File size: 27,277 Bytes
827d9ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
# started from code from https://github.com/lucidrains/alphafold3-pytorch, MIT License, Copyright (c) 2024 Phil Wang

from __future__ import annotations

from math import sqrt

import numpy as np
import torch
import torch.nn.functional as F  # noqa: N812
from einops import rearrange
from torch import nn
from torch.nn import Module

from . import vb_const as const
from . import vb_layers_initialize as init
from .vb_loss_diffusionv2 import (
    smooth_lddt_loss,
    weighted_rigid_align,
)
from .vb_modules_encodersv2 import (
    AtomAttentionDecoder,
    AtomAttentionEncoder,
    SingleConditioning,
)
from .vb_modules_transformersv2 import (
    DiffusionTransformer,
)
from .vb_modules_utils import (
    LinearNoBias,
    center_random_augmentation,
    compute_random_augmentation,
    default,
    log,
)
from .vb_potentials_potentials import get_potentials


class DiffusionModule(Module):
    """Diffusion module"""

    def __init__(

        self,

        token_s: int,

        atom_s: int,

        atoms_per_window_queries: int = 32,

        atoms_per_window_keys: int = 128,

        sigma_data: int = 16,

        dim_fourier: int = 256,

        atom_encoder_depth: int = 3,

        atom_encoder_heads: int = 4,

        token_transformer_depth: int = 24,

        token_transformer_heads: int = 8,

        atom_decoder_depth: int = 3,

        atom_decoder_heads: int = 4,

        conditioning_transition_layers: int = 2,

        activation_checkpointing: bool = False,

        transformer_post_ln: bool = False,

    ) -> None:
        super().__init__()

        self.atoms_per_window_queries = atoms_per_window_queries
        self.atoms_per_window_keys = atoms_per_window_keys
        self.sigma_data = sigma_data
        self.activation_checkpointing = activation_checkpointing

        # conditioning
        self.single_conditioner = SingleConditioning(
            sigma_data=sigma_data,
            token_s=token_s,
            dim_fourier=dim_fourier,
            num_transitions=conditioning_transition_layers,
        )

        self.atom_attention_encoder = AtomAttentionEncoder(
            atom_s=atom_s,
            token_s=token_s,
            atoms_per_window_queries=atoms_per_window_queries,
            atoms_per_window_keys=atoms_per_window_keys,
            atom_encoder_depth=atom_encoder_depth,
            atom_encoder_heads=atom_encoder_heads,
            structure_prediction=True,
            activation_checkpointing=activation_checkpointing,
            transformer_post_layer_norm=transformer_post_ln,
        )

        self.s_to_a_linear = nn.Sequential(
            nn.LayerNorm(2 * token_s), LinearNoBias(2 * token_s, 2 * token_s)
        )
        init.final_init_(self.s_to_a_linear[1].weight)

        self.token_transformer = DiffusionTransformer(
            dim=2 * token_s,
            dim_single_cond=2 * token_s,
            depth=token_transformer_depth,
            heads=token_transformer_heads,
            activation_checkpointing=activation_checkpointing,
            # post_layer_norm=transformer_post_ln,
        )

        self.a_norm = nn.LayerNorm(
            2 * token_s
        )  # if not transformer_post_ln else nn.Identity()

        self.atom_attention_decoder = AtomAttentionDecoder(
            atom_s=atom_s,
            token_s=token_s,
            attn_window_queries=atoms_per_window_queries,
            attn_window_keys=atoms_per_window_keys,
            atom_decoder_depth=atom_decoder_depth,
            atom_decoder_heads=atom_decoder_heads,
            activation_checkpointing=activation_checkpointing,
            # transformer_post_layer_norm=transformer_post_ln,
        )

    def forward(

        self,

        s_inputs,  # Float['b n ts']

        s_trunk,  # Float['b n ts']

        r_noisy,  # Float['bm m 3']

        times,  # Float['bm 1 1']

        feats,

        diffusion_conditioning,

        multiplicity=1,

    ):
        if self.activation_checkpointing and self.training:
            s, normed_fourier = torch.utils.checkpoint.checkpoint(
                self.single_conditioner,
                times,
                s_trunk.repeat_interleave(multiplicity, 0),
                s_inputs.repeat_interleave(multiplicity, 0),
            )
        else:
            s, normed_fourier = self.single_conditioner(
                times,
                s_trunk.repeat_interleave(multiplicity, 0),
                s_inputs.repeat_interleave(multiplicity, 0),
            )

        # Sequence-local Atom Attention and aggregation to coarse-grained tokens
        a, q_skip, c_skip, to_keys = self.atom_attention_encoder(
            feats=feats,
            q=diffusion_conditioning["q"].float(),
            c=diffusion_conditioning["c"].float(),
            atom_enc_bias=diffusion_conditioning["atom_enc_bias"].float(),
            to_keys=diffusion_conditioning["to_keys"],
            r=r_noisy,  # Float['b m 3'],
            multiplicity=multiplicity,
        )

        # Full self-attention on token level
        a = a + self.s_to_a_linear(s)

        mask = feats["token_pad_mask"].repeat_interleave(multiplicity, 0)
        a = self.token_transformer(
            a,
            mask=mask.float(),
            s=s,
            bias=diffusion_conditioning[
                "token_trans_bias"
            ].float(),  # note z is not expanded with multiplicity until after bias is computed
            multiplicity=multiplicity,
        )
        a = self.a_norm(a)

        # Broadcast token activations to atoms and run Sequence-local Atom Attention
        r_update = self.atom_attention_decoder(
            a=a,
            q=q_skip,
            c=c_skip,
            atom_dec_bias=diffusion_conditioning["atom_dec_bias"].float(),
            feats=feats,
            multiplicity=multiplicity,
            to_keys=to_keys,
        )

        return r_update


class AtomDiffusion(Module):
    def __init__(

        self,

        score_model_args,

        num_sampling_steps: int = 5,  # number of sampling steps

        sigma_min: float = 0.0004,  # min noise level

        sigma_max: float = 160.0,  # max noise level

        sigma_data: float = 16.0,  # standard deviation of data distribution

        rho: float = 7,  # controls the sampling schedule

        P_mean: float = -1.2,  # mean of log-normal distribution from which noise is drawn for training

        P_std: float = 1.5,  # standard deviation of log-normal distribution from which noise is drawn for training

        gamma_0: float = 0.8,

        gamma_min: float = 1.0,

        noise_scale: float = 1.003,

        step_scale: float = 1.5,

        step_scale_random: list = None,

        coordinate_augmentation: bool = True,

        coordinate_augmentation_inference=None,

        compile_score: bool = False,

        alignment_reverse_diff: bool = False,

        synchronize_sigmas: bool = False,

    ):
        super().__init__()
        self.score_model = DiffusionModule(
            **score_model_args,
        )
        if compile_score:
            self.score_model = torch.compile(
                self.score_model, dynamic=False, fullgraph=False
            )

        # parameters
        self.sigma_min = sigma_min
        self.sigma_max = sigma_max
        self.sigma_data = sigma_data
        self.rho = rho
        self.P_mean = P_mean
        self.P_std = P_std
        self.num_sampling_steps = num_sampling_steps
        self.gamma_0 = gamma_0
        self.gamma_min = gamma_min
        self.noise_scale = noise_scale
        self.step_scale = step_scale
        self.step_scale_random = step_scale_random
        self.coordinate_augmentation = coordinate_augmentation
        self.coordinate_augmentation_inference = (
            coordinate_augmentation_inference
            if coordinate_augmentation_inference is not None
            else coordinate_augmentation
        )
        self.alignment_reverse_diff = alignment_reverse_diff
        self.synchronize_sigmas = synchronize_sigmas

        self.token_s = score_model_args["token_s"]
        self.register_buffer("zero", torch.tensor(0.0), persistent=False)

    @property
    def device(self):
        return next(self.score_model.parameters()).device

    def c_skip(self, sigma):
        return (self.sigma_data**2) / (sigma**2 + self.sigma_data**2)

    def c_out(self, sigma):
        return sigma * self.sigma_data / torch.sqrt(self.sigma_data**2 + sigma**2)

    def c_in(self, sigma):
        return 1 / torch.sqrt(sigma**2 + self.sigma_data**2)

    def c_noise(self, sigma):
        return log(sigma / self.sigma_data) * 0.25

    def preconditioned_network_forward(

        self,

        noised_atom_coords,  #: Float['b m 3'],

        sigma,  #: Float['b'] | Float[' '] | float,

        network_condition_kwargs: dict,

    ):
        batch, device = noised_atom_coords.shape[0], noised_atom_coords.device

        if isinstance(sigma, float):
            sigma = torch.full((batch,), sigma, device=device)

        padded_sigma = rearrange(sigma, "b -> b 1 1")

        r_update = self.score_model(
            r_noisy=self.c_in(padded_sigma) * noised_atom_coords,
            times=self.c_noise(sigma),
            **network_condition_kwargs,
        )

        denoised_coords = (
            self.c_skip(padded_sigma) * noised_atom_coords
            + self.c_out(padded_sigma) * r_update
        )
        return denoised_coords

    def sample_schedule(self, num_sampling_steps=None):
        num_sampling_steps = default(num_sampling_steps, self.num_sampling_steps)
        inv_rho = 1 / self.rho

        steps = torch.arange(
            num_sampling_steps, device=self.device, dtype=torch.float32
        )
        sigmas = (
            self.sigma_max**inv_rho
            + steps
            / (num_sampling_steps - 1)
            * (self.sigma_min**inv_rho - self.sigma_max**inv_rho)
        ) ** self.rho

        sigmas = sigmas * self.sigma_data

        sigmas = F.pad(sigmas, (0, 1), value=0.0)  # last step is sigma value of 0.
        return sigmas

    def sample(

        self,

        atom_mask,

        num_sampling_steps=None,

        multiplicity=1,

        max_parallel_samples=None,

        steering_args=None,

        **network_condition_kwargs,

    ):
        if steering_args is not None and (
            steering_args["fk_steering"]
            or steering_args["physical_guidance_update"]
            or steering_args["contact_guidance_update"]
        ):
            potentials = get_potentials(steering_args, boltz2=True)

        if steering_args["fk_steering"]:
            multiplicity = multiplicity * steering_args["num_particles"]
            energy_traj = torch.empty((multiplicity, 0), device=self.device)
            resample_weights = torch.ones(multiplicity, device=self.device).reshape(
                -1, steering_args["num_particles"]
            )
        if (
            steering_args["physical_guidance_update"]
            or steering_args["contact_guidance_update"]
        ):
            scaled_guidance_update = torch.zeros(
                (multiplicity, *atom_mask.shape[1:], 3),
                dtype=torch.float32,
                device=self.device,
            )
        if max_parallel_samples is None:
            max_parallel_samples = multiplicity

        num_sampling_steps = default(num_sampling_steps, self.num_sampling_steps)
        atom_mask = atom_mask.repeat_interleave(multiplicity, 0)

        shape = (*atom_mask.shape, 3)

        # get the schedule, which is returned as (sigma, gamma) tuple, and pair up with the next sigma and gamma
        sigmas = self.sample_schedule(num_sampling_steps)
        gammas = torch.where(sigmas > self.gamma_min, self.gamma_0, 0.0)
        sigmas_and_gammas = list(zip(sigmas[:-1], sigmas[1:], gammas[1:]))
        if self.training and self.step_scale_random is not None:
            step_scale = np.random.choice(self.step_scale_random)
        else:
            step_scale = self.step_scale

        # atom position is noise at the beginning
        init_sigma = sigmas[0]
        atom_coords = init_sigma * torch.randn(shape, device=self.device)
        token_repr = None
        atom_coords_denoised = None

        # gradually denoise
        for step_idx, (sigma_tm, sigma_t, gamma) in enumerate(sigmas_and_gammas):
            random_R, random_tr = compute_random_augmentation(
                multiplicity, device=atom_coords.device, dtype=atom_coords.dtype
            )
            atom_coords = atom_coords - atom_coords.mean(dim=-2, keepdims=True)
            atom_coords = (
                torch.einsum("bmd,bds->bms", atom_coords, random_R) + random_tr
            )
            if atom_coords_denoised is not None:
                atom_coords_denoised -= atom_coords_denoised.mean(dim=-2, keepdims=True)
                atom_coords_denoised = (
                    torch.einsum("bmd,bds->bms", atom_coords_denoised, random_R)
                    + random_tr
                )
            if (
                steering_args["physical_guidance_update"]
                or steering_args["contact_guidance_update"]
            ) and scaled_guidance_update is not None:
                scaled_guidance_update = torch.einsum(
                    "bmd,bds->bms", scaled_guidance_update, random_R
                )

            sigma_tm, sigma_t, gamma = sigma_tm.item(), sigma_t.item(), gamma.item()

            t_hat = sigma_tm * (1 + gamma)
            steering_t = 1.0 - (step_idx / num_sampling_steps)
            noise_var = self.noise_scale**2 * (t_hat**2 - sigma_tm**2)
            eps = sqrt(noise_var) * torch.randn(shape, device=self.device)
            atom_coords_noisy = atom_coords + eps

            with torch.no_grad():
                atom_coords_denoised = torch.zeros_like(atom_coords_noisy)
                sample_ids = torch.arange(multiplicity).to(atom_coords_noisy.device)
                sample_ids_chunks = sample_ids.chunk(
                    multiplicity % max_parallel_samples + 1
                )

                for sample_ids_chunk in sample_ids_chunks:
                    atom_coords_denoised_chunk = self.preconditioned_network_forward(
                        atom_coords_noisy[sample_ids_chunk],
                        t_hat,
                        network_condition_kwargs=dict(
                            multiplicity=sample_ids_chunk.numel(),
                            **network_condition_kwargs,
                        ),
                    )
                    atom_coords_denoised[sample_ids_chunk] = atom_coords_denoised_chunk

                if steering_args["fk_steering"] and (
                    (
                        step_idx % steering_args["fk_resampling_interval"] == 0
                        and noise_var > 0
                    )
                    or step_idx == num_sampling_steps - 1
                ):
                    # Compute energy of x_0 prediction
                    energy = torch.zeros(multiplicity, device=self.device)
                    for potential in potentials:
                        parameters = potential.compute_parameters(steering_t)
                        if parameters["resampling_weight"] > 0:
                            component_energy = potential.compute(
                                atom_coords_denoised,
                                network_condition_kwargs["feats"],
                                parameters,
                            )
                            energy += parameters["resampling_weight"] * component_energy
                    energy_traj = torch.cat((energy_traj, energy.unsqueeze(1)), dim=1)

                    # Compute log G values
                    if step_idx == 0:
                        log_G = -1 * energy
                    else:
                        log_G = energy_traj[:, -2] - energy_traj[:, -1]

                    # Compute ll difference between guided and unguided transition distribution
                    if (
                        steering_args["physical_guidance_update"]
                        or steering_args["contact_guidance_update"]
                    ) and noise_var > 0:
                        ll_difference = (
                            eps**2 - (eps + scaled_guidance_update) ** 2
                        ).sum(dim=(-1, -2)) / (2 * noise_var)
                    else:
                        ll_difference = torch.zeros_like(energy)

                    # Compute resampling weights
                    resample_weights = F.softmax(
                        (ll_difference + steering_args["fk_lambda"] * log_G).reshape(
                            -1, steering_args["num_particles"]
                        ),
                        dim=1,
                    )

                # Compute guidance update to x_0 prediction
                if (
                    steering_args["physical_guidance_update"]
                    or steering_args["contact_guidance_update"]
                ) and step_idx < num_sampling_steps - 1:
                    guidance_update = torch.zeros_like(atom_coords_denoised)
                    for guidance_step in range(steering_args["num_gd_steps"]):
                        energy_gradient = torch.zeros_like(atom_coords_denoised)
                        for potential in potentials:
                            parameters = potential.compute_parameters(steering_t)
                            if (
                                parameters["guidance_weight"] > 0
                                and (guidance_step) % parameters["guidance_interval"]
                                == 0
                            ):
                                energy_gradient += parameters[
                                    "guidance_weight"
                                ] * potential.compute_gradient(
                                    atom_coords_denoised + guidance_update,
                                    network_condition_kwargs["feats"],
                                    parameters,
                                )
                        guidance_update -= energy_gradient
                    atom_coords_denoised += guidance_update
                    scaled_guidance_update = (
                        guidance_update
                        * -1
                        * self.step_scale
                        * (sigma_t - t_hat)
                        / t_hat
                    )

                if steering_args["fk_steering"] and (
                    (
                        step_idx % steering_args["fk_resampling_interval"] == 0
                        and noise_var > 0
                    )
                    or step_idx == num_sampling_steps - 1
                ):
                    resample_indices = (
                        torch.multinomial(
                            resample_weights,
                            resample_weights.shape[1]
                            if step_idx < num_sampling_steps - 1
                            else 1,
                            replacement=True,
                        )
                        + resample_weights.shape[1]
                        * torch.arange(
                            resample_weights.shape[0], device=resample_weights.device
                        ).unsqueeze(-1)
                    ).flatten()

                    atom_coords = atom_coords[resample_indices]
                    atom_coords_noisy = atom_coords_noisy[resample_indices]
                    atom_mask = atom_mask[resample_indices]
                    if atom_coords_denoised is not None:
                        atom_coords_denoised = atom_coords_denoised[resample_indices]
                    energy_traj = energy_traj[resample_indices]
                    if (
                        steering_args["physical_guidance_update"]
                        or steering_args["contact_guidance_update"]
                    ):
                        scaled_guidance_update = scaled_guidance_update[
                            resample_indices
                        ]
                    if token_repr is not None:
                        token_repr = token_repr[resample_indices]

            if self.alignment_reverse_diff:
                with torch.autocast("cuda", enabled=False):
                    atom_coords_noisy = weighted_rigid_align(
                        atom_coords_noisy.float(),
                        atom_coords_denoised.float(),
                        atom_mask.float(),
                        atom_mask.float(),
                    )

                atom_coords_noisy = atom_coords_noisy.to(atom_coords_denoised)

            denoised_over_sigma = (atom_coords_noisy - atom_coords_denoised) / t_hat
            atom_coords_next = (
                atom_coords_noisy + step_scale * (sigma_t - t_hat) * denoised_over_sigma
            )

            atom_coords = atom_coords_next

        return dict(sample_atom_coords=atom_coords, diff_token_repr=token_repr)

    def loss_weight(self, sigma):
        return (sigma**2 + self.sigma_data**2) / ((sigma * self.sigma_data) ** 2)

    def noise_distribution(self, batch_size):
        return (
            self.sigma_data
            * (
                self.P_mean
                + self.P_std * torch.randn((batch_size,), device=self.device)
            ).exp()
        )

    def forward(

        self,

        s_inputs,

        s_trunk,

        feats,

        diffusion_conditioning,

        multiplicity=1,

    ):
        # training diffusion step
        batch_size = feats["coords"].shape[0] // multiplicity

        if self.synchronize_sigmas:
            sigmas = self.noise_distribution(batch_size).repeat_interleave(
                multiplicity, 0
            )
        else:
            sigmas = self.noise_distribution(batch_size * multiplicity)
        padded_sigmas = rearrange(sigmas, "b -> b 1 1")

        atom_coords = feats["coords"]

        atom_mask = feats["atom_pad_mask"]
        atom_mask = atom_mask.repeat_interleave(multiplicity, 0)

        atom_coords = center_random_augmentation(
            atom_coords, atom_mask, augmentation=self.coordinate_augmentation
        )

        noise = torch.randn_like(atom_coords)
        noised_atom_coords = atom_coords + padded_sigmas * noise

        denoised_atom_coords = self.preconditioned_network_forward(
            noised_atom_coords,
            sigmas,
            network_condition_kwargs={
                "s_inputs": s_inputs,
                "s_trunk": s_trunk,
                "feats": feats,
                "multiplicity": multiplicity,
                "diffusion_conditioning": diffusion_conditioning,
            },
        )

        return {
            "denoised_atom_coords": denoised_atom_coords,
            "sigmas": sigmas,
            "aligned_true_atom_coords": atom_coords,
        }

    def compute_loss(

        self,

        feats,

        out_dict,

        add_smooth_lddt_loss=True,

        nucleotide_loss_weight=5.0,

        ligand_loss_weight=10.0,

        multiplicity=1,

        filter_by_plddt=0.0,

    ):
        with torch.autocast("cuda", enabled=False):
            denoised_atom_coords = out_dict["denoised_atom_coords"].float()
            sigmas = out_dict["sigmas"].float()

            resolved_atom_mask_uni = feats["atom_resolved_mask"].float()

            if filter_by_plddt > 0:
                plddt_mask = feats["plddt"] > filter_by_plddt
                resolved_atom_mask_uni = resolved_atom_mask_uni * plddt_mask.float()

            resolved_atom_mask = resolved_atom_mask_uni.repeat_interleave(
                multiplicity, 0
            )

            align_weights = denoised_atom_coords.new_ones(denoised_atom_coords.shape[:2])
            atom_type = (
                torch.bmm(
                    feats["atom_to_token"].float(),
                    feats["mol_type"].unsqueeze(-1).float(),
                )
                .squeeze(-1)
                .long()
            )
            atom_type_mult = atom_type.repeat_interleave(multiplicity, 0)

            align_weights = (
                align_weights
                * (
                    1
                    + nucleotide_loss_weight
                    * (
                        torch.eq(atom_type_mult, const.chain_type_ids["DNA"]).float()
                        + torch.eq(atom_type_mult, const.chain_type_ids["RNA"]).float()
                    )
                    + ligand_loss_weight
                    * torch.eq(
                        atom_type_mult, const.chain_type_ids["NONPOLYMER"]
                    ).float()
                ).float()
            )

            atom_coords = out_dict["aligned_true_atom_coords"].float()
            atom_coords_aligned_ground_truth = weighted_rigid_align(
                atom_coords.detach(),
                denoised_atom_coords.detach(),
                align_weights.detach(),
                mask=feats["atom_resolved_mask"]
                .float()
                .repeat_interleave(multiplicity, 0)
                .detach(),
            )

            # Cast back
            atom_coords_aligned_ground_truth = atom_coords_aligned_ground_truth.to(
                denoised_atom_coords
            )

            # weighted MSE loss of denoised atom positions
            mse_loss = (
                (denoised_atom_coords - atom_coords_aligned_ground_truth) ** 2
            ).sum(dim=-1)
            mse_loss = torch.sum(
                mse_loss * align_weights * resolved_atom_mask, dim=-1
            ) / (torch.sum(3 * align_weights * resolved_atom_mask, dim=-1) + 1e-5)

            # weight by sigma factor
            loss_weights = self.loss_weight(sigmas)
            mse_loss = (mse_loss * loss_weights).mean()

            total_loss = mse_loss

            # proposed auxiliary smooth lddt loss
            lddt_loss = self.zero
            if add_smooth_lddt_loss:
                lddt_loss = smooth_lddt_loss(
                    denoised_atom_coords,
                    feats["coords"],
                    torch.eq(atom_type, const.chain_type_ids["DNA"]).float()
                    + torch.eq(atom_type, const.chain_type_ids["RNA"]).float(),
                    coords_mask=resolved_atom_mask_uni,
                    multiplicity=multiplicity,
                )

                total_loss = total_loss + lddt_loss

            loss_breakdown = {
                "mse_loss": mse_loss,
                "smooth_lddt_loss": lddt_loss,
            }

        return {"loss": total_loss, "loss_breakdown": loss_breakdown}