id
int32
0
252k
repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
10,000
inonit/drf-haystack
drf_haystack/utils.py
merge_dict
def merge_dict(a, b): """ Recursively merges and returns dict a with dict b. Any list values will be combined and returned sorted. :param a: dictionary object :param b: dictionary object :return: merged dictionary object """ if not isinstance(b, dict): return b result = deepcopy(a) for key, val in six.iteritems(b): if key in result and isinstance(result[key], dict): result[key] = merge_dict(result[key], val) elif key in result and isinstance(result[key], list): result[key] = sorted(list(set(val) | set(result[key]))) else: result[key] = deepcopy(val) return result
python
def merge_dict(a, b): """ Recursively merges and returns dict a with dict b. Any list values will be combined and returned sorted. :param a: dictionary object :param b: dictionary object :return: merged dictionary object """ if not isinstance(b, dict): return b result = deepcopy(a) for key, val in six.iteritems(b): if key in result and isinstance(result[key], dict): result[key] = merge_dict(result[key], val) elif key in result and isinstance(result[key], list): result[key] = sorted(list(set(val) | set(result[key]))) else: result[key] = deepcopy(val) return result
[ "def", "merge_dict", "(", "a", ",", "b", ")", ":", "if", "not", "isinstance", "(", "b", ",", "dict", ")", ":", "return", "b", "result", "=", "deepcopy", "(", "a", ")", "for", "key", ",", "val", "in", "six", ".", "iteritems", "(", "b", ")", ":", "if", "key", "in", "result", "and", "isinstance", "(", "result", "[", "key", "]", ",", "dict", ")", ":", "result", "[", "key", "]", "=", "merge_dict", "(", "result", "[", "key", "]", ",", "val", ")", "elif", "key", "in", "result", "and", "isinstance", "(", "result", "[", "key", "]", ",", "list", ")", ":", "result", "[", "key", "]", "=", "sorted", "(", "list", "(", "set", "(", "val", ")", "|", "set", "(", "result", "[", "key", "]", ")", ")", ")", "else", ":", "result", "[", "key", "]", "=", "deepcopy", "(", "val", ")", "return", "result" ]
Recursively merges and returns dict a with dict b. Any list values will be combined and returned sorted. :param a: dictionary object :param b: dictionary object :return: merged dictionary object
[ "Recursively", "merges", "and", "returns", "dict", "a", "with", "dict", "b", ".", "Any", "list", "values", "will", "be", "combined", "and", "returned", "sorted", "." ]
ceabd0f6318f129758341ab08292a20205d6f4cd
https://github.com/inonit/drf-haystack/blob/ceabd0f6318f129758341ab08292a20205d6f4cd/drf_haystack/utils.py#L9-L31
10,001
inonit/drf-haystack
drf_haystack/generics.py
HaystackGenericAPIView.get_queryset
def get_queryset(self, index_models=[]): """ Get the list of items for this view. Returns ``self.queryset`` if defined and is a ``self.object_class`` instance. @:param index_models: override `self.index_models` """ if self.queryset is not None and isinstance(self.queryset, self.object_class): queryset = self.queryset.all() else: queryset = self.object_class()._clone() if len(index_models): queryset = queryset.models(*index_models) elif len(self.index_models): queryset = queryset.models(*self.index_models) return queryset
python
def get_queryset(self, index_models=[]): """ Get the list of items for this view. Returns ``self.queryset`` if defined and is a ``self.object_class`` instance. @:param index_models: override `self.index_models` """ if self.queryset is not None and isinstance(self.queryset, self.object_class): queryset = self.queryset.all() else: queryset = self.object_class()._clone() if len(index_models): queryset = queryset.models(*index_models) elif len(self.index_models): queryset = queryset.models(*self.index_models) return queryset
[ "def", "get_queryset", "(", "self", ",", "index_models", "=", "[", "]", ")", ":", "if", "self", ".", "queryset", "is", "not", "None", "and", "isinstance", "(", "self", ".", "queryset", ",", "self", ".", "object_class", ")", ":", "queryset", "=", "self", ".", "queryset", ".", "all", "(", ")", "else", ":", "queryset", "=", "self", ".", "object_class", "(", ")", ".", "_clone", "(", ")", "if", "len", "(", "index_models", ")", ":", "queryset", "=", "queryset", ".", "models", "(", "*", "index_models", ")", "elif", "len", "(", "self", ".", "index_models", ")", ":", "queryset", "=", "queryset", ".", "models", "(", "*", "self", ".", "index_models", ")", "return", "queryset" ]
Get the list of items for this view. Returns ``self.queryset`` if defined and is a ``self.object_class`` instance. @:param index_models: override `self.index_models`
[ "Get", "the", "list", "of", "items", "for", "this", "view", ".", "Returns", "self", ".", "queryset", "if", "defined", "and", "is", "a", "self", ".", "object_class", "instance", "." ]
ceabd0f6318f129758341ab08292a20205d6f4cd
https://github.com/inonit/drf-haystack/blob/ceabd0f6318f129758341ab08292a20205d6f4cd/drf_haystack/generics.py#L40-L56
10,002
inonit/drf-haystack
drf_haystack/generics.py
HaystackGenericAPIView.get_object
def get_object(self): """ Fetch a single document from the data store according to whatever unique identifier is available for that document in the SearchIndex. In cases where the view has multiple ``index_models``, add a ``model`` query parameter containing a single `app_label.model` name to the request in order to override which model to include in the SearchQuerySet. Example: /api/v1/search/42/?model=myapp.person """ queryset = self.get_queryset() if "model" in self.request.query_params: try: app_label, model = map(six.text_type.lower, self.request.query_params["model"].split(".", 1)) ctype = ContentType.objects.get(app_label=app_label, model=model) queryset = self.get_queryset(index_models=[ctype.model_class()]) except (ValueError, ContentType.DoesNotExist): raise Http404("Could not find any models matching '%s'. Make sure to use a valid " "'app_label.model' name for the 'model' query parameter." % self.request.query_params["model"]) lookup_url_kwarg = self.lookup_url_kwarg or self.lookup_field if lookup_url_kwarg not in self.kwargs: raise AttributeError( "Expected view %s to be called with a URL keyword argument " "named '%s'. Fix your URL conf, or set the `.lookup_field` " "attribute on the view correctly." % (self.__class__.__name__, lookup_url_kwarg) ) queryset = queryset.filter(self.query_object((self.document_uid_field, self.kwargs[lookup_url_kwarg]))) count = queryset.count() if count == 1: return queryset[0] elif count > 1: raise Http404("Multiple results matches the given query. Expected a single result.") raise Http404("No result matches the given query.")
python
def get_object(self): """ Fetch a single document from the data store according to whatever unique identifier is available for that document in the SearchIndex. In cases where the view has multiple ``index_models``, add a ``model`` query parameter containing a single `app_label.model` name to the request in order to override which model to include in the SearchQuerySet. Example: /api/v1/search/42/?model=myapp.person """ queryset = self.get_queryset() if "model" in self.request.query_params: try: app_label, model = map(six.text_type.lower, self.request.query_params["model"].split(".", 1)) ctype = ContentType.objects.get(app_label=app_label, model=model) queryset = self.get_queryset(index_models=[ctype.model_class()]) except (ValueError, ContentType.DoesNotExist): raise Http404("Could not find any models matching '%s'. Make sure to use a valid " "'app_label.model' name for the 'model' query parameter." % self.request.query_params["model"]) lookup_url_kwarg = self.lookup_url_kwarg or self.lookup_field if lookup_url_kwarg not in self.kwargs: raise AttributeError( "Expected view %s to be called with a URL keyword argument " "named '%s'. Fix your URL conf, or set the `.lookup_field` " "attribute on the view correctly." % (self.__class__.__name__, lookup_url_kwarg) ) queryset = queryset.filter(self.query_object((self.document_uid_field, self.kwargs[lookup_url_kwarg]))) count = queryset.count() if count == 1: return queryset[0] elif count > 1: raise Http404("Multiple results matches the given query. Expected a single result.") raise Http404("No result matches the given query.")
[ "def", "get_object", "(", "self", ")", ":", "queryset", "=", "self", ".", "get_queryset", "(", ")", "if", "\"model\"", "in", "self", ".", "request", ".", "query_params", ":", "try", ":", "app_label", ",", "model", "=", "map", "(", "six", ".", "text_type", ".", "lower", ",", "self", ".", "request", ".", "query_params", "[", "\"model\"", "]", ".", "split", "(", "\".\"", ",", "1", ")", ")", "ctype", "=", "ContentType", ".", "objects", ".", "get", "(", "app_label", "=", "app_label", ",", "model", "=", "model", ")", "queryset", "=", "self", ".", "get_queryset", "(", "index_models", "=", "[", "ctype", ".", "model_class", "(", ")", "]", ")", "except", "(", "ValueError", ",", "ContentType", ".", "DoesNotExist", ")", ":", "raise", "Http404", "(", "\"Could not find any models matching '%s'. Make sure to use a valid \"", "\"'app_label.model' name for the 'model' query parameter.\"", "%", "self", ".", "request", ".", "query_params", "[", "\"model\"", "]", ")", "lookup_url_kwarg", "=", "self", ".", "lookup_url_kwarg", "or", "self", ".", "lookup_field", "if", "lookup_url_kwarg", "not", "in", "self", ".", "kwargs", ":", "raise", "AttributeError", "(", "\"Expected view %s to be called with a URL keyword argument \"", "\"named '%s'. Fix your URL conf, or set the `.lookup_field` \"", "\"attribute on the view correctly.\"", "%", "(", "self", ".", "__class__", ".", "__name__", ",", "lookup_url_kwarg", ")", ")", "queryset", "=", "queryset", ".", "filter", "(", "self", ".", "query_object", "(", "(", "self", ".", "document_uid_field", ",", "self", ".", "kwargs", "[", "lookup_url_kwarg", "]", ")", ")", ")", "count", "=", "queryset", ".", "count", "(", ")", "if", "count", "==", "1", ":", "return", "queryset", "[", "0", "]", "elif", "count", ">", "1", ":", "raise", "Http404", "(", "\"Multiple results matches the given query. Expected a single result.\"", ")", "raise", "Http404", "(", "\"No result matches the given query.\"", ")" ]
Fetch a single document from the data store according to whatever unique identifier is available for that document in the SearchIndex. In cases where the view has multiple ``index_models``, add a ``model`` query parameter containing a single `app_label.model` name to the request in order to override which model to include in the SearchQuerySet. Example: /api/v1/search/42/?model=myapp.person
[ "Fetch", "a", "single", "document", "from", "the", "data", "store", "according", "to", "whatever", "unique", "identifier", "is", "available", "for", "that", "document", "in", "the", "SearchIndex", "." ]
ceabd0f6318f129758341ab08292a20205d6f4cd
https://github.com/inonit/drf-haystack/blob/ceabd0f6318f129758341ab08292a20205d6f4cd/drf_haystack/generics.py#L58-L95
10,003
inonit/drf-haystack
drf_haystack/mixins.py
MoreLikeThisMixin.more_like_this
def more_like_this(self, request, pk=None): """ Sets up a detail route for ``more-like-this`` results. Note that you'll need backend support in order to take advantage of this. This will add ie. ^search/{pk}/more-like-this/$ to your existing ^search pattern. """ obj = self.get_object().object queryset = self.filter_queryset(self.get_queryset()).more_like_this(obj) page = self.paginate_queryset(queryset) if page is not None: serializer = self.get_serializer(page, many=True) return self.get_paginated_response(serializer.data) serializer = self.get_serializer(queryset, many=True) return Response(serializer.data)
python
def more_like_this(self, request, pk=None): """ Sets up a detail route for ``more-like-this`` results. Note that you'll need backend support in order to take advantage of this. This will add ie. ^search/{pk}/more-like-this/$ to your existing ^search pattern. """ obj = self.get_object().object queryset = self.filter_queryset(self.get_queryset()).more_like_this(obj) page = self.paginate_queryset(queryset) if page is not None: serializer = self.get_serializer(page, many=True) return self.get_paginated_response(serializer.data) serializer = self.get_serializer(queryset, many=True) return Response(serializer.data)
[ "def", "more_like_this", "(", "self", ",", "request", ",", "pk", "=", "None", ")", ":", "obj", "=", "self", ".", "get_object", "(", ")", ".", "object", "queryset", "=", "self", ".", "filter_queryset", "(", "self", ".", "get_queryset", "(", ")", ")", ".", "more_like_this", "(", "obj", ")", "page", "=", "self", ".", "paginate_queryset", "(", "queryset", ")", "if", "page", "is", "not", "None", ":", "serializer", "=", "self", ".", "get_serializer", "(", "page", ",", "many", "=", "True", ")", "return", "self", ".", "get_paginated_response", "(", "serializer", ".", "data", ")", "serializer", "=", "self", ".", "get_serializer", "(", "queryset", ",", "many", "=", "True", ")", "return", "Response", "(", "serializer", ".", "data", ")" ]
Sets up a detail route for ``more-like-this`` results. Note that you'll need backend support in order to take advantage of this. This will add ie. ^search/{pk}/more-like-this/$ to your existing ^search pattern.
[ "Sets", "up", "a", "detail", "route", "for", "more", "-", "like", "-", "this", "results", ".", "Note", "that", "you", "ll", "need", "backend", "support", "in", "order", "to", "take", "advantage", "of", "this", "." ]
ceabd0f6318f129758341ab08292a20205d6f4cd
https://github.com/inonit/drf-haystack/blob/ceabd0f6318f129758341ab08292a20205d6f4cd/drf_haystack/mixins.py#L17-L33
10,004
inonit/drf-haystack
drf_haystack/mixins.py
FacetMixin.filter_facet_queryset
def filter_facet_queryset(self, queryset): """ Given a search queryset, filter it with whichever facet filter backends in use. """ for backend in list(self.facet_filter_backends): queryset = backend().filter_queryset(self.request, queryset, self) if self.load_all: queryset = queryset.load_all() return queryset
python
def filter_facet_queryset(self, queryset): """ Given a search queryset, filter it with whichever facet filter backends in use. """ for backend in list(self.facet_filter_backends): queryset = backend().filter_queryset(self.request, queryset, self) if self.load_all: queryset = queryset.load_all() return queryset
[ "def", "filter_facet_queryset", "(", "self", ",", "queryset", ")", ":", "for", "backend", "in", "list", "(", "self", ".", "facet_filter_backends", ")", ":", "queryset", "=", "backend", "(", ")", ".", "filter_queryset", "(", "self", ".", "request", ",", "queryset", ",", "self", ")", "if", "self", ".", "load_all", ":", "queryset", "=", "queryset", ".", "load_all", "(", ")", "return", "queryset" ]
Given a search queryset, filter it with whichever facet filter backends in use.
[ "Given", "a", "search", "queryset", "filter", "it", "with", "whichever", "facet", "filter", "backends", "in", "use", "." ]
ceabd0f6318f129758341ab08292a20205d6f4cd
https://github.com/inonit/drf-haystack/blob/ceabd0f6318f129758341ab08292a20205d6f4cd/drf_haystack/mixins.py#L66-L77
10,005
inonit/drf-haystack
drf_haystack/mixins.py
FacetMixin.get_facet_serializer
def get_facet_serializer(self, *args, **kwargs): """ Return the facet serializer instance that should be used for serializing faceted output. """ assert "objects" in kwargs, "`objects` is a required argument to `get_facet_serializer()`" facet_serializer_class = self.get_facet_serializer_class() kwargs["context"] = self.get_serializer_context() kwargs["context"].update({ "objects": kwargs.pop("objects"), "facet_query_params_text": self.facet_query_params_text, }) return facet_serializer_class(*args, **kwargs)
python
def get_facet_serializer(self, *args, **kwargs): """ Return the facet serializer instance that should be used for serializing faceted output. """ assert "objects" in kwargs, "`objects` is a required argument to `get_facet_serializer()`" facet_serializer_class = self.get_facet_serializer_class() kwargs["context"] = self.get_serializer_context() kwargs["context"].update({ "objects": kwargs.pop("objects"), "facet_query_params_text": self.facet_query_params_text, }) return facet_serializer_class(*args, **kwargs)
[ "def", "get_facet_serializer", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "assert", "\"objects\"", "in", "kwargs", ",", "\"`objects` is a required argument to `get_facet_serializer()`\"", "facet_serializer_class", "=", "self", ".", "get_facet_serializer_class", "(", ")", "kwargs", "[", "\"context\"", "]", "=", "self", ".", "get_serializer_context", "(", ")", "kwargs", "[", "\"context\"", "]", ".", "update", "(", "{", "\"objects\"", ":", "kwargs", ".", "pop", "(", "\"objects\"", ")", ",", "\"facet_query_params_text\"", ":", "self", ".", "facet_query_params_text", ",", "}", ")", "return", "facet_serializer_class", "(", "*", "args", ",", "*", "*", "kwargs", ")" ]
Return the facet serializer instance that should be used for serializing faceted output.
[ "Return", "the", "facet", "serializer", "instance", "that", "should", "be", "used", "for", "serializing", "faceted", "output", "." ]
ceabd0f6318f129758341ab08292a20205d6f4cd
https://github.com/inonit/drf-haystack/blob/ceabd0f6318f129758341ab08292a20205d6f4cd/drf_haystack/mixins.py#L79-L92
10,006
inonit/drf-haystack
drf_haystack/mixins.py
FacetMixin.get_facet_serializer_class
def get_facet_serializer_class(self): """ Return the class to use for serializing facets. Defaults to using ``self.facet_serializer_class``. """ if self.facet_serializer_class is None: raise AttributeError( "%(cls)s should either include a `facet_serializer_class` attribute, " "or override %(cls)s.get_facet_serializer_class() method." % {"cls": self.__class__.__name__} ) return self.facet_serializer_class
python
def get_facet_serializer_class(self): """ Return the class to use for serializing facets. Defaults to using ``self.facet_serializer_class``. """ if self.facet_serializer_class is None: raise AttributeError( "%(cls)s should either include a `facet_serializer_class` attribute, " "or override %(cls)s.get_facet_serializer_class() method." % {"cls": self.__class__.__name__} ) return self.facet_serializer_class
[ "def", "get_facet_serializer_class", "(", "self", ")", ":", "if", "self", ".", "facet_serializer_class", "is", "None", ":", "raise", "AttributeError", "(", "\"%(cls)s should either include a `facet_serializer_class` attribute, \"", "\"or override %(cls)s.get_facet_serializer_class() method.\"", "%", "{", "\"cls\"", ":", "self", ".", "__class__", ".", "__name__", "}", ")", "return", "self", ".", "facet_serializer_class" ]
Return the class to use for serializing facets. Defaults to using ``self.facet_serializer_class``.
[ "Return", "the", "class", "to", "use", "for", "serializing", "facets", ".", "Defaults", "to", "using", "self", ".", "facet_serializer_class", "." ]
ceabd0f6318f129758341ab08292a20205d6f4cd
https://github.com/inonit/drf-haystack/blob/ceabd0f6318f129758341ab08292a20205d6f4cd/drf_haystack/mixins.py#L94-L105
10,007
inonit/drf-haystack
drf_haystack/mixins.py
FacetMixin.get_facet_objects_serializer
def get_facet_objects_serializer(self, *args, **kwargs): """ Return the serializer instance which should be used for serializing faceted objects. """ facet_objects_serializer_class = self.get_facet_objects_serializer_class() kwargs["context"] = self.get_serializer_context() return facet_objects_serializer_class(*args, **kwargs)
python
def get_facet_objects_serializer(self, *args, **kwargs): """ Return the serializer instance which should be used for serializing faceted objects. """ facet_objects_serializer_class = self.get_facet_objects_serializer_class() kwargs["context"] = self.get_serializer_context() return facet_objects_serializer_class(*args, **kwargs)
[ "def", "get_facet_objects_serializer", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "facet_objects_serializer_class", "=", "self", ".", "get_facet_objects_serializer_class", "(", ")", "kwargs", "[", "\"context\"", "]", "=", "self", ".", "get_serializer_context", "(", ")", "return", "facet_objects_serializer_class", "(", "*", "args", ",", "*", "*", "kwargs", ")" ]
Return the serializer instance which should be used for serializing faceted objects.
[ "Return", "the", "serializer", "instance", "which", "should", "be", "used", "for", "serializing", "faceted", "objects", "." ]
ceabd0f6318f129758341ab08292a20205d6f4cd
https://github.com/inonit/drf-haystack/blob/ceabd0f6318f129758341ab08292a20205d6f4cd/drf_haystack/mixins.py#L107-L114
10,008
inonit/drf-haystack
drf_haystack/fields.py
DRFHaystackFieldMixin.bind
def bind(self, field_name, parent): """ Initializes the field name and parent for the field instance. Called when a field is added to the parent serializer instance. Taken from DRF and modified to support drf_haystack multiple index functionality. """ # In order to enforce a consistent style, we error if a redundant # 'source' argument has been used. For example: # my_field = serializer.CharField(source='my_field') assert self.source != field_name, ( "It is redundant to specify `source='%s'` on field '%s' in " "serializer '%s', because it is the same as the field name. " "Remove the `source` keyword argument." % (field_name, self.__class__.__name__, parent.__class__.__name__) ) self.field_name = field_name self.parent = parent # `self.label` should default to being based on the field name. if self.label is None: self.label = field_name.replace('_', ' ').capitalize() # self.source should default to being the same as the field name. if self.source is None: self.source = self.convert_field_name(field_name) # self.source_attrs is a list of attributes that need to be looked up # when serializing the instance, or populating the validated data. if self.source == '*': self.source_attrs = [] else: self.source_attrs = self.source.split('.')
python
def bind(self, field_name, parent): """ Initializes the field name and parent for the field instance. Called when a field is added to the parent serializer instance. Taken from DRF and modified to support drf_haystack multiple index functionality. """ # In order to enforce a consistent style, we error if a redundant # 'source' argument has been used. For example: # my_field = serializer.CharField(source='my_field') assert self.source != field_name, ( "It is redundant to specify `source='%s'` on field '%s' in " "serializer '%s', because it is the same as the field name. " "Remove the `source` keyword argument." % (field_name, self.__class__.__name__, parent.__class__.__name__) ) self.field_name = field_name self.parent = parent # `self.label` should default to being based on the field name. if self.label is None: self.label = field_name.replace('_', ' ').capitalize() # self.source should default to being the same as the field name. if self.source is None: self.source = self.convert_field_name(field_name) # self.source_attrs is a list of attributes that need to be looked up # when serializing the instance, or populating the validated data. if self.source == '*': self.source_attrs = [] else: self.source_attrs = self.source.split('.')
[ "def", "bind", "(", "self", ",", "field_name", ",", "parent", ")", ":", "# In order to enforce a consistent style, we error if a redundant", "# 'source' argument has been used. For example:", "# my_field = serializer.CharField(source='my_field')", "assert", "self", ".", "source", "!=", "field_name", ",", "(", "\"It is redundant to specify `source='%s'` on field '%s' in \"", "\"serializer '%s', because it is the same as the field name. \"", "\"Remove the `source` keyword argument.\"", "%", "(", "field_name", ",", "self", ".", "__class__", ".", "__name__", ",", "parent", ".", "__class__", ".", "__name__", ")", ")", "self", ".", "field_name", "=", "field_name", "self", ".", "parent", "=", "parent", "# `self.label` should default to being based on the field name.", "if", "self", ".", "label", "is", "None", ":", "self", ".", "label", "=", "field_name", ".", "replace", "(", "'_'", ",", "' '", ")", ".", "capitalize", "(", ")", "# self.source should default to being the same as the field name.", "if", "self", ".", "source", "is", "None", ":", "self", ".", "source", "=", "self", ".", "convert_field_name", "(", "field_name", ")", "# self.source_attrs is a list of attributes that need to be looked up", "# when serializing the instance, or populating the validated data.", "if", "self", ".", "source", "==", "'*'", ":", "self", ".", "source_attrs", "=", "[", "]", "else", ":", "self", ".", "source_attrs", "=", "self", ".", "source", ".", "split", "(", "'.'", ")" ]
Initializes the field name and parent for the field instance. Called when a field is added to the parent serializer instance. Taken from DRF and modified to support drf_haystack multiple index functionality.
[ "Initializes", "the", "field", "name", "and", "parent", "for", "the", "field", "instance", ".", "Called", "when", "a", "field", "is", "added", "to", "the", "parent", "serializer", "instance", ".", "Taken", "from", "DRF", "and", "modified", "to", "support", "drf_haystack", "multiple", "index", "functionality", "." ]
ceabd0f6318f129758341ab08292a20205d6f4cd
https://github.com/inonit/drf-haystack/blob/ceabd0f6318f129758341ab08292a20205d6f4cd/drf_haystack/fields.py#L16-L50
10,009
inonit/drf-haystack
drf_haystack/serializers.py
HaystackSerializer._get_default_field_kwargs
def _get_default_field_kwargs(model, field): """ Get the required attributes from the model field in order to instantiate a REST Framework serializer field. """ kwargs = {} try: field_name = field.model_attr or field.index_fieldname model_field = model._meta.get_field(field_name) kwargs.update(get_field_kwargs(field_name, model_field)) # Remove stuff we don't care about! delete_attrs = [ "allow_blank", "choices", "model_field", "allow_unicode", ] for attr in delete_attrs: if attr in kwargs: del kwargs[attr] except FieldDoesNotExist: pass return kwargs
python
def _get_default_field_kwargs(model, field): """ Get the required attributes from the model field in order to instantiate a REST Framework serializer field. """ kwargs = {} try: field_name = field.model_attr or field.index_fieldname model_field = model._meta.get_field(field_name) kwargs.update(get_field_kwargs(field_name, model_field)) # Remove stuff we don't care about! delete_attrs = [ "allow_blank", "choices", "model_field", "allow_unicode", ] for attr in delete_attrs: if attr in kwargs: del kwargs[attr] except FieldDoesNotExist: pass return kwargs
[ "def", "_get_default_field_kwargs", "(", "model", ",", "field", ")", ":", "kwargs", "=", "{", "}", "try", ":", "field_name", "=", "field", ".", "model_attr", "or", "field", ".", "index_fieldname", "model_field", "=", "model", ".", "_meta", ".", "get_field", "(", "field_name", ")", "kwargs", ".", "update", "(", "get_field_kwargs", "(", "field_name", ",", "model_field", ")", ")", "# Remove stuff we don't care about!", "delete_attrs", "=", "[", "\"allow_blank\"", ",", "\"choices\"", ",", "\"model_field\"", ",", "\"allow_unicode\"", ",", "]", "for", "attr", "in", "delete_attrs", ":", "if", "attr", "in", "kwargs", ":", "del", "kwargs", "[", "attr", "]", "except", "FieldDoesNotExist", ":", "pass", "return", "kwargs" ]
Get the required attributes from the model field in order to instantiate a REST Framework serializer field.
[ "Get", "the", "required", "attributes", "from", "the", "model", "field", "in", "order", "to", "instantiate", "a", "REST", "Framework", "serializer", "field", "." ]
ceabd0f6318f129758341ab08292a20205d6f4cd
https://github.com/inonit/drf-haystack/blob/ceabd0f6318f129758341ab08292a20205d6f4cd/drf_haystack/serializers.py#L124-L148
10,010
inonit/drf-haystack
drf_haystack/serializers.py
HaystackSerializer._get_index_class_name
def _get_index_class_name(self, index_cls): """ Converts in index model class to a name suitable for use as a field name prefix. A user may optionally specify custom aliases via an 'index_aliases' attribute on the Meta class """ cls_name = index_cls.__name__ aliases = self.Meta.index_aliases return aliases.get(cls_name, cls_name.split('.')[-1])
python
def _get_index_class_name(self, index_cls): """ Converts in index model class to a name suitable for use as a field name prefix. A user may optionally specify custom aliases via an 'index_aliases' attribute on the Meta class """ cls_name = index_cls.__name__ aliases = self.Meta.index_aliases return aliases.get(cls_name, cls_name.split('.')[-1])
[ "def", "_get_index_class_name", "(", "self", ",", "index_cls", ")", ":", "cls_name", "=", "index_cls", ".", "__name__", "aliases", "=", "self", ".", "Meta", ".", "index_aliases", "return", "aliases", ".", "get", "(", "cls_name", ",", "cls_name", ".", "split", "(", "'.'", ")", "[", "-", "1", "]", ")" ]
Converts in index model class to a name suitable for use as a field name prefix. A user may optionally specify custom aliases via an 'index_aliases' attribute on the Meta class
[ "Converts", "in", "index", "model", "class", "to", "a", "name", "suitable", "for", "use", "as", "a", "field", "name", "prefix", ".", "A", "user", "may", "optionally", "specify", "custom", "aliases", "via", "an", "index_aliases", "attribute", "on", "the", "Meta", "class" ]
ceabd0f6318f129758341ab08292a20205d6f4cd
https://github.com/inonit/drf-haystack/blob/ceabd0f6318f129758341ab08292a20205d6f4cd/drf_haystack/serializers.py#L156-L163
10,011
inonit/drf-haystack
drf_haystack/serializers.py
HaystackSerializer.get_fields
def get_fields(self): """ Get the required fields for serializing the result. """ fields = self.Meta.fields exclude = self.Meta.exclude ignore_fields = self.Meta.ignore_fields indices = self.Meta.index_classes declared_fields = copy.deepcopy(self._declared_fields) prefix_field_names = len(indices) > 1 field_mapping = OrderedDict() # overlapping fields on multiple indices is supported by internally prefixing the field # names with the index class to which they belong or, optionally, a user-provided alias # for the index. for index_cls in self.Meta.index_classes: prefix = "" if prefix_field_names: prefix = "_%s__" % self._get_index_class_name(index_cls) for field_name, field_type in six.iteritems(index_cls.fields): orig_name = field_name field_name = "%s%s" % (prefix, field_name) # Don't use this field if it is in `ignore_fields` if orig_name in ignore_fields or field_name in ignore_fields: continue # When fields to include are decided by `exclude` if exclude: if orig_name in exclude or field_name in exclude: continue # When fields to include are decided by `fields` if fields: if orig_name not in fields and field_name not in fields: continue # Look up the field attributes on the current index model, # in order to correctly instantiate the serializer field. model = index_cls().get_model() kwargs = self._get_default_field_kwargs(model, field_type) kwargs['prefix_field_names'] = prefix_field_names field_mapping[field_name] = self._field_mapping[field_type](**kwargs) # Add any explicitly declared fields. They *will* override any index fields # in case of naming collision!. if declared_fields: for field_name in declared_fields: field_mapping[field_name] = declared_fields[field_name] return field_mapping
python
def get_fields(self): """ Get the required fields for serializing the result. """ fields = self.Meta.fields exclude = self.Meta.exclude ignore_fields = self.Meta.ignore_fields indices = self.Meta.index_classes declared_fields = copy.deepcopy(self._declared_fields) prefix_field_names = len(indices) > 1 field_mapping = OrderedDict() # overlapping fields on multiple indices is supported by internally prefixing the field # names with the index class to which they belong or, optionally, a user-provided alias # for the index. for index_cls in self.Meta.index_classes: prefix = "" if prefix_field_names: prefix = "_%s__" % self._get_index_class_name(index_cls) for field_name, field_type in six.iteritems(index_cls.fields): orig_name = field_name field_name = "%s%s" % (prefix, field_name) # Don't use this field if it is in `ignore_fields` if orig_name in ignore_fields or field_name in ignore_fields: continue # When fields to include are decided by `exclude` if exclude: if orig_name in exclude or field_name in exclude: continue # When fields to include are decided by `fields` if fields: if orig_name not in fields and field_name not in fields: continue # Look up the field attributes on the current index model, # in order to correctly instantiate the serializer field. model = index_cls().get_model() kwargs = self._get_default_field_kwargs(model, field_type) kwargs['prefix_field_names'] = prefix_field_names field_mapping[field_name] = self._field_mapping[field_type](**kwargs) # Add any explicitly declared fields. They *will* override any index fields # in case of naming collision!. if declared_fields: for field_name in declared_fields: field_mapping[field_name] = declared_fields[field_name] return field_mapping
[ "def", "get_fields", "(", "self", ")", ":", "fields", "=", "self", ".", "Meta", ".", "fields", "exclude", "=", "self", ".", "Meta", ".", "exclude", "ignore_fields", "=", "self", ".", "Meta", ".", "ignore_fields", "indices", "=", "self", ".", "Meta", ".", "index_classes", "declared_fields", "=", "copy", ".", "deepcopy", "(", "self", ".", "_declared_fields", ")", "prefix_field_names", "=", "len", "(", "indices", ")", ">", "1", "field_mapping", "=", "OrderedDict", "(", ")", "# overlapping fields on multiple indices is supported by internally prefixing the field", "# names with the index class to which they belong or, optionally, a user-provided alias", "# for the index.", "for", "index_cls", "in", "self", ".", "Meta", ".", "index_classes", ":", "prefix", "=", "\"\"", "if", "prefix_field_names", ":", "prefix", "=", "\"_%s__\"", "%", "self", ".", "_get_index_class_name", "(", "index_cls", ")", "for", "field_name", ",", "field_type", "in", "six", ".", "iteritems", "(", "index_cls", ".", "fields", ")", ":", "orig_name", "=", "field_name", "field_name", "=", "\"%s%s\"", "%", "(", "prefix", ",", "field_name", ")", "# Don't use this field if it is in `ignore_fields`", "if", "orig_name", "in", "ignore_fields", "or", "field_name", "in", "ignore_fields", ":", "continue", "# When fields to include are decided by `exclude`", "if", "exclude", ":", "if", "orig_name", "in", "exclude", "or", "field_name", "in", "exclude", ":", "continue", "# When fields to include are decided by `fields`", "if", "fields", ":", "if", "orig_name", "not", "in", "fields", "and", "field_name", "not", "in", "fields", ":", "continue", "# Look up the field attributes on the current index model,", "# in order to correctly instantiate the serializer field.", "model", "=", "index_cls", "(", ")", ".", "get_model", "(", ")", "kwargs", "=", "self", ".", "_get_default_field_kwargs", "(", "model", ",", "field_type", ")", "kwargs", "[", "'prefix_field_names'", "]", "=", "prefix_field_names", "field_mapping", "[", "field_name", "]", "=", "self", ".", "_field_mapping", "[", "field_type", "]", "(", "*", "*", "kwargs", ")", "# Add any explicitly declared fields. They *will* override any index fields", "# in case of naming collision!.", "if", "declared_fields", ":", "for", "field_name", "in", "declared_fields", ":", "field_mapping", "[", "field_name", "]", "=", "declared_fields", "[", "field_name", "]", "return", "field_mapping" ]
Get the required fields for serializing the result.
[ "Get", "the", "required", "fields", "for", "serializing", "the", "result", "." ]
ceabd0f6318f129758341ab08292a20205d6f4cd
https://github.com/inonit/drf-haystack/blob/ceabd0f6318f129758341ab08292a20205d6f4cd/drf_haystack/serializers.py#L165-L214
10,012
inonit/drf-haystack
drf_haystack/serializers.py
HaystackSerializer.to_representation
def to_representation(self, instance): """ If we have a serializer mapping, use that. Otherwise, use standard serializer behavior Since we might be dealing with multiple indexes, some fields might not be valid for all results. Do not render the fields which don't belong to the search result. """ if self.Meta.serializers: ret = self.multi_serializer_representation(instance) else: ret = super(HaystackSerializer, self).to_representation(instance) prefix_field_names = len(getattr(self.Meta, "index_classes")) > 1 current_index = self._get_index_class_name(type(instance.searchindex)) for field in self.fields.keys(): # handle declared field value methods on serializer value_method = getattr(self, "get_{}".format(field), None) if value_method and callable(value_method): ret[field] = value_method() # now convert namespaced field names orig_field = field if prefix_field_names: parts = field.split("__") if len(parts) > 1: index = parts[0][1:] # trim the preceding '_' field = parts[1] if index == current_index: ret[field] = ret[orig_field] del ret[orig_field] elif field not in chain(instance.searchindex.fields.keys(), self._declared_fields.keys()): del ret[orig_field] # include the highlighted field in either case if getattr(instance, "highlighted", None): ret["highlighted"] = instance.highlighted[0] return ret
python
def to_representation(self, instance): """ If we have a serializer mapping, use that. Otherwise, use standard serializer behavior Since we might be dealing with multiple indexes, some fields might not be valid for all results. Do not render the fields which don't belong to the search result. """ if self.Meta.serializers: ret = self.multi_serializer_representation(instance) else: ret = super(HaystackSerializer, self).to_representation(instance) prefix_field_names = len(getattr(self.Meta, "index_classes")) > 1 current_index = self._get_index_class_name(type(instance.searchindex)) for field in self.fields.keys(): # handle declared field value methods on serializer value_method = getattr(self, "get_{}".format(field), None) if value_method and callable(value_method): ret[field] = value_method() # now convert namespaced field names orig_field = field if prefix_field_names: parts = field.split("__") if len(parts) > 1: index = parts[0][1:] # trim the preceding '_' field = parts[1] if index == current_index: ret[field] = ret[orig_field] del ret[orig_field] elif field not in chain(instance.searchindex.fields.keys(), self._declared_fields.keys()): del ret[orig_field] # include the highlighted field in either case if getattr(instance, "highlighted", None): ret["highlighted"] = instance.highlighted[0] return ret
[ "def", "to_representation", "(", "self", ",", "instance", ")", ":", "if", "self", ".", "Meta", ".", "serializers", ":", "ret", "=", "self", ".", "multi_serializer_representation", "(", "instance", ")", "else", ":", "ret", "=", "super", "(", "HaystackSerializer", ",", "self", ")", ".", "to_representation", "(", "instance", ")", "prefix_field_names", "=", "len", "(", "getattr", "(", "self", ".", "Meta", ",", "\"index_classes\"", ")", ")", ">", "1", "current_index", "=", "self", ".", "_get_index_class_name", "(", "type", "(", "instance", ".", "searchindex", ")", ")", "for", "field", "in", "self", ".", "fields", ".", "keys", "(", ")", ":", "# handle declared field value methods on serializer", "value_method", "=", "getattr", "(", "self", ",", "\"get_{}\"", ".", "format", "(", "field", ")", ",", "None", ")", "if", "value_method", "and", "callable", "(", "value_method", ")", ":", "ret", "[", "field", "]", "=", "value_method", "(", ")", "# now convert namespaced field names", "orig_field", "=", "field", "if", "prefix_field_names", ":", "parts", "=", "field", ".", "split", "(", "\"__\"", ")", "if", "len", "(", "parts", ")", ">", "1", ":", "index", "=", "parts", "[", "0", "]", "[", "1", ":", "]", "# trim the preceding '_'", "field", "=", "parts", "[", "1", "]", "if", "index", "==", "current_index", ":", "ret", "[", "field", "]", "=", "ret", "[", "orig_field", "]", "del", "ret", "[", "orig_field", "]", "elif", "field", "not", "in", "chain", "(", "instance", ".", "searchindex", ".", "fields", ".", "keys", "(", ")", ",", "self", ".", "_declared_fields", ".", "keys", "(", ")", ")", ":", "del", "ret", "[", "orig_field", "]", "# include the highlighted field in either case", "if", "getattr", "(", "instance", ",", "\"highlighted\"", ",", "None", ")", ":", "ret", "[", "\"highlighted\"", "]", "=", "instance", ".", "highlighted", "[", "0", "]", "return", "ret" ]
If we have a serializer mapping, use that. Otherwise, use standard serializer behavior Since we might be dealing with multiple indexes, some fields might not be valid for all results. Do not render the fields which don't belong to the search result.
[ "If", "we", "have", "a", "serializer", "mapping", "use", "that", ".", "Otherwise", "use", "standard", "serializer", "behavior", "Since", "we", "might", "be", "dealing", "with", "multiple", "indexes", "some", "fields", "might", "not", "be", "valid", "for", "all", "results", ".", "Do", "not", "render", "the", "fields", "which", "don", "t", "belong", "to", "the", "search", "result", "." ]
ceabd0f6318f129758341ab08292a20205d6f4cd
https://github.com/inonit/drf-haystack/blob/ceabd0f6318f129758341ab08292a20205d6f4cd/drf_haystack/serializers.py#L216-L251
10,013
inonit/drf-haystack
drf_haystack/serializers.py
FacetFieldSerializer.get_narrow_url
def get_narrow_url(self, instance): """ Return a link suitable for narrowing on the current item. """ text = instance[0] request = self.context["request"] query_params = request.GET.copy() # Never keep the page query parameter in narrowing urls. # It will raise a NotFound exception when trying to paginate a narrowed queryset. page_query_param = self.get_paginate_by_param() if page_query_param and page_query_param in query_params: del query_params[page_query_param] selected_facets = set(query_params.pop(self.root.facet_query_params_text, [])) selected_facets.add("%(field)s_exact:%(text)s" % {"field": self.parent_field, "text": text}) query_params.setlist(self.root.facet_query_params_text, sorted(selected_facets)) path = "%(path)s?%(query)s" % {"path": request.path_info, "query": query_params.urlencode()} url = request.build_absolute_uri(path) return serializers.Hyperlink(url, "narrow-url")
python
def get_narrow_url(self, instance): """ Return a link suitable for narrowing on the current item. """ text = instance[0] request = self.context["request"] query_params = request.GET.copy() # Never keep the page query parameter in narrowing urls. # It will raise a NotFound exception when trying to paginate a narrowed queryset. page_query_param = self.get_paginate_by_param() if page_query_param and page_query_param in query_params: del query_params[page_query_param] selected_facets = set(query_params.pop(self.root.facet_query_params_text, [])) selected_facets.add("%(field)s_exact:%(text)s" % {"field": self.parent_field, "text": text}) query_params.setlist(self.root.facet_query_params_text, sorted(selected_facets)) path = "%(path)s?%(query)s" % {"path": request.path_info, "query": query_params.urlencode()} url = request.build_absolute_uri(path) return serializers.Hyperlink(url, "narrow-url")
[ "def", "get_narrow_url", "(", "self", ",", "instance", ")", ":", "text", "=", "instance", "[", "0", "]", "request", "=", "self", ".", "context", "[", "\"request\"", "]", "query_params", "=", "request", ".", "GET", ".", "copy", "(", ")", "# Never keep the page query parameter in narrowing urls.", "# It will raise a NotFound exception when trying to paginate a narrowed queryset.", "page_query_param", "=", "self", ".", "get_paginate_by_param", "(", ")", "if", "page_query_param", "and", "page_query_param", "in", "query_params", ":", "del", "query_params", "[", "page_query_param", "]", "selected_facets", "=", "set", "(", "query_params", ".", "pop", "(", "self", ".", "root", ".", "facet_query_params_text", ",", "[", "]", ")", ")", "selected_facets", ".", "add", "(", "\"%(field)s_exact:%(text)s\"", "%", "{", "\"field\"", ":", "self", ".", "parent_field", ",", "\"text\"", ":", "text", "}", ")", "query_params", ".", "setlist", "(", "self", ".", "root", ".", "facet_query_params_text", ",", "sorted", "(", "selected_facets", ")", ")", "path", "=", "\"%(path)s?%(query)s\"", "%", "{", "\"path\"", ":", "request", ".", "path_info", ",", "\"query\"", ":", "query_params", ".", "urlencode", "(", ")", "}", "url", "=", "request", ".", "build_absolute_uri", "(", "path", ")", "return", "serializers", ".", "Hyperlink", "(", "url", ",", "\"narrow-url\"", ")" ]
Return a link suitable for narrowing on the current item.
[ "Return", "a", "link", "suitable", "for", "narrowing", "on", "the", "current", "item", "." ]
ceabd0f6318f129758341ab08292a20205d6f4cd
https://github.com/inonit/drf-haystack/blob/ceabd0f6318f129758341ab08292a20205d6f4cd/drf_haystack/serializers.py#L340-L360
10,014
inonit/drf-haystack
drf_haystack/serializers.py
FacetFieldSerializer.to_representation
def to_representation(self, field, instance): """ Set the ``parent_field`` property equal to the current field on the serializer class, so that each field can query it to see what kind of attribute they are processing. """ self.parent_field = field return super(FacetFieldSerializer, self).to_representation(instance)
python
def to_representation(self, field, instance): """ Set the ``parent_field`` property equal to the current field on the serializer class, so that each field can query it to see what kind of attribute they are processing. """ self.parent_field = field return super(FacetFieldSerializer, self).to_representation(instance)
[ "def", "to_representation", "(", "self", ",", "field", ",", "instance", ")", ":", "self", ".", "parent_field", "=", "field", "return", "super", "(", "FacetFieldSerializer", ",", "self", ")", ".", "to_representation", "(", "instance", ")" ]
Set the ``parent_field`` property equal to the current field on the serializer class, so that each field can query it to see what kind of attribute they are processing.
[ "Set", "the", "parent_field", "property", "equal", "to", "the", "current", "field", "on", "the", "serializer", "class", "so", "that", "each", "field", "can", "query", "it", "to", "see", "what", "kind", "of", "attribute", "they", "are", "processing", "." ]
ceabd0f6318f129758341ab08292a20205d6f4cd
https://github.com/inonit/drf-haystack/blob/ceabd0f6318f129758341ab08292a20205d6f4cd/drf_haystack/serializers.py#L362-L368
10,015
inonit/drf-haystack
drf_haystack/serializers.py
HaystackFacetSerializer.get_fields
def get_fields(self): """ This returns a dictionary containing the top most fields, ``dates``, ``fields`` and ``queries``. """ field_mapping = OrderedDict() for field, data in self.instance.items(): field_mapping.update( {field: self.facet_dict_field_class( child=self.facet_list_field_class(child=self.facet_field_serializer_class(data)), required=False)} ) if self.serialize_objects is True: field_mapping["objects"] = serializers.SerializerMethodField() return field_mapping
python
def get_fields(self): """ This returns a dictionary containing the top most fields, ``dates``, ``fields`` and ``queries``. """ field_mapping = OrderedDict() for field, data in self.instance.items(): field_mapping.update( {field: self.facet_dict_field_class( child=self.facet_list_field_class(child=self.facet_field_serializer_class(data)), required=False)} ) if self.serialize_objects is True: field_mapping["objects"] = serializers.SerializerMethodField() return field_mapping
[ "def", "get_fields", "(", "self", ")", ":", "field_mapping", "=", "OrderedDict", "(", ")", "for", "field", ",", "data", "in", "self", ".", "instance", ".", "items", "(", ")", ":", "field_mapping", ".", "update", "(", "{", "field", ":", "self", ".", "facet_dict_field_class", "(", "child", "=", "self", ".", "facet_list_field_class", "(", "child", "=", "self", ".", "facet_field_serializer_class", "(", "data", ")", ")", ",", "required", "=", "False", ")", "}", ")", "if", "self", ".", "serialize_objects", "is", "True", ":", "field_mapping", "[", "\"objects\"", "]", "=", "serializers", ".", "SerializerMethodField", "(", ")", "return", "field_mapping" ]
This returns a dictionary containing the top most fields, ``dates``, ``fields`` and ``queries``.
[ "This", "returns", "a", "dictionary", "containing", "the", "top", "most", "fields", "dates", "fields", "and", "queries", "." ]
ceabd0f6318f129758341ab08292a20205d6f4cd
https://github.com/inonit/drf-haystack/blob/ceabd0f6318f129758341ab08292a20205d6f4cd/drf_haystack/serializers.py#L384-L399
10,016
inonit/drf-haystack
drf_haystack/serializers.py
HaystackFacetSerializer.get_objects
def get_objects(self, instance): """ Return a list of objects matching the faceted result. """ view = self.context["view"] queryset = self.context["objects"] page = view.paginate_queryset(queryset) if page is not None: serializer = view.get_facet_objects_serializer(page, many=True) return OrderedDict([ ("count", self.get_count(queryset)), ("next", view.paginator.get_next_link()), ("previous", view.paginator.get_previous_link()), ("results", serializer.data) ]) serializer = view.get_serializer(queryset, many=True) return serializer.data
python
def get_objects(self, instance): """ Return a list of objects matching the faceted result. """ view = self.context["view"] queryset = self.context["objects"] page = view.paginate_queryset(queryset) if page is not None: serializer = view.get_facet_objects_serializer(page, many=True) return OrderedDict([ ("count", self.get_count(queryset)), ("next", view.paginator.get_next_link()), ("previous", view.paginator.get_previous_link()), ("results", serializer.data) ]) serializer = view.get_serializer(queryset, many=True) return serializer.data
[ "def", "get_objects", "(", "self", ",", "instance", ")", ":", "view", "=", "self", ".", "context", "[", "\"view\"", "]", "queryset", "=", "self", ".", "context", "[", "\"objects\"", "]", "page", "=", "view", ".", "paginate_queryset", "(", "queryset", ")", "if", "page", "is", "not", "None", ":", "serializer", "=", "view", ".", "get_facet_objects_serializer", "(", "page", ",", "many", "=", "True", ")", "return", "OrderedDict", "(", "[", "(", "\"count\"", ",", "self", ".", "get_count", "(", "queryset", ")", ")", ",", "(", "\"next\"", ",", "view", ".", "paginator", ".", "get_next_link", "(", ")", ")", ",", "(", "\"previous\"", ",", "view", ".", "paginator", ".", "get_previous_link", "(", ")", ")", ",", "(", "\"results\"", ",", "serializer", ".", "data", ")", "]", ")", "serializer", "=", "view", ".", "get_serializer", "(", "queryset", ",", "many", "=", "True", ")", "return", "serializer", ".", "data" ]
Return a list of objects matching the faceted result.
[ "Return", "a", "list", "of", "objects", "matching", "the", "faceted", "result", "." ]
ceabd0f6318f129758341ab08292a20205d6f4cd
https://github.com/inonit/drf-haystack/blob/ceabd0f6318f129758341ab08292a20205d6f4cd/drf_haystack/serializers.py#L401-L419
10,017
inonit/drf-haystack
drf_haystack/serializers.py
HighlighterMixin.get_document_field
def get_document_field(instance): """ Returns which field the search index has marked as it's `document=True` field. """ for name, field in instance.searchindex.fields.items(): if field.document is True: return name
python
def get_document_field(instance): """ Returns which field the search index has marked as it's `document=True` field. """ for name, field in instance.searchindex.fields.items(): if field.document is True: return name
[ "def", "get_document_field", "(", "instance", ")", ":", "for", "name", ",", "field", "in", "instance", ".", "searchindex", ".", "fields", ".", "items", "(", ")", ":", "if", "field", ".", "document", "is", "True", ":", "return", "name" ]
Returns which field the search index has marked as it's `document=True` field.
[ "Returns", "which", "field", "the", "search", "index", "has", "marked", "as", "it", "s", "document", "=", "True", "field", "." ]
ceabd0f6318f129758341ab08292a20205d6f4cd
https://github.com/inonit/drf-haystack/blob/ceabd0f6318f129758341ab08292a20205d6f4cd/drf_haystack/serializers.py#L470-L477
10,018
inonit/drf-haystack
drf_haystack/filters.py
BaseHaystackFilterBackend.apply_filters
def apply_filters(self, queryset, applicable_filters=None, applicable_exclusions=None): """ Apply constructed filters and excludes and return the queryset :param queryset: queryset to filter :param applicable_filters: filters which are passed directly to queryset.filter() :param applicable_exclusions: filters which are passed directly to queryset.exclude() :returns filtered queryset """ if applicable_filters: queryset = queryset.filter(applicable_filters) if applicable_exclusions: queryset = queryset.exclude(applicable_exclusions) return queryset
python
def apply_filters(self, queryset, applicable_filters=None, applicable_exclusions=None): """ Apply constructed filters and excludes and return the queryset :param queryset: queryset to filter :param applicable_filters: filters which are passed directly to queryset.filter() :param applicable_exclusions: filters which are passed directly to queryset.exclude() :returns filtered queryset """ if applicable_filters: queryset = queryset.filter(applicable_filters) if applicable_exclusions: queryset = queryset.exclude(applicable_exclusions) return queryset
[ "def", "apply_filters", "(", "self", ",", "queryset", ",", "applicable_filters", "=", "None", ",", "applicable_exclusions", "=", "None", ")", ":", "if", "applicable_filters", ":", "queryset", "=", "queryset", ".", "filter", "(", "applicable_filters", ")", "if", "applicable_exclusions", ":", "queryset", "=", "queryset", ".", "exclude", "(", "applicable_exclusions", ")", "return", "queryset" ]
Apply constructed filters and excludes and return the queryset :param queryset: queryset to filter :param applicable_filters: filters which are passed directly to queryset.filter() :param applicable_exclusions: filters which are passed directly to queryset.exclude() :returns filtered queryset
[ "Apply", "constructed", "filters", "and", "excludes", "and", "return", "the", "queryset" ]
ceabd0f6318f129758341ab08292a20205d6f4cd
https://github.com/inonit/drf-haystack/blob/ceabd0f6318f129758341ab08292a20205d6f4cd/drf_haystack/filters.py#L27-L40
10,019
inonit/drf-haystack
drf_haystack/filters.py
BaseHaystackFilterBackend.build_filters
def build_filters(self, view, filters=None): """ Get the query builder instance and return constructed query filters. """ query_builder = self.get_query_builder(backend=self, view=view) return query_builder.build_query(**(filters if filters else {}))
python
def build_filters(self, view, filters=None): """ Get the query builder instance and return constructed query filters. """ query_builder = self.get_query_builder(backend=self, view=view) return query_builder.build_query(**(filters if filters else {}))
[ "def", "build_filters", "(", "self", ",", "view", ",", "filters", "=", "None", ")", ":", "query_builder", "=", "self", ".", "get_query_builder", "(", "backend", "=", "self", ",", "view", "=", "view", ")", "return", "query_builder", ".", "build_query", "(", "*", "*", "(", "filters", "if", "filters", "else", "{", "}", ")", ")" ]
Get the query builder instance and return constructed query filters.
[ "Get", "the", "query", "builder", "instance", "and", "return", "constructed", "query", "filters", "." ]
ceabd0f6318f129758341ab08292a20205d6f4cd
https://github.com/inonit/drf-haystack/blob/ceabd0f6318f129758341ab08292a20205d6f4cd/drf_haystack/filters.py#L42-L47
10,020
inonit/drf-haystack
drf_haystack/filters.py
BaseHaystackFilterBackend.filter_queryset
def filter_queryset(self, request, queryset, view): """ Return the filtered queryset. """ applicable_filters, applicable_exclusions = self.build_filters(view, filters=self.get_request_filters(request)) return self.apply_filters( queryset=queryset, applicable_filters=self.process_filters(applicable_filters, queryset, view), applicable_exclusions=self.process_filters(applicable_exclusions, queryset, view) )
python
def filter_queryset(self, request, queryset, view): """ Return the filtered queryset. """ applicable_filters, applicable_exclusions = self.build_filters(view, filters=self.get_request_filters(request)) return self.apply_filters( queryset=queryset, applicable_filters=self.process_filters(applicable_filters, queryset, view), applicable_exclusions=self.process_filters(applicable_exclusions, queryset, view) )
[ "def", "filter_queryset", "(", "self", ",", "request", ",", "queryset", ",", "view", ")", ":", "applicable_filters", ",", "applicable_exclusions", "=", "self", ".", "build_filters", "(", "view", ",", "filters", "=", "self", ".", "get_request_filters", "(", "request", ")", ")", "return", "self", ".", "apply_filters", "(", "queryset", "=", "queryset", ",", "applicable_filters", "=", "self", ".", "process_filters", "(", "applicable_filters", ",", "queryset", ",", "view", ")", ",", "applicable_exclusions", "=", "self", ".", "process_filters", "(", "applicable_exclusions", ",", "queryset", ",", "view", ")", ")" ]
Return the filtered queryset.
[ "Return", "the", "filtered", "queryset", "." ]
ceabd0f6318f129758341ab08292a20205d6f4cd
https://github.com/inonit/drf-haystack/blob/ceabd0f6318f129758341ab08292a20205d6f4cd/drf_haystack/filters.py#L56-L65
10,021
inonit/drf-haystack
drf_haystack/filters.py
BaseHaystackFilterBackend.get_query_builder
def get_query_builder(self, *args, **kwargs): """ Return the query builder class instance that should be used to build the query which is passed to the search engine backend. """ query_builder = self.get_query_builder_class() return query_builder(*args, **kwargs)
python
def get_query_builder(self, *args, **kwargs): """ Return the query builder class instance that should be used to build the query which is passed to the search engine backend. """ query_builder = self.get_query_builder_class() return query_builder(*args, **kwargs)
[ "def", "get_query_builder", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "query_builder", "=", "self", ".", "get_query_builder_class", "(", ")", "return", "query_builder", "(", "*", "args", ",", "*", "*", "kwargs", ")" ]
Return the query builder class instance that should be used to build the query which is passed to the search engine backend.
[ "Return", "the", "query", "builder", "class", "instance", "that", "should", "be", "used", "to", "build", "the", "query", "which", "is", "passed", "to", "the", "search", "engine", "backend", "." ]
ceabd0f6318f129758341ab08292a20205d6f4cd
https://github.com/inonit/drf-haystack/blob/ceabd0f6318f129758341ab08292a20205d6f4cd/drf_haystack/filters.py#L67-L73
10,022
inonit/drf-haystack
drf_haystack/filters.py
HaystackFacetFilter.apply_filters
def apply_filters(self, queryset, applicable_filters=None, applicable_exclusions=None): """ Apply faceting to the queryset """ for field, options in applicable_filters["field_facets"].items(): queryset = queryset.facet(field, **options) for field, options in applicable_filters["date_facets"].items(): queryset = queryset.date_facet(field, **options) for field, options in applicable_filters["query_facets"].items(): queryset = queryset.query_facet(field, **options) return queryset
python
def apply_filters(self, queryset, applicable_filters=None, applicable_exclusions=None): """ Apply faceting to the queryset """ for field, options in applicable_filters["field_facets"].items(): queryset = queryset.facet(field, **options) for field, options in applicable_filters["date_facets"].items(): queryset = queryset.date_facet(field, **options) for field, options in applicable_filters["query_facets"].items(): queryset = queryset.query_facet(field, **options) return queryset
[ "def", "apply_filters", "(", "self", ",", "queryset", ",", "applicable_filters", "=", "None", ",", "applicable_exclusions", "=", "None", ")", ":", "for", "field", ",", "options", "in", "applicable_filters", "[", "\"field_facets\"", "]", ".", "items", "(", ")", ":", "queryset", "=", "queryset", ".", "facet", "(", "field", ",", "*", "*", "options", ")", "for", "field", ",", "options", "in", "applicable_filters", "[", "\"date_facets\"", "]", ".", "items", "(", ")", ":", "queryset", "=", "queryset", ".", "date_facet", "(", "field", ",", "*", "*", "options", ")", "for", "field", ",", "options", "in", "applicable_filters", "[", "\"query_facets\"", "]", ".", "items", "(", ")", ":", "queryset", "=", "queryset", ".", "query_facet", "(", "field", ",", "*", "*", "options", ")", "return", "queryset" ]
Apply faceting to the queryset
[ "Apply", "faceting", "to", "the", "queryset" ]
ceabd0f6318f129758341ab08292a20205d6f4cd
https://github.com/inonit/drf-haystack/blob/ceabd0f6318f129758341ab08292a20205d6f4cd/drf_haystack/filters.py#L202-L215
10,023
maximtrp/scikit-posthocs
scikit_posthocs/_posthocs.py
__convert_to_df
def __convert_to_df(a, val_col=None, group_col=None, val_id=None, group_id=None): '''Hidden helper method to create a DataFrame with input data for further processing. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. Array must be two-dimensional. Second dimension may vary, i.e. groups may have different lengths. val_col : str, optional Name of a DataFrame column that contains dependent variable values (test or response variable). Values should have a non-nominal scale. Must be specified if `a` is a pandas DataFrame object. group_col : str, optional Name of a DataFrame column that contains independent variable values (grouping or predictor variable). Values should have a nominal scale (categorical). Must be specified if `a` is a pandas DataFrame object. val_id : int, optional Index of a column that contains dependent variable values (test or response variable). Should be specified if a NumPy ndarray is used as an input. It will be inferred from data, if not specified. group_id : int, optional Index of a column that contains independent variable values (grouping or predictor variable). Should be specified if a NumPy ndarray is used as an input. It will be inferred from data, if not specified. Returns ------- x : pandas DataFrame DataFrame with input data, `val_col` column contains numerical values and `group_col` column contains categorical values. val_col : str Name of a DataFrame column that contains dependent variable values (test or response variable). group_col : str Name of a DataFrame column that contains independent variable values (grouping or predictor variable). Notes ----- Inferrence algorithm for determining `val_id` and `group_id` args is rather simple, so it is better to specify them explicitly to prevent errors. ''' if not group_col: group_col = 'groups' if not val_col: val_col = 'vals' if isinstance(a, DataFrame): x = a.copy() if not {group_col, val_col}.issubset(a.columns): raise ValueError('Specify correct column names using `group_col` and `val_col` args') return x, val_col, group_col elif isinstance(a, list) or (isinstance(a, np.ndarray) and not a.shape.count(2)): grps_len = map(len, a) grps = list(it.chain(*[[i+1] * l for i, l in enumerate(grps_len)])) vals = list(it.chain(*a)) return DataFrame({val_col: vals, group_col: grps}), val_col, group_col elif isinstance(a, np.ndarray): # cols ids not defined # trying to infer if not(all([val_id, group_id])): if np.argmax(a.shape): a = a.T ax = [np.unique(a[:, 0]).size, np.unique(a[:, 1]).size] if np.asscalar(np.diff(ax)): __val_col = np.argmax(ax) __group_col = np.argmin(ax) else: raise ValueError('Cannot infer input format.\nPlease specify `val_id` and `group_id` args') cols = {__val_col: val_col, __group_col: group_col} else: cols = {val_id: val_col, group_id: group_col} cols_vals = dict(sorted(cols.items())).values() return DataFrame(a, columns=cols_vals), val_col, group_col
python
def __convert_to_df(a, val_col=None, group_col=None, val_id=None, group_id=None): '''Hidden helper method to create a DataFrame with input data for further processing. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. Array must be two-dimensional. Second dimension may vary, i.e. groups may have different lengths. val_col : str, optional Name of a DataFrame column that contains dependent variable values (test or response variable). Values should have a non-nominal scale. Must be specified if `a` is a pandas DataFrame object. group_col : str, optional Name of a DataFrame column that contains independent variable values (grouping or predictor variable). Values should have a nominal scale (categorical). Must be specified if `a` is a pandas DataFrame object. val_id : int, optional Index of a column that contains dependent variable values (test or response variable). Should be specified if a NumPy ndarray is used as an input. It will be inferred from data, if not specified. group_id : int, optional Index of a column that contains independent variable values (grouping or predictor variable). Should be specified if a NumPy ndarray is used as an input. It will be inferred from data, if not specified. Returns ------- x : pandas DataFrame DataFrame with input data, `val_col` column contains numerical values and `group_col` column contains categorical values. val_col : str Name of a DataFrame column that contains dependent variable values (test or response variable). group_col : str Name of a DataFrame column that contains independent variable values (grouping or predictor variable). Notes ----- Inferrence algorithm for determining `val_id` and `group_id` args is rather simple, so it is better to specify them explicitly to prevent errors. ''' if not group_col: group_col = 'groups' if not val_col: val_col = 'vals' if isinstance(a, DataFrame): x = a.copy() if not {group_col, val_col}.issubset(a.columns): raise ValueError('Specify correct column names using `group_col` and `val_col` args') return x, val_col, group_col elif isinstance(a, list) or (isinstance(a, np.ndarray) and not a.shape.count(2)): grps_len = map(len, a) grps = list(it.chain(*[[i+1] * l for i, l in enumerate(grps_len)])) vals = list(it.chain(*a)) return DataFrame({val_col: vals, group_col: grps}), val_col, group_col elif isinstance(a, np.ndarray): # cols ids not defined # trying to infer if not(all([val_id, group_id])): if np.argmax(a.shape): a = a.T ax = [np.unique(a[:, 0]).size, np.unique(a[:, 1]).size] if np.asscalar(np.diff(ax)): __val_col = np.argmax(ax) __group_col = np.argmin(ax) else: raise ValueError('Cannot infer input format.\nPlease specify `val_id` and `group_id` args') cols = {__val_col: val_col, __group_col: group_col} else: cols = {val_id: val_col, group_id: group_col} cols_vals = dict(sorted(cols.items())).values() return DataFrame(a, columns=cols_vals), val_col, group_col
[ "def", "__convert_to_df", "(", "a", ",", "val_col", "=", "None", ",", "group_col", "=", "None", ",", "val_id", "=", "None", ",", "group_id", "=", "None", ")", ":", "if", "not", "group_col", ":", "group_col", "=", "'groups'", "if", "not", "val_col", ":", "val_col", "=", "'vals'", "if", "isinstance", "(", "a", ",", "DataFrame", ")", ":", "x", "=", "a", ".", "copy", "(", ")", "if", "not", "{", "group_col", ",", "val_col", "}", ".", "issubset", "(", "a", ".", "columns", ")", ":", "raise", "ValueError", "(", "'Specify correct column names using `group_col` and `val_col` args'", ")", "return", "x", ",", "val_col", ",", "group_col", "elif", "isinstance", "(", "a", ",", "list", ")", "or", "(", "isinstance", "(", "a", ",", "np", ".", "ndarray", ")", "and", "not", "a", ".", "shape", ".", "count", "(", "2", ")", ")", ":", "grps_len", "=", "map", "(", "len", ",", "a", ")", "grps", "=", "list", "(", "it", ".", "chain", "(", "*", "[", "[", "i", "+", "1", "]", "*", "l", "for", "i", ",", "l", "in", "enumerate", "(", "grps_len", ")", "]", ")", ")", "vals", "=", "list", "(", "it", ".", "chain", "(", "*", "a", ")", ")", "return", "DataFrame", "(", "{", "val_col", ":", "vals", ",", "group_col", ":", "grps", "}", ")", ",", "val_col", ",", "group_col", "elif", "isinstance", "(", "a", ",", "np", ".", "ndarray", ")", ":", "# cols ids not defined", "# trying to infer", "if", "not", "(", "all", "(", "[", "val_id", ",", "group_id", "]", ")", ")", ":", "if", "np", ".", "argmax", "(", "a", ".", "shape", ")", ":", "a", "=", "a", ".", "T", "ax", "=", "[", "np", ".", "unique", "(", "a", "[", ":", ",", "0", "]", ")", ".", "size", ",", "np", ".", "unique", "(", "a", "[", ":", ",", "1", "]", ")", ".", "size", "]", "if", "np", ".", "asscalar", "(", "np", ".", "diff", "(", "ax", ")", ")", ":", "__val_col", "=", "np", ".", "argmax", "(", "ax", ")", "__group_col", "=", "np", ".", "argmin", "(", "ax", ")", "else", ":", "raise", "ValueError", "(", "'Cannot infer input format.\\nPlease specify `val_id` and `group_id` args'", ")", "cols", "=", "{", "__val_col", ":", "val_col", ",", "__group_col", ":", "group_col", "}", "else", ":", "cols", "=", "{", "val_id", ":", "val_col", ",", "group_id", ":", "group_col", "}", "cols_vals", "=", "dict", "(", "sorted", "(", "cols", ".", "items", "(", ")", ")", ")", ".", "values", "(", ")", "return", "DataFrame", "(", "a", ",", "columns", "=", "cols_vals", ")", ",", "val_col", ",", "group_col" ]
Hidden helper method to create a DataFrame with input data for further processing. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. Array must be two-dimensional. Second dimension may vary, i.e. groups may have different lengths. val_col : str, optional Name of a DataFrame column that contains dependent variable values (test or response variable). Values should have a non-nominal scale. Must be specified if `a` is a pandas DataFrame object. group_col : str, optional Name of a DataFrame column that contains independent variable values (grouping or predictor variable). Values should have a nominal scale (categorical). Must be specified if `a` is a pandas DataFrame object. val_id : int, optional Index of a column that contains dependent variable values (test or response variable). Should be specified if a NumPy ndarray is used as an input. It will be inferred from data, if not specified. group_id : int, optional Index of a column that contains independent variable values (grouping or predictor variable). Should be specified if a NumPy ndarray is used as an input. It will be inferred from data, if not specified. Returns ------- x : pandas DataFrame DataFrame with input data, `val_col` column contains numerical values and `group_col` column contains categorical values. val_col : str Name of a DataFrame column that contains dependent variable values (test or response variable). group_col : str Name of a DataFrame column that contains independent variable values (grouping or predictor variable). Notes ----- Inferrence algorithm for determining `val_id` and `group_id` args is rather simple, so it is better to specify them explicitly to prevent errors.
[ "Hidden", "helper", "method", "to", "create", "a", "DataFrame", "with", "input", "data", "for", "further", "processing", "." ]
5476b09e2a325cd4e31c0b0bc6906ab5cd77fc5d
https://github.com/maximtrp/scikit-posthocs/blob/5476b09e2a325cd4e31c0b0bc6906ab5cd77fc5d/scikit_posthocs/_posthocs.py#L11-L106
10,024
maximtrp/scikit-posthocs
scikit_posthocs/_posthocs.py
posthoc_tukey_hsd
def posthoc_tukey_hsd(x, g, alpha=0.05): '''Pairwise comparisons with TukeyHSD confidence intervals. This is a convenience function to make statsmodels `pairwise_tukeyhsd` method more applicable for further use. Parameters ---------- x : array_like or pandas Series object, 1d An array, any object exposing the array interface, containing dependent variable values (test or response variable). Values should have a non-nominal scale. NaN values will cause an error (please handle manually). g : array_like or pandas Series object, 1d An array, any object exposing the array interface, containing independent variable values (grouping or predictor variable). Values should have a nominal scale (categorical). alpha : float, optional Significance level for the test. Default is 0.05. Returns ------- result : pandas DataFrame DataFrame with 0, 1, and -1 values, where 0 is False (not significant), 1 is True (significant), and -1 is for diagonal elements. Examples -------- >>> x = [[1,2,3,4,5], [35,31,75,40,21], [10,6,9,6,1]] >>> g = [['a'] * 5, ['b'] * 5, ['c'] * 5] >>> sp.posthoc_tukey_hsd(np.concatenate(x), np.concatenate(g)) ''' result = pairwise_tukeyhsd(x, g, alpha=0.05) groups = np.array(result.groupsunique, dtype=np.str) groups_len = len(groups) vs = np.zeros((groups_len, groups_len), dtype=np.int) for a in result.summary()[1:]: a0 = str(a[0]) a1 = str(a[1]) a0i = np.where(groups == a0)[0][0] a1i = np.where(groups == a1)[0][0] vs[a0i, a1i] = 1 if str(a[5]) == 'True' else 0 vs = np.triu(vs) np.fill_diagonal(vs, -1) tri_lower = np.tril_indices(vs.shape[0], -1) vs[tri_lower] = vs.T[tri_lower] return DataFrame(vs, index=groups, columns=groups)
python
def posthoc_tukey_hsd(x, g, alpha=0.05): '''Pairwise comparisons with TukeyHSD confidence intervals. This is a convenience function to make statsmodels `pairwise_tukeyhsd` method more applicable for further use. Parameters ---------- x : array_like or pandas Series object, 1d An array, any object exposing the array interface, containing dependent variable values (test or response variable). Values should have a non-nominal scale. NaN values will cause an error (please handle manually). g : array_like or pandas Series object, 1d An array, any object exposing the array interface, containing independent variable values (grouping or predictor variable). Values should have a nominal scale (categorical). alpha : float, optional Significance level for the test. Default is 0.05. Returns ------- result : pandas DataFrame DataFrame with 0, 1, and -1 values, where 0 is False (not significant), 1 is True (significant), and -1 is for diagonal elements. Examples -------- >>> x = [[1,2,3,4,5], [35,31,75,40,21], [10,6,9,6,1]] >>> g = [['a'] * 5, ['b'] * 5, ['c'] * 5] >>> sp.posthoc_tukey_hsd(np.concatenate(x), np.concatenate(g)) ''' result = pairwise_tukeyhsd(x, g, alpha=0.05) groups = np.array(result.groupsunique, dtype=np.str) groups_len = len(groups) vs = np.zeros((groups_len, groups_len), dtype=np.int) for a in result.summary()[1:]: a0 = str(a[0]) a1 = str(a[1]) a0i = np.where(groups == a0)[0][0] a1i = np.where(groups == a1)[0][0] vs[a0i, a1i] = 1 if str(a[5]) == 'True' else 0 vs = np.triu(vs) np.fill_diagonal(vs, -1) tri_lower = np.tril_indices(vs.shape[0], -1) vs[tri_lower] = vs.T[tri_lower] return DataFrame(vs, index=groups, columns=groups)
[ "def", "posthoc_tukey_hsd", "(", "x", ",", "g", ",", "alpha", "=", "0.05", ")", ":", "result", "=", "pairwise_tukeyhsd", "(", "x", ",", "g", ",", "alpha", "=", "0.05", ")", "groups", "=", "np", ".", "array", "(", "result", ".", "groupsunique", ",", "dtype", "=", "np", ".", "str", ")", "groups_len", "=", "len", "(", "groups", ")", "vs", "=", "np", ".", "zeros", "(", "(", "groups_len", ",", "groups_len", ")", ",", "dtype", "=", "np", ".", "int", ")", "for", "a", "in", "result", ".", "summary", "(", ")", "[", "1", ":", "]", ":", "a0", "=", "str", "(", "a", "[", "0", "]", ")", "a1", "=", "str", "(", "a", "[", "1", "]", ")", "a0i", "=", "np", ".", "where", "(", "groups", "==", "a0", ")", "[", "0", "]", "[", "0", "]", "a1i", "=", "np", ".", "where", "(", "groups", "==", "a1", ")", "[", "0", "]", "[", "0", "]", "vs", "[", "a0i", ",", "a1i", "]", "=", "1", "if", "str", "(", "a", "[", "5", "]", ")", "==", "'True'", "else", "0", "vs", "=", "np", ".", "triu", "(", "vs", ")", "np", ".", "fill_diagonal", "(", "vs", ",", "-", "1", ")", "tri_lower", "=", "np", ".", "tril_indices", "(", "vs", ".", "shape", "[", "0", "]", ",", "-", "1", ")", "vs", "[", "tri_lower", "]", "=", "vs", ".", "T", "[", "tri_lower", "]", "return", "DataFrame", "(", "vs", ",", "index", "=", "groups", ",", "columns", "=", "groups", ")" ]
Pairwise comparisons with TukeyHSD confidence intervals. This is a convenience function to make statsmodels `pairwise_tukeyhsd` method more applicable for further use. Parameters ---------- x : array_like or pandas Series object, 1d An array, any object exposing the array interface, containing dependent variable values (test or response variable). Values should have a non-nominal scale. NaN values will cause an error (please handle manually). g : array_like or pandas Series object, 1d An array, any object exposing the array interface, containing independent variable values (grouping or predictor variable). Values should have a nominal scale (categorical). alpha : float, optional Significance level for the test. Default is 0.05. Returns ------- result : pandas DataFrame DataFrame with 0, 1, and -1 values, where 0 is False (not significant), 1 is True (significant), and -1 is for diagonal elements. Examples -------- >>> x = [[1,2,3,4,5], [35,31,75,40,21], [10,6,9,6,1]] >>> g = [['a'] * 5, ['b'] * 5, ['c'] * 5] >>> sp.posthoc_tukey_hsd(np.concatenate(x), np.concatenate(g))
[ "Pairwise", "comparisons", "with", "TukeyHSD", "confidence", "intervals", ".", "This", "is", "a", "convenience", "function", "to", "make", "statsmodels", "pairwise_tukeyhsd", "method", "more", "applicable", "for", "further", "use", "." ]
5476b09e2a325cd4e31c0b0bc6906ab5cd77fc5d
https://github.com/maximtrp/scikit-posthocs/blob/5476b09e2a325cd4e31c0b0bc6906ab5cd77fc5d/scikit_posthocs/_posthocs.py#L1845-L1897
10,025
maximtrp/scikit-posthocs
scikit_posthocs/_posthocs.py
posthoc_mannwhitney
def posthoc_mannwhitney(a, val_col=None, group_col=None, use_continuity=True, alternative='two-sided', p_adjust=None, sort=True): '''Pairwise comparisons with Mann-Whitney rank test. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. Array must be two-dimensional. val_col : str, optional Name of a DataFrame column that contains dependent variable values (test or response variable). Values should have a non-nominal scale. Must be specified if `a` is a pandas DataFrame object. group_col : str, optional Name of a DataFrame column that contains independent variable values (grouping or predictor variable). Values should have a nominal scale (categorical). Must be specified if `a` is a pandas DataFrame object. use_continuity : bool, optional Whether a continuity correction (1/2.) should be taken into account. Default is True. alternative : ['two-sided', 'less', or 'greater'], optional Whether to get the p-value for the one-sided hypothesis ('less' or 'greater') or for the two-sided hypothesis ('two-sided'). Defaults to 'two-sided'. p_adjust : str, optional Method for adjusting p values. See statsmodels.sandbox.stats.multicomp for details. Available methods are: 'bonferroni' : one-step correction 'sidak' : one-step correction 'holm-sidak' : step-down method using Sidak adjustments 'holm' : step-down method using Bonferroni adjustments 'simes-hochberg' : step-up method (independent) 'hommel' : closed method based on Simes tests (non-negative) 'fdr_bh' : Benjamini/Hochberg (non-negative) 'fdr_by' : Benjamini/Yekutieli (negative) 'fdr_tsbh' : two stage fdr correction (non-negative) 'fdr_tsbky' : two stage fdr correction (non-negative) sort : bool, optional Specifies whether to sort DataFrame by group_col or not. Recommended unless you sort your data manually. Returns ------- result : pandas DataFrame P values. Notes ----- Refer to `scipy.stats.mannwhitneyu` reference page for further details. Examples -------- >>> x = [[1,2,3,4,5], [35,31,75,40,21], [10,6,9,6,1]] >>> sp.posthoc_mannwhitney(x, p_adjust = 'holm') ''' x, _val_col, _group_col = __convert_to_df(a, val_col, group_col) if not sort: x[_group_col] = Categorical(x[_group_col], categories=x[_group_col].unique(), ordered=True) x.sort_values(by=[_group_col, _val_col], ascending=True, inplace=True) groups = np.unique(x[_group_col]) x_len = groups.size vs = np.zeros((x_len, x_len)) tri_upper = np.triu_indices(vs.shape[0], 1) tri_lower = np.tril_indices(vs.shape[0], -1) vs[:,:] = 0 combs = it.combinations(range(x_len), 2) for i,j in combs: vs[i, j] = ss.mannwhitneyu(x.loc[x[_group_col] == groups[i], _val_col], x.loc[x[_group_col] == groups[j], _val_col], use_continuity=use_continuity, alternative=alternative)[1] if p_adjust: vs[tri_upper] = multipletests(vs[tri_upper], method = p_adjust)[1] vs[tri_lower] = vs.T[tri_lower] np.fill_diagonal(vs, -1) return DataFrame(vs, index=groups, columns=groups)
python
def posthoc_mannwhitney(a, val_col=None, group_col=None, use_continuity=True, alternative='two-sided', p_adjust=None, sort=True): '''Pairwise comparisons with Mann-Whitney rank test. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. Array must be two-dimensional. val_col : str, optional Name of a DataFrame column that contains dependent variable values (test or response variable). Values should have a non-nominal scale. Must be specified if `a` is a pandas DataFrame object. group_col : str, optional Name of a DataFrame column that contains independent variable values (grouping or predictor variable). Values should have a nominal scale (categorical). Must be specified if `a` is a pandas DataFrame object. use_continuity : bool, optional Whether a continuity correction (1/2.) should be taken into account. Default is True. alternative : ['two-sided', 'less', or 'greater'], optional Whether to get the p-value for the one-sided hypothesis ('less' or 'greater') or for the two-sided hypothesis ('two-sided'). Defaults to 'two-sided'. p_adjust : str, optional Method for adjusting p values. See statsmodels.sandbox.stats.multicomp for details. Available methods are: 'bonferroni' : one-step correction 'sidak' : one-step correction 'holm-sidak' : step-down method using Sidak adjustments 'holm' : step-down method using Bonferroni adjustments 'simes-hochberg' : step-up method (independent) 'hommel' : closed method based on Simes tests (non-negative) 'fdr_bh' : Benjamini/Hochberg (non-negative) 'fdr_by' : Benjamini/Yekutieli (negative) 'fdr_tsbh' : two stage fdr correction (non-negative) 'fdr_tsbky' : two stage fdr correction (non-negative) sort : bool, optional Specifies whether to sort DataFrame by group_col or not. Recommended unless you sort your data manually. Returns ------- result : pandas DataFrame P values. Notes ----- Refer to `scipy.stats.mannwhitneyu` reference page for further details. Examples -------- >>> x = [[1,2,3,4,5], [35,31,75,40,21], [10,6,9,6,1]] >>> sp.posthoc_mannwhitney(x, p_adjust = 'holm') ''' x, _val_col, _group_col = __convert_to_df(a, val_col, group_col) if not sort: x[_group_col] = Categorical(x[_group_col], categories=x[_group_col].unique(), ordered=True) x.sort_values(by=[_group_col, _val_col], ascending=True, inplace=True) groups = np.unique(x[_group_col]) x_len = groups.size vs = np.zeros((x_len, x_len)) tri_upper = np.triu_indices(vs.shape[0], 1) tri_lower = np.tril_indices(vs.shape[0], -1) vs[:,:] = 0 combs = it.combinations(range(x_len), 2) for i,j in combs: vs[i, j] = ss.mannwhitneyu(x.loc[x[_group_col] == groups[i], _val_col], x.loc[x[_group_col] == groups[j], _val_col], use_continuity=use_continuity, alternative=alternative)[1] if p_adjust: vs[tri_upper] = multipletests(vs[tri_upper], method = p_adjust)[1] vs[tri_lower] = vs.T[tri_lower] np.fill_diagonal(vs, -1) return DataFrame(vs, index=groups, columns=groups)
[ "def", "posthoc_mannwhitney", "(", "a", ",", "val_col", "=", "None", ",", "group_col", "=", "None", ",", "use_continuity", "=", "True", ",", "alternative", "=", "'two-sided'", ",", "p_adjust", "=", "None", ",", "sort", "=", "True", ")", ":", "x", ",", "_val_col", ",", "_group_col", "=", "__convert_to_df", "(", "a", ",", "val_col", ",", "group_col", ")", "if", "not", "sort", ":", "x", "[", "_group_col", "]", "=", "Categorical", "(", "x", "[", "_group_col", "]", ",", "categories", "=", "x", "[", "_group_col", "]", ".", "unique", "(", ")", ",", "ordered", "=", "True", ")", "x", ".", "sort_values", "(", "by", "=", "[", "_group_col", ",", "_val_col", "]", ",", "ascending", "=", "True", ",", "inplace", "=", "True", ")", "groups", "=", "np", ".", "unique", "(", "x", "[", "_group_col", "]", ")", "x_len", "=", "groups", ".", "size", "vs", "=", "np", ".", "zeros", "(", "(", "x_len", ",", "x_len", ")", ")", "tri_upper", "=", "np", ".", "triu_indices", "(", "vs", ".", "shape", "[", "0", "]", ",", "1", ")", "tri_lower", "=", "np", ".", "tril_indices", "(", "vs", ".", "shape", "[", "0", "]", ",", "-", "1", ")", "vs", "[", ":", ",", ":", "]", "=", "0", "combs", "=", "it", ".", "combinations", "(", "range", "(", "x_len", ")", ",", "2", ")", "for", "i", ",", "j", "in", "combs", ":", "vs", "[", "i", ",", "j", "]", "=", "ss", ".", "mannwhitneyu", "(", "x", ".", "loc", "[", "x", "[", "_group_col", "]", "==", "groups", "[", "i", "]", ",", "_val_col", "]", ",", "x", ".", "loc", "[", "x", "[", "_group_col", "]", "==", "groups", "[", "j", "]", ",", "_val_col", "]", ",", "use_continuity", "=", "use_continuity", ",", "alternative", "=", "alternative", ")", "[", "1", "]", "if", "p_adjust", ":", "vs", "[", "tri_upper", "]", "=", "multipletests", "(", "vs", "[", "tri_upper", "]", ",", "method", "=", "p_adjust", ")", "[", "1", "]", "vs", "[", "tri_lower", "]", "=", "vs", ".", "T", "[", "tri_lower", "]", "np", ".", "fill_diagonal", "(", "vs", ",", "-", "1", ")", "return", "DataFrame", "(", "vs", ",", "index", "=", "groups", ",", "columns", "=", "groups", ")" ]
Pairwise comparisons with Mann-Whitney rank test. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. Array must be two-dimensional. val_col : str, optional Name of a DataFrame column that contains dependent variable values (test or response variable). Values should have a non-nominal scale. Must be specified if `a` is a pandas DataFrame object. group_col : str, optional Name of a DataFrame column that contains independent variable values (grouping or predictor variable). Values should have a nominal scale (categorical). Must be specified if `a` is a pandas DataFrame object. use_continuity : bool, optional Whether a continuity correction (1/2.) should be taken into account. Default is True. alternative : ['two-sided', 'less', or 'greater'], optional Whether to get the p-value for the one-sided hypothesis ('less' or 'greater') or for the two-sided hypothesis ('two-sided'). Defaults to 'two-sided'. p_adjust : str, optional Method for adjusting p values. See statsmodels.sandbox.stats.multicomp for details. Available methods are: 'bonferroni' : one-step correction 'sidak' : one-step correction 'holm-sidak' : step-down method using Sidak adjustments 'holm' : step-down method using Bonferroni adjustments 'simes-hochberg' : step-up method (independent) 'hommel' : closed method based on Simes tests (non-negative) 'fdr_bh' : Benjamini/Hochberg (non-negative) 'fdr_by' : Benjamini/Yekutieli (negative) 'fdr_tsbh' : two stage fdr correction (non-negative) 'fdr_tsbky' : two stage fdr correction (non-negative) sort : bool, optional Specifies whether to sort DataFrame by group_col or not. Recommended unless you sort your data manually. Returns ------- result : pandas DataFrame P values. Notes ----- Refer to `scipy.stats.mannwhitneyu` reference page for further details. Examples -------- >>> x = [[1,2,3,4,5], [35,31,75,40,21], [10,6,9,6,1]] >>> sp.posthoc_mannwhitney(x, p_adjust = 'holm')
[ "Pairwise", "comparisons", "with", "Mann", "-", "Whitney", "rank", "test", "." ]
5476b09e2a325cd4e31c0b0bc6906ab5cd77fc5d
https://github.com/maximtrp/scikit-posthocs/blob/5476b09e2a325cd4e31c0b0bc6906ab5cd77fc5d/scikit_posthocs/_posthocs.py#L1900-L1991
10,026
maximtrp/scikit-posthocs
scikit_posthocs/_posthocs.py
posthoc_wilcoxon
def posthoc_wilcoxon(a, val_col=None, group_col=None, zero_method='wilcox', correction=False, p_adjust=None, sort=False): '''Pairwise comparisons with Wilcoxon signed-rank test. It is a non-parametric version of the paired T-test for use with non-parametric ANOVA. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. Array must be two-dimensional. val_col : str, optional Name of a DataFrame column that contains dependent variable values (test or response variable). Values should have a non-nominal scale. Must be specified if `a` is a pandas DataFrame object. group_col : str, optional Name of a DataFrame column that contains independent variable values (grouping or predictor variable). Values should have a nominal scale (categorical). Must be specified if `a` is a pandas DataFrame object. zero_method : string, {"pratt", "wilcox", "zsplit"}, optional "pratt": Pratt treatment, includes zero-differences in the ranking process (more conservative) "wilcox": Wilcox treatment, discards all zero-differences "zsplit": Zero rank split, just like Pratt, but spliting the zero rank between positive and negative ones correction : bool, optional If True, apply continuity correction by adjusting the Wilcoxon rank statistic by 0.5 towards the mean value when computing the z-statistic. Default is False. p_adjust : str, optional Method for adjusting p values. See statsmodels.sandbox.stats.multicomp for details. Available methods are: 'bonferroni' : one-step correction 'sidak' : one-step correction 'holm-sidak' : step-down method using Sidak adjustments 'holm' : step-down method using Bonferroni adjustments 'simes-hochberg' : step-up method (independent) 'hommel' : closed method based on Simes tests (non-negative) 'fdr_bh' : Benjamini/Hochberg (non-negative) 'fdr_by' : Benjamini/Yekutieli (negative) 'fdr_tsbh' : two stage fdr correction (non-negative) 'fdr_tsbky' : two stage fdr correction (non-negative) sort : bool, optional Specifies whether to sort DataFrame by group_col and val_col or not. Default is False. Returns ------- result : pandas DataFrame P values. Notes ----- Refer to `scipy.stats.wilcoxon` reference page for further details. Examples -------- >>> x = [[1,2,3,4,5], [35,31,75,40,21], [10,6,9,6,1]] >>> sp.posthoc_wilcoxon(x) ''' x, _val_col, _group_col = __convert_to_df(a, val_col, group_col) if not sort: x[_group_col] = Categorical(x[_group_col], categories=x[_group_col].unique(), ordered=True) #x.sort_values(by=[_group_col, _val_col], ascending=True, inplace=True) groups = np.unique(x[_group_col]) x_len = groups.size vs = np.zeros((x_len, x_len)) tri_upper = np.triu_indices(vs.shape[0], 1) tri_lower = np.tril_indices(vs.shape[0], -1) vs[:,:] = 0 combs = it.combinations(range(x_len), 2) for i,j in combs: vs[i, j] = ss.wilcoxon(x.loc[x[_group_col] == groups[i], _val_col], x.loc[x[_group_col] == groups[j], _val_col], zero_method=zero_method, correction=correction)[1] if p_adjust: vs[tri_upper] = multipletests(vs[tri_upper], method=p_adjust)[1] vs[tri_lower] = vs.T[tri_lower] np.fill_diagonal(vs, -1) return DataFrame(vs, index=groups, columns=groups)
python
def posthoc_wilcoxon(a, val_col=None, group_col=None, zero_method='wilcox', correction=False, p_adjust=None, sort=False): '''Pairwise comparisons with Wilcoxon signed-rank test. It is a non-parametric version of the paired T-test for use with non-parametric ANOVA. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. Array must be two-dimensional. val_col : str, optional Name of a DataFrame column that contains dependent variable values (test or response variable). Values should have a non-nominal scale. Must be specified if `a` is a pandas DataFrame object. group_col : str, optional Name of a DataFrame column that contains independent variable values (grouping or predictor variable). Values should have a nominal scale (categorical). Must be specified if `a` is a pandas DataFrame object. zero_method : string, {"pratt", "wilcox", "zsplit"}, optional "pratt": Pratt treatment, includes zero-differences in the ranking process (more conservative) "wilcox": Wilcox treatment, discards all zero-differences "zsplit": Zero rank split, just like Pratt, but spliting the zero rank between positive and negative ones correction : bool, optional If True, apply continuity correction by adjusting the Wilcoxon rank statistic by 0.5 towards the mean value when computing the z-statistic. Default is False. p_adjust : str, optional Method for adjusting p values. See statsmodels.sandbox.stats.multicomp for details. Available methods are: 'bonferroni' : one-step correction 'sidak' : one-step correction 'holm-sidak' : step-down method using Sidak adjustments 'holm' : step-down method using Bonferroni adjustments 'simes-hochberg' : step-up method (independent) 'hommel' : closed method based on Simes tests (non-negative) 'fdr_bh' : Benjamini/Hochberg (non-negative) 'fdr_by' : Benjamini/Yekutieli (negative) 'fdr_tsbh' : two stage fdr correction (non-negative) 'fdr_tsbky' : two stage fdr correction (non-negative) sort : bool, optional Specifies whether to sort DataFrame by group_col and val_col or not. Default is False. Returns ------- result : pandas DataFrame P values. Notes ----- Refer to `scipy.stats.wilcoxon` reference page for further details. Examples -------- >>> x = [[1,2,3,4,5], [35,31,75,40,21], [10,6,9,6,1]] >>> sp.posthoc_wilcoxon(x) ''' x, _val_col, _group_col = __convert_to_df(a, val_col, group_col) if not sort: x[_group_col] = Categorical(x[_group_col], categories=x[_group_col].unique(), ordered=True) #x.sort_values(by=[_group_col, _val_col], ascending=True, inplace=True) groups = np.unique(x[_group_col]) x_len = groups.size vs = np.zeros((x_len, x_len)) tri_upper = np.triu_indices(vs.shape[0], 1) tri_lower = np.tril_indices(vs.shape[0], -1) vs[:,:] = 0 combs = it.combinations(range(x_len), 2) for i,j in combs: vs[i, j] = ss.wilcoxon(x.loc[x[_group_col] == groups[i], _val_col], x.loc[x[_group_col] == groups[j], _val_col], zero_method=zero_method, correction=correction)[1] if p_adjust: vs[tri_upper] = multipletests(vs[tri_upper], method=p_adjust)[1] vs[tri_lower] = vs.T[tri_lower] np.fill_diagonal(vs, -1) return DataFrame(vs, index=groups, columns=groups)
[ "def", "posthoc_wilcoxon", "(", "a", ",", "val_col", "=", "None", ",", "group_col", "=", "None", ",", "zero_method", "=", "'wilcox'", ",", "correction", "=", "False", ",", "p_adjust", "=", "None", ",", "sort", "=", "False", ")", ":", "x", ",", "_val_col", ",", "_group_col", "=", "__convert_to_df", "(", "a", ",", "val_col", ",", "group_col", ")", "if", "not", "sort", ":", "x", "[", "_group_col", "]", "=", "Categorical", "(", "x", "[", "_group_col", "]", ",", "categories", "=", "x", "[", "_group_col", "]", ".", "unique", "(", ")", ",", "ordered", "=", "True", ")", "#x.sort_values(by=[_group_col, _val_col], ascending=True, inplace=True)", "groups", "=", "np", ".", "unique", "(", "x", "[", "_group_col", "]", ")", "x_len", "=", "groups", ".", "size", "vs", "=", "np", ".", "zeros", "(", "(", "x_len", ",", "x_len", ")", ")", "tri_upper", "=", "np", ".", "triu_indices", "(", "vs", ".", "shape", "[", "0", "]", ",", "1", ")", "tri_lower", "=", "np", ".", "tril_indices", "(", "vs", ".", "shape", "[", "0", "]", ",", "-", "1", ")", "vs", "[", ":", ",", ":", "]", "=", "0", "combs", "=", "it", ".", "combinations", "(", "range", "(", "x_len", ")", ",", "2", ")", "for", "i", ",", "j", "in", "combs", ":", "vs", "[", "i", ",", "j", "]", "=", "ss", ".", "wilcoxon", "(", "x", ".", "loc", "[", "x", "[", "_group_col", "]", "==", "groups", "[", "i", "]", ",", "_val_col", "]", ",", "x", ".", "loc", "[", "x", "[", "_group_col", "]", "==", "groups", "[", "j", "]", ",", "_val_col", "]", ",", "zero_method", "=", "zero_method", ",", "correction", "=", "correction", ")", "[", "1", "]", "if", "p_adjust", ":", "vs", "[", "tri_upper", "]", "=", "multipletests", "(", "vs", "[", "tri_upper", "]", ",", "method", "=", "p_adjust", ")", "[", "1", "]", "vs", "[", "tri_lower", "]", "=", "vs", ".", "T", "[", "tri_lower", "]", "np", ".", "fill_diagonal", "(", "vs", ",", "-", "1", ")", "return", "DataFrame", "(", "vs", ",", "index", "=", "groups", ",", "columns", "=", "groups", ")" ]
Pairwise comparisons with Wilcoxon signed-rank test. It is a non-parametric version of the paired T-test for use with non-parametric ANOVA. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. Array must be two-dimensional. val_col : str, optional Name of a DataFrame column that contains dependent variable values (test or response variable). Values should have a non-nominal scale. Must be specified if `a` is a pandas DataFrame object. group_col : str, optional Name of a DataFrame column that contains independent variable values (grouping or predictor variable). Values should have a nominal scale (categorical). Must be specified if `a` is a pandas DataFrame object. zero_method : string, {"pratt", "wilcox", "zsplit"}, optional "pratt": Pratt treatment, includes zero-differences in the ranking process (more conservative) "wilcox": Wilcox treatment, discards all zero-differences "zsplit": Zero rank split, just like Pratt, but spliting the zero rank between positive and negative ones correction : bool, optional If True, apply continuity correction by adjusting the Wilcoxon rank statistic by 0.5 towards the mean value when computing the z-statistic. Default is False. p_adjust : str, optional Method for adjusting p values. See statsmodels.sandbox.stats.multicomp for details. Available methods are: 'bonferroni' : one-step correction 'sidak' : one-step correction 'holm-sidak' : step-down method using Sidak adjustments 'holm' : step-down method using Bonferroni adjustments 'simes-hochberg' : step-up method (independent) 'hommel' : closed method based on Simes tests (non-negative) 'fdr_bh' : Benjamini/Hochberg (non-negative) 'fdr_by' : Benjamini/Yekutieli (negative) 'fdr_tsbh' : two stage fdr correction (non-negative) 'fdr_tsbky' : two stage fdr correction (non-negative) sort : bool, optional Specifies whether to sort DataFrame by group_col and val_col or not. Default is False. Returns ------- result : pandas DataFrame P values. Notes ----- Refer to `scipy.stats.wilcoxon` reference page for further details. Examples -------- >>> x = [[1,2,3,4,5], [35,31,75,40,21], [10,6,9,6,1]] >>> sp.posthoc_wilcoxon(x)
[ "Pairwise", "comparisons", "with", "Wilcoxon", "signed", "-", "rank", "test", ".", "It", "is", "a", "non", "-", "parametric", "version", "of", "the", "paired", "T", "-", "test", "for", "use", "with", "non", "-", "parametric", "ANOVA", "." ]
5476b09e2a325cd4e31c0b0bc6906ab5cd77fc5d
https://github.com/maximtrp/scikit-posthocs/blob/5476b09e2a325cd4e31c0b0bc6906ab5cd77fc5d/scikit_posthocs/_posthocs.py#L1994-L2086
10,027
cjrh/aiorun
aiorun.py
shutdown_waits_for
def shutdown_waits_for(coro, loop=None): """Prevent coro from being cancelled during the shutdown sequence. The trick here is that we add this coro to the global "DO_NOT_CANCEL" collection, and then later during the shutdown sequence we make sure that the task that wraps this coro will NOT be cancelled. To make this work, we have to create a super-secret task, below, that communicates with the caller (which "awaits" us) via a Future. Using a Future in this way allows us to avoid awaiting the Task, which decouples the Task from the normal exception propagation which would normally happen when the outer Task gets cancelled. We get the result of coro back to the caller via Future.set_result. NOTE that during the shutdown sequence, the caller WILL NOT be able to receive a result, since the caller will likely have been cancelled. So you should probably not rely on capturing results via this function. """ loop = loop or get_event_loop() fut = loop.create_future() # This future will connect coro and the caller. async def coro_proxy(): """This function will await coro, but it will also send the result over the the future. Remember: the outside caller (of shutdown_waits_for) will be awaiting fut, NOT coro(), due to the decoupling. However, when coro completes, we need to send its result over to the fut to make it look *as if* it was just coro running the whole time. This whole thing is a teeny magic trick. """ try: result = await coro except (CancelledError, Exception) as e: set_fut_done = partial(fut.set_exception, e) else: set_fut_done = partial(fut.set_result, result) if not fut.cancelled(): set_fut_done() new_coro = coro_proxy() # We'll taskify this one instead of coro. _DO_NOT_CANCEL_COROS.add(new_coro) # The new task must not be cancelled. loop.create_task(new_coro) # Make the task # Ok, so we *could* simply return fut. Callers can await it as normal, # e.g. # # async def blah(): # x = await shutdown_waits_for(bleh()) # # That will work fine. However, callers may *also* want to detach the # call from the current execution context, e.g. # # async def blah(): # loop.create_task(shutdown_waits_for(bleh())) # # This will only work if shutdown_waits_for() returns a coroutine. # Therefore, we just make a new coroutine to wrap the `await fut` and # return that. Then both things will work. # # (Side note: instead of callers using create_tasks, it would also work # if they used `asyncio.ensure_future()` instead, since that can work # with futures. But I don't like ensure_future.) # # (Another side note: You don't even need `create_task()` or # `ensure_future()`...If you don't want a result, you can just call # `shutdown_waits_for()` as a flat function call, no await or anything, # and it should still work; unfortunately it causes a RuntimeWarning to # tell you that ``inner()`` was never awaited :/ async def inner(): return await fut return inner()
python
def shutdown_waits_for(coro, loop=None): """Prevent coro from being cancelled during the shutdown sequence. The trick here is that we add this coro to the global "DO_NOT_CANCEL" collection, and then later during the shutdown sequence we make sure that the task that wraps this coro will NOT be cancelled. To make this work, we have to create a super-secret task, below, that communicates with the caller (which "awaits" us) via a Future. Using a Future in this way allows us to avoid awaiting the Task, which decouples the Task from the normal exception propagation which would normally happen when the outer Task gets cancelled. We get the result of coro back to the caller via Future.set_result. NOTE that during the shutdown sequence, the caller WILL NOT be able to receive a result, since the caller will likely have been cancelled. So you should probably not rely on capturing results via this function. """ loop = loop or get_event_loop() fut = loop.create_future() # This future will connect coro and the caller. async def coro_proxy(): """This function will await coro, but it will also send the result over the the future. Remember: the outside caller (of shutdown_waits_for) will be awaiting fut, NOT coro(), due to the decoupling. However, when coro completes, we need to send its result over to the fut to make it look *as if* it was just coro running the whole time. This whole thing is a teeny magic trick. """ try: result = await coro except (CancelledError, Exception) as e: set_fut_done = partial(fut.set_exception, e) else: set_fut_done = partial(fut.set_result, result) if not fut.cancelled(): set_fut_done() new_coro = coro_proxy() # We'll taskify this one instead of coro. _DO_NOT_CANCEL_COROS.add(new_coro) # The new task must not be cancelled. loop.create_task(new_coro) # Make the task # Ok, so we *could* simply return fut. Callers can await it as normal, # e.g. # # async def blah(): # x = await shutdown_waits_for(bleh()) # # That will work fine. However, callers may *also* want to detach the # call from the current execution context, e.g. # # async def blah(): # loop.create_task(shutdown_waits_for(bleh())) # # This will only work if shutdown_waits_for() returns a coroutine. # Therefore, we just make a new coroutine to wrap the `await fut` and # return that. Then both things will work. # # (Side note: instead of callers using create_tasks, it would also work # if they used `asyncio.ensure_future()` instead, since that can work # with futures. But I don't like ensure_future.) # # (Another side note: You don't even need `create_task()` or # `ensure_future()`...If you don't want a result, you can just call # `shutdown_waits_for()` as a flat function call, no await or anything, # and it should still work; unfortunately it causes a RuntimeWarning to # tell you that ``inner()`` was never awaited :/ async def inner(): return await fut return inner()
[ "def", "shutdown_waits_for", "(", "coro", ",", "loop", "=", "None", ")", ":", "loop", "=", "loop", "or", "get_event_loop", "(", ")", "fut", "=", "loop", ".", "create_future", "(", ")", "# This future will connect coro and the caller.", "async", "def", "coro_proxy", "(", ")", ":", "\"\"\"This function will await coro, but it will also send the result\n over the the future. Remember: the outside caller (of\n shutdown_waits_for) will be awaiting fut, NOT coro(), due to\n the decoupling. However, when coro completes, we need to send its\n result over to the fut to make it look *as if* it was just coro\n running the whole time. This whole thing is a teeny magic trick.\n \"\"\"", "try", ":", "result", "=", "await", "coro", "except", "(", "CancelledError", ",", "Exception", ")", "as", "e", ":", "set_fut_done", "=", "partial", "(", "fut", ".", "set_exception", ",", "e", ")", "else", ":", "set_fut_done", "=", "partial", "(", "fut", ".", "set_result", ",", "result", ")", "if", "not", "fut", ".", "cancelled", "(", ")", ":", "set_fut_done", "(", ")", "new_coro", "=", "coro_proxy", "(", ")", "# We'll taskify this one instead of coro.", "_DO_NOT_CANCEL_COROS", ".", "add", "(", "new_coro", ")", "# The new task must not be cancelled.", "loop", ".", "create_task", "(", "new_coro", ")", "# Make the task", "# Ok, so we *could* simply return fut. Callers can await it as normal,", "# e.g.", "#", "# async def blah():", "# x = await shutdown_waits_for(bleh())", "#", "# That will work fine. However, callers may *also* want to detach the", "# call from the current execution context, e.g.", "#", "# async def blah():", "# loop.create_task(shutdown_waits_for(bleh()))", "#", "# This will only work if shutdown_waits_for() returns a coroutine.", "# Therefore, we just make a new coroutine to wrap the `await fut` and", "# return that. Then both things will work.", "#", "# (Side note: instead of callers using create_tasks, it would also work", "# if they used `asyncio.ensure_future()` instead, since that can work", "# with futures. But I don't like ensure_future.)", "#", "# (Another side note: You don't even need `create_task()` or", "# `ensure_future()`...If you don't want a result, you can just call", "# `shutdown_waits_for()` as a flat function call, no await or anything,", "# and it should still work; unfortunately it causes a RuntimeWarning to", "# tell you that ``inner()`` was never awaited :/", "async", "def", "inner", "(", ")", ":", "return", "await", "fut", "return", "inner", "(", ")" ]
Prevent coro from being cancelled during the shutdown sequence. The trick here is that we add this coro to the global "DO_NOT_CANCEL" collection, and then later during the shutdown sequence we make sure that the task that wraps this coro will NOT be cancelled. To make this work, we have to create a super-secret task, below, that communicates with the caller (which "awaits" us) via a Future. Using a Future in this way allows us to avoid awaiting the Task, which decouples the Task from the normal exception propagation which would normally happen when the outer Task gets cancelled. We get the result of coro back to the caller via Future.set_result. NOTE that during the shutdown sequence, the caller WILL NOT be able to receive a result, since the caller will likely have been cancelled. So you should probably not rely on capturing results via this function.
[ "Prevent", "coro", "from", "being", "cancelled", "during", "the", "shutdown", "sequence", "." ]
23c73318447f578a4a24845c5f43574ac7b414e4
https://github.com/cjrh/aiorun/blob/23c73318447f578a4a24845c5f43574ac7b414e4/aiorun.py#L43-L117
10,028
cjrh/aiorun
aiorun.py
run
def run(coro: 'Optional[Coroutine]' = None, *, loop: Optional[AbstractEventLoop] = None, shutdown_handler: Optional[Callable[[AbstractEventLoop], None]] = None, executor_workers: int = 10, executor: Optional[Executor] = None, use_uvloop: bool = False) -> None: """ Start up the event loop, and wait for a signal to shut down. :param coro: Optionally supply a coroutine. The loop will still run if missing. The loop will continue to run after the supplied coroutine finishes. The supplied coroutine is typically a "main" coroutine from which all other work is spawned. :param loop: Optionally supply your own loop. If missing, the default loop attached to the current thread context will be used, i.e., whatever ``asyncio.get_event_loop()`` returns. :param shutdown_handler: By default, SIGINT and SIGTERM will be handled and will stop the loop, thereby invoking the shutdown sequence. Alternatively you can supply your own shutdown handler function. It should conform to the type spec as shown in the function signature. :param executor_workers: The number of workers in the executor. (NOTE: ``run()`` creates a new executor instance internally, regardless of whether you supply your own loop.) :param executor: You can decide to use your own executor instance if you like. :param use_uvloop: The loop policy will be set to use uvloop. It is your responsibility to install uvloop. If missing, an ``ImportError`` will be raised. """ logger.debug('Entering run()') assert not (loop and use_uvloop), ( "'loop' and 'use_uvloop' parameters are mutually " "exclusive. (Just make your own uvloop and pass it in)." ) if use_uvloop: import uvloop asyncio.set_event_loop_policy(uvloop.EventLoopPolicy()) loop_was_supplied = bool(loop) if not loop_was_supplied: loop = get_event_loop() if coro: async def new_coro(): """During shutdown, run_until_complete() will exit if a CancelledError bubbles up from anything in the group. To counteract that, we'll try to handle any CancelledErrors that bubble up from the given coro. This isn't fool-proof: if the user doesn't provide a coro, and instead creates their own with loop.create_task, that task might bubble a CancelledError into the run_until_complete().""" try: await coro except asyncio.CancelledError: pass loop.create_task(new_coro()) shutdown_handler = shutdown_handler or _shutdown_handler if WINDOWS: # pragma: no cover # This is to allow CTRL-C to be detected in a timely fashion, # see: https://bugs.python.org/issue23057#msg246316 loop.create_task(windows_support_wakeup()) # This is to be able to handle SIGBREAK. def windows_handler(sig, frame): # Disable the handler so it won't be called again. signame = signal.Signals(sig).name logger.critical('Received signal: %s. Stopping the loop.', signame) shutdown_handler(loop) signal.signal(signal.SIGBREAK, windows_handler) signal.signal(signal.SIGINT, windows_handler) else: loop.add_signal_handler(SIGINT, shutdown_handler, loop) loop.add_signal_handler(SIGTERM, shutdown_handler, loop) # TODO: We probably don't want to create a different executor if the # TODO: loop was supplied. (User might have put stuff on that loop's # TODO: executor). if not executor: logger.debug('Creating default executor') executor = ThreadPoolExecutor(max_workers=executor_workers) loop.set_default_executor(executor) try: loop.run_forever() except KeyboardInterrupt: # pragma: no cover logger.info('Got KeyboardInterrupt') if WINDOWS: # Windows doesn't do any POSIX signal handling, and no # abstraction layer for signals is currently implemented in # asyncio. So we fall back to KeyboardInterrupt (triggered # by the user/environment sending CTRL-C, or signal.CTRL_C_EVENT shutdown_handler() logger.info('Entering shutdown phase.') def sep(): tasks = all_tasks(loop=loop) do_not_cancel = set() for t in tasks: # TODO: we don't need access to the coro. We could simply # TODO: store the task itself in the weakset. if t._coro in _DO_NOT_CANCEL_COROS: do_not_cancel.add(t) tasks -= do_not_cancel logger.info('Cancelling pending tasks.') for t in tasks: logger.debug('Cancelling task: %s', t) t.cancel() return tasks, do_not_cancel tasks, do_not_cancel = sep() # Here's a protip: if you group a bunch of tasks, and some of them # get cancelled, and they DON'T HANDLE THE CANCELLATION, then the # raised CancelledError will bubble up to, and stop the # loop.run_until_complete() line: meaning, not all the tasks in # the gathered group will actually be complete. You need to # enable this with the ``return_exceptions`` flag. group = gather(*tasks, *do_not_cancel, return_exceptions=True) logger.info('Running pending tasks till complete') # TODO: obtain all the results, and log any results that are exceptions # other than CancelledError. Will be useful for troubleshooting. loop.run_until_complete(group) logger.info('Waiting for executor shutdown.') executor.shutdown(wait=True) # If loop was supplied, it's up to the caller to close! if not loop_was_supplied: logger.info('Closing the loop.') loop.close() logger.critical('Leaving. Bye!')
python
def run(coro: 'Optional[Coroutine]' = None, *, loop: Optional[AbstractEventLoop] = None, shutdown_handler: Optional[Callable[[AbstractEventLoop], None]] = None, executor_workers: int = 10, executor: Optional[Executor] = None, use_uvloop: bool = False) -> None: """ Start up the event loop, and wait for a signal to shut down. :param coro: Optionally supply a coroutine. The loop will still run if missing. The loop will continue to run after the supplied coroutine finishes. The supplied coroutine is typically a "main" coroutine from which all other work is spawned. :param loop: Optionally supply your own loop. If missing, the default loop attached to the current thread context will be used, i.e., whatever ``asyncio.get_event_loop()`` returns. :param shutdown_handler: By default, SIGINT and SIGTERM will be handled and will stop the loop, thereby invoking the shutdown sequence. Alternatively you can supply your own shutdown handler function. It should conform to the type spec as shown in the function signature. :param executor_workers: The number of workers in the executor. (NOTE: ``run()`` creates a new executor instance internally, regardless of whether you supply your own loop.) :param executor: You can decide to use your own executor instance if you like. :param use_uvloop: The loop policy will be set to use uvloop. It is your responsibility to install uvloop. If missing, an ``ImportError`` will be raised. """ logger.debug('Entering run()') assert not (loop and use_uvloop), ( "'loop' and 'use_uvloop' parameters are mutually " "exclusive. (Just make your own uvloop and pass it in)." ) if use_uvloop: import uvloop asyncio.set_event_loop_policy(uvloop.EventLoopPolicy()) loop_was_supplied = bool(loop) if not loop_was_supplied: loop = get_event_loop() if coro: async def new_coro(): """During shutdown, run_until_complete() will exit if a CancelledError bubbles up from anything in the group. To counteract that, we'll try to handle any CancelledErrors that bubble up from the given coro. This isn't fool-proof: if the user doesn't provide a coro, and instead creates their own with loop.create_task, that task might bubble a CancelledError into the run_until_complete().""" try: await coro except asyncio.CancelledError: pass loop.create_task(new_coro()) shutdown_handler = shutdown_handler or _shutdown_handler if WINDOWS: # pragma: no cover # This is to allow CTRL-C to be detected in a timely fashion, # see: https://bugs.python.org/issue23057#msg246316 loop.create_task(windows_support_wakeup()) # This is to be able to handle SIGBREAK. def windows_handler(sig, frame): # Disable the handler so it won't be called again. signame = signal.Signals(sig).name logger.critical('Received signal: %s. Stopping the loop.', signame) shutdown_handler(loop) signal.signal(signal.SIGBREAK, windows_handler) signal.signal(signal.SIGINT, windows_handler) else: loop.add_signal_handler(SIGINT, shutdown_handler, loop) loop.add_signal_handler(SIGTERM, shutdown_handler, loop) # TODO: We probably don't want to create a different executor if the # TODO: loop was supplied. (User might have put stuff on that loop's # TODO: executor). if not executor: logger.debug('Creating default executor') executor = ThreadPoolExecutor(max_workers=executor_workers) loop.set_default_executor(executor) try: loop.run_forever() except KeyboardInterrupt: # pragma: no cover logger.info('Got KeyboardInterrupt') if WINDOWS: # Windows doesn't do any POSIX signal handling, and no # abstraction layer for signals is currently implemented in # asyncio. So we fall back to KeyboardInterrupt (triggered # by the user/environment sending CTRL-C, or signal.CTRL_C_EVENT shutdown_handler() logger.info('Entering shutdown phase.') def sep(): tasks = all_tasks(loop=loop) do_not_cancel = set() for t in tasks: # TODO: we don't need access to the coro. We could simply # TODO: store the task itself in the weakset. if t._coro in _DO_NOT_CANCEL_COROS: do_not_cancel.add(t) tasks -= do_not_cancel logger.info('Cancelling pending tasks.') for t in tasks: logger.debug('Cancelling task: %s', t) t.cancel() return tasks, do_not_cancel tasks, do_not_cancel = sep() # Here's a protip: if you group a bunch of tasks, and some of them # get cancelled, and they DON'T HANDLE THE CANCELLATION, then the # raised CancelledError will bubble up to, and stop the # loop.run_until_complete() line: meaning, not all the tasks in # the gathered group will actually be complete. You need to # enable this with the ``return_exceptions`` flag. group = gather(*tasks, *do_not_cancel, return_exceptions=True) logger.info('Running pending tasks till complete') # TODO: obtain all the results, and log any results that are exceptions # other than CancelledError. Will be useful for troubleshooting. loop.run_until_complete(group) logger.info('Waiting for executor shutdown.') executor.shutdown(wait=True) # If loop was supplied, it's up to the caller to close! if not loop_was_supplied: logger.info('Closing the loop.') loop.close() logger.critical('Leaving. Bye!')
[ "def", "run", "(", "coro", ":", "'Optional[Coroutine]'", "=", "None", ",", "*", ",", "loop", ":", "Optional", "[", "AbstractEventLoop", "]", "=", "None", ",", "shutdown_handler", ":", "Optional", "[", "Callable", "[", "[", "AbstractEventLoop", "]", ",", "None", "]", "]", "=", "None", ",", "executor_workers", ":", "int", "=", "10", ",", "executor", ":", "Optional", "[", "Executor", "]", "=", "None", ",", "use_uvloop", ":", "bool", "=", "False", ")", "->", "None", ":", "logger", ".", "debug", "(", "'Entering run()'", ")", "assert", "not", "(", "loop", "and", "use_uvloop", ")", ",", "(", "\"'loop' and 'use_uvloop' parameters are mutually \"", "\"exclusive. (Just make your own uvloop and pass it in).\"", ")", "if", "use_uvloop", ":", "import", "uvloop", "asyncio", ".", "set_event_loop_policy", "(", "uvloop", ".", "EventLoopPolicy", "(", ")", ")", "loop_was_supplied", "=", "bool", "(", "loop", ")", "if", "not", "loop_was_supplied", ":", "loop", "=", "get_event_loop", "(", ")", "if", "coro", ":", "async", "def", "new_coro", "(", ")", ":", "\"\"\"During shutdown, run_until_complete() will exit\n if a CancelledError bubbles up from anything in the\n group. To counteract that, we'll try to handle\n any CancelledErrors that bubble up from the given\n coro. This isn't fool-proof: if the user doesn't\n provide a coro, and instead creates their own with\n loop.create_task, that task might bubble\n a CancelledError into the run_until_complete().\"\"\"", "try", ":", "await", "coro", "except", "asyncio", ".", "CancelledError", ":", "pass", "loop", ".", "create_task", "(", "new_coro", "(", ")", ")", "shutdown_handler", "=", "shutdown_handler", "or", "_shutdown_handler", "if", "WINDOWS", ":", "# pragma: no cover", "# This is to allow CTRL-C to be detected in a timely fashion,", "# see: https://bugs.python.org/issue23057#msg246316", "loop", ".", "create_task", "(", "windows_support_wakeup", "(", ")", ")", "# This is to be able to handle SIGBREAK.", "def", "windows_handler", "(", "sig", ",", "frame", ")", ":", "# Disable the handler so it won't be called again.", "signame", "=", "signal", ".", "Signals", "(", "sig", ")", ".", "name", "logger", ".", "critical", "(", "'Received signal: %s. Stopping the loop.'", ",", "signame", ")", "shutdown_handler", "(", "loop", ")", "signal", ".", "signal", "(", "signal", ".", "SIGBREAK", ",", "windows_handler", ")", "signal", ".", "signal", "(", "signal", ".", "SIGINT", ",", "windows_handler", ")", "else", ":", "loop", ".", "add_signal_handler", "(", "SIGINT", ",", "shutdown_handler", ",", "loop", ")", "loop", ".", "add_signal_handler", "(", "SIGTERM", ",", "shutdown_handler", ",", "loop", ")", "# TODO: We probably don't want to create a different executor if the", "# TODO: loop was supplied. (User might have put stuff on that loop's", "# TODO: executor).", "if", "not", "executor", ":", "logger", ".", "debug", "(", "'Creating default executor'", ")", "executor", "=", "ThreadPoolExecutor", "(", "max_workers", "=", "executor_workers", ")", "loop", ".", "set_default_executor", "(", "executor", ")", "try", ":", "loop", ".", "run_forever", "(", ")", "except", "KeyboardInterrupt", ":", "# pragma: no cover", "logger", ".", "info", "(", "'Got KeyboardInterrupt'", ")", "if", "WINDOWS", ":", "# Windows doesn't do any POSIX signal handling, and no", "# abstraction layer for signals is currently implemented in", "# asyncio. So we fall back to KeyboardInterrupt (triggered", "# by the user/environment sending CTRL-C, or signal.CTRL_C_EVENT", "shutdown_handler", "(", ")", "logger", ".", "info", "(", "'Entering shutdown phase.'", ")", "def", "sep", "(", ")", ":", "tasks", "=", "all_tasks", "(", "loop", "=", "loop", ")", "do_not_cancel", "=", "set", "(", ")", "for", "t", "in", "tasks", ":", "# TODO: we don't need access to the coro. We could simply", "# TODO: store the task itself in the weakset.", "if", "t", ".", "_coro", "in", "_DO_NOT_CANCEL_COROS", ":", "do_not_cancel", ".", "add", "(", "t", ")", "tasks", "-=", "do_not_cancel", "logger", ".", "info", "(", "'Cancelling pending tasks.'", ")", "for", "t", "in", "tasks", ":", "logger", ".", "debug", "(", "'Cancelling task: %s'", ",", "t", ")", "t", ".", "cancel", "(", ")", "return", "tasks", ",", "do_not_cancel", "tasks", ",", "do_not_cancel", "=", "sep", "(", ")", "# Here's a protip: if you group a bunch of tasks, and some of them", "# get cancelled, and they DON'T HANDLE THE CANCELLATION, then the", "# raised CancelledError will bubble up to, and stop the", "# loop.run_until_complete() line: meaning, not all the tasks in", "# the gathered group will actually be complete. You need to", "# enable this with the ``return_exceptions`` flag.", "group", "=", "gather", "(", "*", "tasks", ",", "*", "do_not_cancel", ",", "return_exceptions", "=", "True", ")", "logger", ".", "info", "(", "'Running pending tasks till complete'", ")", "# TODO: obtain all the results, and log any results that are exceptions", "# other than CancelledError. Will be useful for troubleshooting.", "loop", ".", "run_until_complete", "(", "group", ")", "logger", ".", "info", "(", "'Waiting for executor shutdown.'", ")", "executor", ".", "shutdown", "(", "wait", "=", "True", ")", "# If loop was supplied, it's up to the caller to close!", "if", "not", "loop_was_supplied", ":", "logger", ".", "info", "(", "'Closing the loop.'", ")", "loop", ".", "close", "(", ")", "logger", ".", "critical", "(", "'Leaving. Bye!'", ")" ]
Start up the event loop, and wait for a signal to shut down. :param coro: Optionally supply a coroutine. The loop will still run if missing. The loop will continue to run after the supplied coroutine finishes. The supplied coroutine is typically a "main" coroutine from which all other work is spawned. :param loop: Optionally supply your own loop. If missing, the default loop attached to the current thread context will be used, i.e., whatever ``asyncio.get_event_loop()`` returns. :param shutdown_handler: By default, SIGINT and SIGTERM will be handled and will stop the loop, thereby invoking the shutdown sequence. Alternatively you can supply your own shutdown handler function. It should conform to the type spec as shown in the function signature. :param executor_workers: The number of workers in the executor. (NOTE: ``run()`` creates a new executor instance internally, regardless of whether you supply your own loop.) :param executor: You can decide to use your own executor instance if you like. :param use_uvloop: The loop policy will be set to use uvloop. It is your responsibility to install uvloop. If missing, an ``ImportError`` will be raised.
[ "Start", "up", "the", "event", "loop", "and", "wait", "for", "a", "signal", "to", "shut", "down", "." ]
23c73318447f578a4a24845c5f43574ac7b414e4
https://github.com/cjrh/aiorun/blob/23c73318447f578a4a24845c5f43574ac7b414e4/aiorun.py#L120-L255
10,029
emre/storm
storm/kommandr.py
prog.command
def command(self, *args, **kwargs): """Convenient decorator simply creates corresponding command""" if len(args) == 1 and isinstance(args[0], collections.Callable): return self._generate_command(args[0]) else: def _command(func): return self._generate_command(func, *args, **kwargs) return _command
python
def command(self, *args, **kwargs): """Convenient decorator simply creates corresponding command""" if len(args) == 1 and isinstance(args[0], collections.Callable): return self._generate_command(args[0]) else: def _command(func): return self._generate_command(func, *args, **kwargs) return _command
[ "def", "command", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "if", "len", "(", "args", ")", "==", "1", "and", "isinstance", "(", "args", "[", "0", "]", ",", "collections", ".", "Callable", ")", ":", "return", "self", ".", "_generate_command", "(", "args", "[", "0", "]", ")", "else", ":", "def", "_command", "(", "func", ")", ":", "return", "self", ".", "_generate_command", "(", "func", ",", "*", "args", ",", "*", "*", "kwargs", ")", "return", "_command" ]
Convenient decorator simply creates corresponding command
[ "Convenient", "decorator", "simply", "creates", "corresponding", "command" ]
c752defc1b718cfffbf0e0e15532fa1d7840bf6d
https://github.com/emre/storm/blob/c752defc1b718cfffbf0e0e15532fa1d7840bf6d/storm/kommandr.py#L96-L103
10,030
emre/storm
storm/kommandr.py
prog._generate_command
def _generate_command(self, func, name=None, **kwargs): """Generates a command parser for given func. :param func: func to generate related command parser :param type: function :param name: command name :param type: str :param **kwargs: keyword arguments those passed through to :py:class:``argparse.ArgumentParser.add_parser`` :param type: dict """ func_pointer = name or func.__name__ storm_config = get_storm_config() aliases, additional_kwarg = None, None if 'aliases' in storm_config: for command, alias_list in \ six.iteritems(storm_config.get("aliases")): if func_pointer == command: aliases = alias_list break func_help = func.__doc__ and func.__doc__.strip() subparser = self.subparsers.add_parser(name or func.__name__, aliases=aliases, help=func_help) spec = inspect.getargspec(func) opts = reversed(list(izip_longest(reversed(spec.args or []), reversed(spec.defaults or []), fillvalue=self._POSITIONAL()))) for k, v in opts: argopts = getattr(func, 'argopts', {}) args, kwargs = argopts.get(k, ([], {})) args = list(args) is_positional = isinstance(v, self._POSITIONAL) options = [arg for arg in args if arg.startswith('-')] if isinstance(v, list): kwargs.update({ 'action': 'append', }) if is_positional: if options: args = options kwargs.update({'required': True, 'dest': k}) else: args = [k] else: args = options or ['--%s' % k] kwargs.update({'default': v, 'dest': k}) arg = subparser.add_argument(*args, **kwargs) subparser.set_defaults(**{self._COMMAND_FLAG: func}) return func
python
def _generate_command(self, func, name=None, **kwargs): """Generates a command parser for given func. :param func: func to generate related command parser :param type: function :param name: command name :param type: str :param **kwargs: keyword arguments those passed through to :py:class:``argparse.ArgumentParser.add_parser`` :param type: dict """ func_pointer = name or func.__name__ storm_config = get_storm_config() aliases, additional_kwarg = None, None if 'aliases' in storm_config: for command, alias_list in \ six.iteritems(storm_config.get("aliases")): if func_pointer == command: aliases = alias_list break func_help = func.__doc__ and func.__doc__.strip() subparser = self.subparsers.add_parser(name or func.__name__, aliases=aliases, help=func_help) spec = inspect.getargspec(func) opts = reversed(list(izip_longest(reversed(spec.args or []), reversed(spec.defaults or []), fillvalue=self._POSITIONAL()))) for k, v in opts: argopts = getattr(func, 'argopts', {}) args, kwargs = argopts.get(k, ([], {})) args = list(args) is_positional = isinstance(v, self._POSITIONAL) options = [arg for arg in args if arg.startswith('-')] if isinstance(v, list): kwargs.update({ 'action': 'append', }) if is_positional: if options: args = options kwargs.update({'required': True, 'dest': k}) else: args = [k] else: args = options or ['--%s' % k] kwargs.update({'default': v, 'dest': k}) arg = subparser.add_argument(*args, **kwargs) subparser.set_defaults(**{self._COMMAND_FLAG: func}) return func
[ "def", "_generate_command", "(", "self", ",", "func", ",", "name", "=", "None", ",", "*", "*", "kwargs", ")", ":", "func_pointer", "=", "name", "or", "func", ".", "__name__", "storm_config", "=", "get_storm_config", "(", ")", "aliases", ",", "additional_kwarg", "=", "None", ",", "None", "if", "'aliases'", "in", "storm_config", ":", "for", "command", ",", "alias_list", "in", "six", ".", "iteritems", "(", "storm_config", ".", "get", "(", "\"aliases\"", ")", ")", ":", "if", "func_pointer", "==", "command", ":", "aliases", "=", "alias_list", "break", "func_help", "=", "func", ".", "__doc__", "and", "func", ".", "__doc__", ".", "strip", "(", ")", "subparser", "=", "self", ".", "subparsers", ".", "add_parser", "(", "name", "or", "func", ".", "__name__", ",", "aliases", "=", "aliases", ",", "help", "=", "func_help", ")", "spec", "=", "inspect", ".", "getargspec", "(", "func", ")", "opts", "=", "reversed", "(", "list", "(", "izip_longest", "(", "reversed", "(", "spec", ".", "args", "or", "[", "]", ")", ",", "reversed", "(", "spec", ".", "defaults", "or", "[", "]", ")", ",", "fillvalue", "=", "self", ".", "_POSITIONAL", "(", ")", ")", ")", ")", "for", "k", ",", "v", "in", "opts", ":", "argopts", "=", "getattr", "(", "func", ",", "'argopts'", ",", "{", "}", ")", "args", ",", "kwargs", "=", "argopts", ".", "get", "(", "k", ",", "(", "[", "]", ",", "{", "}", ")", ")", "args", "=", "list", "(", "args", ")", "is_positional", "=", "isinstance", "(", "v", ",", "self", ".", "_POSITIONAL", ")", "options", "=", "[", "arg", "for", "arg", "in", "args", "if", "arg", ".", "startswith", "(", "'-'", ")", "]", "if", "isinstance", "(", "v", ",", "list", ")", ":", "kwargs", ".", "update", "(", "{", "'action'", ":", "'append'", ",", "}", ")", "if", "is_positional", ":", "if", "options", ":", "args", "=", "options", "kwargs", ".", "update", "(", "{", "'required'", ":", "True", ",", "'dest'", ":", "k", "}", ")", "else", ":", "args", "=", "[", "k", "]", "else", ":", "args", "=", "options", "or", "[", "'--%s'", "%", "k", "]", "kwargs", ".", "update", "(", "{", "'default'", ":", "v", ",", "'dest'", ":", "k", "}", ")", "arg", "=", "subparser", ".", "add_argument", "(", "*", "args", ",", "*", "*", "kwargs", ")", "subparser", ".", "set_defaults", "(", "*", "*", "{", "self", ".", "_COMMAND_FLAG", ":", "func", "}", ")", "return", "func" ]
Generates a command parser for given func. :param func: func to generate related command parser :param type: function :param name: command name :param type: str :param **kwargs: keyword arguments those passed through to :py:class:``argparse.ArgumentParser.add_parser`` :param type: dict
[ "Generates", "a", "command", "parser", "for", "given", "func", "." ]
c752defc1b718cfffbf0e0e15532fa1d7840bf6d
https://github.com/emre/storm/blob/c752defc1b718cfffbf0e0e15532fa1d7840bf6d/storm/kommandr.py#L121-L177
10,031
emre/storm
storm/kommandr.py
prog.execute
def execute(self, arg_list): """Main function to parse and dispatch commands by given ``arg_list`` :param arg_list: all arguments provided by the command line :param type: list """ arg_map = self.parser.parse_args(arg_list).__dict__ command = arg_map.pop(self._COMMAND_FLAG) return command(**arg_map)
python
def execute(self, arg_list): """Main function to parse and dispatch commands by given ``arg_list`` :param arg_list: all arguments provided by the command line :param type: list """ arg_map = self.parser.parse_args(arg_list).__dict__ command = arg_map.pop(self._COMMAND_FLAG) return command(**arg_map)
[ "def", "execute", "(", "self", ",", "arg_list", ")", ":", "arg_map", "=", "self", ".", "parser", ".", "parse_args", "(", "arg_list", ")", ".", "__dict__", "command", "=", "arg_map", ".", "pop", "(", "self", ".", "_COMMAND_FLAG", ")", "return", "command", "(", "*", "*", "arg_map", ")" ]
Main function to parse and dispatch commands by given ``arg_list`` :param arg_list: all arguments provided by the command line :param type: list
[ "Main", "function", "to", "parse", "and", "dispatch", "commands", "by", "given", "arg_list" ]
c752defc1b718cfffbf0e0e15532fa1d7840bf6d
https://github.com/emre/storm/blob/c752defc1b718cfffbf0e0e15532fa1d7840bf6d/storm/kommandr.py#L179-L188
10,032
emre/storm
storm/__main__.py
add
def add(name, connection_uri, id_file="", o=[], config=None): """ Adds a new entry to sshconfig. """ storm_ = get_storm_instance(config) try: # validate name if '@' in name: raise ValueError('invalid value: "@" cannot be used in name.') user, host, port = parse( connection_uri, user=get_default("user", storm_.defaults), port=get_default("port", storm_.defaults) ) storm_.add_entry(name, host, user, port, id_file, o) print( get_formatted_message( '{0} added to your ssh config. you can connect ' 'it by typing "ssh {0}".'.format(name), 'success') ) except ValueError as error: print(get_formatted_message(error, 'error'), file=sys.stderr) sys.exit(1)
python
def add(name, connection_uri, id_file="", o=[], config=None): """ Adds a new entry to sshconfig. """ storm_ = get_storm_instance(config) try: # validate name if '@' in name: raise ValueError('invalid value: "@" cannot be used in name.') user, host, port = parse( connection_uri, user=get_default("user", storm_.defaults), port=get_default("port", storm_.defaults) ) storm_.add_entry(name, host, user, port, id_file, o) print( get_formatted_message( '{0} added to your ssh config. you can connect ' 'it by typing "ssh {0}".'.format(name), 'success') ) except ValueError as error: print(get_formatted_message(error, 'error'), file=sys.stderr) sys.exit(1)
[ "def", "add", "(", "name", ",", "connection_uri", ",", "id_file", "=", "\"\"", ",", "o", "=", "[", "]", ",", "config", "=", "None", ")", ":", "storm_", "=", "get_storm_instance", "(", "config", ")", "try", ":", "# validate name", "if", "'@'", "in", "name", ":", "raise", "ValueError", "(", "'invalid value: \"@\" cannot be used in name.'", ")", "user", ",", "host", ",", "port", "=", "parse", "(", "connection_uri", ",", "user", "=", "get_default", "(", "\"user\"", ",", "storm_", ".", "defaults", ")", ",", "port", "=", "get_default", "(", "\"port\"", ",", "storm_", ".", "defaults", ")", ")", "storm_", ".", "add_entry", "(", "name", ",", "host", ",", "user", ",", "port", ",", "id_file", ",", "o", ")", "print", "(", "get_formatted_message", "(", "'{0} added to your ssh config. you can connect '", "'it by typing \"ssh {0}\".'", ".", "format", "(", "name", ")", ",", "'success'", ")", ")", "except", "ValueError", "as", "error", ":", "print", "(", "get_formatted_message", "(", "error", ",", "'error'", ")", ",", "file", "=", "sys", ".", "stderr", ")", "sys", ".", "exit", "(", "1", ")" ]
Adds a new entry to sshconfig.
[ "Adds", "a", "new", "entry", "to", "sshconfig", "." ]
c752defc1b718cfffbf0e0e15532fa1d7840bf6d
https://github.com/emre/storm/blob/c752defc1b718cfffbf0e0e15532fa1d7840bf6d/storm/__main__.py#L34-L63
10,033
emre/storm
storm/__main__.py
clone
def clone(name, clone_name, config=None): """ Clone an entry to the sshconfig. """ storm_ = get_storm_instance(config) try: # validate name if '@' in name: raise ValueError('invalid value: "@" cannot be used in name.') storm_.clone_entry(name, clone_name) print( get_formatted_message( '{0} added to your ssh config. you can connect ' 'it by typing "ssh {0}".'.format(clone_name), 'success') ) except ValueError as error: print(get_formatted_message(error, 'error'), file=sys.stderr) sys.exit(1)
python
def clone(name, clone_name, config=None): """ Clone an entry to the sshconfig. """ storm_ = get_storm_instance(config) try: # validate name if '@' in name: raise ValueError('invalid value: "@" cannot be used in name.') storm_.clone_entry(name, clone_name) print( get_formatted_message( '{0} added to your ssh config. you can connect ' 'it by typing "ssh {0}".'.format(clone_name), 'success') ) except ValueError as error: print(get_formatted_message(error, 'error'), file=sys.stderr) sys.exit(1)
[ "def", "clone", "(", "name", ",", "clone_name", ",", "config", "=", "None", ")", ":", "storm_", "=", "get_storm_instance", "(", "config", ")", "try", ":", "# validate name", "if", "'@'", "in", "name", ":", "raise", "ValueError", "(", "'invalid value: \"@\" cannot be used in name.'", ")", "storm_", ".", "clone_entry", "(", "name", ",", "clone_name", ")", "print", "(", "get_formatted_message", "(", "'{0} added to your ssh config. you can connect '", "'it by typing \"ssh {0}\".'", ".", "format", "(", "clone_name", ")", ",", "'success'", ")", ")", "except", "ValueError", "as", "error", ":", "print", "(", "get_formatted_message", "(", "error", ",", "'error'", ")", ",", "file", "=", "sys", ".", "stderr", ")", "sys", ".", "exit", "(", "1", ")" ]
Clone an entry to the sshconfig.
[ "Clone", "an", "entry", "to", "the", "sshconfig", "." ]
c752defc1b718cfffbf0e0e15532fa1d7840bf6d
https://github.com/emre/storm/blob/c752defc1b718cfffbf0e0e15532fa1d7840bf6d/storm/__main__.py#L67-L90
10,034
emre/storm
storm/__main__.py
move
def move(name, entry_name, config=None): """ Move an entry to the sshconfig. """ storm_ = get_storm_instance(config) try: if '@' in name: raise ValueError('invalid value: "@" cannot be used in name.') storm_.clone_entry(name, entry_name, keep_original=False) print( get_formatted_message( '{0} moved in ssh config. you can ' 'connect it by typing "ssh {0}".'.format( entry_name ), 'success') ) except ValueError as error: print(get_formatted_message(error, 'error'), file=sys.stderr) sys.exit(1)
python
def move(name, entry_name, config=None): """ Move an entry to the sshconfig. """ storm_ = get_storm_instance(config) try: if '@' in name: raise ValueError('invalid value: "@" cannot be used in name.') storm_.clone_entry(name, entry_name, keep_original=False) print( get_formatted_message( '{0} moved in ssh config. you can ' 'connect it by typing "ssh {0}".'.format( entry_name ), 'success') ) except ValueError as error: print(get_formatted_message(error, 'error'), file=sys.stderr) sys.exit(1)
[ "def", "move", "(", "name", ",", "entry_name", ",", "config", "=", "None", ")", ":", "storm_", "=", "get_storm_instance", "(", "config", ")", "try", ":", "if", "'@'", "in", "name", ":", "raise", "ValueError", "(", "'invalid value: \"@\" cannot be used in name.'", ")", "storm_", ".", "clone_entry", "(", "name", ",", "entry_name", ",", "keep_original", "=", "False", ")", "print", "(", "get_formatted_message", "(", "'{0} moved in ssh config. you can '", "'connect it by typing \"ssh {0}\".'", ".", "format", "(", "entry_name", ")", ",", "'success'", ")", ")", "except", "ValueError", "as", "error", ":", "print", "(", "get_formatted_message", "(", "error", ",", "'error'", ")", ",", "file", "=", "sys", ".", "stderr", ")", "sys", ".", "exit", "(", "1", ")" ]
Move an entry to the sshconfig.
[ "Move", "an", "entry", "to", "the", "sshconfig", "." ]
c752defc1b718cfffbf0e0e15532fa1d7840bf6d
https://github.com/emre/storm/blob/c752defc1b718cfffbf0e0e15532fa1d7840bf6d/storm/__main__.py#L93-L117
10,035
emre/storm
storm/__main__.py
edit
def edit(name, connection_uri, id_file="", o=[], config=None): """ Edits the related entry in ssh config. """ storm_ = get_storm_instance(config) try: if ',' in name: name = " ".join(name.split(",")) user, host, port = parse( connection_uri, user=get_default("user", storm_.defaults), port=get_default("port", storm_.defaults) ) storm_.edit_entry(name, host, user, port, id_file, o) print(get_formatted_message( '"{0}" updated successfully.'.format( name ), 'success')) except ValueError as error: print(get_formatted_message(error, 'error'), file=sys.stderr) sys.exit(1)
python
def edit(name, connection_uri, id_file="", o=[], config=None): """ Edits the related entry in ssh config. """ storm_ = get_storm_instance(config) try: if ',' in name: name = " ".join(name.split(",")) user, host, port = parse( connection_uri, user=get_default("user", storm_.defaults), port=get_default("port", storm_.defaults) ) storm_.edit_entry(name, host, user, port, id_file, o) print(get_formatted_message( '"{0}" updated successfully.'.format( name ), 'success')) except ValueError as error: print(get_formatted_message(error, 'error'), file=sys.stderr) sys.exit(1)
[ "def", "edit", "(", "name", ",", "connection_uri", ",", "id_file", "=", "\"\"", ",", "o", "=", "[", "]", ",", "config", "=", "None", ")", ":", "storm_", "=", "get_storm_instance", "(", "config", ")", "try", ":", "if", "','", "in", "name", ":", "name", "=", "\" \"", ".", "join", "(", "name", ".", "split", "(", "\",\"", ")", ")", "user", ",", "host", ",", "port", "=", "parse", "(", "connection_uri", ",", "user", "=", "get_default", "(", "\"user\"", ",", "storm_", ".", "defaults", ")", ",", "port", "=", "get_default", "(", "\"port\"", ",", "storm_", ".", "defaults", ")", ")", "storm_", ".", "edit_entry", "(", "name", ",", "host", ",", "user", ",", "port", ",", "id_file", ",", "o", ")", "print", "(", "get_formatted_message", "(", "'\"{0}\" updated successfully.'", ".", "format", "(", "name", ")", ",", "'success'", ")", ")", "except", "ValueError", "as", "error", ":", "print", "(", "get_formatted_message", "(", "error", ",", "'error'", ")", ",", "file", "=", "sys", ".", "stderr", ")", "sys", ".", "exit", "(", "1", ")" ]
Edits the related entry in ssh config.
[ "Edits", "the", "related", "entry", "in", "ssh", "config", "." ]
c752defc1b718cfffbf0e0e15532fa1d7840bf6d
https://github.com/emre/storm/blob/c752defc1b718cfffbf0e0e15532fa1d7840bf6d/storm/__main__.py#L120-L143
10,036
emre/storm
storm/__main__.py
update
def update(name, connection_uri="", id_file="", o=[], config=None): """ Enhanced version of the edit command featuring multiple edits using regular expressions to match entries """ storm_ = get_storm_instance(config) settings = {} if id_file != "": settings['identityfile'] = id_file for option in o: k, v = option.split("=") settings[k] = v try: storm_.update_entry(name, **settings) print(get_formatted_message( '"{0}" updated successfully.'.format( name ), 'success')) except ValueError as error: print(get_formatted_message(error, 'error'), file=sys.stderr) sys.exit(1)
python
def update(name, connection_uri="", id_file="", o=[], config=None): """ Enhanced version of the edit command featuring multiple edits using regular expressions to match entries """ storm_ = get_storm_instance(config) settings = {} if id_file != "": settings['identityfile'] = id_file for option in o: k, v = option.split("=") settings[k] = v try: storm_.update_entry(name, **settings) print(get_formatted_message( '"{0}" updated successfully.'.format( name ), 'success')) except ValueError as error: print(get_formatted_message(error, 'error'), file=sys.stderr) sys.exit(1)
[ "def", "update", "(", "name", ",", "connection_uri", "=", "\"\"", ",", "id_file", "=", "\"\"", ",", "o", "=", "[", "]", ",", "config", "=", "None", ")", ":", "storm_", "=", "get_storm_instance", "(", "config", ")", "settings", "=", "{", "}", "if", "id_file", "!=", "\"\"", ":", "settings", "[", "'identityfile'", "]", "=", "id_file", "for", "option", "in", "o", ":", "k", ",", "v", "=", "option", ".", "split", "(", "\"=\"", ")", "settings", "[", "k", "]", "=", "v", "try", ":", "storm_", ".", "update_entry", "(", "name", ",", "*", "*", "settings", ")", "print", "(", "get_formatted_message", "(", "'\"{0}\" updated successfully.'", ".", "format", "(", "name", ")", ",", "'success'", ")", ")", "except", "ValueError", "as", "error", ":", "print", "(", "get_formatted_message", "(", "error", ",", "'error'", ")", ",", "file", "=", "sys", ".", "stderr", ")", "sys", ".", "exit", "(", "1", ")" ]
Enhanced version of the edit command featuring multiple edits using regular expressions to match entries
[ "Enhanced", "version", "of", "the", "edit", "command", "featuring", "multiple", "edits", "using", "regular", "expressions", "to", "match", "entries" ]
c752defc1b718cfffbf0e0e15532fa1d7840bf6d
https://github.com/emre/storm/blob/c752defc1b718cfffbf0e0e15532fa1d7840bf6d/storm/__main__.py#L146-L169
10,037
emre/storm
storm/__main__.py
delete
def delete(name, config=None): """ Deletes a single host. """ storm_ = get_storm_instance(config) try: storm_.delete_entry(name) print( get_formatted_message( 'hostname "{0}" deleted successfully.'.format(name), 'success') ) except ValueError as error: print(get_formatted_message(error, 'error'), file=sys.stderr) sys.exit(1)
python
def delete(name, config=None): """ Deletes a single host. """ storm_ = get_storm_instance(config) try: storm_.delete_entry(name) print( get_formatted_message( 'hostname "{0}" deleted successfully.'.format(name), 'success') ) except ValueError as error: print(get_formatted_message(error, 'error'), file=sys.stderr) sys.exit(1)
[ "def", "delete", "(", "name", ",", "config", "=", "None", ")", ":", "storm_", "=", "get_storm_instance", "(", "config", ")", "try", ":", "storm_", ".", "delete_entry", "(", "name", ")", "print", "(", "get_formatted_message", "(", "'hostname \"{0}\" deleted successfully.'", ".", "format", "(", "name", ")", ",", "'success'", ")", ")", "except", "ValueError", "as", "error", ":", "print", "(", "get_formatted_message", "(", "error", ",", "'error'", ")", ",", "file", "=", "sys", ".", "stderr", ")", "sys", ".", "exit", "(", "1", ")" ]
Deletes a single host.
[ "Deletes", "a", "single", "host", "." ]
c752defc1b718cfffbf0e0e15532fa1d7840bf6d
https://github.com/emre/storm/blob/c752defc1b718cfffbf0e0e15532fa1d7840bf6d/storm/__main__.py#L172-L187
10,038
emre/storm
storm/__main__.py
list
def list(config=None): """ Lists all hosts from ssh config. """ storm_ = get_storm_instance(config) try: result = colored('Listing entries:', 'white', attrs=["bold", ]) + "\n\n" result_stack = "" for host in storm_.list_entries(True): if host.get("type") == 'entry': if not host.get("host") == "*": result += " {0} -> {1}@{2}:{3}".format( colored(host["host"], 'green', attrs=["bold", ]), host.get("options").get( "user", get_default("user", storm_.defaults) ), host.get("options").get( "hostname", "[hostname_not_specified]" ), host.get("options").get( "port", get_default("port", storm_.defaults) ) ) extra = False for key, value in six.iteritems(host.get("options")): if not key in ["user", "hostname", "port"]: if not extra: custom_options = colored( '\n\t[custom options] ', 'white' ) result += " {0}".format(custom_options) extra = True if isinstance(value, collections.Sequence): if isinstance(value, builtins.list): value = ",".join(value) result += "{0}={1} ".format(key, value) if extra: result = result[0:-1] result += "\n\n" else: result_stack = colored( " (*) General options: \n", "green", attrs=["bold",] ) for key, value in six.iteritems(host.get("options")): if isinstance(value, type([])): result_stack += "\t {0}: ".format( colored(key, "magenta") ) result_stack += ', '.join(value) result_stack += "\n" else: result_stack += "\t {0}: {1}\n".format( colored(key, "magenta"), value, ) result_stack = result_stack[0:-1] + "\n" result += result_stack print(get_formatted_message(result, "")) except Exception as error: print(get_formatted_message(str(error), 'error'), file=sys.stderr) sys.exit(1)
python
def list(config=None): """ Lists all hosts from ssh config. """ storm_ = get_storm_instance(config) try: result = colored('Listing entries:', 'white', attrs=["bold", ]) + "\n\n" result_stack = "" for host in storm_.list_entries(True): if host.get("type") == 'entry': if not host.get("host") == "*": result += " {0} -> {1}@{2}:{3}".format( colored(host["host"], 'green', attrs=["bold", ]), host.get("options").get( "user", get_default("user", storm_.defaults) ), host.get("options").get( "hostname", "[hostname_not_specified]" ), host.get("options").get( "port", get_default("port", storm_.defaults) ) ) extra = False for key, value in six.iteritems(host.get("options")): if not key in ["user", "hostname", "port"]: if not extra: custom_options = colored( '\n\t[custom options] ', 'white' ) result += " {0}".format(custom_options) extra = True if isinstance(value, collections.Sequence): if isinstance(value, builtins.list): value = ",".join(value) result += "{0}={1} ".format(key, value) if extra: result = result[0:-1] result += "\n\n" else: result_stack = colored( " (*) General options: \n", "green", attrs=["bold",] ) for key, value in six.iteritems(host.get("options")): if isinstance(value, type([])): result_stack += "\t {0}: ".format( colored(key, "magenta") ) result_stack += ', '.join(value) result_stack += "\n" else: result_stack += "\t {0}: {1}\n".format( colored(key, "magenta"), value, ) result_stack = result_stack[0:-1] + "\n" result += result_stack print(get_formatted_message(result, "")) except Exception as error: print(get_formatted_message(str(error), 'error'), file=sys.stderr) sys.exit(1)
[ "def", "list", "(", "config", "=", "None", ")", ":", "storm_", "=", "get_storm_instance", "(", "config", ")", "try", ":", "result", "=", "colored", "(", "'Listing entries:'", ",", "'white'", ",", "attrs", "=", "[", "\"bold\"", ",", "]", ")", "+", "\"\\n\\n\"", "result_stack", "=", "\"\"", "for", "host", "in", "storm_", ".", "list_entries", "(", "True", ")", ":", "if", "host", ".", "get", "(", "\"type\"", ")", "==", "'entry'", ":", "if", "not", "host", ".", "get", "(", "\"host\"", ")", "==", "\"*\"", ":", "result", "+=", "\" {0} -> {1}@{2}:{3}\"", ".", "format", "(", "colored", "(", "host", "[", "\"host\"", "]", ",", "'green'", ",", "attrs", "=", "[", "\"bold\"", ",", "]", ")", ",", "host", ".", "get", "(", "\"options\"", ")", ".", "get", "(", "\"user\"", ",", "get_default", "(", "\"user\"", ",", "storm_", ".", "defaults", ")", ")", ",", "host", ".", "get", "(", "\"options\"", ")", ".", "get", "(", "\"hostname\"", ",", "\"[hostname_not_specified]\"", ")", ",", "host", ".", "get", "(", "\"options\"", ")", ".", "get", "(", "\"port\"", ",", "get_default", "(", "\"port\"", ",", "storm_", ".", "defaults", ")", ")", ")", "extra", "=", "False", "for", "key", ",", "value", "in", "six", ".", "iteritems", "(", "host", ".", "get", "(", "\"options\"", ")", ")", ":", "if", "not", "key", "in", "[", "\"user\"", ",", "\"hostname\"", ",", "\"port\"", "]", ":", "if", "not", "extra", ":", "custom_options", "=", "colored", "(", "'\\n\\t[custom options] '", ",", "'white'", ")", "result", "+=", "\" {0}\"", ".", "format", "(", "custom_options", ")", "extra", "=", "True", "if", "isinstance", "(", "value", ",", "collections", ".", "Sequence", ")", ":", "if", "isinstance", "(", "value", ",", "builtins", ".", "list", ")", ":", "value", "=", "\",\"", ".", "join", "(", "value", ")", "result", "+=", "\"{0}={1} \"", ".", "format", "(", "key", ",", "value", ")", "if", "extra", ":", "result", "=", "result", "[", "0", ":", "-", "1", "]", "result", "+=", "\"\\n\\n\"", "else", ":", "result_stack", "=", "colored", "(", "\" (*) General options: \\n\"", ",", "\"green\"", ",", "attrs", "=", "[", "\"bold\"", ",", "]", ")", "for", "key", ",", "value", "in", "six", ".", "iteritems", "(", "host", ".", "get", "(", "\"options\"", ")", ")", ":", "if", "isinstance", "(", "value", ",", "type", "(", "[", "]", ")", ")", ":", "result_stack", "+=", "\"\\t {0}: \"", ".", "format", "(", "colored", "(", "key", ",", "\"magenta\"", ")", ")", "result_stack", "+=", "', '", ".", "join", "(", "value", ")", "result_stack", "+=", "\"\\n\"", "else", ":", "result_stack", "+=", "\"\\t {0}: {1}\\n\"", ".", "format", "(", "colored", "(", "key", ",", "\"magenta\"", ")", ",", "value", ",", ")", "result_stack", "=", "result_stack", "[", "0", ":", "-", "1", "]", "+", "\"\\n\"", "result", "+=", "result_stack", "print", "(", "get_formatted_message", "(", "result", ",", "\"\"", ")", ")", "except", "Exception", "as", "error", ":", "print", "(", "get_formatted_message", "(", "str", "(", "error", ")", ",", "'error'", ")", ",", "file", "=", "sys", ".", "stderr", ")", "sys", ".", "exit", "(", "1", ")" ]
Lists all hosts from ssh config.
[ "Lists", "all", "hosts", "from", "ssh", "config", "." ]
c752defc1b718cfffbf0e0e15532fa1d7840bf6d
https://github.com/emre/storm/blob/c752defc1b718cfffbf0e0e15532fa1d7840bf6d/storm/__main__.py#L190-L258
10,039
emre/storm
storm/__main__.py
search
def search(search_text, config=None): """ Searches entries by given search text. """ storm_ = get_storm_instance(config) try: results = storm_.search_host(search_text) if len(results) == 0: print ('no results found.') if len(results) > 0: message = 'Listing results for {0}:\n'.format(search_text) message += "".join(results) print(message) except Exception as error: print(get_formatted_message(str(error), 'error'), file=sys.stderr) sys.exit(1)
python
def search(search_text, config=None): """ Searches entries by given search text. """ storm_ = get_storm_instance(config) try: results = storm_.search_host(search_text) if len(results) == 0: print ('no results found.') if len(results) > 0: message = 'Listing results for {0}:\n'.format(search_text) message += "".join(results) print(message) except Exception as error: print(get_formatted_message(str(error), 'error'), file=sys.stderr) sys.exit(1)
[ "def", "search", "(", "search_text", ",", "config", "=", "None", ")", ":", "storm_", "=", "get_storm_instance", "(", "config", ")", "try", ":", "results", "=", "storm_", ".", "search_host", "(", "search_text", ")", "if", "len", "(", "results", ")", "==", "0", ":", "print", "(", "'no results found.'", ")", "if", "len", "(", "results", ")", ">", "0", ":", "message", "=", "'Listing results for {0}:\\n'", ".", "format", "(", "search_text", ")", "message", "+=", "\"\"", ".", "join", "(", "results", ")", "print", "(", "message", ")", "except", "Exception", "as", "error", ":", "print", "(", "get_formatted_message", "(", "str", "(", "error", ")", ",", "'error'", ")", ",", "file", "=", "sys", ".", "stderr", ")", "sys", ".", "exit", "(", "1", ")" ]
Searches entries by given search text.
[ "Searches", "entries", "by", "given", "search", "text", "." ]
c752defc1b718cfffbf0e0e15532fa1d7840bf6d
https://github.com/emre/storm/blob/c752defc1b718cfffbf0e0e15532fa1d7840bf6d/storm/__main__.py#L261-L278
10,040
emre/storm
storm/__main__.py
delete_all
def delete_all(config=None): """ Deletes all hosts from ssh config. """ storm_ = get_storm_instance(config) try: storm_.delete_all_entries() print(get_formatted_message('all entries deleted.', 'success')) except Exception as error: print(get_formatted_message(str(error), 'error'), file=sys.stderr) sys.exit(1)
python
def delete_all(config=None): """ Deletes all hosts from ssh config. """ storm_ = get_storm_instance(config) try: storm_.delete_all_entries() print(get_formatted_message('all entries deleted.', 'success')) except Exception as error: print(get_formatted_message(str(error), 'error'), file=sys.stderr) sys.exit(1)
[ "def", "delete_all", "(", "config", "=", "None", ")", ":", "storm_", "=", "get_storm_instance", "(", "config", ")", "try", ":", "storm_", ".", "delete_all_entries", "(", ")", "print", "(", "get_formatted_message", "(", "'all entries deleted.'", ",", "'success'", ")", ")", "except", "Exception", "as", "error", ":", "print", "(", "get_formatted_message", "(", "str", "(", "error", ")", ",", "'error'", ")", ",", "file", "=", "sys", ".", "stderr", ")", "sys", ".", "exit", "(", "1", ")" ]
Deletes all hosts from ssh config.
[ "Deletes", "all", "hosts", "from", "ssh", "config", "." ]
c752defc1b718cfffbf0e0e15532fa1d7840bf6d
https://github.com/emre/storm/blob/c752defc1b718cfffbf0e0e15532fa1d7840bf6d/storm/__main__.py#L281-L292
10,041
emre/storm
storm/__main__.py
backup
def backup(target_file, config=None): """ Backups the main ssh configuration into target file. """ storm_ = get_storm_instance(config) try: storm_.backup(target_file) except Exception as error: print(get_formatted_message(str(error), 'error'), file=sys.stderr) sys.exit(1)
python
def backup(target_file, config=None): """ Backups the main ssh configuration into target file. """ storm_ = get_storm_instance(config) try: storm_.backup(target_file) except Exception as error: print(get_formatted_message(str(error), 'error'), file=sys.stderr) sys.exit(1)
[ "def", "backup", "(", "target_file", ",", "config", "=", "None", ")", ":", "storm_", "=", "get_storm_instance", "(", "config", ")", "try", ":", "storm_", ".", "backup", "(", "target_file", ")", "except", "Exception", "as", "error", ":", "print", "(", "get_formatted_message", "(", "str", "(", "error", ")", ",", "'error'", ")", ",", "file", "=", "sys", ".", "stderr", ")", "sys", ".", "exit", "(", "1", ")" ]
Backups the main ssh configuration into target file.
[ "Backups", "the", "main", "ssh", "configuration", "into", "target", "file", "." ]
c752defc1b718cfffbf0e0e15532fa1d7840bf6d
https://github.com/emre/storm/blob/c752defc1b718cfffbf0e0e15532fa1d7840bf6d/storm/__main__.py#L295-L304
10,042
emre/storm
storm/__main__.py
web
def web(port, debug=False, theme="modern", ssh_config=None): """Starts the web UI.""" from storm import web as _web _web.run(port, debug, theme, ssh_config)
python
def web(port, debug=False, theme="modern", ssh_config=None): """Starts the web UI.""" from storm import web as _web _web.run(port, debug, theme, ssh_config)
[ "def", "web", "(", "port", ",", "debug", "=", "False", ",", "theme", "=", "\"modern\"", ",", "ssh_config", "=", "None", ")", ":", "from", "storm", "import", "web", "as", "_web", "_web", ".", "run", "(", "port", ",", "debug", ",", "theme", ",", "ssh_config", ")" ]
Starts the web UI.
[ "Starts", "the", "web", "UI", "." ]
c752defc1b718cfffbf0e0e15532fa1d7840bf6d
https://github.com/emre/storm/blob/c752defc1b718cfffbf0e0e15532fa1d7840bf6d/storm/__main__.py#L310-L313
10,043
diging/tethne
tethne/writers/collection.py
_strip_list_attributes
def _strip_list_attributes(graph_): """Converts lists attributes to strings for all nodes and edges in G.""" for n_ in graph_.nodes(data=True): for k,v in n_[1].iteritems(): if type(v) is list: graph_.node[n_[0]][k] = unicode(v) for e_ in graph_.edges(data=True): for k,v in e_[2].iteritems(): if type(v) is list: graph_.edge[e_[0]][e_[1]][k] = unicode(v) return graph_
python
def _strip_list_attributes(graph_): """Converts lists attributes to strings for all nodes and edges in G.""" for n_ in graph_.nodes(data=True): for k,v in n_[1].iteritems(): if type(v) is list: graph_.node[n_[0]][k] = unicode(v) for e_ in graph_.edges(data=True): for k,v in e_[2].iteritems(): if type(v) is list: graph_.edge[e_[0]][e_[1]][k] = unicode(v) return graph_
[ "def", "_strip_list_attributes", "(", "graph_", ")", ":", "for", "n_", "in", "graph_", ".", "nodes", "(", "data", "=", "True", ")", ":", "for", "k", ",", "v", "in", "n_", "[", "1", "]", ".", "iteritems", "(", ")", ":", "if", "type", "(", "v", ")", "is", "list", ":", "graph_", ".", "node", "[", "n_", "[", "0", "]", "]", "[", "k", "]", "=", "unicode", "(", "v", ")", "for", "e_", "in", "graph_", ".", "edges", "(", "data", "=", "True", ")", ":", "for", "k", ",", "v", "in", "e_", "[", "2", "]", ".", "iteritems", "(", ")", ":", "if", "type", "(", "v", ")", "is", "list", ":", "graph_", ".", "edge", "[", "e_", "[", "0", "]", "]", "[", "e_", "[", "1", "]", "]", "[", "k", "]", "=", "unicode", "(", "v", ")", "return", "graph_" ]
Converts lists attributes to strings for all nodes and edges in G.
[ "Converts", "lists", "attributes", "to", "strings", "for", "all", "nodes", "and", "edges", "in", "G", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/writers/collection.py#L189-L200
10,044
diging/tethne
tethne/writers/collection.py
_safe_type
def _safe_type(value): """Converts Python type names to XGMML-safe type names.""" if type(value) is str: dtype = 'string' if type(value) is unicode: dtype = 'string' if type(value) is int: dtype = 'integer' if type(value) is float: dtype = 'real' return dtype
python
def _safe_type(value): """Converts Python type names to XGMML-safe type names.""" if type(value) is str: dtype = 'string' if type(value) is unicode: dtype = 'string' if type(value) is int: dtype = 'integer' if type(value) is float: dtype = 'real' return dtype
[ "def", "_safe_type", "(", "value", ")", ":", "if", "type", "(", "value", ")", "is", "str", ":", "dtype", "=", "'string'", "if", "type", "(", "value", ")", "is", "unicode", ":", "dtype", "=", "'string'", "if", "type", "(", "value", ")", "is", "int", ":", "dtype", "=", "'integer'", "if", "type", "(", "value", ")", "is", "float", ":", "dtype", "=", "'real'", "return", "dtype" ]
Converts Python type names to XGMML-safe type names.
[ "Converts", "Python", "type", "names", "to", "XGMML", "-", "safe", "type", "names", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/writers/collection.py#L202-L210
10,045
diging/tethne
tethne/readers/wos.py
read
def read(path, corpus=True, index_by='wosid', streaming=False, parse_only=None, corpus_class=Corpus, **kwargs): """ Parse one or more WoS field-tagged data files. Examples -------- .. code-block:: python >>> from tethne.readers import wos >>> corpus = wos.read("/path/to/some/wos/data") >>> corpus <tethne.classes.corpus.Corpus object at 0x10057c2d0> Parameters ---------- path : str Path to WoS field-tagged data. Can be a path directly to a single data file, or to a directory containing several data files. corpus : bool If True (default), returns a :class:`.Corpus`\. If False, will return only a list of :class:`.Paper`\s. Returns ------- :class:`.Corpus` or :class:`.Paper` """ if not os.path.exists(path): raise ValueError('No such file or directory') # We need the primary index field in the parse results. if parse_only: parse_only.append(index_by) if streaming: return streaming_read(path, corpus=corpus, index_by=index_by, parse_only=parse_only, **kwargs) if os.path.isdir(path): # Directory containing 1+ WoS data files. papers = [] for sname in os.listdir(path): if sname.endswith('txt') and not sname.startswith('.'): papers += read(os.path.join(path, sname), corpus=False, parse_only=parse_only) else: # A single data file. papers = WoSParser(path).parse(parse_only=parse_only) if corpus: return corpus_class(papers, index_by=index_by, **kwargs) return papers
python
def read(path, corpus=True, index_by='wosid', streaming=False, parse_only=None, corpus_class=Corpus, **kwargs): """ Parse one or more WoS field-tagged data files. Examples -------- .. code-block:: python >>> from tethne.readers import wos >>> corpus = wos.read("/path/to/some/wos/data") >>> corpus <tethne.classes.corpus.Corpus object at 0x10057c2d0> Parameters ---------- path : str Path to WoS field-tagged data. Can be a path directly to a single data file, or to a directory containing several data files. corpus : bool If True (default), returns a :class:`.Corpus`\. If False, will return only a list of :class:`.Paper`\s. Returns ------- :class:`.Corpus` or :class:`.Paper` """ if not os.path.exists(path): raise ValueError('No such file or directory') # We need the primary index field in the parse results. if parse_only: parse_only.append(index_by) if streaming: return streaming_read(path, corpus=corpus, index_by=index_by, parse_only=parse_only, **kwargs) if os.path.isdir(path): # Directory containing 1+ WoS data files. papers = [] for sname in os.listdir(path): if sname.endswith('txt') and not sname.startswith('.'): papers += read(os.path.join(path, sname), corpus=False, parse_only=parse_only) else: # A single data file. papers = WoSParser(path).parse(parse_only=parse_only) if corpus: return corpus_class(papers, index_by=index_by, **kwargs) return papers
[ "def", "read", "(", "path", ",", "corpus", "=", "True", ",", "index_by", "=", "'wosid'", ",", "streaming", "=", "False", ",", "parse_only", "=", "None", ",", "corpus_class", "=", "Corpus", ",", "*", "*", "kwargs", ")", ":", "if", "not", "os", ".", "path", ".", "exists", "(", "path", ")", ":", "raise", "ValueError", "(", "'No such file or directory'", ")", "# We need the primary index field in the parse results.", "if", "parse_only", ":", "parse_only", ".", "append", "(", "index_by", ")", "if", "streaming", ":", "return", "streaming_read", "(", "path", ",", "corpus", "=", "corpus", ",", "index_by", "=", "index_by", ",", "parse_only", "=", "parse_only", ",", "*", "*", "kwargs", ")", "if", "os", ".", "path", ".", "isdir", "(", "path", ")", ":", "# Directory containing 1+ WoS data files.", "papers", "=", "[", "]", "for", "sname", "in", "os", ".", "listdir", "(", "path", ")", ":", "if", "sname", ".", "endswith", "(", "'txt'", ")", "and", "not", "sname", ".", "startswith", "(", "'.'", ")", ":", "papers", "+=", "read", "(", "os", ".", "path", ".", "join", "(", "path", ",", "sname", ")", ",", "corpus", "=", "False", ",", "parse_only", "=", "parse_only", ")", "else", ":", "# A single data file.", "papers", "=", "WoSParser", "(", "path", ")", ".", "parse", "(", "parse_only", "=", "parse_only", ")", "if", "corpus", ":", "return", "corpus_class", "(", "papers", ",", "index_by", "=", "index_by", ",", "*", "*", "kwargs", ")", "return", "papers" ]
Parse one or more WoS field-tagged data files. Examples -------- .. code-block:: python >>> from tethne.readers import wos >>> corpus = wos.read("/path/to/some/wos/data") >>> corpus <tethne.classes.corpus.Corpus object at 0x10057c2d0> Parameters ---------- path : str Path to WoS field-tagged data. Can be a path directly to a single data file, or to a directory containing several data files. corpus : bool If True (default), returns a :class:`.Corpus`\. If False, will return only a list of :class:`.Paper`\s. Returns ------- :class:`.Corpus` or :class:`.Paper`
[ "Parse", "one", "or", "more", "WoS", "field", "-", "tagged", "data", "files", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/wos.py#L350-L401
10,046
diging/tethne
tethne/readers/wos.py
WoSParser.parse_author
def parse_author(self, value): """ Attempts to split an author name into last and first parts. """ tokens = tuple([t.upper().strip() for t in value.split(',')]) if len(tokens) == 1: tokens = value.split(' ') if len(tokens) > 0: if len(tokens) > 1: aulast, auinit = tokens[0:2] # Ignore JR, II, III, etc. else: aulast = tokens[0] auinit = '' else: aulast, auinit = tokens[0], '' aulast = _strip_punctuation(aulast).upper() auinit = _strip_punctuation(auinit).upper() return aulast, auinit
python
def parse_author(self, value): """ Attempts to split an author name into last and first parts. """ tokens = tuple([t.upper().strip() for t in value.split(',')]) if len(tokens) == 1: tokens = value.split(' ') if len(tokens) > 0: if len(tokens) > 1: aulast, auinit = tokens[0:2] # Ignore JR, II, III, etc. else: aulast = tokens[0] auinit = '' else: aulast, auinit = tokens[0], '' aulast = _strip_punctuation(aulast).upper() auinit = _strip_punctuation(auinit).upper() return aulast, auinit
[ "def", "parse_author", "(", "self", ",", "value", ")", ":", "tokens", "=", "tuple", "(", "[", "t", ".", "upper", "(", ")", ".", "strip", "(", ")", "for", "t", "in", "value", ".", "split", "(", "','", ")", "]", ")", "if", "len", "(", "tokens", ")", "==", "1", ":", "tokens", "=", "value", ".", "split", "(", "' '", ")", "if", "len", "(", "tokens", ")", ">", "0", ":", "if", "len", "(", "tokens", ")", ">", "1", ":", "aulast", ",", "auinit", "=", "tokens", "[", "0", ":", "2", "]", "# Ignore JR, II, III, etc.", "else", ":", "aulast", "=", "tokens", "[", "0", "]", "auinit", "=", "''", "else", ":", "aulast", ",", "auinit", "=", "tokens", "[", "0", "]", ",", "''", "aulast", "=", "_strip_punctuation", "(", "aulast", ")", ".", "upper", "(", ")", "auinit", "=", "_strip_punctuation", "(", "auinit", ")", ".", "upper", "(", ")", "return", "aulast", ",", "auinit" ]
Attempts to split an author name into last and first parts.
[ "Attempts", "to", "split", "an", "author", "name", "into", "last", "and", "first", "parts", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/wos.py#L112-L129
10,047
diging/tethne
tethne/readers/wos.py
WoSParser.handle_CR
def handle_CR(self, value): """ Parses cited references. """ citation = self.entry_class() value = strip_tags(value) # First-author name and publication date. ptn = '([\w\s\W]+),\s([0-9]{4}),\s([\w\s]+)' ny_match = re.match(ptn, value, flags=re.U) nj_match = re.match('([\w\s\W]+),\s([\w\s]+)', value, flags=re.U) if ny_match is not None: name_raw, date, journal = ny_match.groups() elif nj_match is not None: name_raw, journal = nj_match.groups() date = None else: return datematch = re.match('([0-9]{4})', value) if datematch: date = datematch.group(1) name_raw = None if name_raw: name_tokens = [t.replace('.', '') for t in name_raw.split(' ')] if len(name_tokens) > 4 or value.startswith('*'): # Probably not a person. proc = lambda x: _strip_punctuation(x) aulast = ' '.join([proc(n) for n in name_tokens]).upper() auinit = '' elif len(name_tokens) > 0: aulast = name_tokens[0].upper() proc = lambda x: _space_sep(_strip_punctuation(x)) auinit = ' '.join([proc(n) for n in name_tokens[1:]]).upper() else: aulast = name_tokens[0].upper() auinit = '' setattr(citation, 'authors_init', [(aulast, auinit)]) if date: date = int(date) setattr(citation, 'date', date) setattr(citation, 'journal', journal) # Volume. v_match = re.search('\,\s+V([0-9A-Za-z]+)', value) if v_match is not None: volume = v_match.group(1) else: volume = None setattr(citation, 'volume', volume) # Start page. p_match = re.search('\,\s+[Pp]([0-9A-Za-z]+)', value) if p_match is not None: page = p_match.group(1) else: page = None setattr(citation, 'pageStart', page) # DOI. doi_match = re.search('DOI\s(.*)', value) if doi_match is not None: doi = doi_match.group(1) else: doi = None setattr(citation, 'doi', doi) return citation
python
def handle_CR(self, value): """ Parses cited references. """ citation = self.entry_class() value = strip_tags(value) # First-author name and publication date. ptn = '([\w\s\W]+),\s([0-9]{4}),\s([\w\s]+)' ny_match = re.match(ptn, value, flags=re.U) nj_match = re.match('([\w\s\W]+),\s([\w\s]+)', value, flags=re.U) if ny_match is not None: name_raw, date, journal = ny_match.groups() elif nj_match is not None: name_raw, journal = nj_match.groups() date = None else: return datematch = re.match('([0-9]{4})', value) if datematch: date = datematch.group(1) name_raw = None if name_raw: name_tokens = [t.replace('.', '') for t in name_raw.split(' ')] if len(name_tokens) > 4 or value.startswith('*'): # Probably not a person. proc = lambda x: _strip_punctuation(x) aulast = ' '.join([proc(n) for n in name_tokens]).upper() auinit = '' elif len(name_tokens) > 0: aulast = name_tokens[0].upper() proc = lambda x: _space_sep(_strip_punctuation(x)) auinit = ' '.join([proc(n) for n in name_tokens[1:]]).upper() else: aulast = name_tokens[0].upper() auinit = '' setattr(citation, 'authors_init', [(aulast, auinit)]) if date: date = int(date) setattr(citation, 'date', date) setattr(citation, 'journal', journal) # Volume. v_match = re.search('\,\s+V([0-9A-Za-z]+)', value) if v_match is not None: volume = v_match.group(1) else: volume = None setattr(citation, 'volume', volume) # Start page. p_match = re.search('\,\s+[Pp]([0-9A-Za-z]+)', value) if p_match is not None: page = p_match.group(1) else: page = None setattr(citation, 'pageStart', page) # DOI. doi_match = re.search('DOI\s(.*)', value) if doi_match is not None: doi = doi_match.group(1) else: doi = None setattr(citation, 'doi', doi) return citation
[ "def", "handle_CR", "(", "self", ",", "value", ")", ":", "citation", "=", "self", ".", "entry_class", "(", ")", "value", "=", "strip_tags", "(", "value", ")", "# First-author name and publication date.", "ptn", "=", "'([\\w\\s\\W]+),\\s([0-9]{4}),\\s([\\w\\s]+)'", "ny_match", "=", "re", ".", "match", "(", "ptn", ",", "value", ",", "flags", "=", "re", ".", "U", ")", "nj_match", "=", "re", ".", "match", "(", "'([\\w\\s\\W]+),\\s([\\w\\s]+)'", ",", "value", ",", "flags", "=", "re", ".", "U", ")", "if", "ny_match", "is", "not", "None", ":", "name_raw", ",", "date", ",", "journal", "=", "ny_match", ".", "groups", "(", ")", "elif", "nj_match", "is", "not", "None", ":", "name_raw", ",", "journal", "=", "nj_match", ".", "groups", "(", ")", "date", "=", "None", "else", ":", "return", "datematch", "=", "re", ".", "match", "(", "'([0-9]{4})'", ",", "value", ")", "if", "datematch", ":", "date", "=", "datematch", ".", "group", "(", "1", ")", "name_raw", "=", "None", "if", "name_raw", ":", "name_tokens", "=", "[", "t", ".", "replace", "(", "'.'", ",", "''", ")", "for", "t", "in", "name_raw", ".", "split", "(", "' '", ")", "]", "if", "len", "(", "name_tokens", ")", ">", "4", "or", "value", ".", "startswith", "(", "'*'", ")", ":", "# Probably not a person.", "proc", "=", "lambda", "x", ":", "_strip_punctuation", "(", "x", ")", "aulast", "=", "' '", ".", "join", "(", "[", "proc", "(", "n", ")", "for", "n", "in", "name_tokens", "]", ")", ".", "upper", "(", ")", "auinit", "=", "''", "elif", "len", "(", "name_tokens", ")", ">", "0", ":", "aulast", "=", "name_tokens", "[", "0", "]", ".", "upper", "(", ")", "proc", "=", "lambda", "x", ":", "_space_sep", "(", "_strip_punctuation", "(", "x", ")", ")", "auinit", "=", "' '", ".", "join", "(", "[", "proc", "(", "n", ")", "for", "n", "in", "name_tokens", "[", "1", ":", "]", "]", ")", ".", "upper", "(", ")", "else", ":", "aulast", "=", "name_tokens", "[", "0", "]", ".", "upper", "(", ")", "auinit", "=", "''", "setattr", "(", "citation", ",", "'authors_init'", ",", "[", "(", "aulast", ",", "auinit", ")", "]", ")", "if", "date", ":", "date", "=", "int", "(", "date", ")", "setattr", "(", "citation", ",", "'date'", ",", "date", ")", "setattr", "(", "citation", ",", "'journal'", ",", "journal", ")", "# Volume.", "v_match", "=", "re", ".", "search", "(", "'\\,\\s+V([0-9A-Za-z]+)'", ",", "value", ")", "if", "v_match", "is", "not", "None", ":", "volume", "=", "v_match", ".", "group", "(", "1", ")", "else", ":", "volume", "=", "None", "setattr", "(", "citation", ",", "'volume'", ",", "volume", ")", "# Start page.", "p_match", "=", "re", ".", "search", "(", "'\\,\\s+[Pp]([0-9A-Za-z]+)'", ",", "value", ")", "if", "p_match", "is", "not", "None", ":", "page", "=", "p_match", ".", "group", "(", "1", ")", "else", ":", "page", "=", "None", "setattr", "(", "citation", ",", "'pageStart'", ",", "page", ")", "# DOI.", "doi_match", "=", "re", ".", "search", "(", "'DOI\\s(.*)'", ",", "value", ")", "if", "doi_match", "is", "not", "None", ":", "doi", "=", "doi_match", ".", "group", "(", "1", ")", "else", ":", "doi", "=", "None", "setattr", "(", "citation", ",", "'doi'", ",", "doi", ")", "return", "citation" ]
Parses cited references.
[ "Parses", "cited", "references", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/wos.py#L157-L227
10,048
diging/tethne
tethne/readers/wos.py
WoSParser.postprocess_WC
def postprocess_WC(self, entry): """ Parse WC keywords. Subject keywords are usually semicolon-delimited. """ if type(entry.WC) not in [str, unicode]: WC= u' '.join([unicode(k) for k in entry.WC]) else: WC= entry.WC entry.WC= [k.strip().upper() for k in WC.split(';')]
python
def postprocess_WC(self, entry): """ Parse WC keywords. Subject keywords are usually semicolon-delimited. """ if type(entry.WC) not in [str, unicode]: WC= u' '.join([unicode(k) for k in entry.WC]) else: WC= entry.WC entry.WC= [k.strip().upper() for k in WC.split(';')]
[ "def", "postprocess_WC", "(", "self", ",", "entry", ")", ":", "if", "type", "(", "entry", ".", "WC", ")", "not", "in", "[", "str", ",", "unicode", "]", ":", "WC", "=", "u' '", ".", "join", "(", "[", "unicode", "(", "k", ")", "for", "k", "in", "entry", ".", "WC", "]", ")", "else", ":", "WC", "=", "entry", ".", "WC", "entry", ".", "WC", "=", "[", "k", ".", "strip", "(", ")", ".", "upper", "(", ")", "for", "k", "in", "WC", ".", "split", "(", "';'", ")", "]" ]
Parse WC keywords. Subject keywords are usually semicolon-delimited.
[ "Parse", "WC", "keywords", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/wos.py#L229-L240
10,049
diging/tethne
tethne/readers/wos.py
WoSParser.postprocess_subject
def postprocess_subject(self, entry): """ Parse subject keywords. Subject keywords are usually semicolon-delimited. """ if type(entry.subject) not in [str, unicode]: subject = u' '.join([unicode(k) for k in entry.subject]) else: subject = entry.subject entry.subject = [k.strip().upper() for k in subject.split(';')]
python
def postprocess_subject(self, entry): """ Parse subject keywords. Subject keywords are usually semicolon-delimited. """ if type(entry.subject) not in [str, unicode]: subject = u' '.join([unicode(k) for k in entry.subject]) else: subject = entry.subject entry.subject = [k.strip().upper() for k in subject.split(';')]
[ "def", "postprocess_subject", "(", "self", ",", "entry", ")", ":", "if", "type", "(", "entry", ".", "subject", ")", "not", "in", "[", "str", ",", "unicode", "]", ":", "subject", "=", "u' '", ".", "join", "(", "[", "unicode", "(", "k", ")", "for", "k", "in", "entry", ".", "subject", "]", ")", "else", ":", "subject", "=", "entry", ".", "subject", "entry", ".", "subject", "=", "[", "k", ".", "strip", "(", ")", ".", "upper", "(", ")", "for", "k", "in", "subject", ".", "split", "(", "';'", ")", "]" ]
Parse subject keywords. Subject keywords are usually semicolon-delimited.
[ "Parse", "subject", "keywords", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/wos.py#L242-L253
10,050
diging/tethne
tethne/readers/wos.py
WoSParser.postprocess_authorKeywords
def postprocess_authorKeywords(self, entry): """ Parse author keywords. Author keywords are usually semicolon-delimited. """ if type(entry.authorKeywords) not in [str, unicode]: aK = u' '.join([unicode(k) for k in entry.authorKeywords]) else: aK = entry.authorKeywords entry.authorKeywords = [k.strip().upper() for k in aK.split(';')]
python
def postprocess_authorKeywords(self, entry): """ Parse author keywords. Author keywords are usually semicolon-delimited. """ if type(entry.authorKeywords) not in [str, unicode]: aK = u' '.join([unicode(k) for k in entry.authorKeywords]) else: aK = entry.authorKeywords entry.authorKeywords = [k.strip().upper() for k in aK.split(';')]
[ "def", "postprocess_authorKeywords", "(", "self", ",", "entry", ")", ":", "if", "type", "(", "entry", ".", "authorKeywords", ")", "not", "in", "[", "str", ",", "unicode", "]", ":", "aK", "=", "u' '", ".", "join", "(", "[", "unicode", "(", "k", ")", "for", "k", "in", "entry", ".", "authorKeywords", "]", ")", "else", ":", "aK", "=", "entry", ".", "authorKeywords", "entry", ".", "authorKeywords", "=", "[", "k", ".", "strip", "(", ")", ".", "upper", "(", ")", "for", "k", "in", "aK", ".", "split", "(", "';'", ")", "]" ]
Parse author keywords. Author keywords are usually semicolon-delimited.
[ "Parse", "author", "keywords", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/wos.py#L255-L266
10,051
diging/tethne
tethne/readers/wos.py
WoSParser.postprocess_keywordsPlus
def postprocess_keywordsPlus(self, entry): """ Parse WoS "Keyword Plus" keywords. Keyword Plus keywords are usually semicolon-delimited. """ if type(entry.keywordsPlus) in [str, unicode]: entry.keywordsPlus = [k.strip().upper() for k in entry.keywordsPlus.split(';')]
python
def postprocess_keywordsPlus(self, entry): """ Parse WoS "Keyword Plus" keywords. Keyword Plus keywords are usually semicolon-delimited. """ if type(entry.keywordsPlus) in [str, unicode]: entry.keywordsPlus = [k.strip().upper() for k in entry.keywordsPlus.split(';')]
[ "def", "postprocess_keywordsPlus", "(", "self", ",", "entry", ")", ":", "if", "type", "(", "entry", ".", "keywordsPlus", ")", "in", "[", "str", ",", "unicode", "]", ":", "entry", ".", "keywordsPlus", "=", "[", "k", ".", "strip", "(", ")", ".", "upper", "(", ")", "for", "k", "in", "entry", ".", "keywordsPlus", ".", "split", "(", "';'", ")", "]" ]
Parse WoS "Keyword Plus" keywords. Keyword Plus keywords are usually semicolon-delimited.
[ "Parse", "WoS", "Keyword", "Plus", "keywords", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/wos.py#L268-L277
10,052
diging/tethne
tethne/readers/wos.py
WoSParser.postprocess_funding
def postprocess_funding(self, entry): """ Separates funding agency from grant numbers. """ if type(entry.funding) not in [str, unicode]: return sources = [fu.strip() for fu in entry.funding.split(';')] sources_processed = [] for source in sources: m = re.search('(.*)?\s+\[(.+)\]', source) if m: agency, grant = m.groups() else: agency, grant = source, None sources_processed.append((agency, grant)) entry.funding = sources_processed
python
def postprocess_funding(self, entry): """ Separates funding agency from grant numbers. """ if type(entry.funding) not in [str, unicode]: return sources = [fu.strip() for fu in entry.funding.split(';')] sources_processed = [] for source in sources: m = re.search('(.*)?\s+\[(.+)\]', source) if m: agency, grant = m.groups() else: agency, grant = source, None sources_processed.append((agency, grant)) entry.funding = sources_processed
[ "def", "postprocess_funding", "(", "self", ",", "entry", ")", ":", "if", "type", "(", "entry", ".", "funding", ")", "not", "in", "[", "str", ",", "unicode", "]", ":", "return", "sources", "=", "[", "fu", ".", "strip", "(", ")", "for", "fu", "in", "entry", ".", "funding", ".", "split", "(", "';'", ")", "]", "sources_processed", "=", "[", "]", "for", "source", "in", "sources", ":", "m", "=", "re", ".", "search", "(", "'(.*)?\\s+\\[(.+)\\]'", ",", "source", ")", "if", "m", ":", "agency", ",", "grant", "=", "m", ".", "groups", "(", ")", "else", ":", "agency", ",", "grant", "=", "source", ",", "None", "sources_processed", ".", "append", "(", "(", "agency", ",", "grant", ")", ")", "entry", ".", "funding", "=", "sources_processed" ]
Separates funding agency from grant numbers.
[ "Separates", "funding", "agency", "from", "grant", "numbers", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/wos.py#L279-L296
10,053
diging/tethne
tethne/readers/wos.py
WoSParser.postprocess_authors_full
def postprocess_authors_full(self, entry): """ If only a single author was found, ensure that ``authors_full`` is nonetheless a list. """ if type(entry.authors_full) is not list: entry.authors_full = [entry.authors_full]
python
def postprocess_authors_full(self, entry): """ If only a single author was found, ensure that ``authors_full`` is nonetheless a list. """ if type(entry.authors_full) is not list: entry.authors_full = [entry.authors_full]
[ "def", "postprocess_authors_full", "(", "self", ",", "entry", ")", ":", "if", "type", "(", "entry", ".", "authors_full", ")", "is", "not", "list", ":", "entry", ".", "authors_full", "=", "[", "entry", ".", "authors_full", "]" ]
If only a single author was found, ensure that ``authors_full`` is nonetheless a list.
[ "If", "only", "a", "single", "author", "was", "found", "ensure", "that", "authors_full", "is", "nonetheless", "a", "list", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/wos.py#L298-L304
10,054
diging/tethne
tethne/readers/wos.py
WoSParser.postprocess_authors_init
def postprocess_authors_init(self, entry): """ If only a single author was found, ensure that ``authors_init`` is nonetheless a list. """ if type(entry.authors_init) is not list: entry.authors_init = [entry.authors_init]
python
def postprocess_authors_init(self, entry): """ If only a single author was found, ensure that ``authors_init`` is nonetheless a list. """ if type(entry.authors_init) is not list: entry.authors_init = [entry.authors_init]
[ "def", "postprocess_authors_init", "(", "self", ",", "entry", ")", ":", "if", "type", "(", "entry", ".", "authors_init", ")", "is", "not", "list", ":", "entry", ".", "authors_init", "=", "[", "entry", ".", "authors_init", "]" ]
If only a single author was found, ensure that ``authors_init`` is nonetheless a list.
[ "If", "only", "a", "single", "author", "was", "found", "ensure", "that", "authors_init", "is", "nonetheless", "a", "list", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/wos.py#L306-L312
10,055
diging/tethne
tethne/readers/wos.py
WoSParser.postprocess_citedReferences
def postprocess_citedReferences(self, entry): """ If only a single cited reference was found, ensure that ``citedReferences`` is nonetheless a list. """ if type(entry.citedReferences) is not list: entry.citedReferences = [entry.citedReferences]
python
def postprocess_citedReferences(self, entry): """ If only a single cited reference was found, ensure that ``citedReferences`` is nonetheless a list. """ if type(entry.citedReferences) is not list: entry.citedReferences = [entry.citedReferences]
[ "def", "postprocess_citedReferences", "(", "self", ",", "entry", ")", ":", "if", "type", "(", "entry", ".", "citedReferences", ")", "is", "not", "list", ":", "entry", ".", "citedReferences", "=", "[", "entry", ".", "citedReferences", "]" ]
If only a single cited reference was found, ensure that ``citedReferences`` is nonetheless a list.
[ "If", "only", "a", "single", "cited", "reference", "was", "found", "ensure", "that", "citedReferences", "is", "nonetheless", "a", "list", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/wos.py#L314-L320
10,056
diging/tethne
tethne/plot/__init__.py
plot_burstness
def plot_burstness(corpus, B, **kwargs): """ Generate a figure depicting burstness profiles for ``feature``. Parameters ---------- B Returns ------- fig : :class:`matplotlib.figure.Figure` Examples -------- .. code-block:: python >>> from tethne.analyze.corpus import burstness >>> fig = plot_burstness(corpus, 'citations', topn=2, perslice=True) >>> fig.savefig('~/burstness.png') Years prior to the first occurrence of each feature are grayed out. Periods in which the feature was bursty are depicted by colored blocks, the opacity of which indicates burstness intensity. .. figure:: _static/images/burstness.png :width: 600 :align: center """ try: import matplotlib.pyplot as plt import matplotlib.patches as mpatches except ImportError: raise RuntimeError('This method requires the package matplotlib.') color = kwargs.get('color', 'red') # Get width based on slices. years = sorted(corpus.indices['date'].keys()) width = years[1] - years[0] height = 1.0 fig = plt.figure(figsize=(10,len(B)/4.)) f = 1 axes = {} for key, value in B.iteritems(): x,y = value ax = fig.add_subplot(len(B),1,f) f+=1 ax.set_yticks([]) ax.set_xbound(min(years), max(years) + 1) if not f == len(B)+1: # Only show xticks on the bottom subplot. ax.set_xticklabels([]) # Block out years until first occurrence of feature. rect = mpatches.Rectangle((min(years), 0), sorted(x)[0]-min(years), height, fill=True, linewidth=0.0) rect.set_facecolor('black') rect.set_alpha(0.3) ax.add_patch(rect) # Add a rectangle for each year, shaded according to burstness state. for d in xrange(min(x), max(x)): try: i = x.index(d) except ValueError: continue xy = (d, 0.) state = y[i] rect = mpatches.Rectangle(xy, width, height, fill=True, linewidth=0.0) rect.set_facecolor(color) rect.set_alpha(state) ax.add_patch(rect) ax.set_ylabel(key, rotation=0, horizontalalignment='right', verticalalignment='center') plt.subplots_adjust(left=0.5) fig.tight_layout(h_pad=0.25) plt.show()
python
def plot_burstness(corpus, B, **kwargs): """ Generate a figure depicting burstness profiles for ``feature``. Parameters ---------- B Returns ------- fig : :class:`matplotlib.figure.Figure` Examples -------- .. code-block:: python >>> from tethne.analyze.corpus import burstness >>> fig = plot_burstness(corpus, 'citations', topn=2, perslice=True) >>> fig.savefig('~/burstness.png') Years prior to the first occurrence of each feature are grayed out. Periods in which the feature was bursty are depicted by colored blocks, the opacity of which indicates burstness intensity. .. figure:: _static/images/burstness.png :width: 600 :align: center """ try: import matplotlib.pyplot as plt import matplotlib.patches as mpatches except ImportError: raise RuntimeError('This method requires the package matplotlib.') color = kwargs.get('color', 'red') # Get width based on slices. years = sorted(corpus.indices['date'].keys()) width = years[1] - years[0] height = 1.0 fig = plt.figure(figsize=(10,len(B)/4.)) f = 1 axes = {} for key, value in B.iteritems(): x,y = value ax = fig.add_subplot(len(B),1,f) f+=1 ax.set_yticks([]) ax.set_xbound(min(years), max(years) + 1) if not f == len(B)+1: # Only show xticks on the bottom subplot. ax.set_xticklabels([]) # Block out years until first occurrence of feature. rect = mpatches.Rectangle((min(years), 0), sorted(x)[0]-min(years), height, fill=True, linewidth=0.0) rect.set_facecolor('black') rect.set_alpha(0.3) ax.add_patch(rect) # Add a rectangle for each year, shaded according to burstness state. for d in xrange(min(x), max(x)): try: i = x.index(d) except ValueError: continue xy = (d, 0.) state = y[i] rect = mpatches.Rectangle(xy, width, height, fill=True, linewidth=0.0) rect.set_facecolor(color) rect.set_alpha(state) ax.add_patch(rect) ax.set_ylabel(key, rotation=0, horizontalalignment='right', verticalalignment='center') plt.subplots_adjust(left=0.5) fig.tight_layout(h_pad=0.25) plt.show()
[ "def", "plot_burstness", "(", "corpus", ",", "B", ",", "*", "*", "kwargs", ")", ":", "try", ":", "import", "matplotlib", ".", "pyplot", "as", "plt", "import", "matplotlib", ".", "patches", "as", "mpatches", "except", "ImportError", ":", "raise", "RuntimeError", "(", "'This method requires the package matplotlib.'", ")", "color", "=", "kwargs", ".", "get", "(", "'color'", ",", "'red'", ")", "# Get width based on slices.", "years", "=", "sorted", "(", "corpus", ".", "indices", "[", "'date'", "]", ".", "keys", "(", ")", ")", "width", "=", "years", "[", "1", "]", "-", "years", "[", "0", "]", "height", "=", "1.0", "fig", "=", "plt", ".", "figure", "(", "figsize", "=", "(", "10", ",", "len", "(", "B", ")", "/", "4.", ")", ")", "f", "=", "1", "axes", "=", "{", "}", "for", "key", ",", "value", "in", "B", ".", "iteritems", "(", ")", ":", "x", ",", "y", "=", "value", "ax", "=", "fig", ".", "add_subplot", "(", "len", "(", "B", ")", ",", "1", ",", "f", ")", "f", "+=", "1", "ax", ".", "set_yticks", "(", "[", "]", ")", "ax", ".", "set_xbound", "(", "min", "(", "years", ")", ",", "max", "(", "years", ")", "+", "1", ")", "if", "not", "f", "==", "len", "(", "B", ")", "+", "1", ":", "# Only show xticks on the bottom subplot.", "ax", ".", "set_xticklabels", "(", "[", "]", ")", "# Block out years until first occurrence of feature.", "rect", "=", "mpatches", ".", "Rectangle", "(", "(", "min", "(", "years", ")", ",", "0", ")", ",", "sorted", "(", "x", ")", "[", "0", "]", "-", "min", "(", "years", ")", ",", "height", ",", "fill", "=", "True", ",", "linewidth", "=", "0.0", ")", "rect", ".", "set_facecolor", "(", "'black'", ")", "rect", ".", "set_alpha", "(", "0.3", ")", "ax", ".", "add_patch", "(", "rect", ")", "# Add a rectangle for each year, shaded according to burstness state.", "for", "d", "in", "xrange", "(", "min", "(", "x", ")", ",", "max", "(", "x", ")", ")", ":", "try", ":", "i", "=", "x", ".", "index", "(", "d", ")", "except", "ValueError", ":", "continue", "xy", "=", "(", "d", ",", "0.", ")", "state", "=", "y", "[", "i", "]", "rect", "=", "mpatches", ".", "Rectangle", "(", "xy", ",", "width", ",", "height", ",", "fill", "=", "True", ",", "linewidth", "=", "0.0", ")", "rect", ".", "set_facecolor", "(", "color", ")", "rect", ".", "set_alpha", "(", "state", ")", "ax", ".", "add_patch", "(", "rect", ")", "ax", ".", "set_ylabel", "(", "key", ",", "rotation", "=", "0", ",", "horizontalalignment", "=", "'right'", ",", "verticalalignment", "=", "'center'", ")", "plt", ".", "subplots_adjust", "(", "left", "=", "0.5", ")", "fig", ".", "tight_layout", "(", "h_pad", "=", "0.25", ")", "plt", ".", "show", "(", ")" ]
Generate a figure depicting burstness profiles for ``feature``. Parameters ---------- B Returns ------- fig : :class:`matplotlib.figure.Figure` Examples -------- .. code-block:: python >>> from tethne.analyze.corpus import burstness >>> fig = plot_burstness(corpus, 'citations', topn=2, perslice=True) >>> fig.savefig('~/burstness.png') Years prior to the first occurrence of each feature are grayed out. Periods in which the feature was bursty are depicted by colored blocks, the opacity of which indicates burstness intensity. .. figure:: _static/images/burstness.png :width: 600 :align: center
[ "Generate", "a", "figure", "depicting", "burstness", "profiles", "for", "feature", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/plot/__init__.py#L11-L97
10,057
diging/tethne
tethne/networks/helpers.py
simplify_multigraph
def simplify_multigraph(multigraph, time=False): """ Simplifies a graph by condensing multiple edges between the same node pair into a single edge, with a weight attribute equal to the number of edges. Parameters ---------- graph : networkx.MultiGraph E.g. a coauthorship graph. time : bool If True, will generate 'start' and 'end' attributes for each edge, corresponding to the earliest and latest 'date' values for that edge. Returns ------- graph : networkx.Graph A NetworkX :class:`.graph` . """ graph = nx.Graph() for node in multigraph.nodes(data=True): u = node[0] node_attribs = node[1] graph.add_node(u, node_attribs) for v in multigraph[u]: edges = multigraph.get_edge_data(u, v) # Dict. edge_attribs = { 'weight': len(edges) } if time: # Look for a date in each edge. start = 3000 end = 0 found_date = False for edge in edges.values(): try: found_date = True if edge['date'] < start: start = edge['date'] if edge['date'] > end: end = edge['date'] except KeyError: # No date to be found. pass if found_date: # If no date found, don't add start/end atts. edge_attribs['start'] = start edge_attribs['end'] = end graph.add_edge(u, v, edge_attribs) return graph
python
def simplify_multigraph(multigraph, time=False): """ Simplifies a graph by condensing multiple edges between the same node pair into a single edge, with a weight attribute equal to the number of edges. Parameters ---------- graph : networkx.MultiGraph E.g. a coauthorship graph. time : bool If True, will generate 'start' and 'end' attributes for each edge, corresponding to the earliest and latest 'date' values for that edge. Returns ------- graph : networkx.Graph A NetworkX :class:`.graph` . """ graph = nx.Graph() for node in multigraph.nodes(data=True): u = node[0] node_attribs = node[1] graph.add_node(u, node_attribs) for v in multigraph[u]: edges = multigraph.get_edge_data(u, v) # Dict. edge_attribs = { 'weight': len(edges) } if time: # Look for a date in each edge. start = 3000 end = 0 found_date = False for edge in edges.values(): try: found_date = True if edge['date'] < start: start = edge['date'] if edge['date'] > end: end = edge['date'] except KeyError: # No date to be found. pass if found_date: # If no date found, don't add start/end atts. edge_attribs['start'] = start edge_attribs['end'] = end graph.add_edge(u, v, edge_attribs) return graph
[ "def", "simplify_multigraph", "(", "multigraph", ",", "time", "=", "False", ")", ":", "graph", "=", "nx", ".", "Graph", "(", ")", "for", "node", "in", "multigraph", ".", "nodes", "(", "data", "=", "True", ")", ":", "u", "=", "node", "[", "0", "]", "node_attribs", "=", "node", "[", "1", "]", "graph", ".", "add_node", "(", "u", ",", "node_attribs", ")", "for", "v", "in", "multigraph", "[", "u", "]", ":", "edges", "=", "multigraph", ".", "get_edge_data", "(", "u", ",", "v", ")", "# Dict.", "edge_attribs", "=", "{", "'weight'", ":", "len", "(", "edges", ")", "}", "if", "time", ":", "# Look for a date in each edge.", "start", "=", "3000", "end", "=", "0", "found_date", "=", "False", "for", "edge", "in", "edges", ".", "values", "(", ")", ":", "try", ":", "found_date", "=", "True", "if", "edge", "[", "'date'", "]", "<", "start", ":", "start", "=", "edge", "[", "'date'", "]", "if", "edge", "[", "'date'", "]", ">", "end", ":", "end", "=", "edge", "[", "'date'", "]", "except", "KeyError", ":", "# No date to be found.", "pass", "if", "found_date", ":", "# If no date found, don't add start/end atts.", "edge_attribs", "[", "'start'", "]", "=", "start", "edge_attribs", "[", "'end'", "]", "=", "end", "graph", ".", "add_edge", "(", "u", ",", "v", ",", "edge_attribs", ")", "return", "graph" ]
Simplifies a graph by condensing multiple edges between the same node pair into a single edge, with a weight attribute equal to the number of edges. Parameters ---------- graph : networkx.MultiGraph E.g. a coauthorship graph. time : bool If True, will generate 'start' and 'end' attributes for each edge, corresponding to the earliest and latest 'date' values for that edge. Returns ------- graph : networkx.Graph A NetworkX :class:`.graph` .
[ "Simplifies", "a", "graph", "by", "condensing", "multiple", "edges", "between", "the", "same", "node", "pair", "into", "a", "single", "edge", "with", "a", "weight", "attribute", "equal", "to", "the", "number", "of", "edges", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/networks/helpers.py#L28-L81
10,058
diging/tethne
tethne/networks/helpers.py
citation_count
def citation_count(papers, key='ayjid', verbose=False): """ Generates citation counts for all of the papers cited by papers. Parameters ---------- papers : list A list of :class:`.Paper` instances. key : str Property to use as node key. Default is 'ayjid' (recommended). verbose : bool If True, prints status messages. Returns ------- counts : dict Citation counts for all papers cited by papers. """ if verbose: print "Generating citation counts for "+unicode(len(papers))+" papers..." counts = Counter() for P in papers: if P['citations'] is not None: for p in P['citations']: counts[p[key]] += 1 return counts
python
def citation_count(papers, key='ayjid', verbose=False): """ Generates citation counts for all of the papers cited by papers. Parameters ---------- papers : list A list of :class:`.Paper` instances. key : str Property to use as node key. Default is 'ayjid' (recommended). verbose : bool If True, prints status messages. Returns ------- counts : dict Citation counts for all papers cited by papers. """ if verbose: print "Generating citation counts for "+unicode(len(papers))+" papers..." counts = Counter() for P in papers: if P['citations'] is not None: for p in P['citations']: counts[p[key]] += 1 return counts
[ "def", "citation_count", "(", "papers", ",", "key", "=", "'ayjid'", ",", "verbose", "=", "False", ")", ":", "if", "verbose", ":", "print", "\"Generating citation counts for \"", "+", "unicode", "(", "len", "(", "papers", ")", ")", "+", "\" papers...\"", "counts", "=", "Counter", "(", ")", "for", "P", "in", "papers", ":", "if", "P", "[", "'citations'", "]", "is", "not", "None", ":", "for", "p", "in", "P", "[", "'citations'", "]", ":", "counts", "[", "p", "[", "key", "]", "]", "+=", "1", "return", "counts" ]
Generates citation counts for all of the papers cited by papers. Parameters ---------- papers : list A list of :class:`.Paper` instances. key : str Property to use as node key. Default is 'ayjid' (recommended). verbose : bool If True, prints status messages. Returns ------- counts : dict Citation counts for all papers cited by papers.
[ "Generates", "citation", "counts", "for", "all", "of", "the", "papers", "cited", "by", "papers", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/networks/helpers.py#L83-L111
10,059
diging/tethne
tethne/analyze/collection.py
connected
def connected(G, method_name, **kwargs): """ Performs analysis methods from networkx.connected on each graph in the collection. Parameters ---------- G : :class:`.GraphCollection` The :class:`.GraphCollection` to analyze. The specified method will be applied to each graph in ``G``. method : string Name of method in networkx.connected. **kwargs : kwargs Keyword arguments, passed directly to method. Returns ------- results : dict Keys are graph indices, values are output of method for that graph. Raises ------ ValueError If name is not in networkx.connected, or if no such method exists. """ warnings.warn("To be removed in 0.8. Use GraphCollection.analyze instead.", DeprecationWarning) return G.analyze(['connected', method_name], **kwargs)
python
def connected(G, method_name, **kwargs): """ Performs analysis methods from networkx.connected on each graph in the collection. Parameters ---------- G : :class:`.GraphCollection` The :class:`.GraphCollection` to analyze. The specified method will be applied to each graph in ``G``. method : string Name of method in networkx.connected. **kwargs : kwargs Keyword arguments, passed directly to method. Returns ------- results : dict Keys are graph indices, values are output of method for that graph. Raises ------ ValueError If name is not in networkx.connected, or if no such method exists. """ warnings.warn("To be removed in 0.8. Use GraphCollection.analyze instead.", DeprecationWarning) return G.analyze(['connected', method_name], **kwargs)
[ "def", "connected", "(", "G", ",", "method_name", ",", "*", "*", "kwargs", ")", ":", "warnings", ".", "warn", "(", "\"To be removed in 0.8. Use GraphCollection.analyze instead.\"", ",", "DeprecationWarning", ")", "return", "G", ".", "analyze", "(", "[", "'connected'", ",", "method_name", "]", ",", "*", "*", "kwargs", ")" ]
Performs analysis methods from networkx.connected on each graph in the collection. Parameters ---------- G : :class:`.GraphCollection` The :class:`.GraphCollection` to analyze. The specified method will be applied to each graph in ``G``. method : string Name of method in networkx.connected. **kwargs : kwargs Keyword arguments, passed directly to method. Returns ------- results : dict Keys are graph indices, values are output of method for that graph. Raises ------ ValueError If name is not in networkx.connected, or if no such method exists.
[ "Performs", "analysis", "methods", "from", "networkx", ".", "connected", "on", "each", "graph", "in", "the", "collection", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/analyze/collection.py#L72-L101
10,060
diging/tethne
tethne/analyze/collection.py
attachment_probability
def attachment_probability(G): """ Calculates the observed attachment probability for each node at each time-step. Attachment probability is calculated based on the observed new edges in the next time-step. So if a node acquires new edges at time t, this will accrue to the node's attachment probability at time t-1. Thus at a given time, one can ask whether degree and attachment probability are related. Parameters ---------- G : :class:`.GraphCollection` Must be sliced by 'date'. See :func:`.GraphCollection.slice`\. Returns ------- probs : dict Keyed by index in G.graphs, and then by node. """ warnings.warn("Removed in 0.8. Too domain-specific.") probs = {} G_ = None k_ = None for k,g in G.graphs.iteritems(): new_edges = {} if G_ is not None: for n in g.nodes(): try: old_neighbors = set(G_[n].keys()) if len(old_neighbors) > 0: new_neighbors = set(g[n].keys()) - old_neighbors new_edges[n] = float(len(new_neighbors)) else: new_edges[n] = 0. except KeyError: pass N = sum( new_edges.values() ) probs[k_] = { n:0. for n in G_.nodes() } if N > 0.: for n in G.nodes(): try: probs[k_][n] = new_edges[n]/N except KeyError: pass if probs[k_] is not None: networkx.set_node_attributes(G.graphs[k_], 'attachment_probability', probs[k_]) G_ = G k_ = k # Handle last graph (no values). key = G.graphs.keys()[-1] zprobs = { n:0. for n in G.graphs[key].nodes() } networkx.set_node_attributes(G.graphs[key], 'attachment_probability', zprobs) return probs
python
def attachment_probability(G): """ Calculates the observed attachment probability for each node at each time-step. Attachment probability is calculated based on the observed new edges in the next time-step. So if a node acquires new edges at time t, this will accrue to the node's attachment probability at time t-1. Thus at a given time, one can ask whether degree and attachment probability are related. Parameters ---------- G : :class:`.GraphCollection` Must be sliced by 'date'. See :func:`.GraphCollection.slice`\. Returns ------- probs : dict Keyed by index in G.graphs, and then by node. """ warnings.warn("Removed in 0.8. Too domain-specific.") probs = {} G_ = None k_ = None for k,g in G.graphs.iteritems(): new_edges = {} if G_ is not None: for n in g.nodes(): try: old_neighbors = set(G_[n].keys()) if len(old_neighbors) > 0: new_neighbors = set(g[n].keys()) - old_neighbors new_edges[n] = float(len(new_neighbors)) else: new_edges[n] = 0. except KeyError: pass N = sum( new_edges.values() ) probs[k_] = { n:0. for n in G_.nodes() } if N > 0.: for n in G.nodes(): try: probs[k_][n] = new_edges[n]/N except KeyError: pass if probs[k_] is not None: networkx.set_node_attributes(G.graphs[k_], 'attachment_probability', probs[k_]) G_ = G k_ = k # Handle last graph (no values). key = G.graphs.keys()[-1] zprobs = { n:0. for n in G.graphs[key].nodes() } networkx.set_node_attributes(G.graphs[key], 'attachment_probability', zprobs) return probs
[ "def", "attachment_probability", "(", "G", ")", ":", "warnings", ".", "warn", "(", "\"Removed in 0.8. Too domain-specific.\"", ")", "probs", "=", "{", "}", "G_", "=", "None", "k_", "=", "None", "for", "k", ",", "g", "in", "G", ".", "graphs", ".", "iteritems", "(", ")", ":", "new_edges", "=", "{", "}", "if", "G_", "is", "not", "None", ":", "for", "n", "in", "g", ".", "nodes", "(", ")", ":", "try", ":", "old_neighbors", "=", "set", "(", "G_", "[", "n", "]", ".", "keys", "(", ")", ")", "if", "len", "(", "old_neighbors", ")", ">", "0", ":", "new_neighbors", "=", "set", "(", "g", "[", "n", "]", ".", "keys", "(", ")", ")", "-", "old_neighbors", "new_edges", "[", "n", "]", "=", "float", "(", "len", "(", "new_neighbors", ")", ")", "else", ":", "new_edges", "[", "n", "]", "=", "0.", "except", "KeyError", ":", "pass", "N", "=", "sum", "(", "new_edges", ".", "values", "(", ")", ")", "probs", "[", "k_", "]", "=", "{", "n", ":", "0.", "for", "n", "in", "G_", ".", "nodes", "(", ")", "}", "if", "N", ">", "0.", ":", "for", "n", "in", "G", ".", "nodes", "(", ")", ":", "try", ":", "probs", "[", "k_", "]", "[", "n", "]", "=", "new_edges", "[", "n", "]", "/", "N", "except", "KeyError", ":", "pass", "if", "probs", "[", "k_", "]", "is", "not", "None", ":", "networkx", ".", "set_node_attributes", "(", "G", ".", "graphs", "[", "k_", "]", ",", "'attachment_probability'", ",", "probs", "[", "k_", "]", ")", "G_", "=", "G", "k_", "=", "k", "# Handle last graph (no values).", "key", "=", "G", ".", "graphs", ".", "keys", "(", ")", "[", "-", "1", "]", "zprobs", "=", "{", "n", ":", "0.", "for", "n", "in", "G", ".", "graphs", "[", "key", "]", ".", "nodes", "(", ")", "}", "networkx", ".", "set_node_attributes", "(", "G", ".", "graphs", "[", "key", "]", ",", "'attachment_probability'", ",", "zprobs", ")", "return", "probs" ]
Calculates the observed attachment probability for each node at each time-step. Attachment probability is calculated based on the observed new edges in the next time-step. So if a node acquires new edges at time t, this will accrue to the node's attachment probability at time t-1. Thus at a given time, one can ask whether degree and attachment probability are related. Parameters ---------- G : :class:`.GraphCollection` Must be sliced by 'date'. See :func:`.GraphCollection.slice`\. Returns ------- probs : dict Keyed by index in G.graphs, and then by node.
[ "Calculates", "the", "observed", "attachment", "probability", "for", "each", "node", "at", "each", "time", "-", "step", ".", "Attachment", "probability", "is", "calculated", "based", "on", "the", "observed", "new", "edges", "in", "the", "next", "time", "-", "step", ".", "So", "if", "a", "node", "acquires", "new", "edges", "at", "time", "t", "this", "will", "accrue", "to", "the", "node", "s", "attachment", "probability", "at", "time", "t", "-", "1", ".", "Thus", "at", "a", "given", "time", "one", "can", "ask", "whether", "degree", "and", "attachment", "probability", "are", "related", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/analyze/collection.py#L104-L166
10,061
diging/tethne
tethne/analyze/graph.py
global_closeness_centrality
def global_closeness_centrality(g, node=None, normalize=True): """ Calculates global closeness centrality for one or all nodes in the network. See :func:`.node_global_closeness_centrality` for more information. Parameters ---------- g : networkx.Graph normalize : boolean If True, normalizes centrality based on the average shortest path length. Default is True. Returns ------- C : dict Dictionary of results, with node identifiers as keys and gcc as values. """ if not node: C = {} for node in g.nodes(): C[node] = global_closeness_centrality(g, node, normalize=normalize) return C values = nx.shortest_path_length(g, node).values() c = sum([1./pl for pl in values if pl != 0.]) / len(g) if normalize: ac = 0 for sg in nx.connected_component_subgraphs(g): if len(sg.nodes()) > 1: aspl = nx.average_shortest_path_length(sg) ac += (1./aspl) * (float(len(sg)) / float(len(g))**2 ) c = c/ac return c
python
def global_closeness_centrality(g, node=None, normalize=True): """ Calculates global closeness centrality for one or all nodes in the network. See :func:`.node_global_closeness_centrality` for more information. Parameters ---------- g : networkx.Graph normalize : boolean If True, normalizes centrality based on the average shortest path length. Default is True. Returns ------- C : dict Dictionary of results, with node identifiers as keys and gcc as values. """ if not node: C = {} for node in g.nodes(): C[node] = global_closeness_centrality(g, node, normalize=normalize) return C values = nx.shortest_path_length(g, node).values() c = sum([1./pl for pl in values if pl != 0.]) / len(g) if normalize: ac = 0 for sg in nx.connected_component_subgraphs(g): if len(sg.nodes()) > 1: aspl = nx.average_shortest_path_length(sg) ac += (1./aspl) * (float(len(sg)) / float(len(g))**2 ) c = c/ac return c
[ "def", "global_closeness_centrality", "(", "g", ",", "node", "=", "None", ",", "normalize", "=", "True", ")", ":", "if", "not", "node", ":", "C", "=", "{", "}", "for", "node", "in", "g", ".", "nodes", "(", ")", ":", "C", "[", "node", "]", "=", "global_closeness_centrality", "(", "g", ",", "node", ",", "normalize", "=", "normalize", ")", "return", "C", "values", "=", "nx", ".", "shortest_path_length", "(", "g", ",", "node", ")", ".", "values", "(", ")", "c", "=", "sum", "(", "[", "1.", "/", "pl", "for", "pl", "in", "values", "if", "pl", "!=", "0.", "]", ")", "/", "len", "(", "g", ")", "if", "normalize", ":", "ac", "=", "0", "for", "sg", "in", "nx", ".", "connected_component_subgraphs", "(", "g", ")", ":", "if", "len", "(", "sg", ".", "nodes", "(", ")", ")", ">", "1", ":", "aspl", "=", "nx", ".", "average_shortest_path_length", "(", "sg", ")", "ac", "+=", "(", "1.", "/", "aspl", ")", "*", "(", "float", "(", "len", "(", "sg", ")", ")", "/", "float", "(", "len", "(", "g", ")", ")", "**", "2", ")", "c", "=", "c", "/", "ac", "return", "c" ]
Calculates global closeness centrality for one or all nodes in the network. See :func:`.node_global_closeness_centrality` for more information. Parameters ---------- g : networkx.Graph normalize : boolean If True, normalizes centrality based on the average shortest path length. Default is True. Returns ------- C : dict Dictionary of results, with node identifiers as keys and gcc as values.
[ "Calculates", "global", "closeness", "centrality", "for", "one", "or", "all", "nodes", "in", "the", "network", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/analyze/graph.py#L13-L49
10,062
diging/tethne
tethne/readers/dfr.py
ngrams
def ngrams(path, elem, ignore_hash=True): """ Yields N-grams from a JSTOR DfR dataset. Parameters ---------- path : string Path to unzipped JSTOR DfR folder containing N-grams. elem : string Name of subdirectory containing N-grams. (e.g. 'bigrams'). ignore_hash : bool If True, will exclude all N-grams that contain the hash '#' character. Returns ------- ngrams : :class:`.FeatureSet` """ grams = GramGenerator(path, elem, ignore_hash=ignore_hash) return FeatureSet({k: Feature(f) for k, f in grams})
python
def ngrams(path, elem, ignore_hash=True): """ Yields N-grams from a JSTOR DfR dataset. Parameters ---------- path : string Path to unzipped JSTOR DfR folder containing N-grams. elem : string Name of subdirectory containing N-grams. (e.g. 'bigrams'). ignore_hash : bool If True, will exclude all N-grams that contain the hash '#' character. Returns ------- ngrams : :class:`.FeatureSet` """ grams = GramGenerator(path, elem, ignore_hash=ignore_hash) return FeatureSet({k: Feature(f) for k, f in grams})
[ "def", "ngrams", "(", "path", ",", "elem", ",", "ignore_hash", "=", "True", ")", ":", "grams", "=", "GramGenerator", "(", "path", ",", "elem", ",", "ignore_hash", "=", "ignore_hash", ")", "return", "FeatureSet", "(", "{", "k", ":", "Feature", "(", "f", ")", "for", "k", ",", "f", "in", "grams", "}", ")" ]
Yields N-grams from a JSTOR DfR dataset. Parameters ---------- path : string Path to unzipped JSTOR DfR folder containing N-grams. elem : string Name of subdirectory containing N-grams. (e.g. 'bigrams'). ignore_hash : bool If True, will exclude all N-grams that contain the hash '#' character. Returns ------- ngrams : :class:`.FeatureSet`
[ "Yields", "N", "-", "grams", "from", "a", "JSTOR", "DfR", "dataset", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/dfr.py#L294-L314
10,063
diging/tethne
tethne/readers/dfr.py
tokenize
def tokenize(ngrams, min_tf=2, min_df=2, min_len=3, apply_stoplist=False): """ Builds a vocabulary, and replaces words with vocab indices. Parameters ---------- ngrams : dict Keys are paper DOIs, values are lists of (Ngram, frequency) tuples. apply_stoplist : bool If True, will exclude all N-grams that contain words in the NLTK stoplist. Returns ------- t_ngrams : dict Tokenized ngrams, as doi:{i:count}. vocab : dict Vocabulary as i:term. token_tf : :class:`.Counter` Term counts for corpus, as i:count. """ vocab = {} vocab_ = {} word_tf = Counter() word_df = Counter() token_tf = Counter() token_df = Counter() t_ngrams = {} # Get global word counts, first. for grams in ngrams.values(): for g,c in grams: word_tf[g] += c word_df[g] += 1 if apply_stoplist: stoplist = stopwords.words() # Now tokenize. for doi, grams in ngrams.iteritems(): t_ngrams[doi] = [] for g,c in grams: ignore = False # Ignore extremely rare words (probably garbage). if word_tf[g] < min_tf or word_df[g] < min_df or len(g) < min_len: ignore = True # Stoplist. elif apply_stoplist: for w in g.split(): if w in stoplist: ignore = True if not ignore: # Coerce unicode to string. if type(g) is str: g = unicode(g) g = unidecode(g) if g not in vocab.values(): i = len(vocab) vocab[i] = g vocab_[g] = i else: i = vocab_[g] token_tf[i] += c token_df[i] += 1 t_ngrams[doi].append( (i,c) ) return t_ngrams, vocab, token_tf
python
def tokenize(ngrams, min_tf=2, min_df=2, min_len=3, apply_stoplist=False): """ Builds a vocabulary, and replaces words with vocab indices. Parameters ---------- ngrams : dict Keys are paper DOIs, values are lists of (Ngram, frequency) tuples. apply_stoplist : bool If True, will exclude all N-grams that contain words in the NLTK stoplist. Returns ------- t_ngrams : dict Tokenized ngrams, as doi:{i:count}. vocab : dict Vocabulary as i:term. token_tf : :class:`.Counter` Term counts for corpus, as i:count. """ vocab = {} vocab_ = {} word_tf = Counter() word_df = Counter() token_tf = Counter() token_df = Counter() t_ngrams = {} # Get global word counts, first. for grams in ngrams.values(): for g,c in grams: word_tf[g] += c word_df[g] += 1 if apply_stoplist: stoplist = stopwords.words() # Now tokenize. for doi, grams in ngrams.iteritems(): t_ngrams[doi] = [] for g,c in grams: ignore = False # Ignore extremely rare words (probably garbage). if word_tf[g] < min_tf or word_df[g] < min_df or len(g) < min_len: ignore = True # Stoplist. elif apply_stoplist: for w in g.split(): if w in stoplist: ignore = True if not ignore: # Coerce unicode to string. if type(g) is str: g = unicode(g) g = unidecode(g) if g not in vocab.values(): i = len(vocab) vocab[i] = g vocab_[g] = i else: i = vocab_[g] token_tf[i] += c token_df[i] += 1 t_ngrams[doi].append( (i,c) ) return t_ngrams, vocab, token_tf
[ "def", "tokenize", "(", "ngrams", ",", "min_tf", "=", "2", ",", "min_df", "=", "2", ",", "min_len", "=", "3", ",", "apply_stoplist", "=", "False", ")", ":", "vocab", "=", "{", "}", "vocab_", "=", "{", "}", "word_tf", "=", "Counter", "(", ")", "word_df", "=", "Counter", "(", ")", "token_tf", "=", "Counter", "(", ")", "token_df", "=", "Counter", "(", ")", "t_ngrams", "=", "{", "}", "# Get global word counts, first.", "for", "grams", "in", "ngrams", ".", "values", "(", ")", ":", "for", "g", ",", "c", "in", "grams", ":", "word_tf", "[", "g", "]", "+=", "c", "word_df", "[", "g", "]", "+=", "1", "if", "apply_stoplist", ":", "stoplist", "=", "stopwords", ".", "words", "(", ")", "# Now tokenize.", "for", "doi", ",", "grams", "in", "ngrams", ".", "iteritems", "(", ")", ":", "t_ngrams", "[", "doi", "]", "=", "[", "]", "for", "g", ",", "c", "in", "grams", ":", "ignore", "=", "False", "# Ignore extremely rare words (probably garbage).", "if", "word_tf", "[", "g", "]", "<", "min_tf", "or", "word_df", "[", "g", "]", "<", "min_df", "or", "len", "(", "g", ")", "<", "min_len", ":", "ignore", "=", "True", "# Stoplist.", "elif", "apply_stoplist", ":", "for", "w", "in", "g", ".", "split", "(", ")", ":", "if", "w", "in", "stoplist", ":", "ignore", "=", "True", "if", "not", "ignore", ":", "# Coerce unicode to string.", "if", "type", "(", "g", ")", "is", "str", ":", "g", "=", "unicode", "(", "g", ")", "g", "=", "unidecode", "(", "g", ")", "if", "g", "not", "in", "vocab", ".", "values", "(", ")", ":", "i", "=", "len", "(", "vocab", ")", "vocab", "[", "i", "]", "=", "g", "vocab_", "[", "g", "]", "=", "i", "else", ":", "i", "=", "vocab_", "[", "g", "]", "token_tf", "[", "i", "]", "+=", "c", "token_df", "[", "i", "]", "+=", "1", "t_ngrams", "[", "doi", "]", ".", "append", "(", "(", "i", ",", "c", ")", ")", "return", "t_ngrams", ",", "vocab", ",", "token_tf" ]
Builds a vocabulary, and replaces words with vocab indices. Parameters ---------- ngrams : dict Keys are paper DOIs, values are lists of (Ngram, frequency) tuples. apply_stoplist : bool If True, will exclude all N-grams that contain words in the NLTK stoplist. Returns ------- t_ngrams : dict Tokenized ngrams, as doi:{i:count}. vocab : dict Vocabulary as i:term. token_tf : :class:`.Counter` Term counts for corpus, as i:count.
[ "Builds", "a", "vocabulary", "and", "replaces", "words", "with", "vocab", "indices", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/dfr.py#L317-L390
10,064
diging/tethne
tethne/readers/dfr.py
_handle_pagerange
def _handle_pagerange(pagerange): """ Yields start and end pages from DfR pagerange field. Parameters ---------- pagerange : str or unicode DfR-style pagerange, e.g. "pp. 435-444". Returns ------- start : str Start page. end : str End page. """ try: pr = re.compile("pp\.\s([0-9]+)\-([0-9]+)") start, end = re.findall(pr, pagerange)[0] except IndexError: start = end = 0 return unicode(start), unicode(end)
python
def _handle_pagerange(pagerange): """ Yields start and end pages from DfR pagerange field. Parameters ---------- pagerange : str or unicode DfR-style pagerange, e.g. "pp. 435-444". Returns ------- start : str Start page. end : str End page. """ try: pr = re.compile("pp\.\s([0-9]+)\-([0-9]+)") start, end = re.findall(pr, pagerange)[0] except IndexError: start = end = 0 return unicode(start), unicode(end)
[ "def", "_handle_pagerange", "(", "pagerange", ")", ":", "try", ":", "pr", "=", "re", ".", "compile", "(", "\"pp\\.\\s([0-9]+)\\-([0-9]+)\"", ")", "start", ",", "end", "=", "re", ".", "findall", "(", "pr", ",", "pagerange", ")", "[", "0", "]", "except", "IndexError", ":", "start", "=", "end", "=", "0", "return", "unicode", "(", "start", ")", ",", "unicode", "(", "end", ")" ]
Yields start and end pages from DfR pagerange field. Parameters ---------- pagerange : str or unicode DfR-style pagerange, e.g. "pp. 435-444". Returns ------- start : str Start page. end : str End page.
[ "Yields", "start", "and", "end", "pages", "from", "DfR", "pagerange", "field", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/dfr.py#L430-L453
10,065
diging/tethne
tethne/readers/dfr.py
_handle_authors
def _handle_authors(authors): """ Yields aulast and auinit lists from value of authors node. Parameters ---------- authors : list, str, or unicode Value or values of 'author' element in DfR XML. Returns ------- aulast : list A list of author surnames (string). auinit : list A list of author first-initials (string). """ aulast = [] auinit = [] if type(authors) is list: for author in authors: if type(author) is str: author = unicode(author) author = unidecode(author) try: l,i = _handle_author(author) aulast.append(l) auinit.append(i) except ValueError: pass elif type(authors) is str or type(authors) is unicode: if type(authors) is str: authors = unicode(authors) author = unidecode(authors) try: l,i = _handle_author(author) aulast.append(l) auinit.append(i) except ValueError: pass else: raise ValueError("authors must be a list or a string") return aulast, auinit
python
def _handle_authors(authors): """ Yields aulast and auinit lists from value of authors node. Parameters ---------- authors : list, str, or unicode Value or values of 'author' element in DfR XML. Returns ------- aulast : list A list of author surnames (string). auinit : list A list of author first-initials (string). """ aulast = [] auinit = [] if type(authors) is list: for author in authors: if type(author) is str: author = unicode(author) author = unidecode(author) try: l,i = _handle_author(author) aulast.append(l) auinit.append(i) except ValueError: pass elif type(authors) is str or type(authors) is unicode: if type(authors) is str: authors = unicode(authors) author = unidecode(authors) try: l,i = _handle_author(author) aulast.append(l) auinit.append(i) except ValueError: pass else: raise ValueError("authors must be a list or a string") return aulast, auinit
[ "def", "_handle_authors", "(", "authors", ")", ":", "aulast", "=", "[", "]", "auinit", "=", "[", "]", "if", "type", "(", "authors", ")", "is", "list", ":", "for", "author", "in", "authors", ":", "if", "type", "(", "author", ")", "is", "str", ":", "author", "=", "unicode", "(", "author", ")", "author", "=", "unidecode", "(", "author", ")", "try", ":", "l", ",", "i", "=", "_handle_author", "(", "author", ")", "aulast", ".", "append", "(", "l", ")", "auinit", ".", "append", "(", "i", ")", "except", "ValueError", ":", "pass", "elif", "type", "(", "authors", ")", "is", "str", "or", "type", "(", "authors", ")", "is", "unicode", ":", "if", "type", "(", "authors", ")", "is", "str", ":", "authors", "=", "unicode", "(", "authors", ")", "author", "=", "unidecode", "(", "authors", ")", "try", ":", "l", ",", "i", "=", "_handle_author", "(", "author", ")", "aulast", ".", "append", "(", "l", ")", "auinit", ".", "append", "(", "i", ")", "except", "ValueError", ":", "pass", "else", ":", "raise", "ValueError", "(", "\"authors must be a list or a string\"", ")", "return", "aulast", ",", "auinit" ]
Yields aulast and auinit lists from value of authors node. Parameters ---------- authors : list, str, or unicode Value or values of 'author' element in DfR XML. Returns ------- aulast : list A list of author surnames (string). auinit : list A list of author first-initials (string).
[ "Yields", "aulast", "and", "auinit", "lists", "from", "value", "of", "authors", "node", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/dfr.py#L462-L505
10,066
diging/tethne
tethne/readers/dfr.py
_handle_author
def _handle_author(author): """ Yields aulast and auinit from an author's full name. Parameters ---------- author : str or unicode Author fullname, e.g. "Richard L. Nixon". Returns ------- aulast : str Author surname. auinit : str Author first-initial. """ lname = author.split(' ') try: auinit = lname[0][0] final = lname[-1].upper() if final in ['JR.', 'III']: aulast = lname[-2].upper() + " " + final.strip(".") else: aulast = final except IndexError: raise ValueError("malformed author name") return aulast, auinit
python
def _handle_author(author): """ Yields aulast and auinit from an author's full name. Parameters ---------- author : str or unicode Author fullname, e.g. "Richard L. Nixon". Returns ------- aulast : str Author surname. auinit : str Author first-initial. """ lname = author.split(' ') try: auinit = lname[0][0] final = lname[-1].upper() if final in ['JR.', 'III']: aulast = lname[-2].upper() + " " + final.strip(".") else: aulast = final except IndexError: raise ValueError("malformed author name") return aulast, auinit
[ "def", "_handle_author", "(", "author", ")", ":", "lname", "=", "author", ".", "split", "(", "' '", ")", "try", ":", "auinit", "=", "lname", "[", "0", "]", "[", "0", "]", "final", "=", "lname", "[", "-", "1", "]", ".", "upper", "(", ")", "if", "final", "in", "[", "'JR.'", ",", "'III'", "]", ":", "aulast", "=", "lname", "[", "-", "2", "]", ".", "upper", "(", ")", "+", "\" \"", "+", "final", ".", "strip", "(", "\".\"", ")", "else", ":", "aulast", "=", "final", "except", "IndexError", ":", "raise", "ValueError", "(", "\"malformed author name\"", ")", "return", "aulast", ",", "auinit" ]
Yields aulast and auinit from an author's full name. Parameters ---------- author : str or unicode Author fullname, e.g. "Richard L. Nixon". Returns ------- aulast : str Author surname. auinit : str Author first-initial.
[ "Yields", "aulast", "and", "auinit", "from", "an", "author", "s", "full", "name", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/dfr.py#L507-L536
10,067
diging/tethne
tethne/readers/dfr.py
GramGenerator._get
def _get(self, i): """ Retrieve data for the ith file in the dataset. """ with open(os.path.join(self.path, self.elem, self.files[i]), 'r') as f: # JSTOR hasn't always produced valid XML. contents = re.sub('(&)(?!amp;)', lambda match: '&amp;', f.read()) root = ET.fromstring(contents) doi = root.attrib['id'] if self.K: # Keys only. return doi grams = [] for gram in root.findall(self.elem_xml): text = unidecode(unicode(gram.text.strip())) if ( not self.ignore_hash or '#' not in list(text) ): c = ( text, number(gram.attrib['weight']) ) grams.append(c) if self.V: # Values only. return grams return doi, grams
python
def _get(self, i): """ Retrieve data for the ith file in the dataset. """ with open(os.path.join(self.path, self.elem, self.files[i]), 'r') as f: # JSTOR hasn't always produced valid XML. contents = re.sub('(&)(?!amp;)', lambda match: '&amp;', f.read()) root = ET.fromstring(contents) doi = root.attrib['id'] if self.K: # Keys only. return doi grams = [] for gram in root.findall(self.elem_xml): text = unidecode(unicode(gram.text.strip())) if ( not self.ignore_hash or '#' not in list(text) ): c = ( text, number(gram.attrib['weight']) ) grams.append(c) if self.V: # Values only. return grams return doi, grams
[ "def", "_get", "(", "self", ",", "i", ")", ":", "with", "open", "(", "os", ".", "path", ".", "join", "(", "self", ".", "path", ",", "self", ".", "elem", ",", "self", ".", "files", "[", "i", "]", ")", ",", "'r'", ")", "as", "f", ":", "# JSTOR hasn't always produced valid XML.", "contents", "=", "re", ".", "sub", "(", "'(&)(?!amp;)'", ",", "lambda", "match", ":", "'&amp;'", ",", "f", ".", "read", "(", ")", ")", "root", "=", "ET", ".", "fromstring", "(", "contents", ")", "doi", "=", "root", ".", "attrib", "[", "'id'", "]", "if", "self", ".", "K", ":", "# Keys only.", "return", "doi", "grams", "=", "[", "]", "for", "gram", "in", "root", ".", "findall", "(", "self", ".", "elem_xml", ")", ":", "text", "=", "unidecode", "(", "unicode", "(", "gram", ".", "text", ".", "strip", "(", ")", ")", ")", "if", "(", "not", "self", ".", "ignore_hash", "or", "'#'", "not", "in", "list", "(", "text", ")", ")", ":", "c", "=", "(", "text", ",", "number", "(", "gram", ".", "attrib", "[", "'weight'", "]", ")", ")", "grams", ".", "append", "(", "c", ")", "if", "self", ".", "V", ":", "# Values only.", "return", "grams", "return", "doi", ",", "grams" ]
Retrieve data for the ith file in the dataset.
[ "Retrieve", "data", "for", "the", "ith", "file", "in", "the", "dataset", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/dfr.py#L175-L198
10,068
diging/tethne
tethne/model/corpus/mallet.py
LDAModel._generate_corpus
def _generate_corpus(self): """ Writes a corpus to disk amenable to MALLET topic modeling. """ target = self.temp + 'mallet' paths = write_documents(self.corpus, target, self.featureset_name, ['date', 'title']) self.corpus_path, self.metapath = paths self._export_corpus()
python
def _generate_corpus(self): """ Writes a corpus to disk amenable to MALLET topic modeling. """ target = self.temp + 'mallet' paths = write_documents(self.corpus, target, self.featureset_name, ['date', 'title']) self.corpus_path, self.metapath = paths self._export_corpus()
[ "def", "_generate_corpus", "(", "self", ")", ":", "target", "=", "self", ".", "temp", "+", "'mallet'", "paths", "=", "write_documents", "(", "self", ".", "corpus", ",", "target", ",", "self", ".", "featureset_name", ",", "[", "'date'", ",", "'title'", "]", ")", "self", ".", "corpus_path", ",", "self", ".", "metapath", "=", "paths", "self", ".", "_export_corpus", "(", ")" ]
Writes a corpus to disk amenable to MALLET topic modeling.
[ "Writes", "a", "corpus", "to", "disk", "amenable", "to", "MALLET", "topic", "modeling", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/model/corpus/mallet.py#L151-L161
10,069
diging/tethne
tethne/model/corpus/mallet.py
LDAModel._export_corpus
def _export_corpus(self): """ Calls MALLET's `import-file` method. """ # bin/mallet import-file --input /Users/erickpeirson/mycorpus_docs.txt # --output mytopic-input.mallet --keep-sequence --remove-stopwords if not os.path.exists(self.mallet_bin): raise IOError("MALLET path invalid or non-existent.") self.input_path = os.path.join(self.temp, "input.mallet") exit = subprocess.call([ self.mallet_bin, 'import-file', '--input', self.corpus_path, '--output', self.input_path, '--keep-sequence', # Required for LDA. '--remove-stopwords']) # Probably redundant. if exit != 0: msg = "MALLET import-file failed with exit code {0}.".format(exit) raise RuntimeError(msg)
python
def _export_corpus(self): """ Calls MALLET's `import-file` method. """ # bin/mallet import-file --input /Users/erickpeirson/mycorpus_docs.txt # --output mytopic-input.mallet --keep-sequence --remove-stopwords if not os.path.exists(self.mallet_bin): raise IOError("MALLET path invalid or non-existent.") self.input_path = os.path.join(self.temp, "input.mallet") exit = subprocess.call([ self.mallet_bin, 'import-file', '--input', self.corpus_path, '--output', self.input_path, '--keep-sequence', # Required for LDA. '--remove-stopwords']) # Probably redundant. if exit != 0: msg = "MALLET import-file failed with exit code {0}.".format(exit) raise RuntimeError(msg)
[ "def", "_export_corpus", "(", "self", ")", ":", "# bin/mallet import-file --input /Users/erickpeirson/mycorpus_docs.txt", "# --output mytopic-input.mallet --keep-sequence --remove-stopwords", "if", "not", "os", ".", "path", ".", "exists", "(", "self", ".", "mallet_bin", ")", ":", "raise", "IOError", "(", "\"MALLET path invalid or non-existent.\"", ")", "self", ".", "input_path", "=", "os", ".", "path", ".", "join", "(", "self", ".", "temp", ",", "\"input.mallet\"", ")", "exit", "=", "subprocess", ".", "call", "(", "[", "self", ".", "mallet_bin", ",", "'import-file'", ",", "'--input'", ",", "self", ".", "corpus_path", ",", "'--output'", ",", "self", ".", "input_path", ",", "'--keep-sequence'", ",", "# Required for LDA.", "'--remove-stopwords'", "]", ")", "# Probably redundant.", "if", "exit", "!=", "0", ":", "msg", "=", "\"MALLET import-file failed with exit code {0}.\"", ".", "format", "(", "exit", ")", "raise", "RuntimeError", "(", "msg", ")" ]
Calls MALLET's `import-file` method.
[ "Calls", "MALLET", "s", "import", "-", "file", "method", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/model/corpus/mallet.py#L163-L184
10,070
diging/tethne
tethne/model/corpus/mallet.py
LDAModel.run
def run(self, **kwargs): """ Calls MALLET's `train-topic` method. """ #$ bin/mallet train-topics --input mytopic-input.mallet #> --num-topics 100 #> --output-doc-topics /Users/erickpeirson/doc_top #> --word-topic-counts-file /Users/erickpeirson/word_top #> --output-topic-keys /Users/erickpeirson/topic_keys if not os.path.exists(self.mallet_bin): raise IOError("MALLET path invalid or non-existent.") for attr in ['Z', 'max_iter']: if not hasattr(self, attr): raise AttributeError('Please set {0}'.format(attr)) self.ll = [] self.num_iters = 0 logger.debug('run() with k={0} for {1} iterations'.format(self.Z, self.max_iter)) prog = re.compile(u'\<([^\)]+)\>') ll_prog = re.compile(r'(\d+)') p = subprocess.Popen([ self.mallet_bin, 'train-topics', '--input', self.input_path, '--num-topics', unicode(self.Z), '--num-iterations', unicode(self.max_iter), '--output-doc-topics', self.dt, '--word-topic-counts-file', self.wt, '--output-model', self.om], stdout=subprocess.PIPE, stderr=subprocess.PIPE) # Handle output of MALLET in real time. while p.poll() is None: l = p.stderr.readline() # Keep track of LL/topic. try: this_ll = float(re.findall(u'([-+]\d+\.\d+)', l)[0]) self.ll.append(this_ll) except IndexError: # Not every line will match. pass # Keep track of modeling progress. try: this_iter = float(prog.match(l).groups()[0]) progress = int(100. * this_iter/self.max_iter) print 'Modeling progress: {0}%.\r'.format(progress), except AttributeError: # Not every line will match. pass self.num_iters += self.max_iter self.load()
python
def run(self, **kwargs): """ Calls MALLET's `train-topic` method. """ #$ bin/mallet train-topics --input mytopic-input.mallet #> --num-topics 100 #> --output-doc-topics /Users/erickpeirson/doc_top #> --word-topic-counts-file /Users/erickpeirson/word_top #> --output-topic-keys /Users/erickpeirson/topic_keys if not os.path.exists(self.mallet_bin): raise IOError("MALLET path invalid or non-existent.") for attr in ['Z', 'max_iter']: if not hasattr(self, attr): raise AttributeError('Please set {0}'.format(attr)) self.ll = [] self.num_iters = 0 logger.debug('run() with k={0} for {1} iterations'.format(self.Z, self.max_iter)) prog = re.compile(u'\<([^\)]+)\>') ll_prog = re.compile(r'(\d+)') p = subprocess.Popen([ self.mallet_bin, 'train-topics', '--input', self.input_path, '--num-topics', unicode(self.Z), '--num-iterations', unicode(self.max_iter), '--output-doc-topics', self.dt, '--word-topic-counts-file', self.wt, '--output-model', self.om], stdout=subprocess.PIPE, stderr=subprocess.PIPE) # Handle output of MALLET in real time. while p.poll() is None: l = p.stderr.readline() # Keep track of LL/topic. try: this_ll = float(re.findall(u'([-+]\d+\.\d+)', l)[0]) self.ll.append(this_ll) except IndexError: # Not every line will match. pass # Keep track of modeling progress. try: this_iter = float(prog.match(l).groups()[0]) progress = int(100. * this_iter/self.max_iter) print 'Modeling progress: {0}%.\r'.format(progress), except AttributeError: # Not every line will match. pass self.num_iters += self.max_iter self.load()
[ "def", "run", "(", "self", ",", "*", "*", "kwargs", ")", ":", "#$ bin/mallet train-topics --input mytopic-input.mallet", "#> --num-topics 100", "#> --output-doc-topics /Users/erickpeirson/doc_top", "#> --word-topic-counts-file /Users/erickpeirson/word_top", "#> --output-topic-keys /Users/erickpeirson/topic_keys", "if", "not", "os", ".", "path", ".", "exists", "(", "self", ".", "mallet_bin", ")", ":", "raise", "IOError", "(", "\"MALLET path invalid or non-existent.\"", ")", "for", "attr", "in", "[", "'Z'", ",", "'max_iter'", "]", ":", "if", "not", "hasattr", "(", "self", ",", "attr", ")", ":", "raise", "AttributeError", "(", "'Please set {0}'", ".", "format", "(", "attr", ")", ")", "self", ".", "ll", "=", "[", "]", "self", ".", "num_iters", "=", "0", "logger", ".", "debug", "(", "'run() with k={0} for {1} iterations'", ".", "format", "(", "self", ".", "Z", ",", "self", ".", "max_iter", ")", ")", "prog", "=", "re", ".", "compile", "(", "u'\\<([^\\)]+)\\>'", ")", "ll_prog", "=", "re", ".", "compile", "(", "r'(\\d+)'", ")", "p", "=", "subprocess", ".", "Popen", "(", "[", "self", ".", "mallet_bin", ",", "'train-topics'", ",", "'--input'", ",", "self", ".", "input_path", ",", "'--num-topics'", ",", "unicode", "(", "self", ".", "Z", ")", ",", "'--num-iterations'", ",", "unicode", "(", "self", ".", "max_iter", ")", ",", "'--output-doc-topics'", ",", "self", ".", "dt", ",", "'--word-topic-counts-file'", ",", "self", ".", "wt", ",", "'--output-model'", ",", "self", ".", "om", "]", ",", "stdout", "=", "subprocess", ".", "PIPE", ",", "stderr", "=", "subprocess", ".", "PIPE", ")", "# Handle output of MALLET in real time.", "while", "p", ".", "poll", "(", ")", "is", "None", ":", "l", "=", "p", ".", "stderr", ".", "readline", "(", ")", "# Keep track of LL/topic.", "try", ":", "this_ll", "=", "float", "(", "re", ".", "findall", "(", "u'([-+]\\d+\\.\\d+)'", ",", "l", ")", "[", "0", "]", ")", "self", ".", "ll", ".", "append", "(", "this_ll", ")", "except", "IndexError", ":", "# Not every line will match.", "pass", "# Keep track of modeling progress.", "try", ":", "this_iter", "=", "float", "(", "prog", ".", "match", "(", "l", ")", ".", "groups", "(", ")", "[", "0", "]", ")", "progress", "=", "int", "(", "100.", "*", "this_iter", "/", "self", ".", "max_iter", ")", "print", "'Modeling progress: {0}%.\\r'", ".", "format", "(", "progress", ")", ",", "except", "AttributeError", ":", "# Not every line will match.", "pass", "self", ".", "num_iters", "+=", "self", ".", "max_iter", "self", ".", "load", "(", ")" ]
Calls MALLET's `train-topic` method.
[ "Calls", "MALLET", "s", "train", "-", "topic", "method", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/model/corpus/mallet.py#L186-L241
10,071
diging/tethne
tethne/model/corpus/mallet.py
LDAModel.topics_in
def topics_in(self, d, topn=5): """ List the top ``topn`` topics in document ``d``. """ return self.theta.features[d].top(topn)
python
def topics_in(self, d, topn=5): """ List the top ``topn`` topics in document ``d``. """ return self.theta.features[d].top(topn)
[ "def", "topics_in", "(", "self", ",", "d", ",", "topn", "=", "5", ")", ":", "return", "self", ".", "theta", ".", "features", "[", "d", "]", ".", "top", "(", "topn", ")" ]
List the top ``topn`` topics in document ``d``.
[ "List", "the", "top", "topn", "topics", "in", "document", "d", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/model/corpus/mallet.py#L307-L311
10,072
diging/tethne
tethne/model/corpus/mallet.py
LDAModel.list_topic
def list_topic(self, k, Nwords=10): """ List the top ``topn`` words for topic ``k``. Examples -------- .. code-block:: python >>> model.list_topic(1, Nwords=5) [ 'opposed', 'terminates', 'trichinosis', 'cistus', 'acaule' ] """ return [(self.vocabulary[w], p) for w, p in self.phi.features[k].top(Nwords)]
python
def list_topic(self, k, Nwords=10): """ List the top ``topn`` words for topic ``k``. Examples -------- .. code-block:: python >>> model.list_topic(1, Nwords=5) [ 'opposed', 'terminates', 'trichinosis', 'cistus', 'acaule' ] """ return [(self.vocabulary[w], p) for w, p in self.phi.features[k].top(Nwords)]
[ "def", "list_topic", "(", "self", ",", "k", ",", "Nwords", "=", "10", ")", ":", "return", "[", "(", "self", ".", "vocabulary", "[", "w", "]", ",", "p", ")", "for", "w", ",", "p", "in", "self", ".", "phi", ".", "features", "[", "k", "]", ".", "top", "(", "Nwords", ")", "]" ]
List the top ``topn`` words for topic ``k``. Examples -------- .. code-block:: python >>> model.list_topic(1, Nwords=5) [ 'opposed', 'terminates', 'trichinosis', 'cistus', 'acaule' ]
[ "List", "the", "top", "topn", "words", "for", "topic", "k", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/model/corpus/mallet.py#L313-L329
10,073
diging/tethne
tethne/model/corpus/mallet.py
LDAModel.list_topics
def list_topics(self, Nwords=10): """ List the top ``Nwords`` words for each topic. """ return [(k, self.list_topic(k, Nwords)) for k in xrange(len(self.phi))]
python
def list_topics(self, Nwords=10): """ List the top ``Nwords`` words for each topic. """ return [(k, self.list_topic(k, Nwords)) for k in xrange(len(self.phi))]
[ "def", "list_topics", "(", "self", ",", "Nwords", "=", "10", ")", ":", "return", "[", "(", "k", ",", "self", ".", "list_topic", "(", "k", ",", "Nwords", ")", ")", "for", "k", "in", "xrange", "(", "len", "(", "self", ".", "phi", ")", ")", "]" ]
List the top ``Nwords`` words for each topic.
[ "List", "the", "top", "Nwords", "words", "for", "each", "topic", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/model/corpus/mallet.py#L331-L335
10,074
diging/tethne
tethne/model/corpus/mallet.py
LDAModel.print_topics
def print_topics(self, Nwords=10): """ Print the top ``Nwords`` words for each topic. """ print('Topic\tTop %i words' % Nwords) for k, words in self.list_topics(Nwords): print(unicode(k).ljust(3) + '\t' + ' '.join(list(zip(*words))[0]))
python
def print_topics(self, Nwords=10): """ Print the top ``Nwords`` words for each topic. """ print('Topic\tTop %i words' % Nwords) for k, words in self.list_topics(Nwords): print(unicode(k).ljust(3) + '\t' + ' '.join(list(zip(*words))[0]))
[ "def", "print_topics", "(", "self", ",", "Nwords", "=", "10", ")", ":", "print", "(", "'Topic\\tTop %i words'", "%", "Nwords", ")", "for", "k", ",", "words", "in", "self", ".", "list_topics", "(", "Nwords", ")", ":", "print", "(", "unicode", "(", "k", ")", ".", "ljust", "(", "3", ")", "+", "'\\t'", "+", "' '", ".", "join", "(", "list", "(", "zip", "(", "*", "words", ")", ")", "[", "0", "]", ")", ")" ]
Print the top ``Nwords`` words for each topic.
[ "Print", "the", "top", "Nwords", "words", "for", "each", "topic", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/model/corpus/mallet.py#L338-L344
10,075
diging/tethne
tethne/model/corpus/mallet.py
LDAModel.topic_over_time
def topic_over_time(self, k, mode='counts', slice_kwargs={}): """ Calculate the representation of topic ``k`` in the corpus over time. """ return self.corpus.feature_distribution('topics', k, mode=mode, **slice_kwargs)
python
def topic_over_time(self, k, mode='counts', slice_kwargs={}): """ Calculate the representation of topic ``k`` in the corpus over time. """ return self.corpus.feature_distribution('topics', k, mode=mode, **slice_kwargs)
[ "def", "topic_over_time", "(", "self", ",", "k", ",", "mode", "=", "'counts'", ",", "slice_kwargs", "=", "{", "}", ")", ":", "return", "self", ".", "corpus", ".", "feature_distribution", "(", "'topics'", ",", "k", ",", "mode", "=", "mode", ",", "*", "*", "slice_kwargs", ")" ]
Calculate the representation of topic ``k`` in the corpus over time.
[ "Calculate", "the", "representation", "of", "topic", "k", "in", "the", "corpus", "over", "time", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/model/corpus/mallet.py#L347-L353
10,076
diging/tethne
tethne/classes/corpus.py
Corpus.distribution
def distribution(self, **slice_kwargs): """ Calculates the number of papers in each slice, as defined by ``slice_kwargs``. Examples -------- .. code-block:: python >>> corpus.distribution(step_size=1, window_size=1) [5, 5] Parameters ---------- slice_kwargs : kwargs Keyword arguments to be passed to :meth:`.Corpus.slice`\. Returns ------- list """ values = [] keys = [] for key, size in self.slice(count_only=True, **slice_kwargs): values.append(size) keys.append(key) return keys, values
python
def distribution(self, **slice_kwargs): """ Calculates the number of papers in each slice, as defined by ``slice_kwargs``. Examples -------- .. code-block:: python >>> corpus.distribution(step_size=1, window_size=1) [5, 5] Parameters ---------- slice_kwargs : kwargs Keyword arguments to be passed to :meth:`.Corpus.slice`\. Returns ------- list """ values = [] keys = [] for key, size in self.slice(count_only=True, **slice_kwargs): values.append(size) keys.append(key) return keys, values
[ "def", "distribution", "(", "self", ",", "*", "*", "slice_kwargs", ")", ":", "values", "=", "[", "]", "keys", "=", "[", "]", "for", "key", ",", "size", "in", "self", ".", "slice", "(", "count_only", "=", "True", ",", "*", "*", "slice_kwargs", ")", ":", "values", ".", "append", "(", "size", ")", "keys", ".", "append", "(", "key", ")", "return", "keys", ",", "values" ]
Calculates the number of papers in each slice, as defined by ``slice_kwargs``. Examples -------- .. code-block:: python >>> corpus.distribution(step_size=1, window_size=1) [5, 5] Parameters ---------- slice_kwargs : kwargs Keyword arguments to be passed to :meth:`.Corpus.slice`\. Returns ------- list
[ "Calculates", "the", "number", "of", "papers", "in", "each", "slice", "as", "defined", "by", "slice_kwargs", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/classes/corpus.py#L595-L622
10,077
diging/tethne
tethne/classes/corpus.py
Corpus.feature_distribution
def feature_distribution(self, featureset_name, feature, mode='counts', **slice_kwargs): """ Calculates the distribution of a feature across slices of the corpus. Examples -------- .. code-block:: python >>> corpus.feature_distribution(featureset_name='citations', \ ... feature='DOLE RJ 1965 CELL', \ ... step_size=1, window_size=1) [2, 15, 25, 1] Parameters ---------- featureset_name : str Name of a :class:`.FeatureSet` in the :class:`.Corpus`\. feature : str Name of the specific feature of interest. E.g. if ``featureset_name='citations'``, then ``feature`` could be something like ``'DOLE RJ 1965 CELL'``. mode : str (default: ``'counts'``) If set to ``'counts'``, values will be the sum of all count values for the feature in each slice. If set to ``'documentCounts'``, values will be the number of papers in which the feature occurs in each slice. slice_kwargs : kwargs Keyword arguments to be passed to :meth:`.Corpus.slice`\. Returns ------- list """ values = [] keys = [] fset = self.features[featureset_name] for key, papers in self.slice(subcorpus=False, **slice_kwargs): allfeatures = [v for v in chain(*[fset.features[self._generate_index(p)] for p in papers if self._generate_index(p) in fset.features])] if len(allfeatures) < 1: keys.append(key) values.append(0.) continue count = 0. for elem, v in allfeatures: if elem != feature: continue if mode == 'counts': count += v else: count += 1. values.append(count) keys.append(key) return keys, values
python
def feature_distribution(self, featureset_name, feature, mode='counts', **slice_kwargs): """ Calculates the distribution of a feature across slices of the corpus. Examples -------- .. code-block:: python >>> corpus.feature_distribution(featureset_name='citations', \ ... feature='DOLE RJ 1965 CELL', \ ... step_size=1, window_size=1) [2, 15, 25, 1] Parameters ---------- featureset_name : str Name of a :class:`.FeatureSet` in the :class:`.Corpus`\. feature : str Name of the specific feature of interest. E.g. if ``featureset_name='citations'``, then ``feature`` could be something like ``'DOLE RJ 1965 CELL'``. mode : str (default: ``'counts'``) If set to ``'counts'``, values will be the sum of all count values for the feature in each slice. If set to ``'documentCounts'``, values will be the number of papers in which the feature occurs in each slice. slice_kwargs : kwargs Keyword arguments to be passed to :meth:`.Corpus.slice`\. Returns ------- list """ values = [] keys = [] fset = self.features[featureset_name] for key, papers in self.slice(subcorpus=False, **slice_kwargs): allfeatures = [v for v in chain(*[fset.features[self._generate_index(p)] for p in papers if self._generate_index(p) in fset.features])] if len(allfeatures) < 1: keys.append(key) values.append(0.) continue count = 0. for elem, v in allfeatures: if elem != feature: continue if mode == 'counts': count += v else: count += 1. values.append(count) keys.append(key) return keys, values
[ "def", "feature_distribution", "(", "self", ",", "featureset_name", ",", "feature", ",", "mode", "=", "'counts'", ",", "*", "*", "slice_kwargs", ")", ":", "values", "=", "[", "]", "keys", "=", "[", "]", "fset", "=", "self", ".", "features", "[", "featureset_name", "]", "for", "key", ",", "papers", "in", "self", ".", "slice", "(", "subcorpus", "=", "False", ",", "*", "*", "slice_kwargs", ")", ":", "allfeatures", "=", "[", "v", "for", "v", "in", "chain", "(", "*", "[", "fset", ".", "features", "[", "self", ".", "_generate_index", "(", "p", ")", "]", "for", "p", "in", "papers", "if", "self", ".", "_generate_index", "(", "p", ")", "in", "fset", ".", "features", "]", ")", "]", "if", "len", "(", "allfeatures", ")", "<", "1", ":", "keys", ".", "append", "(", "key", ")", "values", ".", "append", "(", "0.", ")", "continue", "count", "=", "0.", "for", "elem", ",", "v", "in", "allfeatures", ":", "if", "elem", "!=", "feature", ":", "continue", "if", "mode", "==", "'counts'", ":", "count", "+=", "v", "else", ":", "count", "+=", "1.", "values", ".", "append", "(", "count", ")", "keys", ".", "append", "(", "key", ")", "return", "keys", ",", "values" ]
Calculates the distribution of a feature across slices of the corpus. Examples -------- .. code-block:: python >>> corpus.feature_distribution(featureset_name='citations', \ ... feature='DOLE RJ 1965 CELL', \ ... step_size=1, window_size=1) [2, 15, 25, 1] Parameters ---------- featureset_name : str Name of a :class:`.FeatureSet` in the :class:`.Corpus`\. feature : str Name of the specific feature of interest. E.g. if ``featureset_name='citations'``, then ``feature`` could be something like ``'DOLE RJ 1965 CELL'``. mode : str (default: ``'counts'``) If set to ``'counts'``, values will be the sum of all count values for the feature in each slice. If set to ``'documentCounts'``, values will be the number of papers in which the feature occurs in each slice. slice_kwargs : kwargs Keyword arguments to be passed to :meth:`.Corpus.slice`\. Returns ------- list
[ "Calculates", "the", "distribution", "of", "a", "feature", "across", "slices", "of", "the", "corpus", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/classes/corpus.py#L624-L685
10,078
diging/tethne
tethne/classes/corpus.py
Corpus.top_features
def top_features(self, featureset_name, topn=20, by='counts', perslice=False, slice_kwargs={}): """ Retrieves the top ``topn`` most numerous features in the corpus. Parameters ---------- featureset_name : str Name of a :class:`.FeatureSet` in the :class:`.Corpus`\. topn : int (default: ``20``) Number of features to return. by : str (default: ``'counts'``) If ``'counts'``, uses the sum of feature count values to rank features. If ``'documentCounts'``, uses the number of papers in which features occur. perslice : bool (default: False) If True, retrieves the top ``topn`` features in each slice. slice_kwargs : kwargs If ``perslice=True``, these keyword arguments are passed to :meth:`.Corpus.slice`\. """ if perslice: return [(k, subcorpus.features[featureset_name].top(topn, by=by)) for k, subcorpus in self.slice(**slice_kwargs)] return self.features[featureset_name].top(topn, by=by)
python
def top_features(self, featureset_name, topn=20, by='counts', perslice=False, slice_kwargs={}): """ Retrieves the top ``topn`` most numerous features in the corpus. Parameters ---------- featureset_name : str Name of a :class:`.FeatureSet` in the :class:`.Corpus`\. topn : int (default: ``20``) Number of features to return. by : str (default: ``'counts'``) If ``'counts'``, uses the sum of feature count values to rank features. If ``'documentCounts'``, uses the number of papers in which features occur. perslice : bool (default: False) If True, retrieves the top ``topn`` features in each slice. slice_kwargs : kwargs If ``perslice=True``, these keyword arguments are passed to :meth:`.Corpus.slice`\. """ if perslice: return [(k, subcorpus.features[featureset_name].top(topn, by=by)) for k, subcorpus in self.slice(**slice_kwargs)] return self.features[featureset_name].top(topn, by=by)
[ "def", "top_features", "(", "self", ",", "featureset_name", ",", "topn", "=", "20", ",", "by", "=", "'counts'", ",", "perslice", "=", "False", ",", "slice_kwargs", "=", "{", "}", ")", ":", "if", "perslice", ":", "return", "[", "(", "k", ",", "subcorpus", ".", "features", "[", "featureset_name", "]", ".", "top", "(", "topn", ",", "by", "=", "by", ")", ")", "for", "k", ",", "subcorpus", "in", "self", ".", "slice", "(", "*", "*", "slice_kwargs", ")", "]", "return", "self", ".", "features", "[", "featureset_name", "]", ".", "top", "(", "topn", ",", "by", "=", "by", ")" ]
Retrieves the top ``topn`` most numerous features in the corpus. Parameters ---------- featureset_name : str Name of a :class:`.FeatureSet` in the :class:`.Corpus`\. topn : int (default: ``20``) Number of features to return. by : str (default: ``'counts'``) If ``'counts'``, uses the sum of feature count values to rank features. If ``'documentCounts'``, uses the number of papers in which features occur. perslice : bool (default: False) If True, retrieves the top ``topn`` features in each slice. slice_kwargs : kwargs If ``perslice=True``, these keyword arguments are passed to :meth:`.Corpus.slice`\.
[ "Retrieves", "the", "top", "topn", "most", "numerous", "features", "in", "the", "corpus", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/classes/corpus.py#L687-L713
10,079
diging/tethne
tethne/analyze/corpus.py
feature_burstness
def feature_burstness(corpus, featureset_name, feature, k=5, normalize=True, s=1.1, gamma=1., **slice_kwargs): """ Estimate burstness profile for a feature over the ``'date'`` axis. Parameters ---------- corpus : :class:`.Corpus` feature : str Name of featureset in ``corpus``. E.g. ``'citations'``. findex : int Index of ``feature`` in ``corpus``. k : int (default: 5) Number of burst states. normalize : bool (default: True) If True, burstness is expressed relative to the hightest possible state (``k-1``). Otherwise, states themselves are returned. kwargs : kwargs Parameters for burstness automaton HMM. """ if featureset_name not in corpus.features: corpus.index_feature(featureset_name) if 'date' not in corpus.indices: corpus.index('date') # Get time-intervals between occurrences. dates = [min(corpus.indices['date'].keys()) - 1] # Pad start. X_ = [1.] years, values = corpus.feature_distribution(featureset_name, feature) for year, N in izip(years, values): if N == 0: continue if N > 1: if year == dates[-1] + 1: for n in xrange(int(N)): X_.append(1./N) dates.append(year) else: X_.append(float(year - dates[-1])) dates.append(year) for n in xrange(int(N) - 1): X_.append(1./(N - 1)) dates.append(year) else: X_.append(float(year - dates[-1])) dates.append(year) # Get optimum state sequence. st = _forward(map(lambda x: x*100, X_), s=s, gamma=gamma, k=k) # Bin by date. A = defaultdict(list) for i in xrange(len(X_)): A[dates[i]].append(st[i]) # Normalize. if normalize: A = {key: mean(values)/k for key, values in A.items()} else: A = {key: mean(values) for key, values in A.items()} D = sorted(A.keys()) return D[1:], [A[d] for d in D[1:]]
python
def feature_burstness(corpus, featureset_name, feature, k=5, normalize=True, s=1.1, gamma=1., **slice_kwargs): """ Estimate burstness profile for a feature over the ``'date'`` axis. Parameters ---------- corpus : :class:`.Corpus` feature : str Name of featureset in ``corpus``. E.g. ``'citations'``. findex : int Index of ``feature`` in ``corpus``. k : int (default: 5) Number of burst states. normalize : bool (default: True) If True, burstness is expressed relative to the hightest possible state (``k-1``). Otherwise, states themselves are returned. kwargs : kwargs Parameters for burstness automaton HMM. """ if featureset_name not in corpus.features: corpus.index_feature(featureset_name) if 'date' not in corpus.indices: corpus.index('date') # Get time-intervals between occurrences. dates = [min(corpus.indices['date'].keys()) - 1] # Pad start. X_ = [1.] years, values = corpus.feature_distribution(featureset_name, feature) for year, N in izip(years, values): if N == 0: continue if N > 1: if year == dates[-1] + 1: for n in xrange(int(N)): X_.append(1./N) dates.append(year) else: X_.append(float(year - dates[-1])) dates.append(year) for n in xrange(int(N) - 1): X_.append(1./(N - 1)) dates.append(year) else: X_.append(float(year - dates[-1])) dates.append(year) # Get optimum state sequence. st = _forward(map(lambda x: x*100, X_), s=s, gamma=gamma, k=k) # Bin by date. A = defaultdict(list) for i in xrange(len(X_)): A[dates[i]].append(st[i]) # Normalize. if normalize: A = {key: mean(values)/k for key, values in A.items()} else: A = {key: mean(values) for key, values in A.items()} D = sorted(A.keys()) return D[1:], [A[d] for d in D[1:]]
[ "def", "feature_burstness", "(", "corpus", ",", "featureset_name", ",", "feature", ",", "k", "=", "5", ",", "normalize", "=", "True", ",", "s", "=", "1.1", ",", "gamma", "=", "1.", ",", "*", "*", "slice_kwargs", ")", ":", "if", "featureset_name", "not", "in", "corpus", ".", "features", ":", "corpus", ".", "index_feature", "(", "featureset_name", ")", "if", "'date'", "not", "in", "corpus", ".", "indices", ":", "corpus", ".", "index", "(", "'date'", ")", "# Get time-intervals between occurrences.", "dates", "=", "[", "min", "(", "corpus", ".", "indices", "[", "'date'", "]", ".", "keys", "(", ")", ")", "-", "1", "]", "# Pad start.", "X_", "=", "[", "1.", "]", "years", ",", "values", "=", "corpus", ".", "feature_distribution", "(", "featureset_name", ",", "feature", ")", "for", "year", ",", "N", "in", "izip", "(", "years", ",", "values", ")", ":", "if", "N", "==", "0", ":", "continue", "if", "N", ">", "1", ":", "if", "year", "==", "dates", "[", "-", "1", "]", "+", "1", ":", "for", "n", "in", "xrange", "(", "int", "(", "N", ")", ")", ":", "X_", ".", "append", "(", "1.", "/", "N", ")", "dates", ".", "append", "(", "year", ")", "else", ":", "X_", ".", "append", "(", "float", "(", "year", "-", "dates", "[", "-", "1", "]", ")", ")", "dates", ".", "append", "(", "year", ")", "for", "n", "in", "xrange", "(", "int", "(", "N", ")", "-", "1", ")", ":", "X_", ".", "append", "(", "1.", "/", "(", "N", "-", "1", ")", ")", "dates", ".", "append", "(", "year", ")", "else", ":", "X_", ".", "append", "(", "float", "(", "year", "-", "dates", "[", "-", "1", "]", ")", ")", "dates", ".", "append", "(", "year", ")", "# Get optimum state sequence.", "st", "=", "_forward", "(", "map", "(", "lambda", "x", ":", "x", "*", "100", ",", "X_", ")", ",", "s", "=", "s", ",", "gamma", "=", "gamma", ",", "k", "=", "k", ")", "# Bin by date.", "A", "=", "defaultdict", "(", "list", ")", "for", "i", "in", "xrange", "(", "len", "(", "X_", ")", ")", ":", "A", "[", "dates", "[", "i", "]", "]", ".", "append", "(", "st", "[", "i", "]", ")", "# Normalize.", "if", "normalize", ":", "A", "=", "{", "key", ":", "mean", "(", "values", ")", "/", "k", "for", "key", ",", "values", "in", "A", ".", "items", "(", ")", "}", "else", ":", "A", "=", "{", "key", ":", "mean", "(", "values", ")", "for", "key", ",", "values", "in", "A", ".", "items", "(", ")", "}", "D", "=", "sorted", "(", "A", ".", "keys", "(", ")", ")", "return", "D", "[", "1", ":", "]", ",", "[", "A", "[", "d", "]", "for", "d", "in", "D", "[", "1", ":", "]", "]" ]
Estimate burstness profile for a feature over the ``'date'`` axis. Parameters ---------- corpus : :class:`.Corpus` feature : str Name of featureset in ``corpus``. E.g. ``'citations'``. findex : int Index of ``feature`` in ``corpus``. k : int (default: 5) Number of burst states. normalize : bool (default: True) If True, burstness is expressed relative to the hightest possible state (``k-1``). Otherwise, states themselves are returned. kwargs : kwargs Parameters for burstness automaton HMM.
[ "Estimate", "burstness", "profile", "for", "a", "feature", "over", "the", "date", "axis", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/analyze/corpus.py#L157-L224
10,080
diging/tethne
tethne/networks/papers.py
cocitation
def cocitation(corpus, min_weight=1, edge_attrs=['ayjid', 'date'], **kwargs): """ Generate a cocitation network. A **cocitation network** is a network in which vertices are papers, and edges indicate that two papers were cited by the same third paper. `CiteSpace <http://cluster.cis.drexel.edu/~cchen/citespace/doc/jasist2006.pdf>`_ is a popular desktop application for co-citation analysis, and you can read about the theory behind it `here <http://cluster.cis.drexel.edu/~cchen/citespace/>`_. """ return cooccurrence(corpus, 'citations', min_weight=min_weight, edge_attrs=edge_attrs, **kwargs)
python
def cocitation(corpus, min_weight=1, edge_attrs=['ayjid', 'date'], **kwargs): """ Generate a cocitation network. A **cocitation network** is a network in which vertices are papers, and edges indicate that two papers were cited by the same third paper. `CiteSpace <http://cluster.cis.drexel.edu/~cchen/citespace/doc/jasist2006.pdf>`_ is a popular desktop application for co-citation analysis, and you can read about the theory behind it `here <http://cluster.cis.drexel.edu/~cchen/citespace/>`_. """ return cooccurrence(corpus, 'citations', min_weight=min_weight, edge_attrs=edge_attrs, **kwargs)
[ "def", "cocitation", "(", "corpus", ",", "min_weight", "=", "1", ",", "edge_attrs", "=", "[", "'ayjid'", ",", "'date'", "]", ",", "*", "*", "kwargs", ")", ":", "return", "cooccurrence", "(", "corpus", ",", "'citations'", ",", "min_weight", "=", "min_weight", ",", "edge_attrs", "=", "edge_attrs", ",", "*", "*", "kwargs", ")" ]
Generate a cocitation network. A **cocitation network** is a network in which vertices are papers, and edges indicate that two papers were cited by the same third paper. `CiteSpace <http://cluster.cis.drexel.edu/~cchen/citespace/doc/jasist2006.pdf>`_ is a popular desktop application for co-citation analysis, and you can read about the theory behind it `here <http://cluster.cis.drexel.edu/~cchen/citespace/>`_.
[ "Generate", "a", "cocitation", "network", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/networks/papers.py#L43-L56
10,081
diging/tethne
tethne/classes/feature.py
StructuredFeature.context_chunk
def context_chunk(self, context, j): """ Retrieve the tokens in the ``j``th chunk of context ``context``. Parameters ---------- context : str Context name. j : int Index of a context chunk. Returns ------- chunk : list List of tokens in the selected chunk. """ N_chunks = len(self.contexts[context]) start = self.contexts[context][j] if j == N_chunks - 1: end = len(self) else: end = self.contexts[context][j+1] return [self[i] for i in xrange(start, end)]
python
def context_chunk(self, context, j): """ Retrieve the tokens in the ``j``th chunk of context ``context``. Parameters ---------- context : str Context name. j : int Index of a context chunk. Returns ------- chunk : list List of tokens in the selected chunk. """ N_chunks = len(self.contexts[context]) start = self.contexts[context][j] if j == N_chunks - 1: end = len(self) else: end = self.contexts[context][j+1] return [self[i] for i in xrange(start, end)]
[ "def", "context_chunk", "(", "self", ",", "context", ",", "j", ")", ":", "N_chunks", "=", "len", "(", "self", ".", "contexts", "[", "context", "]", ")", "start", "=", "self", ".", "contexts", "[", "context", "]", "[", "j", "]", "if", "j", "==", "N_chunks", "-", "1", ":", "end", "=", "len", "(", "self", ")", "else", ":", "end", "=", "self", ".", "contexts", "[", "context", "]", "[", "j", "+", "1", "]", "return", "[", "self", "[", "i", "]", "for", "i", "in", "xrange", "(", "start", ",", "end", ")", "]" ]
Retrieve the tokens in the ``j``th chunk of context ``context``. Parameters ---------- context : str Context name. j : int Index of a context chunk. Returns ------- chunk : list List of tokens in the selected chunk.
[ "Retrieve", "the", "tokens", "in", "the", "j", "th", "chunk", "of", "context", "context", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/classes/feature.py#L108-L131
10,082
diging/tethne
tethne/classes/feature.py
StructuredFeature.add_context
def add_context(self, name, indices, level=None): """ Add a new context level to the hierarchy. By default, new contexts are added to the lowest level of the hierarchy. To insert the context elsewhere in the hierarchy, use the ``level`` argument. For example, ``level=0`` would insert the context at the highest level of the hierarchy. Parameters ---------- name : str indices : list Token indices at which each chunk in the context begins. level : int Level in the hierarchy at which to insert the context. By default, inserts context at the lowest level of the hierarchy """ self._validate_context((name, indices)) if level is None: level = len(self.contexts_ranked) self.contexts_ranked.insert(level, name) self.contexts[name] = indices
python
def add_context(self, name, indices, level=None): """ Add a new context level to the hierarchy. By default, new contexts are added to the lowest level of the hierarchy. To insert the context elsewhere in the hierarchy, use the ``level`` argument. For example, ``level=0`` would insert the context at the highest level of the hierarchy. Parameters ---------- name : str indices : list Token indices at which each chunk in the context begins. level : int Level in the hierarchy at which to insert the context. By default, inserts context at the lowest level of the hierarchy """ self._validate_context((name, indices)) if level is None: level = len(self.contexts_ranked) self.contexts_ranked.insert(level, name) self.contexts[name] = indices
[ "def", "add_context", "(", "self", ",", "name", ",", "indices", ",", "level", "=", "None", ")", ":", "self", ".", "_validate_context", "(", "(", "name", ",", "indices", ")", ")", "if", "level", "is", "None", ":", "level", "=", "len", "(", "self", ".", "contexts_ranked", ")", "self", ".", "contexts_ranked", ".", "insert", "(", "level", ",", "name", ")", "self", ".", "contexts", "[", "name", "]", "=", "indices" ]
Add a new context level to the hierarchy. By default, new contexts are added to the lowest level of the hierarchy. To insert the context elsewhere in the hierarchy, use the ``level`` argument. For example, ``level=0`` would insert the context at the highest level of the hierarchy. Parameters ---------- name : str indices : list Token indices at which each chunk in the context begins. level : int Level in the hierarchy at which to insert the context. By default, inserts context at the lowest level of the hierarchy
[ "Add", "a", "new", "context", "level", "to", "the", "hierarchy", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/classes/feature.py#L170-L195
10,083
diging/tethne
tethne/classes/graphcollection.py
GraphCollection.index
def index(self, name, graph): """ Index any new nodes in `graph`, and relabel the nodes in `graph` using the index. Parameters ---------- name : hashable Unique name used to identify the `graph`. graph : networkx.Graph Returns ------- indexed_graph : networkx.Graph """ nodes = graph.nodes() # Index new nodes. new_nodes = list(set(nodes) - set(self.node_index.values())) start = max(len(self.node_index) - 1, max(self.node_index.keys())) for i in xrange(start, start + len(new_nodes)): n = new_nodes.pop() self.node_index[i], self.node_lookup[n] = n, i self.graphs_containing[n].append(name) # Relabel nodes in `graph`. new_labels = {n: self.node_lookup[n] for n in nodes} indexed_graph = nx.relabel.relabel_nodes(graph, new_labels, copy=True) return indexed_graph
python
def index(self, name, graph): """ Index any new nodes in `graph`, and relabel the nodes in `graph` using the index. Parameters ---------- name : hashable Unique name used to identify the `graph`. graph : networkx.Graph Returns ------- indexed_graph : networkx.Graph """ nodes = graph.nodes() # Index new nodes. new_nodes = list(set(nodes) - set(self.node_index.values())) start = max(len(self.node_index) - 1, max(self.node_index.keys())) for i in xrange(start, start + len(new_nodes)): n = new_nodes.pop() self.node_index[i], self.node_lookup[n] = n, i self.graphs_containing[n].append(name) # Relabel nodes in `graph`. new_labels = {n: self.node_lookup[n] for n in nodes} indexed_graph = nx.relabel.relabel_nodes(graph, new_labels, copy=True) return indexed_graph
[ "def", "index", "(", "self", ",", "name", ",", "graph", ")", ":", "nodes", "=", "graph", ".", "nodes", "(", ")", "# Index new nodes.", "new_nodes", "=", "list", "(", "set", "(", "nodes", ")", "-", "set", "(", "self", ".", "node_index", ".", "values", "(", ")", ")", ")", "start", "=", "max", "(", "len", "(", "self", ".", "node_index", ")", "-", "1", ",", "max", "(", "self", ".", "node_index", ".", "keys", "(", ")", ")", ")", "for", "i", "in", "xrange", "(", "start", ",", "start", "+", "len", "(", "new_nodes", ")", ")", ":", "n", "=", "new_nodes", ".", "pop", "(", ")", "self", ".", "node_index", "[", "i", "]", ",", "self", ".", "node_lookup", "[", "n", "]", "=", "n", ",", "i", "self", ".", "graphs_containing", "[", "n", "]", ".", "append", "(", "name", ")", "# Relabel nodes in `graph`.", "new_labels", "=", "{", "n", ":", "self", ".", "node_lookup", "[", "n", "]", "for", "n", "in", "nodes", "}", "indexed_graph", "=", "nx", ".", "relabel", ".", "relabel_nodes", "(", "graph", ",", "new_labels", ",", "copy", "=", "True", ")", "return", "indexed_graph" ]
Index any new nodes in `graph`, and relabel the nodes in `graph` using the index. Parameters ---------- name : hashable Unique name used to identify the `graph`. graph : networkx.Graph Returns ------- indexed_graph : networkx.Graph
[ "Index", "any", "new", "nodes", "in", "graph", "and", "relabel", "the", "nodes", "in", "graph", "using", "the", "index", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/classes/graphcollection.py#L159-L188
10,084
diging/tethne
tethne/networks/topics.py
terms
def terms(model, threshold=0.01, **kwargs): """ Two terms are coupled if the posterior probability for both terms is greather than ``threshold`` for the same topic. Parameters ---------- model : :class:`.LDAModel` threshold : float Default: 0.01 kwargs : kwargs Passed on to :func:`.cooccurrence`\. Returns ------- :ref:`networkx.Graph <networkx:graph>` """ select = lambda f, v, c, dc: v > threshold graph = cooccurrence(model.phi, filter=select, **kwargs) # Only include labels for terms that are actually in the graph. label_map = {k: v for k, v in model.vocabulary.items() if k in graph.nodes()} graph.name = '' return networkx.relabel_nodes(graph, label_map)
python
def terms(model, threshold=0.01, **kwargs): """ Two terms are coupled if the posterior probability for both terms is greather than ``threshold`` for the same topic. Parameters ---------- model : :class:`.LDAModel` threshold : float Default: 0.01 kwargs : kwargs Passed on to :func:`.cooccurrence`\. Returns ------- :ref:`networkx.Graph <networkx:graph>` """ select = lambda f, v, c, dc: v > threshold graph = cooccurrence(model.phi, filter=select, **kwargs) # Only include labels for terms that are actually in the graph. label_map = {k: v for k, v in model.vocabulary.items() if k in graph.nodes()} graph.name = '' return networkx.relabel_nodes(graph, label_map)
[ "def", "terms", "(", "model", ",", "threshold", "=", "0.01", ",", "*", "*", "kwargs", ")", ":", "select", "=", "lambda", "f", ",", "v", ",", "c", ",", "dc", ":", "v", ">", "threshold", "graph", "=", "cooccurrence", "(", "model", ".", "phi", ",", "filter", "=", "select", ",", "*", "*", "kwargs", ")", "# Only include labels for terms that are actually in the graph.", "label_map", "=", "{", "k", ":", "v", "for", "k", ",", "v", "in", "model", ".", "vocabulary", ".", "items", "(", ")", "if", "k", "in", "graph", ".", "nodes", "(", ")", "}", "graph", ".", "name", "=", "''", "return", "networkx", ".", "relabel_nodes", "(", "graph", ",", "label_map", ")" ]
Two terms are coupled if the posterior probability for both terms is greather than ``threshold`` for the same topic. Parameters ---------- model : :class:`.LDAModel` threshold : float Default: 0.01 kwargs : kwargs Passed on to :func:`.cooccurrence`\. Returns ------- :ref:`networkx.Graph <networkx:graph>`
[ "Two", "terms", "are", "coupled", "if", "the", "posterior", "probability", "for", "both", "terms", "is", "greather", "than", "threshold", "for", "the", "same", "topic", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/networks/topics.py#L24-L50
10,085
diging/tethne
tethne/networks/topics.py
topic_coupling
def topic_coupling(model, threshold=None, **kwargs): """ Two papers are coupled if they both contain a shared topic above a ``threshold``. Parameters ---------- model : :class:`.LDAModel` threshold : float Default: ``3./model.Z`` kwargs : kwargs Passed on to :func:`.coupling`\. Returns ------- :ref:`networkx.Graph <networkx:graph>` """ if not threshold: threshold = 3./model.Z select = lambda f, v, c, dc: v > threshold graph = coupling(model.corpus, 'topics', filter=select, **kwargs) graph.name = '' return graph
python
def topic_coupling(model, threshold=None, **kwargs): """ Two papers are coupled if they both contain a shared topic above a ``threshold``. Parameters ---------- model : :class:`.LDAModel` threshold : float Default: ``3./model.Z`` kwargs : kwargs Passed on to :func:`.coupling`\. Returns ------- :ref:`networkx.Graph <networkx:graph>` """ if not threshold: threshold = 3./model.Z select = lambda f, v, c, dc: v > threshold graph = coupling(model.corpus, 'topics', filter=select, **kwargs) graph.name = '' return graph
[ "def", "topic_coupling", "(", "model", ",", "threshold", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "not", "threshold", ":", "threshold", "=", "3.", "/", "model", ".", "Z", "select", "=", "lambda", "f", ",", "v", ",", "c", ",", "dc", ":", "v", ">", "threshold", "graph", "=", "coupling", "(", "model", ".", "corpus", ",", "'topics'", ",", "filter", "=", "select", ",", "*", "*", "kwargs", ")", "graph", ".", "name", "=", "''", "return", "graph" ]
Two papers are coupled if they both contain a shared topic above a ``threshold``. Parameters ---------- model : :class:`.LDAModel` threshold : float Default: ``3./model.Z`` kwargs : kwargs Passed on to :func:`.coupling`\. Returns ------- :ref:`networkx.Graph <networkx:graph>`
[ "Two", "papers", "are", "coupled", "if", "they", "both", "contain", "a", "shared", "topic", "above", "a", "threshold", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/networks/topics.py#L53-L77
10,086
diging/tethne
tethne/analyze/features.py
kl_divergence
def kl_divergence(V_a, V_b): """ Calculate Kullback-Leibler distance. Uses the smoothing method described in `Bigi 2003 <http://lvk.cs.msu.su/~bruzz/articles/classification/Using%20Kullback-Leibler%20Distance%20for%20Text%20Categorization.pdf>`_ to facilitate better comparisons between vectors describing wordcounts. Parameters ---------- V_a : list V_b : list Returns ------- divergence : float KL divergence. """ # Find shared features. Ndiff = _shared_features(V_a, V_b) # aprob and bprob should each sum to 1.0 aprob = map(lambda v: float(v)/sum(V_a), V_a) bprob = map(lambda v: float(v)/sum(V_b), V_b) # Smooth according to Bigi 2003. aprob, bprob = _smooth(aprob, bprob, Ndiff) return sum(map(lambda a, b: (a-b)*log(a/b), aprob, bprob))
python
def kl_divergence(V_a, V_b): """ Calculate Kullback-Leibler distance. Uses the smoothing method described in `Bigi 2003 <http://lvk.cs.msu.su/~bruzz/articles/classification/Using%20Kullback-Leibler%20Distance%20for%20Text%20Categorization.pdf>`_ to facilitate better comparisons between vectors describing wordcounts. Parameters ---------- V_a : list V_b : list Returns ------- divergence : float KL divergence. """ # Find shared features. Ndiff = _shared_features(V_a, V_b) # aprob and bprob should each sum to 1.0 aprob = map(lambda v: float(v)/sum(V_a), V_a) bprob = map(lambda v: float(v)/sum(V_b), V_b) # Smooth according to Bigi 2003. aprob, bprob = _smooth(aprob, bprob, Ndiff) return sum(map(lambda a, b: (a-b)*log(a/b), aprob, bprob))
[ "def", "kl_divergence", "(", "V_a", ",", "V_b", ")", ":", "# Find shared features.", "Ndiff", "=", "_shared_features", "(", "V_a", ",", "V_b", ")", "# aprob and bprob should each sum to 1.0", "aprob", "=", "map", "(", "lambda", "v", ":", "float", "(", "v", ")", "/", "sum", "(", "V_a", ")", ",", "V_a", ")", "bprob", "=", "map", "(", "lambda", "v", ":", "float", "(", "v", ")", "/", "sum", "(", "V_b", ")", ",", "V_b", ")", "# Smooth according to Bigi 2003.", "aprob", ",", "bprob", "=", "_smooth", "(", "aprob", ",", "bprob", ",", "Ndiff", ")", "return", "sum", "(", "map", "(", "lambda", "a", ",", "b", ":", "(", "a", "-", "b", ")", "*", "log", "(", "a", "/", "b", ")", ",", "aprob", ",", "bprob", ")", ")" ]
Calculate Kullback-Leibler distance. Uses the smoothing method described in `Bigi 2003 <http://lvk.cs.msu.su/~bruzz/articles/classification/Using%20Kullback-Leibler%20Distance%20for%20Text%20Categorization.pdf>`_ to facilitate better comparisons between vectors describing wordcounts. Parameters ---------- V_a : list V_b : list Returns ------- divergence : float KL divergence.
[ "Calculate", "Kullback", "-", "Leibler", "distance", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/analyze/features.py#L18-L47
10,087
diging/tethne
tethne/analyze/features.py
_shared_features
def _shared_features(adense, bdense): """ Number of features in ``adense`` that are also in ``bdense``. """ a_indices = set(nonzero(adense)) b_indices = set(nonzero(bdense)) shared = list(a_indices & b_indices) diff = list(a_indices - b_indices) Ndiff = len(diff) return Ndiff
python
def _shared_features(adense, bdense): """ Number of features in ``adense`` that are also in ``bdense``. """ a_indices = set(nonzero(adense)) b_indices = set(nonzero(bdense)) shared = list(a_indices & b_indices) diff = list(a_indices - b_indices) Ndiff = len(diff) return Ndiff
[ "def", "_shared_features", "(", "adense", ",", "bdense", ")", ":", "a_indices", "=", "set", "(", "nonzero", "(", "adense", ")", ")", "b_indices", "=", "set", "(", "nonzero", "(", "bdense", ")", ")", "shared", "=", "list", "(", "a_indices", "&", "b_indices", ")", "diff", "=", "list", "(", "a_indices", "-", "b_indices", ")", "Ndiff", "=", "len", "(", "diff", ")", "return", "Ndiff" ]
Number of features in ``adense`` that are also in ``bdense``.
[ "Number", "of", "features", "in", "adense", "that", "are", "also", "in", "bdense", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/analyze/features.py#L100-L111
10,088
diging/tethne
tethne/networks/base.py
cooccurrence
def cooccurrence(corpus_or_featureset, featureset_name=None, min_weight=1, edge_attrs=['ayjid', 'date'], filter=None): """ A network of feature elements linked by their joint occurrence in papers. """ if not filter: filter = lambda f, v, c, dc: dc >= min_weight featureset = _get_featureset(corpus_or_featureset, featureset_name) if type(corpus_or_featureset) in [Corpus, StreamingCorpus]: attributes = {i: {a: corpus_or_featureset.indices_lookup[i][a] for a in edge_attrs} for i in corpus_or_featureset.indexed_papers.keys()} c = lambda f: featureset.count(f) # Overall count. dc = lambda f: featureset.documentCount(f) # Document count. attributes = {} # select applies filter to the elements in a (Structured)Feature. The # iteration behavior of Feature and StructuredFeature are different, as is # the manner in which the count for an element in each (Structured)Feature. if type(featureset) is FeatureSet: select = lambda feature: [f for f, v in feature if filter(f, v, c(f), dc(f))] elif type(featureset) is StructuredFeatureSet: select = lambda feature: [f for f in feature if filter(f, feature.count(f), c(f), dc(f))] pairs = Counter() eattrs = defaultdict(dict) nattrs = defaultdict(dict) nset = set() for paper, feature in featureset.iteritems(): if len(feature) == 0: continue selected = select(feature) nset |= set(selected) for combo in combinations(selected, 2): combo = tuple(sorted(combo)) pairs[combo] += 1 if paper in attributes: eattrs[combo] = attributes[paper] # Generate node attributes. for n in list(nset): nattrs[n]['count'] = featureset.count(n) nattrs[n]['documentCount'] = featureset.documentCount(n) return _generate_graph(nx.Graph, pairs, edge_attrs=eattrs, node_attrs=nattrs, min_weight=min_weight)
python
def cooccurrence(corpus_or_featureset, featureset_name=None, min_weight=1, edge_attrs=['ayjid', 'date'], filter=None): """ A network of feature elements linked by their joint occurrence in papers. """ if not filter: filter = lambda f, v, c, dc: dc >= min_weight featureset = _get_featureset(corpus_or_featureset, featureset_name) if type(corpus_or_featureset) in [Corpus, StreamingCorpus]: attributes = {i: {a: corpus_or_featureset.indices_lookup[i][a] for a in edge_attrs} for i in corpus_or_featureset.indexed_papers.keys()} c = lambda f: featureset.count(f) # Overall count. dc = lambda f: featureset.documentCount(f) # Document count. attributes = {} # select applies filter to the elements in a (Structured)Feature. The # iteration behavior of Feature and StructuredFeature are different, as is # the manner in which the count for an element in each (Structured)Feature. if type(featureset) is FeatureSet: select = lambda feature: [f for f, v in feature if filter(f, v, c(f), dc(f))] elif type(featureset) is StructuredFeatureSet: select = lambda feature: [f for f in feature if filter(f, feature.count(f), c(f), dc(f))] pairs = Counter() eattrs = defaultdict(dict) nattrs = defaultdict(dict) nset = set() for paper, feature in featureset.iteritems(): if len(feature) == 0: continue selected = select(feature) nset |= set(selected) for combo in combinations(selected, 2): combo = tuple(sorted(combo)) pairs[combo] += 1 if paper in attributes: eattrs[combo] = attributes[paper] # Generate node attributes. for n in list(nset): nattrs[n]['count'] = featureset.count(n) nattrs[n]['documentCount'] = featureset.documentCount(n) return _generate_graph(nx.Graph, pairs, edge_attrs=eattrs, node_attrs=nattrs, min_weight=min_weight)
[ "def", "cooccurrence", "(", "corpus_or_featureset", ",", "featureset_name", "=", "None", ",", "min_weight", "=", "1", ",", "edge_attrs", "=", "[", "'ayjid'", ",", "'date'", "]", ",", "filter", "=", "None", ")", ":", "if", "not", "filter", ":", "filter", "=", "lambda", "f", ",", "v", ",", "c", ",", "dc", ":", "dc", ">=", "min_weight", "featureset", "=", "_get_featureset", "(", "corpus_or_featureset", ",", "featureset_name", ")", "if", "type", "(", "corpus_or_featureset", ")", "in", "[", "Corpus", ",", "StreamingCorpus", "]", ":", "attributes", "=", "{", "i", ":", "{", "a", ":", "corpus_or_featureset", ".", "indices_lookup", "[", "i", "]", "[", "a", "]", "for", "a", "in", "edge_attrs", "}", "for", "i", "in", "corpus_or_featureset", ".", "indexed_papers", ".", "keys", "(", ")", "}", "c", "=", "lambda", "f", ":", "featureset", ".", "count", "(", "f", ")", "# Overall count.", "dc", "=", "lambda", "f", ":", "featureset", ".", "documentCount", "(", "f", ")", "# Document count.", "attributes", "=", "{", "}", "# select applies filter to the elements in a (Structured)Feature. The", "# iteration behavior of Feature and StructuredFeature are different, as is", "# the manner in which the count for an element in each (Structured)Feature.", "if", "type", "(", "featureset", ")", "is", "FeatureSet", ":", "select", "=", "lambda", "feature", ":", "[", "f", "for", "f", ",", "v", "in", "feature", "if", "filter", "(", "f", ",", "v", ",", "c", "(", "f", ")", ",", "dc", "(", "f", ")", ")", "]", "elif", "type", "(", "featureset", ")", "is", "StructuredFeatureSet", ":", "select", "=", "lambda", "feature", ":", "[", "f", "for", "f", "in", "feature", "if", "filter", "(", "f", ",", "feature", ".", "count", "(", "f", ")", ",", "c", "(", "f", ")", ",", "dc", "(", "f", ")", ")", "]", "pairs", "=", "Counter", "(", ")", "eattrs", "=", "defaultdict", "(", "dict", ")", "nattrs", "=", "defaultdict", "(", "dict", ")", "nset", "=", "set", "(", ")", "for", "paper", ",", "feature", "in", "featureset", ".", "iteritems", "(", ")", ":", "if", "len", "(", "feature", ")", "==", "0", ":", "continue", "selected", "=", "select", "(", "feature", ")", "nset", "|=", "set", "(", "selected", ")", "for", "combo", "in", "combinations", "(", "selected", ",", "2", ")", ":", "combo", "=", "tuple", "(", "sorted", "(", "combo", ")", ")", "pairs", "[", "combo", "]", "+=", "1", "if", "paper", "in", "attributes", ":", "eattrs", "[", "combo", "]", "=", "attributes", "[", "paper", "]", "# Generate node attributes.", "for", "n", "in", "list", "(", "nset", ")", ":", "nattrs", "[", "n", "]", "[", "'count'", "]", "=", "featureset", ".", "count", "(", "n", ")", "nattrs", "[", "n", "]", "[", "'documentCount'", "]", "=", "featureset", ".", "documentCount", "(", "n", ")", "return", "_generate_graph", "(", "nx", ".", "Graph", ",", "pairs", ",", "edge_attrs", "=", "eattrs", ",", "node_attrs", "=", "nattrs", ",", "min_weight", "=", "min_weight", ")" ]
A network of feature elements linked by their joint occurrence in papers.
[ "A", "network", "of", "feature", "elements", "linked", "by", "their", "joint", "occurrence", "in", "papers", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/networks/base.py#L39-L93
10,089
diging/tethne
tethne/networks/base.py
coupling
def coupling(corpus_or_featureset, featureset_name=None, min_weight=1, filter=lambda f, v, c, dc: True, node_attrs=[]): """ A network of papers linked by their joint posession of features. """ featureset = _get_featureset(corpus_or_featureset, featureset_name) c = lambda f: featureset.count(f) # Overall count. dc = lambda f: featureset.documentCount(f) # Document count. f = lambda elem: featureset.index[elem] v = lambda p, f: featureset.features[p].value(f) select = lambda p, elem: filter(f(elem), v(p, f(elem)), c(f(elem)), dc(f(elem))) pairs = defaultdict(list) for elem, papers in featureset.with_feature.iteritems(): selected = [p for p in papers if select(p, elem)] for combo in combinations(selected, 2): combo = tuple(sorted(combo)) pairs[combo].append(featureset.index[elem]) graph = nx.Graph() for combo, features in pairs.iteritems(): count = len(features) if count >= min_weight: graph.add_edge(combo[0], combo[1], features=features, weight=count) # Add node attributes. for attr in node_attrs: for node in graph.nodes(): value = '' if node in corpus_or_featureset: paper = corpus_or_featureset[node] if hasattr(paper, attr): value = getattr(paper, attr) if value is None: value = '' elif callable(value): value = value() graph.node[node][attr] = value return graph
python
def coupling(corpus_or_featureset, featureset_name=None, min_weight=1, filter=lambda f, v, c, dc: True, node_attrs=[]): """ A network of papers linked by their joint posession of features. """ featureset = _get_featureset(corpus_or_featureset, featureset_name) c = lambda f: featureset.count(f) # Overall count. dc = lambda f: featureset.documentCount(f) # Document count. f = lambda elem: featureset.index[elem] v = lambda p, f: featureset.features[p].value(f) select = lambda p, elem: filter(f(elem), v(p, f(elem)), c(f(elem)), dc(f(elem))) pairs = defaultdict(list) for elem, papers in featureset.with_feature.iteritems(): selected = [p for p in papers if select(p, elem)] for combo in combinations(selected, 2): combo = tuple(sorted(combo)) pairs[combo].append(featureset.index[elem]) graph = nx.Graph() for combo, features in pairs.iteritems(): count = len(features) if count >= min_weight: graph.add_edge(combo[0], combo[1], features=features, weight=count) # Add node attributes. for attr in node_attrs: for node in graph.nodes(): value = '' if node in corpus_or_featureset: paper = corpus_or_featureset[node] if hasattr(paper, attr): value = getattr(paper, attr) if value is None: value = '' elif callable(value): value = value() graph.node[node][attr] = value return graph
[ "def", "coupling", "(", "corpus_or_featureset", ",", "featureset_name", "=", "None", ",", "min_weight", "=", "1", ",", "filter", "=", "lambda", "f", ",", "v", ",", "c", ",", "dc", ":", "True", ",", "node_attrs", "=", "[", "]", ")", ":", "featureset", "=", "_get_featureset", "(", "corpus_or_featureset", ",", "featureset_name", ")", "c", "=", "lambda", "f", ":", "featureset", ".", "count", "(", "f", ")", "# Overall count.", "dc", "=", "lambda", "f", ":", "featureset", ".", "documentCount", "(", "f", ")", "# Document count.", "f", "=", "lambda", "elem", ":", "featureset", ".", "index", "[", "elem", "]", "v", "=", "lambda", "p", ",", "f", ":", "featureset", ".", "features", "[", "p", "]", ".", "value", "(", "f", ")", "select", "=", "lambda", "p", ",", "elem", ":", "filter", "(", "f", "(", "elem", ")", ",", "v", "(", "p", ",", "f", "(", "elem", ")", ")", ",", "c", "(", "f", "(", "elem", ")", ")", ",", "dc", "(", "f", "(", "elem", ")", ")", ")", "pairs", "=", "defaultdict", "(", "list", ")", "for", "elem", ",", "papers", "in", "featureset", ".", "with_feature", ".", "iteritems", "(", ")", ":", "selected", "=", "[", "p", "for", "p", "in", "papers", "if", "select", "(", "p", ",", "elem", ")", "]", "for", "combo", "in", "combinations", "(", "selected", ",", "2", ")", ":", "combo", "=", "tuple", "(", "sorted", "(", "combo", ")", ")", "pairs", "[", "combo", "]", ".", "append", "(", "featureset", ".", "index", "[", "elem", "]", ")", "graph", "=", "nx", ".", "Graph", "(", ")", "for", "combo", ",", "features", "in", "pairs", ".", "iteritems", "(", ")", ":", "count", "=", "len", "(", "features", ")", "if", "count", ">=", "min_weight", ":", "graph", ".", "add_edge", "(", "combo", "[", "0", "]", ",", "combo", "[", "1", "]", ",", "features", "=", "features", ",", "weight", "=", "count", ")", "# Add node attributes.", "for", "attr", "in", "node_attrs", ":", "for", "node", "in", "graph", ".", "nodes", "(", ")", ":", "value", "=", "''", "if", "node", "in", "corpus_or_featureset", ":", "paper", "=", "corpus_or_featureset", "[", "node", "]", "if", "hasattr", "(", "paper", ",", "attr", ")", ":", "value", "=", "getattr", "(", "paper", ",", "attr", ")", "if", "value", "is", "None", ":", "value", "=", "''", "elif", "callable", "(", "value", ")", ":", "value", "=", "value", "(", ")", "graph", ".", "node", "[", "node", "]", "[", "attr", "]", "=", "value", "return", "graph" ]
A network of papers linked by their joint posession of features.
[ "A", "network", "of", "papers", "linked", "by", "their", "joint", "posession", "of", "features", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/networks/base.py#L97-L140
10,090
diging/tethne
tethne/networks/base.py
multipartite
def multipartite(corpus, featureset_names, min_weight=1, filters={}): """ A network of papers and one or more featuresets. """ pairs = Counter() node_type = {corpus._generate_index(p): {'type': 'paper'} for p in corpus.papers} for featureset_name in featureset_names: ftypes = {} featureset = _get_featureset(corpus, featureset_name) for paper, feature in featureset.iteritems(): if featureset_name in filters: if not filters[featureset_name](featureset, feature): continue if len(feature) < 1: continue for f in list(zip(*feature))[0]: ftypes[f] = {'type': featureset_name} pairs[(paper, f)] += 1 node_type.update(ftypes) return _generate_graph(nx.DiGraph, pairs, node_attrs=node_type, min_weight=min_weight)
python
def multipartite(corpus, featureset_names, min_weight=1, filters={}): """ A network of papers and one or more featuresets. """ pairs = Counter() node_type = {corpus._generate_index(p): {'type': 'paper'} for p in corpus.papers} for featureset_name in featureset_names: ftypes = {} featureset = _get_featureset(corpus, featureset_name) for paper, feature in featureset.iteritems(): if featureset_name in filters: if not filters[featureset_name](featureset, feature): continue if len(feature) < 1: continue for f in list(zip(*feature))[0]: ftypes[f] = {'type': featureset_name} pairs[(paper, f)] += 1 node_type.update(ftypes) return _generate_graph(nx.DiGraph, pairs, node_attrs=node_type, min_weight=min_weight)
[ "def", "multipartite", "(", "corpus", ",", "featureset_names", ",", "min_weight", "=", "1", ",", "filters", "=", "{", "}", ")", ":", "pairs", "=", "Counter", "(", ")", "node_type", "=", "{", "corpus", ".", "_generate_index", "(", "p", ")", ":", "{", "'type'", ":", "'paper'", "}", "for", "p", "in", "corpus", ".", "papers", "}", "for", "featureset_name", "in", "featureset_names", ":", "ftypes", "=", "{", "}", "featureset", "=", "_get_featureset", "(", "corpus", ",", "featureset_name", ")", "for", "paper", ",", "feature", "in", "featureset", ".", "iteritems", "(", ")", ":", "if", "featureset_name", "in", "filters", ":", "if", "not", "filters", "[", "featureset_name", "]", "(", "featureset", ",", "feature", ")", ":", "continue", "if", "len", "(", "feature", ")", "<", "1", ":", "continue", "for", "f", "in", "list", "(", "zip", "(", "*", "feature", ")", ")", "[", "0", "]", ":", "ftypes", "[", "f", "]", "=", "{", "'type'", ":", "featureset_name", "}", "pairs", "[", "(", "paper", ",", "f", ")", "]", "+=", "1", "node_type", ".", "update", "(", "ftypes", ")", "return", "_generate_graph", "(", "nx", ".", "DiGraph", ",", "pairs", ",", "node_attrs", "=", "node_type", ",", "min_weight", "=", "min_weight", ")" ]
A network of papers and one or more featuresets.
[ "A", "network", "of", "papers", "and", "one", "or", "more", "featuresets", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/networks/base.py#L143-L167
10,091
diging/tethne
tethne/utilities.py
_strip_punctuation
def _strip_punctuation(s): """ Removes all punctuation characters from a string. """ if type(s) is str and not PYTHON_3: # Bytestring (default in Python 2.x). return s.translate(string.maketrans("",""), string.punctuation) else: # Unicode string (default in Python 3.x). translate_table = dict((ord(char), u'') for char in u'!"#%\'()*+,-./:;<=>?@[\]^_`{|}~') return s.translate(translate_table)
python
def _strip_punctuation(s): """ Removes all punctuation characters from a string. """ if type(s) is str and not PYTHON_3: # Bytestring (default in Python 2.x). return s.translate(string.maketrans("",""), string.punctuation) else: # Unicode string (default in Python 3.x). translate_table = dict((ord(char), u'') for char in u'!"#%\'()*+,-./:;<=>?@[\]^_`{|}~') return s.translate(translate_table)
[ "def", "_strip_punctuation", "(", "s", ")", ":", "if", "type", "(", "s", ")", "is", "str", "and", "not", "PYTHON_3", ":", "# Bytestring (default in Python 2.x).", "return", "s", ".", "translate", "(", "string", ".", "maketrans", "(", "\"\"", ",", "\"\"", ")", ",", "string", ".", "punctuation", ")", "else", ":", "# Unicode string (default in Python 3.x).", "translate_table", "=", "dict", "(", "(", "ord", "(", "char", ")", ",", "u''", ")", "for", "char", "in", "u'!\"#%\\'()*+,-./:;<=>?@[\\]^_`{|}~'", ")", "return", "s", ".", "translate", "(", "translate_table", ")" ]
Removes all punctuation characters from a string.
[ "Removes", "all", "punctuation", "characters", "from", "a", "string", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/utilities.py#L115-L123
10,092
diging/tethne
tethne/utilities.py
overlap
def overlap(listA, listB): """ Return list of objects shared by listA, listB. """ if (listA is None) or (listB is None): return [] else: return list(set(listA) & set(listB))
python
def overlap(listA, listB): """ Return list of objects shared by listA, listB. """ if (listA is None) or (listB is None): return [] else: return list(set(listA) & set(listB))
[ "def", "overlap", "(", "listA", ",", "listB", ")", ":", "if", "(", "listA", "is", "None", ")", "or", "(", "listB", "is", "None", ")", ":", "return", "[", "]", "else", ":", "return", "list", "(", "set", "(", "listA", ")", "&", "set", "(", "listB", ")", ")" ]
Return list of objects shared by listA, listB.
[ "Return", "list", "of", "objects", "shared", "by", "listA", "listB", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/utilities.py#L174-L181
10,093
diging/tethne
tethne/utilities.py
subdict
def subdict(super_dict, keys): """ Returns a subset of the super_dict with the specified keys. """ sub_dict = {} valid_keys = super_dict.keys() for key in keys: if key in valid_keys: sub_dict[key] = super_dict[key] return sub_dict
python
def subdict(super_dict, keys): """ Returns a subset of the super_dict with the specified keys. """ sub_dict = {} valid_keys = super_dict.keys() for key in keys: if key in valid_keys: sub_dict[key] = super_dict[key] return sub_dict
[ "def", "subdict", "(", "super_dict", ",", "keys", ")", ":", "sub_dict", "=", "{", "}", "valid_keys", "=", "super_dict", ".", "keys", "(", ")", "for", "key", "in", "keys", ":", "if", "key", "in", "valid_keys", ":", "sub_dict", "[", "key", "]", "=", "super_dict", "[", "key", "]", "return", "sub_dict" ]
Returns a subset of the super_dict with the specified keys.
[ "Returns", "a", "subset", "of", "the", "super_dict", "with", "the", "specified", "keys", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/utilities.py#L184-L194
10,094
diging/tethne
tethne/utilities.py
concat_list
def concat_list(listA, listB, delim=' '): """ Concatenate list elements pair-wise with the delim character Returns the concatenated list Raises index error if lists are not parallel """ # Lists must be of equal length. if len(listA) != len(listB): raise IndexError('Input lists are not parallel.') # Concatenate lists. listC = [] for i in xrange(len(listA)): app = listA[i] + delim + listB[i] listC.append(app) return listC
python
def concat_list(listA, listB, delim=' '): """ Concatenate list elements pair-wise with the delim character Returns the concatenated list Raises index error if lists are not parallel """ # Lists must be of equal length. if len(listA) != len(listB): raise IndexError('Input lists are not parallel.') # Concatenate lists. listC = [] for i in xrange(len(listA)): app = listA[i] + delim + listB[i] listC.append(app) return listC
[ "def", "concat_list", "(", "listA", ",", "listB", ",", "delim", "=", "' '", ")", ":", "# Lists must be of equal length.", "if", "len", "(", "listA", ")", "!=", "len", "(", "listB", ")", ":", "raise", "IndexError", "(", "'Input lists are not parallel.'", ")", "# Concatenate lists.", "listC", "=", "[", "]", "for", "i", "in", "xrange", "(", "len", "(", "listA", ")", ")", ":", "app", "=", "listA", "[", "i", "]", "+", "delim", "+", "listB", "[", "i", "]", "listC", ".", "append", "(", "app", ")", "return", "listC" ]
Concatenate list elements pair-wise with the delim character Returns the concatenated list Raises index error if lists are not parallel
[ "Concatenate", "list", "elements", "pair", "-", "wise", "with", "the", "delim", "character", "Returns", "the", "concatenated", "list", "Raises", "index", "error", "if", "lists", "are", "not", "parallel" ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/utilities.py#L212-L229
10,095
diging/tethne
tethne/utilities.py
strip_non_ascii
def strip_non_ascii(s): """ Returns the string without non-ASCII characters. Parameters ---------- string : string A string that may contain non-ASCII characters. Returns ------- clean_string : string A string that does not contain non-ASCII characters. """ stripped = (c for c in s if 0 < ord(c) < 127) clean_string = u''.join(stripped) return clean_string
python
def strip_non_ascii(s): """ Returns the string without non-ASCII characters. Parameters ---------- string : string A string that may contain non-ASCII characters. Returns ------- clean_string : string A string that does not contain non-ASCII characters. """ stripped = (c for c in s if 0 < ord(c) < 127) clean_string = u''.join(stripped) return clean_string
[ "def", "strip_non_ascii", "(", "s", ")", ":", "stripped", "=", "(", "c", "for", "c", "in", "s", "if", "0", "<", "ord", "(", "c", ")", "<", "127", ")", "clean_string", "=", "u''", ".", "join", "(", "stripped", ")", "return", "clean_string" ]
Returns the string without non-ASCII characters. Parameters ---------- string : string A string that may contain non-ASCII characters. Returns ------- clean_string : string A string that does not contain non-ASCII characters.
[ "Returns", "the", "string", "without", "non", "-", "ASCII", "characters", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/utilities.py#L231-L248
10,096
diging/tethne
tethne/utilities.py
dict_from_node
def dict_from_node(node, recursive=False): """ Converts ElementTree node to a dictionary. Parameters ---------- node : ElementTree node recursive : boolean If recursive=False, the value of any field with children will be the number of children. Returns ------- dict : nested dictionary. Tags as keys and values as values. Sub-elements that occur multiple times in an element are contained in a list. """ dict = {} for snode in node: if len(snode) > 0: if recursive: # Will drill down until len(snode) <= 0. value = dict_from_node(snode, True) else: value = len(snode) elif snode.text is not None: value = snode.text else: value = u'' if snode.tag in dict.keys(): # If there are multiple subelements # with the same tag, then the value # of the element should be a list # rather than a dict. if type(dict[snode.tag]) is list: # If a list has already been # started, just append to # it. dict[snode.tag].append(value) else: dict[snode.tag] = [ dict[snode.tag], value ] else: dict[snode.tag] = value # Default behavior. return dict
python
def dict_from_node(node, recursive=False): """ Converts ElementTree node to a dictionary. Parameters ---------- node : ElementTree node recursive : boolean If recursive=False, the value of any field with children will be the number of children. Returns ------- dict : nested dictionary. Tags as keys and values as values. Sub-elements that occur multiple times in an element are contained in a list. """ dict = {} for snode in node: if len(snode) > 0: if recursive: # Will drill down until len(snode) <= 0. value = dict_from_node(snode, True) else: value = len(snode) elif snode.text is not None: value = snode.text else: value = u'' if snode.tag in dict.keys(): # If there are multiple subelements # with the same tag, then the value # of the element should be a list # rather than a dict. if type(dict[snode.tag]) is list: # If a list has already been # started, just append to # it. dict[snode.tag].append(value) else: dict[snode.tag] = [ dict[snode.tag], value ] else: dict[snode.tag] = value # Default behavior. return dict
[ "def", "dict_from_node", "(", "node", ",", "recursive", "=", "False", ")", ":", "dict", "=", "{", "}", "for", "snode", "in", "node", ":", "if", "len", "(", "snode", ")", ">", "0", ":", "if", "recursive", ":", "# Will drill down until len(snode) <= 0.", "value", "=", "dict_from_node", "(", "snode", ",", "True", ")", "else", ":", "value", "=", "len", "(", "snode", ")", "elif", "snode", ".", "text", "is", "not", "None", ":", "value", "=", "snode", ".", "text", "else", ":", "value", "=", "u''", "if", "snode", ".", "tag", "in", "dict", ".", "keys", "(", ")", ":", "# If there are multiple subelements", "# with the same tag, then the value", "# of the element should be a list", "# rather than a dict.", "if", "type", "(", "dict", "[", "snode", ".", "tag", "]", ")", "is", "list", ":", "# If a list has already been", "# started, just append to", "# it.", "dict", "[", "snode", ".", "tag", "]", ".", "append", "(", "value", ")", "else", ":", "dict", "[", "snode", ".", "tag", "]", "=", "[", "dict", "[", "snode", ".", "tag", "]", ",", "value", "]", "else", ":", "dict", "[", "snode", ".", "tag", "]", "=", "value", "# Default behavior.", "return", "dict" ]
Converts ElementTree node to a dictionary. Parameters ---------- node : ElementTree node recursive : boolean If recursive=False, the value of any field with children will be the number of children. Returns ------- dict : nested dictionary. Tags as keys and values as values. Sub-elements that occur multiple times in an element are contained in a list.
[ "Converts", "ElementTree", "node", "to", "a", "dictionary", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/utilities.py#L255-L298
10,097
diging/tethne
tethne/utilities.py
MLStripper.feed
def feed(self, data): """ added this check as sometimes we are getting the data in integer format instead of string """ try: self.rawdata = self.rawdata + data except TypeError: data = unicode(data) self.rawdata = self.rawdata + data self.goahead(0)
python
def feed(self, data): """ added this check as sometimes we are getting the data in integer format instead of string """ try: self.rawdata = self.rawdata + data except TypeError: data = unicode(data) self.rawdata = self.rawdata + data self.goahead(0)
[ "def", "feed", "(", "self", ",", "data", ")", ":", "try", ":", "self", ".", "rawdata", "=", "self", ".", "rawdata", "+", "data", "except", "TypeError", ":", "data", "=", "unicode", "(", "data", ")", "self", ".", "rawdata", "=", "self", ".", "rawdata", "+", "data", "self", ".", "goahead", "(", "0", ")" ]
added this check as sometimes we are getting the data in integer format instead of string
[ "added", "this", "check", "as", "sometimes", "we", "are", "getting", "the", "data", "in", "integer", "format", "instead", "of", "string" ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/utilities.py#L50-L60
10,098
diging/tethne
tethne/serialize/paper.py
Serialize.serializePaper
def serializePaper(self): """ This method creates a fixture for the "django-tethne_paper" model. Returns ------- paper_details in JSON format, which can written to a file. """ pid = tethnedao.getMaxPaperID(); papers_details = [] for paper in self.corpus: pid = pid + 1 paper_key = getattr(paper, Serialize.paper_source_map[self.source]) self.paperIdMap[paper_key] = pid paper_data = { "model": "django-tethne.paper", "pk": self.paperIdMap[paper_key], "fields": { "paper_id": paper_key, "corpus":self.corpus_id, "pub_date": getattr(paper, 'date', ''), "volume": getattr(paper, 'volume', ''), "title": getattr(paper, 'title', ''), "abstract": getattr(paper, 'abstract', ''), } } papers_details.append(paper_data) return papers_details
python
def serializePaper(self): """ This method creates a fixture for the "django-tethne_paper" model. Returns ------- paper_details in JSON format, which can written to a file. """ pid = tethnedao.getMaxPaperID(); papers_details = [] for paper in self.corpus: pid = pid + 1 paper_key = getattr(paper, Serialize.paper_source_map[self.source]) self.paperIdMap[paper_key] = pid paper_data = { "model": "django-tethne.paper", "pk": self.paperIdMap[paper_key], "fields": { "paper_id": paper_key, "corpus":self.corpus_id, "pub_date": getattr(paper, 'date', ''), "volume": getattr(paper, 'volume', ''), "title": getattr(paper, 'title', ''), "abstract": getattr(paper, 'abstract', ''), } } papers_details.append(paper_data) return papers_details
[ "def", "serializePaper", "(", "self", ")", ":", "pid", "=", "tethnedao", ".", "getMaxPaperID", "(", ")", "papers_details", "=", "[", "]", "for", "paper", "in", "self", ".", "corpus", ":", "pid", "=", "pid", "+", "1", "paper_key", "=", "getattr", "(", "paper", ",", "Serialize", ".", "paper_source_map", "[", "self", ".", "source", "]", ")", "self", ".", "paperIdMap", "[", "paper_key", "]", "=", "pid", "paper_data", "=", "{", "\"model\"", ":", "\"django-tethne.paper\"", ",", "\"pk\"", ":", "self", ".", "paperIdMap", "[", "paper_key", "]", ",", "\"fields\"", ":", "{", "\"paper_id\"", ":", "paper_key", ",", "\"corpus\"", ":", "self", ".", "corpus_id", ",", "\"pub_date\"", ":", "getattr", "(", "paper", ",", "'date'", ",", "''", ")", ",", "\"volume\"", ":", "getattr", "(", "paper", ",", "'volume'", ",", "''", ")", ",", "\"title\"", ":", "getattr", "(", "paper", ",", "'title'", ",", "''", ")", ",", "\"abstract\"", ":", "getattr", "(", "paper", ",", "'abstract'", ",", "''", ")", ",", "}", "}", "papers_details", ".", "append", "(", "paper_data", ")", "return", "papers_details" ]
This method creates a fixture for the "django-tethne_paper" model. Returns ------- paper_details in JSON format, which can written to a file.
[ "This", "method", "creates", "a", "fixture", "for", "the", "django", "-", "tethne_paper", "model", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/serialize/paper.py#L108-L137
10,099
diging/tethne
tethne/serialize/paper.py
Serialize.serializeCitation
def serializeCitation(self): """ This method creates a fixture for the "django-tethne_citation" model. Returns ------- citation details which can be written to a file """ citation_details = [] citation_id = tethnedao.getMaxCitationID() for citation in self.corpus.features['citations'].index.values(): date_match = re.search(r'(\d+)', citation) if date_match is not None: date = date_match.group(1) if date_match is None: date_match = re.search(r"NONE", citation) date = date_match.group() first_author = citation.replace('_', ' ').split(date)[0].rstrip() journal = citation.replace('_', ' ').split(date)[1].lstrip() citation_key = citation if citation_key not in self.citationIdMap: citation_id += 1 self.citationIdMap[citation_key] = citation_id citation_data = { "model": "django-tethne.citation", "pk": citation_id, "fields": { "literal": citation, "journal": journal, "first_author": first_author, "date": date } } citation_details.append(citation_data) return citation_details
python
def serializeCitation(self): """ This method creates a fixture for the "django-tethne_citation" model. Returns ------- citation details which can be written to a file """ citation_details = [] citation_id = tethnedao.getMaxCitationID() for citation in self.corpus.features['citations'].index.values(): date_match = re.search(r'(\d+)', citation) if date_match is not None: date = date_match.group(1) if date_match is None: date_match = re.search(r"NONE", citation) date = date_match.group() first_author = citation.replace('_', ' ').split(date)[0].rstrip() journal = citation.replace('_', ' ').split(date)[1].lstrip() citation_key = citation if citation_key not in self.citationIdMap: citation_id += 1 self.citationIdMap[citation_key] = citation_id citation_data = { "model": "django-tethne.citation", "pk": citation_id, "fields": { "literal": citation, "journal": journal, "first_author": first_author, "date": date } } citation_details.append(citation_data) return citation_details
[ "def", "serializeCitation", "(", "self", ")", ":", "citation_details", "=", "[", "]", "citation_id", "=", "tethnedao", ".", "getMaxCitationID", "(", ")", "for", "citation", "in", "self", ".", "corpus", ".", "features", "[", "'citations'", "]", ".", "index", ".", "values", "(", ")", ":", "date_match", "=", "re", ".", "search", "(", "r'(\\d+)'", ",", "citation", ")", "if", "date_match", "is", "not", "None", ":", "date", "=", "date_match", ".", "group", "(", "1", ")", "if", "date_match", "is", "None", ":", "date_match", "=", "re", ".", "search", "(", "r\"NONE\"", ",", "citation", ")", "date", "=", "date_match", ".", "group", "(", ")", "first_author", "=", "citation", ".", "replace", "(", "'_'", ",", "' '", ")", ".", "split", "(", "date", ")", "[", "0", "]", ".", "rstrip", "(", ")", "journal", "=", "citation", ".", "replace", "(", "'_'", ",", "' '", ")", ".", "split", "(", "date", ")", "[", "1", "]", ".", "lstrip", "(", ")", "citation_key", "=", "citation", "if", "citation_key", "not", "in", "self", ".", "citationIdMap", ":", "citation_id", "+=", "1", "self", ".", "citationIdMap", "[", "citation_key", "]", "=", "citation_id", "citation_data", "=", "{", "\"model\"", ":", "\"django-tethne.citation\"", ",", "\"pk\"", ":", "citation_id", ",", "\"fields\"", ":", "{", "\"literal\"", ":", "citation", ",", "\"journal\"", ":", "journal", ",", "\"first_author\"", ":", "first_author", ",", "\"date\"", ":", "date", "}", "}", "citation_details", ".", "append", "(", "citation_data", ")", "return", "citation_details" ]
This method creates a fixture for the "django-tethne_citation" model. Returns ------- citation details which can be written to a file
[ "This", "method", "creates", "a", "fixture", "for", "the", "django", "-", "tethne_citation", "model", "." ]
ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/serialize/paper.py#L210-L246