; seems to be present on Fedora 12 onwards, but absent on Ubuntu buildbot''' if not hasattr(self._gdbframe, 'select'): print ('Unable to select frame: ' 'this build of gdb does not expose a gdb.Frame.select method') return False self._gdbframe.select() return True
[ "def", "select", "(", "self", ")", ":", "if", "not", "hasattr", "(", "self", ".", "_gdbframe", ",", "'select'", ")", ":", "print", "(", "'Unable to select frame: '", "'this build of gdb does not expose a gdb.Frame.select method'", ")", "return", "False", "self", ".", "_gdbframe", ".", "select", "(", ")", "return", "True" ]
If supported, select this frame and return True; return False if unsupported Not all builds have a gdb.Frame.select method; seems to be present on Fedora 12 onwards, but absent on Ubuntu buildbot
[ "If", "supported", "select", "this", "frame", "and", "return", "True", ";", "return", "False", "if", "unsupported" ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/payload/libpython.py#L1173-L1183
10,699
google/pyringe
pyringe/payload/libpython.py
Frame.get_index
def get_index(self): '''Calculate index of frame, starting at 0 for the newest frame within this thread''' index = 0 # Go down until you reach the newest frame: iter_frame = self while iter_frame.newer(): index += 1 iter_frame = iter_frame.newer() return index
python
def get_index(self): '''Calculate index of frame, starting at 0 for the newest frame within this thread''' index = 0 # Go down until you reach the newest frame: iter_frame = self while iter_frame.newer(): index += 1 iter_frame = iter_frame.newer() return index
[ "def", "get_index", "(", "self", ")", ":", "index", "=", "0", "# Go down until you reach the newest frame:", "iter_frame", "=", "self", "while", "iter_frame", ".", "newer", "(", ")", ":", "index", "+=", "1", "iter_frame", "=", "iter_frame", ".", "newer", "(", ")", "return", "index" ]
Calculate index of frame, starting at 0 for the newest frame within this thread
[ "Calculate", "index", "of", "frame", "starting", "at", "0", "for", "the", "newest", "frame", "within", "this", "thread" ]
76dff5d1ac29cd5e7bf32677654a83291a15ad8a
https://github.com/google/pyringe/blob/76dff5d1ac29cd5e7bf32677654a83291a15ad8a/pyringe/payload/libpython.py#L1185-L1194